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PREFACE

Electromagnetic fields is one of the classical disciplines that has been around for

some time. However, still today new scientific and technological applications in

this area keep on growing. Therefore electromagnetic fields is a core subject not

only for electrical engineering and physics majors, but also for students coming

from many other disciplines. There are a number of excellent textbooks that were

developed to meet the requirements of traditional curricula. These are mostly

suited for introductory one- and two-semester sequences in electrical engineering

or physics programs. Since many of the new areas developed lately warrant

integration into the electrical engineering curriculum, it is often difficult to accom-

modate a traditional two-semester sequence in electromagnetic fields along with the

suitable prerequisite courses. Further there is almost no room left for an upper-level

course that includes some contemporary applications of electromagnetic fields. This

book is attempting to address these issues.

The subject matter of this book is arranged such that it is suitable for students

with the basic calculus and basic physics that are required at the college level.

After a brief review of the fundamental units and prefixes, electrical sources and

fundamental quantities are introduced in Chapter 1. This is followed by the charac-

teristics of sinusoidal waves. A working introduction of complex numbers is also

included in this chapter. Chapter 2 begins with the definitions of vectors and

the manipulation techniques of vectors in rectangular, cylindrical, and spherical

coordinates. The concepts of scalar and vector fields are introduced. Vector

calculus is briefly reviewed along with the gradient of scalar fields, and the

divergence and curl of vector fields. The relevant theorems are covered as well in

this chapter.
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Maxwell’s equations in their large-scale form are introduced in Chapter 3 as

experimental facts expressed mathematically. A number of examples are used to

illustrate their importance. After introducing the equation of continuity, Maxwell’s

equations in point form are found via the divergence and Stokes theorems. Sections

on the constitutive relations and the boundary conditions follow. The chapter ends

with introductions of the Lorentz force equation and the Poynting theorem. Chapter

4 presents the propagation characteristics of uniform plane waves along with some

simple applications. The formulation of Helmholtz’s equation is summarized and

used in the construction of uniform plane waves propagating in various media of

infinite extent. The concepts of reflection and transmission of these waves at an

interface with another medium are also discussed in this chapter.

Chapter 5 begins with the fundamentals of signal propagation in frequency

domain. The Smith chart technique is presented for analyzing transmission line

circuits. This chapter concludes with an introduction to time-domain analysis of sig-

nals traveling on a transmission line. The concepts of magnetic charge and current

are the subject of Chapter 6. After a brief discussion of the modified Maxwell

equations, vector and scalar potentials are introduced. The techniques covered

in this chapter are used to construct solutions of electromagnetic problems in

rectangular, cylindrical, and spherical coordinate systems.

Chapter 7 begins with an analysis of electromagnetic fields produced by an

infinitesimal current element in an unbounded medium. After a discussion of

antenna parameters, the radiation behavior of a linear antenna is presented. Follow-

ing this, the concepts of antenna arrays are presented along with broadside and

end-fire arrays. This chapter includes a section on the Friis transmission formula

and the radar range equation.

Electrostatic and magnetostatic fields are considered in Chapters 8 and 9 as a

special case of time-varying electrical sources. A number of electrostatic problems

are analyzed via Poisson’s and Laplace’s equations. Energy storage in electrical

capacitors and inductors is introduced along with a few application examples. The

fundamentals of magnetic materials and the magnetic circuits are also discussed

in Chapter 9.

Further applications of the solution techniques of Chapter 6 are found in Chapter

10 where the signal propagation is studied in cylindrical waveguides of rectangular

and circular cross sections. This chapter includes sections on rectangular and circu-

lar cylindrical cavity resonators. Chapter 11, the last chapter of this book briefly

explains two widely used numerical techniques to solve electromagnetic problems.

The concepts of finite difference are illustrated by a few simple examples. A section

on the method of moments is included in this chapter. The problem formulation

required for the method of moments is the topic of the last section of this chapter,

and it covers the scattering of a planar electromagnetic wave from a conducting

cylinder as well.

There are eight appendixes providing relevant mathematical formulas, Bessel

functions, and Legendre functions. An appendix is also devoted to the concept of

the delta function along with its application in finding electromagnetic fields in an

unbounded medium.
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Some of the highlights of the book are as follows:

. The fundamentals of complex numbers and vector analysis are presented at the

beginning along with a number of solved examples. Readers already familiar

with these topics can easily skip the first two chapters.

. Maxwell’s equations are introduced early in Chapter 3 as mathematical rep-

resentations of experiments. After a brief presentation of constitutive relations

and boundary conditions, the Lorentz force equation is introduced. A number of

examples are used to illustrate applications of the various formulas.

. Uniform plane waves are presented in Chapter 4. The chapter includes a

number of simple application examples.

. Transmission line circuits are presented in Chapter 5. This discussion can be

easily moved to the beginning of a semester’s work if an instructor prefers that.

. The rest of the material can be used for upper level technical elective or a begin-

ning graduate level courses. Also the last section of Chapter 4 can be easily

replaced with Chapters 8 and 9 in a first course.

. There are some 170 fully solved examples that are closely connected to the

material presented in each chapter. The book includes over 225 practice

problems as well.
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1
INTRODUCTION

The area of electromagnetic fields plays a central role in numerous scientific and

technical applications. It includes television and audio broadcasting, optical

communication, and wireless communications. We not only can communicate

from virtually anywhere on the planet but can get detailed pictures of distant planets

at the speed of light. Civilian and military personnel in aviation, law enforcement,

remote sensing, weather forecast, to name a few, currently use a variety of radars.

Physicians can get a detailed image and better diagnostics of the patient through

devices and instruments developed via the principles of electromagnetic fields.

Since electrical signals generate and propagate inside the human body to manage

various functions, these electrical fields (e.g., the electrocardiogram) are monitored

in diagnostics as well.

The concept of electromagnetic fields is believed to have originated in ancient

Greece. The Greeks observed electric and magnetic phenomenon perhaps as

early as 800 BC. They noticed that a piece of amber attracts pieces of feather after

rubbing. In Greek, amber is called “elecktron” and the word “electric” comes

from that. Further they found that certain naturally found stones attracted pieces

of iron. These are now called magnetite, perhaps after the shepherd named

Magnes who got stuck due to the iron nails in his shoes. Magnetite was found in

a northern central district of Greece named Magnesia, the word “magnetic”

comes from that. It was found through systematic experiments that there are

two different kinds of electrical charges. Benjamin Franklin named them positive

and negative. Perhaps most significant developments in electromagnetic fields
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happened during nineteenth century when it was established that electric and mag-

netic fields are related phenomena. Principles of electrical generators and motors

were established, and the light being an electromagnetic wave was recognized.

In 1873 Maxwell elegantly summarized various observations and experimental

facts through a set of equations that formed the foundation of technological

advances of today.

The SI system of units is followed in this book, as it is standard practice in

modern science and engineering. Fundamental SI units are given in Table 1.1

along with their symbols. Other units that we will need to express electromagnetic

field quantities can be expressed in terms of these, and therefore those units are

regarded as secondary. Further sometimes we come across so small or so large a

quantity that usual unit becomes inconvenient. This can be avoided via the prefixes

that are listed in Table 1.2.

1.1 ELECTRICAL SOURCES AND FUNDAMENTAL QUANTITIES

Now we know that there are positive and negative electrical charges as protons and

electrons in an atom. Electrical charge cannot be created or destroyed, but it can be

transferred. In the case of biological systems, such as the human body, positive and

TABLE 1.1 Fundamental SI Units

Quantity Unit Symbol

Length meter m

Mass kilogram kg

Time second s

Current ampere A

Temperature Kelvin K

Luminous intensity candela cd

TABLE 1.2 Multiplying Prefixes for Units

Multiplying

Prefix Prefix Symbol

Multiplying

Prefix Prefix Symbol

1018 exa E 1022 centi c

1015 peta P 1023 milli m

1012 tera T 1026 micro m
109 giga G 1029 nano n

106 mega M 10212 pico p

103 kilo k 10215 femto f

10218 atto a
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negative ions of sodium, potassium, and chloride play role in transferring infor-

mation from one point to the other. For instance, the action potentials propagate

through the nerve fibers, carrying information to or from the brain. Similarly the

pacemaker cells found at SA node of the human heart generates an electrical

signal that propagates through cells to control the blood flow.

Electrical charge is measured in coulombs (denoted as C), after the great French

physicist Charles Coulomb. For example, the charge on an electron is

21.602 .10219 C. Thus 1 C of charge will require over 6 .1018 electrons. The elec-

trical current is found when the electrical charge moves. A unit of electric current is

an ampere (denoted as A), which is equivalent to coulomb per second. A volume

charge density r is defined as the charge per unit volume. Note that the volume

has to be small enough to represent point-to-point variations accurately; at

the same time it should be large enough to contain a fairly large number of discrete

charges. Mathematically

r ¼ lim
dV!0

dq

dV
C=m3, (1:1:1)

where dq is the charge in coulomb that exists in a small volume dV.
In certain physical situations the charge may exist only on an area element ds or

even on a length element dl. Surface or length charge densities are more appropriate

in such cases. These densities are defined as

r s ¼ lim
ds!0

dq

ds
C=m2 (1:1:2)

and

r‘ ¼ lim
d‘!0

dq

d‘
C=m: (1:1:3)

The electrical current I is defined as follows:

I ¼ dQ

dt
A: (1:1:4)

Since current must flow through a finite area, it is not defined at a point. An

associated point function used in electromagnetic fields is the current density ~J
that is defined as the current per unit area:

~J ¼ lim
dA!0

dI

dA
n̂ ¼ r~v A=m2, (1:1:5)

where n̂ is the unit vector normal to the elemental area dA (therefore in the direction

of current flow) and ~v is velocity of the charge flow.

1.1 ELECTRICAL SOURCES AND FUNDAMENTAL QUANTITIES 3



The surface current is defined as

~Js ¼ lim
d‘!0

dI

d‘
A=m: (1:1:6)

Electric Field Intensity

It is found that like charges repel and unlike charges attract one another. Electric

field intensity ~E (also known as the electric field strength) at a point in space is

defined as the electric force acting on a positive test charge placed at that point

divided by the magnitude of that test charge. It is assumed that the test charge is

small enough such that it does not disturb the original charge distribution. Hence

~E ¼ lim
q!0

~F

q
: (1:1:7)

According to this definition, a unit of the electric field intensity is Newton per

coulomb. A more commonly used unit is volt per meter, which is defined via the

electrical potential. The work done by an external source to move a charge of 1 C

from one point to another is defined as the potential difference:

Wab ¼ DF ¼ �
ðb
a

~E � d ~‘ J=C: (1:1:8)

The joule per coulomb unit for the potential difference DF is defined as volt (V), and

therefore electric field intensity is expressed in volt per meter.

Electric Flux Density

Michael Faraday was the first to develop the concept of electric flux by way of an ice

pail experiment. His experiments showed that if two concentric spheres, isolated

from each other, are used and a positive charge is placed on the inner sphere,

then the positive charge induces a negative charge of equal amount. He concluded

that there was some electric flux proportional to the charge. Today electric flux den-

sity ~D is defined as the electric flux passing through per unit area. Sometimes it is

also called the electric displacement. It is expressed in coulombs per square meter

(C/m2). This provides a clue to understanding the interaction of electric fields

with material media.

Magnetic Flux Density

As mentioned earlier, Greeks knew about magnetism from around 700 BC. Pierre de

Maricourt used a spherical natural magnet in 1269 to map out the direction that a

needle took when placed at various points on a spherical surface. He found that

the directional lines originated from one point and terminated at an entirely opposite

4 INTRODUCTION



point. He named these points the poles of the magnet. It was found later on that these

poles existed for all magnets and so were termed north and south poles. Further

it was found that the two poles could not be separated the same way as negative

and positive electrical charges. Electrical lines of force emanate from positive

charges and terminate at negative charges. Similarly magnetic lines of force orig-

inate from the north pole and sink at the south pole.

Experiments showed that the magnetic field cannot change the velocity of a

moving electrical charge, but it can change the direction of its motion. The force

per unit charge was found to be proportional to the velocity as well as a magnetic

quantity that is called the magnetic flux density ~B. It is also known as the magnetic

induction and expressed in weber per square meter (Wb/m2) or more commonly in

tesla (T).

Magnetic Field Intensity

A current-carrying conductor has an encircling magnetic field. If a conducting wire

loop of enclosed area A has current I, then its vector magnetic moment is defined

as IA with its direction normal to the loop. Since there are electrons orbiting and

spinning in atoms, they produce equivalent magnetic moments. The magnetiza-

tion vector ~M describes the magnetic state of a substance. The magnitude of this

magnetization vector is defined as the magnetic moment per unit volume of the

substance. When there are magnetic fields due to the current flow as well as those

produced by the substance, it becomes convenient to introduce another vector

field quantity ~H that represents the magnetic field intensity or the magnetic field

strength. It is expressed in amperes per meter (A/m). Fundamental electromagnetic

field quantities are listed in Table 1.3 along with their symbols and units.

1.2 STATIC AND DYNAMIC FIELDS

Electrical charges that are constant with time produce electrical fields that do not

vary with time, and therefore these fields are called electrostatic fields. Similarly

a constant current produces a magnetostatic field. The static fields are independent

TABLE 1.3 Fundamental Field Quantities

Field Vectors Symbol SI Unit

Electric field Electric field intensity or

electric field strength

~E V/m

Electric flux density or

electric displacement

~D C/m2

Magnetic field Magnetic flux density ~B T or Wb/m2

Magnetic field intensity or

magnetic field strength

~H A/m

1.2 STATIC AND DYNAMIC FIELDS 5



of each other. On the other hand, time-varying sources—both currents and

charges—produce electric as well as magnetic fields that change with time, and

therefore these are called dynamic fields. Dynamic electric fields are related to

dynamic magnetic fields. In other words, time-varying electric fields are not inde-

pendent of magnetic fields generated by the source. In general, the time variation

of these fields can have any form. However, if they change with time following a

sine function, then we call them the time-harmonic fields. Since even nonsinusoidal

signals can be expressed as a sum of many (theoretically infinite) sinusoidal signals,

we will focus mainly on time-harmonic fields. It is also easier to analyze time-

harmonic fields than other dynamic fields.

Propagating Sinusoidal Waves

When a string is disturbed at its one end, the signal travels along its length. This may

be called a one-dimensional propagation of the wave. Similarly a wave propagating

over a drumhead is two-dimensional. In case of electromagnetic fields we deal with

three-dimensional waves. The direction of propagation is normal to a surface over

which electrical characteristics are the same. If this surface represents a plane,

then it is called a uniform plane wave. If the surface is cylindrical, then it is a

cylindrical wave. Similarly the spherical waves have uniform characteristics over

the spherical surfaces.

A wave traveling through a medium that does not absorb its energy is expressed as

v(z; t) ¼ A cos(vt � bzþ u), (1:2:1)

where A is known as amplitude of the wave; v is the angular frequency in rad/s
and t is the time variable in s; b is called the propagation constant in rad/m and z

is the space variable in m, and u is an arbitrary constant phase angle in rad.

Figure 1.1(a) shows typical characteristics of v as a function of time t when keeping

Figure 1.1 (a) v(z, t) as a function of t with z constant and (b) as a function of z with t

constant.
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the distance z constant (i.e., at a fixed location). The time over which a wave goes

through a 2p rad (i.e., 3608) phase change is known as the wave’s time period T.

The inverse of the time period in seconds is known as the wave’s frequency

f, which is expressed in hertz (Hz). Angular frequency v is related with this as 2p f,

and it is expressed in radian per second (rad/s). Figure 1.1(b) shows the characteristics
of v as a function of distance zwhile time t is kept fixed. Thus it represents a snapshot

of v. The amplitude of the wave is the same as that in Figure 1.1(a), so the general

behavior looks the same. However, the amplitude is a function of distance now.

The distance over which the wave goes through a 2p rad change is called the wave-

length l of the wave. The wavelength is expressed in meters. The propagation

constant b is equal to 2p/l. The ratio of the angular velocity to its propagation

constant gives the phase velocity vp of the wave:

v p ¼ v

b
¼ 2p f

2p=l
¼ fl: (1:2:2)

The velocity of any electromagnetic wave in free space is the same as that of the

speed of light, which is approximately equal to 3 .108 m/s. The electromagnetic

spectrum is given in Table 1.4. Note that the visible light, infrared, X rays,

gamma rays, and radio waves all belong to the family of electromagnetic waves.

Table 1.5 lists commercial broadcast TV and radio channels that are also part of

this family.

Example 1.1

Wavelength of a laser signal in air is found to be 632.8 nm. Find its frequency

in Hz and in rad/s, and the time period.

From (1.2.2) we have

f ¼ 3 � 108
632:8 � 10�9

¼ 474:08 � 1012 Hz ¼ 474:08THz,

v ¼ 2p f ¼ 2:9787 � 1015 rad=s ¼ 2:9787 Prad=s,

and

T ¼ 1

f
¼ 1

474:08 � 1012 ¼ 2:11 � 10�15 s ¼ 2:11 fs:

Example 1.2

The dipole antenna shown in Figure 1.2 is found to be very effective in sensing

electromagnetic radiation when its length is close to one-half of the signal

wavelengths. Find a suitable length that works for the FM band.

1.2 STATIC AND DYNAMIC FIELDS 7
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From Table 1.5, the FM band includes 88 MHz to 108 MHz. The signal wave-

lengths at these two extremes are found to be

l88 ¼ 3 � 108
88 � 106 ¼ 3:41m

and

l108 ¼ 3 � 108
108 � 106 ¼ 2:78m:

Therefore, if we select 1.7 m long antenna, then its length is exactly one-half

wavelength at 88 MHz, and it will be longer at other frequencies in the band.

On the other hand, a 1.39 m long antenna will be exactly one-half wavelength

at 108 MHz but shorter than one-half at lower frequencies in the band. A

1.5 m long antenna should be a good compromise for the band.

Example 1.3

A satellite is being used for the wireless communication at 2.5 GHz. If its altitude

is 10,370 km, find minimum possible time lag in signal reception between

the two ground stations.

TABLE 1.5 Frequency Bands Used in Commercial Broadcasting

Channels Frequency Range Wavelength Range

AM 107 535 kHz–1605 kHz 186.92 m–560.75 m

TV 2–4 54 MHz–72 MHz 4.17 m–5.56 m

5–6 76 MHz–88 MHz 3.41 m–3.95 m

FM 100 88 MHz–108 MHz 2.78 m–3.41 m

TV 7–13 174 MHz–216 MHz 1.39 m–1.72 m

14–83 470 MHz–890 MHz 33.7 cm–63.83 cm

Figure 1.2 A dipole antenna with a receiver.
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Since all electromagnetic signals propagate with speed of light, the time lag Dt by
the signal to reach at the receiver is

Dt ¼ 2 � 10370 � 103
3 � 108 ¼ 6:9133 � 10�2 s ¼ 69:13ms

1.3 WORKING WITH COMPLEX NUMBERS AND FUNCTIONS

Complex numbers are used to simplify mathematical analysis in many areas invol-

ving sinusoidal signals. This includes the electrical circuits and electromagnetic

fields. Therefore this section reviews the complex numbers and functions briefly.

Consider a point P on the complex plane as shown in Figure 1.3. Its coordinates

are (a, b). This point may be identified in polar coordinates as c/f. Using complex

algebra, we can express this as follows:

c ¼ aþ jb, (1:3:1)

where

j ¼
ffiffiffiffiffiffiffi
�1

p
�! j2 ¼ �1 (1:3:2)

From Figure 1.3 we find that

jcj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
(1:3:3)

and

f ¼ tan�1 b

a

� �
: (1:3:4)

Figure 1.3 Graphical representation of the complex number.
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Similarly

a ¼ jcj cosf (1:3:5)

and

b ¼ jcj sinf: (1:3:6)

Therefore

c¼ jcj/f¼ aþ jb¼ jcjcosfþ jjcj sin f¼ jcj(cos fþ j sin f)¼ jcjejf (1:3:7)

We can switch back and forth as needed in the analysis. Equation (1.3.7) includes

De Moivre’s formula, which is written as follows:

e+jnx ¼ cos nx+ j sin nx, (1:3:8)

where the þ sign on the left goes with the þ on the right. Similarly two minus signs

go together. Also

(ejx)n ¼ (cos xþ j sin x)n (1:3:9)

From (1.3.8) we find that

sin nx¼ e jnx � e�jnx

2j
(1:3:10)

and

cos nx¼ einx þ e�jnx

2
: (1:3:11)

Addition and Subtraction of Complex Numbers

Consider two complex numbers c and h that can be expressed as follows:

c ¼ aþ jb ¼ jcj/f ¼ jcje jf1 (1:3:12)

and

h ¼ f þ jg ¼ jhj/f2 ¼ jhje jf2 : (1:3:13)

Addition of these two complex numbers is done by adding the real and imaginary

parts of c and h as follows:

cþ h ¼ (aþ jb)þ ( f þ jg) ¼ (aþ f )þ j(bþ g): (1:3:14)
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The addition process is depicted graphically in Figure 1.4. If c and h form the

two sides of a parallelogram, then its diagonal represents the sum of two complex

numbers. Subtraction is just an extension of this addition. It is defined as follows:

c� h ¼ (aþ jb)� ( f þ jg) ¼ (a� f )þ j(b� g): (1:3:15)

Complex Conjugate of a Complex Number

Complex conjugate of c is denoted by c�. It is defined as follows:

c� ¼ a� jb: (1:3:16)

Multiplication and Division of Complex Numbers

The product of two complex numbers is found after multiplying the numbers term

by term as follows:

c � h ¼ (aþ jb) � ( f þ jg) ¼ af þ jbf þ jagþ j2bg:

Using (1.3.2), we find that

c � h ¼ (af � bg)þ j(bf þ ag): (1:3:17)

Using polar representations for complex numbers, we find the equivalent result to be

c � h ¼ jcjeif1 � jhje jf2 ¼ jcj � jhje j(f1þf2): (1:3:18)

Figure 1.4 Graphical representation of addition and subtraction of two complex numbers.
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Therefore, if a complex number is multiplied by its conjugate, then we have

c � c� ¼ (aþ jb) � (a� jb) ¼ a2 þ b2 ¼ jcj2: (1:3:19)

Division of a complex number with another is found after multiplying the numerator

and the denominator by the complex conjugate of the denominator as follows:

c

h
¼ aþ jb

f þ jg

f � jg

f � jg
¼ (af þ bg)þ j(bf � ag)

f 2 þ g2
: (1:3:20)

Using polar representations, we find the equivalent result to be

c

h
¼ jcje jf1

jhje jf2
¼ jcj

jhj e
j(f1�f2): (1:3:21)

Example 1.4

For c ¼ 1þ j2 and h ¼ 222 j1, find (a) cþ h, (b) c2 h, (c) c .h, and (d) c/h.
We can find polar representations for the both as follows:

c ¼ 1þ j2 ¼ 2:2361e j1:1071

and

h ¼ �2� j1 ¼ 2:2361e�j2:6779:

(a) cþ h ¼ 1þ j2þ (222 j1) ¼ 21þ j1.

(b) c2 h ¼ 1þ j22 (222 j1) ¼ 3þ j3.

(c) c . h ¼ (1þ j2)(222 j1) ¼ 222 j42 j12 j 22 ¼ 2j5.

Alternatively,

c � h ¼ 2:2361e j1:1071 � 2:2361e�j2:6779 ¼ 5e�j1:5708 ¼ �j5:

(d)
c

h
¼ 1þ j2

�2� j1
� �2� j1

�2� j1
¼ �2� j4þ j1� 2

(�2)2 þ (�1)2
¼ �4� j3

4þ 1
¼ � 4

5
� j

3

5

¼ �0:8� j0:6:

Alternatively,

c

h
¼ 2:2361e j1:1071

2:2361e�j2:6779
¼ 1e j3:7850 ¼ �0:8� j0:6:

1.3 WORKING WITH COMPLEX NUMBERS AND FUNCTIONS 13



Square Root of a Complex Number

The square root of a complex number is multivalued because

c ¼ jcje jf ¼ jcje j(fþ2np), n ¼ 0, 1, 2, . . . : (1:3:22)

Therefore

ffiffiffi
c

p ¼ ½jcje j(fþ2np)�1=2 ¼
ffiffiffiffiffi
jcj

p
e j½(fþ2np)=2�, n ¼ 0, 1, 2, . . . : (1:3:23)

Example 1.5

Find the square root(s) of a complex number c ¼ 1þ j2.

c ¼ 1þ j2 ¼ 2:2361e j1:1071 ¼ 2:2361 e j(2npþ1:1071), n ¼ 0, 1, 2, . . . :

Therefore

ffiffiffi
c

p ¼ ½2:2361e j(2npþ1:1071)�1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:2361

p
e j(2npþ1:1071)=2

¼ 1:4954 e j(npþ0:5536):

For n ¼ 0,

ffiffiffi
c

p ¼ 1:4954e j0:5536 ¼ 1:2720þ j0:7862:

For n ¼ 1,

ffiffiffi
c

p ¼ 1:4954e j(pþ0:5536) ¼ �1:2720� j0:7862:

These two roots repeat for higher order n.

Complex Representation of Time-Harmonic Signals

A time-harmonic real physical quantity v(t) is expressed mathematically as follows:

v(t) ¼ Vocos(vt þ u), (1:3:24)

where Vo is called the amplitude, v ¼ 2p f is the angular frequency in radian

per second, f is frequency in Hz, and u is the phase angle of v(t).
We can also write (1.3.24) using complex representation as follows:

v(t) ¼ Re½Vo cos(vt þ u)þ jVo sin(vt þ u)�:
Note that Re stands for “real part of”.
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Using (1.3.7), we find that

v(t) ¼ RebVoe
j(vtþu)c ¼ RebVoe

jue jvtc ¼ RebVeivtc; (1:3:25)

where V ¼ Voe
ju is called the phasor representation of v(t). In general, the

phasor is a complex number, whereas the actual quantity is a purely real function

of time.

In practice, Re and e jvt are suppressed for simplicity. However, whenever we

need an expression for v(t) from a given V, the complex quantity V is multiplied

by e jvt and then the real part of that is taken as the desired v(t).

Addition and Subtraction of Phasors

If u(t) ¼ Uo cos(v tþ u1) and v(t) ¼ Vo cos(v tþ u2), then

u(t)þ v(t) ¼ RefUe jvtg þ RefVe jvtg ¼ Ref(U þ V)e jvtg, (1:3:26)

where U ¼ Uoe
ju1 and V ¼ Voe

ju2 are the phasors of u(t) and v(t), respectively.

Therefore the phasor equivalent for u(t)þ v(t) is Uþ V. Similarly it can be verified

that the phasor equivalent for u(t)2 v(t) is U2 V.

Derivative and the Phasor

For v(t) ¼ Vo cos(vtþ u) we find that

@

@t
v(t) ¼ @

@t
½Vo cos(vt þ u)� ¼ �Vov sin(vt þ u):

If we use the phasor representation, then we find that

@

@t
v(t) ¼ @

@t
½Vocos(vt þ u)� ¼ Re

@

@t
½Voe

jue jvt� ¼ Re½ jvVeivt�

¼ Re½ jvVoe
j(vtþu)� ¼ Re½ jvVofcos(vt þ u)þ jsin(vt þ u)g�

¼ �vVo � sin(vt þ u):

Therefore the phasor equivalent for @v(t)/@t is jvV.

Integration and the Phasor

For v(t) ¼ Vo cos(vtþ u) we find that

ð
v(t)dt ¼

ð
Vo cos(vt þ u)dt ¼ Vo

v
sin(vt þ u):
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If we use the phasor representation, then we find thatð
v(t) dt ¼

ð
Vo cos(vt þ u) dt ¼ Re

ð
Voe

j(vtþu) ¼ Re
Voe

jue jvt

jv

� �
¼ Re

V

jv
e jvt

� �

¼ Re
Vo cos(vt þ u)þ jVo sin(vt þ u)

jv

� �
¼ Vo

v
sin(vt þ u)

Therefore the phasor for
Ð
v tð Þ dt is V/jv.

Example 1.6

Current i(t) flowing through a capacitor C produces the voltage v(t) ¼ Vo

cos(vtþ u) across it, as shown in Figure 1.5. Establish the relation between

current and voltage phasors.

If q(t) is the electrical charge on one side of the capacitor, then its relation with

the capacitance C and the voltage v(t) is given as follows:

C ¼ q(t)

v(t)
�! q(t) ¼ Cv(t) �! dq(t)

dt
¼ i(t) ¼ C

dv(t)

dt
: (1:3:27)

For v(t) ¼ Vo cos(vtþ u) we have

i(t) ¼ C
d

dt
½Vo cos(vt þ u)� ¼ �vCVosin(vt þ u) ¼ vCVocos

p

2
þ vt þ u

� �
:

If we use phasors, then we get

i(t) ¼ Re vCVoe
j½uþ(p=2)�e jvt

	 
 ¼ Re½ jvCVoe
jue jvt� ¼ Re½ jvCVe jvt�:

Therefore

I ¼ jvCV ,

where I and V are current and voltage phasors, respectively. Note that the same

result is found from (1.3.27) after switching to phasors and replacing the

time derivative by jv. Reactance Xc of a capacitor is defined as

Xc ¼ V

I
¼ 1

jvC
:

Figure 1.5 Current and voltage on a capacitor.
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Example 1.7

Current i(t) flowing through an inductor L produces the voltage v(t) ¼ Vo

cos(vtþ u) across it, as shown in Figure 1.6. Establish the relation between

current and voltage phasors.

Current i(t) and voltage v(t) in an inductor are related as follows:

i(t) ¼ 1

L

ðt
v(t)dt ¼ 1

L

ðt
Vo cos(vtþ u)dt ¼ Vo

vL
sin(vt þ u)

¼ Vo

vL
cos vt þ u� p

2

� �
:

If we use phasors, then we have

i(t) ¼ 1

L

ðt
v(t)dt ¼ 1

L

ðt
Vocos(vtþ u)dt ¼ Re

V

jvL
e jvt

� �
: (1:3:28)

Therefore

I ¼ V

jvL
,

where I and V are current and voltage phasors, respectively. Note that the same

result is found from (1.3.28) after switching to phasors and replacing the time

integral by 1/jv. Reactance XL of an inductor is defined as

XL ¼ V

I
¼ jvL:

Time Averages

The time average of a periodic signal is found by averaging the signal over a full

period. Therefore for u(t) ¼ Uo cos(vtþ u1), the time average is found to be

ku(t)l ¼ 1

T

ðT
0

u(t)dt ¼Uo

T

ðT
0

cos(vt þ u1) dt ¼ Uo

vT
sin(vt þ u1)

T
0 ¼ 0:

As expected, the time average of a sinusoidal signal is zero.

Figure 1.6 Voltage and current in an inductor.
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On the other hand, the time average of the product of two sinusoidal signals

is nonzero. For example, if we have another sinusoidal signal v(t) such that

v(t) ¼ Vo cos(vtþ u2), then

ku(t)v(t)l ¼ UoVo

T

ðT
0

cos(vt þ u1) cos(vt þ u2) dt

¼ UoVo

T

ðT
0

cos(2vt þ u1 þ u2)þ cos(u1 þ u2)

2
dt

¼ UoVo

2
cos (u1 þ u2):

PROBLEMS

1.1. The wavelength of a laser signal in air is found to be 589.3 nm. Find its

frequency in Hz and in rad/s, and the time period.

1.2. The dipole antenna shown in Figure 1.2 is found to be very effective in sensing

electromagnetic radiation when its length is close to one-half of the signal

wavelengths. Find a suitable length that works for the VHF band.

1.3. A satellite is being used for the wireless communication at 5.9 GHz. If its

altitude is 36,000 km, find minimum possible time lag in signal reception

between the two ground stations.

1.4. For c ¼ 3þ j4 and h ¼ 24þ j3, find (a) cþ h, (b) c2 h, (c) c � h, and (d) c/h.
1.5. For c ¼ 32 j4 and h ¼ 242 j3, find (a) cþ h, (b) c2 h, (c) c � h, and (d) c/h.
1.6. Find the square root(s) of a complex number c ¼ 32 j4.

1.7. Find the square root(s) of a complex number c ¼ 232 j4.

1.8. Voltage v(t) ¼ 2 cos(120ptþ 0.15) V is measured across a 2 mF capacitor.

Find the phasor current flowing through it.

1.9. Voltage v(t) ¼ 2 cos(2000pt) V is measured across a 2 mH inductor. Find its

reactance and the phasor current.
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2
VECTORS AND FIELDS

As mentioned in the preceding chapter, certain electromagnetic quantities require

two associated numbers (its magnitude and the direction) to uniquely specify it

at a given point while only one (the magnitude) suffices for others. These quantities

can be categorized as vector and scalar quantities, respectively. The representation

of quantities as vector and scalar quantities not only simplifies the notation, it also

helps in the analysis of an electromagnetic system. A scalar quantity f is completely

specified by a single number along with its dimensional unit, whereas two numbers

are associated with a vector quantity; one specifies its magnitude and the other its

direction. For example, electrical charge and potential are scalar, while electric

field intensity and magnetic field intensity are vector quantities. Other examples

of scalar quantities are the volume or mass of an object or the temperature at a

given point because these require only one number along with its appropriate

unit. The velocity and the force are vector quantities because these require one

number specifying the magnitude and the other its direction. Similarly a scalar

function f (x, y, z) is completely specified by a single number at the point (x, y,

z), whereas a vector function ~A(x, y, z) requires two numbers, one for its magnitude

and the other for its direction at a given point (x, y, z). The analysis and manipu-

lation techniques of vectors and scalars are presented in this chapter.
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2.1 WORKING WITH VECTORS

Unit Vectors and Vector Components

Unit vectors are helpful in analyzing systems involving vectors. A unit vector

always has unit length (or the magnitude) in a given direction. Since the length

of an arbitrary vector ~A can be expressed as j ~Aj ¼ A, a unit vector â along this

vector will have jâj ¼ 1, while its direction will be the same as that of the vector ~A.
Mathematically

â ¼
~A

j~Aj
: (2:1:1)

Figure 2.1 shows a vector ~A in the rectangular (Cartesian) coordinate system. In the

figure x̂, ŷ, and ẑ are the unit basis vectors along the x, y, and z axes, respectively. The

vector can be resolved first into two components, Ay along the y axis and Ap that is on

the x-z plane. Ap can be resolved subsequently into Ax and Ay along the x and y axes,

respectively. Thus the components of a vector in a given coordinate system are the

set of its projections along the three unit basis vectors:

~A ¼ Axx̂þ Ayŷþ Azẑ: (2:1:2)

The magnitude (or length) of this vector is clearly

j~Aj ¼ A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
x þ A2

y þ A2
z

q
: (2:1:3)

Figure 2.1 Projections of a vector along the three axes of the rectangular coordinates.
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Example 2.1

For ~A ¼ 4x̂� 6ŷþ 12ẑ, find its magnitude j~Aj and a unit vector in the direction of
the vector.

Find the magnitude as

j~Aj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
42 þ (�6)2 þ 122

q
¼ 14:

The unit vector along ~A is then

â ¼ 4x̂� 6ŷþ 12ẑ

14
¼ 2

7
x̂� 3

7
ŷþ 6

7
ẑ:

Position Vector

As shown in Figure 2.2, a point P(x, y, z) in the rectangular coordinate system can be

expressed uniquely via a vector ~r as follows:

~r ¼ xx̂þ yŷþ zẑ: (2:1:4)

This vector ~r is called the position vector of point P. Hence

P(x, y, z) ¼ P(~r): (2:1:5)

Scalar Fields

A scalar quantity that varies with the coordinates (x, y, and z in the rectangular

system) can be expressed in terms of a variable position vector ~r as f (~r). The

Figure 2.2 Position vector of a point P(x, y, z) in the rectangular coordinate system.
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scalar field is f (~r) with continuous first partial derivatives at almost every point in its

domain of definition V. As illustrated in Figure 2.3, a scalar field assigns a number

f (~r) to each point ~r in its domain V. Points where f (~r) or its derivatives are discon-
tinuous are the source points of the field. Examples of scalar fields include tempera-

ture, pressure, electric charge, and electrical potential.

Vector Fields

A vector quantity that varies with the coordinates (x, y, and z in the rectangular

system) can be expressed in terms of a variable position vector ~r as ~A(~r). The
vector field is ~A(~r) with continuous first partial derivatives at almost every point

in its domain of definition V. Points where ~A(~r) or its derivatives are discontinuous
are the source points of the vector field. As illustrated in Figure 2.4, a vector field can

be expressed in terms of three scalar component fields as follows:

~A(~r) ¼ x̂Ax(~r)þ ŷAy(~r)þ ẑAz(~r): (2:1:6)

Thus a vector field assigns a vector ~A(~r) to each point ~r in its domain V.

Examples of vector fields include current density, electric field intensity, mag-

netic field intensity, electric flux density, magnetic flux density, force, and the

velocity.

Figure 2.3 A scalar field f (~r) in the rectangular coordinate system.
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Addition and Subtraction of Vectors

The sum of two vectors ~A and ~B is expressed as ~C ¼ ~Aþ ~B. It is defined as the

componentwise sum of the two vectors. If

~A ¼
X
a

ûaAa (2:1:7)

and

~B ¼
X
a

ûaBa, (2:1:8)

then

~Aþ ~B ¼
X
a

ûa(Aa þ Ba) ¼ ~C: (2:1:9)

Consider vectors ~A and ~B in rectangular coordinate system, as illustrated in

Figure 2.5. These vectors can be expressed as follows:

~A ¼ Axx̂þ Ayŷþ Azẑ (2:1:10)

and

~B ¼ Bxx̂þ Byŷþ Bzẑ: (2:1:11)

Figure 2.4 A vector field ~A(~r) in the rectangular coordinate system.
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Therefore

~C ¼ ~Aþ ~B ¼ (Ax þ Bx)x̂þ (Ay þ By)ŷþ (Az þ Bz)ẑ

¼ Cxx̂þ Cyŷþ Czẑ, (2:1:12)

where

Cx ¼ Ax þ Bx, (2:1:13)

Cy ¼ Ay þ By, (2:1:14)

and

Cz ¼ Az þ Bz: (2:1:15)

Figure 2.5 illustrates this mathematical process graphically. Note that a single vector

equation is equivalent to a set of three scalar equations. This feature of vector

equations helps to keep the electromagnetic field analysis compact and simple.

The following relations can be verified easily using the addition procedure of the

vectors.

~Aþ ~B ¼ ~Bþ ~A, (2:1:16)

~Aþ (~Bþ ~C) ¼ (~Aþ ~B)þ ~C: (2:1:17)

Figure 2.5 Graphical addition of vectors ~A and ~B in the rectangular coordinate system.
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Thus we find that the vector addition follows the commutative and the associative

laws. Further the negative of a vector has the same length as the original vector,

but its direction is reversed. This property can be used to find the difference of

two vectors as follows:

~C ¼ ~A� ~B ¼ ~Aþ (�~B): (2:1:18)

In other words, if

~A ¼ Axx̂þ Ayŷþ Azẑ (2:1:19)

and

~B ¼ Bxx̂þ Byŷþ Bzẑ, (2:1:20)

then

~C ¼ ~A� ~B ¼ (Ax � Bx)x̂þ (Ay � By)ŷþ (Az � Bz)ẑ: (2:1:21)

Therefore the subtraction of vectors may be interpreted as a generalization of the

addition, with the direction of the vector to be subtracted reversed.

Example 2.2

A vector ~A is defined in the rectangular coordinate system as being directed from

(0, 21, 3) to (5, 1, 22). Find (a) a vector expression for ~A, (b) the magnitude

of ~A, and (c) a unit vector pointing in the direction of ~A.

(a) As shown in Figure 2.6, position vectors for the two points are found to be

~r1 ¼ �ŷþ 3ẑ

and

~r2 ¼ 5x̂þ ŷ� 2ẑ:

Therefore

~A ¼ ~r2 � ~r1 ¼ 5x̂þ 2ŷ� 5ẑ:

(b) From (a),

j~Aj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
52 þ 22 þ (�5)2

q
¼

ffiffiffiffiffi
54

p
� 7:35:
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(c) Unit vector along

~A ¼ â ¼
~A

j~Aj
¼ 5x̂þ 2ŷ� 5ẑffiffiffiffiffi

54
p � 0:68x̂þ 0:27ŷ� 0:68ẑ:

Scalar and Vector Products

Two different kinds of multiplications are defined for the vectors. Scalar (or dot)

multiplication of two vectors produces a scalar quantity, whereas a vector (or

cross) product results in another vector that is perpendicular to the plan that contains

the two vectors. The scalar or dot product of two vectors is a scalar quantity defined

as follows:

~A � ~B ¼ j~Ajj~Bj cos(u), (2:1:22)

where u is the smaller angle between the two vectors, as illustrated in Figure 2.7.

The scalar product is commutative as well as distributive. This can be proved easily

via the definition of the dot products. These properties can be written as follows:

~A � ~B ¼ ~B � ~A (2:1:23)

Figure 2.6 Points and related vectors for Example 2.2.
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and

(~Aþ ~B) � ~C ¼ ~A � ~C þ ~B � ~C: (2:1:24)

As an example, consider the unit basis vectors (x̂, ŷ, ẑ) in rectangular coordinate

system (x, y, z). Note that the unit basis vectors are mutually orthogonal (i.e.,

x̂? ŷ? ẑ). From (2.1.22) and the Figure 2.7, we find that

cos(u ¼ 0) ¼ 1���! x̂ � x̂ ¼ ŷ � ŷ ¼ ẑ � ẑ ¼ 1 (2:1:25)

and

cos u ¼ p

2

� �
¼ 0���! x̂ � ŷ ¼ ŷ � ẑ ¼ ẑ � x̂ ¼ 0: (2:1:26)

Further

~A � ~B ¼ (x̂Ax þ ŷAy þ ẑAz) � (x̂Bx þ ŷBy þ ẑBz)

¼ (x̂ � x̂)AxBx þ (ŷ � ŷ)AyBy þ (ẑ � ẑ)AzBz

þ (x̂ � ŷ)(AxBy þ AyBx)þ ( ŷ � ẑ)(AyBz þ AzBy)

þ (x̂ � ẑ)(AxBz þ AzBx):

Therefore

~A � ~B ¼ AxBx þ AyBy þ AzBz: (2:1:27)

As a special case, consider the scalar product of a vector with itself. It may be found

from (2.1.27) as follows:

~A � ~A ¼ j~Aj2 cos(0) ¼ j~Aj2 ¼ A2 ¼ A2
x þ A2

y þ A2
z : (2:1:28)

As shown in Figure 2.8, the scalar product of two vectors can be interpreted as

the product of the length of one vector with the component of other vector that

is parallel to it. Further, if ~A = 0 and ~B = 0, then ~A � ~B ¼ 0 implies that the two

vectors are mutually orthogonal (i.e., ~A? ~B).

Figure 2.7 Two vectors ~A and ~B used for scalar multiplication.
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As mentioned earlier, the vector or cross product of two vectors ~A and ~B is a

vector quantity written as ~A� ~B. As illustrated in Figure 2.9, the direction of this

new vector is perpendicular to the plane containing the two vectors and its sense

is such that if the right-handed screw at ~A is rotated from ~A to ~B following the smal-

ler in-between angle (u), then this will advance in the direction of ~A� ~B. The length
of this vector is found to be

j~A� ~Bj ¼ j~Ajj~Bj sin(u): (2:1:29)

As illustrated in Figure 2.10, geometrically j~A� ~Bj represents the area of a paralle-
logram formed by the two vectors. Note that if ~A = 0 and ~B = 0 then ~A� ~B ¼ 0

implies that the two vectors are parallel or collinear.

It can be proved easily via its definition that the cross product is anticommutative

but follows the distributive law. Mathematically

~A� ~B ¼ �~B� ~A (2:1:30)

and

(~Aþ ~B)� ~C ¼ ~A� ~C þ ~B� ~C: (2:1:31)

Consider the unit basis vectors (x̂, ŷ, ẑ) in rectangular coordinate system (x, y, z).

Note that the unit basis vectors are mutually orthogonal (i.e., x̂? ŷ? ẑ). From

(2.1.29) we find that

sin(u ¼ 0) ¼ 0 ! x̂� x̂ ¼ ŷ� ŷ ¼ ẑ� ẑ ¼ 0 (2:1:32)

Figure 2.8 Physical interpretation of the scalar multiplication.

Figure 2.9 Two vectors ~A and ~B used for vector multiplication.
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and

sin u ¼ p

2

� �
¼ 1 ! x̂� ŷ ¼ ẑ, ŷ� ẑ ¼ x̂, ẑ� x̂ ¼ ŷ: (2:1:33)

Therefore

~A� ~B ¼ (x̂ Ax þ ŷ Ay þ ẑ Az)� (x̂Bx þ ŷBy þ ẑ Bz)

¼ (x̂� x̂)AxBx þ (ŷ� ŷ)AyBy þ (ẑ� ẑ)AzBz þ (x̂� ŷ)(AxBy � AyBx)

þ ( ŷ� ẑ)(AyBz � AzBy)þ (ẑ� x̂)(AzBx � AxBz):

This equation can be simplified, via (2.1.32) and (2.1.33), as follows:

~A� ~B ¼ x̂(AyBz � AzBy)þ ŷ(AzBx � AxBz)þ ẑ(AxBy � AyBx): (2:1:34)

Note that this result can be obtained by expanding the following determinant about

its first row:

~A� ~B ¼
x̂ ŷ ẑ

Ax Ay Az

Bx By Bz

������
������: (2:1:35)

Example 2.3

Find the position vectors for points P1(2, 5, 7) and P2(4, 23, 6). If a parallelo-

gram is formed with these two position vectors as its two adjacent sides, then

prove that the diagonals of this parallelogram bisect each other.

Points P1 and P2 are located using the rectangular coordinates as shown in

Figure 2.11. This includes the corresponding position vectors ~r1 and ~r2, and the

associated parallelogram. Vectors ~D1 and ~D2 are drawn along the diagonal of the

parallelogram. Thus the two position vectors can be found as follows:

~r1 ¼ 2x̂þ 5ŷþ 7ẑ

and

~r2 ¼ 4x̂� 3ŷþ 6ẑ:

Figure 2.10 Physical interpretation of the vector multiplication.
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Therefore

~D1 ¼ ~r1 þ ~r2 ¼ 6x̂þ 2ŷþ 13ẑ

and

~D2 ¼ ~r1 � ~r2 ¼ �2x̂þ 8ŷþ ẑ:

The position vector for the point P at which the two diagonals intersect can be

expressed as a ~D1 or ~r2 þ b ~D2, where a and b are unknown constants. These

can be evaluated as follows:

For a ~D1 ¼ ~r2 þ b ~D2,

a(6x̂þ 2ŷþ 13ẑ) ¼ 4x̂� 3ŷþ 6ẑþ b(�2x̂þ 8ŷþ ẑ)

¼ (4� 2b)x̂þ (�3þ 8b)ŷþ (6þ b)ẑ:

Equating coefficients of each component on the two sides, we get

6a ¼ 4� 2b,

2a ¼ �3þ 8b,

and

13a ¼ 6þ b:

Coefficients a and b of any two of this set of equations can be easily evaluated to

be 0.5. This proves that the two diagonals bisect each other.

Example 2.4

Find a vector ~B that is perpendicular to ~A ¼ �8x̂þ 9ŷ� ẑ, has no z component,

and has a magnitude of unity.

Figure 2.11 Points and related vectors for Example 2.3.
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Since the vector has no z component, it can be assumed to be

~B ¼ xx̂þ yŷ:

Further, it is perpendicular to ~A, therefore

~A � ~B ¼ 0���! (�8x̂þ 9ŷ� ẑ) � (xx̂þ yŷ) ¼ �8xþ 9y ¼ 0 �! x ¼ 9

8
y:

We need one more independent relation between x and y to evaluate the unknown

vector. This can be found using the condition that this vector has a magnitude of

unity (hence it is a unit vector):

j~Bj ¼ 1 �!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
¼ 1 �! y2 ¼ 1� x2 ¼ 1� 9

8
y

� �2

�! 1þ 81

64

� �
y2 ¼ 1:

Solving for y and x, we find that

y ¼ +
8ffiffiffiffiffiffiffiffi
145

p

and

x ¼ +
9ffiffiffiffiffiffiffiffi
145

p :

Therefore the desired vector is

~B ¼ +
1ffiffiffiffiffiffiffiffi
145

p (9x̂þ 8ŷ):

Example 2.5

If ~A ¼ x̂þ 2ŷ� 3ẑ and ~B ¼ 2x̂� ŷþ ẑ then find (a) the component of ~B in direc-

tion of ~A, (b) the smallest angle between the two vectors, and (c) a unit vector

perpendicular to the plane that contains two vectors.

(a) Unit vector along ~A,

~A ¼ â ¼
~A

j~Aj
¼ x̂þ 2ŷ� 3ẑffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 22 þ (�3)2
p ¼ x̂þ 2ŷ� 3ẑffiffiffiffiffi

14
p ¼ 0:27x̂þ 0:53ŷ� 0:8ẑ:

Then the component of ~B along ~A, BA, is found to be

BA ¼ j~B � âj ¼ j(2x̂� ŷþ ẑ) � (0:27x̂þ 0:53ŷ� 0:8ẑ)j ¼ 0:8:
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(b) If angle between the two vectors is u, then

cos(u) ¼
~A � ~B
j~Ajj~Bj

¼ â � ~B
jBj ¼ �3ffiffiffiffiffi

14
p ffiffiffi

6
p ¼ �0:33 ! u ¼ cos�1 (�0:33) ¼ 1098:

(c) Let ~C be perpendicular to the plane that contains ~A and ~B, then

~C ¼ ~A� ~B ¼
x̂ ŷ ẑ

1 2 �3

2 �1 1

������
������ ¼ �x̂� 7ŷ� 5ẑ:

Therefore the unit vector parallel to ~C is

ĉ ¼ +
~C

jCj ¼ +
�x̂� 7̂� 5ẑffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 72 þ 52

p ¼ +(0:1155x̂þ 0:8083ŷ� 0:5774ẑ)

Example 2.6

A triangle ABC is found by connecting the points A (21, 0, 2), B (0, 1, 0), and C

(1, 21, 0). Find the point D that makes the plane a parallelogram ABDC.

Various points and associated vectors are illustrated in Figure 2.12. The

position vectors for points A, B, and C are found to be

~rA ¼ �x̂þ 2ẑ,

~rB ¼ ŷ,

and

~rC ¼ x̂� ŷ:

Figure 2.12 Points and related vectors for Example 2.6.
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Therefore

~P ¼ ~rB � ~rA ¼ x̂þ ŷ� 2ẑ

and

~Q ¼ ~rC � ~rA ¼ 2x̂� ŷ� 2ẑ:

Since ~P and ~Q are two sides of the parallelogram ABDC, vector ~R along the diag-

onal must be

~R ¼ ~Pþ ~Q ¼ 3x̂� 4ẑ:

Now the position vector ~rD for point D can be determined as follows:

~rD ¼ ~rA þ ~R ¼ 2x̂� 2ẑ

Therefore the coordinates of point D are (2, 0, 22).

Scalar and Vector Triple Products

The scalar triple product of three vectors ~A, ~B, and ~C may be shown to be

~A � (~B� ~C) ¼ (~A� ~B) � ~C ¼ ~C � (~A� ~B) ¼ (~C � ~A) � ~B: (2:1:36)

The vector triple product of these three vectors ~A, ~B, and ~C is given as

~A� (~B� ~C) ¼ ~B(~A � ~C)� ~C(~A � ~B): (2:1:37)

As obvious from the right-hand side, this product sometimes referred as the “BAC

CAB” rule.

Example 2.7

Verify (2.1.36) for ~A ¼ 4x̂þ 3ŷþ 2ẑ, ~B ¼ 2x̂þ 5ẑ, and ~C ¼ �7ŷ.

From (2.1.35),

~B� ~C ¼
x̂ ŷ ẑ

2 0 5

0 �7 0

������
������ ¼ 35x̂� 14ẑ:

Now using (2.1.27), we get

~A � (~B� ~C) ¼ (4x̂þ 3ŷþ 2ẑ) � (35x̂� 14ẑ) ¼ 140� 28 ¼ 112:
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Similarly

~A� ~B ¼
x̂ ŷ ẑ

4 3 2

2 0 5

������
������ ¼ 15x̂� 16ŷ� 6ẑ

and

~C � (~A� ~B) ¼ �7ŷ � (15x̂� 16ŷ� 6ẑ) ¼ 112:

Repeating one more time for the last term of (2.1.36), we get

~C � ~A ¼
x̂ ŷ ẑ

0 �7 0

4 3 2

������
������ ¼ �14x̂þ 28ẑ

and

~B � (~C � ~A) ¼ (~C � ~A) � ~B ¼ (�14x̂þ 28ẑ) � (2x̂þ 5ẑ) ¼ �28þ 140 ¼ 112:

Thus we find that all the sides of (2.1.36) produce 112 for the given vectors. This

verifies the relation.

Example 2.8

Verify (2.1.37) for ~A ¼ 4x̂þ 3ŷþ 2ẑ, ~B ¼ 2x̂þ 5ẑ, and ~C ¼ �7ŷ.

Since the given vectors are same as in Example 2.7, we already know that

~B� ~C ¼ 35x̂� 14ẑ:

Using (2.1.35) along with this result, we find that

~A� (~B� ~C) ¼
x̂ ŷ ẑ

4 3 2

35 0 �14

������
������ ¼ �42x̂þ 126ŷ� 105ẑ:

Since ~A � ~C ¼ (4x̂þ 3ŷþ 2ẑ) � (�7ŷ) ¼ �21,

~B(~A � ~C) ¼ (2x̂þ 5ẑ)(�21) ¼ �42x̂� 105ẑ:

Similarly

~A � ~B ¼ (4x̂þ 3ŷþ 2ẑ) � (2x̂þ 5ẑ) ¼ 8þ 10 ¼ 18
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and

~C(~A � ~B) ¼ �7ŷ(18) ¼ �126ŷ:

Therefore

~B(~A � ~C)� ~C(~A � ~B) ¼ �42x̂� 105ẑþ 126ŷ ¼ ~A� (~B� ~C):

2.2 COORDINATE SYSTEMS

Systems of orthogonal coordinates are useful in the analysis and manipulation of

vectors. We have already used orthogonal coordinates in the preceding section for

rectangular coordinates. This section presents more detail on rectangular coordi-

nates along with two other commonly used coordinate systems, namely cylindrical

(r, f, z) and spherical (r, u, f) coordinates.

Rectangular Coordinates

We showed extensively how to use these coordinates in the preceding section.

Mathematical expressions are relatively simple to manipulate in the rectangular coor-

dinates system, especially because the unit basis vectors do not change directions from

point to point. Figure 2.13 shows incremental length d ~‘ projected along the three axes.
This incremental length can be expressed mathematically as follows:

d ~‘ ¼ x̂dxþ ŷdyþ ẑdz: (2:2:1)

Figure 2.13 Incremental length and an infinitesimal volume in the rectangular coordinates

system.
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The figure also gives a detailed representation of the small rectangular volume’s six

bounding surfaces +ds1, +ds2, and +ds3. The surface areas of the incremental

volume can be expressed mathematically as follows:

d~s1 ¼ +x̂dydz, (2:2:2)

d~s2 ¼ +ŷdzdx, (2:2:3)

d~s3 ¼ +ẑdxdy, (2:2:4)

and

dv ¼ dxdydz: (2:2:5)

Cylindrical Coordinates

If a structure under consideration has a cylindrical geometry, then employing the

rectangular coordinates system can make the analysis too complex and even imposs-

ible to solve. In such cases a cylindrical coordinates system is used. As illustrated in

Figure 2.14, the unit basis vectors in cylindrical coordinates are r̂ , f̂ , and ẑ. The

angle f is specified with respect to the þx axis. The expressions for an incremental

unit of length along the surfaces bounding a cylinder in the shape of a pillbox, and

Figure 2.14 Incremental length and a pillbox-shaped volume in the cylindrical coordinates

system.
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the volume of that pillbox, can be found easily as follows:

d ~‘ ¼ r̂drþ f̂rdfþ ẑdz, (2:2:6)

d~s1 ¼ +r̂rdfdz, (2:2:7)

d~s2 ¼ +f̂drdz, (2:2:8)

d~s3 ¼ +ẑrdrdf, (2:2:9)

and

dv ¼ rdrdfdz: (2:2:10)

Note that in this coordinates system the two unit vectors r̂ andf̂ change directions

from point to point, whereas ẑ stays in same direction. The mathematical manipu-

lation rules described in the preceding section are still applicable after appropriate

modifications. The scalar multiplications of the unit basis vectors expressed by

(2.1.25) and (2.1.26) take the following form in cylindrical coordinates:

cos(u ¼ 0) ¼ 1 ! r̂ � r̂ ¼ f̂ � f̂ ¼ ẑ � ẑ ¼ 1 (2:2:11)

and

cos u ¼ p

2

� �
¼ 0 ! r̂ � f̂ ¼ f̂ � ẑ ¼ ẑ � r̂ ¼ 0: (2:2:12)

Similarly the cross products of unit vectors expressed by (2.1.32) and (2.1.33)

become

sin(u ¼ 0) ¼ 0 ! r̂ � r̂ ¼ f̂ � f̂ ¼ ẑ� ẑ ¼ 0 (2:2:13)

and

sin u ¼ p

2

� �
¼ 1 ! r̂ � f̂ ¼ ẑ, f̂ � ẑ ¼ r̂ , ẑ� r̂ ¼ f̂ : (2:2:14)

Spherical Coordinates

Figure 2.15 shows another orthogonal coordinates system that facilitates the study of

systems with spherical geometry. As illustrated, the unit basis vectors in this case are

r̂, û , and f̂ . Note that the angle u is specified with respect to theþz axis, whereasf is

with respect to the x axis (the same as in the cylindrical coordinates system). Further

all three unit vectors change directions from point to point. The rules described in the

preceding section for mathematical manipulations are then applicable after appropri-

ate modifications. The scalar multiplications of the unit basis vectors expressed by

(2.1.25) and (2.1.26) take the following form in spherical coordinates:

cos(u ¼ 0) ¼ 1 ! r̂ � r̂ ¼ û � û ¼ f̂ � f̂ ¼ 1 (2:2:15)
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and

cos u ¼ p

2

� �
¼ 0 ! r̂ � û ¼ û � f̂ ¼ f̂ � r̂ ¼ 0: (2:2:16)

Similarly the cross products of the unit vectors expressed by (2.1.32) and (2.1.33)

become

sin(u ¼ 0) ¼ 0 ! r̂ � r̂ ¼ û � û ¼ f̂ � f̂ ¼ 0 (2:2:17)

and

sin u ¼ p

2

� �
¼ 1 ! r̂ � û ¼ f̂ , û � f̂ ¼ r̂, f̂ � r̂ ¼ û : (2:2:18)

With the help of Figure 2.15, expressions for the surfaces bounding a small

volume of incremental length can be easily found as follows:

d ~‘ ¼ r̂dr þ û r duþ f̂ rsinudf, (2:2:19)

d~s1 ¼ +r̂r 2sinududf, (2:2:20)

d~s2 ¼ +û rsinudrdf, (2:2:21)

d~s3 ¼ +f̂ rdrdu, (2:2:22)

Figure 2.15 Incremental length and a small unit of volume in the spherical coordinates

system.
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and

dv ¼ r2 sin u drdu df: (2:2:23)

Occasionally a problem under consideration involves a combination of different

coordinate systems. In other words, a part of the problem may be specified in one

system of coordinates while the other is conveniently described in another system

of coordinates. In such situations the description in one coordinate system can be

transformed into the other with the help of Figure 2.16. These conversions are

summarized in Tables 2.1 through 2.4.

Figure 2.16 Conversions among the representations of coordinates.

TABLE 2.1 Conversions of the Coordinates

From (x, y, z) From (r, f, z) From (r, u, f)

To (x, y, z) x x ¼ r cos(f) x ¼ r sin(u) cos(f)
y y ¼ r sin(f) y ¼ r sin(u) sin(f)
z z ¼ z z ¼ r cos(u)

To (r, f, z) r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
r r ¼ r sin(u)

f ¼ tan�1 ( y=x) f f ¼ f
z ¼ z z z ¼ r cos(u)

To (r, u, f) r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p
r

u ¼ cos�1 z=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p� �
u ¼ tan�1 (r=z) u

f ¼ tan�1 ( y=x) f ¼ f f
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TABLE 2.3 Conversions of Unit Vectors to

Cylindrical Coordinates

To (r̂ , f̂ , ẑ)

From (x̂, ŷ, ẑ) x̂ ¼ r̂ cos(f)� f̂ sin(f)

ŷ ¼ r̂ sin(f)þ f̂ cos(f)

ẑ ¼ ẑ

From (r̂, û , f̂ ) r̂ ¼ r̂ sin(u)þ ẑ cos(u)

û ¼ r̂ cos(u)� ẑ sin(u)

f̂ ¼f̂

TABLE 2.2 Conversions of Unit Vectors to Rectangular Coordinates

To (x̂, ŷ, ẑ)

From (r̂ , f̂ , ẑ) r̂ ¼ x̂ cos(f)þ ŷ sin(f)

f̂ ¼ �x̂ sin(f)þ ŷ cos(f)

ẑ ¼ ẑ

From (r̂, û , f̂ ) r̂ ¼ x̂ sin(u) cos(f)þ ŷ sin(u) sin(f)þ ẑ cos(u)

û ¼ x̂ cos(u) cos(f)þ ŷ cos(u) sin(f)� ẑ sin(u)

f̂ ¼ �x̂ sin(f)þ ŷ cos(f)

TABLE 2.4 Conversions of Unit Vectors to Spherical Coordinates

To (r̂, û , f̂ )

From (x̂, ŷ, ẑ) x̂ ¼ r̂ sin(u) cos(f)þ û cos(u) cos(f)� f̂ sin(f)

ŷ ¼ r̂ sin(u) sin(f)þ û cos(u ) sin(f)þ f̂ cos(f)

ẑ ¼ r̂ cos(u)� û sin(u )

From (r̂ , f̂ , ẑ) r̂ ¼ r̂ sin(u)þ û cos(u )

f̂ ¼ f̂

ẑ ¼ r̂ cos(u)� û sin(u )
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Example 2.9

A receiver antenna produces an electromotive force (voltage) proportional to the

y component of the incident electric field intensity. Assume that the proportion-

ality constant is 0.25 m. If the electric field intensity is given by the following

expression, then find the voltage induced at the receiver:

~E ¼ f̂
1þ cos2(f)

1þ r2
V=m:

In this case the electric field intensity is given in cylindrical coordinates,

whereas the antenna responds to y component. Therefore the given electric

field intensity must be converted into rectangular coordinates. This can be

easily done via the Tables 2.1 and 2.2. Hence

~E ¼ (�x̂ sinfþ ŷ cosf)
1þ cos2(f)

1þ x2 þ y2
V=m:

Since f ¼ tan�1( y=x),

sinf ¼ yffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p ,

cosf ¼ xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p ,

and

~E ¼ (�x̂ sinfþ ŷ cosf)
1þ cos2(f)

1þ x2 þ y2
¼ (�xx̂þ yŷ)

2x2 þ y2

(x2 þ y2)(1þ x2 þ y2)
V=m:

The induced voltage Vinduced is found to be

Vinduced ¼ 0:25 ~E � ŷ ¼ 0:25y
2 x2 þ y2

(x2 þ y2)(1þ x2 þ y2)
V:

Example 2.10

A receiver antenna produces an electromotive force (voltage) proportional to the

x component of the incident electric field intensity. Assume that the proportion-

ality constant is 0.25 m. If the electric field intensity is given by the following

expression, then find the induced voltage at the receiver:

~E ¼ 4(û cosf� f̂ sinf cos u) V=m:

In this case, the electric field intensity is given in spherical coordinates, whereas

the induced voltage is proportional to x component. Therefore the given electric

field intensity must be converted into rectangular coordinates. This is easily
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done via the Tables 2.1 and 2.2. Hence

~E ¼ 4½(x̂ cos u cosfþ ŷ cos u sinf� ẑ sin u) cosf

� (�x̂ sinfþ ŷ cosf) sinf cos u �:

The induced voltage can be found as follows:

Vinduced ¼ 0:25x̂ � ~E ¼ cos u cos2 fþ sin2 f cos u ¼ cos u cos2 fþ sin2 f
	 


¼ cos u ¼ zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p V:

Volume Integrals

Figure 2.17 shows a scalar field f (~r) in a volume V. The volume integral of this field

over V (a scalar quantity) is expressed mathematically as
Ð
V
f (~r)dv. Since the volume

region V can be considered as V ¼PN
i¼1 Dvi, the volume integral may be defined

mathematically as

ð
V

f (~r)dv ¼ lim
N!1
Dvi!0

XN
i¼1

f (~ri)Dvi: (2:2:23)

Figure 2.17 A scalar field in volume V and its volume integral.
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Thus the volume integral in rectangular coordinates can be written as follows:

ð
V

f (~r)dv ¼
ð ð ð

V

f (x; y; z)dx dy dz (2:2:24)

Thevolume integral ofmass densitym(~r) over a regionV gives the totalmass inV. Simi-

larly the volume integral of a charge density gives the total charge contained in regionV.

Example 2.11

The electrical charge density in a volume is given by

rV ¼ 1� 0:5(x2 þ y2 þ z2) C=m�3:

Determine the total charge enclosed in a cube defined by 21 m � x � 1 m,

21 m � y �1 m, and 21 m � z � 1 m.

Q ¼
ð
V

rV dv ¼
ð1
�1

ð1
�1

ð1
�1

1� 0:5(x2 þ y2 þ z2)
	 


dx dy dz

¼
ð1
�1

ð1
�1

ð1
�1

dx dy dz� 0:5

ð1
�1

ð1
�1

ð1
�1

(x2 þ y2 þ z2)dx dy dz

¼ xj1�1yj1�1zj1�1 � 0:5
x3

3

����
1

�1

yj1�1zj1�1 þ xj1�1

y3

3

����
1

�1

zj1�1 þ xj1�1yj1�1

z3

3

����
1

�1

" #
¼ 4C:

Example 2.12

Electrical charge density in a volume is given by

rV ¼ 1� 0:5(x2 þ y2 þ z2) C=m�3

Determine the total charge enclosed in a volume defined by 0 � r � 1 m,

(p/4) � f � (p/2), and 21 m � z � 1 m.

Q ¼
ð
V

rV dv ¼
ð1
0

ðp=2
p=4

ð1
�1

1� 0:5(r2 þ z2)
	 


rdrdfdz

¼
ð1
0

ðp=2
p=4

ð1
�1

rdrdfdz� 0:5

ð1
0

ðp=2
p=4

ð1
�1

(r2 þ z2)rdrdfdz

¼ r2

2

����
1

0

fjp=2p=4zj1�1 � 0:5
r4

4

����
1

0

fjp=2p=4zj1�1 þ
r2

2

����
1

0

fjp=2p=4

z3

3

����
1

�1

" #
¼ 7p

48
C:
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Example 2.13

Electrical charge density in a volume is given by

rV ¼ 1� 0:5(x2 þ y2 þ z2) C=m�3:

Determine the total charge enclosed in a wedge defined by 0 � r � 1 m,

(p/4) � u � (p/2), and (p/4) � f � (p/2).

Q ¼
ð
V

rV dv ¼
ð1
0

ðp=2
p=4

ðp=2
p=4

1� 0:5r2
	 


r2 sinudrdudf

¼
ð1
0

ðp=2
p=4

ðp=2
p=4

r2 sin u drdudf� 0:5

ð1
0

ðp=2
p=4

ðp=2
p=4

(r2 þ z2)r2 sinudrdudf

¼ r3

3

����
1

0

(�cos u)jp=2p=4fjp=2p=4 � 0:5
r5

5

����
1

0

(�cos u)jp=2p=4fjp=2p=4

" #
¼ 7p

120
ffiffiffi
2

p C:

2.3 DIFFERENTIATION AND INTEGRATION OF VECTORS

Differentiation of Vectors

The partial derivative of a vector field ~A(~r) ¼ ~A(x, y, z) is defined as follows:

@

@x
~A(x, y, z) ¼ lim

Dx!0

~A(xþ Dx, y, z)� ~A(x, y, z)

D x
: (2:3:1)

Since the unit basis vectors are constant in the rectangular coordinates system, this

equation may be expressed as

@

@x
~A(x, y, z) ¼ x̂ lim

Dx!0

Ax(xþ Dx, y, z)� Ax(x, y, z)

D x

þ ŷ lim
Dx!0

Ay(xþ Dx, y, z)� Ay(x, y, z)

Dx

þ ẑ lim
Dx!0

Az(xþ Dx, y, z)� Az(x, y, z)

Dx
:

Therefore

@

@x
~A(x, y, z) ¼ x̂

@

@x
Ax(x, y, z)þ ŷ

@

@x
Ay(x, y, z)þ ẑ

@

@z
Az(x, y, z): (2:3:2)

In the product of a vector field ~A(x, y, z) with a scalar field f (x, y, z), the following

property can be easily verified:

@

@x
( f ~A) ¼ ~A

@f

@x
þ f

@~A

@x
: (2:3:3)
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Similarly the following relations hold for two vector fields ~A(x, y, z) and ~B(x, y, z):

@

@x
(~Aþ ~B) ¼ @~A

@x
þ @~B

@x
, (2:3:4)

@

@x
(~A � ~B) ¼ @~A

@x
� ~Bþ ~A � @~B

@x
, (2:3:5)

@

@x
(~A� ~B) ¼ @~A

@x
� ~Bþ ~A� @~B

@x
: (2:3:6)

Note that these derivatives require extra care in the cylindrical and spherical coor-

dinates systems. If a unit vector is not constant, then the effect of its variation must

be included when taking derivatives. For example, if ~A(x, y, z) ¼ û(x, y, z)A(x, y, z),

then

@

@x
~A(x, y, z) ¼ A(x, y, z)

@

@x
û(x, y, z)þ û(x, y, z)

@

@x
A(x, y, z): (2:3:7)

Integration of Vectors

There are two significantly useful integration operations involving vectors. Depend-

ing on the quantities involved, the line integral of a vector field can lead to the work

done by a force or the electromotive force induced by an electromagnetic field.

Similarly the surface integral of a vector field over a closed surface can provide

information about the enclosed source (or sink). These two operations of vector

fields are described below.

Line Integral of a Vector Field Consider a vector field ~A(~r) and a path G (a scalar

quantity) as shown in Figure 2.18. The line integral of ~A(~r) along the contour G is

Figure 2.18 A vector field and its line integral along the path G.
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expressed as
Ð
G
~A(~r) � d ~‘, where d ~‘ is a differential displacement along and tangent

to the contour G.
Suppose that path G is made up of differential lengths D‘i and t̂ is tangent at

every point on this path. The line integral of ~A(~r) is then interpreted geometrically

as

G ¼
XN
i¼1

D~‘i, (2:3:8)

where

D~‘i ¼ t̂D‘i (2:3:9)

and

u ¼ /(t̂; ~A(~ri)): (2:3:10)

The line integral can be expressed as

ð
G

~A(~r) � d ~‘ ¼ lim
N!1
D‘i!0

XN
i¼1

~A(~ri) �D~‘i (2:3:11)

provided that the limit exists and it is finite.

Further

~A(~ri) �D~‘i ¼ ~A(~ri) � t̂D‘i ¼ j~A(~ri)j cos(u)D‘i: (2:3:12)

Therefore the line integral is an integration of the component of ~A(~r) along and tan-

gent to the contour G with respect to the arc length along G.
For example, consider a force field ~F(~r). At a given point the force field can be

resolved into two components as shown in Figure 2.19. Component ~Fn(~r) is normal

Figure 2.19 Physical interpretation of the line integral.
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and ~Ft(~r) is tangential to the path G. The work required to move a particle along G
from point 1 to point 2 against this force field ~F(~r) is found to be

W12 ¼ �
ð2
1

~F(~r) � d ~‘: (2:3:13)

Note that if the contour G is a closed curve, then sometimes it is called a “circula-

tion” integral (the closed line integral), and it is denoted as follows:

þ
~A(~r) � d ~‘ ¼ þ

t̂ � ~A(~r)d‘: (2:3:14)

Example 2.14

Find the work done by the following force in moving a particle from P1 to P2

shown in Figure 2.20: (a) over the straight line connecting (0, 0, 2) and (1, 3,

0); (b) over the straight line path connecting (0, 0, 2) ! (0, 0, 0) ! (1, 0,

0) ! (1, 3, 0); and (c) over the straight line path connecting (0, 0, 2) ! (0, 0,

0) ! (1, 3, 0). Assume that all distances are in meters.

~F ¼ x̂12xy2 þ ŷ15yzþ ẑ9z2 N:

Since d ~‘ ¼ x̂dxþ ŷdyþ ẑdz in the rectangular coordinates,

~F � d ~‘ ¼ 12xy2 dxþ 15yz dyþ 9z2dzNm:

The work done can be determined by evaluating the line integrals as follows:

(a) When moving on the straight line that connects points P1 and P2 directly, the

relations among x, y, and z are found to be

y ¼ 3x ! dy ¼ 3dx

and

z ¼ � 2
3
yþ 2 ! dz ¼ � 2

3
dy:

Therefore

ðP2

P1

~F � d ~‘ ¼ ð3
0

12
y

3

� �
y2

dy

3
þ
ð3
0

15y � 2

3
yþ 2

� �
dyþ

ð0
2

9z2dz ¼ 48Nm:

(b) When moving on the path that follows the points (0, 0, 2) ! (0, 0, 0) !
(1, 0, 0) ! (1, 3, 0), the line integral is evaluated in three parts. Note that

x and y both remain zero for (0, 0, 2) ! (0, 0, 0), y and z both remain
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zero for (0, 0, 0) ! (1, 0, 0), and z remains zero and x at 1 for (1, 0, 0)

! (1, 3, 0). Therefore the line integral simplifies to

ðP2

P1

~F � d ~‘ ¼ ð0
2

9z2 dz ¼ �24Nm:

(c) In this case the line integral splits into two parts. First segment is same as in

(b) above and y ¼ 3x for (0, 0, 0) ! (1, 3, 0). Therefore the line integral sim-

plifies to

ðP2

P1

~F � d ~‘ ¼ ð0
2

9z2dzþ
ð1
0

12x(3x)2dx ¼ �24þ 27 ¼ 3Nm:

Example 2.15

Find the circulation of the electric field intensity ~E ¼ r̂150r cosfþ
f̂200 sinf V=m over a semicircular path of radius 1.5 m with its center at

(1.5 m, 08, 0), as shown in Figure 2.21.

Since this problem calls for integrating over a circular path, use of cylindrical

coordinates is appropriate. The electric field intensity is already given in cylind-

rical coordinates, and for the incremental length we can use the following

expression:

d ~‘ ¼ r̂drþ f̂rdfþ ẑdz:

Figure 2.20 Geometry and integration paths for Example 2.14.
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Therefore

~E � d ~‘ ¼ 150r cosf drþ 200r sinf df:

Note that df is zero over the path (0, 0, 0) to (3, 0, 0). However, both dr and df
are nonzero over the circular arc. Therefore a relation between r and f is found as

follows:

The equation of a circle whose center is at (x1 ¼ 1.5 m, y1 ¼ 0) and radius is

1.5 m can be written as

(x� 1:5)2 þ y2 ¼ 1:52 ! x2 þ y2 ¼ 3x:

Using Table 2.1, we can transform this equation into cylindrical coordinates as

follows:

r ¼ 3 cosf:

Therefore

þ
~E � d ~‘ ¼ ð3

0

150rcosf dr

����
f¼0

þ
ð0
3

150r cosfdr

����
cosf¼r=3

þ
ðp=2
0

200r sinf df

����
r¼3 cosf

¼
ð3
0

150r drþ
ð0
3

150r
r

3

� �
drþ

ðp=2
0

200(3 cosf) sinfdf ¼ 525V:

Example 2.16

Find the circulation of the following magnetic field intensity around the contour

ABCDA, as shown in Figure 2.22:

~H ¼ r̂ r sinfþ f̂2r2 A=m:

Figure 2.21 Geometry and integration path for Example 2.15.
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The geometry indicates that the cylindrical coordinates are appropriate for this

problem. Therefore

~H � d ~‘ ¼ r sinf drþ 2r3dfA:

Dividing the integration path as indicated in the figure, the circulation integral

can be written as follows:

þ
~H�d ~‘¼ð

1

~H�d ~‘����r¼a!b
f¼0

þ
ð
2

~H�d ~‘���� r¼b
f¼0!p

þ
ð
3

~H�d ~‘����r¼b!a
f¼p

þ
ð
4

~H�d ~‘���� r¼a
f¼p!0

:

Therefore

þ
~H�d ~‘¼ ðb

a

rsinfdr

����
f¼0

þ
ðp
0

2r3df

����
r¼b

þ
ða
b

rsinfdr

����
f¼p

þ
ð0
p

2r3df

����
r¼a

¼2p(b3�a3)A:

Surface or Flux Integral of a Vector Field A surface (or flux) integral of the

vector field ~A(~r) over the surface S (a scalar quantity) is defined as follows:

ð
S

~A(~r) � d~s ¼ ð
S

n̂ � ~A(~r)ds, (2:3:15)

where d ~s ¼ n̂ds and n̂ is a unit outward normal vector at each point on the surface S.

Consider a vector field ~A(~r) that passes through an open surface S bound by a

closed contour C. This surface may be considered as composed of N small areas

Ds. As shown in Figure 2.23, n̂ is a unit vector normal to the surface at point ~r1
and the vector field ~A(~ri) makes an angle u with the normal at this point.

Figure 2.22 Geometry and integration path for Example 2.16.
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Mathematically

S ¼
XN
i¼1

Dsi, (2:3:16)

D~si ¼ n̂Dsi: (2:3:17)

The surface integral is expressed asð
S

~A(~r) � d ~s ¼ lim
N!1
Dsi!0

XN
i¼1

n̂ � ~A(~ri)Dsi (2:3:18)

provided that the limit exists and it is finite.

Physically the surface integral can be interpreted as follows:

n̂ � ~A(~ri)Dsi ¼ j ~A(~ri)j cos (u)Dsi: (2:3:19)

Hence the surface (or flux) integral expresses the “flux” of the normal component of
~A(~r) over the surface S. For example, the surface integral

Ð
S
n̂ � ~J(~r)ds of the current

density ~J(~r) over a surface S gives the total current I that flows across S.

Note that if S is a closed surface, then the notation becomesþ
S

~A(~r) � d ~s ¼ þ
S

n̂ � ~A(~r) ds: (2:3:20)

Example 2.17

For an electric flux density given as ~D ¼ r̂(5=r) C=m2, find the total electric flux

emanating from a closed surface that bounds (a) a cylindrical volume of 3 m in

Figure 2.23 Surface integral of a vector field.
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radius, with 0� f� 2p, and21 m � z� 1 m, (b) a cube with21 m� x� 1 m,

21 m � y � 1 m, 21 m � z � 1 m, and (c) a sphere of 1 m radius centered at

the origin.

(a) Note that the given electric flux density has only radial component in cylind-

rical coordinates, and therefore the flux emanates only from the lateral

surface of the cylinder:

þ
S

~D � d ~s ¼ ð1
�1

ð2p
0

5

r
rdfdz

����
r¼3

¼ 5fj2p0 zj1�1 ¼ 20p C:

(b) Since rectangular coordinates are appropriate for a cube, electric flux density

given in cylindrical coordinates is converted into rectangular coordinates as

well. This can be done easily via Tables 2.1 and 2.3 as follows:

~D ¼ r̂
5

r
¼ (x̂ cosfþ ŷ sinf)

5ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p ¼ 5(x̂xþ ŷy)

x2 þ y2
:

Note that the given vector has no component in z direction. Therefore only

four lateral surfaces will contribute to surface integral:

þ
S

~D�d~s¼ ð1
�1

ð1
�1

5ydxdz

x2þ y2

����
y¼1

�
ð1
�1

ð1
�1

5ydxdz

x2þ y2

����
y¼�1

þ
ð1
�1

ð1
�1

5xdydz

x2þ y2

����
x¼1

�
ð1
�1

ð1
�1

5xdydz

x2þ y2

����
x¼�1

¼ 20

ð1
�1

dx

1þ x2
þ 20

ð1
�1

dy

1þ y2
¼ 40tan�1 x

����
1

0

þ 40 tan�1 y

����
1

0

¼ 20pC:

(c) In this case the given vector field need to be converted into spherical coor-

dinates. This can be done as follows by using Tables 2.1 and 2.4:

~D ¼ r̂
5

r
¼ (r̂ sin uþ û cos u)

5

r sin u
:

Since d ~s ¼ r̂r sin ududf,

þ
S

~D � d ~s ¼ ð2p
0

ðp
0

5(r̂ sin uþ û cos u)

r sin u
� r̂r sin ududf

�����
r¼1

¼ 5

ð2p
0

ðp
0

sin ududf ¼ 20p C:

52 VECTORS AND FIELDS



2.4 GRADIENT OF THE SCALAR FIELD

The gradient of a scalar field f (~r) is a vector field that points in the direction of its

maximum rate of change at each point ~r. The magnitude of this vector field is equal

to maximum directional derivative @f =@‘jmax. It is denoted by rf or grad( f ), where
r is a vector differential operator called “del.” In rectangular coordinates, it is

defined as follows:

r ¼ x̂
@

@x
þ ŷ

@

@y
þ ẑ

@

@z
: (2:4:1)

Consider the contours of constant f (~r) as illustrated in Figure 2.24. Assume that the

scalar field on the contour S2 is f (~r) ¼ f ðx, y, z), and let there be a point P1(~r) on
this contour. The field changes to f (~r þ d ~‘) ¼ f (xþ dx, yþ dy, zþ dz) at a nearby

point P2(~r þ d ~‘). Since

d ~‘ ¼ x̂dxþ ŷdyþ ẑdz (2:4:2)

and from calculus (the total differential), we find that

df ¼ f (~r þ d ~‘)� f (~r) ¼ f (xþ dx, yþ dy, zþ dz)

¼ @f

@x
dxþ @f

@y
dyþ @f

@z
dz; (2:4:3)

Figure 2.24 Contours of constant f (~r) and the definition of its gradient.
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the gradient of f (~r) is defined as

rf ¼ grad( f ) ¼ ~G ¼ x̂
@f

@x
þ ŷ

@f

@y
þ ẑ

@f

@z
: (2:4:4)

Therefore, by the properties of scalar (dot) product of two vectors,

df ¼ ~G � d ~‘: (2:4:5)

If û is a unit vector along d ~‘, then d ~‘ ¼ û d‘ and

df ¼ ~G � d ~‘ ¼ ( ~G � û)d‘: (2:4:6)

Therefore

df

d‘
¼ ( ~G � û) ¼ ~G

��� ��� cos u: (2:4:7)

Note that this directional derivative has its maximum value when û is parallel to ~G.
Further, suppose that P2 lies on the same equipotential surface S2 as shown in

Figure 2.25. Therefore

df ¼ ~G � d ~‘ ¼ 0: (2:4:8)

Figure 2.25 Interpretation of the gradient of a scalar field.
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Since both points P1 and P2 are on the same surface, d ~‘ is tangent to S2. Note that the
magnitudes j ~Gj and jd ~‘j are not zero. For (2.4.8) to be true, ~G and d ~‘ got to be

orthogonal to each other. Therefore ~G is normal to contour S2.

Example 2.18

Find the unit vector normal to a surface described by xyþ yzþ zx2 5 ¼ 0:
Since the gradient of a scalar field is normal to the surface, we can find a unit

vector in that direction as follows.

~U ¼ rf ¼ x̂(yþ z)þ ŷ(xþ z)þ ẑ(yþ x):

Therefore a unit vector normal to the surface is found to be

û ¼
~U�� ~U�� ¼

x̂(yþ z)þ ŷ(xþ z)þ ẑ(yþ x)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(yþ z)2 þ (xþ z)2 þ (yþ x)2

p :

Example 2.19

Determine the rate of change of a scalar field f (~r) ¼ x3 þ y3 þ z3 at (1, 2, 3) in

the direction of ~A ¼ 2x̂þ 4ŷþ 4ẑ.

A unit vector â is the direction of ~A is found to be

â ¼
~A�� ~A�� ¼

2x̂þ 4ŷþ 4ẑffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22 þ 42 þ 42

p ¼ 2x̂þ 4ŷþ 4ẑ

6
¼ x̂þ 2ŷþ 2ẑ

3
,

and the directional derivative of the scalar field is

rf (~r) ¼ 3x2x̂þ 3y2ŷþ 3z2ẑ ¼ 3(x̂x2 þ ŷy2 þ ẑz2):

Therefore

rf (~r) � âj(1;2;3) ¼ 3(x̂x2 þ ŷy2 þ ẑz2) � x̂þ 2ŷþ 2ẑ

3

� �����
(1,2,3)

¼ (x2 þ 2y2 þ 2z2) (1,2,3)

�� ¼ 1þ 8þ 18 ¼ 27:

Example 2.20

Source and field points are generally specified via primed and unprimed coordi-

nates respectively:

~r0 ¼ x̂x0 þ ŷy0 þ ẑz0
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and

~r ¼ x̂xþ ŷyþ ẑz:

For R ¼ ~r � ~r0
�� ��, Determine the gradient of 1/R with respect to unprimed coor-

dinates. What will be its gradient in primed coordinates?

Figure 2.26 shows the geometry that is used in this example. Since

~r ¼ xx̂þ yŷþ zẑ,

~r0 ¼ x0x̂þ y0ŷþ z0ẑ,
and

~R ¼ ~r � ~r0 ¼ (x� x0)x̂þ ( y� y0)ŷþ (z� z0)ẑ:

Therefore

R ¼ ~r � ~r0
�� �� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(x� x0)2 þ ( y� y0)2 þ (z� z0)2
q

:

Hence the scalar field for this case is

f (~r) ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x� x0)2 þ ( y� y0)2 þ (z� z0)2

p :

The gradient of this field with respect to unprimed coordinates is found as

follows:

r 1

R

� �
¼ x̂

@

@x
þ ŷ

@

@y
þ ẑ

@

@z

� �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(x� x0)2 þ ( y� y0)2 þ (z� z0)2
p

 !
:

Figure 2.26 Geometry of the problem described in Example 2.20.
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The first term simplifies to

@

@x

1

R

� �
¼ @

@x

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x� x2)þ ( y� y0)2 þ (z� z0)2

p
 !

¼ � 1

2
(x� x2)þ ( y� y0)2 þ (z� z0)2
� 
�3=2

2(x� x0)

¼ � (x� x0)
R3

:

Similarly

@

@y

1

R

� �
¼ � ( y� y0)

R3

and

@

@z

1

R

� �
¼ � (z� z0)

R3
:

Therefore

r 1

R

� �
¼ � (x� x0)x̂þ (y� y0)ŷþ (z� z0)ẑ

R3
¼ �

~R

R3
¼ � R̂

R2
,

where R̂ is a unit vector along ~R.
Similarly it can be proved that

r0 1

R

� �
¼ R̂

R2
,

where

r0 ¼ x̂
@

@x0
þ ŷ

@

@y0
þ ẑ

@

@z0
:

Gradient in Other Common Coordinates

The gradient of a scalar field in cylindrical coordinates (r, f, z) is given by

rf ¼ r̂
@f

@r
þ f̂

@f

r@f
þ ẑ

@f

@z
: (2:4:9)

In spherical coordinates (r, u, f) it is given as follows:

rf ¼ r̂
@f

@r
þ û

@f

r@u
þ f̂

@f

r sin(u)@f
: (2:4:10)
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Note that the notation rf is used for the gradient of f in every coordinate system.

rf should not be confused with the operator r, which is defined by (2.4.1) only

in rectangular coordinates.

Example 2.21

Find the gradient of the following scalar fields:

(a) f (x, y, z) ¼ x(aþ bz2 cy)þ d

(b) f (r, f, z) ¼ a sin f2 brzþ d

(c) f (r, u, f) ¼ a sin u cos f/r3

Assume that a, b, c, and d do not change with space coordinates.

(a) Since the gradient in rectangular coordinates is defined as

rf ¼ x̂
@f

@x
þ ŷ

@f

@y
þ ẑ

@f

@z
;

then

rf ¼ x̂(aþ bz� cy)þ ŷ(�cx)þ ẑ(bx):

(b) Similarly, using the expression for the gradient in cylindrical coordinates,

rf ¼ r̂
@f

@r
þ f̂

1

r

@f

@f
þ ẑ

@f

@z
,

we find that

rf ¼ r̂(�bz)þ f̂
1

r
(a cosf)þ ẑ(�br) ¼ �r̂bzþ f̂

a

r
cosf� ẑbr:

(c) Using the expression for the gradient in the spherical coordinates,

rf ¼ ~r
@f

@r
þ ~u

1

r

@f

@u
þ ~f

1

r sin u

@f

@f
,

we find that

rf ¼ r̂ � 3a sin u cosf

r 4

� �
þ û

1

r

a cos u cosf

r3

� �

þ f̂
1

r sin u
� a sin u sinf

r3

� �

¼ �r̂
3a sin u cosf

r 4
þ û

a cos u cosf

r 4
� f̂

a sinf

r 4
:
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2.5 DIVERGENCE OF THE VECTOR FIELD

The divergence of a vector field ~A(~r) is generally denoted as r � ~A(~r) or div ~A(~r). It
is a scalar field that is defined mathematically as follows:

r � ~A(~r) ¼ lim
DV( ~r)!0

Þ
S
n̂ � ~A(~r0) ds 0
DV(~r)

, (2:5:1)

where S is the closed surface that bounds the incremental volume region DV(~r)
located by the position vector ~r. Primed coordinates are used for as integration vari-

ables over this surface.

By its definition, the divergence of a vector at a point is the net outflux of that

vector per unit volume. Thus it gives a measure of the strength of the sources that

produce the vector field. If the divergence of a vector field ~A(~r) is zero at every

point ~r, then it is called to be a solenoidal field.

Consider an incremental volume DV(~r) and the vector ~A(~r) in the rectangular

coordinates as shown in Figure 2.27. Equation (2.5.1) can be evaluated after

integrating the closed-surface integral over each of six faces as follows. On the

right-hand-side face, it gives

ð
Sx1

n̂ � ~A(~r0)ds0 ¼ ð
Sx1

~A xþ dx

2
, y, z

� � � x̂dydz � Ax xþ dx

2
, y, z

� �
dydz

¼ Ax(x, y, z)dydzþ @

@x
Ax(x, y, z)

dx

2
dydz:

Figure 2.27 Incremental volume DV(~r) and the vector ~A(~r).
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On the left face, it is found to beð
Sx2

n̂ � ~A(~r0)ds0 ¼ ð
Sx2

~A x� dx

2
, y, z

� � � (�x̂)dydz � Ax x� dx

2
, y, z

� �
dydz

¼ �Ax(x, y, z)dydz� @

@x
Ax(x, y, z) � dx

2

� �
dydz:

Adding the results of these two side-faces, we haveð
Sx1þSx2

n̂ � ~A(~r0)ds0 ¼ @

@x
Ax(x, y, z)dxdydz:

Similarly the top and bottom surfaces of incremental volume produce

ð
Sy1þSy2

n̂ � ~A(~r0)ds0 ¼ @

@y
Ay(x, y, z)dxdydz:

The remaining two surfaces (front and back) give

ð
Sz1þSz2

n̂ � ~A(~r0)ds ¼ @

@z
Az(x, y, z)dxdydz:

Adding the results from all six faces of DV(~r ) , we haveþ
S

n̂ � ~A(~r0)ds ¼ @Ax

@x
þ @Ay

@y
þ @Az

@z

� �
dxdydz:

Therefore

r � ~A(~r) ¼ lim
DV(~r)!0

Þ
S
n̂ � ~A(r0)ds
DV(~r)

¼ @Ax

@x
þ @Ay

@y
þ @Az

@z

¼ x̂
@

@x
þ ŷ

@

@y
þ ẑ

@

@z

� � � (x̂Ax þ ŷAy þ ẑAz):

ð2:5:2Þ

Divergence in Other Common Coordinates

The divergence of a vector field in cylindrical coordinates (r, f, z) is given by

r � ~A ¼ 1

r

@

@r
(rAr)þ 1

r

@Af

@f
þ @Az

@z
: (2:5:3)

In spherical coordinates (r, u, f) it is given as follows:

r � ~A ¼ 1

r2
@

@r
(r 2Ar)þ 1

r sin u

@

@u
(sinuAu)þ 1

r sin u

@Af

@f
: (2:5:4)
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Example 2.22

Find the divergence of the following vector fields:

(a) ~A ¼ x̂x 2 þ ŷyþ ẑz

(b) ~B ¼ �r̂bzþ f̂ (a=r) cosf� ẑbr, where a and b are constant.

(c) ~E ¼ r̂4r cos u� û6rsinuþf̂ sin u

(a) From (2.5.2),

r � ~A ¼ @Ax

@x
þ @Ay

@y
þ @Az

@z
¼ 2xþ 1þ 1 ¼ 2þ 2x:

(b) From (2.5.3),

r � ~B ¼ 1

r

@(rBr)

@r
þ 1

r

@Bf

@f
þ @Bz

@z
¼ 1

r

@(�rbz)

@r
þ 1

r

@

@f

a

r
cosf

� �
þ @(�br)

@z

¼ � bz

r
� a

r 2
sinf:

(c) From (2.5.4),

r� ~E ¼ 1

r2 sinu
sinu

@

@r
(r 2Er)þ r

@

@u
( sinuEu)þ r

@Ef

@f

� �

¼ 1

r2 sinu
sinu

@

@r
(r 24r cosu)þ r

@

@u
sinu(�6r sinu)f g þ r

@

@f
(sinu)

� �

¼ 1

r2 sinu
sinu(12r 2 cosu)þ r �12r sinu cosuf g	 
¼ 0:

2.6 CURL OF THE VECTOR FIELD

The curl of a vector field ~A(~r ) is generally denoted by r � ~A(~r ) or curl ~A(~r ). It is a
vector field whose scalar component along a particular coordinate i is given as

follows:

r � ~A( ~r )
n o

i
¼ lim

DSi(~r )!0

Þ
G
~A( ~r0 ) � d ~‘0
DSi(~r )

, (2:6:1)

whereDSi(~r ) is an elemental surface area perpendicular to the direction i and located

at ~r. The closed contour G represents the boundary of elemental area DSi( ~r ). It is
taken in the right-hand sense relative to the external normal vector to DSi( ~r ).

By its definition, r � ~A(~r ) at a point is the net circulation of ~A( ~r ) per unit area at
point ~r. Thus it gives a measure of the strength of the sources producing ~A( ~r ) at each
point. If the curl of ~A( ~r ) is zero at every point ~r, then it is said to be irrotational or

conservative vector field.
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Consider an elemental area DSx(~r) and the vector ~A(~r) in the rectangular coordi-

nates as shown in Figure 2.28. Equation (2.6.1) can be evaluated after integrating the

circulation integral over the edge 1 to 4 as follows:

For

~A(~r) ¼ x̂Ax(~r)þ ŷAy(~r)þ ẑAz(~r),

þ
G

~A(~r0) � d ~‘ ¼ þ
G

(x̂Ax þ ŷAy þ ẑAz) � (x̂dxþ ŷdyþ ẑdz)

¼
ð
1

Aydyþ
ð
2

Azdzþ
ð
3

Aydyþ
ð
4

Azdz,

whereð
1

Aydy � Ay x, y, z� dz

2

� �
dy ¼ Ay(x, y, z)þ @

@z
Ay(x, y, z) � dz

2

� �
dy,

ð
2

Azdz � Az x, yþ dy

2
, z

� �
dz ¼ Az(x, y, z)þ @

@y
Az(x, y, z)

dy

2

� �
dz,

ð
3

Aydy � �Ay x, y, zþ dz

2

� �
dy ¼ �Ay(x, y, z)� @

@z
Ay(x, y, z)

dz

2

� �
dy,

and ð
4

Azdz � �Az x, y� dy

2
, z

� �
dz ¼ �Az(x, y, z)� @

@y
Az(x, y, z) � dy

2

� �
dz:

Figure 2.28 Elemental surface DS(~r) perpendicular to x-axis and the vector ~A(~r ) for

calculating fr � ~A(~r )gx.
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Substituting these results back, we getþ
G

~A(~r0 ) � d ~‘ ¼ @Az

@y
� @Ay

@z

� �
dydz:

Therefore

r � ~A(~r )
n o

x
¼ lim

DSx(~r)!0

þ
G

~A(~r0) � d ~‘
DSx(~r)

¼

þ
G

~A(~r0) � d ~‘
dydz

¼ @Az

@y
� @Ay

@z
:

Similarly y and z components are found to be

r � ~A(~r)
n o

y
¼ lim

DSy(~r)!0

þ
G

~A(~r0) � d ~‘
DSy(~r)

¼

þ
G

~A(~r0) � d ~‘
dxdz

¼ @Ax

@z
� @Az

@x

and

r � ~A(~r )
n o

z
¼ lim

DSz(~r)!0

þ
G

~A(~r0) � d ~‘
DSz(~r)

¼
s

þ
G

~A(~r0) � d ~‘
dxdy

¼ @Ay

@x
� @Ax

@y
:

On combining the results for all three components, we have

r � ~A(~r) ¼ x̂
@Az

@y
� @Ay

@z

� �
þ ŷ

@Ax

@z
� @Az

@x

� �
þ ẑ

@Ay

@x
� @Ax

@y

� �
: (2:6:2)

This can also be written in determinant form as follows:

r � ~A(~r) ¼
x̂ ŷ ẑ
@

@x

@

@y

@

@z
Ax Ay Az

��������

��������: (2:6:3)

Curl in Other Common Coordinates

The curl of a vector field in cylindrical coordinates (r, f, z) is given by

r � ~A ¼ r̂
1

r

@Az

@f
� @Af

@z

� �
þ f̂

@Ar

@z
� @Az

@r

� �
þ ẑ

1

r

@

@r
(rAf)� @Ar

@f

� �
: (2:6:4)

Alternatively,

r � ~A ¼ 1
r

r̂ rf̂ ẑ

@

@r

@

@f

@

@z
Ar rAf Az

��������

��������: (2:6:5)
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In spherical coordinates (r, u, f) it is given as follows:

r � ~A ¼ r̂
1

r sin u

@

@u
(Af sin u)� @Au

@f

� �
þ û

1

r

1

sin u

@Ar

@f
� @

@r
(rAf)

� �

þ f̂
1

r

@

@r
(rAu)� @Ar

@u

� �
: (2:6:6)

This can also be written in a determinant form as follows:

r � ~A ¼ 1

r2 sin(u)

r̂ rû r sin(u)f̂
@

@r

@

@u

@

@f
Ar rAu r sin(u)Af

��������

��������: (2:6:7)

Note that the notation r � ~A(~r) is used for the curl of ~A(~r) in every coordinate

system; it should not be confused with the operator r in rectangular coordinates.

Example 2.23

Find the curl of the following vector fields:

(a) ~U ¼ x̂( yþ z)þ ŷ(xþ z)þ ẑ( yþ x)

(b) ~E ¼ r̂150r cos fþ f̂200 sin f

(c) ~H ¼ r̂r cos u� û ðsin u=rÞ þ f̂2r2 sin u

(a) From (2.6.3), we have

r � ~U ¼
x̂ ŷ ẑ
@

@x

@

@y

@

@z
Ux Uy Uz

��������

�������� ¼
x̂ ŷ ẑ
@

@x

@

@y

@

@z
( yþ z) (xþ z) ( yþ x)

��������

��������
¼ x̂(1� 1)þ ŷ(1� 1)þ ẑ(1� 1) ¼ 0:

(b) From (2.6.5), we get

r � ~E ¼ 1

r

r̂ rf̂ ẑ

@

@r

@

@f

@

@z
Er rEf Ez

��������

�������� ¼
1

r

r̂ rf̂ ẑ

@

@r

@

@f

@

@z
150r cosf 200r sinf 0

��������

��������
¼ ẑ

200

r
þ 150

� �
sinf:
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(c) From (2.6.7), we get

r � ~H ¼ 1

r2 sin(u)

r̂ rû r sin uf̂
@

@r

@

@u

@

@f
Hr rHu r sin uHf

��������

��������

¼ 1

r2 sin(u)

r̂ rû r sin uf̂
@

@r

@

@u

@

@f

r cos u r � sin u
r

� �
r sin u(2r2 sin u)

����������

����������
¼ 1

r2 sin(u)
r̂(4r3 sin u cos u)þ rû (�6r2 sin2 u)þ r sin uf̂ r sin u
h i

¼ r̂4r cos u� û6r sin uþ f̂ sin u:

2.7 THE DIVERGENCE THEOREM

Consider a vector field ~A(~r) defined throughout a volume region V that is bound by

the surface S. According to the divergence theorem (also known as the Gauss’s

theorem), the integral of the divergence of ~A(~r) in V is equivalent to integrating

the normal component of ~A(~r) over S. Mathematicallyð
V

r � ~A(~r)dv ¼ þ
S

n̂ � ~A(~r)ds: (2:7:1)

This theorem can be proved easily using (2.5.1), which defines r � ~A(~r). Consider
a vector field ~A(~r) in a volume V bound by the surface S, as shown in Figure 2.29.

Figure 2.29 Geometry of the subdivided volume for establishing the divergence theorem.
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Imagine that the volume V is made up of N volume-elements DVi that is bound by a

closed surface Si. Therefore

V ¼
XN
i¼1

DVi:

Using (2.5.1) for ~A(~ri) in this volume element, we get

r � ~A(~ri) ¼ lim
DV(~ri)!0

Þ
Si
n̂ � ~A(~ri)ds
DV(~ri)

:

As DVi ! 0, this equation can be written as follows:

r � ~A(~ri)DVi ¼
þ
Si

n̂ � ~Ads:
Writing similar expressions for each volume-element and adding, we find that

XN
i¼1

r � ~A(~ri)DVi ¼
XN
i¼1

þ
Si

n̂ � ~Ads:
As illustrated in Figure 2.30, integrations over adjacent surfaces of neighboring

volume-elements cancel each other, leaving only the integral over boundary

surface S. Therefore this expression reduces to

lim
N!1
DVi!0

XN
i¼1

r � ~A(~ri)DVi ¼
þ
S

n̂ � ~Ads:

Figure 2.30 Cancellation of surface integrals over internal volume-elements.
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Now using the definition of volume integral for the left-hand side of this, we haveð
V

r � ~A(~r)dv ¼ þ
S

n̂ � ~Ads:
Example 2.24

Verify the divergence theorem for a vector ~A ¼ r̂5r when a closed surface is (a) a

cylinder with r ¼ 1 m, and 0 � z � 1 m, (b) a sphere of r ¼ 1 m, and (c) a cube

with 0 � x � 1 m, 0 � y � 1 m, and 0 � z � 1 m.

(a) Since both, the given vector as well as the closed surface, are in spherical

coordinates, the corresponding formulas can be easily applied as follows:

þ
S

~A � d ~s ¼ ð2p
f¼0

ðp
u¼0

(r̂5r) � r̂r2 sin ududf��r¼1
¼ 5� 2� 2p ¼ 20p:

Since

r � ~A ¼ 1

r2 sin u
sin u

@

@r
(r25r) ¼ 15,

ð
V

r � ~Adv ¼ 15

ð2p
f¼0

ðp
u¼0

ð1
r¼0

r2 sin u drdudf

¼ 15� r3

3

����
1

0

�(�cos ujp0 )� f
��2p
0
¼ 20p:

(b) In this case the closed surface is in cylindrical coordinates whereas the given

vector is in spherical coordinates. Therefore it needs to be converted into

cylindrical coordinates before integrations. From the Tables 2.1 and 2.3

we get

~A ¼ r̂5r ¼ (r̂ sin uþ ẑ cos u)5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r 2 þ z2

p
:

Since

sin u ¼ rffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p and cos u ¼ zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r 2 þ z2

p ,

this simplifies to

~A ¼ r̂5r ¼ (r̂rþ ẑz)5:

Therefore

r � ~A ¼ 1

r

@

@r
(5r2)þ 0þ @

@z
(5z) ¼ 15
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and ð
V

r � ~Adv ¼ ð1
z¼0

ð2p
f¼0

ð1
r¼0

15rdrdfdz ¼ 15p:

Since there are three surfaces in a cylinder to form a closed surface, we

evaluate the integrals individually as follows:

For the side surface of the cylinder,ð
S1

~A � ds ¼ ð1
z¼0

ð2p
f¼0

~A � r̂rdfdz���
r¼1

¼ 5

ð1
z¼0

ð2p
f¼0

dfdz ¼ 10p:

For the top surface of the cylinder,ð
S2

~A � ds ¼ ð2p
f¼0

ð1
r¼0

~A � ẑrdrdf���
z¼1

¼ 5

ð2p
f¼0

ð1
r¼0

rdrdf ¼ 5p:

For the bottom surface,ð
S3

~A � ds ¼ ð2p
f¼0

ð1
r¼0

~A � ẑrdrdf���
z¼0

¼ 0:

Thereforeþ
S

~A � d ~s ¼ þ
S1

~A � d ~sþ þ
S2

~A � d ~sþ þ
S3

~A � d ~s ¼ 10pþ 5p ¼ 15p

¼
ð
V

r � ~Adv:
(c) In this case the closed surface is in rectangular coordinates whereas the given

vector is in spherical coordinates. Therefore it needs to be converted into rec-

tangular coordinates before integrations. From the Tables 2.1 and 2.2 we get

~A ¼ r̂5r ¼ (x̂ sin u cosfþ ŷ sin u sinfþ ẑ cos u)5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
:

Further, since

cos u ¼ zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p ,

sin u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p ,

cosf ¼ xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p ,

68 VECTORS AND FIELDS



and

sinf ¼ yffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p ,

we get

~A ¼ 5(x̂xþ ŷyþ ẑz):

Therefore

r � ~A ¼ @

@x
(5x)þ @

@y
(5y)þ @

@z
(5z) ¼ 15

and ð
V

r � ~Adv ¼ ð1
z¼0

ð1
y¼0

ð1
x¼0

15dxdydz ¼ 15:

Since there are six surfaces on a cube, we evaluate the integrals individually as

follows:

For the surface at x ¼ 1,

ð
S1

~A � ds1 ¼ ð1
z¼0

ð1
y¼0

5xdydz
��
x¼1

¼ 5:

For the surface at x ¼ 0,

ð
S2

~A � ds2 ¼ �
ð1
z¼0

ð1
y¼0

5xdydz
��
x¼0

¼ 0:

For the surface at y ¼ 1,

ð
S3

~A � ds3 ¼ ð1
z¼0

ð1
x¼0

5ydxdz
��
y¼1

¼ 5:

For the surface at y ¼ 0,

ð
S4

~A � ds1 ¼ �
ð1
z¼0

ð1
x¼0

5ydxdz
��
y¼0

¼ 0:

For the surface at z ¼ 1,

ð
S5

~A � ds5 ¼ ð1
y¼0

ð1
x¼0

5zdxdy
��
z¼1

¼ 5:
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For the surface at z = 0,

ð
S6

~A � ds6 ¼ �
ð1
y¼0

ð1
x¼0

5zdxdy
��
z¼0

¼ 0:

Therefore

þ
S

~A � ds ¼ ð
S1

~A � ds1 þ ð
S2

~A � ds2 þ � � � þ
ð
S6

~A � ds6 ¼ 15 ¼
ð
V

r � ~Adv:

2.8 STOKES THEOREM

Consider a vector field ~A(~r) defined over the surface S bound by a closed boundary

contour G. Stokes’s theorem states that total flux of the curl of ~A(~r) over S is equal to
circulation of ~A(~r) along the contour G. Mathematically

ð
S

n̂ � r � ~A(~r)
h i

ds ¼
þ
G

~A(~r) � d ~‘: (2:8:1)

Figure 2.31 Geometry of the subdivided surface for establishing Stokes’s theorem.
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This theorem can be easily proved using (2.6.1), which defines r � ~A(~r). Consider a
vector field ~A(~r) over the surface S bound by a boundary contour G, as shown in

Figure 2.31. Imagine that the surface S is made up of N area-elements DSi that is
bound by the closed boundary Gi. Therefore

S ¼
XN
i¼1

DSi:

Using (2.6.1) for ~A(~ri) in this area-element, we get

r � ~A(~ri)
���
n
¼ n̂ � r � ~A(~ri)

h i
¼ lim

DSi!0

þ
Gi

~A(~ri) � d ~‘
DSi

or

lim
DSi!0

n̂ � r � ~A(~ri)
h i

DSi ¼
þ
Gi

~A(~ri) � d ~‘
or

XN
i¼1

n̂ � r � ~A(~ri)
h i

DSi ¼
XN
i¼1

þ
Gi

~A(~ri) � d ~‘:
As illustrated, integrals over adjacent contours cancel out except the integral

around boundary contour G of S. Hence the expression reduces to

lim
N!1
DSi!0

XN
i¼1

n̂ � r � ~A(~ri)
h i

DSi ¼
þ
G

~A(~r) � d ~‘:
Using the definition of a surface integral on the right-hand side of this expression,

we get

ð
S

n̂ � r � ~A(~r)
h i

ds ¼
þ
G

~A(~r) � d ~‘:
Example 2.25

Verify Stokes’s theorem for the case of Example 2.16.

For ~H ¼ r̂r sin fþ f̂2r2 A=m,

r � ~H ¼ 1

r

r̂ rf̂ ẑ

@

@r

@

@f

@

@z

r sinf 2r3 0

���������

���������
¼ ẑ(6r� cosf) A=m2:
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Therefore ð
S

(r � ~H) � d ~s ¼ ðp
f¼0

ðb
r¼a

ẑ(6r� cosf) � ẑrdrdf
¼
ðp
f¼0

6
r3

3
� cosf

r2

2

� �����
b

a

df,

or ð
S

(r � ~H) � d ~s ¼ 2(b3 � a3)f
��p
0
� 1

2
(b2 � a2)sinf

��p
0
¼ 2p(b3 � a3) A:

Now applying the result from Example 2.16, we find thatð
S

(r � ~H) � d ~s ¼ 2p(b3 � a3)A ¼
þ
G

~H � d ~‘:
Example 2.26

Verify Stokes’s theorem for the case of Example 2.15.

In this case ~E ¼ r̂150r cos fþ f̂200 sin f V=m, and from the results

obtained in Example 2.15, þ
G

~E � d ~‘ ¼ 525V:

Note that r is dependent on f, which was found to be r ¼ 3 cos f. The relation
and curl of the vector was evaluated in Example 2.23 as follows:

r � ~E ¼ ẑ
200

r
þ 150

� �
sinf:

Thereforeð
S

(r � ~E) � d ~s ¼ ðp=2
f¼0

ð3 cosf
r¼0

ẑ
200

r
þ 150

� �
sinf � ẑrdrdf

¼
ðp=2
f¼0

ð3 cosf
r¼0

(200þ 150r) sinfdrdf,

or ð
S

(r � ~E) � d ~s ¼ ðp=2
f¼0

200rþ 150
r2

2

� �����
3 cosf

0

sinfdf

¼
ðp=2
0

(600 cosfþ 675 cos2 f) sinfdf:
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The integral can be evaluated by changing the integration variable (and the

associated integration limits) as follows:

cosf ¼ t ! �sinfdf ¼ dt,

f ¼ 0 ! t ¼ 1,

and

f ¼ p

2
! t ¼ 0

Thereforeð
S

(r � ~E) � d ~s ¼ �
ð0
1

(600t � 675t2)dt ¼ 525V ¼
þ
G

~E � d ~‘:
2.9 OTHER OPERATIONS INVOLVING r

Laplacian of the Scalar Field f (~r )

The Laplacian of a scalar field is defined in rectangular coordinates as follows:

r �rf ¼ r2f ¼ r � x̂
@f

@x
þ ŷ

@f

@y
þ ẑ

@f

@z

� �
¼ @2f

@x2
þ @2f

@y2
þ @2f

@z2
: (2:9:1)

In cylindrical coordinates, it is given by

r2f ¼ 1

r

@

@r
r
@f

@r

� �
þ 1

r2
@2f

@f2
þ @2f

@z2
: (2:9:2)

The Laplacian of a scalar field is given in spherical coordinates as follows:

r2f ¼ 1

r2
@

@r
r2
@f

@r

� �
þ 1

r2 sin u

@

@u
sin u

@f

@u

� �
þ 1

r2 sin2 u

@2f

@f2
: (2:9:3)

Laplacian of the Vector Field ~A(~r)

From r � r� ~A ¼ r(r � ~A)� r 2 ~A, we get

r2 ~A(~r) ¼ r r � ~A(~r)h i
� r� r� ~A(~r): (2:9:4)

Note that the Laplacian of a vector is separable only in the rectangular coordinates,

as follows:

r2 ~A ¼ x̂r2Ax þ ŷr2Ay þ ẑr2Az: (2:9:5)
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Two Important Differential Identities

The curl of the gradient of any scalar field is always zero. In other words, the

gradient of a scalar field is always irrotational. Mathematically

r � rf ¼ 0: (2:9:6)

The divergence of the curl of a vector field is always zero. In other words, the curl of

a vector field is always solenoidal. Mathematically

r �r � ~A ¼ 0: (2:9:7)

Several Often Used Identities

r � ( f ~A) ¼ fr � ~Aþ ~A �rf , (2:9:8)

r � ( f ~A) ¼ fr � ~Aþ rf � ~A, (2:9:9)

r( f1 f2) ¼ f1rf2 þ f2rf1, (2:9:10)

r � ( ~A1 � ~A2) ¼ ~A2 � (r � ~A1)� ~A1 � (r � ~A2): (2:9:11)

2.10 HELMHOLTZ THEOREM

As was mentioned earlier, a vector field is solenoidal if its divergence vanishes

everywhere in the spatial domain. If the curl of a vector field vanishes everywhere,

then it is called an irrotational field. Physically the former situation arises in magne-

tostatics in response to a current density, and the latter one is associated with the

electrostatics created by a charge density. If both the divergence and the curl of a

vector field are zero, then the field has no source. A general vector field ~A(~r) is
uniquely specified if both its divergence and its curl are given within a region,

and its normal component is specified over the boundary. Furthermore such a

field may always be expressed as follows:

~A(~r) ¼ rf (~r)þ r� ~F(~r), (2:10:1)

where f (~r) and ~F(~r) are called scalar and vector potential fields, respectively.

Note that according to the Helmholtz theorem, the divergence and curl of a vector

field cannot simultaneously vanish at every point in space if the field ~A(~r) is to be

nonvanishing; that is,

r � ~A(~r) ¼ 0 ! r� ~A(~r) = 0, (2:10:2)

r � ~A(~r) ¼ 0 ! r� ~A(~r) = 0: (2:10:3)

In other words, a vector field ~A(~r) is completely specified if both its divergence and

curl are given at each point ~r in its domain V.
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For r � ~A(r) ¼ g(~r) and r � ~A(~r) ¼ ~J(~r), if we take divergence of (2.10.1) and

use (2.9.7), then we find that

r � ~A(r) ¼ r �rf (~r )þ r � r � ~F(~r )
h i

�! r�rf (~r ) ¼ g(~r ),

or

r2f (r) ¼ g( ~r ): (2:10:4)

This is Poisson’s equation as found in electrostatics. It is called a Laplace equation

when its right-hand side is zero.

On the other hand, if we take curl of (2.10.1) and use (2.9.6), then we find that

r � ~A(r) ¼ r� rf ( ~r )þ r� r� ~F( ~r )
h i

¼ r� r� ~F( ~r )
h i

¼ ~J( ~r ):

Therefore

r � r� ~F( ~r ) ¼ ~J( ~r ): (2:10:5)

PROBLEMS

2.1. For ~A ¼ �2x̂þ 3ŷ� ẑ, find the magnitude ~A
��� ��� and the unit vector in the direc-

tion of the vector.

2.2. A vector ~A is defined in the rectangular coordinate system as being directed

from (1, 2, 3) to (3, 4, 5). Find (a) a vector expression for ~A, (b) the magnitude

of ~A, and (c) a unit vector pointing in the direction of ~A.

2.3. Find the position vectors for points P1(1, 3, 5) and P2(2, 4, 21). If a paralle-

logram is formed by these two position vectors as its two adjacent sides, then

verify if the diagonals of this parallelogram bisect each other.

2.4. Find a vector ~B that is perpendicular to ~A ¼ 3x̂� 2ŷþ ẑ, has no z component,

and has a magnitude of unity.

2.5. If ~A ¼ 2x̂� ŷþ 4ẑ and ~B ¼ �x̂þ ŷ� 2ẑ, then find (a) the component of ~B in

direction of ~A, (b) the smallest angle between the two vectors, and (c) a unit

vector perpendicular to the plane that contains two vectors.

2.6. A triangle ABC is found by connecting the points A (1, 2, 0), B (0, 0, 1), and C

(22, 1, 0). Find the point D that gives a plane parallelogram ABDC.

2.7. Verify (2.1.36) for ~A ¼ x̂þ 4ŷþ 3ẑ, ~B ¼ 3ŷþ ẑ, and ~C ¼ 4x̂.

2.8. Verify (2.1.37) for ~A ¼ x̂þ 4ŷþ 3ẑ, ~B ¼ 3ŷþ ẑ, and ~C ¼ 4x̂.

2.9. A receiver antenna produces an electromotive force (voltage) proportional to

the z component of the incident electric field intensity. Assume that the
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proportionality constant is 0.3 m. If the electric field intensity is given by the

following expression, then find the voltage induced at the receiver:

~E ¼ f̂
2þ cos (f)ffiffiffi

r
p V=m

2.10. A receiver antenna produces an electromotive force (voltage) proportional to

the z component of the incident electric field intensity. Assume that the pro-

portionality constant is 0.2 m. If the electric field intensity is given by the fol-

lowing expression, then find the induced voltage at the receiver:

~E ¼ 3(û sin uþ f̂ sinf cos u) V=m

2.11. The electrical charge density in a volume is given by

rV ¼ 2� 0:2r3 C=m�3:

Determine the total charge enclosed in a cube defined by 21 � x � 1 m,

21 � y � 1 m, and 21 � z � 1 m.

2.12. The electrical charge density in a volume is given by

rV ¼ 2� 0:2r3 C=m�3:

Determine the total charge enclosed in a volume defined by 0 � r � 1 m,

(p /4) � f � (p /2), and 1 � z � 1 m.

2.13. The electrical charge density in a volume is given by

rV ¼ 2� 0:2r3 C=m�3:

Determine the total charge enclosed in a wedge defined by 0 � r � 1 m,

(p/4) � u � (p/2), and (p/4) � 0 � (p/2).

2.14. Find the work done by the following force in moving a particle from P to P2

(a) over the straight line connecting (0, 0, 2) and (1, 3, 0), (b) over the straight-

line path connecting (0, 0, 2) ! (0, 0, 0) ! (1, 0, 0) ! (1, 3, 0), and (c)

(0, 0, 2) ! (0, 0, 0) ! (1, 3, 0). Assume that all distances are in meters:

~F ¼ x̂2x2yþ ŷy2 þ ẑyz N:

2.15. Find the circulation of the electric field intensity ~E ¼ r̂r2 cosfþ
f̂5 sin2 fV=m over a semicircular path of radius 1.5 m with its center at

(1.5 m, 08, 0) as shown in Figure 2.21.

2.16. Find the circulation of the following magnetic field intensity around the con-

tour ABCDA, as shown in Figure 2.22.

~H ¼ r̂r2 sinfþ f̂4r A=m:
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2.17. Find the circulation of the following magnetic field intensity around the con-

tour ABCDA, as shown in Figure 2.22.

~H ¼ r̂r sin2 fþ f̂4rA=m:

2.18. For an electric flux density given as ~D ¼ r̂(3=r2) C=m2, find the total electric

flux emanating from a closed surface that bounds (a) a cylindrical volume of

2 m in radius, with 0 � f � p, and 21 � z � 1 m, (b) a cube with 21 �
x � 1 m,21 � y � 1 m, and21 � z � 1 m, and (c) a sphere of 1 m radius

centered at the origin.

2.19. Determine the rate of change of a scalar field f ( ~r ) ¼ x2 þ yz at (1, 2, 3) in the

direction of ~A ¼ x̂þ 2ŷþ 3ẑ.

2.20. Find the gradient of the following scalar fields:

(a) f (x, y, z) ¼ z(5xþ 3yþ 2)

(b) f (r, f, z) ¼ 5 cos2 fþ 2rz

(c) f (r, u, f) ¼ 2(sin2 u cos f/r 2)

2.21. Find the divergence of the following vector fields:

(a) ~A ¼ �x̂xþ ŷ4y2 � ẑ9z

(b) ~B ¼ �r̂ cosf� f̂ ð5=r 4Þ þ ẑ z 3

(c) ~E ¼ r̂9r2 � û sinfþ f̂ cos2 u

2.22. Find the curl of the following vector fields:

(a) ~U ¼ x̂(yz)þ ŷ(xz)þ ẑ(yx)

(b) ~E ¼ r̂5r2 þ f̂2r sinf

(c) ~H ¼ r̂ðcos u=rÞ � û r sin uþ f̂ cosf

2.23. Verify the divergence theorem for a vector ~A ¼ r̂r3 when a closed surface is

(a) a cylinder with r ¼ 1 m, and 0 � z � 1 m, (b) a sphere of r ¼ 1 m, and (c)

a cube with 0 � x � 1 m, 0 � y � 1 m, and 0 � z � 1 m.

2.24. Verify Stokes’s theorem for the case of Problem 2.16.

2.25. Verify Stokes’s theorem for the case of Problem 2.15.

2.26. Points P1(1, 0, 2), P2(23, 1, 5), and P3(3,24, 6) form a right triangle in space.

Find the point where the angle is a right angle.

2.27. Determine the work done in carrying a 5 mC charge from point P1(1, 2, 24)

to point P2(22, 8, 24) in the field ~E ¼ yx̂þ xŷV=m along the parabola

y ¼ 2 x2.
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2.28. Points P1(22, 0, 3) and P2(0, 4,21) are given in space. Find (a) length of the

line that joins P1 and P2. (b) How much is the perpendicular distance from

point P3(3, 1, 3) to the line.

2.29. Find component of the vector ~A ¼ 2x̂� 5ŷþ 3ẑ that is perpendicular to the

vector ~B ¼ �x̂þ 4ŷ.

2.30. If ~A ¼ r̂r cosfþ f̂ r3 sin(f), then evaluate
Þ
~A � d ~‘, going counter-

clockwise around the contour bound by circles of radii 1 and 2 in the first

quadrant.

2.31. Three vectors are given as follows:

~A ¼ x̂þ 2ŷ� ẑ,

~B ¼ �3x̂þ ŷ� 2ẑ,

and

~C ¼ 9x̂þ ẑ:

Find (a) ~A� ~C, and (b) ( ~C � ~B Þ � ~A.
2.32. For points P1(3, 2,21), P2(3, 8,25), and P3(1, 3, 0) given, find (a) the vector

drawn from P1 to P2, (b) the straight line distance from P2 to P3, and (c) the

unit vector along the line from P1 to P3.

2.33. Three vectors are given as follows:

~A ¼ 6x̂þ 2ŷ� 3ẑ,

~B ¼ 4x̂� 6ŷþ 12ẑ,

and

~C ¼ 5x̂� 2ẑ:

Find (a) ~C � ~B, and (b) ~A � (~C � ~BÞ.
2.34. Given a vector field ~A ¼ r2r̂ þ 2zẑ, compute the total outward flux

(
Þ
S
~A � d ~s) from the surface of a 10 m high cylinder of radius 2 m.

2.35. For a vector function ~A ¼ r̂r3 þ ẑ z, verify the divergence theorem over a cir-

cular cylindrical region bound by r ¼ 3, z ¼ 0, and z ¼ 2.

2.36. For the vector field ~A ¼ x̂3x2y2 � ŷx3y2, verify the Stokes’s theorem over a

square region bound by 1 � x � 2 and 1 � y � 2.
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2.37. Find the unit vector normal to the surface defined by

2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
:

2.38. Evaluate the curl of

~A ¼ r̂
r

1þ r
þ û 2r sin(f)

at the point (3, p/4, 2p/7).

2.39. For ~A ¼ (xy� 1)x̂� y2ŷþ ( yzþ 2)ẑ, find
Þ
S
~A � d ~s, where S is the surface of

a rectangular box bounded by the planes x ¼ 0, x ¼ 2, y ¼ 0, y ¼ 1, z ¼ 0,

and z ¼ 0.5.
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3
BASIC LAWS OF
ELECTROMAGNETICS

This chapter begins with an introduction to fundamental laws of electromagnetic

fields. These laws were formulated on the basis of various experimental obser-

vations. Historically static electric and magnetic fields were studied long before

time-varying fields. Hence a number of laws (Coulomb’s law, Biot-Savart law,

Ampere’s law, etc.) were formulated for static fields. Faraday’s law for time-varying

fields set the foundation for electrical generators. Later on Maxwell not only sum-

marized elegantly the previous works through his celebrated equations but also

introduced a displacement current term in the Ampere’s law. This was a significant

contribution that established relations between the electric and the magnetic fields,

predicted the propagation of electromagnetic waves in the space, and set the foun-

dation for modern wireless communication. Earlier results of static fields become

mostly a special case of Maxwell’s equations. In this chapter Maxwell’s equations

in integral (or large-scale) form are introduced initially because these are relatively

easier to correlate with the experimental observations. The corresponding differen-

tial expressions (or point forms) are obtained via the Stokes and Gauss theorems.

After a brief discussion on time-harmonic fields and constitutive relations, the

boundary conditions are summarized next along with a few of its application. The

chapter ends with sections on the Lorentz force equation and the Poynting vector.
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3.1 MAXWELL’S EQUATIONS IN LARGE-SCALE OR

INTEGRAL FORM

In general, electromagnetic fields and sources vary with space-coordinates and the

time. In vector notation these may be represented as follows:

~E(~r, t) Electric field intensity in V/m
~H(~r, t) Magnetic field intensity in A/m
~D(~r, t) Electric flux density in C/m2

~B(~r, t) Magnetic flux density in Tesla
~J(~r, t) Electric current density in A/m2

r(~r, t) Electric charge density in C/m3

Laws using these notations are presented here, the same as they appear in the

Maxwell’s equations. For simplicity, the space and time dependences of these

field quantities are not shown explicitly but are implied.

Faraday’s Law of Induction

Faraday discovered that if a conducting wire loop is exposed to magnetic flux, it can

induce an electromotive force (emf). The induced emf depends on the time-rate of

change of the magnetic flux that leaves the surface bound by the loop. Induction is

possible only when the magnetic flux is changing with time or the loop is moving

through a nonuniform magnetic field. Consider a loop c that bounds the surface s,

as illustrated in Figure 3.1. The magnetic flux leaving the surface can be evaluated

by integrating the normal component of magnetic flux density at every point on it.

Figure 3.1 Magnetic flux density B passing through an area s bound by curve c.
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Mathematically þ
c

~E � d ~‘ ¼ � @

@t

ð
s

~B � d~s: (3:1:1)

Example 3.1

As shown in Figure 3.2, a metal bar oscillates over a pair of conducting rails, with

its position given by x ¼ 2� cos(20pt) m. The system lies on z ¼ 0 plane, and

the magnetic flux with a density of 5 mT is in the z direction. Find the current

i due to the induced emf. What happens if the magnetic flux varies with time

as follows?

~B ¼ ẑ 5 cos(20pt) mT:

The voltage induced across R is found to beþ
c

~E � d ~‘ ¼ � @

@t

ðx
x0¼0

ð2
y¼0

~B � ẑdx0 dy ¼ � @

@t
(5� 2� x) ¼ �10

dx

dt

¼ �200p sin(20pt) mV

and

i ¼ 200p

0:1
sin(20p t) mA ¼ 2p sin(20p t) A:

For the case of magnetic field changing with time,þ
c

~E�d ~‘¼� @

@t

ðx
x0¼0

ð2
y¼0

~B� ẑdx0dy¼� @

@t
2� x� 5cos (20p t)½ �mV

¼�10cos (20p t)
dx

dt
þ 200px sin(20pt)mV

¼ 200p 2� cos(20pt)½ � sin(20pt)� 200p sin(20pt)cos(20pt)mV

¼ 200p 2sin(20pt)� sin(40pt)½ �mV¼ 0:2p 2sin(20p t)� sin(40pt)½ �V:

Figure 3.2 System geometry for Example 3.1.
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Therefore

i¼�2p 2sin(20p t)� sin(40pt)½ �A:

Example 3.2

A rigid rectangular loop is lying on the xy-plane with its vertices at (1, y, 0), (3, y, 0),

(3, yþ 2, 0), and (1, yþ 2, 0), as shown in Figure 3.3. It is immersed in a mag-

netic field ~B(~r, t) ¼ ẑ5 cos½ðpy=2Þ � 250pt�mT. (a) For a stationary loop find the

electromotive force induced counterclockwise around it. (b) How will the

induced emf change if the loop is moving with velocity ~v ¼ ŷ500m=s.
The magnetic flux passing through the loop area is found to be

w(~r, t) ¼
ð
S

~B(~r, t) � d ~s
¼
ðyþ2

y0¼y

ð3
x¼1

ẑ 5 cos
p y0

2
� 250pt

� � � ẑdxdy0
¼ 10

ðyþ2

y0¼y

cos
p y0

2
� 250pt

� �
dy0,

or

w(~r, t) ¼ 10
sin½(p y0=2)� 250pt�

p=2

����yþ2

y0¼y

¼ � 40

p
sin

p y

2
� 250pt

� �
mWb

¼ � 0:04

p
sin

p y

2
� 250pt

� �
Wb:

Figure 3.3 System geometry for Example 3.2.
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(a) When the loop is stationary, the time derivative of y is zero. Therefore

þ
c

~E � d ~‘ ¼ induced emf ¼ � dw

dt
¼ �10 cos

py

2
� 250pt

� �
V:

(b) Because the loop is moving in the y direction at a velocity of 500 m/s,

þ
c

~E � d ~‘ ¼ induced emf ¼ � dw

dt

¼ � 40

p
cos

py

2
� 250pt

� �p
2

dy

dt
� 250p cos

py

2
� 250pt

� �� �
¼ 0:

Example 3.3

A rigid rectangular loop of 3�2 m is situated on the yz-plane, as shown in

Figure 3.4. It is rotating symmetrically about the z-axis with an angular velocity

of v1 rad/s. If there is a magnetic field with its flux density ~B(~r, t) ¼
x̂5 cos(v2t) mT, find the open-circuit voltage Vo induced in the loop.

Small area on the surface rotating about z-axis can be expressed as follows:

d~s ¼ f̂dydz, �1:5 � y � 1:5m, 0 � z � 2m:

Since the magnetic flux density is directed along x-axis, it can be transformed to

cylindrical coordinates as well with the help of Table 2.3. Hence

~B(~r, t) ¼ (r̂ cosf� f̂ sinf)5 cos(v2t) mT

Figure 3.4 System geometry for Example 3.3.
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and

w(~r, t) ¼
ð
S

~B(~r, t) � d~s ¼ �5 cos(v2t) sinf

ð2
z¼0

ð1:5
y¼�1:5

dydz

¼ �30 cos(v2t) sinfmWb,

or

w(~r, t) ¼ �30 cos(v2t) sin(v1t)

¼ �15 sin(v1 þ v2)t þ sin(v1 � v2)t½ �mWb:

Therefore

þ
c

~E�d~‘¼�@w(~r, t)

@t

¼�0:015 (v1þv2) cos(v1þv2)tþ (v1�v2)cos(v1�v2½ �V:

Note that v2 is zero for the static magnetic field, and therefore the expression for

total magnetic flux simplifies to

w(~r, t)¼�30 sin(v1t)mWb:

In this case the induced electromotive force is found to be

þ
c

~E�d ~‘¼�@w(~r, t)

@t
¼ 0:03v1 cos(v1t)V:

Example 3.4

A conducting fluid is flowing through a plastic tube of 3.5 cm in diameter, as

shown in Figure 3.5. The flow rate is 0.24 L/s along the z-axis. It is subjected

to a magnetic field with its flux density ~B(~r, t) ¼ x̂45mT. As Shown in

the figure, there are two electrodes placed across its diameter along the y-axis.

Determine the voltage induced across these electrodes.

For a constant uniform magnetic flux density of BoT along the x-axis, tube

radius a and diameter Dm, we can write

þ
c

~E � d ~‘ ¼ � @

@t

ða
y¼�a

ðz
z0¼0

Box̂ � x̂dydz0 ¼ � @

@t
(Bo2az) ¼ �2aBo

dz

dt
¼ �DBovz:

If the fluid flow rate is Q m3/s, then

Q ¼ pD2

4
vz ! vz ¼ 4Q

pD2
:
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On substituting it back, we find that

þ
c

~E � d~‘ ¼ �DBo

4Q

pD2
¼ � 4QBo

pD
:

Using the given data, we find that

Vo ¼ � 4� 0:24� 10�3 � 0:045

p 0:035
¼ 0:3929� 10�3 V ¼ 392:9mV:

Note that the flow rate is given in L/s and the diameter of the tube in cm, whereas

the formula derived is in SI units. Commercial flow meters are designed using

this kind of arrangement.

Generalized Ampere’s Law

The generalized Ampere’s law is based on the experiments conducted by Oersted

and Ampere and the theoretical reasoning of Maxwell. Oersted found that the elec-

tric current flowing through a conductor generates an encircling magnetic field.

Maxwell introduced the displacement current term along with the conduction cur-

rent. This significant contribution could explain the current flow through capacitors

in a circuit as well as predict the propagation of electromagnetic waves in space.

Consider a closed path c that bounds the surface s, as illustrated in Figure 3.6.

Integration of the tangential component of the magnetic field intensity along this

closed path (the line integral of vector magnetic field intensity along c) gives the cir-

culation of the magnetic field intensity, which is called the magnetomotive force

(mmf). It is found that this mmf is equal to the net current enclosed by the closed

Figure 3.5 System geometry for Example 3.4.
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path c. Mathematicallyþ
c

~H � d ~‘ ¼ ð
s

~J � d~sþ @

@t

ð
s

~D � d~s: (3:1:2)

Thus Ampere’s law is analogous to the Faraday’s law. Since the electric field

intensity is expressed in volt per meter, its line integral (the emf) is in volts. Simi-

larly the unit of magnetic field intensity is ampere per meter, and therefore the mmf

has unit of ampere. The first term on right-hand side of (3.1.2) represents the con-

duction currents (net transfer of electric charge) and its second term is the time

rate of change of electric flux that leaves the surface s (the displacement current).

There is no term analogous to the conduction current in Faraday’s law because in

reality there is never a net transfer of magnetic charge. As mentioned earlier, this

term is significant because it establishes the link between electric and magnetic

fields. Further Ampere’s law sets the foundation for the wireless communication.

Example 3.5

An infinitely long solid cylindrical wire with a radius of 2 m lies along the z-axis.

It carries a current with density ~J(r) ¼ Jo(1� 0:5r)ẑA=m2. Find the magnetic

field intensity inside as well as outside the wire.

From the given condition it is clear that only the encircling magnetic field Hf

exists. Hence Ampere’s law for inside the wire gives

þ
c

~H � d ~‘ ¼ ð
s

~J � d~s �!
ð2p
0

Hfrdf ¼
ð2p
0

ðr
0

Jo(1� 0:5r0)r0dr0df,

Figure 3.6 Electric flux densityD and current densityJ passing through an area s bound by

curve c.
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or

2prHf ¼ 2pJo

r2

2
� 0:5

r3

3

� �
�! Hf ¼ Jo

r

2
� r2

6

� �
A=m, 0 � r � 2:

Similarly, for outside the wire,

þ
c

~H � d ~‘ ¼ ð
s

~J � d~s �! ð2p
0

Hfrdf ¼
ð2p
0

ð2
0

Jo(1� 0:5r0)r0dr0df,

or

2prHf ¼ 2pJo

22

2
� 0:5

23

3

� �
�! Hf ¼ 2Jo

3r
A=m, 0 � r:

Example 3.6

A coaxial line with its inner and outer conductor radii a and b, respectively,

carries a current constant with time. The outer conductor has a finite thickness,

as shown in Figure 3.7. The current densities on the two conductors are given

as follows:

~Ja ¼ ẑ
I

pa2
A=m2 and ~Jb ¼ �ẑ

I

p(c2 � b2)
A=m2:

Find the corresponding magnetic field intensity everywhere.

The geometry of this problem requires cylindrical coordinates. From the

symmetry of the problem, only the f component of the magnetic field exists.

Figure 3.7 System geometry for Example 3.6.
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Therefore Ampere’s law can be used for four regions as follows:

For 0 � r � a,

þ
c

~H � d ~‘ ¼ ð
S

~J � d~s ! ð2p
0

Hff̂ � f̂rdf
¼
ð2p
f¼0

ðr
r0¼0

I

pa2
ẑ � ẑr0dr0df,

or

Hf2pr ¼ I

pa2
2p

r2

2
! Hf ¼ Ir

2pa2
A=m:

For a � r � b,

þ
c

~H � d ~‘ ¼ ð
S

~J � d~s ! ð2p
0

Hff̂ � f̂rdf
¼
ð2p
f¼0

ða
r0¼0

I

pa2
ẑ � ẑr0dr0df,

or

Hf2pr ¼ I

pa2
2p

r 0 2

2

����
a

r0¼0

! Hf ¼ I

2pr
A=m:

For b � r � c,

þ
c

~H � d ~‘ ¼ ð
S

~J � d~s ! ð2p
0

Hff̂ � f̂rdf
¼
ð2p
f¼0

ða
r0¼0

I

pa2
ẑ � ẑr0dr0df�

ð2p
f¼0

ðr
r0¼b

I

p(c2 � b2)
ẑ � ẑr0dr0df

or

Hf2pr ¼ I

pa2
2p

r 0 2

2

����
a

r0¼0

� I

p(c2 � b2)
2p

r 0 2

2

����
r

r0¼b

or

Hf ¼ I

2pr

c2 � r2

c2 � b2

� �
A=m:
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Finally, for c � r,

þ
c

~H � d ~‘ ¼ ð
S

~J � d~s �! ð2p
0

Hff̂ � f̂rdf
¼
ð2p
f¼0

ða
r0¼0

I

pa2
ẑ � ẑr0dr0df�

ð2p
f¼0

ðc
r0¼b

I

p(c2 � b2)
ẑ � ẑr0dr0df,

or

Hf2pr ¼ I

pa2
2p

r 0 2

2

����
a

r0¼0

� I

p(c2 � b2)
2p

r 0 2

2

����
c

r0¼b

¼ 0 �! Hf ¼ 0:

Gauss’s Law for the Electric Field

Gauss’s law is based on his experimental observations and those of Faraday. Gauss’s

law for the electric field relates the enclosed charge with total displacement flux that

emanates from the closed surface s. Consider a closed surface s that bounds a

volume v, as shown in Figure 3.8. There is electric charge distributed in volume

v, with a charge density of r. This electrical charge sets up a displacement flux

with its density as D.

According to Gauss’s law, the electric displacement flux that emanates from a

closed surface s is equal to the net charge contained within the volume v. Mathemati-

cally þ
s

~D � d~s ¼ ð
v

rdv: (3:1:3)

Example 3.7

A spherical volume of radius a contains electrical charge with r ¼ ro C/m
3.

Find the corresponding electric flux density everywhere. (Assume that ro is a

constant.)

Figure 3.8 Electric flux density D emanating from a volume v bound by the surface s.
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Using spherical symmetry, we find that only radial component of the flux

density exists. Therefore Gauss’s law givesþ
S

~D � d~s ¼ ð
V

rvdv �!
ð2p
f¼0

ðp
u¼0

D r r̂ � r̂r2sin u dudf��r¼ro

¼
ð2p
f¼0

ðp
u¼0

ðro
r¼0

ror
2 sin u drdudf:

For 0 � ro � a,

Drr
2
o2p(� cos ujpu¼0) ¼ ro

r3

3

����
ro

r¼0

2p(�cos ujpu¼0) �! Dr ¼ ro
ro

3
C=m2:

For a � ro,

Drr
2
o2p(�cos ujpu¼0) ¼ ro

r3

3

����
a

r¼0

2p(�cos ujpu¼0) �! Dr ¼ ro
a3

3r2o
C=m2:

Gauss’s Law for the Magnetic Field

This law is analogous to Gauss’s law for the electric field. Since the magnetic

flux lines are always closed and magnetic charges do not separate like positive or

negative electric charges, net magnetic charge in a volume v has to be zero. As

illustrated in Figure 3.9, the magnetic flux emanating from the closed surface s is

therefore equal to zero. Mathematicallyþ
s

~B � d~s ¼ 0: (3:1:4)

Figure 3.9 Magnetic flux density B emanating from a volume v bound by the surface s.
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Maxwell studied the preceding four laws that were formulated purely based on the

experimental observations, and added the displacement current term to the original

Ampere’s law (hence, generalized it). Therefore Equations (3.1.1) through (3.1.4)

are known as Maxwell’s equations. Since these equations involve integrals, this for-

mulation is known as the integral or large-scale form of the Maxwell’s equations.

Equation of Continuity/Conservation of Charge

Consider a closed surface s that bounds a volume v, as shown in Figure 3.10. There is

an electrical charge distributed in this volume that has a charge density r. If there is a
current flow across the closed surface s, then there is an effect on the charge distri-

bution. If the net current flowing through the surface s is zero, then there is no

change in total charge. The net current emanating from the surface s is equal to

the time rate of decrease in the charge enclosed. Mathematically this is stated as

þ
s

~J � d~s ¼ � @

@t

ð
v

r dv: (3:1:5)

3.2 MAXWELL’S EQUATIONS IN POINT OR

DIFFERENTIAL FORM

As mentioned earlier, Equations (3.1.1) through (3.1.4) are known as the Maxwell

equations in integral (or large-scale) form. A differential (or point) form of these

Figure 3.10 Electric charges leaving a volume v bound by the surface s.
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equations can be obtained via the application of Stokes and Gauss’s theorems as

follows:

From (3.1.1), (3.1.2), and (2.8.1) we have

þ
c

~E � d ~‘ ¼ ð
s

(r � ~E) � d~s ¼ � @

@t

ð
s

~B � d~s ! r� ~E ¼ � @ ~B

@t

and

þ
c

~H � d ~‘ ¼ ð
s

(r � ~H) � d~s ¼ ð
s

~J � d~sþ @

@t

ð
s

~D � d~s ! r� ~H ¼ ~Jþ @ ~D

@t
:

Similarly from (3.1.3), (3.1.4), and (2.7.1) we write

þ
s

~D � d~s ¼ ð
v

r � ~D dv ¼
ð
v

rdv ! r� ~D ¼ r

and

þ
s

~B � d~s ¼ ð
v

r � ~B dv ¼ 0 ! r� ~B ¼ 0:

Application of the divergence theorem (2.7.1) to (3.1.5) gives

þ
s

~J � d~s ¼ ð
v

r � ~Jdv ¼ � @

@t

ð
v

rdv ! r� ~J ¼ � @r

@t
:

These results may be summarized as

r � ~E ¼ � @ ~B

@t
; (3:2:1)

r � ~H ¼ ~Jþ @ ~D

@t
, (3:2:2)

r � ~D ¼ r, (3:2:3)

r � ~B ¼ 0, (3:2:4)

and

r � ~J ¼ � @r

@t
: (3:2:5)

Equations (3.2.1) through (3.2.4) are known as the Maxwell equations in point (or

differential) form, whereas (3.2.5) is the equation of continuity in differential form.
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Example 3.8

The electric flux density in a spherical volume is given as follows:

~D ¼ r̂
rro
3

C=m3:

Find the associated electrical charge density. (Assume that ro is a constant.)
Using (3.2.3), we have

r ¼ r � ~D ¼ 1

r2 sin u
sin u

@

@r
r2
ror

3

� �
þ 0þ 0

� �
¼ 1

r2
ro
3

dr3

dr
¼ ro C=m

3:

Note that this example verifies the result obtained in Example 3.7.

Example 3.9

The current density in a region is given as follows:

~J ¼ x̂yzþ ŷyzþ ẑzxA=m2:

Find the current leaving the surface that bounds a unit cube in first quadrant, as

shown in Figure 3.11.

This problem can be solved two different ways. One way is to evaluate the

left-hand side of (3.1.5). That is, since there are six surfaces in a cube, the evalu-

ation can be carried out individually on each, and then the final result found after

summing. Hence the current I1 leaving the front surface is written as

I1 ¼
ð1
z¼0

ð1
y¼0

~J � x̂dydz���
x¼1

¼
ð1
z¼0

ð1
y¼0

yzdydz

����
x¼1

¼ 1
4
A:

Figure 3.11 Unit cube for Example 3.9.
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Current I2 leaving back surface is

I2 ¼
ð1
z¼0

ð1
y¼0

~J � (�x̂)dydz
���
x¼0

¼ �
ð1
z¼0

ð1
y¼0

yzdydz
��
x¼1

¼ � 1
4
A:

Current I3 leaving right-side surface is

I3 ¼
ð1
z¼0

ð1
x¼0

~J � ŷdxdz���
y¼1

¼
ð1
z¼0

ð1
x¼0

yzdxdz
��
y¼1

¼ 1
2
A:

Current I4 leaving left-side surface is

I4 ¼
ð1
z¼0

ð1
x¼0

~J � (�ŷ)dxdz
���
y¼0

¼ �
ð1
z¼0

ð1
x¼0

yzdxdz
��
y¼0

¼ 0:

Current I5 leaving the top surface is

I5 ¼
ð1
x¼0

ð1
y¼0

~J � ẑdxdy���
z¼1

¼
ð1
x¼0

ð1
y¼0

xzdxdy
��
z¼1

¼ 1
2
A:

Finally, current I6 leaving the bottom surface is

I6 ¼
ð1
x¼0

ð1
y¼0

~J � (�ẑ)dxdy
���
z¼0

¼ �
ð1
x¼0

ð1
y¼0

xzdxdy
��
z¼0

¼ 0:

Therefore the total current I leaving the closed surface is found to be

I ¼ 1
4
� 1

4
þ 1

2
þ 0þ 1

2
þ 0 ¼ 1A:

Alternatively, from (3.2.5),

r � ~J ¼ @( yz)

@x
þ @( yz)

@y
þ @(xz)

@z
¼ zþ x A=m3 ¼ � @r

@t
:

Therefore the current leaving the unit cube is

I ¼
ð1
z¼0

ð1
y¼0

ð1
x¼0

(zþ x)dxdydz ¼ z2

2

����
1

z¼0

þ x2

2

����
1

x¼0

¼ 1

2
þ 1

2
¼ 1A:

Time-Harmonic Fields

Electromagnetic fields and sources considered up to this point were assumed to be

arbitrary function of time and space. The analysis can be simplified significantly

with the assumption that these vary sinusoidally with time. It is to be noted that

this assumption includes a large number of cases. Further this formulation can be

extended to include nonsinusoidal cases via Fourier series or Fourier integrals, as

necessary.
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Consider a vector field ~a(~r, t) that is sinusoidal with time. Using complex nota-

tions, it can be expressed as follows:

~a(~r, t) ¼ ~A(~r ) cos(vt þ u) ¼ Re { ~A(~r )e ju}e jvt
h i

: (3:2:6)

Therefore the time derivative of this vector can be written as

@

@t
~a(~r, t) ¼ Re { jv ~A(~r )e ju}e jvt

h i
: (3:2:7)

This indicates that a complex vector ~A(~r )e ju (a phasor quantity) can be used in

place of ~a(~r, t), jv can replace the time derivative, and e jvt can be suppressed

during the field analysis. Further, it can be proved that a division by jv will

replace the time integral. The time dependence can be recovered after multiplying

the given complex vector by e jvt and then extracting the real part of that. This is

a familiar process used in ac circuit analysis to define the reactance of an inductor

or a capacitor.

Using phasor representations for the field quantities, Equations (3.2.1) through

(3.2.5) can be written as follows:

r � ~E(~r) ¼ �jv ~B(~r ), (3:2:8)

r� ~H( ~r ) ¼ ~J(~r )þ jv ~D(~r ), (3:2:9)

r � ~D(~r ) ¼ r(~r ), (3:2:10)

r � ~B(~r ) ¼ 0, (3:2:11)
and

r � ~J(~r ) ¼ �jvr(~r): (3:2:12)

Upright print notation is now employed in place of script notation to distinguish the

phasor field quantities. Further the space dependence of the field quantities will not

be included explicitly from this point on in order to simplify the notation.

3.3 CONSTITUTIVE RELATIONS

A general analysis involves the evaluation of ~E, ~D, ~H, and ~B for given sources (cur-

rent and charge densities). Maxwell’s equations represent only 8 scalar equations

whereas unknown fields have 12 scalar components. Further the two Gauss laws

can be found from the other two Maxwell equations and the equation of continuity.

Therefore Maxwell’s equations give only 6 independent scalar equations whereas 12

are needed to find 12 unknown field components. The constitutive relations provide

the remaining 6 independent scalar equations as follows:

~D ¼ 1o ~E þ ~P, (3:3:1)
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where

~P ¼ xe1o ~E for a linear medium

xe1o ~E for a linear and isotropic medium:

(
(3:3:2)

~P is the polarization density vector, 1o is permittivity of free space

(8.854 � 10212F/m), xe is a dimensionless electrical susceptibility tensor, and xe
is a dimensionless electrical susceptibility scalar.

Therefore, for a linear and isotropic medium,

~D ¼ 1o(1þ xe) ~E ¼ 1 ~E ¼ 1o1r ~E; (3:3:3)

where 1r is called relative permittivity (or dielectric constant) of the medium and 1 is
its permittivity in F/m. Similarly

~B ¼ mo( ~H þ ~M), (3:3:4)

where

~M ¼ xm ~H for a linear medium

xm ~H for a linear and isotropic medium.

(
(3:3:5)

~M is called the magnetization density vector, mo is permeability of free space

(4p � 1027H/m), xm is a dimensionless magnetic susceptibility tensor, and xm is a

dimensionless magnetic susceptibility scalar.

Therefore, for a linear and isotropic medium,

~B ¼ mo(1þ xm) ~H ¼ m ~H ¼ momr
~H, (3:3:6)

where m is permeability of the medium and mr is its relative permeability. Also the

current density term in (3.2.9) can have two parts, one due to an impressed source

and the other due to conduction. Conduction current density can be found via

Ohm’s law as follows:

~J ¼ s ~E, (3:3:7)

where s is conductivity of the medium in S/m.

Equation (3.2.9) can be also expressed as

r � ~H ¼ ~J
e þ s ~E þ jv1 ~E ¼ ~J e þ jv1 1� j

s

v1

� �
~E ¼ ~J

e þ jv1� ~E, (3:3:8)

where

1� ¼ 1� j
s

v

� �
¼ 1(1� j tan d) �! 1�r ¼

1

1o
� j

s

v1o
¼ 10 � j100, (3:3:9)

tan d ¼ s

v1
: (3:3:10)
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~J
e
is the impressed current source density, 1� is the complex permittivity of the

material, 1r
� is the complex relative permittivity, and tan d is what is known as a

loss tangent. This loss tangent is a ratio of the magnitude of conduction current

density to the magnitude of displacement current density in the medium.

The conduction current is defined here in a broad sense. When a dielectric

material is subjected to time-varying fields, its bound electrons move back and

forth following the Lorentz force. However, movement of the bound charges can

lag behind the applied force at high frequencies. As a result there can be some

power loss, which is represented by an equivalent conduction current as well. It is

included here in the conduction current term. In other words, the conductivity is

assumed to include a time-dependent term that is zero at dc but increases with the

frequency.

Example 3.10

The electric field intensity in a source-free region is given as follows:

~E ¼ ẑ4e�j(x�3y) V=m:

If 1 ¼ 1o and m ¼ mo in that region, find the signal frequency.

Since all electromagnetic fields must satisfy Maxwell’s equations, we first

determine the corresponding magnetic field and then try to find the electric

field back. We proceed as follows:

r� ~E ¼�jvmo
~H �! ~H ¼� 1

jvmo

x̂ ŷ ẑ
@

@x

@

@y

@

@z

0 0 4e�j(x�3y)

��������

��������¼� (12x̂þ 4ŷ)

vmo

e�j(x�3y)

and

r� ~H ¼ jv1o ~E �! ~E ¼� 1

jv1o

x̂ ŷ ẑ
@

@x

@

@y

@

@z
12

vmo

e�j(x�3y) 4

vmo

e�j(x�3y) 0

����������

����������
¼ x̂0þ ŷ0þ ẑ

40

v2mo1o
e�j(x�3y):

Therefore

40

v2mo1o
¼ 4�! v¼ 3:16ffiffiffiffiffiffiffiffiffiffi

mo1o
p ¼ 9:49� 108 rad=s:
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3.4 BOUNDARY CONDITIONS

The electromagnetic field problems considered so far involved a single medium of

infinite extent. However, there are numerous real-world problems that require analy-

sis of electromagnetic fields in the presence of more than one medium. Therefore it

is important to know the behavior of electromagnetic fields across the interface of

two media.

Consider an interface of the two media, as illustrated in Figure 3.12. Electrical

characteristics of these media are as indicated. When (3.1.2) is applied to an infini-

tesimal area across the interface and its side Dh is reduced to zero under the limit, the

result is the relation

( ~H2 � ~H1)� n̂ ¼ ~Js; (3:4:1)

where subscripts 1 and 2 are used to indicate the magnetic field intensity in the cor-

responding medium,Js represents the surface current density in A/m on the bound-

ary, and the unit vector n̂ is directed into medium 1.

Similarly, when (3.1.1) is applied to this infinitesimal area across the interface

and its side Dh is reduced to zero under the limit, the result is the relation

n̂� ( ~E2 � ~E1) ¼ 0: (3:4:2)

Again, subscripts 1 and 2 are used to indicate the electric field intensity in the cor-

responding medium. Now consider a pillbox volume across the interface of the two

media, as shown in Figure 3.13. When (3.1.3) is applied to this volume and the side

Dh is reduced to zero under the limit, the results is the relation

n̂ � ( ~D1 � ~D2) ¼ rs, (3:4:3)

where subscripts 1 and 2 are used to indicate the electric flux density in the corre-

sponding medium, rs represents the surface charge density in C/m
2 on the boundary,

and the unit vector n̂ is directed into medium 1.

Similarly the following relation is found via (3.1.4) for the magnetic flux

densities in the two media:

n̂ � ( ~B1 � ~B2) ¼ 0: (3:4:4)

Figure 3.12 An infinitesimal area across the interface of medium 1 and medium 2.
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Equations (3.4.1) through (3.4.4) can be used to determine the electromagnetic fields

from one medium to the other medium across the boundary. It is to be noted that

(3.4.3) and (3.4.4) are formulated via Gauss’s laws and are not independent. There-

fore these conditions are automatically satisfied if (3.4.1) and (3.4.2) are met.

Further, if medium 2 is a perfect conductor, then the fields inside it vanish. Therefore

the boundary conditions (3.4.1) through (3.4.4) reduce to

n̂� ~H1 ¼ ~Js, (3:4:5)

n̂� ~E1 ¼ 0, (3:4:6)

n̂ � ~D1 ¼ r s, (3:4:7)

and

n̂ � ~B1 ¼ 0: (3:4:8)

If the second medium is a good conductor (finite conductivity), then the fields

penetrate mostly up to its skin depth. In such a case the following Leontovich’s

impedance boundary condition can be used provided that the radius of curvature

of the surface is significantly greater than the skin depth (2/vms)1/2:

~Et ¼ Zs(n̂� ~H); (3:4:9)

where

Zs ¼
ffiffiffiffi
m

1

r
�

ffiffiffiffiffiffiffiffiffi
jmv

s

r
: (3:4:10)

Example 3.11

The region x. 0 is a perfect dielectric with 1r ¼ 2.25 while the region x, 0 is a

free space. At the interface, subscript 1 denotes the field components on the

þx side of the boundary and the subscript 2 on the 2x side. If ~D1 ¼
x̂þ 2ŷC=m2, find ~D2, ~E1, and ~E2.

Figure 3.13 Pillbox volume across the interface of medium 1 and medium 2.
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Conditions stated in the problem are illustrated in Figure 3.14. The interface is

x ¼ 0 plane. Therefore the x component will be normal while the y component

tangential to this plane:

~D1 ¼ 11 ~E1 ! ~E1 ¼
~D1

11
¼ 1

2:251o
x̂þ 2

2:251o
ŷ V=m:

From the boundary conditions, the x component of electric flux density and the y

component of electric field intensity in medium 2 will be same as in medium 1.

Hence

D2x ¼ 1 and E2y ¼ 2

2:251o
:

Therefore

~D2 ¼ x̂þ 2

2:25
ŷ C=m2:

and

~E2 ¼
~D2

1o
¼ 1

1o
x̂þ 2

2:251o
ŷ V=m:

Example 3.12

A sphere of 2 m radius is made of a perfect dielectric material (medium 1). It is

surrounded by free space (medium 2). The electric field intensities in the two

media are given as follows:

~E1 ¼ E01(r̂ cos u � û sin u) for r � 2m

Figure 3.14 Geometry used for Example 3.11.
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and

~E2 ¼ E02 r̂ 1þ 8

r3

� �
cos u� û 1� 4

r3

� �
sin u

� �
for r 	 2m:

Find the permittivity of the spherical medium.

As indicated in Figure 3.15, the r components of the electric fields are normal

while the u components are tangential at the interface. Therefore

�sin uE01 ¼ � 1�4
8

� �
sin uE02 �! E02 ¼ 2E01

and

11E01 cos u ¼ 1oE022 cos u �! 11 ¼ 21o
E02

E01

¼ 41o F=m:

3.5 LORENTZ’S FORCE EQUATION

This equation facilitates determining the force experienced by a charged particle in

presence of electromagnetic fields. According to the Lorentz equation, if an electri-

cal charge q C is subjected to an electric field, then it experiences a force that is equal

to the charge times the electric field’s intensity ~E. The direction of this force is same

as that of the electric field’s intensity. On the other hand, if the electrical change is

subjected to a magnetic field with a flux density of ~B, then the charge experiences a

force only if it is moving. In this case the direction of the force is orthogonal to both

the velocity of the charge and the direction of magnetic flux. These two results can

be expressed mathematically as follows:

~F ¼ q( ~E þ ~v� ~B): (3:5:1)

Equation (3.5.1) is called the Lorentz force equation. Thus the total force comprises

of two parts. This equation is significant in the sense that it links electrical and

Figure 3.15 Geometry used for Example 3.12.
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mechanical quantities. A number of engineering concepts and applications are

understandable via this force equation. Some of these applications are illustrated

in this section.

Motion of a Charged Particle in a Uniform Electric Field

For simplicity, we consider the motion of a charged particle only in the presence of a

uniform electric field. Therefore the second term (the one with the magnetic flux

density) in (3.5.1) is assumed to be zero. As illustrated in Figure 3.16, there are

two conducting plates on the y-z plane that have a separation of d m. A voltage V

is applied to this set of parallel plates that produces an electric field as follows:

~E ¼ x̂Ex ¼ �x̂
V

d
V=m: (3:5:2)

As illustrated, a particle with an electrical charge of q C and velocity ~vo enters this
system. Since there is an electric field in the medium, the particle experiences a force

that can be expressed using (3.5.1) as follows:

~F ¼ �x̂q
V

d
N (3:5:3)

By Newton’s law, this force will accelerate the particle only in x direction. Therefore

~F ¼ x̂m
dvx

dt
¼ �x̂

qV

d
! dvx

dt
¼ � qV

md
:

Note that this formulation is valid only when the velocity vx is very small in com-

parison to speed of light (so that the relativistic effects are negligible). Recall that

m ¼ moffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� (vx=c)

2
p ,

Figure 3.16 A charged particle moving through a uniform electric field.
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where mo is mass of the particle when it is stationary and c is speed of light in free

space.

On integrating, we get

vx ¼ �
ð
qV

md
dt ¼ � qV

md
t þ C1:

Because the initial velocity ~v(t ¼ 0) ¼ ~vo ¼ x̂vxo þ ŷvyo þ ẑvzo, the integration

constant C1 can be easily evaluated. Hence

vx ¼ � qV

md
t þ vxo: (3:5:4)

Further

vx ¼ dx

dt
¼ � qV

md
t þ vxo �! x ¼ �

ð
qV

md
t þ vxo

� �
dt ¼ � qV

md
t2 þ vxot þ C2:

Because the particle starts from (0, 0, 0), C2 = 0. Therefore

x ¼ � qV

md
t2 þ vxot: (3:5:5)

The total velocity and the location of the particle inside the parallel plates is then

written as

~v(t) ¼ x̂ � qV

md
t þ vxo

� �
þ ŷvyo þ ẑvzo (3:5:6)

and

r̂(t) ¼ x̂ � qV

md
t2 þ vxot

� �
þ ŷvyot þ ẑvzot: (3:5:7)

For vxo and vyo zero, t ¼ z=vzo. Therefore (3.5.5) gives

x ¼ � qV

md

z

vzo

� �2

: (3:5:8)

Thus the particle follows a parabolic path up to z ¼ w (between the parallel plates)

and then traces a straight line that is tangential to this parabola at the exit point.

Example 3.13

As shown in Figure 3.17, the anode accelerates an electron emitted by the cathode

in an electron gun. If its initial velocity is zero and the anode is at 182 V with

respect to the cathode, then find the electron’s final velocity.
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Since ~F ¼ q ~E, the work done in moving a particle over a distance d ~‘ is

written as

~F � d ~‘ ¼ q ~E � d ~‘:
Using Newton’s law, this expression can be rewritten as follows:

~a � d ~‘ ¼ q

m
~E � d ~‘ �! d~v

dt
� d ~‘ ¼ vdv ¼ q

m
~E � d ~‘,

where ~v is the velocity and ~a is the acceleration of the particle.

As the particle moves from point a to point b,ðvb
va

vdv ¼ q

m

ðb
a

~E � d ~‘ �! v2b � v2a
2

¼ � qVba

m
:

Note that�Ð b
a
~E � d ~‘ ¼ Vba is the potential at point b with respect to point a. If

the charge is negative (as in case of an electron), then the right-hand side of the

equation becomes positive. The positive or negative sign can be traced back to

whether the energy is supplied or released in moving the charge q. Assume

zero initial velocity so that this relation can be simplified to

vb ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2qVba

m

r
m=s:

Since the electronic charge and mass are 1.602 � 10219 C and 9.11 � 10231 kg,

vb ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2qVba

m

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 1:602� 10�19 � 182

9:11� 10�31

r
¼ 8:0006� 106 m=s:

Example 3.14

Electron generated by the electron gun described in Example 3.13 enters between

the parallel plates of Figure 3.16. There is a fluorescent screen placed at z ¼ 40

cm. For w ¼ d ¼ 1 cm and V ¼ 5 V, find the point where this electron hits the

screen. Ignore the fringing fields of the deflecting plates.

Figure 3.17 Simplified arrangement of an electron gun.
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For vxo ¼ 0, vx at z ¼ w may be found from (3.5.4) as follows:

vx t ¼ w

vzo

� �
¼ � qV

md
� w

vzo
:

Since the charged particle velocity does not change beyond this point, it traces a

straight line that make an angle u with z-axis. This angle may be found as

u ¼ tan�1 vx(z ¼ w)

vzo

� �
¼ tan�1 � qVw

mdv2zo

� �
:

For the screen to be at zs ¼ 40 cm such that w 
 zs, the x coordinate xs of the

point where the charge particle hits the screen can be approximated as

xs � zs tan u ¼ � qVwzs

mdv2zo
:

Therefore for the present case

xs ¼ 1:602� 10�19 � 5� 0:01� 0:4

9:11� 10�31 � 0:01� (8:0006� 106)2
m ¼ 0:0055m ¼ 0:55 cm:

Motion of a Charged Particle in a Uniform Magnetic Field

Consider a particle moving along the z-axis with velocity vm/s. The particle enters a
region that has a y-directed magnetic field of BT. On entering, it experiences a force

due to the magnetic field that can be found from Lorentz’s force equation as follows:

~Fo ¼ q(ẑv)� ( ŷB) ¼ �x̂qvB: (3:5:9)

Therefore the direction of the moving charge changes. Since ~F ¼ q~v� ~B has to hold

everywhere, the moving charge keeps changing its direction as illustrated in

Figure 3.18. This movement traces a circle of radius R provided that the magnetic

region is sufficiently large. The centrifugal force acting on the charged particle

balances this radial inward force due to the magnetic field. Hence

mv2

R
¼ qvB �! R ¼ mv

qB
: (3:5:10)

The cyclotron frequency (also known as the gyro frequency) of the charged

particle is defined as the number of revolution per second. Therefore

fc ¼ v

2pR
¼ qB

2pm
,
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or

vc ¼ 2p fc ¼ qB

m
: (3:5:11)

The force acting on the charged particle is always perpendicular to its velocity, and

therefore there is no work done by the magnetic field.

Magnetic fields have been used in television picture tubes. There are a number of

other applications including the separation of isotopes that have different velocities

and themasses. A typical procedure used for such separation is as follows: An ionized

compound of isotopes is accelerated through a constant voltage. If all particles have

equal electrical charge but different masses, then they acquire different velocities. As

these particles pass through a magnetic field in a perpendicular direction as shown in

Figure 3.19, their paths take on different curvatures. This phenomenon is explained

further in Example 3.16.

Example 3.15

A particle with a charge q ¼ 1.602 � 10219 C and a mass m ¼ 1.6725 � 10227

kg is at rest. It is accelerated for 2 ms by an electric field of 5 kV/m on the xz-

plane. The particle then enters a magnetic field where ~B ¼ ŷ5mT, as illustrated

in Figure 3.18. Find the velocity before it enters the magnetic field region, and the

radius of the circle that it will trace in the magnetic field.

Since

~a ¼ q

m
~E �! d~v

dt
¼ q

m
~E �!

ðv1
vo

dv ¼
ðt1
0

q

m
~E dt �! ~v1 � ~vo ¼ q

m
~Et,

Figure 3.18 Charged particle moving through a uniform magnetic field.
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for vo ¼ 0,

~v1 ¼ q

m
~Et ¼ 1:602� 10�19 � 5000� 2� 10�6

1:6725� 10�27
ẑ ¼ ẑ 9:5785� 105 m=s:

Now from (3.5.10),

R ¼ mv

qB
¼ 1:6725� 10�27 � 9:5785� 105

1:602� 10�19 � 5� 10�3
m ¼ 2m:

Example 3.16

A compound of isotopes is vaporized and then ionized. The charge on the ions is

1.602 � 10219 C. A constant 1000 V accelerates these ions before they enter a

region within a magnetic field of 5 mT in the perpendicular direction, as shown

in Figure 3.19. If two of the charge particles have masses of m1 ¼ 10225 kg and

m2 ¼ 10224 kg, determine the radii of the circles they trace.

Since 1
2
mv2 ¼ qV , both particles acquire the same energy, but they will have

different velocities. These velocities can be found as follows:

v1 ¼
ffiffiffiffiffiffiffiffiffi
2qV

m1

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 1:602� 10�19 � 1000

10�25

r
¼ 5:6604� 104 m=s

and

v2 ¼
ffiffiffiffiffiffiffiffiffi
2qV

m2

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 1:602� 10�19 � 1000

10�24

r
¼ 1:79� 104 m=s:

For B ¼ 5 mT, from (3.5.10) we find that

R1 ¼ m1v1

qB
¼ 10�25 � 5:6604� 104

1:602� 10�19 � 5� 10�3
m ¼ 7:07m

Figure 3.19 Ionized isotopes moving through a uniform magnetic field.
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and

R2 ¼ m2v2

qB
¼ 10�24 � 1:79� 104

1:602� 10�19 � 5� 10�3
m ¼ 22:35m:

Motion of a Charged Particle in Uniform Electric

and Magnetic Fields

We considered so far the cases when a charged particle moves in presence of only a

static electric field or a magnetic field. Now we consider this in presence of both

fields simultaneously. In order to keep the analysis simple, assume that ~B ¼ ŷBo T

and ~E ¼ x̂Eo V=m. Using the Lorentz force equation, we find that

~F ¼ m~a ¼ q½x̂Eo þ (x̂vx þ ŷvy þ ẑvz)� ŷ ~B� !
d~v

dt
¼ q

m
½x̂Eo þ (ẑvx þ 0� x̂vz)Bo�: (3:5:12)

Equating vector components on the two sides of this equation, we get

dvx

dt
¼ qEo

m
� qBo

m
vz, (3:5:13)

dvy

dt
¼ 0; (3:5:14)

and

dvz

dt
¼ qBovx

m
: (3:5:15)

According to (3.5.14) the particle does not accelerate in the y direction (as expected,

since we assumed that the magnetic field is directed this way). Therefore the particle

continues with the initial velocity vyo (if not zero) in this direction. Equations

(3.5.13) and (3.5.15) are solved, as follows, to determine the other two velocity

components.

Differentiating (3.5.15) with respect to time, we get

d2vz

dt2
¼ qBo

m

dvx

dt
:

Substituting (3.5.13) on its right-hand side, we have

m

qBo

d2vz

dt2
¼ qEo

m
� qBo

m
vz,
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or

d 2vz

dt2
þ qBo

m

� �2

vz ¼ q

m

� �2
BoEo: (3:5:16)

Since qBo/m ¼ vc, (3.5.16) can be rewritten as follows:

d 2vz

dt2
þ v2

cvz ¼
q

m

� �2
BoEo: (3:5:17)

Equation (3.5.17) is a nonhomogeneous linear differential equation that can be

solved using one of the standard techniques. Since its general solution has two

parts—a solution to the corresponding homogeneous equation and its particular

solution—we proceed with the homogeneous equation.

For the homogeneous equation (d 2vz/dt
2)þ vc

2vz ¼ 0, two possible solutions

can be found easily as vz1 ¼ sin(vc t) and vz2 ¼ cos(vct). Hence the general solution

of (3.5.17) may be written as

vz ¼ C1 sin(v ct)þ C2 cos(vct)þ vz p: (3:5:18)

where C1 and C2 are the integration constants, and vzp is the particular solution that

can be found through the method of variation of parameters.

The method of finding variation of the parameters proceeds as follows: We take

the Wronskian W to be

W¼ vz1 vz2
v0z1 v0z2

����
����¼ sin(vct) cos(vct)

vc cos(vct) �vc sin(vct)

����
����¼�vc½sin2 (vct)þcos2 (vct)�¼�vc:

From this the particular solution is found to be

vzp¼�sin(vct)

ð
cos(vct)(q=m)

2BoEo

�vc

dtþ cos(vct)

ð
sin(vct)(q=m)

2BoEo

�vc

dt,

or

vzp¼ sin(vct)

vc

q

m

� �2
BoEo

sin(vct)

vc

� cos(vct)

vc

q

m

� �2
BoEo �cos(vct)

vc

� �
,

or

vzp¼ q

mvc

� �2

BoEo¼Eo

Bo

:
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Therefore the general solution of (3.5.17) is found to be

vz ¼ Eo

Bo

þ C1 sin(vct) þ C2 cos(vct): (3:5:19)

Then, using (3.5.15), we get

vx ¼ m

qBo

dvz

dt
¼ m

qBo

½C1vc cos(vct)�C2vcsin(vct)�: (3:5:20)

Next, the integration constants are determined from initial velocities (the initial

conditions). For vx(t ¼ 0) ¼ vxo and vz(t ¼ 0) ¼ vzo, (3.5.19) and (3.5.20) give

C1¼ vxo

and

C2¼ vzo�Eo

Bo

:

Therefore

vz¼Eo

Bo

þvxo sin(vct)þ vzo�Eo

Bo

� �
cos(vct) (3:5:21)

and

vx¼ m

qBo

vxovc cos(vct)� vzo�Eo

Bo

� �
vc sin(vct)

� �
: (3:5:22)

Hall Effect

Consider a metallic bar of cross section w � h immersed in an x-directed magnetic

field, as shown in Figure 3.20. If there is an electron moving through the bar with a

velocity vo in the 2z direction, then it will experience the Lorentz force in the þy

direction (due to q ¼ 2e, the negative charge on an electron). Mathematically

~B ¼ x̂Bo, (3:5:23)

~v ¼ �ẑvo, (3:5:24)

~F ¼ �e(�ẑvo)� (x̂Bo) ¼ ŷevoBo: (3:5:25)
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The electric field created by this effect is given as follows:

~E ¼
~F

e
¼ ŷvoBo:

The corresponding voltage is found to be

VH ¼ �
ðb
a

~E � d ~‘ ¼ �voBowV: (3:5:26)

This is known as the Hall voltage after the scientist who first observed it. Note that

the negative sign indicates the polarity of the voltage on the front side of the bar with

respect to its back. In other words, the dc voltmeter shown in the figure will give a

negative reading.

Since there is a current I flowing through the bar as shown in the figure, there is a

stream of electrons flowing in2z direction. If the electron density in the bar is n per

m3 then the current density J is found to be nevo A/m
2. Since

I ¼ Jwh ¼ nevowh �! vo ¼ I

newh
,

(3.5.26) may be rewritten as follows:

VH ¼ � IBo

neh
V: (3:5:27)

Figure 3.20 Simplified setup to demonstrate the Hall effect.
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Note that if this current is due to the motion of positive charges (e.g., holes in a

p-type semiconductor), then (3.5.27) will result in a positive Hall voltage. In case

of intrinsic semiconductors, the Hall voltage will be zero because of equal concen-

trations of electrons and holes. Thus the Hall effect can be used to identify the type

of a semiconductor as well as its charge density. Further there are Hall probes

available commercially for sensing the unknown magnetic fields that are directly

related to the Hall voltage, as (3.5.27) indicates.

Example 3.17

As shown in Figure 3.20, there is a 5 mA current flowing through the rectangular

block of a semiconductor. It is subjected to an x-directed magnetic field of 5 T. If

its cross section is a square of 1 cm on each side and the Hall voltage is found to

be 1 mV, then find the concentration of charge (the charge density) and also the

their polarity.

Since the meter reading is positive in this case, the semiconductor block is a

p-type extrinsic semiconductor. Substituting a commonly used notation p for

concentration of holes (in place of n for the electrons) into (3.5.27) gives

p ¼ IBo

ehVH

¼ 5� 10�3 � 5

1:602� 10�19 � 10�2 � 10�3
¼ 15:6055� 1021 m�3:

dc Generators and Motors

Consider a conducting rigid rectangular loop with sides a � b and the commutator,

as shown in Figure 3.21a. The loop is exposed to an x-directed uniform magnetic

field with a flux density Bo T. The same kind of magnetic field can be generated

by a permanent magnet, as illustrated in Figure 3.21b. However, for the time

being, assume that the dc source is not connected to the commutator and the loop

Figure 3.21 Rotating rectangular loop with a commutator to demonstrate the working

principle of dc motors and generators.
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is lying on the xz-plane. In this case the magnetic flux passing through the loop is

zero (because the loop area, which is perpendicular to the magnetic flux, is zero).

If instead the loop is repositioned to lie on the yz-plane, then the magnetic flux

that passes through the loop becomes a � b � Bo Wb. In other words, if the loop

is rotated via an external force, the magnetic flux passing through the loop changes,

and the emf induced as a result of this follows Faraday’s law. We considered this

situation earlier in Example 3.3. In that case there were two slip rings on the loop

in place of the commutator. It can be easily verified that the commutator flips the

negative half cycle of the sinusoidal voltage to the positive side, making the voltage

unidirectional. The same result can be found via the Lorentz force equation as fol-

lows: A conductor is moving with a velocity ~v in a magnetic field ~B, and the Lorentz
force q~v� ~B is applied to the charge in that loop. As a result the free electrons of the

conductor move to one side leaving behind a positive charge. This charge distri-

bution creates a potential difference (and hence an electric field) that exerts a q ~E
force on the moving charges. In equilibrium, the two forces balance each other out:

~F ¼ q~v� ~B �!
~F

q
¼ ~E ¼ ~v� ~B �! Vba ¼ �

ðb
a

~E � d ~‘ ¼ �
ðb
a

(~v� ~B) � d ~‘:
In case of a closed circuit this expression can be written as follows:

V ¼ �
þ
G

(~v� ~B) � d ~‘V: (3:5:28)

This emf is called a motional or a flux-cutting electromotive force. Because the elec-

tric field intensity is directed from the positive to the negative potential, a negative

sign is needed to indicate correct polarity of this emf.

Next, before discussing the basic principle of a dc motor, we analyze further the

case of a conductor with its cross section A m2 immersed in a uniform magnetic

field. The conductor’s electronic charge carriers have density n m23 and are

moving with velocity v m/s along its length dl. The force acting on this loop can

be found by using the Lorentz force equation:

d ~F ¼ q~v� ~B ¼ �nAjd ~‘je~v� ~B ¼ �nAj~vjed~‘� ~B ¼ Id~‘� ~BN, (3:5:29)

where e is the charge of an electron and I is the current through the conductor. Note

that the velocity ~v is in the direction of length d ~‘ and that �nAj~vje ¼ I.

To determine the total magnetic force on a closed circuit of contour G we

integrate equation (3.5.29). Hence

~F ¼ I

þ
G

d ~‘� ~B ¼ �I

þ
G

~B� d ~‘ N: (3:5:30)

For a conductor length b that makes an angle uwith the magnetic field, the magnitude

of the force is

j ~Fj ¼ Ibj ~Bj sin uN:
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If there are N such conductors with the current in the same direction, then the total

magnetic force is added:

j ~Fj ¼ NIbj ~Bjsin uN: (3:5:31)

Now consider the case where the dc source is connected as shown in

Figure 3.21a but the external force that was rotating the loop is removed. This

time there is a current I that flows through the loop. It can be easily found that

the magnetic field parallel to the loop (the surface bound by the loop) produces

a torque about the axis of the loop that is perpendicular to it. The fields normal

to the surface, however, produce forces that try to move the side conductors

either inward or outward. The loop experiences no net force in any of these situ-

ations. Because the loop is lying on xz-plane, its arms BC and DA are perpendicular

to the x-directed magnetic field while CD and AB are in the same direction. There-

fore the latter two sides experience no force at all. Nevertheless, sides BC and DA

experience a force that is equal in magnitude but opposite in direction, as shown in

the figure. There is then no net force applied to the loop but the two forces create a

torque that rotates the loop counterclockwise. Once the loop is rotated, components

of the force responsible for the torque change by a factor of cos f because the

forces only normal to the loop can produce it. Therefore the torque T is found

to be

~T ¼ 2
b

2
x̂

� �
� (ŷIaBo cosf) ¼ ẑIabBo cosf ¼ ẑIabBo cos (c� 908)

¼ ẑIabBo sin c,

or

~T ¼ I ~A� ~B ¼ ~m� ~B, (3:5:32)

where A is the area bound by the loop and as usual, its direction is normal to the

surface; ~m ¼ I ~A is called the magnetic dipole moment. Note that the torque is zero

at c ¼ 08 (f ¼ 908). The commutator helps keep the torque going the same way

by changing the direction of I. Also (3.5.32) stays the same for loops of any

other shape, although it is formulated here for a rectangular loop.

Example 3.18

A conducting disk of radius b is rotating about its axis with an angular velocity of

v rad/s, as shown in Figure 3.22. It is immersed in a uniform magnetic field with

flux density ~B ¼ ẑ Bo T. A voltmeter is connected between the center and the edge

of disk through sliding contacts. This arrangement is known as a Faraday disk

generator. Find the reading of the voltmeter. Hint: ~v ¼ f̂vr and d ~‘ ¼ r̂dr.

3.5 LORENTZ’S FORCE EQUATION 115



Applying (3.5.28) gives

V ¼ �
ðb
0

f̂vy
� �

� ẑ Bo

n o � r̂dr ¼ �vBo

ðb
0

rdr ¼ �vBob
2

2
V:

Example 3.19

A circular metallic loop of radius a lies on the x-y plane, as shown in Figure 3.23.

The loop carries a current I in the f direction. If there is a magnetic field with

flux density ~B ¼ ( ŷþ ẑ)Bo T, find the resulting torque on the loop.

Figure 3.23 Circular metallic loop in the presence of a uniform magnetic field.

Figure 3.22 Circular rotating disk in the presence of a magnetic field.
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Using (3.5.29) for a small length d~‘ at f, we find that

d ~F ¼ Id~‘� ~B¼ I(f̂adf)� ( ŷþ ẑ)Bo ¼ IBo(f̂adf)� (r̂ sin fþ f̂cosfþ ẑ),

or

d ~F ¼ IBoadf(�ẑ sin fþ r̂):

Note that a conversion of unit vectors was needed here, for which we used

Table 2.3. Further the radial component of this force works outward uniformly

everywhere, whereas its z component provides a torque about the x-axis because

of a similar element at 2f, as shown in the figure. The separation d between

these two elements is found to be 2asin f. Therefore

d ~T ¼�x̂(dF)2a sin f¼�x̂(IBoa sinfdf)2a sin f¼�x̂2IBoa
2 sin2fdf

and

~T ¼�x̂2IBoa
2

ðp
0

sin2fdf¼�x̂2IBoa
2

ðp
0

1� cos2f

2
df¼�x̂I(pa2)Bo N �m:

Applying (3.5.32) gives the same result in one line, as follows:

~T ¼ I ~A� ~B¼ ~m� ~B¼ I(pa2ẑ)� ( ŷþ ẑ)Bo ¼�x̂I(pa2)Bo N �m:

Example 3.20

Suppose that the rectangular loop of Figure 3.21 is 0.2 � 0.3 m and has 50 turns.

If it carries a 10 A current and is immersed in a magnetic field of flux density
~B ¼ x̂ 0:5T. Find the resulting torque.

Since there are 50 turns in the loop, (3.5.31) and (3.5.32) give

~T ¼ NI ~A� ~B ¼ ~m� ~B ¼ (50 � 10 � 0:2 � 0:3ŷ)� (x̂ 0:5) ¼ �ẑ15N �m:

Lenz’s Law

We saw above that when a loop is rotated in the presence of a magnetic field, the emf

induced is the same as in dc generators. If there is a current flowing through the loop,

then it experiences torque, the same as in dc motors. In other words, we find that

there is a current through the loop if the generator has a load. That means that the

loop is experiencing a force as well following the working of the motor. This

force is known to be opposing the force applied to rotate the loop. In a similar

way a motor generates an emf that opposes an applied dc voltage. This phenomenon

in generators of an induced emf always countering an applied voltage, as well as the

counter-rotation generated in motors, well reminds us of the basic physical fact that
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energy is conserved. The tendency of systems to resist change is formally termed

Lenz’s law. The minus sign in Faraday’s law of induction (3.1.1) can be used to

explain this phenomenon as well.

Example 3.21

A large sheet of thickness t at 1 cm is falling with velocity v at 5 m/s through the
magnetic field of B at 5 mT, as shown in Figure 3.24. The magnetic field is per-

pendicular to the velocity and the conductivity s of the sheet is 5.8 � 107 S/m.

Find the force per unit area of the sheet that resists its motion.

If there is a charge of r C per cubic meter (i.e., the charge density of sheet

material), then the current density due to motion of charge is found to be

~J ¼ r~v ! ~v ¼
~J

r
:

Since q ¼ r � DV (where DV is small volume),

~F ¼ q( ~v� ~B) ¼ rDV(~v� ~B) ¼ rDV
~J

r
� ~B

 !
¼ DV(~J � ~B):

For ~v ¼ �ŷvo and ~B ¼ x̂Bo,

~F

q
¼ ~E ¼ ~v� ~B ¼ (�ŷvo)� (x̂Bo) ¼ ẑvoBo:

The motional emf produces a current in the sheet (known as the eddy current)

with a current density of ~J ¼ s ~E ¼ ẑsvoBo that creates a secondary force.

(Note that the primary force is along the 2y-axis and moves the sheet with

Figure 3.24 Geometry of Example 3.21.
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velocity v.) This secondary force is found to be

~F ¼ DV(~J � ~B) ¼ DV(ẑs voBo)� (x̂Bo) ¼ ŷDVs voB
2
o:

Since DV ¼ DA � t, the force per unit area is found to be

~F

DA
¼ ŷts voB

2
o N=m

2:

Since the primary force on the sheet is in the 2y direction, this force opposes

the motion, in accordance with Lenz’s law. Substituting in the given numbers, we

find that

~F

DA
¼ ŷts voB

2
o ¼ ŷ� 0:01� 5:8� 107 � 5� (5� 10�3)2 ¼ 72:5N=m2:

The idea illustrated in Example 3.21 has a number of applications. For instance, it

can be used to design a magnetic brake, as illustrated in Figure 3.25. The metal

plate can move freely if there is no magnetic field. When the plate enters the

magnetic field of a permanent magnet (in this case), eddy currents are induced.

These currents create a force that opposes the plate’s motion.

3.6 POYNTING’S VECTOR AND POWER FLOW

The Poynting vector represents power flow through a unit area. In this section we

start with the power associated with instantaneous electromagnetic fields and formu-

late Poynting’s theorem. Note that sinusoidal fields are fairly common in practice,

easy to analyze using phasors, and can be used as a basis for analyzing any other

Figure 3.25 Oscillating metal plate near a magnetic field.
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type of instantaneous field (via the Fourier series or Fourier integrals, as the case

may be). Therefore the complex Poynting’s theorem is considered and the relation

for time-average power flow is formulated.

Instantaneous Poynting Vector

Consider the cross product of an instantaneous electric field intensity with a mag-

netic field intensity in a volume V that is bound by the closed surface S. Begin by

taking the scalar product of (3.2.1) with instantaneous magnetic field intensity
~H and of (3.2.2) with instantaneous electric field intensity ~E, to get

~H �r � ~E ¼ � ~H � @ ~B
@t

(3:6:1)

and

~E �r � ~H ¼ ~E � ~Jþ ~E � @ ~D
@t

: (3:6:2)

Subtract (3.6.2) from (3.6.1), and noting by vector identity that ~B � (r � ~A)�
~A � (r � ~B) ¼ r � ( ~A� ~B), obtain

~H �r � ~E� ~E �r � ~H ¼ r � ( ~E� ~H) ¼ � ~H � @ ~B
@t

� ~E � ~J� ~E � @ ~D
@t

:

Now assume that the medium is linear and isotropic such that ~B ¼ m ~H and
~D ¼ 1 ~E, and m and 1 do not change with time. Then find

r � ( ~E� ~H) ¼ �m ~H � @ ~H

@t
� ~E � ~J� 1 ~E � @ ~E

@t
: (3:6:3)

Since

~H � @ ~H

@t
¼ 1

2

@

@t
( ~H � ~H)

and

~E � @ ~E
@t

¼ 1

2

@

@t
( ~E � ~E),

(3.6.3) may be rewritten as

r � ( ~E� ~H) ¼ � ~E � ~J� 1

2

@

@t
( ~E � ~E)� m

2

@

@t
( ~H � ~H): (3:6:4)
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This equation is in point (differential) form. The large-scale (integral) form can be

easily obtained by integrating both sides over the volume V, as shown is Figure 3.26.

Further, using the divergence theorem, write

ð
V

r � ( ~E� ~H)dv ¼ �
ð
V

~E � ~Jdv� 1

2

@

@t

ð
V

( ~E � ~E)dv� m

2

@

@t

ð
V

( ~H � ~H)dv,

or

�
þ
S

( ~E� ~H) � ds ¼ 1

2

@

@t

ð
V

( ~E � ~Dþ ~H � ~B)dvþ
ð
V

~E � ~Jdv: (3:6:5)

The first term on the right-hand side of (3.6.5) is recognized as the time rate of

change of energy stored in electric and magnetic fields, respectively, and the

second term, in conjunction with (3.3.7), is identified as the power dissipated in

this volume because of the conductivity of the medium. The left-hand side of

(3.6.5) represents power entering the surface ~E� ~H has the unit of watt per

square meter (volt per meter times ampere per meter). Thus the equation simply

says that the power entering the closed surface is equal to the rate of energy

stored in electric and magnetic fields, and the power dissipated in the medium

bound by the surface. This effect is consistent with the conservation of energy.

Equation (3.6.5) is generally referred to as Poynting’s theorem, and ~E� ~H is

regarded as the Poynting vector ~S.

Complex Poynting Vector

In case of sinusoidal signals we work with phasor fields. Multiplying (3.2.8) by a

complex conjugate of magnetic field intensity and (3.2.9) by electric field intensity,

Figure 3.26 Volume V bounded by the surface S.
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we have, respectively,

~H�( ~r ) �r � ~E( ~r ) ¼ �jv ~H�( ~r ) � ~B(~r ) (3:6:6)

and

~E( ~r ) �r � ~H�( ~r ) ¼ ~E( ~r ) � ~J�( ~r )� jv ~E( ~r ) � ~rD�( ~r ): (3:6:7)

Subtracting (3.6.7) from (3.6.6), we get

~H�( ~r ) �r � ~E( ~r )� ~E( ~r ) �r � ~H�( ~r ) ¼ �jv ~H�( ~r ) �B( ~r )� ~E( ~r ) � ~J�( ~r )
þ jv ~E( ~r ) � ~D�( ~r ):

Since ~H�( ~r ) �r � ~E( ~r )� ~E( ~r ) �r � ~H�( ~r ) ¼ r � { ~E( ~r )� ~H�( ~r )}, we can rewrite
the expression above as

r � { ~E( ~r )� ~H�( ~r)} ¼ �jv ~H�( ~r ) �B( ~r )� ~E( ~r ) � ~J�( ~r )þ jv ~E( ~r ) � ~D�( ~r ):

To find its integral form we combine this point form equation with the divergence

theorem as follows:

� 1

2

þ
S

~E( ~r )� ~H�( ~r )
n o � d~s

¼ 1

2

ð
V

~E( ~r ) � ~J�( ~r )dvþ jv

2

ð
V

{ ~H�( ~r ) �B( ~r )� ~E( ~r ) � ~D�(~r)}dv: (3:6:8)

The result is Poynting’s theorem for complex fields. As was noted earlier in

relation to (3.3.8), ~J( ~r ) can include the conduction current as well as the source

current. Because the time average power is of most interest to us, we reformulate

the expression for the time average Poynting vector in terms of phasor fields. We

proceed by assuming that

~E( ~r ) ¼ ~Ere( ~r )þ j ~Eim( ~r )

and

~H( ~r ) ¼ ~Hre( ~r )þ j ~Him( ~r ):

Therefore

~E(~r; t) ¼ Re½ ~E( ~r )e jvt� ¼ Re½{ ~Ere( ~r )þ j ~Eim( ~r )}{cos(vt)þ j sin(vt)}�
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or

~E(~r; t) ¼ Re½ ~Ere( ~r ) cos (vt)þ j ~Eim( ~r ) cos(vt)þ j ~Ere( ~r ) sin (vt)þ j2 ~Eim( ~r ) sin (vt)�

or

~E(~r; t) ¼ ~Ere( ~r ) cos(vt)� ~Eim( ~r ) sin(vt): (3:6:9)

Similarly

~H(~r; t) ¼ ~Hre( ~r ) cos(vt)� ~Him( ~r ) sin(vt): (3:6:10)

Therefore

~E(~r; t)� ~H(~r; t) ¼ ½ ~Ere( ~r ) cos(vt)� ~Eim( ~r ) sin(vt)�

� ½ ~Hre( ~r ) cos(vt)� ~Him( ~r ) sin(vt)�

or

~E(~r; t)� ~H(~r; t) ¼ ~Ere(~r)� ~Hre(~r) cos
2(vt)� ~Eim(~r)� ~Hre(~r) sin(vt) cos(vt)

� Ere(~r)� ~Him(~r) cos(vt) sin(vt)þ ~Eim(~r)� ~Him(~r) sin
2(vt)

or

~E(~r; t)� ~H(~r; t) ¼ ~Ere(~r)� ~Hre(~r) cos
2(vt)þ ~Eim(~r)� ~Him(~r) sin

2(vt)

� {~Eim(~r)� ~Hre(~r)þ ~Ere(~r)� ~Him(~r)} cos(vt) sin(vt)

or

~E(~r;t)� ~H(~r; t)¼ ~Ere(~r)� ~Hre(~r)
1þcos(2vt)

2

� �
þ ~Eim(~r)� ~Him(~r)

1�cos(2vt)

2

� �

�1

2
~Eim(~r)� ~Hre(~r)þ ~Ere(~r)� ~Him(~r)
n o

sin(2vt):

Now, multiplying both sides by dt in order to integrate the last equation over the

time period T and then dividing that by T (time averaging process), we have

k~E(~r; t)� ~H(~r;t)l¼ k~Sl¼ ~Sav¼ 1
2

~Ere(~r)� ~Hre(~r)þ ~Eim(~r)� ~Him(~r)
n o

: (3:6:11)
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If instead we take the cross product of phasor electric field intensity with complex

conjugate of magnetic field intensity, we get

~E(~r)� ~H�(~r)¼ ~Ere(~r)þ j~Eim(~r)
n o

�{ ~Hre(~r)� j ~Him(~r)}

or

~E(~r)� ~H�(~r)¼ ~Ere(~r)� ~Hre(~r)þ j~Eim(~r)� ~Hre(~r)� j~Ere(~r)� ~Him(~r)þ ~Eim(~r)� ~Him(~r)

or

~E(~r)� ~H�(~r)¼ ~Ere(~r)� ~Hre(~r)þ ~Eim(~r)� ~Him(~r)

þ j ~Eim(~r)� ~Hre(~r)� ~Ere(~r)� ~Him(~r)
n o

:

Therefore

Re ~E(~r)� ~H�(~r)
n o

¼ ~Ere(~r)� ~Hre(~r)þ ~Eim(~r)� ~Him(~r):

Combining it with (3.6.11), we have

~Sav¼ 1
2

~Ere(~r)� ~Hre(~r)þ ~Eim(~r)� ~Him(~r)
n o

¼ 1
2
Re ~E(~r)� ~H�(~r)
n o

: (3:6:12)

Example 3.22

The electromagnetic fields of an antenna at a large distance are found as follows:

~E(~r; u) ¼ û j
120p

r sin(u)
cos

p

2
cos(u)

� �
e�jkor V=m

and

~H(~r; u) ¼ f̂ j
1

r sin(u )
cos

p

2
cos(u)

� �
e�jkor A=m:

Find the power radiated by this antenna.

~Sav ¼ 1

2
Re ~E � ~H�
� �

¼ r̂
60p

r2 sin2(u )
cos2

p

2
cos (u )

� �
W=m2

and

Pradiated ¼
ðp
0

ð2p
0

~Sav � r̂r2 sin(u ) dudf ¼
ðp
0

ð2p
0

60p

sin (u)
cos2

p

2
cos (u )

� �
dudf

¼ 1443:5W ¼ 1:4435 kW:
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Example 3.23

There is a 1 A current flowing through a solid metallic wire of 5 cm in radius. If

the conductivity s of metal is 11 � 105 S/m, then verify the Poynting theorem

for a unit length of the wire.

Using cylindrical coordinates, we write the expressions for the current density

J and the electric field intensity in the wire as follows:

~J ¼ ẑ
I

A
¼ ẑ

I

p� 0:052
A=m

and

~E ¼
~J

s
¼ ẑ

I

As
¼ ẑ

I

(p� 0:052)s
V=m:

Therefore

ð
V

~E � ~Jdv¼ ð1
z¼0

ð2p
f¼0

ð0:05
r¼0

I2

(p� 0:052)2s
rdrdfdz¼ I2

(p� 0:052)2s
(p� 0:052)

¼ 11:57� 10�5W:

Following the Example 3.6, we get

~H ¼ f̂
I

2pr
A=m:

Thereforeþ
S

(~E� ~H)�d ~s¼ ð1
z¼0

ð2p
f¼0

�r̂
I2

2prs (p� 0:052)

� �
r¼0:05

� r̂(0:05dfdz)

¼� I2

(p� 0:052)s
¼�11:57� 10�5W:

This verifies the Poynting’s theorem.

Induction Heating

We found that a time-varying magnetic field induces an electromotive force in con-

ducting materials, which in turn produces eddy currents. These currents produce

localized heat in conducting material due to the ohmic loss of electrical power. It

is highly desired that the currents be minimized when designing electrical devices

(motors, generators, transformers, etc.). The loss of electrical power, however,

can be maximized when designing a furnace for melting metals. This is the working

principle of commercially available induction furnaces. In order to get a better

understanding, consider a thin metallic cylindrical shell shown in Figure 3.27. Its

radius and wall thickness are a and d, respectively.
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If a magnetic field with flux density ~B ¼ ẑBo cos(vt) T is applied to the shell of

Figure 3.27, then a f-directed voltage Ef is induced, following Faradays’ law. This

voltage, in turn, generates the eddy currents Jf ¼ sEf, as shown in the figure.

Following Lenz’s law, these currents produce a magnetic field that opposes the

applied field. The flux density of this opposing magnetic field can be found through

Ampere’s law as moJfd. Therefore the effective magnetic flux density at the shell

may be written as follows:

~B ¼ ẑ(Bo cosvt þ smodEf) T: (3:6:13)

Using Faraday’s law, we writeþ
c

~E � d ~‘ ¼ � @

@t

ð
s

~B � d~s ! Ef2pa ¼ � @

@t
½p a2(Bo cosvt þ smodEf)�:

This relation can be simplified as follows:

@Ef

@t
þ 2

smoda
Ef ¼ Bov

smod
sinvt: (3:6:14)

Instead of looking for the solution to this differential equation, we switch to the cor-

responding phasor equation (we could have used phasor fields from the beginning

of this formulation). Alternatively, we can apply the conversion rules discussed in

Section 3.2 to (3.6.14). This way we find that

jvEf þ 2

smoda
Ef ¼ �j

Bov

smod
! Ef ¼ �Bo=smod

1þ 2= jvsmoda

Ef ¼ �jvBoa=2

1þ jvsmoda=2
: (3:6:15)

Figure 3.27 Metallic cylindrical shell in the presence of a time-varying magnetic field.
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Therefore the average power dissipated per unit length in the shell is found to be

Pdiss ¼ 1

2
Re

ð
V

J�fEfdv ¼ 1

2
(2pad)sjEfj2

¼ pads
(vBoa=2)

2

1þ (vmosda=2)
2
W=m: (3:6:16)

Since the energy U required to raise the temperature of a mass m of the conducting

material by DT is m � specific heat � DT, the time t required for the magnetic field

(and the eddy currents) to do that may be found as

t ¼ m � s � DT
Pdiss

: (3:6:17)

Example 3.24

A0.5 m long cylindrical shell of copper is at the room temperature (208C), as shown
in Figure 3.27. Its radius and wall thickness are 1 cm and 0.1 cm, respectively. If the

shell is placed in a 60 Hz z-directed magnetic field with a flux density of 2 T, find

the time required to melt the shell. For copper, the electrical conductivity

s ¼ 5.813 � 107 S/m, specific heat ¼ 387 J/kg . 8C, density ¼ 8.92 � 103 kg/
m3, and melting point ¼ 1083.48C.

From (3.6.16), we can find the total power dissipated (for h ¼ 0.5 m) as follows:

Pdiss ¼ pads
(vBoa=2)

2

1þ (vmosda=2)
2
h ¼ 1:2736 � 104 W:

The total mass m of the material is found to be

m ¼ 8:92 � 103 � p b(0:01þ 0:001)2 � 0:012c � 0:5 ¼ 0:2942 kg:

Therefore (3.6.17) gives

t ¼ m � s � DT
Pdiss

¼ 0:2942 � 387 � (1083:4� 20)

1:2736 � 104 ¼ 9:51 s:

PROBLEMS

3.1. Ametal bar oscillates over a pair of conducting rails, with its position given by

x ¼ 52 sin(p t) m, as shown in Figure 3.2. The system lies on the z ¼ 0

plane, and there is a magnetic flux density of 3 mT in the z direction. Find

the current i due to the induced emf. What happens if the magnetic flux
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varies with time as follows?

~B ¼ ẑ cos(pt) mT:

3.2. A rigid rectangular loop lies on the xy-plane with its vertices at (1, 0, z), (3, 0, z),

(3, 0, z þ2), and (1, 0, z þ2). It is immersed in a magnetic field ~B(~r; t) ¼
ŷ5 cos ðpz=2Þ � 120ptð ÞmT. (a) For the loop being stationary, find the electro-

motive force induced around it in the counterclock sense. (b) How will the

induced emf change if the loop is moving with velocity ~v ¼ ẑ2m=s.

3.3. A rigid rectangular loop of 1� 4 m is situated on the yz-plane, as shown in

Figure 3.4. It is rotating symmetrically about the z-axis with an angular velocity

of 500 rad/s. If there is a magnetic field with a flux density ~B( ~r; t) ¼ x̂2 cos(tþ
0:15)mT, find the open-circuit voltage Vo induced in the loop.

3.4. A conducting fluid is flowing through a plastic tube of 2 cm in diameter, as

shown in Figure 3.5. The flow rate is 0.6 L/s along the z-axis. It is subjected

to a magnetic field with a flux density ~B(~r; t) ¼ x̂80mT. As shown in the

figure, there are two electrodes placed across the tube’s diameter along the

y-axis. Determine the voltage induced across these electrodes.

3.5. An infinitely long solid cylindricalwirewith its radius at 1.5 m is laying along the

z-axis. It carries a current with density given as ~J(r) ¼ 2(1þ 0:2r2)ẑA=m2.

Find the magnetic field intensity inside as well as outside the wire.

3.6. A coaxial line with inner and outer conductor radii of 2 cm and 5 cm, respect-

ively, carries a dc of 5 A. The outer conductor is 2 mm thick. Find the

magnetic field intensity everywhere.

3.7. A spherical volume of 5 cm radius contains an electrical charge of

r ¼ 3 C/m3. Find the electric flux density everywhere.

3.8. The electric flux density in a spherical volume is given as follows:

~D ¼ r̂2r2 C=m3:

Find the associated electrical charge density.

3.9. The current density in a region is given as follows:

~J ¼ x̂y2zþ ŷx2yþ ẑzyA=m2:

Find the current leaving the surface that bounds a unit cube in the first

quadrant.

3.10. Electric field intensity in a source-free region is given as follows:

~E ¼ ŷ2:5eþj2z V=m:

If 1 ¼ 1o and m ¼ mo in the region, find the signal frequency.
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3.11. The region x . 0 is a perfect dielectric with 1r ¼ 6.25 while the region x , 0

is a perfect dielectric with 1r ¼ 21.25. At the interface, subscript 1 denotes

field components on the þx side of the boundary while the subscript 2 on

the 2x side. If ~D1 ¼ 6x̂þ 12ŷC=m2, find ~D2, ~E1, and ~E2.

3.12. A sphere with its radius as 1 m is made of a perfect dielectric material

(medium 1). It is surrounded by a perfect dielectric medium of 1r ¼ 2.25

(medium 2). The electric field intensities in the two media are given as

follows:

~E1 ¼ E01(r̂ cos u� û sin u) for r � 1m

and

~E2 ¼ E02 r̂ 1þ 1

r 4

� �
cos u� û 1� 1

2r2

� �
sin u

� �
for r 	 1m:

Find the permittivity of the spherical medium.

3.13. As shown in Figure 3.17, an anode accelerates an electron emitted by a

cathode in an electron gun. If its initial velocity is zero and the anode is at

250 V with respect to the cathode, find its final velocity.

3.14. An electron generated by the electron gun described in Problem 3.13 enters

between the parallel plates of Figure 3.16. There is a fluorescent screen

placed at z ¼ 60 cm. For w ¼ d ¼ 1 cm and V ¼ 2 V, find the point where

this electron hits the screen. Ignore the fringing fields of the deflecting plates.

3.15. A particle with q ¼ 3.2 � 10219 C and m ¼ 3.35 � 10227 kg is at rest. It is

accelerated for 3 ms using an electric field of 2 kV/m on the x-z plane. This

particle then enters a magnetic field with ~B ¼ ŷ10mT, as shown in

Figure 3.18. Find the velocity before it enters the magnetic field and the

radius of the circle that it will trace due to the magnetic field.

3.16. A compound of isotopes is vaporized and then ionized. The charge on the ions

is 3.2 � 10219 C. A constant 2 kV accelerates these ions before they enter a

region with a magnetic field of 10 mT in the perpendicular direction, as

shown in Figure 3.19. If mass of these charge particles are m1 ¼ 10225 kg

and m2 ¼ 10224 kg, determine the radii of the circles that are traced.

3.17. As shown in Figure 3.20, there is a 10 mA current flowing through a rec-

tangular block of a semiconductor. The semiconductor is subjected to an

x-directed magnetic field of 8 T. If its cross section is a square of 5 cm on

each side and the Hall voltage is found to be 0.5 mV, find the concentration

of charge (the charge density) and also the charge particles’ polarity.

3.18. In a Faraday disk generator, the conducting disk of radius b is rotating

about its axis with an angular velocity of 150 rad/s. The disk is immersed
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in a uniform magnetic field with flux density ~B ¼ ẑ10 T. A voltmeter is

connected between the center and the edge of the disk through sliding

contacts. Find the reading of the voltmeter.

3.19. A circular metallic loop of 9 cm in radius lies on x-y plane. The loop carries a

current of 2 A in the f direction. If there is a magnetic field with flux density
~B ¼ ( ŷþ ẑ)10 T, find the resulting torque on the loop.

3.20. Suppose that the rectangular loop of Figure 3.21 is 50 cm � 40 m and has 100

turns. If the loop carries a 5 A current and is immersed in a magnetic field of

flux density ~B ¼ x̂ 0:2 T, find the resulting torque.

3.21. A large sheet of thickness t at 2 mm is falling with velocity v at 2 m/s through
a magnetic field of B at 20 mT. The magnetic field is perpendicular to the

velocity, and the conductivity s of the sheet is 5.8 � 107 S/m. Find the

force per unit area of the sheet that resists its motion.

3.22. The electromagnetic fields of an antenna at a large distance are found as follows:

~E( ~r; u) ¼ û j
400

r
cos (2 cos(u)) cosfe�jkor V=m

and

~H( ~r; u) ¼ f̂ j
1

r
cos(2 cos(u)) cosfe�jkor A=m:

Find the power radiated by this antenna.

3.23. There is a 2 A current flowing through a solid metallic wire of an 8 cm radius.

If the conductivity s of the metal is 7 � 106 S/m, verify the Poynting theorem

for a unit length of the wire.

3.24. A 20 cm long cylindrical shell of copper is at the room temperature (208C). Its
radius and wall thickness are 5 cm and 0.2 cm, respectively. If it is placed in a

60 Hz z-directed magnetic field with a flux density of 5 T, find the time required

to melt the shell. For copper, electrical conductivity s ¼ 5.813 � 107 S/m,

specific heat ¼ 387 J/kg8C, density ¼ 8.92 � 103 kg/m3, and melting

point ¼ 1083.48C.

3.25. For the following charge distribution, find the displacement flux emanating

from a cubical surface bounded by x ¼ +0.5, y ¼ +0.5, and z ¼ +0.5:

r (x; y; z) ¼ 3� x3 � y3 � z3 C=m3:

3.26. If ~B ¼ ẑ5 cos½105t � (0:5p x)� (p y)�T, find the emf induced around a closed

loop formed by connecting successively the points (0, 0, 0), (2, 0, 0), (2, 1, 0),

(0, 1, 0), and (0, 0, 0).

3.27. Find the charge densities that produce the following electric flux densities:

(a) ~D ¼ xyx̂þ yzŷþ zxẑC=m2 and (b) ~D ¼ r sin(f)f̂C=m2.
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3.28. If ~J ¼ xx̂þ yŷþ zẑA=m2, find the time rate of decrease of the charge

contained within a volume bounded by the planes x ¼ +0.5 m,

y ¼ +0.5 m, and z ¼ +0.5 m.

3.29. If an electric field ~E ¼ Eo cos(6p � 108t � xþ ky)ẑ V=m in free space, find the

value(s) of k for which the field satisfies Maxwell’s equations.

3.30. The electric flux density in a medium is given as follows:

~D ¼ xy2x̂þ y2zŷþ zxẑ C=m2:

Find the associated electric charge density rv.

3.31. The region x . 0 is a perfect dielectric of 1r ¼ 2, and the region x , 0 is a

perfect dielectric of 1r ¼ 4.2. Consider the field components at point 1 on

the þx side of the boundary, to be denoted by subscript 1, and the field com-

ponents at the adjacent point 2 on the 2x side of the boundary, to be denoted

by subscript 2. If ~D1 ¼ 4x̂þ 2ŷC=m2, find ~D2, ~E1, and ~E2.

3.32. A wire of circular cross section with its radius as 1 mm carries a conduction

current of 0.4 cos (6p . 108t) mA. If its conductivity and dielectric constant

are 2 . 105 S/m and 4.5, respectively, determine the magnitude of the displace-

ment current density.
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4
UNIFORM PLANE WAVES

This chapter begins with formulation of the Helmholtz equation and its solutions for

uniform plane waves. Propagation characteristics of uniform plane waves in linear,

isotropic, and homogeneous media are studied. Phase and group velocities of the

wave are defined along with its polarization behaviors. The chapter concludes

with sections on the wave reflections and transmission for normal as well for oblique

incidence. A number of engineering applications are included throughout the

chapter.

4.1 WAVE EQUATION AND UNIFORM PLANE WAVE

SOLUTIONS

In a source-free, linear, isotropic, and homogeneous region, Maxwell’s curl

equations (3.2.8) and (3.2.9) combined with (3.3.6) and (3.3.8) can be written in

phasor form as follows:

r � ~E ¼ �jvm ~H, (4:1:1)

r � ~H ¼ �jv1� ~E: (4:1:2)
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After taking the curl of (4.1.1) and substituting (4.1.2) on its right-hand side, we get

r � r� ~E ¼ �jvmr � ~H ¼ �jvm( jv1� ~E ) ¼ k 2 ~E, (4:1:3)

where

k ¼ v
ffiffiffiffiffiffiffiffi
m1�

p ¼ b� ja, (4:1:4)

and k, a, and b are the wave number, the attenuation constant, and the phase

constant, respectively.

Further

r � r � ~E ¼ r(r � ~E)� r2 ~E ¼ k2 ~E ! r2 ~E þ k2 ~E ¼ 0: (4:1:5)

Similarly, starting with (4.1.2), we find that

r2 ~H þ k2 ~H ¼ 0: (4:1:6)

Equations (4.1.5) and (4.1.6) are known as Helmholtz equations or as vector wave

equations for the electric field and magnetic field, respectively. As noted earlier in

Section 2.9, these equations are separable only in rectangular coordinates.

Consider an electric field that is directed along the x-axis. The field is uniform in x

and y directions (i.e., with no variations in x or y). Therefore the wave equation

(4.1.5) for this case reduces to

d 2Ex(z)

dz2
þ k 2Ex(z) ¼ 0: (4:1:7)

This is an ordinary differential equation of the second order that can be solved as

follows: Assume that Ex(z) ¼ eCz, and substitute it back into (4.1.7) to find that

(C2 þ k2)eCz ¼ 0 ! C ¼ +jk:

Then write the two solutions Ex1(z) and Ex2(z) of (4.1.7) as

Ex1(z) ¼ Eþe�jkz (4:1:8)

and

Ex2(z) ¼ E�e jkz, (4:1:9)

where Eþ and E2 are the integration constants.

The complete solution to (4.1.7) is found to be

Ex(z) ¼ Eþe�jkz þ E�e jkz ¼ Eþe�aze�jbz þ E�eaze jbz: (4:1:10)
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Similarly (4.1.6) can be solved to find the corresponding magnetic fields. Alterna-

tively, (4.1.1) can be used to find the two solutions of (4.1.6) as follows: First,

~H1 ¼ � 1

jvm
r � (x̂Ex1) ¼ � 1

jvm

x̂ ŷ ẑ
@

@x

@

@y

@

@z

Eþe�jkz 0 0

��������

�������� ¼ ŷ
k

vm

� �
Eþe�jkz,

or

~H1 ¼ ŷ
k

vm

� �
Ex1: (4:1:11)

Next,

~H2 ¼ � 1

jvm
r � (x̂Ex2) ¼ � 1

jvm

x̂ ŷ ẑ
@

@x

@

@y

@

@z

E�e jkz 0 0

��������

�������� ¼ �ŷ
k

vm

� �
E�e jkz,

or

~H2 ¼ �ŷ
k

vm

� �
Ex2: (4:1:12)

We proceed to determine the Poynting vector and hence the power flow due to these

fields. Using (4.1.8) and (4.1.11) with the assumption that m is real, we get

~Sþav ¼
1

2
Re ( ~E � ~H�) ¼ 1

2
Re (x̂Ex1)� ŷ

k

vm
Ex1

� ��� �
¼ ẑ

1

2
Re

k�

vm
jEx1j2

� �
,

or

~Sþav ¼ ẑ
1

2
Re

bþ ja

vm
jEþj2

� �
¼ ẑ

b

2vm
jEþj2: (4:1:13)

Similarly, using (4.1.9) and (4.1.12) in (3.6.12), we find that

~S�av ¼
1

2
Re( ~E � ~H�) ¼ 1

2
Re (x̂Ex2)� ŷ

k

vm
Ex2

� ��� �
¼ �ẑ

1

2
Re

k�

vm
jEx2j2

� �
,

or

~S�av ¼ �ẑ
1

2
Re

bþ ja

vm
jE�j2

� �
¼ �ẑ

b

2vm
jE�j2: (4:1:14)
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Equation (4.1.13) says that the first solution of the wave equation (the one with

e2jkz) represents the power flow in þz direction. Equation (4.1.14) says that the

second solution of the wave equation (the one with e jkz) represents the power

flow in the2z direction. In other words, the first solution represents a wave traveling

alongþz (as an outgoing wave), and the second solution represents a wave traveling

along2z (as an incoming wave). Therefore the electric field, the magnetic field, and

the direction of wave-propagation are orthogonal to each other. Since the electric

and magnetic field intensities of the wave are transverse to the direction of propa-

gation, the wave is called a transverse electromagnetic (TEM) wave. To analyze

this wave further, we need to determine the time-dependent expression of the

electric field intensity from (4.1.10), which is written as follows:

~E(~r, t) ¼ Re½x̂Exe
jvt� ¼ x̂bjEþje�az cos(vt � bzþ u1)

þ jE�jeaz cos(vt þ bzþ u2)c,
(4:1:15)

where

Eþ ¼ jEþje ju1

and

E� ¼ jE�je ju2 :

Each of the two terms on the right-hand side of (4.1.15) can be graphed as a function

of distance z, while keeping other parameters same. Figure 4.1 shows the typical

characteristics of these terms. As the figure shows, the first sinusoidal term is expo-

nentially decreasing in amplitude as z increases, and the second sinusoidal term is

exponentially increasing with z. As is easily intuited, the wave’s amplitude in a

lossy medium (a = 0) decreases as the wave moves further away from the

source. Thus the first term of (4.1.15) represents a wave that propagates away

Figure 4.1 Graphical representation of the two solutions of (4.1.7) at a given time.
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from a source, or origin. The second term represents a wave moving toward the

origin (moving in the 2z direction). The distance over which a wave traverses in

a 3608-phase change is called a wavelength. A wavelength is generally denoted

by l, as is shown in the figure. l is defined as

l ¼ 2p

b
: (4:1:16)

There is still another way to interpret the two solutions of (4.1.7). Equation

(4.1.15) can be re-arranged as follows:

~E(~r, t) ¼ x̂ jEþje�az cos v t � bz

v

� �
þ u1

� �
þ jE�jeaz cos v t þ bz

v

� �
þ u2

� �� �
:

Both terms have corrections in their time variables. The first cosine function needs

the correction term to be subtracted, whereas the second one needs it to be

added in order to get the correct time. Thus the first term represents a phenomenon

that occurred earlier, whereas the second term represents one that will be occurring

in future. This is possible only when Ex1 represents an outgoing wave and Ex2 an

incoming wave. This correction in time (and hence the phase of the wave) has

distance z in its numerator, and therefore it should be divided by the velocity in

order to obtain the correction. This velocity is known as the phase velocity, vp, of

the wave. Hence

vp ¼ v

b
¼ 2pf

2p=l
¼ fl: (4:1:17)

The ratio of electric and magnetic field intensities of a wave is known as the wave

impedance. Hence from (4.1.11), or (4.1.12), and (3.3.9) we find that

ZTEM ¼ Ex1

Hy1

¼ �Ex2

Hy

¼ vm

k
¼ vm

v
ffiffiffiffiffiffiffiffi
m1�

p ¼
ffiffiffiffiffi
m

1�

r
V ¼ h, (4:1:18)

where h is the intrinsic impedance of the medium.

For a ¼ 0 in (4.1.4), and hence s ¼ 0 in (3.3.9), k is real, and (4.1.18) reduces to

h ¼
ffiffiffiffi
m

1

r
V: (4:1:19)

Note that in the case of free space, s ¼ 0 (true for any lossless medium),

and therefore k ¼ v
ffiffiffiffiffiffi
m1

p ¼ b and a ¼ 0. Since m ¼ mo ¼ 4p . 1027 H/m
and 1 ¼ 1o ¼8.854 . 10212 F/m for free space, we find that

vp ¼ v

b
¼ v

v
ffiffiffiffiffiffi
m1

p ¼ 1ffiffiffiffiffiffi
m1

p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p � 10�7 � 8:854 � 10�12

p ¼ 2:998 � 108 m=s

¼ c � 3 � 108 m=s
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and

h ¼
ffiffiffiffi
m

1

r
¼

ffiffiffiffiffiffi
mo

1o

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p � 10�7

8:854 � 10�12

r
¼ 376:73 � 377V:

Example 4.1

The electric field intensity of a uniform plane wave propagating through a

nonmagnetic medium is given as follows:

~E(z, t) ¼ ŷ10 cos(109t � 5z) mV=m:

Find (a) the direction of wave travel, (b) the phase velocity of the wave, (c) the

wavelength, and (d) the associated magnetic field intensity.

(a) On the basis of 25z term in the argument, we conclude that the wave is

propagating in the þz direction.

(b) vp ¼ v/b ¼ 109/5 ¼ 2 . 108 m/s.

(c) l ¼ 2p/b ¼ 2p/5 ¼ 0.4p m ¼ 1.2566 m.

(d) There are a number of ways to determine its magnetic field intensity. One is

to use (3.2.1) and (3.3.6) with mr ¼ 1 (because the medium is nonmagnetic).

Perhaps the easiest way is as follows! Since the wave is propagating in the

þz direction and it has an electric field in the þy direction, with the help

of right-hand rule (note that ~S ¼ ~E� ~H) we find that its magnetic field

has to be in the 2x direction. Hence

~H(z) ¼ �x̂
Ey

ZTEM
¼ �x̂

10e�5z

h
mA=m:

Note that we are using phasor fields with wave impedances. It is essential when

the wave impedance is a complex number (and therefore the medium conduc-

tivity is not zero). From the given field we find that the attenuation constant

a is zero, and therefore the medium is lossless. Hence

ZTEM¼vm

k
¼vmo

b
¼ 109 �4p �10�7

5
¼ 80p V¼ 251:3274 V,

~H(z)¼�x̂
10e�5z

251:3274
mA=m¼�x̂ 0:0398e�5z!

H
!
(z; t)¼�x̂39:8cos(109t�5z)mA=m:

Example 4.2

The time-harmonic electric field intensity of a uniform plane wave propagating in

free space is given as follows:

~E ¼ ẑ(1� j)e�j(4px) mV=m:
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Find (a) the direction of propagation, (b) the wavelength, (c) the frequency, and

(d) the associated magnetic field intensity.

(a) Comparing the given expression with (4.1.8) and (4.1.9), we find that this

wave is propagating in the þx direction.

(b) l ¼ 2p/b ¼ 2p/4p ¼ 0.5 m.

(c) f ¼ (3 � 108)/l ¼ 6 � 108 Hz ¼ 600 MHz.

(d)

~H ¼ � 1

jvmo

r� ~E ¼ � 1

jvmo

x̂ ŷ ẑ
@

@x

@

@y

@

@z
0 0 Ez

��������

�������� ¼ �ŷ
4p

vmo

(1� j)e�j4px mA=m

or

~H ¼ �ŷ
(1� j)

376:9911
e�j4px mA=m ¼ �ŷ2:6526(1� j)e�j4px mA=m:

Alternatively, following the procedure used in previous example, we find

that its magnetic field should be in the 2y direction. Therefore

h ¼ Ez

�Hy

¼ vmo

k
¼ 2p� 6� 108 � 4p� 10�7

4p
¼ 376:9911V!

Hy ¼ � Ez

376:9911
:

Example 4.3

A safe radio frequency and microwave exposure standard for the humans is set at

5 mW/cm2. Find the corresponding electric and magnetic field intensities in air.

How these fields compare with 1.5 kW/m2 radiation arriving typically from the

sun (even though not at a single frequency)?

Since j~Savj ¼ j ~Ej2=2h ¼ 1
2
hj ~Hj2 and 5 mW/cm2 ¼ 50 W/m2,

j ~Ej ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hj~Savj

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 377 � 50

p
¼ 194:16V=m

and

j ~Hj ¼
ffiffiffiffiffiffiffiffiffiffiffi
2j~Savj
h

s
¼

ffiffiffiffiffiffiffiffiffiffiffi
2 � 50
377

r
¼ 0:5150A=m:
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Similarly for 1.5 kW/m2 we get

j ~Ej ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h j~Savj

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 377 � 1500

p
¼ 1063:48V=m

and

j ~Hj ¼
ffiffiffiffiffiffiffiffiffiffiffi
2j~Savj
h

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 1500
377

r
¼ 2:8209A=m:

Example 4.4

The electric and magnetic field intensities of a uniform plane wave are given as

follows:

~E(~r, t) ¼ x̂100 cos(109t � bz) V=m

and

~H(~r; t) ¼ ŷ0:2 cos(109t � bz) A=m:

If the wave’s phase velocity is 108 m/s, find (a) the wavelength l, (b) the intrinsic
impedance h, (c) the relative permeability mr, and (d) the dielectric constant 1r of
the medium.

Note that there is no exponential decay (or growth) term in the field amplitude.

Therefore the medium is lossless, meaning a ¼ 0. Further the wave is propagat-

ing in the þz direction. The corresponding phasor fields can be found as follows:

~E ¼ x̂100e�jbz V=m

and

~H ¼ ŷ 0:2e�jbz A=m:

(a) b ¼ v/vp ¼ 109/108 ¼ 10 rad/m! l ¼ 2p/b ¼ 2p/10 ¼ 0.2p ¼ 0.6283 m.

(b) h ¼ Ex/Hy ¼ 100/0.2 ¼ 500 V.

(c) Since h ¼ ffiffiffiffiffiffiffiffi
m=1

p
and vp ¼ 1=

ffiffiffiffiffiffi
m1

p
,

m ¼ h

v p
¼ 500

108
¼ 5 � 10�6 H=m ! mr ¼

m

mo

¼ 5 � 10�6

4p � 10�7
¼ 3:9789:

(d) 1 ¼ 1/vph ¼ 1/(108 . 500) ¼ 2 . 10211 F/m! 1r ¼ 1/1o
1r ¼ (2 . 10211)/(8.854 . 10212) ¼ 2.2589.
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Uniform Plane Wave Propagating at an Arbitrary Angle

The preceding analysis can be easily extended to the case of a wave that propagates

at an angle from a given axis. Consider a uniform plane wave propagating along r at

an angle u from the z-axis, as illustrated in Figure 4.2. This wave has an x component

of the electric field intensity, which can be written as

~E ¼ x̂Eoe
�jkrr: (4:1:20)

Since the magnetic field intensity must be orthogonal to both its electric field and the

direction of propagation, it will have a y as well as a z component.

We select a point B at r on the propagation path and drop a perpendicular on the

y-axis from that point. Further we drop a perpendicular from point C to point A in the

direction of the propagation. As indicated in this figure, the angle ABC is equal to u
as well. Assume that the Cartesian coordinates of point B are y and z. Hence

r ¼ OAþ AB ¼ OC sin(u)þ BC cos(u) ¼ y sin(u)þ z cos(u) (4:1:21)

and

krr ¼ kr sin(u)yþ kr cos(u)z ¼ kyyþ kzz, (4:1:22)

where

ky ¼ kr sin(u)

and

kz ¼ kr cos(u):

Therefore (4.1.20) can be written as follows:

~E ¼ x̂Eoe
�j(kyyþkzz): (4:1:23)

Figure 4.2 Geometry for a uniform plane wave propagating at an angle u from the z-axis.
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The phase velocities vpy and vpz of this wave with respect to the y- and z-axes can be

found as follows:

vpy ¼ v

Re(ky)
(4:1:24)

and

vpz ¼ v

Re(kz)
: (4:1:25)

Equation (4.1.23) can be generalized for a plane wave propagating in an arbitrary

direction û as follows:

~E(~r) ¼ ~Ae�j~k � ~r, (4:1:26)

where ~k ¼ kû ¼ kxx̂þ kyŷþ kzẑ and ~r ¼ xx̂þ yŷþ zẑ. The associated magnetic

field intensity is

~H(~r) ¼ û� ~E(~r)

h
: (4:1:27)

Example 4.5

The electric field intensity of a time-harmonic wave traveling in a source-free

free space is given as follows:

~E ¼ (4ŷþ 3ẑ)e�j(6y�8z) mV=m

Assuming that y and z represent their respective distances in meters, determine (a)

the angle of the propagation direction relative to the z-axis, (b) the wavelengths of

the wave along the r, y, and z directions, (c) the phase velocities along the r, y, and

z directions, (d) the energy velocities along the r, y, and z directions, (e) the

frequency of the wave, and (f) the associated magnetic field intensity.

From the given information, ky ¼ k sinu ¼ 6, kz ¼ k cos u ¼ 8. Therefore

kr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2y þ k2z

q
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

62 þ 82
p ¼ 10m�1:

(a) sin u ¼ ky=kr ¼ 0:6 ! u ¼ 36:878 An analysis of the given electric field

indicates that this angle is from the 2z direction, and therefore it should

be subtracted from 1808 to obtain the angle measured from þz. Hence

u ¼ 18082 36.878 ¼ 143.138.
(b) lr ¼ 2p=kr ¼ 2p=10 ¼ 0:6283m, ly ¼ 2p=ky ¼ 2p=6 ¼ 1:0472m, and

lz ¼ 2p=kz ¼ 2p=8 ¼ 0:7854m.

(c) Since the wave is propagating in free space, its phase velocity along r is

3 � 108 m/s. The frequency of this wave may be found as follows:

v ¼ vr � kr ¼ 3� 109 rad=s; or f ¼ 3 � 108
lr

Hz ¼ 477:47MHz;
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vpy ¼ v

ky
¼ 3 � 109

6
¼ 5� 108 m=s,

and

vpz ¼ v

kz
¼ 3 � 109

8
¼ 3:75� 108 m=s:

(d) ver ¼ 3� 108 m=s, vey ¼ ver sin u ¼ 1:8� 108 m=s, and vez ¼ ver cos u ¼
2:4� 108 m=s.

(e) The frequency is 477.47 MHz, as found in (c) above.

(f)

~H ¼ � 1

jvmo

r � ~E ¼ � 1

jvmo

x̂ ŷ ẑ
@

@x

@

@y

@

@z
0 Ey Ez

��������

��������
¼ x̂13:2629� 10�6e�j(6y�8z) A=m:

Example 4.6

Phase velocities of a plane wave propagating in a lossless medium are measured

in three different directions with unit vectors ŷ; (3x̂þ 4ŷ)=5; and (2x̂þ 2ŷ� ẑ)=3
at 4 . 108 m/s, 2 . 108 m/s, and 3 . 108 m/s, respectively. Find the direction of

propagation and phase velocity of the wave along (4ŷþ 3ẑ)=5:
For ~k ¼ kxx̂þ kyŷþ kzẑ; ky ¼ v=ð4 � 108Þm�1,

(kxx̂þ kyŷþ kzẑ) � 3x̂þ 4ŷ

5

� �
¼ v

2 � 108 !
3kx þ 4ky

5
¼ v

2 � 108 !

kx ¼ v

2 � 108 m�1

and

(kxx̂þ kyŷþ kzẑ) � 2x̂þ 2ŷ� ẑ

3

� �
¼ v

3 � 108 !
2kx þ 2ky � kz

3
¼ v

3 � 108 !

kz ¼ v

2 � 108 m�1:
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Therefore the direction of wave propagation is

û ¼
~k��~k�� ¼

1

3
(2x̂þ ŷþ 2ẑ):

Since

(kxx̂þ kyŷþ kzẑ) � 4ŷþ 3ẑ

5

� �
¼ v

4 � 108 (2x̂þ ŷþ 2ẑ) � 4ŷþ 3ẑ

5

� �
¼ v

2 � 108 :

The velocity along the vector is 2 . 108 m/s.

Phase and Group Velocities

Single-frequency (monochromatic) waves are ideal but not practically realizable.

According to the Fourier theorem, any information-carrying wave may be con-

sidered as a superposition of ideal waves of different frequencies. In other words,

a real wave will have a finite bandwidth. If this bandwidth is narrow, then the

wave may be considered as almost single frequency. For a bandwidth of 2Dv
about the central frequency v, we consider two waves as follows:

E1 ¼ A cos{(vþ Dv)t � (bþ Db)z} (4:1:28)

and

E2 ¼ A cos{(v� Dv)t � (b� Db)z}: (4:1:29)

Note that the propagation constant b also changes with v. The sum of these two

waves is found to be

E¼ E1þE2 ¼ A½cos{(vþDv)t� (bþDb)z}þ cos{(vþDv)t� (bþDb)z}�;

or

E¼ 2Acos(Dvt�Dbz)cos(vt�bz): (4:1:30)

Equation (4.1.30) is graphically displayed in Figure 4.3 for a selected set of

parameters. The amplitude shown is that of a typical modulated sinusoidal signal.

Note that the wave with frequency v has an amplitude modulated by a wave of

frequency Dv. Thus, for a narrow Dv, the wave may be considered as a single fre-

quency v. The phase of this central frequency signal is moving with a phase velocity

vp, as was defined earlier. In the case where a wave group (or wave packet) moves

with a different velocity, the velocity is called group velocity.

Thus the group velocity vg is defined as

vg ¼ Dv

Db
: (4:1:31)
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For plane waves propagating in a lossless medium, the phase constant b is line-

arly related with v if its permittivity and permeability parameters are frequency

independent. However, this relation may be nonlinear for certain other media

(e.g., media with finite loss or with a permittivity/permeability change with fre-

quency). In this case the phase velocity will vary with frequency. Figure 4.4

shows the typical characteristics of such media. Since an information-carrying

signal has a group of frequencies, each signal will travel at a different velocity.

This behavior of the medium will distort the information. Such media are called dis-

persive and the phenomenon is called dispersion.

For a dispersive medium, vp and vg are

v p
��
bo
¼ vo

bo

(4:1:32)

and

vg bo
¼ dv

db

����
����
bo

: (4:1:33)

Thus the group velocity will be equal to the phase velocity if v is linearly related

with b (i.e., v versus b is a straight line). Such materials are called nondispersive.

If vg , vp, then the medium is said to be exhibiting normal dispersion. It exhibits

anomalous dispersion instead if vg . vp.

Example 4.7

A uniform plane wave of 1 GHz is propagating through a lossless medium that

exhibits the following relation between the phase velocity vp and the wavelength l.

v p ¼ jl(1=3),

Figure 4.3 Graphical display of (4.1.30) showing the wave group.
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where j is a constant. The phase velocity of this signal is 1.5 . 108 m/s. Find the

group velocity.

v p ¼ v

b
! v ¼ bvp ¼ bjl(1=3) ¼ bj

2p

b

� �(1=3)

¼ j (2p)(1=3)b(2=3):

Therefore

vg ¼ dv

db
¼ j (2p)(1=3)

2

3
b(�1=3) ¼ 2

3
j

2p

b

� �(1=3)

¼ 2

3
jl(1=3) ¼ 2

3
vp ¼ 2

3
� 1:5 � 108 ¼ 108 m=s:

The medium exhibits normal dispersion.

Polarization

Consider the general case of a uniform plane wave that propagates along theþz axis.

It has two electric field components, one along the þx-axis and the other along the

þy-axis. The corresponding magnetic field components are along the þy-axis and

the 2x-axis, respectively. The resulting electric and magnetic fields maintain the

usual characteristics (i.e., electric and magnetic fields are orthogonal to each other

and also to the direction of propagation). The wave is assumed to be propagating

in a lossless medium (i.e., a ¼ 0). Hence the electric field intensity in time

domain can be expressed as follows:

~E(~r, t)¼ x̂Exþ ŷEy ¼ x̂Ax cos(vt�bzþ u1)þ ŷAy cos(vt�bzþ u2): (4:1:34)

Figure 4.4 The v–b diagram.
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The corresponding phasor expression is found to be

~E(~r )¼ x̂Exþ ŷEy ¼ (x̂Axþ ŷAye
j(u2�u1))e�j(bz�u1): (4:1:35)

Note that the phase of each term in (4.1.34) is changing with time t as well as with

distance z. If we track the characteristics of the total electric field on a fixed plane

(i.e., at constant z), we find that the field vector rotates with time and traces an ellipse

or a circle provided that u1 = u2. The field vector moves in a straight line when

u1 ¼ u2. The polarization of the wave is specified by the curve this field traces.

The polarization behavior can be found from the magnetic field as well because

the wave is always orthogonal to it. This information has many practical appli-

cations. For example, if a receiving antenna is not polarization matched, then the

power input to the receiver may not be maximized. This characteristic is also

used in wireless communication area to maximize usage of the available frequency

spectrum. Some more details of each example are included below.

Linear Polarization Consider the case where u1 ¼ u2 ¼ u. Equation (4.1.34) sim-

plifies to

~E(~r, t) ¼ (x̂Ax þ ŷAy) cos(vt � bzþ u): (4:1:36)

Over time this field traces a straight line on the z ¼ z1 plane, as shown in Figure 4.5a.

The angle w may be found as follows:

w ¼ tan�1 Ay

Ax

� �
: (4:1:37)

Thus the wave is horizontally polarized (along the y-axis) if Ay is zero, and it is

vertically polarized (along the x-axis) for Ax zero.

Figure 4.5 Linear and circular polarizations.
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Circular Polarization Consider now the situation where Ax ¼ Ay ¼ A and u2 ¼
(p/2) þ u1. In this case Ey leads Ex by 908, and (4.1.34) simplifies to

~E(~r, t) ¼ x̂A cos(vt � bzþ u1)� ŷA sin(vt � bzþ u1): (4:1:38)

Thus the magnitude of the total electric field intensity with time remains constant on

a given plane z ¼ zo. However, the vector rotates counterclockwise as time lapses. This

can be found by analyzing the right-hand side of (4.1.38). To begin with, assume that

the argument vt 2 bz þ u1 is zero. This gives the y component of the field zero,

whereas the x component is A. As the argument increases with time, the magnitude

of the x component decreases whereas the y component’s increases to a negative

value. Thus the vector in Figure 4.5b seems to rotate counterclockwise. Since the

wave is propagating alongþz (into the page), this wave is left-handed circularly polar-

ized (LHCP).

Similarly, for Ax ¼ Ay ¼ A, and u2 ¼ 2(p/2) þ u1, Ey lags behind Ex by 908. In
this case two components of the electric field are found to be

Ex ¼ Ax cos(vt � bzþ u1) (4:1:39)

and

Ey ¼ Ay cos vt � bzþ u1 � p

2

� �
¼ Ay sin(vt � bzþ u): (4:1:40)

Looking along the þz-axis from the origin, the electric field vector in this case is

found to rotate with time in clockwise direction. This kind of wave is called the

right-handed circularly polarized (RHCP).

Elliptical Polarization In a most general case, two components of the electric field

can be expressed as follows:

Ex

Ax

¼ cos(vt � bzþ u1) ¼ cos x (4:1:41)

and

Ey

Ay

¼ cos(vt � bzþ u2) ¼ cos(xþ u) ¼ cos x cos u� sinx sin u, (4:1:42)

where v t2 bz þ u1 ¼ x and u ¼ u22 u1. Therefore

Ey

Ay

� cos x cos u

� �2

¼ (� sin x sin u)2:

After simplifying it, we have

Ey

Ay

� �2

þ Ex

Ax

� �2

�2
Ey

Ay

� �
Ex

Ax

� �
cos u ¼ sin2 u: (4:1:43)
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As shown in Figure 4.6, equation (4.1.43) represents equation of an ellipse.

Therefore the electric field vector traces an ellipse in this case, and the wave is ellip-

tically polarized. Further it is left-handed elliptically polarized (LHEP) for Ey lead-

ing the Ex component. It is right-handed elliptically polarized (RHEP) if Ey lags

behind Ex. It can be proved that circular and linear polarizations are special cases

of the elliptical polarization.

Example 4.8

A uniform plane wave propagating in free space has the following magnetic field

intensity:

~H ¼ ( ŷe j(p=2) þ ẑ)e jbx mA=m:

Find the instantaneous electric field intensity, time-average power per unit area,

and the polarization of the wave. The signal frequency is 1 GHz.

r � ~H ¼ jv1o ~E ! ~E ¼ 1

jv1o

x̂ ŷ ẑ
@

@x

@

@y

@

@z

0 e j(bxþp=2) e jbx

��������

��������
¼ b

v1o
(�ŷe jbx þ ẑ je jbx) mV=m,

where b=v1o ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
mo=1o

p � 120p ¼ 377 V:
Therefore the instantaneous electric field intensity is found to be

~E(x, t) ¼ Re( ~Ee jvt) ¼ �377{ŷ cos(vt þ bx)þ ẑ sin(vt þ bx)},

where v ¼ 2p . 109 rad/s and b ¼ 20p/3 ¼ 20.944 rad/m.

Figure 4.6 Elliptical polarization.
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The time average power per unit area, Sav, is found to be

Sav ¼ 1
2
Re( ~E� ~H�)¼ 1

2
Re
h
377

��ŷe jbx þ ẑe j(bxþp=2Þ

� �ŷe�j(bxþp=2) þ ẑe�jbx


i � 10�6 W=m2

or

~Sav ¼�x̂377 � 10�6 W=m2 ¼�x̂0:377 mW=m2:

For (v tþ bx) ¼ 0 the electric field is along the2y-axis. As this argument increases

over time, the z component of the field increases on the negative side while the y

component starts decreasing. The resultant vector of the total electric field rotates

counterclockwise (left hand) when moving in the direction of the wave’s propa-

gation. Therefore it is a LHCP wave.

4.2 PLANE ELECTROMAGNETIC WAVES IN LOSSY MEDIA

From (4.1.4) and (3.3.9), we have

k ¼ b� ja ¼ v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1(1� j tan d)

p
! b2 � a2 � 2jba ¼ v2m1(1� j tan d):

Therefore

b2 � a2 ¼ v2m1 (4:2:1)

and

b2 þ a2 ¼ (b� ja)(b� ja)� ¼ v2m1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1þ tan2 d)

p
: (4:2:2)

From (4.2.1) and (4.2.2), we have

b ¼ v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1

2
(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2 d

p
þ 1)

r
(4:2:3)

and

a ¼ v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1

2
(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2 d

p
� 1)

r
: (4:2:4)
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Low-Loss Dielectric Media

For a low-loss dielectric medium, tan d � d, and therefore (4.2.3) and (4.2.4)

simplify to

b � v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1

2
1þ d2

2
þ 1

� �s
¼ v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1 1þ d2

4

� �s
� v

ffiffiffiffiffiffi
m1

p
1þ d2

8

� �

¼ v
ffiffiffiffiffiffi
m1

p
1þ 1

8

s

v1

� �2� �
(4:2:5)

and

a � v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1

2
1þ d2

2
� 1

� �s
¼ vd

2

ffiffiffiffiffiffi
m1

p ¼ v

2
� s

v1

ffiffiffiffiffiffi
m1

p ¼ s

2

ffiffiffiffi
m

1

r
: (4:2:6)

The penetration depth of the wave is defined as the distance dp over which the

amplitude of electric field decays to 1/e of its value at z ¼ 0. Hence

d p ¼ 1

a
: (4:2:7)

Conducting Media

For good conductors, s �v1 and tan d �1. Therefore

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2 d

p
� tan d:

In this case (4.2.3) and (4.2.4) can be approximated as follows:

b � v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1

2
(tan dþ 1)

r
� v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1

2
tan d

r
¼

ffiffiffiffiffiffiffiffiffiffi
vms

2

r
rad=m (4:2:8)

and

a � v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1

2
(tan d� 1)

r
� v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1

2
tan d

r
¼

ffiffiffiffiffiffiffiffiffiffi
vms

2

r
np=m: (4:2:9)

Note that a ¼ b in this case. Therefore

h ¼ vm

b� ja
� vm

1� j
�
ffiffiffiffiffiffiffiffiffiffi
2

vms

s
¼

ffiffiffiffiffiffiffi
vm

2s

r
(1þ j) V: (4:2:10)
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When the medium is highly conductive, the depth of penetration is called the skin

depth, d. It is found to be

d ¼
ffiffiffiffiffiffiffiffiffiffi
2

vms

s
: (4:2:11)

Example 4.9

A uniform plane wave of 1 MHz propagates in a certain material. Its phase

decreases by 908 over a distance of 33 m and the fields are attenuated by a

factor of e21 for every 120 m. Further the ratio of its electric and magnetic

field intensities at a point in the medium is 163.39 V. Find the wave number k,

the intrinsic impedance h of the medium, the conductivity s, and the permittivity

1 of the medium, and the permeability m of the medium.

Since the phase of the wave decreases by 908 over a distance of 33 m, its

wavelength is 132 m. Also the depth of penetration is given at 120 m. Therefore

a ¼ 1

120
¼ 8:3333 � 10�3 Np=m

and

b ¼ 2p

l
¼ 2p

132
¼ 0:0476 rad=m:

Hence

k ¼ b� ja ¼ 0:0476� j8:3333 � 10�3 m�1:

Since

k ¼ b� ja ¼ v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1 1� j

s

v1

� �r

and

h ¼ vm

k
¼ vm

b� ja
¼ mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m1½1� jðs=v1Þ�p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m

1½1� jðs=v1Þ�
r

,

k

h
¼ k2

vm
¼ v2m1½1� jðs=v1Þ�

vm
¼ v1� js:

The magnitude of h is given at 163.39. Its phase angle f is found to be

f ¼ tan�1 a

b

� �
¼ tan�1 8:3333 � 10�3

0:0476

� �
¼ 0:1733 rad:
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Therefore, h ¼ 163.39 V /0.1733 rad

s ¼ �Im
k

h

� �
¼ 1:0048 � 10�4 S=m,

1r ¼ 1

1o
¼ 1

v1o
Re

k

h

� �
¼ 5:0002,

and

mr ¼
kh

vmo

¼ 1:

Therefore the wave is traveling through a nonmagnetic material.

Example 4.10

Two submerged submarines are using a 10 kHz plane electromagnetic wave for

their communication. The magnitude of the electric field at the transmitter is

100 mV/m, whereas the receiver requires at least 1 mV/m (peak value) for a

reliable communication. Assuming that the conductivity and the dielectric con-

stant of the seawater are 4 S/m and 81, respectively, find (a) the wavelength,

(b) the attenuation constant, (c) the phase velocity, (d) the skin depth of the

wave, and (e) the maximum range over which a reliable communication is

possible.

Since the seawater is nonmagnetic, m ¼ mo,

k ¼ v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mo1o1

�p ¼ v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mo1o 1r � j

s

v1o

� �s
:

Further

s

v1o
¼ 4

2p� 104 � 8:854� 10�12
¼ 7190:2 � 81:

Therefore

k� v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mo1o �j

s

v1o

� �s
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
vmos

2

r
� j

ffiffiffiffiffiffiffiffiffiffiffiffi
vmos

2

r
¼ 0:3974� j0:3974 m�1 ¼ b� ja:

Hence

(a) l ¼ 2p

b
¼ 2p

0:3974
¼ 15:8107m:

(b) a ¼ 0:3974Np=m:
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(c)
v p ¼ v

b
¼ 2p� 104

0:3974
¼ 15:8107� 104 m=s:

(d) d ¼ 1

a
¼ 1

0:3974
¼ 2:5163m:

(e) Since
�� ~E(r)�� ¼ 100 � e�0:3974�r mV=m, the distance d over which the magni-

tude reduces to 1 mV/m is found to be

1 ¼ 100 � e�0:3974�d ! d ¼ � ln(0:01)

0:3974
¼ 11:59m:

Example 4.11

An airplane wants to communicate with a submerged submarine using a 10 MHz

transmitter. Transmitted uniform plane wave travels downward in the þz direc-

tion and produces a magnetic field at the ocean surface (z ¼ 0), which is given as

follows:

~H(z ¼ 0, t) ¼ ŷ300 cos(2p � 107t) mA=m:

(a) Express the magnetic field intensity in the ocean. (b) If the submarine requires

at least 3 mA/m (peak value) for a reliable communication, how deep it can go

without losing the link? (c) How deep the submarine can go if the transmitter

frequency is switched to 10 kHz? Assume that the ocean water is nonmagnetic

with 1r ¼ 72, and s ¼ 4 S/m.

Since

k ¼ v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mo1o 1r � j

s

v1o

� �s

¼ 2p � 107
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p � 10�7 � 8:854 � 10�12 72� j

4

2p � 107 � 8:854 � 10�12

� �s
,

or

k ¼ 12:6294� j12:5036m�1 ¼ b� ja:

(a) ~H(z, t) ¼ ŷ300e�12:5036 � z cos(2p � 107t � 12:6294 � z) mA=m:

(b) Assume that the peak magnetic field reduces to 3 mA/m at z ¼ d. Therefore

300e�12:5036�d ¼ 3 ! d ¼ � ln(0:01)

12:5036
¼ 0:3683m:
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(c) For f ¼ 10 kHz,

k ¼ 2p � 104
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p � 10�7 � 8:854 � 10�12 72� j

4

2p � 104 � 8:854 � 10�12

� �s

¼ 0:3974� j0:3974m�1:

Therefore the attenuation rate a is smaller at this frequency and

300e�0:3974�d ¼ 3 ! d ¼ � ln(0:01)

0:3974
¼ 11:5888m:

Example 4.12

An electronic circuit is designed to operate at 1 MHz. To minimize the electro-

magnetic interference with nearby systems, it is desirable to enclose the circuit

in an aluminum box. If the radiation set by the circuit produces an electric

field of 100 mV/m on the inner surface of the box and no more than 1 mV/m
is permissible outside, then determine the minimum thickness of aluminum

required. Can this shield your circuit from electromagnetic radiations above

1 kHz? Determine the minimum aluminum thickness required to shield the cir-

cuit. Assume s ¼ 3.54 . 107 S/m.

For aluminum, m ¼ mo and 1 ¼ 1o. Therefore at 1 MHz,

k ¼ v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mo1o 1r � j

s

v1o

� �s

¼ 2p � 107
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p � 10�7 � 8:854 � 10�12 1� j

3:54 � 107
2p � 107 � 8:854 � 10�12

� �s

¼ 1:1822 � 104(1� j) ¼ b� ja:

If the required thickness of the aluminum sheet is t, then

100e�1:1822�104�t ¼ 1 ! t ¼ � ln(0:01)

1:1822 � 104 ¼ 3:9 � 10�4 m:

At 1 kHz,

k ¼ v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mo1o 1r � j

s

v1o

� �s

¼ 2p � 103
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p � 10�7 � 8:854 � 10�12 1� j

3:54 � 107
2p � 103 � 8:854 � 10�12

� �s

¼ 373:8363ð1� jÞ ¼ b� ja:
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Now the attenuation constant is smaller than its earlier value. Therefore it will

require a thicker sheet, which can be determined as follows:

100e�373:8363�t ¼ 1 ! t ¼ � lnð0:01Þ
373:8363

¼ 0:0123m:

Thus 0.4 mm thick sheet is good at 1 MHz but has problem at 1 kHz. A much

thicker sheet of about 1.2 cm is needed to shield radiation above 1 kHz.

4.3 UNIFORM PLANE WAVE INCIDENT NORMALLY

ON AN INTERFACE

Figure 4.7 shows a uniform plane electromagnetic wave that is propagating

alongþ z in medium 1. Its electric field ~Ei is along the y-axis and the magnetic

field ~Hi is in the 2x direction. The wave strikes normally a plane interface of

medium 2 with medium 1. As shown in the figure, the conductivity, permittivity,

and permeability of medium 1 are s1, 11, and m1, respectively. The corresponding

parameters for medium 2 are s2, 12, and m2. Since the wave experiences a change

in electrical characteristics in its path, a part of incident signal is reflected back as

an echo signal while the rest of the power is transmitted into medium 2. Thus the

medium 1 has two waves propagating in opposite directions, whereas there is only

one forward-moving wave in medium 2.

The time-harmonic electromagnetic fields associated with the incident wave can

be expressed as follows:

~Ei ¼ ŷEoe
�jk1z (4:3:1)

Figure 4.7 Normal incident uniform plane electromagnetic wave.
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and

~Hi ¼ �x̂Hoe
�jk1z ¼ �x̂

Eo

h1

e�jk1z, (4:3:2)

where Eo and Ho are arbitrary constants, k1 is the complex wave number, and h1 is

the complex intrinsic impedance of medium 1. If the medium 1 is a perfect dielec-

tric, then these parameters will be real.

Similarly the electromagnetic fields associated with the reflected wave ( ~Er and
~Hr) as well as the transmitted wave ( ~Et and ~Ht) can be expressed as follows:

~Er ¼ ŷREoe
þjk1z, (4:3:3)

~Hr ¼ x̂RHoe
�jk1z ¼ x̂R

Eo

h1

eþjk1z, (4:3:4)

~Et ¼ ŷTEoe
�jk2z, (4:3:5)

and

~Ht ¼ �x̂THoe
�jk2z ¼ �x̂T

Eo

h2

e�jk2z, (4:3:6)

where R and T are reflection and transmission coefficients, respectively, k2 is the

wave number in medium 2, and h2 is intrinsic impedance of medium 2. These par-

ameters are complex because s2 = 0. Note that the ratio of reflected-to-incident

electric field is þR. On the other hand, the corresponding ratio of the magnetic

field intensity is 2R. This happens everywhere because of their fundamental

relation. Similar behavior may be observed in case of transmission lines where

we deal with voltage and current reflection coefficients.

Now enforcing the boundary conditions (tangential components of the fields are

continuous across the boundary) at z ¼ 0, we get

Eo þ REo ¼ TEo ! 1þ R ¼ T (4:3:7)

and

�Eo

h1

þ R
Eo

h1

¼ �T
Eo

h2

! 1� R ¼ h1

h2

T: (4:3:8)

Equations (4.3.7) and (4.3.8) can be solved for R and T as follows:

T ¼ 2h2

h1 þ h2

(4:3:9)

and

R ¼ h2 � h1

h1 þ h2

: (4:3:10)
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Further the total electric field at any point in medium 1 is found to be

~E1 ¼ ŷEoe
�jk1z þ ŷREoe

þjk1z:

Therefore the magnitude of the total electric field intensity in medium 1 is

j ~E1j2 ¼ ~E1 � ~E�
1 ¼ jEoj2{e�2a1z þ r2e2a1z þ 2r cos(2b1zþ u)}, (4:3:11)

where

R ¼ re ju, (4:3:12)

k1 ¼ b1 � ja1: (4:3:13)

As defined earlier, b1 is the phase constant in rad/s and a1 is the attenuation constant

in Np/m for medium 1. If medium 1 is lossless, then (4.3.11) simplifies to

j ~E1j2 ¼ jEoj2{1þ r2 þ 2r cos(2b1zþ u)}: (4:3:14)

This relation indicates that the magnitude of total electric field in medium 1 varies

with z. Its maximum and minimum values are found as

j ~E1jmax ¼ jEoj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
{1þ r2 þ 2r}

p
¼ jEoj{1þ r} (4:3:15)

and

j ~E1jmin ¼ jEoj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
{1þ r2 � 2r}

p
¼ jEoj{1� r}: (4:3:16)

At the maximum magnitude,

cos(2b1zþ u) ¼ 1 ! 2b1zþ u ¼ 2np, n ¼ 0, 1, 2 . . . : (4:3:17)

At the minimum magnitude,

cos(2b1zþ u) ¼ �1 ! 2b1zþ u ¼ (2mþ 1)p, m ¼ 0, 1, 2 . . . : (4:3:18)

Equation (4.3.17) indicates that the magnitude maxima are separated by l/2.
Similar results are found from (4.3.18) for minima as well. Further maxima and

minima are l/4 apart and alternate. The maximum occurs where the incident and

reflected waves are in phase, and the two wave types are out of phase at the mini-

mum. The standing wave ratio (SWR) is defined as the ratio of the maximum to

the minimum of the total electric field. Hence

SWR ¼ j ~E1jmax

j ~E1jmax

¼ 1þ r

1� r
: (4:3:19)
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These characteristics are similar to those of a wave propagating on a trans-

mission line.

Example 4.13

A uniform plane electromagnetic wave propagating in free space impinges nor-

mally on a lossless nonmagnetic medium of 1r ¼ 2.25 in the z 	 0 region. The

electric field intensity of the incident wave is given as follows:

~Ei(z, t) ¼ ŷ4:8 cos(109t � koz) V=m:

Find ko, k2, R, T, SWR, and the average power transmitted into the medium.

Wave numbers and the intrinsic impedance of the wave in the two media are

found as follows:

ko ¼ v
ffiffiffiffiffiffiffiffiffiffi
mo1o

p ¼ 109
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p� 10�7 � 8:854� 10�12

p
¼ 3:3356 rad=m,

k2 ¼ v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mo1o1r

p ¼ ko
ffiffiffiffiffiffiffiffiffi
2:25

p
¼ 5:0034 rad=m,

h1 ¼
ffiffiffiffiffiffi
mo

1o

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p� 10�7

8:854� 10�12

r
¼ 376:7343 V,

and

h2 ¼
ffiffiffiffiffiffiffiffiffi
mo

1o1r

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p� 10�7

8:854� 10�12 � 2:25

r
¼ 251:1562V:

From (4.3.9) and (4.3.10) we get

R ¼ h2 � h1

h1 þ h2

� �0:2

and

T ¼ 2h2

h1 þ h2

� 0:8:

The SWR in medium 1 is found from (4.3.19) as follows:

VSWR ¼ 1þ r

1� r
¼ 1þ 0:2

1� 0:2
¼ 1:5:

The electric field intensity in medium 2 is

~Et(z; t) ¼ ŷ 3:84 cos(109t � 5:0034z) V=m:
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Therefore the time average power transmitted into medium 2 is found as follows:

Pav ¼ 1

2
Re( ~E � ~H�) ¼ 1

2

j ~E tj2
h2

¼ 1

2

3:842

251:1562
¼ 0:0294W=m2:

Example 4.14

A uniform plane wave of 500 MHz propagating in air is incident normally on the

interface with a semi-infinite dielectric slab. If it shows a SWR of 1.8 and the

electric field has a minimum right at the interface, find the intrinsic impedance

and the dielectric constant of this slab. Further find the average power density

of the wave in the slab if the incident wave has a peak electric field of 100 V/m.

From (4.3.19),

SWR ¼ 1þ r

1� r
! r ¼ SWR� 1

SWRþ 1
¼ 1:8� 1

1:8þ 1
¼ 0:2857:

Since minimum occurs right at the interface (z ¼ 0), u ¼ p.
For free space, h1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
mo=1o

p ¼ 376:7343V. From (4.3.10),

R ¼ 0:2857e jp ¼ h2 � h1

h1 þ h2

! h2 ¼
1þ (�0:2857)

1� ð�0:2857Þ � 376:7343 ¼ 209:3033V:

Since h2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mo=1o1r

p ¼ h1=
ffiffiffiffiffi
1r

p
,

1r ¼ h1

h2

� �2

¼ 3:2398:

Further

1þ R ¼ T ! T ¼ 1� 0:2857 ¼ 0:7143:

The power density St in the slab is found to be

St ¼ 1

2

(TEo)
2

h2

¼ 1

2

(0:7143 � 100)2
209:3033

¼ 12:1886 W=m2:

The power densities associated with incident and reflected waves are

Sin ¼ 1

2

(Eo)
2

h1

¼ 1

2

(100)2

376:7343
¼ 13:272 W=m2

and

Sr ¼ 1

2

jREoj2
h1

¼ 1

2

(0:2857 � 100)2
376:7343

¼ 1:0833 W=m2:

As expected, St ¼ Sin � Sr.
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Example 4.15

A uniform plane wave of 100 MHz propagating in air is incident normally on

the interface with a semi-infinite medium. If it shows a reflection coefficient of

0.25/158, find the intrinsic impedance of the material and the standing wave

ratio in air. Further find the total electric field at the boundary if the incident

wave has a peak electric field of 100 V/m.

For air h1 ¼ 376.7343 V,

R ¼ h2 � h1

h1 þ h2

!h2 ¼
1þ R

1� R
�h1 ¼ 615:2107e j0:1372V ¼ 609:4319þ j84:1241V

and

SWR ¼ 1þ r

1� r
¼ 1þ 0:25

1� 0:25
¼ 1:6667:

The total electric field jE1j at the boundary is found as

jE1j ¼ Eo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2 þ 2r cosu

p
¼ 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:252 þ 2 � 0:25 � cos(158)

p
¼ 124:32 V:

Since the tangential electric field is continuous across the boundary, the trans-

mitted field at the boundary should give same results as well. This can be verified

as follows:

jE1j ¼ 100 � jTj ¼ 100 � j1þ Rj ¼ 100 � j1:2415þ j0:0647j ¼ 124:32V:

Example 4.16

An airplane communicates with a submerged submarine using a uniform plane

wave of 100 MHz. The wave propagating along þz (downward) in air is incident

normally on the seawater (interface at z ¼ 0) with a power density of 20 W/m2.

Find the electric and magnetic fields in the seawater. If the submarine requires at

least 1 mW/m2 for a reliable communication, find the depth up to which it can go

without losing the signal. Assume 1r ¼ 80 and s ¼ 4.5 S/m for the seawater.

For air, h1 ¼ 376.7343 V. For seawater,

1� ¼ 1o 1r � j
s

v1o

� �
¼ 1o 80� j

4:5

2p � 108 � 8:854 � 10�12

� �

¼ 1o(80� j808:8968) F=m:

Therefore

h2 ¼
ffiffiffiffiffiffi
mo

1�

r
¼ 9:7927þ j8:8719V ¼ 13:2139e j0:7361 V:
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Using the relation (4.1.13) for the power density, we find that

Sin ¼ 1

2

(Eo)
2

h1

¼ 1

2
h1(Ho)

2 ! Eo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sinh1

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 20 � 376:7343

p
¼ 122:7574 V=m

and

Ho ¼ 0:3258 A=m:

The reflection and transmission coefficients are found to be

R ¼ h2 � h1

h2 þ h1

¼ 0:9494e j3:0945

and

T ¼ 1þ R ¼ 0:0684e j0:7132:

Since jEoTj ¼ 8.391 V/m, the electric and magnetic fields in seawater can be

expressed as follows:

~E ¼ x̂8:391e�j(k2z�0:7132) V=m

and

~H ¼ ŷ0:635e�j(k2zþ0:0229) A=m:

Therefore the average power density in seawater can be written as follows:

Savg ¼ 1
2
Re ~E � ~H�
h i

¼ 1
2
Re 8:391 � 0:635 � e j(0:7132þ0:0229) � e�2a2z
	 


¼ 1:9744e�2a2z W=m2:

Assume that 1 mW/m2 is available at a depth of d. Therefore

10�6 ¼ 1:9744e�2a2d ! d ¼ 6

2 � 40:1185 ln(10)� ln(1:9744)½ � ¼ 0:1213 m:

Note that the skin depth for medium 2 (seawater) is only 0.0249 m.

Example 4.17

A uniform plane wave of 5 MHz is incident normally on a thick copper sheet. If

its incident electric field is 1000 V/m, find the electric and magnetic fields inside

the sheet. What is the wave-velocity inside the sheet? What happens if the signal

frequency decreases to 5 kHz? For copper, s ¼ 5.813 . 107 S/m.
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For air, h1 ¼ 376.7343 V, whereas h2 and k2 for copper are found to be

h2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mo

1o � ð js=vÞ
r

¼ 8:24 � 10�4e j0:7854 ¼ 5:8273 � 10�4(1þ j)V

and

k2 ¼ v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mo 1o � j

s

v

� �r
¼ 3:3874 � 104(1� j) m�1:

Therefore the reflection and transmission coefficient at the air–copper

interface are

R ¼ h2 � h1

h2 þ h1

¼ 1e j3:1416

and

T ¼ 1þ R ¼ 4:375 � 10�6e j0:7854:

The magnitude of the transmitted electric field is found to be 1000jTj ¼
4.375 . 1023 V/m, and the corresponding magnetic field is (1000 . T)/
h2 ¼ 5.3088 . e2j1.5468 � 1026

A/m. The skin depth ¼ 2.9521 . 1026 m, and the

phase velocity in copper vp ¼ v/b ¼ 927.4379 m/s.
When frequency changes to 5 kHz, h2 and k2 change as follows:

h2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mo

1o � ðs=vÞ
r

¼ 2:606 � 10�5e j0:7854 ¼ 1:8427 � 10�5(1þ j)V

and

k2 ¼ v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mo 1o � j

s

v

� �r
¼ 1:0712 � 103(1� j) m�1:

Therefore the new reflection and transmission coefficients are

R ¼ h2 � h1

h2 þ h1

¼ 1e j3:1416

and

T ¼ 1þ R ¼ 1:3835 � 10�7e j0:7854:

Now the magnitudes of the electric and magnetic fields are found to be

1000jTj ¼ 1.3835 . 1024 V/m and (1000 .T )/h2 ¼ 5.3088 . e2j4.8914 � 1028

A/m,

respectively. The skin depth is increased to 9.3354 . 1024 m, whereas the phase

velocity is reduced to vp ¼ v/b ¼ 29.3282 m/s.

Example 4.18

A wireless communication network is allowed to use a 1 V/m radiation

at 2.45 GHz. Find the magnetic field intensity in humans working there if the
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wave is incident normally and also the depth over which fields decrease by 1/e.
Assume that the human body is a semi-infinite plane medium with 1r ¼ 47 and

s ¼ 2.21 S/m and that the radiation is in the form of a uniform plane wave.

How do these results compare if the radiation frequency decreases to 40 MHz,

with 1r ¼ 97 and s ¼ 0.7 S/m at this frequency?

For f ¼ 2.45 GHz, 1r ¼ 47, and s ¼ 2.21 S/m,

h2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mo

1o1r � j(s=v)

r
¼ 53:429e j0:1661 ¼ 52:6936þ j8:834 V

and

k2 ¼ v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mo 1o1r � j

s

v

� �r
¼ 357:0755� j59:8629m�1:

Therefore the reflection and transmission coefficients are found to be

R ¼ h2 � h1

h2 þ h1

¼ 0:7547e j3:0938

and

T ¼ 1þ R ¼ 0:2488e j0:1455:

The magnitude of transmitted magnetic field is found to be T/h2 ¼
4.6564 . 1023 . e2j0.0206 A/m. The skin depth ¼ 0.0167 m, and the phase velocity

vp ¼ v/b ¼ 4.3111 . 107 m/s.
When the frequency changes to 40 MHz, 1r ¼ 97 and s ¼ 0.7 S/m, h2 and k2

change to

h2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mo

1o1r � j(s=v)

r
¼ 20:7641e j0:6358 ¼ 16:7062þ j12:331V

and

k2 ¼ v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mo 1o1r � j

s

v

� �r
¼ 12:2377� j9:0327m�1:

Therefore the new reflection and transmission coefficients are found to be

R ¼ h2 � h1

h2 þ h1

¼ 0:9152e j3:076

and

T ¼ 1þ R ¼ 0:1055e j0:6045:
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Hence the magnitude of the transmitted magnetic field is found as follows:

T

h2

¼ 5:0809 � 10�3 � e�j0:0313 A=m:

The skin depth at this frequency is found to be 0.1107 m, and the phase velocity is

v p ¼ v

b
¼ 2:0537 � 107 m=s:

Reflection with Multiple Interfaces

Consider a medium of thickness d sandwiched between two semi-infinite media, as

illustrated in Figure 4.8. A part of the wave incident from medium 1 is transmitted

into medium 2 and the remaining power is reflected back from the interface. The

wave transmitted into medium 2 splits again into two parts at the interface. One

of these parts is reflected back into medium 2, and the other propagates forward

into medium 3.

On the basis of the preceding analysis, the total electric and magnetic fields in

medium 2 can be expressed as follows:

~E(z) ¼ ŷEo(e
�jk2z þ R2e

jk2z) ¼ ŷEy(z) (4:3:20)

and

~H(z) ¼ �x̂
Eo

h2

(e�jk2z � R2e
jk2z) ¼ �x̂Hx(z), (4:3:21)

Figure 4.8 Geometry of three media with interfaces at z ¼ 0 and z ¼ 2d.

164 UNIFORM PLANE WAVES



where R2 is the reflection coefficient at the interface between medium 2 and

medium 3. Therefore the wave impedance Z(z) in medium 2 is found to be

Z(z) ¼ Ey(z)

�Hx(z)
¼ h2

e�jk2z þ R2e
jk2z

e�jk2z � R2e jk2z
¼ h2

e�jk2z þ ½(h3 � h2)=(h3 þ h2)�e jk2z

e�jk2z � ½(h3 � h2)=(h3 þ h2)�e jk2z
:

This relation can be simplified to

Z(z) ¼ h2

h3 � jh2 tan(k2z)

h2 � jh3 tan(k2z)
: (4:3:22)

The wave impedance at z ¼ 2d in medium 2 is

Z(z ¼ �d) ¼ h2

h3 þ jh2 tan(k2d)

h2 þ jh3 tan(k2d)
: (4:3:23)

Note that (4.3.23) represents the wave impedance on the medium 2 side of the inter-

face. If this is equal to the wave impedance h1 of medium 1, then there will be no

reflected wave in medium 1. In other words, medium 1 will be the impedance

matched at the interface. For the lossless medium, k2 ¼ b2, and (4.3.23) may be

written as follows:

Z(z ¼ �d) ¼ h2

h3 þ jh2 tan(b2d)

h2 þ jh3 tan(b2d)
: (4:3:24)

In fact there are two cases of practical interests that can be studied at this point.

Consider the case of tan(b2d) ¼ 0 that occurs when b2d ¼ np ! d ¼ nl/2,
n ¼ 0, 1, 2. . . . Then (4.3.24) reduces to

Z(z ¼ �d) ¼ h3: (4:3:25)

This says that there will be no reflection in medium 1 if h1 ¼ h3. This relation is

useful to observe in designing protective enclosures (known as the radome) for out-

door antennas. There are many other possible design applications of this case.

Now consider the case where medium 1 is different from medium 3 (i.e., h1=h3).

If d ¼ (2nþ 1)(l/4), n ¼ 0, 1, 2, . . . , then tan(b2d) ¼ 1, and (4.3.24) reduces to

Z(z ¼ �d) ¼ h2
2

h3

:

Since

R1 ¼ Z(�d)� h1

Z(�d)þ h1

,
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medium 1 will be matched (no reflection in medium 1) if

h1 ¼
h2
2

h3

! h2 ¼
ffiffiffiffiffiffiffiffiffiffi
h1h3

p
: (4:3:26)

This case is known as the quarter-wave plate matching technique.

Example 4.19

An LED light source operating at 0.9 mm is generating uniform plane waves

that are incident at a semi-infinite glass (1r ¼ 4.82). Determine its reflection

coefficient. Suggest a mechanism to reduce this reflection to zero.

The reflection coefficient is found as follows:

R1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mo=1o1r

p � ffiffiffiffiffiffiffiffiffiffiffiffi
mo=1o

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mo=1o1r

p þ ffiffiffiffiffiffiffiffiffiffiffiffi
mo=1o

p ¼ � 1:1954

3:1954
¼ �0:3741:

We need a quarter-wave plate to reduce this reflection to zero. Therefore

h2 ¼
ffiffiffiffiffiffiffiffiffiffi
h1h3

p !
ffiffiffiffiffiffiffiffiffiffiffi
mo

1o1r 2

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mo

1o1r1

r
�
ffiffiffiffiffiffiffiffiffiffiffi
mo

1o1r3

rs
! 1r2 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1r1 � 1r3p

1r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 4:82

p
¼ 2:1954

and

d ¼ l2
4

¼ lair
4 � ffiffiffiffiffiffiffi

1r 2
p ¼ 0:9

4 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:1954

p ¼ 0:1519mm

Example 4.20

A wireless network using a 1.9 GHz signal is established in an office. A few

cubicals are needed for the office staff, and these are to be made from wooden

boards of maple (1r ¼ 2.1). Find the appropriate thickness of the boards so that

the partitions will not affect the signal strength. Assume that the network uses

the uniform plane waves.

In this case there is air on two sides of the board. Therefore we need half-

wavelength thick boards to reduce the reflections. Since lair ¼ (3 . 108)/
(1.9 . 109) m ¼ 15.7895 cm,

d ¼ l2
2

¼ lair
2 � ffiffiffiffiffiffi

1r2
p ¼ 15:7895

2 � ffiffiffiffiffiffiffi
2:1

p ¼ 5:4479 cm:

4.4 UNIFORM PLANE WAVE INCIDENT OBLIQUELY

ON AN INTERFACE

When a uniform plane wave is obliquely incident on an interface, the reflected wave

does not trace back the path. The plane normal to the interface that contains incident
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and reflected wave paths is called the plane of incidence. The electric field of the

incident wave may be perpendicular or parallel to this plane. The former situation

is referred as the perpendicularly polarized or the TE wave and the latter as the par-

allel polarized or the TM wave. These two cases are separately analyzed below.

Electric Field Perpendicular to the Plane of Incidence

Consider a perpendicularly polarized uniform plane wave incident on an interface of

two lossless dielectric media, as shown in Figure 4.9. The plane of incidence is y-z

plane (the same as the plane of this sheet of paper) and the electric field is x directed

(coming out of the paper). As indicated, the angle of incidence is ui. A part of the

incident signal is transmitted into medium 2 at an angle ut while the remaining

signal is reflected into medium 1 at ur.
From (4.1.21) and (4.1.22) the electric field intensities associated with incident,

reflected, and transmitted signals can be found to be

~Ei(~r) ¼ x̂Eoe
�jk1(y sin u iþz cos u i), (4:4:1)

~Er(~r) ¼ x̂R?Eoe
�jk1(y sin u r�z cos u r), (4:4:2)

and

~Et(~r) ¼ x̂T?Eoe
�jk2( y sin utþz cos ut), (4:4:3)

where subscripts i, r, and t are used to represent incident, reflected, and transmitted

(also known as refracted) signals, and R? and T? are the reflection and transmission

coefficients at the interface. From

r � ~E(~r) ¼ �jvm ~H(~r) ! ~H(~r) ¼ j

vm
ŷ
@Ex

@z
� ẑ

@Ex

@y

� �
¼ ŷHy � ẑHz:

Figure 4.9 TE wave incident on a planar interface.
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Therefore

Hy1 ¼ k1Eo

vm1

cos u ie
�jk1( y sin u iþz cos u i) � R? cos ure

�jk1( y sin u r�z cos u r)
	 


(4:4:4)

and

Hy2 ¼ k2

vm2

T?Eo cos ute
�jk2(y sin utþz cos ut): (4:4:5)

Application of the boundary condition that the tangential electric intensity must be

continuous across the interface yields

x̂ � ~Ei(y, z ¼ 0)þ ~Er(y, z ¼ 0)
h i

¼ x̂ � ~Et(y, z ¼ 0):

Next we find that

e�jk1y sin u i þ R?e�jk1y sin u r ¼ T?e�jk2y sin u t : (4:4:6)

Since (4.4.6) should hold for all y, the phase terms must be identical for each term.

Therefore

k1 sin u i ¼ k1 sin ur ¼ k2 sin ut: (4:4:7)

This equation is known as the phase-matching condition. The following two

relations, known as the Snell laws for reflection and refraction, respectively, are

direct consequence of this requirement:

k1 sin u i ¼ k1 sin ur ! u i ¼ u r

and

k1 sin u i ¼ k2 sin ut ! sin ut ¼
ffiffiffiffiffiffiffiffiffiffi
m111
m212

r
sin u i: (4:4:8)

For nonmagnetic dielectric materials, m ¼ mo, and therefore (4.4.8) simplifies to

sin ut ¼
ffiffiffiffiffi
11
12

r
sin u i ¼ n1

n2
sin u i; (4:4:9)

where n ¼ ffiffiffiffiffiffiffiffiffi
1=1o

p ¼ ffiffiffiffiffi
1r

p
is refractive index of the material.

With the phase-matching condition satisfied, (4.4.6) reduces to

1þ R? ¼ T?: (4:4:10)

From the continuity of tangential magnetic fields at the interface, we have

Hy1jz¼0 ¼ Hy2jz¼0:
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From (4.4.4), (4.4.5), and the phase-matching condition (Snell’s laws satisfied) this

boundary condition gives

1� R? ¼ h1

h2

� cos ut
cos u i

T?: (4:4:11)

Equations (4.4.10) and (4.4.11) can be solved to find R? and T? as follows:

R? ¼ h2 cos u i � h1 cos ut
h2 cos u i þ h1 cos ut

(4:4:12)

and

T? ¼ 2h2 cos u i

h2 cos u i þ h1 cos ut
: (4:4:13)

Electric Field Parallel to the Plane of Incidence

Now consider the case when a parallel-polarized uniform plane wave is incident on

an interface of two lossless dielectric media, as shown in Figure 4.10. The plane of

incidence is y-z plane (plane of the paper) and the magnetic field is x directed

(coming out of paper). As indicated, the angle of incidence is ui. A part of incident

signal is transmitted into medium 2 at an angle ut while the remaining is reflected

into medium 1 at ur.
Following (4.1.21) and (4.1.22), expressions for the magnetic field intensities

associated with incident, reflected, and transmitted signals can be found to be

~Hi(~r) ¼ x̂Hoe
�jk1(y sin u iþz cos u i), (4:4:14)

~Hr(~r) ¼ x̂RkHoe
�jk1(y sin ur�z cos u r), (4:4:15)

and

~Ht(~r) ¼ x̂TkHoe
�jk2(y sin utþz cos ut), (4:4:16)

Figure 4.10 TM wave incident on a planar interface.
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where Rk and Tk are the reflection and the transmission coefficients, respectively.

From

r � ~H(~r) ¼ jv1 ~E(~r) ! ~E(~r) ¼ � j

v1
ŷ
@Hx

@z
� ẑ

@Hx

@y

� �
¼ ŷEy þ ẑEz:

Therefore the associated electric field intensities are

~Ei ¼ k1Ho

v11
�ŷ cos u i þ ẑ sin u i½ �e�jk1(y sin u iþz cos u i), (4:4:17)

~Er ¼ k1RkHo

v11
ŷ cos u r � ẑ sin u r½ �e�jk1(y sin u i�z cos u i), (4:4:18)

and

~Et ¼ k2TkHo

v12
�ŷ cos ut þ ẑ sin ut½ �e�jk2(y sin utþz cos ut) (4:4:19)

The boundary conditions require that the tangential electric and magnetic fields

be continuous across the boundary. Enforcing the continuity of magnetic fields, we

have

x̂ � { ~Hi(~r)þ ~Hr(~r)� ~Ht(~r)}jz¼0 ¼ 0:

Therefore

e�jk1y sin u i þ Rke�jk1y sin ur ¼ Tke�jk2y sin ut : (4:4:20)

As in the previous case, (4.4.20) should hold for all y, and therefore the phase terms

must be identical for each term:

k1 sin u i ¼ k1 sin u r ¼ k2 sin ut: (4:4:21)

Note that it is same phase-matching condition as for the TE case. Therefore the laws

of reflection and refraction (transmission) are same as well:

k1 sin u i ¼ k1 sin u r ! u i ¼ u r (4:4:22)

and

k1 sin u i ¼ k2 sin ut ! sin ut ¼
ffiffiffiffiffiffiffiffiffiffi
m111
m212

r
sin u i: (4:4:23)

For the wave traveling from a nonmagnetic dielectric material to air, relation

(4.4.23) reduces to

sin ut ¼
ffiffiffiffiffi
11
12

r
sin u i ¼ n1

n2
sin u i:
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where n ¼ ffiffiffiffiffiffiffiffiffi
1=1o

p ¼ ffiffiffiffiffi
1r

p
is refractive index of the material. With the phase-

matching condition satisfied, (4.4.20) reduces to

1þ Rk ¼ Tk: (4:4:24)

The continuity of tangential electric field across the boundary requires that

Ey1

��
z¼0

¼ Ey2

��
z¼0

:

Therefore, from (4.4.17) through (4.4.19) along with (4.4.21), we have

1� Rk ¼ h2

h1

� cos ut
cos u i

Tk: (4:4:25)

Equations (4.4.24) and (4.4.25) can be solved for Rk and Tk as follows:

Rk ¼ h1 cos u i � h2 cos ut
h1 cos u i þ h2 cos ut

(4:4:26)

Figure 4.11 Reflection coefficient versus the incident angle for TE (a) and TM waves in air

to selected dielectrics (b).
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and

Tk ¼ 2h1 cos u i

h1 cos u i þ h2 cos ut
: (4:4:27)

Typical characteristics of the reflection coefficients for the two cases are illustrated

in Figure 4.11.

Total Transmission

Note that Rk ¼ 0 for h2 cos ut ¼ h1 cos ui. Hence the signal is transmitted totally

into medium 2 if the incident angle satisfies the following condition:

cos u i ¼ h2

h1

cos ut ¼
ffiffiffiffiffiffiffiffiffiffi
m211
12m1

r
cos ut: (4:4:28)

If both media are nonmagnetic, then m2 ¼ m1 ¼ mo and we denote this incident

angle as uiB. Therefore (4.4.28) can be written as follows:

cos u iB ¼
ffiffiffiffiffi
11
12

r
cos ut: (4:4:29)

Since sinui ¼ (k2/k1)sinut, we find that for m2 ¼ m1 ¼ mo,

sin uiB ¼
ffiffiffiffiffi
12
11

r
sin ut

or

sin ut ¼
ffiffiffiffiffi
11
12

r
sin uiB: (4:4:30)

Equation (4.4.30) is used to draw the right-angle triangle of Figure 4.12a. From this

figure we find that

cos ut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 11

12

� �
sin2 u i

s
: (4:4:31)

Figure 4.12 Trigonometric relations of (4.4.30) and (4.4.32).
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Using (4.4.31), (4.4.29) can be written as follows:

cosuiB ¼
ffiffiffiffiffi
11
12

r
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 11

12

� �
sin2 uiB

s
! cos2 uiB ¼ 1� sin2uiB

cos2 uiB ¼ 11
12

� �
1� 11

12

� �
sin2 uiB

� �

or

sin2 uiB ¼ 1

1þð11=12Þ! sinuiB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

11þ12

r
: (4:4:32)

Equation (4.4.32) is used to draw the right-angle triangle of Figure 4.12b. From the

figure we find that

tanuiB ¼
ffiffiffiffiffi
12
11

r
: (4:4:33)

The incident angle for which total transmission takes place is known as the Brewster

angle. Note that Brewster’s angle uiB exists only for TM waves unless the media

involved are magnetic, meaning m1=m2=mo.

Since total transmission of the incident signal in a nonmagnetic dielectric

medium can occur only for TM waves, the Brewster’s window can be employed

to filter out TE waves. As illustrated in Figure 4.13, Brewer’s windows are used

to generate a linearly polarized gas laser source. The gas discharge tube has

Brewster’s windows, one on each side. As a mixture of TE and TM waves propa-

gates along the z-axis, the TM waves, which are y-polarized, are transmitted through

the windows because they are set such that the incident angle is equal to the

Brewster angle. However, some of the TE waves, which are x-polarized are reflected

in the opposite direction, as shown. If quartz (1r ¼ 2.25 at optical frequencies) is

used for the windows, the Brewster angle is about 56.318. Then a parallel-polarized

(TM) wave will pass through the windows without reflection and a perpendicularly

polarized (TE) wave will be reflected at an angle of 2uiB from the z-axis (axis of the

discharge tube). The reflection coefficient for this case is found to be 20.3846. The

Figure 4.13 Brewster’s windows in a typical gas laser source.
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wave traveling along2z is reflected back completely from the mirror set on the left,

and the wave traveling along þz is partially reflected back. The rest of the signal is

available as the output of the laser source. Note that the output is y-polarized.

Total Internal Reflection

Consider the situation where a planar electromagnetic wave is incident upon an

interface with a nonmagnetic material of a lower dielectric constant (i.e.,

11 . 12). Since the phase-matching conditions for TE and TM both require that

k1 sin ui ¼ k2 sin ut, as given by (4.4.8) and (4.4.23), respectively, sin ut can

exceed unity for certain ui. The incident angle, for which ut is 908, is known as

the critical angle. Hence

k1 sin ui ¼ k2 sin ut ! sin ui ¼
v

ffiffiffiffiffiffiffiffiffiffi
mo12

p
v

ffiffiffiffiffiffiffiffiffiffi
mo11

p sin ut ! sin uic ¼
ffiffiffiffiffi
12
11

r
: (4:4:34)

If the incident angle is increased beyond uic, then in order to satisfy the phase

matching, ut becomes an imaginary number. Using the analysis of a uniform

plane wave that propagates at an arbitrary angle, and (4.1.19) through (4.1.22),

we find that

kz2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 � k22 sinut

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 � k21 sin

2ui

q
¼ +j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 sin

2ui � k22

q
: (4:4:35)

In this case the wave is propagating along the y-axis without attenuation, whereas it

is attenuated in the z direction. Note that a negative sign is physically appropriate in

(4.4.35) for such TE and TMwave propagations because of the resulting exponential

decay of the fields. Further (4.4.35) gives

cos ut ¼ +j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1

k2

� �2

sin2 ui � 1

s
¼ +j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11
12

� �
sin2 ui � 1

s
: (4:4:36)

Therefore (4.4.12) and (4.4.26) simplify in this case to

R? ¼ cosui þ j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 u i� (12=11)

p
cosui � j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 ui� (12=11)

p ¼ 1/2 tan�1 1

cosui

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 ui� 12

11

� �s" #
(4:4:37)

and

Rk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(12=11)

p
cosui þ j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(11=12) sin

2 ui� 1
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(12=11)

p
cosui � j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(11=12) sin

2 ui� 1
p

¼ 1/2 tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(11=12) sin

2 ui� 1
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(12=11)

p
cosui

" #
: (4:4:38)
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Hence the magnitude of the reflection coefficient is unity for both polarizations.

Since the wave is totally reflected back for ui . uic, this situation is known as

total internal reflection.

Another way to analyze this phenomenon is as follows: For a perpendicularly

polarized wave the transmitted electric and magnetic fields in medium 2 are

~Et ¼ x̂T?Eoe
�jk2( y sin utþz cos ut)

and

~Ht ¼ T?Eo

k2

vmo

ŷ cos ut � ẑ sin ut½ �e�jk2( y sin utþz cos ut):

Then the average power flow in this medium is found to be

Sav ¼ 1

2
Re
�
~Et � ~H

�
t

� ¼ 1

2

k2

vmo

jT?Eoj2 Re ŷ sin ut þ ẑ cos ut½ �: (4:4:39)

Since cos ut is imaginary if the incident angle is greater than the critical angle,

(4.4.39) says that there is no power flow in the z direction. However, there is

power transfer in the y direction because sin ut is a real number. Similar results

can be found for TM waves. Note that the transmitted waves no longer exhibit

the uniform plane wave characteristics. These waves are called surface waves

because they are transmitted only along the boundary surface. It is by this principle

that optical signals are transmitted through fibers. A dielectric rod can be used to

guide any electromagnetic signal.

Example 4.21

A 2 mm thick quartz panel (1r ¼ 2.25) lies on the x-y plane, as shown in

Figure 4.14. An optical uniform plane wave is incident upon its surface at

y ¼ 0 with an incident angle of 898. Determine if the panel will guide this

wave. What happens if incident angle reduces to 308?
For the quartz-to-air signal, the critical angle is found to be

uic ¼ sin�1 1ffiffiffiffiffi
1r

p
� �

¼ sin�1 1

1:5

� �
¼ 41:81038:

Figure 4.14 Geometry of a quartz panel and an incident optical signal.
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Note that ui2 ¼ 9082 ut. Further

sin u t ¼
ffiffiffiffiffiffiffiffiffiffi
m111
m212

r
sin ui ¼

ffiffiffiffiffi
1

1r

r
sin 898 ¼ 0:6666 ! u t ¼ 41:80258:

Therefore

ui2 ¼ 908� u t ¼ 48:19758:

Since ui2 is larger than the critical angle, this wave will be totally reflected back

and strike the other side of the panel as shown. Thus this wave will be guided

along the panel.

If incident angle reduces to 308, then

sin u t ¼
ffiffiffiffiffiffiffiffiffiffi
m111
m 212

r
sin ui ¼

ffiffiffiffiffi
1

1r

r
sin 308 ¼ 0:3333 ! u t ¼ 19:47128

and
ui2 ¼ 908� u t ¼ 70:52888:

This also meets the requirement of total internal reflection, and it too will be

guided.

Example 4.22

An LED is submerged in a swimming pool. If the light seen on the surface is a

circle of radius 2 m, find its depth d in the pool. Assume that the water is lossless

and its dielectric constant is 1.77 in the optical range.

Note that the signal travels from water to air, and therefore there will be total

internal reflection after the critical angle is reached. The light is visible on the

surface up to this angle that forms a circle. Further

uic ¼ sin�1 1ffiffiffiffiffi
1r

p
� �

¼ sin�1 1

1:3304

� �
¼ 48:73328

Therefore

tan uic ¼ a

d
! d ¼ a

tan uic
¼ 2

tan(48:73328)
¼ 1:775m:

Example 4.23

A TM polarized uniform plane wave traveling in water (1r ¼ 81) is incident upon

its boundary with air. The angle of incidence is 308. Find the reflection

and transmission coefficients, and the transmitted electric and magnetic fields

into the air.

Taking the wave number in air as ko, we find that

k1 sin ui ¼
ffiffiffiffiffi
81

p
ko sin 308 ¼ 4:5ko ¼ ko sin u t:
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The angle of transmission must be imaginary in this case. To verify that further,

the critical angle is obtained as

uic ¼ sin�1

ffiffiffiffiffi
1

81

r
¼ 6:37948

Since the incident angle is larger than the critical angle, the transmission angle

will be an imaginary number. From (4.4.38) we have

Rk ¼ 1/2 tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(11=12)

p
sin2 ui � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(12=11)
p

cos ui

� �
¼ 1/177:48728

and

Tk ¼ 1þ Rk ¼ 1þ 1/177:48728 ¼ 0:0438/88:69348:

Since k2 ¼ ko, sin ut ¼ 4.5, and cos ut ¼ 2j4.3875, the electric and magnetic

fields transmitted into air are found from (4.4.16) and (4.4.19) as follows:

~Ht(~r) ¼ x̂TkHoe
�jk2( y sin u tþz cos u t) ¼ x̂ 0:0438Hoe

�4:3875koz e�j(4:5koy�1:548) A=m

and

~Et ¼ k2TkHo

v12
�ŷ cos u t þ ẑ sin u t½ �e�jk2( y sin u tþz cos u t)

¼
ffiffiffiffiffiffi
mo

1o

r
ŷ j4:3875þ ẑ4:5½ �0:0438Hoe

�4:3875koz e�j(4:5koy�1:548) V=m:

Note that the fields quickly attenuate along the z-axis while propagating in the

y direction. The field attenuation rate in the z direction is 38.1 dB for each wave-

length, and the power density is 76.2 dB for each wavelength.

PROBLEMS

4.1. The electric field intensity of a uniform plane wave propagating through a

nonmagnetic medium is given as follows:

~E(x, t) ¼ ŷ5 cos(109t þ 5x) mV=m:

Find (a) the direction of wave travel, (b) the phase velocity of the wave, (c) the

wavelength, and (d) the associated magnetic field intensity.

4.2. The time-harmonic electric field intensity of a uniform plane wave propagat-

ing in free space is given as follows:

~E ¼ ẑð1þ jÞeþjð4pyÞ mV=m:
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Find (a) the direction of propagation, (b) the wavelength, (c) the frequency,

and (d) the associated magnetic field intensity.

4.3. Assume that a safe radio frequency and microwave exposure standard for the

humans is set at 2 mW/cm2. Find the corresponding electric and magnetic

field intensities in air.

4.4. The electric and magnetic field intensities of a uniform plane wave are given

as follows:

~E(~r, t) ¼ �ŷ150 cos(109t � bz) V=m

and

~H(~r, t) ¼ x̂0:15 cos(109t � bz) A=m:

If its phase velocity is 2 . 108 m/s, find (a) the wavelength l, (b) the intrinsic
impedance h, (c) the relative permeability mr, and (d) the dielectric constant 1r
of the medium.

4.5. The electric field intensity of a time-harmonic wave traveling in a source-free

free space is given as follows:

~E ¼ (7ŷþ 5ẑ)e�j(10y�14z) mV=m:

Assuming y and z represent their respective distances in meters, determine

(a) the angle of the propagation direction relative to the z-axis, (b) the wave-

lengths of the wave along the r, y, and z directions, (c) the phase velocities

along the r, y, and z directions, (d) the energy velocities along the r, y, and

z directions, (e) the frequency of the wave, and (f) the associated magnetic

field intensity.

4.6. The phase velocities of a plane wave propagating in a lossless medium are

measured in three different directions with unit vectors x̂; (4x̂þ 3ẑ)=5 and

(2x̂� 2ŷþ 2ẑ)=3 at 4 . 108 m/s, 108 m/s, and 3 . 108 m/s, respectively. Find
the direction of propagation and phase velocity of the wave along (3ŷþ 4ẑ)=5.

4.7. A uniform plane wave of 500 MHz is propagating through a lossless medium

that exhibits the following relation between the phase velocity vp and the

wavelength l.

vp ¼ jl1=3,

where j is a constant. The phase velocity of this signal is 108 m/s. Find the

group velocity.

4.8. A uniform plane wave propagating in free space has the following magnetic

field intensity:

~H ¼ (ŷþ ẑe j(p=2))e�jbx mA=m:
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Find the instantaneous electric field intensity, the time-average power per unit

area, and the polarization of the wave. The signal frequency is 9.375 GHz.

4.9. When a uniform plane wave of 1 MHz propagates in a certain material, it is

found that its phase decreases by 908 over a distance of 50 m and the fields

are attenuated by a factor of e21 for every 170 m. Further the ratio of the

wave’s electric and magnetic field intensities at a point in the medium is

163.39 V. Find the wave number k, the intrinsic impedance h of the

medium, the conductivity s, the permittivity 1 of the medium, and the per-

meability m of the medium.

4.10. Two submerged submarines are using a 10 kHz plane electromagnetic wave

for their communication. The magnitude of the electric field at the transmitter

is 200 mV/m, whereas the receiver requires at least 50 mV/m (peak value) for

a reliable communication. Assuming that the conductivity and the dielectric

constant of the seawater are 4 S/m and 81, respectively, find (a) the wave-

length, (b) the attenuation constant, (c) the phase velocity, (d) the skin

depth of the wave, and (e) the maximum range over which a reliable com-

munication is possible.

4.11. An airplane wants to communicate with a submerged submarine using a

100 MHz transmitter. The transmitted uniform plane wave travels downward

in the þz direction and produces a magnetic field at the ocean surface (z ¼ 0)

that is given as follows:

~H(z ¼ 0; t) ¼ ŷ500 cos(2p � 108t) mA=m:

(a) Express the magnetic field intensity in the ocean. (b) If the submarine

requires at least 500 nA/m (peak value) for a reliable communication, how

deep it can go without losing the link? (c) How deep the submarine can go

if the transmitter frequency is switched to 100 kHz? Assume that the ocean

water is nonmagnetic with 1r ¼ 72, and s ¼ 4 S/m.

4.12. An electronic circuit is designed to operate at 800 MHz. To minimize the elec-

tromagnetic interference with nearly systems, it is desired to enclose the

circuit in an aluminum box. If the radiation set by the circuit produces an elec-

tric field of 100 mV/m on the inner surface of the box and no more than

100 mV/m is permissible outside the box, determine the minimum thickness

of aluminum required. Can this shield your circuit from electromagnetic radi-

ations above 60 Hz? Determine the minimum aluminum thickness required to

shield the circuit. Assume s ¼ 3.54 . 107 S/m.

4.13. A uniform plane electromagnetic wave propagating in free space impinges

normally on a lossless nonmagnetic medium of 1r ¼ 5.2 in a z 	 0 region.

The electric field intensity of the incident wave is given as follows:

~Ei(z; t) ¼ ŷ cos(2p � 109t � koz) V=m:

Find ko, k2, R, T, SWR, and the average power transmitted into the medium.
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4.14. A uniform plane wave of 1 GHz propagating in air is incident normally on an

interface with a semi-infinite dielectric slab. If the wave shows an SWR of 2.3

and the electric field has a minimum right at the interface, find the intrinsic

impedance and the dielectric constant of this slab. Further find the average

power density of the wave in the slab if the incident wave has a peak electric

field of 5 V/m.

4.15. A uniform plane wave of 1 GHz propagating in air is incident normally on the

interface with a semi-infinite medium. If the wave shows a reflection coeffi-

cient of 0.3 /2308, find the intrinsic impedance of the material and the stand-

ing wave ratio in air. Further find the total electric field at the boundary if the

incident wave has a peak electric field of 5 nV/m.

4.16. An airplane communicates with a submerged submarine using a uniform

plane wave of 5 GHz. The wave propagating along þz (downward) in air is

incident normally on the seawater (interface at z ¼ 0) with a power density

of 1 W/m2. Find the electric and magnetic fields in the seawater. If the sub-

marine requires at least 1500 pW/m2 for a reliable communication, find the

depth up to which it can go without losing the signal. Assume 1r ¼ 80 and

s ¼ 4.5 S/m for the seawater.

4.17. A uniform plane wave of 800 MHz is incident normally on a thick copper

sheet. If the incident electric field is 2 V/m, find the electric and magnetic

fields inside the sheet.What is the wave velocity inside the sheet?What happens

if the signal frequency decreases to 500 Hz? For copper, s ¼ 5.813 . 107 S/m.

4.18. A wireless communication network is allowed to use a 10 mW/cm2 power

density at 915 MHz. Find the power density in humans working there if the

wave is incident normally, and find also the depth over which the fields

decrease by 1/e. Assume that the human body is a semi-infinite plane

medium with 1r ¼ 47 and s ¼ 2.21 S/m and that the radiation is in the

form of a uniform plane wave. How do these results compare if the radiation

frequency decreases to 50 MHz (1r ¼ 97 and s ¼ 0.7 S/m at this frequency)?

4.19. An LED light source operating at 0.65 mm is generating uniform plane waves

that are incident at a semi-infinite glass (1r ¼ 4.82). Determine the reflection

coefficient of the glass. Suggest a mechanism to reduce this reflection to zero.

4.20. A wireless network is established in an office using a 5.6 GHz signal. The

office needs a few cubicals for its staff, and these are to be made from

wooden boards of maple (1r ¼ 2.1). Find the appropriate thickness of the

boards that keeps the partitions from affecting the signal strength. Assume

that the network uses the uniform plane waves.

4.21. A 5 mm thick quartz panel (1r ¼ 2.25) lies on the x-y plane, as shown in

Figure 4.14. An optical uniform plane wave is incident upon the panel’s sur-

face at y ¼ 0 with an incident angle of 858. Determine if the panel will guide

this wave. What happens if the incident angle reduces to 158?
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4.22. An LED is submerged in a swimming pool. If the light seen on the surface is a

circle of radius 3.5 m, find its depth d in the pool. Assume that the water is

lossless and its dielectric constant is 1.77 in the optical range.

4.23. A TM-polarized uniform plane wave traveling in water (1r ¼ 81) is incident

upon its boundary with air. The angle of incidence is 458. Find the reflection

and transmission coefficients and the transmitted electric and magnetic fields

into the air.

4.24. The magnetic field intensity of a uniform plane wave propagating through a

certain nonmagnetic medium is given by

~H(x; t) ¼ ẑ(0:03) cos(109t � 4x) A=m:

Find (a) the direction of wave travel, (b) the velocity of wave, (c) the wave-

length, and (d) the associated electric field intensity.

4.25. A uniform plane wave propagating in a lossless nonmagnetic dielectric

medium has power density of 5 W/m2 and an rms electric field intensity of

31.62 V/m. Find (a) the intrinsic impedance, (b) the rms value of the mag-

netic field intensity, and (c) the velocity of the wave.

4.26. A 100 MHz plane wave is normally incident from air onto a semi-infinite

nonmagnetic dielectric slab (region 2). If the standing wave ratio in front of

the slab is 1.5 and if Emin is at the boundary, find (a) h2, (b) 1r2, (c) R, and
(d) distance d from the boundary to the nearest Emax of the standing wave

pattern.

4.27. Liquid glycerol has the following electrical characteristics at 500 MHz:

1r ¼ 11.4, s ¼ 0.235 S/m, and mr ¼ 1. Find (a) the complex propagation

constant, (b) the phase velocity, and (c) the penetration depth. (d) Assume

that a communication link is set up in this medium and that the transmitting

antenna can produce an electric field intensity of 1 mV/m and the receiver

can detect signal stronger than 1 mV/m. Under these conditions will it be

possible to reliably transmit through 50 cm of glycerol?

4.28. For a uniform plane wave propagating in the þz direction in a nonmagnetic

material medium with s ¼ 10 S/m and 1r ¼ 9, the magnetic field intensity

in the z ¼ 0 plane is given as follows:

~H(z ¼ 0; t) ¼ ŷ0:25 cos(2p � 108t � 0:2)mA=m:

Find the associated electric field intensity ~E(z, t) in the medium.

4.29. A uniform plane wave propagating in a lossless nonmagnetic dielectric

medium has a power density of 0.25 W/m2 and an rms electric field intensity

of 10 V/m. Find (a) the intrinsic impedance, (b) the rms value of the magnetic

field intensity, and (c) the velocity of the wave.
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4.30. The magnetic field intensity of a uniform plane wave propagating through a

nonmagnetic medium is given as follows:

~H(x; t) ¼ ẑ 2:5 cos(109t � 6x) mA=m:

Find (a) the direction of wave propagation, (b) the velocity of wave, (c) its

wavelength, and (d) the associated electric field intensity.

4.31. An electromagnetic source radiating in free space sets the instantaneous mag-

netic field intensity

~H ¼ ẑ5 cos 108t � byþ p

4

� �
mA=m:

Find (a) b and (b) the associated electric field intensity.

4.32. For a uniform plane wave of 15 GHz propagating in seawater (s ¼ 4 S/m,

1r ¼ 80, and mr ¼ 1) compute the propagation constant g and intrinsic impe-

dance h of the medium. Also find the distance over which the fields attenuate

by the factor of e21.

4.33. The fields of a uniform plane wave of frequency 100 kHz propagating in a

material medium are attenuated by a factor e21 over a distance of 1205 m

while their phase changes by 2p rad in a distance of 1321 m. Further a

ratio of the amplitudes of its electric and magnetic field intensities at a

point in the medium is found to be 163.54 V. Find the wave’s propagation

constant g and complex intrinsic impedance h of the medium.

4.34. A uniform plane wave of 3 GHz propagating through free space is incident

normally on a lossless dielectric medium with 1r ¼ 4 and mr ¼ 1. The incident

electric field at the interface has a value of 2 mV/m right before it strikes

the interface. In free space, find (a) the reflection coefficient, (b) the

VSWR, (c) the positions (in meters) of the maxima and minima of the electric

field, and (d) the maximum and minimum values of the electric field.

4.35. The electric field intensity of a uniform plane wave propagating through a

lossless nonmagnetic medium is given by

~E(z, t) ¼ x̂0:2 cos(109t þ 2p z) V=m:

Find (a) the direction of propagation, (b) velocity of the signal, (c) the

wavelength, and (d) associated magnetic field intensity.

4.36. A material has an intrinsic impedance of 120/248 V at 320 MHz. If its

relative permeability is 4, find its (a) loss tangent, (b) the dielectric constant,

(c) the conductivity, and (d) the complex permittivity.

4.37. Region 1 (x, 0) is air whereas the region 2 (x. 0) is a nonmagnetic medium

characterized by s ¼ 1024 S/m and 1r ¼ 4. A uniform plane wave, with an
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electric field intensity as given below, is incident on the interface at x ¼ 0

from region 1:

~Ein ¼ 5 cos 2p� 108t � 2p

3
x

� �
V=m:

Find the reflected and transmitted wave electric fields.

4.38. A uniform plane wave propagates in a nondissipative medium in theþ z direc-

tion. The frequency of the wave is 20 MHz. A probe located at z ¼ 0 measures

the phase angle of the wave to be 988. An identical probe located at z ¼ 2 m

measures the phase angle to be 2158. What is the relative permittivity of the

medium? (Assume that m ¼ mo.)

4.39. A uniform plane wave, ~E(z) ¼ (5x̂þ j10ŷ)e�j2z V=m, has a frequency of

50 MHz in a lossless dielectric material for which mr ¼ 1. Find vp, h, and
the instantaneous electric field intensity.

4.40. The electric field intensity of a uniform plane wave propagating in a

nonmagnetic medium of zero conductivity is given as follows:

~1(y; t) ¼ 37:7 cos(9p � 107t þ 0:3py)x̂V=m:

Find (a) the frequency, (b) the wavelength, (c) the direction of propagation of

the wave, (d) the dielectric constant of the medium, and (e) the associated

magnetic field intensity.

4.41. A medium with m ¼ 4mo has an intrinsic impedance of 100/22.58 V at

318.31 MHz. Find its (a) loss tangent, (b) dielectric constant, (c) conductivity,

and (d) complex permittivity.

4.42. The instantaneous expression for the magnetic field intensity of a uniform

plane wave propagating in the þy direction in free space is given by

~H ¼ ẑ4� 10�6 cos 107pt � byþ p

4

� �
A=m:

(a) Determine b and the signal wavelength.

(b) Write the instantaneous expression for the electric field intensity.

4.43. A 3 GHz uniform plane wave is propagating in a nonmagnetic medium that

has a dielectric constant of 2.5 and a loss tangent of 0.05.

(a) Determine the distance over which the amplitude of the propagating wave

will reduce by 50%.

(b) Determine the intrinsic impedance, the wavelength, and the phase vel-

ocity of the wave in the medium.

PROBLEMS 183



4.44. A uniform plane wave in air with ~Ein(z) ¼ x̂10e�j6z V=m is incident normally

on an interface at z ¼ 0, with a lossy medium having a dielectric constant 2.25

and a loss tangent 0.3. Find the following:

(a) The phasor expressions for the reflected and transmitted electric and mag-

netic fields.

(b) The time-average power flow per unit area in the lossy medium.

4.45. The electric field intensity of a uniform plane wave traveling through a material

medium (1r ¼ 4, s ¼ 0.1 S/m, mr ¼ 1) is given by ŷ100egx V=m. If the signal

frequency is 2.45 GHz, find the associated magnetic field intensity and the

propagation constant g.

4.46. A uniform plane wave traveling through a dielectric medium with 1r ¼ 3 and

mr ¼ 1 is incident normally upon a free-space medium. The incident electric

field is given by

~Ein ¼ ŷ3e�j200pz mV=m:

Find (a) The corresponding magnetic field intensity, (b) the reflected electric

field intensity, (c) the reflected magnetic field intensity, (d) the transmitted

electric field intensity, and (e) the transmitted magnetic field intensity.
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5
TRANSMISSION LINES

Every electrical circuit requires transmission lines to connect the various circuit

elements and systems together. Power companies use open-wire lines for distribut-

ing electrical power from the generating stations to consumers. The telephone indus-

try commonly employs coaxial lines to connect their subscribers. These typical

transmission lines are common at low operating frequencies. The transmission

lines can experience significant loss of signal if the frequency is in the RF or micro-

wave range. A specially designed coaxial line, the stripline, the microstrip line, and

the waveguide are used at radio and microwave frequencies. There are several other

transmission lines that are used at higher frequencies. Among these are the dielectric

rods (similar to optical fibers) used in microwave bands. A comprehensive analysis

of electromagnetic fields is required for each transmission line in order to learn their

signal propagation characteristics. The analysis is significantly simplified for a gen-

eralized circuit approach, and the line parameters are found via electromagnetic field

analysis of each transmission line.

This chapter begins with a distributedmodel of a transmission line using line para-

meters. The characteristic impedance is defined and the transmission line equation is

solved to show a signal’s behavior over infinitely long lines. The terminated trans-

mission lines are then analyzed, and the concepts of reflection coefficient, return

loss, and insertion loss are introduced. After a brief discussion of the quarter-wave

impedance transformer technique, the voltage standing wave ratio and the impe-

dance measurement methods are presented. Next the Smith chart is introduced
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along with its application in analysis and design of simple circuits. The chapter ends

with a brief discussion of the excitation of transients on the transmission line.

5.1 TRANSMISSION LINE EQUATIONS

A transmission line can be modeled as a distributed electrical circuit comprised of

inductors and resistors connected in series, and capacitors and resistors connected in

parallel, as illustrated in Figure 5.1. These circuit elements are known as the line

parameters that are defined per unit length as follows:

L ¼ Inductance per unit length (H/m)

R ¼ Resistance per unit length (V/m)

C ¼ Capacitance per unit length (F/m)

G ¼ Conductance per unit length (S/m)

The line parameters are determined theoretically by electromagnetic field analysis of

a transmission line. The cross-sectional geometry of a transmission line and the elec-

trical characteristics of the material used in its design determine these parameters.

Table 5.1 lists the line parameters of selected transmission lines. The conductivity

of the conductors used in the transmission line is s, and the dielectric constant

and loss tangent of nonmagnetic dielectric material used in these lines are 1r and
tan d, respectively.

Characteristic Impedance of a Transmission Line

Consider a semi-infinitely long transmission line that is excited by a voltage

source. The voltage-to-current ratio at any point on this line is found to be a constant,

which is referred to as its characteristic impedance. Another way to look at the

characteristic impedance is as follows: An electrical signal continues propagating

in the forward direction without hindrance if the transmission line is infinitely

long. However, there may be some backreflection when the signal comes across a

discontinuity, such as a load that terminates it after a finite length. The reflected

signal varies with the terminating load and can go to zero for a certain unique ter-

mination. Thus this load absorbs the entire incident signal, and the voltage source

Figure 5.1 Lumped element model of the transmission line.
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sees an infinite electrical length. In this situation the voltage-to-current ratio at any

point on the line is found to be equal to the terminating impedance. This impedance

is called the characteristic impedance of that transmission line.

With line parameters R, L, G, and C of a transmission line, we can define Z and Y

as its impedance and admittance per unit length at the signal frequency v to be

Z ¼ Rþ jvL

and

Y ¼ Gþ jvC:

Therefore, using the definition of characteristic impedance and the distributed cir-

cuit model shown in Figure 5.1, we can write

Zo ¼ (Zo þ ZDz)(1=YDz)

Zo þ ZDzþ (1=YDz)
¼ Zo þ ZDz

1þ YDz(Zo þ ZDz)
) ZoY(Zo þ ZDz) ¼ Z:

For Dz ! 0, it reduces to

Zo ¼
ffiffiffiffi
Z

Y

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ jvL

Gþ jvC

s
: (5:1:1)

Note that the characteristic impedance is a complex number for the lossy line. How-

ever, it is a real number if the transmission line is lossless, meaning for R ! 0 and

TABLE 5.1 Selected Line Parameters

Coaxial Line Two-Wire Line Parallel-Plate Line

L (nH/m) 200 ln(b=a) 400 cosh�1(d=2a) 400ph=D

C (pF/m)
55:63131r
ln (b=a)

27:81571r

cosh�1 (d=2a)

8:8541rD

h

R (mV/m)

ffiffiffiffiffiffiffiffiffi
0:1f

s

r
1

a
þ 1

b

� �
1

a

ffiffiffiffiffiffiffiffiffi
0:4f

s

r
1

D

ffiffiffiffiffiffiffiffiffi
1:6f

s

r

G (nS/m)
0:34951rf tan d

ln (b=a)

0:17481rf tan d

cosh�1(d=2a)

0:05561rfD tan d

h
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G ! 0, Zo ¼
ffiffiffiffiffiffiffiffiffi
L=C

p
. Further the characteristic impedance reduces to this value if

the operating frequency is such that vL � R and vC � G.

Example 5.1

The inner and outer conductor diameters of a Teflon-filled (1r ¼ 3.3) coaxial line

are given as follows: 2a ¼ 0.032 inch and 2b ¼ 0.176 inch. Find its characteristic

impedance if the operating frequency is such that vL � R and vC � G.

From the Table 5.1,

C ¼ 55:63131r
ln (b=a)

pF=m ¼ 55:6313 � 3:3
ln (0:176=0:032)

¼ 107:7 pF=m

and

L ¼ 200 ln
b

a

� �
nH=m ¼ 200 ln

0:176

0:032

� �
¼ 340:95 nH=m:

Therefore

Zo ¼
ffiffiffiffi
L

C

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
340:95 � 10�9

107:7 � 10�12

r
¼ 56:27V:

Transmission Line Equations

Figure 5.2 shows an equivalent distributed circuit of the transmission line that is ter-

minated by a load impedance ZL. A voltage source connected at its other end. Assume

that voltages at its nodes A and B are v(z, t) and v(zþ Dz, t), respectively. Currents
leaving these two nodes are assumed to be i(z, t) and i(zþ Dz, t), respectively.

We can now write the loop equation for a small length Dz of this line as follows:

v(z, t) ¼ LDz
@i(z, t)

@t
þ RDzi(z, t)þ v(zþ Dz, t),

or

v(zþ Dz, t)� v(z, t)

Dz
¼ �Ri(z, t)� L

@i(z, t)

@t
:

Figure 5.2 Distributed circuit model of a transmission line.
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With the limit Dz ! 0, it reduces to

@v(z, t)

@z
¼ � R � i(z, t)þ L

@i(z, t)

@t

� �
: (5:1:2)

The nodal equation at its node B is found to be

i(z, t) ¼ i(zþ Dz, t)þ GDzv(zþ Dz, t)þ CDz
@v(zþ Dz, t)

@t
,

or

i(zþ Dz, t)� i(z, t)

Dz
¼ � G � v(zþ Dz, t)þ C

@v(zþ Dz, t)

@t

� �
:

Again, under the limit Dz ! 0, it reduces to

@i(z, t)

@z
¼ �G � v(z, t)� C

@v(z, t)

@t
: (5:1:3)

Equations (5.1.2) and (5.1.3) can be solved for v(z, t) or i(z, t) as follows:

@2v(z, t)

@z2
¼ RGv(z, t)þ (RC þ LG)

@v(z, t)

@t
þ LC

@2v(z, t)

@t2
(5:1:4)

and,

@2i(z, t)

@z2
¼ RGi(z, t)þ (RC þ LG)

@i(z, t)

@t
þ LC

@2i(z, t)

@t2
: (5:1:5)

For a lossless line, R ¼ 0 and G ¼ 0. Therefore these two simplify to scalar wave

equations as follows:

@2v(z, t)

@z2
¼ LC

@2v(z, t)

@t2
(5:1:6)

and

@2i(z, t)

@z2
¼ LC

@2i(z, t)

@t2
: (5:1:7)

Note that the velocity of these waves is 1=
ffiffiffiffiffiffi
LC

p
. The partial differential equations

(5.1.6) and (5.1.7) are further simplified to ordinary differential equations by
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using phasor voltages and currents if the source is sinusoidal with time (i.e., time

harmonic). Hence

d2V(z)

dz2
¼ ZYV(z) ¼ g 2V(z) (5:1:8)

and

d2I(z)

dz2
¼ ZYI(z) ¼ g 2I(z), (5:1:9)

where V(z) and I(z) represent phasor voltage and current, respectively. Z and Y are

impedance per unit length and admittance per unit length, respectively, as defined

earlier. Therefore

g ¼
ffiffiffiffiffiffi
ZY

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Rþ jvL)(Gþ jvC)

p
¼ aþ jb: (5:1:10)

It is known as the propagation constant of the line. a is the attenuation constant

expressed in neper per meter and b is the phase constant in radian per meter. Note

the similarities of (5.1.8) and (5.1.9) with (4.1.7). The propagation constant g is

equal to jk, where k is the wave number defined by (4.1.4). Thus (5.1.8) and

(5.1.9) are homogeneous Helmholtz equations for voltage and current, respectively,

and their solutions are similar to (4.1.10). Once (5.1.8) is solved, the phasor form of

(5.1.2) can also be used to find the current on the line.

Solution of the Helmholtz Equation

Assume that V(z) ¼ eCz, and substitute it back into (5.1.8) to find that C ¼ +g. The
complete solution to (5.1.8) is then

V(z) ¼ Vine
�gz þ Vrefe

gz, (5:1:11)

where Vin and Vref are integration constants that are complex, in general. They are

evaluated through the boundary conditions. We can express these two constants

in polar form as follows:

Vin ¼ vine
jf and Vref ¼ vrefe

jw:

Therefore the voltage v(z, t) is found to be

v(z, t) ¼ Re½V(z)e jvt� ¼ Re½Vine
�(aþjb)ze jvt þ Vrefe

þ(aþjb)ze jvt�

or

v(z, t) ¼ vine
�az cos(vt � bzþ f)þ vrefe

þaz cos(vt þ bzþ w): (5:1:12)
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Again, note the similarity of this equation to (4.1.15). To understand the behavior

of each term on the right-hand side of this equation, we can get help from Figure 4.1,

which is redrawn as Figure 5.3 for a ready reference. Note that the first term

vl(z, t ¼ tl) changes sinusoidally with distance z, while its amplitude decreases expo-

nentially. On the other hand, the amplitude of the second sinusoidal term v2(z, t ¼ tl)

increases exponentially. Further the argument of the cosine function decreases with

distance in the first term while it increases in the second term. When a signal is pro-

pagating away from the source along the þz-axis, its phase should be delayed.

Further, if it is propagating in a lossy medium, then its amplitude should decrease

with distance z. Therefore the first term on the right-hand side of equation

(5.1.12) represents a wave traveling along the þz-axis (an incident or outgoing

wave), and the second term represents a wave traveling in the opposite direction

(a reflected or incoming wave).

The current I(z) on the line can be found via (5.1.2) and (5.1.11) as follows:

Equation (5.1.2) in phasor form is written as

dV(z)

dz
¼ �(Rþ jvL)I(z) ¼ �ZI(z): (5:1:13)

On substituting (5.1.11), we have

�g½Vine
�gz � Vrefe

gz� ¼ �ZI(z) ! I(z) ¼ g

Z
½Vine

�gz � Vrefe
gz�: (5:1:14)

Note that

Z

g
¼ Zffiffiffiffiffiffi

ZY
p ¼

ffiffiffiffi
Z

Y

r
¼ Zo ¼ Vin

Iin
¼ �Vref

Iref
:

Figure 5.3 Graphical representation of the two solutions of (5.1.12) relative to distance.
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Therefore (5.1.14) may be rewritten as follows:

I(z) ¼ Vin

Zo
e�gz � Vref

Zo
egz: (5:1:15)

The incident and reflected waves change sinusoidally with both space and time. The

time duration over which the phase angle of a wave goes through a change of 3608
(2p radians) is known as its time period. The inverse of the time period in seconds is

the signal frequency in Hz. Similarly the distance over which the phase angle of the

wave changes by 3608 (2p radians) is known as its wavelength (l). Therefore the

phase constant b is equal to 2p divided by the wavelength in meters.

Phase and Group Velocities

As discussed in preceding chapter for uniform plane waves, the velocity with which

the phase of a time-harmonic signal moves is called its phase velocity. That is to say,

if we tag a phase point of the sinusoidal wave and monitor its velocity, then we

obtain the phase velocity, vp, of this wave. Mathematically

vp ¼ v

b
¼ fl: (5:1:16)

A transmission line has no dispersion if the phase velocity of a propagating signal is

independent of frequency. Hence a graphical plot of v versus bwill be a straight line

passing through the origin. This kind of plot is called the dispersion diagram of a

transmission line. An information-carrying signal is composed of many sinusoidal

waves. If the line is dispersive, each of these harmonics will travel at a different vel-

ocity. Therefore the information will be distorted at the receiving end. The velocity

with which a group of waves travels is called the group velocity, vg. It is equal to the

slope of the dispersion curve of the transmission line.

Consider two sinusoidal signals with angular frequencies vþ dv and v2 dv,
respectively. Assume that these waves of equal amplitudes are propagating in the

z direction with corresponding phase constants bþ db and b2 db. The resultant

wave can be found as follows:

f (z, t) ¼ Re Ae j((vþdv)t�(bþdb)z) þ Ae j((v�dv)t�(b�db)z)
� 


¼ 2A cos(dvt � dbz) cos(vt � bz):

Hence the resulting wave, f (z, t), is amplitude modulated. The envelope of this

signal moves with the group velocity

vg ¼ dv

db
: (5:1:17)
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Example 5.2

A telephone line has the following parameters: R ¼ 14 ohm/mile, G ¼ 0,

L ¼ 5 mH/mile, and C ¼ 0.02 mF/mile.

For the operating frequency of 1 kHz, calculate its characteristic impedance Zo
and the propagation constant g. If its characteristic impedance terminates the line

and input voltage is 10 V /08, find total voltage at 30 miles from its input:

Zo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ jvL

Gþ jvC

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
14þ j2p � 103 � 5 � 10�3

0þ j2p � 103 � 0:02 � 10�6

s
ohm ¼ 523:2V/�128

¼ 511:8� j108:9 ohm

and

g ¼
ffiffiffiffiffiffiffi
ZY

p
¼ 0:0657/788mile�1 ¼ 0:01368þ j0:0643mile�1 ¼ aþ jb:

Therefore a ¼ 0.01368 Np/mile and b ¼ 0.0643 rad/mile.

Since the line terminates in its characteristic impedance, there is only incident

wave:

V(z ¼ 30mile) ¼ 10e�0:01368�30e�j0:0643�30 ¼ 6:634e�j1:929 V:

Example 5.3

An infinitely long lossless 50V transmission line is connected to a signal genera-

tor with its open-circuit voltage v(t) ¼ 3 cos(2p . 108t) V, as shown in

Figure 5.4a. The generator has an internal resistance of 25 V. If the signal pro-

pagates with a velocity of 2 . 108 m/s on the line, find the instantaneous voltage

and the current at an arbitrary location on the line.

Figure 5.4 (a) Transmission line circuit for Example 5.3 and (b) its equivalent at the

input point.

5.1 TRANSMISSION LINE EQUATIONS 193



Since the transmission line extends to infinity, there is only a forward propa-

gating (incident) wave. An equivalent circuit at its input end may be drawn, as

shown in Figure 5.4b. By the voltage division rule and Ohm’s law, incident vol-

tage and current can be determined as follows:

Incident voltage at the input end,

Vin(z ¼ 0) ¼ 50

50þ 25
3/08 ¼ 2V/08:

Incident current at the input end,

Iin(z ¼ 0) ¼ 3/08
50þ 25

¼ 0:04A/08

and

b ¼ v

v p
¼ 2p � 108

2 � 108 ¼ p rad=m:

Therefore

V(z) ¼ 2e�jpz V and I(z) ¼ 0:04e�jpz A:

Hence

v(z, t) ¼ 2 cos(2p � 108t � pz) V

and

i(z, t) ¼ 0:04 cos(2p � 108t � pz) A:

5.2 FINITE LENGTH TRANSMISSION LINE

Consider a transmission line of length l and a characteristic impedance Zo. The line

terminates in a load impedance ZL, as shown below in Figure 5.5. Assume that the

incident and reflected voltages at its input (z ¼ 0) are Vin and Vref, respectively.

If V(z) represents the total phasor voltage at point z on the line and I(z) is the total

current at that point, then according to (5.1.11) and (5.1.15) we have

V(z) ¼ Vine
�gz þ Vrefe

gz (5:2:1)
and

I(z) ¼ 1

Zo
(Vine

�gz � Vrefe
gz), (5:2:2)
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where Vin and Vref are the incident and reflected voltages, respectively, at z ¼ 0.

Therefore the impedance Zin at the input terminals of this transmission line is

found by dividing the total voltage by the total current at z ¼ 0 as follows:

Zin ¼ V(z ¼ 0)

I(z ¼ 0)
¼ Zo

Vin þ Vref

Vin � Vref

or

Zin ¼ Zo
1þ (Vref=Vin)

1� (Vref=Vin)
¼ Zo

1þ Go

1� Go

, (5:2:3)

where Go ¼ r e jw is called the input reflection coefficient.

Equation (5.2.3) can be rearranged to define the normalized input impedance Z in

as follows:

Zin

Zo
¼ Z in ¼ 1þ Go

1� Go

: (5:2:4)

The voltage and current at z ¼ l are related through the load impedance ZL as

follows:

ZL ¼ V(z ¼ ‘)

I(z ¼ ‘)
¼ Zo

Vine
�g‘ þ Vrefe

þg‘

Vine�g‘ � Vrefeþg‘
¼ Zo

e�g‘ þ Goe
þg‘

e�g‘ � Goeþg‘
:

Therefore

ZL ¼ e�g‘ þ Goe
g‘

e�g‘ � Goeþg‘
) Go ¼ ZL � 1

ZLþ1
e�2g‘: (5:2:5)

Figure 5.5 Transmission line with termination.
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Using (5.2.5), (5.2.4) can be written as follows:

Z in ¼ 1þ ½(ZL � 1)=(ZL þ 1)�e�2g‘

1� ½(ZL � 1)=(ZL þ 1)�e�2g‘
¼ ZL½1þ e�2g‘� þ ½1� e�2g‘�

ZL½1� e�2g‘� þ ½1þ e�2g‘� :

Since

1� e�2g‘

1þ e�2g‘
¼ eþgl � e�gl

eþgl þ e�gl
¼ sinh(g‘)

cosh(g‘)
¼ tanh(g‘),

we find that

Z in ¼ ZL þ tanh(g‘)

1þ ZL tanh(g‘)
,

or

Zin ¼ Zo
ZL þ Zo tanh(g‘)

Zo þ ZL tanh(g‘)
: (5:2:6)

Further g ¼ aþ jb ¼ jb for a lossless line. Therefore tanh(gl) ¼ tanh( jbl) ¼
j tan(bl), and (5.2.6) simplifies to

Zin ¼ Zo
ZL þ jZo tan(b‘)

Zo þ jZL tan(b‘)
: (5:2:7)

Note that Zin repeats periodically over the transmission line’s length. In other words,

the input impedance on a lossless transmission line is the same for all points at d +
nl/2, where n is an integer. It happens so because of the tangent function. Since

b‘ ¼ 2p

l
d +

nl

2

� �
¼ 2pd

l
+ np,

and therefore

tan(b‘) ¼ tan
2pd

l
+ np

� �
¼ tan

2pd

l

� �
:

There are three cases of special interests here. If ZL ¼ 0 (i.e., a lossless line is short-

circuited), then (5.2.7) reduces to

Zin ¼ Zsc ¼ jZo tan(b‘): (5:2:8)
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On the other hand, if ZL ¼ 1 (i.e., a lossless line has an open circuit at the load), then

(5.2.7) gives

Zin ¼ Zoc ¼ �jZo cot (b‘): (5:2:9)

Last, if l ¼ l/4, then bl ¼ p/2, and therefore (5.2.7) simplifies to

Zin ¼ Z2
o

ZL
: (5:2:10)

According to (5.2.8) and (5.2.9) a lossless line can be used to synthesize an arbitrary

reactance, as is used in microwave circuits. Equation (5.2.10) indicates that a

quarter-wavelength-long line of a suitable characteristic impedance can be used to

transform a load impedance ZL to Zin. This kind of transmission line is called the

impedance transformer, and it is useful in certain impedance-matching applications.

Further this equation can be rearranged as follows:

Z in ¼ 1

ZL

¼ YL:

This says that the value of a normalized impedance at a quarter-wavelength away

from the load is same as the normalized load admittance.

Consider a 50 V transmission line that is one meter long. A 10 k resistance

terminates it. We can find impedance as a function of frequency at its input

end using (5.2.7). These results are given in Table 5.2 at selected frequencies.

Note that the impedance found at its input terminals differs significantly with

the frequencies.

Example 5.4

A lossless transmission line of length d and characteristic impedance Zo is used as

an impedance transformer to match a 1.8 kV load to a 200 V line, as shown in

TABLE 5.2 Input Impedance of a 50 V Line

Terminated by a 10 k Load

Frequency (Hz) Impedance (V)

60 9999.99942 j2.5132

6 . 103 9993.68752 j251.1625

60 . 103 9405.88792 j2363.8959

6 . 106 15.89012 j395.1618

60 . 106 0.27642 j16.2455
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Figure 5.6. If the signal wavelength is 3 m, find (a) d, (b) Zo, and (c) the reflection

coefficient at the load.

(a) d ¼ l/4 ! d ¼ 0.75 m.

(b) Zo ¼
ffiffiffiffiffiffiffiffiffiffiffi
ZinZL

p ! Zo ¼ ð1800 � 200Þ1=2 ¼ 600 ohm.

(c)

GL ¼ ZL � 1

ZL þ 1
¼ ZL � Zo

ZL þ Zo
¼ 1800� 600

1800þ 600
¼ 0:5:

Example 5.5

A 75 V outdoor antenna is being used to receive 850 MHz FM signal. If the

receiving circuit uses a 50 V line, design a quarter-wavelength transformer to

match the antenna with this transmission line. To calculate its length (in cm),

assume that the transformer is made from a Teflon-filled (1r ¼ 2.1) coaxial

line. Also determine the diameter of its inner conductor if the inner diameter

of the outer conductor is 0.5 cm.

Zo ¼
ffiffiffiffiffiffiffiffiffiffiffi
ZinZL

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
75 � 50

p
¼ 61:2372V

and

Zo ¼
ffiffiffiffi
L

C

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
200� 10�9

55:63� 1r � 10�12

s
ln

b

a

� �
¼ 61:2372 ! ln

b

a

� �
¼ 61:2372

41:3762

¼ 1:48:

Therefore

b

a
¼ 2b

2a
¼ e1:48 ¼ 4:393 ) 2a ¼ 2b

4:393
¼ 0:5

4:393
¼ 0:1138 cm:

Figure 5.6 Impedance transformer arrangement for Example 5.4.
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Since b ¼ v
ffiffiffiffiffiffi
LC

p
and

1

l
¼ b

2p
¼ v

2p

ffiffiffiffiffiffi
LC

p
¼ f �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
200� 55:63� 1r � 10�21

p
¼ 850� 106 � 10�10 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
200� 55:63� 2:1� 0:1

p

¼ 4:1086m�1,

then l ¼ 0.2434 m and d ¼ l/4 ¼ 0.0608 m ¼ 6.08 cm.

Example 5.6

A 100 km long telephone line is terminated by a 150– j200 V load. The line

parameters are as follows: R ¼ 2 V/km, G ¼ 0.2 mS/km, L ¼ 5 mH/km, and

C ¼ 8 nF/km. If this line is being used at 4 kHz, find its (a) characteristic

impedance Zo, (b) propagation constant g, and (c) input impedance Zin.

(a) Z ¼ Rþ jvL ¼ 2þ j2p . 4 . 103 . 5 . 1023 ¼ 2þ j125.6637 V/km and

Y ¼ Gþ jvC ¼ 0.2 . 1026 þ j2p . 4 . 103 . 8 . 1029 ¼ (0.2þ j201.06) mS/
km. Therefore

Zo ¼
ffiffiffiffi
Z

Y

r
¼ 790:5973� j5:8977V:

(b) g ¼ ffiffiffiffiffiffi
ZY

p ¼ 1:3439 � 10�3 þ j0:159 km�1.

(c)

Zin ¼ Zo
ZL þ Zo tanh(g‘)

Zo þ ZL tanh(g‘)
¼ 242:5993� j49:8975V:

Note that the line parameters are given in kilometers and therefore the propa-

gation constant is also in kilometers. Since the given length is in kilometers as

well, there is no need to convert the units to meters.

Reflection Coefficient, Return Loss, and Insertion Loss

The voltage reflection coefficient is defined as the ratio of the reflected to incident

phasor voltages at a location in a circuit. In the case of a transmission line terminated

by a load ZL, the voltage reflection coefficient at a distance l from the load is given

by (5.2.5). Hence

G ¼ Vref

Vin

¼ ZL � Zo

ZL þ Zo
e�2g‘ ¼ rLe

jue�2(aþjb)‘ ¼ rLe
�2a‘e�j(2b‘�u), (5:2:11)

where rLe
ju ¼ (ZL2 Zo)/(ZLþ Zo) is called the load reflection coefficient.
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Equation (5.2.11) indicates that the magnitude of the reflection coefficient

decreases according to e 22al as the observation point moves away from the load

on the transmission line. Further its phase angle changes by 22bl. Therefore a

polar (magnitude and phase) plot of this equation will look like a spiral. However,

the magnitude of the reflection coefficient remains constant for a lossless line

(a ¼ 0). As the line length l increases, the reflection coefficient point moves

clockwise on a circle of radius equal to its magnitude. It makes one complete

revolution for each half-wavelength distance away from the load (because

22bl/2 ¼ 22p).
Similarly the current reflection coefficient Gc is defined as the ratio of reflected to

incident signal–current phasors. It is related to the voltage reflection coefficient as

follows:

Gc ¼ Iref

Iin
¼ �Vref=Zo

Vin=Zo
¼ �G: (5:2:12)

The return loss of a device is defined as the ratio of the reflected power to

the incident power at its input. Since power is proportional to the square of a

voltage, the return loss may be expressed as a square of the magnitude of the

voltage reflection coefficient r. Generally, the return loss is expressed in dB as

follows:

Return loss ¼ 20 log10 (r) dB: (5:2:13)

The insertion loss of a device is defined as the ratio of transmitted power (power

available at the output port) to that of the power incident at its input. Since the trans-

mitted power is equal to the difference of incident and reflected powers for a lossless

device, the insertion loss can be expressed as follows:

Insertion loss of a lossless device ¼ 10 log10 (1� r2) dB: (5:2:14)

Example 5.7

A radio-frequency filter exhibits 75 V at its input as well as at its output. If the

filter is inserted in a 50 V system, find its insertion loss.

Since

r ¼ 75� 50

75þ 50

����
���� ¼ 25

125
¼ 0:2,

then

Insertion loss ¼ 10 log (1� 0:22) ¼ �0:1773 dB:
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Low-Loss Transmission Lines

Most transmission lines used in practice are not lossless but possess very small

losses of the propagating signals. Therefore the propagation constant and the charac-

teristic impedance of such lines can be found as follows:

g ¼
ffiffiffiffiffiffi
ZY

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Rþ jvL)(Gþ jvC)

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�v2LC 1þ R

jvL

� �
1þ G

jvC

� �s
:

For R 
 vL and G 
 vC, a first-order approximation is

g ¼ aþ jb � jv
ffiffiffiffiffiffi
LC

p
1þ R

j2vL

� �
1þ G

j2vC

� �
� jv

ffiffiffiffiffiffi
LC

p
1þ R

j2vL
þ G

j2vC

� �
:

Therefore

a � 1

2
R

ffiffiffiffi
C

L

r
þ G

ffiffiffiffi
L

C

r !
Np=m (5:2:15)

and

b � v
ffiffiffiffiffiffi
LC

p
rad=m: (5:2:16)

Similarly an approximate characteristic impedance of this line is found to be

Zo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ jvL

Gþ jvC

s
¼

ffiffiffiffi
L

C

r
1þ R

jvL

� �1=2

1þ G

jvC

� ��1=2

;

or

Zo �
ffiffiffiffi
L

C

r
1þ R

j2vL

� �
1� G

j2vC

� �
�

ffiffiffiffi
L

C

r
1þ R

j2vL
� G

j2vC

� �
:

Hence

Zo ¼
ffiffiffiffi
L

C

r
1þ 1

j2v

R

L
� G

C

� �� �
: (5:2:17)

According to (5.2.15) and (5.2.16), the attenuation constant of a low-loss line is

independent of frequency, while its phase constant is close to the case of a lossless

line. However, (5.2.17) indicates that the characteristic impedance of a low-loss line

is dependent on frequency and therefore it will distort the signal. This frequency
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dependency of the characteristic impedance can be removed for RC ¼ GL. If a low-

loss line meets this condition, it is called a distortionless line. Since G ¼ RC/L for

such lines, the propagation constant simplifies to

g ¼
ffiffiffiffiffiffi
ZY

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Rþ jvL)(Gþ jvC)

p
¼ (Rþ jvL)

ffiffiffiffi
C

L

r
¼ aþ jb: (5:2:18)

Example 5.8

A signal attenuates by 0.02 dB for every meter traveled on a 50 V distortionless

transmission line. If this line has a capacitance of 80 pF per meter, find (a) R,

(b) L, (c) G, and (d) vp.

Since the line is distortionless,

Zo ¼
ffiffiffiffi
L

C

r
¼ 50:

Further 8.6859 dB ¼ 1 Np, and thereforea ¼ 0.02 dB/m � 0.02/8.6859Np/m ¼
2.3026 . 1023 Np/m. Hence

(a) R ¼ a
ffiffiffiffiffiffiffiffiffi
L=C

p ¼ 2:3026 � 10�3 � 50 ¼ 0:1151V=m:

(b) L ¼ CZo
2 ¼ 80 . 10212 . 502 H/m ¼ 0.2 mH/m.

(c) G ¼ RC/L ¼ R/Zo
2 ¼ (0.1151/502)S/m ¼ 46.04 mS/m.

(d) vp ¼ 1=
ffiffiffiffiffiffi
LC

p ¼ 2:5 � 108m=s:

Measurement of Characteristic Impedance and Propagation

Constant of a Transmission Line

The characteristic impedance and propagation constant of a transmission line can

be found after performing open- and short-circuit tests on it as follows: The trans-

mission line under test is kept open at one end, and the impedance at its other end

is measured using an impedance bridge. Assume that it is Zoc. The process is

repeated after placing a short circuit at its open end, and this impedance is recorded

as Zsc. The line’s length d is measured. Then from (5.2.6) we find that

Zoc ¼ Zo coth(gd) (5:2:19)

and

Zsc ¼ Zo tanh(gd): (5:2:20)

Therefore

Zo ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ZocZsc

p
(5:2:21)
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and

tanh(gd) ¼
ffiffiffiffiffiffiffi
Zsc

Zoc

r
) g ¼ 1

d
tanh�1

ffiffiffiffiffiffiffi
Zsc

Zoc

r� �
: (5:2:22)

Equations (5.2.21) and (5.2.22) can be solved to determine Zo and g. The following
identity can be used to facilitate the evaluation of the propagation constant:

tanh�1 (Z) ¼ 1

2
ln

1þ Z

1� Z

� �
:

Example 5.9

A load ZL is connected at one end of the transmission line and its input

impedance is measured using an impedance bridge that gives Zin ¼
602 j30 V. The experiment is repeated twice with the load replaced first by a

short circuit and then by an open circuit. These data are recorded as j10 V and

2j250 V, respectively. Find the characteristic resistance of this line and the

load impedance

Zo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zsc � Zoc

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j10 � (�j250)

p
¼ 50V:

Since the measured input impedance data with both the open and short circuits

are pure imaginary and the characteristic impedance is a real number, the line is

lossless. Therefore

Zin ¼ Zo
ZL þ jZo tan(b‘)

Zo þ jZL tan(b‘)
¼ Zo

ZL þ Zsc

Zo þ jZL tan(b‘)
,

¼ Zo

j tan(b‘)
� ZL þ Zsc

ZL þ fZo=½ j tan(b‘)�g ¼ Zoc
ZL þ Zsc

ZL þ Zoc
,

and

ZL ¼ Zoc
Zsc � Zin

Zin � Zoc
¼ �j250� j10� (60� j30)

60� j30� (�j250)
¼ 75� j25V:

Example 5.10

Measurements are made on a 1.5 m long transmission line using an impedance

bridge. After short-circuiting at one of the ends, the impedance at the other

end is found to be j103 V. Repeating the experiment with the short circuit now

replaced by an open circuit gives 2j54.6 V. Determine the propagation constant
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and the characteristic impedance of this line.

Zo ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ZocZsc

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�j54:6� j103

p
¼ 74:99 � 75V:

From (5.2.22) we have

tanh(1:5g) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j103

�j54:3

s
¼ j1:8969 ) 1:5g ¼ tanh�1 ( j1:8969)

¼ 1

2
ln

1þ j1:8969

1� j1:8969

� �
,

or

1:5g ¼ 1

2
ln

1þ j1:8969

1� j1:8969

� �
¼ 1

2
ln (1/2:1713 rad) ¼ 1

2
ln (e j2:1713) ¼ j1:08565:

Therefore g ¼ j0.7238 m21.

Note that the measured data indicate that the line is lossless, so the results

obtained are consistent.

Example 5.11

As shown in Figure 5.7, a 5 m long 50 V lossless transmission line is terminated

by 502 j100 V. The circuit is driven by a 3.1831 MHz signal generator with its

open-circuit voltage 100 V/08 and an internal impedance 50 V. If the propagat-

ing signal has a phase velocity of 200 m/mS, find the impedance at its input end

and the phasor voltages at both of its ends.

b ¼ v

v p
¼ 2p � 3:1831 � 106

200 � 106 ¼ 0:1 rad=m

Figure 5.7 Circuit arrangement for Example 5.11.

204 TRANSMISSION LINES



and

Zin ¼ Zo
ZL þ jZo tan(b‘)

Zo þ jZL tan(b‘)
¼ 50

50� j100þ j50 tan(0:5)

50þ j(50� j100) tan(0:5)

¼ 40:7917V/�1:2236 rad,

or

Zin ¼ 13:8799� j38:3577V:

The equivalent circuits at its input and at the load can be drawn as shown in

Figure 5.8.

Voltage at the input end,

VA ¼ VS

ZS þ Zin
Zin ¼ 100 � 40:7917/�1:2236 rad

50þ 13:8799� j38:3577
,

or

VA ¼ 54:7456V/�0:6828 rad:

The equivalent circuit shown in Figure 5.8b can be used to determine the load’s

voltage. Since the source impedance is the same as the characteristic impedance

of the line, Zth is found to be

Zth ¼ Zo
Zs þ jZo tan(b‘)

Zo þ jZs tan(b‘)
¼ Zo ¼ 50V

and

Vth ¼ (Vin þ Vref)jat o:c:¼ (2 � Vin)jat o:c:¼ 100V/�0:5 rad:

Figure 5.8 Equivalent circuits at the input (a) and at the load (b).
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Therefore

VL ¼ Vth

Zth þ ZL
ZL ¼ 79:0569V/�0:8218 rad:

Alternately,

V(z) ¼ Vine
�jbz þ Vrefe

jbz ¼ Vin(e
�jbz þ Gine

jbz),

where Vin is incident voltage at z ¼ 0 while Gin is the input reflection coefficient.

Since Vin ¼ 50 V/08, and

Gin ¼ 13:8799 � j38:3577� 50

13:8799 � j38:3577þ 50
¼ 0:7071/�1:7854 rad,

then

VL ¼ V(z ¼ 5m) ¼ 50(e�j0:5 þ 0:7071e j(0:5�1:7854))

¼ 79:0569V/�0:8218 rad,

Standing Wave and Voltage Standing Wave Ratio

Consider a lossless transmission line that is terminated by a load impedance ZL, as

shown in Figure 5.9. The time-harmonic incident and reflected voltages at its input

(i.e., at z ¼ 0) are assumed to be Vin and Vref, respectively. Therefore the total

voltage V(z) can be expressed as follows:

V(z) ¼ Vine
�jbz þ Vrefe

þjbz:

Figure 5.9 Terminated lossless transmission line.
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In practice, it is more convenient to use the load as the reference point instead of the

source. Therefore we switch to the x variable in place of z and express the total vol-

tage at a point on the line as follows:

V(x) ¼ Vþeþjbx þ V� e�jbx ¼ Vþ eþjbx þ GLe
�jbx

	 

,

or

V(x) ¼ Vþ½eþjbx þ rLe
�j(bx�fL)�, (5:2:23)

where

GL ¼ rLe
jfL ¼ V�

Vþ

and Vþ and V2 represent incident and reflected wave voltage phasors, respectively,

at the load point (i.e., at x ¼ 0).

Let us first consider two extreme conditions at the load. In one case, the trans-

mission line has an open-circuit termination while, in the other, it has a short-circuit

termination. Therefore the magnitude of the reflection coefficient, rL, is unity in both
cases. However, the phase angle, fL, is zero for the former while it is p for the latter

case. Phasor diagrams for these two cases are depicted in Figure 5.10a and 5.10b,

respectively. As distance x from the load increases, phasor e jbx rotates counterclock-

wise because of the increase in its phase angle bx. On the other hand, phasor e2jbx

Figure 5.10 Phasor diagrams of line voltage with (a) an open-circuit and (b) a short-circuit

termination.
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rotates clockwise by the same amount. Therefore the phase angle of the resultant

voltage, V(x), remains constant with space coordinate x while its magnitude varies

sinusoidally between +2Vþ. Since the phase angle of the resultant signal V(x)

does not change with distance, it does not represent a propagating wave. Note

that there are two waves propagating on this line in opposite directions. However,

the resulting signal represents a standing wave.

For an arbitrary termination that is different from characteristic impedance of the

line, there are two waves propagating in opposite directions. The interference pattern

of these two signals is stationary with time. Assuming that Vþ is unity, a phasor dia-

gram for this case is drawn as shown in Figure 5.11. The magnitude of the resultant

signal, V(x), can be determined using the law of parallelogram as follows:

V(x)j j ¼ Vþ
�� �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ r2L þ 2rL cos (2bx� fL)

q
: (5:2:24)

The reflection coefficient, G(x), can be found as follows:

G(x) ¼ V�e�jbx

Vþe jbx
¼ rLe

�j(2bx�fL): (5:2:25)

According to (5.2.24), the magnitude of a standing wave is a function of the location

on transmission line. Since x appears only in the argument of the cosine function, the

extreme value of the voltage-magnitude occurs whenever this argument is an integer

multiple of p. It is a maximum whenever the reflected wave is in phase with the

Figure 5.11 Phasor diagram of the line voltage with an arbitrary termination.
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incident, and that requires the following condition to be satisfied:

(2bx� fL) ¼ +2np, n ¼ 0, 1, 2, . . . : (5:2:26)

On the other hand, V(x) is a minimum wherever the reflected and incident signals

are out of phase on the line. Hence x satisfies the following condition at a minimum

of the interference pattern:

(2bx� fL) ¼ +(2mþ 1)p, m ¼ 0, 1, 2, . . . : (5:2:27)

Further these extreme values of the standing wave are

V(x)j jmax ¼ Vþ
�� �� 1þ rL

� 

(5:2:28)

and

V(x)j jmin ¼ Vþ
�� �� 1� rL

� 

: (5:2:29)

The voltage standing wave ratio (VSWR) is defined as follows:

VSWR ¼ S ¼ V(x)j jmax

V(x)j jmin

¼ 1þ rL

1� rL

: (5:2:30)

Since 0 � rL � 1 for a passive load, minimum value of the VSWR is unity (for a

matched load) while its maximum value can be infinity (for total reflection, with

a short circuit or an open circuit at the load).

Assume that there is a voltage minimum at x1 from the load. As one keeps

moving toward the source, the next minimum occurs at x2. In other words, there

are two consecutive minimums at x1 and x2 with x2 . x1. Hence

2(bx1 � fL) ¼ (2m1 þ 1)p

and

2(bx2 � fL) ¼ ½2(m1 þ 1)þ 1�p:

Subtracting the former equation from the latter, we have

2b(x2 � x1) ¼ 2p ) x2 � x1 ¼ l

2
, (5:2:31)

where (x22 x1) is separation between the two consecutive minimums.

Similarly it can be proved that two consecutive maximums are a half-wavelength

apart and also that the separation between the consecutive maximum and minimum

is a quarter-wavelength. This information can be used to measure the wavelength of
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a propagating signal. In practice, the location of a minimum is preferred over that of

a maximum. This is mainly because of minimums being sharper in comparison with

maximums, as illustrated in Figure 5.12. Further a short (or open) circuit must be

used as the load for the best accuracy in the wavelength measurement.

Measurement of Impedance

The impedance of a one-port microwave device can be determined from measure-

ment of the standing wave at its input. The required parameters for that are the

VSWR and the location of first minimum (or maximum) from the load. A slotted

line that is equipped with a detector probe is connected before the load to facilitate

the measurement. Since the output of a detector is proportional to power, the square

root of the ratio is taken to find the VSWR. Since it is not possible in most cases to

probe up to the input terminals of the load, location of the first minimum is deter-

mined as follows: An arbitrary minimum is located on the slotted line with the

unknown load. The load is then replaced by a short circuit. As a result there is a

shift in minimum, as shown in Figure 5.12. The shift of the original minimum

away from the generator is the same as the location of first minimum from the load.

Since the reflected voltage is out of phase with that of the incident signal at the

minimum of the standing wave pattern, the relation between the reflection coeffi-

cient, G1 ¼ 2r, and impedance, Z1, at this point may be written as follows:

G1 ¼ �r ¼ Z1 � 1

Z1 þ 1
,

where Z1 is normalized impedance at the location of the first minimum of the

voltage’s standing wave.

Figure 5.12 Standing wave pattern on a lossless transmission line.

210 TRANSMISSION LINES



Since the VSWR S ¼ (1þ r)=(1� r),

r ¼ S� 1

Sþ 1
,

and therefore

� S� 1

Sþ 1
¼ Z1 � 1

Z1 þ 1
) Z1 ¼ 1

S
:

This normalized impedance is equal to the input impedance of the line that is termi-

nated by load ZL and has a length d1. Hence

Z1 ¼ 1

S
¼ ZL þ j tan(bd1)

1þ jZL tan(bd1)
) ZL ¼ 1� jS tan(bd1)

S� j tan(bd1)
: (5:2:32)

Similarly the reflected voltage is in phase with the incident signal at the maximum of

the standing wave. Assume that the first maximum is located at a distance d2 from

the unknown load and that the impedance at this point is Z2. Therefore

G2 ¼ r ¼ Z2 � 1

Z2 þ 1
¼ S� 1

Sþ 1
) Z2 ¼ S

and

ZL ¼ Z2 � j tan(bd2)

1� jZ2 tan(bd2)
: (5:2:33)

Since the maximum and minimum are measured on a lossless line that feeds the

unknown load, the magnitude of the reflection coefficient r does not change at differ-
ent points on the line.

Example 5.12

A 50 V transmission line is terminated by a 25þ j100 V load. Find the load

reflection coefficient and the voltage standing wave ratio on this line.

GL ¼ ZL � Zo

ZL þ Zo
¼ 25þ j100� 50

25þ j100þ 50
¼ 0:8246/50:918

and

VSWR ¼ 1þ r

1� r
¼ 1þ 0:8246

1� 0:8246
¼ 10:4039:
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Example 5.13

A 75 V transmission line is used to feed a transmitting antenna. In order to find

the antenna impedance ZL, measurements are conducted using a slotted line. It is

found that it has a VSWR of 1.8 and the standing wave minimums are 1.5 cm

apart. The scale reading at one of these minimums is found to be 2.75 cm.

When the antenna is replaced by a short circuit, the minimum moves away

from the generator to a point where the scale shows 2.35 cm. Determine the

signal wavelength and the load impedance.

Since theminimums are 1.5 cm apart, the signal wavelengthl ¼ 2 � 1.5 ¼ 3 cm.

Therefore

b ¼ 2p

l
¼ 2p

3
rad=cm ¼ 209:4395 rad=m,

d1 ¼ 2:75� 2:35 ¼ 0:4 cm, bd1 ¼ 0:8378:

Hence

ZL ¼ 1� j1:8 tan(0:8378)

1:8� j tan(0:8378)
¼ 0:8987� j0:5561

or

ZL ¼ 67:4013� j41:7089V:

5.3 SMITH CHART

According to (5.2.4), the normalized impedance at a point on the transmission line is

related to its reflection coefficient as follows:

Z ¼ R þ jX ¼ 1þ G

1� G
¼ 1þ Gr þ jGi

1� Gr � jGi

, (5:3:1)

where Gr and Gi are real and imaginary parts of the reflection coefficient, respec-

tively, and R and X are real and imaginary parts of the normalized impedance,

respectively. Two real equations are found from (5.3.1) as follows after equating

the real and imaginary components on its two sides:

Gr � R

1þ R

� �2

þG2
i ¼

1

1þ R

� �2

(5:3:2)

and

(Gr � 1)2 þ Gi � 1

X

� �2

¼ 1

X

� �2

: (5:3:3)
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Equations (5.3.2) and (5.3.3) represent a family of circles on the complex G-plane.
The circle in (5.3.2) has its center at ½R=(1þ R)�; 0� �

and a radius of 1=(1þ R). For

R ¼ 0, the circle is centered at the origin with unity radius. As R increases, the center

of the constant resistance circle moves on the positive real axis and its radius

decreases. When R ¼ 1, the radius reduces to zero and the center of the circle

moves to (1, 0). These plots are shown in Figure 5.13. Note that for passive impe-

dance, 0 � R � 1 while �1 � X � þ1.

Similarly the circle of (5.3.3) has its center at 1, 1=X
� �

with a radius of 1=X. For
X ¼ 0, center of the circle lies at (1,1) with an infinite radius. Hence it is a straight

line along the Gr-axis. As X increases on the positive side (i.e., 0 � X � 1), the

center of the circle moves toward point (1, 0) along the vertical line defined by

Gr ¼ 1, whereas its radius becomes smaller and smaller in size. For X ¼ 1, it con-

verges to a point that is located at (1, 0). Similar characteristics are observed for

0 	 X 	 �1. As shown in Figure 5.13, a graphical representation of these two

equations for all possible normalized resistance and reactance values is known as

the Smith chart. Thus a normalized impedance point on the Smith chart represents

the corresponding reflection coefficient in polar coordinates on the complex G-plane.
According to (5.2.11) the magnitude of the reflection coefficient on a lossless

Figure 5.13 The Smith chart.

5.3 SMITH CHART 213



transmission line remains constant at rL while its phase angle decreases by 22bl.
Hence it represents a circle of radius rL. As we move away from the load (i.e.,

toward the generator), the reflection coefficient point moves clockwise on this

circle. Since the reflection coefficient repeats periodically at every half-wavelength,

the circumference of the circle is equal to l/2. For a given reflection coefficient, the
normalized impedance may be found using the impedance scale of the Smith chart.

Further R in (5.3.1) is equal to the VSWR for Gr . 0 and Gi ¼ 0. On the other hand,

it equals the inverse of VSWR for Gr , 0 and Gi ¼ 0. Hence the R values on the

positive Gr-axis also represent the VSWR.

Since inverse of the impedance is the admittance, we find that

�Y ¼ 1

Z
¼ 1� G

1þ G
:

Hence a similar analysis can be performed with the normalized admittance as well.

This results in a same kind of chart except that the normalized conductance circles

replace the normalized resistance circles while the normalized susceptance arcs

replace the normalized reactance.

The normalized resistance (or conductance) of each circle is indicated on theGr-axis

of the Smith chart. Normalized positive reactance (or susceptance) arcs are shown on

the upper half while negative reactance (or susceptance) arcs are seen in the lower

half. The Smith chart in conjunction with equation (5.2.5) facilitates the analysis and

design of transmission line circuits.

Example 5.14

A load impedance of 1002 j50V terminates a 50V lossless quarter-wavelength-

long transmission line. Find the impedance at its input end, the load reflection

coefficient, and the VSWR on this transmission line.

This problem can be solved using (5.2.4) through (5.2.7) or the Smith chart.

The former method proceeds as follows:

b‘ ¼ 2p

l
� l
4
¼ p

2
¼ 908,

Zin ¼ Zo
ZL þ jZo tan(b‘)

Zo þ jZL tan(b‘)
¼ 50

(100� j50)þ j50 tan(908)
50þ j(100� j50) tan(908)

,

or

Zin ¼ 50
j50

j(100� j50)
¼ 2500

100� j50
¼ 20þ j10V:

Further

GL ¼ ZL � Zo

ZL þ Zo
¼ 100� j50� 50

100� j50þ 50
¼ 50� j50

150� j50
¼ 0:4472/�26:56518
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and

VSWR ¼ 1þ Gj j
1� Gj j ¼

1þ 0:4472

1� 0:4472
¼ 2:618:

To solve this problem graphically using the Smith chart, the normalized load

impedance is determined as follows:

ZL ¼ ZL

Zo
¼ 100� j50

50
¼ 2� j1:

This point is located on the Smith chart as shown in Figure 5.14. A circle that

passes through 22 j1 is then drawn with point 1þ j0 as its center. Since the

radius of the Smith chart represents unity magnitude, the radius of this circle is

equal to the magnitude of the reflection coefficient rL. In other words, the normal-

ized radius of this circle (i.e., the radius of this circle divided by the radius of the

Smith chart) is equal to rL. Note that a clockwise movement on this circle corres-

ponds to a movement away from the load on the transmission line. Hence a point

d meters away from the load is located at 22bd on the chart. Therefore the input

Figure 5.14 Solution to Example 5.14 using a Smith chart.
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port of the line that is a quarter-wavelength away from the load (i.e., d ¼ l/4)
can be located on this circle after moving by 2p to a point at 0.037l on “wave-

lengths toward generator” scale.

From the Smith chart, VSWR ¼ 2:6, GL ¼ 0:45/�26:58, and Z in ¼ 0:4þ
j0:2. Therefore

Zin ¼ (0:4þ j0:2) � 50 ¼ 20þ j10 V:

Example 5.15

A 50 V lossless transmission line is terminates in 1002 j100 V. Using the Smith

chart, find (a) GL, (b) VSWR, (c) Zin at a distance of 0.125l from the load, (d) the

shortest length of the line for which impedance is purely resistive, and (e) the

value of this resistance.

ZL ¼ 100� j100

50
¼ 2� j2:

After locating this normalized impedance point on the Smith chart, the constant

VSWR circle is drawn as shown in Figure 5.15.

Figure 5.15 Solution to Example 5.15 using a Smith chart.
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(a) The magnitude of the reflection coefficient is equal to the radius of the

VSWR circle (with the radius of the Smith chart as unity). The angle

made by the radial line that connects the load impedance point with the

center of the chart is equal to the phase angle of reflection coefficient. Hence

GL ¼ 0:62/�308:

(b) VSWR is found to be 4.25 from the scale reading for the point where the

circle intersects the þGr-axis.

(c) For d ¼ 0.125l, 22bd ¼ 21.5708 radians ¼ 2908 (clockwise from the

load). This point is located after moving on the VSWR circle by 0.125l
from the load (at 0.417l on “wavelengths toward generator” scale). The cor-

responding normalized impedance is found to be 0.312 j0.55. Therefore

Zin(‘ ¼ 0:125l) ¼ (0:31� j0:55) ¼ 15:5� j27:5V:

(d) While moving clockwise from the load point, the VSWR circle crosses the

Gr-axis for the first time at 0.5l. The imaginary part of the impedance is

zero at this intersection point. Therefore d ¼ (0.52 0.292)l ¼ 0.208l.
The normalized impedance at this point is 0.23. The next point on the

transmission line where the impedance is purely real occurs a quarter-

wavelength from it (i.e., 0.458l from load). The normalized impedance at

this point is 4.5.

(e) Since normalized resistance at this point is 0.23,

R ¼ 0:23 � 50 ¼ 11:5V:

Example 5.16

A 50 V lossless transmission line is terminated by 50þ j50 V. Find the location

of the first Vmax, first Vmin, and the VSWR if the operating wavelength is 10 cm.

ZL ¼ 50þ j50

50
¼ 1þ j1:

As shown in Figure 5.16, this point is located on the Smith chart and the

VSWR circle is drawn. From the chart, VSWR ¼ 2.6. The scale reading on the

“wavelengths toward generator” is 0.162l at the load point. As one moves

away from this point clockwise (toward generator) on this VSWR circle, the vol-

tage maximum is found first at 0.25l and then a minimum at 0.5l. If the first

voltage maximum is at dmax from the load, then dmax ¼ (0.252 0.162)l ¼
0.088l ¼ 0.88 cm from the load.
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The first minimum is a quarter-wavelength away from the point of voltage

maximum. Hence dmin ¼ (0.52 0.162)l ¼ 0.338l ¼ 3.38 cm.

Example 5.17

A 100V lossless transmission line is terminated by a 200V load. Find impedance

at points 1.65l and 4.25l from the termination.

ZL ¼ 200

100
¼ 2:

As illustrated in Figure 5.17, this point is located on the Smith chart and the

VSWR circle is drawn. Note that the VSWR on this line is 2 and the load reflec-

tion coefficient is about 0.33/08. As we move on the transmission line toward the

generator, the phase angle of the reflection coefficient changes by22bd, where d
is the distance away from the load. Hence one revolution around the VSWR circle

is completed for every half-wavelength. Therefore the normalized impedance

will be 2 at every integer multiple of a half-wavelength from the load. It will

be true for a point located at 1.5l as well as at 4.0l. For the remaining 0.15l,

Figure 5.16 Solution to Example 5.16 using a Smith chart.
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the impedance point is located on the VSWR circle at 0.40l (i.e., 0.25lþ 0.15l)
on the “wavelengths toward generator” scale. Similarly the point corresponding

to 4.25l from the load is found at 0.5l.
From the Smith chart, the normalized impedance at 1.65l is 0.682 j0.48,

while it is 0.5 at 4.25l. Therefore, for impedance at 1.65l,

Z1 ¼ (0:68� j0:48) � 100 ¼ 68� j48V,

and for impedance at 4.25l,

Z2 ¼ (0:5) � 100 ¼ 50V:

Example 5.18

A 50V lossless transmission line is terminated by 52 j5 mS load. Find the impe-

dance at a point 2.65l away from load and the VSWR on this line.

YL ¼ YL

Yo
¼ YL � Zo ¼ 0:25� j0:25:

Figure 5.17 Solution to Example 5.17 using a Smith chart.
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As before, this normalized admittance point is located on the Smith chart and the

VSWR circle is drawn. It is shown in Figure 5.18. There are two choices available

at this point. The given normalized load admittance is converted to the corres-

ponding impedance by moving to a point on the diametrically opposite side of

the VSWR circle. It shows a normalized load impedance 2þ j2. Moving from

this point by 2.65l toward the generator, the normalized impedance is found

as 0.552 j1.1. Alternately, we can first move from the normalized admittance

point by 2.65l toward the generator to a normalized admittance point

0.37þ j0.75. This is then converted to the normalized impedance by moving

to the diametric opposite point on the VSWR circle.

Thus the normalized impedance at a point 2.65l away from the load is

0.552 j1.1. The impedance at this point is (0.552 j1.1) . 50 ¼ 27.52 j55 V,

and the VSWR is approximately 4.25.

Example 5.19

An experiment is performed using the circuit shown in Figure 5.19. First, a load

ZL is connected at the end of a 50 V transmission line and its VSWR is found to

be 1.8. After that, the detector probe is placed at one of the minimums on the line.

Figure 5.18 Solution to Example 5.18 using a Smith chart.
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It is found that this minimum shifts toward the load by 9 cm when the load is

replaced by a short circuit. Further two consecutive minimums are found to be

30 cm apart. Determine the load impedance.

Since the separation between consecutive minimums is 30 cm, the signal wave-

length on the line is 60 cm. Therefore the first minimum of the standing wave pat-

tern occurs at 0.15l from the load. Further the VSWR on the line is measured to be

1.8. This circle is drawn on the Smith chart as shown in Figure 5.20. As discussed

Figure 5.19 Experimental setup used in Example 5.19.

Figure 5.20 Solution to Example 5.19 using a Smith chart.
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earlier, a minimum in a voltage standing wave occurs when the phase angle of the

reflection coefficient is 1808. It is located on the Smith chart at a point where the

VSWR circle intersects the 2Gr-axis. From this point we move toward the load

by 0.15l (i.e., counterclockwise) to locate the normalized load impedance point.

It is found to be 1.022 j0.6.

Therefore,

ZL ¼ (1:02� j0:6) � 50 ¼ 51� j30V:

5.4 TRANSIENTS ON TRANSMISSION LINES

We have analyzed the propagation characteristics of sinusoidal signals on the trans-

mission line. This study was simplified by phasor representations of these signals.

As was mentioned earlier, nonsinusoidal signals can be represented by an appropri-

ate sum of sinusoidal signals using a Fourier analysis. Therefore the preceding

results can be applied to a variety of cases. We discuss analyzing nonsinusoidal

signal characteristics directly in the time domain in this section. However, to sim-

plify the analysis, we assume that the transmission line is ideal. We begin our

study with the propagation of narrow pulse signals on a lossless transmission line.

The excitation of a finite length transmission line with resistive terminations by

step voltages is considered next. The section ends with a step-voltage excitation

of a transmission line terminated by a reactive element.

Pulse Excitation of Transmission Line

Consider an ideal transmission line terminated by RL, as shown in Figure 5.21a. A

voltage source with internal resistance Rs is connected at its input end. The charac-

teristic impedance of the line is assumed to be Zo. Recall that the term “impedance”

is defined for sinusoidal signals when we use phasor representation. In time-

domain analysis all quantities must be real. Since the line is lossless, its characteristic

impedance is a real numberZo, and its use can safely follow the preceding convention.

The transmission line’s length is l and the wave velocity acting on it is v.

Figure 5.21 (a) An ideal transmission line with source and termination and (b) a narrow

pulse.
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Assume that a source excites the transmission line with a narrow pulse, as shown

in Figure 5.21b. As indicated, the pulse-width is very much narrower than the time it

takes to travel from one end of the line to the other. Since the pulse is unaware of the

termination, it sees an infinite length to begin with. Therefore voltage Vin and current

Iin at z ¼ 0 are found to be

Vin ¼ Zo

Zo þ Rs

Vs (5:4:1)

and

Iin ¼ Vs

Zo þ Rs

: (5:4:2)

This signal travels over the transmission line with velocity v and reaches the load RL

after t ¼ l/v seconds. It sees the discontinuity at this point, and therefore a part of

the pulse is reflected back. The reflection coefficient GL can be easily found as

follows:

GL ¼ RL � Zo

RL þ Zo
: (5:4:3)

The reflected pulse with its voltage and current Vref ¼ GLVin and Iref ¼ 2GLIin,

respectively, now propagates toward the source. The reflected pulse arrives at

z ¼ 0 after a time t where a part of it is again reflected toward the load because

of the change in impedance from Zo to Rs. The reflection coefficient Gs for this

signal is found to be

Gs ¼ Rs � Zo

Rs þ Zo
: (5:4:4)

This process of the pulse bouncing back and forth continues indefinitely. Note that

the reflection coefficients are fractional numbers, and therefore the pulse’s ampli-

tude goes down with each reflection. A graphical representation helps track this

bouncing pulse, as shown in Figure 5.22. This diagram is called a bounce (or

reflection) diagram. It can be used to find voltage at any point on a line as a func-

tion of time. For example, the bounce diagram shows that three pulses pass

through z ¼ l/2 point with amplitudes Vin, GLVin, and GsGLVin, respectively,

during 0 , t , 3t.

Example 5.20

For the circuit shown in Figure 5.21, assume that RL ¼ 25 V, Rs ¼ 40 V, and

Zo ¼ 50 V. The transmission line is 4 m long and the wave velocity on it is

2 . 108 m/s. If the source excites a narrow pulse of 5 V at t ¼ 0, plot the voltage
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and the current at z ¼ 1 m as functions of time over first 50 ns.

Vin ¼ Zo

Zo þ Rs

Vs ¼ 50

50þ 40
5 ¼ 2:7778V,

Iin ¼ Vs

Zo þ Rs

¼ 5

50þ 40
¼ 1

18
A ¼ 55:6mA,

GL ¼ RL � Zo

RL þ Zo
¼ 25� 50

25þ 50
¼ � 1

3
,

Gs ¼ Rs � Zo

Rs þ Zo
¼ 40� 50

40þ 50
¼ � 1

9
,

and

t ¼ ‘

v
¼ 4

2 � 108 s ¼ 20 ns:

Therefore Vin reaches z ¼ 1 m in 5 ns, and the pulse after reflecting from the load

arrives at this point in another 30 ns. The pulse is reflected back by Rs and arrives

in another 10 ns. These three pulses take 45 ns. Next the reflection from the load

takes another 30 ns, and therefore it is out of the duration of 50 ns. The various

pulses are illustrated in Figure 5.23.

Figure 5.22 Bounce diagram for a transmission line circuit.
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Example 5.21

Reconsider the transmission line circuit of Example 5.4. Using time-domain

analysis, show that the quarter-wavelength transformer indeed matches the

1.8 kV load with a 200 V line.

Assume that a sinusoidal signal of unit magnitude is incident at the 600V line

at z ¼ 0. The reflection and transmission coefficients at this junction are

G1 ¼ 600� 200

600þ 200
¼ 0:5

and

T1 ¼ Vin ¼ 1þ G1 ¼ 1:5:

Vin propagates over the l/4 section and hits the 1.8 kV load where it is partly

reflected back with a reflection coefficient GL. The reflected signal bounces

back and forth as shown in Figure 5.24b. This signal has a reflection coefficient

Gs at z ¼ 0. The reflection coefficients are

GL ¼ 1800� 600

1800þ 600
¼ 0:5

and

Gs ¼ �G1 ¼ 200� 600

200þ 600
¼ �0:5:

Note that unlike the pulse signal of the previous example, it is a continuous

sinusoidal signal. Therefore all components at a point on the line need to be

Figure 5.23 Voltage and current pulses on the transmission line of Example 5.20.
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summed up in order to find total voltage. Also the signal is delayed by p for each

round trip over the l/4 section. Thus the total reflected signal into the 200 V line

is found to be

Vref ¼ G1 � VinGL(1þ Gs)þ VinG
2
LGs(1þ Gs)� VinG

3
LG

2
s (1þ Gs)þ � � � ,

or

Vref ¼ G1 � VinGL(1þ Gs)½1� GLGs þ G2
LG

2
s � G3

LG
3
s þ � � ��

¼ G1 � VinGL(1þ Gs) � 1

1þ GLGs

:

Therefore

Vref ¼ G1 � VinGL(1þ Gs)

1þ GLGs

¼ 0:5� 1:5 � 0:5 � (1� 0:5)

1þ 0:5 � (�0:5)
¼ 0:5� 1:5 � 0:25

0:75
¼ 0:

As expected, the signal reflected back into 200 V line is zero.

Transients on Transmission Line with Resistive Termination

Consider a transmission line of length l terminated by RL, as shown in Figure 5.25.

The line is excited by a dc source Vs with its internal resistance Rs when the switch

closes at t ¼ 0. Since electrical signal is not aware of the condition at z ¼ l at this

Figure 5.24 Circuit arrangement (a) and bounce diagram (b) for Example 5.21.
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point, a forward traveling step signal Vin is introduced at z ¼ 0. The voltage Vin and

the current Iin are found to be

Vin ¼ Zo

Rs þ Zo
Vs (5:4:5)

and

Iin ¼ Vs

Rs þ Zo
: (5:4:6)

The signal arrives at z ¼ l after a time t ¼ l/v, where v is signal velocity on the

line. Since the load is different from Zo, the reflected voltage Vref is sent toward the

source. Therefore the following condition must be true at this point:

Vin þ Vref ¼ RL(Iin þ Iref ) ¼ RL

Zo
(Vin � Vref) ! Vref ¼ RL � Zo

RL þ Zo
Vin

Vref ¼ GLVin: (5:4:7)

Note that the reflected current due to Vref is2Vref/Zo. At t ¼ 2t, it is reflected again
because the source resistance is different from Zo. Therefore the total voltage at

z ¼ 0 is now Vinþ VrefþV1
in, which should meet the following condition:

Vs � (Vin þ Vref þ V1
in)

Rs

¼ Vin � Vref þ V1
in

Zo
! V1

ref ¼
Rs � Zo

Rs þ Zo
V1
in

V1
ref ¼ GsV

1
in: (5:4:8)

The signal keeps bouncing back and forth at every t until steady state is reached. The
reflection diagram of Figure 5.22 holds for this situation as well if we sum all the

terms up to the desired time. In steady state, voltage Vline will be given as follows:

Vline ¼ RL

Rs þ RL

Vs: (5:4:9)

Figure 5.25 Step voltage excitation of a terminated line.
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These results can be verified easily after adding all the bouncing terms of

Figure 5.22. For t ¼ 1, we have the following infinite series.

V ¼ Vin(1þ GL)½1þ GsGL þ G2
sG

2
L þ G3

sG
3
L þ G4

sG
4
L þ G5

sG
5 þ � � ��

¼ Vin(1þ GL)

1� GsGL

: (5:4:10)

Substituting for Gs and GL reduces the equation to (5.4.9).

Transients on Transmission Line with Reactive Termination

Consider a transmission line of length l and characteristic impedance Zo that is ter-

minated with a capacitor C, as shown in Figure 5.26a. For simplicity we assume that

the source is matched with the line (i.e., Rs ¼ Zo). As before, when the switch is

closed at t ¼ 0, Vin and Iin at z ¼ 0 are found from (5.4.5) and (5.4.6) as follows:

Vin ¼ Vs

2
(5:4:11)

and

Iin ¼ Vs

2Zo
: (5:4:12)

This forward-traveling step signal reaches at z ¼ l in time t ¼ l/v. Since there is
a capacitor terminating the line, reflection takes place. Assume that the capacitor has

no charge initially, and Vref is the reflected voltage. Therefore the total voltage on the

line for 0 , t , t is Vin, and the voltage appearing across the capacitor at t ¼ t is
VL ¼ Vinþ Vref. A Thevenin equivalent can be found for t ¼ t, as shown in

Figure 5.26b. The Thevenin voltage VTh is found to be 2Vin ¼ Vs and ZTh ¼ Zo.

Figure 5.26 (a) Transient on a transmission line with capacitive termination and (b) the

Thevenin equivalent at z ¼ l.
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This circuit can now be analyzed by the usual approach as follows:

C
dVL

dt
¼ Vs � VL

Zo
! dVL

dt
þ 1

ZoC
VL ¼ 1

ZoC
Vs: (5:4:13)

Equation (5.4.13) can be solved via usual mathematical methods, such as the

Laplace transforms, as follows:

VL ¼ (1� 2e�(t�t)=zoC)Vs: (5:4:14)

Therefore the reflected voltage Vref at the load is found to be

Vref ¼ VL � Vin ¼ (1� e� (t�t)=zoC)Vs � Vs

2
¼ Vs

2
(1� 2e�(t�t)=ZoC): (5:4:15)

The Vref propagates toward the source for t , t , 2t and is absorbed by the source

impedance. Remember that the source is matched with the line, so no further reflec-

tion takes place. A similar analysis can be carried out for an inductive termination.

PROBLEMS

5.1. The inner and outer conductor diameters of a Teflon-filled (1r ¼ 3.3) coaxial

line are given as follows: 2a ¼ 0.028 inch and 2b ¼ 0.182 inch. Find its

characteristic impedance if the operating frequency is such that vL � R

and vC � G.

5.2. A telephone line has the following parameters: R ¼ 23 ohm/mile, G ¼ 0.02

pS/mile, L ¼ 3.2 mH/mile, and C ¼ 0.01 mF/mile For the operating fre-

quency of 800 kHz, calculate its characteristic impedance Zo and the

Figure 5.27 (a) Reflected voltage Vref (t) at t ¼ t and (b) total voltage V(z) for t , t , 2t.
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propagation constant g. If its characteristic impedance terminates the line and

the input voltage is 4.8 V /08, find total voltage at 25 miles from its input.

5.3. An infinitely long lossless 75V transmission line is connected to a signal gen-

erator with an open-circuit voltage v(t) ¼ cos(2p . 109t) V. The generator has

an internal resistance of 50 V. If the signal propagates with a velocity of

1.5 . 108 m/s on the line, find instantaneous voltage and current at an arbitrary
location on the line.

5.4. A lossless transmission line of lengthd and characteristic impedanceZo is used as

an impedance transformer to match a 1.2 kV load to a 50 V line. If the signal

wavelength is 5.7m, find (a) d, (b)Zo, and (c) the reflection coefficient at the load.

5.5. A 75 V outdoor antenna is being used to receive a 95 MHz FM signal. If the

receiving circuit uses a 50 V line, design a quarter-wavelength transformer to

match the antenna with this transmission line. Assume that the transformer is

made from a Teflon-filled (1r ¼ 2.1) coaxial line to calculate its length (in

cm). Also determine the diameter of its inner conductor if the inner diameter

of the outer conductor is 6.5 mm.

5.6. A 100 km long telephone line is terminated by 25þ j75V load. The line para-

meters are as follows: R ¼ 1.5V/km, G ¼ 150 nS/km, L ¼ 6.2 mH/km, and

C ¼ 9 nF/km. If this line is being used at 3 kHz, find its (a) characteristic

impedance Zo, (b) propagation constant g, and (c) input impedance Zin.

5.7. A radio-frequency filter exhibits 50V at its input as well as at its output. If it is

inserted in a 75 V system, find the filter’s insertion loss.

5.8. A signal attenuates by 0.015 dB for each meter traveled on a 50 V distortion-

less transmission line. If this line has a capacitance of 65 pF per meter, find (a)

R, (b) L, (c) G, and (d) vp.

5.9. A load ZL is connected at one end of the transmission line and its input impe-

dance is measured using an impedance bridge that gives Zin ¼ 40þ j50 V.

The experiment is repeated twice, with the load replaced first by a short circuit

and then by an open circuit. The data are recorded as j20 V and 2j150 V, res-

pectively. Find the characteristic resistance of this line and the load impedance.

5.10. Measurements are made on a 1.5 m long transmission line using an impedance

bridge. After short-circuiting at one of its ends, the impedance at the other end

is found to be j130 V. Repeating the experiment with the short circuit now

replaced by an open circuit gives2j61V. Determine the propagation constant

and the characteristic impedance of this line.

5.11. A 2 m long 50 V lossless transmission line is terminated by 100þ j50 V. The

circuit is driven by a 6.3662 MHz signal generator with its open-circuit vol-

tage 100 V /08 and the internal impedance 50 V. If the propagating signal

has a phase velocity of 100 m/mS, find the impedance at its input end and

the phasor voltages at both its ends.
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5.12. A 50 V transmission line is terminated by a 752 j25 V load. Find the load

reflection coefficient and the voltage standing wave ratio on this line.

5.13. A 75 V transmission line is used to feed a transmitting antenna. In order to

find the antenna impedance ZL, measurements are conducted using a slotted

line. It is found that it has a VSWR of 1.4 and the standing wave minimums

are 2.3 cm apart. The scale reading at one of these minimums is found to be

3.25 cm. When the antenna is replaced by a short circuit, the minimum moves

away from the generator to a point where the scale shows 2.92 cm. Determine

the signal wavelength and the load impedance.

5.14. A load impedance of 100þ j50 V terminates a 50 V lossless quarter-

wavelength-long transmission line. Find the impedance at its input end,

the load reflection coefficient, and the VSWR on this transmission line.

5.15. A 50 V lossless transmission line is terminates in 100þ j100 V. Using the

Smith chart, find (a) GL, (b) VSWR, (c) Zin at a distance of 0.125l from the

load, (d) the shortest length of the line for which impedance is purely resistive,

and (e) the value of this resistance.

5.16. A 75 V lossless transmission line is terminated by 752 j75 V. Find the

location of the first Vmax, first Vmin, and the VSWR, if the operating wave-

length is 15 cm.

5.17. A 50 V lossless transmission line is terminated by a 150 V load. Find the

impedance at points 1.65l and 4.25l from the termination.

5.18. A 50 V lossless transmission line is terminated by 5þ j5 mS load. Find the

impedance at a point 3.15l away from load and the VSWR on this line.

5.19. An experiment is performed using the circuit shown in Figure 5.19. First, a

load ZL is connected at the end of a 50 V transmission line, and its VSWR

is found to be 1.45. After that, the detector probe is placed at one of the

minimums on the line. It is found that this minimum shifts toward the

load by 6.5 cm when the load is replaced by a short circuit. Further two

consecutive minimums are found to be 24 cm apart. Determine the load

impedance.

5.20. For the circuit shown in Figure 5.21, assume that RL ¼ 15 V, Rs ¼ 50 V, and

Zo ¼ 75 V. The transmission line is 1 m long and the wave velocity on it is

2 . 108 m/s. If the source excites a narrow pulse of 1 V at t ¼ 0, plot the

voltage and the current at z ¼ 50 cm as functions of time over first 50 ns.

5.21. Consider the transmission line circuit of Problem 5.4. Using time-domain

analysis, show that the quarter-wavelength transformer indeed matches the

1.2 kV load with a 50 V line.

5.22. A given transmission line has the following parameters: Zo ¼ 120/288 V,

a ¼ 2 . 1026 dB/m, vp ¼ 1.8 . 108 m/s, and f ¼ 2.0 MHz. Find the phasor

V(z) and I(z), and the corresponding instantaneous values for a wave traveling
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in the z direction, if maximum value of the current wave at z ¼ 0 is 3 mA and

it has maximum positive value with respect to time at t ¼ 0.

5.23. Determine the characteristic impedance and the phase velocity of a 25 cm

long lossless transmission line from the following experimental data:

Zsc ¼ 2j78 V, Zoc ¼ j48 V, and f ¼ 900 MHz. Assume that the line’s

length is smaller than l/2.

5.24. A 17.5 m long lossless transmission line with Zo ¼ 50 V, is short-circuited at

one end, and a voltage source Vs ¼ 2 cos(50p . 106t2 p/6) V is connected at

its input terminals. If the source impedance is 50 V and the phase velocity on

the line is 2 . 108m/s, find the total currents at its input and through the short

circuit.
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6
MODIFIED MAXWELL’S
EQUATIONS AND POTENTIAL
FUNCTIONS

This chapter beginswith the concepts ofmagnetic charge andmagnetic current. Vector

and scalar potential functions are introduced. Also wave functions in rectangular,

cylindrical, and spherical coordinates are presented in order to construct solutions in

the various orthogonal coordinates. The discussion includes brief descriptions of

Bessel functions, Hankel functions, and Legendre functions. Solutions are constructed

for a few simple problems.

6.1 MAGNETIC CHARGE AND CURRENT

Recall equation (3.2.4). It implies that unlike the electric flux there is no possibility

of net magnetic flux leaving or entering a closed surface. This is due to the fact that

the magnetic charges (north and south poles) do not exist independently. If we break

a magnet, each piece will still have both north and south poles. In other words, mag-

netic monopoles do not exist. The smallest unit of a magnetic source is a magnetic

dipole, which is actually an infinitesimal current loop.

Consider a general case where the source consists of two types of currents—a

linear current that flows or oscillates in linear direction and a circulatory current

that flows or oscillates around an infinitesimal loop. For this case it is rather hard

to mathematically describe the electric current density ~J that includes both parts.

Mathematically it is sometimes advantageous to recognize the electric current’s

linear part as ~Je and imagine its infinitesimal circulatory current as an equivalent
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magnetic dipole source. If the circulatory current varies in magnitude and direction

or oscillates around the loop with time, the equivalent magnetic dipole strength

oscillates with time likewise. When the magnetic dipole oscillates with time, it

can be considered an imaginary magnetic current flowing up and down. This is com-

pletely analogous to a time-varying electric dipole. Therefore an equivalent mag-

netic current density ~Jm and a charge density rm can represent a time-varying

circulatory current.

Imagine now that themagnetic charge rmproduces amagnetic flux, analogous to the

electric charge re producing the electric flux. Then (3.2.4) should be modified to

r � ~B ¼ rm:

If (3.2.4) ismodified, then (3.2.1) also needs a correction because divergence of the curl

of a vector is always zero. However, it is not true here because rm is a function of time,

which can be found as follows:

r � (r� ~E) ¼ �r � @ ~B

@t

 !
¼ � @

@t
(r � ~B ) ¼ � @

@t
rm=0:

If it is assumed that the usual continuity equation should hold between rm and ~Jm, then

r � ~Jm ¼ � @rm
@t

:

Hence equation (3.2.1) should be modified to

r� ~E ¼ � ~Jm � @ ~B

@t
:

Therefore the modified Maxwell equations for a time-harmonic field and the two

continuity equations can be expressed as follows:

r� ~E(~r ) ¼ �~Jm(~r )� jv ~B(~r ), (6:1:1)

r� ~H(~r ) ¼ ~Je(~r )þ jv ~D(~r ), (6:1:2)

r � ~D(~r ) ¼ re(~r ), (6:1:3)

r � ~B(~r ) ¼ rm(~r ), (6:1:4)

r � ~Je(~r ) ¼ �jvre(~r ), (6:1:5)

and

r � ~Jm(~r ) ¼ �jvrm(~r ): (6:1:6)
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6.2 MAGNETIC VECTOR AND ELECTRIC SCALAR

POTENTIALS

Potential functions are introduced to transformMaxwell’s equations mathematically

and facilitate solutions to electromagnetic problems.

Suppose that there are only electric sources (current and charge) present in a

volume under consideration (i.e., ~Je = 0, re = 0, ~Jm ¼ 0, and rm ¼ 0). Therefore

Maxwell’s equations for time-harmonic fields and the equation of continuity can be

written as follows:

r � ~E ¼ �jv ~B, (6:2:1)

r � ~H ¼ ~Je þ jv ~D, (6:2:2)

r � ~D ¼ re, (6:2:3)

r � ~B ¼ 0, (6:2:4)

and

r � ~Je ¼ �jvre: (6:2:5)

As defined earlier, the constitutive relations are

~B ¼ m ~H (6:2:6)

and

~D ¼ 1 ~E: (6:2:7)

Since the divergence of the curl of a vector is always zero, the magnetic flux density

in (6.2.4) can be assumed to be the curl of vector ~A. Hence

r � ~B ¼ 0 ) ~B ¼ r� ~A: (6:2:8)

Substituting ~B from (6.2.8) into (6.2.1), and recognizing the fact that the curl of a

gradient of a scalar is always zero, gives

r � ~E ¼ �jvr � ~A ) r� { ~E þ jv ~A} ¼ 0 ) ~E þ jv ~A ¼ �rfe:

Therefore

~E ¼ �rfe � jv ~A, (6:2:9)

where ~A is called the magnetic vector potential and fe the electric scalar potential.

Combining (6.2.6), (6.2.7), and (6.2.9), we can rewrite (6.2.2) as follows:

r � r � ~A

m

( )
¼ ~Je þ jv1 ~E ¼ ~Je þ jv1{�rfe�jv ~A}:
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If m is not changing with the space coordinates, this relation further simplifies to

r � r � ~A ¼ r(r � ~A)� r2 ~A ¼ m ~Je � jv1mrfe þ v2m1 ~A

or

r2 ~Aþ v2m1 ~A ¼ �m~Je þ jv1mrfe þ r(r � ~A )

or

r2 ~Aþ v2m1 ~A ¼ �m ~Je þ r{r � ~Aþ jv1mfe}: (6:2:10)

Similarly, for 1 not changing with space coordinates, (6.2.3), (6.2.7), and (6.2.9) give

r � {�rfe�jv ~A} ¼ re
1

! r2fe þ jv(r � ~A) ¼ � re
1
: (6:2:11)

Equations (6.2.10) and (6.2.11) represent a pair of coupled partial differential

equations for f and ~A. These equations can be uncoupled via Helmholtz’s theorem,

which states that a vector is completely specified by its curl and divergence. Since

only the curl of ~A is defined via (6.2.8), we are at liberty to specify its divergence.

The Lorentz condition may be used to define it as follows:

r � ~A ¼ �jv1mfe: (6:2:12)

Thus (6.2.10) and (6.2.11) simplify to

r 2 ~Aþ k 2 ~A ¼ �m ~Je: (6:2:13)

and

r2fe þ k2fe ¼ � re
1
, (6:2:14)

where

k 2 ¼ v2m1 (6:2:15)

and k is the wave number. Equation (6.2.13) represents a vector Helmholtz equation,

whereas (6.2.14) a scalar Helmholtz equation.

Note that (6.2.8) and (6.2.9) include the interdependence of time-varying electric

and magnetic fields. As v ! 0, the two fields become independent of each other.

In this case (6.2.8) still holds, whereas (6.2.9) reduces to

~E ¼ �rfe: (6:2:16)

Further (6.2.13) and (6.2.14) reduce to

r2 ~A ¼ �m ~Je (6:2:17)
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and

r2fe ¼ � re
1
: (6:2:18)

This is the well-known Poisson equation, which reduces to the Laplace’s equation

for the source-free case.

6.3 ELECTRIC VECTOR AND MAGNETIC

SCALAR POTENTIALS

The electric vector and magnetic scalar potentials are introduced when the presence

of only a magnetic current and a magnetic charge is assumed in a region (i.e., re ¼ 0

and ~Je ¼ 0). Maxwell’s equations and the equation of continuity for this case are

found to be

r � ~E ¼ �~Jm � jv ~B, (6:3:1)

r � ~H ¼ jv ~D, (6:3:2)

r � ~D ¼ 0, (6:3:3)

r � ~B ¼ rm, (6:3:4)

and

r � ~Jm ¼ �jvrm: (6:3:5)

As before, ~D ¼ 1 ~E, and ~B ¼ m ~H. Because of (6.3.3) it is assumed that

~D ¼ �r � ~F, (6:3:6)

where ~F is called the electric vector potential.

After substituting (6.3.6) into (6.3.2) and noting that curl of the gradient of a

scalar is always zero, we get

r � ~H ¼ �jvr � ~F ! r� { ~H þ jv ~F} ¼ 0 ! ~H þ jv ~F ¼ �rfm:

Therefore

~H ¼ �rfm � jv ~F, (6:3:7)

where fm is called the magnetic scalar potential. Now from (6.3.1), (6.3.6), and

(6.3.7) we have

r � �r� ~F

1

( )
¼ �~Jm � jvm{�rfm�jv ~F},
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or

�r� r� ~F ¼ �1~Jm þ jvm1rfm � v2m1 ~F,

or

�{r(r � ~F)� r2 ~F}þ v2m1 ~F ¼ �1~Jm þ jvm1rfm: (6:3:8)

As in the previous case, if the following Lorentz condition

r � ~F ¼ �jvm1fm (6:3:9)

is introduced, then (6.3.8) reduces to

r2 ~F þ v2m1 ~F ¼ �1 ~Jm: (6:3:10)

Further (6.3.4), (6.3.7), and (6.3.9) give

r � {m(�rfm � jv ~F )} ¼ rm ) �r2fm � jv{�jvm1fm} ¼ rm
m

or

r2fm þ v2m1fm ¼ � rm
m

: (6:3:11)

Note from (6.3.6) and (6.3.7) that interdependency of electric and magnetic fields

ceases as v ! 0. Simplified expressions similar to (6.2.16) through (6.2.18) can

be obtained for this case as well.

Any electromagnetic field problem can be divided into these two categories and

solved for each case; a complete solution is constructed after superimposing these

individual solutions. Thus the electromagnetic fields can be found easily after deter-

mining the vector potentials via (6.2.13) and (6.3.10) and the corresponding Lorentz

conditions. This procedure is used in the following sections to further formulate the

general solution techniques for source-free cases.

6.4 CONSTRUCTION OF A SOLUTION IN

RECTANGULAR COORDINATES

The analysis presented in the preceding sections is specialized here for a source-free

region with a rectangular coordinate system. It is further divided into two categories.

The electric vector potential is assumed to be zero in one, and the magnetic vector

potential is zero in the other case, which results in TMz (transverse magnetic to z)

and TEz (transverse electric to z) mode fields, respectively.
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For the transverse magnetic to z case, assume ~A ¼ ẑ Az and ~F ¼ 0. Then (6.2.8),

(6.2.9), and (6.2.12) give

~H ¼ 1

m
r � (ẑ Az) ¼ 1

m
x̂
@Az

@y
þ ŷ � @Az

@x

� �
þ ẑ0

� �
(6:4:1)

and

~E ¼ �jv ẑAz þ 1

jvm1
r @Az

@z

� �
: (6:4:2)

For this case equation (6.2.13) simplifies to,

r2Az þ k2Az ¼ 0 ! @2Az

@x2
þ @2Az

@y2
þ @2Az

@z2
þ k2Az ¼ 0: (6:4:3)

After (6.4.3) is solved for a given problem, the field components are found from

(6.4.1) and (6.4.2) as follows:

Hx ¼ 1

m

@Az

@y
, (6:4:4)

Hy ¼ � 1

m

@Az

@x
, (6:4:5)

Hz ¼ 0, (6:4:6)

Ex ¼ 1

jvm1

@2Az

@x@z
, (6:4:7)

Ey ¼ 1

jvm1

@2Az

@y@z
, (6:4:8)

and

Ez ¼ 1

jvm1

@2

@z2
þ k2

� �
Az: (6:4:9)

Since the magnetic fields are transverse to the z-axis (Hz ¼ 0), these fields are known

as TMz (transverse magnetic to z) mode fields.

For the transverse electric to z case, assume ~F ¼ ẑFz and ~A ¼ 0. Then (6.3.6) and

(6.3.7) give

~E ¼ � 1

1
r � (ẑFz) ¼ � 1

1
x̂
@Fz

@y
þ ŷ � @Fz

@x

� �
þ ẑ0

� �
(6:4:10)

6.4 CONSTRUCTION OF A SOLUTION IN RECTANGULAR COORDINATES 239



and

~H ¼ �jvẑ Fz þ 1

jvm1
r @Fz

@z

� �
: (6:4:11)

For this case equation (6.3.10) simplifies to

r2Fz þ k2Fz ¼ 0 ! @2Fz

@x2
þ @2Fz

@y2
þ @2Fz

@z2
þ k2Fz ¼ 0: (6:4:12)

After (6.4.12) is solved for a given problem, the field components are found from

(6.4.10) and (6.4.11) as follows:

Ex ¼ � 1

1

@Fz

@y
, (6:4:13)

Ey ¼ 1

1

@Fz

@x
, (6:4:14)

Ez ¼ 0, (6:4:15)

Hx ¼ 1

jvm1

@2Fz

@x@z
, (6:4:16)

Hy ¼ 1

jvm1

@2Fz

@y@z
, (6:4:17)

and

Hz ¼ 1

jvm1

@2

@z2
þ k2

� �
Fz: (6:4:18)

Since the electric fields are transverse to the z-axis in this case, these fields are

known as TEz (transverse electric to z) mode fields.

Note that similar formulations are possible for the TM and TE mode fields with

respect to the x- or y-axis. Alternatively, the rectangular coordinate system can be

rotated to match the TMz and TEz modes.

The Wave Functions

Since both (6.4.3) and (6.4.12) are similar, we consider the following partial differ-

ential equation, which is called a scalar Helmholtz equation:

@2w(x, y, z)

@x2
þ @2w(x, y, z)

@y2
þ @2w(x, y, z)

@z2
þ k2w(x, y, z) ¼ 0: (6:4:19)

Assume

w(x, y, z) ¼ h1(x)h2( y)h3(z): (6:4:20)
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In otherwords,we assume that solutions to (6.4.19) are the product of three functions of

one coordinate each and we use the method of separation of variables. Substituting

(6.4.20) into (6.4.19) and rearranging, we have

1

h1(x)

d2h1(x)

dx2
þ 1

h2(y)

d2h2(y)

dy2
þ 1

h3(z)

d2h3(z)

dz2
¼ �k2: (6:4:21)

Each term on the left-hand side of this equation depends on only one coordinate. Since

each can be changed independently and still the sum remains constant at2k 2, each of

these terms must remain constant independently. Therefore we conclude that

1

h1(x)

d2h1(x)

dx2
¼ �k2x , (6:4:22)

1

h2( y)

d2h2( y)

dy2
¼ �k2y , (6:4:23)

1

h3(z)

d2h3(z)

dz2
¼ �k2z , (6:4:24)

and

k2x þ k2y þ k2z ¼ k2, (6:4:25)

where kx, ky, and kz are arbitrary constants at this point thatwill be evaluated for specific

boundary conditions of the problem (the boundary-value problem). These specific

values are called eigenvalues or characteristic values and the corresponding solutions

are known as the eigenfunctions. Equation (6.4.25) is called the separation equation.

Equations (6.4.22) through (6.4.24) have a similar form. We considered this kind

of equation earlier in Chapters 4 and 5 where we have found that harmonic functions

satisfy this kind of equation. In other words, the solutions to (6.4.22) are

h1(x) ! e jkxx, e�jkxx, sinðkxxÞ, cosðkxxÞ: (6:4:26)

A linear sum of any two harmonic functions of (6.4.26) is a complete solution to

(6.4.22). The selection of some of these functions may simplify the analysis of a par-

ticular problem if the characteristics of the function are matched with the physical

situations, as listed in Table 6.1. Further the solutions to (6.4.23) and (6.4.24) can

be constructed by a similar process. Thus, using (6.4.20) and (6.4.22) through

(6.4.24), we can write the solution to (6.4.19) as follows:

we(x, y, z) ¼ h1(kxx) � h2(kyy) � h3(kzz): (6:4:27)
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Together, the preceding solutions are known as the elementary wave function.

Note that only two eigenvalues ki are independent, while the third eigenvalue has

to satisfy the separation equation. Since linear combinations of elementary wave

functions also satisfy (6.4.19), we can construct more general wave functions by

summing over one or two eigenvalues as follows:

w(x, y, z) ¼
X
kx

X
ky

Ckxkyh1(kxx) � h2(kyy) � h3(kzz): (6:4:28)

As was mentioned earlier, this formulation facilitates analysis of a large class of

problems in the rectangular coordinate system. We consider a few such applications

below. A number of other applications will be considered in later chapters.

Metallic Parallel-Plate Waveguide

Consider a parallel-plate waveguide that consists of two perfectly conductive plates

extending to infinity on the y-z plane, as illustrated in Figure 6.1. The separation

between the two plates is assumed to be a. There is an electromagnetic signal

that propagates along the z-axis. Therefore h3(kzz) ! e�jkzz. Further ky is zero for

@/@y ! 0, meaning the fields remain constant along the y-axis. Therefore the

separation equation (6.4.25) reduces to

k2x þ k2z ¼ k2: (6:4:29)

TABLE 6.1 Characteristics of the Harmonic Functions

h(kx) Special Cases of k ¼ b2 ja Physical Interpretation

cos(kx) † a ¼ 0 † Standing wave

† b ¼ 0 † Two evanescent fields

† a = 0 and b = 0 † Localized standing waves

sin(kx) † a ¼ 0 † Standing wave

† b ¼ 0 † Two evanescent fields

† a = 0 and b = 0 † Localized standing waves

e2jkx † a ¼ 0 † Traveling wave along þx

† b ¼ 0 † Evanescent field

† a = 0 and b = 0 † Attenuated traveling

wave along þx.

ejkx † a ¼ 0 † Traveling wave along 2x

† b ¼ 0 † Evanescent field

† a = 0 and b = 0 † Attenuated traveling

wave along 2x.
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For analyzing the TM modes between the two plates for the conditions specified,

the solution to (6.4.3) is determined after selecting an appropriate wave function

from (6.4.28) as follows:

Az ¼
X
kx

Ckxh1(kxx)e
�jkzz, (6:4:30)

where

h1(kxx) ¼ C1 cosðkxxÞ þ C2 sinðkxxÞ: (6:4:31)

Therefore (6.4.4) through (6.4.9) simplify to

Hx ¼ 1

m

@Az

@y
¼ 0, (6:4:32)

Hy ¼ � 1

m
½�C1kx sinðkxxÞ þ C2kx cosðkxxÞ�e�jkzz, (6:4:33)

Hz ¼ 0, (6:4:34)

Ex ¼ �jkzkx

jvm1
½�C1 sinðkxxÞ þ C2 cosðkxxÞ�e�jkzz, (6:4:35)

Ey ¼ 1

jvm1

@2Az

@y@z
¼ 0, (6:4:36)

and

Ez ¼ 1

jvm1
(�k2z þ k2)½C1 cosðkxxÞ þ C2 sinðkxxÞ�e�jkzz: (6:4:37)

Figure 6.1 Metallic parallel-plate waveguide.
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Since the boundary conditions require that the tangential electric fields be zero on

the conducting surfaces at x ¼ 0 and at x ¼ a, Ez must be zero on these surfaces.

Note that Ey is already zero according to (6.4.36), and Ex is normal to conducting

surfaces. Hence

Ez

��
x¼0
x¼a

¼ 0 !
C1 ¼ 0,

kx ¼ mp

a
, m ¼ 0, 1, 2, . . . :

8<
: (6:4:38)

Also (6.4.29) gives

k z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � mp

a

� �2r
: (6:4:39)

Therefore the signal will propagate without attenuation if k . mp=a, and it will

attenuate for k , mp=a. The cutoff occurs at k ¼ mp=a.
Next the field components (6.4.32) through (6.4.37) can be expressed as follows:

Hx ¼ 0, (6:4:40)

Hy ¼ �C2

m

mp

a
cos

mp

a
x

� �
e�jkzz, (6:4:41)

Hz ¼ 0, (6:4:42)

Ex ¼ C2

kz

vm1

mp

a
cos

mp

a
x

� �
e�jkzz, (6:4:43)

Ey ¼ 0, (6:4:44)

TABLE 6.2 Signal Propagation in Parallel-Plate Waveguides

TEm0 Modes TMm0 Modes

kc
mp

a

mp

a

kz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2c � k2o

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2c � k2o

p
Hz(x, z) � kc

jvm
Ho cosðkcxÞe�jkzz 0

Ez(x, z) 0 jEo

kc

v1
sinðkcaÞe�jkzz

Hx(x, z) � kz

vm
Ho sinðkcxÞe�jkzz 0

Hy(x, z) 0 Eo cosðkcxÞe�jkzz

Ex(x, z) 0
kz

v1
Eo cosðkcxÞe�jkzz

Ey(x, z) Ho sinðkcxÞe�jkzz 0
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and

Ez ¼ C2

jvm1

mp

a

� �2
sin

mp

a
x

� �
e�jkzz: (6:4:45)

These results are summarized in Table 6.2, assuming that�C2(kc=m) ¼ Eo. A simi-

lar procedure can be used to determine the characteristics of the TE mode fields

propagating through this waveguide. The final results are summarized in Table 6.2.

Example 6.1

A metallic parallel-plate waveguide is air-filled, and the separation between the

plates is 4.5 cm. Investigate the characteristics of a 12 GHz signal propagating in

the TMm0 modes.

kc ¼ mp

a
! lc ¼ 2p

kc
¼ 2a

m
¼ 2� 4:5� 10�2

m
meters

and

fc ¼ 3� 108

lc
¼ 3� 108 � m

9� 10�2
Hz ¼ 3:3333m GHz

Hence the cutoff frequencies for first four TM modes are found as follows:

TM10 ! fc ¼ 3.3333 GHz

TM20 ! fc ¼ 6.6667 GHz

TM30 ! fc ¼ 10 GHz

TM40 ! fc ¼ 13.3333 GHz

Since the cutoff frequency for TM40 mode is higher than the signal frequency of

12 GHz, only the TM10, TM20, and TM30 modes will exist for this signal. The

corresponding cutoff wavelengths are 9 cm, 4.5 cm, and 3 cm, respectively.

The signal wavelength inside the guide for each mode can be found as follows:

TM10 ! lg ¼ loffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� (lo=lc)

2
p ¼ 2:5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� (2:5=9)2
p cm ¼ 2:6024 cm;

TM20 ! lg ¼ loffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� (lo=lc)

2
p ¼ 2:5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� (2:5=4:5)2
p cm ¼ 3:0067 cm,

and

TM30 ! lg ¼ loffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� (lo=lc)

2
p ¼ 2:5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� (2:5=3)2
p cm ¼ 4:5227 cm:
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The Dielectric Slab Guide

As indicated in Chapter 4, nonconducting structures such as dielectric slabs and rods

can guide electromagnetic waves as well. Dielectric rods in the form of fibers are

commonly used at optical frequencies. Here we consider a slab as shown in

Figure 6.2 and analyze its waveguiding characteristics.

As in the preceding case we consider TMz and TEz modes of propagation in this

slab. Further we subdivide the wave functions in each case into even and odd along

the x-axis. Therefore h1(kxx) will be cos(kxx) for even modes and sin(kxx) for the odd

modes inside the slab. However, the fields must attenuate with x in the air regions.

Therefore kxo must be equal to 2jaxo. Assume that the signal is guided along the

z-axis and therefore h3(kzz) ! e�jkzz. Since the fields must satisfy the boundary con-

ditions for all z, h3(kzz) is the same in the dielectric as well as in air. Further ky is zero

for @=@y ! 0, meaning the fields remain constant along the y-axis. Therefore the

separation equations (6.4.25) for the dielectric and air regions are found to be

k2xd þ k2z ¼ k2d ¼ v2md1d (6:4:46)

and

�a2
xo þ k2z ¼ k2o ¼ v2mo1o: (6:4:47)

For odd TMz modes, Az in the dielectric and air is found to be

Ao
zd ¼ Cd sin(kxdx)e

�jkzz, jxj, a

2
(6:4:48)

and

Ao
zo ¼

Coe
�axoxe�jkzz, x .

a

2
,

�Coe
axoxe�jkzz, x ,

�a

2
:

8>><
>>: (6:4:49)

Figure 6.2 Dielectric slab in air.
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As we saw in (6.4.32) through (6.4.37), in (6.4.4) through (6.4.9) there are only

Hy, Ex, and Ez in the two media, and Ex is normal to the air–dielectric interfaces.

These field expressions simplify to

Hy ¼ �C

m

d

dx
h1(kxx)e

�jkzz, (6:4:50)

Ex ¼ � kz

vm1
C

d

dx
h1(kxx)e

�jkzz, (6:4:51)

and

Ez ¼ C

jvm1
(k2 � k2z )h1(kxx)e

�jkzz: (6:4:52)

Similarly the tangential fields for odd modes are found to be

Ez ¼

k2xd
jvmd1d

Cd sinðkxdxÞe�jkzz, jxj , a

2
,

� a2
xo

jvmo1o
Coe

�axoxe�jkzz, x .
a

2
,

a2
xo

jvmo1o
Coe

axoxe�jkzz, x ,
�a

2
,

8>>>>>>>>>><
>>>>>>>>>>:

(6:4:53)

and

Hy ¼
� kxd

md

Cd cosðkxd xÞe�jkzz, jxj , a

2
,

axo

mo

Coe
�axojxje�jkzz, jxj . a

2
:

8>>><
>>>:

(6:4:54)

The boundary conditions require continuity of tangential fields at x ¼ +a/2. By
the continuity of Hy, we have

� kxd

md

Cd cos
kxda

2

� �
¼ axo

mo

Coe
�axoa=2 (6:4:55)

Similarly, by continuity of Ez,

k2xd
jvmd1d

Cd sin
kxda

2

� �
¼ � a2

xo

jvmo1o
Coe

�axoa=2: (6:4:56)
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On dividing (6.4.56) by (6.4.55), we have

1o
1d

kxda

2
tan

kxda

2

� �
¼ axoa

2
: (6:4:57)

In case of even TMz modes, Az in the dielectric and the air can be found as

follows:

Ae
zd ¼ Cde cos (kxdx)e

�jkzz, jxj , a

2
(6:4:58)

and

Ao
zo ¼ Coee

�axojxje�jkzz, jxj . a

2
: (6:4:59)

The separation of parameter equations (6.4.46) and (6.4.47) still hold, and the fields

are given by equations (6.4.50) through (6.4.52). Following a procedure similar to

the preceding case, the continuity of the tangential fields is enforced at the bound-

aries, yielding

� 1o
1d

kxda

2
cot

kxda

2

� �
¼ axoa

2
: (6:4:60)

Similarly the nonzero TEz fields can be found from (6.4.12) through (6.4.18) as

follows:

Fz ¼ Ch1(kxx)e
�jkzz: (6:4:61)

Therefore

Ey ¼ C

1

d

dx
h1(kxx)e

�jkzz, (6:4:62)

Hx ¼ � C

vm1

d

dx
h1(kxx)e

�jkzz, (6:4:63)

and

Hz ¼ C

jvm1
(k2 � k2z )h1(kxx)e

�jkzz: (6:4:64)

After the boundary conditions are matched, the characteristic equations for the odd

and the even TEz modes, respectively, can be found:

mo

md

kxda

2
tan

kxda

2

� �
¼ axoa

2
(6:4:65)

and

mo

md

kxda

2
cot

kxda

2

� �
¼ axoa

2
: (6:4:66)
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Note that the propagation characteristics (and hence the field distributions) can be

found after evaluating kxd, kz, and axo via (6.4.46) and (6.4.47) along with

(6.4.57) for odd TMz, or (6.4.60) for even TMz, or (6.4.65) for odd TEz, or

(6.4.66) for even TEz modes. Thus (6.4.46) and (6.4.47) are common in all four

cases, whereas the third equation is specific to the mode under consideration.

Eliminating kz from (6.4.46) and (6.4.47), we have

k2xd þ a2
xo ¼ k2d � k2o: (6:4:67)

Now kxd and axo can be evaluated by (6.4.67), and by (6.4.57) for odd TMz, by

(6.4.60) for even TMz, by (6.4.65) for odd TEz, or by (6.4.66) for even TEz fields.

Numerical techniques can be used for this purpose, or alternatively, a graphical

method can be used to find the roots of these equations. For the graphical approach,

(6.4.67) can be re-arranged as follows:

kxda

2

� �2

þ axoa

2

� �2
¼ (k2d � k2o)

a

2

� �2
¼ koa

2

� �2 md1d
mo1o

� 1

� �
: (6:4:68)

This is the equation of a circle on the kxda/22 axoa/2 plane. Any of the other four

equations are plotted on the same plane, and the intersections of two curves are

found as roots of the equations. Examples are included below to demonstrate the

procedure.

In general, kz ¼ bz 2 jaz. However, az must be zero for a propagating mode.

Therefore axo in (6.4.47) can be only a real or an imaginary number (i.e., it cannot

be a complex number). If the fields are guided along the z-axis, then axo cannot be

an imaginary number and therefore kz must be larger than ko. Further kxd has to be

a real number in (6.4.46) for real kz and kd. Hence ko � kz � kd if the fields are pro-

pagating in the z direction. On the other hand, axo becomes imaginary for kz smaller

than ko, and therefore these modes start propagating continuously along the x-axis as

well. This phenomenon is present in dielectric antennas. Thus the guided fields

are cut off for kz ! ko. Therefore (6.4.47) and (6.4.46) reduce to axo ¼ 0 and

kxd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2d � k2o

p
, respectively. Consequently (6.4.57) and (6.4.65) require that

tan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2d � k2o

q
a

2

� �
¼ 0: (6:4:69)

Similarly (6.4.60) and (6.4.66) at the cutoff give

cot

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2d � k2o

q
a

2

� �
¼ 0: (6:4:70)

Combining these two requirements, we find that

a

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2d � k2o

q
¼ np

2
! koa

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kd

ko

� �2

�1

s
¼ np

2
!

2p a

2lc

ffiffiffiffiffiffiffiffiffiffi
md1d
mo1o

r
� 1 ¼ np

2
, n ¼ 0, 1, 2, . . . :
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Here we have used ko ¼ 2p=lc because it is associated with the cutoff condition.

Therefore the cutoff wavelength lc is found to be

lc ¼ 2a

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
md1d
mo1o

� 1

r
: (6:4:71)

The cutoff frequency fc for nth mode is found to be

fc ¼ 1

lc
ffiffiffiffiffiffiffiffiffiffi
mo1o

p ¼ n

2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
md1d � mo1o

p : (6:4:72)

Note that the lowest order modes have zero cutoff frequency. Hence the TE0 and TM0

modes exist in all dielectric guides, along with possibly other higher orders that the

slab thickness can support.

Example 6.2

A 0.76 cm thick polystyrene slab is being used at 30 GHz. If its dielectric

constant is 2.56, calculate the cutoff frequencies of the TM modes that this

structure supports. Determine the propagation parameters of these modes.

Repeat your calculations for a slab thickness of 0.5 cm, and compare the two

sets of results.

Note that polystyrene is nonmagnetic, and therefore md ¼ mo. We know that

the cutoff frequency for the TM0 mode is zero. For TM1, we find from (6.4.72)

that it is 15.8021 GHz for 0.76 cm, and 24.0192 GHz for 0.5 cm. For n 	 2,

the cutoff frequencies are found to be higher than 30 GHz, and therefore those

modes are not supported at either thickness.

Equations (6.4.57) and (6.4.60) are graphed on the kxda/2–axoa/2 plane,

as shown in Figure 6.3. In order to plot (6.4.68) on it, radius of the circle is

found to be

r1 ¼ koa

2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
md1d
mo1o

� 1

r
¼ 2pca

f2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
md1d
mo1o

� 1

r
¼ 2p � 3 � 1010 � 0:76

30 � 109 � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:56� 1

p

¼ 2:9821 rad:

In graphing this circle, the solution points 1 and 2 are identified. The approximate

coordinate values of these points may be further improved using an iterative

numerical method. Thus the coordinates of these two points are found to be

(1.37122, 2.6481) and (2.56151, 1.5269), respectively. The corresponding kxd
and axo for the TM0 mode are found to be 3.6085 rad/cm and 6.9687 Np/cm,

respectively. Similarly the second point gives kxd and axo for the TM1 mode as

6.7408 rad/cm and 4.0181 Np/cm, respectively. Equation (6.4.46) or (6.4.47)
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can now be used to find kz for the TM0 and TM1 modes as 9.383 rad/cm and

7.458 rad/cm, respectively.

When the slab thickness is 0.5 cm, a new circle can be drawn on the same graph.

Its radius r2 is found to be

r2 ¼ koa

2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
md1d
mo1o

� 1

r
¼ 2pca

f2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
md1d
mo1o

� 1

r
¼ 2p � 3 � 1010 � 0:5

30 � 109 � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:56� 1

p

¼ 1:9619 rad:

The precise coordinates for solution points 3 and 4 are found to be (1.25606,

1.5071) and (1.94, 0.2931), respectively. The corresponding kxd and axo for the

TM0 mode are found to be 5.02424 rad/cm and 6.0284 Np/cm, respectively.

Similarly point 4 gives kxd and axo for the TM1 mode as 7.76 rad/cm and

1.1724 Np/cm, respectively. Hence kz for the TM0 and TM1 modes are found

to be 8.7075 rad/cm and 6.3916 rad/cm, respectively.

A comparison of the two set of results indicates that kxd for a given mode

increased with decreasing thickness whereas the corresponding axo decreased.

Therefore the fields will extend farther along the x-axis in air for the thin slab.

Figure 6.3 Graphical solutions for Example 6.2 to determine the propagation parameters.
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Example 6.3

Repeat the preceding example for TEz modes.

Note that the cutoff frequencies for TEz modes are same as for the correspond-

ing TMz fields. Hence the TE0 mode has no cutoff frequency at either thickness of

the slab. For the TE1 mode, it is 15.8021 GHz for 0.76 cm and 24.0192 GHz for a

0.5 cm thick slab. As shown in Figure 6.4, (6.4.65) and (6.4.66) are graphed on

the kxda/2–axoa/2 plane. Since (6.4.68) still holds, this circle of radius 2.9821 is
traced on this graph and the solution points 1 and 2 are identified.

The coordinates of points 1 and 2 are found to be (1.16826, 2.74374) and (2.27423,

1.92894), respectively. The corresponding kxd and axo for the TE0 mode are found

to be 3.0744 rad/cm and 7.2204 Np/cm, respectively. Similarly the second point

gives kxd and axo for the TE1 mode as 5.9848 rad/cm and 5.0712 Np/cm, respect-

ively. As before, (6.4.46) or (6.4.47) can be used now to find kz for the TE0 and

TE1 modes as 9.5714 rad/cm and 8.0743 rad/cm, respectively.

When the slab thickness is 0.5 cm, a new circle of radius 1.9619 is drawn on the

same graph, and solution points 3 and 4 are identified. The precise coordinates of

these points are found to be (1.02254, 1.67436) and (1.873, 0.58389), respectively.

The corresponding kxd and axo for the TE0 mode are found to be 4.0902 rad/cm

Figure 6.4 Graphical solutions for Example 6.3 to determine the propagation parameters.
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and 6.6974 Np/cm, respectively. Similarly point 4 gives kxd and axo for the TE1

mode as 7.492 rad/cm and 2.3355 Np/cm, respectively. Hence kz for the TE0

and TE1 modes are found to be 9.1833 rad/cm and 6.7032 rad/cm, respectively.

As in the case of TMz, a comparison of the two set of results indicates that kxd
for a given mode increases with decreasing thickness whereas the corresponding

axo decreases. Therefore in air the fields will extend farther along the x-axis for

the thin slab.

6.5 CONSTRUCTION OF A SOLUTION IN

CYLINDRICAL COORDINATES

As in the preceding section, the solutions in cylindrical coordinates are categorized

as TMz and TEz. These two modes are analyzed as follows.

For TMz, assume ~A ¼ ẑAz and ~F ¼ 0. Then from (6.2.8), (6.2.9), and (6.2.12), get

~H ¼ 1

m
r� (ẑAz) ¼ 1

m
r̂
1

r

@Az

@f
þ f̂ � @Az

@r

� �
þ ẑ0

� �
(6:5:1)

and

~E ¼ �jv ẑAz þ 1

jvm1
r @Az

@z

� �
: (6:5:2)

Equation (6.2.13) is rewritten in cylindrical coordinates as follows:

r2Az þ k2Az ¼ 0 ! 1

r

@

@r
r
@Az

@r

� �
þ 1

r2
@2Az

@f2
þ @2Az

@z2
þ k2Az ¼ 0: (6:5:3)

Once the solutions to (6.5.3) are found, the electromagnetic fields are determined

from (6.5.1) and (6.5.2) as follows:

Hr ¼ 1

mr

@Az

@f
, (6:5:4)

Hf ¼ � 1

m

@Az

@r
, (6:5:5)

Hz ¼ 0, (6:5:6)

Er ¼ 1

jvm1

@2Az

@r@z
; (6:5:7)

Ef ¼ 1

jvm1r

@2Az

@f@z
; (6:5:8)

and

Ez ¼ 1

jvm1

@2

@z2
þ k2

� �
Az: (6:5:9)
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Because there is no magnetic field along the z-axis, this is the case of the TMz mode

(magnetic field transverse to the z-axis) in cylindrical coordinate system.

For TEz, assume ~F ¼ ẑFz and ~A ¼ 0. From (6.3.6), (6.3.7), and (6.3.9) obtain

~E ¼ � 1

1
r � (ẑFz) ¼ � 1

1
r̂
1

r

@Fz

@f
þ f̂ � @Fz

@r

� �
þ ẑ0

� �
(6:5:10)

and

~H ¼ �jvẑFz þ 1

jvm1
r @Fz

@z

� �
: (6:5:11)

Then (6.3.10) reduces to

r2Fz þ k2Fz ¼ 0 ! 1

r

@

@r
r
@Fz

@r

� �
þ 1

r2
@2Fz

@f2
þ @2Fz

@z2
þ k2Fz ¼ 0: (6:5:12)

After (6.5.12) is solved, the field components are found from (6.5.10) and (6.5.11) as

follows:

Er ¼ � 1

1r

@Fz

@f
, (6:5:13)

Ef ¼ 1

1

@Fz

@r
, (6:5:14)

Ez ¼ 0, (6:5:15)

Hr ¼ 1

jvm1

@2Fz

@r@z
, (6:5:16)

Hf ¼ 1

jvm1r

@2Fz

@f@z
, (6:5:17)

and

Hz ¼ 1

jvm1

@2

@z2
þ k2

� �
Fz: (6:5:18)

This is the case of the TEz mode (electric field transverse to the z-axis) in the cylind-

rical coordinate system because there is no electric field component in the z direction.

Note that unlike z (and all three in rectangular coordinates), the unit vectors along

the r and f axes change their directions from point to point. In other words, these

two unit vectors do not stay parallel from one point to the other. This adds some

complication to the analysis. However, the unit vector along the z-axis stays in

the same direction at every point. Therefore only the TMz and TEz modes are con-

sidered. We defer to the next section the case where all three unit vectors of the

spherical coordinates change directions from point to point, and where we have

no choice but to deal with the situation directly.
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The Wave Functions

Since both (6.5.3) and (6.5.12) are similar, we consider the following partial differ-

ential equation, which is a scalar Helmholtz equation in cylindrical coordinates:

1

r

@

@r
r
@

@r
w(r,f, z)

� �
þ 1

r2
@2wðr,f, zÞ

@f2
þ @2w(r,f, z)

@z2
þ k2w(r,f, z)¼ 0: (6:5:19)

Assume

w(r,f, z)¼ f1(r) f2(f) f3(z): (6:5:20)

In other words, assume that the solutions to (6.5.19) are the product of three functions

of one coordinate each and use the method of separation of variables. Substituting

(6.5.20) into (6.5.19) and rearranging gives

1

f1(r)

d2f1(r)

dr2
þ 1

r f1(r)

df1(r)

dr
þ 1

r2f2(f)

d2f2(f)

df2
þ 1

f3(z)

d2f3(z)

dz2
¼�k2: (6:5:21)

Note that first three terms on the left-hand side of (6.5.21) are dependent on both r
and f. However, the last term is only dependent on z. Hence the last term can be

equated to a constant kz as follows:

1

f3(z)

d2f3(z)

dz2
¼�k2z !

d2f3(z)

dz2
þ k2z f3(z)¼ 0: (6:5:22)

Next (6.5.21) can be rearranged to get

r2

f1(r)

d2f1(r)

dr2
þ r

f1(r)

df1(r)

dr
þ 1

f2(f)

d2f2(f)

df2
¼��k2� k2z

�
r2 (6:5:23)

Since the third term of (6.5.23) is only dependent on f, write

1

f2(f)

d2f2(f)

df2
¼�n2 ! d2f2(f)

df2
þ n2f2(f)¼ 0: (6:5:24)

Therefore (6.5.23) reduces to

r2
d2f1(r)

dr2
þ r

df1(r)

dr
þ (k2� k2z )r

2� n2
� 


f1(r)¼ 0,

or

r2 d
2f1(r)

dr2
þ r

df1(r)

dr
þ (krr)

2� n2
� 


f1(r)¼ 0, (6:5:25)

where

k2r ¼ k2� k2z ! k2r þ k2z ¼ k2: (6:5:26)
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As was considered earlier, harmonic functions satisfy (6.5.22) and (6.5.24).

Therefore we can denote solutions to these equations by h3(kzz) and h2(nf), respect-
ively. Appropriate harmonic functions can be selected following the characteristics

given in Table 6.1. Equation (6.5.25) is known as Bessel’s equation of order n. Satis-

fying this equation are Bessel’s functions of the first kind Jn(krr), Bessel’s functions
of the second kind Yn(krr) that are known also as Neumann functions, Hankel’s

functions of first kind Hð1Þ
n ðkrrÞ, and Hankel’s functions of second kind H (2)

n (krr),
as can be seen in Appendix C. Any two of these functions are linearly independent

solutions to the Bessel equation. We denote these by Zn(krr). Hence

Zn(krr) ! Jn(krr), Yn(krr), H
(1)
n (krr), H

(2)
n (krr): (6:5:27)

The characteristics of these functions are summarized in Table 6.3. Appendix C

includes a number of relevant relations, graphical characteristics of a few Bessel

and Neumann functions, tabulated zeros of Jn(x) and Yn(x), and zeros of their

derivatives.

Therefore the elementary wave functions satisfying (6.5.19) are

we(r, f, z) ¼ Zn(krr) � h2(nf) � h3(kzz): (6:5:28)

Note that (6.5.26) relates the eigenvalues kz and kr, so only one of these two is inde-

pendent. We can construct more general wave functions by summing the elementary

wave functions over one of these eigenvalues and n as follows:

w(r, f, z) ¼
X
n

X
kz

CnkzZn(krr) � h2(nf) � h3(kzz) (6:5:29)

or

w(r, f, z) ¼
X
n

X
kr

CnkrZn(krr) � h2(nf) � h3(kzz): (6:5:30)

If the region under consideration includes all f from 0 to 2p, then n in h2(nf) has to
be an integer so that the wave function is single-valued. As the graphs in Appendix C

show, only Bessel functions of the first kind have finite values at the origin. This is

the only possible Zn(krr) if the fields are to be finite at r ¼ 0. Similarly Hð1Þ
n ðkr rÞ

is selected for Zn(krr) if the wave is incoming, whereas it is Hn
(2)(krr) if the

wave is traveling outward. Note that this selection of the Hankel functions is

based on our assumption of time-harmonic variation to be e jvt. In case of e�jvt

time variation, Hð1Þ
n ðkrrÞ will represent the outgoing wave and H (2)

n (krr), the incom-

ing wave. This behavior can be easily understood by the waves’ asymptotic formulas

given in Table 6.3. Further the modified Bessel functions In(x) and Kn(x) are used if

kr ¼ jx. The characteristics of these functions are included in Appendix C. As shown

in Figure C.3, magnitude of In(x) increases (similar to ex) with x but deceases

(similar to e2x) in case of Kn(x).
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The Parallel-Plate Radial Waveguide

The two conducting parallel plates considered in the preceding section can also sup-

port radial waves. In the present analysis we consider the parallel-plate geometry

shown in Figure 6.5. We assume that the distance a separates the two plates that

extend to infinity.

Note in the figure that f ranges from 0 to 2p. Therefore only integer values of n

are possible in this case. Further only Hn
(2)(krr) are possible solutions to Bessel’s

equation for the outgoing waves. Therefore the suitable solution to (6.5.3) for Az is

Az ¼ {C1 cosðkzzÞ þ C2 sinðkzzÞ}{D1 cosðnfÞ þ D2 sinðnfÞ}H(2)
n (krr): (6:5:31)

Since the boundary conditions require that the tangential electric field components

must be zero on conducting plates, Er and Ef must be zero at z ¼ 0 and z ¼ a.

Therefore (6.5.7) and (6.5.8) require that

@Az

@z

����
z¼0
z¼a

¼ 0 !
C2 ¼ 0

kz ¼ mp

a
, m ¼ 0, 1, 2, . . .

(
(6:5:32)

Then (6.5.31) and (6.5.26) give

Az ¼ C1 cos
mp

a
z

� �n o
{D1 cos(nf)þ D2 sin(nf)}H

(2)
n (krr) (6:5:33)

Figure 6.5 Geometry of a parallel-plate radial waveguide.
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and

kr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � mp

a

� �2r
: (6:5:34)

Note that there are no boundary conditions along f to satisfy, so D1 and D2 cannot

be evaluated. Since the sine functions represent 908 phase-shifted cosine functions

(and vice-versa), the field distributions obtained with the sine function simply

change to the other as we rotate the coordinate system by 908. The complete set

of field components can be found now using (6.5.33) and (6.5.4) through (6.5.9).

For m ¼ 0 and n ¼ 0, (6.5.33) reduces to

Az00 ¼ C00H
(2)
0 (kr): (6:5:35)

Therefore it is found from (6.5.4) through (6.5.9) and (6.5.35) that only the follow-

ing field components exist for the TM00
z mode:

Hf ¼ �C00

m

d

dr
H(2)

0 (kr) ð6:5:36Þ

and

Ez ¼ k2

jvm1
C00H

(2)
0 (kr): (6:5:37)

Note that these fields represent an electromagnetic wave that is TEM to r. It is a
transmission line mode because it is close to the plane transmission line mode.

By the corresponding formula in Appendix C, (6.5.36) can be simplified to

Z 0
n(x) ¼ �Znþ1(x)þ n

x
Zn(x) ! Hf ¼ kC00

m
H(2)

1 (kr): (6:5:38)

Similarly Fz can be found via the suitable wave functions, and the TEz mode fields

can be determined subsequently from (6.5.13) through (6.5.18), as follows:

Fz ¼ {C1 cos(kzz)þ C2 sin(kzz)}{D1 cos(nf)þ D2 sin(nf)}H
(2)
n (krr): (6:5:39)

Since the boundary conditions require that the tangential electric field components

must vanish on the conducting plates, Er and Ef must be zero at z ¼ 0 and z ¼ a.

Therefore (6.5.13) and (6.5.14) require that

Fzjz¼0
z¼a

¼ 0 !
C1 ¼ 0;

kz ¼ mp

a
, m ¼ 0, 1, 2, . . . :

(
(6:5:40)
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Therefore

Fz ¼ C2 sin
mp

a
z

� �
{D1 cos(nf)þ D2 sin(nf)}H

(2)
n (krr): (6:5:41)

Equation (6.5.34) holds for TEz modes as well. A mode is propagating if kr is real,

and it is evanescent if kr is imaginary. The cutoff occurs for k ¼ kc where

kc ¼ mp

a
! lC ¼ 2a

m
: (6:5:42)

For an air-filled waveguide, the cutoff frequency fc is found to be

fc ¼ 3 � 108 � m
2a

Hz: (6:5:43)

Note that Fz in (6.5.41) goes to zero for m ¼ 0, so TEz
00 mode does not exist. There-

fore the lowest order mode (known as the dominant mode) in the parallel-plate

waveguide is TMz
00.

Example 6.4

Find the separation between the two plates of a radial waveguide that guarantees

lowest order single TMz mode up to 500 MHz. Repeat your calculations for the

lowest order TEz mode. Assume that the medium between the plates is air.

Since the lowest order TMz mode is for m ¼ 0 and has no cutoff, we need to

make sure that cutoff frequency for m ¼ 1 mode is higher than 500 MHz. Hence

(6.5.43) gives

a � 3 � 108
2 � 5 � 108 ¼ 0:3m:

In the case of TEz modes the lowest order mode that exists is for m ¼ 1. There-

fore we need to stop m ¼ 2 mode. Hence (6.5.43) gives

a � 3 � 108 � 2
2 � 5 � 108 ¼ 0:6m:

The Wedge Radial Waveguide

Consider two inclined conducting sheets that also support propagation of radial

waves. As shown in Figure 6.6, that angle between the two planes is fo and the con-

ducting sheets extend to infinity along the r- and z-axes. Therefore consider it to be a
two-dimensional problem with no variation of the field along the z-axis and the wave

propagating along r. Equation (6.5.26) reduces to kr ¼ k. By the appropriate wave

functions, Az for the TM
z modes is found to be

Az ¼ {D1 cosðnfÞ þ D2 sinðnfÞ}H(2)
n (kr): (6:5:44)
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The boundary conditions require that the tangential electric field components must

be zero on the conducting plates. Hence Er and Ez must be zero at f ¼ 0 and

f ¼ fo. Therefore (6.5.7) and (6.5.8) require that

Azjf¼0
f¼fo

¼ 0 �!
D1 ¼ 0,

n ¼ mp

fo

, m ¼ 1, 2, . . . :

8<
: (6:5:45)

Then (6.5.44) reduces to

Az ¼ D2 sin
mp

fo

f

� �
H(2)

mp=fo
(kr), m ¼ 1, 2, . . . : (6:5:46)

TMz mode fields can now be found after substituting (6.5.46) in (6.5.4) through

(6.5.9). In this case TMz
1 is the lowest order mode, and the corresponding field com-

ponents are found to be

Hr1 ¼ 1

mr

@

@f
D2 sin

p

fo

f

� �
H(2)

p=fo
(kr)

� �
¼ D2

mr

p

fo

cos
p

fo

f

� �
H(2)

p=fo
(kr), (6:5:47)

Hf1 ¼ � 1

m

@

@r
D2 sin

p

fo

f

� �
H

ð2Þ
p=fo

(kr)

� �
¼ �D2

m
sin

p

fo

f

� �
d

dr
H(2)

p=fo
(kr), (6:5:48)

and

Ez1 ¼ k2

jvm1
D2 sin

p

fo

f

� �
H(2)

p=fo
(kr): (6:5:49)

Note that the remaining TMz
1 field components are zero.

Figure 6.6 Geometry of a wedge radial waveguide.
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Similarly the appropriate Fz for the TE
z modes is written as follows:

Fz ¼ {D1 cosðnfÞ þ D2 sinðnfÞ}H(2)
n (kr): (6:5:50)

The boundary conditions require that the tangential electric field components be

zero on the conducting plates. Hence Er must be zero at f ¼ 0 and f ¼ fo. Note

from (6.5.15) that Ez is already zero in this case. Therefore we find from (6.5.13) that

@Fz

@f

����f¼0
f¼fo

¼ 0 !
D2 ¼ 0,

n ¼ mp

fo

, m ¼ 1, 2, . . . :

8<
: (6:5:51)

Then (6.5.50) reduces to

Fz ¼ D1 cos
mp

fo

f

� �
H(2)

mp=fo
(kr), m ¼ 0, 1, 2, . . . : (6:5:52)

The TEz mode fields can now be found after substituting (6.5.52) in (6.5.13) through

(6.5.18). In this case TEz
0 is the lowest order mode, and the corresponding field com-

ponents are found to be

Ef0 ¼ 1

1

@

@r

	
D1H

(2)
0 (kr)


 ¼ D1

1

d

dr

	
H(2)

0 (kr)

 ¼ D1k

1
H(2)

1 (kr) (6:5:53)

and

Hz0 ¼ k2

jvm
D1H

(2)
0 (kr): (6:5:54)

The remaining field components of this mode are zero. Note that (6.5.53) and

(6.5.54) are analogous to (6.5.37) and (6.5.38), and therefore this mode is the

dual of TMz
0 mode of the parallel-plate waveguide. These fields are TEM to r repre-

senting the transmission line mode.

6.6 CONSTRUCTION OF A SOLUTION IN

SPHERICAL COORDINATES

As was mentioned earlier, the procedure used in the preceding sections does not

work when we work in spherical coordinates. This is because all three unit vectors

change directions from point to point, and (6.2.13) and (6.3.10) cannot be separated

into scalar wave equations. Nevertheless, there is a way to formulate the wave

equations in the radial components Ar and Fr. The electric and magnetic field inten-

sities can be expressed in terms of these components of the vector potentials. If there
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is only the radial component Ar of the magnetic vector potential nonzero, then

(6.2.8) gives

~B ¼ r� r̂Arð Þ ¼ û
1

r sin u

@Ar

@f
� f̂

1

r

@Ar

@u
(6:6:1)

and

r � ~B ¼ 1

m
r � ~H ¼ r� r� ~A ¼ r� û

1

r sin u

@Ar

@f
� f̂

1

r

@Ar

@u

� �
,

or

r � r� ~A ¼ r̂
1

r sin u

@

@u
� sin u

r

@Ar

@u

� �
� @

@f

1

r sin u

@Ar

@f

� �� �

þ û � 1

r

@

@r
� @Ar

@u

� �� �
þ f̂

1

r

@

@r

1

sin u

@Ar

@f

� �� �
:

(6:6:2)

Similarly, if only radial component Fr is nonzero in the electric vector potential,

then (6.3.6) reduces to

~D ¼ �r � (r̂Fr) ¼ �û
1

r sin u

@Fr

@f
þ f̂

1

r

@Fr

@u
(6:6:3)

and

r � ~D ¼ 1

1
r � ~E ¼ �r� r� ~F ¼ r� û

1

r sin u

@Fr

@f
� f̂

1

r

@Fr

@u

� �
,

or

�r � r� ~F ¼ r̂
1

r sin u

@

@u
� sin u

r

@Fr

@u

� �
� @

@f

1

r sin u

@Fr

@f

� �� �

þ û � 1

r

@

@r
� @Fr

@u

� �� �
þ f̂

1

r

@

@r

1

sin u

@Fr

@f

� �� �
:

(6:6:4)

Note that the medium is assumed to be linear, isotropic, and homogeneous. For a

source-free region, ~Je ¼ 0 and ~Jm ¼ 0, and (6.6.1) through (6.6.4), along with

(6.1.1) and (6.1.2), give

~E ¼ 1

jvm1
r� r � ~A� 1

1
r � ~F (6:6:5)
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and

~H ¼ 1

jvm1
r � r� ~F þ 1

m
r � ~A: (6:6:6)

Therefore (6.6.5), along with (6.6.1) through (6.6.4), gives

Er ¼ 1

jvm1r sin u

@

@u
� sin u

r

@Ar

@u

� �
� @

@f

1

r sin u

@Ar

@f

� �� �
, (6:6:7)

Eu ¼ 1

jvm1r

@2Ar

@r@u
� 1

1r sin u

@Fr

@f
, (6:6:8)

Ef ¼ 1

jvm1r sin u

@2Ar

@r@f
þ 1

1r

@Fr

@u
: (6:6:9)

Similarly (6.6.6), along with (6.6.1) through (6.6.4), gives

Hr ¼ 1

jvm1r sin u

@

@u
� sin u

r

@Fr

@u

� �
� @

@f

1

r sin u

@Fr

@f

� �� �
, (6:6:10)

Hu ¼ 1

jvm1r

@2Fr

@r@u
þ 1

mr sin u

@Ar

@f
, (6:6:11)

Hf ¼ 1

jvm1r sin u

@2Fr

@r@f
� 1

mr

@Ar

@u
: (6:6:12)

Note that (6.6.7) can be simplified further using the formulation included below for

(6.6.18) as

1

r sin u

@

@u
� sin u

r

@Ar

@u

� �
� @

@f

1

r sin u

@Ar

@f

� �� �
¼ @2Ar

@r2
þ k2Ar

A similar expression for Fr can be used to simplify (6.6.10) as well.

Hence the electric and magnetic field components are found in (6.6.7) through

(6.6.12) in terms of radial components of two vector potentials. The wave equations

for Ar and Fr are formulated as follows: For Fr ¼ 0, (6.6.5) and (6.2.9) give

r � r� (r̂Ar) ¼ jvm1{�rfe � r̂jvAr}: (6:6:13)

Similarly, for Ar ¼ 0, (6.6.6) and (6.3.7) give

r � r � (r̂Fr) ¼ jvm1{�rfm � r̂jvFr}: (6:6:14)

These equations can be expanded using (6.6.2) and (6.6.4), respectively. Since both

equations have a similar form, we consider below only (6.6.13). A similar process

can be used for (6.6.14).
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Equating the u components on the two sides of (6.6.13), we have

1

r

@

@r

@Ar

@u

� �
¼ �jvm1

@fe

@u
! @

@u

@Ar

@r
þ jvm1fe

� �
¼ 0: (6:6:15)

Similarly, equating the f components on the two sides of (6.6.13) gives

1

r sin u

@

@r

@Ar

@f

� �
¼ �jvm1

1

r sin u

@fe

@f
! @

@f

@Ar

@r
þ jvm1fe

� �
¼ 0: (6:6:16)

Both conditions (6.6.15) and (6.6.16) are satisfied if

@Ar

@r
¼ �jvm1fe: (6:6:17)

Now equating the r components on the two sides of (6.6.13), we have

1

r sin u

@

@u
� sin u

r

@Ar

@u

� �
� @

@f

1

r sin u

@Ar

@f

� �� �
¼ �jvm1

@fe

@r
þ v2m1Ar,

or

1

r sin u

@

@u
� sin u

r

@Ar

@u

� �
� @

@f

1

r sin u

@Ar

@f

� �� �
¼ @2Ar

@r2
þ k2Ar,

or

@2Ar

@r2
þ 1

r2 sin u

@

@u
sin u

@Ar

@u

� �
þ 1

r2 sin2 u

@2Ar

@f2
þ k2Ar ¼ 0,

or

@2

@r2
Ar

r

� �
þ 2

r

@

@r

Ar

r

� �
þ 1

r2 sin u

@

@u
sin u

@

@u

Ar

r

� �� �

þ 1

r2 sin2 u

@2

@f2

Ar

r

� �
þ k2

Ar

r

� �
¼ 0: (6:6:18)

The equation can also be expressed in compact form using the Laplacian in spherical

coordinates (2.9.3) as follows:

(r2 þ k2)
Ar

r

� �
¼ 0: (6:6:19)
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By a similar procedure with (6.6.14), we can find another equation like (6.6.18)

except that Fr replaces Ar. Therefore we attempt to construct the solutions to the

following wave equation:

@2

@r2
wþ 2

r

@

@r
wþ 1

r2 sin u

@

@u
sin u

@

@u
w

� �
þ 1

r2 sin2u

@2

@f2
wþ k2w ¼ 0: (6:6:20)

As before, we use the separation of variables technique to solve this equation. We

assume that w is a product of three functions R(r),Q(u), andF(f). After substituting
w(r, u, f) ¼ R(r)Q(u)F(f) into (6.6.20), and following the same procedure we used

earlier to separate the equations, we get

d2

df2
F(f)þ m2F(f) ¼ 0, (6:6:21)

1

sin u

d

du
sin u

d

du
Q uð Þ

� �
þ n(nþ 1)� m2

sin2 u

� �
Q uð Þ ¼ 0, (6:6:22)

and

r2
d2

dr2
R(r)þ 2r

d

dr
R(r)þ ½(kr)2 � n(nþ 1)�R(r) ¼ 0: (6:6:23)

The first two terms of the last equation can be rearranged to get

d

dr
r2

d

dr
R(rÞ

� �
þ ½(kr)2 � n(nþ 1)�R(r) ¼ 0: (6:6:24)

The odd choice of n(nþ 1) as the separation constant in (6.6.22) is made because

this leads to a standard differential equation known as an associated Legendre

equation. This time, unlike the preceding cases, the separation constants m and n

are not related.

Note that (6.6.21) is the familiar harmonic equation, so sin(mf), cos(mf), e jmf,

and e jmf are its solutions. We can select any two of these harmonic functions as a

complete solution to (6.6.21). As in the case of cylindrical coordinates, m has to be

an integer if w is single-valued for 0 � f � 2p.
A comparison of (6.6.22) with (D.1) of Appendix D confirms that it is an associated

Legendre equation; its solutions are called associated Legendre functions. There are

two kinds of associated Legendre functions included in Appendix D. Pn
m(cos u) are

the associated Legendre functions of the first kind and Qn
m(cos u) are the associated

Legendre functions of the second kind. In general, we can represent both types of

solutions as Ln
m(cos u). Further, it is found that out of all solutions of this equation

only Pn
m(cos u) is finite at u ¼ 0 and u ¼ p, provided that n is an integer.
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Finally, a comparison of (6.6.23) with (C.39) of Appendix C indicates that its

solutions must be a spherical Bessel type of function, which is related to ordinary

Bessel functions as follows:

zn(kr) ¼
ffiffiffiffiffiffiffi
p

2kr

r
Znþ1=2(kr): (6:6:25)

As summarized in Appendix C, the characteristics of spherical Bessel functions are

similar to the corresponding cylindrical Bessel functions. Hence jn(kr) and yn(kr)

represent standing waves, hð2Þn ðkrÞ represents outward traveling waves, and hð1Þn ðkrÞ
represents an inward traveling wave. The elementary wave functions that satisfy

(6.6.20) are found to be

wmn ¼ h(mf)Lmn (cos u)zn(kr), (6:6:26)

where the complete solution is

w ¼
X
m

X
n

Cmnh(mf)L
m
n (cos u)zn(kr): (6:6:27)

Since w represents Ar/r or Fr/r, a new kind of spherical Bessel functions is com-

monly used for this purpose. As indicated in Appendix C, the components of

these functions are generally identified by a caret, and they are related with cylind-

rical Bessel functions as follows:

Ẑn(kr) ¼
ffiffiffiffiffiffiffiffi
pkr

2

r
Znþ1=2(kr): (6:6:28)

The qualitative characteristics of spherical Bessel functions are also similar to the

corresponding cylindrical Bessel functions. Only the spherical Bessel function of

the first kind is finite at the origin (i.e., at r ¼ 0). The spherical Hankel functions

of the second kind likewise represent outgoing waves. The zeros of the spherical

Bessel functions of the first kind as well as their derivatives are included in

Tables C.5 and C.6, respectively.

The Conducting Spherical Cavity

Figure 6.7 shows the geometry of a conducting spherical shell that forms a resonant

circuit (known as the cavity resonator) at microwave frequencies. The radius of this

cavity is assumed to be a. When properly excited, an electromagnetic field can arise

inside the shell. We divide this problem into TEr and TMr modes. For TEr modes, Ar

is zero and only Fr exists.

Since 0 � f � 2p, m has to be an integer. Further there are no boundary con-

ditions to satisfy in this direction, and therefore the integration constants used

with solutions cannot be determined. We can use e+jmf or sine and cosine functions

as solutions to this harmonic equation. Sometimes only one of the sine and cosine

functions is used, and the modes are subdivided into odd (with sine functions)
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and even (with cosine functions) types. We select Pn
m(cos u) as the appropriate

associate Legendre function because the fields have to be finite at u ¼ 0 and

u ¼ p. Similarly we select spherical Bessel functions of first kind to meet the

requirement that fields have to be finite at r ¼ 0. Hence

Fr ¼ CmnĴn krð ÞPm
n cos uð Þ cos mfð Þ for even modes,

sin mfð Þ for odd modes.

�
(6:6:29)

In the equation Cmn is a constant. The electric and magnetic fields can be found now

using (6.6.7) through (6.6.12) with Ar zero. Since Er is zero in this case, these fields

can be designated as TEr modes. The boundary conditions require that the tangential

electric field components be zero on the conducting surface at r ¼ a; therefore

Eujr¼a ¼ 0 ! � 1

1r sin u

@Fr

@f

����
r¼a

¼ 0 (6:6:30)

and

Efjr¼a ¼ 0 ! 1

1r

@Fr

@u

����
r¼a

¼ 0: (6:6:31)

Both conditions will be satisfied if

Ĵn(ka) ¼ 0 ¼ Ĵn(vnp) (6:6:32)

where vnp is the pth zero of the nth order spherical Bessel function of the first kind.

There is an infinite set of these zeros. Lower order zeros are listed in Table C.5 of

Appendix C. Hence

k ¼ vnp

a
! 2p

lr
¼ vnp

a
! f TE

r

mnp ¼
vnp

2pa
ffiffiffiffiffiffi
m1

p , m � n, (6:6:33)

Figure 6.7 Geometry of a spherical cavity.
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where lr is wavelength at the resonance and f TE
r

mnp is the resonant frequency for

TEr modes; m is the permeability and 1 is the permittivity of medium filling the

cavity.

Similarly we select Fr ¼ 0 and Ar nonzero to find the TMr mode fields. In this

case

Ar ¼ DmnĴn(kr)P
m
n (cos u)

cos mfð Þ for even modes,

sin mfð Þ for odd modes.

�
(6:6:34)

Dmn is a constant. The electric and magnetic fields can now be found using (6.6.7)

through (6.6.12) with Fr zero. Since the tangential electric field components must be

zero on the conducting surface at r ¼ a, we find that

Eujr¼a ¼ 0 ! 1

jvm1r

@2Ar

@r@u

����
r¼a

¼ 0 (6:6:35)

and

Efjr¼a ¼ 0 ! 1

jvm1r sin u

@2Ar

@r@f

����
r¼a

¼ 0: (6:6:36)

Both conditions will be satisfied if

Ĵ0n(ka) ¼ 0 ¼ Ĵ0n(v
0
np), (6:6:37)

where the prime over the Bessel function is used to indicate the derivative, and v0np is
pth zero of the derivative of the nth-order spherical Bessel function of first kind.

There is an infinite set of these zeros. Lower order zeros are listed in Table C.6

of Appendix C. Hence

k ¼ v0np
a

! 2p

lr
¼ v0np

a
! f TM

r

mnp ¼ v0np
2pa

ffiffiffiffiffiffi
m1

p , m � n, (6:6:38)

where lr is wavelength at the resonance and f TM
r

mnp is the resonant frequency for the

TMr modes; m is the permeability and 1 is the permittivity of the medium filling the

cavity.

Example 6.5

The radius of an air-filled spherical cavity is 3 cm. Find the resonant frequencies

of first five modes that it supports.

From Tables C.5 and C.6 we find that first zero of the spherical Bessel function

(for TEr modes) occurs at vnp ¼ 4.4934 for n ¼ p ¼ 1. However, there are two

zeros of derivatives (for the TMr modes) that occur at v0np ¼ 2.7437 and 3.8702
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for n ¼ 1, and 2 with p ¼ 1. Thus we can write these modes in ascending order as

TMr
011, TM

r
111 (even and odd), TMr

021, TM
r
121 (even and odd), and TMr

221 (even

and odd). Note that we have five modes. If even and odd modes are counted

separately, then we will have eight modes.

f TM
r

011 ¼ f TM
r(evenþodd)

111 ¼ 2:7437 � 3 � 108
2p � � 0:03 ¼ 4:3667 � 109 Hz ¼ 4:3667GHz

and

f TM
r

021 ¼ f TM
r(evenþodd)

121 ¼ f TM
r(evenþodd)

221 ¼ 3:8702 � 3 � 108
2p � � 0:03 ¼ 6:1596 � 109 Hz

¼ 6:1596GHz:

PROBLEMS

6.1. A metallic parallel-plate waveguide is air filled, and the separation between its

plates is 3.5 cm. Investigate the characteristics of a 9 GHz signal propagating in

TMm0 modes.

6.2. A 0.6 cm thick polystyrene slab is being used at 25 GHz. If its dielectric con-

stant is 2.56, calculate the cutoff frequencies of the TM modes this structure

supports. Determine the propagation parameters of these modes. Repeat your

calculations for the slab thickness of 0.35 cm, and compare the two sets of

results.

6.3. Repeat Problem 6.2 for TEz modes.

6.4. Find the separation between the two plates of a radial waveguide that guaran-

tees lowest order single TMz mode up to 950 MHz. Repeat your calculations

for the lowest order TEz mode. Assume that the medium between the plates

is air.

6.5. Radius of an air-filled spherical cavity is 4.5 cm. Find the resonant frequencies

of first five modes that is supports.
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7
SOURCE IN INFINITE SPACE

This chapter begins with an analysis of electromagnetic fields of an infinitesimal cur-

rent element. The magnetic vector potential set up by the element is evaluated to

determine the various fields. An expression for the complex power density is formu-

lated to find the real power flow. After introducing the basic parameters of antennas,

linear antennas are analyzed. A section on linear antenna arrays follows it. The chap-

ter ends with a section on the Friis transmission formula and the radar range equation.

7.1 FIELDS OF AN INFINITESIMAL SOURCE

Consider an infinitesimal current element of total length dl and cross section da, as

shown in Figure 7.1. At the origin the source element is aligned symmetrically on

the z-axis and carries a current i(t) ¼ I cos(vt)A. The current density phasor may

be expressed as follows:

~J ¼ ẑJz ¼ ẑ
I

da
(7:1:1)

Our goal is to solve (6.2.13) and find the magnetic and electric fields using (6.2.8),

(6.2.9), and (6.2.12) as given by

~H ¼ 1

m
r � ~A (7:1:2)
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and

~E ¼ �jv~A� rfe ¼ �jv~Aþ 1

jvm1
r(r � ~A) ¼ 1

jv1
r � ~H: (7:1:3)

A z-directed current will produce the vector potential in the same direction. Hence

(6.2.13) simplifies to

r2Az þ k2Az ¼ �m Jz: (7:1:4)

Further the source element occupies an infinitesimal volume dv ¼ da � d‘, so,
there is spherical symmetry in the source’s distribution. In other words, @=@u ¼ 0

and @=@f ¼ 0. For the time being, we exclude a small spherical volume of radius

ro that contains the source. Therefore (7.1.4) reduces to

1

r2
d

dr
r2
dAz

dr

� �
þ k2Az ¼ 0;

or

d2Az

dr2
þ 2

r

dAz

dr
þ k2Az ¼ 0: (7:1:5)

Assume Az ¼ w=r. Then

dAz

dr
¼ 1

r

dw

dr
� w

r2
(7:1:6)

Figure 7.1 Infinitesimal current element in the spherical coordinate system.
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and

d2Az

dz2
¼ 1

r

d2w

dr2
� 2

r2
dw

dr
þ 2

r3
w: (7:1:7)

Substitution of (7.1.6) and (7.1.7) into (7.1.5) gives

d2w

dr2
þ k2w ¼ 0: (7:1:8)

This is the harmonic equation that we have analyzed earlier. A general solution may

be written as follows:

w ¼ C1e
�jkr þ C2e

jkr: (7:1:9)

Since the fields due to this source must be bounded (zero at the infinity) and rep-

resent only an outward traveling wave, the constant C2 must be zero. Therefore

Az ¼ w

r
¼ C1

e�jkr

r
: (7:1:10)

The constant C1 must be related to source strength. To do so, we integrate both

sides of (7.1.4) over the small volume of radius ro that we excluded earlier and force

the radius to zero. Then with dv ¼ r2 sin udrdudf, we have

lim
ro!0

ðf¼2p

f¼0

ðu¼p

u¼0

ðr¼ro

r¼0

(r2Az þ k2Az)r
2 sinudrdudf

¼ �m lim
ro!0

ðf¼2p

f¼0

ðu¼p

u¼0

ðr¼ro

r¼0

Jzr
2 sinudrdudf: (7:1:11)

By the divergence theorem, the first term on the left-hand side of this equation

reduces to

lim
ro!0

ðf¼2p

f¼0

ðu¼p

u¼0

ðr¼ro

r¼0

r2Azr
2 sinudrdudf ¼ lim

ro!0

ð2p
f¼0

ðp
u¼0

d

dr
C1

e�jkr

r

� �

� r2 sinududf
��
r¼ro

¼ lim
ro!0

ð2p
f¼0

ðp
u¼0

C1

�jkr � 1

r2

� �
e�jkrr2 sinududf

��
r¼ro

¼ �C1

ð2p
f¼0

ðp
u¼0

sinududf ¼ �4pC1: (7:1:12)
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The second term on the left-hand side of (7.1.11) reduces to

lim
ro!0

ð2p
f¼0

ðp
u¼0

ðro
r¼0

k2C1

e�jkr

4pr
r2 sinudrdudf ¼ 0, (7:1:13)

and the right-hand side of (7.1.11) gives

� m lim
ro!0

ðf¼2p

f¼0

ðu¼p

u¼0

ðr¼ro

r¼0

Jzr
2 sinudrdudf

¼ �m lim
ro!0

ð
V

I

da
d‘da ¼ �mId‘: (7:1:14)

Substituting (7.1.12) through (7.1.14) into (7.1.11), we find that

C1 ¼ mI d‘

4p
: (7:1:15)

Therefore the magnetic vector potential associated with the current element may be

expressed in spherical coordinate system as follows:

~A ¼ ẑAz ¼ ẑ
mId‘

4pr
e�jkr ¼ r̂ cos u� û sin u

� �mId‘
4pr

e�jkr: (7:1:16)

Thus the magnetic vector potential represents an outward traveling wave whose

amplitude decreases inversely with distance. This kind of wave is called a spherical

wave (the amplitude and phase remain constant on an spherical surface). In (7.1.16),

for convenience, we already transformed the unit vector from rectangular to spheri-

cal coordinates.

We can now evaluate the magnetic and electric fields using (7.1.2) and (7.1.3)

as follows:

~H ¼ 1

m
r � r̂ cos u� û sin u

� �mId‘
4pr

e�jkr

� �
¼ f̂

jkId‘ sin u

4pr
e�jkr 1� j

1

kr

� �
;

or

~H ¼ f̂Hf ¼ f̂
jkI d‘ sin u

4pr
e�jkr 1� j

1

kr

� �
, (7:1:17)

and

~E ¼ 1

jv1
r � f̂Hf

� �
¼ 1

jv1
r̂

1

r sin u

@

@u
ûHf

� �
� û

1

r

@

@r
rHf

� �� �

¼ r̂Er þ û Eu þ f̂ Ef;
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where

Er ¼ hId‘ cosu

2p r2
1� j

1

kr

� �
e�jkr; (7:1:18)

Eu ¼ j
h kId‘ sinu

4pr
1� j

1

kr
� 1

k2r2

� �
e�jkr (7:1:19)

and

Ef ¼ 0: (7:1:20)

The complex Poynting vector (or the complex power density) associated with

these fields can be evaluated as follows:

~S ¼ 1
2

~E � ~H�
� �

¼ 1
2

r̂Er þ ûEu

� �
� f̂H�

f

� �
¼ 1

2
r̂EuH

�
f � ûErH

�
f

� �
¼ r̂Sr þ ûSu, (7:1:21)

where

Sr ¼ 1

2
h

k Ij jd‘ sin u
4pr

� �2

1� j
1

k3r3

� �
¼ 1

8
h

Ij jd‘ sin u
lr

� �2

1� j
1

krð Þ3
� �

(7:1:22)

and

Su ¼ jh
k Id‘j j2sinu cosu

16p 2r3
1þ 1

krð Þ2
� �

: (7:1:23)

Here h ¼ k2=v1 ¼ ffiffiffiffiffiffiffiffi
m=1

p
is the intrinsic impedance of the medium, as defined ear-

lier in Chapter 4. Note that Sr is complex and Su is purely imaginary. Further the

reactive power densities (imaginary parts of the two) decrease at much faster rate

with distance r in comparison to the real part of Sr. There is a real power flow

only in the radial direction. This represents the power radiated by this current

element. The field components responsible for the radiated power are identified in

(7.1.17) through (7.1.20) to be

~Hrad ¼ f̂
jkI d‘ sinu

4pr
e�jkr ¼ f̂Hf rad (7:1:24)

and

~Erad ¼ û j
h kId‘ sinu

4pr
e�jkr ¼ ûEu rad: (7:1:25)
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Dividing (7.1.24) by (7.1.25), we have

Eu rad

Hf rad

¼ h: (7:1:26)

The total radiated power Prad can be found after integrating the power density over a

spherical surface as follows:

Prad ¼
ð2p
f¼0

ðp
u¼0

1

8
h

Id‘j j2 sin2u
l2r2

r2 sinududf ¼ 2p

8
h

I d‘j j2
l2

ðp
u¼0

sin3udu,

or

Prad ¼ ph I d‘j j2
3l2

: (7:1:27)

The infinitesimal current element considered in this section is a building block for

the linear antenna analyzed in Section 7.3. It is also called an ideal electric dipole or

a Hertzian dipole.

Example 7.1

A 1 cm long Hertzian dipole antenna is located at the origin of the spherical

coordinates. It carries a current of 1 A at 100 MHz. Find the power density per

unit area that leaves a spherical surface of 1 km radius. Plot its normalized

Figure 7.2 Power density of a current element as a function of u.
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characteristics (divide by the maximum power per unit area) on the f ¼ 908 and
u ¼ 908 planes.

Since l ¼ (3 � 108)=(100 � 106) ¼ 3m and h ¼ 377 V for the free space, from

(7.1.22) we have

Re Srð Þ ¼ 1

8
h

Ij jd‘ sinu
lr

� �2

¼ 377

8

1 � 10�2

3 � 103 sinu

� �2

¼ 5:24 � 10�10 sin2u W=m2:

This expression is independent of f. Therefore the normalized power character-

istics on the u ¼ 908 plane will be a circle of unity radius; only the f ¼ 908 plane
is illustrated in Figure 7.2.

7.2 ANTENNA PARAMETERS

Figure 7.3 illustrates some of the antennas that are commonly used in wireless com-

munication systems. These can be grouped as wire-type antennas and aperture-type

antennas. Electric dipole and the loop (also known as the magnetic dipole) antennas

belong to the former group, whereas horn, patch, reflector, and lens belong to the

latter group. The aperture antennas can be further subdivided into primary and sec-

ondary (or passive) antennas. Primary antennas are directly excited by a source and

can be used independently for the transmission or reception of signals. A secondary

antenna requires another antenna as its feeder. Horn and patch antennas fall in the

first category and the reflector and lens in the second. Various kinds of horn antennas

are commonly used as feeders in reflector and lens antennas.

Figure 7.3 Some of the commonly used antennas: (a) electric dipole, (b) loop, (c) conical

horn, (d) patch (e) reflector, and ( f ) lens.
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When an antenna is energized, it generates two types of electromagnetic fields. As

(7.1.22) and (7.1.23) indicate, the reactive power stays near the antenna whereas the

real power propagates outward as radiation. The propagating power represents radi-

ation fields that are inversely related to distance r. Nonpropagating power represents

the reactive (capacitive or inductive) components of electromagnetic fields that

decrease in magnitude at the rate of r22 and r23. Thus the space surrounding an

antenna can be divided into three regions. The reactive fields dominate in nearby

regions but reduce in strength at a faster rate in comparison with fields associated

with the propagating signal. If the largest dimension of an antenna is D and the

signal wavelength is l, then the reactive fields dominate up to about 0.62
p
(D 3/l)

and diminish after 2D 2/l. The region beyond 2D 2/l is called the far-field (or radi-

ation field) region.

Power radiated by an antenna per unit solid angle is known as the radiation inten-

sityU. It is a far-field parameter that is related to power density (power per unit area)

Wrad and distance r as follows:

U ¼ r2Wrad: (7:2:1)

Directive Gain and Directivity

If an antenna radiates uniformly in all directions, then it is called an isotropic

antenna. This is a hypothetical antenna that helps in defining the characteristics

of a real one. The directive gain DG is defined as the ratio of radiation intensity

due to the test antenna to that of an isotropic antenna. It is assumed that total radiated

power remains the same in the two cases. Hence

DG ¼ U

Uo

¼ 4pU

Prad

, (7:2:2)

whereU is radiation intensity due to the test antenna in watts per unit solid angle,Uo is

radiation intensity due to the isotropic antenna in watts per unit solid angle, and Prad is

the total radiated power in watts. SinceU is a directional dependent quantity, the direc-

tive gain of an antenna depends on the angles u andf. If the radiation intensity assumes

its maximum value, then the directive gain is called the directivity Do. That is,

Do ¼ Umax

Uo

¼ 4pUmax

Prad

: (7:2:3)

Example 7.2

Find the directive gain and the directivity of an infinitesimal current element.

Since we have already analyzed the fields generated by the current element,

we can use those expressions to find its directive gain. Note that real part of Sr
in (7.1.22) is Wrad used in (7.2.1). Hence

U ¼ r2
h

8

Ij jd‘ sin u

lr

� �2

¼ h

8l2
Ij jd‘ sin uð Þ2:
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Using (7.1.27) and (7.2.2), we have

DG ¼ U

Uo

¼ 4p
U

Prad

¼ 4p
h Ij jd‘ sin uð Þ2=8l2

ph Id‘j j2=3l2 ¼ 3

2
sin2 u:

Therefore, the directivity of the current element is

Do ¼ DGjmax¼ 1:5:

Gain of an Antenna

The power gain G of an antenna is defined as the ratio of its radiation intensity

U(u, f) at a point to the radiation intensity that results from a uniform radiation

of the same input power Pin. We can express it as follows:

G ¼ 4p
Radiation intensity

Total input power
¼ 4p

U u,fð Þ
Pin

: (7:2:4)

Most of the time we deal with relative gain. Relative gain is defined as a ratio of the

power gain of the test antenna in a given direction to the power gain of a reference

antenna. Both antennas must have the same input power. The reference antenna

may be a dipole, horn, or any other antenna of known gain or it can be calculated.

However, it is a lossless isotropic radiator in most cases. Hence

G ¼ 4p
U u,fð Þ

Pin Lossless isotropic antennað Þ : (7:2:5)

When the direction is not stated, the power gain is usually taken in the direction of

maximum radiation.

Radiation Patterns and Half-power Beam Width (HPBW)

Far-field power distribution at a distance r from the antenna depends on the spatial

coordinates u and f. The graphical representations of these distributions on the

orthogonal plane (u plane or f plane) at a constant distance r from the antenna

are called its radiation patterns. Figure 7.2 shows the radiation pattern of an infini-

tesimal current element on the u plane. Its f-plane pattern is a circle that can be

found easily after rotating this pattern about the u ¼ 0 axis. The three-dimensional

picture of this radiation pattern is doughnut shaped. Similarly the power distri-

butions of other antennas generally show peaks and valleys in the radiation

zone. The highest peak between the two valleys is termed the main lobe and the

others peaks the side lobes. The total angle about the main peak over which

power falls by 50% of its maximum value is called the half-power beam width

on that plane.

7.2 ANTENNA PARAMETERS 279



The following relations are used to estimate the power gain G and the half-power

beam width HPBW (or BW) of an aperture antenna:

G ¼ 4p

l2
Ae ¼ 4p

l2
Ak (7:2:6)

and

BW(in degrees) ¼ 65� l

d
; (7:2:7)

where Ae is the effective area of radiating aperture in square meters, A is its physical

area (pd 2/4, for a reflector antenna dish with its diameter d), k is the efficiency of

antenna (ranges from 0.6 to 0.65), and l is the signal wavelength in meters.

Example 7.3

Calculate the power gain (in dBi) and the half-power beam width of a parabolic

dish antenna of 25 m in diameter that is radiating at 3 GHz.

The signal wavelength and the area of the aperture are

l ¼ 3 � 108
3 � 109 ¼ 0:1 m

and

A ¼ pd 2

4
¼ p

252

4
¼ 490:8738m2:

If we assume that the aperture efficiency is 0.6, the antenna gain and the half-

power beam width are found to be

G ¼ 4p

0:12
490:8738 � 0:6 ¼ 370110:1257 ¼ 10 log 370110:1257ð Þ ¼ 55:6833 dBi

and

BW ¼ 65� 0:1

25
¼ 0:26 deg :

Radiation Resistance

Radiation resistance is an equivalent resistance dissipating the same amount of

power that an antenna radiates when the current flowing through the resistance is

equal to the current input to the antenna.

Example 7.4

Find the radiation resistance Rrad of an infinitesimal current element as a function

of its length dl and the signal wavelength l.
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Since we have already formulated in (7.1.27) an expression for the power that

this current element radiates, we can find Rrad as follows:

1

2
Ij j2Rrad ¼ ph

3
Ij j2 d‘

l

� �2

! Rrad ¼ 2ph

3

d‘

l

� �2

:

Since h � 120p V (�377 V) for free space, this expression simplifies to

Rrad ¼ 80p 2 d‘

l

� �2

:

Antenna Efficiency

If an antenna is not matched with its feeder, then a part of the signal available

from the source is reflected back. This is considered reflection (or mismatch) loss.

Reflection (or mismatch) efficiency is defined as a ratio of the power input to the

antenna to the power available from the source. Since the ratio of reflected power

to the power available from the source is equal to the square of the magnitude of

the voltage reflection coefficient, the reflection efficiency er is given by

er ¼ 1� jGj2;

where

G ¼ Voltage reflection coefficient ¼ ZA � Zo

ZA þ Zo
;

ZA is the antenna impedance, and Zo is the characteristic impedance of the feeding

line.

Besides the power loss due to mismatch, a signal energy may dissipate in an

antenna because of an imperfect conductor or dielectric material. These efficiencies

are hard to compute. However, the combined conductor and dielectric efficiency ecd
can be experimentally determined after measuring the input power Pin and the

radiated power Prad. This is given as:

ecd ¼ Prad

Pin

:

The overall efficiency eo is a product of the efficiencies above. Therefore

eo ¼ er ecd: (7:2:8)

Example 7.5

A 75 V transmission line feeds a lossless one-half wavelength long dipole

antenna. If the antenna impedance is 73 V and its radiation intensity U(u, f) is
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given as follows, find the maximum overall gain:

U ¼ Bo sin
3 (u):

The maximum radiation intensity, Umax, is Bo, which occurs at u ¼ p/2. The
total radiated power is found to be

Prad ¼
ð2p
0

ðp
0

Bo sin
3 u sinududf ¼ 3

4
p 2Bo:

Hence

Do ¼ 4p
Umax

Prad

¼ 4p Bo

3p 2Bo=4
¼ 16

3p
¼ 1:6977;

or

Do(dB) ¼ 10 log10(1:6977) dB ¼ 2:2985 dB:

Since the antenna is lossless, there is no conductor or dielectric loss. Therefore its

radiation efficiency ecd is unity (0 dB). However, there is power loss due to its

mismatch with the feeding line. The mismatch efficiency is computed as follows:

The voltage reflection coefficient at the input of antenna is found to be

G ¼ ZA � Zo

ZA þ Zo
¼ 73� 75

73þ 75
¼ � 2

148
¼ �0:0135:

The mismatch efficiency of this antenna then is

er ¼ 1� ð0:0135Þ2 ¼ 0:9998 ¼ 10 log10ð0:9998Þ dB ¼ �0:0008 dB:

The overall gain Go (in dB) is obtained as:

GoðdBÞ ¼ 2:2985� 0� 0:0008 ¼ 2:2977 dB:

Bandwidth

Antenna characteristics, such as gain, radiation pattern, and impedance are fre-

quency dependent. The bandwidth of an antenna is defined as the frequency band

over which its performance with respect to some characteristic (HPBW, directivity,

etc.) conforms to a specified standard.

Polarization

The polarization of an antenna is same as the polarization of its radiating wave. As

considered in Chapter 4, it is the property of an electromagnetic wave describing the

time-varying direction and relative magnitude of an electric field vector. The curve
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traced by an instantaneous electric field vector over time is the polarization of that

wave. The polarization characteristics are summarized below for the ready reference:

. Linear polarization. If over time the tip of the electric field intensity traces a

straight line in some direction, then the wave is linearly polarized.

. Circular polarization. If over time the end of the electric field traces a circle in

space then the electromagnetic wave is circularly polarized. Further the wave

may be right-handed circularly polarized (RHCP) or left-handed circularly

polarized (LHCP), depending on whether the electric field vector rotates clock-

wise or counterclockwise.

. Elliptical polarization. If over time the tip of the electric field intensity traces

an ellipse in space, then the wave is elliptically polarized. As in the preceding

case, the wave may experience either right-handed or left-handed elliptical

polarization (RHEP and LHEP).

In a receiving system the polarization of the antenna and the incoming wave need to

be matched for maximum response. When this is not the case, there will be some

signal loss, which is known as polarization loss. For example, if there is a vertically

polarized wave incident on a horizontally polarized antenna, then the induced

voltage available across the terminals will be zero. In this case the antenna is charac-

terized as cross-polarized with an incident wave. The square of the cosine of the

angle between the wave-polarization and antenna-polarization is a measure of the

polarization loss. It can be determined by squaring the scalar product of the unit

vectors representing the two polarizations.

Example 7.6

A uniform plane electromagnetic wave propagating in the z direction is incident

upon an antenna that is polarized as follows:

~Ea ~r
� � ¼ x̂þ ŷð ÞE ~r

� �
:

The electric field intensity of the incoming electromagnetic wave is

~E ~r, t
� � ¼ ŷEo cos vt � kzð Þ V=m:

Find the polarization loss factor.

In this case the incident wave is linearly polarized along y-axis whereas the

receiving antenna is linearly polarized at 458 from it. Therefore one-half of the

incident field is cross-polarized with the antenna, and its polarization loss can

be found as follows:

The unit vector along the polarization of incident wave is

ûi ¼ ŷ:
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The unit vector along the antenna polarization is

ûa ¼ 1ffiffiffi
2

p x̂þ ŷð Þ:

Hence the polarization loss factor is

ûi � ûaj j2¼ 0:5 ¼ �3:01 dB:

Effective Isotropic Radiated Power

Effective isotropic radiated power (EIRP) is a measure of the power gain of an

antenna. It is equal to the power that an isotropic antenna needs to provide the same

radiation intensity at a given point as the directional antenna. If the power input to

the feeding line is Pt and the antenna gain is Gt, then EIRP is defined as follows:

EIRP ¼ PtGt

L
, (7:2:9)

where L is the input-to-output power ratio of a transmission line that connects the

output of the transmitter and the antenna. It is given by

L ¼ Pt

Pant

ð7:2:10Þ

Alternatively, the EIRP can be expressed in dBW as follows:

EIRPðdBWÞ ¼ Pt(dBW)� L(dB)þ Gt(dB): (7:2:11)

Example 7.7

A transmitter has 1 kW power at the output of its final high-power amplifier. If

the gain of the transmitting antenna is 60 dB and its feeding line has an attenu-

ation of 20%, find the EIRP in dBW.

Pt ¼ 1000W ¼ 30 dBW,

Pant ¼ 0:8� 1000 ¼ 800W,

Gt ¼ 60 dB ¼ 106,

and

L ¼ 1000

800
¼ 1:25 ¼ 10 log 1:25ð Þ ¼ 0:9691 dB:

Hence

EIRP(dBW) ¼ 30� 0:9691þ 60 ¼ 89:0309 dBW;
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or

EIRP ¼ 1000 � 106
1:25

¼ 800 � 106 W ¼ 89:0309 dBW:

Space Loss

A transmitting antenna radiates in all directions depending on its radiation character-

istics. However, a receiving antenna receives only the power that is incident on it.

Hence the rest of the power is not used and is lost in space. It is regarded as space loss.

Space loss can be determined as follows: The power density wt of a signal trans-

mitted by an isotropic antenna is given by

wt ¼ Pt

4pr2
W=m2, (7:2:12)

where Pt is the transmitted power in watts and r is the distance from the antenna in

meters. The power received by a unity gain antenna located at r is found to be

Pr ¼ wtAeu, (7:2:13)

where Aeu is the effective area of an isotropic antenna.

From (7.2.6), for an isotropic antenna

G ¼ 4p

l2
Aeu ¼ 1,

or

Aeu ¼ l2

4p
:

Hence (7.2.13) can be rewritten as

Pr ¼ Pt

4pR2
� l2

4p
, (7:2:14)

and the space loss ratio is found to be

Pr

Pt

¼ l

4pR

� �2

: (7:2:15)

This is usually expressed in dB as follows:

Space loss ratio ¼ 20 log10
l

4pR

� �
dB: (7:2:16)

Example 7.8

A geostationary satellite is 35860 km away from the earth’s surface. Find the

space loss ratio if it is operating at 6 GHz.

R ¼ 35860000m
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and

l ¼ 3 � 108
6 � 109 ¼ 0:05m:

Hence

Space loss ratio ¼ 0:05

4p � 35860000
� �2

¼ 1:2311� 10�20 ¼ �199:1 dB:

7.3 LINEAR ANTENNAS

Equation (7.1.16) gives the magnetic vector potential due to a z-directed infinitesi-

mal current element located at the origin. This can be generalized easily for the

z-directed current source located at ~r 0 as follows:

Az ¼
ð
V 0
m Jz

e�jkR

4pR
dv0, (7:3:1)

where R ¼ ~r � ~r 0
�� �� is the distance from source point to the field point (observation

point) as shown in Figure 7.4. In the figure the primed coordinates represent the

source point, the unprimed coordinates are the field points.

Similar expressions can be used for the x- and y-directed current sources. A gen-

eral formulation based on the impulse response (Green’s function) and the super-

position integral are summarized in Appendix B. A general expression for the

magnetic vector potential is

~A(~r) ¼
ð
V 0
m~J

e�jkR

4pR
dv0: (7:3:2)

Figure 7.4 Coordinate system used for fields due to a z-directed current source.
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In this section we consider the radiation characteristics of only thin linear antennas.

We assume that the antenna is a thin wire lying along the z-axis and carrying a

current I, with x0 ¼ y0 � 0. Hence (7.3.1) can be simplified by the coordinate

geometry illustrated in Figure 7.5.

Consider an incremental length dz0 of thin linear wire antenna centered on point

(0, 0, z0). The coordinates of the field point are (x, y, z). Therefore the separation R

between the source and the field points is found to be

R ¼ ~r � ~r0
�� �� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z� z0ð Þ2
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2 � 2z0zþ z02

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 2z0r cos uþ z02

p
Here we have switched the field point (unprimed) coordinates from rectangular to

spherical coordinates. Using binomial expansion (formula 47 in Appendix A) and

simplifying it we obtain

R ¼ r � z0 cos uþ z02

2r
sin2 uþ z03

2r3
cos u sin2 uþ � � � : (7:3:3)

Since r � z0, the magnitude of Az in (7.3.1) is not significantly altered if we keep just

the first term of this expansion as the approximate value of R. However, we also keep

the second term in its phase term e jkz0cosu because it contributes significantly. For

example, if z0cos u changes from 0 to l/2 (where l is the signal wavelength),

then e jkz0cosu changes from 1 to 21. As illustrated in Figure 7.5b, this approxi-

mation leads to q � u. Hence (7.3.1) is approximated as follows for determining

the field radiated by a linear antenna:

Az ¼ m

4pr
e�jkr

ð‘=2
�‘=2

I(z0)e jkz0 cos u dz0: (7:3:4)

Figure 7.5 Linear antenna geometry (a) and an approximation of its radiation analysis (b).
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After (7.3.4) is evaluated for a given current distribution on a linear antenna, its

fields are found from (7.1.2) and (7.1.3). Alternatively, (7.1.24) and (7.1.25) can

be used as the radiated fields from an infinitesimal element that is integrated

over the length of the linear antenna. To use this approach, we need to define the

incremental electric field in the radiation zone via (7.1.25). The approximation

proceeds as follows:

D~Erad � û j
h kIdz0 sin u

4pr
e�jkre jkz0 cos u: (7:3:5)

Therefore

~Erad � û
jhk sin u

4pr
e�jkr

ð‘=2
�‘=2

I(z0)e jkz0 cos udz0: (7:3:6)

Since the current must be zero at the ends of the thin wire, the following

distribution of current is usually assumed for a center-driven linear antenna.

Assume that the peak value of the current is Io. Then

I(z0) ¼ Io sin k
‘

2
� z0
�� ��� �� �

; � ‘

2
� z0 � ‘

2
: (7:3:7)

Hence

~Erad ¼ û
jhkIo sin u

4pr
e�jkr

ð‘=2
�‘=2

sin k
‘

2
� z0
�� ��� �� �

e jkz0 cos udz0: (7:3:8)

This integral can be evaluated with the help of integration formula 28 in Appendix A.

Alternatively, because the sine function in the integrand of (7.3.8) is an even func-

tion (because of jz0j) and exponential term can be split into even and odd terms via

Euler’s formula (equation 24 in Appendix A), this integral can be simplified to

~Erad ¼ û
jhkIo sin u

4pr
e�jkr2

ð‘=2
0

sin k
‘

2
� z0

� �� �
cos kz0 cos uð Þdz0: (7:3:9)

Now this integral can be easily evaluated using software with symbolic mathematics

capability (e.g., Mathcadw). This gives

~Erad ¼ û
jh Io
2pr

e�jkr cos (k‘=2) cos u½ � � cosðk‘=2Þ
sin u

: (7:3:10)

The corresponding magnetic field can be found from (7.1.26) as follows:

~Hrad ¼ f̂
jIo

2pr
e�jkr cos½ðk‘=2Þ cos u� � cos k‘=2ð Þ

sin u
: (7:3:11)
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Therefore the radiation power density (power flow per unit area) Wrad is found

to be

Wrad ¼ hI2o
8p 2r2

cos½ðk‘=2Þ cos u � � cos k‘=2ð Þ
sin u

� �2

: (7:3:12)

The radiated power Prad can be obtained now:

Prad ¼
ðp
u¼0

ð2p
f¼0

Wradr
2 sinududf

¼ hI 2o
4p

ðp
u¼0

½cos (k‘=2) cos u� � cos k‘=2ð Þ½ �2
sin u

du: (7:3:13)

At this point we consider a special case where the total length of the antenna is

equal to one-half of the signal wavelength:

‘ ¼ l

2
! k‘

2
¼ 1

2
� 2p
l

� l
2
¼ p

2
:

Therefore (7.3.10) through (7.3.13) reduce to

~Erad ¼ û
jh Io

2pr
e�jkr cos (p=2)cos u½ �

sin u
; (7:3:14)

~Hrad ¼ f̂
j Io

2pr
e�jkr cos (p=2)cos u½ �

sin u
; (7:3:15)

Wrad ¼ hI2o
8p 2r2

cos (p=2)cos u½ �
sin u

� �2

; (7:3:16)

and

Prad ¼ hI2o
4p

ðp
u¼0

cos (p=2)cos u½ �� 
2
sin u

du ¼ hI2o
4p

� 1:2186: (7:3:17)

Note that this definite integral requires numerical integration. It can be easily

carried out on a programmable calculator. The radiation resistance Rrad can

then be found as follows:

1

2
I2oRrad ¼ Prad ¼ hI2o

4p
� 1:2186 ! Rrad ¼ 0:6093

p
hV ¼ 73:1 V: (7:3:18)

Radiation patterns of selected linear antennas are shown in Figure 7.6.
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Next, the directivity Do of a half-wavelength dipole can be found from (7.2.1),

(7.2.2), (7.3.16), and (7.3.17) as follows:

Umax ¼ h I2o
8p 2

cos (p=2)cos u½ �
sin u

� �2
�����
max

¼ hI2o
8p 2

and

Do ¼ 4p
hI 2o =8p

2

(hI 2o =4p) � 1:2186
¼ 2

1:2186
¼ 1:6412: (7:3:19)

7.4 ANTENNA ARRAYS

Consider an array of two infinitesimal current elements along the x-axis, as shown in

Figure 7.7. The separation between the two elements is d. Using (7.1.25), we can

Figure 7.6 Radiation patterns of linear antennas on the f ¼ 0 plane.
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express the total radiated electric field on the x-y plane (i.e., u ¼ 908) as follows:

Eu ¼ jhkId‘

4p
e ja1

e�jkr1

r1
þ e ja2

e�jkr2

r2

� �
: (7:4:1)

As indicated in Figure 7.7, the field point is far away from the two sources such

that the two signal paths can be assumed to be almost parallel. Therefore the

distances r1 and r2 are assumed to be equal in the two magnitude terms. However,

r2 is approximated by r12 d cos f in the phase term (similar to the approximation

used for linear antennas in the preceding section) for better accuracy. As a result

(7.4.1) reduces to

Eu ¼ jhkId‘

4p r1
e�j(kr1�a1)½1þ e j(a2�a1) � e jkd cosf�

¼ jhkId‘

4p r1
e�j(kr1�a1)½1þ e j(kd cosfþa)�, (7:4:2)

where a ¼ a22 a1.

A comparison of the multiplying coefficient on the right-hand side of (7.4.2) with

that of radiation field given in (7.1.25) shows that the two are identical. This term is

called the element factor, and the remaining term (inside the square brackets) is

called the array factor (AF ). Hence

AF ¼ 1þ e j(kd cosfþa) ¼ e j(kd cosfþa)=2 e�j(kd cosfþa)=2 þ e j(kd cosfþa)=2
	 


¼ 2e j(kd cosfþa)=2 cos
kd cosfþ a

2

� �
:

Figure 7.7 Linear array of two antennas along the x-axis.
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For kd cos f þ a ¼ c this relation can be expressed as follows:

AF ¼ 2e jc=2 cos
c

2

� �
: (7:4:3)

Note that the e jc/2 term in AF reduces to 1 if the reference is moved to the center of

the array. Since the maximum possible magnitude of AF is 2, it can be normalized as

follows:

AFn ¼ jAFj
2

¼ cos
c

2

� �
: (7:4:4)

The array factor depends only on the separation between the two radiators and the

relative phase of their excitation. If we use different antennas in place of infinitesi-

mal current elements, only the element factor will change. The total radiated field is

found after multiplying the new element factor by the array factor of (7.4.3). This is

known as the principle of pattern multiplication, which states that the radiation

pattern of an array is the product of the element factor of an individual antenna

with the array factor.

Example 7.9

Find the radiation field pattern on the x-y plane of a two-element short dipole

array with in-phase excitation (i.e., a ¼ 0) and d ¼ 0.5l.
From (7.4.4) we have

AFn ¼ cos
c

2

� �
¼ cos

kd cosfþ a

2

� �
¼ cos

2pd

2l
cosfþ a

2

� �
¼ cos

p

2
cosf

� �
:

This AFn is displayed in Figure 7.8. Since the element factor in this case is simply

a circle, the radiation pattern of this array is simply the array factor shown. Note

that the maximums are at f ¼ +908 and nulls along the +x-axis (i.e., f ¼ 08
and 1808). This characteristic of the pattern can be explained easily via wave

propagation as follows: Since the two antennas are excited in-phase (i.e.,

a ¼ 0), waves reaching in the direction of f ¼ +908 from the two antennas

are added. The two cancel out along the +x-axis because of d ¼ 0.5l (hence

the phase delay of 1808 of the wave arriving at one antenna from the other).

This kind of arrangement is known as a broadside array.

Example 7.10

Find the radiation field pattern on the x-y plane of a two-element short dipole

array with a ¼ p/2 and d ¼ 0.25l.
In this case (7.4.4) gives

AFn ¼ cos
c

2

� �
¼ cos

2pd

2l
cosf þ a

2

� �
¼ cos

p � l
l � 4 cosf þ p

4

� �

¼ cos
p

4
cos f þ p

4

� �
:
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This AFn is displayed in Figure 7.9. As before, AFn represents the radiation

pattern of this array because the element factor is simply a circle. Note that

there is only one maximum in this case occurring at f ¼ 1808 and a null along

the x-axis (i.e., f ¼ 08). This characteristic of the pattern can be explained

easily via wave propagation as follows: Since the second antenna is excited by

the p/2 phase advanced with respect to the first antenna and the separation d

Figure 7.8 Pattern of a two-element linear array of Example 7.9 on the x-y plane.

Figure 7.9 Pattern of a two-element linear array of Example 7.10 on the x-y plane.
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introduces a phase delay of p/2, the waves from the two antennas cancel out each

other along f ¼ 08. However, the two waves are added up along f ¼ 1808. This
kind of arrangement is known as an end-fire array.

Example 7.11

Find the radiation field pattern on the x-y plane of a two-element short dipole

array with a ¼2p/2 and d ¼ 0.25l.
In this case (7.4.4) gives

AFn ¼ cos
c

2

� �
¼ cos

kd cosfþ a

2

� �
¼ cos

p � l
l � 4 cosf� p

4

� �

¼ cos

�
p

4
cosf� p

4

�
:

ThisAFn is displayed in Figure 7.10. As before, it represents the radiation pattern of

this array because the element factor is simply a circle. Note that this time there is

only one maximum occurring at f ¼ 08 and a null along the 2x-axis (i.e.,

f ¼ 1808). Since the second antenna is excited by a p/2 phase delay with respect

to the first antenna and the separation d introduces a phase delay ofp/2, waves from
the two antennas cancel out each other alongf ¼ 1808. However, the twowaves are
added up along f ¼ 08. This is another end-fire array arrangement.

These examples demonstrate a few significant characteristics that have a number

of practical applications. The radiation beam width (or HPBW) of the array is much

smaller than that of the individual antenna. This plays important role in many

Figure 7.10 Pattern of a two-element linear array of Example 7.11 on x-y plane.
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applications including the radar and point-to-point communication systems. Note

that separation d between the elements is the same in Examples 7.10 and 7.11. How-

ever, the radiation beam peaks along þx in one case and along2x in the other. This

occurs only because the excitation phase a changes from 2p/2 to p/2. Because of
this phenomenon the main beam can be moved electronically from one location to

other continuously as we vary a. It is by this principle that the phased array radar

works to track various targets without mechanically moving its antenna system.

Example 7.12

Find the radiation field pattern on the x-y plane of a two-element short dipole

array with in-phase excitation (i.e., a ¼ 0) for d ¼ 0.5l, 0.9l, 1l, and 2l.
In this case (7.4.4) gives

AFn ¼ cos
c

2

� �
¼ cos

kd cosfþ a

2

� �
¼ cos

p � d
l

cosf

� �
:

This relation is graphed in Figure 7.11 for four different cases with2p � f � p.
As the figure shows, there are two broadside main lobes (peaks) for d ¼ l/2. As
the separation increases to 0.9l, the broadside lobes become narrower. However,

there is another lobe located at f ¼ 0 with a peak strength of over 0.9. The main

lobes on the broadside further narrow down as the separation between the two

elements increases. However, the strength of the lobe at f ¼ 0 not only becomes

equal to that of the main lobe, but also there are two more lobes of equal strength

for d ¼ 2l. The extra lobes with main beam strengths are referred to as grating

lobes. In most applications only one main lobe with narrow beam width is

desired. This example indicates that the element separation must be kept smaller

than a wavelength to avoid grating lobes.

Figure 7.11 Pattern of a two-element linear array of Example 7.12 on x-y plane.
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Linear Array of N Elements

Consider an array of N uniformly spaced antennas, as shown in Figure 7.12. The

excitation magnitude is assumed to be same, but there is a progressive phase

increase. As in the preceding analysis of a two-element array, we can find

the array factor as follows:

AF ¼ 1þ ej(kd cosfþa)þ ej2(kd cosfþa)þ �� �þ ej(N�1)(kd cosfþa) ¼
XN
n¼1

ej(n�1)(kd cosfþa),

or

AF ¼
XN
n¼1

ej(n�1)c, (7:4:5)

where

c¼ kd cosfþa: (7:4:6)

Equation (7.4.5) represents a geometric series that can be added (see Appendix A,

formula 46) to get

AF ¼ 1� ejNc

1� ejc
¼ ejNc=2 e�jNc=2� ejNc=2

� �
ejc=2 e�jc=2� ejc=2ð Þ ¼ ej(N�1)c=2 sin(Nc=2)

sin(c=2)
: (7:4:7)

If the reference point is moved to the midpoint, the phase shift term (first coeffi-

cient) disappears. Therefore (7.4.7) reduces to

AF ¼ sin(Nc=2)

sin(c=2)
: (7:4:8)

Figure 7.12 Linear array of N antennas.
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The maximum value of this array factor is found to be N, which occurs when c ¼ 0.

Hence the normalized array factor is found to be

AFn ¼ sin (Nc=2)

N sin (c=2)
: (7:4:9)

When the number of antenna elements N is large (typically 10 or so), the sine term in

the denominator varies much more slowly around c ¼ 0 in comparison with the

numerator. Therefore (7.4.9) can be approximated around the maximum at c ¼ 0

as follows:

AFn � sin (Nc=2)

Nc=2
: (7:4:10)

Note that 21 � cosf � 1, and therefore 2kdþ a � c � kdþ a. This is called the

visible range of the array. As we saw in Example 7.12, grating lobes are possible if

the element separation d is larger than a wavelength.

The array factor peaks whenever the signals radiated from various antennas

arrive in phase (constructive interference of waves). However, it falls when the

signals arriving are out of phase (destructive interference of waves). The maximums

occur at

sin
c

2

� �
¼ 0 ¼ sin (+mp), m ¼ 0; 1; 2; . . . :

Therefore

kd cosf p þ a ¼ +2mp ! f p ¼ cos�1 l

2pd
(+2mp� a)

� �
: (7:4:11)

The peaks occur at f ¼ fp. The major maximum occurs at m ¼ 0. There are smaller

peaks that are called side lobes occurring whenever the numerator of AF is maxi-

mized. This happens when

sin
Nc

2

� �
¼ +1 ! N

2
(kd cosf p þ a) ¼ +(2pþ 1)

p

2
, p ¼ 1, 2, 3 . . .

Hence

cosf p ¼
l

2pd
+(2pþ 1)

p

2
� a

h i
, (7:4:12)

or

fp ¼ cos�1 l

2pd
+(2pþ 1)

p

2
� a

h i� �
: (7:4:13)
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Alternatively, (7.4.12) can be expressed as follows:

sin
p

2
� fp

� �
¼ l

2pd
+(2pþ 1)

p

2
� a

h i
: (7:4:14)

Therefore

fp ¼
p

2
� sin�1 l

2pd
+(2pþ 1)

p

2
� a

h i� �
: (7:4:15)

Note that the maximum of the first minor lobe occurs at p ¼ 1. Therefore

N

2
(kd cosfp1 þ a) � +

3p

2
! kd cosf p1 þ a ¼ +

3p

N
: (7:4:16)

Further the peak magnitude of the first side lobe is found to be

AFn p1 � sin(Nc=2)

Nc=2

����
����
(Nc=2)¼+3p=2

¼ 2

3p
¼ 0:2122: (7:4:17)

Since the maximum value of the normalized AF is unity, the first side lobe is fairly

small. It can be expressed in dB as follows:

AFn

���
P1(dB)

¼ 20 log
2

3p

� �
¼ �13:4648 dB: (7:4:18)

The array factor is zero at

sin
Nc

2

� �
¼ 0 ¼ sin (+np); n ¼ 1, 2, 3, . . . , but n=N, 2N, 3N, . . . :

Therefore

kd cosfþ ajf¼fz
¼ +

2np

N
! fz ¼ cos�1 l

2pd
+

2np

N
� a

� �� �
: (7:4:19)

The principal lobe maximum occurs at m ¼ 0. Hence

fmax ¼ cos�1 la

2pd

� �
: (7:4:20)

The HPBW (3 dB beam width) of this array can be found if we can determine

f ¼ fh when peak power reduces by one-half. Therefore

sin(Nc=2)

Nc=2

� �2
�����
f¼fh

¼ 1

2
! sin

N

2
kdcosfhþa

� �
¼ 1ffiffiffi

2
p N

2
kdcosfhþa:

(7:4:21)
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Equation (7.4.21) can be solved numerically using software (or a graphing

calculator) to find

N

2
(kdcosfhþa)¼+1:3916! cosfh¼

l

2pd
+

2:7832

N
�a

� �
¼ sin

p

2
�fh

� �
:

Therefore

fh¼ cos�1 l

2pd
+

2:7832

N
�a

� �� �
¼p

2
�sin�1 l

2pd
+

2:7832

N
�a

� �� �
(7:4:22)

and

HPBW¼2 fmax�fh

�� ��: (7:4:23)

As we saw earlier with the two-element array, there are two special cases of particu-

lar interest: broadside and end-fire arrays.

Broadside Arrays

For a ¼ 0, (7.4.11) gives

c ¼ kd cosf p ¼ 0 ! cosf p ¼ 0 ! f p ¼ +
p

2
: (7:4:24)

Therefore, if the antennas are excited in phase, the main beam is on the broadside for

all N and d. However, there will be grating lobes in the visible range if the separation

between the elements is larger than a wavelength.

End-Fire Arrays

For a ¼ 2kd, (7.4.11) gives

c ¼ kd cosf p � kd ¼ 0 ! kd(cosf p � 1) ¼ 0 ! cosf p ¼ 1 ! f p ¼ 0:

(7:4:25)

Similarly, if a ¼ kd, then from (7.4.11) we have

c ¼ kd cosf p þ kd ¼ 0 ! kd(cosf p þ 1) ¼ 0 ! cosf p ¼ �1 ! f p ¼ p:

(7:4:26)

These two cases give the end-fire arrays with two elements considered in Examples

7.10 and 7.11.

Example 7.13

Find the phase of excitation for an 8-element array that has its main beam at 608
from the array’s axis. Let the separation between the elements be 0.3183l.
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How will this change if only four elements are used instead? Plot the array pat-

terns for both cases.

Assume that the array is along the x-axis. Therefore, for the main beam at

fp ¼ 608,

c ¼ kd cosf p þ a ¼ 0 ! a ¼ � 2p � 0:3183l
l

cos 608ð Þ ¼ �1:

The normalized array factor for 8 elements is found to be

AFn ¼ sin(Nc=2)

N sin(c=2)
¼ sin(8 cosf� 4)

8 sin(cosf � 0:5)
:

When there are only 4 elements in the array, the array factor changes to

AFn ¼ sin(Nc=2)

N sin(c=2)
¼ sin(4 cosf� 2)

4 sin(cosf � 0:5)
:

Figure 7.13 shows the array patterns for both cases.

7.5 FRIIS TRANSMISSION FORMULA AND THE
RADAR RANGE EQUATION

The analysis and design of communication and monitoring systems often require an

estimation of transmitted and received powers. The Friis transmission formula and

the radar range equation provide the means for such calculations. The former is

applicable to a one-way communication system where the signal transmitted at

Figure 7.13 Radiation patterns of the array in Example 7.13.
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one end is received at the other end of the link. In the case of the radar range equation

the transmitted signal hits a target, and the reflected signal is generally received at

the location of transmission. We consider these two formulations in this section.

Friis Transmission Equation

Consider the simplified communication link illustrated in Figure 7.14. A distance R

separates the transmitter and the receiver. The effective apertures of the transmitting

and receiving antennas are Aet and Aer, respectively. Further the two antennas are

assumed to be polarization matched.

If the power input to the transmitting antenna is Pt, then isotropic power density

wo at a distance R from the antenna is given as follows:

wo ¼ Ptet

4pR2
, ð7:5:1Þ

where et is the radiation efficiency of the transmitting antenna. For a directional

transmitting antenna, the power density wt is found to be

wt ¼ PtGt

4pR2
¼ PtetDt

4pR2
, ð7:5:2Þ

where Gt is the gain and Dt is the directivity of transmitting antenna. The power col-

lected by the receiving antenna is

Pr ¼ Aerwt: ð7:5:3Þ

From (7.2.6),

Aer ¼ l2

4p
Gr, ð7:5:4Þ

where the receiving antenna gain is Gr. Therefore from (7.5.2) through (7.5.4)

we have

Pr ¼ l2

4p
Grwt ¼ l2

4p
Gr

PtGt

4pR2

Figure 7.14 Simplified block diagram of a communication link.
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or

Pr

Pt

¼ l

4pR

� �2

GrGt ¼ eret
l

4pR

� �2

DrDt: ð7:5:5Þ

If the signal frequency is f, then for a link in free space we find that

l

4pR
¼ 3 � 108

4pfR
,

where f is in Hz and R is in meters.

Generally, the link distance is long and the signal frequency is high such that kilo-

meter and megahertz are more convenient units than the usual meter and hertz,

respectively. For R in km and f in MHz, we find that

l

4pR
¼ 3 � 108

4p � 106 � fMHz � 103 � Rkm

¼ 0:3

4p
� 1

fMHz � Rkm

:

Hence (7.5.5) may be expressed as follows:

Pr dBmð Þ ¼ Pt dBmð Þ þ 20 log10
0:3

4p

� �
� 20 log10 fMHz Rkmð Þ þ Gt dBð Þ þ Gr dBð Þ,

or

PrðdBmÞ ¼ PtðdBmÞ þGtðdBÞ þGrðdBÞ � 20 log10ð fMHZRkmÞ � 32:4418, ð7:5:6Þ

where the transmitted and received powers are in dBm while the antenna gains

are in dB.

Example 7.14

A 20 GHz transmitter on board a satellite uses a parabolic antenna that is 45.7 cm

in diameter. The antenna gain is 37 dB and its radiated power is 2 W. The ground

station, which is 36941.031 km away from the transmitter, has an antenna gain of

45.8 dB. Find the power collected by the ground station. How much power will

be collected at the ground-station if there are isotropic antennas on both sides?

The transmitted power Pt (dBm) ¼ 10 log10 (2000) ¼ 33.0103 dBm, and

20 log10ð fMHZ RkmÞ ¼ 20 log10ð20 � 103 � 36941:031Þ ¼ 177:3708 dB:

Hence the power received at the earth station is found as follows:

PrðdBmÞ ¼ 33:0103þ 37þ 45:8� 177:3708� 32:4418 ¼ �94:0023 dBm;
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or

Pr ¼ 3:979 � 10�10 mW:

If the two antennas are isotropic, Gt ¼ Gr ¼ 1 (or 0 dB), and therefore

PrðdBmÞ ¼ 33:0103þ 0þ 0� 177:3708� 32:4418 ¼ �176:8023 dBm,

or

Pr ¼ 2:0882 � 10�18 mW:

Radar Equation

In a radar system the transmitted signal is scattered by a target in all possible direc-

tions. The receiving antenna collects part of the energy that is scattered back toward

it. Generally, a single antenna is employed for both the transmitter and the receiver,

as shown in Figure 7.15.

If the power input to a transmitting antenna is Pt and its gain is Gt, then the power

density winc incident on the target is

winc ¼ PtGt

4pR2
¼ PtAet

l2R2
, ð7:5:7Þ

where Aet is the effective aperture of the transmitting antenna.

The radar cross section s of an object is defined as the area intercepting that

amount of power that, when scattered isotropically, produces at the receiver a

power density that is equal to that scattered by the actual target. Hence

Radar cross section ¼ Scattered power

Incident power density
m2,

Figure 7.15 Simplified block diagram of a radar system.
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or

s ¼ 4pR2wr

winc

, ð7:5:8Þ

where wr is the isotropically backscattered power density at distance R and winc is the

power density incident on the object. Thus the radar cross section of an object is its

effective area, which intercepts an incident power density winc and gives an isotro-

pically scattered power of 4pR 2wr for a backscattered power density. Radar cross

sections of selected objects are listed in Table 7.1.

From the radar cross section of a target the power intercepted by the object can be

found as follows:

Pinc ¼ swinc ¼ sPtGt

4pR2
: ð7:5:9Þ

The power density arriving back at the receiver is

wscatter ¼ Pinc

4pR2
, ð7:5:10Þ

and the power available at the receiver input is

Pr ¼ Aerwscatter ¼ Grl
2sPtGt

4p 4pR2ð Þ2 ¼
sAerAetPt

4pl2R4
: ð7:5:11Þ

Example 7.15

As shown in Figure 7.16 a distance of 100 l separates two lossless X-band horn

antennas. The reflection coefficients at the terminals of the transmitting and

receiving antennas are 0.1 and 0.2, respectively. The maximum directivities of

the transmitting and receiving antennas are 16 and 20 dB, respectively.

Assume that the input power in the lossless transmission line connected to the

TABLE 7.1 Radar Cross Sections of Selected Objects

Object

Radar Cross

Section (m2)

Pickup truck 200

Automobile 100

Jumbo-jet airliner 100

Large bomber 40

Large fighter aircraft 6

Small fighter aircraft 2

Adult male 1

Conventional winged missile 0.5

Bird 0.01

Insect 0.00001

Advanced tactical fighter 0.000001
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transmitting antenna is 2 W, and that the two antennas are aligned for maximum

radiation between them and are polarization matched. Find the power input to the

receiver.

As discussed in Chapter 5, an impedance discontinuity generates an echo

signal very similar to that of an acoustical echo. Hence the signal power available

beyond the discontinuity is reduced. The ratio of the reflected signal voltage to

that of the incident is called the reflection coefficient. Since power is proportional

to the square of voltage, the power reflected from the discontinuity is equal to the

square of the reflection coefficient times the incident power. Therefore the power

transmitted in the forward direction will be given by

Pt ¼ ½1� jGj2�Pin:

The power radiated by the transmitting antenna is then found to be

Pt ¼ {1� 0:12}2 ¼ 1:98W:

Since the Friis transmission equation requires antenna gain as a ratio instead of in

dB, Gt and Gr are calculated as follows:

Gt ¼ 16 dB ¼ 101:6 ¼ 39:8107,

Gr ¼ 20 dB ¼ 102:0 ¼ 100:

Hence from (7.5.5) we get

Pr ¼ l

4p � 100l
� �2

� 100 � 39:8107 � 1:98,

or

Pr ¼ 5mW,

and the power delivered to the receiver, Pd, is

Pd ¼ ð1� 0:22Þ5 ¼ 4:8mW:

Example 7.16

Radar operating at 12 GHz transmits 25 kW through an antenna of a 25 dB

gain. A target with its radar cross section at 8 m2 is located at 10 km from

Figure 7.16 X-band communication link for Example 7.15.
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the radar. If the same antenna is used for the receiver, determine the received

power.

Pt ¼ 25 kW,

f ¼ 12 GHz ! l ¼ 3 � 108
12 � 109 ¼ 0:025 m;

Gr ¼ Gt ¼ 25 dB ! 102:5 ¼ 316:2278,

R ¼ 10 km,

s ¼ 8m2:

Hence

Pr ¼ GrGtPtsl
2

4p 4pR2ð Þ2 ¼
316:22782 � 25000 � 8 � 0:0252

4pð Þ3� 104ð Þ4 ¼ 6:3 � 10�13 W,

or

Pr ¼ 0:63 pW:

Doppler Radar

An electrical signal propagating in free space can be represented by the simple

expression

v z; tð Þ ¼ A cos vt � kzð Þ: ð7:5:12Þ

The signal frequency is v radians per second, and k is its wavenumber (equal to v/c,
where c is speed of light in free space) in radians per meter. Assume that there is a

receiver located at z ¼ R, as shown in Figure 7.14, and R is changing with time

(the receiver may be moving toward or away from the transmitter). In this situation

the receiver response vo(t) is given as follows:

vo tð Þ ¼ V cos vt � kRð Þ: ð7:5:13Þ

The angular frequency vo, of vo(t) can be easily determined after differentiating the

argument of the cosine function with respect to time. Hence

vo ¼ d

dt
vt � kRð Þ ¼ v� k

dR

dt
: ð7:5:14Þ

Note that k is time independent, and the time derivative of R represents the velocity,

vr, of the receiver with respect to the transmitter. Hence (7.5.14) can be written as

follows:

vo ¼ v� vvr
c

¼ v 1� vr

c

� �
: ð7:5:15Þ
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If the receiver is closing in, then vr will be negative (negative slope of R), and

therefore the received signal will indicate a signal frequency higher than v. On
the other hand, it will show a lower frequency if R is increasing with time. It is

the Doppler frequency shift that is employed to design the Doppler radar.

Consider the simplified block diagram of the radar illustrated in Figure 7.17. The

microwave signal generated by the oscillator is split into two parts via the power

divider. The circulator feeds one part of this power to the antenna that illuminates

the target while the mixer uses the remaining fraction as its reference signal. Further

the antenna intercepts a part of the signal that is scattered by the object. It is then

directed to the mixer through the circulator. The output of the mixer includes a

difference frequency signal that can be filtered out for further processing. The two

inputs to the mixer will have the same frequency if the target is stationary, and there-

fore the Doppler shift dv will be zero. The mixer’s output will have Doppler

frequency if the target is moving. Note that the signal travels twice over the same

distance, and therefore the Doppler frequency shift in this case will be twice that

found via (7.5.15). Mathematically

vo ¼ v 1� 2vr

c

� �
ð7:5:16Þ

and

dv ¼ 2vvr
c

: ð7:5:17Þ

PROBLEMS

7.1. A 2 cm long Hertzian dipole antenna is located at the origin of the spherical

coordinates. It carries a current of 2 A at 10 MHz. Find the power density per

unit area that leaves a spherical surface of 1 km radius. Plot its normalized

Figure 7.17 Simplified block diagram of a Doppler radar.
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characteristics (divide by the maximum power per unit area) on f ¼ 908 and
u ¼ 908 planes.

7.2. Calculate the power gain (in dBi) and the half-power beam width of a para-

bolic dish antenna of 35 m in diameter that is radiating at 5.9 GHz.

7.3. Find the radiation resistance Rrad of a 1 cm long current element operating at

10 MHz in free space.

7.4. A 50 V transmission line feeds a lossless dipole antenna. If the antenna impe-

dance is 76 V and its radiation intensity, U(u, f), is given as follows, find the

maximum overall gain:

U u,fð Þ ¼ Bo sin
2 u cos u:

7.5. A uniform plane electromagnetic wave propagating in the z direction is

incident upon an antenna that is polarized as follows:

~Ea ~r
� � ¼ ŷE ~r

� �
:

The electric field intensity of the incoming electromagnetic wave is

~E ~r, t
� � ¼ x̂þ ŷð ÞEo cos vt � kzð Þ V=m:

Find the polarization loss factor.

7.6. A transmitter has 100 kW power at the output of its final high-power ampli-

fier. If the gain of the transmitting antenna is 15 dB and its feeding line has

an attenuation of 5%, find the EIRP in dBW.

7.7. A geostationary satellite is 35,860 km away from the earth’s surface. Find the

space-loss ratio if the satellite is operating at 26 GHz.

7.8. Find the radiation field pattern on the x-y plane of a two-element short dipole

array with in-phase excitation (i.e., a ¼ 0) and d ¼ 0.35l.

7.9. Find the radiation field pattern on the x-y plane of a two-element short dipole

array with a ¼ p/2 and d ¼ 0.5l.

7.10. Find the radiation field pattern on the x-y plane of a two-element short dipole

array with a ¼ 2p/2 and d ¼ 0.5l.

7.11. Find the radiation field pattern on the x-y plane of a two-element short dipole

array with a ¼ p/2 for d ¼ 0.9l, 1l, and 2l.

7.12. Find the phase of excitation for a 10 element array that has its main beam at

458 from the array’s axis. Assume that the separation between the elements is

0.3183l. How will this change if only four elements are used instead? Plot the

array patterns of both cases.
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7.13. A 30 GHz transmitter on board the satellite uses a parabolic antenna. Its

gain is 45 dB and the radiated power is 2 W. The ground station that is

36941.031 km away from it has an antenna gain of 50 dB. Find the power col-

lected by the ground station. How much power will be collected at the ground-

station if there are isotropic antennas on both sides?

7.14. A distance of 150 l separates two lossless X-band horn antennas. The reflec-

tion coefficients at the terminals of the transmitting and receiving antennas are

0.05 and 0.15, respectively. The maximum directivities of the transmitting

and receiving antennas are 18 dB and 22 dB, respectively. Assuming that

the input power in a lossless transmission line connected to the transmitting

antenna is 2.5 W, and that the two antennas are aligned for maximum radi-

ation between them and are polarization matched, find the power input to

the receiver.

7.15. A radar operating at 26 GHz transmits 5 kW through an antenna of a 45 dB

gain. A target with its radar cross section at 4 m2 is located 10 km from the

radar. If the same antenna is used for the receiver, determine the received

power.

7.16. An AM broadcast station is to be located east of the area it is to serve. Design

an antenna for this station that gives a broad coverage to the west (from SW

through W to NW) with reduced field intensity in the other directions. How-

ever, to obtain FCC approval, the pattern must have a null NE at 1208 from
W. The antenna is to consist of an in line array of l/4 vertical elements

oriented along an east–west line. A minimum number of elements must be

used.

PROBLEMS 309



8
ELECTROSTATIC FIELDS

When the electrical charge and current sources remain constant over time, the

associated fields also do not change over time. As (3.2.1) and (3.2.2) indicate, the

electric and magnetic fields become independent in this situation. In other words,

the electrical charge that is constant over time is responsible for the electric

fields, and the electrical current that is constant over time is responsible for the

magnetic fields. These are known respectively, as electrostatic and magnetostatic

fields. This chapter begins with the various laws used to analyze electrostatic

fields. Poisson’s and Laplace’s equations are solved for a few boundary value pro-

blems. Electrical capacitors are considered, and the energy storage in an electrical

field is formulated. A number of practical applications are included throughout

the chapter.

8.1 LAWS OF ELECTROSTATIC FIELDS

The electric scalar potential fe due to a volume charge density rv in unbounded

space is found in Appendix B (B.35) as follows:

fe ¼
ð
V

rve
�jkR

4p1R
dv0, (8:1:1)
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where

R ¼ ~r � ~r0
�� ��: (8:1:2)

For an electrical charge that is constant over time, v ! 0 and k ! 0. Therefore

(8.1.1) reduces to

fe ¼
ð
V

rv
4p1R

dv0: (8:1:3)

If there is a point charge of Q C located at the origin R ¼ ~r
�� �� ¼ r, then (8.1.3)

gives

fe ¼
Q

4p1r
: (8:1:4)

The corresponding electric field intensity can be found from (6.2.16) as follows:

~E ¼ �rfe ¼ �r
ð
V

rv
4p1R

dv0 ¼ � 1

4p1

ð
V

rvr
1

R

� �
dv0: (8:1:5)

From Example 2.20 we know that

r 1

R

� �
¼ �

~R

R3
¼ � R̂

R2
:

Therefore (8.1.5) simplifies to

~E ¼ 1

4p1

ð
V

rv
R̂

R2
dv0: (8:1:6)

The Lorentz force on a test point charge Qt at ~r can found via (3.5.1) as follows:

~F ¼ Qt
~E ¼ Qt

4p1

ð
V

rv
R̂

R2
dv0: (8:1:7)

If the source of electric field is a point charge Q located at ~r0, the force of the test

point charge Qt at ~r reduces to

~F ¼ R̂
QQt

4p1R2
: (8:1:8)

This relation is known as Coulomb’s law. Here it is assumed that the test chargeQt is

small enough such that it does not disturb the electric field produced by Q.
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Example 8.1

A thin circular ring of radius a carries an electrical charge with density rl C/m.

Find the electrical potential and the electric field intensity at a point (0, 0, z) on

its axis.

The field and source points in this case are

~r ¼ zẑ

and

~r0 ¼ ar̂ :

Therefore

��~R�� ¼ ~r � ~r0
�� �� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ z2
p

:

As shown in Figure 8.1, incremental length along the ring is given by dl ¼ adf0.
Hence the potential at a point on the axis can be found from (8.1.3) as follows:

fe(0, 0, z) ¼
ð
c

r‘d‘

4p1j~Rj
¼
ð2p
0

r‘adf
0

4p1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ z2

p ¼ r‘a

21
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ z2

p V:

The electric field intensity is found to be

~E(0, 0, z) ¼ �rfe ¼ �ẑ
d

dz

r‘a

21
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ z2

p
� �

¼ ẑ
r‘a

21

z

(a2 þ z2)3=2

� �
V=m:

Example 8.2

A point charge Q of 10 mC is located at point (2, 3, 4). Find the electric field

intensity at (22, 23, 24) and the force on a charge q of 210 nC at this point.

Position vectors for the field and the source points are

~r ¼ �2x̂� 3ŷ� 4ẑ

Figure 8.1 Thin circular ring with uniform charge.
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and

~r0 ¼ 2x̂þ 3ŷþ 4ẑ:

Therefore

~R ¼ ~r � ~r0 ¼ �4x̂� 6ŷ� 8ẑ

and ��~R��2 ¼ 42 þ 62 þ 82 ¼ 116 ! ��~R�� ¼ ffiffiffiffiffiffiffiffi
116

p
¼ 10:7703:

The unit vector R̂ is found to be

R̂ ¼
~R

j~Rj
¼ �4x̂� 6ŷ� 8ẑ

10:7703
¼ �0:3714x̂� 0:5571ŷ� 0:7428ẑ:

Therefore the electric field intensity due to Q is

~E ¼ Q

4p1j~Rj2
R̂ ¼ 10�5

4p1 � 116 (�0:3714x̂� 0:5571ŷ� 0:7128ẑ) V=m:

The force on the test charge q located at ~R is found to be

~F ¼ q~E ¼ qQ

4p1j~Rj2
R̂ ¼ (�10�8) � 10�5

4p1 � 116 (�0:3714x̂� 0:5571ŷ� 0:7128ẑ) N:

Example 8.3

A uniformly charged thin conductor is lying along the z-axis, as shown in

Figure 8.2. If the conductor is infinitely long and carries a straight-line charge

density of rl C/m, find its electric field intensity.

Figure 8.2 Geometry of the infinitely long straight-line charge.
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For this geometry the position vectors in the field and the source points are

found to be

~r ¼ r̂r

and

~r0 ¼ ẑz0:

Therefore

~R ¼ ~r � ~r0 ¼ r̂r� ẑz0:

Using (8.1.7) we get

~E ¼ 1

4p1

ð
V

rv
R̂��~R��2 dv0 ¼ 1

4p1

ð1
�1

r‘ r̂r� ẑz0½ �
r2 þ z02½ �3=2 dz

0 ¼ r̂Er þ ẑEz:

Since Ez is an odd function of z0, it goes to zero on integration. However, the

integral associated with Er is an even function of z0 that can be evaluated

using the integration formula 4 of Appendix A to get

Er ¼ r‘r

4p1
2

ð1
0

1

r2 þ z02½ �3=2 dz0 ¼ r‘
2p1r

V=m:

Example 8.4

A uniformly charged disk of radius a lies on the x-y plane, as shown in Figure 8.3.

If the surface charge density on the disk is rs C/m
2, find scalar electrical potential

and the electric field intensity on its axis.

Since ~r ¼ zẑ and ~r0 ¼ r̂r0,

��~R�� ¼ ~r � ~r0
�� �� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r0 2 þ z2
p

;

and ds0 ¼ r0dr0df0:

Figure 8.3 Geometry of the uniformly charged disk.
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Therefore

fe(0, 0, z) ¼
rs

4p1o

ð2p
0

ða
r0¼0

r0dr0df0

(r0 2 þ z2)1=2
¼ rs

21o

ða
0

r0dr0

(r0 2 þ z2)1=2
:

The last integral can be evaluated easily via the integration formula 12 from

Appendix A to get

fe(0, 0, z) ¼
rs
21o

ða
0

r0dr0

(r0 2 þ z2)1=2
¼ rs

21o
(r0 2 þ z2)1=2
	 
a

r0¼0

¼ rs
21o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ z2

p � z, z 	 0,ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ z2

p þ z, z � 0:

(

Note that the sign in front of z is selected such that the potential is zero at +1.

Now the electric field intensity can be found as follows:

~E(0, 0, z) ¼ �rfe(0, 0, z) ¼ �ẑ
d

dz
fe ¼ � rs

21o

zffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ z2

p � 1, z 	 0,

zffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ z2

p þ 1, z � 0:

8><
>:

Therefore

~E(0, 0, z) ¼ rs
21o

1� zffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ z2

p , z 	 0,

1þ zffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ z2

p , z � 0:

8><
>:

Example 8.5

Two equal and opposite point charges þq and 2q are separated by a small

distance d, as shown in Figure 8.4. This kind of arrangement is known as the

Figure 8.4 Geometry of the electric dipole charge.

8.1 LAWS OF ELECTROSTATIC FIELDS 315



electric dipole. Find scalar potential and electric field intensity at an arbitrary far

point P (r � d).

fe ¼
q

4p1r1
� q

4p1r2
¼ q

4p1

(r2 � r1)

r1r2
:

For u1 � u2 � u, r1r2 � r 2, and (r22 r1) � d cosu,

fe �
q

4p1

d cos u

r2

and

~E ¼ �rfe ¼ �r̂
@fe

@r
� û

1

r

@fe

@u
¼ qd

4p1r3
(r̂2 cos uþ û sin u):

Here qd is called the electric dipole moment.

The electric dipole source is commonly employed as a simplest representation

in bioelectric sources where a current source and a current sink are quite close.

For example, the current may be flowing out of the membrane of a cell and

sinking in another one nearby. Assume that the source strength at one point is

Io and at the other it is 2Io. The two points are separated by a small distance

d. The biological medium is highly conducting (a general characteristic) with

its conductivity s. Following the procedure of this example, the electric potential

fe at a distance R is found to be

fe ¼
Iod cos u

4psR2
¼ p cos u

4psR2
, (8:1:9)

where p ¼ Iod is the dipole moment.

8.2 GAUSS’S LAW

It is one of the four Maxwell’s equations (Gauss’s law for the electric field) that

we have already used earlier in Section 3.1. It is restated below both in integral

and in differential forms: þ
S

~D � d~s ¼ ð
V

rv dv (8:2:1)

and

r � ~D ¼ rv: (8:2:2)

This simply states that the electric flux emanating from a closed surface is equal to

the net electrical charge enclosed by that surface.
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Example 8.6

Reconsider Example 8.3 in which an infinitely long charge filament has a charge

density of rl C/m. Use Gauss’s law to determine its electric field intensity.

Using (8.2.1) over a unit length of the charge filament, we getþ
S

~D � d~s ¼ ð
V

rv dv !
ð2p
0

Drr df ¼ r‘ ! Dr ¼ r‘
2pr

and

Er ¼ Dr

1
¼ r‘

2pr1
:

Thus we got the same result as in Example 8.3 with relatively less effort.

8.3 POISSON’S AND LAPLACE’S EQUATIONS

It was noted in Chapter 6 that (6.2.14) reduces to (6.2.18) when the source is con-

stant over time. This is known as Poisson’s equation, as given again below:

r2fe ¼ � rv
1
: (8:3:1)

In the case of a source-free region, (8.3.1) reduces to

r2fe ¼ 0: (8:3:2)

This is known as Laplace’s equation. Both equations provide significant understand-

ing of many scientific phenomena including the analyses of various electronic

devices, biomedical systems, sensors, and actuators. The basic principles of a few

of these applications are included in the examples presented in this chapter.

Example 8.7

A perfectly conducting sphere of radius a, as shown in Figure 8.5, has an electri-

cal potential Vo. Use Laplace’s equation to find the electrical charge density on its

surface and the electric field intensity around it.

If we rotate the sphere along u or f, nothing seems to be changing and we

can conclude that it is a case of symmetry. Therefore @/@f ¼ 0 and @/@u ¼ 0,

and Laplace’s simplifies to

r2fe ¼ 0 ! 1

r

@

@r
r2
@fe

@r

� �
¼ 1

r

d

dr
r2
dfe

dr

� �
¼ 0:

Integrating once, we get

r2
dfe

dr
¼ K1,
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where K1 is the integration constant. Integrating one more time, we find that

fe ¼
ð
K1

r2
dr ¼ �K1

r
þ K2,

where K2 is another integration constant.

Both integration constants need to be evaluated such that the solution satisfies

the conditions at its boundaries. The boundary conditions are that the potential

must be zero at infinity (because there is no source at infinity), and the potential

is Vo on the surface of sphere. Hence

fe

��
r!1¼ 0 ! K2 ¼ 0

and

fe

��
r¼a

¼ Vo ! K1 ¼ �aVo:

Therefore

fo ¼
aVo

r
, r 	 a:

Now we can find the electric field intensity as follows:

~E ¼ �rfe ¼ �r̂
dfe

dr
¼ �r̂

d

dr

aVo

r

� �
¼ r̂

aVo

r2
, r 	 a:

The electric flux density is found to be

~D ¼ 1~E ¼ r̂
1aVo

r2
, r 	 a:

Figure 8.5 Geometry of the conducting sphere.
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Since electric field originates from the positive charge and terminates on the

negative, (3.4.7) can be used to find the surface charge on the conducting

sphere as follows:

rsa ¼ Drjr¼a ¼
1aVo

a2
¼ 1Vo

a
:

8.4 CAPACITORS AND ENERGY STORAGE

An electrical voltage source connected between two conductors sets up the electrical

lines of force that originate from the conductor with positive charge and terminate

on the other with negative charge. Further these lines of force are always perpen-

dicular to the conducting surface because the tangential component of electric

field has to be zero on a conducting surface. A change in the source voltage changes

the charge on the conductors accordingly. This voltage-to-charge relation is

expressed as follows:

C ¼ Q

V
, (8:4:1)

where Q is the charge in coulombs on each conductor, V in volts is the applied vol-

tage, and the constant C is known as the capacitance in farads. This device is known

as the capacitor.

Example 8.8

Find the capacitance of the conducting sphere considered in Example 8.7.

Recall from Example 8.7 that the surface charge density on the sphere is given

as follows:

rsa ¼ Drjr¼a ¼
1aVo

a2
¼ 1Vo

a
:

Therefore the total charge Q on the sphere is

Q ¼
ð
S

rsads ¼
ðp
u¼0

ð2p
f¼0

1Vo

a
a2 sin u dudf ¼ 4pa1Vo:

The capacitance C is now found to be

C ¼ Q

Vo

¼ 4pa1:

Energy Storage in Electrical Systems

The electric field intensity due to a point charge q1 is found to be

~E ¼ R̂
q1

4p1R2
: (8:4:2)
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If there is another point charge q2 located at R, then it experiences a repulsive force

that is found to be

~F ¼ q2 ~E ¼ R̂
q1q2

4p1R2
: (8:4:3)

The work required against this force in moving q2 to R from infinity is

W12 ¼ �
ðR12

1
~F � R̂dR ¼ �

ðR12

1

q1q2

4p1R2
dR ¼ q1q2

4p1R12

: (8:4:4)

This represents a gain in energy that is now stored in the system. Since there are

two charges now, their total potential field is found to be

fe12 ¼
q1

4p1R1

þ q2

4p1R2

: (8:4:5)

Next consider the case where another charge q3 is brought in from infinity.

It requires more work, and therefore the total energy stored increases to

W1�3 ¼ q1q3

4p1R13

þ q2q3

4p1R23

þ q1q2

4p1R12

: (8:4:6)

If generalized for N charges, the total electrical energy stored is found to be

UE ¼ 1

2

XN
m¼1
m=n

XN
n¼1

qmqn

4p1Rmn

: (8:4:7)

First summation in (8.4.7) is identified as the electric potential fe due to N2 1

charges (because it excludes nth charge). Therefore (8.4.7) reduces to

UE ¼ 1

2

XN
n¼1

feqn: (8:4:8)

Now consider the situation where the charge is distributed over a volume V with

a density rv C/m
3. The total energy stored may be found after summing the

contributions of each infinitesimal volume as follows:

UE ¼ 1

2

ð
V

ferv dv: (8:4:9)

Since r � ~D ¼ rv (Gauss’s law in the point form), we can write

UE ¼ 1

2

ð
V

fe(r � ~D)dv ¼ 1

2

ð
V

r � (fe
~D)dv�

ð
V

rfe � ~Ddv

� �
: (8:4:10)
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Here we used vector identity 6 from Appendix A. This can be further simplified

by the divergence theorem (Appendix A) to get

UE ¼ 1

2

þ
S

fe
~D � d~s� ð

V

rfe � ~Ddv

� �
: (8:4:11)

Since the integration is carried over the entire volume V that extends to infinity,

the first integral goes to zero when evaluated over the surface S that bounds this

volume. It is so because the potential fe is zero at the infinity. Using the relations

among the electric potential, the electric field intensity, and the electric flux density,

the second integral may be expressed as follows:

UE ¼ 1

2

ð
V

~E � ~Ddv ¼ 1

2

ð
V

~E � (1~E ) dv ¼ 1

2

ð
V

1
��~E��2dv: (8:4:12)

Note that this relation was part of (3.6.5) when we considered the Poynting vector.

For example, take the energy stored in the capacitor formed by the sphere

of Example 8.7. From the results obtained in preceding two examples, we find that

UE ¼ 1

2

ð
V

1
��~E��2dv ¼ 1

2

ð1
r¼a

ðp
u¼0

ð2p
f¼0

1
aVo

r2

� �2

r2 sin u drdudf ¼ 1

2
1V2

o 4pa

¼ 1

2
CV2

o :

This is a general result in the sense that it holds good for all kinds of capacitors.

Example 8.9

A distance d separates two conducting sheets, each with a surface area of A as

shown in Figure 8.6. A dielectric material of permittivity 1 fills the space between
the two plates. Neglect the fringing fields at the edges to find the capacitance of

this arrangement. Also find the energy stored in this capacitor.

Figure 8.6 Parallel-plate capacitor.
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Note that the electric field distribution shown in Figure 8.6 is uniform. This is

still true in the region away from the edges. However, this distribution changes at

its edges in order to meet the continuity of tangential electric fields across the

boundary. Evaluation of the fields at the edges is rather complex, and therefore

these fringing fields are ignored here. If the surface area of each plate is large,

the error introduced by this assumption is negligible.

In order to determine the capacitance, we need to find the charge on one plate

that is set up by Vo. Laplace’s equation can be solved for the space in between

the two plates to find the potential. This leads to the electric field intensity and

the electric flux density in the space. The surface charge on the conductor can

be found via (3.4.7). Alternatively, we enclose one conductor by a surface s

and apply Gauss’s law as follows:

þ
S

~D � d~s ¼ ð
V

rv dv ! DA ¼ rsA ! 1EA ¼ Q:

Since the electric field is uniform, E ¼ Vo/d, and therefore this relation gives

1
Vo

d
A ¼ Q ! Q

Vo

¼ C ¼ 1
A

d
:

We can find the energy stored in this capacitor as follows:

UE ¼ 1

2

ð
V

1
��~E��2dv ¼ 1

2

ð
V

1
Vo

d

� �2

dv ¼ 1

2
1
V2
o

d 2

ð
V

dv ¼ 1

2
1
V2
o

d 2
Ad ¼ 1

2
CV2

o :

Example 8.10

Two conducting parallel plates are used to form a capacitor. Each plate has an

area of 1 m2 and a distance of 1 mm separates the plates. The space between

the two plates is filled with a dielectric material. However, its dielectric constant

is not known. Based on the capacitance bridge, its capacitance is found to be

22.135 nF. Find the dielectric constant of the material.

Since C ¼ 1ðA=dÞ,

1 ¼ Cd

A
¼ 22:135 � 10�9 � 10�3

1
¼ 22:135 � 10�12 F=m:

The dielectric constant 1r is found to be

1r ¼ 1

1o
¼ 22:135 � 10�12

8:854 � 10�12
¼ 2:5:

This kind of technique can be used to find the dielectric constant of a material.
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Example 8.11

The parallel-plate capacitor of Example 8.10 uses air as its dielectric. If separ-

ation d of the parallel-plate capacitor is changing over time, as given below,

find the capacitance as function of time and plot the characteristics.

d ¼ 1þ 0:1 cos(2000pt) mm,

C ¼ 1
A

d
¼ 1o

1

1þ 0:1 cos(2000pt)½ � � 10�3

¼ 8:854 � 10�9 1þ 0:1 cos(2000pt)½ ��1 F,

or

C � 8:854 1� 0:1 cos(2000pt)½ � nF:

This shows that the capacitance variation follows the change in separation

closely. This is the principle on which the capacitive microphones work.

The capacitance variation with time is displayed in Figure 8.7.

Example 8.12

Reconsider the capacitor of Example 8.10. However, the space in between the

plates has two different dielectric materials, as shown in Figure 8.8. If a

0.9 mm thick dielectric sheet of 1r ¼ 2.5 is used as one medium and the rest

is filled with air, find its capacitance.

Assume that the area of each plate is A, and electric field intensities in two

dielectric media are E1 and E2, respectively. As before, we ignore the fringing

Figure 8.7 Variation of capacitance over time.
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field at its edges, and the uniform electric field is directed from the top plate to the

bottom plate. Since the normal component of electric flux densityD is continuous

across an interface, we find that

D1 ¼ D2 ! 11E1 ¼ 12E2 ! E2 ¼ 11
12

E1,

Vo ¼ E1d1 þ E2d2 ¼ E1d1 þ 11
12

E1d2 ¼ E1 d1 þ 11
12

d2

� �
:

Total charge Q on the top plate is found to be

Q ¼ Ars ¼ AD1 ¼ A11E1:

Therefore

C ¼ Q

Vo

¼ A11E1

E1 d1 þ (11=12)d2½ � ¼
A1112

d112 þ 11d2
¼ 1

(d1=A11)þ (d2=A12)

¼ 1

(1=C1)þ (1=C2)
¼ C1C2

C1 þ C2

:

Thus the two dielectric layers work as two capacitors connected in series, even

though there is no conducting sheet at the interface.

Using the given data, we find that

C1 ¼ 1o
A

d
¼ 8:854 � 10�12 1

0:1 � 10�3
F ¼ 88:54 nF

and

C2 ¼ 12
A

d
¼ 2:5 � 8:854 � 10�12 1

0:9 � 10�3
F ¼ 24:5944 nF

Figure 8.8 Parallel-plate capacitor with two dielectrics.
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Therefore

C ¼ C1C2

C1 þ C2

¼ 88:54 � 24:5944
88:54þ 24:5944

nF ¼ 19:25 nF:

Example 8.13

Actuators are employed in nanotechnology area to perform various tasks.

One such arrangement is shown in Figure 8.9 in which a conducting plate

makes an angle of fo with the anode. This kind of system has been used

in the MEMS-based electrostatic projection displays. Assume that the plate

width is W and the fringing fields negligible. Find the capacitance of this

arrangement.

For @/@r ! 0 and @/@z ! 0, Laplace’s equation simplifies as follows:

r2fe ¼ 0 ! 1

r

@2fe

@f2
¼ 0 ! d2fe

df2
¼ 0:

On integrating it once, we get

dfe

df
¼ K1,

where K1 is an integration constant.

Integrating it one more time, we find that

fe ¼ K1fþ K2:

K2 is another integration constant. These two integration constants are evaluated

via the boundary conditions of the problem that require the potential fe to be Vo

for f ¼ 0, and it is zero at f ¼ fo. Hence

fe

��
f¼0

¼ Vo ! K2 ¼ Vo

Figure 8.9 Actuator arrangement.
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and

fe

��
f¼fo

¼ 0 ! K1 ¼ �K2

fo

¼ � Vo

fo

:

Therefore

fe ¼ Vo 1� f

fo

� �
:

The electric field intensity in the region is found to be

~E ¼ �rfe ¼ �f̂
1

r

@fe

@f
¼ �f̂

1

r

d

df
Vo 1� f

fo

� �� �
¼ f̂

Vo

rfo

V=m:

Assuming that 1 is the permittivity of the medium, the electric flux density is

found to be

~D ¼ 1~E ¼ f̂
1Vo

rfo

C=m2:

Therefore the surface charge rs on the anode is

rs ¼ Df ¼ 1Vo

rfo

C=m2:

Total charge Q is found to be

Q ¼ 1Vo

fo

ðb
a

Wdr

r
¼ 1VoW

fo

ln
b

a

� �
:

Therefore its capacitance is

C ¼ Q

Vo

¼ 1W

fo

ln
b

a

� �
:

Example 8.14

A coaxial line of inner and outer conductor radii a and b, respectively, has

a voltage Vo as shown in Figure 8.10. The uniform surface charge density

on its inner conductor is rsa, whereas on inside surface of the outer conductor

it is rsb. Using Gauss’s law, find the potential distribution in the space between

its conductors, the electric field intensity, and its capacitance per meter of

its length.
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From Gauss’s law, we find thatþ
S

~D � d~s ¼ ð
V

rv dv !
ð2p
f¼0

Drr df

¼
ð2p
f0¼0

rsaa df
0 ! Dr ¼ rsaa

r
, a � r � b,

and

Dr ¼ 0, r . b, and r , a:

Therefore

Er ¼ Dr

1
¼ arsa

1r
, a � r � b,

and

fe ¼ �
ð
Er dr ¼ �

ð
arsa
1r

dr ¼ � arsa
1

ln rþ K1,

where K1 is the integration constant that can be found from the condition that

fe ¼ 0 at r ¼ b. Hence

fe ¼ 0 ¼ � arsa
1

ln bþ K1 ! K1 ¼ arsa
1

ln b:

Therefore

feb ¼
arsa
1

½ln b� ln r�

Figure 8.10 Geometry of a coaxial line.
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and

feab ¼ Vo ¼ arsa
1

ln b� ln a½ � ¼ arsa
1

ln
b

a

� �
:

The capacitance per unit length C is found to be

C ¼ Q

Vo

¼ 2parsa
(arsa=1) ln(b=a)

¼ 2p1

ln(b=a)
F=m:

Example 8.15

The inner and outer sphere radii of two conducting concentric spheres are a and b,

respectively, as shown in Figure 8.11. The inner sphere is at a potential Vo with

respect to outer one. Use Gauss’s law to find the potential distribution, the electric

field intensity, and the capacitance of this system.

Since the problem has symmetry in the u and f directions (rotating the spheres

makes no difference in these directions), Gauss’s law
Þ
S
~D � d~s ¼ Ð

V
rvdv for the

space between the two spheres gives

ð2p
f¼0

ðp
u¼0

Drr
2 sin u dudf ¼

ð2p
f¼0

ðp
u¼0

rsaa
2 sin u dudf,

or

4pr2Dr ¼ 4pa2rsa ¼ Q ! Dr ¼ Q

4pr2
,

Figure 8.11 Geometry of the concentric spheres.
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where rsa is the charge density on the inner sphere and Q is the total charge on it.

Note that the electric flux density is zero for r . b as well as for r , a because

there is no net charge enclosed in these cases.

Therefore the electric field intensity in the space between the two spheres is

~E ¼ r̂
Q

4p1r2
:

The corresponding electric potential is found to be

fe ¼ �
ð
~E � d ~‘ ¼ �

ð
Q

4p1r2
dr ¼ Q

4p1r
þ K1:

The integration constant K1 is evaluated from the boundary condition that the

potential is zero at r ¼ b, meaning fe

��
r¼b

¼ 0. Hence

Q

4p1b
þ K1 ¼ 0 ! K1 ¼ � Q

4p1b
:

Therefore

fe ¼
Q

4p1

1

r
� 1

b

� �
, a � r � b:

Using this relation, we find that

Vo ¼ Q

4p1

1

a
� 1

b

� �

and

C ¼ Q

Vo

¼ 4p1

(1=a)� (1=b)½ � :

Example 8.16

Reconsider Example 8.14. Use Laplace’s equation to find the potential’s distri-

bution inside the coaxial line, the electric field intensity, and its capacitance

per meter of its length.

Since @/@f ¼ 0 and @/@z ¼ 0 in this case, Laplace’s equation simplifies to

r2fe ¼ 0 ! 1

r

d

dr
r
dfe

dr

� �
¼ 0:

On integrating once, we get

r
dfe

dr
¼ K1:
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K1 is the integration constant. Integrating it one more time, we find that

fe ¼
ð
K1

r
dr ¼ K1 ln (r)þ K2:

K2 is another integration constant. Both integration constants are evaluated from

the boundary conditions fe ¼ 0 at r ¼ b, and fe ¼ Vo at r ¼ a. Hence

0 ¼ K1 ln(b)þ K2

and

Vo ¼ K1 ln(a)þ K2:

These two equations are solved to find the integration constants as follows:

K1 ¼ Vo

ln(a=b)

and

K2 ¼ � Vo

ln(a=b)
ln(b):

Therefore

fe ¼
Vo

ln(a=b)
ln(r)� ln(b)½ � ¼ Vo

ln(a=b)
ln(r=b), a � r � b,

and

~E ¼ �rfe ¼ �r̂
@fe

@r
¼ �r̂

Vo

r ln(a=b)
:

The corresponding electric flux density is found to be

~D ¼ 1~E ¼ �r̂
1Vo

r ln(a=b)
:

Since

rsa ¼ Dr

��
r¼a

¼ � 1Vo

a ln(a=b)
¼ 1Vo

a ln(b=a)
C=m2,

Q ¼ 2parsa ¼
2p1Vo

ln(b=a)
C=m:
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Therefore

C ¼ Q

Vo

¼ 2p1

ln(b=a)
F=m:

As expected, the results are same as we found earlier in Example 8.14.

Example 8.17

Reconsider Example 8.15 and use Laplace’s equation to find the potential’s

distribution in between the concentric spheres, the electric field intensity, and

its capacitance.

If we rotate the sphere along u or f, then nothing seems to be changing and

we can conclude that it is a case of symmetry. Therefore @/@f ¼ 0 and

@/@u ¼ 0, and Laplace’s equation simplifies to

r2fe ¼ 0 ! 1

r

@

@r
r2
@fe

@r

� �
¼ 1

r

d

dr
r2
dfe

dr

� �
¼ 0:

Integrating once, we get

r2
dfe

dr
¼ K1,

where K1 is the integration constant. Integrating it one more time, we find that

fe ¼
ð
K1

r2
dr ¼ �K1

r
þ K2,

where K2 is another integration constant.

Both integration constants need to be evaluated such that the solution satisfies

the conditions at its boundaries. The boundary conditions are that the potential is

zero on the outer spherical surface and it is Vo on the surface of inner sphere.

Hence

fe

��
r!b

¼ 0 ! �K1

b
þ K2 ¼ 0

and

fe

��
r¼a

¼ Vo ! �K1

a
þ K2 ¼ Vo:

These two equations are solved to find K1 and K2, as follows:

K1 ¼ � Vo

½(1=a)� (1=b)�
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and

K2 ¼ � Vo

b½(1=a)� (1=b)� :

Therefore

fe ¼
Vo

½(1=a)� (1=b)�
1

r
� 1

b

� �
; a � r � b:

The corresponding electric field intensity and the electric flux density are

found to be

~E ¼ �rfe ¼ �r̂
@fe

@r
¼ r̂

Vo

½(1=a)� (1=b)�
1

r2

and

~D ¼ 1~E ¼ r̂
Vo1

½(1=a)� (1=b)�
1

r2
:

Hence the surface charge density on the inner sphere is

rsa ¼ Drjr¼a¼
Vo1

½(1=a)� (1=b)�
1

a2
:

The total charge Q on this sphere is found to be

Q ¼ 4pa2rsa ¼ 4pa2
Vo1

½(1=a)� (1=b)�
1

a2
¼ 4pVo1

½(1=a)� (1=b)� :

Hence its capacitance can be found now as follows:

C ¼ Q

Vo

¼ 4p1

½(1=a)� (1=b)� F:

8.5 FURTHER APPLICATIONS OF POISSON’S AND
LAPLACE’S EQUATIONS

As was mentioned earlier, Poisson’s and Laplace’s equations are used to solve a

number of scientific and engineering problems. Here we consider two such cases.

One of them is a pn-junction diode used in electronic circuits and the other is a

simple model for understanding electroencephalography (EEG).
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The pn-Junction Diode

Poisson’s equation is employed to analyze semiconductor diodes and transistors.

Here we consider a simple case of the pn-junction diode with an abrupt junction.

A p-type semiconductor has a deficiency of electrons (hence it is said to have

holes) whereas the n-type has excess electrons. These semiconductors are known

to have acceptor and donor impurities, respectively. When a junction of these two

is formed, the excess electrons start leaving the donor atoms to combine with the

holes of the acceptors. Similarly the holes try to leave from the p-side and combine

with electrons on the n-side. The electrons moving from the n-side leave behind

positively charged donor atoms and the holes leave behind negatively charged

acceptors, as illustrated in Figure 8.12a. The donor and acceptor atoms are bound

charges that cannot move, and therefore a space charge layer is formed across the

junction with positive charges on the n-side and negative charges on the p-side.

Since there are no free charges left in this region for conduction, this layer is

called the depletion layer. The bound charges in this depletion region give rise to

an electric field that is directed from the positive charges left on the n-side to the

negative charges on the p-side of the junction. The electric field opposes the move-

ment of electrons and holes across the junction, thus creating equilibrium.

Assume that the donor and acceptor impurity concentrations are Nd and Na

per cubic meters, respectively. The depletion layer extends up to xn meters on

the n-side and up to 2xp on the p-side. With the electronic charge denoted as

qe, the charge distribution in depletion region is shown in Figure 8.12b. Since

semiconductor is neutral,

qeNax pA ¼ qeNdxnA ! Nax p ¼ Ndxn: (8:5:1)

Poisson’s equation for the space charge region may be written as follows:

d2ce

dx2
¼

� qeNd

1
, 0 , x , xn,

qeNa

1
, �x p , x , 0:

8><
>: (8:5:2)

Integrating it once, we find that

dce

dx
¼

� qeNd

1
xþ K1, 0 , x , xn,

qeNa

1
xþ K2, �x p , x , 0:

8><
>: (8:5:3)

Since dce/dx ¼ 2Ex is the electric field intensity that starts from positive charge

and terminates on the negative,

Exjx¼ xn
x¼�x p

¼ � dce

dx

����
x¼ xn
x¼�x p

¼ 0: (8:5:4)
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From these two conditions the integration constants K1 and K2 are found to be

K1 ¼ qeNdxn

1
(8:5:5)

and

K2 ¼ qeNax p

1
: (8:5:6)

Figure 8.12 A pn-junction diode (a), the charge density (b), the electric field intensity

(c), and the potential’s distribution in depletion region (d).
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Therefore (8.5.3) can be expressed as

dce

dx
¼

qeNd

1
(xn � x), 0 , x , xn,

qeNa

1
(x p þ x), �x p , x , 0:

8><
>: (8:5:7)

Integrating (8.5.7), we get

ce ¼
� qeNd

21
(xn � x)2 þ K3, 0 , x , xn,

qeNa

21
(x p þ x)2 þ K4, �x p , x , 0:

8><
>: (8:5:8)

For an arbitrary reference point at x ¼ 2xp, the integration constant K4 is found

to be

cejx¼x p ¼ 0 ! K4 ¼ 0: (8:5:9)

Further the potential ce must be continuous at x ¼ 0 because Ex ¼ dce/dx is finite
at this point. Hence the integration constant K3 is found to be

� qeNd

21
x2n þ K3 ¼ qeNa

21
x2p ! K3 ¼ qe

21

	
Ndx

2
n þ Nax

2
p



: (8:5:10)

Therefore (8.5.8) gives

ce ¼
� qeNd

21
(xn � x)2 þ qe

21

	
Ndx

2
n þ Nax

2
p



, 0 , x , xn,

qeNa

21
(x p þ x)2, �x p , x , 0:

8><
>: (8:5:11)

This equation represents the potential in the depletion layer with respect to x ¼ 2xp.

Therefore the potential difference ceo across the junction is found to be

ceo ¼
qe

21

	
Ndx

2
n þ Nax

2
p


 ¼ qe

21
Nd

Na þ Nd

Na þ Nd

x2n þ Na

Na þ Nd

Na þ Nd

x2p

� �
,

or

ceo ¼
qe

21(Na þ Nd)
½NdNax

2
n þ NdNax

2
p þ N2

dx
2
n þ N2

a x
2
p�: (8:5:12)

Since Naxp ¼ Ndxn from (8.5.1), we find that

N2
dx

2
n þ N2

a x
2
p ¼ Nd

Nax p

xn
x2n þ Na

Ndxn

x p

x2p ¼ 2NdNax pxn:
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Hence (8.5.12) can be expressed as

ceo ¼
qe

21
� NdNa

Nd þ Na

½x2n þ x2p þ 2xnx p� ¼ qe

21
� NdNa

Nd þ Na

½xn þ x p�2: (8:5:13)

The total length do ¼ xnþ xp of the depletion region is found to be

d 2
o ¼ 21ceo

qe

Na þ Nd

NaNd

� �
! do ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21ceo

qe

1

Nd

þ 1

Na

� �s
: (8:5:14)

Example 8.18

A silicon pn-junction diode has Nd ¼ 1022 m23 and Na ¼ 4 . 1024 m23 on its

n- and p-sides, respectively. If the built-in potential is 0.8531 V, find the length

do of the depletion region and the lengths of the space-charge regions on each

side of the junction. Assume that the dielectric constant of silicon is 11.8.

do ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21ceo

qe

1

Nd

þ 1

Na

� �s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 11:8 � 8:854 � 10�12 � 0:8531

1:602 � 10�19

1

1022
þ 1

4 � 1024
� �s

,

or

do ¼ 333:99 � 10�9 m ¼ 333:99 nm,

xp

xn
¼ Nd

Na

¼ 1022

4 � 1024 ¼ 0:0025 ! xp ¼ 0:0025 xn,

xn þ x p ¼ do ¼ 333:99 nm,

xn ¼ 333:16 nm,

and

x p ¼ 0:83 nm:

The Electroencephalography (EEG)

The electrical activities occurring within the human body produce potentials on

the skin. These electrical potentials are monitored for diagnostic and other purposes.

For example, electrical potentials measured on the chest provide the information

about activities of the heart. Over time these recordings became known as

electrocardiograms (ECG or EKG). Similarly recordings of the electrical potentials

on the scalp provide information about the electrical activities of the brain. These are

called electroencephalograms (EEG). The amplitudes of the EEG signals range from
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about 1 mV to 100 mV peak to peak at the cranial surface and can increase by a

factor of 10 on the surface of the cerebrum. The frequencies of these signals

range from 0.5 to 100 Hz. On the other hand, EKG chest surface signals are about

0.5 to 100 mV peak to peak. Since EEG signals are much smaller, special care is

needed in placing the electrodes and in designing the associated electronics.

Theoretical modeling, computer simulations, and experiments help in this respect.

Figure 8.13 shows a simplified model of the human head that consists of three

concentric spheres with an electric dipole source at the center. This model provides

the most simple way to understand the potential field setup on the surface of

the scalp.

As illustrated in Figure 8.13, the dipole source of the three concentric spheres

is confined to a small sphere of radius d. The brain is considered to be a sphere of

radius r1 and conductivity s1. The skull is a spherical shell with a thickness

r22 r1 and conductivity s2. The scalp is a spherical shell with a thickness of

r32 r2 and a conductivity of s3. Usually s1 is nearly equal to s3, and s2 is much

smaller than s1. Excluding the small spherical volume that encloses the dipole

source, Laplace’s equation can be used to find the potential at any point in the

brain, skull, and scalp.

Assume that the potential does not change azimuthally, (i.e., @/@f ! 0). Then

Laplace’s equation simplifies to

1

r2
@

@r
r2
@fe

@r

� �
þ 1

r2 sin u

@

@u
sin u

@fe

@u

� �
¼ 0: (8:5:15)

Figure 8.13 Simplified model of the human head.
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This assumption holds if the polar axis of the spherical coordinates is chosen to be

parallel with the axis of dipole source. If we assume that u ¼ cos(u), then

@

@u
¼ @u

@u

� �
@

@u
¼ �sin u

@

@u
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

p @

@u
(8:5:16)

and

1

sin u

@

@u
¼ � @

@u
: (8:5:17)

With this change of variable, (8.5.15) becomes

@

@r
r2
@fe

@r

� �
þ @

@u
(1� u2)

@fe

@u

� �
¼ 0: (8:5:18)

Since the potential fe(r, u) is a function of r and u only, (8.5.18) can be solved by

the method of separation of variables as follows: Assume

fe ¼ f1(r) f2(u), (8:5:19)

where f1(r) is a function of r only and f2(u) is a function of only u (or cos u).
Substitution of (8.5.19) into (8.5.18) results in

f2(u)
d

dr
r2
df1(r)

dr

� �
þ f1(r)

d

du
(1� u2)

df2(u)

du

� �
¼ 0,

or

1

f1(r)

d

dr
r2
df1(r)

dr

� �
þ 1

f2(u)

d

du
(1� u2)

df2(u)

du

� �
¼ 0: (8:5:20)

Since (8.5.20) holds for all r and u, each term must be equal to a constant. Therefore

1

f1(r)

d

dr
r2
df1(r)

dr

� �
¼ c ¼ n(nþ 1) (8:5:21)

and

1

f2(u)

d

du
(1� u2)

df2(u)

du

� �
¼ �c ¼ �n(nþ 1): (8:5:22)

Mathematically c can be any constant. However, n should be an integer, including

zero for f2(u) to be well-behaved (see Appendix D). The negative value of n is
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degenerate and therefore is not considered. Hence (8.5.22) can be expressed as

(1� u2)
d2f2(u)

du2
� 2u

df2(u)

du
þ n(nþ 1) f2(u) ¼ 0: (8:5:23)

This is Legendre’s equation, and solutions for f2(u) are the Legendre polynomials

considered in Appendix D. Hence

f2(u) ¼ Pn(u) ¼ Pn(cos u): (8:5:24)

Equation (8.5.21) can be rearranged as follows:

r2
d2f1(r)

dr2
þ 2r

df1(r)

dr
� n(nþ 1) f1(r) ¼ 0: (8:5:25)

Assume that

f1(r) ¼ r‘: (8:5:26)

On substituting (8.5.26) into (8.5.25), we have

r2‘(‘� 1)r‘�2 þ 2r‘r‘�1 � n(nþ 1)r‘ ¼ r‘b‘2 þ ‘� n(nþ 1)c ¼ 0:

The quadratic equation in l gives two solutions as follows:

½‘2 þ ‘� n(nþ 1)� ¼ 0 ! ‘ ¼ n,

�(nþ 1):

�

Hence two possible solutions to (8.5.25) are found:

f1(r) ¼ rn,

r�(nþ1):

�
(8:5:27)

Then, on substituting (8.5.24) and (8.5.27) into (8.5.19), also two possible solutions

of (8.5.15) are found:

fe ¼
rnPn(cos u),

r�(nþ1)Pn(cos u):

(
(8:5:28)

Since n can be 0 or any positive integer, the general solution of (8.5.15) is

fe ¼
X1
n¼0

½anrnPn(cos u)þ bnr
�(nþ1)Pn(cos u)�, (8:5:29)

where an and bn are arbitrary constants to be evaluated by the boundary conditions.

Since the source is a dipole, only a discrete mode of solution is allowed in

(8.5.29). This is because the finite boundaries have little effects at points close to

the dipole source (i.e., r ! d) and therefore the potential setup by the dipole

must behave as if it is in an infinite medium. From Example 8.5, we know that
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the potential of a dipole in an infinite region behaves as follows:

fejr!d �
1

r2
:

That means only n ¼ 1 mode is the possible solution in (8.5.29) for this dipole

source. Therefore (8.5.29) reduces to

fe ¼ (a1r þ b1r
�2)P1(cos u) ¼ (a1r þ b1r

�2) cos u: (8:5:30)

Using this solution, we can express the potential field in each region as follows:

In brain: d , r , r1,

fe1 ¼ (A1r þ B1r
�2) cos u: (8:5:31)

In skull, r1 , r , r2,

fe2 ¼ (A2r þ B2r
�2) cos u: (8:5:32)

In scalp, r2 , r , r3,

fe3 ¼ (A3r þ B3r
�2) cos u: (8:5:33)

In space, r . r3,

fe4 ¼ B4r
�2 cos u: (8:5:34)

The A4r term is not allowed in (8.5.34) because the potential fe4 must be zero

as r ! 1.

There are seven unknown integration constants in (8.5.31) through (8.5.34).

The coefficient B1 can be related to the intensity of the dipole and the remaining

six coefficients can be determined from six independent boundary conditions

at r ¼ r1, r ¼ r2 , and r ¼ r3. As mathematically expressed below, these boundary

conditions require that the potential and the normal component of current density

be continuous across the boundaries.

At r ¼ r1,

fe1(r1; u) ¼ fe2(r1; u), (8:5:35)

s1

@fe1

@r

����
r¼ r1

¼ s2

@fe2

@r

����
r¼ r1

: (8:5:36)
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At r ¼ r2,

fe2(r2; u) ¼ fe3(r2; u), (8:5:37)

s2

@fe2

@r

����
r¼r2

¼ s 3

@fe3

@r

����
r¼r2

: (8:5:38)

At r ¼ r3,

fe3(r3; u) ¼ fe4(r3; u), (8:5:39)

@fe3

@r

����
r¼r3

¼ 0: (8:5:40)

Equation (8.5.40) is based on the fact that no normal component of the electric field

(or normal component of the current) exists at the boundary between the biological

body and air. This condition is also evident if the conductivity of the air is assumed

to be zero.

Substitution of (8.5.31) through (8.5.34) into (8.5.35) through (8.5.40) leads to

the following six equations for the unknown coefficients:

r1A1 � r1A2 � 1

r 21
B2 ¼ � 1

r21
B1, (8:5:41)

s1A1 � s2A2 þ 2s2

r 31
B2 ¼ 2s1

r31
B1, (8:5:42)

r2A2 � r2A3 þ 1

r 22
B2 � 1

r22
B3 ¼ 0, (8:5:43)

s2A2 � s3A3 � 2s2

r 32
B2 þ 2s3

r32
B3 ¼ 0, (8:5:44)

r3A2 þ 1

r 23
B3 � 1

r23
B4 ¼ 0, (8:5:45)

A3 � 2

r 33
B3 ¼ 0: (8:5:46)

From (8.5.41) through (8.5.46),A1,A2,A3,B2,B3, and B4 can be expressed in terms of

B1, which, in turn, can be related to themagnitude of the dipole source.We aremainly

interested in A3 and B3 because these describe the scalp potential distribution that is

the source of the EEG signal. Therefore we determine only A3 and B3 here as follows.

From (8.5.46),

B3 ¼ r33
2
A3 (8:5:47)
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Substituting (8.5.47) into (8.5.43) and (8.5.44) and then eliminating A3 from (8.5.43)

and (8.5.44), we find that

B2 ¼ MA2, (8:5:48)

where

M ¼ r32 1� s3=s2ð Þ þ ðr33=r32Þ ðs3=s2Þ þ ð1=2Þ½ �	 

ðs3=s2Þ þ 2½ � � ðr33=r32Þ ðs3=s2Þ � 1½ � : (8:5:49)

At the same time, A3 is found to be

A3 ¼ 1þ (M=r32)

1þ (r33=2r
3
2)
A2: (8:5:50)

Next, substituting (8.5.48) into (8.5.41) and (8.5.42), and then eliminating A1,

we have

A2 ¼ 3

½1� (s2=s1)�r31 þ ½1þ (2s2=s1)�M
B1: (8:5:51)

Combining (8.5.50) and (8.5.51), we find that

A3 ¼ 9B1

M1 þM2

: (8:5:52)

where

M1 ¼ 1� s2

s1

� �
s3

s2

þ 2

� �
� r 33
r 32

s3

s2

� 1

� �
r31

� �
(8:5:53)

and

M2 ¼ 1þ 2s2

s1

� �
1� s3

s2

� �
þ r 33
r 32

s3

s2

þ 1

2

� �
r32

� �
: (8:5:54)

As was mentioned earlier, B1 is related to the magnitude of the dipole source.

Recall from (8.1.9) that the potential produced at a point (r, u) by the dipole

immersed in an infinite medium of conductivity s1 is given as

fe(r; u) ¼
Iod

4ps1r2
cos u: (8:1:9)

The potential near the dipole source located at the center of the brain is expected

to behave similarly. Hence

fe1(r; u)jr!0 ¼
B1

r2
cos u � Iod

4ps1

� 1
r2

cos u: (8:5:55)
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Then the determination of B1 proceeds as follows:

B1 ¼ Iod

4ps1

: (8:5:56)

Therefore the potential’s distribution on the scalp is found to be

fe3(r; u) ¼ A3r þ B3

r2

� �
cos u ¼ A3 r þ r33

2r2

� �
cos u

¼ r3

2
A3 2

r

r3

� �
þ r3

r

� �2� �
cos u,

or

fe3(r; u) ¼
Iod

4ps1

N 2
r

r3

� �
þ r3

r

� �2� �
cos u, (8:5:57)

where

N ¼ 9r3

2(M1 þM2)
: (8:5:58)

Potential difference between a lead pair placed at the front and the back of scalp (or

aligned in the direction of dipole moment) is found to be

V ¼ fe3(r3; 0)� fe3(r3;p) ¼
3Iod

2ps1

N: (8:5:59)

The potential difference between any two other points can be found directly from

(8.5.57).

PROBLEMS

8.1. The radius of a thin circular ring is 30 cm. It carries an electrical charge with

density 5 C/m. Find the electrical potential and the electric field intensity at a

point (0, 0, 10 m) on its axis.

8.2. A point charge Q of 25 mC is located at point (3, 1, 5). Find electric field

intensity at (7, 9, 1) and the force on a charge q of 2 nC at this point.

8.3. A uniformly charged thin conductor is lying along the z-axis. If the conductor

is infinitely long and carries a straight-line charge density of 15 C/m, find its

electric field intensity.
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8.4. The radius of a uniformly charged disk is 1 m. If the surface charge density on

the disk is 3.5 C/m2, find the scalar electrical potential and the electric field

intensity on its axis.

8.5. Two charges of 5 C and25 C are separated by 1 cm. Find the scalar potential

and electric field intensity at an arbitrary point 2 m away from it.

8.6. An infinitely long charge filament with a charge density of 5 C/m lies along

the z-axis. Use Gauss’s law to determine the electric field intensity.

8.7. The radius of a perfectly conducting sphere is 50 cm. It has an electrical

potential of 50 V. Use Laplace’s equation to find the electrical charge density

on the sphere’s surface and the electric field intensity around it.

8.8. Find the capacitance of the conducting sphere of Problem 8.7.

8.9. A distance of 1 cm separates two conducting sheets, each with a surface area

of 4 m2. A perfect dielectric material of 1r ¼ 2.3 fills the space between the

two plates. Neglect the fringing fields at the edges to find the capacitance

of this arrangement. Also find the energy stored in this capacitor.

8.10. Two conducting parallel plates are used to form a capacitor. Each plate has an

area of 0.5 m2 and a distance of 1 mm separates the plates. The space between

the two plates is filled with a dielectric material. However, its dielectric con-

stant is not known. By way of a capacitance bridge, its capacitance is found to

be 120 nF. Find the dielectric constant of the material.

8.11. The parallel-plate capacitor of Problem 8.10 uses air as its dielectric.

If the separation d of the parallel-plate capacitor is changing over time

as given below, find the capacitance as a function of time and plot the charac-

teristics:

d ¼ 0:9� 0:1 sin2 (60pt) mm:

8.12. Consider the capacitor of Example 8.10. However, the space between the

plates has two different dielectric materials. A 0.6 mm thick dielectric sheet

of 1r ¼ 4.3 is used as one medium and another dielectric fills the remaining

space. If second medium has a dielectric constant of 2.1, find the total

capacitance.

8.13. An air-filled coaxial line of inner and outer conductor radii 1 mm and 3 mm,

respectively, has a voltage of 5 V. Using Gauss’s law, find potential

distribution in the space between its conductors, the electric field intensity,

and the capacitance per meter of its length.

8.14. The inner and outer radii of two conducting concentric spheres are 1 mm and

3 mm, respectively. The inner sphere is at a potential of 5 V with respect to the

outer one. Use Gauss’s law to find the potential’s distribution, the electric field

intensity, and the capacitance of this system.
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8.15. Consider Problem 8.13 and use Laplace’s equation to find the potential’s

distribution inside the coaxial line, the electric field intensity, and the capaci-

tance per meter of its length.

8.16. Reconsider Example 8.14 and use Laplace’s equation to find the potential’s

distribution between the concentric spheres, the electric field intensity, and

its capacitance.

8.17. A silicon pn-junction diode has Nd ¼ 1021 m23 and Na ¼ 1025 m23 on its

n- and p-sides, respectively. If the built-in potential is 0.62 V, find length do
of its depletion region and the lengths of the space-charge regions on each

side of the junction. Assume that the dielectric constant of silicon is 11.8.
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9
MAGNETOSTATIC FIELDS

As was mentioned earlier, electric and magnetic fields become independent of each

other when the electrical charge and current sources producing them are constant

over time. In other words, the electrical charge that is constant over time is respon-

sible for the electric field and the electrical current that is constant over time is

responsible for the magnetic field. These fields of constant charge and current are

known as the electrostatic and magnetostatic fields, respectively. Electrostatic

fields were considered in Chapter 8. Here we cover magnetostatic fields. The chapter

begins with a section on the laws that govern magnetostatic fields. Concepts of

inductance and energy storage in magnetic fields are presented. A brief discussion

on magnetic materials is included in a separate section. The chapter ends with an

introduction to magnetic circuits.

9.1 LAWS OF MAGNETOSTATIC FIELDS

For an electrical source constant over time Ampere’s law (3.1.2) reduces to

þ
C

~H � d ~‘ ¼ ð
S

~J � d~s ¼ I: (9:1:1)

346

Practical Electromagnetics: From Biomedical Sciences to Wireless Communication.
By Devendra K. Misra
Copyright # 2007 John Wiley & Sons, Inc.



Similarly its differential form (3.2.9) is

r � ~H ¼ ~J: (9:1:2)

Gauss’s law for the magnetic field (3.1.4) in a homogeneous medium gives

þ
S

~B � d~s ¼ 0 !
ð
V

r � (m ~H)dv ¼ 0 !
þ
S

~H � d~s ¼ 0: (9:1:3)

Its differential form (3.2.11) gives

r � ~B ¼ 0 ! r� (m ~H) ¼ 0 ! r� ~H ¼ 0: (9:1:4)

Equation (9.1.2) is used to find the so-called vector Poisson’s equation:

r � r� ~A ¼ �m ~Je: (9:1:5)

The magnetic vector potential given by (B.33) simplifies for magnetostatic fields as

follows:

~A(~r ) ¼ m

4p

ð
V

~Je
R
dv0: (9:1:6)

The magnetic flux wm passing through a given area S bound by C is found to be

wm ¼
ð
S

~B � d~s 0 ¼ ð
S

(r � ~A) � d~s 0 ¼ þ
c

~A � d ~‘: (9:1:7)

Example 9.1

An infinitely long solenoid of radius a has n turns per unit length of a filamentary

wire, as shown in Figure 9.1. It carries a current I. Find its magnetic field using

Ampere’s law.

Two different views of the solenoid are included in Figure 9.1. As the problem

statement says, the wire is assumed to be thin and the turns are close to each

other. Since its geometry is circularly symmetric and the solenoid is infinitely

long, the magnetic field that it produces is independent of f and z. Hence its

magnetic field intensity can be expressed as follows:

~H ¼ r̂Hr(r)þ f̂Hf(r)þ ẑHz(r):

In order to determine the radial component of magnetic field, we imagine a

cylindrical volume of radius r and length l inside the solenoid, as shown in
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Figure 9.1b. Using (9.1.4), we find that the surface integrals on its two ends

cancel out each other because Hz enters one end surface and leaves from the

other. On the lateral surface we have

þ
S

~H � d~s ¼ ð‘
z¼0

ð2p
f¼0

Hr(r)r̂ � r̂rdfdz ¼ 2pr‘Hr(r) ¼ 0:

We conclude that

Hr(r) ¼ 0:

Next, we consider the two circular surfaces S1 and S2 that are bounded by C1 and

C2, respectively, shown in Figure 9.1a. As indicated, surface S2 is inside the sole-

noid whereas S1 extends outside. The current flowing through the winding is

along the boundary, and therefore it does not leave (or cut) these surfaces.

Hence applying (9.1.1) on either surface gives

þ
C

~H � d ~‘ ¼ þ
C1 orC2

Hf(r)rdf ¼ 0 ! Hf(r) ¼ 0:

Now using (9.1.1) on the area bound by 3–4–5–6, as shown is Figure 9.1b, we

find that

þ
C

~H � d ~‘ ¼ ð4
3

Hz(r)dzþ
ð5
4

Hr(r)drþ
ð6
5

Hz(r)dzþ
ð3
6

Hr(r)dr ¼ 0:

Figure 9.1 Geometry of a solenoid.
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Since we have already found that the radial magnetic field is zero, this expression

reduces to ð4
3

Hz(r)dzþ
ð6
5

Hz(r)dz ¼ ‘ Hz(r)
��4
3
�Hz(r)

��6
5

h i
¼ 0:

This condition is satisfied even when Hz is constant in this region. However, the

field is bounded, so it has to be zero at infinity. Thus we can conclude that it is

zero everywhere outside the solenoid.

Finally, using (9.1.1) over the area bound by 1–2–3–4, as shown in

Figure 9.1b, we haveþ
C

~H � d ~‘ ¼ ð1
2

Hz(r)dzþ
ð4
1

Hr(r)drþ
ð3
4

Hz(r)dzþ
ð2
3

Hr(r)dr ¼ n‘I:

Note that the radial magnetic field is zero everywhere and also Hz is zero outside

the solenoid. Therefore this expression reduces toð1
2

Hz(r)dz ¼ Hz(r)‘ ¼ n‘I ! Hz(r) ¼ nI, r , a:

We can conclude that

~H ¼ ẑnI, r , a,

0, r . a:

�

The corresponding magnetic flux density is give by

~B ¼ ẑmnI, r , a,

0, r , a:

�

Example 9.2

The mean radius of the toroid shown in Figure 9.2 is a, and it has N turns of a

filamentary wire covering it. The cross section of the core is circular with a

radius b. There is a current I flowing through the winding. Find the magnetic

flux density using Ampere’s law.

Figure 9.2 Geometry of a toroid.
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The toroid may be considered a solenoid with two ends brought together as

shown in Figure 9.2. Therefore Ampere’s law gives

þ
C

~H � d ~‘ ¼ Hf(r)

ð2p
f¼0

rdf ¼ 2prHf(r) ¼ NI, a� b , r , aþ b,

0; r , a� b, r . aþ b:

8<
:

The magnetic flux density is found to be

~B ¼ f̂
mNI

2pr
, a� b , r , aþ b,

0, r , a� b, r . aþ b:

8<
:

For a � b this relation simplifies to

~B � f̂
mNI

2pa
, a� b , r , aþ b,

0, r , a� b, r . aþ b:

(

Biot-Savart Law

Ampere’s law is easy to use when the structure under consideration possesses certain

symmetry. It is not that useful if the symmetry does not exist. All kinds of problems

can be solved using the potential functions discussed in Chapter 6. In magnetostatic

fields we work with (9.1.6) as follows: If an incremental length of the conductor with

its cross section S0 carries a current I, then we find that

~Jdv0 ¼ JS0d ~‘0 ¼ Id ~‘0:

Therefore (9.1.6) may be written as follows:

~A(~r) ¼ moI

4p

ð
c

1

R
d ~‘0: (9:1:8)

The corresponding magnetic flux density is found to be

~B ¼ r� ~A(~r ) ¼ moI

4p

ð
c

r � d ~‘0

R

 !
: (9:1:9)

Since

r � d ~‘0

R

 !
¼ 1

R
r � d ~‘0 þ r 1

R

� �
� d ~‘0 ¼ r 1

R

� �
� d ~‘0 ¼ � R̂

R2
� d ~‘0 ¼ d ~‘0 � R̂

R2
,

(9.1.9) simplifies to

~B ¼ moI

4p

ð
c

d ~‘0 � R̂

R2
¼ moI

4p

ð
c

d ~‘0 � ~R

R3
: (9:1:10)
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This relation is known as the Biot-Savart law because it was originally proposed by

these two great scientists. The Biot-Savart relation can be used to find the magnetic

flux density (and hence the magnetic field’s intensity as well) for the cases even

without symmetry.

Example 9.3

A thin wire of length 2L lies symmetrically along the z-axis, as shown in

Figure 9.3. If this wire carries a current I, determine its magnetic field at a

point on the x-y plane using the Biot-Savart law.

The position vector for point P is ~r ¼ r̂r. We consider a small length on this

wire with its position vector as ~r 0 ¼ ẑ z0. Therefore the vector distance from the

source point to P on the x-y plane is found to be

~R ¼ ~r � ~r0 ¼ r̂r� ẑz0:

The magnitude (separation between the incremental length and point P) is given

as follows:

R ¼ j ~Rj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z02

p
:

Using (9.1.10), we find that

~B ¼ moI

4p

ð
c

d ~‘0 � ~R

R3
¼ moI

4p

ðL
�L

dz0ẑ� (r̂r� ẑz0)
(r2 þ z02)3=2

¼ f̂
moIr

4p

ðL
�L

dz0

(r2 þ z02)3=2
:

Figure 9.3 Geometry of a thin wire of length 2L with current I.

9.1 LAWS OF MAGNETOSTATIC FIELDS 351



Since the integrand is an even function of z0, by the integration formula 4 from

Appendix A we find that

~B ¼ f̂
moIr

2p

ðL
0

dz0

(r2 þ z02)3=2
¼ f̂

moIr

2p
� z0

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z02

p
�����
L

z0¼0

¼ f̂
moIL

2pr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ L2

p T:

For L ! 1, the formula reduces to

~B ¼ f̂
moI

2pr
T ! ~H ¼

~B

mo

¼ f̂
I

2pr
A=m:

This result can be verified easily using Ampere’s law.

Example 9.4

A loop filament of radius a lies on the x-y plane, as shown in Figure 9.4. It carries

a current I. Find the magnetic flux density at a point on the loop’s axis.

The vector incremental length can be expressed as follows:

d ~‘0 ¼ f̂ 0adf0 ¼ (�x̂ sinf0 þ ŷ cosf0)adf0:

Note that the unit vector f changes its direction from 0 to 2p. Therefore it is

changed to unit vectors in rectangular coordinates. The position vector for the

field point is ~r ¼ ẑz. The position vector for a source point (the incremental

length) is

~r0 ¼ r̂ 0a ¼ (x̂ cosf0 þ ŷ sinf0)a:

Figure 9.4 Geometry of the wire loop lying on the x-y plane.
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Therefore the vector directed from the field point to the source point is found to be

~R ¼ ~r � ~r0 ¼ (ẑz� r̂ 0a):

The separation between the field and source points is

R ¼ j ~Rj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ z2

p
:

Using (9.1.10), we have

~B ¼ moI

4p

ð2p
0

f̂ 0adf0 � (ẑz0 � r̂ 0a)
(a2 þ z2)3=2

¼ moIa

4p(a2 þ z2)3=2

ð2p
0

½r̂ 0z df0 þ ẑadf0�,

or

~B ¼ moIa

4p(a2 þ z2)3=2

ð2p
0

½(x̂ cosf0 þ ŷ sinf0)z df0 þ ẑadf0� ¼ ẑ
moIa

2

2(a2 þ z2)3=2
T:

Example 9.5

Using the results of Example 9.4, find the magnetic flux density due to current I

flowing through a solenoid with N turns over its length l. Compare your result

with that obtained in Example 9.1.

The expression of magnetic flux density obtained in Example 9.4 can be gener-

alized for an incremental length dz of a solenoid if we replace its current as follows:

I ! NI

‘
dz:

Therefore the magnetic flux density due to an incremental length dz may be

expressed as follows:

d ~B ¼ ẑ
moNIa

2

2‘(a2 þ z2)3=2
dz T:

To find the magnetic flux density in the middle of solenoid, we integrate this

expression as follows:

~B(z ¼ 0) ¼ ẑ
moNIa

2

2‘

ð‘=2
�‘=2

dz

(a2 þ z2)3=2
T

¼ ẑ
moNIa

2

2‘

z

a2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ z2

p
����‘=2
z¼�‘=2

" #

¼ ẑ
moNI

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ (‘=2)2

p :
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For a 
 l/2, this simplifies to

~B(z ¼ 0) � ẑ
moNI

‘
:

Since N/l represents n (the number of turns per unit length), this result is the

same as found in Example 9.1.

Further we can find the magnetic flux density at the end of the solenoid if we

change the integration limits as follows:

~B(z ¼ 0) ¼ ẑ
moNIa

2

2‘

ð‘
0

dz

(a2 þ z2)3=2
T

¼ ẑ
moNIa

2

2‘

z

a2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ z2

p
����‘
z¼0

" #

¼ ẑ
moNI

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ ‘2

p :

Hence the magnetic flux density decreases at the ends to half of its value that

existed in the middle of solenoid.

Example 9.6

A filamentary wire loop of radius a lies on the x-y plane, as shown in Figure 9.5.

The loop carries a current I. Find its magnetic field at a faraway point (r � a).

There are at least two different ways to find the magnetic vector potential for

this case. Since there is symmetry in f direction, a field point can be selected on

the y-z plane without loss of generality. Hence the position vector for the field

point P is

~r ¼ r̂r ¼ x̂xþ ẑz:

Figure 9.5 Current loop magnetic dipole.
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The Position vector for the incremental length (the source point) is

~r0 ¼ r̂ 0a ¼ (x̂ cosf0 þ ŷ sinf0)a:

Therefore

~R ¼ ~r � ~r0 ¼ x̂(x� a cosf0)� ŷa sinf0 þ ẑz

and

R ¼ j ~Rj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x� a cosf0)2 þ a2 sin2 f0 þ z2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2 þ a2 � 2ax cosf0p

:

This can be changed to spherical coordinates as follows:

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2 � 2ar sin u cosf0p

:

For r � a, we find that

1

R
¼ 1

r½1þ (a2 � 2ar sin u cosf0)=r2�1=2 �
1

r
1þ a

r
sin u cosf0

� �
:

The vector representation for the incremental length is

d ~‘0 ¼ f̂ 0adf0 ¼ (�x̂ sinf0 þ ŷ cosf0)adf0:

Therefore (9.1.10) gives

~A ¼ moIa

4pr

ð2p
0

(�x̂ sinf0 þ ŷ cosf0) 1þ a

r
sin u cosf0

h i
df0

¼ moIa
2 sin u

4pr2

ð2p
0

(�x̂ sinf0 þ ŷ cosf0) cosf0df0,

or

~A ¼ moIa
2 sin u

4pr2

ð2p
0

(�x̂ sinf0 þ ŷ cosf0)cosf0df0 ¼ ŷ
moIpa

2 sin u

4pr2
:

Since the rotation of the loop on x-y plane does not change its response (rotational

symmentry of the loop), it can be expressed as follows:

~A ¼ f̂
moIpa

2 sin u

4pr2
¼ mo

~m� r̂

4pr2
,

where ~m ¼ ẑ Ipa2 ¼ magnetic dipole moment.

Alternatively, we start with (9.1.8) as follows:

~A ¼ mo

4p

þ
C

Id ~‘0

R
¼ moI

4p

þ
C

d ~‘0

R
:

9.1 LAWS OF MAGNETOSTATIC FIELDS 355



Using vector identity 15 from Appendix A, we find thatþ
C

d ~‘0

R
¼
ð
S

ẑ�r0 1

R

� �
ds0,

where the surface S is bound by C.

From Example 2.20 we know that

r0 1

R

� �
¼ R̂

R2
:

Therefore þ
C

d ~‘0

R
¼
ð
S

ẑ�r0 1

R

� �
ds0 ¼

ð
S

ẑ� R̂

R2
ds0:

For r � r0, R̂=R2 � r̂=r2, and therefore it simplifies to

þ
C

d ~‘0

R
¼
ð
S

ẑ� R̂

R2
ds0 � ẑ� r̂

r2

ð
S

ds0 ¼ ẑ� r̂

r2
S:

Note that this expression is independent of the shape of the loop.

Hence (9.1.8) gives

~A � moIS

4p r2
(ẑ� r̂) ¼ moIS

4p r2
r̂ cos u� û sin u
� �

� r̂ ¼ f̂
moIS

4p r2
sin u:

This expression is same as what we found earlier. However, it is the most general

formulation that shows the vector magnetic potential of the loop to be a function

of the surface area S and independent of the surface’s shape. The corresponding

magnetic flux density is found to be

~B ¼ r� ~A ¼ r̂
1

r sin u

@

@u

moIS

4pr2
sin2 u

� �
þ û

1

r
� @

@r
r
moIS

4p r2
sin u

� �� �
,

or

~B ¼ moIS

4p r3
(r̂2 cos uþ û sin u ) T

and

~H ¼
~B

mo

¼ IS

4pr3
(r̂2 cos uþ û sin u) A=m:

A comparison of this result with that in Example 8.5 indicates that the magnetic

field produced by a magnetic dipole is similar to the electric field of the electric

dipole. The two are numerically equal if

qd

1
¼ IS:
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9.2 INDUCTORS AND ENERGY STORAGE

We have found that the magnetic field encircles the current-carrying conductor.

Consider two loops of arbitrary shapes with currents I1 and I2, as shown in

Figure 9.6. These currents each generate a magnetic field that links itself as well

as the nearby circuit. For example, magnetic flux line c11 encircles I1 of loop 1,

whereas c12 links the other loop. The magnetic flux generated by I1 linking itself

externally gives rise to the external self-inductance L1 of loop 1. Similarly magnetic

flux lines such as c22 are responsible for the external self-inductance L2 of loop

2. There may be a small magnetic flux that links partially with the current itself.

This flux linkage is responsible for the internal self-inductance. Note that this

field may be linking only a part of the current, and therefore special care is

needed in determining its flux linkage. The magnetic flux line c12 (or c21) generated

by current I1 links with the current in the other loop (and vice-versa), and therefore

this gives rise to a mutual inductance M12 (or M21). The inductors are used exten-

sively in various electronic circuits such as the oscillators for generating sinusoidal

signals, filtering, and the impedance matching circuits. The mutual inductance

concept provides a neat way to couple ac signals while blocking the dc bias voltages.

Another important application of this concept is in understanding electromagnetic

interference (EMI). This section includes discussions on self-inductance, energy

storage, and mutual inductance.

The magnetic flux c11 through the open surface S1 due to current I1 in loop 1 is

defined as follows:

c11 ¼
ð
S1

~B1 � d~s: (9:2:1)

Using the Biot-Savart law (9.1.10), we find that

c11 ¼
ð
S1

moI1

4p

þ
C1

d ~‘0 � R̂

R2

 !
� d~s ¼ moI1

4p

ð
S1

þ
C1

d ~‘0 � R̂

R2

 !
� d~s: (9:2:2)

Figure 9.6 Magnetic flux produced by two wire loops of arbitrary shape.
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This relation indicates that the magnetic flux c11 is directly proportional to the

current I1. The proportionality constant is known as inductance (in fact it is a case

of self-inductance L1). Hence

L1 ¼ c11

I1
¼ mo

4p

ð
S1

þ
C1

d ~‘0 � R̂

R2

 !
� d~s: (9:2:3)

Since c11 is measured in webers and I1 in amperes, the unit of inductance is webers

per ampere, which is commonly called henrys.

To get larger inductance values, practical inductors are designed as coils using

several turns of wire generally on a cylindrical or toroidal core. If there are N

turns in the loop then the flux linkage L11 increases by N times. Hence

L1 ¼ L11

I1
¼ N1c11

I1
¼ N1

I1

ð
S1

~B1 � d~s: (9:2:4)

Similarly

L2 ¼ N2c22

I2
¼ N2

I2

ð
S2

~B2 � d~s: (9:2:5)

The magnetic field produced by a current-carrying conductor links itself. The

associated inductance is called its internal self-inductance. In such a case the mag-

netic flux links only a part of the current, and therefore special care is needed in its

evaluation. One way is to find the differential flux linkage that can be integrated over

a cross section of the conductor. Inductance is found as the differential flux times the

enclosed fraction of the total current I. Therefore it can be expressed as follows:

L ¼ 1

I

ð
S

Ienclosed

I

� �
dc: (9:2:6)

We found earlier that a capacitor stores energy in the form of an electric field or a

charge. Similarly an inductor stores energy in the form of amagnetic field. Inductance

L and current I are related with stored energy UH as follows:

UH ¼ 1

2
LI 2 ! L ¼ UH

I2=2
: (9:2:7)

As expected, this relation of inductance is identical to (9.2.3). It can be proved as

follows: Since the total energy is found after integrating the energy density over the

entire volume V, we write

UH ¼ 1

2

ð
V

~B � ~Hdv ¼ 1

2

ð
V

r � ~A
� � � ~Hdv: (9:2:8)

Using vector identity 4 from Appendix A, we find that

(r � ~A) � ~H ¼ r � ( ~A� ~H)þ ~A � (r � ~H): (9:2:9)
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Therefore

UH ¼ 1

2

ð
V

r � ( ~A� ~H)dv

þ 1

2

ð
V

~A � (r� ~H)dv ¼ 1

2

þ
S

( ~A� ~H) � d ~sþ 1

2

ð
V

~A � ~Jdv: (9:2:10)

The First integral on the right-hand side of (9.2.10) reduces to zero because the

surface S encloses all the fields that are zero at infinity. The second integral can

be expressed as follows:

UH ¼ 1

2

ð
V

~A � ~Jdv ¼ 1

2

þ
C

~A � (Id ~‘) ¼ I

2

þ
C

~A � d ~‘: (9:2:11)

Using the Stokes theorem and then the relation between the magnetic vector potential

and the magnetic flux density, we find that

UH ¼ I

2

þ
C

~A � d ~‘ ¼ I

2

ð
S

(r � ~A) � d ~s ¼ I

2

ð
S

~B � d ~s: (9:2:12)

On substituting (9.2.12) into (9.2.7), we find that

L ¼
I=2

Ð
S
~B � d ~s� �

=2

I2=2
¼ 1

I

ð
S

~B � d ~s: (9:2:13)

This expression is the same as (9.2.3) defined earlier.

Example 9.7

Find the inductance of the solenoid considered in Example 9.5. Assume that the

length of the solenoid is large in comparison with its radius.

From Example 9.5 the magnetic flux density inside this solenoid is given as

follows:

~B ¼ ẑ
moNI

‘
:

Therefore the total flux linkage is found to be

c11 ¼
ð
S

~B � d~s ¼ moNIpa
2

‘
:

From (9.2.4) the inductance of this solenoid is found to be

L ¼ Nc11

I
¼ moN

2pa2

‘
H:
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Example 9.8

Find the inductance of the toroid considered in Example 9.2. Assume that a � b.

From Example 9.2 the magnetic flux density of the toroid is found to be

~B ¼ f̂
moNI

2pa
, a� b , r , aþ b,

0, r , a� b, r . aþ b:

8<
:

Therefore the flux linkage is written as

c11 ¼
moNIpb

2

2pa
¼ moNIb

2

2a
:

Hence the inductance of the toroid is

L ¼ Nc11

I
¼ moN

2b2

2pa
:

Example 9.9

(a) Find the inductance of a 30 cm long solenoid with 2000 turns and a radius of

2 cm. (b) Find the inductance of a toroid with 2000 turns, mean radius of 5 cm,

and a cross-sectional area of the core of 1.2566 . 1023 m2.

(a) From the result obtained in Example 9.7, we find that the inductance of this

solenoid is

L � moN
2pa2

‘
¼ 4p � 10�7 � (2000)2 � p � (0:02)2

0:3
¼ 0:021H ¼ 21mH:

(b) The inductance of the toroid may be found from the result obtained in

Example 9.8 as follows:

L ¼ moN
2(pb2)

2pa
¼ 4p � 10�7 � (2000)2 � 1:2566 � 10�3

2p � 0:05 ¼ 0:02H ¼ 20mH:

Example 9.10

Find the inductance per unit length of the coaxial line considered in Example 3.6.

Since ~B ¼ mo
~H in a nonmagnetic medium, using the results obtained in

Example 3.6, we find that

Bf ¼

moIr

2pa2
, r , a,

moI

2pr
, a , r , b,

moI

2pr

c2 � r2

c2 � b2

� �
b , r , c:

8>>>>>>><
>>>>>>>:
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In order to evaluate the internal self-inductance per unit length as well, we use

(9.2.6) as follows:

L ¼ 1

I

ð1
z¼0

ða
r¼0

I(r2=a2)

I

� �
moIr

2pa2

� �
drdzþ 1

I

ð1
z¼0

ðb
r¼a

I

I

� �
moI

2pr
drdz

þ 1

I

ð1
z¼0

ðc
r¼b

I(c2 � r2)=(c2 � b2)

I

� �
moI

2pr
� (c

2 � r2)

(c2 � b2)

� �
drdz,

or

L ¼ mo

8p
þ mo

2p
ln

b

a

� �
þ mo

2p

ðc
r¼b

(c2 � r2)

(c2 � b2)

� �2
dr

r
:

The remaining integral can be evaluated easily after expanding the square in its

integrand. The total inductance is found to be

L ¼ mo

8p
þ mo

2p
ln b=að Þ þ mo

2p

c2

c2 � b2

� �2
ln

c

b

� �
� mo

2p

c2

c2 � b2

� �

þ mo

8p

c2 þ b2

c2 � b2

� �
H=m:

Note that the external self-inductance per unit length of coaxial line is

L ¼ mo

2p
ln

b

a

� �
H=m:

Mutual Inductance

Mutual inductance between the two circuits characterizes the magnetic flux linkage

with one circuit per unit current in the other. Therefore it can be found as follows:

The magnetic flux generated by N1 turns of loop 1 that links loop 2 is found to be

c21 ¼
ð
S2

~B1 � d~s ¼ ð
S2

moN1I1

4p

þ
C1

d ~‘0 � R̂

R2

 !
� d~s

¼ moI1N1

4p

ð
S2

þ
C1

d ~‘0 � R̂

R2

 !
� d~s: (9:2:14)

Note that this flux must be multiplied by the number of turns N2 of loop 2 to find the

total flux linkage. Therefore the mutual inductance M21 is given as follows:

M21 ¼ N2c21

I1
¼ N2N1mo

4p

ð
S2

þ
C1

d ~‘0 � R̂

R2

 !
� d~s: (9:2:15)
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Similarly

M12 ¼ N1c12

I2
¼ N1N2mo

4p

ð
S1

þ
C2

d ~‘0 � R̂

R2

 !
� d~s: (9:2:16)

We expect M21 to be equal to M12. However, it is not that obvious from these two

relations. Using the following alternative formulation for the flux linkage between

two loops with single turns, we find that

c21 ¼
ð
S2

~B1 � d~s
¼
ð
S2

(r � ~A1) � d~s ¼ þ
C2

~A1 � d ~‘2 ¼ þ
C2

moI1

4p

þ
C1

d ~‘1
R21

 !
� d ~‘2: (9:2:17)

Therefore

M21 ¼ c21

I1
¼ mo

4p

þ
C2

þ
C1

d ~‘1 � d ~‘2
R21

: (9:2:18)

Similarly

c12 ¼
ð
S1

~B2 � d~s ¼ ð
S1

(r � ~A2) � d~s ¼ þ
C1

~A2 � d ~‘1 ¼ þ
C1

moI2

4p

þ
C2

d ~‘2
R12

 !
� d ~‘1:
(9:2:19)

Since R12 ¼ R21, we find that

M12 ¼ c12

I2
¼ mo

4p

þ
C2

þ
C1

d ~‘1 � d ~‘2
R12

¼ M21: (9:2:20)

Coupling Coefficient

Consider the case where coil 1 produces a magnetic flux c11 because of its

current I1. However, only a fraction k1 of this flux links with coil 2. Therefore we

can write

c21 ¼ k1c11 ¼ k1
L1I1

N1

: (9:2:21)

Hence the mutual inductance M21 is found to be

M21 ¼ N2c21

I1
¼ k1L1

N2

N1

: (9:2:22)

362 MAGNETOSTATIC FIELDS



Similarly

M12 ¼ N1c12

I2
¼ k2L2

N1

N2

: (9:2:23)

For M21 ¼ M12 ¼ M, we have

M2 ¼ k1k2L1L2 ! M ¼ +k
ffiffiffiffiffiffiffiffiffiffi
L1L2

p
, (9:2:24)

where

k ¼ ffiffiffiffiffiffiffiffiffiffi
k1k2

p
: (9:2:25)

k is called the coupling coefficient. Note that k1 � 1 and k2 � 1, and therefore

k � 1.

Example 9.11

The axes of two concentric solenoids of lengths l are aligned to the z-axis, as

shown in Figure 9.7. The inner solenoid has N1 turns while the outer one has

N2. The radii of the two solenoids are a and b, respectively. Find their mutual

inductance.

Assume that current through inner and outer solenoids are I1 and I2, respect-

ively. Therefore the magnetic flux density due to the outer solenoid is found to be

B2 ¼ moN2I2

‘
:

The flux linkage though each turn of the inner solenoid is given by

c12 ¼
moN2I2pa

2

‘
:

Figure 9.7 Concentrically arranged solenoids.
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The mutual inductance M12 is found from (9.2.16) as follows:

M12 ¼ moN1N2pa2

‘
:

Alternatively, the magnetic flux density due to I1 in the inner solenoid is given as

follows:

B1 ¼ moN1I1

‘
:

The flux linkage of the outer conductor is found to be (remember that the flux out-

side solenoid is zero and there are N2 turns in outer solenoid)

c21 ¼
moN2N1I1pa2

‘
:

Therefore (9.2.15) gives

M21 ¼ moN2N1pa2

‘
¼ M12:

We can determine the coupling coefficient if the expressions of self-inductances

L1 and L2 of solenoids are known. These can be found easily as follows:

L1 ¼ moN
2
1pa2

‘

and

L2 ¼ moN
2
2pb2

‘
:

Therefore

k ¼ M12ffiffiffiffiffiffiffiffiffiffi
L1L2

p ¼ M21ffiffiffiffiffiffiffiffiffiffi
L1L2

p ¼ a

b
:

Example 9.12

A distance h separates two conducting wire loops of radii a1 and a2, as shown in

Figure 9.8. The cross section of the loop’s wire is circular with radius a. Find their

mutual inductance.

Assume that the radii a1 and a2 of the primary and secondary loops, respect-

ively, are measured to the wire axis. The two loops are separated by a distance h,

and c ¼ a12 a is the radius of the inner periphery of the primary loop. The incre-

mental lengths d ~‘1 and d ~‘2 can be expressed as follows:

d ~‘1 ¼ f̂1c df1 ¼ (�x̂ sinf1 þ ŷ cosf1)c df1

364 MAGNETOSTATIC FIELDS



and

d ~‘2 ¼ f̂2a2df2 ¼ (�x̂ sinf2 þ ŷ cosf2)a2df2:

Therefore

d ~‘1 � d ~‘2 ¼ ca2(f̂1 � f̂2)df1df2 ¼ ca2 cos(f1 � f2)df1df2:

The position vectors for d ~‘1 and d ~‘2, respectively, are given as follows:

~r1 ¼ x̂c cosf1 þ ŷc sinf1

and

~r2 ¼ x̂a2 cosf2 þ ŷa2 sinf2 þ ẑh:

Therefore the separation between d ~‘1 and d ~‘2 is found to be

R12 ¼ j~r1 � ~r2j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ c2 þ a22 � 2ca2 cos(f1 � f2)

q
:

Alternatively, this result can be found via the so-called cosine law.

Using (9.2.18), we find that

M12 ¼ moca2

4p

ð2p
f1¼0

ð2p
f2¼0

cos(f1 � f2)df2df1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ c2 þ a22 � 2ca2 cos(f1 � f2)

p :

Figure 9.8 Two magnetically coupled loops.
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Note that when integrating over f2, f1 is constant and the integration can be

performed after changing the variable as follows: For f1 � f2 ¼ u, df2 ¼
�du, and the new integration limits are found to be

f2 ¼ 0 ! u ¼ f1

and

f2 ¼ 2p ! u ¼ f1 � 2p:

Therefore

M12 ¼ moca2

4p

ð2p
f1¼0

ðf1

u¼f1�2p

cosu dudf1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ c2 þ a22 � 2ca2 cos u

p :

Since the inner integral is evaluated for the closed loop such that u varies over a

total interval of 2p, the origin for u is unimportant. Further the integrand is now

independent of f1, so the outside integral is trivial. Consequently the expression

for the mutual inductance between the two loops simplifies to

M12 ¼ moca2

2

ð2p
u¼0

cos uduffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ c2 þ a22 � 2ca2 cos u

p :

This integral cannot be evaluated analytically. However, the mutual inductance

M12 can be expressed in terms of the complete elliptic integrals of the first and

second kinds that are generally tabulated in many mathematics handbooks.

This transformation is possible via the following change in the variable.

For u ¼ p� 2x, du ¼ �2dx, and limits on the integral change as follows:

u ¼ 0 ! x ¼ p

2

and

u ¼ 2p ! x ¼ �p

2
:

Further

cos u ¼ cos(p� 2x) ¼ �cos(2x) ¼ 2 sin2 x� 1:

Therefore

M12 ¼ moca2

ðp=2
x¼�p=2

(2 sin2 x� 1)dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ c2 þ a22 � 2ca2(2 sin

2 x� 1)

q

¼ 2moca2

ðp=2
x¼0

(2 sin2 x� 1)dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ c2 þ a22 � 2ca2(2 sin

2 x� 1)

q :
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Since

R2
12 ¼ h2 þ c2 þ a22 � 2ca2 cos u ¼ h2 þ c2 þ a22 � 2ca2(2 sin

2 x� 1),

or

R2
12 ¼ h2 þ (c2 þ a22 þ 2ca2)� 4ca2 sin

2 x ¼ h2 þ (cþ a2)
2 � 4ca2 sin

2 x,

R2
12 ¼

4ca2

k2
(1� k2 sin2 x),

where

k2 ¼ 4ca2

h2 þ (cþ a2)
2
:

Further

2 sin2 x� 1 ¼ 2

k2
� 1� 2

k2
(1� k2 sin2 x):

Therefore

cos uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ c2 þ a22 � 2ca2 cos u

p
¼ 2 sin2 x� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2 þ c2 þ a22 � 2ca2(2 sin
2 x� 1)

q

¼ k

2
ffiffiffiffiffiffiffi
ca2

p ð2=k2Þ � 1� ð2=k2Þ(1� k2 sin2 x)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 x

p
� �

and

M12 ¼ 2moca2
1

2
ffiffiffiffiffiffiffi
ca2

p 2

k
� k

� �ðp=2
0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 x

p � 2

k

ðp=2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 x

p
dx

� �
,

or

M12 ¼ mo

ffiffiffiffiffiffiffi
ca2

p 2

k
� k

� �
F k;

p

2

� �
� 2

k
E k,

p

2

� �� �
,

where

F k,
p

2

� �
¼
ðp=2
0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 x

p , 0 � k2 � 1,

9.2 INDUCTORS AND ENERGY STORAGE 367



and

E k,
p

2

� �
¼
ðp=2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 x

p
dx, 0 � k2 � 1:

F(k, p/2) and E(k, p/2) are known as complete elliptic integrals of the first

and the second kinds, respectively. These can be expressed in infinite series as

follows:

F k,
p

2

� �
¼ p

2
1þ 1

2

� �2

k2 þ 1 � 3
2 � 4
� �2

k4 þ 1 � 3 � 5
2 � 4 � 6
� �2

k6 þ � � �
" #

and

E k,
p

2

� �
¼ p

2
1� 1

2

� �2

k2 � 1 � 3
2 � 4
� �2

k4

3
� 1 � 3 � 5

2 � 4 � 6
� �2

k6

5
� � � �

" #
:

Example 9.13

A circular loop of a 0.25 m mean radius is lying symmetrically on the x-y plane.

The wire used for this loop is circular in its cross section with a radius of 1 mm.

Find the inductance.

The external self-inductance of a loop can be found after specializing the

results obtained for M12 in Example 9.12. Equations (9.2.3) and (9.2.17) indicate

that the external self-inductance can also be expressed as

L1 ¼ mo

4p

þ
C1

d ~‘1 � þ
C0
1

d ~‘01
R11

:

This expression can be obtained from the mutual inductance formula of (9.2.18)

after replacing a2 by a1, h by zero, and R12 by R11. Hence specializing the results

of Example 9.12, we find that

L1 ¼ mo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 � að Þa1

p 2

k
� k

� �
F k,

p

2

� �
� 2

k
E k,

p

2

� �� �
,

where

k2 ¼ 4(a1 � a)a1

(2a1 � a)2
:

Since ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(a1 � a)a1

p
¼ k

2
(2a1 � a),

L1 ¼ mo(2a1 � a) 1� k2

2

� �
F k,

p

2

� �
� E k,

p

2

� �� �
:
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Further, if a1/a � 1, then k ! 1, and the asymptotic values of the complete

elliptic integrals for this case are found to be

F k ! 1,
p

2

� �
� ln

4ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
� �

and

E k ! 1,
p

2

� �
� 1:

Therefore

L1 ¼ moa1 ln
4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(a=2a1)
2

p
 !

� 2

" #
¼ moa1 ln

8a1

a

� �
� 2

� �
:

For a1 ¼ 0.25 m and a ¼ 1 mm,

L1 ¼ moa1 ln
8a1

a

� �
� 2

� �
¼ 4p � 10�7 � 0:25 ln

8 � 0:25
0:001

� �
� 2

� �
H

¼ 1:7596mH:

9.3 MAGNETIC MATERIALS

According to the atomic structure of materials, electrons orbit around the nucleus

and also spin around their axes. As in the wire loops considered in Examples 9.4

and 9.6, the orbital motion of electrons produce a magnetic field. The angular

momentum of spinning electrons can be related to tiny current loops in the material.

Mathematically the concept of magnetization can be written as follows:

~M ¼ lim lim
Dv!0

~mr

Dv
A=m, (9:3:1)

where ~mr is an average dipole moment of billions of tiny magnetic dipoles in a macro-

scopically small volume. The magnetization of a material facilitates the analysis

without considering individual tiny magnets. As indicated earlier in (3.3.4), the total

magnetic field in a medium depends on both the applied field and the magnetization

of the substance. Hence

~B ¼ mo( ~H þ ~M): (9:3:2)

In twodifferent classes ofmaterials, knownasdiamagnetic and paramagneticmaterials,

themagnetization is linearly relatedwith the external (applied)magnetic field intensity.

For such cases, (9.3.2) may be written as follows:

~B ¼ mo(1þ xm) ~H ¼ m ~H: (9:3:3)
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As noted earlier in Chapter 3, xm is the magnetic susceptibility of a material and

m is the magnetic permeability of a material. This relation becomes particulary com-

plex in certain materials known as ferromagnetic (e.g., iron, nickel, and cobalt) and

ferrimagnetic (e.g., ferrites) materials. The magnetic susceptibilities of some

diamagnetic and paramagnetic materials are listed in Table 9.1.

In diamagnetic materials, the atoms and molecules have no magnetic moment

because the magnetic fields produced by orbiting and spinning electrons cancel

out. The external magnetic field only weakly affects this balance, and a small mag-

netic moment is induced that opposes the applied field. As a result the magnetic

susceptibility of these materials is negative, and the relative permeability is less

than unity (i.e., permeability of the material is smaller than the permeability of

free space).

In paramagnetic materials the atoms have magnetic moments that point in

random directions because of thermal agitation. When an external magnetic field

is applied, these elementary magnets rotate and align in the direction of applied

field. As Table 9.1 indicates, these materials have positive magnetic susceptibility,

and therefore the relative permeability is just larger than unity.

In ferromagnetic materials, large magnetic moments exist within microscopic

regions, called domains because of the alignment of all magnetic moments in

each region. These domains have volumes on the order of 10212 to 1028 m3 contain-

ing 1017 to 1021 atoms. As shown in Figure 9.9a, the directions of the magnetic

moments differ from one to the other domain in virgin ferromagnetic material.

The magnetic state of the material corresponds to the origin o of the magnetization

curve (B–H curve) shown in Figure 9.10. When an external magnetic field is

applied, the domain structure changes as shown in Figure 9.9b. Domains with

magnetic moments in the direction of the applied field grow in size, whereas

others shrink. The magnetic flux reaches to a point e following the path o–e–c in

Figure 9.10. If the applied magnetic field is further increased to a large strength,

then all the magnetic moments align to form a single domain as shown in

Figure 9.9c. This alignment corresponds to point c on the magnetization curve of

Figure 9.10. The magnetic flux density B experiences a negligible change if the

TABLE 9.1 Magnetic Susceptibilities of Selected Diamagnetic and

Paramagnetic Materials at 300 K

Diamagnetic Materials Paramagnetic Materials

Copper 20.95 . 1025 Aluminum 2.3 . 1025

Diamond 22.2 . 1025 Calcium 1.9 . 1025

Gold 23.6 . 1025 Chromium 0.27 . 1023

Germanium 20.8 . 1025 Magnesium 0.12 . 1024

Graphite 212 . 1025 Platinum 2.9 . 1024

Silver 22.6 . 1025 Tungsten 0.68 . 1024

Silicon 20.42 . 1025 Air 3.6 . 1027

Sodium 20.24 . 1025 Liquid oxygen 3.5 . 1023

Water 20.88 . 1025 Nickel chloride 0.4 . 1024
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applied magnetic field is increased further. This is known as the saturation point of

the material.

Consider a situation where the applied magnetic field is reduced from the satur-

ation point c. The B–H characteristic of the material follows the c–d–a path instead

of c–e–o. Some magnetic flux remains in the material even when the applied

magnetic field is reduced to zero. At this point the material is said to have a remanent

magnetization. If the applied magnetic field is now reversed, then the magnetic flux

goes to zero for2Hc, which is known as the coercive force. The material saturates at

point a for large reverse magnetic field. If the applied magnetic field is reversed

again, then it follows the path a–b–c of the B–H curve. The closed path a–b–

c–d–a is known as the hysteresis loop. The hysteresis loop of a hard ferromagnetic

material is wide, and it is narrow for a soft material. Hard materials are used to

design permanent magnets that maintain magnetization as long as it is kept below

a critical temperature, called the Curie temperature. Characteristic parameters of

selected magnetic materials are listed in Tables 9.2 and 9.3.

Figure 9.9 Domains in a virgin ferromagnetic material (a), under the influence of small

magnetic field (b), and in saturation when a large magnetic field is applied (c).

Figure 9.10 Hysteresis curve for a hard (a) and a soft (b) ferromagnetic material.
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The area enclosed by the magnetization curve represents the work required to

take the material through the hysteresis cycle. This way the material acquires

energy from the external source. When the magnetization cycle is repeated, the mag-

netic energy is transformed to thermal energy because of the realignment of the

domains, and the temperature of the material increases.

9.4 MAGNETIC CIRCUITS

From Example 9.8, magnetic flux in a toroid is given as follows:

c11 ¼
mNIpb2

2pa
¼ mNIS

‘
¼ NI

(‘=mS)
¼ Vm

R (9:4:1)

where S is the cross-sectional area of the core and l is its mean circumferential

length. R is called the reluctance in per henrys (H21) and Vm is the magnetomotive

force (mmf) in ampere-turns (At) defined as follows:

R ¼ ‘

mS
H�1 (9:4:2)

and

Vm ¼ NI: (9:4:3)

Note the similarity between (9.4.1) and the electrical circuit relation

I ¼ V

R
¼ V

(‘=sS )
, (9:4:4)

where I is the current that flows through resistance R when an electrical voltage V is

applied. The resistance is made of a material of conductivity s with length l and

cross sectional area S.

Further we find that þ
C

~H � d ~‘ ¼ NI !
X
m

Hm‘m ¼ NI (9:4:5)

TABLE 9.3 Curie Temperature of Selected Magnetic

Materials

Material

Curie Temperature,

Tc (K)

Iron 1043

Cobalt 1394

Gadolinium 317

Nickel 893
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and þ
S

~B � d~s ¼ 0 !
X
m

BmSm ¼ 0: (9:4:6)

These relations are analogous to Kirchhoff’s voltage and the current laws used in

electrical circuit analysis. Therefore the magnetic circuits can be easily analyzed

following the analogy of electrical circuits.

Example 9.14

A toroid has 500 turns on an iron core of 30 cm mean length and an air gap of

1 cm, as shown in Figure 9.11. It is being used to write on a magnetic tape

that requires a magnetic flux density of 1.6 T in the air gap (ignore fringing

fields). If the relative permeability of the core at the given condition is 4897,

find the required current I.

Assume that the magnetic field intensity in core is H1, whereas it is H2 in the

air gap. From (9.4.5) we find that

H1 � 0:3þ H2 � 0:01 ¼ 500 � I
Since

H1 ¼ B

m
¼ 1:6

4897 � 4 � p � 10�7
A=m ¼ 260A=m

and

H2 ¼ B

mo

¼ 1:6

4 � p � 10�7
A=m ¼ 1:2732 � 106 A=m,

260 � 0:3þ 1:2732 � 106 � 0:01 ¼ 78þ 12732 ¼ 12810

¼ 500 � I ! I ¼ 25:62A:

Figure 9.11 Geometry of the toroid in Example 9.14.

374 MAGNETOSTATIC FIELDS



Example 9.15

There is a current of 10 A flowing through 100 turns of the magnetic circuit

shown in Figure 9.12. All branches have 8 cm2 as their cross-sectional areas

(S1) except in the middle, which is 10 cm2 (S2). Lengths l1 and l3 are 28 cm

each, and l2 is 10 cm long. The relative permeability of the core is 400. Find

the magnetic flux densities through lengths l2 and l3.
Assume that the magnetic field intensities in three lengths are H1, H2, and H3,

respectively. From (9.4.5) we find that

0:28 � H1 þ 0:1 � H2 ¼ 10 � 100
and

0:1 � H2 � 0:28 � H3 ¼ 0 ! H2 ¼ 2:8 � H3:

We use (9.4.6) to get

mH1S1 � mH2S2 � mH3S1 ¼ 0 ! H1 ¼ H3 þ 5
4
H2:

Solving these three equations, we find that

H2 ¼ 1818:1818A=m

and

H3 ¼ 649:3506A=m:

The corresponding magnetic flux densities are found to be

B2 ¼ 400 � 4 � p � 10�7 � H2 ¼ 0:9139 T

Figure 9.12 Geometry of the magnetic circuit in Example 9.15.
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and

B3 ¼ 400 � 4 � p � 10�7 � H3 ¼ 0:3264T:

Example 9.16

The magnetic circuit shown in Figure 9.13 has two symmetrical windings, each

with 9783.2455 At. All branches of the core are 2 cm thick, and its relative

permeability is 1000. Find the total magnetic flux in the air gap.

An equivalent magnetic circuit is drawn in Figure 9.14 using the concepts of

reluctance and the magnetic voltage defined in (9.4.2) and (9.4.3). The reluctance

values for each branch, as indicated in Figure 9.13, are found to be

R1 ¼ ‘

mS
¼ 0:11

1000 � 4 � p � 10�7 � 0:015 � 0:02 ¼ 29:1784 � 104 H�1,

R2 ¼ ‘

mS
¼ 0:05

1000 � 4 � p � 10�7 � 0:015 � 0:02 ¼ 13:2629 � 104 H�1,

R3 ¼ ‘

mS
¼ 0:06

1000 � 4 � p � 10�7 � 0:01 � 0:02 ¼ 23:8732 � 104 H�1,

and

Rg ¼ ‘

mS
¼ 0:01

4 � p � 10�7 � 0:015 � 0:02 ¼ 26:5258 � 106 H�1:

We can use the superposition principle to find the total magnetic flux in the air

gap. With a short circuit replacing one source, the magnetic flux c supplied by

Figure 9.13 Geometry of the magnetic circuit in Example 9.16.
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the other source to the circuit is found to be

c ¼ NI

(R1 þ 2R3)þ (R1 þ 2R3) (Rg þ 2R2)
�� :

Since

(R1 þ 2R3) ¼ (29:1784þ 2 � 23:8732) � 104 ¼ 76:9248 � 104 H�1,

(Rg þ 2R2) ¼ (2652:58þ 2 � 13:2629) � 104 ¼ 2679:1058 � 104 H�1,

we find that

(R1 þ 2R3) (R1 þ 2R3)k ¼ (R1 þ 2R3) � (Rg þ 2R2)

(R1 þ 2R3)þ (Rg þ 2R2)

¼ 74:7777 � 104 H�1:

Therefore

c ¼ 9783:2455

76:9248þ 74:7777
� 10�4 ¼ 64:4897 � 10�4 Wb:

Since c is similar to electrical current, we use the current division rule to find the

magnetic flux c1 in the air gap as follows:

c1 ¼
R1 þ 2R3

(R1 þ 2R3)þ (Rg þ 2R2)
c ¼ 76:9248

76:9248 � 2679:1058 � 64:4897 � 10
�4

¼ 1:8 � 10�4 Wb:

Figure 9.14 Equivalent of magnetic circuit shown in Figure 9.13.
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Since the other source is identical and the circuit is symmetrical, the total

magnetic flux in the air gap will be doubled. Hence the total magnetic flux in

the air gap is 3.6 . 1024 Wb.

PROBLEMS

9.1. The radius of an infinitely long solenoid is 1 cm. It has 200 turns per cm over

its length and carries a current of 100 mA. Find the magnetic field using

Ampere’s law.

9.2. The mean radius of a toroid is 3 cm, and it has 1500 turns of a filamentary

wire. The cross section of the core is circular with a radius of 1 mm. There

is a current of 100 mA flowing through the winding. Find the magnetic flux

density using Ampere’s law.

9.3. A 1 m long thin wire lies symmetrically along the z-axis. If this wire carries a

current of 2 A, determine its magnetic field at a point on the x-y plane using

the Biot-Savart law.

9.4. The radius of a loop filament is 10 cm. The loop lies on the x-y plane and carries

a current of 2 A. Find the magnetic flux density at a point 1 m away on the axis.

9.5. The radius of a filamentary wire loop is 1 cm. The loop lies on the x-y plane. It

carries a current of 1 A. Find the magnetic field on a spherical surface of 1 km

in radius.

9.6. Find the inductance of a 20 cm long solenoid with 20 turns per cm. The radius

of the solenoid is 1 cm.

9.7. Find the inductance of the toroid described in Problem 9.2.

9.8. Find the inductance of a 10 cm long solenoid with 1500 turns and a radius of

5 mm.

9.9. Find the inductance of a toroid with 5000 turns, mean radius of 8 cm, and

cross-sectional area at the core of 1024 m2.

9.10. Find the inductance per unit length of a coaxial line with inner and outer con-

ductor radii of 1.325 mm and 4.16 mm, respectively. Assume that the outer

wall is 0.1 mm thick and the 1r of the medium between the conductors is 2.1.

9.11. The axes of two concentric 15 cm long solenoids are aligned to the z-axis. The

inner solenoid has 150 turns, and the outer solenoid has 250 turns. The radii of

the two solenoids are 1 cm and 3 cm, respectively. Find their mutual

inductance.

9.12. A distance of 5 cm separates two conducting wire loops of radii 10 cm and

6 cm. The cross section of the loop wire is a circle of 2 mm in radius. Find

the loops’ mutual inductance.

378 MAGNETOSTATIC FIELDS



9.13. A circular loop of a 0.25 m mean radius is lying symmetrically on the x-y

plane. The wire used for this loop is circular in its cross section with a

radius of 1 mm. Find its inductance.

9.14. A toroid has 200 turns on an iron core of 12 cm mean length and an air gap

of 5 mm, as shown in Figure 9.11. The toroid is being used to write on a

magnetic tape, which requires a magnetic flux density of 0.9 T in the air

gap (ignore fringing fields). If the relative permeability of the core at the

given condition is 5000, find the required current I.

9.15. There is a current of 15 A flowing through 150 turns of the magnetic circuit

shown in Figure 9.12. All branches have 10 cm2 as their cross-sectional

areas (S1) except in the middle, which is 15 cm2 (S2). Lengths l1 and l3 are
35 cm each, whereas l2 is 15 cm long. The relative permeability of the core

is 250. Find the magnetic flux densities through lengths l2 and l3.

9.16. A magnetic circuit shown in Figure 9.13 has two symmetrical windings, each

with 5423.2 At.All branches of the core are 1.5 cm thick, and the core’s relative

permeability is 2000. Find the total magnetic flux in the air gap.
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10
WAVEGUIDES AND CAVITY
RESONATORS

Hollow metallic tubes of rectangular and circular cross sections are commonly

employed in high-power microwave systems. These transmission lines are known

as waveguides. When conducting walls are placed at two open ends of a waveguide

of finite length, a cavity resonator is found. These resonators are used as resonant

circuits at microwave frequencies. The electromagnetic fields in these structures

are analyzed here by the procedure discussed earlier in Chapter 6. The chapter

begins with an analysis of signals propagating through a metallic waveguide of rec-

tangular cross section. The following section considers the TE and TM modes of

metallic waveguides of circular cross section. Cavity resonators are commonly

employed as resonant circuits at frequencies higher than 1 GHz. These resonators

provide much higher quality factor (Q-factor) with respect to their lumped-element

counterparts. The characteristic behaviors of cavity resonators of rectangular and

circular cross sections are discussed in last two sections of this chapter.

10.1 METALLIC RECTANGULAR WAVEGUIDE

This section presents an analysis of electromagnetic signals propagating through a

hollow metallic cylindrical waveguide of rectangular cross section, as shown in

Figure 10.1. Assume that its cross section is a � b, and the electromagnetic signal

is propagating along the z-axis. As discussed in Section 6.4, the analysis is divided

into TE and TM modes. TE mode fields are found from (6.4.13) through (6.4.18),
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after identifying appropriate harmonic functions for (6.4.28). Similarly (6.4.4)

through (6.4.9) give TM mode fields.

TEz Modes in the Rectangular Waveguide

Since the signal is propagating along the z-axis, h3ðkzzÞ ! e�jkzz in (6.4.28), whereas

the sine and cosine functions are appropriate solutions for h1(kxx) and h2(kyy).

Therefore Fz for (6.4.12) is found to be

Fz(x, y, z)¼ fc1 cos (kxx)þ c2 sin (kxx)gfc3 cos (kyy)þ c4 sin (kyy)ge�jkzz, (10:1:1)

where c1, c2, c3, and c4 are the integration constants.

Since tangential electric fields must be zero on the conducting surfaces, the

boundary conditions for the fields in conjunction with (6.4.13) through (6.4.14) give

Exjy¼0
y¼b

¼ 0 ! @Fz

@y

����y¼0
y¼b

¼ 0 (10:1:2)

and

Eyjx¼0
x¼a

¼ 0 ! @Fz

@x

����
x¼0
x¼a

¼ 0: (10:1:3)

In order to satisfy these boundary conditions, (10.1.1) in conjunction with (10.1.2)

and (10.1.3) gives

c4 ¼ 0, (10:1:4)

ky ¼ np

b
, (10:1:5)

c2 ¼ 0, (10:1:6)

Figure 10.1 Metallic rectangular waveguide.
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and

kx ¼ mp

a
, (10:1:7)

where m and n are integers including zero, except that both cannot be zero at the

same time (which makes all fields zero, and therefore a trivial case).

Equation (10.1.1) reduces to

Fz(x, y, z) ¼ c1c3 cos
mp

a
x

� �
cos

np

b
y

� �
e�jkzz: (10:1:8)

Further kz is found after substituting (10.1.5) and (10.1.7) into the separation

equation (6.4.25) as follows:

kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � mp

a

� �2
� np

b

� �2r
: (10:1:9)

For example, if a waveguide is air-filled, k ¼ ko is a pure real number. There are

following three possibilities in the air-filled case.

. The quantity under the square root is negative in (10.1.9) if

k2o ,
mp

a

� �2
þ np

b

� �2
: (10:1:10)

Therefore kz is imaginary. This represents a purely attenuating signal without

propagating along the waveguide. This condition may be used to design

attenuators.

. The quantity under the square root is positive in (10.1.9) if

k2o .
mp

a

� �2
þ np

b

� �2
: (10:1:11)

Therefore kz is real, and the signal propagates through the waveguide without

attenuation (ideally).

. The quantity under the square root goes to zero in (10.1.9) if

k2o ¼
mp

a

� �2
þ np

b

� �2
¼ k2c : (10:1:12)

Therefore kz is zero, which is the cutoff condition. This wave number is known

as the cutoff wave number kc, and the corresponding wavelength of the signal is

called the cutoff wavelength lc. The corresponding frequency fc is called a

cutoff frequency of the waveguide. Thus the waveguide works as a high-pass
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filter. A signal propagates only when its frequency is greater than the cutoff fre-

quency of the waveguide.

The wavelength and the phase velocity of a propagating signal are found to be

lg ¼ 2pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2o � k2c

p ¼ 2p

ko
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� (kc=ko)

2
p ¼ loffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� (lo=lc)
2

p ¼ loffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ( fc=f )

2
p (10:1:13)

and

vp ¼ v

kz
¼ floffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� (lo=lc)
2

p ¼ 3� 108ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� (lo=lc)

2
p m=s, (10:1:14)

where f is the signal frequency, ko is its wave number in free space, and lo is the
signal wavelength in free space.

The fields inside the waveguide are found after substituting (10.1.8) into (6.4.13)

through (6.4.18) as follows:

Ex(x, y, z) ¼ jHmnvm
np

b

� �
cos

mp

a
x

� �
sin

np

b
y

� �
e�jkzz, (10:1:15)

Ey(x, y, z) ¼ �jHmnvm
mp

a

� �
sin

mp

a
x

� �
cos

np

b
y

� �
e�jkzz, (10:1:16)

Ez(x, y, z) ¼ 0, (10:1:17)

Hx(x, y, z) ¼ jHmnkz
mp

a

� �
sin

mp

a
x

� �
cos

np

b
y

� �
e�jkzz, (10:1:18)

Hy(x, y, z) ¼ jHmnkz
np

b

� �
cos

mp

a
x

� �
sin

np

b
y

� �
e�jkzz, (10:1:19)

and

Hz(x, y, z) ¼ Hmnk
2
c cos

mp

a
x

� �
cos

np

b
y

� �
e�jkzz, (10:1:20)

where

Hmn ¼ �jc1c3
1

vm1
: (10:1:21)

Note that the fields do not exist for m and n both zero. Therefore m or n has to be a

nonzero integer for a nontrivial solution. For a . b, the lowest order mode that pro-

pagates is TE10 (i.e., for m ¼ 1 and n ¼ 0). It will be shown later that the lowest

order TM mode that can propagate through the waveguide is TM11 (i.e., for

m ¼ 1, and n ¼ 1). Therefore the TE10 mode is known as the dominant mode for

rectangular waveguides. Only Hz, Hx, and Ey field components are nonzero in this

10.1 METALLIC RECTANGULAR WAVEGUIDE 383



mode. Also lc ¼ 2a, and therefore (10.1.13) can be rewritten as follows:

lg(TE10) ¼
loffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� (lo=2a)
2

p : (10:1:22)

Further the only nonzero component of the electric field is Ey that can be found

from (10.1.16):

Ey(x, y, z) ¼ �jHovmo

p

a

� �
sin

p

a
x

� �
e�jkzz

¼ �Hovmo

p

2a

� �
e j½(px=a)�kzz � � e�j½(px=a)þkzz�� �

: (10:1:23)

Note that this relation represents two plane electromagnetic waves propagating at

angles +u after reflection from the sidewalls of the waveguide, as shown in

Figure 10.2. This angle is found to be

u ¼ sin�1 lo
2a

� �
: (10:1:24)

Therefore u ! 908 as lo ! 2a (i.e., lc), and the wave ceases to propagate.

Example 10.1

The inside cross section of an air-filled rectangular metallic waveguide is

1.58 � 0.79 cm. (a) Determine the cutoff frequencies for the TE10, TE20, TE01,

and TE11 modes. (b) Find the mode(s) that will propagate through this waveguide

if the signal frequency is anywhere between 12 and 18 GHz. (c) If this waveguide

is being used to send a 15.8 GHz signal in TE10 mode, find the phase velocity.

(a) Since

kc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mp

a

� �2
þ np

b

� �2r
! fc ¼ 3 � 108

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

2a

� �2
þ n

2b

� �2r
,

Figure 10.2 TE10 fields decomposed into two uniform plane waves bouncing off the

conducting sidewalls of a rectangular waveguide.
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the cutoff frequencies for different modes are found to be,

TE10 ! fc ¼ 3 � 108
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2 � 0:0158
� �2

þ 0

2 � 0:0079
� �2s

Hz ¼ 9:4937GHz,

TE20 ! fc ¼ 3 � 108
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

2 � 0:0158
� �2

þ 0

2 � 0:0079
� �2s

Hz ¼ 18:9873GHz,

TE01 ! fc ¼ 3 � 108
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0

2 � 0:0158
� �2

þ 1

2 � 0:0079
� �2s

Hz ¼ 18:9873GHz,

and

TE11 ! fc ¼ 3 � 108
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2 � 0:0158
� �2

þ 1

2 � 0:0079
� �2s

Hz ¼ 21:2285GHz:

(b) From (a) the cutoff frequency for the TE10 mode is 9.4937 GHz. Since next

higher modes have cutoffs at 18.9873 GHz, only the TE10 mode will exist for

a signal frequency band of 12 to 18 GHz.

(c)

v p ¼ 3 � 108ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� (lo=lc)

2
p ¼ 3 � 108ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ( fc=f )
2

p ¼ 3 � 108ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� (9:4937=15:8)2

p
¼ 3:7531 � 108 m=s:

TMz Modes in the Rectangular Waveguide

In the case of TMz modes, the fields are found from (6.4.4) through (6.4.9), after

constructing an appropriate solution to (6.4.3). As in the previous case,

h3(kzz) ! e2jkzz in (6.4.28) because the signal is assumed to be propagating

along the z-axis. Similarly the sine and cosine functions are appropriate solutions

for h1(kxx) and h2(kyy). Therefore Az for (6.4.3) is found to be

Az(x, y, z) ¼ {c1 cos(kxx)þ c2 sinðkxxÞ}{c3 cosðkyyÞ þ c4 sinðkyyÞ}e�jkzz; ð10:1:25Þ
where c1, c2, c3, and c4 are the integration constants.

Since tangential electric fields must be zero on the conducting surfaces, boundary

conditions for the fields in conjunction with (6.4.7) through (6.4.9) give

Exjy¼0
y¼b

¼ 0 ! Azjy¼0
y¼b

¼ 0, (10:1:26)

Eyjx¼0
x¼a

¼ 0 ! Azjx¼0
x¼a

¼ 0, (10:1:27)
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and

Ezjx¼0
x¼a
y¼0
y¼b

¼ 0 ! Azjx¼0
x¼a
y¼0
y¼b

¼ 0: (10:1:28)

Note that if (10.1.26) and (10.1.27) are satisfied, (10.1.28) will hold automatically.

In order to satisfy (10.1.26), we use (10.1.25) to find that

c3 ¼ 0 (10:1:29)

and

ky ¼ np

b
: (10:1:30)

Similarly the boundary condition (10.1.27) requires that

c1 ¼ 0 (10:1:31)

and

kx ¼ mp

a
, (10:1:32)

where m and n are integers excluding zero (which makes all fields zero, and

therefore a trivial case).

Equation (10.1.25) reduces to

Az(x, y, z) ¼ c2c4 sin
mp

a
x

� �
sin

np

b
y

� �
e�jkzz: (10:1:33)

Note that kz remains the same as in (10.1.9) for the TE case, and the TM modes

degenerate as a result. After substituting (10.1.33) into (6.4.4) through (6.4.9), the

field components are found to be

Hx(x, y, z) ¼ jEmnv1
np

b

� �
sin

mp

a
x

� �
cos

np

b
y

� �
e�jkzz, (10:1:34)

Hy(x, y, z) ¼ �jEmnv1
mp

a

� �
cos

mp

a
x

� �
sin

np

b
y

� �
e�jkzz, (10:1:35)

Hz(x, y, z) ¼ 0, (10:1:36)

Ex(x, y, z) ¼ �j
mpkz
a

� �
Emn cos

mp

a
x

� �
sin

np

b
y

� �
e�jkzz, (10:1:37)

Ey(x, y, z) ¼ �j
npkz
b

� �
Emn sin

mp

a
x

� �
cos

np

b
y

� �
e�jkzz, (10:1:38)
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and

Ez(x, y, z) ¼ Emnk
2
c sin

mp

a
x

� �
sin

np

b
y

� �
e�jkzz, (10:1:39)

where

Emn ¼ �jc2c4
1

vm1
: (10:1:40)

Note that the lowest order TM mode that exists is for m ¼ 1 and n ¼ 1 (i.e., the

TM11 mode). Since TE10 is lowest among all possible modes, it is known as the

dominant mode. The electromagnetic fields and the related characteristics of

the TE and TM modes are summarized in Table 10.1.

The Wave Impedance

The wave impedance of a rectangular waveguide operating in the TEz mode is

defined as follows:

ZTEz ¼ Ex

Hy

¼ � Ey

Hx

: (10:1:41)

TABLE 10.1 Fields in Metallic Rectangular Waveguide

TEmn Modes TMmn Modes

kc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mp

a

� �2
þ np

b

� �2r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mp

a

� �2
þ np

b

� �2r

kz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2c

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2c

p
lg

lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� (kc=k)

2
p lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� (kc=k)
2

p
Hz(x, y) Hmnk

2
c cos

mp

a
x

� �
cos

np

b
y

� �
0

Ez(x, y) 0 Emnk
2
c sin

mp

a
x

� �
sin

np

b
y

� �

Hx(x, y) jHmnkz
mp

a

� �
sin

mp

a
x

� �
cos

np

b
y

� �
jEmnv1

np

b

� �
sin

mp

a
x

� �
cos

np

b
y

� �

Hy(x, y) jHmnkz
np

b

� �
cos

mp

a
x

� �
sin

np

b
y

� �
�jEmnv1

mp

a

� �
cos

mp

a
x

� �
sin

np

b
y

� �

Ex(x, y) jHmnvm
np

b

� �
cos

mp

a
x

� �
sin

np

b
y

� �
�j

mpkz
a

� �
Emn cos

mp

a
x

� �
sin

np

b
y

� �

Ey(x, y) �jHmnvm
mp

a

� �
sin

mp

a
x

� �
cos

np

b
y

� �
�j

npkz
b

� �
Emn sin

mp

a
x

� �
cos

np

b
y

� �
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Using (10.1.15) through (10.1.20), we find that

ZTEz ¼ vm

kz
¼ vmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � k2c
p ¼ vm

k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� (k2c=k

2)
p ¼ hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� (l=lc)
2

p
¼ hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ( fc=f )
2

p : (10:1:42)

Similarly the wave impedance for TMz modes in a rectangular waveguide is

defined as follows:

ZTMz ¼ Ex

Hy

¼ � Ey

Hx

: (10:1:43)

Using (10.1.34) through (10.1.39), we find next that

ZTMz ¼ kz

v1
¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� (kc=k)

2
p

v1
¼ h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kc

k

� �2
s

¼ h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l

lc

� �2
s

¼ h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� fc

f

� �2
s

: (10:1:44)

Equations (10.1.42) and (10.1.44) are displaced graphically for the air-filled

waveguide in Figure 10.3. As the figure indicates, wave impedances are purely

imaginary (inductive for TE and capacitive for TM modes) for a signal frequency

f smaller that the cutoff frequency fc. The wave impedance becomes infinite for

the TE and zero for the TM modes when the signal frequency is equal to the

cutoff. As the signal frequency increases higher than the cutoff frequency, the

wave impedance becomes purely resistive in both cases.

Figure 10.3 Wave impedance versus normalized frequency ( fc/f ).
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Power Flow and the Signal Attenuation

Poynting’s vector for the TEz modes is

~Sav ¼ 1
2
Re½(x̂Ex þ ŷEy)� (x̂H�

x þ ŷH�
y þ ẑH�

z )�

¼ 1
2
Re½x̂EyH

�
z � ŷExH

�
z þ ẑ(ExH

�
y � EyH

�
x )�:

Using (10.1.15) through (10.1.20) obtains

~Sav ¼ ẑ
1

2
Hmnj j2vmkz np

b

� �2
cos2

mp

a
x

� �
sin2

np

b
y

� ��

þ mp

a

� �2
sin2

mp

a
x

� �
cos2

np

b
y

� ��
¼ ẑSz: (10:1:45Þ

Note that the other two components of the Poynting vector are purely imaginary.

From Poynting’s vector the power-flow through a waveguide is found to be

PTEz

mn ¼
ð
S

~Sav � d~s ¼
ða
x¼0

ðb
y¼0

Szdxdy ¼ Hmnj j2
2

vmkz
a

1m
� b
1n

np

b

� �2
þ mp

a

� �2� �
;

or

PTEz

mn ¼ Hmnj j2
2

vmkk2c
a

1m
� b
1n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� fc

f

� �2
s

, (10:1:46)

where 1m and 1n represent Neumann’s number, which is defined as follows:

1q ¼ 1, q ¼ 0,

2, q . 0:

�
(10:1:47)

For the dominant mode in a rectangular waveguide, (10.1.46) reduces to

PTEz

10 ¼ H10j j2
4

vmk
p

a

� �2
ab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� fc

f

� �2
s

: (10:1:48)

Similarly Poynting’s vector for the TMz modes is

~Sav ¼ 1
2
Re½(x̂Ex þ ŷEy þ ẑEz)� (x̂H�

x þ ŷH�
y )�

¼ 1
2
Re½�x̂EzH

�
y þ ŷEzH

�
x þ ẑ(ExH

�
y � EyH

�
x )�:
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Using (10.1.34) through (10.1.39) obtains

~Sav ¼ ẑ
1

2
Emnj j2v1kz mp

a

� �2
cos2

mp

a
x

� �
sin2

np

b
y

� ��

þ np

b

� �2
sin2

mp

a
x

� �
cos2

np

b
y

� ��
¼ ẑSz: (10:1:49)

Again, the other two components of the Poynting vector are purely imaginary.

From the above the power-flow is found to be

PTMz

mn ¼
ð
S

~Sav � d~s ¼ ða
x¼0

ðb
y¼0

Szdxdy ¼ Emnj j2
2

v1kz
ab

4

mp

a

� �2
þ np

b

� �2� �
,

or

PTMz

mn ¼ Emnj j2
2

v1kk2c
ab

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� fc

f

� �2
s

: (10:1:50)

When the waveguide walls have a finite conductivity, there is power loss in the con-

ductors. Further there is power loss in the dielectric medium if it is imperfect. It is

assumed that the attenuation constant ac due to conductor loss is separable from the

attenuation constant ad due to the dielectric loss and consequently the two can be

determined independently. The boundary conditions are modified to account for

the power loss in the conductors. Since this exact field analysis becomes much

more involved, we use an alternative approach that may be called a perturbation

method. This formulation suffices for most practical cases. In this approach it is

assumed that the finite conductivity of the walls does not change the fields appreci-

ably. However, there is power loss due to the surface resistance Rs, which is defined

as follows:

Zs ¼ Rs þ jXs ¼ vm

k
¼ vm

v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m½1� j(s=v)�p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

1� j(s=v)

r
:

For (s/v) � 1 we find that

Zs ¼ Rs þ jXs �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m

�j(s=v)

r
¼

ffiffiffiffiffiffiffiffiffi
vm

�js

r
¼

ffiffiffiffiffiffiffi
vm

2s

r
(1þ j): (10:1:51)

The power loss on each wall is found from the corresponding surface current as

follows:

Pw ¼ 1

2
Rs

ð
S

~Ks � ~K�
s ds ¼

1

2
Rs

ð
S

Ksj j2ds: (10:1:52)
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For the sake of simplicity we consider only the dominant mode fields here. Since the

surface current can be found from ~Ks ¼ n̂� ~H
��
surface

, the surface current on the wall

at y ¼ 0 is found to be

~Ks1 ¼ (x̂Hz � ẑHx)
��
y¼0

¼ x̂
p

a

� �
cos

p

a
x

� �
� ẑjkz sin

p

a
x

� �h i p

a

� �
H10e

�jkzz: (10:1:53)

Similarly the surface current on the wall at x ¼ 0 is

~Ks2 ¼ �ŷHz

��
x¼0

¼ �ŷH10

p

a

� �2
e�jkzz: (10:1:54)

Therefore the power loss per unit length for the wall at y ¼ 0 is found as

follows:

Pw1 ¼ 1

2
Rs H10j j2 p

a

� �2ð1
z¼0

ða
x¼0

p

a

� �2
cos2

p

a
x

� �
þ k2z sin

2 p

a
x

� �� �
dxdz,

or

Pw1 ¼ 1

2
Rs H10j j2 p

a

� �2a
2

p

a

� �2
þ k2z

� �
¼ 1

4
Rs H10j j2 p

a

� �2
ak2: (10:1:55)

Similarly power loss per unit length for the wall at x ¼ 0 is

Pw2 ¼ 1

2
Rs H10j j2 p

a

� �4ð1
z¼0

ðb
y¼0

dydz ¼ 1

2
Rs H10j j2 p

a

� �4
b: (10:1:56)

When there is a signal propagating through a waveguide that is made up of walls

with finite conductivity, its power is attenuated. If the attenuation constant is ac,

then the power-flow can be expressed as follows:

Pmn ¼ Poe
�2acz:

Therefore

dPmn

dz
dz ¼ �2acPmndz �! ac ¼ (dPmn=dz)dz

2Pmndz
¼ Pw=length

2Pmn

: (10:1:57)

Since walls at y ¼ b and x ¼ a are identical to those at y ¼ 0 and at x ¼ 0,

respectively, the total power loss per unit length is found to be twice that of
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Pw1þ Pw2. Therefore the attenuation constant ac is found from (10.1.48),

(10.1.55), and (10.1.56) as follows:

ac ¼ 2(Pw1 þ Pw2)

2P10

¼ 2Rs

vmkzab

a

2

p

a

� �2
þ k2z

� �
þ p

a

� �2
b

� �

¼ 2Rs

vmkzab

a

2
k2 þ p

a

� �2
b

� �
,

or

ac ¼ Rsk
2

vmkzb
1þ 2b

a
� (p=a)

2

k2

� �
¼ Rsk

2

vmkzb
1þ 2b

a
� fc

f

� �2" #
Np=m: (10:1:58)

Since vm/k ¼ h and k=kz ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� fc=fð Þ2

q
, (10.1.58) can be expressed as

follows:

ac ¼ Rs

hb
� ½1þ (2b=a) � fc=fð Þ2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� fc=fð Þ2
q Np=m: (10:1:59)

The attenuation constant ad due to power loss in the dielectric medium is found

from the complex kz as follows:

kz ¼ bz � jad ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2c

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2m 1� j

s

v

� �
� k2c

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2m1� k2c � jvms

q
,

or

kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2m1� k2c

q
1� jvms

v2m1� k2c

� �1=2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2m1� k2c

q
1� jvms

2v2m1� 2k2c

� �
:

Therefore

ad ¼ 1

2

vmsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2m1� k2c

p
 !

¼ ms

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1½1� ( fc=f )�2

p ¼ hs

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ( fc=f )

2
p Np=m: (10:1:60)

Alternatively,

kz ¼ bz � jad ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2c

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2m1o(10 � j100)� k2c

q
:
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Therefore

ad � 1

2
� v2m1o1

00ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2m1o10 � k2c

p ¼ 100p

10l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ( fc=f )

2
p ¼ 100p

10l2
lg

¼ plg

l2
tand Np=m: (10:1:61)

Example 10.2

The cross section of a rectangular waveguide is 2.286 � 1.016 cm. It is made of

copper (s ¼ 5.813.107 S/m) and filled with Plexiglas (1r ¼ 2.6, tan d ¼ 0.0057).

Find its attenuation constants ad and ac at 5.4 GHz. The waveguide operates in

TE10 mode.

Since

fc ¼ 3 � 108
2a

ffiffiffiffiffi
1r

p ¼ 3 � 108
2 � 2:286 � 10�2

ffiffiffiffiffiffiffi
2:6

p ¼ 4:0694 � 109 Hz ¼ 4:0694 GHz

and

l ¼ 3 � 108
f
ffiffiffiffiffi
1r

p ¼ 3 � 108
5:4 � 109 � ffiffiffiffiffiffiffi

2:6
p ¼ 0:0345m,

lg ¼ lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ( fc=f )

2
p ¼ 0:0524m:

Therefore (10.1.61) gives

ad ¼ plg

l2
tan d ¼ 0:7907Np=m:

The conductor attenuation ac is found as follows:

Rs ¼
ffiffiffiffiffiffiffiffiffi
vmo

2s

r
¼ 0:0192V

and

h ¼
ffiffiffiffiffiffiffiffiffi
mo

1o1r

r
¼ 233:6407V:

Therefore (10.1.59) gives

ac ¼ Rs

hb
� ½1þ (2b=a) � ( fc=f )2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ( fc=f )
2

p ¼ 0:0185Np=m:

10.1 METALLIC RECTANGULAR WAVEGUIDE 393



10.2 METALLIC CIRCULAR WAVEGUIDE

This section presents an analysis of electromagnetic signals propagating through a

hollow metallic cylindrical waveguide of circular cross section, as shown

in Figure 10.4. Assume that its radius is a and the field variation in the z direction

is e2jkzz (because the signal is propagating along z). As discussed in Section 6.5,

the analysis is divided into TE and TM modes. The TE mode fields are found

from (6.5.13) through (6.5.18) after selecting appropriate harmonic and Bessel

functions for (6.5.28). Similarly (6.5.4) through (6.5.9) give the TM mode fields.

TEz Modes in the Circular Waveguide

Since the signal is propagating along the z-axis, h3(kzz) ! e 2jkzz, in (6.5.28),

whereas the sine and cosine functions are appropriate for h2(nf) with n being an

integer. Note that a sum of sine and cosine functions with each multiplied by a

different constant is the general expression for h2(nf). However, one of these can

be forced to zero by rotating the coordinate system appropriately along f. Since
fields must be finite at r ¼ 0, only Bessel functions of the first kind are appropriate

for Zn(krr). Therefore Fz for (6.5.12) is found to be

Fz(r, f, z) ¼ AnmJn(krr)e
�jkzz sin(nf)

cos(nf),

�
(10:2:1)

where Anm is a constant.

Since tangential electric fields must be zero on conducting surfaces, the boundary

conditions for the fields in conjunction with (6.5.13) through (6.5.14) give

Ef

��
r¼a

¼ 0 ! @Fz

@r

����
r¼a

¼ 0: (10:2:2)

Figure 10.4 Metallic circular waveguide geometry.
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There is only one boundary condition in this case because Ez is zero everywhere and

Er is normal to the boundary. Therefore from (10.2.1) and (10.2.2) we find that

@

@r
Jn(krr)

����
r¼a

¼ 0 ! @

@(krr)
Jn(krr)

����
r¼a

¼ J0n(krr)
����
r¼a

¼ 0:

Therefore

J0n(kra) ¼ 0 ! kra ¼ x0nm ! kr ¼ x0nm
a

¼ kc, (10:2:3)

where the prime on the Bessel function indicates the derivative with respect to its

argument krr; x
0
nm is mth zero of Bessel function of the first kind and order n,

which are listed in Table C.2. A prime on x is used to differentiate the zeros of

the derivatives of Bessel functions from the zeros of the Bessel functions.

Therefore (10.2.1) can be expressed as follows:

Fz(r, f, z) ¼ AnmJn(kcrÞe�jkzz sin(nf)
cos(nf):

�
(10:2:4)

Further kz is found after substituting (10.2.4) into (6.5.26) as follows:

kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2c

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � x0nm

a

� �2
s

:

Therefore

lg ¼ 2p

kz
¼ 2p

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� (x0nm=ka)

2
q ¼ lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ( fc=f )
2

p : (10:2:5)

The field components are found next after substituting (10.2.4) into (6.5.13) through

(6.5.18):

Er(r, f, z) ¼ �j
nvm

rk2c
HnmJn(kcrÞe�jkzz

cos(nf)

� sin(nf);

�
(10:2:6)

Ef(r, f, z) ¼ j
vm

kc
HnmJ

0
n(kcr)e

�jkzz
sin(nf)

cos(nf),

�
(10:2:7)

Ez(r, f, z) ¼ 0 (10:2:8)

Hr(r, f, z) ¼ �j
kz

kc
HnmJ

0
n(kcrÞe�jkzz

sin(nf)

cos(nf),

�
(10:2:9)

Hf(r, f, z) ¼ �j
nkz

rk2c
HnmJn(kcrÞe�jkzz

cos(nf)

� sin(nf),

�
(10:2:10)
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and

Hz(r, f, z) ¼ HnmJn(kcr)e
�jkzz sin (nf)

cos (nf)

�
, (10:2:11)

where

Hnm ¼ Anmk
2
c

jvm1
: (10:2:12)

The wave impedance for the TEz modes in a circular waveguide is found to be

ZTEz ¼ Er

Hf
¼ �Ef

Hr
¼ vm

kz
¼ hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ( fc=f )
2

p : (10:2:13)

TMz Modes in the Circular Waveguide

Similar to the TEz case, the signal is propagating along the z-axis, and therefore

h3(kzz) ! e 2jkzz in (6.5.28), whereas the sine and cosine functions are appropriate

for h2(nf) with n being an integer. Since the fields must be finite at r ¼ 0, only

Bessel functions of the first kind are appropriate for Zn(krr). Therefore Az for

(6.5.3) is found to be

Az(r, f, z) ¼ CnmJn(krr)e
�jkzz sin(nf)

cos(nf)

�
, (10:2:14)

where Cnm is a constant.

Since the tangential electric fields must be zero on the conducting surfaces, the

boundary conditions for the fields in conjunction with (6.5.8) and (6.5.9) give

Ef r¼a ¼ 0 ! Az

�� ��
r¼a

¼ 0 (10:2:15)

and

Ez r¼a ¼ 0 ! Az

�� ��
r¼a

¼ 0: (10:2:16)

Both of these conditions are met if

Jn(kra) ¼ 0 ! kr ¼ xnm

a
¼ kc, (10:2:17)

where xnm is the mth zero of Jn(kra).
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Further kz is found after substituting (10.2.17) into (6.5.26) as follows:

kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2c

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � xnm

a

� �2r
:

Therefore

lg ¼ 2p

kz
¼ 2p

k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� (xnm=ka)

2
p ¼ lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ( fc=f )
2

p : (10:2:18)

The field components are found as follows after substituting (10.2.14) and (10.5.17)

into (6.5.4) through (6.5.9).

Hr(r, f, z) ¼ j
nv1

rk2c
EnmJn(kcr)e

�jkzz
cos(nf)

� sin(nf),

�
(10:2:19)

Hf(r, f, z) ¼ �j
v1

kc
EnmJ

0
n(kcr)e

�jkzz
sin(nf)

cos(nf),

�
(10:2:20)

Hz(r, f, z) ¼ 0, (10:2:21)

Er(r, f, z) ¼ �j
kz

kc
EnmJ

0
n(kcr)e

�jkzz
sin(nf)

cos(nf),

�
(10:2:22)

Ef(r, f, z) ¼ �j
nkz

rk2c
EnmJn(kcr)e

�jkzz
cos(nf)

� sin(nf),

�
(10:2:23)

and

Ez(r, f, z) ¼ EnmJn(kcr)e
�jkzz sin(nf)

cos(nf),

�
(10:2:24)

where

Enm ¼ Cnm

jvm1
k2r: (10:2:25)

The wave impedance for the TMz modes in a circular waveguide is found to be

ZTMz ¼ Er

Hf
¼ �Ef

Hr
¼ kz

v1
¼ h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� fc

f

� �2
s

: (10:2:26)

The characteristics of the TM and TE modes in the circular waveguide are listed in

Table 10.2.
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Example 10.3

The inner radius of an air-filled circular cylindrical waveguide is 3.81cm.

Assume that its walls are perfectly conducting to find the seven lowest modes

that it can support. Determine the cutoff frequency of each mode.

The zeros of Bessel functions of the first kind and their derivatives are listed in

Appendexes C.1 and C.2, respectively. The waveguide modes can be found via

(10.2.3) and (10.2.17) after arranging these zeros in ascending order. The

cutoff frequency fc can be found as follows:

fc ¼ 3 � 108
2p

kc

Therefore the modes in ascending order (corresponding zeros are included in

parentheses) and their cutoff frequencies are found to be

TE11(1:84118) ! kc ¼ 1:84118

3:81 � 10�2
rad=m ! fc ¼ 2:3073GHz,

TM01(2:40483) ! kc ¼ 2:40483

3:81 � 10�2
rad=m ! fc ¼ 3:0137GHz,

TE21(3:05424) ! kc ¼ 3:05424

3:81 � 10�2
rad=m ! fc ¼ 3:8275GHz,

TABLE 10.2 Signal Propagation in Circular Cross-sectional Waveguides

TEnm Modes TMnm Modes

kc
x 0
nm

a

xnm

a

kz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2c

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2c

p
Hz(r, f) Hnm Jn kcrð Þ sin nfð Þ

cos nfð Þ
�

0

Ez(r, f) 0 Enm Jn kcrð Þ sin nfð Þ
cos nfð Þ

�

Hr(r, f) �j
kz

kc
HnmJ

0
n kcrð Þ sin nfð Þ

cos nfð Þ
�

j
nv1

rk2c
EnmJn kcrð Þ cos nfð Þ

� sin nfð Þ
�

Hf(r, f) �j
nkz

rk2c
HnmJn kcrð Þ cos nfð Þ

� sin nfð Þ
�

�j
v1

kc
Enm J0n kcrð Þ sin nfð Þ

cos nfð Þ
�

Er(r, f) �j
nvm

rk2c
HnmJn kcrð Þ cos nfð Þ

� sin nfð Þ
�

�j
kz

kc
EnmJ

0
n kcrð Þ sin nfð Þ

cos nfð Þ
�

Ef(r, f) j
vm

kc
HnmJ

0
n kcrð Þ sin nfð Þ

cos nfð Þ
�

�j
nkz

rk2c
EnmJn kcrð Þ cos nfð Þ

� sin nfð Þ
�
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TE01(3:83171) and TM11(3:83171) ! kc ¼ 3:83171

3:81 � 10�2
rad=m ! fc

¼ 4:8019GHz,

TE31(4:20119) ! kc ¼ 4:20119

3:81 � 10�2
rad=m ! fc ¼ 5:2649GHz;

and

TM21(5:13562)c ! kc ¼ 5:13562

3:81 � 10�2
rad=m ! fc ¼ 6:4359GHz:

10.3 RECTANGULAR CAVITY RESONATORS

When conducting walls are added at each end of the rectangular waveguide, a

rectangular cavity is formed. Therefore these structures also support the TEz and

TMz modes. In this section the resonator fields are analyzed to find the relations

for its resonant frequency and the quality factor.

TEz Modes in Rectangular Cavities

Consider a rectangular cavity made of conducting walls with dimensions a � b � c,

as shown in Figure 10.5. It is filled with a dielectric material of dielectric constant 1r
and the relative permeability mr. Since it is a closed box, the signal cannot propagate

along the z-axis. Therefore the sine and cosine functions are appropriate solutions

for h1(kxx), h2(kyy), and h3(kzz). Further the conditions along the x- and y-axes are

same as in the case of the rectangular waveguide. Therefore Fz can be found from

(10.1.8) after changing h3(kzz) appropriately as follows:

Fz(x, y, z) ¼ c1c3 cos
mp

a
x

� �
cos

np

b
y

� �
½d1 cos(kzz)þ d2 sin(kzz)�, (10:3:1)

where d1 and d2 are the integration constants.

There are following two more boundary conditions now need to be satisfied:

Exjz¼0
z¼c

¼ 0 ! Fzjz¼0
z¼c

¼ 0 (10:3:2)

and

EY jz¼0
z¼c

¼ 0 ! Fzjz¼0
z¼c

¼ 0: (10:3:3)

These conditions are satisfied if

d1 ¼ 0 (10:3:4)
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and

sin(kzc) ¼ 0 ¼ sin( pp) ! kz ¼ pp

c
, p ¼ 1, 2, 3, . . . : (10:3:5)

Therefore (10.3.1) reduces to

Fz(x, y, z) ¼ c1c3d2 cos
mp

a
x

� �
cos

np

b
y

� �
sin

pp

c
z

� �
: (10:3:6)

In this case (10.1.9) gives

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mp

a

� �2
þ np

b

� �2
þ pp

c

� �2r
! v r

ffiffiffiffiffiffi
m1

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mp

a

� �2
þ np

b

� �2
þ pp

c

� �2
:

r

Therefore the resonant frequency fr ¼ v/2p is found to be

fr(MHz) ¼ 300ffiffiffiffiffiffiffiffiffi
mr1r

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m

2a

� �2
þ n

2b

� �2
þ p

2c

� �2� �s
MHz: (10:3:7)

Fields inside the cavity resonator are found after substituting (10.3.6) into

(6.4.13) through (6.4.18) as follows:

Ex x, y, zð Þ ¼ jHmnpvm
np

b

� �
cos

mp

a
x

� �
sin

np

b
y

� �
sin

pp

c
z

� �
, (10:3:8)

Ey x, y, zð Þ ¼ �jHmnpvm
mp

a

� �
sin

mp

a
x

� �
cos

np

b
y

� �
sin

pp

c
z

� �
, (10:3:9)

Ez x, y, zð Þ ¼ 0, (10:3:10)

Hx x, y, zð Þ ¼ �Hmnp

mp

a

� � pp

c

� �
sin

mp

a
x

� �
cos

np

b
y

� �
cos

pp

c
z

� �
, (10:3:11)

Hy x, y, zð Þ ¼ �Hmnp

np

b

� � pp

c

� �
cos

mp

a
x

� �
sin

np

b
y

� �
cos

pp

c
z

� �
, (10:3:12)

Figure 10.5 Geometry of the rectangular cavity resonator.
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and

Hz(x, y, z)¼Hmnp

mp

a

� �2
þ np

b

� �2� �
cos

mp

a
x

� �
cos

np

b
y

� �
sin

pp

c
z

� �
, (10:3:13)

where

Hmnp ¼�jc1c3d2
1

vm1
: (10:3:14)

TMz Modes in Rectangular Cavities

As in the preceding case, Az can be found from (10.1.33) after changing h3(kzz)

appropriately as follows:

Az(x, y, z) ¼ c2c4 sin
mp

a
x

� �
sin

np

b
y

� �
d1 cos(kzz)þ d2 sin(kzz)½ � (10:3:15)

where d1 and d2 are integration constants. The TMz mode fields of the cavity

resonator must satisfy two more boundary conditions:

Exjz¼0
z¼c

¼ 0 ! @Az

@z

����
z¼0
z¼c

¼ 0 (10:3:16)

and

Eyjz¼0
z¼c

¼ 0 ! @Az

@z

����
z¼0
z¼c

¼ 0: (10:3:17)

Both of these conditions are satisfied if

d2 ¼ 0 (10:3:18)

and

sin(kzc) ¼ 0 ¼ sin(pp) ! kz ¼ pp

c
, p ¼ 0, 1, 2, . . . : (10:3:19)

Therefore the resonant frequency for these modes will be given by (10.3.7) as well.

Note that a rectangular cavity resonator can support any degenerate TEmnp and

TMmnp modes. The cutoff frequencies of the TEmn and TMmn modes can be deter-

mined from the following formula:

fc(MHz) ¼ 300ffiffiffiffiffiffiffiffiffi
mr1r

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m

2a

� �2
þ n

2b

� �2� �s
MHz: (10:3:20)
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Further (10.3.15) reduces to

Az x, y, zð Þ ¼ c1c3d1 sin
mp

a
x

� �
sin

np

b
y

� �
cos

pp

c
z

� �
: (10:3:21)

The TMz
mnp fields inside the cavity resonator can be found after substituting

(10.3.21) into (6.4.4) through (6.4.9) as follows:

Hx(x, y, z) ¼ jEmnpv1
np

b

� �
sin

mp

a
x

� �
cos

np

b
y

� �
cos

pp

c
z

� �
, (10:3:22)

Hy(x, y, z) ¼ �jEmnpv1
mp

a

� �
cos

mp

a
x

� �
sin

np

b
y

� �
cos

pp

c
z

� �
, (10:3:23)

Hz(x, y, z) ¼ 0, (10:3:24)

Ex(x, y, z) ¼ �Emnp

mp

a

� � pp

c

� �
cos

mp

a
x

� �
sin

np

b
y

� �
sin

pp

c
z

� �
, (10:3:25)

Ey(x, y, z) ¼ �Emnp

np

b

� � pp

c

� �
sin

mp

a
x

� �
cos

np

b
y

� �
sin

pp

c
z

� �
, (10:3:26)

and

Ez(x, y, z) ¼ Emnp

mp

a

� �2
þ np

b

� �2� �
sin

mp

a
x

� �
sin

np

b
y

� �
cos

pp

c
z

� �
, (10:3:27)

where

Emnp ¼ �jc2c4d1
1

vm1
: (10:3:28)

The Quality Factor

The quality factor (or Q-factor) of a resonant circuit is defined as follows:

1

Q
¼ Ploss

2vrWe

¼ Pdl þ Pcl

2vrWe

¼ 1

Qd

þ 1

Qc

(10:3:29)

where Ploss is the power loss in resonant circuit, vr is the resonant frequency, We is

the energy stored in the electric field, Pdl is the power loss in the dielectric material

that fills the cavity, and Pcl is the power loss in the conducting walls.

If the cavity is made of a perfect conductor and filled with a perfect dielectric, it

will have infinite Q. However, it is not possible in practice. Therefore Qc and Qd

need to be determined to find the Q of a cavity resonator. Since the TE10 mode is

dominant in rectangular waveguides, the lowest order mode in rectangular cavity

resonators is TE101, whereas the lowest order TMz mode is TM110. Therefore we

consider here only a resonator that operates in the TE101 mode. The power loss

Pdl in the dielectric medium can be found as follows:

Pdl ¼ 1

2

ð
V

~E � ~J�dv ¼ 1

2

ð
V

~E � (v1o100 ~E�)dv ¼ v1o1
00

2

ð
V

j~Ej2dv: (10:3:30)
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Since for the TE101 mode, only Ey is nonzero, and it is found from (10.3.9) to be

~E ¼ ŷEy ¼ �ŷjH101vm
p

a

� �
sin

p

a
x

� �
sin

p

c
z

� �
:

Equation (10.3.30) gives

Pdl ¼ vr1o1
00

2
H101j j2v2

rm
2 p

a

� �2ða
x¼0

ðb
y¼0

ðc
z¼0

sin2
p

a
x

� �
sin2

p

c
z

� �
dxdydz,

or

Pdl ¼ 1o1
00

8
jH101j2v3

rm
2 p

a

� �2
abc: (10:3:31)

Similarly We is found via the following relation

We ¼ 1o1
0

4

ð
V

j~Ej2dv: (10:3:32)

On substituting Ey and integrating over the volume of the cavity, we find that

We ¼ 1o1
0

4
jH101j2v2

rm
2 p

a

� �2ða
x¼0

ðb
y¼0

ðc
z¼0

sin2
p

a
x

� �
sin2

p

c
z

� �
dxdydz,

or

We ¼ 1o1
0

16
jH101j2v2

rm
2 p

a

� �2
abc: (10:3:33)

Now from (10.3.31) and (10.3.33), Qd can be found:

Qd ¼ 2v rWe

Pdl

¼ 10

100
¼ 1

tan d
: (10:3:34)

Note that (10.3.34) is valid for all modes because (10.3.30) and (10.3.32) have a

common integral that cancels out when substituted in (10.3.34).

The power loss in conducting walls can be found via (10.1.52) and (10.3.11)

through (10.3.13) as follows:

Pcl ¼ 1

2
Rs

ð
walls

jHtanj2ds ¼ RsjH101j2½I1 þ I2 þ I3 þ I4�; (10:3:35)
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where

I1 ¼
ðb
y¼0

ðc
z¼0

p

a

� �4
sin2

p

c
z

� �
dydz ¼ p

a

� �4 bc
2
, (10:3:36)

I2 ¼
ða
x¼0

ðb
y¼0

p

c

� �2 p

a

� �2
sin2

p

a
x

� �
dxdy ¼ p

c

� �2 p

a

� �2 ab
2
, (10:3:37)

I3 ¼
ða
x¼0

ðc
z¼0

p

c

� �2 p

a

� �2
sin2

p

a
x

� �
cos2

p

c
z

� �
dxdz ¼ p

c

� �2 p

a

� �2 ac
4
, (10:3:38)

and

I4 ¼
ða
x¼0

ðc
z¼0

p

a

� �4
cos2

p

a
x

� �
sin2

p

c
z

� �
dxdz ¼ p

a

� �4 ac
4
: (10:3:39)

Therefore (10.3.35) simplifies to

Pcl ¼ 1

2
Rs

ð
walls

jHtanj2ds ¼ RsjH101j2 p

a

� �4 1

4
2bcþ 2a3b

c2
þ a3

c
þ ac

� �
: (10:3:40)

Using (10.3.33) and (10.3.40), we find that

Qc ¼ 2v rWe

Pcl

¼ v3
rm

2a31o1
0

2Rsp2½2f1þ (a=c)3g þ ða=bÞf1þ (a=c)2g� : (10:3:41)

Example 10.4

An air-filled rectangular cavity is made from a piece of copper WR-90 wave-

guide. If it resonates at 9.379 GHz in the TE101 mode, find the required length

c and the Q of this resonator.

For WR-90, a ¼ 0.9 in ¼ 2.286 cm, and b ¼ 0.4 in ¼ 1.016 cm. From

(10.3.7), we find that

1

2c
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9379

300

� �2

� 1

2a

� �2
s

¼ 22:3383 ! c ¼ 2:238 cm:

Next the surface resistance Rs is found from (10.1.51) to be 0.0252 V, and the Qc

is found from (10.3.41) to be about 7860.

Example 10.5

A rectangular cavity made of copper has its inner dimensions a ¼ 1.6 cm,

b ¼ 0.71 cm, and c ¼ 1.56 cm. It is filled with Teflon (1r ¼ 2.05 and
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tan d ¼ 2.9268 � 1024). Find the TE101 mode resonant frequency and Q of this

cavity.

The resonant frequency is found from (10.3.7) as follows:

fr ¼ 300ffiffiffiffiffiffiffiffiffi
2:05

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2 � 0:016
� �2

þ 1

2 � 0:0156
� �2

s
� 9379:4MHz ¼ 9:3794GHz:

Since power dissipates both in the dielectric filling as well as in the sidewalls, we

need to find Qd and Qc. Overall, Q is then found from (10.3.29). Using (10.3.34),

Qd is found to be 3417. Qc is found from (10.3.41) as follows:

Rs ¼
ffiffiffiffiffiffiffiffiffi
vmo

2s

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � p � 9:3794 � 109 � 4 � p � 10�7

2 � 5:813 � 107
r

¼ 0:0252V:

Therefore Qc is found from (10.3.41) to be 5492. After substitution of Qd and Qc

into (10.3.29), Q of this cavity is found to be 2106.

10.4 CIRCULAR CYLINDRICAL CAVITY RESONATORS

When conducting walls are added at each open end of a circular cylindrical wave-

guide, a circular cavity resonator is formed. Therefore the TEz and TMz modes exist

in such structures. In this section these fields are analyzed to find the relations for the

resonant frequency and the quality factor of the circular cavities.

TEz Modes in Circular Cavities

Consider a circular cylindrical cavity of radius a and height h, as shown in

Figure 10.6. It is filled with a dielectric material of a dielectric constant 1r and a

relative permeability mr. Since the cavity is a closed box, a signal cannot propagate

Figure 10.6 Geometry of the circular cylindrical cavity resonator.
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along the z-axis. Therefore the sine and cosine functions are appropriate solutions

for h3(kzz). Further the conditions along the r- and f-axes are the same as in the

case of the circular waveguide. Therefore Fz can be found from (10.2.1) after

appropriate changes as follows:

Fz(r, f, z) ¼ AnmJn(krr)½d1 cos(kzz)þ d2 sin (kzz)� sin (nf)
cos (nf),

�
(10:4:1)

where d1 and d2 are integration constants.

Since tangential electric fields must be zero on the added conducting surfaces as

well, these boundary conditions in conjunction with (6.5.13) and (6.5.14) give

Er

��
z¼0
z¼h

¼ 0 ! Fz

��
z¼0
z¼h

¼ 0 (10:4:2)

and

Ef

��
z¼0
z¼h

¼ 0 ! Fz

��
z¼0
z¼h

¼ 0: (10:4:3)

Both conditions are satisfied if

d1 ¼ 0 (10:4:4)

and

sin(kzh) ¼ 0 ¼ sin( pp) ! kz ¼ pp

h
, p ¼ 1, 2, 3, . . . : (10:4:5)

Therefore the resonant frequency can be found from (10.2.2) as follows:

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0nm
a

� �2

þ pp

h

� �2s
! vr

ffiffiffiffiffiffi
m1

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0nm
a

� �2

þ pp

h

� �2s
:

The resonant frequency fr is found to be

fr (MHz) ¼ 300

2p
ffiffiffiffiffiffiffiffiffi
mr1r

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0nm
a

� �2

þ pp

h

� �2s
MHz: (10:4:6)

As was defined earlier, x0nm represents the mth zero of the derivative of a Bessel

function of the first kind and order n. Further (10.4.1) reduces to

Fz(r, f, z) ¼ Anmd2Jn
x0nm
a

r

� �
sin

pp

h
z

� �
sin(nf)
cos (nf):

�
(10:4:7)
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The field components can be determined now after substituting (10.4.7) into (6.5.13)

through (6.5.18) as follows:

Er(r, f, z) ¼ �j
nvm

r

a

x0nm

� �2

Hnmp Jn
x0nm
a

r

� �
sin

pp

h
z

� � cos(nf)

� sin(nf),

�
(10:4:8)

Ef(r, f, z) ¼ jvm
a

x0nm

� �
Hnmp J

0
n

x0nm
a

r

� �
sin

pp

h
z

� � sin(nf)

cos(nf),

�
(10:4:9)

Ez(r, f, z) ¼ 0, (10:4:10)

Hr(r, f, z) ¼ Hnmp

pp

h

� � a

x0nm

� �
J0n

x0nm
a

r

� �
cos

pp

h
z

� � sin(nf)

cos(nf),

�
(10:4:11)

Hf(r, f, z) ¼ pp

h

� � a

x0nm

� �2
n

r
Hnmp Jn

x0nm
a

r

� �
cos

pp

h
z

� � cos(nf)

� sin(nf),

�
(10:4:12)

and

Hz r, f, zð Þ ¼ Hnmp Jn
x0nm
a

r

� �
sin

pp

h
z

� �
sin nfð Þ
cos nfð Þ,

�
(10:4:13)

where

Hnmp ¼ Anmd2

jvm1

x0nm
a

� �2

: (10:4:14)

TMz Modes in Circular Cavities

As in the preceding case, (10.2.14) can be used and Az found after appropriate

changes as follows:

Az(r, f, z) ¼ CnmJn
xnm

a
r

� �
½d1 cos(kzz)þ d2 sin (kzz)� sin(nf)

cos(nf),

�
(10:4:15)

where d1 and d2 are the integration constants.

Since the tangential electric fields must be zero on the added conducting surfaces

as well, these boundary conditions in conjunction with (6.5.7) and (6.5.8) give

Erjz¼0
z¼h

¼ 0 ! @Az

@z

����z¼0
z¼h

¼ 0 (10:4:16)

and

Efjz¼0
z¼h

¼ 0 ! @Az

@z

����z¼0
z¼h

¼ 0: (10:4:17)
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Both conditions are satisfied if

d2 ¼ 0 (10:4:18)

and

sin(kzh) ¼ 0 ¼ sin( pp) ! kz ¼ pp

h
, p ¼ 0, 1, 2, . . . : (10:4:19)

The resonant frequency vr for these modes can be found as follows:

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xnm

a

� �2
þ pp

h

� �2r
! vr

ffiffiffiffiffiffiffi
m1

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xnm

a

� �2
þ pp

h

� �2r
:

The corresponding resonant frequency fr in megahertz is found to be

fr MHzð Þ ¼ 300

2p
ffiffiffiffiffiffiffiffiffi
mr1r

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xnm

a

� �2
þ pp

h

� �2r
MHz: (10:4:20)

As was defined earlier, xnm is the mth zero of a Bessel function of the first kind and

order n. Further (10.4.15) reduces to

Az(r, f, z) ¼ Cnmd1Jn
xnm

a
r

� �
cos(kzz)

sin(nf)
cos(nf):

�
(10:4:21)

The TMz
nmp field components inside this cavity resonator are found after substituting

(10.4.21) into (6.5.4) through (6.5.9) as follows:

Hr(r, f, z) ¼ j
nv1

r

a

xnm

� �2

Enmp Jn
xnm

a
r

� �
cos

pp

h
z

� � cos(nf)

� sin(nf),

�
(10:4:22)

Hf(r, f, z) ¼ �jv1
a

xnm

� �
Enmp J

0
n

xnm

a
r

� �
cos

pp

h
z

� � sin(nf)

cos(nf),

�
(10:4:23)

Hz(r;f; z) ¼ 0, (10:4:24)

Er(r, f, z) ¼ pp

h

� � a

xnm

� �
Enmp J

0
n

xnm

a
r

� �
sin

pp

h
z

� � sin(nf)

cos(nf),

�
(10:4:25)

Ef(r, f, z) ¼ n

r

pp

h

� � a

xnm

� �2

Enmp Jn
xnm

a
r

� �
sin

pp

h
z

� � cos(nf)

� sin(nf),

�
(10:4:26)

and

Ez(r, f, z) ¼ Enmp Jn
xnm

a
r

� �
cos

pp

h
z

� �
sin (nf)
cos (nf),

�
(10:4:27)

408 WAVEGUIDES AND CAVITY RESONATORS



where

Enmp ¼ Cnmd1

jvm1

xnm

a

� �2
: (10:4:28)

The Quality Factor

Similar to rectangular cavity resonators, the quality factor of the circular cavity has

two parts. Power loss can occur in the dielectric as well as in the conducting walls.

Therefore we need the means to findQd as well asQc. As indicated earlier,Qd can be

found from (10.3.34) because of its general formulation. However, we need to find

the expression for Qc. This can be done following the procedure we used for the case

of rectangular cavity resonators. For simplicity we consider here the cavity support-

ing only the TM010 mode. Fields of this mode can be found from (10.4.22) through

(10.4.27) as follows:

Hr(r, f, z) ¼ 0, (10:4:29)

Hf(r, f, z) ¼ �jv1
a

x01

� �
E010 J

0
0

x01

a
r

� �
, (10:4:30)

Hz(r, f, z) ¼ 0, (10:4:31)

Er(r, f, z) ¼ 0, (10:4:32)

Ef(r, f, z) ¼ 0, (10:4:33)

and

Ez(r, f, z) ¼ E010J0
x01

a
r

� �
: (10:4:34)

Therefore

We;¼ 1

4

ð
V

jEzj2dv ¼ 1 jE010j2
4

ða
r¼0

ð2p
f¼0

ðh
z¼0

J0
x01

a
r

� �h i2
rdrdfdz

¼ ph1 jE010j2
2

ða
0

J0
x01

a
r

� �h i2
rdr:

The remaining integral can be evaluated via the following formula available in

mathematical handbook and others listed in Appendix C:

ð
x Jp(ax)
	 
2

dx ¼ x2

2
Jp(ax)
� 
2� Jp�1(ax)J pþ1(ax)
h i

: (10:4:35)
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Hence

We ¼ ph1a2 jE010j2
4

½J1(x01)�2: (10:4:36)

Similarly

Pcl ¼ Rs

2

þ
S

~H
��� ���2ds

¼ Rs

2
v212

a

x01

� �2
E010j j2

ð2p
f¼0

ðh
z¼0

J020 (x01)adfdzþ 2

ða
r¼0

ð2p
f¼0

J020
x01

a
r

� �
rdrdf

� �
:

Using the formula (C.23) from Appendix C, we find that

Pcl ¼ Rspv212
a

x01

� �2

E010j j2 ahJ21(x01)þ 2

ða
0

J21
x01

a
r

� �
rdr

� �
:

Using (10.4.35) and noting that J0(x01) ¼ 0, we find thatða
0

J21
x01

a
r

� �
rdr ¼ a2

2
J21(x01):

Therefore

Pcl ¼ Rspv212
a

x01

� �2

E010j j2 hþ a½ �aJ21(x01): (10:4:37)

The quality factor Qc for the TM010 mode can be found now using (10.4.36) and

(10.4.37) as follows:

Qc ¼ 2v rWe

Pcl

¼ x201h

2Rsv r1a(hþ a)
: (10:4:38)

Since k2c þ k2z ¼ k2 ! k ¼ kc({kzj010 ¼ 0) ! vr
ffiffiffiffiffiffiffi
m1

p ¼ x01=a, (10.4.38) can be

expressed as follows:

Qc ¼ x01h

2Rs 1þ ða=hÞ½ � ¼
2:40483h

2Rs 1þ ða=hÞ½ � ¼
1:20242h

Rs 1þ ða=hÞ½ � : (10:4:39)

Similarly theQc of a circular cylindrical cavity operating in the TEnmpmode and filled

with a lossless dielectric can be found from the following formula:

Qc ¼ h

2Rs

1� (n=x0nm)
2

	 

(x0nm)

2 þ ( ppa=h)2
	 
1:5

x02nm þ (2a=h) ( ppa=h)2
� 
þ 1� (2a=h)

� 

(nppa=x0nmh)

2
	 
 : (10:4:40)
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In the case of the TMnmp mode with p . 0, Qc is given by

Qc ¼ h

2Rs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2nm þ ( ppa=h)2
	 
q
1þ (2a=h)

; p . 0, (10:4:41)

and

Qc � h

2Rs

xnm

1þ (a=h)
; p ¼ 0: (10:4:42)

Example 10.6

Determine the dimensions of an air-filled circular cylindrical cavity that

resonates at 10 GHz in TM010 mode. The cavity should be made of aluminum

(s ¼ 3.54 . 107 S/m) and its height should be equal to its diameter. Find Q of

this cavity. How will this Q be affected if the inside of the cavity is coated

with silver (s ¼ 6.12 . 107 S/m)?

For the TM010 mode, x01 is found to be 2.40483 from Table C.1. Therefore

(10.4.20) gives

fr(MHz) ¼ 300

2p

2:40483

a

� �
! a ¼ 150 � 2:40483

p � 104 m ¼ 1:1482 cm

and

h ¼ 2a ¼ 2:296 cm

Since

Rs ¼
ffiffiffiffiffiffiffi
vm

2s

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � p � 1010 � 4 � p � 10�7

2 � 3:54 � 107
r

¼ 0:0334V

and

h ¼
ffiffiffiffiffiffi
mo

1o

r
¼ 376:7343 V,

Equation (10.4.39) gives

Qc ¼ 1:20242h

Rs(1þ ða=hÞ) ¼ 9042:

If the cavity is silver coated, then Rs changes to

Rs ¼
ffiffiffiffiffiffiffi
vm

2s

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � p � 1010 � 4 � p � 10�7

2 � 6:12 � 107
r

¼ 0:0254V:

ThereforeQc increases to 11890. Note that it is a significant increase inQ over the

uncoated cavity.
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Example 10.7

Determine the dimensions of an air-filled circular cylindrical cavity that res-

onates at 5 GHz in TE011 mode. It should be made of copper, and its height

should be equal to its diameter. Find Q of this cavity.

From (10.4.6), with x001 as 3.83171 from Table C.2, we get

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:831712 þ (p=2)2

(5000 � 2p=300)2
s

¼ 0:0395m

and

h ¼ 2a ¼ 0:079m:

Since

Rs ¼
ffiffiffiffiffiffiffiffiffi
vmo

2s

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � p � 5 � 109 � 4 � p � 10�7

2 � 5:813 � 107
r

¼ 0:0184 V

and

h ¼
ffiffiffiffiffiffi
mo

1o

r
¼ 376:7343 V:

Q of the cavity can be found from (10.4.40) as

Qc ¼ h

2Rs

� 3:831712 þ (p=2)2
	 
1:5
3:831712 þ (p=2)2

¼ 42331:6:

Further there is no loss of power in air (tan d � 0). Therefore Qd is infinite and Q

is the same as Qc.

PROBLEMS

10.1. The cross section of a rectangular waveguide is 7.21 � 3.40 cm. Find the

mode types that can be transmitted at (a) 3 GHz and (b) 6 GHz.

10.2. Find the phase constant, the phase velocity, the group velocity, the wavelength

inside the guide, and the wave impedance ZTEZ
10
for an air-filled 2.4 � 1.01 cm

rectangular waveguide that carries a 7.5 GHz signal.

10.3. Repeat Problem 10.2 for a waveguide filled with a perfect dielectric medium

of 1r ¼ 2.1.
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10.4. The wavelength of a signal propagating through an air-filled WR-340 rec-

tangular waveguide is found to be 20 cm. Determine its frequency in GHz.

10.5. The inside cross section of an air-filled rectangular waveguide is 2.286 �
1.016 cm. (a) Determine its cutoff frequencies for TE10, TE20, TE01, and

TE11 modes. (b) Which mode(s) will propagate through this waveguide if

the signal frequency is anywhere between 8 and 12 GHz? (c) Determine the

phase velocity of a 9.375 GHz signal propagating in TE10 mode.

10.6. The inner radius of an air-filled circular cylindrical waveguide is 5.2 cm.

Assume that its walls are perfectly conducting to find the seven lowest

modes that it can support. Determine the cutoff frequency of each mode.

10.7. Find first eight lowest order modes and their resonant frequencies for an

air-filled lossless rectangular cavity of 8 � 6 � 5 cm.

10.8. An air-filled rectangular cavity is made from a piece of copper WR-430

waveguide. If it resonates at 2 GHz in TE101 mode, find the required

length c and the Q of this resonator.

10.9. An air-filled rectangular cavity with a ¼ 4 cm, b ¼ 3 cm, and c ¼ 5 cm is

the mode of brass. Find its dominant mode frequency and the Q.

10.10. An air-filled rectangular cavity is made from a piece of copper WR-137

waveguide. If it resonates at 5.9 GHz in TE101 mode, find the required

length c and the Q of this resonator.

10.11. Determine the dimensions of an air-filled circular cylindrical cavity that

resonates at 2.45 GHz in TM010 mode. It should be made of aluminum

(s ¼ 3.54 . 107 S/m), and its height should be equal to its diameter. Find

Q of this cavity. How will this Q be affected if the inside of the cavity is

coated with silver (s ¼ 6.12 . 107 S/m)?

10.12. Determine the dimensions of an air-filled circular cylindrical cavity that

resonates at 9.375 GHz in TE011 mode. It should be made of copper, and

its height should be equal to its diameter. Find Q of this cavity.

10.13. Design an air-filled circular cylindrical cavity that resonates at 9 GHz in

TE011 mode. It should be made of copper, and its height should be equal

to its diameter. Find Q of this cavity.
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11
NUMERICAL TECHNIQUES

Electromagnetic problems involve solutions to differential equations, integral

equations, or mixed integro-differential equations. A number of techniques have

been developed to cast electromagnetic problems in the form of integral equations.

The solution procedures require partitioning of the problem space to convert the

given equation into a set of algebraic equations that are solved using matrix manipu-

lation techniques. The numerical procedures used to solve electromagnetic problems

include the finite-difference time-domain (FDTD) technique, the finite element

method (FEM), and the method of moments (MoM). Some other procedures trans-

form an electromagnetic problem into an electrical circuit to find associated alge-

braic relations. The transmission line matrix (TLM) technique is one of them. The

finite difference schemes are employed to transform the differential equation into

algebraic equations. So-called absorbing boundary conditions are developed to

tackle large problem spaces (e.g., the radiation problem). Integral equations are

solved using suitable expansion and weighting functions.

Available in the literature in this area is a huge amount of material that cannot the

covered here. This chapter introduces the fundamentals of the finite difference

method and the method of moments. Much more detail can be found in books

listed in the bibliography.
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11.1 FINITE-DIFFERENCE METHODS

This section begins with the procedure for transforming a differential equation in

single dimension into a finite difference equation. A few examples are included to

find the eigenvalues and to solve the boundary-value problems. The procedure is

then extended to two and three dimensions. A brief overview of the FDTD is also

included in this section.

Finite-Difference in One Dimension

Figure 11.1 shows an arbitrary function f (x). Consider its values at an arbitrary

point x and also at points +D closely around it. Three different derivatives of

this function are defined at point x. The forward difference of the function is

defined as follows:

@f (x)

@x
¼ lim

D!0

f (xþ D)� f (x)

D
: (11:1:1)

The backward difference of the function f (x) at point x is

@f (x)

@x
¼ lim

D!0

f (x)� f (x� D)

D
: (11:1:2)

The central difference of f (x) is found to be

@f (x)

@x
¼ lim

D!0

f (xþ D)� f (x� D)

2D
: (11:1:3)

Figure 11.1 Function f(x) and its derivatives.
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In many instances we also need the second derivative of the function. It may be

found as follows:

@2f (x)

@x2
¼ lim

D!0

ðð f (xþ D)� f (x)Þ=DÞ � ðð f (x)� f (x� D)Þ=DÞ
D

,

or

@2f (x)

@x2
¼ lim

D!0

f (xþ D)� 2f (x)þ f (x� D)

(D)2
: (11:1:4)

Since the derivative of a function is defined three different ways we need to know

the order of error associated with each approximation for a finite D. This can be

achieved via the following two Taylor series representations of the function:

f (xþ D) ¼ f (x)þ D
@f (x)

@x
þ D2

2!

@2f (x)

@x2
þ D3

3!

@3f (x)

@x3
þ � � � (11:1:5)

and

f (x� D) ¼ f (x)� D
@f (x)

@x
þ D2

2!

@2f (x)

@x2
� D3

3!

@3f (x)

@x3
þ � � � : (11:1:6)

From (11.1.5) we find that

@f (x)

@x
¼ f (xþ D)� f (x)

D
� D

2!

@2f (x)

@x2
� D2

3!

@3f (x)

@x3
� � � � : (11:1:7)

A comparison of (11.1.1) with (11.1.7) shows that the error involved in approxi-

mating the derivative of the function with its forward difference is on the order

of D. From (11.1.6) a similar conclusion is reached for the backward difference

approximation as well:

@f (x)

@x
¼ f (x)� f (x� D)

D
� D

2!

@2f (x)

@x2
þ D2

3!

@3f (x)

@x3
� � � � :

If we subtract (11.1.6) from (11.1.5) and rearrange, we find that

@f (x)

@x
¼ f (xþ D)� f (x� D)

2D
þ D2

2 � 3!
@3f (x)

@x3
þ � � � : (11:1:8)

Therefore the error associated with the central difference approximation is on the

order of D2, which is much smaller than the other two. If we add (11.1.5) and
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(11.1.6), we find that

@2f (x)

@x2
¼ f (xþ D)� 2f (x)þ f (x� D)

D2
þ D2

4!

@4f (x)

@x4
þ � � � : (11:1:9)

Table 11.1 summarizes these results.

Example 11.1

Using the finite-difference scheme, find the lowest eigenvalue of a TMz mode

propagating between two conducting parallel plates that are separated by one

meter.

We analyzed the parallel-plate waveguide in Section 6.4. Since the wave is

propagating along the z-axis and the conducting plates extend to infinity along

the y-axis, (6.4.3) gives

@2Az

@x2
þ (k2 � k2z )Az ¼ 0 ! @2Az

@x2
þ k2cAz ¼ 0, (i)

where

k2c ¼ k2 � k2z : (ii)

From (6.4.9) the boundary conditions require that

Ez

��
x¼0
x¼1

¼ 0 ! Az

��
x¼0
x¼1

¼ 0: (iii)

After partitioning the separation distance along the x-axis, (i) can be approxi-

mated using (11.1.4) as follows:

Azi�1 � 2Azi þ Aziþ1

D2
þ k2cAzi ¼ 0,

TABLE 11.1 Finite-Difference Approximations of a Function

Order of

Derivative Formula Type

Finite-Difference

Representation

Order of

Error

f 0(x) Forward difference
f (iþ 1)� f (i)

D
D

f 0(x) Backward difference
f (i)� f (i� 1)

D
D

f 0(x) Central difference
f (iþ 1)� f (i� 1)

2D
D2

f 00(x) Forward difference
f (iþ 1)� 2f (i)þ f (i� 1)

D2
D2
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where subscripts i, iþ 1, and i2 1 represent centers of the corresponding par-

tition. This equation can be rearranged as follows:

�Azi�1 þ jAzi � Aziþ1 ¼ 0, (iv)

where

j ¼ 2� D2k2c : (v)

For D ¼ 0.25, there are only three internal points where Az is unknown. Note

that it is known at the boundary points. Using (iv) on these points, we get the

following set of three equations:

j �1 0

�1 j �1

0 �1 j

2
4

3
5 Az1

Az2

Az3

2
4

3
5 ¼

0

0

0

2
4

3
5: (vi)

For a nontrivial solution of this, we find that

j �1 0

�1 j �1

0 �1 j

������
������ ¼ 0 ) j(j2 � 2) ¼ 0:

Therefore j ¼ 0, 1.4142, 21.4142, and the corresponding eigenvalues are

j ¼ 0 ! k2c ¼
2

0:252
! kc ¼ 1:4142

0:25
¼ 5:6568,

j ¼ 1:4142 ! k2c ¼
2� 1:4142

0:252
! kc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5858

p

0:25
¼ 3:0615,

and

j ¼ �1:4142 ! k2c ¼
2þ 1:4142

0:252
! kc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:4142

p

0:25
¼ 7:3910:

According to the exact analysis presented in Section 6.4, (6.4.39) gives

kc ¼ k
��
kz¼0

¼ mp

a
! kc ¼ mp, m ¼ 1, 2, 3, � � � :

Therefore the lowest eigenvalue (m ¼ 1) is about 2.55% below the exact value of

p. However, the next eigenvalue (m ¼ 2) is about 17.63% higher than the corre-

sponding exact solution of 2p. The accuracy of the results increases with decreas-
ing partition length (i.e., increasing the number of partitions).
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Example 11.2

Use the finite-difference scheme to solve the following differential equation:

d2f (x)

dx2
þ 9f (x) ¼ 0:

The solution must satisfy the boundary conditions f (x ¼ 0) ¼ 0 and f (x ¼ 1) ¼ 1.

The corresponding finite difference is found via (11.1.4) as follows:

fi�1 � 2fi þ fiþ1

D2
þ 9fi ¼ 0 ! fi�1 � (2� 9D2)f i þ f iþ1 ¼ 0:

If only four partitions are used over 0 � x � 1, then D ¼ 0.25. The boundary con-

ditions translate to fo ¼ 0 and f4 ¼ 1. There are three internal points where f (x) is

to be determined. Since (22 9D2) ¼ 1.4375, the difference equation gives

�1:4375 1 0

1 �1:4375 1

0 1 �1:4375

2
4

3
5 f 1

f2
f3

2
4

3
5 ¼

0

0

�1

2
4

3
5!

f 1
f2
f3

2
4

3
5¼

10:4757
15:0588
11:1714

2
4

3
5:

As we know that the error in the finite difference formulation decreases with an

increase in the number of partitions (i.e., a smaller D), we repeat it with 8 par-

titions. Therefore the partition length D now reduces to 0.125, and fo ¼ 0 and

f8 will be 1. There are seven internal points where the function will be determined

using the finite difference procedure. With j ¼ (22 9D2) ¼ (22 9 . 0.1252), we

find that

�j 1 0 0 0 0 0

1 �j 1 0 0 0 0

0 1 �j 1 0 0 0

0 0 1 �j 1 0 0

0 0 0 1 �j 1 0

0 0 0 0 1 �j 1

0 0 0 0 0 1 �j

2
666666664

3
777777775

f1
f2
f3
f4
f5
f6
f7

2
666666664

3
777777775
¼

0

0

0

0

0

0

�1

2
666666664

3
777777775

!

f1
f2
f3
f4
f5
f6
f7

2
666666664

3
777777775
¼

2:9846
5:5496
7:3341
8:0872
7:7031
6:2358
3:8915

2
666666664

3
777777775
:

Note that the differential equation can be solved analytically for given boundary

conditions to find

f (x)¼ sin(3x)

sin(3)
:

Therefore the computed results can be compared with the exact solution to get a

feel of the accuracy. This comparison is shown in Table 11.2.
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In the preceding examples, the function is specified on the boundaries. This

kind of boundary-value problem is known as the Dirichlet problem. Another

possibility is that the derivative of the function is specified instead. This kind

of boundary condition is known as the Neumann condition. It becomes a mixed

problem if the function is specified on a part of the boundary and a derivative

on the other. Consider the construction of a solution to the Neumann problem

illustrated in Figure 11.2. The derivatives f 0(xo) and f 0(xf) of the function are

specified at the boundary points xo and xf. The space between the boundary

points is partitioned such that 0 � i � N. In order to implement the Neumann con-

ditions, an extra partition is added on each side as the false boundary, and there-

fore 21 � i � Nþ 1.

TABLE 11.2 Comparison of Results of Example 11.2

x

Exact

Solution

4-Partitions FD

Approximation

8-Partitions FD

Approximation

0 0 0 0

0.125 2.5955 2.9846

0.25 4.8302 10.4757 5.5496

0.375 6.3936 7.3341

0.5 7.0684 15.0588 8.0872

0.625 6.7608 7.7031

0.75 5.5136 11.1714 6.2358

0.875 3.5 3.8915

1 1 1 1

Figure 11.2 False boundaries introduced for a Neumann problem.
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Hence

f 0(xo) ¼ f1 � f�1

2D
! f�1 ¼ f1 � f 0(xo)2D (11:1:10)

and

f 0(x f ) ¼ fNþ1 � fN�1

2D
! fNþ1 ¼ fN�1 þ f 0(x f )2D: (11:1:11)

Thus there are two extra equations available for the two boundary points. The

following example illustrates this solution procedure.

Example 11.3

Using the finite difference scheme, find the lowest eigenvalue of a TEz mode pro-

pagating between two conducting parallel plates that are separated by 1 m, as

shown in Figure 11.3.

We earlier analyzed the parallel-plate waveguide in Section 6.4. Since the TE

wave is propagating along the z-axis and the conducting plates extend to infinity

along the y-axis, (6.4.12) gives

@2Fz

@x2
þ (k2 � k2z )Fz ¼ 0 ! @2Fz

@x2
þ k2cFz ¼ 0, (i)

where

k2c ¼ k2 � k2z : (ii)

Figure 11.3 Parallel-plate waveguide.
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The boundary conditions require that the tangential electric field be zero on the

conducting surfaces. Therefore (6.4.14) gives

Ey

��
x¼0
x¼1

¼ 0 ! @Fz

@x

����x¼0
x¼1

¼ 0: (iii)

Note that the other two electric field components are already zero in this case.

There are four partitions made between the plates. In order to implement the

boundary conditions, one extra partition is added on each side, as shown in

Figure 11.3. Therefore (iii) gives

@Fz

@x

����
x¼0

¼ 0 ! Fz1 � Fz�1

2D
¼ 0 ! Fz�1 ¼ Fz1 (iv)

and

@Fz

@x

����
x¼1

¼ 0 ! Fz5 � Fz3

2D
¼ 0 ! Fz5 ¼ Fz3: (v)

Following the procedure used in Example 11.1, (i) can be approximated using

the points at i ¼ 0 to 4:

�Fzi�1 þ jFzi � Fziþ1 ¼ 0; (vi)

where

j ¼ 2� D2k2c : (vii)

For D ¼ 0.25, there are five points where Fz is unknown. Using (vi) at these

points, we get the following set of five equations:

�Fz�1 þ jFz0 � Fz1 ¼ 0, (viii)

�Fz0 þ jFz1 � Fz2 ¼ 0, (ix)

�Fz1 þ jFz2 � Fz3 ¼ 0, (x)

�Fz2 þ jFz3 � Fz4 ¼ 0, (xi)

and

�Fz3 þ jFz4 � Fz5 ¼ 0: (xii)
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Note that Fz21 and Fz5 in (viii) and (xii), respectively, can be replaced via the

boundary conditions (iv) and (v). Hence the set of equations reduces to

j �2 0 0 0

�1 j �1 0 0

0 �1 j �1 0

0 0 �1 j �1

0 0 0 �2 j

2
66664

3
77775

Fz0

Fz1

Fz2

Fz3

Fz4

2
66664

3
77775 ¼

0

0

0

0

0

2
66664

3
77775: (xiii)

For a nontrivial solution of (xiii) we find that

j �2 0 0 0

�1 j �1 0 0

0 �1 j �1 0

0 0 �1 j �1

0 0 0 �2 j

������������

������������
¼ 0 ! j 5 � 6j3 þ 8j ¼ 0

! j ¼ 0, +
ffiffiffi
2

p
, + 2: (xiv)

The corresponding values of kc are found via (vii) as follows:

kc ¼ 5:6568, 3:0615, 7:3910, 0, 8:

As found in Chapter 6, the exact eigenvalues of the TEz mode are integer multiple

of p (because the plates are separated by 1 m) and degenerate with TMz.

In this example we get the lowest value close to p if we ignore 0. In general,

Neumann boundary value problems are difficult to handle and often require extra

conditions (e.g., an analytic requirement) for a finite difference solution.

Finite Difference in Two Dimensions

The finite-difference technique can be used to solve Laplace’s equation in two and

three dimensions. It has several practical applications, including TEM and quasi-

TEM characterizations of transmission lines.

Consider four infinitely long conducting plates of equal width arranged as shown

in Figure 11.4a. The plates are insulated from each other at the corners and are at

potentials VT, VR, VB, and VL, as indicated. Further the plates enclose a uniform

medium. The potential distribution over a cross-sectional plane can be found after

solving Laplace’s equation. To that end, a uniform grid is created, and a finite-differ-

ence star (or molecule) is identified along with its node indexes as shown in

Figure 11.4b. Using (11.1.4), we find that

@ 2f

@x2
� fiþ1, j � 2fi, j þ fi�1, j

D2
(11:1:12)
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and

@2f

@y2
� fi, jþ1 � 2fi, j þ fi, j�1

D2
: (11:1:13)

Therefore the Laplace’s equation gives

r2f(x, y) ¼ @2f(x, y)

@x2
þ @2f(x, y)

@y2
¼ 0 !

fi, j �
fiþ1, j þ fi�1, j þ fi, jþ1 þ fi, j�1

4
: (11:1:14)

Thus the potential at the node point (i, j) is approximately equal to the average of

potentials at the other four nodes of the molecule. As was mentioned earlier, the

accuracy of this expression increases as the spacing D reduces. The potential at

node (i, k) can be found from (11.1.14) if the potentials at the four nearby nodes

are known. One method to find the potential distribution is to use an iterative

procedure. Note that the potential on its boundary is known. Therefore the nodes

that lie on the boundary have fixed known potentials. The iteration can be started

with the assumption that the internal nodes have zero potential. On each scan the

potential found via (11.1.14) replaces the old value at that node. This process

continues until the difference obtained in the node voltages between the successive

iterations reduces to an acceptable tolerance limit. After generating the grid, a

computer program can be developed to find the node potentials. Example 11.4

illustrates the procedure.

Figure 11.4 Partition grid in two dimensions and the finite-difference star or

molecule.
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Example 11.4

Find the potential distribution inside the space enclosed by four infinitely long

conducting plates arranged as shown in Figure 11.5. The boundary potentials

are as given in the figure.

Figure 11.5 shows a 6�6 grid along with the node indexes. However, we con-

sider first only a coarse grid of 3�3 for simplicity. Therefore there are only (2, 2),

(2, 4), (4, 2), and (4, 4) internal nodes in this case. The iterations are started,

assuming zero initial potential at these nodes. There are updates in each scan

as listed in Table 11.3 for first five iterations.

A computer program was developed for the 6�6 grid with a tolerance limit for

successive potentials at the nodes as 0.001. These results are summarized in

Table 11.4. Since there are a few nodes common with the 3�3 grid used earlier,

we can compare the results. For example, f22 is found as 9.983 V after the fifth

Figure 11.5 Partition grid and nodes for Example 11.4.

TABLE 11.3 Successive Values of the Potential at the

Nodes within a Coarse Grid

Iteration

Number f22 f24 f42 f44

1 6.25 5.3125 5.3125 3.9063

2 8.9063 6.9532 6.9532 4.7266

3 9.7266 7.3633 7.3633 4.9317

4 9.9317 7.4659 7.4659 4.9829

5 9.983 7.4915 7.4915 4.9947
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iteration in Table 11.3. The corresponding result with a 0.001 tolerance limit is

10.07, which is fairly close. Similar observations can be made for other results.

Thus the convergence rate appears to be quite fast.

Single Dielectric, Nonuniform Grid

A uniform grid was used in the preceding example. However, there are many

instances where a nonuniform grid is helpful. For example, if a particular subregion

is of more interest than the rest of the region and the computer resources are limited,

then a finer grid can be employed only there. This formulation is also useful for

regions with curved boundaries in single dielectric medium.

Consider the situation where node 3 is D2 away from node 0 whereas node 1 is at

D1, as shown in Figure 11.6a. Using a Taylor’s series at node 1, we find that

f (x1) ¼ f (x0)þ D1

@f (x)

@x

����
x0

þD2
1

2

@2f (x)

@x2

�����
x0

þD3
1

3!

@3f (x)

@x3

�����
x0

þ � � � : (11:1:15)

TABLE 11.4 Potential at Various Grid Points (i, j) of

Figure 11.5

j i 1 2 3 4 5

0 0 0 0 0

5 15 7.50 4.57 3.30 2.84 3.12 5

4 15 10.42 7.50 5.80 4.92 4.66 5

3 15 11.69 9.19 7.50 6.38 5.61 5

2 15 12.16 10.07 8.61 7.50 6.40 5

1 15 11.87 10.33 9.38 8.59 7.50 5

10 10 10 10 10

Figure 11.6 Nonuniform grid (a) and the curved boundary (b).
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Similarly for node 3 we have

f (x3) ¼ f (x0)� D2

@f (x)

@x

����
x0

þD2
2

2

@2f (x)

@x2

�����
x0

�D3
2

3!

@3f (x)

@x3

�����
x0

þ � � � : (11:1:16)

Multiplying (11.1.15) by a and (11.1.16) by b, and then adding the two, we get

a f (x1)� f (x0)½ � þ b½ f (x3)� f (x0)�

¼ (aD1 � bD2)
@f (x)

@x

����
x0

þ (aD2
1 � bD2

2)

2

@2f (x)

@x2

�����
x0

þ � � � : (11:1:17)

For

a ¼ �D2
2

D2
1

b, (11:1:18)

(11.1.17) gives

@f (x)

@x

����
x0

� D2
2½ f (x1)� f (x0)� � D2

1½ f (x3)� f (x0)�
D1D2(D1 þ D2)

: (11:1:19)

If instead

a ¼ D2

D1

b, (11:1:20)

then from (11.1.17) we get

@2f (x)

@x2

����
x0

� 2
D2½ f (x1)� f (x0)� þ D1½ f (x3)� f (x0)�

D1D2(D1 þ D2)
: (11:1:21)

Now consider the situation depicted in Figure 11.6b where we have a curved bound-

ary in a single dielectric medium. Equations (11.1.19) and (11.1.21) can be used to

find the derivatives for this case as follows: For D1 ¼ aD and D2 ¼ D, Equations
(11.1.19) and (11.1.21), simplify to

@f (x)

@x

����
x0

� f (x1)� a2f (x3)� (1� a2) f (x0)

a(1þ a)D
(11:1:22)

and

@2f (x)

@x2

����
x0

� 2

D2

f (x1)

a(1þ a)
þ f (x3)

ð1þ a)
� f (x0)

a

� �
: (11:1:23)
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Note that (11.1.22) and (11.1.23) reduce to (11.1.3) and (11.1.4), respectively, for

a ¼ 1.

A similar procedure can be used to find the derivatives along the y-axis. The

results are

@f (y)

@y

����
y0

� f (y1)� b2f (y3)� (1� b2) f (y0)

b(1þ b)D
(11:1:24)

and

@2f (y)

@y2

����
y0

� 2

D2

f (y1)

b(1þ b)
þ f (y3)

(1þ b)
� f (y0)

b

� �
: (11:1:25)

Example 11.5

Find the potential distribution f(x, y) inside the region shown in Figure 11.7. The
curved portion of the boundary is an arc of radius R ¼ 10 m about the origin. The

boundary conditions are given as follows:

f(0, y) ¼ 0,

f(x, 0) ¼ x3,

f(8, y) ¼ 512� 24y2,

f(x, 9) ¼ x3 � 243x,

Figure 11.7 Partitions and nodes for Example 11.5.
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and

f(x,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100� x2

p
) ¼ 4x3 � 300x (on the arc):

From these boundary conditions the potentials on the boundary nodes are found

as indicated in the figure.

From (11.1.23) and (11.1.25),

@2f

@x2
þ @2f

@y2
¼ 0 � 1

D2

2f1

a(1þ a)
þ 2f3

(1þ a)
� 2f0

a

� �

þ 1

D2

2f2

b(1þ b)
þ 2f4

(1þ b)
� 2f0

b

� �
:

Therefore

f0 ¼
ab

aþ b

� �
f1

a(1þ a)
þ f2

b(1þ b)
þ f3

(1þ a)
þ f4

(1þ b)

� �
: (i)

First consider a coarse 4 � 4 grid such that there are only two nodes, so we need

to find potentials at (2, 2) and (2, 4) only. For node (2, 2), a ¼ b ¼ 1, and

therefore

f22 ¼
128þ f12 þ 0þ 64

4
! 4f22 � f24 ¼ 192: (ii)

For node (2, 4), a ¼ 2/3 and b ¼ 1/3. Hence ab/(aþ b) ¼ 2/9, and (i) gives

f24 ¼
2

9

�936

2½1þ (2=3)�=3þ
�908

½1þ (1=3Þ�=3þ0þ f22

1þ (2=3)

� �
!

f24�
1

6
f22 ¼�641:2: (iii)

Equations (ii) and (iii) can be solved for f22 and f24. These are found to be

2117.1826 V and 2660.7304 V, respectively.

Obviously, with so few grid points, we cannot expect great accuracy. The cor-

responding exact values are 2128 V and 2704 V, respectively.

Now we consider the entire system of grids shown in Figure 11.7. Note that it

is uniform except for nodes (1, 4) and (2, 4), a ¼ 1 and b ¼ 1/3. Therefore for
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these nodes

ab

aþ b
¼ 1

4
: (iv)

Various node potentials can be expressed as follows via (11.1.14) or (i)

and (iv):

f11 ¼
f21 þ f12 þ 0þ 8

4
! 4f11 � f12 � f21 ¼ 8, (v)

f12 ¼
f22 þ f13 þ 0þ f11

4
! 4f12 � f13 � f11 � f22 ¼ 0, (vi)

f13 ¼
f23 þ f14 þ 0þ f12

4
! 4f13 � f12 � f14 � f23 ¼ 0, (vii)

f14 ¼
1

4

f24

2
� 478

ð1=3Þ � ð4=3Þ þ 0þ f13

4=3

� �

! 16f14 � 3f13 � 2f24 ¼ �4302, (viii)

f21 ¼
f31 þ f22 þ f11 þ 64

4
! 4f21 � f31 � f11 � f22 ¼ 64, (ix)

f22 ¼
f32 þ f23 þ f12 þ f21

4
! 4f22 � f32 � f23 � f12 � f21 ¼ 0, (x)

f23 ¼
f33 þ f24 þ f13 þ f22

4
! 4f23 � f33 � f24 � f13 � f22 ¼ 0, (xi)

f24 ¼
1

4
� 936

2
� 908

ð1=3Þ � ð4=3Þ þ
f14

2
þ f23

4=3

� �

! 16f24 � 3f23 � 2f14 ¼ �10044, (xii)

f31 ¼
416þ f32 þ f21 þ 216

4
! 4f31 � f32 � f21 ¼ 632, (xiii)

f32 ¼
128þ f33 þ f22 þ f31

4
! 4f32 � f31 � f33 � f22 ¼ 128, (xiv)

and

f33 ¼
�352� 936þ f23 þ f32

4
! 4f33 � f23 � f32 ¼ �1288: (xv)
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Equations (v) through (xv) can be expressed in matrix form, as follows:

4 �1 0 0 �1 0 0 0 0 0 0

�1 4 �1 0 0 �1 0 0 0 0 0

0 �1 4 �1 0 0 �1 0 0 0 0

0 0 �3 16 0 0 0 �2 0 0 0

�1 0 0 0 4 �1 0 0 �1 0 0

0 �1 0 0 �1 4 �1 0 0 �1 0

0 0 �1 0 0 �1 4 �1 0 0 �1

0 0 0 �2 0 0 �3 16 0 0 0

0 0 0 0 �1 0 0 0 4 �1 0

0 0 0 0 0 �1 0 0 �1 4 �1

0 0 0 0 0 0 �1 0 0 �1 4

2
66666666666666664

3
77777777777777775

f11

f12

f13

f14

f21

f22

f23

f24

f31

f32

f33

2
66666666666666664

3
77777777777777775

¼

8

0

0

�4302

64

0

0

�10044

632

128

�1288

2
66666666666666664

3
77777777777777775

: (xvi)

Therefore potentials at these nodes can be found after solving (xvi) through

standard matrix manipulation techniques. Note that the coefficient matrix is

diagonal dominant and a large number of off-diagonal entries have zeros.

TABLE 11.5 Comparison of Results for Example 11.5

Nodes

Computed with

Coarse Grid

Computed with

Fine Grid

Analytical

Result

f11 218.13 216

f12 293.68 288

f13 2221.00 2208

f14 2404.15 2376

f21 13.16 16

f22 2117.18 2135.59 2128

f23 2386.19 2368

f24 2660.73 2750.68 2704

f31 142.37 144

f32 275.67 272

f33 2437.46 2432
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Further this problem has been solved analytically for the given boundary

conditions, and the exact solution is found to be fðx; yÞ ¼ x3 � 3xy2. The com-

putational and analytical results of these potentials are compared in Table 11.5.

Example 11.6

Find the eigenvalues of a hollow metallic rectangular waveguide operating

in TMz mode. Its cross section is 0.75 � 0.25 m. Use the uniform grid shown

in Figure 11.8. Repeat the problem with the nonuniform grid shown in

Figure 11.9. Analyze the results.

For the TMz modes, we use (6.4.3) to find that

@2Az

@x2
þ @2Az

@y2
þ k2cAz ¼ 0; (i)

where k2c ¼ k2 � k2z . The associated boundary conditions are found in (10.1.26)

through (10.1.28) that require Az to be zero on the boundary.

Using (11.1.12) and (11.1.13), (i) transforms to

Aiþ1, j � 2Ai, j þ Ai�1, j

D2
þ Ai, jþ1 � 2Ai, j þ Ai, j�1

D2
þ k2cAi, j ¼ 0,

or

Aiþ1, j þ Ai�1, j þ Ai, jþ1 þ Ai, j�1 � (4� k2cD
2)Ai, j ¼ 0: (ii)

Using (ii) and the boundary conditions that Az is zero on the boundary nodes, we

find that

�a 1

1 �a

� �
A1, 1

A2, 1

� �
¼ 0

0

� �
, (iii)

Figure 11.8 Uniform grid structure with nodes for Example 11.6.
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where

a ¼ 4� k2cD
2 ¼ 4� 0:252D2: (iv)

For a nontrivial solution of (iii), it is required that

�a 1

1 �a

����
���� ¼ 0 ! a ¼ +1 ¼ 4� k2cD

2: (v)

For a ¼ �1,

k2cD
2 � 4 ¼ �1 ! k2c ¼

3

0:252
! kc ¼ 6:9282, (vi)

and for a ¼ 1,

k2cD
2 � 4 ¼ 1 ! k2c ¼

5

0:252
! kc ¼ 8:9443: (vii)

Its analytical expressionmay be found in Table 10.1 as kc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmp=aÞ2 þ ðnp=bÞ2

p
.

Therefore, for a ¼ 0.75 and b ¼ 0.5, the first four eigenvalues are found as 7.551,

10.472, 13.246, and 15.103 with m as 1, 2 and n as 1, 2.

When the grid is nonuniform as given in Figure 11.9, (11.1.25) and (11.1.23)

need to be employed at nodes (1, 2), (2, 2), (3, 1), and (3, 2). For these nodes,

a ¼ 0:15

0:2
¼ 0:75 (viii)

and

b ¼ 0:1

0:2
¼ 0:5: (ix)

Figure 11.9 Mixed grid structure with nodes for Example 11.6.
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The finite-difference equations for nodes (1, 1) through (3, 2) are found to be

A21 � 2A11 þ 0

0:22
þ A12 � 2A11 þ 0

0:22
þ k2cA11

¼ 0 ! A21 þ A12 � (4� 0:22k2c )A11 ¼ 0, (x)

A22 � 2A12 þ 0

0:22
þ 2

0:22
0þ A11

1:5
� A12

0:5

� �
þ k2cA12

¼ 0 ! 4

3
A11 þ A22 � (6� 0:22k2c )A12 ¼ 0, (xi)

A31 � 2A21 þ A11

0:22
þ A22 � 2A21 þ 0

0:22
þ k2cA21

¼ 0 ! A11 þ A31 þ A22 � (4� 0:22k2c )A21 ¼ 0, (xii)

A32 � 2A22 þ A12

0:22
þ 2

0:22
0þ A21

1:5
� A22

0:5

� �
þ k2cA22

¼ 0 ! A12 þ 4

3
A21 þ A32 � (6� 0:22k2c )A22 ¼ 0, (xiii)

2

0:22
0þ A21

1:75
� A31

0:75

� �
þ A32 � 2A31 þ 0

0:22
þ k2cA31

¼ 0 ! 2

1:75
A21 þ A32 � 14

3
� 0:22k2c

� �
A31 ¼ 0, (xiv)

and

2

0:22
0þ A22

1:75
� A32

0:75

� �
þ 2

0:22
0þ A31

1:5
� A32

0:5

� �
þ k2cA32

¼ 0 ! 2

1:75
A22 þ 4

3
A31 � 20

3
� 0:22k2c

� �
A32 ¼ 0: (xv)

For the nontrivial solution of (x) through (xv), the following condition must

hold:

�(4�0:22k2c ) 1 1 0 0 0
4

3
�(6�0:22k2c ) 0 1 0 0

1 0 �(4�0:22 k2c ) 1 1 0

0 1
4

3
�(6�0:22k2c ) 0 1

0 0
2

1:75
0 � 14

3
�0:22k2c

� �
1

0 0 0
2

1:75

4

3
� 20

3
�0:22k2c

� �

���������������������

���������������������
¼ 0:
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Therefore

kc ¼ 7:3239, 9:7062, 11:3689, 11:4024, 13:0609, 14:3398:

These results are compared with the corresponding analytical (exact) values

in Table 11.6.

Finite Difference in Three Dimensions

The preceding formulations can be easily extended to three-dimensional problems.

The FD molecule will now have seven nodes as shown in Figure 11.10. The squares

generated by the uniform grid in 2D area become cubes to represent the volume in

TABLE 11.6 Comparison of the Results of Example 11.6

kc with 6

Partitions of

Figure 11.8

kc with 12

Partitions of

Figure 11.9 Exact Value

1 6.9282 7.3239 7.55

2 8.9443 9.7062 10.47

3 11.4024 13.25

4 13.0609 15.1

Figure 11.10 3D molecule as the finite-difference molecule.
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3D. The finite-difference approximation for the added term may be found as follows:

@2f

@z2
� fi, j, kþ1 � 2fi, j, k þ fi, j, k�1

D2
: (11:1:26)

Therefore

r2f � fiþ1, j, k þ fi�1, j, k þ fi, jþ1, k þ fi, j�1, k þ fi, j, kþ1 þ fi, j, k�1 � 6fi, j, k

D2
:

(11:1:27)

Laplace’s equation in three dimensions gives

fi, j, k ¼
fiþ1, j, k þ fi�1, j, k þ fi, jþ1, k þ fi, j�1, k þ fi, j, kþ1 þ fi, j, k�1

6
: (11:1:28)

Similarly (11.1.22) through (11.1.25) can be extended for three-dimensional finite-

difference problems.

Finite Difference at the Interface of Two Dielectrics

Up to this point we considered the situation where the region is uniform. However,

there are many practical situations that involve more than one dielectric media. This

kind of situation is depicted in Figure 11.11. We would like to find ways to handle

Figure 11.11 Mesh with nodes at the interface of two dielectrics.
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such cases. Therefore we start with Gauss’s law for a charge-free region as follows:

r � ~D ¼ r ! r� ~D ¼ 0: (11:1:29)

For the two-dimensional case, (11.1.29) reduces to

@Dx

@x
þ @Dy

@y
¼ 0: (11:1:30)

As Figure 11.11 indicates, the problem assumes a uniform grid with 1r1 and 1r2 as
the dielectric constants of the two media. Further the electric flux densities above

and below the interface are assumed to be Dy
þ and Dy

2, respectively. Therefore

Dþ
y ¼ 1o1r1Ey �

�1o1r1(fi, jþ1 � fi, j)

D
(11:1:31)

and

D�
y ¼ 1o1r2Ey �

�1o1r2(fi, j � fi, j�1)

D
: (11:1:32)

Using (11.1.31) and (11.1.32), we find that

@Dy

@y
� Dþ

y � D�
y

D
¼ � 1o

D2
1r1(fi, jþ1 � fi, j)� 1r2(fi, j � fi, j�1)
� 


: (11:1:33)

A similar expression can be formulated for the x direction provided that 1r at node
points (i2 1, j) and (iþ 1, j) is known. If we assume, for the time being, that it is

1r3, then

@Dx

@x
� � 1o1r3

D2
(fiþ1, j þ fi�1, j � 2fi, j): (11:1:34)

Substituting (11.1.33) and (11.1.34) into (11.1.30), we find that

�fi, j(1r1 þ 1r2 þ 21r3)þ 1r1fi, jþ1 þ 1r2fi, j�1 þ 1r3(fiþ1, j þ fi�1, j) ¼ 0,

or

fi, j ¼
1r1fi, jþ1 þ 1r2fi, j�1 þ 1r3(fiþ1, j þ fi�1, j)

1r1 þ 1r2 þ 21r3
: (11:1:35)

11.1 FINITE-DIFFERENCE METHODS 437



If it is assumed that the node potentials along the x-axis contribute an equal amount

to fi, j as those along the y-axis, then (11.1.35) gives

1r1fi, jþ1 þ 1r2fi, j�1 ¼ 1r3(fi�1, j þ fiþ1, j):

Therefore

1r3 ¼
1r1fi, jþ1 þ 1r2fi, j�1

fi�1, j þ fiþ1, j

: (11:1:36)

A further simplification is possible if we assume that the potentials at adjacent nodes

are similar. In that case (11.1.36) reduces to

1r3 ¼ 1r1 þ 1r2
2

: (11:1:37)

Finite-Difference Time-Domain Method

The finite-difference time-domain (FDTD) method has been used to solve a number

of electromagnetic problems. We consider here the solution to the following wave

equation in one spatial dimension and the time:

@2Ex(z, t)

@t2
¼ v2

@2Ex(z, t)

@z2
: (11:1:38)

The associated boundary conditions are

Ex(x ¼ 0, t) ¼ f1(t) (11:1:39)

and

Ex(x ¼ d, t) ¼ f2(t): (11:1:40)

Further the solution must satisfy the following initial conditions:

Ex(z, t ¼ 0) ¼ g1(z) (11:1:41)

and

@Ex(z, t)

@t

����
t¼0

¼ g2(z): (11:1:42)
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To set up the finite-difference method, we select a space-step size D . 0 and time-

step size d . 0. With M space and N time partitions, we have

D ¼ d

M
(11:1:43)

and

d ¼ t

N
: (11:1:44)

Therefore the grid points (zk, tn) in space and time are defined by

zk ¼ kD, k ¼ 0, 1, 2, . . . ,M, (11:1:45)

and

tn ¼ nd, n ¼ 0, 1, 2, . . . , N: (11:1:46)

Following (11.1.4), (11.1.38) is quantized in time and space to find

Ex(k, nþ 1)� 2Ex(k, n)þ Ex(k, n� 1)

d2

� v2
Ex(k þ 1, n)� 2Ex(k, n)þ Ex(k � 1, n)

D2
¼ 0,

or

Ex(k, nþ 1)� 2Ex(k, n)þ Ex(k, n� 1)

¼ j2fEx(k þ 1, n)� 2Ex(k, n)þ Ex(k � 1, n)g, (11:1:47)

where

j ¼ vd

D
: (11:1:48)

Rearranging (11.1.47), we find that

Ex(k, nþ 1) ¼ 2(1� j2)Ex(k, n)� Ex(k, n� 1)

þ j2fEx(k � 1, n)þ Ex(k þ 1, n)g: (11:1:49)

Equation (11.1.49) holds for each k ¼ 1, 2, . . . , (M2 1) and n = 1, 2, . . . . For k ¼ 0

and M, Ex is known from the boundary conditions (11.1.39) and (11.1.40), which
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give

Exð0, nÞ ¼ f1(nd) (11:1:50)

and

Ex(M, n) ¼ f2(nd): (11:1:51)

Equation (11.1.49) can be used to find Ex at all internal space nodes at tn ¼ (n þ 1)d
that can be expressed in matrix form as follows:

Ex(1, nþ 1)

Ex(2, nþ 1)

..

.

..

.

Ex(M � 1, nþ 1)

2
6666664

3
7777775

¼

2(1� j 2) j 2 0 � � � 0

j 2 2(1� j 2) j 2 . .
. ..

.

0 . .
. . .

. . .
.

0

..

. . .
. . .

. . .
.

j2

0 � � � 0 j 2 2(1� j 2)

2
66666664

3
77777775

�

Ex(1, n)

Ex(2, n)

..

.

..

.

Ex(M � 1, n)

2
6666664

3
7777775
�

Ex(1, n� 1)

Ex(2, n� 1)

..

.

..

.

Ex(M � 1, n� 1)

2
6666664

3
7777775
(11:1:52)

Thus Ex at the kth node in space and at 2dth time step can be found if its values for

tn ¼ 0 and d are known. Initial conditions (11.1.41) and (11.1.42) provide the data.

From (11.1.41), we find that

Ex(k, 0) ¼ g1(zk) ¼ g1(kD), k ¼ 1, 2, . . . , (M � 1): (11:1:53)

Instead of using (11.1.42) directly, the following procedure may be adopted to

minimize the error in Ex(k, 1). From the Taylor series expansion

Ex(z, d) ¼ Ex(z, 0)þ d
@Ex(z, t)

@t

�����
(z, 0)

þ d2

2!

@2Ex(z, t)

@t2

�����
(z, 0)

þ � � � ,

we find that

Ex(z, d) � Ex(z, 0)þ d
@Ex(z, t)

@t

�����
(z, 0)

þ v2d2

2D2
Ex(zþ D, 0)� 2Ex(z, 0)þ Ex(z� D, 0)f g,
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or

Ex(k, 1) � Ex(k, 0)þ g2(k)dþ v2d2

2D2
fEx(k þ 1, 0)� 2Ex(k, 0)þ Ex(k � 1, 0)g:

Therefore

Ex(k, 1) � (1� j2)Ex(k, 0)

þ j 2

2
fEx(k þ 1, 0)þ Ex(k � 1, 0)g þ g2(k)d: (11:1:54)

Thus a computer program can be developed using (11.1.52) through (11.1.54) to find

Ex at various nodes in space successively beginning with initial two time steps. It can

be proved that this process is stable for j � 1. In order to investigate the conditions

under which the finite-difference approximation will provide reasonable accuracy,

we consider one set of continuous solutions of the wave equation (11.1.38) as

follows:

E(z, t) ¼ cos vt � v

v
z

� �
: (11:1:55)

The corresponding discrete solution can be written as follows:

E(k, n) ¼ cos nvd� v

v
kD

� �
: (11:1:56)

Using (11.1.55), (11.1.56), and (11.1.38), we find that

@2E(z, t)

@z2
¼ � v

v

� �2
cos vt � v

v
z

� �
(11:1:57)

and

E(k þ 1, n)� 2E(k, n)þ E(k � 1, n)

D2
¼ 2

D2
cos

v

v
D

� �
� 1

n o
cos vnd� v

v
kD

� �
:

(11:1:58)

On comparing (11.1.57) and (11.1.58), we conclude that the following condition

must hold for the approximation to be valid:

cos
v

v
D

� �
� 1 ¼ �v2D2

2v2
: (11:1:59)
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Note that (11.1.59) has the first two terms of the cosine series expansion given as

follows:

cos(x) ¼
X1
k¼0

(�1)k
x2k

(2k)!
¼ 1� x2

2
þ x4

24
� � � �:

Thus for (vD/v)max ¼ 0.35 (i.e., D/l � 0.0557) the error in the approximation will

be less than 1%. This means that we should have at least 18 points per wavelength. A

similar analysis for the time derivative indicates that with (vd)max ¼ 0.35, the

approximation will be good to 1%, which is automatically satisfied if j is less

than 1 for stability. This can be verified using (11.1.48) as follows:

vd ¼ v
jD

v
¼ j

vD

v
:

The following example illustrates the procedure.

Example 11.7

Use the FDTD technique to solve the wave equation

@2E(z, t)

@t2
¼ 4

@2E(z, t)

@z2
, 0 , z , 1, t . 0:

The solution satisfies the following boundary and initial conditions:

E(0, t) ¼ E(1, t) ¼ 0,

E(z; 0) ¼ sin (pz); 0 � z � 1,

and

@E(z; t)

@t

����
ðz;0Þ

¼ 0; 0 � z � 1

Compare the results at t ¼ 0.1 s for j ¼ 0.5, 1, and 2.

The exact solution to this wave equation is found to be

E(z; t) ¼ sin(pz) cos(2pt):

E (z, 0.1) was computed using (11.1.52) through (11.1.54) for three different j,
and the space step D ¼ 0.1. The results are compared in Table 11.7.

Note that the numerical results are identical to the corresponding exact values

for j at 0.5. There are slight differences at 7th decimal place in some cases when j
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is increased to 1. Further deviations are found for j at 2. The space step is 0.1 in

all computations, and therefore the time step d increases with j.

Maxwell’s Equations in FDTD

Two curl equations of the set can be expanded as follows:

r � ~E ¼ � @~B

@t
!

@Bx

@t
¼ @Ey

@z
� @Ez

@y

@By

@t
¼ @Ez

@x
� @Ex

@z
@Bz

@t
¼ @Ex

@y
� @Ey

@x

8>>>>>>><
>>>>>>>:

(11:1:60)

and

r � ~H ¼ ~J þ @ ~D

@t
!

@Dx

@t
¼ @Hz

@y
� @Hy

@z
� Jx

@Dy

@t
¼ @Hx

@z
� @Hz

@x
� Jy

@Dz

@t
¼ @Hy

@x
� @Hx

@y
� Jz:

8>>>>>>><
>>>>>>>:

(11:1:61)

For simplicity, assume that only the Ex and Hy field components are present (i.e., Ey,

Ez, Hx, and Hz are zero) in a lossless, isotropic, linear, and source-free medium.

Further these field components vary only with space variable z and time t. Therefore

(11.1.60) and (11.1.61) reduce to

@Hy

@t
¼ � 1

m

@Ex

@z
(11:1:62)

TABLE 11.7 Comparison of the Results of Example 11.7

z

FD Solution

t ¼ 0.1, j ¼ 1

Exact Solution

t ¼ 0.1

FD Solution

t ¼ 0.1, j ¼ 2

FD Solution

t ¼ 0.1, j ¼ 0.5

0 0 0 0 0

0.1 0.25 0.25 0.2485196 0.25

0.2 0.4755283 0.4755283 0.4727121 0.4755283

0.3 0.6545085 0.6545085 0.6506327 0.6545085

0.4 0.7694209 0.7694209 0.7648644 0.7694209

0.5 0.8090169 0.809017 0.804226 0.809017

0.6 0.7694209 0.7694209 0.7648646 0.7694209

0.7 0.6545084 0.6545085 0.6506323 0.6545085
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and

@Ex

@t
¼ � 1

1

@Hy

@z
: (11:1:63)

Note that if (11.1.62) is differentiated with respect to the space variable z one more

time and then (11.1.63) is substituted, the wave Equation (11.1.38) results. Thus we

find that these two first-order partial differential equations replace one second-order

partial differential equation. Further (11.1.62) and (11.1.63) are considered to define

Ex and Hy at the same space and time point (z, t). However, this is not the case

with the finite-difference equations. As illustrated in Figure 11.12, when the derivative

of Ex is taken with respect to z for the right-hand side of (11.1.62), Hy is considered to

be located between those two space points. For the left-hand side, the derivative of Hy

with respect to time should be evaluated about that instant. Therefore (11.1.62) trans-

forms to

Hkþ0:5, nþ0:5 � Hkþ0:5, n�0:5

d
¼ � 1

m

Ekþ1, n � Ek, n

D
: (11:1:64)

Following similar considerations, (11.1.63) gives

Ek, nþ1 � Ek, n

d
¼ � 1

1

Hkþ0:5, nþ0:5 � Hk�0:5, nþ0:5

D
: (11:1:65)

Equation (11.1.64) corresponds to the continuous Equation (11.1.62) at

(kþ 0.5, n), whereas (11.1.65) corresponds to (11.1.63) at (k, nþ 0.5). The initial

conditions can be imposed as values of E for n ¼ 0 and as values of H for n ¼ 0.5.

The preceding concept is extended for the three-dimensional case using a unit

cell as shown is Figure 11.13. This is called the Yee’s cell, named after the

Figure 11.12 Nodes for Maxwell’s equation in one spatial dimension and instant in time.
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researcher who first proposed it.� The finite-difference equations for (11.1.60)

and (11.1.61) can be found via this method. The first of each of the equations

transform to

Bnþ0:5
x(i;jþ0:5, kþ0:5) � Bn�0:5

x(i;jþ0:5, kþ0:5)

d
¼ En

y(i;jþ0:5, kþ1) � En
y(i;jþ0:5, k)

D

� En
z(i, jþ1, kþ0:5) � En

z(i, j, kþ0:5)

D
(11:1:66)

and

Dn
x(iþ0:5, j, k) �Dn�1

x(iþ0:5, j, k)

d
¼Hn�0:5

z(iþ0:5, jþ0:5, k)�Hn�1
z(iþ0:5, j�0:5, k)

D

�Hn�0:5
y(iþ0:5, j, kþ0:5)�Hn�0:5

y(iþ0:5, j, k�0:5)

D
� Jn�0:5

x(iþ0:5, j, k): (11:1:67)

Similar equations can be found for other equations as well. The interested reader can

find details in the reference books listed in the section Selected Reference Books.

Figure 11.13 Finite-difference scheme (Yee’s cell) for Maxwell’s equations in 3D.

�K. S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in

Isotropic Media,” IEEE Trans. Antennas Prop.: 14, 302–307, May 1966.
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11.2 METHOD OF MOMENTS

This section begins with a brief introduction to the linear operator notation because

it provides a most convenient way to describe the method of moments. The concepts

of linear function space are summarized along with the inner product suitable for the

application. A large class of linear operator equations can be solved by this method.

It is especially useful in solving integral equations that arise in the areas of electro-

magnetic radiation and scattering. After classifying the integral equations, the sol-

ution procedure is summarized.

Linear Operator Notation

Linear differential and integral operator equations can be expressed using the linear

operator L as follows:

L{ f (x)} ¼ g(x); a � x � b: (11:2:1)

By definition,

L{a f (x)þ b h(x)} ¼ aL{ f (x)}þ bL{h(x)}: (11:2:2)

The method of moments is most conveniently described in the notation of linear

function spaces with an appropriately defined inner product. In the present simplistic

specialization it is assumed that

. Elements { fn} of the function space L are defined with the domain spanning

the interval a � x � b.

. Elements of L are continuous, differentiable, and integrable such that they

belong to the domain or the range of the linear operator.

. The linear inner product k f, gl between the elements of L is defined by the

properties

h f ; gi ¼ hg; f i;
ha f þ b g; hi ¼ ah f ; hi þ bhg; hi;

and

h f ; f �i ¼ . 0; for f = 0;

0; if f ¼ 0:

�

A suitable inner product for the space of integrable functions is frequently

h f ; gi ¼
ðb
a

w(x) f (x)g(x)dx; (11:2:3)

where w(x) is a weighting function, often equal to 1.
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Classification of Integral Equations

An integral equation (IE) in the domain a � x � b can be expressed as follows:

ðb
a

f (x0)K(xjx0) dx0 ¼ g f (x)þ g(x); (11:2:4)

where K xjx0ð Þ is called the kernel of the integral equation, g xð Þ is the driving source

or the excitation function, g is a constant parameter, and f x0ð Þ is the unknown

response.

Integral equations are classified as follows:

. If one of the integration limits in (11.2.4) is the variable x, then it is called the

Volterra integral equation; otherwise, it is known as the Fredholm integral

equation.

. If g in (11.2.4) is zero, then it is an integral equation of the first kind; otherwise,

if g is not zero, it is an integral equation of the second kind.

. For a zero g(x) in (11.2.4), the integral equation is homogeneous; it is inhomo-

geneous (forced) if g(x) is not zero.

The linear integral operator equation (11.2.4) can be expressed in inner product

notation as follows:

h f (x0);K(x j x0)i ¼ g f (x)þ g(x); (11:2:5)

with f and K in the domain, and f and g in the range of L.

The procedure used to solve a linear operator equation (11.2.1) via the method of

moments can be summarized as follows: The unknown function f (x) is expanded

using an appropriate set of expansion functions (or basis functions):

f (x) ¼
XN
n¼1

an fn(x); (11:2:6)

where { fn(x)} is a complete set of appropriate functions if N ¼ 1, or an appropriate

set to approximate f (x) if N is finite.

On substituting (11.2.6) into (11.2.1), we find that

L{ f (x)} ¼ L
XN
n¼1

an fn(x)

( )
¼
XN
n¼1

anL{ fn(x)} ¼ g(x): (11:27)

Note that (11.2.7) involves N unknown expansion coefficients an, and it should be

satisfied continuously for all x in the range. The latter requirement can be satisfied

only for N !1. If N is finite for an approximate solution, the operator equation
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must be discretized to allow the evaluation of an. For that, {wm(x)} is selected as an

appropriate set of weighting or testing functions in the range of L. On discretizing,

the original operator equation transforms to

wm;
XN
n¼1

anL{ fn}

* +
¼
XN
n¼1

anhwm;L{ fn}i ¼ hwm; gi; m ¼ 1; 2; . . . ;N;

ð11:2:8Þ

or

XN
n¼1

lmnan ¼ gm; m ¼ 1; 2; . . . ;N; (11:2:9)

where

lmn ¼ hwm; L{ fn}i (11:2:10)

and

gm ¼ hwm; gi: (11:2:11)

Special Cases

1. If a weighting function wn and an expansion function fn are the same, the

general moment method is known as Galerkin’s method.

2. If { fn} are eigenfunctions of L such that Lf fng ¼ ln fn and wn ¼ fn, then

XN
n¼1

anln fm; fn
� � ¼ fm; g

� �
:

If { fn} are ortho-normal with k fm, fnl ¼ dmn the Kronecker delta, such that

dmn ¼ 1; for n ¼ m,

0; for n = m,

�

then

am ¼ h fm; gi
lm

: (11:2:12)

If { fn} are complete, an exact solution of (11.2.1) is obtained as N !1.
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3. If the Dirac delta functions (see Appendix B) are selected as the weighting

functions such that wm ¼ d(x2 xm), then discretization of the continuous

operator equation corresponds to point-matching it at N discrete points

x ¼ xm, that is,

lmn ¼ d(x� xm), L fn
� 
� � ¼ L fn

� 
����
x¼xm

(11:2:13)

and

gm ¼ hd(x� xm), gi ¼ g(xm): (11:2:14)

Example 11.8

A 1 m long conducting wire is held at an electrical potential of 1 V. Its radius is

1 mm. Use the method of moments to find electrical charge distribution on it.

Consider the geometry of a thin straight wire as shown in Figure 11.14. The

wire’s radius a is assumed to be very small in comparison with length h

(a 
 h). Since it is desired to find the charge distributionwhen it is at 1Vpotential,

we need an integral equation to relate the electrical potential with the charge. We

find a relation in Appendix B (equation B.35) that can be specialized for this case:

fe(~r) ¼
1

4p1

ð
v

rev
e�jkR

R
dv0 ! fe(r; z) ¼

1

4p1

ð
s

res
R

ds0,

or

ð
s

res(a; z
0)

R
ds0 ¼ 4p1ofe(r; z), (i)

Figure 11.14 Geometry of a wire.
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where

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ (z� z0)2

q
: (ii)

We find that it is a Fredholm integral equation of the first kind that can be

solved using the method of moments as follows: The length of the wire is divided

into N partitions with Dn as the interval along z spanning the nth partition. Further

we can assume that the charge density res changes only from one to the other

partition (i.e., it is uniform on a given partition). In other words, the unknown

surface charge density can be expressed in terms of the pulse expansion functions

as follows:

res(a; z
0) ¼

XN
n¼1

an, pn(z
0); (iii)

where

pn(z
0) ¼ 1, z0 on Dn,

0, otherwise,

�
(iv)

and

D ¼ h

N
: (v)

Therefore the integral equation (i) transforms to

XN
n¼1

an

ð
Dn

ds0

R
¼ 4p1ofe(r; z), (vi)

where

ð
Dn

ds0

R
¼
ð2p
f0¼0

ðznþD=2

z0¼zn�D=2

adf0dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ (z� z0)2

p ¼ 2p a

ðznþD=2

zn�D=2

dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ (z� z0)2

p :

The remaining integral can be evaluated, with the help of integration formula

13 of Appendix A, as follows:

ð
Dn

ds0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ (z� z0)2

p ¼ 2pa ln
z� zn þ (D=2)þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ z� zn þ (D=2)

� 
2q
z� zn � (D=2)þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ z� zn � (D=2)

� 
2q
2
64

3
75:
(vii)
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We now have (vi) with unknown coefficients an, n ¼ 1, 2, . . . , N. Since res is a
continuous function of z, we enforce this relation on each partition to find N alge-

braic equations. This process is known as point-matching. Mathematically we

take the inner product of (vi) with the delta function as follows:

d(z� zm);
XN
n¼1

an

ð
Dn

ds0

R

* +
¼
XN
n¼1

d(z� zm); an

ð
Dn

ds0

R

� �

¼ d(z� zm); 4p1ofe(r; z)
� �

; m ¼ 1; 2; . . . ;N,

or

XN
n¼1

lmnan ¼ gm, m ¼ 1; 2; . . . ;N, (viii)

where

lmn ¼ d(z� zm); an

ð
Dn

ds0

R

� �
(ix)

and

gm ¼ hd(z� zm); 4p1ofe(r; z)i ¼ 4p1ofe(r; zm) ¼ 4p1o: (x)

From (vii) and (ix) we find that

lmn ¼ 2pa ln
zm � zn þ (D=2)þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ zm � zn þ (D=2)

� 
2q
zm � zn � (D=2)þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ zm � zn � (D=2)

� 
2q
2
64

3
75: (xi)

For m ¼ n, (xi) reduces to

lmm � 4pa ln (D=a): (xii)

If m = n, then (xi) can be approximated to

lmn ¼ 2pa ln
jzm � znj þ D=2

jzm � znj � D=2

� �
: (xiii)

Since zm ¼ (2m� 1)D=2, m ¼ 1, 2, . . . ,N, and zn ¼ (2n� 1)D=2,
n ¼ 1, 2, . . . ;N, we find that jzm � znj ¼ jm� njD. Therefore (xiii) reduces to

lmn ¼ 2pa ln
jm� njDþ D=2

jm� njD� D=2

� �
: (xiv)
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Thus the length D of the partition is found from (v) for a given N. lmn for (viii)

is found from (xii) if m ¼ n; otherwise, (xiv) is used for it. gm is evaluated from

(x). This facilitates determination of an, the distribution of charge.

Following this procedure for the given problem, we find that D ¼ 1/3 m for

N ¼ 3, and therefore

a1
a2
a3

2
4

3
5 ¼

2 � ln 1000

3

� �
ln (3) ln

5

3

� �

ln (3) 2 � ln 1000

3

� �
ln (3)

ln
5

3

� �
ln (3) 2 � ln 1000

3

� �

2
66666664

3
77777775

�1

20001o
20001o
20001o

2
4

3
5

¼
151:90251o
143:41501o
151:90251o

2
4

3
5:

As expected, the charge distribution on the wire is symmetrical about the middle

partition. Recall that an is the amplitude of the pulse and represents the charge

density on the nth partition. This can be exploited to minimize the use of comput-

ing resources. For example, if N ¼ 5 is desired, then a1 ¼ a5 and a2 ¼ a4, and

only three coefficients are unknown. Since D ¼ 1/5 in this case, using (viii),

we find that

a1

a2

a3

2
64

3
75 ¼

2 � ln (200)þ ln
9

7

� �
ln (3)þ ln

7

5

� �
ln

5

3

� �

ln (3)þ ln
7

5

� �
2 � ln (200)þ ln

5

3

� �
ln (3)

2 � ln 5

3

� �
2 � ln (3) 2 � ln 1000

3

� �

2
66666664

3
77777775

�1

�
20001o

20001o

20001o

2
64

3
75 ¼

158:38001o

145:42141o

143:31601o

2
64

3
75:

Similarly D ¼ 1/9 for N ¼ 9, and following the procedure, the coefficients are

found to be

a1 ¼ a9 ¼ 167:6894 1o,

a2 ¼ a8 ¼ 150:6483 1o,

a3 ¼ a7 ¼ 145:8831 1o,

a4 ¼ a6 ¼ 143:8210 1o,
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and

a5 ¼ 143:2204 1o:

Thus, for even shorter D, a program can easily be developed to find the charge

distribution using a computer.

11.3 SCATTERING OF PLANAR EM WAVES FROM

AN INFINITELY LONG CYLINDER

As was mentioned in the preceding section, the method of moments is commonly

employed to analyze radiation and scattering problems. In this section we consider

the scattering of an incident electromagnetic plane wave on an infinitely long cylin-

der of arbitrary cross-sectional shape. We begin with the formulation of an electric

field integral equation (EFIE) that can be solved via the method of moments.

When an infinitely long cylinder is excited in such a manner that its induced cur-

rent and charge are independent of the location along its axis, the problem becomes

two dimensional. All field quantities are independent of the axial coordinate in such

cases. The appropriate geometry of the problem is shown in Figure 11.15. From the

notations shown in this figure, the position vectors for the field and source points are

~r ¼ ~r þ zẑ (11:3:1)

and

~r0 ¼ ~r 0 þ z0ẑ: (11:3:2)

Figure 11.15 Geometry of the problem.
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Therefore the distance R from source point to field point is

R ¼ j~r � ~r0j ¼ j(~r � ~r 0)þ (z� z0)ẑj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~r � ~r 0j2 þ (z� z0)2

q
(11:3:3)

Since all the fields are independent of axial coordinate z, @/@z ¼ 0, and therefore the

differential operator r reduces to transverse del, rt, as follows:

r ¼ rt þ ẑ
@

@z
! rt

The electric and magnetic field expressions, (6.2.9) and (6.2.8), respectively,

reduce to

~E(~r) ¼ �rtfe(~r)� jv~A(~r) (11:3:4)

and

~H(~r) ¼ 1

m
rt � ~A(~r): (11:3:5)

Next the general expressions (B.33) and (B.35) found for the magnetic vector and

electric scalar potentials in free space (in Appendix B) can be simplified:

~A(~r) ¼ m

4p

ð
V

~J(~r 0)
e�jkR

R
dv0 (B:33)

and

fe(~r) ¼
1

4p1o

ð
V

r(~r 0)
e�jkR

R
dv0 : (B:35)

Since the z0 dependence of integrands in (B.33) and (B.35) is known, the integrals
along z0 can be carried out leaving only 2D potential integrals as follows:

~A(~r) ¼ m

4p

ð
c:s:

ds0~J(~r 0)
ð1
�1

e�jk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~r�~r 0jþ(z�z0)

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~r � ~r 0j2 þ (z� z0)

p dz0 (11:3:6)

and

fe(~r) ¼
1

4p1

ð
c:s:

ds0r(~r 0)
ð1
�1

e�jk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~r�~r 0 jþ(z�z0)

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~r � ~r 0j2 þ (z� z0)

p dz0 (11:3:7)
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Hence we find that the following integral is common in both relations. It can be

evaluated as

I(~r � ~r 0) ¼
ð1
�1

e�jk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~r�~r 0 jþ(z�z0)

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~r � ~r 0j2 þ (z� z0)

p dz0: (11:3:8)

If we change the variable, then its integration limits are affected as follows: For

(z2 z0) ¼ u,

dz0 ¼ �du, z0 ¼ �1 ! u ¼ 1, and z0 ¼ 1 ! u ¼ �1:

Therefore (11.3.8) can be written as follows:

I(~r � ~r 0) ¼
ð1
�1

e�jk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~r�~r 0j2þu2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~r � ~r 0j2 þ u2

p du ¼ 2

ð1
0

e�jk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~r�~r 0 j2þu2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~r � ~r 0j2 þ u2

p du (11:3:9)

This integral can be evaluated using scientific software with a symbolic engine.

Alternatively, one can use a mathematical handbook, such as Gradshteyn and

Ryzhik’s Tables of Integrals.� For example,

ð1
0

e�b
ffiffiffiffiffiffiffiffiffiffi
j 2þu 2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j 2 þ u 2

p cos(au)du ¼ K0 j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q� �
, (11:3:10)

where K0(z) is the modified Bessel function of the second kind with order zero and

generally complex argument z.

For a ¼ 0, b ¼ jk, and j ¼ j~r � ~r 0j we get j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
¼ jkj~r � ~r 0j. Using

formula (C.36) from Appendix C, we find that

Ið~r � ~r 0Þ ¼ �jpH(2)
0 (kj~r � r0j): (11:3:11)

Therefore (11.3.6) and (11.3.7) simplify to

~A(~r) ¼ �j
m

4

ð
c:s:

~J(~r 0)H(2)
0 (kj~r � ~r 0j)ds0 (11:3:12)

and

fe(~r) ¼ � j

41

ð
c:s:

r(~r 0)H(2)
0 (kj~r � ~r 0j)ds0: (11:3:13)

�See T. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products, Academic Press, 1980,

p. 498, entry 3.961-2.
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From (11.3.12) and (11.3.13), Green’s function G(~r j~r 0) for a 2D Helmholtz

equation can be identified as

G(~r j~r 0) ¼ � j

4
H

ð2Þ
0 (kj~r � ~r 0j): (11:3:14)

Therefore the potential functions can be expressed in terms of the Green function

(see Appendix B) as

~A(~r) ¼
ð
c:s:

m~J(~r 0)G(~r j~r 0)ds0

and

fe(~r) ¼
ð
c:s:

r(~r 0)
1

G(~r j~r 0)ds0:

On substituting (11.3.12) and (11.3.13) into (11.3.4), we have

~E(~r) ¼ j

4

ð
c:s:

r(~r 0)
1

rt{H
(2)
0 (kj~r � ~r 0j)}þ jvm~J(~r 0)H(2)

0 (k j ~r � ~r 0j)
� �

ds0: (11:3:15)

From the continuity equation we have

r0
t � ~J(~r 0) ¼ �jvr(~r 0) ! r(~r 0) ¼ j

v
r0

t � ~J(~r 0):

Therefore (11.3.15) can be expressed as follows:

~E(~r) ¼ � 1

4v1

ð
c:s:

({r0
t � ~J(~r 0)}rt þ k2~J(~r 0))H(2)

0 (kj~r � ~r 0j)ds0: (11:3:16)

Similarly from (11.3.5) and (11.3.12) we find that

~H(~r) ¼ 1

m
rt � ~A(~r) ¼ � j

4

ð
c:s:

rt � {~J(~r 0)H(2)
0 (kj~r � ~r 0j)}ds0,

or

~H(~r) ¼ � j

4

ð
c:s:

½H(2)
0 (kj~r � ~r 0j)rt � ~J(~r 0)þ rtH

(2)
0 (kj~r � ~r 0j)� ~J(~r 0)�ds0:

The first term of the integrand is zero because the curl operation requires

derivatives with respect to the unprimed coordinates, whereas the current density
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is a function of only the primed coordinates. Therefore

~H(~r) ¼ j

4

ð
c:s:

~J(~r 0)�rtH
(2)
0 (kj~r � ~r 0j)ds0: (11:3:17)

Thus (11.3.16) and (11.3.17) can be used to find the fields produced by the current

density ~J(~r 0).

Formulation of the Integral Equation for 2D Scattering from

Cylinders of Arbitrary Cross-sectional Shape

The preceding analysis is used for formulating an integral equation to study the scat-

tering of electromagnetic fields from perfectly conducting, infinitely long cylinders

of arbitrary cross-sectional shape. The moments method is then used to solve the

integral equation for the unknown surface current induced on the cylinder. Electro-

magnetic fields anywhere in space can be easily found once the surface current

distribution is found. Here we consider the case where the electric field of an

incident uniform plane wave is along the axis of the cylinder (i.e., the TMz

wave). A similar procedure can be used for the case where the magnetic field of

this wave is along the axis of the cylinder (i.e., the TEz wave).

Consider an axially polarized incident (impressed) electric field ~Ei ¼ ẑEi
z(~r) that

illuminates an infinite cylinder of arbitrary cross-sectional shape, as illustrated in

Figure 11.16. The induced currents excited on the cylinder maintain a scattered field
~Es(~r), and therefore the total electric field outside the cylinder is given as follows:

~E(~r) ¼ ~Ei(~r)þ ~Es(~r): (11:3:18)

Figure 11.16 Cross section of an infinitely long cylinder illuminated by the TMz wave.
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The boundary conditions on the conducting cylinder require that for all ~r on G,

ẑ � ~E(~r) ¼ ẑ � {~Ei(~r)þ ~Es(~r)} ¼ 0:

Therefore

Es
z(~r) ¼ �Ei

z(~r)
��
~r onG

: (11:3:19)

Since

1

v1
¼

ffiffiffiffi
m

p
v

ffiffiffiffi
m

p
1
¼ 1

v
ffiffiffiffiffiffi
m1

p
ffiffiffiffi
m

1

r
¼ z

k
,

where z is the intrinsic impedance of the medium, and

~J(~r 0) ¼ ~K(~r 0)d(~r 0 � ~rG)

as the volume density of surface current on the perfectly conducting cylinder, (11.3.16)

gives

~Es(~r) ¼ � z

4k

þ
G

r0
t � ~K(~r 0)rt þ k2 ~K(~r 0)

h i
H(2)

0 (kj~r � ~r 0j) d‘0: (11:3:20)

Note from (11.3.19) that only the z component of the scattered field ~Es is required to

satisfy the boundary condition. It is expected that only the z component of the induced

surface current K will be excited, and it becomes clear that ~K ¼ ẑKz is adequate to

maintain the required ~Es
z. Therefore

Es
z(~r) ¼ ẑ � ~Es(~r) ¼ � z

4k

þ
G

½{r0
t � ~K(~r 0)}ẑ �rt þ k2Kz(~r

0)�H(2)
0 (kj~r � ~r 0j) d‘0,

or

Es
z(~r) ¼ � zk

4

þ
G

Kz(~r
0)H(2)

0 (kj~r � ~r 0j) d‘0: (11:3:21)

Hence it is concluded that the induced surface current capable of satisfying the

boundary condition is

~K(~r 0) ¼ ẑKz(~r
0):

Furthermore, since r0
t � ~K(~r 0) ¼ 0 in this case, no transverse components of ~Es are

excited.
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Integral Equation for the Surface Current on the Cylinder

Using the boundary condition (11.3.19) and the expression (11.3.21) for a scattered

field, we find that the following relation must hold for all ~r on the boundary G:

z k

4

þ
G

Kz(~r
0)Hð2Þ

0 (k ~r � ~r 0�� ��) d‘0 ¼ Ei
z(~r), (11:3:22)

for ~r on the boundary G. In (11.3.22) the surface current Kz is unknown and can be

found after solving the equation. A comparison of this equation with (11.2.4) indi-

cates that it is a Fredholm integral equation of the first kind. It can be solved via the

method of moments as follows.

As indicated in Figure 11.17a, the boundary contour G is partitioned into N total

number of partitions with DGn as the interval along G spanning the nth partition.

The unknown surface current is expressed in terms of a pulse expansion function

as follows:

Kz(~r
0) ¼

XN
n¼1

anpn(~r
0), (11:3:23)

where

pn(~r
0) ¼ 1, ~r 0 on DGn,

0, otherwise :

�
(11:3:24)

Figure 11.17 Geometry of the partitioned boundary with source and field points (a), and a

special case where the source and field points are on the same partition (b).
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Therefore (11.3.22) transforms to

z k

4

XN
n¼1

an

ð
DGn

H
ð2Þ
0 (kj~r � ~r 0j) d‘0 ¼ Ei

z(~r) (11:3:25)

for ~r on the boundary G. There are N unknown coefficients an in (11.3.25). To evalu-

ate these coefficients N independent equations are required. To generate a system of

N algebraic equations for these N unknown amplitude coefficients an, n ¼ 1, 2,

3, . . . , N, (11.3.25) is point-matched at N discrete points ~rm, m ¼ 1, 2, 3, . . . , N.
Mathematically we are using the delta function here as the test function. Therefore

(11.3.25) transforms to

XN
n¼1

Amnan ¼ Ei
z(~rm), m ¼ 1, 2, 3, . . . ,N, (11:3:26)

where

Amn ¼ z k

4

ð
DGn

H
ð2Þ
0 (kj~rm � ~r 0j) d‘0 (11:3:27)

Equation (11.3.26) can be written in matrix form as follows:

A11 A12 � � � A1n A1N

A21 A22 � � � A2n A2N

..

. ..
. ..

. ..
. ..

.

Am1 Am2 � � � Amn AmN

AN1 AN2 � � � ANn ANN

2
666666664

3
777777775

a1

a2

..

.

am

aN

2
666666664

3
777777775
¼

Ei
z(~r1)

Ei
z(~r2)

..

.

Ei
z(~rm)

Ei
z(~rN)

2
666666664

3
777777775
: (11:3:28)

Note that the column vector on the right-hand side of (11.3.28) is known from the

incident field. Therefore an can be found from (11.3.28) once the matrix elements

Amn are determined from (11.3.27). There are two distinct situations in evaluation

of matrix elements.

The first case is m = n. In this case, ~r 0 = ~rm in integration over DGn, and there-

fore (11.3.27) can be simplified to

Amn � zkDGn

4
H

ð2Þ
0 (k ~rm � ~rn

�� ��)
¼ zk DGn

4
H

ð2Þ
0 k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xm � xnÞ2 þ (ym � yn)

2

q� �
: (11:3:29)

The second case is m ¼ n. In this case, ~r 0 ¼ ~rm during integration over DGn, and the

integrable singularity of the Hankel function H0
(2)(2) must be handled analytically

as follows.
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As shown in Figure 11.17b, the length DGn is approximated as a straight-line

segment of length Dn centered at ~rm ¼ ~rn. Therefore (11.3.27) gives

Ann ¼ z k

4

ðDn=2

�Dn=2

H
ð2Þ
0 (k uj j)du ¼ z k

4
2

ðDn=2

0

H
ð2Þ
0 (k uj j)du: (11:3:30)

Since the argument of the Hankel function is small, this can be approximated to

H
ð2Þ
0 (z) � 1þ j

2

p
ln

2

kz

� �
,

where

k ¼ eg � 1:781, g ¼ 0:5772156649 � � � ðthe Euler’s constantÞ:

Equation (11.3.30) can be rewritten as follows:

Ann � z k

2

ðDn=2

o

1þ j
2

p
ln

2

kku

� �� �
du: (11:3:31)

For n ¼ 0, the integration formula 30 of Appendix A gives

ð
ln(ax)dx ¼ x ln(ax)� x ¼ x ln a

x

e

� �
:

Therefore the integral of (11.3.31) can be evaluated as follows:

Ann � zk

2

ðDn=2

0

1þ j
2

p
ln

1

k ku=2

� �� �
du ¼ zk

2

ðDn=2

0

1� j
2

p
ln

kku

2

� �� �
du,

or

Ann ¼ zk

2
u� j

2

p
u ln

k ku

2e

� �� �����
u¼Dn=2

u¼0

:

Hence

Ann � z kDn

4
1� j

2

p
ln

k kDn

4e

� �� �
: (11:3:32)

Therefore the matrix elements can now be found via (11.3.29) and (11.3.32).

Induced surface current can then be found via (11.3.28).
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Determination of the Scattered Electric Field

An unknown surface current Kz|n ¼ an on DGn is obtained from (11.3.28), as

discussed above. An efficient numerical method can be employed to solve this

matrix equation. The scattered field Ez
s anywhere in space is found via (11.3.21)

using the now known an as follows:

Es
z(~r) � � z k

4

XN
n¼1

anH
ð2Þ
0 k ~r � ~rn

�� ��� �
DGn ¼ scattered field ðvalid for ~r � GÞ:

(11:3:33)

PROBLEMS

11.1. Using the finite-difference scheme, find the two lowest eigenvalues of a TMz

mode propagating between two conducting parallel plates that are separated

by 60 cm. Compare your results with those obtained analytically in Chapter 6.

11.2. Use the finite-difference scheme to solve the following differential equation:

d2f (x)

dx2
þ 25f ðxÞ ¼ 0:

The solution must satisfy the boundary conditions f (x ¼ 0) ¼ 0 and

f (x ¼ 1) ¼ 4.

11.3. Using the finite-difference scheme, find the lowest eigenvalue of a TEz mode

propagating between two conducting parallel plates that are separated by

75 cm.

11.4. Find the potential distribution inside the space enclosed by four infinitely long

conducting plates arranged as shown in Figure 11.5. The boundary potentials

are as follows: VT ¼ 20 V, VR ¼ 10 V, VB ¼ 0, and VL ¼ 10 V.

11.5. Refer to Example 11.5. Find the potential distribution f(x, y) inside the region
after reducing the horizontal grid to three.

11.6. Find the eigenvalues of a hollow metallic rectangular waveguide operating in

TMz mode. Its cross section is 18.0 � 9.0 inches.

11.7. Use the FDTD technique to solve the following wave equation:

@2E(z, t)

@t2
¼ 9

@2E(z, t)

@z2
, 0 , z , 1; t . 0:

The solution satisfies the following boundary and initial conditions:

E(0, t) ¼ E(1, t) ¼ 0,

E(z, 0) ¼ sin (3pz), 0 � z � 1,
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and

@E(z, t)

@t

����
(z, 0)

¼ 0, 0 � z � 1:

Compare the results at t ¼ 0.1 s for j ¼ 0.5, 1, and 2.

11.8. Use at least 15 partitions to find the charge distribution on the wire considered

in Example 11.8. Compare your results with those found in the example.

11.9. An infinitely long circular cylinder is exposed to a TMz polarized uniform

plane wave propagating along the y-axis. The radius of the cylinder is 2 m,

and the signal frequency is 2.45 GHz. Use the method of moments to find

the electric field at r ¼ 2.5 m, 2.75 m, and 3 m along f ¼ 08, 908, and 1808.
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APPENDIX A

MATHEMATICAL FORMULAS

TRIGONOMETRIC AND OTHER RELATIONS

1. sin (Aþ B) ¼ sinA cosBþ cosA sinB

2. sin (A� B) ¼ sinA cosB� cosA sinB

3. cos (Aþ B) ¼ cosA cosB� sinA sinB

4. cos (A� B) ¼ cosA cosBþ sinA sinB

5. tan (Aþ B) ¼ tanAþ tanB

1� tanA tanB

6. tan (A� B) ¼ tanA� tanB

1þ tanA tanB

7. sin2 Aþ cos2 A ¼ 1

8. tan2 Aþ 1 ¼ sec2 A

9. cot2 Aþ 1 ¼ csc2 A

10. sinAþ sinB ¼ 2 sin
Aþ B

2

� �
cos

A� B

2

� �

11. sinA� sinB ¼ 2 cos
Aþ B

2

� �
sin

A� B

2

� �

12. cosAþ cosB ¼ 2 cos
Aþ B

2

� �
cos

A� B

2

� �
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13. cosA� cosB ¼ 2 sin
Aþ B

2

� �
sin

B� A

2

� �
14. 2 sinA cosB ¼ sin(Aþ B)þ sin(A� B)

15. 2 cosA sinB ¼ sin(Aþ B)� sin(A� B)

16. 2 cosA cosB ¼ cos(Aþ B)þ cos(A� B)

17. 2 sinA sinB ¼ cos(A� B)� cos(Aþ B)

18. sin
A

2

� �
¼ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cosA

2

r

19. cos
A

2

� �
¼ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cosA

2

r

20. sin 2A ¼ 2 sinA cosA

21. cos 2A ¼ cos2 A� sin2 A ¼ 2 cos2 A� 1 ¼ 1� 2 sin2 A

22. tan 2A ¼ 2 tanA

1� tan2 A

23. tan
A

2

� �
¼ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cosA

1þ cosA

r
¼ sinA

1þ cosA
¼ 1� cosA

sinA

24. e jA ¼ cosAþ j sinA

25. e�jA ¼ cosA� j sinA

26. sinA ¼ e jA � e�jA

2j
¼ A� A3

3!
þ A5

5!
� A7

7!
þ � � �

27. cosA ¼ ejA þ e�jA

2
¼ 1� A2

2!
þ A4

4!
� A6

6!
þ � � �

28. tanA ¼ j
e�jA � e jA

ejA þ e�jA
¼ Aþ A3

3
þ 2

A5

15
þ 17

A7

315
þ � � �

29. sinhA ¼ eA � e�A

2

30. coshA ¼ eA þ e�A

2

31. tanhA ¼ sinhA

cosA
¼ eA � e�A

eA þ e�A

32. cothA ¼ coshA

sinhA
¼ eA þ e�A

eA � e�A

33. tanh(Aþ B) ¼ tanhAþ tanhB

1þ tanhA tanhB

34. tanh(A� B) ¼ tanhA� tanhB

1� tanhA tanhB

35. cosh(Aþ B) ¼ coshA coshBþ sinhA sinhB
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36. sinh(Aþ B) ¼ sinhA coshBþ coshA sinhB

37. sinh(A� B) ¼ sinhA coshB� coshA sinhB

38. cosh(A� B) ¼ coshA coshB� sinhA sinhB

39. cos( jA) ¼ coshA

40. sin( jA) ¼ j sinhA

41. sinh( jA) ¼ j sinA

42. cosh( jA) ¼ cosA

43. tanh( jA) ¼ j tanA

44. cosh2 A� sinh2 A ¼ 1

45. aþ (aþ d)þ (aþ 2d )þ � � � þ {aþ (n� 1)d} ¼ n

2
{2aþ (N � 1)d}

(Arithmetic series)

46. aþ ar þ ar2 þ � � � þ ar(n�1) ¼ a(1� rn)

1� r
(Geometric series)

47. (aþ x)n ¼ an þ nan�1xþ n(n� 1)

2!
an�2x2 þ n(n� 1)(n� 2)

3!
an�3x3 þ � � �

(Binomial series)

48. (1þ x)1=2 ¼ 1þ 1

2
x� 1

2 � 4 x
2 þ 1 � 3

2 � 4 � 6 x
3 � � � � , �1 , x � 1

49. (1þ x)�1=2 ¼ 1� 1

2
xþ 1 � 3

2 � 4 x
2 � 1 � 3 � 5

2 � 4 � 6 x
3 þ � � � , �1 , x � 1

50. eA ¼ 1þ Aþ A2

2!
þ A3

3!
þ A4

4
þ � � �

51. e�A ¼ 1� Aþ A2

2
� A3

3
þ A4

4!
� � � �

52. sinhA ¼ eA � e�A

2
¼ Aþ A3

3!
þ A5

5!
þ A7

7!
þ � � �

53. coshA ¼ eA þ e�A

2
¼ 1þ A2

2!
þ A4

4!
þ A6

6!
þ � � �

54. loga (xy) ¼ loga (x)þ loga (y)

55. loga
x

y

� �
¼ loga (x)� loga (y)

56. loga (x
y) ¼ y loga (x)

57. loga (x) ¼ logb (x)� loga (b) ¼
logb (x)

logb (a)

58. ln(x) ¼ log10 (x)� ln(10) ¼ 2:302585� log10 (x)

59. log10 (x) ¼ ln(x)� log10 (e) ¼ 0:434294� ln(x)

60. e ¼ 2:718281828

INTEGRATION

1.
Ð
xn dx ¼ xnþ1

nþ 1
þ c (n = �1)
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2.
Ð
eax dx ¼ 1

a
eax þ c

3.

ð
1

x
dx ¼ ln jxj þ c

4.

ð
1

(a2 + x2)3=2
dx ¼ +x

a2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 + x2

p þ c

5.

ð
x

(a2 þ x2)3=2
dx ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ x2
p þ c

6.

ð
x2

(a2 þ x2)3=2
dx ¼ � xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ x2
p þ ln xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ x2

p� �
þ c

7.

ð
1

a2 þ x2
dx ¼ 1

a
tan�1 x

a

� �
þ c

8.

ð
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � x2
p dx ¼ sin�1 x

a

� �
þ c

9.

ð
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ x2
p dx ¼ sinh�1 x

a

� �
þ c

10.

ð
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � a2
p dx ¼ cosh�1 x

a

� �
þ c

11.

ð
x

a2 þ x2
dx ¼ 1

2
ln(a2 þ x2)þ c

12.

ð
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ x2
p dx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ x2

p
þ c

13.

ð
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ x2
p dx ¼ ln xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ x2

p� �
þ c

14.

ð
1

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ x2

p dx ¼ 1

a
ln

aþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ x2

p

x

 !
þ c

15.
Ð
sin x dx ¼ � cos xþ c

16.
Ð
cos x dx ¼ sin xþ c

17.
Ð
tan x dx ¼ � ln jcos xj þ c

18.
Ð
cot x dx ¼ ln jsin xj þ c

19.
Ð
sec x dx ¼ ln jsec xþ tan xj þ c

20.
Ð
csc x dx ¼ ln jcsc x� cot xj þ c

21.

ð
sin2 x dx ¼ x

2
� sin 2x

4
þ c

22.

ð
cos2 x dx ¼ x

2
þ sin 2x

4
þ c

23.
Ð
tan2 x dx ¼ tan x� xþ c

24.
Ð
cot2 x dx ¼ � cot x� xþ c

MATHEMATICAL FORMULAS 467



25.

ð
x sin ax dx ¼ 1

a2
(sin ax� ax cos ax)

26.

ð
x cos ax dx ¼ 1

a2
(cos axþ ax sin ax)

27.
Ð
ln x dx ¼ x ln x� xþ c

28.

ð
eax sin bx dx ¼ eax

a2 þ b2
(a sin bx� b cos bx)þ c

29.

ð
eax cos bx dx ¼ eax

a2 þ b2
(a cos bxþ b sin bx)þ c

30.

ð
xn ln (ax)dx ¼ xnþ1

nþ 1
ln (ax)� xnþ1

(nþ 1)2
þ c

DIFFERENTIATION

1.
d

dx
( f1 f2) ¼ f1

df2

dx
þ f2

df1

dx

2.
d

dx

f1

f2

� �
¼ f2 df1=dxð Þ � f1 df2=dxð Þ

f 22

3.
d

dx
(xn) ¼ nxn�1

4.
d

dx
(ecx) ¼ cecx

5.
d

dx
(ax) ¼ ax ln a

6.
d

dx
(sin ax) ¼ a cos ax

7.
d

dx
(cos ax) ¼ �a sin ax

8.
d

dx
(tan ax) ¼ a sec2 ax

9.
d

dx
(cot ax) ¼ �a cosc2ax

10.
d

dx
(sinh ax) ¼ a cosh ax

11.
d

dx
(cosh ax) ¼ a sinh ax

12.
d

dx
(ln ax) ¼ 1

x

13.
d

dx
(loga x) ¼

loga e

x

14.
d

dx
(sin�1 x) ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p
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15.
d

dx
(cos�1 x) ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p

16.
d

dx
(tan�1 x) ¼ 1

1þ x2

17.
d

dx
(cot�1 x) ¼ � 1

1þ x2

VECTOR IDENTITIES

1. ~A � (~B� ~C) ¼ ~B � (~C � ~A) ¼ ~C � (~A� ~B)

2. ~A� (~B� ~C) ¼ ~B(~A � ~C)� ~C(~A � ~B)
3. r(f1f2) ¼ f1rf2 þ f2rf1

4. r � (~A� ~B) ¼ ~B � (r � ~A)� ~A � (r � ~B)

5. r � (fA) ¼ rf� ~Aþ f(r� ~A)

6. r � (fA) ¼ rf � ~Aþ f(r � ~A)
7. r � (r � ~A) ¼ 0

8. r � (rf) ¼ 0

9. r � r � ~A ¼ r(r � ~A)� r2~A

10. Stokes’s Theorem: The circulation around a simple closed curve is equal to

the integral over any simple surface spanning the curve, of the normal com-

ponent of the curl, in the positive sense of the curve being counterclockwise

as seen from the side of the surface toward which the positive normal points.

Mathematically

þ
C

~A � d ~‘ ¼ ð
S

(r � ~A) � d ~s:
11. Divergence Theorem (also known as Gauss’s theorem): The integral of the

divergence of a vector field over a region of space is equal to the integral over

the surface of that region of the component of the field in the direction of the

outward directed normal to the surface. Mathematically

ð
V

(r � ~A)dv ¼ þ
S

~A � d ~s:
12. Helmholtz’s Theorem: A vector is uniquely specified if its divergence and

curl are given within a region and its normal component is given over the

boundary.

13.
Ð
V
r � ~Adv ¼ Þ

S
d ~s� ~A

14.
Ð
V
rf dv ¼ Þ

S
f d ~s

15.
Ð
S
d ~s�rf ¼ Þ

c
f d ~‘
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Cartesian Coordinates

rf ¼ x̂
@f

@x
þ ŷ

@f

@y
þ ẑ

@f

@z

r2f ¼ @2f

@x2
þ @2f

@y2
þ @2f

@z2

r � ~A ¼ @Ax

@x
þ @Ay

@y
þ @Az

@z

r � ~A ¼
x̂ ŷ ẑ
@

@x

@

@y

@

@z
Ax Ay Az

��������

��������

Cylindrical Coordinates

rf ¼ r̂
@f

@r
þ f̂

1

r

@f

@f
þ ẑ

@f

@z

r2f ¼ 1

r

@

@r
r
@f

@r

� �
þ 1

r2
@2f

@f2
þ @2f

@z2

r � ~A ¼ 1

r

@(rAr)

@r
þ 1

r

@Af

@f
þ @Az

@z

r � ~A ¼ 1

r

r̂ rf̂ ẑ

@

@r

@

@f

@

@z
Ar r Af Az

��������

��������
Spherical Coordinates

rf ¼ r̂
@f

@r
þ û

1

r

@f

@u
þ f̂

1

r sin (u)

@f

@f

r2f ¼ 1

r2 sin (u)
sin (u)

@

@r
r2
@f

@r

� �
þ @

@u
sin (u)

@f

@u

� �
þ 1

sin (u)

@2f

@f2

� �

r � ~A ¼ 1

r2 sinðuÞ sin (u)
@

@r
(r2Ar)þ r

@

@u
(sin (u)Au)þ r

@Af

@f

� �

r � ~A ¼ 1

r2 sin (u)

r̂ rû r sin (u)f̂
@

@r

@

@u

@

@f
Ar r Au r sin (u)Af

��������

��������
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APPENDIX B

DELTA FUNCTION AND
EVALUATION OF FIELDS
IN UNBOUNDED MEDIA

DIRAC DELTA FUNCTION

In electromagnetic field analysis we come across the source density and the point

source. Take the situation of a point charge q and the corresponding charge density

rv. Obviously the charge densitymust be zero everywhere in space and become infinite

at the location ~r0 of the point charge such that

ð
V

r(~r, ~r0)dv ¼ q ~r0 [ V ,

0 ~r0 � V:

�
(B:1)

In other words, when the charge density rv is integrated over volume V, it will result in

total point charge q only if the volumeV includes its location ~r0. Otherwise, the integral
will be zero. The delta function (or more precisely, it is called the Dirac delta function)

meets this functional description of the charge density. It is also known as the impulse

function. In the one-dimensional case the delta function can be defined as follows:

Because the height of a pulse is equal to the inverse of its width, as shown in

Figure B.1, the area of the pulse is unity. As a goes to zero, the pulse width reduces

to zero whereas its height goes to infinity such that the area stays constant at unity.
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Therefore the delta function d(x) is

d(x) ¼ lim
a!0

p1(x): (B:2)

This delta function is located at the origin. If it is located at x ¼ b, then it is represented

by d(x2 b). In a strict mathematical sense, the delta function is not a function but a

distribution.

Some of the properties of delta function are as follows:

1. d(�x) ¼ d(x)

2. f (x)d(x� c) ¼ f (c)d(x� c)

3. d0(x) ¼ �d0(�x), where prime denotes the derivative with respect to x

4. xd(x) ¼ 0

5. xd0(x) ¼ �d(x)

6. d(ax) ¼ 1

jaj d(x)

7.

ðb
a

f (x)d(x� c)dx ¼ f (c) for a , c , b

0 for c , a or c . b

�

8.

ðb
a

d(x� c)dx ¼ 1 for a , c , b

0 for c , a or c . b

�

9.

ðb
a

f (x)d0(x� c)dx ¼ �f 0(c) for a < c < b

0 for c < a or c > b

�

where d0(x� c) ¼ d

dx
d(x� c) and f 0(c) ¼ df (x)

dx

����
x¼c

10.

ð1
�1

d(x� x0)d(x00 � x)dx ¼ d(x00 � x0) ¼ d(x0 � x00)

Figure B.1 Pulse of a unit area.
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In three-dimensional rectangular coordinates the delta function is given as

follows:

d(~r � ~r0) ¼ d(x� x0)d(y� y0)d(z� z0): (B:3)

Therefore ð
V

f (~r)d(~r � ~r0)dv ¼ f (~r0) ~r0 [ V ,

0 otherwise:

�
(B:4)

Equation (B.4) gives the defining relation of the delta function. It helps in representing

the point source. As was mentioned earlier, the delta function is not a function but a

distribution or generalized function in the strict mathematical sense. It cannot be an

end result because of its singular character and can only appear inside an integral,

where it is meaningful.

The delta function in three-dimensional circular cylindrical and in spherical

coordinates, respectively, is given as follows:

d(~r � ~r0) ¼ d(r� r0)d(f� f0)d(z� z0)
r

, (B:5)

d(~r � ~r0) ¼ d(r � r0)d(u� u0)d(f� f0)
r2 sin (u)

: (B:6)

The concept of the delta function is embedded in various integral transforms. For

example, consider the following Fourier transform pair:

f (x) ¼ 1

2p

ð1
�1

F(a)e jaxda, (B:7)

where

F(a) ¼
ð1
�1

f (x)e�jaxdx: (B:8)

On substituting (B.8) into (B.7) and changing the order of integration, we can

identify the embedded delta function as follows:

f (x) ¼ 1

2p

ð1
�1

ð1
�1

f (x0)e�jax0dx0
� �

e jaxda

¼
ð1
�1

f (x0)
1

2p

ð1
�1

e ja(x�x0)da

� �
dx0

¼
ð1
�1

f (x0)d(x� x0)dx0,
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where

d(x� x0) ¼ 1

2p

ð1
�1

e ja(x�x0)da ¼ 1

p

ð1
0

cosa(x� x0)da: (B:9)

If instead we substitute (B.7) into (B.8) and change the order of integration, then we

find the embedded delta function in the transform domain as follows:

F(a) ¼
ð1
�1

1

2p

ð1
�1

F(a0)e ja0xda0
� �

e�jaxdx

¼
ð1
�1

F(a0)
1

2p

ð1
�1

e�j(a�a0)xdx

� �
da0

¼
ð1
�1

F(a0)d(a� a0)da0,

where

d(a� a0) ¼ 1

2p

ð1
�1

e�j(a�a0)xdx ¼ 1

p

ð1
0

cos (a� a0)xdx: (B:10)

Similarly consider the Fourier series of f (x),

f (x) ¼
X1
n¼�1

ane
jnx, (B:11)

where

an ¼ 1

2p

ðp
�p

f (x0)e�jnx0dx0: (B:12)

After substituting (B.12) into (B.11) and changing the order of integration and

summation, we find that

f (x) ¼
X1
n¼�1

1

2p

ðp
�p

f (x0)e�jnx0dx0
� �

e jnx ¼
ðp
�p

f (x0)
1

2p

X1
n¼�1

e jn(x�x0)

( )
dx0:

(B:13)

The embedded delta function in (B.13) is identified to be

d(x� x0) ¼ 1

2p

X1
n¼�1

e jn(x�x0) ¼ 1

2p

X1
0

1n cos n(x� x0), (B:14)
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where 1n is the Neumann factor given by

1n ¼ 1, n ¼ 0,

2, n = 0:

�

Similarly, using the cylindrical Fourier-Bessel transform pair, we can find that

d(r� r0)
r0

¼ d(r0 � r)

r
¼
ð1
0

a Jn(ar)Jn(ar
0)da: (B:15)

Using the spherical Fourier-Bessel transform pair, we find that

d(r � r0)
r0

¼ d(r0 � r)

r
¼ 2

p

ð1
0

a2jn(ar)jn(ar
0)da: (B:16)

GREEN’S FUNCTIONS

Green’s function provides a general method to solve linear, inhomogeneous partial

differential equations. This technique is motivated by the intuition that the simplest

solution to such an equation is that relating to the excitation of a unit point source

function of dimensionality matching that of the differential operator. The solutions

excited by more complex source functions are finally obtained by the linear super-

position of the point source responses. In linear system analysis, if the impulse

response is known, then the system response to a complex source at its input can

be found via a convolution integral. Thus Green’s function is the impulse response

of the system. Green’s function for the linear differential operator in question is

defined as the solution corresponding to unit point source excitation.

Consider a three-dimensional operator equation as follows:

Lw(~r) ¼ S(~r), (B:17)

where ~r is a three-dimensional position vector, L is an arbitrary three-dimensional

partial differential operator, and wð~rÞ is an unknown scalar field excited by a known

source density function Sð~rÞ. Assume that G(~rj~r0) represents the solution w(~r) to
(B.17) when S(~r) is replaced by a unit point source d(~r � ~r0) at ~r ¼ ~r0. Therefore

LG(~rj~r0) ¼ d(~r � ~r0) (B:18)

where G(~rj~r 0) is the response at ~r due to a unit point source at ~r 0.
Therefore the response at ~r due to a source S(~r0)dv0 located at ~r 0 can be expressed

as

dc(~r) ¼ S(~r0)dv0G(~rj~r0): (B:19)
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Using the linear superposition of point source responses, we find that

c (~r) ¼
ð
V

S(~r0)G(~rj~r0)dv0: (B:20)

In order to verify the validity of this solution, we apply the operatorL on both sides

of (B.20) as follows:

Lc (~r) ¼ L

ð
V

S(~r0)G(~rj~r0)dv0:

Now moving the operator inside the integral, and using (B.18) and the property of

the delta function, we find that

Lc(~r) ¼
ð
V

S(~r0)LG(~rj~r0)dv0 ¼
ð
V

S(~r0)d(~r � ~r0)dv0 ¼ S(~r): (B:21)

We can use this method to find electromagnetic fields produced by sources m~Je, 1~Jm,
re=1, and rm=m. We have found in Chapter 6 that

~H ¼ 1

m
r � ~A� j

vm1
r(r � ~F)� jv~F (B:22)

and

~E ¼ � j

vm1
r(r � ~A)� jv~A� 1

1
r � ~F, (B:23)

where ~A and ~F are solution to following equations,

r2~Aþ k2~A ¼ �m~Je (B:24)

and

r2 ~F þ k2 ~F ¼ �1~Jm: (B:25)

Also we found in Chapter 6 the following relations for scalar electric and magnetic

potentials:

r2fe þ k2fe ¼ � re
1

(B:26)

and

r2fm þ k2fm ¼ � rm
m

, (B:27)

where k2 ¼ v2m1.
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The solutions to (B.24) through (B.26) canbeconstructed if the correspondingGreen

function is known. It can be determined by solving the following Green function

equation:

r2G(~rj~r0)þ k2G(~rj~r0) ¼ �d(~r � ~r0), (B:28)

whereG(~rj~r0) represents the scalar components of vector ~A, or ~F, or the scalar potentials
fe or fm generated by a unit point source.

For an unbounded space, (B.28) can be solved following the procedure used in

Section 7.1 of the Chapter 7. To simplify this, the point source can be moved to

the origin of coordinate system. After finding the solution (Green’s function), the

point source can be moved back to ~r0. For the solution to (B.28), after excluding

the source region and selecting only an outward going wave (bounded at infinity),

we find from (7.1.10) that

G(~rj~r0) ¼ C1

e�jkr

r
: (B:29)

Now, following (7.1.11), we can write

lim
ro!0

ðf¼2p

f¼0

ðu¼p

u¼0

ðr¼ro

r¼0

(r2Gþ k2G)r2 sin u drdudf

¼ � lim
ro!0

ðf¼2p

f¼0

ðu¼p

u¼0

ðr¼ro

r¼0

@(r)r2 sin u drdudf, (B:30)

or

�4pC1 ¼ �1 ! C1 ¼ 1

4p
: (B:31)

Using (B.29) and (B.31), and moving the source back to its original position, we

find the solution to (B.28) as follows:

G(~rj~r0) ¼ e�jkR

4pR
, (B:32)

where R ¼ j~r � ~r0j. Then the solutions to (B.24) through (B.27) for sources located

in unbounded space can be expressed as follows:

~A(~r) ¼ m

4p

ð
V

~Je
e�jkR

R
dv0, (B:33)

~F(~r) ¼ 1

4p

ð
V

~Jm
e�jkR

R
dv0, (B:34)

fe(~r) ¼
1

4p1

ð
V

re
e�jkR

R
dv0, (B:35)
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and

fm(~r) ¼
1

4pm

ð
V

rm
e�jkR

R
dv0, (B:36)

where R ¼ j~r � ~r0j. Once these integrals are evaluated, the corresponding electric

and magnetic fields can be found after substituting that solution into (B.22) and

(B.23).
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APPENDIX C

BESSEL FUNCTIONS

Bessel’s equation of order v is given as follows:

x
d

dx
x
d

dx
y(x)

� �
þ (x2 � v2)y(x)

¼ x2
d2

dx2
y(x)þ x

d

dx
y(x)þ (x2 � v2)y(x) ¼ 0:

(C:1)

The solutions to this equation can be found as

Jv(x) ¼
X1
s¼0

(�1)s

s!(sþ v)!

x

2

� �2sþv

(C:2)

and

J�v(x) ¼
X1
s¼0

(�1)s

s!(s� v)!

x

2

� �2s�v

, (C:3)

where

s! ¼ G(sþ 1): (C:4)
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Jv(x) and J2v(x) represent two independent solutions to the Bessel equation (C.1) if v

is not an integer or zero. These are known as the Bessel functions of the first kind of

order v. In the case of v being an integer n, the two are related as follows:

J�n(x) ¼ (�1)nJn(x): (C:5)

The Bessel functions of the first kind of the first few integer orders are shown in

Figure C.1. As this figure indicates, J0(0) is unity whereas all Bessel functions of

higher orders are zero at the origin.

The second solution to Bessel’s equation is then found as follows:

Yv(x) ¼ Jv(x) cos(pv)� J�v(x)

sin(pv)
: (C:6)

Yv(x) is known as the Bessel function of the second kind or the Neumann function.

Sometimes it is also denoted as Nv(x). Neumann functions of the first few integer

orders are displayed in Figure C.2. As shown in this figure, these functions have a

pole at the origin (i.e., all of them go to infinity for x ¼ 0).

The tables of the Bessel functions have been around for some time. In these tables

are found the desired value(s) for any given argument, order, and kind of function.

Nowadays these functions are included in scientific software (e.g., Mathematicaw).

Further a number of scientific calculators have capabilities to generate these functions

easily via suitable programming.

There are many instances where the argument of the Bessel function is either too

small or too large. The following approximate expressions can be used to find the

Figure C.1 Bessel functions of the first kind.
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desired value in such cases:

J0(x)���!
x!0

1, (C:7)

Y0(x) !
x!0

2

p
fln (x=2)þ gg, g ¼ 0:5772156 . . . is Euler’s constant. (C:8)

For n . 0,

Jn(x) ���!
x!0

1

n!

x

2

� �n
, (C:9)

Yn(x) ���!
x!0

� (n� 1)!

p

2

x

� �n

, (C:10)

Jn(x)���!
x!1

ffiffiffiffiffiffi
2

px

r
cos x� p

4
� np

2

� �
, (C:11)

and

Yn(x)���!
x!1

ffiffiffiffiffiffi
2

px

r
sin x� p

4
� np

2

� �
: (C:12)

The wave propagation phenomena in cylindrical coordinates can be more con-

veniently expressed by two linear combinations of the Bessel functions, as follows:

H(1)
n (x) ¼ Jn(x)þ jYn(x) (C:13)

Figure C.2 Bessel functions of the second kind.
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and

H(2)
n (x) ¼ Jn(x)� jYn(x): (C:14)

These are called Hankel functions of the first and second kinds, respectively. The

approximate expressions for small and large arguments can be easily obtained

from (C.7) through (C.12). When x is large, the expressions for the Hankel functions

reduce to

H(1)
n (x) ���!

x!1

ffiffiffiffiffiffi
2

px

r
e j½x�(p=4)�(np=2)� (C:15)

and

H(2)
n (x) ���!

x!1

ffiffiffiffiffiffi
2

px

r
e�j½x�(p=4)�(np=2)�: (C:16)

Therefore, for the time-harmonic fields of e jvt, the Hankel function of the first kind

represents a wave propagating in the 2x direction, whereas the Hankel function of

the second kind represents a wave propagating in the þx direction.

The recurrence relations for the Bessel function are as follows:

Jn�1(x)þ Jnþ1(x) ¼ 2n

x
Jn(x), (C:17)

Jn�1(x)� Jnþ1(x) ¼ 2
d

dx
Jn(x), (C:18)

Jn�1(x) ¼ n

x
Jn(x)þ d

dx
Jn(x), (C:19)

d

dx
½xnJn(x)� ¼ xnJn�1(x), (C:20)

d

dx
½x�nJn(x)� ¼ �x�nJnþ1(x), (C:21)

Jn�1(x)� Jnþ1(x) ¼ 2
d

dx
Jn(x): (C:22)

For Zn(x) being a solution to Bessel’s equation, the following relations hold:

d

dx
Zn(x) ¼ Zn�1(x)� n

x
Zn(x) ¼ �Znþ1(x)þ n

x
Zn(x), (C:23)

Zn(x) ¼ 2(n� 1)

x
Zn�1(x)� Zn�2(x): (C:24)
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A few useful formulas are as follows:

Jn(x) ¼ 1

p

ðp
0

cos (nu� x sin u)du, n ¼ 0, 1, 2, . . . , (C:25)

e jx cos u ¼
X1
n¼�1

Jn(x)e
jn½uþ(p=2)� (known as the Jacobi-Anger expansion), (C:26)

e jx sin u ¼
X1
n¼�1

Jn(x)e
jnu: (C:27)

The associated Wronskian formulas are as follows:

Jn(x)
d

dx
Yn(x)� Yn(x)

d

dx
Jn(x) ¼ 2

px
, (C:28)

Jn(x)
d

dx
H(1)

n (x)� H(1)
n (x)

d

dx
Jn(x) ¼ j2

px
, (C:29)

Jn(x)
d

dx
H(2)

n (x)� H(2)
n (x)

d

dx
Jn(x) ¼ � j2

px
, (C:30)

Yn(x)
d

dx
H(1)

n (x)� H(1)
n (x)

d

dx
Yn(x) ¼ � 2

px
, (C:31)

Yn(x)
d

dx
H(2)

n (x)� H(2)
n (x)

d

dx
Yn(x) ¼ � 2

px
, (C:32)

H(2)
n (x)H(1)

nþ1(x)� H(1)
n (x)H(2)

nþ1(x) ¼
4

jpx
, (C:33)

Jn�1(x)H
(1)
n (x)� Jn(x)H

(1)
n�1(x) ¼

2

jpx
: (C:34)

The first few zeros of the Bessel’s functions and their derivatives are listed in

Tables C.1 through C.4.

C.1 MODIFIED BESSEL’S FUNCTIONS

The modified Bessel functions are defined for x ¼ ja. In(a) and Kn(a) are known as

modified Bessel functions of the first and second kinds, respectively. These are

TABLE C.1 Zeros of Bessel’s Functions of the First Kind

Number of Zeros J0(x) J1(x) J2(x) J3(x) J4(x) J5(x)

1 2.40483 3.83171 5.13562 6.38016 7.58834 8.77148

2 5.52008 7.01559 8.41724 9.76102 11.06471 12.3386

3 8.65373 10.17347 11.61984 13.0152 14.37254 15.70017

4 11.79153 13.32369 14.79595 16.22347 17.61597 18.98013

5 14.93092 16.47063 17.95982 19.40941 20.82693 22.2178
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related to the regular cylindrical Bessel and Hankel functions as follows:

In(a) ¼ jnJn(�ja) ¼ jnJ�n( ja) ¼ j�nJn( ja) (C:35)

and

Kn(a) ¼ p

2
jnþ1H(1)

n ( ja) ¼ p

2
(�j)nþ1H(2)

n (�ja): (C:36)

Sometimes these are also referred as hyperbolic Bessel functions. A few of these

modified Bessel functions are shown in Figure C.3. Since Hankel functions are

singular at the origin (due to the characteristic of Neumann functions), the modified

Bessel function of the second kind goes to infinity as well. For large arguments, the

modified Bessel functions can be approximated to

In(a)���!
a!1

eaffiffiffiffiffiffiffiffiffi
2pa

p (C:37)

TABLE C.2 Zeros of the Derivatives of Bessel’s Functions of the First Kind

Number of Zeros J00(x) J01(x) J02(x) J03(x) J04(x) J05(x)

1 3.83171 1.84118 3.05424 4.20119 5.31755 6.41562

2 7.01559 5.33144 6.70613 8.01524 9.2824 10.51986

3 10.17347 8.53632 9.96947 11.34592 12.68191 13.98719

4 13.32369 11.706 13.17037 14.58585 15.96411 17.31284

5 16.4706 14.86359 16.34752 17.78875 19.19603 20.57551

TABLE C.3 Zeros of Neumann Functions

Number of Zeros Y0(x) Y1(x) Y2(x) Y3(x) Y4(x) Y5(x)

1 0.89358 2.19714 3.38424 4.52702 5.64515 6.74719

2 3.95768 5.42968 6.79381 8.09755 9.36162 10.59718

3 7.08605 8.59601 10.02348 11.39647 12.73014 14.0338

4 10.22234 11.74915 13.20999 14.62308 15.99963 17.34709

5 13.3611 14.89744 16.37897 17.81846 19.22443 20.6029

TABLE C.4 Zeros of the Derivatives of Neumann Functions

Number of Zeros Y 0
0(x) Y 0

1(x) Y 0
2(x) Y 0

3(x) Y 0
4(x) Y 0

5(x)

1 2.19714 3.68302 5.00258 6.25363 7.46492 8.64956

2 5.42968 6.9415 8.35072 9.69879 11.00517 12.28087

3 8.59601 10.1234 11.5742 12.97241 14.33172 15.6608

4 11.74915 13.28576 14.76091 16.19045 17.58444 18.94974

5 14.89744 16.44006 17.93129 19.38239 20.80106 22.19284
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and

Kn(a) ���!
a!1

ffiffiffiffiffiffiffi
p

2a

r
e�a: (C:38)

C.2 SPHERICAL BESSEL’S FUNCTIONS

When the Helmholtz equation is separated into spherical coordinates, the radial

equation reduces to

r2
d2f (r)

dr2
þ 2r

df (r)

dr
þ {k2r2 � n(nþ 1)}f (r) ¼ 0: (C:39)

The following functions satisfy this equation:

f (kr) ¼
ffiffiffiffiffiffiffi
p

2kr

r
Znþ1=2(kr): (C:40)

These functions are conveniently known as spherical Bessel functions, which are

related to cylindrical Bessel functions as follows:

jn(x) ¼
ffiffiffiffiffi
p

2x

r
Jnþ1=2(x), (C:41)

yn(x) ¼
ffiffiffiffiffi
p

2x

r
Ynþ1=2(x) ¼ (�1)nþ1

ffiffiffiffiffi
p

2x

r
J�n�1=2(x), (C:42)

h(1)n (x) ¼
ffiffiffiffiffi
p

2x

r
H(1)

nþ1=2(x) ¼ jn(x)þ jyn(x), (C:43)

Figure C.3 Modified Bessel functions.
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TABLE C.5 Zeros of Spherical Bessel Functions of the First Kind

Number of Zeros Ĵ1(x) Ĵ2(x) Ĵ3(x) Ĵ4(x) Ĵ5(x) Ĵ6(x)

1 4.4934 5.7635 6.9879 8.1826 9.3558 10.5128

2 7.7253 9.0950 10.4171 11.7049 12.9665 14.2074

3 10.9041 12.3229 13.6980 15.0397 16.3547 17.6480

4 14.0662 15.5146 16.9236 18.3013 19.6532 20.9835

5 17.2208 18.6890 20.1218 21.5254 22.9046 24.2628

6 20.3713 21.8539 23.3042 24.7276 26.1278 27.5079

Figure C.4 Spherical Bessel functions of the first kind used in EM waves.

TABLE C.6 Zeros of the Derivatives of Spherical Bessel Functions of the First Kind

Number of Zeros Ĵ
0
1(x) Ĵ

0
2(x) Ĵ

0
3(x) Ĵ

0
4(x) Ĵ

0
5(x) Ĵ

0
6(x)

1 2.7437 3.8702 4.9734 6.0619 7.1402 8.2108

2 6.1168 7.4431 8.7217 9.9675 11.1890 12.3915

3 9.3166 10.7130 12.0636 13.3801 14.6701 15.9387

4 12.4859 13.9205 15.3136 16.6742 18.0085 19.3212

5 15.6439 17.1027 18.5242 19.9154 21.2815 22.6263

6 18.7963 20.2720 21.7139 23.1278 24.5178 25.8873
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and

h(2)n (x) ¼
ffiffiffiffiffi
p

2x

r
H(2)

nþ1=2(x) ¼ jn(x)� jyn(x): (C:44)

In time-harmonic field analysis, it is convenient to define the alternative spherical

Bessel functions as follow:

Ẑn(x) ¼
ffiffiffiffiffiffi
px

2

r
Znþ1=2(x): (C:45)

Note that the caret over Zn is used in practice only as notation. The cylindrical

Bessel function of the (nþ 1/2)th order is used in (C.45) to determine the corre-

sponding spherical Bessel function. The characteristics of spherical Bessel functions

of the first kind are shown in Figure C.4 for n ¼ 1 to 5. The first six zeros of the six

spherical Bessel functions of the first kind and their derivatives are given in Tables

C.5 and C.6, respectively.
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APPENDIX D

LEGENDRE FUNCTIONS

When we use the separation of variables method to solve a scalar wave equation in

spherical coordinates, we end up with an equation as follows:

1

sin u

d

du
sin u

df

du

� �
þ n(nþ 1)� m2

sin2 u

� �
f ¼ 0: (D:1)

This is known as the associated Legendre equation. If we substitute cos u ¼ x into

this equation, we get another common form of Legendre’s equation given by

(1� x2)
d2f

dx2
� 2x

df

dx
þ n(nþ 1)� m2

1� x2

� �
f ¼ 0: (D:2)

For m ¼ 0, this reduces to the following ordinary Legendre equation

(1� x2)
d2f

dx2
� 2x

df

dx
þ n(nþ 1) f ¼ 0: (D:3)

The ordinary Legendre equation has two linearly independent solutions called

Legendre functions of the first and the second kinds. These are denoted by Pn(x)

and Qn(x), respectively. If n is an integer, then the Legendre function of the first

kind is a polynomial of order n. The second solution Qn(x) is a polynomial of
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order n2 1 with a logarithmic singularity. The first few of these polynomials are

given in Table D.1.

Most often our interest will be over the range21 � x � 1 because u ranges from
0 to p in the spherical coordinate system. Therefore the first five Legendre functions

of the first kind, Pn(x), are illustrated in Figure D.1, and those of the second kind,

Qn(x), are displayed in Figure D.2.

From these characteristics, it may be evident that only Pn(x) are finite in the range

of our interest. Qn(x) have infinite values (the singularity) at x ¼ +1 (i.e., at u ¼ 0

and u ¼ p). The useful formulas are as follows:

Pn(x) ¼ 1

2nn!

dn

dxn
(x2 � 1)n (known as Rodrigues’s formula), (D:4)

x
d

dx
Pn(x)� d

dx
Pn�1(x) ¼ nPn(x), (D:5)

(x2 � 1)
d

dx
Pn(x) ¼ nxPn(x)� nPn�1(x), (D:6)

TABLE D.1 First Few Legendre Functions Pn(x) and Qn(x)

Legendre Function of First Kind Legendre Function of Second Kind

P0(x) 1 Q0(x)
1

2
ln

1þ x

1� x

� �

P1(x) x Q1(x)
x

2
ln

1þ x

1� x

� �
� 1

P2(x)
3x2 � 1

2
Q2(x)

3x2 � 1

4
ln

1þ x

1� x

� �
� 3

2
x

P3(x)
5x3 � 3x

2
Q3(x)

5x2 � 3x

4
ln

1þ x

1� x

� �
� 5

2
x2 þ 2

3

Figure D.1 Legendre polynomials of the first kind for n ¼ 0 to 5.
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d

dx
Pnþ1(x) ¼ (nþ 1)Pn(x)þ x

d

dx
Pn(x) ¼ (2nþ 1)Pn(x)þ d

dx
Pn�1(x), (D:7)

(nþ 1)Pnþ1(x)þ nPn�1(x) ¼ (2nþ 1)xPn(x), (D:8)

e jkr cos u ¼
X1
n¼0

jn(2nþ 1)jn(kr)Pn(cos u), (D:9)

Now we consider the solution to the associated Legendre equation (D.2). One

way to do so is to start with (D.3) and differentiate it m times. This results in

(1� x2)
dmf

dxm
� 2x(mþ 1)

df

dx
þ (n� m)(nþ mþ 1) f ¼ 0: (D:10)

Then we can define

y ¼ (1� x2)m=2
dmf

dxm
: (D:11)

On substituting (D.11) into (D.10), we get

(1� x2)
d2y

dx2
� 2x

dy

dx
þ nðnþ 1)� m2

1� x2

� �
y ¼ 0, (D:12)

which is the associate Legendre equation (D.2).

The regular solutions are known as associated Legendre functions of the first and

second kinds. The associated Legendre functions of the first kind are denoted by

Pn
m(x), and they can be found as follows:

y ¼ Pm
n (x) ¼ (1� x2)m=2

dm

dxm
Pn(x): (D:13)

Figure D.2 Legendre polynomials of the second kind for n ¼ 0 to 5.

490 APPENDIX D



Since the highest power of x in Pn(x) is xn, we must have m � n. Sometimes an

additional factor (21)m is included in (D.13) to define the associated Legendre func-

tions. Some lower order associated Legendre functions of the first kind are listed in

Table D.2.

The recurrence relations for the associated Legendre functions of the first kind are

as follows:

(2nþ 1)xPm
n (x) ¼ (nþ m)Pm

n�1(x)þ (nþ 1� m)Pm
nþ1(x), (D:14)

2(mþ 1)x

(1� x2)1=2
Pmþ1
n (x) ¼ Pmþ2

n (x)þ (n� m)(nþ mþ 1)Pm
n (x), (D:15)

xPmþ1
n (x) ¼ (n� m)(1� x2)1=2Pm

n (x)þ Pmþ1
n�1 (x), (D:16)

Pmþ1
nþ1 (x) ¼ xPmþ1

n (x)þ (nþ mþ 1)(1� x2)1=2Pm
n (x), (D:17)

(1� x2)1=2Pm
n (x) ¼ (nþ m)xPm�1

n (x)� (n� mþ 2)Pm�1
nþ1 (x), (D:18)

(1� x2)
d

dx
Pm
n (x) ¼ (nþ m)Pm

n�1(x)� nxPm
n (x): (D:19)

The orthogonality of the associated Legendre functions of the first kind are found

using

ð1
�1

Pm
n (x)P

m
‘ (x)dx ¼

0, for n = ‘,
2

2nþ 1

(nþ m)!

(n� m)!
, for n ¼ ‘:

(
(D:20)

TABLE D.2 Associated Legendre Functions of the First Kind

Pm
n ðxÞ ¼ Pm

n ðcos uÞ
P1
1(x) ð1� x2Þ1=2 sin u

P2
1(x) 3xð1� x2Þ1=2 3 cos u sin u

P2
2(x) 3ð1� x2Þ 3 sin2 u

P3
1(x)

3

2
ð5x2 � 1Þð1� x2Þ1=2 3

2
ð5 cos2 u� 1Þsin u

P3
2(x) 15xð1� x2Þ 15 cos u sin2 u

P3
3(x) 15ð1� x2Þ3=2 15 sin3 u

P4
1(x)

5

2
ð7x3 � 3xÞð1� x2Þ1=2 5

2
ð7 cos3 u� 3 cos uÞsin u

P4
2(x)

15

2
ð7x2 � 1Þð1� x2Þ 15

2
ð7 cos2 u� 1Þsin2 u

P4
3(x) 105xð1� x2Þ3=2 105 cos u sin3 u

P4
4(x) 105ð1� x2Þ2 105 sin4 u
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The associated Legendre functions of the second kind are defined as follows:

Qm
n (x) ¼ (1� x2)m=2

dm

dxm
Qn(x): (D:21)

These functions satisfy the same recurrence relations as Pn
m(x). Note that Pn

m(x) are

bounded at x ¼ +1, whereas Qn
m(x) are unbounded at those points.
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APPENDIX E

CHARACTERISTICS OF
SELECTED MATERIALS

TABLE E.1 Conductivity of Some Materials at

Room Temperature

Material

Conductivity

in S/m

Aluminum 3.54 � 107

Brass 1.57 � 107

Bronze 1.0 � 107

Constantan (55 Cu, 45 Ni) 2.26 � 106

Copper 5.813 � 107

Gold 4.1 � 107

Iron 1.04 � 107

Lead 4.57 � 106

Nichrome 0.09 � 107

Nickel 1.15 � 107

Platinum 9.52 � 106

Silver 6.12 � 107

Sodium 2.17 � 107

Stainless steel 0.11 � 107

Titanium 2.09 � 106

Tungsten 1.82 � 107

Zinc 1.67 � 107
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TABLE E.2 Dielectric Constant and Loss Tangent

of Some Materials at 3 GHz

Material

Dielectric

Constant, 1r

Loss

Tangent, tan d

Alumina 9.6 0.0001

Carbon tetra chloride 2.17 0.00037

Glass (Pyrex) 4.82 0.0054

Mica (ruby) 5.4 0.0003

Nylon (610) 2.84 0.012

Polystyrene 2.55 0.0003

Plexiglas 2.60 0.0057

Quartz (fused) 3.8 0.00006

Rexolite (1422) 2.54 0.00048

Styrofoam (103.7) 1.03 0.0001

Teflon 2.1 0.00015

Titanium dioxide (Rutile) 96 0.001

Water (distilled) 77 0.157

TABLE E.3 Dielectric Properties of Biological Tissues at Selected Frequencies

10 kHz 1 MHz 10 MHz 100 MHz 1 GHz

1r s (S/m) 1r s (S/m) 1r s (S/m) 1r s (S/m) 1r s (S/m)

Brain

(gray

matter)

15 � 103 0.1 900 0.18 300 0.3 90 0.7 60 1.2

Heart muscle 6 � 104 0.15 2000 0.35 350 0.5 80 0.9 60 1.2

Kidney

(cortex)

3 � 104 0.14 2000 0.35 350 0.6 85 1 60 1.5

Liver 2 � 104 0.05 1000 0.2 200 0.35 65 0.5 50 0.9

Lung

(inflated)

9 � 103 0.07 500 0.12 130 0.2 30 0.3 25 0.4

Spleen 12 � 103 0.1 2000 0.2 450 0.4 75 0.85 55 1.2

Muscle

(across)

3.5 � 104 0.4 1500 0.5 150 0.65 80 0.8 60 1.2

Muscle

(along)

2 � 104 0.5 350 0.6 120 0.7 80 0.8 60 1.2

Uterus 2 � 104 0.5 1000 0.5 300 0.65 80 1 60 1.5

Skin 2 � 104 0.005 1000 0.3 150 0.4 60 0.5 55 0.9

Source: S. Gabriel, R. W. Lau, and C. Gabriel, “The Dielectric Properties of Biological Tissues: II.

Measurements in the Frequency Range 10 Hz to 20 GHz,” Phys. Med. Biol., 41: 2251–2269, 1996.
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APPENDIX F

PHYSICAL CONSTANTS

Permittivity of free space, 1o 8.8542 � 10212 F/m
Permeability of free space, mo 4p � 1027 H/m
Impedance of free space, ho 376.7 V
Velocity of light in free space, c 2.997925 � 108 m/s
Charge of electron, qe 1.60210 � 10219 C

Mass of electron, me 9.1091 � 10231 kg

Boltzmann’s constant, k 1.38 � 10223 J/K
Planck’s constant, h 6.6256 � 10234 J-s
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APPENDIX G

DECIBELS AND NEPER

Consider an amplifier with the voltage and the power at its input V1 and P1, respect-

ively. The corresponding output of voltage and power is V2 and P2, respectively. The

voltage gain Gv of this amplifier is expressed in dB as follows:

Gv ¼ 20 log10
V2

V1

� �
dB: (G:1)

Similarly the power gain of this amplifier in dB is

Gp ¼ 10 log10
P2

P1

� �
dB: (G:2)

Thus the dB unit provides a relative level of the signal. For example, if we are asked

to find P2 in watts for Gp as 3 dB, then we also need P1. Otherwise, the only infor-

mation we can deduce is that P2 is twice P1.

Sometimes power is expressed in logarithmic units, such as dBW and dBm.

These units are defined as follows:

If P is power in watts, then it can be expressed in dBW as

G ¼ 10 log10 (P) dBW: (G:3)
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If instead P is in mW, then the corresponding dBm power is found as

G ¼ 10 log10 (P)dBm: (G:4)

Thus the dBW and dBm units represent power relative to 1 W and 1 mW,

respectively.

Another decibel unit that is commonly used to specify the phase noise of an oscil-

lator or the strength of various sidebands of a modulated signal is dBc. It specifies

the signal strength relative to the carrier. Consider a 100 MHz oscillator that has an

output power of 210 dBm. Suppose that its output power is 230 dBm in the fre-

quency range of 105 to 106 MHz. Then the power per Hz in the output spectrum

is 290 dBm, and the phase noise is 280 dBc.

In general, if the amplitudes of the sideband and the carrier are given as V2 and

Vc, respectively, then the sideband in dBc is found as follows:

G2 ¼ 20 log10
V2

Vc

� �
: (G:5)

As discussed in Chapter 7, the gainG of the antenna is defined relative to an isotropic

antenna. Therefore sometimes it is expressed in dBi as follows:

GdBi ¼ 10 log10(G): (G:6)

Consider now a 1 m long transmission line with an attenuation constant a. If V1 is

the signal voltage at the input port, then the voltage V2 output is given as follows:

jV2j ¼ jV1je�a (G:7)

Therefore the voltage gain Gv of this circuit in neper is

GvðneperÞ ¼ ln
jV2j
jV1j
� �

¼ �a neper: (G:8)

On the other hand, Gv in dB is found to be

Gv(dB) ¼ 20 log
jV2j
jV1j
� �

¼ 20 log(e�a) ¼ �20a log(e) ¼ �8:6859a dB:

Therefore

1 neper ¼ 8:6859 dB: (G:9)

The negative sign indicates that V2 is smaller than V1 and there is loss of signal.
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APPENDIX H

NOMENCLATURE AND
CHARACTERISTICS OF STANDARD
RECTANGULAR WAVEGUIDS

EIA Nomenclature

WR (2) Inside Dimension (in)

TE10 Mode Cutoff

Frequency (GHz)

Recommended

Frequency Band for

TE10 Mode (GHz)

2300 23.0 � 11.5 0.2565046 0.32–0.49

2100 21.0 � 10.5 0.2809343 0.35–0.53

1800 18.0 � 9.0 0.3277583 0.41–0.62

1500 15.0 � 7.5 0.3933131 0.49–0.75

1150 11.5 � 5.75 0.5130267 0.64–0.98

975 9.75 � 4.875 0.6051054 0.76–1.15

770 7.7 � 3.85 0.7662235 0.96–1.46

650 6.5 � 3.25 0.9077035 1.14–1.73

510 5.1 � 2.55 1.1569429 1.45–2.2

430 4.3 � 2.15 1.3722704 1.72–2.61

340 3.4 � 1.7 1.7357340 2.17–3.30

284 2.84 � 1.34 2.0782336 2.60–3.95

229 2.29 � 1.145 2.5779246 3.22–4.90

187 1.87 � 0.872 3.1530286 3.94–5.99

159 1.59 � 0.795 3.7125356 4.64–7.05

137 1.372 � 0.622 4.3041025 5.38–8.17

112 1.122 � 0.497 5.2660611 6.57–9.99

90 0.9 � 0.4 6.5705860 8.20–12.5

75 0.75 � 0.375 7.8899412 9.84–15.0

(Continued )
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Appendix H (Continued)

EIA Nomenclature

WR (2) Inside Dimension (in)

TE10 Mode Cutoff

Frequency (GHz)

Recommended

Frequency Band for

TE10 Mode (GHz)

62 0.622 � 0.311 9.4951201 11.9–18.0

51 0.51 � 0.255 11.586691 14.5–22.0

42 0.42 � 0.17 14.088529 17.6–26.7

34 0.34 � 0.17 17.415732 21.7–33.0

28 0.28 � 0.14 21.184834 26.4–40.0

22 0.244 � 0.112 26.461666 32.9–50.1

19 0.188 � 0.094 31.595916 39.2–59.6

15 0.148 � 0.074 40.058509 49.8–75.8

12 0.122 � 0.061 48.54910 60.5–91.9

10 0.1 � 0.05 59.35075 73.8–112

8 0.08 � 0.04 74.44066 92.2–140

7 0.065 � 0.0325 91.22728 114–173

5 0.051 � 0.0255 116.47552 145–220

4 0.043 � 0.0215 137.93866 172–261

3 0.034 � 0.017 174.43849 217–330
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INDEX

Acceptor, 333

Action potentials, 3

Ampere’s law, 86, 346

Antenna efficiency, 281

Antenna(s), 271

directive gain, 278

electric dipole, 277

isotropic antenna, 278

lens, 277

power gain, 279

pyramidal horn, 277

Array factor, 292

Associated Legendre function,

266, 490

Attenuation constant, 133, 190

Backward difference, 416

Bandwidth, 282

Basis functions. See Expansion

functions

Bessel functions, 256, 479

Bessel’s equation, 256, 479

B-H curve, 371

Biot–Savart law, 350

Bounce diagram, 224

Brewster’s angle, 173

Brewster’s windows, 173

Broadside arrays, 299

Central difference, 416

Characteristic impedance,

experimental determination

of, 202

Charge density, 3

length, 3

surface, 3

volume, 3

Circular cross-section waveguides,

signal propagation in, 398

Complex numbers, 10

addition and subtraction, 11

multiplication and division, 12

Complex permittivity, 98

Complex Poynting vector, 121

Conducting spherical cavity, 267

Conservation of charge.

See Equation of continuity

Conservative vector field, 61
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Conversions of unit vectors

to cylindrical coordinates, 40

to rectangular coordinates, 40

to spherical coordinates, 40

Coordinates, conversion, 39

Coulomb’s law, 80, 311

Coupling coefficient, 362

Critical angle, 174

Curie temperature, 371

Curl of a vector field, 61

Current density, 3

Current reflection coefficient, 200

Cutoff frequency, 245, 250, 260, 398

Cutoff wavelength, 244, 250, 382

Cylindrical Bessel functions, 267, 485

Cylindrical cavity, 405

Cylindrical coordinates, 36

Cylindrical waveguide, 398

3D molecule, 435

dB, 496

dBc, 497

dBW, 496

dc generators and motors, 113

De Moivre’s formula, 11

Depletion layer, 333

Diamagnetic materials, 369

Dielectric constant, 97

Dielectric slab guide, 246

Dirac delta function, 471

Directive gain, 278

Directivity, 278

Dirichlet problems, 420

Distortionless line, 202

Distributed elements, 186

Divergence of a vector field, 59

Divergence theorem, 65, 469

Dominant mode, 260, 383

Donor, 333

Doppler radar, 306

Dynamic fields, 6

Effective area, 280

Effective isotropic radiated

power (EIRP), 284

EIRP. See Effective isotropic radiated

power

Electric dipole moment, 316

Electric field integral equation, 453

Electric field intensity, 4

Electric field strength. See Electric

field intensity

Electric flux density, 4

Electric scalar potential, 235

Electric vector potential, 237

Electrical charge, 2

Electrical current, 3

Electrical susceptibility tensor, 97

Electrocardiograms, 336

Electroencephalograms, 336

Electromagnetic interference, 154, 357

Electromagnetic spectrum, 8

Electromotive force, 81

Elementary wave function, 242

End-fire arrays, 299

Energy storage in electrical

systems, 319

Energy storage in magnetic fields, 358

Equation of continuity, 92

Expansion functions, 447

Far field, 278

Faraday’s law of induction, 81

FDTD. See Finite difference

time-domain

FEM. See Finite element method

Ferrimagnetic, 370

Ferromagnetic, 370

Finite difference

at the interface of two-dielectrics, 436

single dielectric nonuniform grid, 426

Finite difference method, 415

Finite-difference time-domain

(FDTD), 438

Finite element method (FEM), 414

Flux integral. See Vector field,

Surface integral

Forward difference, 416

Fourier–Bessel transform, 475

Fredholm integral equation, 447

Frequency bands, 9

Friis transmission formula, 300

Fundamental field quantities, 5

Galerkin’s method, 448

Gauss’ law, 90, 316

for the electric field, 90

for the magnetic field, 91
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Gauss’s theorem. See Divergence theorem

Generalized Ampere’s law, 86

Gradient of a scalar field, 53

Green’s function, 286, 475

Group velocity, 143, 192

Half-power beam width, 279

Hall effect, 111

Hankel function, 256, 482

Hard materials, 372

Harmonic functions, 241, 256, 260

Helmholtz equation, 133, 190, 236

Helmholtz’s theorem, 74, 236, 469

Hertzian dipole, 276

Hysteresis curve, 371

Impedance, measurement of, 210

Incident wave, 155, 191

Inductance, 357

Induction heating, 125

Infinitesimal current element, 271

Input impedance, 198

Input reflection coefficient, 198

Insertion loss, 199

Intrinsic impedance, 136

Isotropic antenna, 278

Jacobi–Anger expansion, 483

Kronecker delta, 448

Laplace’s equation, 237, 317

Laplacian of the scalar field, 73

Laplacian of the vector field, 73

Legendre equation, 266, 488

Legendre functions, 266, 488

Legendre polynomials, 489

Lenz’s law, 117

Line integral of a vector field, 45

Line parameters, 186

Load reflection coefficient, 199

Lorentz condition, 236, 238

Loss-tangent, 98

Low-loss transmission lines, 201

Magnetic charge, 234

Magnetic current, 234

Magnetic dipole, 233, 277, 354

Magnetic field intensity, 5

Magnetic flux density, 4

Magnetic monopoles, 233

Magnetic scalar potential, 237

Magnetic susceptibility, 97, 370

Magnetic susceptibility tensor, 97

Magnetic vector potential, 235

Magnetization curve, 370

Magnetization density vector, 97

Magnetomotive force, 86

Main lobe, 279

Maxwell’s equations, 81, 96, 234

Metallic parallel-plate waveguide, 242

Metallic rectangular waveguide,

fields in, 387

Method of moments (MoM), 446

Microstrip line, 185

Mixer, 307

Modified Bessel function, 455, 483

MoM. See Method of moments

Motion of a charged particle, 103,

106, 109

Mutual inductance, 361

Neper, 497

Neumann function, 256, 480

Neumann problem, 420

Normalized input impedance, 195

Parallel-plate capacitor, 324

Parallel-plate radial waveguide, 258

Paramagnetic materials, 370

Permeability of the medium, 97

Permittivity, 97

Phase constant, 133, 190

Phase matching condition,

168, 170

Phase velocity, 7, 143, 192

Phasor, 15

addition and subtraction, 15

pn-junction, 333

Point-matching, 451

Poisson’s equation, 237, 317

Polarization, 145, 282

circular, 146, 283

elliptical, 147, 283

linear, 147, 283

Polarization density vector, 97

Position vector, 21
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Potential function

scalar, 233

vector, 233

Power density, 278

Poynting’s theorem, 119

Propagation constant, 7, 190

experimental determination of, 202

Pulse excitation of transmission

line, 222

Q. See Quality factor

Q-factor. See Quality factor

Quality factor, 402, 409

Radar cross-sections, 303

Radar equation, 303

Radar range equation. See Radar equation

Radiated power, 276, 278

Radiation efficiency, 281

Radiation field, 278

Radiation intensity, 278

Radiation pattern, 279

Radiation patterns and half-power

beam width (HPBW), 279

Radiation resistance, 280

Radome, 165

Rectangular cavity, 399

Rectangular coordinates, 35

Rectangular waveguide, modes in, 380

Reflected wave, 156, 192

Reflection coefficient, 156, 199

Reflection with multiple

interfaces, 164

Refractive index, 168

Reluctance, 373

Resonant frequency, 400, 406

Return-loss, 199

SA node, 3

Scalar field, 21

Scalar quantity, 19

Scattered electric field, 457

Self-inductance, 358

Semiconductor diodes, 333

SI system of units, 2

multiplying prefixes, 2

Sinusoidal waves, 6

Soft materials, 372

Space loss, 285

Spherical Bessel function,

267, 485

Spherical coordinates, 37

Standing wave, 206

Standing wave ratio, 157, 206

Static fields, 5

Stokes theorem, 70, 469

Stripline, 185

Surface current, 4

Taylor series, 416

TE wave, 167

TE wave incident on a planar

interface, 167

Testing functions, 448

TEz, 238, 254

Time-average, 17

Time-domain analysis, 225

Time-harmonic fields, 95

Time-harmonic signals, 14

complex representation of, 14

Time-period, 7, 192

TM wave, 167

TM wave incident on a planar

interface, 169

TMz, 238, 254

Total internal reflection, 172

Total transmission, 172

Transients on transmission line

with reactive termination, 228

with resistive termination, 226

Transmission coefficients, 156

Transmission line

attenuation constant, 190

characteristic impedance, 187

distributed network model, 188

line parameters, 186

phase constant, 190

propagation constant, 190

Transmission line equations, 189

Transmission line matrix, 414

Transmitted wave, 156

Ultra high frequency (UHF), 8

UHF. See Ultra high frequency

Uniform plane wave

in conducting media, 150

in low-loss dielectric, 150

Unit vectors, 20
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Vector(s)

addition and subtraction, 23

differentiation, 44

integration, 45

scalar and vector products, 22

Vector field, 22

surface integral, 50

Vector function, 19

Vector quantity, 19

Vector wave equation, 133

Very high frequency (VHF), 8

VHF. See Very high frequency

Voltage reflection coefficient, 199

Voltage standing wave ratio

(VSWR), 209

Volterra integral equation, 447

Volume integrals, 42

VSWR. See Voltage standing

wave ratio

Wave functions, 240, 255

Wave number, 133

Wavelength, 7, 136, 192

Wedge radial waveguide, 260

Weighting function. See Testing function

Wire antennas, 277

electric dipole, 277

loop antennas, 277

Yee’s cell, 445
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