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PREFACE 

It is my belief that the concepts of wave polarization, even though they are 
not difficult to understand, are not known as widely as they should be. 
Introductory electromagnetics texts normally restrict discussions of wave 
propagation to linearly polarized waves, and the more advanced texts that 
are widely used in this country devote only little attention to elliptical 
waves. Antenna textbooks, with that of Kraus a notable exception, either 
ignore the questions of polarization and polarization match or treat them 
too lightly. Principles of Optics by Born and Wolf has a good discussion of 
wave polarization, and Clarke and Grainger (Polarized Light and Optical 
Measurement) treat polarized light extensively. Beckman (The Depolariz­
ation of Electromagnetic Waves and The Scattering of Electromagnetic Waves 
from Rough Surfaces, the latter book written with A. Spizzichino) discusses 
polarization changes caused by scattering. None of these books is readily 
usable by many who must deal with polarization problems, particularly 
those associated with radar and antennas, and they must gather their 
information from several sources, with incomplete coverage and inconsistent 
notation. 

Polarization effects can provide significant identification information 
about radar targets, and the use of an optimum polarization can increase 
target cross sections, decrease rain and ground clutter, and ameliorate the 
effects of jamming on radar and communication systems. Adaptive arrays 
can be used for polarization adaptivity as well as for beam forming and null 
steering, and an example of such use is given in this book. Other examples 
can be cited for microwave and millimeter-wave radar and communications, 
and for optics. There is a clear need for a wider dissemination of the 
methods of treating polarization problems, and I hope to answer that need 
with this book. 

The text is intended for use at the graduate or advanced undergraduate 
level for engineering and physics students and as a reference for radar and 
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viii PREFACE 

communications engineers. It is expected to be useful also for those working 
with coherent light sources. It has been used for a one-semester course for 
graduate students and seniors, with good results. The necessary background 
is a good understanding of calculus and vector analysis, some knowledge of 
matrices, and a knowledge of electromagnetics equivalent to that acquired 
by completing the study of a good undergraduate text. The chapter on 
antennas will provide a satisfactory base for those without such a back­
ground. The chapter necessarily omits a discussion of many types of 
antennas and of many of the methods for determining radiation patterns and 
impedances. It does, however, include definitions of the more important 
antenna parameters (from the 1983 IEEE Standard) and developments of 
the equations for using them in a communications or radar system. In fact, 
Chapters 1 through 4 can be used for a one-semester course in antennas for 
students interested in the use of antennas rather than in their design, if it is 
supplemented by material on arrays. Chapter 3 discusses polarization match­
ing for antennas in more detail than any of the standard antennas texts, and 
it analyzes transmission between antennas that are not pointing at each 
other and are not polarization matched. Euler angle transformations be­
tween coordinate systems are given for use in the analysis. Such a complete 
discussion is not commonly included in antennas texts, many of which are 
oriented toward design rather than use of antennas. The analysis will also be 
useful for optical and infrared systems. Chapter 4 describes polarization 
properties of several antennas and appropriate test antennas for use with 
them, to determine the degree to which they meet design criteria. Chapter 5 
describes methods for generating waves with any desired polarization and 
analyzes a system that is polarization adaptable. . 

Chapter 6 is a discussion of polarization changes by reflection and 
transmission. It introduces the scattering matrix and includes scattering 
matrices for some common reflecting objects. Also presented is the de­
polarization by reflections from an arbitrarily oriented plane. Chapter 7 
develops the theory of partially polarized waves, which is useful in radio 
astronomy and has applications to jamming in radar. Finally, in Chapter 8, 
standard techniques (and one nonstandard) for measuring wave polarization 
are presented. 

In the text the polarization ratio P (or its modified form jP) and the 
circular polarization ratio q are the primary descriptors of a wave or an 
antenna. The Poincare sphere is an elegant device for presenting polar­
ization information, and it is useful in developing certain theorems, for 
example, the theorem that three polarization match factors (amplitudes) 
between an unknown antenna and three antennas of known polarization 
suffice to determine the polarization of the unknown antenna. Many of the 
text developments, therefore, utilize the Poincare sphere, and since P is a 
projection, onto a plane, of the polarization point on the sphere, any text 
equation using P can be easily converted to coordinates on the Poincare 
sphere. Description of wave polarization by axial ratio, tilt angle, and 
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rotation sense of the polarization ellipse is useful for visualization but 
awkward mathematically. This description is therefore not extensively used 
in the book. 

Some of the material presented here is original, but much of it comes 
from developments or presentations by others, most notably on the subject 
of antennas by Kraus, Collin and Zucker, and Balanis, and on the subject of 
polarization by Rumsey, Sinclair, Deschamps, Born and Wolf, and Beck­
mann. I wish to acknowledge a great debt to them. 

University, Alabama 
May 1986 

HAROLD MOTI 
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1 
AN INTRODUCTION 

TO ANTENNAS 

1.1. INTRODUCTION 

This chapter introduces the concepts of antenna pattern, antenna input 
impedance, gain, effective ar~ of a receiving antenna, losses, the relation­
ship between gain and effective area, the Friis transmission formula, and a 
simple form of the radar equation. It is intended to impart a sufficient 
knowledge of these concepts so that a reader without previous study in 
antennas can readily understand the antenna-related developments in the 
remainder of the text. It also can serve as a review for those with some 
knowledge of antenna theory. Those with greater experience might well go to 
the next chapter. 

Antenna concepts cannot be introduced without illustrative examples, so a 
linear wire antenna, of which the half-wave dipole is the best-known example, 
will be used to illustrate many of the ideas. Radiation from apertures will also 
be discussed. Other types of antennas cannot be covered in what must be a 
relatively short chapter. In addition, it is not the purpose of this chapter to 
cover all of the techniques for finding impedances, current distributions, and 
fields of even the antenna types we will discuss. The reader without a 
thorough background is referred to the excellent texts by Kraus, Elliott, and 
Collin and Zucker [1-3]. 

The task of designing an antenna system appears to be formidable, but 
fortunately it can be broken into simpler tasks that are more easily under­
stood and carried out. The separation is convenient and enlightening. 
Consider two antennas as shown in Fig. 1.1: a transmitting antenna (1) 
connected to a generator and a receiving antenna (2) connected to a receiver 
(which we may treat as a load impedance). 

1. To the generator, antenna 1 appears to be a load impedance or 

1 



2 AN INTRODUCTION TO ANTENNAS 

~I<~----~\~----R--------------~>~I 

Generator 

FIGURE 1.1. Transmitting and receiving antennas. 

admittance (perhaps transformed by a connecting transmission line or 
waveguide). We wish to find this impedance for matching purposes and to 
determine the power accepted by the antenna. 

2. A portion of the power accepted by the antenna is radiated and a 
portion is dissipated as heat. We need to find the total power radiated. 

3. The transmitting antenna does not radiate equally in all directions. We 
must determine the directional characteristics of the antenna and find the 
power density (Poynting vector magnitude) at the receiving antenna. 

4. To the receiver, antenna 2 appears to be a voltage or current source, 
with the source value partly determined by the incident power density. 
Antenna 2 also appears to have some internal impedance. We must determine 
the source value and the receiving antenna internal impedance so that power 
to the receiver load can be found. 

5. The path from antenna 1 to antenna 2 may not be direct but may 
involve a reflection from ground (multipath) or a target (as in radar). Strictly 
speaking, these are not antenna problems, but since this book is concerned 
with radar applications, we will be interested in appropriate descriptions of 
these phenomena. 

6. The power to the receiver in Fig. 1.1 depends on the polarization 
characteristics of both antennas and any change in polarization during 
propagation between the antennas. (This is particularly true in radar.) We 
will defer the development of polarization properties to later chapters, to the 
greatest extent possible, in order to better construct the foundations of the 
development. 

7. In general, the factors enumerated above depend on frequency, and 
antennas consequently have a finite bandwidth determined by impedance, 
radiation pattern, and so on. If all antenna, generator, target, and load 
parameters are known as functions of frequency, the bandwidth determin­
ation is straightforward, and we will devote little attention to it here. 

1.2. THE VECTOR POTENTIALS 

The Maxwell equations in time-invariant form, generalized to include 
magnetic sources, are 



THE VECTOR POTENTIALS 

\1 x H = J + jwD (a) 

\1 x E = -M - jwB (b) 

\1·B = Pm (c) 

\1·D=p (d) 

3 

(1.1 ) 

For linear, isotropic media D is related to E and B to H by the 
constitutive equations 

D = EE (a) B = p,H (b) (1.2) 

and (1.1) becomes 

\1XE=-M-jwp,H (b) 

\1. H = Pm (c) 
p, 

(1.3) 
\1.E= e (d) 

E 

\1 x H = J + jWEE (a) 

In (1.1) the magnetic charge density Pm and the magnetic current density M 
are fictitious. Physical quantities corresponding to Pm and M do not exist. It is 
convenient, however, when considering some antenna problems to replace 
the actual sources by equivalent sources on a surface. The magnetic current 
density and charge density account for discontinuities in field components 
across the boundary surface [2, p. 31; 3, p. 3]. 

Since the Maxwell equations are linear, we may use superposition to 
account for the two sets of sources and solve separately the equations for 
electric and magnetic sources: 

ELECTRIC SOURCES 

\1 x HJ = J + jwD J = J + jWEEJ (a) 

(c) 

(d) 

(1.4) 

where subscript J refers to the partial fields produced by electric current 
density J and electric charge density p. 

MAGNETIC SOURCES 

\1 x HM = jwDM = jWEEM (a) 

\1 X EM = -M - jwBM = -M - jwP,HM (b) 

(c) 

(d) 

(1.5) 
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where subscript M refers to the partial fields produced by magnetic current 
and charge densities M and PM. 

We consider first the Maxwell equations with electric sources (1.4). Since 
'V. B j = 0, B can be represented as the curl of a vector potential A, commonly 
called the magnetic vector potential [4] 

(1.6) 

Substituting (1.6) in (l.4b) leads to 

'V x (E j + jwA) = 0 (1.7) 

Since the curl of the gradient of a scalar function is identically zero, we may 
set 

(1.8) 

where <P j is a scalar potential. It is commonly called the electric scalar 
potential. 

Equations may be developed for A and <P j' and from their solutions D j and 
B j may be found. If we take the curl of (1.6) and substitute in (1.4a), we 
obtain 

'V x 'V x A = f.L(J + jWEE j ) (1.9) 

Use of a widely used vector identity for 'V x 'V x A and the substitution of 
(1.8) in (1.9) gives 

(1.10) 

At this point only 'V x A has been constrained (= B j). We are free to 
choose 'V. A according to Harrington [5], Sommerfeld [6], and Panofsky and 
Phillips [7]: 

(1.11) 

With this choice, and with the definition 

k 2 2 = W f.LE (1.12) 

(1.10) becomes 

(1.13) 

The introduction ,of the relationship (1.11) between A and <PJ makes it 



THE VECTOR POTENTIALS 5 

unnecessary for us to find <1>,. The magnetic flux density B, may be found 
from the vector potential A once (1.13) is solved. Then we may find E, at 
points away from the sources by means of (1.4a), or alternatively we may find 
E, from (1.8) and (1.11), thus 

E = - jwA - _1_· \7(\7. A) 
, WJ.Le 

(1.14) 

Potentials for use when only magnetic sources M and PM are present may be 
developed from the equation set (1.5) by analogy with the process used with 
electric sources. Using (LSd) allows us to define an electric vector potential F 
by 

(1.15) 

where we note that the negative sign is arbitrary. 
Substituting (1.15) into (1.5a) leads to 

\7 X (HM + jwF) = 0 (1.16) 

and the relationship to a magnetic scalar potential <I> M' 

HM + jwF = -\7<1> M (1.17) 

With the substitution of the curl of (1.15) into (1.5b) we obtain 

(1.18) 

and if we follow a process like that used previously and specify the divergence 
of F as 

(1.19) 

we arrive at an equation for F, 

(1.20) 

Once F is found from (1.20) we may find DM from (1.15) and HM either 
from the appropriate Maxwell equation or from 

H = -jwF - _1_· ~(\7. F) 
. M WJ.Le 

(1.21 ) 

As a final step we superimpose the solutions and find for the total fields due 
to electric and magnetic sources 
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. 1 
E = - jwA - _1_ \7(\7. A) - - \7 x F 

Wf.LE E 
( 1.22) 

. 1 
H = - jwF - _1_ \7(\7. F) + - \7 x A 

Wf.LE f.L 
(1.23) 

1.3. INTEGRAL SOLUTIONS FOR THE VECTOR POTENTIALS 

An integral solution for the vector potential equation (1.13) for A can be 
constructed by considering an infinitesimal current element at the origin of a 
spherical coordinate system (Fig. 1.2). For a z-directed current, (1.13) 
reduces to 

(1.24) 

If we consider a point source (with source length infinitesimal), A z must be 
spherically symmetric. In addition, everywhere except at the origin, lz = 0, 
and (1.24) becomes 

x 

1 d ( 2 dAz) 2 
r2 dr r d;"" + k A z = 0 

z 

Ii 
r I 

I 
I 
I 
I 
I 
I 
I 

~,------------r-------------y 
-...... , 

,/-, : 
,1./ ',I 
'f' -"""-......1 

, FIGURE 1.2. Current source at origin. 

(1.25) 
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This equation has two independent solutions 

1 - jkr d - e an 
r 

1 +jkr -e 
r 

7 

which represent, respectively, outward- and inward-traveling spherical 
waves. From physical considerations we reject the inward-traveling wave and 
choose 

A = C e -jkr 
z r ( 1.26) 

where C is a constant. The constant may be quickly determined by noting that 
as k~ 0, (1.24) reduces to Poisson's equation 

( 1.27) 

with the well-known solution [5,8] 

A = ~ f f f lz dv' 
z 41T r ( 1.28) 

where the prime denotes integration around the source point. 
If we replace lz dv' by I dz' and integrate, the solution to (1.28) is 

A = /-LIt 
z 41Tr 

and if this is equated to (1.26) with k zero, we find for the constant 

( 1.29) 

(1.30) 

The solution we then use for the magnetic vector potential of an 
infinitesimal current element at the coordinate origin is 

A = /-LIt e -jkr 

z 41Tr (1.31) 

This solution is readily generalized to the case of the infinitesimal element 
located at vector distance r' from the origin and oriented along a line parallel 
to a general unit vector u. It is 

A( ) /-LIt e-jklr-r'l 

r =u 4 I '1 1Tr-r 
(1.32) 

Finally, if we have a linear current distribution, a current on a relatively 
thin wire for example, we obtain a solution to (1.13) in the form of an 

., 
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outward-traveling wave 

A(r) - ~ J f(r') e -jklr-r'l de' 
- 41T /r - r'/ (1.33) 

If we wish to return to our original formulation in terms of current density, 
the appropriate form is found by replacing f de' by J dv', giving 

(1.34 ) 

By analogy we immediately find an integral form for the electric vector 
potential F in (1.20). It is 

( 1.35) 

or if we consider a magnetic current K, 

F(r) - ~ J K(r') e -jklr-r'l de' 
- 41T Ir - r'l 

( 1.36) 

1.4. APPROXIMATIONS TO THE POTENTIALS 

The evaluation of the vector potential integrals can be quite difficult to carry 
out in the general case, and approximations are desirable in the factor Ir - r'l. 
We apply the binomial expansion 

( 1.37) 

for r>r', where ur=rlr, and terms in r- 2
, r- 3

, and so on, have been 
dropped. 

Fresnel Zone 

At distances from the sources where 

r~ r' kr~ 1 

we may approximate Ir - r'l by r in the amplitude of the potential integrals 
and by (1.37) in the ,phase term. Then (1.34), for example, simplifies to 
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j.Le-
jkr III {[ (u or,)2 f,2]} 

A(r) = 41Tr J(r') exp jk U r 0 r' + r 2r - 2r dv' (1.38) 

Fraunhofer Zone (Far Zone) 

At still greater distances from the sources we can drop the r -1 term of (1.37) 
in the phase of the potential integrals, and the equation for A(r), for example, 
becomes 

A(r) = /L:~:*' I I I J(r')e jku
,.,· dv' (1.39) 

where it may be noted that 

U r 0 r' = r' cos tf; (1.40) 

with tf; the angle between rand r'. 
The boundaries between the zones are not easily chosen and in fact depend 

on the distributions J and M. A commonly used dividing line between the 
Fresnel and far or Fraunhofer zones for an antenna with greatest linear 
dimension L is 

2L2 
r=--

A 
(1.41) 

With this choice the greatest value of the last two terms in (1.37), which we 
dropped in going from Fresnel to far zone, is 

1.5. FAR-ZONE FIELDS 

We can find expressions for the fields from the integral forms for the 
potentials. We first use the general forms for the potentials. From (1.6) and 
(1.34) we find 

H =! \7 x A = ~ I I I \7 x [ J(r'), e-jklr-r'l] dv' 
J j.L 41T Ir - r I 

1 I I I [ -jk1r-r'l] 
= ~1T J(r') X \7 e

1r 
_ r'l dv' (1.42) 

We then find E J from 



10 AN INTRODUCTION TO ANTENNAS 

1 1 III [ (e-jklr-r'I)] 
E,= jWE VxH,=- j47TWE Vx JxV Ir-r'l dv' (1.43) 

From the identity 

v x (A x B) = AV 0 B - BV 0 A + (B 0 V)A - (A 0 V)B (1.44 ) 

and the fact that J is a constant vector in the differentiation, E, becomes 

1 I I I [ (-jk1r-r'l) ( -jk1r-r'I)] 
E,= j4~wE JV2 e1r_r'l -(JoV)V e1r_r'l dv' (1.45) 

Now, the function e -jklr-r' l / Ir - r'l is a solution of the scalar Helmholtz 
equation [3, p. 38] 

(1.46) 

and, with this, we find for E, 

1 I I I [ (-jk1r-r'l) ( -jk1r-r'I)] 
E, = j47TwE Jk2 e1r _ r'l + (J oV)V e1r _ r'l dv' (1.47) 

If we repeat the above procedure using the electric vector potential F for 
magnetic source distribution M, we obtain 

~M = - ; V x F = 4~ I I I M(r') x V( el~j:':"I'I) dv' 

-1 
HM = -. - V XE M 

JWJ.L 

(1.48) 

1 I I I [ (-jk1k-r'l) ( -jk1r-r'I)] 
= j47rw/L Mk2 e1r_r'l + (M·V)V e1r_r'l dv' (1.49) 

We now use the far-field approximation 

e -jklr-r'l e -jk(r-ur·r ' ) 

r 
(1.50) Ir-r'l =-

If only the terms of order 1/ r are retained, the gradient may be shown to be 

( 
-jk(r-u .r'») "k 

't"7 e r - ] -,Okr ,Oku .r' 
v =--e e r U 

r r r 
(1.51) 

and H, is immediately seen to be 
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H = jk e -jkr J J J J(r') X U ejkuror' dv' 
J 41Tr r 

( 1.52) 

which may be written as 

H - jk -jkr J J J (J J) jkur "r ' d ' 
J - 41Tr e q,Uo - oUq, e v (1.53) 

The corresponding value of the electric field for an electric source 
distribution may be found by substituting (1.50) and (1.51) into (1.47). The 
result is [3] 

(1.54 ) 

In the same manner we find the fields for a magnetic source distribution 

where 

H - jk -jkr J J J (M M) jkur"r' d ' 
M - - 41T Z reo Uo + q, uq, e v 

o 

Z = ~ 
o -V~ 

is the intrinsic impedance of the medium of interest. 
We can summarize these far fields: 

ELECTRIC SOURCES MAGNETIC SOURCES 

Er =0 (a) Hr=O (g) 

Eo=-jwAo (b) Ho = -jwFo (h) 

Eq, = - jwAq, (c) Hq, = - jwFq, (i) 

Hr=O (d) Er =0 (j) 

jwAq, Eq, 
(e) Eo = - jwZoFq, = ZoHq, (k) Ho=-Z Zo 0 

H = 
-jwA o Eo 

(f) Eq, = jwZoFo = - ZoHo (1) q, 
Zo Zo 

( 1.55) 

( 1.56) 

(1.57) 

(1.58) 
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We may see from these equations for the field components that in the far 
zone the E and H fields are orthogonal to each other and to r and thus are 
TEM-to-r fields. This is true whether the sources are electric or magnetic or a 
combination of both. 

1.6. USE OF THE POTENTIAL INTEGRALS FOR 
PHYSICAL STRUCTURES 

The potential integrals for electric and magnetic sources were developed by 
considering an infinitesimal current element, with the implication that it was a 
current existing in a homogeneous medium throughout the region of interest 
to us. Antennas, however, have currents flowing in metallic conductors, and 
we must justify the use of the potential integrals for inhomogeneous media. 
To do this we use two of the Maxwell equations 

v x H = (0- + jWE)E + JS = yE + JS (a) 
(1.59) 

-VXE=jWfLH+MS=iH+MS (b) 

where the superscript denotes a source, and the definitions of y and i are 
obvious. 

The greater part of the region of interest is free space with parameters Eo 
and flo, with a small region (the antenna) having different parameters, E and 
fl. We may then rewrite the equations above as 

(1.60) 

where we have defined 

J = JS + (y - jWEo)E (a) 
(1.61) 

M = MS + (i - jWfLo)H (b) 

Formally, Eqs. (1.60) are the free-space Maxwell equations, and we may 
use the potential integrals with the sources J and M as if the region were 
homogeneous. The sources are now unknown, but we will see how this 
problem can be handled for a linear antenna. 

Assume that a linear metallic antenna is fed by a current source JS. 
Further, for most conductors we can assume that fL = flo and E == Eo (the 
assumption about E is unnecessary if we recognize that 0- ~ WE). Then the 
densities of (1.61) become 

. J = JS + o-E (a) M = 0 (b) (1.62) 
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Under these circumstances for a wire antenna we can write 

A = ~ f f f JS + o-E e-jklr-r'l dv' 
47T Ir - r'l (1.63) 

In (1.63) we have a valid potential integral that is applicable to our antenna 
problem even though we are dealing with an inhomogeneous region of space. 
The price that we must pay for obtaining this form is that the integrand is un­
known. 

Now the current source JS is applied to the feed gap of a linear antenna. 
Also o-E is the physical current density in the conducting structure of the 
antenna. We may then replace the integrand of (1.63) by measured currents 
on the antenna and write, for a thin antenna, 

A(r) = ~ f I(r') e -jklr-r'l de' 
47T Ir - r'l (1.64) 

which agrees with (1.33). We have thus justified the use of the potential 
integrals to obtain the potentials produced by currents flowing in metallic 
antennas [9]. 

1.7. RADIATION PATTERN 

We are now in a position to define the radiation pattern of an antenna and 
some related parameters. We will use IEEE Standard 145-1983 definitions for 
these and other quantities unless otherwise indicated [10]. 

In Section 1.3 we found the magnetic vector potential of an infinitesimal 
current element at the coordinate origin in order to develop the general 
equations for electric and magnetic vector potentials for more general source 
distributions. We now let the infinitesimal current element do double duty by 
using it as a basis for the definition of radiation pattern. 

The magnetic vector potential for the current element of Fig. 1.2, which we 
obtained earlier, is 

A = /-LIt e -jkr 

z 47Tr 
(1.31) 

It is desirable to use spherical coordinates, and it is obvious that 

A /-LIt -,"kr " = A cos () = -- cos () e 
r z 47Tr 

A A · /-LIt. -jkr 
= - SIn () = - -- sIn () e 

() z 47Tr 

A =0 cP 

(a) 

(b) (1.65) 

(c) 
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In order to define pattern and gain we need only the far-field components, 
which we may obtain immediately from (1.58) 

Er = 0 (a) 

. jWJ.Llf. -jkr 
(b) E = - JwA = -- SIn 8e 

8 0 47Tr 

E = -jwA =0 
cf> cf> 

(c) 
(1.66) 

Hr =0 (d) 

Ecf> 
(e) H =--=0 

8 Zo 

H - Eo _ jWJ.Llf . 8 -jkr (f) cf> - Z - 4 Z SIn e o 7T or 

where 

k = 27T 
A 

The time-average Poynting vector in the far field becomes 

s= 1 Re(ExH*)= 1 Re(E H *)u 2 2 0 cf1 r 

(1.67) 

We found here the time-average Poynting vector in the far field. If we had 
used the more general relationships (1.22) and (1.23) for the fields in terms of 
A, we would have found the time-average Poynting vector for fields that vary 
as 11r2 and 11r3 to be zero, so that (1.67) is correct everywhere in the field. Of 
course, energy can be transferred to conducting objects by field terms other 
than the far fields (consider a transformer, for example). The difference 
is that, in the absence of nearby lossy objects, the energy in the 1 I r field terms is 
lost to the antenna system, whereas energy represented by near-field terms is 
stored. 

Radiation Intensity 

Radiation intensity in a given direction is the power radiated from the antenna 
per unit soliq angle. A bundle of rays, not all lying in a common plane, and 
intersecting at a common point, forms a solid angle, measured in steradians 
(dimensionless). If a sphere of radius ris constructed as in Fig. 1.3(a) , with center 
at the ray intersection, the rays subte~d area A on the sphere surface. The ratio 



z 

~------------------~----y 

(a) 

(b) 

FIGURE 1.3. Illustration of solid angles: (a) solid angle and subtended area on a sphere; (b) 
elementary solid angle with general surface. 

15 
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(1.68) 

is independent of the sphere radius and defines the solid angle formed by the 
rays. We may also write the infinitesimal element of solid angle in terms of 
the elementary area dA on any surface, as in Fig. 1.3(b). The projection of 
the surface area element onto a sphere centered at the ray intersection is 

where n is the unit normal vector to the surface, and or the unit vector in the 
direction of r, the vector drawn from the ray intersection to the surface 
element. With the use of this surface area element projection, the element of 
solid angle is . 

dA 
dn= -2 0ron 

r 
( 1.69) 

The radiation intensity U is then related to power radiated within solid 
angle 11 by 

U= W 
n 

if n is small enough that U is a constant. More generally 

w = f U d n = f f U sin e de dq, 

(1.70) 

(1. 71) 

The radiation intensity is readily related to S, the magnitude of the 
time-average Poynting vector, since 

W= un = SA = Sr2n 

or 

(1.72) 

in which we stress that both U and S are dependent on direction. 

Radiation Pattern 

The radiation pattern (antenna pattern) represents the spatial distribution of a 
quantity that characterizes the electromagnetic field generated by an antenna. 
In the usual case the radiation pattern is determined in the far-field region and 
is represented as a function of directional coordinates. Radiation properties 
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include power flux density, radiation intensity, phase, polarization, and field 
strength. (Note: Power flux density is not defined in the IEEE Standards, but 
in context it is used as the magnitude of the time-average Poynting vector. 
Normally we will use power density.) 

The radiation pattern is measured as a function of direction at a constant 
radius from the antenna. Absolute or relative measurements may be made, 
although it is more common to see plots of relative power density or field 
magnitude. It is usual to present the three-dimensional information as a series 
of two-dimensional plots, in either polar or rectangular form. Fig. 1.4 shows 
the relative field magnitude and power density in constant-azimuth planes for 
the z-directed infinitesimal current element, or elementary antenna in our 
usage. 

One two-dimensional plot is sufficient to describe the radiation pattern of 
the infinitesimal current element since the fields and power density are not 
functions of azimuth angle 4>. For more general patterns, plots may be shown 
for variable polar angle () in planes of constant-azimuth 4>, or vice versa. Two 

z z 

0.707 () () 

0.707 

(a) (b) 

1 

______ ~ ________ +_--------~L---------_+--------~ __ ~---O 

180 0 

~--------900--------~ 

(c) 

FIGURE 1.4. Radiation patterns of infinitesimal current element: (a) field strength. d = Isin 81; 

(b) power density, d = sin 2 e; (c) power density. 
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--------~------+-------+--------y 

x 

FIGURE 1.5 H-plane pattern for z-directed current element. 

patterns of considerable importance for many antennas are the principal 
E-plane and H-plane patterns. The principal E plane is a plane containing the 
electric field vector and the direction of maximum radiation, and the principal 
H plane is one containing the magnetic field vector and the direction of 
maximum radiation [8]. Jointly, these are called the principal planes. The 
definitions apply only to antennas whose radiated wave is linearly polarized in 
the direction of maximum power density. Any constant-azimuth plane is an E 
plane for the z-directed current element, so Fig. 1.4 is an E-plane pattern. 
The H plane for the element is the plane e = 1T 12, or the xy plane. The 
H-plane pattern for the current element is shown in Fig. 1.5. 

Beamwidth 

The half-power beam width , in a plane containing the direction of the 
maximum of a beam, is the angIe between the two directions in which the 
radiation intensity is one-half the maximum value of the beam. Half-power 
beam widths in the E plane are shown in Figs. 1.4(a) and 1.4(b) for the current 
element. In the H plane it is inappropriate to speak of a beamwidth since the 
radiation intensity is constant. The current element is an omnidirectional 
antenna, one having a nondirectional pattern in a given plane (azimuth) and a 
directional pattern in any orthogonal plane. 

Radiation Lobe 

This is a portion of the radiation pattern bounded by regions of relatively 
weak radiated intensity [11]. Our current element fails us as an illustration, 
and we must go to a more general antenna that may have a principal plane 
pattern like that of Fig. 1.6. 
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FIGURE 1.6. Radiation lobes of general antenna. 
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The radiation patterns of the previous section show that the radiation 
intensity from an antenna is greater in some directions than in others, and this 
is of benefit to the user in many applications. This characteristic is usefully 
described by the directivity of the antenna. It is in essence a comparison of the 
radiation intensity of the antenna in a specified direction to the intensity that 
would exist if the antenna were to radiate the same total power equally in all 
directions, and can be greater than unity in some directions if it is less than 
unity in others. The directivity is the ratio of the radiation intensity in a given 
direction from the antenna to the radiation intensity averaged over all 
directions. The average radiation intensity is equal to the total power radiated 
by the antenna divided by 47T (the solid angle measure of a sphere). If the 
direction is not specified, the direction of maximum radiation intensity is 
implied [IO].t 

We may easily determine the directivity of the infinitesimal current source 
of Section 1.7. From (1.67) we find the radiation intensity to be 

(1.73) 

tThis represents a change from previous IEEE Standard definitions [11, 12] that used directive 
gain for this function and directivity for the maximum value of the directive gain. Earlier, Kraus 
(in 1950) used directivity as a function of 8, ¢ [1, Eg. 2-52a]. The author prefers directive gain 
(now deprecated by the Standard), but the usage in this text will conform to the current Standard. 
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Then the total radiated power is determined by integrating over the surface of 
a sphere of very large radius. 

J 
Z 1112[2 J 71' J27T 

W d = u(e <jJ) dO = 0 ? sin
3 e de d<jJ 

ra ' 8A - 0=0 cj,=o 

(1.74) 

The average radiation intensity is 

(1.75) 

and the directivity is 

(1. 76) 

Radiation Resistance 

The gain of an antenna is closely related to its directivity. Before considering 
antenna gain, however, it is useful to consider power losses in the antenna 
and also to anticipate a later discussion of antenna impedance by discussing 
radiation resistance. Power radiated is lost to the generator-transmission 
line-antenna system, and to the generator the loss is indistinguishable from 
heat loss in a resistance of appropriate value. We therefore define an 
equivalent resistance called the radiation resistance which is the ratio of power 
radiated by the antenna to the square of the rms current referred to a 
specified point. 

The radiation resistance of the elementary antenna (infinitesimal current 
source) whose radiated power is given by (1.74) is obviously 

2 TT Zo C'2 '2 ( C) '2 
R = = 80TT -

r 3A'2 A (1. 77) 

where we use 120TT for the characteristic impedance of free space. See Section 
1.12 for a further discussion of radiation resistance. 

The current is the same at all points of the elementary antenna, and it is 
clear that radiated power is divided by the square of that constant current to 
obtain the radiation resistance. A widely used antenna that does not have a 
constant current throughout it is a circular cylindrical center-fed dipole, 
shown in Fig. 1.7. If it is made of a wire whose radius is much smaller than a 
wavelength and much smaller than the dipole length, measurements show 
that the current, to a good approximation, is sinusoidal [1, p. 139]. 
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z 

---y 

~----------------I 

FIGURE 1.7. Center-fed dipole antenna and associated current distribution. 

I(z') = 1m sin [k(!e -lz'I)] _le<z'<le 2 - - 2 (1.78) 

At the antenna feed point 

lin = 1(0) = 1m sin (!ke) (1. 79) 

The last phrase of the definition of radiation resistance is now clear. We may 
define the radiation resistance of the dipole referred to a current maximum 

(1.80) 

or we may define the resistance referred to the feed point 

(1.81) 

and the relationship between the two definitions is obviously 

(1.82) 

Both definitions are used in the literature. 
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Antenna Losses 

Antennas are constructed of conductors, with finite conductivity, and lossy 
dielectric materials. It is clear that not all of the power accepted by the 
antenna from its feed system is radiated-some is lost as heat. The determin­
ation of the losses is normally quite tedious and requires a knowledge of 
tangential magnetic fields (or surface current densities) at conducting surfaces 
and the electric fields in lossy dielectrics. We will consider here only one of 
the simplest cases, the losses in a circular cylindrical antenna made of a wire 
with conductivity CT and carrying a known current distribution 1(z'). 

For a wire of radius a, we may treat an axial high-frequency current as 
though it flows with constant density to a depth 0 at the wire surface , where 0 
is the skin depth, given by 

1 
0=---::== V 7rf/LCT 

(l.83 ) 

Then the high-frequency resistance per unit length of such a wire is t 

1 
R =---

hf 27raOCT (l.84 ) 

Power loss per unit length then becomes 

and for a finite-length antenna 

(l.85) 

When applied to the elementary antenna we are using for most of our 
illustrations, 

(l.86) 

An equivalent loss resistance for this antenna can be defined as 

(l.87) 

More generally, a loss resistance for a dipole antenna, referred to the 

tStrictly , this is not quite 'correct, and the equation for a conductor of circular cross section is 
more complicated. Typically, for an antenna, 0 ~ a and the approximation is excellent. 
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input, is 

J
fl2 

R = _1_ I z' 2R dz' 
loss IIinl 2 -fl21 ( )1 hf 

(1.88) 

Radiation Efficiency 

In general the transmitter will deliver an incident power to the antenna. Part 
will be reflected because of an impedance mismatch and part will be accepted 
by the antenna. Of the power accepted, some will be radiated and some lost 
as heat in lossy conductors and dielectrics. A radiation efficiency is defined as 
the ratio of the total power radiated by the antenna to the net power accepted 
by the antenna from the connected transmitter. 

We may write the efficiency as 

(1.89) 

and if we consider radiation resistance and loss resistance, referred to the 
same point, 

(1.90) 

Gain 

We are now in a position to define the antenna gain (sometimes called power 
gain). It is the ratio of the radiation intensity, in a given direction, to the 
radiation intensity that would be obtained if the power accepted by the 
antenna were radiated isotropically (equally in all directions). Thus 

U(O, </» 
G(O, 1» = (1/4'7T)Wacc (1.91) 

Gain does not include losses arising from impedance and polarization 
mismatches. If the direction is not specified, the direction of maximum 
radiation intensity is implied. 

We may now readily use the relationship between radiated and accepted 
power to relate gain and directivity. 

U(O, 1» 
G(O, 1» = (1/4'7T)Wradle = eD(O, </» (1.92) 

1.9. THE DIPOLE ANTENNA: FIELDS 

In order to discuss the input impedance of an antenna, as we shall do in a later 
section, it is desirable to obtain the fields of a more complex antenna than the 



24 AN INTRODUCTION TO ANTENNAS 

elementary current source. We will use the center-fed dipole antenna of Fig. 
1.8 for this purpose because it is a highly useful antenna and the equations 
describing it are readily available. We need both the near- and far-field terms, 
and we will save time by finding the complete fields and specializing as 
desired. 

It was noted earlier that the current distribution of a center-fed dipole is 

l(z') = 1m sin [k(!( -lz'I)] _l{<z'<l{ 
2 - - 2 (1.78) 

We may write for the magnetic vector potential 

1 {fO -~R A = /-L 111 sin [k(!( + z')] ~R dz' 
z 411" -tl2 

(1.93) 

z 

Q 

z' 

~-------7~--------~--------------Y 

x 

I 
I 
I 
I 

, I 

'"" 

FIGURE 1.8. Geometry for determining dipole fields. 
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If the sine terms of the integrands are replaced by their exponential 
equivalents, A z becomes 

I [ fO -jk(R-z') fO -jk(R+z') 
A = f..L '~ e jk (tl2) e dz' - e- jk ({!2) e R dz' 

z 81TJ -(!2 R -tl2 

+ jk({!2) ed' -jk({!2) ed' 

f,

{!2 -jk(R+z') f,fl2 -jk(R-z') ] 

e 0 R z-e 0 R z (1. 94) 

If we use circular cylindrical coordinates, R may be written as 

(1. 95) 

where p is the radial distance shown in Fig. 1.8. The magnetic field intensity is 

1 aA z H =---
cP f..L ap 

and if we differentiate in (1.94) we obtain 

H = - ~ e jk (tl2) !.- e dz' 
I { fO -jk(R-z') 

cP 81Tj -02 ap R 

(1. 96) 

- e -jk(02) - e dz' + e jk (02) dz' f
o a -jk(R+z') f,fl2 a e-jk(R+z') 

-02 ap R 0 ap R 

f,

02 e-jk(R-z') } 
-jk(t/2) a - e - dz' 

o ap R 
(1. 97) 

Carrying out the differentiation in the integrands gives us 

a e _ ] -jk(R-zz') 
-jk(R-zz') ( 'k 1) 

ap R - - P R2 + R3 e (1. 98) 

These terms are exact differentials, and it may be verified in a straightforward 
manner that 

d -jk(R-z') ( 'k 1) 
e _ ] -jk(R-z') 

dz' R(R - z' + z) - R2 + R3 e 
(a) 

(1. 99) 

d 
-jk(R+z') . 

e _ (Jk 1) -jk(R+z') 

dz' R(R + z' - z) - - R2 + R3 e 
(b) 

The first integral in Eq. (1.97) therefore becomes 
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[ 
-jk(R-z') ] 0 [-jkr -jk(R2+Cl2)] 

-p R(~ - z' + z) -et2 = -p r(: + z) - R2(~2 + el2 + z) 

__ [(r-z)e- jkr _ (R2-tI2-Z)e-jk(R2+Cl2)] 

- P r(r2 - Z2) R2[R~ - (t12 + Z)2] 

But 

2 2 2 ( ) r =z +p a 

R~=(Z_!t)2+p2 (b) 

R~ = (z + ! t)2 + p2 (c) 

and the integral may be put into the form 

-H (1 - ;)e -jh - (1 - e;~: Z)e -jk(R,+et2)] 

The remaining integrals in (1.97) for HrjJ give in order 

~ [(1+ ; )e-jh - (1 + e;~: Z)e -jk(R'-CI2)] 

(1.100) 

. If these four terms are substituted into the equation for HrjJ' it becomes 

H - 1m [-jkR, + -jkRz 2 kt -jkr] - - -- e e - cos - e 
<P 41Tjp 2 

(1.101) 

which is a remarkably simple equation for the field close to an antenna [13]. 
The electric field components are readily found from one of the Maxwell 

equations in circular cylindrical coordinates 

1 aHrjJ 
E =---

P jWE az 

jZolm [( t) e-
jkR

, ( t) e-
jkR2 

kt e-
jkr

] = -- z - - -- + z + - -- - 2z cos - --
41TP 2 R 1 2 R2 2 r 

E =0 rjJ 

E=--- qJ = 01/1 _e __ +_e ___ 2 cos __ e_ 1 a(pH) -jZ 1 [-jkR' -jkRz kl -jkr] 

z jWEP ap 41T R1 R2 2 r 

(1.102) 

(a) 

(b) 

(c) 
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These fields may be readily specialized to the far zone. In (1.101) we make 
the substitutions 

p = r sin 8 (a) 

R I = r - ~ e cos 8 (b) (1.103) 

R 2 = r + ~ e cos () (c) 

and find for H¢ and Eo in the far zone. 

H = jlme-
jkr cos (~ke cos 8) - cos (~ke) 

¢ 21Tr sin () 
(a) 

E = Z H = jZolme-jkr cos (~ke cos 8) - cos (!ke) 
o 0 ¢ 21Tr sin 8 

(1.104) 

(b) 

The power density is readily formed from these far-zone equations for Eo 
and H¢. It is true for this antenna, just as for the infinitesimal current source 
of Section 1.7, that only the far fields contribute to the time-average Poynting 
vector. The power density thus formed may be integrated over a sphere of 
large radius to find the total power radiated and the radiation resistance found 
from the power. The integration is not easily done. Kraus gives the process 
for the half-wave antenna [1, p. 143] and Balanis gives the results for an 
antenna of general length [8, p. 120]. The resistance will not be given now but 
deferred to a later section when the input impedance will be developed . 

1.10. RECIPROCITY THEOREM 

In order to complete the center-fed dipole description by finding its input 
impedance, we need two theorems, one on reciprocity and one on equivalent 
sources. The reciprocity theorem will also be of use when we consider the 
receiving pattern of an antenna. We therefore ,pause to develop these 
theorems. 

Consider two sets of sources, J\ MI and J2, M2 in a linear isotropic 
medium. Then the Maxwell curl equations are 

(a) 

(b) 

(c) 

(d) 
(1.105) 

where E\ HI and E2, H2 are the fields produced by sources 1 and 2, 
respectively. Multiplying (a) by E2 and (d) by H\ adding, and using the 
identity \1. (A x B) = B· (\1 x A) - A· (\1 x B), and repeating (except with the 
multiplication of (b) by H2 and (c) by EI) leads to [5] 
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-V. (E 1 X H2 - E 2 X HI) = E 1 • J2 - E 2 . J 1 + H2 . M 1 - HI. M2 (1.106) 

Integrating over a volume and using the divergence theorem on the left 
side yields 

-§ (E' X H2 - E2 X HI). dA 

= f f f (EI .J2_ E2. J I +H2 ·M' -H' ·M2 )dv (1.107) 

This equation represents the Lorentz reciprocity theorem. In a source-free 
region it reduces to 

(1.108) 

1.11. AN EQUIVALENCE THEOREM 

The electromagnetic fields produced by a given source distribution are 
unique, but the reverse is not true. A given field within a region can be 
produced by more than one source distribution. An electric current above an 
infinite conducting plane produces the same field above the plane as the 
current and its image acting in free spcrce, for example. Two sources that 
produce the same fields within a region are equivalent in that region [5]. 

Consider sources J and M within a region bounded by surface S, as shown 
in Fig. 1.9(a) , producing fields E and H internal and external to S. The 
internal region may contain matter (conceivably nonlinear and nonisotropic), 
but external to S we assume free space without sources. Field values at the 
surface are ES and HS

• Now consider a second case, shown in Fig. 1.9(b), with 
the same surface S the boundary between internal and external regions. We 
require that the fields external to S remain the same as for our first case, but 

Free space Free space 

E, H E, H 
n 

(a) (b) 

FIGURE 1.9. Fields of a source distribution and equivalent sources. 
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that the internal fields be zero. Further, we assume free space both internal 
and external to S for the second case. This field configuration will be 
established if surface currents 

(1.109) 

flow on surface S. The surface currents Js and Ms are equivalent, for the fields 
external to S, to the original current distribution J and M. The equivalence 
expressed by (1.109), and its interpretation, are commonly called the Love 
equivalence principle [3]. It may be expressed more generally, with nonzero 
fields internal to S in the equivalent formulation [3, 5], but the form given 
here is the one most used. 

Note that the fields ES and HS must be found from the original problem 
before the equivalent surface currents can be found. In some cases, such as 
apertures in conducting planes, good approximations can be made to the 
fields in the aperture. Once the fields over S are known the potential integrals 
may be used, since free space exists everywhere in the equivalent problem, to 
find the fields at all points external to S. 

Two useful variations to the equivalence principle are possible. Since the 
fields internal to S are zero, we can place a perfectly conducting (for electric 
currents) surface just inside S or fill the entire internal region with a perfect 
electric conductor. The internal fields remain zero, and the external fields are 
unchanged. The conducting surface short circuits the electric current J s = 

o x H S and leaves only the magnetic surface current to radiate, as shown in 
Fig. 1.10(a). We may instead fill the internal region with a perfect magnetic 
conductor that short circuits the magnetic surface current Ms = -0 xEs, 
leaving only the electric surface current to radiate, as in Fig. 1.10(b). In the 
general situation the potential integrals cannot be used to determine the fields 
produced by the equivalent surface current distributions of Fig. 1.10 because 
the currents do not radiate into a homogeneous medium. If the fields of the 
original problem are insignificant over the greater part of surface S, as in 
radiation from an aperture in a conducting plane, for example, and if the radii 

Free space Free space 

E, H E, H 

(a) (b) 

FIGURE 1.10. Equivalent sources in the presence of conductors. 
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of curvature of S are large enough, in that part where ES and HS are 
significant, to use image theory, then one of the latter formulations of the 
equivalence principle can be useful. We will use this concept in a later section 
to determine the fields of an aperture antenna. 

1.12. THE DIPOLE ANTENNA: INPUT IMPEDANCE 

We shall develop in this section the input impedance of the linear center-fed 
antenna using the induced em/method commonly associated with the name of 
Carter [14], although Elliott [2] points out that it was introduced by Brillouin. 
The treatment here is similar to that of Elliott, with results in the form used 
by Balanis [8]. 

The dipole has a circular cross-section of radius a and length t, as shown in 
Fig. 1.11. It is fed by an ideal source in an infinitesimally thin gap at the 
center. Because of skin effect, the current will flow in a thin layer at the 
conductor surface. We approximate this by assuming the layer to be of 
infinitesimal thickness with a surface current density J;z(z'). We also assume 
a surface current density in the feed gap given by the same function. Now, in 
accordance with the development in Section 1.6, we can remove the 
conductors and leave the surface current distribution in free space without 
altering the external fields. If we surround the current distribution by a 
cylindrical surface S infinitesimally greater in length and radius than the 
original antenna, then the tangential electric field along the surface, 
E~(a, z'), must be zero except at the feed gap. In the original problem, 
currents flow on the end caps, z' = ± t 12, for a finite radius antenna, but if we 
assume the dipole to be thin, with a ~ A and a ~ t, we can ignore the 
contributions of the end caps. 

Consider next a line current Jb(Z') in free space along the z axis and apply 
the reciprocity theorem (1.108) for a source-free region . 

f (EO X U b - Eb X Un) . dA = 0 (1.110) 

where Ea
, Ha are the fields produced by the surface current Ja , and Eb, Hb are 

b sz 
those produced by J . Then on surface S, if we note that E~ and Hz are zero 
whether produced by the generator in the infinitesimal gap or by the line 
current on the axis, we get 

J
fl2 J27T 

[E~(a, z')H~.(a, z') - E:(a, z')H~.(a, z')]a d¢ dz' = 0 (L111) 
- e/2 0 'I' 'I' 

Now we have noted that E~ is zero on S except at the infinitesimal feed 
gap. Further, we let 

f E~(a, z') dz' = -1 
gap 

(1.112) 
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FIGURE 1.11. Dipole antenna of finite radius. 
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so that E; is a Dirac delta function (and the source voltage is 1 V). In addition 
we note that because of symmetry, all scalar quantities in our problem are 
independent of 4>. We therefore carry out the integration in (1.111) and 
obtain 

J
et2 

H~(a, 0) = - E~(a, z')H~(a, z') dz' 
'+' -f/2 

(1.113) 

Now we note that 

(1.114) 
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and 

(1.115) 

With these substitutions, (1.113) becomes 

(1.116) 

We can develop a second expression for the magnetic field H~(a, 0). We 
consider the thin disc lying between the arms of the dipole (Fig. 1.12) and 
integrate the Maxwell equation 

(1.117) 

over one of its flat surfaces. This leads to 

f Hb • de = f f Jb. dA + jws f f Eb
• dA (1.118) 

which becomes 

(1.119) 

where we have treated the top surface of the infinitesimally thin disc as lying 
at z = O. 

Now we have assumed a ~ e and a ~ A. The integral in (1.119) is therefore 
negligible in comparison to ]h(O). This may be readily verified for specified 
fields, and it is left as an exercise to do so for the field of a sinusoidal current 
distribution on the axis. If the integral of (1.119) is neglected, comparison of 
the resulting equation with (1.116) leads to 

FIGURE 1.12. Disc containing source distribution. 
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J
fl2 

Ib(O) = - E~(a, z')r(z') dz' 
-fl2 

( 1.120) 

Now Ib(z') has not been constrained in any way (in contrast to r, which is 
the unknown current in a physical problem). We are therefore free to choose 
Ib arbitrarily, and we may choose it equal to r and drop the superscript. Then 
we obtain 

J
fl2 

1(0) = - Ez(a, z')/(z') dz' 
-fl2 

(1.121) 

where we must remember that E z is established by the axial current Ib and not 
by the surface current distribution of the physical problem. 

We may now find the input impedance of the dipole antenna from 

Z. = ~ = VI 0 = __ 1_ E a z' I z' dz' ( ) 
J 

fl2 

In 1(0) 12(0) 12(0) -fl2 z(' ) ( ) ( 1.122) 

since we took V earlier as 1 V. We must bear in mind that I(z') is not known. 
It may be measured or assumptions made about its form. Once I(z') is 
obtained, the field Ez(a, z') may be determined in a straightforward manner 
since I(z') is a filamentary current in free space and the potential integral may 
be used. 

We assumed in Section 1.9 a sinusoidal distribution of current on the z axis 

I(z') = 1m sin [k(! f -lz'l)] (1.78) 

and found E z to be 

Z I [-jkRI -jkR2 (kf) -jkr] • Om e e e . E =-]-- ---+---2cos - --
z 41T Rl R2 2 r 

( 1.102c) 

If we substitute these functions into (1.122), we can find the input impedance 
of the dipole antenna for the assumed sinusoidal current distribution. In E z 
we use values for surface S, 

Rl =Y(!f-Z,)2+ a2 (a) 

R2 =Y(!f + Z,)2 + a2 (b) 

r=Yz,2+ a2 (c) 

(1.123 ) 

In the integration for the real part of Zin' the approximation a = 0 can be 
mad~, but not for the imaginary part since it causes the imaginary part to 
become infinite (except for special antenna lengths). 
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The results of the integrations are [8]: 

Rin = Re (Zin) = 27T sin 2 (kfI2) 

x { C + In (ke) - Ci (ke) + ! sin (ke)[Si (2ke) - 2 Si (ke)] 

+ ! cos (ke)[ C + In ~e + Ci (2ke) - 2 Ci (ke)]) (1.124) 

X;n = 1m (Z;n) = . ~( {2 Si (kf) + cos (kf)[2 Si (kf) - Si (2kf)] 
47T SIn kf 12) 

- sin (ke)[ 2 Ci (ke) - Ci (2ke) - Ci 2';2]} 
(1.125) 

where 

C = Euler's constant == 0.5772 

C· ( ) .. f 0:: cos U 
1 X = cosIne Integral = - - .- du 

x u 
(1.126) 

f
x . 

. .. SIn U 
SI (x) = sme Integral = -- du 

o u 

A commonly used antenna is the half-wave dipole for which the impe­
dance, for a very thin dipole, is 

Zin = 73.1 + j42.5 n 

For a sinusoidal current distribution it is common to reference the 
impedance (particularly the resistance) not to the input but to the position of 
maximum current (even if the antenna is so short that maximum current 1m is 
not reached at any point on the antenna). This is done by using 1~1 rather than 
1\0) in (1.122). The relationship between impedance referred to maximum 
current and input impedance is 

Zm 
(1.127) 

sin 2 (kfI2) 

The input resistance R in for the dipole obtained by the induced emf 
method is the radiatiqn resistance of the dipole, as defined in Section 1.8. We 
could have obtained it by forming the power density from the dipole far fields, 
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(1.104), and integrating over a sphere to determine the total power radiated. 
The result would have been the same as that found by the induced emf 
method. We will more often use the symbol R r , used in Section 1.8, than R in 

for radiation resistance. 

Equivalent Circuit for Antenna 

We now recognize that at one frequency an antenna is seen by a generator and 
associated transmission line as an impedance, and the equivalent circuit of 
Fig. 1.13 may be used to determine power accepted by the antenna, power 
radiated, and so on. Even though we developed the impedance by consider­
ing a linear wire antenna in which it is reasonable to think of an ohmic loss 
resistance in series with a radiation resistance, we must keep in mind that 
losses may come from dielectrics or from induced ground currents if the 
antenna is near a lossy ground. In such cases a parallel admittance represent­
ation of the antenna (Norton equivalent) may have elements that vary less 
with frequency than does the Thevenin circuit of Fig. 1.13. In general, 
however, any equivalent circuit representation of an antenna is valid only 
over a narrow frequency range. 

In considering the dipole antenna it is reasonable to consider feeding it 
with a two-wire transmission line with TEM mode fields. Now the concept of 
an antenna impedance is clearly dependent on our defining a driving point, or 
input port, for the antenna. Silver [15] points out that the current distribution 
in the line must be that characteristic of a transmission line up to the assigned 
driving point. At higher frequencies, interaction between the radiating system 
and the line may disturb the line currents back over a considerable distance, 
and there is no definite transition between transmission line currents and 
antenna currents. In such a case the concept of "antenna impedance" is 
ambiguous. Some antennas are fed by waveguides that do not propagate the 
TEM mode. If the waveguide propagates a single mode, as most waveguides 
are designed to do, it is equivalent to a two-wire line, and a mode impedance 
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FIGURE 1.13. Equivalent circuit of transmitting antenna. 
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may be defined. The antenna impedance can be expressed in terms of this 
mode impedance, but as before the validity of the impedance concept 
depends on our ability to define an antenna driving point with only a single 
waveguide mode on one side of this driving point. (A single mode on the 
other side is not precluded.) We will assume in our work that we have a 
situation in which the antenna impedance is clearly defined, and that it does 
not matter if the feeding transmission system is a two-wire or coaxial line 
carrying the TEM mode or a waveguide propagating some other single mode. 
We note that many antenna structures are so complex that their impedances 
have not yet been developed to a satisfactory extent, and we must rely on 
measurements to determine their impedances. 

Finally, it should be noted that matching networks are commonly inserted 
between the antenna and the transmission line, and between the generator 
and transmission line. In our developments, we will not in general deal with 
the transmission line and matching networks since their principles are outside 
the scope of this book. 
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FIGURE 1.14. Waveguide opening into infinite plane. 
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1.13. WAVEGUIDE OPENING INTO INFINITE GROUND PLANE 

In this section we will examine one of the many possible aperture antennas to 
see how the equivalence theorem of Section 1.11 may be used to determine 
the fields. Figure 1.14 shows a rectangular waveguide opening into an infinite 
ground plane. We assume that the waveguide allows only the dominant TElO 
mode to propagate, with electric field 

E i - E' TTX -jkgz y - 0 cos e 
a 

(1.128) 

where kg is the propagation constant in the guide. At the guide opening a 
portion of the incident wave is reflected, and we take this to be the TElO mode 
also, 

7TX Ok E r = fE' cos - e' gZ y 0 a (1.129) 

At the guide opening, which we take as the z = 0 plane, the aperture field 
is the sum of incident and reflected waves 

7TX 7TX 
E =(l+f)Ebcos-=Eocos-

Y a a 

Along the ground plane the tangential electric field is zero . 
We now apply the equivalence principle of Section 1.11, as illustrated by 

Fig. 1.15, to find the fields produced. 
Figure 1.15(a) shows the waveguide opening into the ground plane with the 

tangential component of E (and H) nonzero in the aperture. In Fig. 1.15(b) 
the equivalence principle is used to establish a mathematical surface (an 
infinite plane) with equivalent surface currents Js and Ms found from 

(1.109) 

where n = uz • Since we will make no use of J s' we do not obtain its value. In 
Fig. 1.15(c) we use a variation of the equivalence principle discussed in 
Section 1.11 to fill the region to the left of the surface (the "internal" region) 
with a perfect electric conductor. Finally, we apply image theory since we 
have an infinite conducting plane. The surface electric current that results 
from the application is zero since the image of a surface current density vector 
is an oppositely directed vector lying just inside the conductor, and the two 
add to zero. In the same way the surface magnetic current density is doubled, 
as shown in Fig. 1.15(d). 

The magnetic surface current density for use in the potential integral is 
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FIGURE 1.15. Equivalent surface currents for waveguide opening into plane_ 

and if this is substituted into the electric vector potential specialized to the far 
zone, 

(1.132) 

we obtain 

-jkr J al2 J bl2 , Ee TTX -ku or' 
F(r) = -- ux2Eo cos - e' r dx'dy' 

47Tr -a12 -b12 a 
(1.133) 

which becomes in spherical coordinates 

2EE J
al2 

Jbl2 , o - -kr 7TX 
Fo(r) = -4- e' cos e cos 4> . cos -

7Tr -a12 -b12 a 

X exp [jk sin e (x' cos 4> + y' sin 4»] dx' dy' (a) 

2EE J
al2 

Jbl2 , o - -kr • 7TX 
Fo(r) = - -4- e' SIn 4> cos -

7Tr -a12 -b12 a 

(1.134) 

x exp [jk sin e (x' cos 4> + y' sin 4»] dx' dy' (b) 

where e and 4> are the polar and azimuth angles of Fig. 1.14. 
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The integral common to both equations of (1.134) becomes [2] 

2 b 
cos ( 7T X) sin ( 7T Y) 

7Ta 2 2 
7T - 4( 7T X) 7T Y 

where 

X = ~ sin 0 cos ¢ ( a) 

Y 
b. . 

= A SIn 0 SIn ¢ 

(1.135) 

(b) 

If these values are substituted into (1.58), we obtain for the far fields of the 
waveguide carrying the TEIO mode opening into an infinite ground plane 

E 
_wabEo -jkr. ,J.. cos[(7Ta/A)sinOcos¢] 

e - e SIn 0/ 2 2 
cr 7T - 4[( 7Ta/A) sin 0 cos ¢] 

sin [( 7T b / A) sin 0 sin ¢] 
x (7Tb/A) sin 0 sin ¢ 

E 
wabEo -jkr ,J.. cos [(7Ta/A) sin o cos ¢] 

= e cos 0 cos 0/ 2 2 
cP cr 7T -4[(7Ta/A)sinOcos¢] 

(a) 

(1.136) 

sin [( 7T b / A) sin 0 sin ¢] x --~--~------~ 
(7Tb / A) sin 0 sin ¢ 

(b) 

1.14. THE RECEIVING ANTENNA 

Impedance 

If we postulate that all sources and matter are of finite extent, we have, far 
from the sources and matter, 

(1.137) 

and the left side of (1.107), representing the Lorentz reciprocity theorem, 
becomes, if we integrate over an infinitely large sphere, 

(1.138) 

Equation (1.107) then becomes 

f f f (E 1
.J2_ H l· M2)dv= f f f (E2.Jl_H2·M1 )dv (1.139) 
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The integrals in (1.139) have been called reaction [16]. The reaction of 
field 1 on source 2 is 

(1.140) 

and in this notation (1.139) may be written as 

(1,2) = (2,1) (1.141) 

showing that the reaction of field 1 on source set 2 is equal to the reaction of 
field 2 on source set 1. 

Consider a current source 12 with M2 = O. Then the reaction (1, 2) . 
becomes 

where VI is the voltage across source 2 due to the fields produced by some 
source 1 (which may be a voltage or current source, or both). 

A linear, two-port network with voltages and currents shown in Fig. 1.16 
may be represented by 

(1.143) 

where the Z matrix is the impedance matrix. We apply current sources at 
ports 1 and 2. The partial voltage VI2 at port 1 due to the current source at port 
2 is 

(1.144) 

But 

v =_ (2,1) 
12 1 

1 

(1.145) 

FIGURE 1.16. Two-port network. 



THE RECEIVING ANTENNA 

so we may find from these two equations, 

z =_ (2,1) 
12 I I 

1 2 

41 

(1.146) 

In the same way, if we apply a current source to port 1 and consider the 
partial voltage at port 2, we find 

z = _ (1,2) 
21 I I 

2 1 

( 1.147) 

It follows immediately from the equality of the reactions (1, 2) and (2, 1) 
that 

( 1.148) 

The linear two-port network we are considering may be the two antennas 
in a transmit-receive configuration shown in Fig. 1. 17(a) with the equivalent 
circuit of Fig. 1.17(b). It is important to note that (1.143) and the equivalent 
circuit of Fig. 1.17(b) hold no matter whether an antenna is used to transmit or 
receive. If the antennas are widely separated, Z12 will be small, and an 
equivalent circuit (which may be used for the two antennas) with one of them, 
say 1, transmitting and the other receiving is as shown in Fig. 1.18 [17]. We 
assume that the antennas in Fig. 1.17 are matched in polarization, so that 
there are no polarization losses, and defer to a later chapter a discussion of 
polarization matching. 

1 

(a) 

1 

(b) 

~2 
\ 

2 

FIGURE 1.17. Polarization-matched antennas in transmit-receive configuration: (a) the anten­
nas; (b) equivalent circuit for two antennas. 
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FIGURE 1.18. Approximate equivalent circuit for transmitting and receiving antenna system. 

We may consider Zll the input impedance of the transmitting antenna, 1, 
neglecting the effects of the receiving antenna on the transmitting antenna, an 
excellent approximation for widely separated antennas. Likewise Z22 would 
be the input impedance of antenna 2 if it were transmitting. If we call ZII and 
Z22 the self-impedances of the antennas, we see that the self-impedance of an 
antenna is the same with the antenna transmitting and receiving. An interesting 
aspect of this equality is that it must hold for lossless antennas and for 
antennas with losses. If we think of the self-impedance as consisting of a 
radiation resistance in series with a loss resistance, then the total must be the 
same with the antenna transmitting and receiving, and the radiation resis­
tance must also be the same with the antenna transmitting and receiving. 
(This would be the lossless case.) It follows that the loss resistance and the 
antenna efficiency must remain the same with the antenna receiving and for 
the transmitting case. We saw, however, in Section 1.8 that the loss resistance 
of a wire antenna is a function of the current distribution in the wire, and our 
developments therefore imply that the current distribution is the same in 
magnitude if the antenna is transmitting or receiving. Slater [18, p. 250] states 
that any difference in current distribution between the transmitting and 
receiving case is small and the effect may be noticed only at short distances. 

While the loss resistance computation of Section 1.8 was done only for a 
wire antenna, it is obvious that these concepts can be extended to antennas in 
general if we consider efficiency rather than loss resistance. We state then, in 
general, that the self-impedance and efficiency of an antenna are the same 
when the antenna is receiving a signal as they are when it is transmitting. 

Receiving Pattern 

It is obvious that an antenna whose radiation pattern is directional in nature 
will also receive a wave in a manner that is directional. In other words, an 
antenna has a receiving pattern as well as a radiation pattern. We will define 
the receiving pattern here as the spatial distribution of the received power 
when a polarization-matched plane wave is incident on the antenna. In some 
cases the received voltage may be measured rather than the power. Consider 
two different positions for antenna 2 of the transmit-receive antenna 
configl!ration we have used previously, as shown in Fig. 1.19. The movement 
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FIGURE 1.19. Measurement of antenna patterns. 

of antenna 2 from pOSItIon a to position b is such that the distance from 
antenna 1 to antenna 2 is the same, and the orientation of antenna 2 with 
respect to a line drawn between the antennas is the same. Antenna 2, in other 
words, is moved along the surface of a sphere centered at antenna 1. If the 
sphere radius is large and if the absolute phase of the signal at antenna 2 is not 
important, the exact location of the sphere center is unimportant. We assume, 
as we did earlier, that the antennas are polarization matched, but we defer a 
discussion of what that means. We also assume that the antennas are far 
enough apart that a wave transmitted by one is for all practical purposes a 
plane wave at the other. 

We first let antenna 1 serve as the transmitting antenna and use the 
equivalent circuit of Fig. 1.18. We note that the mutual impedance term Z21 in 
Fig. 1.18 is a function of 8 and 4>. The ratio of powers received (power to Z L) 
in positions a and b is, from Fig. 1.18, 

I Z 21(8b,4>b)1
2 

I Z 21(8u,4>u)1
2 (1.149) 

If we let position a serve as a reference position (it may be the position for 
maximum received power if we choose), then (1.149) describes the relative 
radiation pattern of antenna 1 as 8b, 4>b take on arbitrary values. 

In addition to the above measurement of power to the load on antenna 2, 
at each position of antenna 2 we connect the generator to antenna 2 and the 
load to antenna 1 and measure the load power. An equivalent circuit similar 
to Fig. 1.18, with generator Z1212' leads to a ratio of load powers in position a 
and b, 
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W1b IZ12(Ob' <Pb)1
2 

W1a = IZ12(Oa' <Pa)12 

This equation is the relative receiving pattern of antenna 1. 

(1.150) 

Now we showed earlier that Z12(Ob' <Pb) = Z21(Ob' <Pb) and Z12(Oa' <Pa) = 
Z21 (Oa' <Pa)· We conclude that the relative radiation pattern and receiving 
pattern of an antenna are equal. 

Effective Area 

The effective area of a receiving antenna in a given direction is the ratio of the 
available power at the terminals of the antenna to the power density of a 
polarization-matched plane wave incident on the antenna from that direction. 
By "available power" is meant the power that would be supplied to an 
impedance-matched load on the antenna terminals. In Fig. 1.18, impedance 
matching means that 

(1.151) 

where Z22 includes radiation resistance and loss resistance of the antenna. 
The effective area of an antenna is normally a more useful concept than the 
transmitter current and mutual impedance of Fig. 1.18 because it is indepen­
dent of the transmitter parameters and the distance between the antennas. In 
addition, for aperture antennas it appears to be a natural characteristic. For 
wire antennas the effective area seems somewhat artificial since it does not 
correspond to any physical area of the antenna; nonetheless, it is a dimension­
ally correct and highly useful way to describe even a wire antenna. 

We saw in previous work that the relative radiation and receiving patterns 
of an antenna are the same. It follows that for an antenna the gain and 
effective area are related by a constant, that is, 

(1.152) 

We will in fact find that C is a universal constant for antennas. 
Consider two antennas in a transmit-receive configuration, with local 

coordinate systems, as shown in Fig. 1.20. The antennas may be of arbitrary 
type and may be oriented arbitrarily with respect to their coordinate systems 
and to each other. 'We assume first that antenna 1 is transmitting and 2 is 
receiving with a matched load. They are separated by a sufficient distance R 
to cause the wave from 1 to be effectively a plane wave at 2 and to make the 
equivalent circuit of Fig. 1.18 valid. The receiving antenna and load are 
impedance matched. We note specifically that the antennas need not be 
lossless. 

If antenna 1 accepts power Wa from the generator (and radiates a portion 
I 

of it) and has gain G l' the power density at 2 is ' 
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FIGURE 1.20. Transmission between two antennas. 

Wa G1 (°1, 4>1) s = __ I _---:;: __ 

47TR2 (1.153) 

and the power to the impedance-matched load is 

(1.154) 

where A e is the effective area of antenna 2. We find immediately from these 
2 

equations that 

(1.155) 

If we reverse the transmitting and receiving roles of the antennas by 
connecting a generator to antenna 2 and causing it to accept power Wa , part 

2 

of which is radiated, the power to a load that is impedance matched to 
antenna 1 is 

(1.156) 

which gives us 

(1.157) 
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Let us make use once more of the valuable equivalent circuit of Fig. 1.18 . 
With antenna 1 transmitting and power \;\fa supplied to the impedance ZII' 

1 ... 

we find the ratio of load power (to load ZL = Z;2) to the power \;\f(/I accepted 
by ZII to be 

WLZ IZ211
2 

Wa 4 Re (ZII) Re (Z2z) 
1 

(1.] 58) 

If we reverse the roles of transmitter and receiver, we find from the 
equivalent circuit 

WL1 = IZ 121
2 

W
a2 

4 Re (ZII) Re (Z22) 
(1.159) 

and from the equality of Z12 and Z21 it follows that 

(1.160) 

We therefore obtain from a comparison of (1.155) and (1.157) 

(1.161) 

or 

(1.162) 

In (1.162) the angles are arbitrary and have been carried to show for one 
antenna that the effective area in a particular direction is being compared to 
the gain in the same direction. We note also that the equation holds for lossy 
antennas, and will hold also for lossless antennas if G( (), cp) is replaced by 
directivity D((}, cp) and Ae((}, cp) is determined for the lossless case. Antenna 
types were not specified, and it follows that if we can find the ratio A el G for 
one antenna, lossless or lossy, we know it for all. 

We found in Section 1.8 that the directivity of the infinitesimal z-directed 
current source of Fig. 1.21 is 

D = ~ sin 2 
() (1.76) 

and the radiation resistance is 

(1. 77) 
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FIGURE 1.21. Infinitesimal current source. 
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(Note: In Fig. 1.2, also representing the infinitesimal current element, the 
center feed point was not shown, but the difference is obviously irrelevant 
since we consider the current to be constant throughout the element for both 
Figs. 1.2 and 1.21.) 

Consider now a wave incident on the antenna of Fig. 1.21, considering it as 
a receiving antenna. The open-circuit voltage induced at the antenna 
terminals is 

Voc = Et sin () (1.163) 

where Voc and E are taken as peak values. Then the power to a matched load 
is 

(1.164 ) 

The power density at the antenna is 

(1.165) 

and therefore 

(1.166) 

which gives an effective area for the lossless infinitesimal antenna of 
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W 3.,\2sin2 0 
A e=s= 87T 

and a ratio of effective area to directivity of 

.,\2 

47T 

(1.167) 

This ratio was obtained for a lossless example , but as we saw earlier it also 
holds for the lossy case. We state therefore as a general rule that the effective 
area and gain of an antenna are related by 

Ae(O, ¢) .,\2 

G(O, ¢) 47T 
(1.168) 

1.15. TRANSMISSION BETWEEN ANTENNAS 

We have at this point defined the necessary terms and developed the 
equations that allow us to determine the power in a receiver load if the power 
accepted by the transmitting antenna is known. Let the power accepted by 
antenna 1 in Fig. 1.20 be Wat . If antenna 1 radiated isotropically, the power 
density at 2 would be 

Since antenna 1 does not radiate isotropically, but has gain Gt , the actual 
power density at 2 is 

WatGt(O" ¢t) 
47TR2 

where we use t to indicate a transmitting antenna. The load power Wr in the 
load on the receiving antenna then is 

W = WatGt(Ot' ¢t)A c/Or' ¢r) 
r 47T R2 (1.169) 

where subscript r indicates the receiving antenna. 
Many variations on (1.169) are possible, but we will not write all of the 

possible equations. Instead we list here some of the more common alter­
ations: 

1. Gt may be replaced by etD" where et is the efficiency of the 
transmitting antenna and D t its directivity. 
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2. Wal may be replaced by (1 -lf/12)Wil where Wil is the power incident 
on the (mismatched) transmitting antenna and fl is the reflection coefficient 
obtained by treating the transmitting antenna as a load on the feeding 
transmission line. 

3. A er may be replaced by the gain G r of the receiving antenna, according 
to Aer = GrA2/47T. 

4. If the receiving antenna is not terminated in a matched load, (1.169) 
must be multiplied by an impedance match factor, ranging between 0 and 1, 
to account for the mismatch loss. If the receiving antenna is represented by 
the series combination of R a , including both radiation and loss resistances, 
and X a , the antenna reactance, and the load impedance is R L + jX L' it is easy 
to show that this impedance match factor is 

( 1.170) 

5. If the antennas are not polarization matched, (1.169) must be 
multiplied by a polarization match factor. A discussion of this will be deferred 
to a later chapter. 

1.16. THE RADAR EQUATION 

Figure 1.22 shows a bistatic radar and target. The power density at the target 
is given by 

s. = w G/(el' ¢J 
I I 47TR~ 

(1.171) 

where WI is the power accepted by the transmitting antenna. The transmitted 
signal may be pulsed or continuous wave, but its characteristics do not affect 
the development here. 

~-LL 
Rl _----/ ~ 

_------ // Target 

(--------- /// 

Transmitter 

/ ,</ 
Receiver 

R2 / 
/'" 

/ 
/ 

/ 

FIGURE 1.22. Bistatic radar and target. 
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The wave striking the target is reradiated in a directional manner, and a 
portion of the reradiated, or scattered, power is intercepted by the receiving 
antenna. The power received depends on the transmitted power, the antenna 
gains, and the scattering cross section of the target. For transmitting and 
receiving antennas located apart, the radar is called bistatic, and we are 
concerned with the bistatic cross section. 

The bistatic or scattering cross section of a target is the (fictional) area that, 
when multiplied by the power density of the incident wave, yields a power 
that would produce by isotropic radiation the same radiation intensity as that 
measured by the receiving antenna. If the transmitting and receiving antennas 
are located close to each othcr, as compared to the antenna-target distance, 
the cross section is referred to as monostatic. An alternate form of the 
definition is that the bistatic cross section is 47T times the radiation intensity of 
the scattered wave in a specified direction divided by the power density of the 
incident plane wave. The utility of this definition and the development of it 
may not be obvious. The following reasoning makes it clearer: An observer at 
the receiver can determine the power density of the scattered wave at the 
receiver and (multiplying by R;) the radiation intensity of the scattered wave 
in the direction of the receiver. The observer does not know how the target 
scatters the incident wave (without much more information than can be 
obtained by one measurement), and yet to describe the target a commonly 
agreed on assumption is necessary. This assumption is that of isotropic 
scattering. With this assumption the observer determines that the total 
scattered power is 47T times the radiation intensity in his direction. It is then 
reasonable to say that this total power is scattered as a result of the target with 
a cross-section area u intercepting an incident plane wave with power density 
established at the target by the radar transmitter. This should be clearer as we 
develop the radar equation. 

The power density at the target is given by (1.171). Then for a target with 
cross-section u, the intercepted power is 

(1.172) 

If this power is scattered isotropically as we assumed in defining u (and as we 
must continue to assume), the power density at the receiving antenna is 

(1.173) 

The power available to a matched load at the receiver is then 

W = W,G,(8p ¢,)A erC8r , ¢r)u 

r (47TRIR2)2 
(1.174) 
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Some characteristics of the cross-section u are clear. The first is that the 
cross section depends on the direction of the transmitter and receiver from 
the target, not merely on the difference in their directions. For a target as 
complex as an aircraft a change of transmitter or receiver direction of as little 
as a degree can change the cross section by many decibels. A second 
characteristic is that the cross section is independent of the distances R 1 and 
R2 if they are sufficiently large to cause a wave from either antenna to be 
plane at the target. 

A third characteristic is that the received power is dependent on the 
polarizations of the two antennas, the geometry of the situation, and on the 
target itself. The radar cross section is that portion of the scattering cross 
section corresponding to a specified polarization component of the scattered 
wave [10]. We will defer discussion of polarization in radar to a later chapter. 

If transmitter and receiver for a radar are at the same site, (1.174) 
simplifies to 

w = _W..:...-( G--...:....( (..:...-()_, ¢---..:...)_A-::-,-er."....-( ()_, ¢_)_u 

r (47T R2)2 (1.175) 

where u is the monostatic cross section of the target. In many cases the same 
antenna is used for transmitting and receiving, and the received power is 

(1.176) 
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PROBLEMS 

1.1. Show that the integral of (1.28) is a solution to Poisson's equation 
(1.27). 

1.2. Prove that (1.51) is correct. 

1.3. Develop (1.54) by substituting (1.50) and (1.51) into (1.47), keeping 
only terms that vary as 1/ r. 

1.4. Find the general E and H fields of the infinitesimal electric current 
element from the magnetic vector potential of (1.31). Show that the 
time-average Poynting vector formed from these fields is the same as 
that given by (1.67). 

1.5. A practical antenna is the very short center-fed dipole shown in Fig. 
P1.5. If length t ~ A, the current distribution on the antenna is, to a 
good approximation, 

1= 10(1- ~ Z') 

1= 10(1 + ~ z') 

t 
O::=;z'::=;­- -2 

-~::=;z'::=;O 2- -

FIGURE P1.5. Short dipole and associated 
'------------/ current distribution. 
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Assume that, in (1.33), Ir - r'l may be approximated by r in both the 
phase and amplitude of the integrand. Find the vector potential and far 
fields of the dipole. 

1.6. Find the directivity of the short dipole of Problem 1.5. 

1. 7. Find the radiation resistance of the short dipole of Problem 1.5. 

1.8. Find the loss resistance of the short dipole of Problem 1.5. It is made of 
copper with length 10 cm and diameter 1 mm. The frequency is 
100 MHz. 

1.9. Determine the radiation efficiency of the short dipole of Problem 1.5. 



2 
REPRESENTATION OF 
WAVE POLARIZATION 

2.1. INTRODUCTION 

The electric vector of a harmonic plane wave traces an ellipse in the 
transverse plane with time, as is well known. In this chapter we develop the 
equation of the ellipse for a general, nonplane wave and consider the ellipse 
and the behavior of the field vectors in detail for a plane wave. The 
parameters commonly used to describe wave polarization, namely, the linear 
and circular polarization ratios, the ellipse axial ratio, tilt angle, rotation 
sense, and the Stokes parameters, are introduced and related to each other. 
A polarization chart based on the familiar Smith chart of transmission line 
theory, first discussed by Rumsey, is used, and contours for some common 
polarization parameters are shown on the chart. The Poincare sphere is 
utilized, and mapping from the sphere onto several complex planes is 
described. This process, which results in standard and nonstandard polariz­
ation charts, is illustrated. 

2.2. THE GENERAL HARMONIC WAVE 

In this section we will show that a general (nonplanar) harmonic wave is 
elliptically polarized and find the equation of the polarization ellipse [1]. A 
nonplanar single-frequency wave with components 

where a i and gi are real, may be written as 

54 

i=1,2,3 (2.1) 



and if we let 

THE GENERAL HARMONIC WAVE 

3 

~(r, t) = L Uiai(r) COS [wt - g;(r)] 
1 

3 

= L uiai(r) Re [ej[wt-g;(r)]] 

1 
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(2.2) 

(2.3) 

be the complex, time-invariant term associated with each real, time-varying 
electric field component, then 

g'(r, t) = Re [ :± U i E,(r) eiw
' ] 

1 

(2.4) 

where the u i are real orthogonal unit vectors. For a plane wave the phase term 
is given by 

(2.5) 

but at this point we will not restrict ourselves to plane waves. 
If we define the complex vector 

3 

E(r) = E'(r) + jE"(r) = L uiEi(r) (2.6) 
1 

then the harmonic vector field may be written as 

~(r, t) = Re [E(r)e jwt
] (2.7) 

Let us assume that E may be transformed to a new set of axes defined by the 
orthogonal real vectors m and n, using the relation 

E = E' + jE" = (m + jn)e jO (2.8) 

Equating real and imaginary parts of this equation yields 

E' = m cos () - n sin () 

E" = m sin () + n cos () 
(2.9) 

and solving for m and n leads to 

m = E' cos () + E" sin () (2.10) 
n = - E' sin () + E" cos () 
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If we assume, without loss of generality, that Iml ~ 101, and require the 
orthogonality condition m· 0 = 0, we find from (2.10) that 

2E'·E" 
tan 28 = IE'12 -IE"12 (2.11 ) 

Since tan 28 as given by (2.11) is real, our assumed transformation may 
be carried out. 

Next we substitute (2.8) into (2.7) to find the real field components. We 

obtain 

(2.12) 

and since m and 0 are real, 

Cjg = m cos ( w t + 8) - 0 sin (w t + 8) (2.13) 

If at each field point we now set up a local coordinate system with two of 
the axes directed along m and 0, the field components are 

Cjgm = In cos (wt + 8) (a) 

CjgI/=-nsin(wt+8) (b) (2.14) 

(c) 

where In = Iml, n = 101. In (2.14) subscript 3 refers to the third of the three 
coordinates. 

From (2.14) we see that 

~~I~;' 2 ). 2 ( 8) 1 
-2 + -2 = cos (wt + 8 + SIn wt + = (2.15) 
m n 

This is the equation of an ellipse, in the plane defined by m and 0, with 
semimajor and semiminor axes In and n. The field intensity ellipse is shown in 
Fig. 2.1. The field vector Cjg terminates on the ellipse, since its components Cjgm 
and Cjgl/ are not independent but obey the ellipse equation, (2.15). The 
direction of Cjg changes with time as its tip moves around the ellipse with a 
direction and velocity we will determine in a later section. 

We see then that any harmonic wave, planar or nonplanar, is elliptically 
polarized. The plane of the ellipse and its shape and orientation in that plane 
are functions of the coordinates of the field point, but not of time. 

This development has been concerned with the time-varying electric field, 
but it is clear that th~ magnetic field is also elliptically polarized. See problem 
2.7 at the end of this chapter. 
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n 

----~------~------~-----~m 
m 

(a) 

FIGURE 2.1. The polarization ellipse: (a) field intensity coordinates; (b) space coordinates. 

2.3. POLARIZATION ELLIPSE FOR PLANE WAVES 

A plane wave traveling in the z direction 

(2.16) 

results if we use the phase term (2.5) and let the propagation constant be 

(2.17) 

In (2.16) both Ex and Ey are complex and may be written as 

(2.18) 

so that 

(2.19) 

and the time-varying field is 

Cjg = Re (Ee jwf
) = uxlExi cos (wt - kz + <Px) + uylEyl cos (wt - kz + <Py) 

(2.20) 

and if we set 

{3 = wt - kz (2.21 ) 

the components of Cjg become 
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?$'x . .,J.,. () 
I Ex I = cos f3 cos <Px - SIn f3 SIn 'fix a 

?$' 
I E: I = cos f3 cos <Py - sin f3 sin <Py (b) 

(2.22) 

Multiplying and subtracting as indicated leads to 

?$' x .,J.,. ?$'Y.,J.,. f3 . (,J.,. ,J.,.) () 
IExl SIn 'fly - IEyl SIn 'fix = COS SIn 'fly - 'fix a 

?$'x ?$'y .. ( ) 
IExl cos<PY-IEyl cOS<Px =SIllf3SIll <Py-<Px 

(2.23) 

(b) 

Squaring and adding (2.23a) and (2.23b) gives 

?$' ; ?$'x?$'y ?$' ~ . 2 

IExl2 - 2 IExl IE) cos (<py - <Px) + IE)2 = SIll (<py - <Px) (2.24) 

This is the equation of a conic, and we have already seen in a more general 
case that it represents an ellipse. In (2.24) we set 

(2.25) 

and the equation becomes 

(2.26) 

We may see from (2.22), which can be rewritten as 

?$'x 
lEx! =cos(f3 + <Px) (a) (2.27) 

that the greatest values of ~x and ~y are, respectively, I Ex I and I Ey I. Then the 
ellipse of (2.26) can be inscribed in a rectangle with sides parallel to the x and 
y axes and dimensions 21 Ex I and 21 Ey I as shown in Fig. 2.2. 

From (2.27) we see that for ~x to be maximum 

f3 + <Px = 0 

f3 + <Py = f3 + <Px + (<py - <Px) = <P 

and for ~y maximu~ 
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y 

------+---~~------~------~~--~-----x 

FIGURE 2.2. Tilted polarization ellipse. 

and we find that the ellipse of Fig. 2.2 intersects the sides of the rectangle at 
±IExl, ±IEyl cos </1 and ±IExl cos </1, ±IEyl. 

The angle T of Fig. 2.2, measured from the x axis, is called the tilt angle of 
the polarization ellipse. We define it between the limits 

(2.28) 

Let us find T. From Fig. 2.3 we easily see that 

y 

FIGURE 2.3. Coordinate transformations. 
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g = X COS T + Y sin T (a) 

T]=ycosT-xsinT (b) 

and the field components transform as 

(a) 

Now the components eg~ and egT] are also given by 

eg~ = m cos ({3 + cPo) (a) 

egTj = ±n sin ({3 + cPo) (b) 

(2.29) 

(2.30) 

(2.31) 

where m and n are the positive semiaxes of Fig. 2.2, and cPo is some phase 
angle. That (2.31) is correct is easily seen by noting that it satisfies 

In (2.31) egTj carries the ± sign since we have not yet determined the rotation 
sense of eg. If we consider {3 + cPo = 0, eg~ = m, and egTj = 0 in (2.31), and then 
allow (3(=wt-kz) to increase infinitesimally, we see that the + sign 
corresponds to counterclockwise rotation of eg (as we look at Fig. 2.2) as {3 (or 
time) increases, and the - sign to clockwise rotation. 

We equate (2.31) to (2.30). 

(2.32) 

Expanding the left side and using on the right the wave components as given 
by (2.22), we get 

m( cos {3 cos cPo - sin (3 sin cPo) 
= IExl(cos {3 cos cPx - sin (3 sin cPx) cos T 

+ I Eyl(cos {3 cos cPy - sin (3 sin cP)') sin T (a) 

± n(sin {3 cos cPo + cos (3 sin cPo) 

= -IExl(cos {3 cos cPx - sin (3 sin cPx) sin T 

+ IE)'I(cos (3 cos cP)' - sin (3 sin cP)') cos T (b) 

(2.33) 
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Equating the coefficients of cos f3 and sin f3 in (2.33) leads to 

m cos <Po = IExl cos <Px cos 7 + IEyl cos <Py sin 7 (a) 

m sin <Po = IExl sin <Px cos 7 + IEyl sin <Py sin 7 (b) 

±n cos <Po = IExl sin <Px sin 7 -IEyl sin <Py cos 7 (c) 

±n sin <Po = -IExl cos <Px sin 7 + IEyl cos <Py cos 7 (d) 

Squaring and adding the four equations of (2.34) results in 

61 

(2.34 ) 

(2.35) 

Next we multiply the first and third equations of (2.34) and also the second 
and fourth, and add the products, obtaining 

(2.36) 

Dividing the third equation of (2.34) by the first, and the fourth by the 
second gives 

n IExl sin <Px sin 7 -IEyl sin <Py cos 7 
+-=~~--------~~~--~---

- m IExl cos <Px cos 7 + IEyl cos <Py sin 7 

_ -IExl cos <Px sin 7 + IEyl cos <Py cos 7 

- IExl sin <Px cos 7 + IEyl sin <Py sin 7 

Cross multiplying and collecting terms in (2.37) gives 

If we define the auxiliary angle a by 

then (2.38) becomes 

IE) 
tan a = lEx! 

tan 27 = tan 2a cos <P 

(2.37) 

(2.38) 

(2.39) 

(2.40) 

We have thus obtained the ellipse tilt angle in terms of the field component 
magnitudes and phase difference. 

In order to find the axial ratio of the ellipse and the rotation sense of the ~ 
vector let us define another auxiliary angle 8 by 
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11 
tan 0 = + -

171 

'Ii 'iT 
--$0$-

4 - - 4 

From (2.41) we may obtain 

217111 
sin 20 = + ') ') 

171- + 11-

and the use of (2.35) and (2.36) leads to 

(2.41) 

(2.42) 

(2.43 ) 

which will give us the axial ratio, nlm, from the field component magnitudes 
and phase difference . 

Let us next determine the rotation sense of eg. The time-varying angle of ?b, 
measured from the x axis, is 

(2.44 ) 

where {3 = wt - kz. Then 

JIjJ (IEyI/IExI)[-cos ({3 + <Px) sin ({3 + <Py) + sin ({3 + <Px) cos ({3 + <Py)] 

J{3 [1 + IE)' 12 cos
2 

({3 + <p),)/I ExI2 cos
2 

({3 + <P.J] cos2 
({3 + <P.J 

(2.45) 

and at some particular {3 , say {3 = 0, 

(2.46) 

Thus we see that 

JIjJ < 0 0 < A. < 7T 
J{3 , 'f' 

(2.47) 
>0, 7T<<p<27T 

If we look in the direction of wave propagation , in this case the + z direction, 
JIjJ I J{3 > 0 corresponds to clockwise rotation of the 7[; vector as {3 (or time) 
increases . By definition we call this right-handed rotation of the vector. 
Conversely , JIjJ I J{3 < 0 corresponds to counterclockwise or left-handed rot­
ation. We may see from (2.43) and (2.47) that 
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sin 28 < 0, right-handed rotation 
(2.48) 

> 0, left-handed rotation 

From (2.39) we can get 

(2.49) 

and, if this is used in (2.43), we get a simpler equation 

sin 28 = sin 2 Q' sin 4> (2.50) 

To summarize, from a knowledge of the field component amplitudes I Ex I 
and I Ey I and their phase difference 4> = 4>y - 4>x' we first find the auxiliary 
angle Q' from (2.39). Angle 8 is next found from (2.50). The tilt angle of the 
polarization ellipse is then determined from (2.40) and the axial ratio and 
rotation sense from (2.41), where positive 8 corresponds to right-handed 
rotation. 

2.4. LINEAR AND CIRCULAR POLARIZATION 

In the special cases of I Ex I = 0, or I Ey I = 0, or 4> = 0, the polarization ellipse 
degenerates to a straight line, and the wave is said to be linearly polarized. 
The axial ratio will of course be zero, and (2.39) and (2.40) may still be used 
to obtain the tilt angle. 

If lEx! = IEyl and 4> = ± ~7T, the axial ratio as given by (2.41) becomes 
equal to one, the polarization ellipse degenerates to a circle, and the wave is 
said to be circularly polarized-right circular if 4> = - 17T, and left circular if 
4>=+17T. 

2.5. POWER DENSITY 

From 

(2.16) 

and the Maxwell equations, we can find the magnetic field 

(2.51) 

where Zo is the characteristic impedance of the medium defined by 
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z = 0:. o -V-; 

The complex Poynting vector is then 

with the time-average Poynting vector given by 

2.6. ROTATION RATE OF THE FIELD VECTOR 

In the z = 0 plane, the field given by (2.20) reduces to 

(2.52) 

(2.53) 

(2.54) 

Then the angle I/J between i{; and the positive x axis is given as a function of 
time by 

(2.55) 

and the rate of increase of I/J with time is 

al/J - wi Exil Ey 1 sin ¢ 

at IEJ2 cos2 (wt + ¢ . .J + IE)2 cos 2 (wt + ¢y) 
(2.56) 

where, as before, 

(2.25) 

We see that in general the rotation rate of the field vector is not constant. If 
we take the special case of circular polarization, 

7T ¢=+­- 2 

where the upper sign corresponds to left circular rotation and the lower to 
right circular, (2.56) reduces to 

al/J _ 
-=+w 
at 

(2.57) 

Figure 2.4 indicates that - w is consistent with left circular polarization. 
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Right circular 

\ -w Left circular 

----------------~~---------------x 

z 

FIGURE 2.4. Rotation relationships for the polarization ellipse . 

We can simplify (2.56) if we note that (2.54) gives , at z = 0, 

(2.58 ) 

Using this, the rotation rate of the ?g vector becomes 

aljJ -wIE,IIEyl sin c/J 

at 19'1 2 (2.59) 

On the major axis of the polarization ellipse, I g' I is a maximum, given by m. 
Thus the rotation rate is a minimum, given by 

iJljJ I = - w I Exll:.ri si n c/J 
a t min 171~ 

(2.60) 

On the minor axis, I g' I is minimum (= 11), and therefore the maXImum 
rotation rate occurs on the minor axis and is 

at/II = -wIExll~."1 sin q) 
dt max 11-

(2.61 ) 

2.7. AREA S\VEEP RATE 

The area swept by the g vector in a time dt as it moves through an angle ddl 
may be seen from Fig. 2.5 to be 
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---------r--------~----~~---------ux 

dl/l 

FIGURE 2.5. Area sweep of the 'i£ vector. 

Then the rate of increase of swept area is 

(2.63) 

and the use of (2.59) gives 

aa~ =-!wIExlIE)sin¢ (2.64) 

A negative value for the rate of area sweep is quite valid and indicates only 
that for right-handed rotation the rate of area sweep is positive, and for 
left-handed rotation it is negative. 

Equation (2 .64) shows that the rate of area sweep is not a function of time 
or of position of the tip of the electric field vector on the polarization ellipse. 
This may be considered a kind of Kepler's second law for electromagnetics. 
The laws are not precisely the same for electromagnetics and planetary 
motion, however , since the Kepler laws state that the planets move around 
the sun in ellipses with the sun at one focus, and the radius vector from the sun 
to a planet sweeps out equal areas in equal time intervals [2]. The electric field 
vector drawn from the ellipse origin, not a focus, sweeps out equal areas in 
equal intervals of time. 

We note also that the ~ vector completes one rotation in the time 

T= 27T 
W 

2.8. ROTATION OF ~ WITH DISTANCE 

(2.65) 

If we set t = 0 in (2.20) , we can find the position angle of ~ as a function of 
distance z, 
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(2.66) 

A comparison of (2.66) and (2.55) shows that we can find the rotation rate of 
'iff with distance at a fixed time if we replace win (2.59) by - k and t by z. Then 
the rotation rate is 

BI/J kl Ex II Ey I sin <P 

Bz IExl2 cos2 (-kz + <Px) + IEyl2 cos2 (-kz + <Py) 
(2.67) 

and since the denominator is obviously I 'iff 12 at t = 0, 

BI/J klExllEy\ sin <P 

Bz I 'iff 12 
(2.68) 

This indicates that the rotation rate with z is minimum at the major axis of the 
polarization ellipse and maximum at the minor axis, just as it was with the 
time rotation rate. 

If the rotation of 'iff with increasing time in a fixed plane is clockwise, the 
fact that (2.59) and (2.68) have different signs shows that the rotation with 
increasing distance at a fixed time is counterclockwise. We may think of a 
right-handed circular wave at fixed time in space as looking like a left-handed 
screw. With increasing time the screw rotates in a clockwise direction as we 
look in the direction of wave motion. This is shown in Fig. 2.6. 

FIGURE 2.6. Rotation of 'jg with time and distance for a right-handed circular wave. 
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We may see from (2.66) that the distance between two points of the wave 
having parallel field vectors at constant time is 

271' 
LlZ = - = A 

k 

2.9. THE POLARIZATION RATIOS 

(2.69) 

A description of the elliptically polarized wave in terms of tilt angle, axial 
ratio, and rotation sense leads to a good physical understanding of the wave, 
but it is not convenient mathematically. In this and the following sections the 
wave will be characterized by more tractable mathematical terms. 

The time-invariant E field of (2.16) may also be written as 

E = E (u a + u bejcf»e-
jkZ 

o x y (2.70) 

if we extract a common complex term Eo. For convenience we drop the 
distance phase term and write 

(2.71) 

Without loss of generality, we can choose Eo and ¢ so that a and b are real 
and 

(2.72) 

Then Eo has the same phase as Ex, and ¢ has the same meaning as in previous 
developments, the phase lead of E\. over Ex. 

The value of Eo does not affect' the wave polarization in any way, and 
except in questions concerned with power, we will neglect it. We define a 
polarization ratio P, which alone carries all necessary polarization inform­
ation, by 

(2.73) 

This is a commonly used definition, although we will see shortly that a slightly 
different definition is sometimes useful. Some special values of the polariz­
ation ratio are: 

Wave Characteristics P 

Linear vertical Ex=a=O 00 

Linear horizontal E = b =0 y 0 
Right circular a=b, ¢=-71'/2 -j 
Left circular a = b, ¢ = + 71'/2 +j 
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In the following sections we will determine ranges of P for other polariz­
ations. 

2.10. CIRCULAR WAVE COMPONENTS 

Consider the complex vectors [3] 

(2.74) 

If we write these in the form of (2.71) 

(a) 

_ ~ 17=\( 1 1 -j7T/2) 
w R - v 2 U x v'2 + u y v'2 e 

(2.75) 

(b) 

it is clear that if we think of w L and w R as fields propagating in the z direction, 
then w L is a left circular wave (a = b, </> = ~ 7T), and w R is a right circular 
wave. To put this another way, if we find the real time-varying field associated 
with the complex time-invariant fields (2.74) we find 

Re [wLejW(e-jkZ] = U x cos (wt - kz) + uy co; (wt - kz + ~7T) (a) 
(2.76) 

Re [wRejW(e-jkZ] = U
x 

cos (wt - kz) + uy cos (wt - kz - ~7T) (b) 

and these may be recognized as real time-varying vectors of constant 
amplitude rotating, in order, in a left- and right-handed sense. 

The field E may be expanded in terms of w L and W R , giving 

E=E(u a+u beN)=E(Lw + Rej(Jw ) o x y 0 L R (2.77) 

where (J is the phase difference between left and right circular components, 
and if we use (2.74), 

(2.78) 

Equating coefficients of like unit vectors we obtain 

a = L + Rej(J (a) 
(2.79) 

beN = jL - jRej(J (b) 
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and solving for Land Re jO gives 

(2.80) 

Note that Land R, unlike a and b, are complex. The ratio 

L L 'b N _ -jO _ a - J e 
Re jO - R e - a + jbe N (2.81) 

is also in general complex. However, we can absorb the phase angle of 
(a - jbeN)/(a + jbeN» into angle 8, so that L/R is real. We could also in 
(2.77), by extracting a term, E:p with a different phase, make Land R real, 
but there is little reason to do so. 

From (2.80) we may easily obtain 

(2.82) 

Just as a and beN in (2.71) represent the x and y rectangular wave 
components, Land Re jO represent the left circular and right circular 
components of the general elliptical wave. 

Let us define a ratio of the circular wave components, in analogy to the 
definition of P in (2.73). The complex quantity q is 

If E were wri tten as 

just as we wrote 

then q would also be 

L -jO 
q = - e 

R 
(2.83) 

(2.84) 

(2.16) 

(2.85) 

We will see later that all of the characteristics of the polarization ellipse 
may be determined from a knowledge of P or q. We previously used the name 
polarization ratio for P. It seems appropriate to call q the circular polarization 
ratio. 
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2.11 RELATIONSHIP BETWEEN P AND q, AND THE MODIFIED 
POLARIZATION RATIO 

From (2.83) and (2.81) we see that 

L - "0 a - jbe N 1- j(b/a)e
jcjJ 

q = R e 1 = a + jbe N = 1 + j(b/a)eN 

and if we use (2.73), 

1- jP 
q = 1 + jP 

Solving for P in terms of q gives 

.1- q 
P=-]-­

l+q 

(2.86) 

(2.87) 

(2.88) 

In both (2.87) and (2.88) P is multiplied by j. To remove this we define [4] 

p = jP 

and substitute into (2.87) and (2.88), obtaining 

I-p 
q=l+p 

l-q 
P=I+q 

(2.89) 

(2.90) 

(2.91) 

The symmetry is pleasing, but more importantly we will see later that the 
form of (2.90) and (2.91) allows polarizations to be plotted on the common 
Smith transmission line chart. Much of our later work will be carried out using 
p, which will be referred to as the modified polarization ratio. From (2.89) 
and (2.73) we have 

Ey b"A. 
P = j - = j - e1'l' 

Ex a 

Some special values of P, p, and q are: 

Wave 

Linear vertical 

Linear horizontal 
Right circular 

Left circular 

Characteristics 

Ex = a = 0 

Ey = b = 0 

a = b, 4> = - ~ 7T; 
L= ~(a-jbeN)=O 

a=b,4>=~7T; 
Re jO 

= ~(a + jbeN ) = 0 

P 

00 

o 
-j 

+j 

p 

joo 

o 
+1 

-1 

q 

-1 

+1 
o 

00 

(2.92) 
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2.12. ELLIPSE CHARACTERISTICS IN TERMS OF q 

From (2.77) and (2.83) we can obtain 

Let 

5 = ang (EaR) 

so that 

and 

If we set 

f3 = wI + 5 - kz 

we obtain 

and 

We see from (2.74) that 

w . w * = w . w * = 2 (b) L L R R 

If we multiply (2.99) by its conjugate and use (2.100) we obtain 

Ig l
2

2 
= 1 + Iql2 + qe j2

({3+0) + q*e- j2 ({3+0) 

IEoRI 

(2.93) 

(2.94) 

(2.95) 

(2.96) 

(2.97) 

(2.98) 

(2.99) 

(2.100) 

(2.101) 
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and making use of the definitions for {3 and q, we get 

= 1 + Iql2 + 21ql cos (2wt + 28 - 2kz + 0) 

73 

(2.102) 

We easily see from this equation that the maximum value of I <jg I is 

I <jg I max = I EaR I (1 + I q I) 

which occurs at 

2(wt+8-kz)+O=0 21T, ... 

and the minimum value is 

I <jg I min = I EaR 111 - I q II 

which occurs at 

2(wt + 8 - kz) + 0 = 1T 31T, . .. 

The axial ratio of the polarization ellipse is then 

AR= 11 + ,q'l 
1-lql 

(2.103) 

(2.104) 

(2.105) 

(2.106) 

(2.107) 

Note that this definition of axial ratio is the inverse of the relation nlm used 
previously. This should not cause any confusion to the reader. Since we 
assumed m > n, an axial ratio greater than one is clearly !nln. 

In order to find the tilt angle of the ellipse, we return to (2.99) and 
substitute in it the values for q, {3, Wu and wR" This leads to 

IE~RI = U x [ cos (wI + 8 - kz + 0) + ~ cos (wI + 8 - kz) ] 

+ U y [ sin (wI + 8 - kz + 0) - ~ sin (wI + 8 - kz) ] (2.108) 

Now we recall from (2.104) that I <jg I is maximum for 

w t + 8 - kz = - ~ 0, 1T - ! 0, ... 

and if we substitute the first of these values into (2.108) we obtain 
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~ (8 L 8) (. 8 L. 8) 
IEoRI = U x cos 2 + R cos 2 + uy SIn 2 + R SIn 2 (2.109) 

The rotation angle of ~, which is the tilt angle. of the ellipse, since I ~ I is 
maximum, is given by 

-I ~y -I (1 + L/R) sin (8/2) 
T = tan - = tan 

~x (1 + L/ R) cos (8/2) 
(2.110) 

Solutions to this equation are 

(2.111) 

We wish to keep T in the range 0-7T, so the first form can be used for 8 positive 
and the second for 8 negative. 

2.13. ELLIPSE CHARACTERISTICS IN TERMS OF p AND P 

Combining (2.107) and (2.90) gives the axial ratio in terms of p. It is 

1
11+pl+II-pll AR= 11 + pi-II -pi (2.112) 

The tilt angle can be found from (2.111), (2.86), and (2.90). The result 
IS 

e - j2T = e - jO = q rqr 
(1 - p)/(I + p) 

1(1 - p)/(l + p)1 (2.113) 

These equations arc not as convenient as those giving ellipse characteristics in 
terms of the circular polarization ratio q. In terms of the common polarization 
ratio P, using (2.89) quickly leads to 

and 

_111 + jPI + 11 - jP11 
AR - 11 + jpl-ll - jPI 

e-j2T= (1-jP)/(l+jP) 
1(1- jP) /(1 + jP)1 

which are also less easy to use than the equations in terms of q. 

(2.114) 

(2.115) 
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2.14. POLARIZATION CHARACTERISTICS FOR 
RANGES OF p AND q 

The complex parameters P and q each contain all the information about the 
polarization of a wave. It is not immediately clear, however, from a 
knowledge of P or q just what the polarization ellipse characteristics (or more 
generally the physical polarization characteristics) are. For example, what are 
the tilt angle, axial ratio, and rotation sense of a wave if P = PI = 2e jrr/6 ? For a 
second wave, if P2 = 2e -jrr/6, are the two waves somewhat similar in 
polarization characteristics or do they differ greatly? If we have two antennas 
that will transmit, respectively, waves with these polarizations, can they be 
used satisfactorily in a transmit-receive configuration? The answer to the last 
question is reserved for a later chapter, but we will begin here to examine the 
first two. 

From (2.59) 

a 1/1 -wlExllEyl sin 4> 

at 19'1 2 (2.59) 

which gives the rate of increase of 1/1, the angle of g' measured from the x axis, 
we see that al/1/at is negative, corresponding to left elliptic rotation (LER) , for 

0< 4> < 7T LER 

and that al/1/at is positive, corresponding to right elliptic rotation (RER), for 

7T < 4> < 27T RER 

The end points of these ranges correspond to linear polarizations. Now 

P = jP = j !:: eN = !:: (j cos 4> - sin 4> ) 
a a 

and we see that for left elliptic rotation, 0 < 4> < 7T 

Re (p) < 0 } LER 
1m (P) >0 

and for right elliptic rotation 

Re (p) > O} RER 
1m (P) <0 

From (2.116) and the definition of q, it quickly follows that 

1 12 = 1 - P 1 - p* = 1 + 2(b/a) sin 4> + (b/a)2 
q 1 + P 1 + P * 1 - 2( b / a) sin 4> + (b / a)2 

(2.116) 

(2.117) 

(2.118) 

(2.119) 
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and we see immediately that for left elliptic rotation, 0 < <p < 7T', and right 
elliptic rotation, 7T' < <p < 27T', respectively, 

Iql > 1 LER (a) Iql < 1 RER (b) 

We might have expected this from the defining relation 

L -,'0 q= - e 
R 

(2.120) 

(2.83) 

Thus for a general elliptical wave, which we know can be separated into left 
and right circular components, Iql < 1 corresponds to ILl < IRj, which results 
in a right-handed rotation of <jg. 

2.15. THE TRANSFORMATIONS p(q) AND q(p) 

Before we consider the transformations 

1-p 
q=1+p 

1-q 
P=l+q 

(2.90) 

(2.91) 

let us examine a configuration that gives rise to similar equations, the electric 
transmission line shown in Fig. 2.7. In terms of the current at the load or 
receiving end, the voltage and current at any point on the line are given by 

(a) 

(2.121) 

I: t :1 Zg x =- E d 

~ ~IR I 
+ + 

V V R ZR 

FIGURE 2.7. The transmission line. 
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where ZR is the load impedance, Zo the characteristic line impedance, and 'Y 
the propagation constant, given in terms of the line parameters by 

Z = ~R+ jwL 
o G + jwC 

'Y = VCR + jwL)(G + jwC) (2.122) 

The voltage reflection coefficient K is defined as the ratio of the reflected 
voltage wave [second term in (2.121a)] to the incident voltage wave [first term 
in (2.121a)]. Similarly, the current reflection coefficient is the ratio of the 
reflected current to the incident current. Mathematically, they are 

ZR - Zo -2yd 
K = e (a) 

ZR + Zo 

Z -Z K = - ROe -2yd = - K (b) 
[ ZR + Zo 

If the impedance of the line at any point is defined as 

Z= V 
I 

its normalized value may be found from (2.121) and (2.123) to be 

Z 1 + K 1- K[ 
z=-=--= 

Zo 1- K 1 + K[ 

Solving for K and K[ leads to 

z-l 
K = z + 1 (a) 

(2.123) 

(2.124) 

(2.125) 

(2.126) 

and we see that the transformation between z and K[ (not K) is the same as 
that between the polarization parameters p and q. 

Now it is well known that if curves of constant Re (z) and constant 1m (z) 
are plotted on the complex K plane, a widely available transmission line 
chart, the Smith chart, results. While the common usage of the Smith chart 
employs z and K (not K[), nevertheless, it can also be used with the K[ 
coefficient. 

We see here the advantage resulting from the use of the modified 
polarization ratio p = jP, rather than P itself. The transformation between p 
and q is such that it can be made with the commercially available Smith chart. 

We must make a choice at this time. The Smith chart is plotted on the 
complex K plane. Shall we consider q analogous to K and plot our curves on 
the complex q plane, or shall we plot on the p plane? Rumsey [4] has pointed 
out that the simplest type of impedance transformation is that due to adding a 
uniform section of lossless transmission line, which causes a phase change at 
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constant amplitude of K. The simplest type of polarization transformation is 
that caused by rotation of the antenna producing an elliptically polarized 
wave that causes a phase change at constant amplitude of q. (It is obvious that 
an antenna producing a known pair of circular waves-to produce an elliptical 
resulting wave-must still produce the same pair if it is rotated; therefore I ql 
is constant.) Then it is convenient to consider the analogs q, K[, and p, z. 

Even more important, on the q plane all right elliptical rotations will fall 
within the unit circle I q I < 1. This unit circle is important since the common 
Smith chart is restricted (for convenience) to the unit circle. If the p plane 
were used for the plot, the left-half plane would contain all LER points and 
the right-half plane all RER points [from (2.117) and (2.118)]. Then the p 
plane would have to be infinite to contain all polarizations. 

We will therefore use the q plane for our plots. Rather than use the 
equations for plotting curves on the Smith chart, we will develop new 
equations in terms of p and q. We may thus avoid the confusion inherent in 
translating, for example, from Re (z) to Re (p) and from K[(= - K) to q. 

In (2.90) and (2.91), let 

p = u + jv (a) q = s + jt (b) (2.127) 

Then 

. 1 - q 1 - s - jt 
P = u + ]v = 1 + q = 1 + s + jt 

1 2 2 '2 -s-t-]t 
(1+s)2+ t2 

(2.128) 

Equating real and imaginary parts of this expression, collecting terms, and 
completing the squares gives, if u ¥= -1 and v ¥= 0, 

(2.129) 

(b) 

The equations (2.129) describe two families of circles on the complex q 
plane. One family has centers at 

(2.130) 

and radii 

r=IU~ll (2.131) 

The second has centers at 
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(2.132) 

and radii 

r= I~I (2.133) 

Some of these circles are shown in Fig. 2.8. It is obvious that the portion of 
the complex plane within the circle of unit radius, I q I < 1, is identical to the 
common Smith chart. 

2 

1 

t (f) 

o 

-1 

-2 

-2 

v =-1 

-1 

s (e) 

o 

q Plane 
(w Plane) 

FIGURE 2.8. The q plane with curves of constant u and v. 

-0.1 
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In developing the previous equations for the polarization plot, we excluded 
the values u = -1 and v = O. We see, however, that as u ~ -1, the first family 
of circles with centers and radii given by (2.130) and (2.131) merely 
degenerates to a straight line, the vertical line s = -1. As v ~ 0, the second 
family of circles yields the horizontal axis. We are therefore not required to 
exclude these values for u and v. 

2.16. THE TRANSFORMATION FOR u < 0 

We see from (2.129) and Fig. 2.8 that for 0 > u > -1, the circle center for the 
family of circles u = constant is on the +s axis. Further, all the circles pass 
through the point (s = -1, t = 0) since the radius exceeds the location of the 
center by 

1 lui _ 1 + u -1 ---------
u+1 u+1 u+1 

All the circles for 0> u > -1 therefore lie outside the unit circle. 
For u < -1, the circle center is on the - s axis. Again the circles pass 

through s = -1, t = 0, since the magnitude of the distance from the origin to 
the circle center exceeds the circle radius by 

lui _ 1 = 1 
lu+11 lu+11 

We see therefore that all values of u = Re (p) < 0 transform to points 
outside the unit radius circle I q I = 1. This might have been expected, since 
I q I < 1 corresponds to right elliptic rotation and Re (p) > 0 also corresponds 
to right elliptic rotation. This appears to leave us in the unsatisfactory 
situation of being limited to right elliptic polarizations, at least inside the unit 
circle, which is normally all that is considered for the Smith chart. t In order to 
eliminate this restriction, for u = Re (p) < 0 we define a new circular 
polarization ratio in the following way: 

First we define a new phase term l' (not to be confused with the 
transmission line propagation constant discussed earlier). 

l' =-8 (2.134 ) 

Then the circular polarization ratio q may be written as 

L '0 ' 
q = - e -] = Qe lY 

R 
(2.135) 

t 
We have set up a correspondence between p and z, and only positive values of Re (z) are needed 

for most transmission line studies. It is then not surprising to find ourselves restricted to positive 
Re (p) or right elliptic polarizations. 
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L 
Q=lql=­

R 

81 

(2.136) 

The phase term )' is defined in this manner in order to have a symbol for the 
phase of q without the confusion of the negative sign. Now if Q> 1, our 
polarization point will be outside the unit circle. It then seems appropriate to 
define a new polarization parameter involving 1/ Q for use when Q > 1. Two 
reasonable definitions, 1/ q or 1/ q *, are possible. Let us use 1/ q * , which has 
the same phase angle, )" as q, and in fact is a reflection of q in the unit circle . 
Therefore we define 

1 1 ·0 . 
w = - = - e-' = We'Y 

q* Q (2.137) 

and consider the transformation from p to w. Substituting (2.137) into (2.91) 
gives 

1 - q 1 - l/w* w* - 1 
P = 1 + q = 1 + 1/w* w* + 1 (2.138) 

and solving for w gives 

1 + p* 
w = 1 * -p 

(2.139) 

We no longer have symmetric transformations as we did between p and q, but 
nevertheless the forms (2.138) and (2.139) suit our purpose. t We next let 

w = e + jf (2.140) 

and repeat the steps leading to (2.129) for the families of circles on the q 
plane, setting 

w* -1 
P =u+J'v=--­

w* + 1 
e - jf -1 
e - jf + 1 

e2 - 1 + f2 - 2jf 

(e+1)2+f2 
(2.141) 

and equating real and imaginary terms and completing squares. The result is 

( e + u ~ 1 r + [2 = C ~ 1 r (a) 

(e + 1)2 + ([ + ~r = (~r (b) 

(2.142) 

t 
The use of w = lIq, which was mentioned as a possibility, also would not have resulted in 

symmetric transforms between p and w. 
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These equations represent families of circles on the complex w plane. The 
first family, for constant u, has centers at 

and radii 

U 
ee' fe = - --1 ' 0 u-

r=IU~11 
and the second family, for constant v, has centers at 

and radii 

1 
ee,fe=-1, -­

v 

r= I~I 
Let us compare the q- and w-plane plots 

q = s + jt Plane 

1-p 
q=1+p p = u + jv 

w = e + jf Plane 

1 + p* 
w = ---=--

1- p* 

(2.143) 

(2.144 ) 

(2.145) 

(2.146) 

(s + u ~ 1 r + (2 = C ~ J 2 ( e + u ~ 1 ) 2 + f2 = (u ~ 1 ) 2 

Family of Circles, u = Constant 

-u 
Center at --1 ' 0 

u+ 

Radius = 1_1_1 
u+1 

-u 
Center at --1 ' 0 u-

Radius = I u ~ 11 
Family of Circles, v = Constant 

1 
Center at -1, - -

v 

Radius =·1 ~ I 

1 
Center at -1, - -

v 

Radius = I~I 
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The comparison of the circle centers and radii for the two planes clearly shows 
two facts. 

1. The circles on the q plane for some u, say U = uO' are identical to the 
circles on the w plane for U = - uo. 

2. The circles on the q plane for some v, say v = vo' are identical to the 
circles on the w plane for v = vO. 

It follows, therefore, that Fig. 2.8 may be considered the q plane with all 
curves U = constant inside the unit circle corresponding to positive values of 
u. All polarization points inside the unit circle on the q plane correspond to 
right elliptical polarization. With equal justification, Fig. 2.8 may be consi­
dered the w plane with all curves inside the unit circle corresponding to 
negative values of u. All polarization points inside the unit circle on the w 
plane correspond to left elliptical polarization. A particular circle u = U o on 
the q plane would be labeled - U o on the w plane. For the two planes there 
is no difference in the constant v circles. In fig. 2.8 all values relating to the 
w plane are in parentheses. 

We can find the polarization ellipse characteristics in terms of w by use of 
the equations for the ellipse characteristics in terms of q and the transform­
ation between q and w. They are: 

AR = 11 + I q II = 11 + 11/ w * II = 11 + I w II 
l-Iql l-ll/w*1 l-Iwl (2.147) 

and since by definition the phase angle of w is the same as that of q, that is, )" 
the tilt angle is still 

(2.148) 

The rotation sense of the wave is left handed if 

Iql > 1 Iwl<1 

and right handed if 

Iql < 1 Iwl> 1 

2.17. POLARIZATION CHART AS THE p PLANE 

Since p( q) and q( p) have the same form, it is obvious that we can consider 
the polarization chart, Fig. 2.8, as the p plane, with the circles being curves of 
constant Re (q) and constant 1m (q). This use has limited value, however, 
since all polarizations of interest do not fall within the unit circle. 
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2.18. COINCIDENT POINTS ON THE q AND w PLANES 

Figure 2.8 represents the q plane for right elliptic polarizations and the w 
plane for left elliptic polarizations. Any wave polarization is represented by a 
point on this chart. On the other hand, a point on the chart represents two 
polarizations, one left handed and the other right handed. Consider the 
polarization described by a point qo and that described by the coincident point 
wa (not the transformed point w = l/q*). Then 

From (2.147) we see that 

and 

T Iliu = ! () = T 111'11 

We see then that coincident points on the q and w planes represent waves 
having the same axial ratios and tilt angles, but opposite rotation senses, since 
the q plane represents all right elliptic rotations and the w plane all left. 

2.19 CONTOURS OF CONSTANT AXIAL RATIO AND TILT ANGLE 

It is often useful to consider contours of constant axial ratio and tilt angle on 
the polarization chart. To obtain the curves of constant axial ratio, we note 
from (2.147) that contours of constant axial ratio are also contours of constant 
I q I or I wi· These are circles on the q or w planes with centers at the origins. 
On the q plane inside the unit circle where I q I < 1, the circle radius is found 
from (2.147) to be 

AR -1 
Radius = Iql = AR + 1 

and on the w plane, (2.147) likewise yields 

AR -] 
Radius = Iwl = -A-R-+-1 

(2.149) 

(2.150) 

We see that for a particular axial ratio, the circles on the q and w planes 
coincide. This also follows from Section 2.18 where we saw that coincident 
points on the q and w planes represent polarizations with the same axial ratio 
and tilt angle. 
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FIGURE 2.9. Curves of constant axial ratio and tilt angle. 
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Contours of constant tilt angle, for either the q or w plane, are found from 

'Y = ang q = ang w = -27 (2.151 ) 

Since we have constrained 7 to the range 0 ~ 7 ~ 7r, the range of 'Y is 
O~ 'Y ~ -27r. 

Figure 2.9 shows curves of constant axial ratio and tilt angle on the q and w 
plane. Note that left and right circular waves, AR = 1, are represented by 
points at the origin, I ql = I wi = 0, and linear polarizations, AR -7 00 , by points 
on the unit circle, I ql = I wi = 1. 

2.20. CONTOURS OF CONSTANT Ipl 

In Fig. 2.8 we have curves of constant Re (p) and 1m (p). Let us now obtain 
curves of constant 1 p I. We take first the RER case and use 
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which becomes 
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1-q 
P=l+q 

I lej(cf>+7f/2) = 1 - QErt 

P 1 + QE 1Y 

(2.91) 

(2.152) 

Multiplying both sides by the complex conjugate and rearranging leads to 

2 1+lp12 (1+ lpI2 )2 (1+lpI2)2 
Q -21-lpI2 Qcosy+ 1-lp12 = 1-lp12 -1 (2.153) 

Now a circle in plane polar coordinates (Q, y) of radius" and center at 
(t, a) is given by 

Q2 _ 2tQ cos (y - a) + (2 = ,,2 (2.154 ) 

where 0 < (y - a) < 27T. This is readily seen by applying the law of cosines to 
Fig. 2.10. 

Therefore (2.153) represents a family of circles on the q plane with center 
at 

1 + Ipl2 
Q c' Yc = I 12' 0 1- p 

Ipl < 1 (2.155) 

and with radius 

,,= [(1 + Ipl:)2 _1]1 /2 
1 -Ipl 

Ipl < 1 (2.156) 

FIGURE 2.10. Circle with polar coordinates. 
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If I pi> 1, we note that (2.153) is not in the correct form (2.154) to 
represent a circle. For this case, we rewrite it, dividing numerators and 
denominators by I p12, to obtain 

Q2 ( ) 1+l/lpl2 Q [1+l/ lpI2 ]2 _[I+l/ lpI2 ]2 
- 2 cos )' ± 1T I 12 + I 12 - I 12 - 1 I-II pI-II pI-II P 

(2.157) 

Comparison to the standard equation shows that this represents a circle on 
the q plane with center at 

1 + I/1pl2 
Q e' )'e = 1 _ 1 I I P 12 , 1T Ipl> 1 

and radius 

r=[(I+l/ lpl :)2 _1]112 
I-l/lpl 

Ipl > 1 

We consider next the left elliptical case for which 

w* -1 We- jY -1 
p = w* + 1 = We -jy + 1 

(2.158) 

(2.159) 

(2.160) 

If we multiply both sides by the complex conjugate, just as we did with the 
RER case, we get 

2 

I P 12 = W 2 - 2 W cos)' + 1 
W + 2 W cos )' + 1 

(2.161 ) 

This equation may be put into the form of (2.153). Therefore (2.161) 
represents circles on the w plane with centers and radii that may be found 
immediately from the preceding equations. The results are 

1 + Ipl2 
(a) We' )'c = 1 _ I P 12 , 0 

Ipl <1 (2.162) 

= [(1 + Ipl2r - ]''' (b) r I 12 1 1- p 

W = 1+l/lpl2 1T (a) 
c' )'c 1 _ 1 lip 12 , 

Ipl > 1 (2.163) 

r=[(1+lI lpl:r -1]'" (b) 
1-1/1pl 
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It is obvious from these results that the circles of constant I p I coincide for the 
q and w planes. 

2.21. CONTOURS OF CONSTANT cP 

Let us now examine contours of constant </>, the phase difference between x 
and y components of the propagating wave. Again we take the RER case 
first. If the conjugate of 

p = IpIeM+~I2) = ~: ~:;: (2.152) 

is first added to p and then subtracted , and if the difference is divided by the 
sum, the result is 

tan (,I, + ~2) = -2Q sin 'Y 
'Y 1 _ Q2 (2.164 ) 

If we write 

C = cot 1> = -tan ( </> + ~) (2.165) 

then (2.164) becomes 

2 2Q ( 77") 1 1 Q - - cos 'V + - + - = 1 + -
C I 2 C 2 C 2 (2.166) 

This is the standard form for a circle, so it represents a family of circles on the 
q plane with centers at 

] 
Qc = C = tan q> (a) 

C>o (2.] 67) 

and radii 

C>o (2.168) 

These equations are restricted to C > 0 since (2.166) is in the standard form 
for a circle only if QIC> 0, and Q > 0 by definition. The condition C > 0 
reqUIres 

C = cot </> > 0 (2.169) 
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and this in turn leads to 

7T 
0< ¢ < 2" LER 

37T 
7T< ¢ < 2 RER 

We need not consider the range of ¢ giving left elliptic rotation, since for 
LER we do not use the q plane. 

For C < 0, we may rewrite (2.166) as 

2 2Q ( 7T) 1 1 
Q - Icl cos y - 2" + c 2 = 1 + c 2 (2.170) 

Now 

c = cot ¢ < 0 (2.171) 

gives ranges of ¢ that are 

7T 2" < ¢ < 7T LER 
37T 2 < ¢ <27T RER 

Again we consider only the right elliptic case. From (2.170) the circle centers 
are 

1 
Qc = TCT = Itan ¢I (a) 

(2.172) 

(b) 

and the radii are 

r = sec ¢ (2.173) 

Next, we consider the LER case, for which 

= I le j (CP+7T/2) = w* -1 = We-
jy 

-1 
p P w* + 1 We -J'Y + 1 (2.174) 

Adding and subtracting the conjugate equations and dividing the difference 
by the sum leads to 

(
,I... 7T) _ -2W sin y 

tan '¥ + -2 - 2 
W -1 

(2.175) 

Again we use 

c = cot ¢ = -tan( ¢ + ~) (2.165) 

and this leads to 
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2 2W ( 7T) 1 1 W - - cos 'V - - + - = 1 + -
C '2 C 2 C 2 (2.176) 

For C > 0, this time we exclude the RER case, and ¢ has the range 

7T 
0< ¢ <"2 LER 

Then (2.176) represents circles on the w plane with centers 

1 
We = C = tan ¢ (a) 

(2.177) 
(b) 

and radii 

1 ? If? 
( 

1/2 

r= 1+ co) =(I+tan-4» -=sec4> (2.178) 

For C < 0, we once more exclude the RER case and let the range of ¢ be 

7T 
"2 < ¢ < 7T LER 

We rewrite (2.176) to be 

2 2vV ( 7T) 1 1 
W - 1 ci cos Y +"2 + C2 = 1 + C2 (2.179) 

and the circle centers and radii on the lV plane turn out to be 

1 
We = TCT = Itan 4)1 (a) 

7T 
Yc = -"2 (b) (2.180) 

r = Isec 4)1 (c) 

At this point a summary would be useful, and we show here the centers, 
radii, and range of 4) for the two polarization states. 

RER LER 

Qc = tan 4) We = Itan ¢I 

7T 7T 
Ye = -"2 Yc = -"2 

r = Isec 4>1 r = Isec 4) 1 
(2.181) 

37T 7T 
7T<4)<2 "2<¢<7T 
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RER LER 

Qe = Itan 4>1 We = tan 4> 
'1T '1T 

'Ye = 2 'Ye = 2 
(2.182) 

,. = sec 4> ,. = sec 4> 

3'1T 
2 < 4> <2'1T 

'1T 
0<4><2 

We can condense this summary further to 

1 
1 

t {f} 

o OO~--+-+---4-4-----+-----+-+---4-~--~lpl=O 

-1 

-1 o 
s (e) 

FIGURE 2.11. Curves of constant Ipl and ¢. 

q or w Plane 

1 
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RER LER 

Qe = tan ¢ We = tan ¢ 

1T 1T 

l'e = - "2 l'e = "2 
(2.183 ) 

r = Isec ¢I r = Isec ¢I 

1T < ¢ < 21T O<¢<1T 

if we adopt the convention that Q e and We can take on negative values. Then 
l'e is simply increased by 1T whenever tan ¢ becomes negative. 

We see from this summary that on the combined q and w plane the q-plane 
circles for 1T < ¢ < ~ 1T coincide with the w-plane circles for ~ 1T < ¢ < 1T. 

Likewise the q-plane circles for ~ 1T < ¢ < 21T coincide with the w-plane 
circles for 0 < ¢ < 11T. 

Figure 2.11 shows the circles of constant I P I and constant phase angle ¢ on 
the q and w planes. The constant I P I circles are the same for both planes. The 
constant ¢ circles are labeled with the value of <I> and either R or L, meaning, 
respectively, right elliptical polarization, in which case the chart is considered 
the q plane, and left elliptical polarization, in which case it is the w plane. 

We have not plotted all of the contours of constant Re (p), 1m (p), AR, 7, 

I pi, and ¢ on the same polarization chart because on a small chart this would 
be confusing. On a large chart, however, these plots allow one to obtain 
quickly any polarization parameter from a knowledge of others. 

2.22. STOKES PARAMETERS 

In his studies of partially polarized (quasi-monochromatic) light, Stokes 
introduced four quantities to characterize the amplitude and polarization of a 
wave. For strictly monochromatic waves these Stokes parameters are 

50 = IExl2 + IEyl2 (a) 

51 = IExl2 -I EyI2 (b) 
(2.184 ) 

52 = 2I ExlIE) cos ¢ (c) 

53 = 21ExlIEyi sin ¢ (d) 

where IExl, IEyl, and <I> are, as defined previously, the component amplitudes 
and phase difference of the wave. 

It is obvious that the parameters are sufficient to describe both amplitude 
and polarization. Parameter 50 gives the amplitude directly, while I Ex I and 
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IEyl can be found from So and SI' Then <p may be determined from either S2 
or S3' Only three of the equations are independent since it is easily seen from 
(2.184) that 

(2.185) 

It is not difficult to relate the Stokes parameters to the terms used 
previously for describing the polarization ellipse. From (2.43) and the 
definitions of the Stokes parameters, we get 

or 

(2.186) 

where 0 is the auxiliary angle from which we found the axial ratio of the 
polarization ellipse. 

From (2.40) for the tilt angle of the ellipse and (2.39) we find 

2 tan a cos <p 
tan 27" = tan 2a cos <p = 2 

1- tan a 

2lExllEylcos<p S2 
=-

IExl2 -IEyI2 SI 
(2.187) 

If (2.186) and (2.187) are substituted into (2.185) we are led to 

SI = So cos 20 cos 27" 

Substitution of this equation into (2.187) in turn gives 

S2 = So cos 20 sin 27" 

2.23. THE POINCARE SPHERE 

Collecting some of the previous equations, namely, 

S2 = So cos 20 sin 27" 

(2.188) 

(2.189) 

(2.184a) 

(2.188) 

(2.189) 

(2.186) 
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z 

x 

FIGURE 2.12. The Poincare sphere. 

suggests a geometrical interpretation of the Stokes parameters. S1' S2' and S3 
are the Cartesian coordinates of a point on a sphere of radius So. Then 28 and 
2T are the latitude and azimuth angles measured to the point. This interpret­
ation was introduced by Poincare, and the sphere is called the Poincare 
sphere. Such a sphere, with the Stokes parameters and the angles 28 and 2T, is 
shown in Fig. 2.12. 

Since we can describe the amplitude of a wave by So and its polarization by 
S1' S2' and S3' it is clear that any wave can be described by a point on the 
Poincare sphere. To every state of polarization there corresponds one point 
on the sphere and vice versa. 

2.24. SPECIAL POINTS ON THE POINCARE SPHERE 

Left Circular 

For this case 

Then the Stokes parameters become 
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SO = IExl2 + IEy l2 = 21 Exl2 

Sl = IExl2 -IEy I2 = 0 

S2 = 21 Exil Eyi cos <p = 0 

S3 = 21 ExlI Ey i sin <p = 21 Exl 2 = So 
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and the point representing the polarization of this wave is the north pole (the 
+ z axis) of the Poincare sphere. 

Right Circular 

For this case 

which is the south pole of the sphere. 

Left Elliptic 

For this we have 

O<<p<7T 

and it follows from (2.184d) that 

and all points for left elliptic polarizations are plotted on the upper 
hemisphere. 

Right Elliptic 

For this, 

7T < <p < 27T 

and right elliptic polarization points are in the lower hemisphere. 
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Linear 

For linear polarizations, if 1 Ex 1 and 1 Ey 1 are nonzero, then 

¢ = 0, 'TT 

and from (2.184d) 

and all linear polarization points are at the equator. 
For linear vertical polarization the polarization point is at the - x-aXIS 

intersection with the sphere and for linear horizontal it is at the + x-axis 
intersection. The + y-axis intersection corresponds to linear polarization with 
a tilt angle of t'TT, and the -y-axis intersection to a tilt angle of ~ 'TT. 

Conjugate Point 

If a wave with polarization p is represented by S1' S2' and S3 on the Poincare 
sphere, what point, S~, S~, S~, represents p*? From 

we note that 

and the primed Stokes parameters are 

Sb = IExl 2 + IEy l2 = So 

S~ = IExl2 -IE)2 = S1 

S~ = 21ExilEyi cos (-¢ + 'TT) = -S2 

S~ = 2IExIIE) sin (-¢ + 'TT) = S3 

We see from Fig. 2.12 that this is a reflection of the first point in the xz plane. 

Cross-Polarized Point 

We will see later that the polarization ratio p' = -1/ P has a special 
significance. From 
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p' = - ~ = jl ~: I e-N 

we find the Stokes parameters of the transformed point to be 

S~ = IExl2 + IEyl2 = So 

S~ = IEyl2 -IExl 2 
= -Sl 

S~ = 21ExlIEyi cos (-cjJ) = S2 

S~ = 21ExlIEyi sin (-cjJ) = -S3 
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2.25. OTHER RELATIONSHIPS BETWEEN THE VARIABLES 

From (2.184c) and (2.184d) it is noted that 

S 
cjJ = tan -1 S3 

2 

and from (2.184a) and (2.184b) it follows that 

IExI=V!(SO+Sl) (a) 

IEyl=V!(SO-Sl) (b) 

From these equations we easily find that 

(2.190) 

(2.191) 

(2.192) 

We may also find p and q in terms of the angles 28 and 2'T on the Poincare 
sphere. Substituting (2.186), (2.188), and (2.189) into (2.192) leads quickly 
to 

-sin 28 + j cos 28 sin 2'T 
p = 1 + cos 28 cos 2'T (a) 

cos 28 cos 2'T - j cos 28 sin 2'T (b) 
q = 1- sin 28 

(2.193) 

Finally, we note that the Poincare sphere ang!es in terms of the Stokes 
parameters are 
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. _) Sl 
20 = SIn c;=- (a) 

·J o 
(2.194) 

2.26. MAPPING THE POINCARE SPHERE ONTO A PLANE 

Since the state of wave polarization can be represented by a point on the 
Poincare sphere as well as by a point on the p, q, or lV planes , it is not 
surprising that the Poincare sphere may be mapped onto these complex 
planes. Before carrying out the mapping, however, let us find the Stokes 
parameters in terms of p. From (2.192a) we get 

and using (2.185) 

Solving for SI / So gives 

From 

and the relations 

we see that 

SI 1-lp12 1-lp12 
So = 1 + Ipl2 = 1 + IPI2 

IE) --I. 

p = jP= j _ ef'f' 

IExl 

S2 = 21ExlIEyi cos ¢ (c) 

S3 = 21ExilEyi sin ¢ (d) 

S2 = 21 Exl 2 
Re (P) = 21Exl2 1m (p) (a) 

S3 = 21 Exl 2 
1m (P) = -2IEx/2 Re (p) (b) 

Substituting (2.197) into 

(2.195) 

(2.196) 

(2.184) 

(2.197) 
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S; + S; = 1 _ si = 41pl2 
S~ S~ S~ (1+lpI2)2 

(2.198) 

which results from (2.185) and (2.196), we obtain 

(2.199) 

If (2.199) is substituted back into (2.197), there results 

S2 = 21m (p) d 2 Re (P) 
(a) 

So 1 + Ipl2 1 + IPI
2 

S3 = -2 Re (p) 21m (P) 
(2.200) 

(b) 
So 1 + Ipl2 1 + IpI 2 

We assert now that the Poincare sphere may be mapped onto the p and P 
planes by a stereographic projection. The proof will be deferred until the 
projection is described. First, as an aid in orienting the Poincare sphere, we 
tabulate the parameters for various special polarizations: 

Polarization p P q W Sl S2 S3 

Right circular 1 -j 0 00 0 0 -So 
Left circular -1 j 00 0 0 0 So 
Linear vertical (7 = ! 7T) joo 00 -1 -1 -So 0 0 
Linear horizontal (7 = 0) 0 0 1 1 So 0 0 
Linear (7 = ~ 7T) j 1 -j -j 0 So 0 
Linear (7 = i7T) -j -1 j j 0 -So 0 

The stereographic projection of a point on the Poincare sphere onto the p 
or P plane is shown in Fig. 2.13. The sphere is oriented so that its north 
pole-south pole axis is parallel to the real axis of the p plane (imaginary axis 
of the P plane). Points are projected onto the plane by a ray from the sphere 
point farthest from the plane. Note that this projection point itself projects to 
00 on the polarization plane. At this time it might be wise to refer back to Fig. 
2.12 to note that Sl' S2' and S3 are rectangular coordinates of a point on the 
sphere measured, respectively, along thex, y, and z axes. 

Now the Stokes parameters and the Poincare sphere give both amplitude 
and polarization information about the wave while points on the p plane 
describe only the wave polarization, so we expect something to be lost in the 
mapping, and this expectation is justified. Since the projection of the south 
pole (Sl = S2 = 0, S3 = -So) onto the plane gives the point p = 1, the sphere 
radius must be 
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~--.~-----I~~~~-----\-----------~~-----ReW) 

Im(p) 
Re(P) x 

FIGURE 2.13. Stereographic projection of the Poincare sphere onto the p and P planes. 

S - 1 
0- 2 (2.201) 

and we give up amplitude information, commonly not of great interest in 
polarization problems, in going from the sphere to the polarization plane. 

It is easy to see from the preceding table and Fig. 2.13 that all of the special 
points on the sphere project to the correct values of p and P on the 
polarization planes, and thus if the stereographic projection is valid, we have 
oriented the sphere properly on the plane. It has not yet been established, 
however, that the stereographic projection itself is valid. To show this we will 
find from Fig. 2.13 a graphical relationship between the Stokes parameters 
and their projection on the p plane. We will then compare these results with 
(2.195), (2.196), and (2.200) to see if the mapping is valid for the general 
case. 

From Fig. 2.13 

Then 

I I sin e ~ So - S I 
P = 2So tan e = 2So V . 2 = 2So S S 

1- SIn e 0 + I 

(2.203) 
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If we recall that So = !, we see that (2.203) is identical to (2.195). Since 
(2.196) was derived from (2.195), it also must be satisfied by the mapping. 

From Fig. 2.13 we note that for the point to be projected, 

S2>0, 

and for the corresponding polarization plane point 

Re (p) > 0, 1m (p) > 0 

Then it follows that 

S2 = (positive constant) 1m (p) = C 1m (p) (a) 
(2.204) 

S3 = (negative constant) Re (p) = - C Re (p) (b) 

where the two constants are equal in magnitude. We see that (2.204) agrees 
with (2.200) except for our lack of knowledge of the constant C. 

To determine this constant, we can derive from (2.203) the relation 

Sl = 1-lp12 
So 1+lp12 

which is, of course, (2.196), as we know it must be. Substituting (2.196) and 
(2.204) into 

(2.185) 

gives 

s~[ ~: :;::r + C 2
[Im (p)]2 + C2[Re (p)]2 = S~ 

from which it follows that 

(2.205) 

and, if we use this constant in (2.204), we get 

(2.206) 
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Im(p) 

...... , / 
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FIGURE 2.14. Poincare sphere projection from below. 

which are the same as (2.200). We conclude then that the stereographic 
projection of the Poincare sphere onto the p plane, with the sphere oriented 
as in Fig. 2.13, gives the correct correspondence between a polarization point 
on the p plane and a polarization point on the Poincare sphere. 

We have discussed the p plane with little mention of the P plane. Figure 
2.13 also shows this plane which is, of course, related to the p plane by 

p=jP (2.89) 

The p and P planes of Fig. 2.13 have an uncommon orientation as we look 
down on the planes. If Re (p) is plotted to the right, then 1m (p) is plotted 
downward. This is not of great consequence, but if desired it can be changed 
by using left-handed coordinates for the Poincare sphere (not generally 
desirable) or by projecting the Poincare sphere onto the plane from below as 
shown in Fig. 2.14. 

2.27. MAPPING ONTO THE q AND w PLANES 

Since the transformation between p and q is linear, we might expect that the 
Poincare sphere can be mapped onto the q plane, and this is correct. To 
obtain the transformation we substitute 

p=p'+jp" q=q'+jq" (2.207) 

into (2.91), obtaining 



MAPPING ONTO THE q AND w PLANES 103 

, 1-lq12 
P = 1 + 2q' + 1 ql2 (a) 

p"= 1+2q'+lqI2 (b) 
-2q" 

(2.208) 

'If (2.208) is substituted into (2.196) and (2.200), which give the Stokes 
parameters in terms of p, and if we note from (2.91) that 

2 1_q'+lqI2 
1 p 1 = 1 + 2q' + 1 q 12 (2.209) 

we find 
SI 2q' 

(2.210) 
So 1 + Iql2 

S2 -2q" 
(2.211) 

So 1 + Iql2 

S3 =_ 1-lq12 
(2.212) 

So 1 + Iql2 

Before discussing this mapping, we might as well develop the mapping 
equations for the w plane, since this is the analog of the q plane for 
left-handed polarizations. Substitution of w = l/q* into (2.210), (2.111), and 
(2.212) leads to 

SI 2w' 
(a) 

So Iwl
2 

+ 1 

S2 -2w" 
(b) (2.213) -= 

Iwl
2 

+ 1 So 

S3 
= 

Iwl
2 
-1 (c) / 

So Iwl
2 

+ 1 

If we tabulate the equations for the Stokes parameters in terms of p, q, and 
2, we have 

S 1 1 - 1 P 12 2 Re ( q) 2 Re (w) 
So = 1 + Ipl2 = 1 + 1 ql2 = 1 + Iwl 2 (a) 

S2 2Im(p) -2Im(q) -2Im(w) 
So=1+lpI2= 1+lq12 = 1+lw12 (b) 

S 3 _ - 2 Re (p) _ 1 - 1 q 12 1 - 1 W 12 
So- 1+lp12 - 1+lq12 1+lw12 (c) 

(2.214) 



z 

Im(q) 

(a) 

z 

(b) 

FIGURE 2.15. Projections onto the q and lV planes. 
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We see from this summary that the Sl (or x) coordinate in the p-plane 
transformation is analogous to the - S3 (or - z) coordinate in the q-plane 
transformation, and so on. It is then obvious that we can project the Poincare 
sphere onto the q or w plane by appropriately interchanging the axes of the 
Poincare sphere of Fig. 2.13. The appropriate interchanges are: 

p Plane q Plane w Plane 

x -z -z or +z 
y -y -y or +y 
z -x x or -x 

The first coordinate interchange for the w plane gives a left-handed coordi­
nate system for the sphere. Therefore, following a hint given at the end of the 
preceding section, we reverse the coordinates to give a right-handed system, 
and to compensate we reverse the direction in which 1m (w) is plotted. 

The projections of the Poincare sphere onto the q and w planes are shown 
in Fig. 2.15. We may see from Fig. 2.15(a) that the lower hemisphere (z < 0) 
maps into the unit circle on the q plane. This is expected since the lower 
hemisphere contains all right elliptically polarized points, and so does the unit 
circle on the q plane. From Fig. 2.15(b) we see that the hemisphere, z > 0, 
which contains all left elliptically polarized points, maps into the unit circle on 
the w plane. 

z 

/ 
/ 

Im(q) 

....... / 

'<,- - -r--- ;-.-------" 
\ / 
\ / 

~-- x 
I 

/ 

FIGURE 2.16. Combined projections onto the q and w planes. 
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The two figures of 2.15 may be combined into one drawing, and such a 
combination is shown in Fig. 2.16. In this figure the q plane is above the 
sphere and the w plane below, but the reverse is also possible. The origin of 
the projection ray for the q plane is 53 = + 50 and for the w plane the ray 
origin is 53 = - 50' 

In Fig. 2.17 the Poincare sphere and the three projection planes p, q, and 
ware shown together. This drawing suggests that three other planes could be 
used in a simple fashion to describe polarization states since Fig. 2.17 shows 
only three of a possible six planes. The transformations from 51' 52' and 53 to 
the remaining three parameters may be found from Fig. 2.17. 

Carrying out the transformation to one of the possible planes, the r plane 
of Fig. 2.18, with a stereographic projection from the point 52 = - 50 on the 
Poincare sphere yields the equations 

Im(q) 

x 

FIGURE 2.17. Poincare sphere with three projection planes. 
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y 

FIGURE 2.18. Mapping onto the r plane. 

SI = 21m (r) 
So 1+lr12 
S2 1 _11'1 2 

So 1 + Irl2 

(a) 

(b) 

S3 -2 Re (r) (c) 
So = 1 + Irl2 

-S3 + jSl 
r= 

So + S2 
(d) 

It is recommended that the reader develop these transformations. 
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(2.215) 

In Fig. 2.17 we note that the p and q planes are each stereographic 
projections of polarization points on the Poincare sphere, and we recall that p 
and q are related by a bilinear transform. The r plane is another projection of 
the Poincare sphere, and it would not surprise us to find that r is a bilinear 
transform of p or q. To check this point, substitute (2.214) into (2.215d). 
Then we have 

1 + jq * 
1- jq * 

w + j1 
w - j1 

(1 + jq)(l + jq * ) 
(1 + jq)(l - jq * ) 

(2.216) 
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We could obtain other polarization parameters either by interchanging the 
real and imaginary axes of one of the polarization planes (as in the 
relationship p = jP), a process which is not very significant, or by choosing 
one of the remaining projection planes of the Poincare sphere. It appears, 
however, that the p and q parameters (together with w for left-handed 
polarizations) are the most useful, p because it is so easily obtained in terms of 
rectangular wave components. Figure 2.17 shows the utility of q and w. Since 
all left-handed polarizations are plotted on the hemisphere z > 0 and all 
right-handed polarizations are on the hemisphere z < 0, then only on the q 
plane will all right-handed polarizations be plotted in a finite region, and 
similarly for left-handed polarization on the w plane. 
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PROBLEMS 

2.1. A left-handed elliptically polarized wave has a tilt angle of 30° and an 
axial ratio of 2. Find the polarization ratios p and q (or w). 

2.2. An antenna radiates a wave in the z direction with a polarization ratio 
P = 2e j

'Tr14. The antenna is rotated in the xy plane by 30° from the x axis 
toward the y axis. Find the new value of P. 

2.3. Find the points on the q (or w) plane Smith chart representing the two 
polarization states of problem 2.2. Can you draw a general conclusion 
about the change in polarization state caused by rotating the antenna? 

2.4. The polarization parameters P (or p) and q (or w) developed in this 
chapter have physical significance, as the ratios, respectively, of 
rectangular and circular field components. Try to find a physical 
meaning for the parameter r as defined in this chapter. 

2.5. Consider the stereographic projection of the Poincare sphere from the 
point Sl = + So onto a complex plane. Find the equation, corresponding 
to (2.215), for the complex variable on this plane in terms of the Stokes 
parameters. . 
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2.6. The q-plane representation of polarization comes from a stereographic 
projection from the S3 = So point on the Poincare sphere onto a plane 
parallel to the xy plane, where S3 is measured on the z axis. Consider an 
orthographic projection, rather than stereographic, onto the same 
plane. Describe the resulting chart. Is it useful in working with 
polarization states? 

2.7. Carry out the suggested work of Section 2.2 to prove that the 
polarization ellipse for the magnetic field is identical to that of the 
electric field except that it is rotated by angle! 7T around the z axis. 

2.8. Make the substitution outlined immediately after Eg. (2.199) to obtain 
(2.200). 

2.9. Use (2.192a) and the relation between p and q to obtain (2.192b). 



3 
POLARIZATION 
MATCHING OF 

ANTENNAS 

3.1. INTRODUCTION 

It is obvious that when two antennas are used in a communication system, 
they should be matched in polarization so that the available power at the 
receiving antenna can be fully utilized. In this chapter a polarization match 
factor is developed and is given in terms of the standard polarization 
parameters. The relationship between the effective length of a receiving 
antenna and the field components of an incident wave necessary to yield 
maximum power is developed. In the final section a step-by-step process is 
outlined for obtaining the power received when two antennas are mismatched 
in polarization and do not have their main beam axes pointing at each other. 
It is interesting that this topic is not treated in most of the standard texts on 
antenna theory. 

3.2. EFFECTIVE LENGTH OF AN ANTENNA 

The electric field in the radiation zone of a dipole antenna, which is short 
compared to a free-space wavelength, as shown in Fig. 3.1, is given by 

( 
_ jZolt -jkr . 

Eo r, 8, <1» - 2Ar e SIn 8 (3.1) 

where Zo is the intrinsic impedance of free space, k the free space propagation 
constant, A the wavelength, and I the current into the antenna terminals of 
Fig. 3.1. . 
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FIGURE 3.1. Short dipole antenna. 

Equation (3.1) may be generalized to give the transmitted field of any 
antenna; thus [1] 

'Z I 
E'(r, 0, cf» = '2:r e -jkrh(O, cf» (3.2) 

where ° is the colatitude angle of Fig. 3.1 and cf> is the azimuth angle. The 
current I is an input current at an arbitrary pair of terminals. Equation (3.2) 
describes a general antenna in terms of its effective length h( 0, cf». The 
effective length does not necessarily correspond to a physical length of the 
antenna, although there is a correspondence for the dipole. In fact, compari­
son of (3.1) and (3.2) shows that the effective length of the short dipole 
antenna is 

(3.3) 

We see from this that h is not fixed for an antenna but depends on the angle ° 
(and more generally on cf» at which we measure the radiated field. 

As mentioned, I is the current at an arbitrary pair of terminals, and it . 
follows that the effective length h depends on the choice of terminal pair. 
Further, we note that if E' is to describe an elliptically polarized field, it must 
be complex, and therefore h is a complex vector. With a proper choice of 
coordinate system, E' and h will have only two components since in the 
radiation zone E' has no radial component. 

3.3. RECEIVED VOLTAGE 

We defined the effective length of an antenna in terms of the radiation field 
produced by it. We will show in this section that the open-circuit voltage 
induced in the antenna by an externally produced field is proportional to this 
effective length; in fact, some authors define effective length in terms of the 
open-circuit voltage produced when the antenna is receiving a wave. 

By the principle of reciprocity, if two antennas are fed by equal current 
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sources, the open-circuit voltage produced across the terminals of antenna 1 
by the current source feeding antenna 2 is the same as the open-circuit voltage 
produced across the terminals of antenna 2 by the current source feeding 
antenna 1. 

We apply this principle to determine the open-circuit voltage across the 
terminals of our general antenna, whose transmitted field is given by (3.2), 
when it receives an incident wave. The general antenna is assumed to interact 
with a short dipole, as shown in Fig. 3.2, together with the coordinate system 
to be used and the assumed current directions and voltage polarities. Note 
that the same rectangular coordinate system is used for both antennas, 
although fJ', </>' are not equal to fJ, </>. 

First, we let the general antenna fed by a current source of 1 A transmit a 
wave toward the short dipole. Its field at the dipole is 

(3.4) 

(a) 

z 

0' 

z Ir- -.~y Lf------Uc/> r "-A 
o t---- uc/>' UO' 

\-
_.,.,.--\ x 

- I _ -l Uo 
- -- y 

x 
(b) 

FIGURE 3.2. General antenna and short dipole: (a) antennas; (b) coordinates and unit vectors. 
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and the open-circuit voltage across the dipole terminals, with the polarity 
shown in Fig. 3.2, is 

(3.5) 

where e is the vector length of the dipole. Here we are considering that the 
dipole has infinitesimal length so that the incident field E' is constant over the 
dipole length. The dipole may be arbitrarily oriented, but since E' has no 
radial component, a radial component of the dipole length will not contribute 
to the received voltage. Then, still using the coordinate system of Fig. 3.2, 

(3.6) 

where the dipole components eo and ecP are given by 

e =u oe 
cP cP (3.7) 

Combining (3.4) and (3.5) gives the voltage induced across the open dipole 
terminals by the incident wave from the general antenna: 

·z 
V - J 0 -jkrh {) --e o{, 

2 2Ar (3.8) 

Next, suppose the dipole fed by a I-A current source is transmitting, and 
the general antenna, with open terminals, is receiving. The field produced at 
the general antenna (1) is given by 

, J·Zo 'k 
E~. = 2Ar e- I reo' (a) 

, J·Zo 'k E' = - -I re 
cPO 2Ar e cPO 

(3.9) 

(b) 

where we continue to use the same coordinate system but note that 0', 4J' 
differ from 0, 4J. We note from Fig. 3.2 that although the angles just 
mentioned are different, we have 

(3.10) 

It follows that 

E~. = E~ (a) E~,. = - E~, (c) 
(3.11 ) 

and therefore the wave incident on antenna 1 is 
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o J'ZO Ok E 1 =- -}re. 
o 2Ar e (} (a) 

_ Ei = jZo -jkr(_ e ) 
cP 2Ar e cP 

(3.12) 

(b) 

or 

° J'ZO Ok 
EI - -} re --e 

2Ar 
(3.13) 

The open-circuit voltage induced in the general antenna (1) is VI' which by 
the reciprocity theorem is equal to V2 , as given by (3.8). Then, from (3.8) and 
the reciprocity theorem, we get 

'Z 
V =V =~ -jkre·h 

1 2 2Ar e (3.14) 

and if we recognize that the first part of this expression is the incident wave of 
(3.13), we get an expression for the received voltage across the open 
terminals of antenna 1 in terms of the incident field, E i

, and its effective 
length h. It is 

(3.15) 

It should be noted that in (3.15) both Ei and h are measured in the same 
coordinate system (in contrast to a situation to be discussed later). The 
voltage VI is in general a complex phasor voltage, since both Ei and hare 
complex. Finally, in specifying the effective length h of an antenna, a terminal 
pair at which input current is to be measured must be specified. Then VI is the 
open-circuit voltage measured across those terminals. 

3.4. MAXIMUM RECEIVED POWER 

It is reasonable to believe from looking at (3.15) that by proper selection of 
the effective length h of a receiving antenna, we can increase the open-circuit 
voltage and hence the received power. If we neglect the extraneous problems 
of, for example, impedance mismatch, the power received by the general 
antenna is proportional to the square of the magnitude of the open-circuit 
voltage; thus using an equality rather than a proportional symbol (an 
inconsequential action since we will later consider a power ratio), we have 

(3.16) 

where an appropriate coordinate system is used so that h has only two 
components and so only two are needed for Ei. 
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Let us define 

(a) 

(3.17) 

(c) 

with 81 the phase angle by which h<f, leads ho' f3 the angle by which E~ leads ho' 
and 82 the angle by which E~ leads E~. Using these equations, the received 
power, (3.16), becomes 

(3.18) 

where the angle 2a + f3 has been removed as common to both terms in the 
sum. 

Clearly W is a maximum, from (3.18), if 

(3.19) 

and has value 

Wm = [Iho II E~I + Ih<f, II E~)1]2 (3.20) 

Now Wm can be maximized further, for a fixed incident wave, EI, by 
varying I ho I or I h q, I. Certainly, however, there must be some constraint on 
Iho I and Ih<f, I; otherwise, Wm could be made as great as we please by 
increasing I ho I and I hq, I arbitrarily. To determine this constraint, return to 
(3.2), which gives the transmitted field of an antenna in terms of its effective 
length. The transmitted Poynting vector, from (3.2), is obviously proportion­
al to h . h *. Then a reasonable constraint on an antenna is that this Poynting 
vector remain constant as we vary h. Therefore, we vary h to maximize Wm in 
(3.20) with the constraint 

(3.21) 

Substituting (3.21) in (3.20), we get 

(3.22) 

and differentiating with respect to I ho I in order to maximize W m gives 

aWm _ I II il 2 1/2 i 2[ i IhollE~I] 
alhol - 2[ ho Eo + (C-Ihol) IEq,11 IEol- (C -lh

o
I2 )112 = 0 

(3.23) 
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from which it is clear that 

or 

IE~I 

IE~I 

(3.24) 

(3.25) 

It seems quite reasonable that (3.25) will give maximum received power, 
rather than minimum, since if Ei has a large e component, we would expect a 
large he to give best reception. However, we will substitute (3.25) into (3.20) 
to see if the received power is maximum. We rewrite (3.20) as 

Wm = Ihe121E~12 + Ih¢12IE~12 + IheIIE~llh¢IIE~1 + IheIIE~llh¢IIE~1 

(3'.26) 

In the third term of Wm , we make the substitution from (3.25) that 

(3.27) 

and in the fourth term of Wm we make the substitution in reverse. Thus 

Wmm = Ihe121E~12 + Ih¢12IE~12 + Ihe121E~12 + Ih¢12IE~12 

= (lhel2 + Ih¢12)(IE~12 + IE~12) (3.28) 

This is quite obviously maximum power rather than minimum. Finally, (3.28) 
may be written as 

(3.29) 

There may be some concern on the part of the reader that (3.21) is a 
legitimate constraint. While we vary h for maximum received power, why 
should we apply a constraint that is meaningful only for the transmitting case? 
For this reason we return to (3.20), assume that h is fixed, and vary Ei in order 
to maximize the power. Now in this situation it is quite clear that we can cause 
only a fixed power density at the receiving antenna. Therefore 

(3.30) 

Using this equation makes Wm become 
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and differentiation with respect to I E~I gives 

from which it follows that 

which is the same condition we arrived at previously. 
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(3.31) 

(3.33) 

Equation (3.33) gives one condition on h for maximum power reception. 
The other is given by 

(3.19) 

w~ere 81 is the angle by which hcfJ leads ho and 82 is the angle by which E~ leads 
E~. 

We rewrite (3.17b) as 

(3.34) 

and substitute (3 .19) and (3.33) into it, obtaining 

(3.35) 

From (3.17d) we recognize ~hat the last term is E~ * / E~ *, so that the 
relationship between hand E' for maximum received power is 

hcfJ =(E~)* 
h E' 8 8 

(3.36) 

3.5. POLARIZATION MATCH FACTOR 

If we maintain the same degree of impedance matching for an antenna as we 
vary its polarization properties, then the ratio of actual power received to that 
received under the most favorable circumstances of matched polarization is, 
from (3.16) and (3.29), 
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lEi ·h1 2 

P = IEil21hl2 (3.37) 

We will refer to p as the polarization match factor, although it is sometimes 
called the polarization efficiency. Its range is obviously 

The polarization match factor shows how well a receiving antenna of 
effective length h is matched in polarization to an incoming wave. Now let us 
recognize that the incoming wave was transmitted by another antenna and so 
introduce the polarization properties of that antenna into the problem. 

Figure 3.3 shows two antennas in a transmit-receive configuration. The 
transmitting antenna (1) will be described in its polarization properties by 
the right-handed coordinate system x, y, z adjacent to antenna 1 since the 
polarization of a wave is normally based on a right-handed coordinate system 
with one axis pointing in the direction of wave travel. The receiving antenna 
will be described by the right-handed g, 7], ~ system. The antennas need not 
have their main beams pointed at each other, but the z and ~ axes are parallel 
and each points at the other antenna. 

The incident wave from antenna 1 may be written as 

(3.38) 

\ 
\ 

1 2 

(a) 

TJ 
y 

Lz 
~ 

g 
(b) 

FIGURE 3.3. Antennas and coordinate systems used in development of polarization match 
factor: (a) antennas; (b) coordinate systems. 
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where PI is the modified polarization ratio [2] of the incident wave produced 
by antenna 1. 

The polarization ratio of an antenna is defined as the polarization ratio of 
the field it transmits (far field). Therefore, PI is the modified polarization 
ratio of antenna 1. It is a function of 8 and 4>, the colatitude and azimuth 
angles measured for the transmission direction. 

If antenna 2 were transmitting, its radiated wave could be written as 

(3.39) 

where we use appropriate coordinates g, T/, ~ for the wave propagating in the 
~ direction, toward the first antenna. Equation (3.39) may be written in terms 
of the modified polarization ratio of antenna 2 as 

(3.40) 

where P2 is the modified polarization ratio of antenna 2 in the ~ direction, 
using the appropriate right-handed coordinates at antenna 2. 

Now the transmitted field (3.40) is related to the vector length of antenna 2 
by 

(3.41) 

Therefore, h2 becomes, using (3.40) and (3.41), 

(3.42) 

where 

(3.43) 

Let us return now to the situation where antenna 1 transmits and antenna 2 
receives. The open-circuit voltage across the appropriate terminals of 2 is 

(3.44) 

If we note from Fig. 3.3 that 

(3.45) 

and use the field and effective length components from (3.38) and (3.42), we 
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get for the open-circuit voltage 

(3.46) 

We find also, from (3.38) and (3.42), that 

IEi l2 = IEo1all\u x + Ple-j7T/2uy)· (u x + prej7T/2uy) 

(3.47) 

and 

(3.48) 

If we substitute (3.44), (3.46), (3.47), and (3.48) into the polarization match 
factor (3.37), we obtain 

IEolalho21211 + PIP21
2 

(1 + PIP2)(1 + p!p;) 
p = = (3.49) 

IEola11
2
(1 + PIP!)lh 02 1

2
(1 + P2P;) (1 + PIPr)(l + P2P;) 

It is worthwhile to repeat that the definition of PI uses wave components 
measured in a right-handed system with the z axis pointing away from 
antenna 1 and toward 2. In defining P2' we used a right-handed system with 
the TJ axis parallel to and in the same direction as the y axis and with the ~ axis 
pointing toward antenna 1. 

3.6. POLARIZATION MATCH FACTOR: SPECIAL CASES 

Polarization-Matched Antennas 

If we have two polarization-matched antennas in a transmit-receive system, 
the polarization match factor of (3.49) is equal to 1. (Note that it may change 
if the orientation of one of the antennas is changed.) Thus 

_ (1 + PIP2)(1 + p!p;) _ 1 
p - (1 + PIPr)(l + P2P;) -

Cross multiplying, expanding, and canceling terms gives 

(3.50) 
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which has a solution 

In terms of the circular polarization ratio q, 

121 

(3.51 ) 

(3.52) 

and the axial ratios and tilt angles of the polarization ellipse of the two 
antennas are related by 

(a) 

81 1'1 1'2 
7 = - = - - = + - = -7 12222 

(3.53) 

(b) 

Now, in (3.53), 71 and 72 are described in different coordinate systems, as 
shown in Fig. 3.3. It is obvious from Fig. 3.3 that the condition 71 = - 72 

means that the major axes of the two polarization axes coincide. Equation 
(3.52) also shows that the rotation senses of the two polarization ellipses are 
the same when described in the appropriate coordinate systems. Having the 
same rotation sense, using the coordinate systems of Fig. 3.3, means that if we 
think of both antennas transmitting a right elliptic wave, for example, the two 
waves will appear to rotate in opposite directions at a point in space at which 
they "meet." 

Cross-Polarized Antennas 

Two antennas in a transmit-receive configuration that are so polarized that 
no signal is received are said to be cross-polarized. For this situation 

_ 0 - (1 + PIP2)(1 + p1p;) 
p - - (1 + PIPt)(l + P2P;) 

from which it follows that 

Solving for q, we obtain 

1 
PI = - P2 

1- PI P2 + 1 1 
ql=--=--=--

1 + P2 P2 - 1 q2 

(3.54) 

(3.55) 

(3.56) 

We see immediately that the rotation senses of the polarization ellipses of the 
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antennas are opposite (so that if both antennas transmitted simultaneously, 
their field vectors would appear to rotate in the same direction). 

The axial ratios are, from (3.56), 

(3.57) 

Also from (3.56) 

so that 

1'1 = -1'2 + 7T 

and 

(3.58) 

Bearing in mind that Tl is measured from the x axis toward the y axis in Fig. 
3.3, and T2 is measured from the g axis toward the TJ axis in Fig. 3.3, we see 
that (3.58) means that the major axis of one polarization ellipse coincides 
with the minor axis of the other. 

Identical, Polarization-Matched Antennas 

It would seem to be quite easy to define identical antennas, but surprisingly 
there is a degree of arbitrariness involved. When placed side by side and 
oriented similarly, identical antennas are indistinguishable except by position. 
Although not overly precise, this definition is quite clear. Now we make the 
assumption that they are placed into a transmit-receive configuration by 
rotating one of them by 7T radians around a vertical axis (the y axis of Fig. 
3.3). We might also consider a rotation about a horizontal axis or the major or 
minor axis of the polarization ellipse-hence the arbitrariness mentioned­
but we will rotate first about the vertical axis. 

For identical antennas, before one is rotated into a receiving position, 

(3.59) 

where the primes are used with the parameters of the antenna to be rotated. 
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After antenna 2 is rotated 1800 about the y axis of Fig. 3.3, its new length 
components are 

(3.60) 

Changing these components to the g, T/, ~ coordinates, which are now 
appropriate for antenna 2, we have 

(3.61) 

Then the ne,w value for the polarization ratio P2 is 

(3.62) 

and thus P2 is unchanged by rotation about a vertical axis. A little thought will 
show that, in general, the major axes of the ellipses no longer coincide. 

Let the antennas be not only identical but polarization matched. Then they 
must satisfy (3.51), (3.59), and (3.62), or 

(3.63) 

and also 

(3.64) 

We conclude then that identical, polarization-matched antennas must have 

PI = P2 = real quantity ql = q2 = real quantity (3.65) . 

from which it follows that 

1'1 = 1'2 = 0, 7T - -0 1 71 - 72 - ,- 2. 7T (3.66) 

We see that the major axis of the polarization ellipse must be either vertical 
or horizontal if the antennas are to be identical (in our sense of rotation about 
a vertical axis) and matched. This does not exclude circularly polarized 
.antennas for which the concept of major axis is not meaningful. 

Antennas that are identical and cross-polarized must satisfy 

(3.67) 
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which gives 

(3.68) 

from which we find that 

AR-700 
(3.69) 

which describe linearly polarized antennas with tilt angles of 45° or 135°. 
When we rotated one of the antennas about a vertical axis, we found that 

the two antennas would be matched if their major axes were vertical. Perhaps 
then if we started with identical, side-by-side antennas and rotated one of 
them about its major axis, we would obtain polarization matching. 

Let the polarization parameters before rotation be PI' p~, ... , where the 
primes are used with the parameters of the antenna to be rotated. Then for 
identical antennas 

(3.70) 

After antenna 2 is rotated about its major axis, we recognize that the axial 
ratio and rotation sense are unchanged, that is, 

(3.71) 

Since the rotation takes place about the major axis, obviously the major axis 
does not change, but as Fig. 3.3 shows, the tilt angle in the g, T}, ? system is 
measured oppositely from that in x, y, z. Therefore, after rotation the new tilt 
angle is given by 

(3.72) 

Equations (3.7]) and (3.72) lead to 

(3.73) 

and from (3.70) 

(3.74) 
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Now, from (3.52), this is the condition for polarization matching. We 
conclude then that identical antennas (indistinguishable when placed side by 
side and similarly oriented) will be matched in polarization if one of them is 
rotated 1800 about its major polarization axis to bring it to a receive position. 

3.7. MATCH FACTOR IN OTHER FORMS 

Since the modified polarization ratio p is not always the most convenient 
parameter for an antenna, we need the equation for p in terms of other 
parameters. If we make the substitution 

1-q 
P=1+q 

in (3.49), the match factor is found in terms of q to be 

(1 + qIq2)(1 + qrq;) 
p = (1 + qIqr)(1 + q2q;) 

(2.91) 

(3.75) 

It is not surprising that p has the same form in q as in p, since the form for q in 
terms of p is the same as for p in terms of q. 

Now (3.75) is valid for any value of q, but nonetheless if we treat left 
elliptic polarizations by means of the parameter W (I q I > 1, I wi < 1), we might 
wish p in terms of w. Substituting 

into (3.49) leads to 

w* -1 
p = w* + 1 

(1 + WI w2 )(1 + wr w;) 
p = (1 + WI wr)(1 + w2 w;) 

an equation that also has the same form ~s (3.49). 

(2.138) 

(3.76) 

A mixed form in terms of q l' and w 2 or q2 and WI might also be useful. 
Replacing q2 in (3.75) by 1/ w; leads to 

(w; + qI)(W2 + qr) 
p = (1 + qIqr)(1 + w2w;) 

and interchanging subscripts in (3.77) gives 

(wr + q2)(WI + q;) 
p = (1 + q2q;)(1 + WI wr) 

(3.77) 

(3.78) 

All four forms (3.75)-(3.78) are valid for any value of q and w, but it 
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would be natural to use (3.75) for both antennas right handed, (3.76) for both 
left handed, and (3.77) or (3.78) for one left and the other right handed. 

We may find p in terms of axial ratios and tilt angles of the polarization 
ellipses, but here we must be careful about the rotation sense of the ellipses, 
since axial ratio and tilt alone are not sufficient to describe the antenna 
polarization. Consider first that both antennas are right handed. We have, 
from (2.107), if Iql<l, 

In (3.75) we write 

and p becomes 

AR= 1 + Iql 
1-lql 

1 + 21 qjq21 cos 2(7) + 72) + I qlq21
2 

P = (1 + Iq)1 2)(1 + Iq212) 

(3.79) 

(3.80) 

(3.81) 

and if Iql from (3.79) is substituted into (3.81), there results, after some 
manipulation, 

_ (AR j AR2 + 1)2 + (AR j + AR2)2 + (AR~ - l)(AR~ - 1) cos 2(71 + 72) 

p - 2(AR~ + l)(AR~ + 1) 
(3.82) 

If both antennas are left handed, I wi < 1, we find from (2.147) that 

We also have 

AR = _l_+-.!..-ll--!.vl 
1-lwl 

I I -,·?T 
W = we -

(3.83) 

(3.84 ) 

If we substitute (3.83) and (3.84), which have the same forms as (3.79) and 
(3.80), into (3.76), which has the same form as (3.75), it is obvious that (3.82) 
will result. Therefore, (3.82) holds if both antennas are right handed or if 
both are left handed. 

If antenna 1 is right handed and 2 is left handed, we substitute 

AR = 1 + Iq)l 
) 1-lqll 

q 1 = I q lie -j2T
I (a) 

1 + IW21 
(3.85) 

I I - j2n (b) AR2= 1-lw21 w2 = w2 e -



CONTOURS OF CONSTANT MATCH FACTOR 

into the mixed form (3.77) and obtain 
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_ (ARlAR2 - 1)2 + (ARI - AR2)2 + (AR~ - l)(AR~ - 1) cos 2(71 + 72) 
p - 2(AR~ + l)(AR~ + 1) 

(3.86) 

for the match factor in terms of axial ratios and tilt angles. 
If antenna 1 is left handed and 2 is right handed, we could make the 

appropriate substitutions in (3.78), and (3.86) would again result. 
In terms of axial ratios and tilt angles, the polarization match factor may be 

found from (3.82) if both antennas have the same polarization rotation sense 
and from (3.86) if they are of opposite sense. 

Finally, we note that p may be written in terms of a, b, and ¢ of (2.70) as 

1- 2(b l /a l )(b2/a2) cos (¢l + ¢2) + [(b l /a l )(b2/a2)f 
p = [1 + (b l /a 1

)2][1 + (b 2/a2)2] 

in terms of left and right circular components as 

1 + 2(Ll / R I )(L2/ R2) cos (81 + (2 ) + [(LI / R 1 )(L2/ R2)]2 
P = [1 + (Ll / R 1 )2][1 + (L2/ R2)2] 

and in terms of the common polarization ratio P (= - jp) as 

(1- P l P2 )(1- P1P;) 
p = (1 + P l Pn(l + P2P;) 

3.8. CONTOURS OF CONSTANT MATCH FACTOR 

(3.87) 

(3.88) 

(3.89) 

Examination of one of the equations for polarization match factor, say (3.75), 
leads one to suspect that, for a given value of Ql' a range of Q2 values might 
give the same polarization match factor p. We consider this point further, 
holding p constant and using 

(2.135) 

With the substitution (2.135), (3.75) may be put into the form 

2 2 Q I cos (1'1 + 1'2) Q i (1 - p) P 

Q2- (Qi+1)p-Qi Q2+ [(Qi+1)p-Qi]2 = [p-Qi/(1+Qi)]2 

(3 .90) 

Comparison to the standard form (2.154) shows (3.90) to represent a family 



128 POLARIZATION MATCHING OF ANTENNAS 

of circles on the q plane (actually the q2 plane), with center and radius 

or 

Q2c' Y2c = (Q; + ~~ _ Q; '-Yl (a) 

I 
[(I_p)p]1I2 I 

r - (b) 
- p - Qi 1(1 + Qi) 

Now, Eg. (3.90) is in the correct form (2.154) only if 

(Qi+l)p-Qi>o 

Q2 
> 1 

P 1 + Qi 

If this condition on p is not met, (3.90) may be rewritten as 

2 

(3.91) 

(3.92) 

(1- p)p 2 2 Q 1 cos (I'I + 1'2 + 7T) Q + Q 1 
Q2 - 1(1 + Qi)p - Q~I 2 [(1 + Qi)p - Qi]2 [p - Qi/(1 + Q~)f 

(3.93) 

which represents a family of circles with center and radius 

Q2c' Y2c = 1(1 + Q~~ _ Q;I ' -Yl + 1T (a) 

I 
[(I-p)p]1/2 I 

r = p _ Q~/(1 + Q~) (b) 

(3.94) 

if 

(3.95) 

These equations, (3.91) and (3.94), represent contours of constant match 
factor on the q plane representing antenna 2 in terms of given polarization 
characteristics for antenna 1, the other part of a communications system. 
Given a transmitting antenna with polarization ql' this family of circles on the 
q2 plane allows us to determine quickly the effect of varying the receiving 
antenna polarization. The words transmitting and receiving were used above 
for clarity. Of course, it makes no difference which antenna transmits and 
which receives. 
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It is tempting at this point to draw these constant p contours on the q plane, 
but the temptation should be resisted , since we used an equation, (3.75), in 
which both antennas are represented by q, which prevents our considering a 
left-handed antenna 2 if we wish to remain in the unit circle on the q2 plane. 
We therefore will go on to consider, before drawing the contours, antennas 
described by WI and w2' qI and w2' and q2 and WI' 

For antennas described by WI and W 2 we should substitute 

W = We h (3.96) 

into (3.76), but (3.96) is identical in form to (2.135) and (3.76) to (3.75). The 
result is that contours of constant p on the W 2 plane are circles with centers 
and radii given by (3.91) and (3.94) using W instead of Q. 

WI 
(a) W2c ' Y2c = (1 + W~)p - W~ , -YI 

(3.97) 
I [(l_p)pj'l2 I 

r = p _ W~/(1 + W~) (b) 

if 

W2 
> I (3.98) 

p 1 + W2 
I 

and 

WI 
, -YI + 7T (a) W 'Y -

2c' 2c - 1(1 + W~)p - w~1 
(3.99) 

I [(1-p)pj"2 I 
r = p _ W~/(l + W~) (b) 

if 

W2 
< 1 (3.100) 

p 1 + W2 
1 

Now we take the situation of antenna 1 described by qI and antenna 2 by 
w2 • We substitute (2.135) and (3.96) into (3.77) and obtain 

W~ + 2Q I W2 cos (YI + Y2) + Q~ 
p = (1 + Q~)(l + W~) (3.101) 

This equation may be put into the standard circle form 



130 POLARIZATION MATCHING OF ANTENNAS 

W 
2 _ 2 Q I cos (YI + Y2) Q ~ 
? ? W? + ? ? 

- (1+Q;)p-l - [(1+Q;)p-l]-

(l-p)p 

[p - 11(1 + Q~)r~ 

(3.102 ) 

if the denominator of the second term is positive. If the denominator is 
negative, the correct form is 

2 2 Q 1 cos (Yl + Y2 + 7r) Q ~ w - w + ----::;-----:::: 
2 1(1 + Q~)p - 11 2 [(1 + Q~)p - 1]2 

(l-p)p 

[p -1/(1 + Q~)]2 

(3.103) 

These equations represent circles on the W2 plane with centers and radii 

w - Q 1 

2c'Y2c - (1 + Q~)p - 1 , -Yl (a) 

(3.104 ) 

I [(I-p)pJI/2 I 
r= p-l/(I+Q~) (b) 

if 

1 
(3.105) 

p> 1 + Q~ 

and 

W - Qt 
20 Y2c - 1(1 + Q~)p - 11 , -Yl + 7r (a) 

I [(1 - p)p JII2 I 
(3.106) 

r= p-l/(I+Q~) (b) 

if 

1 
p < 1 + Q~ (3.107) 

Finally we take the sense of antenna 1 being described by WI and antenna 2 
by Q2' Substitution of (2.135) and (3.96) into (3.76) gives quickly 

W~ + 2Q2Wl cos (Yt + Y2) + Q~ 
p = (1 + W~)(l + Q~) (3.108) 
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an equation that is the same as (3.101) with Q 1 replaced by W1 and W2 

replaced by Q2. We may therefore use the circle equations (3.104) and 
(3.106) with the same replacements, giving 

if 

and 

if 

W1 

Q2c' )'2c = (1 + W~)p _ 1 '-)'1 (a) 

I 
[(1- p)p]1I2 I 

r= p-1/(1+W~) (b) 

1 
p> 1 + W 2 

1 

Q2c' Y2c = \(1 + :;')p _ 1\ ' -y, + 1T (a) 

I 
[(1- p)p]1I2 I 

r= p-1/(1+W~) 

1 
p < 1 + W 2 

I 

(b) 

(3.109) 

(3.110) 

(3.111) 

(3.112) 

All of the preceding equations for centers and radii of the constant p circles 
were given in terms of circles on the q2 and w2 planes. Obviously, the 
designations 1 and 2 are arbitrary, so in any equation the subscripts may be 
interchanged. Also, it clearly makes no difference which antenna transmits 
and which receives. 

We have not used any restriction that an antenna must have a particular 
rotation sense. However, to stay in the unit circle, if antenna 2 is right 
handed, we would normally use circle equations (3.91) and (3.94), or (3.109) 
and (3.111), which represents circles on the q plane, on which all polariz­
ations fall within the unit circle. 

We can combine these eight equation sets into two if we note first that 
(3.91) and (3.94) differ only by the magnitude sign in the form for Q2c and in 
the value of )'2c (and similarly for the other pairs of equations) and, second, if 
we recognize, for example, that if we use WI = 1/ Q I in (3.91), it becomes 

(1 + 1/W~)p -1/W~ (1 + W~)p - 1 
(3.113) 

which is the same equation as (3.109a). 
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Combining the equations for the constant p circles appropriately leads to 

and 

1'2c = -1'1 + 7T 

1(1 + W~)p - 11 

2 

> Q 1 

P 1 + Q~ 
1 

1 < Q~ 
p I+Q~ I+W~ 

(a) 

(b) 

(c) 

I 
[(I_p)p]1I2 I I [(I_p)p]1I2 I 

r = p _ Q ~I (1 + Q ~) = p _ 1 1(1 + W ~) (d) 

1(1 + Q~)p - 11 
(a) 

W2 1 
P > 1 ---"""7 

I+W2 - 1+ Q2 
1 1 

(b) 

1'2c = -1'1 + 7T 
W~ 1 

p < 1 + W2 = 1 + Q2 
1 1 

(c) 

_I [(I_p)p]1I2 I_I [(I_ p)p]1I21 
r - p _ W~/(1 + W~) - P _ 1/(1 + Q~) (d) 

Example 

(3.114) 

(3.115) 

As an aid in understanding these equations and the constant match factor 
curves, consider an example of antenna 1 right handed with 

Substituting in (3.114) gives 

1'2c = { 
0, 
7T, 

p >0.2 
P <0.2 

r= [(I_p)p]I12 
Ip -0.21 
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and (3.115) yields 

2 
W2c = 15p - 41 

{ 
0, p > 0.8 

l'2c = 7T, P < 0.8 

[(1-p)pr /2 

r= Ip -0.81 

Figure 3.4 shows the circles of constant p determined from these equations. 
The constant p contours are labeled in decibels, with the negative sign 
omitted on the plot. 

If we know that antenna 2 is right handed, it is only necessary to show the 
first set of circles on the q2 plane. However, it is possible that we might wish to 
select a left elliptic antenna for antenna 2, so from the second set of equations 
the constant p circles are also drawn on the w 2 plane. When considered as the 
q2 plane (antenna 2 right handed), the constant p contours are solid in 
Fig. 3.4. When considered as the w 2 plane, the constant p curves are dashed 
in Fig. 3.4. 

FIGURE 3.4. The q: (or 1\':) plane with curves of constant polarization match factor : antenna 1 
right elliptic. ql = 0.5: antenna 2. right elliptic (solid curves) and left elliptic (dashed curves). 
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A study of this example and the resulting Fig. 3.4 illustrates various points 
worth considering: 

1. The chart, Fig. 3.4, applies for only one value of Q 1 or WI' 

2. The angle 1'1 of ql or WI may change, and the chart will remain valid. 
The circles of Fig. 3.4 are drawn with centers on the line -1'1' -1'1 + 1T. Then 
for an angle 1'1 ¥= 0 the line of circle centers is simply rotated to -1'1 by 
rotating the chart. 

3. A wide range of antenna polarizations will result in the same 
polarization match, since in general one of the constant p circles spans a wide 
range of values of q2' 

4. Some of the constant p circles lie completely in the unit circle, and 
some intersect it. 

5. For those constant p circles that intersect the unit circle, we have right 
elliptic and left elliptic antennas with the same polarization match. This is 
shown in Fig. 3.4 by the intersection at the unit circle of solid (right-handed 
antenna) and dashed (left-handed antenna) constant p circles having the same 
value of p. On the unit circle itself, sense of rotation is meaningless, of course. 

6. In the example used, with antenna 1 right elliptic and Q 1 = ~, the 
greatest polarization loss (smallest p value) for any right elliptic receiving 
antenna (2) is 10 dB, and the smallest loss for any right-handed antenna is 
o dB. Greatest and smallest losses for a left-handed receiving antenna are 00 

and 0.46 dB. We see from this that the polarization match may be better 
between right and left elliptic antennas than between two right-handed 
antennas. 

7. The circles for different p values never intersect if antenna 2 is right 
handed (or left handed), but right elliptic and left elliptic curves do intersect. 
For example, if antenna 2 is represented by the point at the center of the unit 
circle (circularly polarized), the p loss is 0.97 dB for antenna 2 right handed or 
7 dB for antenna 2 left handed. 

8. The two curves of 7 which intersect at the origin have "complemen­
tary" curves (opposite rotation sense and equal polarization loss) that are 
straight lines. 

9. Curves outside the straight lines mentioned in 8 have reverse cur­
vature. 

10. The 3-dB-loss curves intersect at the unit circle bisector 90° from the 
center line of the circles. 

Special Points 

The process of constructing the constant p circles can be shortened by 
considering special ranges on the q2 or w2 plane. 

First we note that we need consider only real values of q 1 since for q 1 

having a general angle, we need only rotate the constant p curves for ql real. 



0.2 0.4 

0.6 0.8 1.0 

q2 Plane, antenna 2 right elliptic 

0.2 0.4 

0.6 0.8 1.0 

w2 Plane, antenna 2 left elliptic 

FIGURE 3.5. Constant p contours for varying Q l' 
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On the unit circle of the q2 orw2 planes, the equations for p reduce to 

1 Q I cos 'Y2 1 WI cos 'Y2 
P = 2 + 1 + Q2 = 2 + 1 + W2 

1 1 

(3.116) 

Since values of p are the same on the real axis for both the q2 and w2 planes, 
the same equation holds for both planes. 

On the real axis of either the q2 or w2 planes p values are given by 

(1±QIQ2)2 (Q2 ± WI )2 
q2 = ± Q2 

(1 + Q~)(1 + Q;) (1 + Q;)(1 + W~) , 
p= (3.117) 

(1 ± WI W2)2 (QI ± W2)2 
w2 = ±W2 

(1 + W~)(1 + W;) (1 + Q~)(1 + W;) , 

where the upper signs are used for points to the right of the q2 or w2 plane 
origin and the lower for points to the left. 

For given Q I or WI values (3.116) and (3.117) can be used to determine p 
for values of 'Y2 on the unit circle and Q2 or W2 on the real axis. Circles may 
then be drawn through points of equal p values (since the circle center is 
known to be on the real axis). Alternatively, for known Ql' (3.116) and 
(3.117) may be equated to give 'Y2 on the unit circle in terms of the equal p 
point, Q2' on the real axis. 

Contours for Varying Q 1 

Figure 3.5 shows a set of contours for p values of 0.1, 0.25, and 0.5 as Q 1 

varies from a to 1. For clarity the q2 and w2 planes are shown separately. 
Contour labels are given only for the Q 1 = 1 pair, but they are obvious for all 
QI values. 

The choice of the range of Q 1 means that antenna 1 is right elliptic, ranging 
from right circular to linear. 

We may see from the figure that for antenna 2 right handed, any value of q2 
leads to a match for which p ~ 0.5, if the transmitting antenna (1) is right 
circular. As the axial ratio of antenna 1 increases, the allowable region of q2' 
for a match p ~ 0.5, shrinks. 

For antenna 2 left handed and antenna 1 right circular, no value of w 2 gives 
a match p > 0.5. As the axial ratio of antenna 1 increases, the allowable 
region of w2 for a good polarization match increases. 

3.9. THE POINCARE SPHERE AND POLARIZATION 
MATCH FACTOR 

Since we have determined contours of constant polarization match factor p on 
the q and w planes, and since the planes are appropriate stereographic 
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projections of polarization points on the Poincare sphere, we might expect to 
find constant polarization match curves on the Poincare sphere itself, and we 
are not disappointed. 

Two antennas in a transmit-receive configuration are polarization 
matched (p = 1) if PI = p;. Thus if the points corresponding to PI and P; (or 

. pt and P2) coincide when plotted on the Poincare sphere, complete polar­
ization matching exists between the two antennas. 

As a matter of notation, let us use Pa and Pb for antennas A and B to avoid 
confusion with the Stokes parameters notation S l' S2' S3· 

The polarization match between antennas A and B is 

where 

(1 + PaPb)(l + p:p~) 
p= (1+IPaI 2 )(1+IPbI 2

) 

IE;I . 
Pa = j IE;I e

1cPa 
(a) 

IE~I . 
Pb = j IE~I e

1cPb 
(b) 

(3.118) 

(3.119) 

with all quantities measured in the x, y, z or g, T], ~ coordinate systems of 
Fig. 3.3. 

Substitution of (3.119) into (3.118) gives 

p= 

IE:12IE~12 + IE;12IE~12 - 2IE:IIE;IIE~IIE~I(cos <Pa cos <Pb - sin cPa sin cPb) 

(IE;1
2 + IE;12)(IE~12 + IE~12) 

The Stokes parameters of the waves are 

S~ = IE;1
2 + IE;1

2 

Sa = IE a l2 -IEa
/
2 

1 x )' . 

S~ = 2I E ;IIE;1 cos cPa 

S; = 2I E ;IIE;1 sin cPa 

S~ = IE~12 + IE~12 

S~ = IE~12 _IE~12 

S~ = 2IE~IIE~1 COS cPb 

S~ = 2IE~IIE~1 sin cPb 

and if we use these relationships in (3 .120), the result is 

(3.120) 

(3.121) 

(3.122) 
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Now if the Stokes parameters corresponding to polarizations Po and P,) arc 

then the Stokes parameters corresponding to p ~ are 

If the two points corresponding to P a and P ~ with the Stokes parameters 
S7, S;, S~ and S~, - S~, S~ are plotted on the Poincare sphere and two rays 
drawn from the origin to these points, the angle between the rays is given by 

(3 .123 ) 

Then 

(3.124 ) 

Comparing this equation to (3.122) shows that 

(3.125) 

We see from this equation that if we consider two antennas arranged to 
transmit and receive, plot the polarization point (modified polarization ratio) 
of one antenna and the conjugate polarization point of the other on the 
Poincare sphere using (2.196) and (2.200) to determine the Stokes parame­
ters for the plot, then the polarization match factor p is the square of the 
cosine of half the angle measured at the sphere center defined by the points. 

It is evident that we could draw on the Poincare sphere contours of 
constant-polarization match factor for a two-antenna system. These contours 
are circles with center at the plotted polarization point of one of the antennas. 

3.10. MATCH FACTOR USING ONE COORDINATE SYSTEM 

Throughout this chapter we have consistently defined the polarization ratio of 
an antenna in terms of a right-handed coordinate system with the z axis 
pointing away from the antenna. When two antennas in a transmit-receive 
system were considered, as in Fig. 3.3, two right-handed coordinate systems, 
one for each antenna, were used, with the z and ~ axes pointing at each other. 
We defined polarization ratios using the two coordinate systems as 
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. Ey 
PI =] E 

x 

• ETJ 

P2=] E 
g 

and obtained a polarization match factor 

(1 + PIP2)(1 + pTp;) 
p = (1 + PIPt)(1 + PzP;) 

(3.126) 

(3.49) 

Now, some workers prefer to use only one coordinate system, the x, y, z 
system of Fig. 3.3, and define both antenna polarizations in this one system. 
The change is relatively simple. Let P; be the modified polarization ratio of 
antenna 2 defined in the x, y, z coordinate system of Fig. 3.3. Then 

Ey 
p;=j E 

x 

But, from Fig. 3.3, 

and 

E E , . y . TJ 
P2 = ] E = - ] E = - P2 

x g 

Substitution into the equation for p gives 

(1 - PIP;)(1 - p:rp~*) 

p = (1 + PIPr)(1 + p~~* ) 

(3.127) 

(3.128) 

(3.129) 

We may note from this that for matched antennas, PI = - p;* , and for 
cross-polarized antennas, PI = 1 /p~. 

Similarly, we find, using the common polarization ratio P in (3.89), that if 
P; is the polarization ratio of antenna 2 defined in the same x, y, z coordinate 
system used for antenna 1, the polarization match factor becomes 

(1 + P1P;)(1 + PTP;* ) 
p = (1 + PI Pr)(1 + P;P;*) 

(3.130) 

3.11. POLARIZATION MATCH FACTOR: MISALIGNED ANTENNAS 

In Section 3.5 and subsequent sections we considered two antennas in a 
transmit-receive configuration with aligned axes (see Fig. 3.3). Orientation 
of the antennas was arbitrary, but the fields and effective length components 
were known in the particular coordinate systems. In the general case the 
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radiated field components and effective length componel\ts will be known in 
some appropriate coordinate system for the antennas, and these coordinate 
systems will not be aligned. We must then transform antenna locations and 
field components to other coordinate systems before determining the polariz­
ation match factor. 

Figure 3.6 shows the coordinate systems we will consider. The system 
without subscripts is a ground or reference system. The a system is approp­
riate to the transmitting antenna, with the radiated fields known in that 
system. The b system is rotated so that its z axis points toward the receiving 
antenna. Likewise, the c system is the natural one for the receiving antenna, 
the one in which its radiated field (or equivalently its effective length h) is 
known. The d system is rotated so that its z axis points to the transmitting 
antenna. 

Economy and conciseness of notation are essential to clarity when the 
number of coordinate systems is considered. We will use E to represent the 
field of the transmitting antenna and h the effective length of the receiving 
antenna. A letter superscript refers to the coordinate system in which a 
quantity is measured. Vector fields will be represented by the usual boldface 
letters and will be treated in this section as column matrices; thus 

(X t , Yt' Zt) 

Transmitter 

Y 

- - - _zb 

x 

(0,0, 0) "---------z 
Ground/ reference 

ZC 

FIGURE 3.6. Coordinate systems for misaligned antennas. 

(3.131) 

(Xr, Y r, zr) 

Receiver 
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In addition, we define a column matrix to represent the coordinates of a 
point; thus 

x = col (x, y, z) (3.132) 

. A 3 x 3 matrix will be represented by a square bracket; thus 

[

AXX Axy 
[A] = Ayx Ayy 

Azx A zy 

(3.133) 

The transformation, by rotations, of a point from coordinate system 1 to 
system 2, having the same origin, is carried out by the Euler angle matrix, 

[E]= 

[

COS {3 cos 'Y cos {3 sin 'Y - sin {3 ] 
sin a sin {3 cos 'Y - cos a sin 'Y sin a sin {3 sin 'Y + cos a cos 'Y sin a cos {3 

cos a sin {3 cos 'Y + sin a sin 'Y cos a sin {3 sin'}' - sin a cos 'Y cos a cos {3 

(3 .134) 

The angles a, {3, 'Yare measured from an axis in the old system (1) toward the 
corresponding axis in the new (2). The rotations are taken in order: 

1. 'Y around the z axis in the direction x ~ y. 

2. {3 around the y axis in the direction z ~ x. 
3. a around the x axis in the direction y ~ z. 

Not all authors define the Euler angle transformations in the same manner 
[3]. 

The location of point X2 in the new system is related to its location X 1 in 
the old system by 

(3.135) 

where 

X = col (x, y, z) (3.136) 

Transformation of vector functions is carried out by the same matrix; thus 

(3.137) 

where 
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(3.138) 

The transformation from system 2 to 1 is carried out with the inverse 
matrix 

(3.139) 

But the inverse of the Euler angle matrix is its transpose [E]T, so that 

(3.140) 

We will use these Euler angle matrices for the coordinate systems of Fig. 
3.6. 

[A] from the ground/reference system (translated to xl' Yl' z/) to system 
a. 

[ B] from the ground / reference system to system b. 
[ C] from the ground / reference system to system c. 
[ D] from the ground / reference system to system d. 

Note that in many cases the geometry is simpler than this general case. The 
transmitter, for example, may also be the reference system, and za may 
already point to the receiver, making two transformations unnecessary. 

Let us now consider the polarization matching problem for the two 
antennas. More generally, we will obtain the received power at the receiving 
antenna and separate the effects of polarization mismatch from the antenna 
gains. Let us assume that we know the orientations of the transmitting and 
receiving antenna systems with respect to the reference system, that is, we 
know the matrices [A] and [C]. Further, we know the far fields of the 
transmitting antenna in its natural coordinate system, E~ and E~. We also 
know the effective length components of the receiving antenna in its natural 
coordinate system, h~ and h~). We may proceed using one of two methods, 
both of which will be given here, step by step. 

Method 1 

STEP 1. Translate the reference system to the transmitter position. Obtain 
the receiver position X; in this translated system. 

(3.141) 

STEP 2. Use the Euler angle matrix [A] to find the receiver position in the 
natural system (system a) of the transmitter: 
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(3.142) 

Determine the colatitude and azimuth angles of the receiver in system a. 

STEP 3. From the known properties of the transmitter, find E~ and E; at the 
receiver. The absolute values of E~ and E; must be found if the receiver 
'power is needed. This requires a knowledge of transmitted power, and the 
distance from transmitter to receiver (easily found from IXr - X(I). If relative 
values are sufficient, the transmitter-receiver distance and the transmitter 
power may be neglected. In fact, only the effective length h(O, 4» of the 
transmitting antenna is needed. We will continue to use E, however, since it is 
more general and so that we may distinguish it easily from the h value used for 
the receiving antenna. 

STEP 4. Convert E: and E; at the receiver to rectangular form. 

(3.143) 

(c) 

where 0 and 4> are the known values at the receiver found in step 2. The 
subscripts refer to axes in the a system, specifically xu, ya, za. 

STEP 5. Transform the field components to the receiving antenna system, 
going to the reference system as an intermediate step and then to the 
receiving antenna system (system c) using the known matrix [C]. 

E = [A]TEa 

E C = [C]E = [C][A]TEa 

(3.144 ) 

(3.145) 

STEP 6. If the absolute value of E C is known, find the receiver open-circuit 
voltage using the known receiving antenna value of h in system c: 

(3.146) 

The received power is found easily if antenna and load impedances are 
known. 

If the power is not needed, or if only a relative value of E C has been 
obtained, find the polarization match factor from 

IEC . hCI2 

P = IEcI2 1hcI2 (3.147) 
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Method 2 

It may have been noted that method 1 did not utilize the polarization ratios of 
the antennas, nor did it use the coordinate systems band d. An alternate 
method to obtain the polarization match factor between the antennas does 
lead naturally to the use of the polarization ratios. 

STEPS 1-4. Same as steps 1-4 of method 1. 

STEP 5. Create two new coordinate systems, band d of Fig. 3.6, and obtain 
the Euler angle matrices [B] and [D]. The z axes are to be antiparallel and so 
are the x axes. The y axes are parallel. These systems will then correspond to 
those of Fig. 3.3, and equations developed using that figure will be valid. The 
requirements on systems band d are not yet sufficient to yield unique 
coordinates. It is convenient to further require that the axes x b and x d lie in 
the xz plane of the reference system. In the Euler angle matrices this leads to 
the requirement that l' = O. The Euler angle matrices then become 

[ cos f3b 0 -sin f3b ] 

[B] = sin a b sin f3b cos a b sin a b cos f3b 

cos ab sin f3b -sin a b cos a b cos f3b 

(3.148) 

[ cos f3d 0 -sin f3d ] 

[D] = sin ad sin f3d cos ad sin ad COS f3d 

COS ad sin f3d -sin ad COS ad COS f3d 

(3.149) 

Consider again the reference system translated to the transmitter position 
so that the receiver position in the translated system is 

(3.141) 

The receiver position in system b is then 

x~ = [B]X; (3.150) 

or 

(3.151 ) 

But in system b, the x and y coordinates, x~ and y~ , of the receiver are zero. 
Then 
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(a) 
(3.152) 

These two equations may be solved to give CXb and {3b in terms of the known 
quantities x;, y;, and z;. The solutions are 

x' 
tan {3 =--.!.. 

b Z' 
r 

The matrix [B] is thus completely specified. 

(a) 

(3.153) 

(b) 

To find the [D] matrix, we proceed in the manner that led to the [B] 
matrix, by first translating the reference system to the position of the 
receiving antenna. The location of the transmitter in this translated system is 

(3.154) 

and the transmitter in system d is at 

X~ = [D]X'; (3.155) 

The x~ and y;1 coordinates are zero, which leads to the equations 

(3.156) 

with solutions 

x" 
tan {3d = --+, (a) 

Zt 
(3.157) 

STEP 6. Transform the field components obtained in step 4 to the b system 
using the reference system as an intermediate step: 

(3.158) 

It is to be noted that Eb will not have a Zb component but only transverse 
components . 
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STEP 7. Use the Euler angle matrix [ C] to find the transmitter position in the 
natural system (system c) of the receiving antenna: 

x;' = [C]X'; (3.159) 

Determine the colatitude and azimuth angles of the transmitter in system c. 

STEP 8. From knowledge of the receiver effective length he (80 ¢c) in its 
natural coordinate system, find the effective length in the direction of the 
transmitter. 

STEP 9. Transform the effective length to system d using the reference 
system as an intermediate step: 

(3.160) 

Note that in system d, hd will have only transverse components. 

STEP 10. Define polarization ratios Pt and Pr (or modified polarization ratios 
Pt and Pr) for the transmitting and receiving antennas 

(3.161) 

The subscripts refer to axes in the proper coordinate system. Thus in defining 
P

t
, the components are those along the yb and x b axes, while in defining P , 

d d r 
the components are along the y and x axes. 

STEP 11. Find the polarization match factor from either 

or 

(1 - PtPr)(l - P:~ P;) 
p = (1 + PtP~)(l + PrP;) 

(1 + PtPr)(l + p~p:n 
p = (1 + PtP~)(l + Prpn 

(3.162) 

(3.163) 

It is obvious that the second method laid out here is more cumbersome 
than the first. It has the advantage, however, that the polarization ratios are 
obtained, and the aids developed for understanding polarization problems, 
such as the Poincare sphere and the complex plane charts, can be readily 
applied. 

REFERENCES 

1. G. Sinclair, "The Transmission and Reception of Elliptically Polarized Waves," Proc. IRE, 
Vol. 38, No.2, pp. 148-151, February 1950. 



PROBLEMS 147 

2. V. H. Rumsey, "Transmission between Elliptically Polarized Antennas," Proc. IRE, Vol. 39, 
No.5, pp. 535-540, May 1951. 

3. H. Goldstein, Classical Mechanics, Addison-Wesley, Reading, MA, 1950. 

PROBLEMS 

3.1. In a reference coordinate system located at the ground (see Fig. 3.6) a 
transmitting antenna is located at 500, 1000, 2000 and a receiving 
antenna is located at 0, 500, 5000. Develop a coordinate system at the 
transmitting antenna with its z axis pointing at the receiving antenna 
and its x axis parallel to the xz plane of the reference system. Find the 
Euler angle matrix of this system. 

3.2. Two short dipoles are used as transmitter and receiver in a communic­
ations link. The first dipole lies along the y axis of the reference 
coordinate system of Fig. 3.6. The xz plane of the reference system is 
parallel to the ground. The z axis of the reference system points to 
the east. The second dipole is located at 400, 400, 2000. It leans toward 
the northeast and makes an angle of 750 with the ground. Find the 
polarization match factor between the antennas. 

3.3. Show that the polarization match factor between two antennas can be 
written as 

where hI and h2 are the effective lengths of the two antennas measured 
in the same coordinate system. 

3.4. Show that, for two antennas in a communication link, if the axial ratio 
of one antenna is much greater than that of the other, it is of little 
concern that the antennas have the same or opposite rotation sense. 

3.5. Verify the statement following Eq. (3.62) that if two identical antennas 
are first placed side by side and then moved into a transmit-receive 
configuration by rotating one of them 1800 around a vertical axis, the 
major axes of their polarization ellipses no longer coincide. 



4 
POLARIZATION 

CHARACTERISTICS OF 
SOME ANTENNAS 

4.1. INTRODUCTION 

In this chapter we shall obtain the polarization parameters of several common 
antennas. We shall alsb obtain polarization match factors when these 
antennas are paired with standard antennas in a transmit-receive configur­
ation. In this way we can compare the off-axis performance of the antennas 
of interest to their polarization performance on-axis (or in some design 
direction) . 

In the previous chapters we defined the polarization parameters in the 
context of a wave traveling in the z direction as in Fig. 4.1(a). Specifically, we 
defined the polarization ratio P as 

(2.73) 

The coordinates of Fig. 4.1(a) are common in a discussion of polarization [1]. 
The value of P clearly depends on the coordinates used. For example, if we 
use the ratio P = EylEx for the rotated system of Fig. 4.1(b), it will not be the 
same as (2.73). A somewhat more general definition of the polarization ratio 
IS 

P = E vertical 

E horizontal 

with unit vectors chosen so that 

Uhorizontal X Uvertical = Upropagation direction 

148 

(4.1) 

(4.2) 
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(d) 

z" 

x 
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(b) 

To antenna 1 

FIGURE 4.1. Coordinate systems for defining P. 
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z' 

z'" 

(e) 

Note that the first coordinate system of Fig. 4.1 satisfies the requirement (4.2) 
if x is taken as the "horizontal" component and y the "vertical," but the 
coordinates of Fig. 4.1(b) do not satisfy (4.2) if y is treated as horizontal. 

Near the earth's surface we may define horizontal somewhat loosely as 
parallel to the surface. More precisely, if a line is drawn from the coordinate 
origin to the earth's center and if a tangent plane is drawn at the intersection 
of this line and the earth's surface, then the horizontal axis of the coordinate 
system is parallel to the tangent plane. The direction of wave propagation 
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mayor may not be parallel to this plane, but in either case, vertical is defined 
as perpendicular to the horizontal axis and to the direction of propagation. 

At points far from the earth the coordinate system for defining the 
polarization ratio is essentially arbitrary. 

The electric field radiated by an antenna is commonly defined by a 
spherical coordinate system as in Fig. 4.1(c). The wave, having only Eo and EcfJ 
components (in the far field), travels in the radial direction. If the xy plane is 
parallel to the earth's surface, then EcfJ is the horizontal component of the 
wave (it is always parallel to the xy plane and hence to the earth's surface), 
and - Eo is the vertical component. [To establish this, either lay the 
coordinates of Fig. 4.1(a) over those of Fig. 4.1( c) with the z axis coincident 
with r or take the cross product ucfJ x (-uo).] The appropriate definition of 
the polarization ratio is then 

-E p= __ o 

EcfJ 
(4 .3) 

Some difficulty arises if we establish a coordinate system whose xy plane is 
not parallel to the earth's surface. Neither Eo nor 'EcfJ is in general horizontal 
(parallel to the earth's surface), and we cannot define P in terms of vertical 
and horizontal components. In this text we will therefore use coordinate 
systems, if possible, with the z axis perpendicular to the earth's surface. If 
that is inappropriate, we will continue to use (4.3) to define P and consider 
horizontal to mean parallel to the xy plane. 

4.2. TEST ANTENNAS FOR DETERMINING EFFECT 
OF POLARIZATION 

The purpose of obtaining polarization parameters of an antenna is to find the 
polarization match factor between that antenna used, for example, as a 
transmitter and some other antenna used as a receiver. What antenna should 
we use as a receiver, and how should it be oriented? It is reasonable that if the 
antenna being examined is intended to produce a circularly polarized wave, 
for example, we should see how faithfully it does so by using a circularly 
polarized receiving antenna. Since most antennas are meant to produce either 
linear or circular polarizations (and we will consider only these in this 
chapter), we will use a linearly or circularly polarized antenna, as appro­
priate, to receive the wave. 

Now we redefined the polarization ratio in Section 4.1, and we must 
determine the effect on the equations for the polarization match factor 
developed in Chapter 3. To do this, consider the coordinate systems of Fig. 
4.1(c). Antenna'1 is the transmitter and antenna 2 the receiver. The 
rectangular coordinate system at antenna 2 is translated from antenna 1. The 
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polarization match factor developed in Chapter 3 is 

lEi ·h1 2 

P = IEil21hl2 (3.37) 

where Ei is the field at the receiving antenna caused by the transmitter and h is 
. the effective length of the receiving antenna. Both Ei and h are measured in 
the same coordinate system. Let us arbitrarily choose to do so in the receiver 
system of Fig. 4.1(c). Then 

From Fig. 4.1(c) it may be seen that 

E~ = E~, E~=-E~, 
and therefore 

Now, it is clear that for the transmitting antenna (1) 

P = -E~ 
I Ei 

cb 

( 4.4) 

(4.5) 

(4.6) 

and if we think for a moment of antenna 2 as transmitting a wave E toward 1, 
its field would be proportional to its effective length. Then 

- Eo' ho' P =--=--
2 Ecb , hcb , 

If these substitutions are made 'above, 

Ei . h = E~hcb,(PIP2 - 1) (a) 

IEi l2 = IE~·I\l + P1Pf) (b) 

Ihl 2 = I hcb·12(1 + P2P~) (c) 

and substitution into (3.37) gives for the polarization match factor 

(1 - P1P2)(1 - pr P~) 
p = (1 + P1Pr)(1 + P2P;) 

(4.7) 

(4.8) 

(4.9) 

This equation is identical to (3.89), which we developed using the definition 
(2.73) for polarization ratio. We may therefore use (3.89) or any equation for 
p involving polarization parameters p, q, W, ... , developed in Chapter 3. 
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It may not always be convenient to define P2 in the translated coordinate 
system of Fig. 4.1(c). If we have, for example, two identical antennas pointing 
at each other, a reversed coordinate system would be appropriate for one of 
them. Two such systems are shown in Fig. 4.1(d) and (e). If P2 is defined in 
the manner shown, (4.9) remains valid. While we will define P2 in one of the 
coordinate systems of Fig. 4.1(c), (d), or (e), it is nonetheless convenient to 
express P2 in terms of e and cP, the direction of the receiving antenna from the 
transmitter. This will be clearer as we discuss the polarization of the ,receiving 
antenna necessary to give a polarization match with the transmitter. 

In order to select the receiving antenna and orient it correctly, we start by 
recognizing that a dipole antenna produces a wave that is everywhere linearly 
polarized. If we use it as a transmitter, then we should use another linearly 
polarized antenna (perhaps another dipole) as a receiver. If the receiver is 
correctly oriented, there is no polarization mismatch in any direction from the 
tran:)mitter. Figure 4.2 shows the correct orientation for the receiving antenna 
if the antenna undergoing examination is a z-directed dipole. The receiving 
dipole must lie in the plane containing the transmitting dipole, and the line 
from transmitter to receiver must be perpendicular to the receiving dipole. 
We anticipate the results of Section 4.3 and note that the z-directed 
transmitter has a polarization ratio 

p = 00 
z ( 4.24) 

except at e = 0 where the field is zero. From Fig. 4.2 it is clear that on a line 
perpendicular to the receiving dipole hc/J' = 0 and the receiver has a polar­
ization ratio 

p = 00 
r ( 4.10) 

z' 

z 

J-----y' 

x 

Transmitter 

FIGURE 4.2. Orientation of receiving dipole for testing z-directed transmitting dipo.1e antenna. 
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Substitution in (4 .9) shows that the polarization matching requirement is met 
for these two antennas. 

Let us now suppose that the transmitting antenna is a dipole lying on the x 
axis. Again we anticipate the results of Section 4.3 and note that the 
polarization ratio in the direction (), cjJ is 

Px = cos () cot <I> ( 4.22) 

For polarization matching the receiving antenna should be a dipole lying in a 
plane that contains the x axis, and a perpendicular from the receiving antenna 
should point to the transmitter. Since we know that these antennas will be 
polarization matched, then the polarization ratio of the receiving antenna 
must be 

Pr = - P; = -cos () cot cjJ (4.11 ) 

An earlier statement may now be clearer. In this expression, Pr is defined as 
-h()'/hc/J" using the translated coordinate systerri of Fig. 4.1(c) [or the 
translated and reversed systems of Fig. 4.1(d) or (e)]. Nonetheless, it is 
convenient to give Pr not in terms of the angles ()', cjJ' of Fig. 4.1( c) but in 
terms of the direction (), cjJ of the receiving antenna from the transmitting 
antenna. 

In Section 4.3 we will find the polarization ratio of a y-directed dipole to be 

Py = -cos () tan cjJ (4.23) 

For test purposes we will use a dipole receiver with polarization ratio 

P = - P* = cos () tan A.. r y 'V ( 4.12) 

Now suppose that our transmitting antenna is intended to produce a wave 
with polarization characteristics similar to one of these X-, y-, or z-oriented 
dipoles. The open waveguide antenna of Section 4.8 is an example, with a 
polarization similar to that of the y-oriented dipole. For such an antenna we 
will continue to use as a test (receiving) antenna a dipole with polarization 
ratio given by (4.12), even though there will be a polarization mismatch in 
some directions. The antenna is intended to produce a linearly polarized 
wave, and it is appropriate to examine how well it does so. We are not 
measuring the polarization of the antenna, although we could certainly do so; 
rather we are comparing its polarization to a standard, and the dipole is the 
standard. 

It should be noted that the receiving antenna changes only in orientation as 
it is moved from one point to another. The change in polarization ratio is 
caused by this change in orientation. 

Right and left circularly polarized antennas have polarization ratios of - j 
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and + j, respectively. If we have an antenna intended to produce a right 
circular wave, whether it does so in all directions or not, we will test it by 
obtaining its polarization match factor with a receiving antenna having 

(4.13) 

Similarly , to test a left circular antenna, we wiII use a receiver with 

(4.14) 

In this chapter we will have occasion to consider relative radiation intensity 

and polarization match factor 

pee, ¢) 

We will refer to a radiation intensity pattern and to the radiation intensity 
beamwidth as the angle between the two directions in which the radiation 
intensity drops to one-half (-3 dB) of its maximum value. 

In the same way the polarization bemnwidth is the angle between two 
directions for which p is one-half. 

If both radiation intensity and polarization effects are used in determining 
the 3-dB points for an antenna, we will use overall beamwidth as the angle 
between two directions for which received power in an appropriate receiving 
antenna drops to one-half the possible received power. 

4.3. THE SHORT DIPOLE 

We will obtain the far fields produced by short dipoles oriented along the 
coordinate axes. The fields of a dipole with any orientation may then be 
written as the sum of the fields produced by these. 

The magnetic vector potential of a short dipole directed along one of the 
coordinate axes is given by (1.31) and similar forms, 

A = /-LIt e -jkr 
x.)'.z 47Tr ( 4.15) 

where I is the value of the current at all points in the dipole length t. A more 
realistic model for a short antenna is a center-fed dipole having a triangular 
current distribution 'with maximum current 10 at the center and zero current at 
the ends. The vector potential for this antenna is (see problem 1.5) 
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A = J.LIa e e -jkr 
x.y.z 811"r ( 4.16) 

There is no essential difference between these equations, and we will 
continue to use (4.15). 

We can find the fields of the dipoles by the transformations 

A r = A x sin () cos cp + A y sin () sin cp + A z cos () 

A 0 = A x cos () cos cp + A y cos () sin cp - A z sin () 

A cP = - A x sin 4> + A y cos 4> 

and the far-field equations of (1.58), repeated here for convenience, 

Fields 

The fields that result from these equations are: 

x-DIRECTED DIPOLE 

Er =0 (a) 

jWJ.LIe - jkr ( 
Eo=- 411"r cos()coscpe b) 

E 
- jWJ.LIe . A- -jkr 

cP - -4-- SIn '¥ e 
11"r 

y-DIRECTED DIPOLE 

Er=O 

E 
jWJ.LIe . -jkr 

o = - -4-- cos () SIn cpe 
11"r 

E 
jWJ.LIe A- -jkr 

= - -- cos ,¥e 
cP 411"r 

z-DIRECTED DIPOLE 

Er =0 

E jWJ.LIe. £j -jkr 
o = 411"r SIn ue 

E =0 cP 

(a) 

(b) 

(c) 

(c) 

(a) 

(b) 

(c) 

( 4.17) 

( 4.18) 

( 4.19) 

( 4.20) 

( 4.21) 
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Polarization Ratios 

x-DIRECTED DIPOLE 

-E 
p.\. = T = cos e cot <p 

cP 

y-DIRECTED DIPOLE 

Py = -cos e tan <p 

z-DIRECTED DIPOLE 

p = 00 
z 

Polarization Match Factors 

( 4.22) 

( 4.23) 

( 4.24) 

This is essentially trivial since we have already postulated that the dipole in 
question is to be compared to a correctly oriented receiving antenna, which is 
also a dipole with 

( 4.25) 

Nevertheless, let us see the process for the x-directed dipole. We substitute 

p x = cos e cot <p ( 4.22) 

and 

Pr = -cos e cot <p (4.11) 

into the match factor equation 

(1- P .P )(1- p*p*) .\ r .\ r 
( 4.26) 

and immediately obtain p = 1. We note that of course the test antenna does 
not receive the same power at all points, but the variation is due to the dipole 
directive gain, not to its polarization properties. 

Received Power 

The received power density is quickly found from the fields to be: 

x-DIRECTED DIPOLE 

1 /i 1 12 2 1 /i (W/L1t)
2 

Sx = 2 -V -,;. (Eo + IEcf) 1 ) = 2 -V -,;. 41Tr (1- sin
2 e cos2 <p) (4.27) 



CROSSED DIPOLES (TURNSTILE ANTENNA) 157 

y-DIRECTED DIPOLE 

1 fc (Wf.Llt)
2 

• 2 • 2 S = - Y:-: -- (1 - SIll e SIn cJ» y 2 f.L 47Tr ( 4.28) 

z-DIRECTED DIPOLE 

S 1 fc (Wf.Llt)2 . 2 
= - Y:-: -- SIn e 

z 2 f.L 47Tr 
( 4.29) 

4.4. CROSSED DIPOLES (TURNSTILE ANTENNA) 

An antenna used to produce a circularly polarized wave is shown in Fig. 4.3. 
If the vertical (y-directed) and horizontal (x-directed) dipoles are identical 
and are fed with currents having the same amplitudes and ! 7T phase 
difference, the radiated wave is circularly polarized on the z axis. 

Let us take the feed current or voltage to the x-directed dipole as a 
reference, and let the feed to the y dipole lead it by ! 7T. The resulting fields 
are the sum of (4.19) and (4.20) multiplied by j. The result is 

jWf.Llt ( . ) -jkr () Eo = - -4-- cos e cos cJ> + j cos e SIn cJ> e a 
7Tr 

jWf.Llt ( . ) -jkr E 4> = -4-- SIn cJ> - j COS cJ> e 
7Tr 

( 4.30) 

(b) 

The polarization ratio is 

cos e cos cJ> + j cos e sin cJ> . . 
PI = . ~ . ~ = ] cos e 

SIn 'f' - ] COS 'f' 
(4.31) 

On the z axis, e = 0 and P = jl, which corresponds to a left circular wave 
propagating in the z direction. Had the y dipole feed lagged in phase by! 7T, 

the wave would have been right circular along the z axis. 
In Section 4.2 we saw that it is appropriate to examine the polarization loss 

as a function of propagation direction by allowing the antenna to radiate 

y 

z 

FIGURE 4.3. Crossed dipoles or turnstile antenna. 
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toward a left circular receiving antenna with Pr = + j. Then for any angle 8 the 
polarization match factor for this antenna pair is 

(1 - PtPr)(1 - P~ P;) (1 + cos 8)2 1 cos 8 
p(8, </J) = (1 + PtP~)(1 + PrP;) = 2(1 + cos 2 8) = 2 + 1 + cos2 8 (4.32) 

We note from (4.32) that the power received drops to one-half its maximum 
value at 8 = ~ 7T. 

The antenna gain, neglecting polarization effects, is proportional to 

= 1 + cos 2 8 

and the gain relative to the maximum gain (in the direction 8 = 0) is 

Gr=!(1+cos 2 8) (4.33 ) 

Note that the half-power angle for polarization is 8 = ! 7T, and the half-power 
beamwidth for polarization is 7T. The half-power beamwidth, neglecting 
polarization, is also 7T, from (4.33). When p and Gr are combined to 
determine the actual power received by a circularly polarized antenna, we 
obtain 

GrP = ~(1 + cos 8)2 (4.34) 

Setting GrP to ! gives 

Half-power beamwidth = 283dI3 = 131 0 

A note of caution is in order. The polarization ratio for the crossed dipoles 
was found to be 

PI = j cos 8 (4.31) 

In the xz plane, for large () (measured from the z axis), the electric field is 
primarily y directed, whereas in the yz plane, for large 8, it is primarily x 
directed. The reader incautiously thinking of y as the "vertical" axis and x as 
"horizontal" in Fig. 4.3, will be concerned that the polarization ratio is the 
same in both planes. It was pointed out in Section 4.1, and is repeated here, 
that the xy plane must be treated as the horizontal plane in defining 
polarization ratio in terms of Eo and E"., even though it need not be parallel to 
the earth. In that context, both the x and y axes in Fig. 4.3 are horizontal, and 
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it is reasonable that the polarization ratio has the same form in the two cases 
described above. 

4.5. CROSSED DIPOLES WITH GROUND PLANE 

The radiation intensity pattern of the crossed dipoles can be sharpened by 
placing the dipoles in front of an infinite conducting plane, as in Fig. 4.4 . By 
image theory the fields in front of the plane remain the same if the screen is 
removed and image dipoles, fed by currents differing in phase from the real 
dipoles by 7T radians, are placed at a distance 2a from the real dipoles. 

From the pattern multiplication principle of array theory the far-zone field 
of a uniform array of identical elements is the product of the field of a single 
element and the array factor. The array factor is a function of geometry and 
the excitation phases of the elements and is essentially the pattern of an array 
of isotropic radiators located at the real antennas [2]. The array factor of two 

FIGURE 4.4. Crossed dipoles near infinite conducting plane. 
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elements on the z axis separated by distance d is [2] 

AF = 2 cos [ 4 (kd cos 8 + (3)] ( 4.35) 

where f3 is the phase of the excitation of the element at the greater z value 
compared to that of the element at the lesser value of z. 

If we let the dipoles be a quarter wavelength from the plane, and note that 
f3 = 7T and d = 2a = 4 A, the array factor for the crossed dipoles in front of the 
conducting screen becomes 

AF = 2 cos [ 4 7T( cos 8 + 1)] ( 4.36) 

Both Eo and EcP of (4.30) are multiplied by this array factor to give the new 
fields, and since both are altered by the same factor, it is clear that Pp as given 
by (4.31), and p, as given by (4.32), are unchanged. On the other hand, the 
radiation intensity is multiplied by the square of the array factor, and the 
relative gain becomes 

Gr = ! (1 + cos2 8) cos2 [! 7T(COS 8 + 1)] ( 4.37) 

The product of Grand p is now 

( 4.38) 

and if this is set equal to!, we find for the half-power beamwidth, considering 
both radiation intensity and polarization match, that 

Beamwidth = 283dB = 98.40 

It should be noted that the value of p, the polarization match factor, is 
0.854 at the overall 3-dB angle for the crossed dipoles without a screen and 
0.958 for the crossed dipoles with a screen. Use of the screen produced a 
narrower beam and one that is still almost circularly polarized at the beam 
edge. 

The array principle used here can obviously be extended. The array factor 
has no polarization properties, since it is the pattern of an array of isotropic 
radiators. By the pattern multiplication principle, both Eo and EcP produced 
by one element are multiplied by the same factor. Then the polarization ratio 
of an array of identical elements whose fields are not altered by the presence 
of other elements in the array is the same as that of one of the elements. This 
may be advantageous in some applications since the radiation intensity 
pattern can be primarily controlled by the array geometry, whereas the 
polarization of the radiated wave is completely established by the choice of 
array element. 
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4.6. THE LOOP ANTENNA 

The far electric field of a small circular loop antenna with uniform in-phase 
current lying in the xy plane as shown in Fig. 4.5 is [2] 

(a) 
(4 .39) 

(b) 

It is obvious that the field is everywhere linearly polarized and horizontal. 
as discussed in Section 4.1. We may then use either another circular loop 
antenna or a horizontal dipole to receive a field radiated by the transmitting 
loop without polarization loss. The receiving loop is oriented so that the 
radial line from the transmitting loop center is in the receiving loop plane. 
This will keep the receiving loop gain constant as it is moved from one 
location to another. A horizontal dipole receiving antenna must be tangent to 
a circle drawn with the z axis as center. With either receiving antenna, p = 1. 
We now have two additional test antennas to use with an antenna intended to 
produce a field linearly polarized in a horizontal direction. 

The loop may be considered small, and (4.39) is valid, if a.::g A.. If that is 
not the case, more general equations for the loop fields are [1, p. 161] 

(a) 
( 4.40) 

where 1) is the Bessel function of the first kind and first order. For loops with 

x 

FIGURE 4.5. Circul:lr loop antenna and test antennas. 
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circumference ~ It or greater, phase shifters must be inserted at intervals 
around the loop to maintain a uniform in-phase current in the loop [1]. 

It should be noted that the radiated field of the large loop is still linearly 
polarized in the azimuth direction. 

4.7. LOOP AND DIPOLE 

We saw in the previous section that the field of a small loop is azimuthal and 
varies as sin 8. In Section 4.3 we noted that the field of a z-directed short 
dipole is directed wholly in the 8 direction and also varies as sin 8. It is obvious 
then that a combination of the two antennas with proper current amplitudes 
and phases can produce a wave that is everywhere circular. Figure 4.6 shows 
such a combination. 

From a comparison of the Eo field of the short dipole and the Eq) field of a 
small loop, 

jWfL1d e sin 8 -jkr 
E = e (a) 

o 47Tr 
(4.41) 

WfL ka
2 
I L sin 8 - jkr 

E.J. = e (b) 
'f' 4r 

it is obvious that if the wave is to be, for example, right circular, so that 

then we must require that 

( 4.42) 

Reversing either current will give a left circular wave. 

z 

I~{ 
2 

~------~-----y 

x FIGURE 4.6. Loop and dipole. 
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The use of the loop and dipole antenna with a circularly polarized receiving 
antenna, of the correct sense, obviously gives a polarization match factor of 
unity. The relative gain is also clearly 

( 4.43) 

and the pattern is omnidirectional in azimuth with a half-power beamwidth of 
! 7T in a constant-azimuth plane. 

Let us consider now a longer dipole with a field 

E = jZolm cos [(ktI2) cos OJ - cos (ktI2) e- jkr (1.104) 
o 27Tr sin 0 

and the larger loop of Section 4.6 with field 

_ wjLaILJI(ka sin 0) -jkr 

Ecf> - 2r e ( 4.40) 

It will be seen that this combination no longer is circularly polarized for all 
values of o. It is clear that by a choice of the relative feed currents of loop and 
dipole, the antenna can be made to radiate a circularly polarized wave in one 
direction, o. Let us choose the wave to be right circular at 0 = ~ 7T (in the xy 
plane). 

The polarization ratio is, from the equations for Eo and Ecf>' 

_ C cos [ekt 12) cos OJ - cos (kt 12) 
PI - sin OJ

I 
(ka sin 0) 

where C is a constant. If the wave is to be right circular at 0 = ! 1T, 

which gives 

C 1 - cos ekt 12) _ . 
JI(ka) --1 

C = _-_1_1",",""-1 (_k_a)_ 
1 - cos (kt 12) 

and for general 0 

P = _-_j_JI_(k_a)_ cos [(ktI2) cos OJ - cos (ktI2) 
I 1 - cos (kt 12) sin OJI (ka sin 0) 

( 4.44) 

( 4.45) 

( 4.46) 

If we match this transmitting antenna with a right circular antenna having 
Pr = - j, the match factor can be written as 
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1 
p=-x 

2 

(sin 0[1 - cos (ke/2)]J1(ka sin 0) + J1(ka){cos [(ke/2) cos 0] - cos (kt/2)} )2 

sin 2 0[1- cos (ke/2)]2J~(ka sin 0) + J~(ka){cos [(kt/2) cos 0] - cos (kt/2)}2 

( 4.47) 

This is a rather complicated equation, but matters can be simplified if we 
consider the product of p and the relative gain Gr. Using (1.104) and (4.40), 
we note that 

IE 12 + IE 12 = (Zolm) 2 {cos [(ke/2) co~~] - cos (ke/2)}2' 
o cP 271"r sIn 0 

( 4.48) 

At 0 = ~ 71", the two terms above are equal from our choice of circular 
polarization at 0 = ~ 71". In addition, we will use the intensity there to 
normalize the intensity at any angle. It follows from these two facts that 

G _ [cos [(kt/2) cos 8] - cos (ke/2)]2 J~(ka sin 0) 
r- 2sin 2 0[1-cos(kt/2)f + 2J~(ka) 

If we take the product of Grand p, the result is 

1 
GrP = 4x 

( 4.49) 

(sin 0[1 - cos (kt /2)]J1 (ka sin 0) + J} (ka){ cos [eke /2) cos 0] - cos (kt /2)} )2 

sin 2 8[1 - cos (kt/2)]2J~(ka) 

( 4.50) 

It may be verified that this is unity in the plane 0 = ~ 71". For a half-wave dipole 
the product is simpler, namely 

I 
= ! [J}(ka sin 0) cos [(71"/2) cos 0]] 2 

GrP e=A/2 4 J
1 
(ka) + sin 8 ( 4.51) 

4.8. WAVEGUIDE OPENING INTO INFINITE GROUND PLANE 

In Section 1.13 we developed the equations for the far fields of a rectangular 
waveguide carrying the TEIO mode and opening into an infinite ground plane. 
With the ground plane taken as the xy plane and with the long dimension of 
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the waveguide directed along x, as shown in Fig. 4.7, the far fields are 

E 
- wabEo . ,h cos [(7Ta/A) sin () cos <1>] sin [(7Tb/A) sin () sin <1>] 

8 - SIll '¥ 2 2 
cr 7T - 4[( 7Ta/A) sin () cos <1>] (7Tb/A) sin () sin <I> 

(a) 

E 
wabEo cos [(7Ta/A) sin () cos <1>] 

= cos () cos <I> 2 2 
cP cr 7T - 4[( 7Ta/A) sin () cos <1>] 

sin [( 7T b / A) sin () sin <p] 
x ( 7T b / A) sin () sin <I> 

(b) 

(1.136) 

where a and b are the waveguide dimensions III the x and y directions, 
respectivel y. 

y 

~--;---~--------z 

FIGURE 4.7. Waveguide opening into plane. 

/ 
/ 
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In spite of the complexity of the field components, the polarization ratio 
for this antenna is quite simple. It is 

tan cP 
p=---

t cos () 
( 4.52) 

On the z axis the wave is polarized in the y direction. (We avoid the use of the 
word vertical as ambiguous.) 

We earlier considered an antenna that also produces a y-polarized wave on 
the z axis, namely, the y-directed dipole of Section 4.3, with a polarization 
ratio 

Py = -cos () tan cP ( 4.23) 

Since the polarization is the same in at least one direction, an important 
direction at that, it is interesting to compare polarizations in other directions. 

It should be noted first that both antennas radiate a wave that is 
everywhere linearly polarized and that may be received everywhere without 
polarization loss by a correctly oriented, linearly polarized antenna. Since the 
polarization ratios are different, we might expect, correctly, that the receiving 
antenna orientation will be different for the dipole and the waveguide. 

Let us consider first the principal E and H planes and the xy plane. The 
polarization ratios and the field components are compared here: 

Polarization Fields 

Plane Dipole Waveguide Dipole Waveguide 

Principal E plane, 
cP=!7T 00 00 Ee(Ey, EJ Ee(Ey, Ez ) 

Principal H plane, 
cP = 0 0 0 Ecp(Ey) Ecp(Ey) 

xy Plane, () = ! 7T 0 00 Ecp(Ex, Ey) Ee(Ez ) 

We see from this table that the polarization behavior of the two antennas is 
the same in the principal E and H planes but differs markedly in the xy plane 
(which is generally of little interest for the waveguide opening). 

Let us now consider the reception of the wave transmitted by the 
waveguide antenna. It is worthwhile to repeat that the radiated wave is 
everywhere linear and can be received without polarization loss by any 
linearly polarized antenna that is correctly oriented. We saw in Section 4.2 
and Fig. 4.2 that if the transmitter is a dipole, then the receiver can be a 
dipole that lies in the same plane as the transmitter and is perpendicular to a 
line drawn from- it. That natural orientation will not do for the waveguide 
antenna, however. In theory, the field components of the waveguide antenna 
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can be calculated and a receiving antenna ( dipole) oriented parallel to the 
field. This means nothing, however, since, in theory, p = 1. In making gain 
measurements of the waveguide antenna, a receiving dipole can be oriented 
perpendicular to a line from the waveguide antenna and rotated around that 
axis to maximize received power. This eliminates any polarization mismatch 
and allows a correct measurement of the gain. 

If we wish specifically to consider the polarization behavior of the 
waveguide opening into a plane, it is appropriate to use as a receiving antenna 
a dipole oriented as it would be if the transmitting antenna itself were a 
y-directed dipole. The polarization ratio of the receiver is then to be taken as 

P r = cos e tan cP ( 4.12) 

and the polarization match factor between this dipole and the waveguide 
antenna is 

p = (cos 2 e + tan 2 cP )(1 + cos 2 e tan 2 cP) 
(4.53) 

It is quickly noted that p = 1 in the principal E and H planes. It may also be 
determined without difficulty that the maximum rate of change of p with angle 
e, near e = 0, occurs for cP = ! 7T, ~ 7T, .•• (unsurprising since p is independent 
of e for cP = 0, ! 7T, • . .). 

Along a line giving maximum rate of change of p with e (tan cP = 1), the 
value of p drops 3 dB where e3dB = 65.53°. Then the minimum 3-dB 
beamwidth is 

for polarization effects alone. 
The radiation intensity beamwidth can be found from the fields of (1.136). 

The 3-dB beamwidths in the principal E and H planes are given by Balanis [2, 
p. 469] as 50.6A / band 68.8A / a respectively. These beamwidths are on the 
order of the polarization beamwidth for standard rectangular waveguides 
used in their designed frequency ranges . Polarization effects are therefore 
important within the radiation intensity beamwidth, and they decrease the 
overall beamwidth of this antenna significantly. 

4.9. HORNS 

Horns are among the most widely used microwave antennas. In this section 
we will consider primarily the polarization properties of a pyramidal horn fed 
by a rectangular waveguide carrying the TElO mode with a y-directed electric 
field. The geometry is shown in Fig. 4.8. The radiation fields are relatively 
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y 

x 

IL-__ --+ __ Z 

FIGURE 4.8. Pyramidal horn antenna. 

complex, and their development is widely available in the literature and thus 
is not repeated here. The notation used here is that of Balanis [2, Chapter 12]. 

The far fields of the pyramidal horn of Fig. 4.8 are given by Balanis as 

where 11 and 12 are given by the rather complicated expressions 

where 

11 = ~ )7T;2 (ejk;2P2/2k{[C(t~) - C(t~)] - j[S(tD - S(t~)]} 

+ ejk~2p2/2k{[C(t~) - C(tD] - j[S(t~) - S(t~)]}) 

12 = )7T;1 ejk~Pl/2k{[C(t2) - C(t1)] - j[S(t2) - S(tI)]} 

k = 27T (a) 
A 

k~ = k sin 0 cos cfJ + 7T (b) 
a1 

kif = k sin 0 cos cfJ - 7T (c) 
x a

l 

ky=ksinOsincfJ (d) 

(4.54 ) 

(a) (4.55) 

(b) 
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, [±( kG, ,) 
tl = 1Tkp2 - 2 - k xP2 (e) 

,[±(kG, ,) 
t2 = 1Tkp2 2 - k xP2 (f) 

" [±( kG, ,,) 
tl = 1Tkp2 - 2 - k xP2 (g) (4.56 ) 

" [±(kG, k") 
t2 = 1Tkp2 2 - xP2 (h) 

[± (kb, ) 
tl = 1TkpI - 2 - kyPI (i) 

~(kb, ) 
t2 = \ 1TkpI 2 - kyPI (j) 

C(x) = fox cos ( ~ 1Tt2) dt (k) 

Sex) = In' sin (! 7ft') dt (1) 

If one looks at the horn in the x direction of Fig. 4.8, the upper and lower 
horn surfaces, if extended, meet inside the waveguide. The distance from this 
line to the aperture plane z = 0 is PI ' Similarly, the two side surfaces of the 
horn, if extended, meet in a line, and the distance to the aperture plane is P2' 
These values occur in (4.56). 

It is evident from the field equations that numerical computation of the 
radiation pattern of the pyramidal horn is necessary for the best understand­
ing of its radiation characteristics. The reader is referred to Balanis for 
three-dimensional patterns [2, pp. 565-576]. 

In contrast to the radiation intensity, the polarization ratio of the 
pyramidal horn is quite simple. From (4.54) it is 

Eo 
p = - - = -tan <p 

I Eq) 
( 4.57) 

It is noteworthy that the E-plane sectoral horn (flared in the E plane, the y 
direction, but not in the x direction) and the H-plane sectoral horn (flared in 
the H plane, the x direction , but not in the y direction) have fields that are 
quite different from those of the pyramidal horn [2, Chapter 12] and yet have 
the same polarization ratio. Note that the fields are everywhere linearly 
polarized, but not in the same direction. 

Since these horn antennas are intended to produce a y-polarized linear 
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field in the main beam, it is appropriate to use as a test receiving antenna the 
dipole that was also used for the waveguide opening into a plane. The 
polarization ratio of that test dipole is 

Pr = cos e tan </> (4.12) 

Then the polarization match factor between this dipole and anyone of the 
horn antennas is 

p = (1 + tan2 </»(1 + cos2 e tan2 </» 

2 ? 
(1 + cos e tan </> t 

( 4.58) 

Let us look first at the principal E and H planes. In the principal E plane 
</> = ! 1T, and in the principal H plane </> = 0; it is immediately seen from (4.58) 
that p = 1. In those planes the field radiated from a horn is indistinguishable 
from that of a dipole in its polarization characteristics. 

By differentiating (4.58) with respect to tan 2 </>, it can be determined that 
the greatest rate of change of p with e near the direction e = 0 occurs, as it did 
for the waveguide opening into a plane, where tan

2 </> = 1 or </> = ~ 1T, ~ 1T, •••• 

If this value is substituted into the polarization match factor equation, it 
becomes 

(l+cose)2 
p = 2 

2(1 + cos e) 

1T 
</>=-

4 
( 4.59) 

It is quickly ascertained from this equation that the polarization beamwidth in 
a plane tilted at 45° with respect to the principal E and H planes is 

Furthermore, this is the minimum polarization beamwidth. 
Typically, a pyramidal horn antenna will have E- and H-plane beamwidths 

determined by radiation intensity that are much smaller than the minimum 
polarization beamwidth. In many situations we may therefore neglect polariz­
ation in the main beam. It is a different matter for horns other than 
pyramidal, however; the E-plane sectoral horn generally has a large H-plane 
radiation intensity beamwidth, and the H-plane sectoral horn has a large 
E-plane radiation intensity beamwidth. It is necessary therefore to consider 
polarization effects in the main beam of the E- and H-plane sectoral horns. 

4.10. PARABOLOIDAL REFLECTOR 

The surface formed by rotating a parabola about its axis is the most frequently 
used reflector antenna. Geometric optics, valid for vanishingly small 
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wavelengths, shows that rays from the focal point are reflected in a beam 
parallel to the axis. Analyses using finite wavelengths show that the beam 
diverges, but the beamwidth is small for a paraboloid whose dimensions are 
large compared to a wavelength. 

z 

In this section we will carry out an analysis to find the fields produced by a 

FIGURE 4.9. 
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source at the focal point using the aperture distribution technique. The field 
reflected by the paraboloid is found over a plane passing through the focal 
point and perpendicular to the paraboloid axis using geometric optics 
techniques. Equivalent sources are formed over that plane, and the far fields 
are obtained by integration over these sources using the procedures of Section 
1.13. This method and others for finding the fields of a paraboloid are 
discussed in standard texts [2-4]. 

The geometry of the reflection problem is shown in Fig. 4.9, and a 
cross-sectional view of the reflector in a plane c/>' = constant appears as Fig. 
4.10. From the equation for the paraboloid surfaces the unit normal n may be 
found [2], 

n = -Ur' cos (~e') + ue' sin (~e') ( 4.60) 

and from n the angles a and f3 are easily shown to be equal to each other, and 

a = f3 = ~e' (4.61) 

Since a is the angle from the surface normal measured to an incident ray from 
the focal point, and f3 is the angle from n to a ray parallel to the paraboloid 
axis, it is clear that all rays from the focal point are reflected parallel to each 
other. 

A source at the origin produces a wave that is incident on the reflector 

I 
I 
I 
I 
I 
I 
I 
I 

z ---t----------l-----4-Focus 

I~~~-----r---------~>~I 
I 

Aperture plane 

FIGURE 4.10. Cross section of reflector. 
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surface, inducing a surface current with density 

(4.62 ) 

where Hi and Hr are incident and reflected fields. If we can approximate the 
surface in the vicinity of the reflection point by an infinite plane conductor, 
the tangential components of incident and reflected magnetic fields are equaL 
and 

(4.63 ) 

which allows J s to be written as 

(4.64 ) 

We next require all points on the reflecting surface to be in the far field of 
the source so that the electric field of the incident wave is transverse to the 
magnetic field and the direction of propagation and is related to Hi by the 
intrinsic impedance of free space, ZOo Then 

( 4.65) 

where u r ' is a unit vector directed from the focal point to the point of 
reflection. In the same way the electric field of the reflected wave is related to 
the reflected magnetic field, and we have at the reflector surface 

(4.66) 

with -u z a unit vector from the reflection point and anti parallel to the z axis. 
Let a source at the focal point with gain G accept power WI from a 

generator. The power density is then 

W G(8' '/') 
5(r', 8', qJ') = I :;P 

47ir 
(4.67) 

From the relationship 

( 4.68) 

we can find the field of the incident wave at the reflector surface. 

(4.69) 
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where e i is a unit vector perpendicular to u r '. We extract the constants from 
this equation and define 

C=Y Z OW/27T (4.70) 

We may then write 

r--.,...------:- e - jkr' 

E/r', 0', cp') = eiCyG(O', cp') -r'- ( 4.71) 

If this expression for E; is substituted into (4.65), we may write the surface 
current density in terms of the source parameters as 

2 -jkr' 

Js = -Z CyG(O', cp') _e -,- a 
o r 

(4.72) 

where 

( 4.73) 

We may also write the second expression for Js ' (4.66), as 

( 4.74) 

where Er is the reflected field value at the surface and e r is a unit vector 
expressing its polarization (considered here a real vector). Since both 

n x (u r ' X e;) 

and 

are unit vectors, and sinc-e both give the direction of J s' it is apparent that they 
are equal and that at the surface 

-jkr' 

Er = CyG(O', cp') _e -,- e
r r 

( 4.75) 

Source Polarized in the y Direction 

At this point it is'difficult to proceed further without assuming a polarization 
for the source. If we take it to be in the y direction, we may write e i as 
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u r ' X (U y X Ur .) 

e = 
i Iur. X (U y X ur.)1 
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( 4.76) 

and if u
Y

' the unit vector in the y direction, is expanded as 

U y = sin 8' sin 4>'ur , + cos 8' sin 4>'uo' + cos 4>'u$' ( 4.77) 

it is straightforward to show that 

cos 8' sin 4>'uo' + cos 4>'u$' 
e· = 

I Y1- sin 2 8' sin 2 4>' 
( 4.78) 

It is tedious, but not difficult, to obtain a in rectangular coordinates by 
substituting e i into (4.73) and transforming all vectors to rectangular coordi­
nates. The result is 

a= 
-sin 8' sin (8' 12) sin 4>' cos 4>' cos (8' 12)(cos 8' sin 2 4>' + cos 2 4>') 

Y1- sin2 8' sin2 4>' u
x+ Y1- sin2 8' sin 2 4>' u

y 

sin (8' 1 2) cos 8' sin 4>' 
U z (4.79) 

VI - sin 2 8' sin 2 4>' 

We may next find er by writing a as 

( 4.80) 

If these expressions for a are equated, we may quickly obtain the components 
of er transverse to z. (We need not be concerned with ascertaining if er has a z 
component since it will not contribute to equivalent surface currents over the 
aperture plane.) The result is 

sin 4>' cos 4>'(1 - cos 8')ux - (cos 8' sin2 4>' + cos2 4>')uy 
e = (4.81) 

r Y 1 - sin 2 8' sin 2 4>' 

We now make the assumption that the electric field intensity at a point on 
the aperture plane is given by the field intensity transverse to z at a 
corresponding point (same x and y coordinates) on the reflector, except for 
the phase retardation 

kr' cos 8' 

caused by the path from reflector to aperture [3]. The aperture field is then 
given by 
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(4JQ) 

where we use G\, as a reminder that the source is y directed. 
If we write E ' as 

1If! 

E =uE +uE 
1If! x IIX )' II)' (4.83 ) 

where 

-jkr'(I+cosO ' ) cos 0' sin 2 <p' + cos 2 <p') 
Ea , = -CYG.«(J', q,') e .' V 2 , 

. . 1 I-sin O'sin-<p' 

(4.84 ) 

(b) 

we can find equivalent surface currents on the aperture plane by 

(a) 
( 4.85) 

We fill the region on the reflector side of the aperture plane with a perfect 
electric conductor, as discussed in Section 1.11, and apply image theory, as in 
Section 1.13. The result is that we double Msa over the aperture plane and let 
Jsa be zero. Further, we assume that Msa has value only over the circle on the 
aperture plane, which is the projection of the paraboloidal reflector on 
the plane. Since we are concerned only with the far fields, we can use the 
approximation 

F(r) = ce -jkr f f 2M (r')ejku, .r' dA' 
47Tr sa 

(4.86) 

where 

u r • r' = x' sin 0 cos cP + y' sin 0 sin cP ( 4.87) 

Substitution of the magnetic surface current value of (4.85) into the 
equation for F(r) gives 

F =~ E jk(x'sin6co s cb+Y'sinOsincb)d'd' -jkr f f 
x 27Tr aye X Y (a) 

-jkr f f F. = - ,~ E ejk(x ' sin (} cos cb +y ' sin 6 sin cb) dx' d I' 

) 27Tr ~ ) 

( 4.88) 

(b) 
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where the integration is carried out over the projection of the reflector onto 
the aperture plane. 

The electric field components may be found from 

( 4.89) 

Substitution of the components of F leads to 

jk(x' sin 0 cos cb+v' sin 0 sin cb) d ' d ' 
X e - X Y (a) 

( 4.90) 

X ejk(x' sin 0 cos <p+y' sin 0 sin c/») dx' dy' (b) 

Using the geometry of the reflector, we may change variables in the 
integrals and achieve forms that may be easier to evaluate. We may express r' 
in Fig. 4.10 as [2] 

2f 
r'= -----"---

I + cos 0' 
(4.91 ) 

and also 

X' = r' sin 0' cos q)' (a) 

y'=r'sinO'sinq)' (b) ( 4.92) 

z' = r' cos 0' (c) 

With these changes, the aperture fields become 

E = C'" IG ( , q') (1 + cos 0')e-
j2kf 

sin cf>' cos q)'(1 - cos 0') (a) 
II r V I' 0, ') 2f .d 
'. V 1 - sin 2 0' sin 2 q)' 

(4.93 ) 

E =-C'dG (0' q') (1+cosO')e-j
2kf 

cosO'sin
2

q)'+cos
2

q)' (b) 
(/1' v I' ,') 2f 
'. . '11 - sin 2 0' sin 2 q)' 

and the radiated fields are 
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jwZ ce-
jkr J J . 

Eo = ;7Tr (Eax cos ¢ + Eay SIn ¢) 

x ex (·2k[ sin ()' sin () cos (¢' - ¢)) (2[)2 sin ()' d()' d¢' (a) 
p ] 1 + cos ()' (1 + cos ()I)2 

. Z -jkr J J 
E4> = JW ace cos () (-Eax sin ¢ + Eay cos ¢) 

27Tr 
( 4.94) 

x ex (·
2k

f sin ()' sin () cos (¢' - ¢)) (2f)2 sin ()' d()' d¢' 
p ] 1 + cos () I (1 + cos () I ) 

2 
(b) 

Principal Plane Fields: y-Polarized Source 

The expressions for the fields in general require numerical integration, but 
they can be simplified if we consider the principal E and H planes only, given, 
respectively, for the y-polarized source by ¢ = ! 7T and ¢ = o. 

In the principal E plane E4> reduces to 

E = jwZace-
jkr 

() J J E jky' sin 0 d'd " 
q) 27Tr COS axe X) ( 4.95) 

where Eax may be written from (4.84) and (4.92) as 

-jkr'(l +cos 0') 

Eax = CV Gy«()I, ¢') e r' 
x ' y '(l - cos ()I) 

(4.96) 

We have previously restricted our development to a y-directed primary 
source. Let us now make the assumption that the gain Gy«()I, ¢ ') is symmetric 
so that the x-directed fields over the aperture plane have the same magnitude 
at symmetrically located points, as shown in Fig. 4.11. Then 

G (x' ),1) = G (-x' )1') = G (x' -11') = G (_ .. I -)1') 
Y '/ y' y'.1 )' A, 

(4.97) 

It follows that 

Eax(x ', y') = -Eax(-x', y') = -Eax(x', _y') = Eax(-x ', _y') (4.98) 

and the contributions to the integral for Ecf) are 

E ( , y') jkly'lsinO 
a~ X , e 

E ( ' ') jkly'lsinO - ax X ,y e 

E ( I ') -jkly'lsinO - ax X ,y e 

E ( ' ') -jkly'l sin 0 ax X ,y e 
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y 

x', y' -x', y' 
o 0 

cP' 
x 

Source 

x',-y -x',-y 
0 0 

FIGURE 4.11. Aperture plane for y-directed source. 

We see that these contributions cancel in pairs. It follows that in the principal 
E plane Ecp = 0, and the radiated field has only an Eo component. 

In the principal H plane, ¢ = 0, Eo becomes 

. -jkr f f 
Eo = jwZo c;1Tr EaxejkX' sin 0 dx' dy' ( 4.99) 

where Eax is given by (4.96). 
If the analysis carried out for the principal E plane is repeated, we will find 

that Eo = ° in the principal H plane. 
If the fields in the principal planes are converted to rectangular coordi­

nates, it may be seen that Ex = ° in both planes, and in the H plane the field 
has only an Ey component. We recognize that both statements would be 
correct for a y-directed dipole, for example, without the parabolic reflector, 
and it is interesting to note that the conditions carryover to the reflector 
antenna if the required symmetry conditions are met. 

Source Polarized in the x Direction 

If the source is x polarized instead of y, the vector (4.76) for the field 
incident on the reflector should be altered to 

( 4.100) 

which becomes 
() ' ,J.,.' ',J.,. , cos cos '¥ uo' - SIn '¥ Ucp' 

e;= ---,-r/====~2~==~2==~-
V 1 - sin ()' cos ¢ , 

(4.101) 



180 POLARIZATION CHARACTERISTICS OF SOME ANTENNAS 

The vector a, given by (4.79) for the y-directed source, becomes, for the 
x-polarized case, 

, cos (8' 12)(sin2 C/>' + cos 8' cos2 c/>') sin 8' sin (8' 12) sin C/>' cos C/>' 
a = '\ / 2 2 U x - '\ / 2 2 U y 

V 1 - sin 8' cos c/>' V 1 - SIn 8' cos c/>' 

cos 8' sin (8' 12) cos C/>' 
--r====~====7==- UZ VI - sin2 8' cos

2 
C/>' 

( 4.102) 

The vector e; representing the polarization of the reflected field is found by 
the process used earlier and is 

, sin
2 

C/>' + cos 8' cos 2 
C/>' sin C/>' cos c/>'(1 - cos 8') 

e=- u x + 2 2 Uy (4.103) 
r VI - sin 2 8' cos 2 C/>' VI - sin 8' cos c/> ' 

This equation can be verified, or in fact could have been derived, by noting 
that the x-polarized source is the y-polarized source rotated in azimuth by 
-90°. Then we should have 

(a) 
( 4.104) 

These equalities are easily verified. 
The aperture fields may now be found from 

~---:--.,------:-:- e -jkr'( 1 +cos 0') sin 2 C/>' + cos 8' cos 2 C/>' 
E' = - C\I G (8' c/>') (a) 

ax x' r' '\ /1 . 2 IJ' 2 ,h' V - SIll u COS ~ 

, , , e- jkr
'(l+cosO') sin C/>' cos c/>'(I- cos 8') 

E oy = CV Gx (8 , c/> ) , V. 2 2 
r 1 - SIll 8' cos c/> ' 

( 4.105) 

(b) 

and the radiated fields found from (4.90) as before. 

Principal Plane Fields: x-Polarized Source 

Earlier we considered the fields in the principal planes for a y-polarized 
source with gain symmetry and found Ecj; to be zero in the E plane, c/> = ! 1T, 

and Eo to be zero in the H plane, c/> = O. If this development is repeated for an 
x-polarized source with symmetric gain 

Gx(x', y') = Gx(- x', y') = Gx(x', - y') = G x ( - x', - y') (4.106) 

a result is that ill'the E plane, c/> = 0, of the x-polarized source, Ecj; = O. In the 
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H plane, ¢ = 17T, the component Eo = O. In both planes the rectangular 
component Ey is zero, an unsurprising result for an x-polarized source. Note 
that the E plane for an x-polarized source is the H plane for a y-polarized 
source, and vice versa. 

Dipole Feed Antenna: y Directed 

A commonly used feed antenna is a center-fed dipole. We found in Section 
4.3 that the field components of a y-directed short dipole are 

(a) 

E - - jwp.,If -jkr' Q",l..' (b) 
o - 4 ' e cos 17 SIn 'P 7Tr 

E 
- jwp.,If -jkr' , 

l/J - -4--' e cos ¢ 
7Tr 

(c) 

( 4.107) 

where the factor 4 in the denominators is doubled if a triangular current 
distribution is assumed. With this feed the incident field magnitude at the 
reflector surface is 

IEJ = (~~~;) 2 (1- sin
2 

0' sin
2 q,') ( 4.108) 

Comparison of this equation with that for the incident field, (4.71), shows 
that for the y-directed dipole, we should use 

( 4.109) 

Substitution into the aperture fields simplifies them to 

jwp.,If "k '(1 0') E ax = 4 7T r' sin ¢' cos ¢' (1 - cos 0') e - J r + cos (a) 

(4.110) 
E - jwp.,If ( 2 2 "k '(1+ 0') 

ay= 47Tr cos 0' sin ¢'+cos ¢')e-Jr 
cos (b) 

Principal Plane Polarization: y-Directed Dipole 

We saw earlier that for a y-directed source with symmetric gain, El/J = 0 in the 
principal E plane and Eo = 0 in the principal H plane. Using this finding, the 
fields produced by a y-directed dipole feed become 
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E PLANE, <p = ~ 17" 

Eo = jwZo £;~:' f f EayeikY' 'in 0 dx' dy' 

-jkr f f ( . It) Ee W . 2 2 
= jwZo -- - J

4
fJ-, (COS 8' SIn <p' + cos <p') 

217"" 17"r 

X -jkr'(l+cose') jky' sine d ' d ' e e X y 

E =0 c/J 

The polarization ratio is 

P=oo 

H PLANE, <p = 0 

_ . Ee jkx' sin e , , -jkr f f 
Ec/J - JWZo 217"1' cos 8 Eaye dx dy 

Ee - WfJ- . 2 2 - jkr f f ( . It) 
= jwZo 217"" cos 8 ~1T'" (cos 8' SIn <p' + COS <p') 

X -jkr'( 1 +cos e') jkx' sin ed' d ' e e X y 

The polarization ratio is 

p=o 

Dipole Feed Antenna: x Directed 

(a) 
(4.111) 

(b) 

(4.112) 

(a) 

(4.113) 

(b) 

(4.114) 

We found in Section 4.3 the field components of a short x-directed dipole to 
be 

- jWfJ- It -,'kr' 
E = e cos 8' cos <p' 

e 417"1" 
(a) 

E 
- jWfJ-If -jkr' . ,h' 

c/J - 4 ' e SIn tp 17"1' 
(b) 

(4.115) 

It follows from the same reasoning used previously that we should let in 
( 4.105) 

. jWfJ-Ie V . 2 2 CyGx (8', ¢') = 4;- 1- SIn 8' cos <p' (4.116) 
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The aperture fields for the x-directed dipole reduce to 
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E;x = - j:~:; (sin2 ¢' + cos 0' cos2 ¢ ')e -jkr'(l +cos 0') (a) 

E' = jwp.,Ie sin ¢' cos ¢'(1- cos O')e-jkr'(l+COSO') 
ay 41Tr' 

(4.117) 

(b) 

Principal Plane Polarization: x-Directed Dipole 

We saw earlier that for an x-polarized source, Ecf> = 0 in the principal E plane, 
¢ = 0, and Eo = 0 in the H plane, ¢ = ! 1T. Using this information and the 
fields of the x-directed dipole in (4.90), we find in the principal planes. 

E PLANE, ¢ =0 

-jkr f f ce . , . 
E' = jwZ -- E' elkx 

smO dx' d ' o 0 27fr ax Y 

. ce -jkr f f (jwp.,Ie) 2 2 
= ]WZO 21Tr - 41Tr' (sin ¢' + cos 0' cos </>') 

x e-jkr'(l+cosO')ejkx' sinO dx' dy' 

E' =0 cf> 

P=oo 

E~=O 

H PLANE, ¢ = !1T 

-jkr f f ce . , . 
E' = jwZ -- cos 0 - E' elk}' smO dx' d ' 

cf> 0 21Tr ax y 

. ce -jkr f f jwp.,Ie . 2 2 
= ]wZo 21Tr COS 0 41Tr' (SIn ¢' + COS 0' cos ¢') 

x e -jkr'(l +COS 0') e jky ' sin 0 dx' dy' 

P=O 

Crossed-Dipole Feed 

(a) 
(4.118) 

(b) 

(c) 

(a) 

(4.119) 

(b) 

(c) 

A circularly polarized wave can be produced on the paraboloid axis if crossed 
dipoles with a ~ 1T phase difference are used as the feed antenna. The fields in 
a general direction must be computed numerically, but the polarization ratio 
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in two planes is relatively simple. We will therefore restrict our consideration 
to the planes </> = 0 and </> = ! 'Tr. 

In the equations for the dipole feeds previously developed we let the 
y-directed dipole lead in phase by! 'Tr and use currents I and jI, respectively, in 
the x- and y-directed dipoles. Then, in general, the fields produced by the 
crossed-dipole feed are 

Eo = jEo + E~ (a) 

Eep = jEep + E~ (b) 
( 4.120) 

where Eo, Eep' E~, and E~ are given by (4.111), (4.113), (4.118), and (4.119). 
In the plane </> = 0 these equations give 

Eo = E~ (a) 

Ecb=jEep (b) 
(4.121) 

where E~ and Eep are given by (4.118) and (4.113). From these equations the 
polarization ratio may be written as 

Eo jE~ p=--=-
E

cf
, E cf, 

] 
J J (1/ r')(sin2 q,' + cos e' cos2 q, ')e -i"'(1 +<0, 0') eikx ' ,in 0 dx' dy' 

cos 0 J J (l/r')(cos e' sin2 q,' + cos2 q,')e-ih'(1+cO, O')eikx ',inO dx' dy' 

( 4.122) 

Now if we use (4.92), portions of the integrands in the numerator and 
denominator of this expression can be written as 

sin
2 

</>' + cos 0' cos 2 </>' = 2.1 2 (y,2 + Zr: x,z) (a) 
r' SIll 0' 

cos 0' sin
2 

</>' + cos 2 </>' = 2.1 2 (Zr: y'Z +X,2) (b) 
r' SIll 0' 

(4 .123) 

We may interchange the variables x' and y' without having any effect on other 
terms in the integrands, and we note that the limits on x' and y' are the same. 
Therefore, the numerator and denominator integrals in (4.122) are equal, 
and in the plane·</> = 0 the paraboloidal reffector with crossed-dipole feed has 
polarization ratio 
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p=-j-
cos (J 

In the plane <p = 17T' the fields are 

E8 = jEo (a) 

E<b = E~ (b) 

and the polarization ratio becomes 
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( 4.124) 

( 4.125) 

f f (1 Ir')(cos (J' sin 2 <p' + cos2 <p ')e -jkr'(l +COS 8') ejky
' sin 8 dx' dy' 

-j- ~~----------------------------------------
COS (J f f (1 I r' )(sin 2 <p' + COS (J' COS 2 <p')e -jkr'( 1 +COS 8 ' ) ejky

' sin 8 dx' dy' 

( 4.126) 

As before, it is easily shown that the integrands are equal, and the 
polarization ratio in the plane <p = 17T' becomes 

p=-j­
cos (J 

which is what it was also for the <p = 0 plane. 

( 4.127) 

The polarization match factor in either plane is obtained by usmg a 
circularly polarized receiver with 

( 4.128) 

since in the region of interest cos (J is negative. The polarization match factor 
then becomes 

1 cos (J 
p=-- 2 

2 1 + cos (J 
( 4.129) 

If this value of p is compared to that of (4.32) for the crossed dipoles without 
the parabolic reflector, it may be seen that they are the same if the different 
reference for the measurement of polar angle (J is considered. Another 
difference is that for the reflector antenna, the equation (4.129) for p is valid 
only in the planes <p = 0 and <p = 17T', whereas for the crossed dipoles alone 
(4.32) is valid everywhere. 

It is obvious from (4.129) that the 3-dB polarization beamwidth for the 
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crossed-dipole feed is 1T in the planes <p = 0 and <p = ! 1T. On the other hand, 
the 3-dB radiation intensity beamwidth of a parabolic reflector is approxi­
mately It / D for a uniformly illuminated aperture [1]. For a tapered illumin­
ation, which would occur with a crossed-dipole feed, the beamwidth will be 
somewhat greater. In addition, the polarization beamwidth obtained here is 
valid only in two planes. Nevertheless, it is clear that for large aperture 
diameter, polarization effects will be small in the main beam of the parabolic 
reflector if received power is the quantity of interest. 

4.11. NARROW-POLARIZATION-BEAMWIDTH ARRAY 

In our examination of the polarization characteristics of various antennas we 
have not yet encountered one with a small polarization beamwidth, even 
though some of them have small radiation intensity beamwidths. In this 
section we will examine an array, shown in Fig. 4.12, that can produce narrow 
beams in both radiation intensity and polarization. The array elements will be 
treated as short dipoles, although other linearly polarized elements could be 
used. The array is intended to produce a circularly polarized wave in the main 
beam, so we assume that the phases of the elements along the y axis lead 
those of the x axis elements by ~ 1T when the beam is broadside. An even 
number of elements is shown for each linear array, but an odd number can be 
used without changing the equations of this section. 

---

y 

I 

I 
I 
I 
I 

- -=- -- - - --x 

I 
I 
I 
I 

FIGURE 4.12. Narrow-po)arization-beamwidth array. 
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For simplicity, a uniform array, with equal feed amplitudes for all elements 
and a constant difference between the phases of adjacent elements, is 
assumed on both x and y axes. Furthermore, the same number of elements, 
with the same spacing, is assumed for the x- and y-axis arrays. 

The array factor for a linear array of isotropic elements along the axes is [2] 

where 

AF = l sin [(N 12)t/I] 
N sin [( 1/2) t/I ] 

t/I = t/lx = kd sin () cos cP + f3x 

t/I = t/ly = kd sin () sin cP + f3y 

( 4.130) 

x axis (a) 
(4.131) 

y aXIS (b) 

with f3x and f3y the feed phase differences. 
If we use the pattern multiplication principle of array theory and the fields 

of x- and y-directed short dipoles of (4.19) and (4.20), the fields produced by 
the x-directed dipoles along the x axis are 

(a) 

jwp.,It sin [(NI2)(kd sin () cos cP + f3x)] -jkr 
Eo = - 47Tr cos () cos cP N sin [(1/2)(kd sin () cos cP + f3x)] e (b) 

( 4.132) 

jwp.,It. sin [(NI2)(kd sin () cos cP + f3x)] e- jkr 
EcfJ = 47Tr SIn cP N sin [(1 12)(kd sin () cos cP + f3x)] 

(c) 

and the fields produced by the array of y-directed dipoles along the y axis are 

(a) 

_ jwp.,It . sin [(NI2)(kd sin () sin cP + f3y)] -jkr 
Eo - - 47Tr cos (} SIn cP N sin [(1/2)(kd sin (} sin cP + f3y)] e (b) 

_ jwp.,It sin [(NI2)(kd sin (} sin cP + f3y)] -jkr 
EcfJ - - 47Tr cos cP N sin [(1/2)(kd sin (} sin cP + f3y)] e 

(4.133) 

(c) 

For convenience, we consider only the broadside case, f3x = f3y = 0, and 
group several factors in the field equations as constant C. If the dipoles along 
the y axis lead those along the x axis by phase difference ~ 7T, the total fields 
are 
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sin [(N 12)kd sin 0 cos ¢] 
Eo = - C cos 0 cos ¢ N sin [(1/2)kd sin 0 cos ¢] 

. . sin [(N 12)kd sin 0 sin ¢] 
- ,C cos 0 sIn ¢ N sin [(1/2)kd sin 0 sin ¢] (a) 

. sin [(N 12)kd sin 0 cos ¢] 
E</> = C SIn <P N sin [(1 12)kd sin 0 cos ¢] 

(4.134) 

. sin [( N 12) kd sin 0 sin ¢ ] 
- ,C cos ¢ N sin [(1/2)kd sin 0 sin ¢] (b) 

Radiation intensity and polarization ratio are readily found from (4 .134). 
It is sufficient here to consider these quantities only in the yz plane, ¢ = ! 7T. 

The xz plane is obviously like the yz plane. In other planes the beamwidths 
are more difficult to determine but still may be found from (4.134). 

In the yz plane the radiation intensity, normalized to its maximum value at 
0=0, is 

G = ~ = ! (cos2o sin
2 

[(NI2)kd sin 0] + 1) 
r Umax 2 N 2 sin2 [(1/2)kd sin 0] 

( 4.135) 

and if we obtain the radiation intensity half-power beamwidth by setting this 
equal to !, we find 

sin2 (!Nkd sin 0) = 0 ( 4.136) 

The value of 0 for which this holds is readily recognized as the first array 
factor null of the linear array on the y axis. 

Still in the yz plane, let us determine the polarization ratio of the wave. It 
IS 

Eo. sin [(NI2)kd sin 0] 
p = - E</> =, cos 0 N sin [(1/2)kd sin 0] ( 4.137) 

from which it is readily seen that the wave is circularly polarized on the z axis. 
If we use a circularly polarized receiving antenna in conjunction with this 

array, the polarization match factor in the yz plane is readily seen to be 

1 sin [(NI2)kd sin 0] /( 2 sin
2 

[(NI2)kd sin 0] ) 
p = 2: + cos 8 N sin [( 1 12) kd sin 0)] 1 + cos 8 -N~2-SI-· n=='"2 -[ (-1---'1 2-)-k-d-s-in--=O'--] 

( 4.138) 

If this expression is set equal to ! to obtain the polarization beamwidth, we 
again obtain (4.136) and conclude that the polarization beamwidth is the 
same as the radiation intensity beamwidth and may be quite small for a large 
number of array elements. 
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The product of Gr and p in the yz plane is simpler than either factor alone. 
It is 

1 ( sin [(NI2)kdsin 0] )2 
GrP = 4 1 + cos 0 N sin [(1 12)kd sin 0] ( 4.139) 

If we set this to ! to find the overall beamwidth in the yz plane, we find, not 
unexpectedy, that the overall beamwidth is smaller than that for the radiation 
intensity or polarization alone. 

It is instructive to study the radiation intensity and polarization if all of the 
dipole antenna elements are rotated by ! 7T, so that the dipoles on the y axis 
are oriented in the x direction, and vice versa. On the z axis the wave is still 
circularly polarized, but the off-axis behavior is different. This is left to the 
reader as an exercise. One of the problems at the end of this chapter also asks 
for the polarization behavior if each element in Fig. 4.12 is replaced by 
crossed dipoles, with each element producing a circularly polarized wave on 
the z axis. 
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PROBLEMS 

4.1. Find the fields of a small circular loop antenna, with uniform current, 
lying in the xz plane. Hint: Compare the fields of y-oriented and 
z-oriented short dipoles. 

4.2. Verify the text statement in Section 4.8 that the maximum rate of 
change of p with angle 0 occurs, for example, for 4> = ! 7T. 

4.3. Find the 3-dB polarization beam width in the plane 4> = ~ 7T of the 
waveguide opening into a plane (Section 4.8). 

4.4. Plot the relative radiation intensity as a function of 0 in the plane 
4> = ~ 7T for the waveguide opening into a plane (Section 4.8). Find the 
3-dB beamwidth and compare to the polarization beamwidth of 
problem 4.3. Assume standard x-band waveguide (a = 0.9 in., b = 

0.4 in.) and a frequency of 10 GHz. 
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4.5. Find the 3-dB polarization beamwidth of the pyramidal horn antenna as 
a function of the azimuth angle 4>. 

4.6. If each dipole element in Fig. 4.12 is rotated by 90° so that the y axis 
array consists of x-directed dipoles, and vice versa, find the normalized 
radiation intensity in the yz plane. The other conditions of Section 4.11 
remain the same. The number of elements on each axis and the element 
spacings are the same. All feed amplitudes are equal and the phases of 
all element feeds in each linear array are the same. The feed phases of 
the elements on the y axis lead those on the x axis by 17T. Compare 
radiation intensity beamwidth and polarization beamwidth in the yz 
plane. The receiving antenna is to be circularly polarized. 

4.7. If each element in Fig. 4.12 is replaced by crossed dipoles, with the 
y-directed dipole leading the x-directed dipole in phase by 17T, and if no 
phase difference exists between crossed dipoles on the x axis and those 
on the y axis, compare the radiation intensity and polarization beam­
widths. 

4.8. Suppose the turnstile antenna of Section 4.4 is used to transmit from an 
unstabilized satellite so that it rolls and tumbles. Let the earth-based 
receiving antenna be circularly polarized and always pointing at the 
transmitter. If all values of angle () in (4.34) are equally probable, find 
the expected value of GrP [5, p. 188]. 



5 
GENERATION OF 

GENERAL 
POLARIZATIONS 

5.1. INTRODUCTION 

It is desirable, when working with elliptically polarized waves, to have an 
antenna system that can generate any desired polarization and to know, from 
attenuator and phase shifter settings, what this polarization is. Conversely, 
we need a receiving antenna that can measure the polarization of an incoming 
wave. In this chapter, three such antenna systems are described. All have 
been constructed and found to perform satisfactorily. 

5.2. SIMPLE WAVEGUIDE SYSTEM FOR ELLIPTICAL 
POLARIZA TI ON 

Figure 5.1 shows a waveguide and antenna system capable of transmitting a 
wave with any desired polarization [1]. It consists of a circular horn fed by a 
circular guide loaded with a quarter-wave plate, a circular waveguide to 

Rectangular 
guide Rectangular-to­

circular transducer 

< > 
Quarter-wave 

plate 

FIGURE 5.1. Waveguide system for generating wave with general polarization. 

191 
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circular waveguide rotary joint, a rectangular-to-circular waveguide (TEll 
mode) transducer, and a rectangular-to-rectangular waveguide collinear 
rotary joint. 

In operation the TEll mode is established in the first circular guide section 
with a plane of symmetry dependent on the orientation of the input 
rectangular guide. The quarter-wave plate, whose orientation is independent 
of the symmetry plane of the mode, then establishes a phase shift for one 
component of this mode with respect to the orthogonal component. 

For reference purposes the broadwall of the input waveguide is taken 
parallel to the horizontal plane and considered the x axis of the fixed 
coordinate system. The broadwall of the rotatable rectangular waveguide 
serves as a reference for the angular displaced axis x' with the angle of 
displacement {3. The angle between the y' axis and the plane of the 
quarter-wave plate (plane in which the linear component is delayed in phase 
by ~ 1T) is denoted by o. The unit vectors ull and u.L are, respectively, in the 
plane and perpendicular to the plane of the quarter-wave plate, and both are 
transverse to the axis of revolution of the circular horn. Figure 5.2 shows 
these coordinates. 

It is obvious that the first rectangular guide section, apart from serving a 
transmission function, merely establishes a reference frame. It may be 
omitted and the rectangular-to-rectangular rotary joint replaced by, for 
example, a movable coaxial-to-rectangular transducer. Also, any antenna 
with circular symmetry, such as a cylindrical polyrod, may be used in place of 
the horn. 

The far field transmitted by the antenna is 

(5.1) 

where Ell and E.L are the relative field strengths, in the plane and perpendicu­
lar to the plane of the quarter-wave plate, respectively, on the axis of the horn 
at the far-field point. From Fig. 5.2 it is seen that 

y 
y' 

x' 

x--------____________ ~~ 

FIGURE 5.2. Coordinates for waveguide system. 
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and that 

U" = cos ({3 + 8)uy - sin ({3 + 8)ux (a) 

U ~ = sin ({3 + 8 )uy + cos ({3 + 8 lUx (b) 

E" = Ey • cos 8 (a) 

E1- = Ey • sin 8 (b) 

(5.2) 

(5.3) 

For convenience, (5.1) can be normalized by requiring IEy.1 = 1. Using 
(5.2) and (5.3), (5.1) becomes 

E({3, 8) = cos 8[cos ({3 + 8)uy - sin ({3 + 8)uxJ 

+ e j1T12 sin 8 [sin ({3 + 8)uy + cos ({3 + 8)ux ] (5.4) 

which by simple trigonometric manipulation becomes 

E({3, 8) = !{[uy cos {3 - U x sin {3] + [uy cos ({3 + 28) - U x sin ({3 + 28)] 

- U x sin ({3 + 28)]} (5.5) 

The first and third bracketed terms in (5.5) are identified as unit vectors in the 
y' direction (u y .). The second and fourth terms describe a unit vector leading 
Uy' by angle 28(U28 ) as shown in Fig. 5.2. 

The linearly polarized field components of (5.5) may be expressed in terms 
of right circular and left circular rotating components. 

(5.6) 

where w L and w R are defined by (2.74). The phase angles of u L and u R are 
chosen so that at the time origin they coincide with uy'. Then 

(5.7) 

Making similar substitutions for U28 causes (5.5) to become 

+ j( f3 + 8 + 1T 14) (~ 1 ) ] e cos u - 'I7T W R (5.8) 
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From (S.8) we obtain the circular polarization ratio 

q = e- j (2{3+2o+7T) cot (8 + ~7T) (S.9) 

A plot of (S.9) is shown in Fig. S.3 for f3 = O. It is evident that all possible 
axial ratios are included as 8 increases from - ~ 7T to 0 (left circular to linear 
vertical polarization), with the field vector rotating in the left-hand sense. The 
polarization changes from linear vertical to right circular as 8 increases from 0 
to + ~ 7T, with all possible axial ratios included. From (S. 9) axial ratio and tilt 
angle are 

AR = cos (8 + 7T/4) + sin (8 + 7T/4) (a) 
sin (8 + 7T/4) - cos (8 + 7T/4) 

(b) 

where the axial ratio is negative for left elliptical polarization. 

(S.10) 

q Plane, 0 < /j < rr/4 

(· ...... II~HJ)+ 
w Plane, -rr/4 < /j < 0 

FIGURE 5.3. Polarization contour on Smith chart used as q and w planes. 
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A logical change in this system is the replacement of the quarter-wave 
plate with a "variable-wave" plate (such as a ferrite slab biased transverse to 
the direction of propagation and parallel to the slab) which introduces a phase 
delay I/J into the field component parallel to the plate . Physical considerations 
fix the angle of polarization inclination 0 at ! l' radians. This configuration is 

. amenable to the same analysis applied to the quarter-'Yave plate, with the 
result 

q = e -j(7r + 2{3) cot( ~ I/J + * 1') (5.11) 

leading to 

AR = cot ( ! I/J ) 

(5.12) 
AR = tan ( ! I/J) 

T=f3 

This second arrangement allows the replacement of a mechanical rotation by 
a bias current. 

While this discussion has been concerned with the transmission of an 
elliptically polarized wave, it is obvious that the system can also be used to 
measure the polarization of an incoming wave. It is left as an exercise to 
develop the required equations. 

5.3. ANOTHER WAVEGUIDE SYSTEM 

Figure 5.4 shows a second waveguide system for radiating an elliptical wave 
with any desired polarization ratio. It has been constructed and found to 
perform well. The two inputs are fed from a common source using a power 
splitter. Placing an attenuator before each input and a phase shifter before 

Port 1 

Circular guide 

TEll mode 

Vertical post 

Horizontal wires 

Broadwall 

Orthogonal TEll modes 

Rectangular guide 

TElO mode 

Port 2 

FIGURE 5.4. Two-port waveguide system for elliptical waves. 



196 GENERATION OF GENERAL POLARIZATIONS 

one input allows two orthogonal waveguide modes to be established with 
relative amplitude and phase controllable over any desired ranges. 

The input signal at port 1 establishes a TEll circular guide mode that 
travels toward the dielectric rod radiating element. The electric field of this 
mode is horizontal (in the plane of the paper) on the axis of the guide. The 
input at port 2 establishes the TElO mode in the rectangular guide with a 
vertical electric field. At the junction of the rectangular and circular guides, 
this TElO rectangular mode excites a TEll mode in the circular guide with a 
vertical electric field on the guide axis. A vertical post placed in the circular 
guide serves to prevent this vertical TE 11 mode from traveling to the left, 
toward port 1. A grid of horizontal wires at the junction of the guides 
similarly serves as a mode filter for the rectangular guide. 

We then have two orthogonal TEll modes in the circular guide with 
relative amplitudes and phase difference independently controlled. Off-axis 
the fields produced by a dielectric rod antenna excited with a TEll mode are 
complex and will not be discussed here, but on-axis, because of the symmetry 
of the TEll mode, the vertical TEll mode will produce a vertical linearly 
polarized wave in the far field. The orthogonal TEll mode will produce a 
horizontal far field. Since the amplitudes and phase difference can be set at 
will, it is clear that on the axis a wave of any desired polarization can be 
radiated. 

It is quite clear that this system can also be used to measure the 
polarization ratio of an incoming wave. The two paths from the rod antenna 
to ports 1 and 2 are not equivalent, however, so the system must be calibrated 
in order to measure polarization by comparing outputs at ports 1 and 2. In this 
respect it is not as convenient as the waveguide system described in Section 
5.2 or the one to be discussed in Section 5.4. 

5.4. LOSSLESS POWER COMBINER AND DIVIDER SYSTEM 

Figure 5.5 shows a lossless power combiner and divider system that is well 
suited for generating a wave with arbitrary polarization or measuring the 
polarization of an incident elliptically polarized wave [2]. It is based on the 
variable-ratio power divider of Teeter and Bushore [3,4]. The system may be 
set up either in waveguide or transmission line. The hybrid tees may be 
replaced by circulators, and in fact other variations are possible [3, 5]. One 
antenna is linear horizontal and the other is linear vertical. They are placed 
adjacent to each other and pointed in the same direction. Either antenna may 
be the vertically polarized one, but for definiteness we let this be the one 
marked 4. Then 2 is horizontally polarized. 

We will utilize s.cattering matrices [6] in examining the microwave net­
works, with the ports of the hybrid tee numbered as in Fig. 5.6. The scattering 
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Phase shifter 

2 Hybrid T 2 

3 1 3~~~~ 
4 

Antenna 4 

Load 

2 
'--~----fl 3~-;;:----

4 

Receiver 

Phase 
shifter 

4 

3~-30----' 

4 

Transmitter 

FIGURE 5.5. Power combiner and divider for transmitting and receiving arbitrarily polarized 
waves. 

matrix is given by 

[0 
1 0 

1}a1 
1 1 0 -1 

(5.13) [ b 1 = [ S][ a 1 = V2 ~ -1 0 
0 1 

Let us consider first the system as used in receiving, Fig. 5.5(a). We assume 
that there is at least one direction in which the effective lengths of the two 
antennas used will be equal. For example, crossed dipoles with equal length 
transmission paths to the ports of the upper tee of Fig. 5.5(a) have equal 
effective lengths along a direction perpendicular to the dipoles. For simplicity 
in the initial development we will take this direction to be the z axis of Fig. 
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FIGURE 5.6. Port designations for the hybrid tee. 

5.7. We will relax this requirement later. The incident wave travels in the ~ 
direction in Fig. 5.7. 

Let the incident wave, in xyz coordinates, be 

Ei = E (0 a + 0 beN) o x y 

y 

~ z 

~ 

Incident wave 

FIGURE 5.7. Antennas and coordinates for the power combiner system. 

(5.14) 
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Without loss of generality we drop any common amplitude coefficients and 
neglect phase shifts common to both input arms of the upper tee of Fig. 
5.5(a). Then the inputs to the upper tee are 

(5.15) 

where we have made use of the assumption that the effective lengths of the 
two antennas are equal in magnitude. 

The outputs from the top tee, using the scattering matrix of (5.13), are 

b = _1_ (a + a ) = _1_ (ae- ja + beN) (a) 
I V2 2 4 V2 

b =_l_(_a +a)=_l_(-ae- ja +be jcjJ ) (b) 
3 V2 2 4 V2 

(5.16) 

Phase shifts common to both lines or waveguides connecting top and 
bottom tees can be neglected. Then if f3 is the differential phase shift, the 
inputs to the bottom tee are 

1 . .'" 
a = b = - (ae- la + bel'!') 

I I V2 (a) 

(5.17) 

and the outputs from the bottom tee are 

b
2 

= .Jz (a
l 

- a
3

) = ~[ae-ja + beN - e- j{3(-ae- ja + beN)] (a) 

(5.18) 

b
4 

= .Jz (a
l 
+ a

3
) = ~[ae-ja + be

jcjJ + e- j{3(-ae- ja + be jd')] (b) 

Removing e -ja from each expression leaves 

(5.19) 

Now we let 

(5.20) 

and require 
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It follows from (5.19) that 

a ±jb + e- jf3(a =+ jb) = 0 

or 

-jf3 _ a ±jb e ----
a =+ jb 

Using the upper and lower signs, respectively, in (5.22) gives 

2 
-1 b f3 = 1T =+ tan -

a 

For either of these values, which make b 2 = 0, we get for b 4 

b4 = !e-
j
"[ a ±jb + : :~: (a += jb)] = e-ja(a ±jb) 

and it follows that 

. (5.21) 

(5.22) 

(5.23) 

(5.24) 

(5.25) 

We see then that all of the incident energy is directed to port 4 of the 
bottom tee by our choices of phase delays 

-1 b f3 = 1T =+ 2 tan -
a 

(5.20) 

(5.23) 

We could just as well direct all of the energy to port 2 of the lower tee by 
the choices 

Then 

+ 'b 
e- jf3 = ~ 

a =+ jb 

-1 b f3 = =+ 2 tan -
a 

(5.26) 

(5.27) 

(5.28) 
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(a) 

(5.29) 

(c) 

This system has several uses. First, it can extract maximum power from an 
incident wave of any polarization by appropriate choice of the phase shifts a 

and {3. Second, it may be used to measure the polarization of an incident 
wave, using procedures outlined in Section 8.5 . Finally, we will see here that 
it allows the formation of a polarization-adaptive two-way communication 
system. 

Let us consider that the system is set up for maximum output at port 4, 
with 

-jf3 _ a ± jb 
e ----

a+- jb 

-I b 
{3 = 7T +- 2 tan -

a 

(5.20) 

(5.22) 

(5.23) 

and is used for transmission, with an input to arm 4 of the lower tee and a 
matched load at port 2, as in Fig. 5.5(b). Then at the bottom tee 

a2 = 0 (a) (5 .30) 

The outputs from the bottom tee, using the scattering matrix of (5.13), are 

1 1 
bl = V2 (a 2 + a4 ) = V2 (a) 

1 1 
b3 = V2 (-a 2 + a4 ) = V2 (b) 

and the inputs to the top tee are 

1 
a l = V2 (a) 

_ b - j f3 _ 1 a ± j b (b) a- e -----
3 3 V2 a+- jb 

where the special value of (5.22) is used for {3. 
The top tee outputs are then 

(5.31) 

(5.32) 
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1 1 ( a ± jb) a 
b 2 = 4 M (a l - a3 ) = -2 1 + ~b = ~b v2 a+] a+] 

(a) 

1 1 ( a±jb) "+jb 
b 4 = 4 M (a l + a3 ) = -2 1-~b = ~b v2 a+] a+] 

(5.33) 

(b) 

The waves transmitted from the antennas are 

E I - b -ja. - _a_ j(¢ +7T/2) (a) 
x - 2e - a "+ jb e 

(5.34) 
1 "+ jb ( ) 

Ey=b 4 = a"+jb b 

The total power radiated is of course 

(5.35) 

and the polarization ratio of the transmitted wave, in the directions for which 

11121 = 111 4\' is 

1 E~, "+ jb . b -,'¢ 
P =j-I =j =]-e Ex ae j (¢+7T/2) a 

(5.36) 

Now the polarization of the incoming wave is 

i . ET) . Ey . b j¢ 
p =]-=-]-=-]-e 

Eg Ex a 
(5.37) 

and we have 

1 i* 
P =p (5.38) 

The conclusion is that if we set the phase shifters of our power combiner to 
give maximum output at port 4 of the bottom tee of Fig. 5.5 on reception, and 
then use the system to transmit by applying a signal to port 4, the polarization 
ratio of the transmitted wave is the conjugate of the polarization ratio of the 
received wave. This would be true also if we maximized the power output of 
arm 2 of the lower tee and then applied the generator to the same arm. 

Suppose we leave our phase shifters set so that on reception b 2 = 0 and b 4 

is maximum, with phase shifts given by (5.20) and (5.23). Now, however, 
instead of connecting a generator to port 4 for transmission, we connect it to 
port 2, so that at the bottom tee inputs are 

a2 = 1 (a) a4 = 0 (b) (5.39) 

An analysis similar to the preceding one gives the transmitted signals as 
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EI = - _b_ eN (a) 
x a =+ jb 

EI = __ a_ (b) 
Y a + jb 

(5.40) 

leading to a polarization ratio 

1 
(5.41) i 

P 

Suppose now that we have a communication configuration with this 
variable polarization system at one end, as in Fig. 5.8, and a fixed arbitrarily 
polarized antenna at the other. The fixed polarization antenna transmits a 
wave with polarization pi toward the variable polarization system, which is 
then set to receive maximum power. In turn, when used to transmit from the 
port at which maximum power is received, the power combiner system 
transmits a wave with polarization pI = pi'. But this is the polarization that the 
fixed polarization antenna receives best. Thus adjustment of the variable 
polarization antenna until it receives maximum signal causes it, on transmis­
sion, to transmit a wave from which the fixed polarization antenna receives 
maximum power. This offers the opportunity for an automatically adaptive 
(in polarization) two-way communication system. 

The condition (5.41) may be recognized as the cross-polarization condition 
in a communication link. Thus, in the link of Fig. 5.8, if the variable 
polarization system on reception is set for maximum power out at port 4, 

J 
l 
J 

/~ 

Variable-polarization system 

)' 

~2 

Fixed-polarization 
antenna 

FIGURE 5.8. Power-maximized communications link. 
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connecting the generator to arm 2 on transmission would cause the fixed 
polarization antenna in the link to receive no power. 

It was mentioned earlier that for simplicity, we would assume that in the z 
direction the effective lengths of the two antennas are equal. Now, in general, 
the effective lengths are complex functions of direction, and if the reference 
points for the effective lengths are taken at the inputs to the upper tee of Fig. 
5.5, the effective lengths also depend on the lengths of the transmission paths 
to the tee. We therefore use 

(a) 
(5.42) 

Again, neglecting the common phase shift 82 , the inputs to the top tee of Fig. 
5.5 change from (5.15) to 

(5.43 ) 

We can find the outputs of the bottom tee replacing a by Ih,la and b by 
~ -Ih 4 le' b in (5.19). The result is 

b
2 

= !e- ja [lh
2
Ia + Ih

4
Ibe j

(ctdn + ,,) + e- j /3(lh
2
Ia -lh

4
Ibe j

(</d
a

+8))] (a) 

(5.44) 
b 4 = ! e - j a [ I h 21 a + I h 41 be j (ct

d 
It + ,,) - e - j /3 ( I h 21 a - I h 41 be j (</>+ cr + 8 ) ) ] (b) 

If now we set 

and require 

it follows from (5.44) that 

or 

which gives 

Ih21a ±jlh4 lb + e- j /3(lh 2 Ia =+= jlh 4 lb) = 0 

e- j {3 = _ Ih21a ± jlh 4 1b 
Ih21a =+= jlh 4 1b 

(5.45) 

(5.46) 

(5.47) 
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(5.48) 

Then 

_ 1 -jcx[1 1 +·1 1 Ih21a ±jlh4lb 1 1 -·1 1 ] 
b 4 - 2 e h2 a - ] h4 b + 1 h21 a += jl h41 b ( h2 a + ] h4 b) 

(5.49) 
= e-jCX(lh2/a ±jlh4Ib) 

which leads to the equation 

(5.50) 

This again is all of the incident power, since b2 = o. 
If we now use this system for transmission by connecting a generator to 

arm 4 of the lower hybrid tee and a matched load to arm 2, while leaving 
phase shifts a and (3 set as in (5.45) and (5.48), we have lower tee inputs 

a2 = 0 (a) (5.51) 

The inputs to the top tee may be found from a3 = b3 exp( - j(3), using (5.31) 
for b 3 and (5.47) for exp(-j{3). They are 

1 Ih21a ± jlh41b 
a3 = - V2 Ih21a += jlh41b 

The outputs from the top tee then become 

(a) 

(b) 

1 Ih21a 
b2= V2 (a l -a 3 )= Ih2la+=jlh4lb (a) 

1 +=jlh4lb 
b4= V2 (a l +a3 )= Ih2la+=jlh4lb (b) 

The transmitted wave then has components 

(5.52) 

(5.53) 

(5.54) 
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and polarization 

(5.55) 

We conclude that in this more general case for which h2 -:j= h4 in the 
direction of the incoming wave (due perhaps to the use of nonidentical 
antennas, to improper orientation of the antennas, or to unequal transmission 
path lengths between antennas and hybrid tee inputs), if the system is set up 
for maximum power reception and then used for transmitting, the transmitted 
signal in the direction from which the original signal was received is modified in 
its polarization characteristics by the ratio Ih 4 12/lh212. 
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POLARIZATION CHANGES 
BY REFLECTION AND 

TRANSMISSION 

6.1. LINEAR POLARIZATION 

In this section we shall consider the reflection and transmission of a linearly 
polarized plane wave at the plane interface between two media. It is 
convenient for this problem to use a rectangular coordinate system with two 
axes lying in the plane of the interface, but since the incident wave strikes the 
interface at some angle other than perpendicular, we must change its 
components to the appropriate coordinates for the interface. The transform­
ations are readily apparent from Fig. 6.1. The plane wave being considered 
travels in the ~ direction. The x and g axes coincide and are into the plane of 
the page. From the figure, we see that 

~ = z cos () + Y sin () 

TJ = y cos () - z sin () (6.1) 

and since space vector components transform like the coordinates of a point, 

U~ = U z cos () + uy sin () 

U7} = uy cos () - U z sin () (6.2) 
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y 

~.~~--------------~-------------z 

FIGURE 6.1. Coordinate transformations. 

We define a plane of incidence as that plane containing a vector in the 
direction of wave travel, u~, and a vector normal to the interface, uz . It is then 
convenient to consider linearly polarized waves by two cases, E lying in the 
plane of incidence (H perpendicular to the plane) and E perpendicular to 
the plane of incidence (H in the plane). 

For this case 

Fields: Polarization Normal to Plane of Incidence 

EI; = Eoe -jk~ (a) 

H - Eo -jk~ T/-Ze (b) 

where Z is the characteristic impedance of the medium. 
In the general case, for lossy media, k and Z are given by 

k = wVjIE~l - j ~ 
We 

(6.3) 

(6.4) 
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Z = ~ jwf.L 
(J" + jWc 

and are specialized to the lossless case by sett~ng conductivity (J" = O. 
'Transforming to x, y, and z coordinates gives 
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(6.5) 

(6.6) 

and if we substitute (6.2) into (6.6) and equate coefficients of like unit 
vectors, then 

(6.7) 

If (6.1) and (6.3) are substituted into (6.7) the result is 

E = E -jk(z cos O+y sin 0) 
x Oe 

H = COS 0 EO e -jk(z cos O+y sin 0) 
y Z (6.8) 

H - . 0 Eo -jk(z cos O+y sin 0) 
- -SIn - e 

z Z 

Fields: Polarization in the Plane of Incidence 

For this case, H has only a g component and it is appropriate to write 

(6.9) 

where the negative sign for ETj is necessary to give wave travel in the ~ 
direction. Obviously, the tra'nsformation to new coordinates is the same as for 
the electric field normal to the plane of incidence, with the roles of Eg and Hg 
interchanged. The resulting fields are 

H = H -jk(z cos O+y sin 0) 
x Oe 

E - OZH -jk(zcosO+ysinO) 
y - -COS Oe (6.10) 

E - . OZH -jk(zcosO+ysinO) 
z - SIll Oe 
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.Y 

A 

Region 1 Region 2 

y'" 

x, x', x", x'" 

FIGURE 6.2. Coordinate systems for wave reflection. 

Figure 6.2 is a superposition of all of the rotated coordinate systems we 
need to study the reflection problem. The incident wave strikes the plane 
boundary at angle 0i' a part is reflected at angle Or' and a part transmitted at 
angle Of' We restrict our examination to 0i real so that (6.8) and (6.10) 
represent uniform plane incident waves. 

Snell's Laws 

Boundary conditions at the interface require the sum of two tangential fields 
to be equal to a third. It is obvious from the form of the waves [Eqs. (6.8) and 
(6.10) may represent incident, reflected, or transmitted waves with a proper 
choice of k and Z] that the boundary conditions can be met only if the phase 
variation with y in both media is the same for all field terms. These phase 
terms are [using the appropriate angles from Fig. 6.2 in (6.8) and (6.10)]: 

Incident wave 

Reflected wave 

Transmitted wave 

It follows that 

(6.11) 
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and from this equation we obtain Snell's laws, 

sin Or kl 
--=-
sin OJ k2 

(b) 
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(6.12 ) 

Our equations to this point are valid for lossy media, for which k and Z are 
complex. In a commonly encountered situation the first medium is air and the 
second the lossy earth. Equation (6.12) holds, but the transmitted wave is 
nonuniform. In this situation we are normally most interested in the reflected 
wave and, for lossy media, will restrict our attention to it. 

Reflection and Transmission Coefficients: Perpendicular Polarization 

We consider the waves to be composed of incident, reflected, and transmitted 
terms with appropriate superscripts. We define reflection and transmission 
coefficients as 

E~' I T -
J.. - E j z=o 

x 

The wave components of the incident wave are 

E
j = E -jk,(zcosOj+ysinO,) 
x oe 

H i = Eo -jk,(zcosOj+ysinO,) 
y' Z e 

I 

H i = ° Eo -jk.(zcosO,+ysinO,) 
)' cos j Z e 

I 

H i = _. ° Eo -jk,(z cosO,+y sinO,) 
z SIn j Z e 

I 

(6.13 ) 

(6.14) 

Noting that for the reflected wave the appropriate angle to use in (6.8) is 
7T - Or and using the first of Snell's laws, we get from (6.8) and (6.13) 

E r = r E -jk.(-z cos (/,+.1' sin 0,) 
x 1. Oe 

E /-r - -COS () H r - COS () r _0 e -'''.(-:. cos 1I,+y sin lI,l 
y - j " ,,, - - j J.. Z I 

(6.15) 

E J-r = -sin (}1-r .. = -sin or , _0 e-jkt<-:,c(l~(I."· .' · ~in(/.l 
• I Y I - ZI 
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For the transmitted wave, 

E { = T E -jk2(z cos 8,+y sin 0,) 
x .1 Oe 

H { = E:. = T EO -jk2(z cos 8,+y sin 8,) 

y'" Z .1 Z e 
2 2 

H { - II H{ - II T EO -jk2(Z cos 8,+y sin 8,) 
y - COS O{ .1'''' - COS V{ .1 Z e 

2 

(6.16) 

H { - -' II H{ - _. II T Eo -jk2(z cos O,+y sin 8,) 
z - SIn o{ y'" - SIn VI .1 Z e 

2 

The boundary condition on the tangential electric field components that 
must be met is 

(6.17) 

Use of the appropriate components from (6.14), (6.15), and (6.16) and 
noting that the phase terms are equal because of Snell's laws leads to 

(6.18) 

Since the magnetic field components are also necessarily continuous across 
the boundary, we have 

H~,lz=o + H~,lz=o = H~,lz=() (6.19) 

which becomes, using the field components and Snell's laws, 

(6.20) 

If (6.18) is utilized, we find for the reflection coefficient 

Z2 sec O{ - Z\ sec OJ 
[ =--------

.1 Z2 sec O{ + Z\ sec OJ 
(6.21) 

Reflection and Transmission Coefficients: Parallel Polarization 

For this case we define reflection and transmission coefficients as 

H~I [ =-
II H j z=o 

x 

H~' I T - ., 
II - Hi z=o 

x 

(6.22) 

Some authors define [II as E~.1 E~" rather than as above. This definition does 
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not utilize the symmetry of the Maxwell equations, and it chooses one of two 
electric field components in preference to using the only magnetic field 
component. Our choice here agrees with that of Stratton [1]. 

From (6.10) and (6.22) the wave components are 

H i = H -jk1(z cos lI;+y sin 0;) 
x Oe 

Ei = _ Z Hi = - Z H -jkdz cos lI;+y sin lI;) 
y' 1 x 1 Oe 

(6.23) 
Ei = cos (}'E i • = -cos () .Z H e -jk1(z cos lI,+y sin 0;) 

y I Y I 1 0 

H r = r H -jk1(-Z cos O;+y sin lI;) 
x II Oe 

E r = - Z H r = - Z r H -jk1(-z cos 8;+y sin lI;) 
y" 1 x 1 II Oe 

(6.24) 
E r = - 0 () E r = 0 () Z r H -jk1(-z cos O;+y sin 0;) 

y C S i y" C S i 1 II Oe 

E r - _. () E r - . () Z r H -jk1(-Z cos lI;+y sin 0;) 
z - SIn i y" - SIn i 1 II Oe 

(6.25) 

Using these fields, the boundary condition 

(6.26) 

and Snell's laws give immediately 

(6.27) 

The boundary condition 

E~lz=o + E~lz=o = E~lz=o (6.28) 

and Snell's laws lead to 

(6.29) 
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Then, use of (6.27) gives for the reflection coefficient 

(6.30) 

Alternate Forms for the Fresnel Coefficients 

It is obvious that Snell's laws can be used to remove 8( from Eqs. (6.21) and 
(6.30). At the same time we will use the grazing angle 

a = ~ 7T - 8. _ 1 (6.31) 

and specialize to the interface between air and a lossy medium, replacing /-tl 

and E 1 by /-to and Eo and using for the lossy medium /-t2 = /-to, Eo = E, and 
(J2 = (J. 

Since E always occurs in the combination (J + jWE, we can define a complex 
dielectric constant 

(J + jWE = jWE( 1 - j :E) = jwi (6.32) 

where 

i = E( 1 - j ~) 
. WE 

(6.33) 

We can also write 

(6.34 ) 

(6.35) 

Substitution into (6.21) and (6.30) causes them to reduce to 

8 ( "/ . 2 )1/2 r = cos i - E Eo - SIn 8i 

1. 8 ("/ . 2 )112 cos i + E Eo - SIn 8i 

. ("/ 2 )1/2 SIn a - E Eo - cos a 

• ("/ ? )10 SIn a + E Eo - cos- a -
(6.36) 

( "/ ) . ("/ 2 )112 E Eo S1 n a - E Eo - cos a 

(
"/ ) • ("/ ? )1/2 E Eo SIn a + E Eo - cos- a 

(6.37) 

Power: Perpendicular Polarization 

We restrict this discussion to lossless media, although the extension to lossy 
media is simple. We also will distinguish between Poynting vectors and the 
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proportion of incident power that is reflected and transmitted, a distinction 
not often made in texts. 

The Poynting vectors, taken from the appropriate fields, are 

(6.38) 

The ratio of reflected to incident power is the same as the ratio of their 
Poynting vectors, thus 

(6.39) 

However, the ratio of transmitted to incident power is not equal to the 
Poynting vector ratio, as may be seen from Fig. 6.3. The power incident on 
the interface within the confines of some arbitrary channel is partly reflected 
in a channel of equal cross section, and partly transmitted in a channel of 
different cross section. Equation (6.39) follows immediately, and we can get 
the ratio of transmitted to incident power as 

(6.40) 

Region 1 Region 2 

FIGURE 6.3. Channel widths for reflection and transmission. 
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Power: Parallel Polarization 

The Poynting vectors for this case are 

Sr = !ZlH:.H:+ = !ZlIHoI2Ir,,12 

Sf = !Z2H:H:+ = !Z2IHoI2IT,,12 

The proportions of reflected and transmitted power are 

Total Transmission 

(6.41) 

(6.42) 

For parallel polarization an incidence angle, called the Brewster angle, can be 
found for which all of the incident power is transmitted across the interface 
into the second medium. From (6.30), r" = 0 if 

(6.43) 

Considering lossless dielectrics, with equal permeabilities, for which 

(6.44 ) 

we obtain a solution to (6.43), 

( 6.45) 

At this angle of incidence, all of the wave is transmitted and none 
reflected. There is no comparable solution for perpendicular polarization, as 
may be seen by setting r 1. = 0 in (6.21). This phenomenon allows the 
production of a linearly polarized wave by reflection of a wave with general 
polarization. . 
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Total Reflection 

For lossless media with equal permeabilities, Snell's law for transmission is 

(6.46) 

If V £1/ £2 > 1 then sin 0/ > 1 for a range of incidence angles OJ. Then the 
exponential term for the transmitted fields, with either perpendicular or 
parallel polarization, from (6.16) or (6.25), becomes 

e -jk2(z cos 8,+y sin 8,) = e -jk2(zY1-sin 2 8,+ y sin 0,) = e -k2zysin2 0, - 1 e -jk2y sin 8, (6.47) 

which no longer represents a uniform plane wave in region 2. Examination of 
the fields shows that no power propagates in the z direction in region 2, and 
therefore no wave propagates across the interface. It follows that for this 
situation, the magnitude of the reflection coefficients is unity, 

and all incident power is reflected. The angle 

(6.48) 

which gives sin 0/ = 1, is called the "critical angle." All greater angles of 
incidence lead to complete reflection at a boundary. 

Note from (6.47) that in region 2 a nonuniform wave is set up which 
appears to propagate in the y direction and falls off in amplitude with z. 
Obviously, this field could have been set up only by waves propagating across 
the interface, but this is not predicted by our steady-state solution. 

6.2. ELLIPTICAL WAVES 

A linearly polarized wave that is neither perpendicular to nor parallel to the 
plane of incidence can be broken into perpendicular and parallel components 
and each component multiplied by the appropriate reflection and transmis­
sion coefficients in order to obtain the complete reflected and transmitted 
fields. As a matter of fact, this procedure can be applied to a generally 
polarized incident wave if the phase difference between perpendicular and 
parallel components is accounted for. 

An incident wave of general polarization may be written, using the primed 
coordinate system of Fig. 6.2, as 
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Ei = E (u .a + u beN)e -jklz' o X y' (6.49) 

where Eo is taken as real without loss of generality. To assist us in determining 
the reflected and transmitted wave components, we find the magnetic field 
components corresponding to the electric field. 

(a) H - Eo -jklz' 
y' - Z ae 

1 

(b) (6.50) 

Eob N -jk z· (b) H = --- eel 
x' Z 

1 

(6.51) 

From (6.13) and (6.50) the reflected and transmitted fields arising from the 
incident Ex ' are 

(a) 
(6.52) 

From (6.22) and (6.51) those fields arising from the incident Hx' are 

Eob 0-1 Ok" 
H r - -f -- j'i' -j "IZ 

x" - II Z e e 
I 

(a) 

(6.53) 
I Eob 0' Ok'" H - T j" -j"2L 
x'" - - II Z e e 

1 

(b) 

with associated electric fields 

E r - Z H r - fEb H, -jkl z" 
y" - - 1 x" - II 0 e e (a) 

(6.54 ) 

E I = -z HI - Z2 T E b H, -jkzz'" (b) 
y '" 2 x'" - Z II () e e 

1 

The total fields, incident, reflected, and transmitted, are then 

Ei=E(u a+u beN)e-jklz' o x' y' 

Er- E ( f + r b jel,) -jklz" 
- 0 U x " J.. a U y" II e e 

E I - E (T Z2 T b N) -jk 2 z'" 
- 0 U x '" J.. a + U y'" Z II e e 

1 

(6.49) 

(6.55) 

(6.56) 

Polarization ratios are easily obtained from these fields. They are 
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o b 0A-

p' = j - eJ'I' 
a 

Special Cases 
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(a) 

(6.57) 

Let us look at a few special cases as a means of verifying (6.57) and perhaps 
discovering some physical facts about the reflection of elliptical waves. 

1. Let OJ, the angle of incidence, be O. Then Or = 0, and the equations for 
reflection and transmission coefficients simplify to 

Then, from (6.57) 

Z2 - Z1 
fll = - Z + Z = - f 1-

2 1 

2Z1 
Til = 1 + fll = Z Z 

1+ 2 

r j 
p =p 

and we see that the transmitted wave has the same polarization as the incident 
wave, but in general the reflected wave is neither matched to the incident 
wave nor cross-polarized. 

At this point we must consider our coordinate systems. In Chapter 3, when 
we developed the equations for polarization match of two antennas, we used 
coordinate systems with coincident vertical axes as shown in Fig. 6.4(a). In 
our study of reflection at an interface we have used coordinate systems with 
coincident horizontal axes, as in Fig. 6.4(b). Examination of Fig. 6.4 shows 
that since 

y 

lLz 
(a) (b) 

y" 

FIGURE 6.4. Coordinate systems for (a) transmission between antennas and (b) reflection at 
normal incidenceo 
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ET) -Ey " Ey " 

E~ -Ex" Ex" 

the polarization parameter p is the same in the g, 7], {system and the x", y", z" 
system. Therefore, our previously developed equations for polarization 
match factor apply to reflection at normal incidence. 

2. Let 0i = 0 and pi = ± 1, where the upper sign corresponds to right 
circular polarization and the lower to left circular. Then 

The reflected wave is circularly polarized, but in the opposite sense to the 
incident wave. The incident and reflected waves are related by 

r 1 
p =-j 

p 

which is the condition for cross-polarization. Thus, if a circularly polarized 
wave is transmitted normally toward a plane interface, the reflected wave 
cannot be received by the transmitting antenna. 

3. Let the incident wave be linearly polarized. Then ¢ = 0 and 

i . b 
p = J­

a 
r . fll b 

p =J -­
fJ. a 

and we see that the reflected and transmitted waves are elliptically polarized 
unless both media are lossless or the wave incidence is normal. 

4. Let the incident wave be linearly polarized and "vertical." Note that 
vertical here means in the plane of incidence. Then 

i P ~oo ( p ~oo 

so the reflected and transmitted waves are also linear vertical. 

5. Let the incident wave be linearly polarized and horizontal. Then 

and all waves are linear horizontal. 

6. At the Brewster angle, fll = 0, and from (6.57), 

We see that the 'reflected wave is linear horizontal, no matter what the 
polarization of the incident wave (except for a linear vertical incident wave, 
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which would not be reflected at all). The transmitted wave is in general 
different from the incident wave in polarization. This characteristic can be 
used to produce a linearly polarized wave. Its use is rare at the lower 
frequencies, but more frequent for light. 

Reflections from a Conductor 

Let a wave in air be reflected from a plane surface that is a good conductor. 
From (6.35) we see that Z2 = 0, and from (6.21) and (6.30) we obtain 

f1- =-1 fll = +1 (6.58) 

independent of the angle of incidence. Then (6.57) gives immediately 

r i P =-p (6.59) 

or in terms of the common polarization ratio P, 

(6.60) 

Again we stress that this is independent of the angle of incidence. 

The Flat Plate 

We consider an infinite (so that edge effects are unimportant) flat plate, Fig. 
6.5. Let the incident wave be linearly polarized perpendicular to the plane of 

y 

~z ____________ ~ ______ ~\\1 

FIGURE 6.5. Polarization changes by reflection from flat conducting plate. 
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incidence, so that E~ = 0, E~ ¥= 0, pi = jE~/ E~ = 0. This is a linear horizontal 
wave, according to the arbitrary definitions of Chapter 2. Then, from (6.59), 

which is also a linear horizontal wave. 
For a linear vertical wave (polarized in the plane of incidence), E~ = 0, 

E~, ¥= 0, pi = joo. Then 

r . 
p = -Joo 

which also represents a linear vertical wave. 
Let the incident wave be right circular so that 

Then from (6.59) we see that 

which represents a left circular wave. The reverse is also true; a left circular 
wave will be reflected as a right circular wave. This leads to the well-known 
result that a monostatic radar transmitting a circular wave and receiving a 
wave of the same sense will be blind to a flat plate. It is clear that this is true 
also for a bistatic radar. 

Dihedral Corner Reflector 

A dihedral corner reflector that can be used for cross-section enhancement of 
a radar target is shown in Fig. 6.6. The plane conducting surfaces form a right 

It-cl:o€:--a-_O)o~1 

T 
b 

1 
FIGURE 6.6. Dihedral corner reflector. 
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angle. It is readily apparent that a ray striking one of the surfaces from a 
direction perpendicular to the line of intersection of the two planes will be 
reflected in the direction from which it came. The scattering matrix for this 
reflector will be developed in a later section. We consider now only the 
polarization ratios. 

Application of (6.59) twice for a dihedral corner oriented so that its fold 
line coincides with either the x or y axis gives 

(6.61) 
r , i 

P = -p = p 

and thus the reflected wave has the same polarization as the incident wave, 
provided that the plates are large and edge effects may be neglected . 

We recall from Section 3.6 that for the reflected wave to be matched to the 
same antenna used to transmit the incident wave, it is necessary that 

r i' 
P =p (6.62) 

It follows that a monostatic radar may be blind to a dihedral corner reflector 
for some polarizations of the radar. Obviously, linear vertical and linear 
horizontal (with respect to the line of intersection of the plates) represent the 
polarization-matched cases. 

If the incident wave is right circular, 

then the reflected wave is also right circular, with 

which represents a polarization-matched case. These cases should not mislead 
one, however, into thinking that any wave reflected from the dihedral corner 
reflector is polarization matched to the transmitter. Consider an incident 
wave that is linear and tilted at 45°, so that E;. = E:. and 

Then 

which represents a linear wave tilted at 45° in a reversed coordinate system 
appropriate to the reflected wave, Fig. 6.7. We see that the reflected wave is 
cross-polarized and the radar is blind to the dihedral corner. 
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x x 

Ei 

yZ 
~-----y y-----~ 

Z 

Incident Reflected 

FIGURE 6.7. Incident wave with 45° tilt and reflected wave for dihedral corner reflector. 

Trihedral Corner Reflector 

The dihedral corner reflector has a serious defect as a cross-sectional 
enhancement device. The incident ray must lie in a plane perpendicular to the 
line of intersection of the planes that form the corner if the reflected ray is to 
be directed back to the radar. This deficiency can be overcome by using a 
trihedral corner reflector. Figure 6.8 shows a triangular trihedral corner 
reflector, although other shapes are possible. 

In general, rays that strike an interior surface of the trihedral corner will 
undergo three reflections as indicated by Fig. 6.8 and will be returned parallel 
to the incident ray. There are exceptions to this rule, however. If the incident 
ray is at a sufficiently large angle from the axis of symmetry of the corner 
reflector, it will undergo two reflections only. The ray may, for example, 
strike plane AGB and be reflected to plane AGC. If plane BGC is not 
sufficiently extended, the ray from AGC will not strike it and thus will not be 
returned parallel to the incident ray. 

pr 

FIGURE 6.8. Triangular trihedral corner reflector. 
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It is also obvious that, if the incident ray is parallel to one of the reflecting 
planes forming the trihedral corner, it will be doubly reflected back to the 
source with polarization 

r i 
P =p 

If we apply (6.59) three times for the triply reflecting case, it is clear for the 
trihedral corner reflector that the polarizations of reflected and incident 
waves are related by 

r i 
P =-P (6.63) 

It is quickly seen from this that linear vertical waves are reflected as linear 
vertical and linear horizontal as linear horizontal. In fact, any linearly 
polarized wave is reflected so that it is polarization matched to the transmit­
ting antenna. To see this, consider Eq. (3.49) which gives the polarization 
match factor 

(1 + PIP2)(1 + prp~) 
p = (1 + PIPn(1 + PzP~) (3.49) 

We consider the incident wave to be wave 1 and the reflected wave to be 2. If 
the incident wave is linearly polarized, the phase angle in the modified 
polarization ratio is zero. Then 

with b / a real. For the trihedral reflector 

r . b 
P = -]-

a 

and substitution in (3.49) leads to 

p=l 

This result is not unexpected because, although we used "vertical" 
polarization as an example, this reflector has no natural vertical axis for an 
incident ray directed along the symmetry axis of the trihedral corner. Note, 
however, that if the wave is reflected from only two planes of the trihedral 
corner, it may be significantly cross-polarized. 

Finally, we note that if the incident wave is circularly polarized, the 
reflected wave is also circularly polarized with the opposite sense, and thus 
the trihedral corner reflector is invisible to a circularly polarized radar using 
the same antenna system for transmitting and receiving. 
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We can obviously extend the developments for the dihedral and trihedral 
corner reflectors to obtain the polarization of a wave reflected by n plane 
surfaces (large compared to a wavelength). It is 

(6.64) 

6.3. REFLECTION AND TRANSMISSION MATRICES 

In reflection problems we sometimes need to know field magnitudes of the 
reflected and transmitted waves, in addition to their polarizations. In the field 
equations we can drop the distance exponentials since they do not affect 
either the power in a wave or its polarization, and write 

(6.65) 

It is obvious from (6.65) that we can write the relationships between the 
field components as 

[ E;"] = [f> o ][ E~'] 
E.. 0 r ll E~" y 

(6.66) 

and 

, [T> 
o J [ E;"'] = 

E:, 
Z2 T [E i ] E y'" 0 Z II y' 

1 

(6.67) 

The coefficient matrices are called the reflection and transmission mat­
rices. They are not the scattering matrices commonly encountered in radar (to 
be discussed in the next section) because they are concerned with reflections 
from an infinite plane, they involve bistatic reflections, and different coordi­
nate systems are used for Ei and Er. 

We may write the fields in terms of left and right circular components using 
the relationships developed in Chapter 2. They are 

Ei = Eo(ux,a + uy,be N ) = Eo(LiW~ + Rie-jyiw~) (a) 

E
r 

= Eo (ux .. r 1- a + uy .. rll beN) 

= Eo(Lr w~ + R r e -jy'w~) 

E' = Eo( ox",T" a + 0y'" ~2 TllbeN
) 

1 

= Eo(Ltw~ + Rte-jy(w~) 

(b) 

(c) 

(6.68) 
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where we use'}' = - 0 to avoid confusion between the space angles 0" Or' Or 
and the phase angles between left and right circular wave components. In 
(6.68) the vectors W L and W R are identified as to their corresponding 
coordinate system by their superscripts so that, for example, W ~ :j:. W ~. 

From (6.68) we find the left and right circular wave components to be 

(a) 
(6.69 ) 

Rie-jy, = !(a + jbeJ<P) (b) 

L r = !(rJ. a - jrllbei<P) (a) 
(6.70) 

Rre-iYr = !(rJ. a + jrllbei<P) (b) 

t I (T . Z2 T b N') L = 2 .L a - ] Z II e 
I 

(a) 

(6.71) 

(b) 

These equations may also be put into matrix form without difficulty. The 

result is 

( 6.72) 

(6.73 ) 

We note that since the off-diagonal terms of (6.66) and (6.67) are zero. an 
incident linear vertical wave cannot give rise to a reflected or transmitted 
horizontal wave. Since the off-diagonal terms of (6 .72) and (6 .73) are not 
zero in general. an incident circular wave of one sense can create a circular 
wave of the other sense. either reflected or transmitted . 

We may see also from (6.72) and (6 .73) that an incident left circular wave 
gives the same reflected and transmitted powers as an incident right circular 
wave. 



228 POLARIZATION CHANGES BY REFLECTION AND TRANSMISSION 

6.4. BACKSCA'fTERING FROM A TARGET: 
THE SCATTERING MATRIX 

The backscattered power from a radar target is dependent on the polarization 
of the wave transmitted toward it. Further, many targets can reflect a wave 
that is significantly cross-polarized, that is, has a field component not present 
in the incident wave. For example, consider the wave to be linear vertical and 
the target to be a thin wire transverse to a line from radar to target and 
neither vertical nor horizontal in the transverse plane. It is obvious that a 
current induced in the wire by the incident vertical field will reradiate a wave 
with a substantial horizontal component. 

In many cases the transmitting and receiving radar antennas are so close 
that one coordinate system may be used for both antennas, as illustrated in 
Fig. 6.9, and so that f1 = f2 = f. In many cases, also, one antenna is used both 
for transmitting and receiving so that we need consider only one effective 
length and polarization ratio. 

The wave incident on the target from the transmitting antenna is 

(6.74 ) 

where we have dropped the phase term e - jkr. 

The field components are transverse to the direction of propagation, and if 
the z axis of Fig. 6.9 is oriented toward the target, these are x and y 
components. We may then rewrite (6.74) in a matrix form, and it is desirable 
to do so. Then 

[ £.~] = . ZoI [hx] 
£1 ] 2Af h 

y y 
(6.75) 

At the target an incident x component of the field gives rise to reflected x 
and y components, and similarly for an incident y component. Then we can 
write the reflected wave at the radar as 

(6.76) 

FIGURE 6.9. Backscattering from a target. 
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The [A] matrix is known as the target scattering matrix. Some discussion of 
the form chosen for it is in order. Some authors use subscripts -L and /I rather 
than x and y, but in reflection problems it is sometimes desirable to work with 
reversed coordinates so that a right-handed system is available for both 
incident and reflected waves. This is more easily done when using x and y 

. rather than with the less versatile -L and II. The use of V41Tr in the definition 
of the scattering matrix is not universal. Here we follow the usage of Sinclair 
[2] and Copeland [3]. On the other hand, Ruck et al. [4] use for the scattering 
matrix 

omitting the distance term. In their definition [ES] is the scattered field at the 
radar and [Ei] the electric field of an incident plane wave. The reader is 
advised that this usage is widespread. 

The scattering cross section of a target, when polarization is not taken into 
account, is defined as (see also Chapter 1) 

1
. 41Tr2 Sr 

if = 1m . 
r~ OO SI (6.77) 

where Sr is the magnitude of the Poynting vector of the reflected wave 
measured at the receiver, and Si is the Poynting vector magnitude of the 
transmitted wave measured at the target position. If the target depolarizes the 
incident wave, we must describe the scattering cross section by a matrix also. 

Ruck et al. give the relationship between the scattering matrix elements 
and the scattering cross section as 

However, in the notation of this book the distance term is avoided, which is 
desirable, and the relationship is 

(6.78) 

where Q' and f3 independently take on values x and y. Thus both if and A are 
independent of the radar-target distance. 

From (6.75) and (6.76) the reflected fields at the receiving antenna may be 
written as 

(6.79) 

If the roles of transmitting and receiving antennas are interchanged, the 
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reciprocity theorem states that the same open-circuit voltage is induced in the 
new receiving antenna as in the old. This requires that the scattering matrix 
be symmetric, that is 

Axy = Ayx (6.80) 

To see this, we rewrite (6.79) to show explicitly that [h] shown there is for the 
transmitter 

(6.81) 

Now the voltage induced in the receiver load is 

(6.82) 

where superscript r denotes the effective length of the receiving antenna. If 
we interchange roles of transmitting and receiving antennas while keeping the 
same current I, we must have the same open-circuit voltage. Therefore 

(6.83) 

Equating these two forms for VR gives 

Axy] [h~] _ i 
A i - [h x 

yy hy 
. [A h ;,] xx 

Ayx 
(6.84) 

Multiplication of these matrices shows that the equation can be satisfied only 
ifA xy = Ayx' 

Further, if the target is symmetric about a plane containing a ray from 
transmitting antenna to the target, the coordinate system may be chosen so 
that A xy = O. To see this, consider a simple target such as two diagonal wires, 
as shown in Fig. 6.10. A ray from the transmitter to the target lies in the 
symmetry plane and is perpendicular to the wires. We choose the coordinate 
system so that the x axis lies in the plane, and transmit a wave with only an x 
component, E~ in (6.76). At some instant of time the incident wave will set up 
currents as shown in Fig. 6.10. Obviously, when these currents reradiate, the 
vertical components will cancel. Then in (6.76), E~, must be zero, and 
therefore 

Ayx =0 



BACKSCATTERING FROM A TARGET: THE SCATTERING MATRIX 231 

I 

Y 
, Symmetry plane 

~~ 

FIGURE 6.10. Simple target with symmetry plane. 

The incident power density at a target may be written, using (6.75), as 
2 

i Zol 1 12 1 12 S = 8A 2r2 ( h Ix + h 11' ) (6.85) 

where Zo and 1 are taken as real, and 1 is the amplitude of the sinusoidal feed 
current rather than its rms value. If Zo and 1 are not real, their amplitudes 
should be used in (6.85). We use subscript 1 for the transmitting antenna. 

We may write Si in matrix notation as 

Z 12 
Si = _0 _ [h ]T[h ]* 

8A2r2 I I 
(6.86) 

where [hl]T is the transpose of the column matrix [hi], and [h l ]* is the 
conjugate matrix. 

The Poynting vector density of the reflected wave at the receiver is 

(6.87) 

and using (6.79), this becomes 

(6.88) 

Now the transpose of the product of two matrices is the product of their 
transposes in reverse order, so that 

(6.89) 

Using (6.85) and (6.89) in the backscattering cross section (6.77) we get 

(6.90) 

or if the matrices are multiplied as indicated, 

IAxxhlx + Ax1'hl1'l2 + IA1'xhlx + A 1'yh l)2 
a= Ih lx l2 + Ih l )2 

(6.91 ) 
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This equation for (T makes it appear that the backscattering cross section of 
a target is a function of the effective length components of the transmitting 
antenna, but of course this is not the case. We write for the transmitting 
antenna the modified polarization ratio PI' 

(6.92) 

and substitute it into (6.91), which then becomes 

(6.93) 

We see that, as expected, the cross section depends on the polarization of the 
transmitting antenna but not on its effective length. 

If we require in (6.91) that the denominator be constant while we vary h 1x 

and h ly (a constraint discussed in Chapter 3), then (6.91) is the sum of two 
terms like that for received power, (3.16). We may maximize each term 
separately, and it follows from (3.28) and (3.36) that the first and second 
terms are maximum, respectively, if 

h ly = (Axy r 
h Ix Axx 

(6.94) 

and 

h ly = (Ayy r 
h Ix Axy 

(6.95) 

The two terms may be maximized simultaneously if we set (6.94) and 
(6.95) equal to each other. This leads to 

Axy = VAxxAyy (6.96) 

and 

(6.97) 

assuming that all parameters are nonzero, giving a maximum cross section 

(6.98) 

More often than n'ot the target scattering parameters are not under our 
control, and (6.98) cannot be satisfied. 
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More generally, (6.91) may be maximized by differentiating with respect 
to magnitude and angle of h ly / h Ix. The choices are 

where again we assume that all parameters are nonzero. 

(a) 
(6.99) 

(b) 

The open-circuit voltage induced in the receiving antenna by the reflected 
wave is 

(6.100) 

giving a received power density 

sr = VV * = 1 hEr + hEr 12 2x x 2y y (6.101) 

where we use an equality rather than a proportional symbol since we will later 
take a power ratio. 

Now (6.101) is the same as (3.16), and Sr may be maximized in (6.101) just 
as it was in Chapter 3. The result is 

(6.102) 

if we choose 

> = (E;)* 
2x Ex 

( 6.103) 

The polarization match factor between the receiving antenna and the wave 
backscattered from the target is 

Ih2 • Erl2 Ih2xE: + h2yE~12 
P = Ih21

21Er
l
2 

= (lh2x l
2 + Ih 2y I2)(IE:1 2 + IE~, 12) 

(6.104 ) 

where the components of [Er] are given in (6.79). 
In terms of the target scattering parameters and the effective length 

components of the transmitting antenna, the choice of h2Y/ h2x for maximum 
received power becomes, from (6.103) and (6.79) 

(6.105) 

where we have used Ayx = A xy. The match factor (6.104) becomes 
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Ih2)Arrh!x + Ax)1!\,) + h 2\.(A.\\.hl., + A\,)I!\.)1
2 

If the same antenna is used for transmitting and receiving, so that 

h!x = h 2x = hx ( 6. ] (7) 

then the relationship for maximum received power, (6.105), becomes 

(6.] 08) 

We have used primarily in this chapter the modified polarization ratio p, 
but it is convenient here to use the more common ratio P. The ratios are of 
course related by p = jP. From the definitions of antenna effective length and 
P, (6.108) becomes 

( 6.109) 

Equation (6.109) can be solved for P with some ingenuity. We first write it as 

A * + A* P* xy yy 

P = A* + A* P* 
xx xy 

(6.110) 

and substitute it into the right side of (6.109) to eliminate the conjugate of P. 
The result is a quadratic: 

p2 + BP + C= 0 (6.111) 

with solution 

(6.112) 

where 

(6.113) 

and 

A A~: +A*A 
xy yy xy xx 

C=-A*A A A~· 
.~y yy + xy ::x 

(6.114) 
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The polarization match factor, if the same antenna is used for transmitting 
and receiving (but not configured for maximum received power), becomes 

(6.115) 

In terms of the polarization ratio P of the antenna, this becomes 

(6.116) 

If the polarization ratio P is found from (6.112) and used in (6.116), the 
largest polarization match factor (polarization efficiency) is obtained. 

6.5. SCATTERING MATRIX FOR CIRCULAR 
WAVE COMPONENTS 

It is often convenient to use the scattering parameters in left and right circular 
component form so that the scattered fields are given by 

(6.117) 

The elements of the circular scattering matrix may be determined by 
measurement or by transformation from the rectangular matrix elements. We 
will develop the transformation. 

A plane wave may be written in right and left circular component form as 

(6.118) 

where ER and EL are the complex right and left circular field components. 
The rotating vectors w R and w L are related to the rectangular unit vectors by 

(2.74) 

Equating circular and rectangular component forms for the fields leads to 

ER = ! (Ex + jEy) (a) 

EL = !(Ex - jEy) (b) 
(6.119) 
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We substitute into (6.117) these expressions for ER and E L . For the 
incident wave 18.:, the substitution is as written, but for the reflected wave we 
must go to a right-handed coordinate system with unit vectors -u z ' u x ' -uy 

before transforming to circular form. Therefore, for the reflected wave we 
replace Ey by -Ey, and (6.117) becomes 

A R L ] [ E ~ + j E~, ] 
A El 'E 1 

LL x - J y 

( 6.120) 

If the matrices in (6.120) are multiplied and compared to (6.76), also 
multiplied out, we obtain the following relationships among the rectangular 
and circular scattering matrix elements 

ARR = !(Axx - jAxy - jAyx - An') 

A-I (A +'A -'A + A ) R L - 2 xx J xy J yx yy 
(6.121) 

A -I (A -'A +'A + A ) LR - 2 xx J xy J yx yy 

A_I (A +'A +'A A) LL - 2" xx J xy J yx - yy 

( 6.122) 

Ayy = !(-A RR + ARL + ALR - ALL) 

Since A xy = A yx' it follows that A RL = A LR' and these equations simplify 
to 

A = 1 (A - J'2A - A ) RR 2 xx xy yy 

( 6.123) 
ALR=ARL 

(6.124) 
A -A yx xy 
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Let us specialize to a target with a plane of symmetry so that 

Ax), = Ayx = 0 (6.125) 

Then 

(6.126) 

Note that a plane of symmetry is sufficient to cause the returns for left and 
right circular polarizations to be equivalent. 

Finally, let us specialize to a spherical target (or to a target with a plane of 
symmetry that also appears to be unaltered by a rotation through 90°) as we 
did earlier when we were considering the scattering matrix in rectangular 
form. Since Axx = A yy ' (6.126) reduces to 

ARL = ALR = Axx ( 6.127) 

This shows clearly that the polarization sense is reversed for a circular wave 
incident on a sphere. 

Note that we used only one set of coordinates for the scattering matrix in 
rectangular form, which is common, but in transforming to the scattering 
matrix for circular components we first established a right-handed coordinate 
set for the reflected wave because to refer to a wave as right circular in an 
improper coordinate system would be quite confusing. 

6.6. RELATIONSHIP OF THE SCATTERING MATRIX AND 
POLARIZATION RATIO 

The scattering matrix and knowledge of the incident wave are sufficient to 
describe the properties of the reflected wave, including polarization. Let us 
find the polarization ratio of the reflected wave in terms of the scattering 
matrix elements and the incident wave. We start with 

Now, substituting 

[ E'] [ x 1 Axx 

E' = \l'4;r A 
y yx 

·E i 
i ] y 

p = Ei 
·E' , ] y 

p = - E' 
x x 

(6.76) 



238 POLARIZATION CHANGES BY REFLECTION AND TRANSMISSION 

into (6.76) leads to 

(6.128) 

which is easily solved for pr, 

A i+'A r yy P J yx 

P ='A i A J x yP - x x 

( 6.129) 

where we assume E: =i= O. The equation simplifies slightly if we recognize that 

Axy = Ayx' 

If we take the case of a target with a plane of symmetry so that 
Axy = A yx = 0, (6.129) reduces to 

r Ayy i 
P =--p 

Axx 

and if we go further to a target that is unaltered by a 90° rotation 

r i P =-p 

a result we found earlier for the infinite conducting plane. 
We can also relate the circular polarization ratio q to the elements of a 

circular scattering matrix. Just as we wrote the reflected wave in terms of a 
scattering matrix for rectangular components by (6.76) we can relate the 
circular components of the reflected and incident waves by 

(6.117) 

We use the definition 

(2.85) 

noting that it applies both to incident and reflected waves, unlike the 
rectangular form p (or P), since in writing (6.76) we used the same x and y 
axes for the incident and reflected waves, but in writing (6.117) we used a 
right-handed system for both incident and reflected waves in order to define 
clockwise and counterclockwise rotations. Combining the last two equations 
gIves 

( 6.130) 
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which leads to 

(6.131) 

Again if we take the symmetric case A LR = A RL = 0, we get the simpler form 

6.7. SCATTERING MATRICES FOR SOME COMMON 
REFLECTORS 

In Section 6.2 we developed the polarization ratios for the waves scattered 
from a flat plate and dihedral and trihedral corners. In this section we will find 
their scattering matrices. 

Flat Plate 

For an infinite flat conducting plate at normal incidence the reflected and 
incident electric fields are related by 

(6.132) 

Then from the relationship 

[ Er] [A x xx 

E~, = Ayx 
Axy ][ E;] 
Ayy Ey 

where the ~r of (6.76) is omitted as inappropriate for a flat plate, it is 
obvious that the scattering matrix is 

[A]=[-Ol 0] 
-1 

(6.133) 

For a disc of area 1T R2, a physical optics approach gives a normal incidence 
cross section [4] 

(6.134) 

Since the cross section is related to the matrix elements by (6.78), it follows 
that the scattering matrix of the disc at normal incidence is 
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( 6.135) 

If these values are substituted into (6.129), we find 

r i P =-p 

which we know to be true for a flat plate. 

Dihedral Corner 

Consider first a dihedral corner oriented so that its fold line (intersection line 
between the planes forming the dihedral) is parallel to the y axis. Figure 6.11 
shows this corner with incident Ey and Ex fields. (In the figure a dot represents 
an electric field out of the paper and a cross one into the paper.) It is easily 
seen from the figure that the Ey component is reflected unchanged (except for 
the phase change with distance which is not shown), while the Ex component 
is reversed. No cross-polarized component occurs. Then the scattering matrix 
for a corner constructed with semi-infinite plates is 

[-1 0] 
[A] = 0 1 (6.136) 

Consider next a dihedral whose fold line is rotated in the xy plane by angle 
(J measured from the y axis toward the x axis, Fig. 6.12. The dihedral plates 
are taken to be so large that edge effects are negligible. If the incident field is 
y directed, E~" then components parallel and perpendicular to the dihedral 
fold line are 

Ex' = - E~. sin (J (a) 

yReflected 
e >- eE r 

1 

X~lncident .Y 

x ~ Reflected 
e EC 0 Ei 

"'-Incident Y 

. (a) 

Ey ' = E~. cos (J (b) (6.137) 

y: Reflected 

1 
L,ncident> 1; 

}r Reflected E; 
A EC t 
~ Incident 

(b) 

FIGURE 6.11. Electric field components for dihedral corner. 
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y 

x--------------~~----~ 

x' 

FIGURE 6.12. Tilted dihedral corner. 

After two reflections 

E:, = - Ex' = E~ sin () (a) 

E~, = Ey ' = E~, cos () (b) 
( 6.138) 

From the figure, the x and y components of the reflected field are 

E: = E:, cos () + E~, sin () = E~ sin () cos () + E~, sin () cos () (a) 

E r Er () E r . e Ei 2 e E i . 2 e y = y' cos - x' sIn = yeas - y sm 
(6.139) 

(b) 

From 

[ Er] [A x xx 
E~. - Ayx 

Axy] [ 0 ] 
Ayy E~. 

(6.140) 

it follows that 
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A xy = 2 sin () cos () = sin 2() (a) 

A 2 • 2 2 
yy = cos () - SIn () = cos () 

(6.141) 
(b) 

If the incident field is x directed, then 

Ey ' = E.~ sin () (b) (6.142) 

After two reflections 

E:. = - E~ cos () (a) E: .. = E~ sin () (b) (6.143) 

and 

E r Er () E r . () Ei 2 () E i . 2 () 
x = x' cos + y' SIn = - x cos + x SIn (a) 

(6.144) 
E:. = E~., cos () - E:. sin () = E~ sin () cos () + E~r sin () cos () (b) 

It is then obvious that 

• ? ? 2 An = SIn- () - cos- () = -cos () (a) 
(6.145) 

A yx = 2 sin () cos () = sin 2() (b) 

For a dihedral corner with plate dimensions and a and b, Fig. 6.12, Ruck et 
al. [4] give a scattering cross section 

a= 
161Ta 2b 2 sin 2 (1714 + q») 

;\2 
(6.146) 

where it is assumed that the incident ray path is perpendicular to the dihedral 
fold line. It follows that the scattering matrix for a dihedral rotated by angle () 
in the xy plane from the y axis is 

[A] = 4V7iab sin (17/4 + q») [-COS2() 
;\ sin 2() 

Trihedral Corner 

sin 2() ] 
cos 2() 

(6.147) 

In Section 6.2 we saw that a trihedral corner reflector constructed of very 
large plates has the same polarization as one flat plate at normal incidence, 
namely, pr = - pi. The scattering matrix of the trihedral corner of finite size 
can then be expected to approximate that for the flat plate, (6.133), modified 
to account for the finite cross section. Ruck et al. give for the maximum cross 
sections of the square and triangular trihedral corners of Fig. 6.13: 
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L 

Square Triangular 

FIGURE 6.13. Trihedral corners. 

Square: 
127T L 4 

(6.148) u=---
A2 

Triangular: 
47TL 4 

u=--
A2 

(6.149) 

Then, if edge effects are neglected, the scattering matrices at angles giving 
maximum cross section are 

Square: [A 1 = 2V; L 2 [ - ~ _ ~ ] (6.150) 

Triangular: [AJ = 2v'iiL 2 [-1 0] 
A 0-1 

(6.151) 

Sphere 

It was pointed out earlier that for a target that is symmetric about a plane 
containing a ray from antenna to target, we may choose a coordinate system 
so that Axy = O. To do so causes (6.115) to become 

Ih;Axx + h~Ayyl2 
(6.152) 

It is obvious that a spherical target is symmetric about any plane containing 
a ray from antenna to target, and (6.152) is applicable to the sphere. Further, 
for a sphere it is clear that 

Axx = Ayy 

no matter what coordinate system we choose. Therefore 
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Ih; + h~12 
(6.153) 

For a linearly polarized incident wave hx and hy are either in phase or 1800 

out of phase, except when one is zero. It follows in any case of a linearly 
polarized wave that p = 1. 

For a circularly polarized incident wave we can take hx as real and 

h = ±J·h y x (6.154) 

Then (6.153) gives 

p =0 

and we see that a spherical target is invisible to a circularly polarized radar. 
For this reason it is common for radars to use circular polarization to suppress 
the return from raindrops, which to a first approximation are spherical. The 
return from a desired target in rain may be reduced also, but generally the 
ratio of desired signal to rain clutter is improved. 

If the raindrops are significantly deformed from the spherical so that, for 
example, Axx > A yy , then (6.152) indicates that for maximum rejection of the 
rain signal, it would be appropriate to make hx > hy • Beckmann has pointed 
out that while circular polarization gives the greatest rejection of the return 
from a (spherical) raindrop, it does not necessarily allow the greatest degree 
of discrimination between rain and the desired target signal because that 
discrimination depends on the polarization characteristics of the target [5]. 

From the discussion given here, it is apparent that for the sphere the 
scattering matrix is 

(6.155) 

The reader is referred to the extensive discussion by Barrick to find cross 
sections of the sphere [4, Ch. 3]. 

6.8. REFLECTIONS FROM ARBITRARILY ORIENTED PLANE 

In this discussion it is convenient to consider the arbitrarily oriented plane as 
one that is tilted with respect to a "horizontal" reference surface and to 
consider an incident wave to have "vertical" and "horizontal" components. 
The surface in question may be a dielectric with appropriate Fresnel 
coefficients or it may be conducting, in which case the Fresnel coefficients are 
set to ± 1. The material in this section was developed to describe the 
reflections from Earth that occur with propagation between antennas, or 
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between a radar and target, when they are in the vicinity of the earth's 
surface. These reflections are commonly referred to as multipath reflections. 
The development follows in many respects the work of Beckmann [6. 7]. 
although equations for some angles will be derived by vector methods rather 
than by the spherical trigonometry methods of Beckmann and Spizzichino [6]. 
In addition, Beckmann gives only polarization ratios, not fields. 

It may be shown that a wave reflected in the plane of incidence is not 
depolarized if the incident wave is either horizontally or vertically polarized. 
If the wave is not horizontally or vertically polarized, it will be depolarized 
even by pure specular reflection in the plane of incidence from a smooth 
surface. This occurs because the incident wave must be split into horizontal 
and vertical components and the Fresnel coefficients applied separately to 
each component. Since the Fresnel coefficients are different for the two 
polarizations, the reflected components will be differently affected in amp­
litude and phase by the reflection, and the reflected wave will have 
polarization properties that differ from those of the incident wave. 

If the earth is not flat, specular points may exist that do not lie on the 
intersection of the· earth with a vertical plane containing radar and target. 
Thus, hilly terrain may have multiple specular points. In general, the reflected 
wave from such a specular point is depolarized since the incident wave, even 
if horizontally or vertically polarized with respect to the average terrain, is not 
horizontally or vertically polarized with respect to the local terrain at a 
specular point. 

In this section we shall use a polarization ratio that is the complex ratio of 
vertical to horizontal field components 

(6.156) 

Figure 6.14 shows the geometry to be used in this discussion. In Fig. 6.14. 
the coordinate system is drawn for convenience with the origin at the specular 
point, but this does not detract from the generality of the development. We 
take the unit vectors in the cyclic order k, u H ' uv~ which are, respectively, a 
vector in the direction of propagation, a unit vector parallel to the flat earth 
(horizontal), and a unit vector that is "verticaL" (It would be perpendicular 
to the earth for a wave propagating parallel to the earth. Otherwise it is 
merely perpendicular to k and U 1/.) When the final equations are given. the 
specular point will be taken at (x. y. 0). The incidence plane of Fig. 6.14 is the 
"main" plane of incidence determined by the propagation vector k I (or r I) 
and the unit vector u;: normal to the average earth plane (the xy plane). Since 
in general the specular point lies on a tilted surface. the "local" plane of 
incidence is determined by kl and n. where n is a unit vector normal to the 
tilted surface at the specular point. The normal vector n can be seen to lie in 
the plane defined by r I and r:: and is given by 
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Incidence 
plane 

FIGURE 6.14. Depolarization by scattering out of incidence plane. 

(6.157) 

The plane of scattering or reflection is similarly defined by the vectors k2 and 
u z ' while the local scattering plane is defined by k2 and n. Note that the local 
scattering plane is the same as the local incidence plane, since Snell's laws 
require that k}, k2' and n lie in the same plane. 

Figure 6.15 describes the geometry at the scattering point more complete­
ly. The incident wave is taken as linearly polarized without loss of generality 
since an elliptically polarized wave can be considered the sum of two 
orthogonal linearly polarized waves with an appropriate phase difference. 
The local plane of incidence is perpendicular to the reflecting plane surface 
and is established by nand k}. We treat E} in Fig. 6.15 as horizontally 
polarized and measure f3 as the included angle between it and the reflecting 
plane. 

A general incident field is shown in Fig. 6.16. Angle f3 is taken positive as 
measured clockwise from U HI of Fig. 6.16 if 83 in Fig. 6.14 is positive as 
measured from U x toward uy ' The range of f3 in Fig. 6.16 is - 7T ~ f3 ~ 7T, 

although in practice the range will be much smaller. 
In Fig. 6.16, E}V and E}H may differ in phase so that E} may be a general 

elliptically polarized plane wave. 
Beckmann points out [6, p. 170] that if the scattering plane of Fig. 6.16 is 

tilted simultaneously about both x and y axes of Fig. 6.14, it is necessary to 
consider an angle f32 measured between the horizontal component of the 



Polarization plane 

FIGURE 6.15. Scattering point geometry. 

FIGURE 6.16. Decomposition of the incident field. 
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reflected wave and the intersection of the wave front with the reflecting plane. 
Angle f32 is approximately equal to f3 and in much of Beckmann's work the 
difference is neglected. 

Figure 6.17 shows the ground reflection point at x, y, 0 rather than at the 
coordinate origin as in Fig. 6.14. The reflecting surface is not shown and 
neither are the various unit vectors and angles. For those refer to Fig. 6.14. 

From Fig. 6.17, 

and from Figs. 6.14 and 6.17 

11" _) h) 
() = - - tan ---;:::::::::::::::::::= 
) 2 \lx2 + y2 

(6.158) 

( 6.159) 

( 6.160) 

(6.161) 

Also, from Fig. 6.14 and 6.17, ()3 is the angle between a vector drawn from the 
point immediately below the transmitter to the scattering point and a vector 
from the scattering point to a point immediately below the receiver. (Note 
that one of these may be a target.) Then ()3 is given by 

xux + yu" (d - x)u.\. - yu\. 
cos ()3 = V 2 ~. V 2' 

' x + Y (d - x) + Y 2 

x(d-X)_y2 
( 6.162) 

We take ()3 as positive for y ~ O. 

O~--~--------~x~-----------------J--~-ux 

FIGURE 6.17. Reflection point at (x, y, 0). 
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In order to use the Fresnel coefficients, it is necessary to know the local 
grazing angle')' of Fig. 6.15. Now k ) (or equivalently r) ) and n of Fig . 6. 15 are 
coplanar, and')' is measured in that plane. Therefore we have 

nor) (77") . 
-- = cos - + ')' = -SIn ')' 

r) 2 
(6.163) 

Using (6.157) for n gives 

(6.164 ) 

The equations for {3 and {32 will be derived here using vectors rather than 
the spherical trigonometry methods of Beckmann [6]. In Fig. 6.15, {3 is 
defined as the angle between the incident electric field (assumed horizontal) 
and the intersection of the wave front with the reflecting plane. Vector t along 
this intersection is perpendicular both to n, which is perpendicular to the 
reflecting plane, and to r). Then 

n x r/r) 
t= c----~ 

In x r/r)1 
(6.165) 

Also from Fig. 6.14, the horizontal component of the incident electric field is 
directed along U If)' given by 

Then we can write 

n x r) 
cos (3 = t 0 U If) = -,----:-

In x r)1 

(6.166) 

(6.167) 

If (6.157) for n is used, the first term of (6.167) can be shown to be 

(6.168 ) 

so that 

(6.169) 

Using the identity 

(a x b) 0 (c x d) = (a 0 c)(b 0 d) - (a 0 d)(b 0 c) 
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and introducing rectangular coordinates according to Fig. 6.17 yields 

_ r~h2 + hlX(d - x) - h 1y2 - h~h2 ) 
COSf3-y 2 2 2 22y2 2 (6.171 

y(h 1 -h2) +[x(h2-h 1 )+h 1d] +yd x +y 

We can find f32 in a similar fashion. It is defined as the angle between the 
reflected electric field (horizontal component) and the intersection of the 
wave front with the reflecting surface. (Note that this intersection of the wave 
front with the reflecting surface is the same for both incident and reflected 
waves.) Then 

cos f32 = t . u H2 (6.172) 

Since u H2 is perpendicular to r 2 and to u z' we can express it as 

(6.173) 

and 

(6.174 ) 

which becomes in our coordinate system 

(6.175) 

Before applying the Fresnel coefficients to the incident field of Fig. 6.16, it 
is necessary to find the locally vertical and horizontal field components. They 
may be found from 

EILH = EIH cos f3 - E 1V sin f3 (a) 
( 6.176) 

E 1LV = EIH sin f3 + E 1V cos f3 (b) 

Note that 

(6.177) 

as required by conservation of energy. 
Applying the Fresnel coefficients f v( = f ll ) and f H( = f 1-) gives the locally 

horizontal and vertical reflected field components 
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(6.178) 

Note that E1LV is not perpendicular to the reflecting surface; that is, it is not 
directed along D. Instead it is perpendicular to k1 and lies in the plane defined 
by 0 and k 1. 

. Now since f3z is the angle between the horizontal component of the 
reflected wave and the intersection of the wave front with the reflecting plane, 
we can write equations for the locally horizontal and vertical field components 
of the reflected wave similar to (6.176) for the incident field 

(6.179) 
EZLV = EZH sin f3z + E zv cos f3z (b) 

Inverting gives the horizontal and vertical components of the reflected wave 
Ez· 

EZH = EZLH cos f3z + EZLV sin f3z (a) 
(6.180) 

E zv = EZLV cos f3z - EZLH sin f3z (b) 

If (6.176) is first substituted into (6.178) and the resulting forms for EZLV 

and EZLH are inserted into (6.180), the result is 

+ r V(E1H sin f3 + ElV cos (3) sin f3z (a) 
(6.181) 

E zv = r V(E1H sin f3 + E 1V cos (3) cos f3z 

- r H(E1H cos f3 - E 1V sin (3) sin f3z (b) 

All quantities in (6.181) are known: the incident field components E1H and 
E1 v' the scattering angles °1 , 0z, and °3 , which allow f3 and f3z to be found, and 
the Fresnel coefficients r Hand r v. The scattered field components may then 
be determined. 

The polarization ratio Pz may be found as the ratio of Ezv to E ZH . Dividing 
(6.181b) by (6.181a) and removing cos f3 cos f3z from numerator and de­
nominator yields 

Dividing numerator and denominator by EIH and noting that 
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( 6.183) 

gives 

(6.184 ) 

At the beginning of this section it was stated that the material was 
developed to describe waves reflected from the earth when antennas are in 
the vicinity of the earth's surface. Scattering of the type described here, with 
the reflected wave completely polarized (see Chapter 7) is referred to as 
specular scattering. In effect, the earth is considered to be made up of large 
tilted facets, and we have considered each facet to be an infinite smooth 
plane. In practice multiple specular points will occur for some terrain types. If 
so, the fields reflected from all the specular points add coherently with phases 
determined by path lengths. The fields must be weighted by antenna gains 
and, for targets, by appropriate cross sections. 

Other applications of the developments in this section will certainly occur 
to the reader. 
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7 
PARTIAL POLARIZATION 

7.1. INTRODUCTION 

To this point we have considered only monochromatic waves. Such waves are 
completely polarized, with the end point of the field vector tracing an ellipse 
of constant eccentricity and tilt angle. A wave arising from some physical 
source is never completely monochromatic. The amplitude and phase change, 
with an irregular variation superimposed on a regular variation, and the tip of 
the field vector traces an ellipse whose shape and orientation change with 
time. Such a wave is said to be partially polarized. In the limit, as the 
amplitude and phase of the wave become more random, the wave is randomly 
polarized. 

We will consider a quasi-monochromatic field variation, with a wave that 
has a finite band width that is small compared to the mean wave frequency. 
Such a wave obviously is partially polarized. Note: In this chapter time­
varying fields are not represented by script but by italic letters. Confusion is 
unlikely, since partially polarized fields cannot be represented by time­
invariant quantities. 

7.2. ANALYTIC SIGNALS 

We can represent a field component of a partially polarized wave as 

Er(t) = aCt) cos [wt + <p(t)] (7.1) 

where aCt) and <p(t) are the real amplitude and phase of the wave component. 
Now (7.1) is valid whether we apply the quasi-monochromatic constraint or 
not, but if the wave is quasi-monochromatic, aCt) and <p(t) vary slowly enough 
so that the wave approximates a cosine. 
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Rather than using (7.1) for our wave component, we will use instead its 
analytic signal representation 

E(t) = a(t)ej[Wf+¢(f») (7.2) 

The analytic signal as developed by Gabor [1] is a complex function 
associated with the real field function Er(t). It is a generalization of the 
exponential function ejwf normally used for convenience to represent the real 
function cos wt in many areas of electrical engineering and physics. The 
reader is referred to Gabor, Born, and Wolf [2] or other references [3, 4] for a 
more extensive treatment of the analytic signal. Here we will assume that the 
functions we are concerned with possess Fourier transforms and note that we 
can form the analytic signal associated with any real function Er(t) by using 
the formulation 

(7.3) 

where the imaginary part, Ei(t), of the analytic signal is the Hilbert transform 
of Er(t); thus 

(7.4) 

The bar across the integral symbol in (7.4) signifies the Cauchy principal value 
of the integral, that is 

f x Er(t') . JT Er(t') . J'" Er(t') 
-, - dt' = hm -, - dt' + hm -,-- dt' 

-x t - t T-+f- -x t - t T-+f + T t - t (7.5) 

7.3. COHERENCY MATRIX OF A QUASI-MONOCHROMATIC 
PLANE WAVE 

Consider a quasi-monochromatic plane wave traveling in the z direction with 
components 

Ex(t) = ax(t)ej[Wf+cfJx(r») (a) 

Ey(t) = ay(t)ej[(c)f+('J)'(f») (b) 
(7.6) 

where the phase term - kz is omitted from both components. The mean 
radian frequency is w, and the aCt) and 4)(t) are slowly varying time functions. 

In analogy to monochromatic waves, we could define a complex vector 

(7.7) 
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to represent the wave, but in contrast to the monochromatic case, a varies 
with time. 

We may write the field as a single component at angle e to the x axis by 

E(t, e) = Ex(t) cos e + E/t) sin e 

It is convenient to take the time average 

1= < E(t, e)E*(t, e) 

which is defined by 

I = lim 21T J TETE; dt 
T->x -T 

where ET is the truncated function 

It I ~ T 

It I > T 

(7.8) 

(7.9) 

(7.10) 

(7.11 ) 

Substitution of the wave components into the desired time average gives 

1= < Ex(t)E;(t) cos
2 e + < Ey(t)E;(t) sin

2 e 

+ [< Ex(t)E;(t) + < E;(t)Ey(t)] sin e cos e (7.12) 

The presence of the four time averages in (7.12) makes it desirable to 
define a matrix, called the coherency matrix [2] of the wave. We do so by 

which may also be written, using (7.6), as 

< Ex(t)E;(t) ] 
< Ey(t) E;(t) 

(aXayei(q"-q,,.» ] 

<a~) 

(7.13) 

(7.14) 

If the amplitude and phase functions of (7.6) vary so slowly that the time 
derivatives in the Maxwell equations, for example, in 

aE 
VxH=c­at (7.15) 

can be replaced by jw, as is customary in treating monochromatic waves, the 
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time-average Poynting vector of the field we are considering is proportional to 
the trace of the coherency matrix 

S = ( < a ~) + < a ~) ) = Tr [J] (7.16) 

The mixed terms of the coherency matrix may be normalized by setting 

"{3 Jx \' 
JJ-xy = I JJ-xy I e' xy = VI:: \rJ: 

xx yy 

(7.17) 

It may be shown by the Schwarz inequality that 

(7.18) 

The term JJ-.n is a measure of the degree of correlation between the x and y 
field components, similar to the degree of coherence relating values of the 
same wave component at different points as used in scalar diffraction theory. 

From (7.14) we note that 

(7.19) 

Then the matrix determinant may be written as 

(7.20) 

or, using (7.17), as 

(7.21) 

Since lxx and lyy are positive real and I f.Lxyl2 1, we see that 

(7.22) 

UnpoJarized Waves 

Waves that are unpolarized have the characteristic that the time average, 
given by I in (7.12), is independent of angIe 8. In addition, if a fixed phase 
retardation is introduced into one of the field components, I is unchanged. 
This requires that 

lxy = lyX = 0 (b) (7.23) 

We see then that the components Ex and Ey are completely uncorrelated and 
the coherency matrix" reduces to 
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[J] = [Joxx 0] S [1 0 ] 
J

yy 
= 2" 0 1 (7.24) 

where S is the power density of the wave. 

Complete Polarization 

Let us first think about monochromatic waves. For these the terms a and 4> of 
(7.14) are time independent, and the coherency matrix becomes 

(7.25) 

where 

(7.26) 

From the coherency matrix elements we can get 

/L = = 
xy VI:x VT;; (7.27) 

and we have complete coherence, since 

The phase of /Lxy is the phase difference between the wave components. 
We may also have complete polarization for nonmonochromatic waves. If 

ax' ay' 4>x' 4>y depend on time in such a way that the ratio of amplitudes and 
the difference in phase are independent of time, that is, if 

(7.28) 

with C1 and C2 constants, then the coherency matrix, (7.14), becomes 

1 [ (a~) 
[J] = 2Z C ( 2) jC2 o 1 ax e 

from which we obtain 

'C 
II. = e -] 2 
'--xy 

and the wave is completely polarized. 

C1 (a~>e-jC2] 

C;( a~) 
(7.29) 

(7.30) 
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The coherency matrix for this case is the same as for the monochromatic 
wave with components equal to 

(7.31) 

(7.32) 

From (7.21) and (7.30) it is clear that for a completely polarized wave 

11111 =0 

Linear Polarization 

For linear polarization the wave must, of course, satisfy the requirements for 
complete polarization, and in addition 

cf> = 0, ± 7T, ±27T, ... (7.33) 

Then the coherency matrices for monochromatic and completely polarized 
polychromatic waves are, respectively, 

and 

More particularly, the matrices 

In=0,1,2, ... 

(-l)mC,(a;) ] 

C~ (a~> 

1] S [ 1 
1 ' 2 -1 

(7.34) 

(7.35) 

(7.36) 

represent linear polarizations that are, respectively, x directed, y directed, 45° 
from the x axis, and 135° from the x axis. 

Circular Polarization 

We saw previously that for circular polarization the component amplitudes 
are equal, and 

(7.37) 

for left and right circular polarization, respectively. Then the coherency 
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matrix becomes 

[J] = H ~ -j] ~ [1 J
1
·] 

1 '2 -j (7.38) 

for left and right circular polarization, respectively. 

7.4. DEGREE OF POLARIZATION 

A plane wave may be considered as the sum of N independent plane waves 
traveling in the same direction. In particular, we will consider a quasi­
monochromatic wave to be the sum of a completely polarized wave and a 
completely unpolarized wave. We may show that this representation is unique 
by showing that any coherency matrix can be uniquely expressed in the form 

(7.39) 

where 

(7.40) 

with 

AsO BsO CsO BC-DD * =O (7.41 ) 

If we compare (7.40) to the special case (7.24), we see that [f 1)] is the 
coherency matrix for a completely unpolarized wave. If we use II f II = 0 as the 
criterion for a completely polarized wave, then [f2)] is the coherency matrix 
for a completely polarized wave. 

We must next show that the decomposition into completely polarized and 
completely unRolarized waves is unique. This we will do by obtaining the 
elements of [f 1)] and [f2)] from the known elements of [fl. From (7.39) and 
(7.40) we may write 

A + B = fxx (a) 

D=fxy (b) 

D * = fyx (c) 

A + C = fyy (d) 

Substituting (7.42) into the last equation of (7.41) gives 

which is a quadratic in A with solution 

(7.42 ) 

(7.43 ) 
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(7.44 ) 

Substituting (7.44) in (7.42a) gives 

B = ~(Ixx - Iyy) =+= ~[(IX.t + Iy,J2 
- 411111]112 

1 (I 1) - 1 [(I 1)2 + 41 I:~ ] 1 /2 =:2 xx - )'y +:2 xx - yy x)' x)' (7.45 ) 

From the second form of (7.45) we see that the negative sign for the last term 
is not allowed since it would make B negative, contrary to our hypothesis. 
Then the A, B, C, D values of (7.42) are found uniquely from 

A = ~(Ixx + Iyy) - ![(Ixx + Iyy)2 - 411111]112 (a) 

B = !(Ixx - Iyy) + ![(Ixx + Iyy)2 - 411111]112 (b) 

C = !(Iyy - Ixx) + ![(Ixx + Iyy)2 - 411111]112 (c) 

D = Ixy 

D* - I yx 

The Poynting vector magnitude of the total wave is 

and that of the polarized part of the wave is 

(d) 

(e) 

(7.46) 

(7.47) 

(7.48) 

Quite reasonably, the ratio of the power densities of the polarized part and 
the total wave is called the degree of polarization of the wave. It is given by 

(7.49) 

Now 

and therefore 

O~ R~l (7.50) 
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Let us consider the two extreme values of R. For R = 1, (7.49) requires 
that 

IIJII =0 

which is the condition for complete polarization. Then I /Lxy I = 1, and the x 
and y wave components are mutually coherent. For R = 0, (7.49) requires 
that 

which can be satisfied only by 

It follows that I /Lxy I = 0 and Ex and Ey are mutually incoherent. 
As we have just seen, R = 0 requires that Ex and Ey be mutually 

incoherent. The converse is not true. For mutual incoherence Jxy = JyX = 0 
and I /Lxyl = O. Then 

_ [_ 4 JxxJyy ] 112 _ IJxx - Jyyl 
R- 1 ( 2 - J J 

Jxx + Jyy ) xx + yy 

We see that I /Lxy I = 0 is not sufficient to give an unpolarized wave. To make it 
completely unpolarized, we must also have 

We can separate the matrix [J] of (7.24), representing the unpolarized part 
of a wave, even further, as 

(7.51) 

which indicates that an unpolarized wave can be regarded as being composed 
of two independent linearly polarized waves orthogonal to each other, each of 
equal power density. 

Just as readily, we could have written 

j] S [1 
1 + 4" j (7.52) 

showing that with equal validity we could consider an unpolarized wave to be 
made up of two independent circular waves of opposite rotation sense. 



262 PARTIAL POLARIZATION 

7.5. STOKES PARAMETERS OF PARTIAlLL Y POlLARIZED WAVES 

We previously defined the Stokes parameters of a monochromatic wave by 
the equations t 

So = IExl 2 + IE)2 (a) 

SI = IExl2 -I EyI2 (b) 
(2.184) 

S2 = 21 ExlI Eyi cos cP (c) 

S3 = 21 Exil Eyi sin cP (d) 

For quasi-monochromatic waves a more general definition, which reduces 
to (2.184) for time-independent amplitude and phase of the wave compo-
nents, is 

So = (a~) + (a~) (a) 

S1 = (a~) - (a~) (b) 
(7.53) 

S2 = 2(axay cos cP) (c) 

S3 = 2(axay sin cP) (d) 

where 

cP = cPy - cPx (7.54) 

If we compare these parameters to the elements of the coherency matrix 
(7.14), we see that 

So = 2Zo(Ixx + Iyy) (a) 

S1 = 2Zo(Ixx - Iyy) (b) 
(7.55) 

S2 = 2Zo(Ixy + Iyx) (c) 

S3 = 2Zoj( Ixy - Iyx) (d) 

t 
The author regrets the conflict in notation where S is used for power density and the Stokes 

parameters. The Stokes parameters will have a numerical subscript and the power density will 
not. 



STOKES PARAMETERS OF PARTIALLY POLARIZED WAVES 263 

or, solving for the coherency matrix elements, 

(7.56) 

In terms of the Stokes parameters, the statement 

(7.22) 

becomes 

(7.57) 

For a completely polarized wave the requirement 

11'11 =0 

gives immediately 

in accordance with (2.185). 
Just as we separated the coherency matrix of a quasi-monochromatic wave 

into the sum of coherency matrices for a completely polarized wave and a 
completely unpolarized wave, we can decompose a wave in the same manner 
in terms of its Stokes parameters. We write for the general wave 

(7.58) 
s = S(l) + S(2) (b) 

1 1 1 

where superscript (1) refers to a completely unpolarized wave and (2) to the 
polarized wave. 

Unpolarized ,.Waves 

For a completely unpolarized wave we found earlier that 

(7.23) 
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Then from (7.55) we have 

S(I) = S(I) = S(I) = 0 
123 

Complete Polarization 

For this case we have, rewriting (2.185), 

Degree of Polarization 

In light of (7.59) the general Stokes parameters of (7.58) simplify to 

S = S(2) 
I 1 (b) 

Equations (7.60) and (7.61) can be combined to give 

and 

(7.59) 

(7.60) 

(7.61) 

(7.62) 

(7.63) 

The degree of polarization was defined earlier as the ratio of power 
densities of the polarized part and the total wave. But Sb2

) measures the 
density of the polarized part and So the density of the total wave. Then the 
degree of polarization of the wave in terms of its Stokes parameters is 

(7.64 ) 

7.6. POLARIZATION RATIO OF PARTIALLY POLARIZED WAVES 

We can obtain the polarization ratio and the polarization ellipse characteris­
tics of the polarized part of a wave just as we did for the completely polarized 
wave. From (2.192a) and the relation between p and P, we can write the 
polarization ratio in terms of the Stokes parameters for the polarized part of 
the wave as 

(7.65) 
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and if we use (7.63) and (7.61) to find P in terms of the parameters of the total 
wave, this becomes 

(7.66) 

In the same way the circular polarization ratio q, from (2.192b), is 

S~2) - jS~2) SI - jS2 

q = S (2) - S (2) = '\ Is 2 + S 2 + S 2 - S 
o 3 VI 2 33 

(7.67) 

In terms of the coherency matrix elements for the partially polarized wave, 
the polarization ratio becomes, substituting in (7.66) from (7.55) and making 
use of (7.64), 

2Jyx P = -----'------
(R + l)Jxx + (R - l)Jyy 

where R is the degree of polarization of the wave. 
For complete polarization we have 

R = 1 

and (7.68) reduces to 

_ 1 *E 
Jyx - 2Z Ex y 

o 

(7.68) 

7.7. RECEPTION OF PARTIALLY POLARIZED WAVES 

A wave with field intensity E falling on a receiving antenna with effective 
length h produces an open-circuit voltage at the antenna terminals, 

V=E·h (3.15) 

This holds whether E is coherent or not, but we are concerned here with 
partially polarized waves and will accordingly consider the power supplied to 
a matched load on the antenna to be [5] 

(VV*) 
W= 8R 

a 

(7.69) 

where ka is the antenna resistance (radiation resistance plus loss resistance). 
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(7.70) 

and if we use this and (3.15) in (7.69), we get 

W= 2Z ~eoh* «(Eoh)(Eoh) *) 
o 

(7.71) 

If we note that time averaging is unnecessary for the receiving antenna, the 
received power becomes 

(7.72) 

which becomes, using the elements of the coherency matrix of the incident 
wave, 

(7.73) 

We saw earlier that a partially polarized plane wave may be considered the 
sum of a completely polarized wave and a completely unpolarized wave. The 
coherency matrix elements of the component waves are given by (7.40). 
Substituting into the equation for received power then gives 

This form may be separated to give 

W= W' + W" = A A + ~ (Ih 12B + h h *D + h *h D * + Ih 1
2C) (7.75) (' h 0 h* x x )' x )' )' 

where the first term, 

(7.76) 

which represents the power received from the unpolarized portion of the 
wave, is independent of the polarization characteristics of the receiving 
antenna. It is informative to express this power in terms of the degree of 
polarization of the wave. From (7.46a) and (7.49) we get 

(7.77) 
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or, in terms of the power density of the wave, 

W' = A 1 S (1 - R) e 2 t (7.78) 

Note that if the wave is unpolarized (R = 0), the maximum power that can be 
extracted from the wave is one-half the power that could be utilized from a 
completely polarized wave polarization matched to the receiving antenna. 

We need not be concerned further with W' since nothing we can do with 
the polarization of the receiving antenna will either increase or decrease it. 
We therefore turn our attention to the power received from the completely 
polarized part of the wave and attempt to maximize it. From (7.41) and 
(7.46) we note that Band C in 

A 
W,,=_e_(lh 12B+h h* D+h* h D*+lh 1

2c) h . h* x x y x y y 
(7.79) 

are positive real. We therefore first maximize the sum of the two middle terms 
of (7.79) by setting 

D = IDle jO (c) (7.80) 

It is at once obvious that the sum 

h h* D + h*h D * x y x y 

is maximum if we choose 

(7.81) 

Then W" becomes 

(7.82) 

We can maximize W;, by varying Ihxl and Ihyl while holding h· h* constant. 
This is an appropriate constraint and was discussed in Section 3.4. Differen­
tiating W:~ with respect to I hxl given by 

(7.83) 

and setting the derivative to zero gives 

(7.84) 

with solution 
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c 
lDT (a) 

B 

lDT (b) (7.85) 

Note that I D I =F- 0 unless the wave is completely unpolarized. Obviously one 
of these forms is the inverse of the other, and this leads to the requirement 

which agrees with (7.41). Since I D I =F- 0, then B =F- 0 and C =F- O. 
Combining (7.85) and (7.81) leads to the relations 

C 
D* 

(a) 
B 
D 

(b) (7.86) 

If these values are substituted into the equation for W;;l' the power received 
from the polarized part of the wave becomes 

(7.87) 

which is obviously maximum power rather than minimum. 
From the equations for Band C, (7.46); the power densities (7.47) and 

(7.48); and the definition for degree of polarization, R; the maximum power 
that may be received from the polarized part of the wave is 

(7.88) 

where Sp is the power density of the polarized part of the wave and S( is that of 
the total wave. 

It may be shown that if the wave is completely polarized, the choices made 
for the receiving antenna effective lengths in (7.86) are the same as those 
made in (3.36). This is left as an exercise. 

It was noted earlier that for the unpolarized part of the wave the maximum 
power that can be received is one-half the power that could be received from 
a polarized wave of the same power density using a matched polarization 
receiver. The received power is independent of the receiver polarization. 
Then in order to maximize total received power, we need only to match our 
receiver to the completely polarized portion of the wave using (7.86). The 
total received power is then the sum 

(7.89) 
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PROBLEMS 

7.1. Consider a monochromatic wave so that, for example, in (7.79), 
B = Jxx ' and the coherency matrix elements can be simplified. Show 
that the choices made for the receiving antenna in (7.86) reduce to the 
choices made for the monochromatic wave in (3.36). 

7.2. Derive Eq. (7.87). 

7.3. Obtain the effective length components analogous to those in (7.86) if 
it is desired to minimize the power received from the polarized part of 
the wave. 



8 
POLARIZATION 

MEASUREMENTS 

8.1. INTRODUCTION 

There are several standard techniques for measuring the polarization charac­
teristics of an antenna. It is common to use the antenna under test to transmit 
and to use certain standard antennas, or one antenna whose orientation is 
varied, as receivers. This is the point of view taken in this chapter. It is, of 
course, equally correct to measure the response of the antenna under test 
while transmitting toward it waves of known polarization. All of the 
techniques described here work better for some antennas than for others, and 
there is no "best" method for measuring polarization. 

8.2. THE LINEAR COMPONENT METHOD 

Since the polarization of a wave, and that of the antenna that transmits it, 
is completely defined by the polarization ratio 

_ Ey _ \E) jcf. 

p- E - -\E \ e 
x x 

(8.1) 

measurement of the amplitudes of the x- and y-directed fields and the phase 
difference between them using two linearly polarized receiving antennas is 
clearly an effective method for determining the polarization. It is, of course, 
power to a receiver load that is measured and not the field strength 
components, so it is essential that the two linear antennas have equal gains 
and impedances. A receiver can be switched from one antenna to the other so 
that no problem will arise from unequal receiver gains in the two channels. 

270 



THE CIRCULAR COMPONENT METHOD 271 

The phase difference can be measured by a slotted line method [1] or by use 
of a calibrated phase shifter. 

At lower frequencies dipole antennas are satisfactory linearly polarized 
standards, while at higher frequencies standard gain horns can be used. 
Typically, on axis, their axial ratios are on the order of 40 dB, which is 
satisfactory for most measurements [2]. Gains of the standard antennas can 
be measured at the desired frequencies prior to their use in the polarization 
measurement system. Placement of the two receiving standards is critical 
when measuring the phase difference between the components, and for this 
reason the method is not attractive at high frequencies. 

8.3. THE CIRCULAR COMPONENT METHOD 

The polarization of a wave is also specified completely by its circular 
polarization ratio 

(8.2) 

. It follows that with two antennas having equal gains and impedances, one left 
circularly polarized and the other right circular, we can use the procedures 
outlined for the linear component method to measure an antenna's polariz­
ation. Kraus [1, p. 483] recommends the method and suggests the use of 
helices for the standard antennas, but Rubin [3] points out the difficulty of 
constructing identical (except for rotation sense) antennas, particularly when 
it is necessary to cover a wide frequency range. Another problem exists, also. 
Since the axial ratio of an n-turn helix is not 1 but is given by [1, p. 206] 

211 + 1 
AR=---

211 
(8.3) 

if we require that the helix polarization approach circular as closely as the 
standard gain horn approaches linear polarization (AR -740 dB), it is readily 
seen that the helix must have a very large number of turns. This may make the 
method impractical for very precise measurements. 

An alternative to the measurement of e is the use of a linearly polarized 
receiving antenna to measure the tilt angle of the polarization ellipse [3]. This 
eliminates the problem of antenna placement when measuring phase differ­
ence of the wave components. The tilt angle, taken together with the rotation 
sense, obtainable from I ql, and the axial ratio, which may be found from 

AR=11+
lql l 

1 -Iql 
define the polarization completely. 

(2.107) 
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8.4. THE POLARIZATION PATTERN 

Equation (3.82) for the polarization match factor of two antennas with the 
same rotation sense and (3.86) for antennas of opposite sense both reduce to 

(8.4) 

if antenna 2 is linearly polarized, with AR2 -700. This equation leads to a 
widely used method for obtaining the polarization ellipse of an antenna 
experimentally. 

Antenna 2 is rotated around a line drawn between the two antennas, say 
the z axis of Fig. 3.3. Further, antenna 2 is so oriented that it cannot receive 
any z-directed wave components as it is rotated. For a dipole the rotation axis 
is perpendicular to the dipole. 

At 72 = - 71 , which corresponds to coincidence between the major axes of 
the ellipses for the two antennas, 

p = AR2 + 1 
1 

(8.5) 

which is a maximum. At 72 = -:-71 ± ! 7T, which corresponds to the major axis 
of the linearly polarized antenna coinciding with the minor axis of the antenna 
being tested. 

1 
(8.6) p = AR2 + 1 

1 

which is a minimum. 
The open-circuit voltage is proportional to the square root of p, so the ratio 

of maximum to minimum open-circuit voltage, in magnitude, is 

(8.7) 

We thus have the axial ratio of the antenna undergoing test, and of course we 
have its tilt angle from the known rotation angle of the linear antenna when 
maximum power is received (or better yet, from the angle for minimum 
power plus 90°, since the minimum power angle is more sharply defined than 
the maximum power angle). 

A plot of the square root of p from (8.4) is called the polarization pattern of 
the antenna whose polarization is being measured. Figure 8.1 shows the polar 
form of the pattern for (a) an antenna with an axial ratio of 2 and (b) a linearly 
polarized antenna: Since the ratio of maximum to minimum values of the 
polarization pattern is the axial ratio of the antenna under test, the 
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(a) 

(b) 

FIGURE 8.1. Polarization patterns for measuring axial ratio and tilt angle of the polarization 
ellipse: (a) AR = 2, with inscribed polarization ellipse ; (b) AR-7 oo . 

polarization ellipse can be inscribed in the polarization pattern, and Fig. 
S.l(a) shows this. 

The polarization pattern method lends itself well to the rap~d testing of an 
antenna's polarization properties as a function of angle from beam maximum. 
The linear sampling antenna is rotated rapidly while the antenna under test is 
scanned slowly. A recording of the received voltage shows the antenna 
pattern with a rapid cyclic variation on it caused by the spinning of the 
sampling antenna. The ratio of amplitudes of adjacent maxima and minima 
will yield the axial ratio of the antenna being tested if the antenna pattern 
does not change significantly while the sampling antenna rotates through 
one-half revolution [2]. This automated process will clearly be more effective 
for antennas almost circularly polarized than for linearly polarized antennas. 

An obvious deficiency of the polarization pattern method is its failure to 
give the rotation sense of the antenna under test. This information sometimes 
may be inferred from the antenna construction. It may also be obtained by 
making additional measurements with two equal-gain, opposite-sense, circu­
larly polarized antennas . 

Since the sampling antenna is mechanically rotated, care must be taken 
that the received power is not affected by the motion. In particular, rotary 
joints must have a constant output or be calibrated. 



274 POLARIZA TION MEASUREMENTS 

As a final remark about the polarization pattern method, if the antenna 
undergoing test is nominally linearly polarized, a measurement of its axial 
ratio will be inaccurate unless the axial ratio of the sampling antenna is much 
greater than that of the antenna being tested. 

8.5. POWER COMBINER AND DIVIDER SYSTEM 

The two-antenna (linear vertical and horizontal) lossless power combiner and 
divider system shown in Fig. 5.5 and described in Section 5.4 can be used to 
measure the polarization of an incoming wave, assuming that the a and f3 
phase shifters are calibrated. We take first the case in which all incoming 
power is directed to port 4 of the lower hybrid of Fig. 5.5(a). From (5.20) and 
(5.23), using the upper signs, we can find the phase difference ¢ between the 
incoming linear wave components, and their magnitude ratio, b / a, by 

¢ = 41T - a (a) 

b f3+1T 
- = -tan -- (b) 
a 2 

(8.8) 

These quantities are sufficient to describe the polarization of the incident 
wave. The modified polarization ratio of the incident wave may be written as 

(8.9) 

and the use of (8.8) gives 

pi = +jtan [4(f3 + 1T)]e i (7TI2-a) = e- ja cot(4f3) (8.10) 

The use of the lower sign in (5.20) and (5.23) gives 

¢ = - 41T - a (a) 

b f3+1T 
- =tan -- (b) 
a 2 

(8.11) 

which when substituted into (8.9) gives 

(8.12) 

which is the same as (8.10). 
In the same way the case in which all incoming power is directed to port 2 

leads to, using (5.26) and (5.28), 
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(8.13) 

In use, greater precision is obtained by nulling one of the outputs, say b 2 , 

rather than maximizing the other. Errors will occur if the antennas are not 
linearly polarized. The effect of system losses, such as attenuation in the 
phase shifters, is not significant unless very high accuracy is desired [4]. 

The two antennas of Fig. 5.5 may be replaced by a horn of square cross 
section with orthogonal feeds or by a circular waveguide supporting two 
orthogonal TEll modes and terminated by a circular horn or polyrod 
antenna. 

The a and f3 phase shifters of this measurement system may be calibrated 
in the system by transmitting waves of known polarization toward the 
measurement system antennas. For example, if the incoming wave is linear 
horizontal, so that pi = 0, and if f3 is varied to null the power to port 4, while a 

is left general, (8.13) requires that f3 = 0, which establishes the zero for that 
phase shifter. If a left circular wave, with pi = -1, is radiated toward the 
system and if f3 is set to 7T radians, then the output of port 4 can be nulled by 
setting a = 0. Other calibration points can also be determined by rotating the 
linear calibration antenna. 

This system may also be used to obtain the polarization pattern of an 
antenna without the mechanical rotations used in the standard polarization 
pattern procedure. 

8.6. POLARIZATION MEASUREMENT WITH UNEQUAL 
EFFECTIVE LENGTHS 

It is not difficult to ensure that the magnitudes of the effective lengths of the 
antennas used in the power combiner-divider system of the previous section 
are equal, since small pointing errors will change the magnitudes only slightly. 
It is more difficult to make certain that the effective lengths have the same 
phase, since phase is more sensitive to pointing errors and also depends on 
relative path lengths between the antennas and the upper tee of Fig. 5.5. 

The system may be calibrated if a wave of known polarization is available. 
Once the system parameters are known, polarization of a general wave may 
be obtained from the equations 

c/J=-a-8±!7T (a) 
(8.14) 

which come from (5.45) and (5.48), with maximum output from arm 4 of the 
lower tee of Fig. 5.5(a) assumed. From (8.14), we can find 
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(8.15) 

If the system can be rotated about an axis pointing in the direction of the 
incident wave without changing the relative amplitudes and phases of h2 and 
11 4 , it may be used for measuring the polarization of an incident wave without 
the necessity of calibration. 

Let the polarization ratio of the incident wave, which is to be measured, be 
PI' and that of our measuring system be P2' The a and f3 phase shifts are 
varied until the output from port 4 of Fig. 5.5(a) is maximum. For this 
situation 

(8.16) 

Next we decrease the setting of the a phase shifter by Lla, which changes 
the polarization of the measuring system to 

(8.17) 

For this new setting the polarization match factor, which is the ratio of output 
at port 4 to the output under polarization-matched conditions, and hence is 
known, is 

p' 
(1 + PIP~)(l + p:rp~~: ) 

(1 + PIP'D(l + p;P~*) 

and with the use of (8.17), this becomes 

and since p' is known, I P I I may be found. 

(8.18) 

(8.19) 

We next rotate both receiving antennas through a convenient angle, say 
! 7T, about the z axis of Fig. 5.7, as shown in Fig. 8.2. The fields received at the 
polarization measuring system are Ex and Ey , which become, after the system 
is rotated, 

and the polarizations in the original and rotated systems are 

E .. 
p;=-j-) 

Ex' 
(8.21) 
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y 

y' x' 

~----~--------------x 

z 

FIGURE 8.2. Rotation of polarization measurement system. 

Using (8.20) the last equation becomes 

, ,Ey ' . Ex - Ey . 1 - jPI 
PI=-] E,=] E +E =] l+J'p 

x x y I 

(8.22) 

Equation (8.22) may be put into the form 

(8.23) 

Now we found I PII by introducing a known change L\a into the a phase 
shifter. We could find I p;1 with the physically rotated system in the same way. 
Then (8.23) allows Im(PI) to be found. Finally, from a knowledge of IPII 
and Im(PI)' we may find PI itself. 

In summary, if we can introduce a known phase shift into the phase shifter, 
and if we can physically rotate the antennas of our polarization-measuring 
equipment about the z axis of Fig. 5.7 without changing the relative 
amplitudes and phases of h2 and h4' we can measure the polarization of an 
incoming wave without being concerned with any field phase differences in 
our system. 

8.7. POLARIZATION PROPERTIES FROM AMPLITUDE 
MEASUREMENTS 

We found in Section 3.9 that if the modified polarization ratio of a 
transmitting antenna and the conjugate of the modified polarization ratio of a 



278 POLARIZA TION MEASUREMENTS 

receiving antenna (or vice versa) are plotted on a Poincare sphere by means of 
the Stokes parameters, using (2.196) and (2.200), the polarization match 
factor between the antennas is given by 

p = cos 
2 

( ~ f3 ) (3.125) 

where f3 is the angle between the rays from the sphere center to the two 
plotted points. If we have a transmitting antenna with polarization unknown 
and a receiving antenna with known polarization, we are assured that a circle 
drawn on the Poincare sphere, with radius compatible with (3.125) and center 
at the receiver conjugate polarization point, will pass through the sphere 
point defining the transmitter polarization.

t If we take a second receiving 
antenna, a circle with its conjugate point as center will also pass through the 
transmitter polarization point. In general, the two circles will intersect in two 
points on the Poincare sphere. A third receiving antenna can be used to 
remove the ambiguity. As a general rule, the three circles generated by using 
three receiving antennas paired with the transmitting antenna will intersect at 
one point on the Poincare sphere, thus uniquely defining the polarization of 
the transmitting antenna. Note that amplitude measurements only are needed 
[5] . 

If the circles on the Poincare sphere interact at small angles, it is obvious 
that small errors in the amplitude measurements can lead to significant 
uncertainty in the polarization. Prior knowledge of the antenna under test can 
be used to select the sampling antennas, and in fact, if the rotation sense of 
the antenna being tested is known, it may be possible to eliminate one 
measurement. 

The polarization match factor p is not measured directly; rather, we 
measure power to a receiver load, and this is determined by polarization, 
antenna gains, transmitted power, and so on. It is then clear that additional 
measurements are needed to determine an antenna's polarization properties. 

A convenient method of handling the requirement for additional inform­
ation is by using pairs of receiving antennas that have the same gains but are 
orthogonally polarized, such as left and right circular antennas. Power ratios 
are then used to determine the polarization of the antenna tested. We 
illustrate the method by using three pairs of receiving antennas, linear 
horizontal (x directed) and vertical, linear at 45 0 and 1350 from the x axis, and 
left and right circular. 

Linear Vertical and Horizontal 

In terms of the common polarization ratio, the polarization match factor 
between a transmitting antenna (1) and a receiving antenna (2) is 

t We do not consider the case of transmitter and receiver orthogonal. 
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(1- PI P2 )(1- prp;) 
p = (1 + PI PD(l + P2P;) (3.89) 

If a linear vertical receiving antenna is used, with P2 ~ 00, the power received 
is 

where C I is a constant that includes the antenna gains, power transmitted, 
receiver gain, impedance match, antenna separation, and impedance match 
but not polarization. 

If next we use a linear horizontal receiving antenna, with P2 = 0, keeping 
all other factors the same, the power received is 

and the ratio of the two received powers is 

(8.24) 

Linear 45° and 135° 

If a linearly polarized antenna tilted at 45° (P2 = 1) and one at 135° (P2 = -1) 
are used successively with the antenna under test, the ratio of powers received 
is 

W45 = 1 + IpI I2 
- 2 Re (PI) 

W135 1 + IPI I2 + 2 Re (PI) 

if the gains of the two receiving antennas are equal. 

Left and Right Circular 

(8.25) 

Using left circular (P2 = j) and right circular (P2 = - j) antennas leads to a 
power ratio 

W R _ 1 + I P 112 + 2 1m (PI) 

WL - 1 + IPI I2 
- 2 1m (PI) 

Equations (8.24), (8.25), and (8.26) are readily solved to give 

(8.26) 
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(8.27) 

We see then that six amplitude measurements will lead to the polarization of a 
general antenna. In (8.27) the term WVfWH can be replaced by IpI I2

, and 
since this is equal to the sums of the squares of (a) and (b) of (8.27), it appears 
that PI can be determined by two power ratios, W4sfWI3S and WRfWL . 

Ambiguities in PI will appear, however, if this is done. 
The choice of antenna pairs utilized to obtain (8.27) may not be optimum 

for the measurement of a general antenna, but the chosen antennas are easily 
obtained. One linearly polarized antenna may be used for four of the 
measurements. If helices are used for the circularly polarized receiving 
antennas, their small departure from the circular, indicated by (8.3), will not 
affect polarization measurements substantially and, in fact, (8.26) can be 
modified to account for the ellipticity. The problem remains, however, of 
constructing equal-gain helices of opposite rotation. Nevertheless, the free­
dom from measuring phase, for which accurate positioning of the receiving 
antennas is necessary, makes this method attractive. 
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PROBLEMS 

8.1. A helix is desired for polarization measurements with a quality as high 
as that of a good linearly polarized antenna (AR = 40 dB). Define 
equal quality to mean that IERI flELI for the helix is the same as 
IEyl flExl for the linear antenna. Find the number of turns needed for 
the helix. 
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8.2. A dipole, a left circular, and a right circular antenna are used on an 
antenna range to determine the polarization ratio of a transmitting 
antenna. The two circularly polarized ante~'mas have the same gain and 
impedance. With respect to a coordinate system at the receiving 
antenna having its z axis directed toward the transmitter, the dipole is 
successively oriented along the y axis (vertical), along the x axis 
(horizontal), and at 450 and 1350 from the x axis. The same receiver 
load impedance is used for all antennas. The received powers are (in 
milliwatts) 

Vertical: 3.82 

Horizontal: 0.95 Right Circular: 7.80 

Left Circular: 3.34 

Find the polarization ratio of the transmitting antenna. 



APPENDIX 

~A~ 

RELATION BETWEEN 
EFFECTIVE LENGTH 

AND GAIN 

The effective length of an antenna is defined in terms of its transmitted far 
field by 

_ jZoI -jkr ( 
E(r, (), 4» - 2Ar e h (),4» (3.2) 

where I is the input current at an arbitrary pair of terminals. 
The directivity of the antenna is, from Section 1.8, the ratio of the 

radiation intensity in a specified direction to the radiation intensity averaged 
over all space. From 

2 
2 r 

V((), 4» = r S(r, (), 4» = 2Z E·E* 
o 

(A.1) 

and 

u,. = 4~ fLU dO (A.2) 

we can obtain the directivity 

E·E* h·h* 
D((), 4» = ------- = ------ (A.3) 

(1I41T) f L E' E* dO (1I41T) f L h· h* dO 

and gain 
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eh· h* 
G(O, ¢) = ------

( 1 /4 7T) I I47T h . h * dO. 

(AA) 

where e is antenna efficiency. 
The gain and effective area of the antenna are related by ,,\ 2/ 47T, so that 

(A.5) 

Note that (0, ¢) now refers to the direction from which the wave comes to 
strike the receiving antenna. 

Radiation resistance of an antenna, from Section 1.8, is the ratio of the 
power radiated to the square of the rms current at arbitrarily chosen 
terminals. Then 

R, = :2 ;;0 I L E· E* dO (A.6) 

and if we use (3.2), 

R = Zo I I h . h * dO. 
r 4,,\ 2 47T 

(A.7) 

In terms of a total antenna resistance Ra (=R r + R\oss)' we can use (1.90) and 
obtain 

Ra = Z02 II h·h* dO. 
4e"\ 47T 

(A.8) 
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B·.) \ . . 

ISOTROPIC ANTENNAS 
AND NULL= FREE 

ANTENNAS 

B.1. AN ISOTROPIC ANTENNA 

It was shown in Chapter 4 that the relative gain of a crossed-dipole ( turnstile) 
antenna with the two dipoles lying in the xy plane and fed by equal-amplitude 
currents in quadrature phase is 

( 4.33) 

The gain is independent of azimuth angle and varies only 3 dB with the polar 
angle. Since the fields of an array of identical elements are those of the 
individual element multiplied by an array factor, it is apparent that a linear 
array of turnstiles on the z axis, with an array factor 

AF= C 
VI + cos 2 e 

(B.l) 

(where C is a constant), would produce a radiation intensity pattern 
independent of angles, an isotropic antenna. 

Saunders [1] has shown that a continuous even distribution of turnstiles on 
the z axis, with feed function Ko(kz), where k = 27T/A. and Ko is the modified 
Bessel function of the second kind and zero order, will produce such an array 
factor. Further, he shows that the distribution can be truncated to a 
reasonable length without disturbing the radiation pattern significantly. In 
fact, he found that with only two discrete turnstiles spaced a quarter of a 
wavelength apart, the radiation intensity varied less than 0.5 dB over the full 
range of polar angle. We may conclude that for practical purposes it is 
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possible to construct an isotropic antenna insofar as radiated power density is 
concerned. Zaidi [2], using concentric ring radiators, has also shown that it is 
theoretically possible to radiate power isotropically. 

Now we saw in Chapter 4 that the product GrP, where P is the polarization 
match factor between two antennas, determines the power available to a 
receiving antenna and is therefore a more useful figure of merit for an 
antenna pair than the gain alone. We saw also in that chapter that the 
polarization characteristics of a linear array are those of an element of the 
array. If a circularly polarized antenna is used to receive the wave radiated 
either by the single turnstile of Section 4.4, with a polarization match factor 

1 cos () 
P = - + ----:--

2 1 + cos2 
() 

( 4.32) 

or the turnstile array proposed by Saunders, the polarization loss is zero on 
the positive z axis, 3 dB in the xy plane and infinite on the negative z axis. 
Any other receiving antenna of fixed polarization would show a similar 
variation in polarization match, and it is apparent that polarization effects 
cannot be neglected in a consideration of the isotropicity of antennas. 

Rather than consider further the isotropic antenna, we will examine the 
more general class of null-free antennas, those that do not have a zero in the 
radiated power density over the far-field sphere of the antenna. We exclude 
from consideration systems that create isotropic patterns by exciting different 
antennas either by different frequencies or in a time sequence [3]. 

B.2. BROUWER'S THEOREM 

We begin with a theorem of Brouwer [4], slightly restated: A vector 
distribution everywhere single valued and continuous on (and tangent to) a 
singly connected, two-sided, closed surface must be zero or infinity in at least 
one point. The vector distribution we consider is the time-varying radiated 
electric far field of an antenna, which meets all the conditions of Brouwer's 
theorem and of course cannot be infinite anywhere, and the surface is a large 
sphere, centered at the antenna, over which only the far field exists. 
Brouwer's theorem has served as a basis for developments by Mathis [5,6], 
Saunders [1], and Scott and Soo Hoo [7]. 

B.3. A THEOREM OF MATHIS 

Mathis has shown that the radiation pattern must contain either a null or 
some point at which the field is linearly polarized or both. Saunders' proof of 
the theorem is simple. He assumes that the wave is everywhere circularly or 
elliptically polarized (excluding linear polarization as a special case of 
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elliptical). But the time-varying field of such a wave cannot vanish at a point 
unless it vanishes for all time, and we have a contradiction that proves Mathis's 
theorem. 

B.4. SAUNDERS' THEOREM 

Saunders went a step further by showing that a null-free radiation pattern 
cannot be linearly polarized everywhere. His proof parallels the proof of 
Mathis's theorem in that he assumes that the pattern is null free and linearly 
polarized. A linearly polarized wave can be written as the sum of two 
oppositely rotating, circularly polarized waves, each of which must satisfy 
Brouwer's theorem. This they can do only by vanishing, but if one circular 
component vanishes, the resultant field is circularly polarized, and if both 
vanish at the same point, the radiation pattern contains a null. Thus 
Saunders' theorem is proved. 

B.S. ANOTHER PROOF OF MATHIS'S THEOREM 

As an introduction to a more general theorem, Scott and Soo Hoo have 
presented another proof of the theorem of Mathis [7]. Since it provides 
insights into polarization behavior not given by other proofs, it will be given 
here. 

The far field of the radiating antenna can be written in complex (time­
invariant) form as 

(B.2) 

If we write the real and imaginary parts of the complex fields as 

(B.3) 

and transform to the time domain, we find the time-varying electric field to be 

1 
'i{;(r,O, ¢, I) = - ([fl(O, ¢) cos (WI - kr) - f2(O, ¢) sin (WI - kr)]uo r 

+ [gl (0, ¢) cos (WI - kr) - g2(O, ¢) sin (wI - kr)]uqJ (B.4) 

Since 'i{; is single valued and continuous on, and tangent to, the far-field 
sphere, it conforms to Brouwer's theorem and must be zero at some point 
(0o, ¢o) on the sphere (we note again that it cannot be infinite). The zero 
value in 'i{; can be achieved in several ways, and we examine them by case. 
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Case 1 

This case clearly makes '(g zero for all time and represents a radiation pattern 
null in the direction (80 , cPo). More than one pattern null can exist, since (B.5) 
can have more than one solution. 

Case 2 

11 (80 , cPo) = 12(80 , cPo) = 0 (a) 

g) (80 , cPo) 
tan (wto - kr) = (0 cP) 

g2 0' a 
(b) 

(B.6) 

Equations (B .6b) and (B.4) show that an instantaneous zero in '(gcjJ occurs at 
time to in the direction (80 , cPo). As to takes on new values, the direction 
(80 , cPo) given by (B .6b) also changes, and the point on the far-field sphere 
corresponding to (80 , cPo) traces a path with time. On this path '(gcjJ is zero at 
specific instants (when the radially propagating sinusoidal field instantaneous­
ly becomes zero), but in general, ~cjJ is not zero on the path. On the other 
hand, (B.6a) and (B.4) show that ~o is always zero along the path. It follows 
that on this path the radiation intensity is not zero, and the wave is linearly 
polarized. 

Case 3 

11 (80 , cPo) 
tan (wto - kr) = 12(8

0
, cPo) (a) 

(B.7) 
gl(80 ' <Po) = g2(80 , cPo) = 0 (b) 

This case is the same as case 2 except that the roles of the functions f and g are 
interchanged. The wave represented here also has a nonzero radiation 
intensity and is linearly polarized. 

Case 4 

(B.8) 

The point on the far-field sphere corresponding to (80 , cPo) traces a path along 
which '(go and cgcf> take on instantaneous zero values together, and on which the 
radiation intensity is nonzero. 

Now if (B .8) is substituted into (B.4), we find on the path defined by 
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(°0, cPO) that the general time-varying fields are 

'00 = [2(°0, cPo)[tan (wto - kr) cos (wt - kr) - sin (wt - kr)] (a) 
(B.9) 

'0q, = g2(OO' cPo)[tan (wto - kr) cos (wt - kr) - sin (wt - kr)] (b) 

Equation (B.9) shows that '00 and '0q, are in phase, and the wave along the 
path (°0, cPo) is linearly polarized. 

From these four cases we see from the requirement of Brouwer's theorem 
that the time-varying electric field must be zero at some point, it follows that 
the radiation intensity must have a null (case 1) or it must have at least one 
point at which the field is linearly polarized (cases 2, 3, and 4). This is an 
alternate proof of the theorem of Mathis. 

B.6. A THEOREM OF SCOTT AND SOO HOO 

A theorem by Scott and Soo Hoo contains the theorems of Mathis and 
Saunders as special cases. It may be stated as: Elliptical polarization of all 
axial ratios, ranging from circular polarization of purely one sense, through 
linear, to circular polarization of the opposite sense must exist in the far field 
of a null-free antenna. Two comments are in order: The theorem does not say 
that all possible polarizations exist. It does not apply to many standard 
antennas, the dipole for example, but it does apply to the turnstile antenna we 
have considered. 

We may write the electric field (B.2) in terms of right and left circular 
components, 

(B.10) 

where the vectors w L and w R ' if converted to time-varying form by the usual 
convention, would represent constant-amplitude waves rotating in opposite 
directions. In (2.74), if we use U x = ucf) and uy = -uo' they become 

(B .11) 

With the use of (B.3) and (B .11) the circular waves that sum to give the 
general propagating wave may be written as 

(B.12) 
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We note that w L and w R are complex, and in finding the time-varying circular 
wave components, it is desirable to revert to the U o and u

cb 
vectors of (B.11). 

The resulting time-varying circular fields are 

1 
~L(r, 0, cp, t) = 21' {[fl + g2) cos (wt - kr) + (gl - f2) sin (wt - kr)]uo 

+ [(gl - fJ cos (wt - k1') - (fl + g2) sin (wt - kr)]u(fJ (a) 

(B.I3) 

1 . 
~R(r, 0, cp, t) = 21' {[fl - g2) cos (wt - k1') - (gl + f2) SID (wt - k1')]uo 

+ [(gl + f2) cos (wt - kr) + (fl - g2) sin (wt - kr)]ucfJ (b) 

The magnitudes of the circular components, from (B .12) or (B .13), are 

I~L(r, 0, cp, t)1 = ;1' [(fl + g2)2 + (gl - f2)2r
/2 

(a) 

I'?&R(1', 0, cp, t)1 = ;1' [(fl - g2)2 ~ (gl + f2)2r
/2 

(b) 

(B.I4) 

Now ~L and ~R must each satisfy Brouwer's theorem, since each is a 
single-valued, continuous vector function tangent to the far-field sphere. 
However, a circularly polarized wave cannot be zero at any time unless its 
magnitude is zero. It follows that for a null-free radiation pattern (see below) 
there are at least two points .on the far-field sphere corresponding to the 
directions (°1 , CPI) and (°2, CP2) for which 

(B.IS) 

Let us note first that if the wave is to be linearly polarized everywhere, 
then 

everywhere. In turn, this requires that the two directions (°1, cPl) and (°2, q)2) 
coincide, and the result is a radiation pattern null in that direction. This 
explains the restriction to a null-free pattern in the sentence before (B. IS). 
The development proves Saunders' theorem that a null-free pattern cannot 
be everywhere linearly polarized. 

We can deduce another fact very quickly from (B. IS). It is clear that for a 
null-free antenna 1 '?&L 1 = 0 at (OJ? q)l) and 1 <jgR 1 =1= O. The radiated wave is then 
right circularly polarized in that direction. Further, it is left circular in the 
direction (°2, CP2)' A null-free antenna then must have directions of both right 
and left circular polarization. 
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The intermediate-value theorem of calculus can be used te show that the 
locus of points of linear polarization on the far-field sphere will be one or 
more closed paths on the sphere. It may be stated as: Suppose 5 is a 
connected set and I is a function that is continuous at each point of 5. Suppose 
I takes on two different values CI and C2 at points PI and P2 in 5. Then, for 
every number K between CI and C2 , there is some point of 5 at which I takes 
on the value K [7]. We let 5 be all points on the far-field sphere; PI and P2 , 

respectivel y, correspond to (81, <PI) and (82, <P2); and I be 

1(8, <p) = 1 CjgL(8, <P )1-1 CjgR(8, <p)1 (B.16) 

Now, from (B. IS) and (B.16), it is clear that 

(B.17) 

and it follows from the intermediate value theorem that a point Po corres­
ponding to (80 , <Po) exists such that 

(B.18) 

or 

(B.19) 

But (B.19) is the requirement for linear polarization at (80 , <Po), and we have 
another proof of Mathis's theorem. 

Next let N curves terminating on PI and P2 be drawn on surface 5, the 
far-field sphere (N) 1). If the curves do not cross, they divide S into N 
closed, connected subsets, each satisfying the intermediate-value theorem. 
Since PI and P2 are members of each subset, there is at least one point in each 
subset for which 1=0, and the wave is linearly polarized. If we now let 
N -700, the points 1=0 approach a continuous, closed curve. Then we see 
that the locus of points of linear polarization is one or more closed curves on 
the far-field sphere. 

We need not restrict the function I to the form we have utilized so far. 
Instead, let Ibe the magnitude of the circular polarization ratio of Chapter 2: 

(B.20) 

Let 5 be a simply connected surface on the far-field sphere that includes the 
points corresponding to (80 , <Po) of (B.19) and (81 , <Pl) but excludes the point 
corresponding to (82~ <P2)' for which I is infinite. Since /(81 , <Pl) = 0 and 
1(80, <Po) = 1, we infer from the intermediate-value theorem that a point on 5 
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can always be found for which 

Iq(e, <p)1 = k O~k~l (B.21) 

and we see that the wave takes on all values of I ql from 0 (corresponding to a 
right circular wave) to 1 (corresponding to linear polarization). 

In the same way we can show that a point on S can always be found for 
which 

O~k~l (B.22) 

and we see that the wave takes on all values of I wi, from that corresponding to 
a left circular wave to the value corresponding to a linearly polarized wave. 
Since I ql = 1/ I wi, we note that the full range of I ql on the far-field sphere of a 
null-free antenna is 

o ~ I q(e, <p)1 < 00 (B.23) 

The axial ratio of the polarization ellipse is related to the circular 
polarization ratio by 

AR= 11 + ,q'l 
1-lql (2.107) 

so it is clear that all axial ratios exist in the radiated field of a null-free 
antenna. 

In the superb paper of Scott and Sao Hoo it is stated that for any (fixed) 
polarization of a receiving antenna and a null-free transmitting antenna that is 
rolling and tumbling (as in a satellite vehicle), there exists at least one 
orientation of that vehicle for which the antenna would receive no signal. The 
conclusion is unjustified. The cross-polarization condition between two 
antennas is 

1 
ql = - q2 (3.56) 

For the null-free antennas I qll is constrained to take on all values, but ql itself 
is not so constrained. It is then possible to choose a fixed receiving antenna so 
that (3.56) is not met. As an exercise, it is suggested that the reader select a 
receiving antenna to pair with the turnstile antenna, for which 

1 + cos e 
q = 1- cos e 

so that (3.56) cannot be satisfied by any value of e. 

(B.24) 



292 APPENDIX B 

REFERENCES 

J. W. K. Saunders, "On the Unity Gain Antenna," Electromagnetic Theory and Allfennas, Part 
2, E. C. Jordan, cd., Pergamon Press, New York, 1963, pp. 1125-1130. 

2. S. H. R. Zaidi, "On Synthesis of Isotropic Patterns with Concentric Ring Circular Array," 
University oj Tennessee Engineering Experiment Station, Knoxville, Rept. 4 (AD-293868), 
October 1962. 

3. F. F. Fulton, Jr. , "The Combined Radiation Pattern of Three Orthogonal Dipoles," IEEE 
Trails. on Antennas alld Propagation, Vol. AP-13, No.2, pp. 323-324, March 1965. 

4. L. E. J. Brouwer, "On Continuous Vector Distributions on Surfaces," Proc. Royal Academy 
(Amsterdam), English ed., Vol. 11, pp. 850-858, 1909. 

5. H. F. Mathis, "A Short Proof That an Isotropic Antenna is Impossible," Proc.IRE, Vol. 39, 
No.8, p. 970, August 1951. 

6. H. F. Mathis, "On Isotropic Antennas," Proc. IRE, Vol. 42, No. 12, p. 1810, December 
1954. 

7. W. G. Scott and K. M. Soo Hoo, "A Theorem on the Polarization of Null-Free Antennas," 
IEEE Trails. on Amennas and Propagation, Vol. AP-14, No.5, pp. 587-590, September 
1966. 



INDEX 

Analytic signal, 253-254 
Antenna(s): 

aperture, 37 
bandwidth, 2 
crossed-dipole , 157-160, 183-186, 190, 

284-288 
cross-polarized, 121 
dipole, 20, 23, 27,30-35,154-157,162, 

181-182, 281,288 
efficiency, 23, 42, 53, 283 
elementary, 17, 20 
E-plane sectoral horn, 169-170 
equivalent circuit of, 41-46 
g~n, 1, 1~ 19-20,23,44,282-284 
helix, 271, 280 
horn, 167-170, 190 
H-plane sectoral horn, 169-170 
identical cross -polarized, 123 
identical polarization-matched, 122-125 
impedance, 1, 2, 36, 39 
impedance matrix of, 40 
infinitesimal, 47 
isotropic, 160, 284-285 
linear, 12 
loop, 161, 189 
loop and dipole, 162-164 
losses, 1, 22 
misaligned, 139-146 
null-free, 284-292 
omnidirectional, 18 
open waveguide, 37-38, 164 
parabolic reflector, 170-186 
pattern, 1, 13-17,43-44,289-291 
polarization-matched, 120-125 

293 

polarization ratio, 119 
pyramidal horn, 168-170, 190 
receiving, 1, 39 
receiving pattern, 42-44 
transmitting, 1-2 
turnstile, 157-160, 183-186, 190, 

284-288 
Aperture antenna, 37 
Aperture plane, 175-176 
Area, effective, 1,44,47,283 
Area sweep rate, 65-66 
Array, narrow polarization beamwidth, 

186-189 
Array factor, 159, 284 
Axial ratio, 54, 61-63, 68, 73, 75, 84-85, 109, 

121-122, 126, 291 

Balanis, C. A., 27,30,51, 167-169, 189 
Bandwidth, antenna, 2 
Barrick, D. E., 244, 252 
Beckmann, P., 244-252 
Beamwidth: 

half-power, see Beamwidth, radiation 
intensity 

overall, 154, 158, 167 
polarization, 154, 158, 167, 186-189 
radiation intensity, 154, 167, 170, 186 

Beran, M. J., 269 
Bistatic cross section, 50 
Born, M., 108, 254, 269 
Brewster angle, 216 
Brillouin, L., 30 
Brouwer, L. E. J., 285-286, 289, 292 
Bushore, K. R., 196, 206 



294 INDEX 

Carter, P. S., 30, 52 
Cauchy principal value, 254 
Circulator, 196 
Coherence: 

complete, 257 
degree of, 256 
mutual, 262 

Coherency matrix, 254-259,262-266 
Collin, R. E., 1,51,189 
Communication system, polarization -adaptive, 

201, 203 
Complete polarization, 253, 257-259, 

263-268 
Copeland, J. R., 229,252 
Cosine integral, 34 
Critical angle, 217 
Crossed-dipole antenna, 157-160,183-186, 

190,284-288 
Cross polarization, 96, 121-123,240 
Cross section: 

backscattering, 231 
bistatic, 50 
monostatic, 50-51 
radar, 51 
scattering, 50, 229, 232-233 

Current element, 6-7,12-13,17,19-20,47 

Degree of coherence, 256 
Degree of polarization, 259-261,264,268 
Depolarization, 229 
Dihedral corner reflector, 222-226, 240 
Dipole antenna, 20, 23, 27, 30-35, 154-157, 

162,181-182,281,288 
Directive gain, 20 
Directivity, 19-20,23,46,53,282-283 

Effective area, 1, 44, 47, 283 
Effective length, 110-120, 146, 151,233, 

268-269, 275, 282-283 
Efficiency, see Antenna(s), efficiency; 

Polarization, match factor 
Electric charge density, 3 
Electric current density, 3 
Electric source, 3-4, 11 
Elementary antenna, 1 7, 20 
Elliott, R. S., 1, 30, 51 
Ellipse, polarization, 54,57-67, 70, 73, 75,83, 

93 
Elliptically polarized waves, 75, 80, 83-84,89, 

92, 95, 109 
generation of, 191-206 
reflection of, 217-221 

E-plane,18 
Equivalence theorem, 28-30, 37 

Equivalent circuit of antennas, 41, 46 
Equivalent current, 37 
Equivalent source, 3, 28, 172 
Euler angles, 141-146 
Euler's constant, 34 

Far zone, 9, 14 
Far-zone fields, 9-12 
Feynman, R. P., 108 
Field: 

complex time-invariant, 69 
time-varying, 69 

Flat plate, 221-222, 239-241 
Focal point, 171-173 
Fourier transform, 254 
Fraunhofer zone, 9 
Fresnel coefficients, 214, 244-245, 249-251. 

See also Reflection coefficients; 
Transmission coefficients 

Fresnel zone, 8-9 
Friis transmission formula, 1, 48 
Fulton, F. F., Jr., 292 

Gabor, D., 254, 268 
Gain, 1, 14, 19-20, 23, 44, 282-284 
Geometric optics, 170-172 
Ghose, R. N., 206, 280 
Goldstein, H., 148 

Harrington, R. F., 4,51 
Hayt, W. H., 51 
Helical antenna, 271, 280 
Helmholtz equation, 10 
Hickman, T. G., 280 
Hilbert transform, 254 
Hollis, J . S., 280 
Horn antenna, 167-170, 190 

E -plane sectoral, 169-170 
H -plane sectoral, 169-170 
pyramidal, 168-170, 190 

H-plane, 18 
Hybrid tee, 196 

Illumination, tapered, 186 
Image theory, 37 
Impedance: 

antenna, 1, 36, 39, 42 
mode, 36 
mutual, of antennas, 43-44 
transmission line characteristic, 77 

Impedance match, 23 
Impedance match factor, 49 
Impedance matrix, 40 
Incidence plane, 208, 245 



INDEX 295 

Induced emf, 30, 34-35 
Infmitesimal antenna, 47 
Interface: 

reflection from, 207-252 
transmission through, 207 - 221 

Intermediate-value theorem, 290 
Isotropic antenna, 160,284-285 
Isotropic radiation, 23, 48 

Jordan, E. C., 51 

Kepler's laws, 66 
Knittel, G. H., 280 
Ko, H. C., 269 
Kraus, J. D., 1,27,51, 108, 189,271,280 
Krichbaum, C. K., 252 

Length, see Effective length 
Linear antenna, 12 
Lobe, radiation, 18 
Loop antenna, 161, 189 
Loop and dipole antenna, 162-164 
Losses, antenna, 1, 22 
Loss resistance, 22-23, 42, 53 
Love equivalence principle, 29 

Magnetic charge density, 3-4 
Magnetic current, 37 
Magnetic current density, 3-4 
Magnetic source, 2-3, 11 
Match factor: 

impedance, 49 
polarization, 49,117-147,150-152,156, 

278 
Matching network, 36 
Mathis, H. F., 285-292 
Maxwell equations, 2 
McQuiddy, D. N., 51, 206 
Monochromatic wave, 253 
Monostatic cross section, 50 
Mott, H., 51, 206 
Multipath, 2 
Mutual coherence, 261 

Nonuniform wave, 217 
North pole, Poincare sphere, 95 
Null, radiation pattern, 287, 289 
Null-free antenna, 284-292 

Omnidirectional antenna, 18 
Open-waveguide antenna, 37-38, 164 

Panofsky, W. K. H., 4, 51 
Papas, C. H., 269 

Parabolic reflector antenna, 170-186 
Parrent, G. B., Jr., 269 
Partial polarization, 92, 253-269 
Pattern: 

antenna, 1, 13-17,43-44,289-291 
polarization, 272-274 
radiation, 13-17,43-44, 289-291 
receiving antenna, 42 

Pattern multiplication, 159 
Phillips, M., 4,51 
Plane of incidence, 208 

local,245 
main, 245 

Plane wave, 56-57 
Poincare sphere, 54, 93-109, 136-138, 146, 

278 
Poisson's equation, 7, 52 

Polarization, 17 
chart, 83-84, 92, 109, 146 
circular, 63-64, 94-95, 99, 258, 261 
complete, 253, 257-268 
degree of, 259-261, 264, 268 
efficiency, 118. See also Polarization, match 

factor 
ellipse, 54, 57-67, 70, 73-75, 83, 93 

magnetic field, 109 
elliptic, 75, 80, 83-84, 89, 92, 95, 109 
linear,63,96,99,207-208,258,261 
loss, 134. See also Polarization, match factor 
match, 23 
match factor, 49,117-147,150-152,156, 

278 
misaligned antennas, 139-146 

matching, 110-147 
measurement, 270-281 
parallel to plane of incidence, 209, 212, 216, 

222 
partial, 92, 253-269 
pattern, 272-274 
perpendicular to plane of incidence, 208, 211, 

214 
random, 253 

Polarization -adaptive communications system, 
201, 203 

Polarization ratio: 
circular, 54, 70, 74, 80, 109, 264-265, 

271 
conunon, 54, 68-69, 74,109,127,138-139, 

150, 153,245, 264-265, 270, 281 
modified, 71, 77,109,119,125,138,237 

Polarization ratio of antenna, 119 
Potential: 

electric scalar, 4 
electric vector, 5, 8, 38 



296 INDEX 

Potential (Continued) 
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