




PLANAR MICROWAVE ENGINEERING

Modern wireless communications hardware is underpinned by RF and microwave
design techniques. This insightful book contains a wealth of circuit layouts, design

tips, and measurement techniques for building and testing practical gigahertz sys-
tems. The book covers everything you need to know to design, build, and test a

high-frequency circuit. Microstrip components are discussed, including tricks for
extracting good performance from cheap materials. Connectors and cables are also

described, as are discrete passive components, antennas, low-noise amplifiers, oscil-
lators, and frequency synthesizers. Practical measurement techniques are presented

in detail, including the use of network analyzers, sampling oscilloscopes, spectrum

analyzers, and noise figure meters. Throughout the focus is practical, and many
worked examples and design projects are included. A CD-ROM included with the

book contains a variety of design and analysis programs. The book is packed with
indispensable information for students taking courses on RF or microwave circuits

and for practicing engineers.

Thomas H. Lee received his Sc.D. from the Massachusetts Institute of Technology
and is an Associate Professor of Electrical Engineering at Stanford University. He

has been a Distinguished Lecturer of both the IEEE Solid-State Circuits Society and
the IEEEMicrowave Theory and Techniques Society. He is the winner of four “best

paper” awards at international conferences as well as a Packard Foundation Fellow-

ship winner. Professor Lee has written more than a hundred technical papers and
authored the acclaimed text The Design of CMOS Radio-Frequency Integrated Cir-

cuits, now in its second edition. He holds thirty-fiveU.S. patents and has co-founded
several companies, including Matrix Semiconductor.





PL ANAR
MICROWAVE

ENGINEERING

A Practical Guide to Theory,
Measurement, and Circuits

THOMAS H. LEE
Stanford University



published by the press syndicate of the university of cambridge
The Pitt Building, Trumpington Street, Cambridge, United Kingdom

cambridge university press
The Edinburgh Building, Cambridge CB2 2RU, UK

40 West 20th Street, New York, NY 10011-4211, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia

Ruiz de Alarcón 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

© Cambridge University Press 2004

This book is in copyright. Subject to statutory exception and
to the provisions of relevant collective licensing agreements,

no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 2004

Printed in the United States of America

Typeface Times 10.75/13.5 and Futura System AMS-TEX [FH]

A catalog record for this book is available from the British Library.

Library of Congress Cataloging in Publication data
Lee, Thomas H., 1959–

Planar microwave engineering : a practical guide to theory, measurement, and circuits /
Thomas Lee.

p. cm.
Includes bibliographical references and index.

ISBN 0-521-83526-7
1. Microwave circuits. 2. Microwave receivers. 3. Microwave devices. I. Title.

TK7876.L424 2004
621.381′32 – dc22 2004050811

ISBN 0 521 83526 7 hardback



for Angelina





CONTENTS

Preface page xiii

1 A MICROHISTORY OF MICROWAVE TECHNOLOGY 1
1. Introduction 1
2. Birth of the Vacuum Tube 11
3. Armstrong and the Regenerative Amplifier/ Detector/Oscillator 14
4. The Wizard War 18
5. Some Closing Comments 27
6. Appendix A: Characteristics of Other Wireless Systems 27
7. Appendix B: Who Really Invented Radio? 29

2 INTRODUC TION TO RF AND MICROWAVE CIRCUITS 37
1. Definitions 37
2. Conventional Frequency Bands 38
3. Lumped versus Distributed Circuits 41
4. Link between Lumped and Distributed Regimes 44
5. Driving-Point Impedance of Iterated Structures 44
6. Transmission Lines in More Detail 46
7. Behavior of Finite-Length Transmission Lines 51
8. Summary of Transmission Line Equations 53
9. Artificial Lines 54

10. Summary 58

3 THE SMITH CHART AND S-PAR A METERS 60
1. Introduction 60
2. The Smith Chart 60
3. S-Parameters 66
4. Appendix A: A Short Note on Units 69
5. Appendix B: Why 50 (or 75) �? 71

vii



viii CONTENTS

4 IMPEDANCE M ATCHING 74
1. Introduction 74
2. The Maximum Power Transfer Theorem 75
3. Matching Methods 77

5 CONNEC TORS, CABLES, AND WAVEGUIDES 108
1. Introduction 108
2. Connectors 108
3. Coaxial Cables 115
4. Waveguides 118
5. Summary 120
6. Appendix: Properties of Coaxial Cable 121

6 PASSIVE COMPONENTS 123
1. Introduction 123
2. Interconnect at Radio Frequencies: Skin Effect 123
3. Resistors 129
4. Capacitors 133
5. Inductors 138
6. Magnetically Coupled Conductors 147
7. Summary 157

7 MICROSTRIP, STRIPL INE, AND PL ANAR PASSIVE ELEMENTS 158
1. Introduction 158
2. General Characteristics of PC Boards 158
3. Transmission Lines on PC Board 162
4. Passives Made from Transmission Line Segments 178
5. Resonators 181
6. Combiners, Splitters, and Couplers 183
7. Summary 230
8. Appendix A: Random Useful Inductance Formulas 230
9. Appendix B: Derivation of Fringing Correction 233

10. Appendix C: Dielectric Constants of Other Materials 237

8 IMPEDANCE MEASUREMENT 238
1. Introduction 238
2. The Time-Domain Reflectometer 238
3. The Slotted Line 246
4. The Vector Network Analyzer 254
5. Summary of Calibration Methods 264
6. Other VNA Measurement Capabilities 265
7. References 265
8. Appendix A: Other Impedance Measurement Devices 265
9. Appendix B: Projects 268



CONTENTS ix

9 MICROWAVE DIODES 275
1. Introduction 275
2. Junction Diodes 276
3. Schottky Diodes 279
4. Varactors 281
5. Tunnel Diodes 284
6. PIN Diodes 287
7. Noise Diodes 289
8. Snap Diodes 290
9. Gunn Diodes 293

10. MIM Diodes 295
11. IMPATT Diodes 295
12. Summary 297
13. Appendix: Homegrown “Penny” Diodes and Crystal Radios 297

10 MIXERS 305
1. Introduction 305
2. Mixer Fundamentals 306
3. Nonlinearity, Time Variation, and Mixing 312
4. Multiplier-Based Mixers 317

11 TR ANSISTORS 341
1. History and Overview 341
2. Modeling 351
3. Small-Signal Models for Bipolar Transistors 352
4. FET Models 361
5. Summary 368

12 A MPLIF IERS 369
1. Introduction 369
2. Microwave Biasing 101 370
3. Bandwidth Extension Techniques 381
4. The Shunt-Series Amplifier 395
5. Tuned Amplifiers 413
6. Neutralization and Unilateralization 417
7. Strange Impedance Behaviors and Stability 420
8. Appendix: Derivation of Bridged T-Coil Transfer Function 427

13 LNA DESIGN 440
1. Introduction 440
2. Classical Two-Port Noise Theory 440
3. Derivation of a Bipolar Noise Model 445
4. The Narrowband LNA 451
5. A Few Practical Details 455



x CONTENTS

6. Linearity and Large-Signal Performance 457
7. Spurious-Free Dynamic Range 462
8. Cascaded Systems 464
9. Summary 467

10. Appendix A: Bipolar Noise Figure Equations 468
11. Appendix B: FET Noise Parameters 468

14 NOISE F IGURE MEASUREMENT 472
1. Introduction 472
2. Basic Definitions and Noise Measurement Theory 472
3. Noise Temperature 477
4. Friis’s Formula for the Noise Figure of Cascaded Systems 479
5. Noise Measure 480
6. Typical Noise Figure Instrumentation 481
7. Error Sources 487
8. Special Considerations for Mixers 491
9. References 492

10. Appendix: Two Cheesy Eyeball Methods 492

15 OSCILL ATORS 494
1. Introduction 494
2. The Problem with Purely Linear Oscillators 494
3. Describing Functions 495
4. Resonators 515
5. A Catalog of Tuned Oscillators 519
6. Negative Resistance Oscillators 524
7. Summary 528

16 SYNTHESIZERS 529
1. Introduction 529
2. A Short History of PLLs 529
3. Linearized PLL Model 532
4. PLL Rejection of Noise on Input 536
5. Phase Detectors 537
6. Sequential Phase Detectors 542
7. Loop Filters and Charge Pumps 544
8. Frequency Synthesis 551
9. A Design Example 561

10. Summary 564
11. Appendix: Inexpensive PLL Design Lab Tutorial 565

17 OSCILL ATOR PHASE NOISE 574
1. Introduction 574
2. General Considerations 576



CONTENTS xi

3. Detailed Considerations: Phase Noise 579
4. The Roles of Linearity and Time Variation in Phase Noise 582
5. Circuit Examples – LC Oscillators 592
6. Amplitude Response 597
7. Summary 599
8. Appendix: Notes on Simulation 600

18 MEASUREMENT OF PHASE NOISE 601
1. Introduction 601
2. Definitions and Basic Measurement Methods 601
3. Measurement Techniques 604
4. Error Sources 611
5. References 612

19 SA MPLING OSCILLOSCOPES, SPEC TRUM ANALYZERS,
AND PROBES 613
1. Introduction 613
2. Oscilloscopes 614
3. Spectrum Analyzers 625
4. References 629

20 RF POWER A MPLIF IERS 630
1. Introduction 630
2. Classical Power Amplifier Topologies 631
3. Modulation of Power Amplifiers 650
4. Additional Design Considerations 679
5. Summary 687

21 ANTENNAS 688
1. Introduction 688
2. Poynting’s Theorem, Energy, and Wires 690
3. The Nature of Radiation 691
4. Antenna Characteristics 695
5. The Dipole Antenna 697
6. The Microstrip Patch Antenna 707
7. Miscellaneous Planar Antennas 720
8. Summary 721

22 LUMPED FILTERS 723
1. Introduction 723
2. Background – A Quick History 723
3. Filters from Transmission Lines 726
4. Filter Classifications and Specifications 738
5. Common Filter Approximations 740



xii CONTENTS

6. Appendix A: Network Synthesis 766
7. Appendix B: Elliptic Integrals, Functions, and Filters 774
8. Appendix C: Design Tables for Common Low-pass Filters 781

23 MICROSTRIP F ILTERS 784
1. Background 784
2. Distributed Filters from Lumped Prototypes 784
3. Coupled Resonator Bandpass Filters 803
4. Practical Considerations 841
5. Summary 843
6. Appendix: Lumped Equivalents of Distributed Resonators 844

Index 847



PREFACE

First, it was called wireless, then radio. After decades in eclipse wireless has be-
come fashionable once again. Whatever one chooses to call it, the field of RF design
is changing so rapidly that textbook authors, let alone engineers, are hard pressed to
keep up. A significant challenge for newcomers in particular is to absorb an expo-
nentially growing amount of new information while also acquiring a mastery of those
foundational aspects of the art that have not changed for generations. Compounding
the challenge is that many books on microwave engineering focus heavily on elec-
tromagnetic field theory and never discuss actual physical examples, while others are
of a cookbook nature with almost no theory at all. Worse still, much of the lore on
this topic is just that: an oral tradition (not always correct), passed down through the
generations. The rest is scattered throughout numerous applications notes, product
catalogs, hobbyist magazines, and instruction manuals – many of which are hard to
find, and not all of which agree with each other. Hobbyists are almost always un-
happy with the theoretical bent of academic textbooks (“too many equations, and in
the end, they still don’t tell you how to make anything”), while students and practicing
engineers are often unhappy with the recipe-based approaches of hobby magazines
(“they don’t give you the theory to show how to change the design into what I actually
need”). This book is a response to the students, hobbyists, and practicing engineers
who have complained about the lack of a modern reference that balances theory and
practice.

This book is a much-expanded version of notes used in the teaching of EE414,
a one-term advanced graduate laboratory course on gigahertz transceiver design at
Stanford University. Even so, it is intended to satisfy a much broader audience than
simply those seeking a Ph.D. In EE414, students spend approximately nine weeks de-
signing, building, and testing every building block of a1-GHz transceiver using micro-
strip construction techniques. These building blocks include various antennas and
microstrip filters as well as a low-noise amplifier, mixer, PLL-based frequency syn-
thesizer and FM modulator/demodulator, and power amplifier. The “final exam” is
a successful demonstration of two-way communications with these FM transceivers.
I am deeply grateful to the students of the first class in particular, who graciously and
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xiv PREFACE

enthusiastically served as guinea pigs as the course material and notes were being de-
veloped in real time (at best). The present form of the text owes a great deal to their
suggestions.

It is true that you will find here a certain number of theoretical discussions of mea-
surement techniques and microwave design, replete with complex transfer functions
and transforms galore. That’s necessary because an important function of a Ph.D.
program is the mental torment of graduate students. But hobbyists who just want
to “get to the good stuff” right away are free to ignore all of the equations and to
focus instead on the many practical rules of thumb or on the numerous ways to build
and characterize microwave circuits with inexpensive components and equipment.
Every effort is made to provide verbal and physical explanations of what the equa-
tions mean. The weekend experimenter may enjoy in particular the projects included
in many of the chapters, ranging from homemade diodes to a sub-$10 microwave
impedance measurement system. The practicing engineer will find much useful in-
formation about how to extract the most reliable data from leading-edge instrumenta-
tion, with a special focus on understanding calibration methods (and their limitations)
in order to avoid making subtle, but surprisingly common, errors. Younger engineers
may also enjoy finding answers to many of their questions about everyday RF items
(Does BNC really stand for “baby N connector”?1 Why is everything 50 �? Who
was Smith, and why did he invent a chart?). Readers are invited to pick and choose
topics to suit their tastes; this book is a smorgasbord, as is clear from the following
brief descriptions of the chapters.

Chapter 1 provides a short history of RF and microwave circuits. It is impossi-
ble to provide anything remotely approaching a comprehensive overview of this vast
topic in one chapter, and we don’t even try. Our hope is that it provides some enter-
tainment while establishing a context for the rest of the book.

Chapter 2 introduces some definitions and basic concepts. We try to devise a less
arbitrary definition of microwave than the simple frequency-based one offered in
many other places. We also try very hard to avoid actually solving Maxwell’s equa-
tions anywhere, preferring instead to appeal to physical intuition. Again, this book is
about design and testing, not pure analysis, so any analysis we perform is dedicated
to those aims.

The Smith chart and S-parameters are staples of classical microwave design, so
Chapter 3 provides a brief introduction to them. The complex appearance of the chart
is off-putting to many who would otherwise be interested in RF and microwave de-
sign. We therefore offer a brief history of the Smith chart to explain why it’s useful,
even today. In the process, we hope to make the Smith chart a little less intimidating.

At high frequencies, power gain is hard to come by, so impedance matching is
a standard task of every microwave engineer. Chapter 4 presents a number of im-
pedance matching methods, along with a brief explanation of the Bode–Fano limit,
which helps let us know when we should quit trying (or when we shouldn’t even try).

1 No.
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PREFACE xv

After having witnessed eager students inadvertently destroy expensive fixturing,
it became clear that a chapter on the care and feeding of connectors was neces-
sary. Chapter 5 surveys a number of popular connectors, their historical origins, their
domain of application, and the proper ways to care for them. Cables and their char-
acteristics are discussed as well.

Chapter 6 examines the characteristics of lumped passive elements at microwave
frequencies. Simple circuit models (appropriate for design, but not necessarily accu-
rate enough for analysis) are presented to alert the student to issues that may prevent
circuits from functioning as desired. To no small degree, an important lesson in RF
and microwave design is that there are always irreducible parasitics. Rather than con-
ceding defeat, one must exploit them as circuit elements. Retaining simple mental
models of parasitics allows you to devise clever ways of accomplishing this goal.

In Chapter 7 we introduce the most common way of building microwave circuits
(either in discrete or integrated form): microstrip. Although the chapter focuses on this
one particular method of implementing planar circuits, we also spend a little time dis-
cussing coplanar waveguide and coplanar strips, as well as stripline. After introducing
basic concepts and some simple (but reasonably accurate) design equations, we ex-
amine a large number of passive components that may be realized in microstrip form.

Once you’ve designed and built some circuits, you’ll need to characterize them.
One of the most basic measurements you will make is that of impedance. Chap-
ter 8 presents several methods for making impedance measurements, ranging from
time-domain reflectometry to vector network analysis. We spend considerable time
describing various calibration techniques, for maladroitness here often causes engi-
neers to obtain $1 answers from a $100,000 instrument. For those who don’t want to
choose between buying a home and buying a network analyzer, we present a simple
“slotted line” measurement device that can be fashioned for about $10 yet functions
up to at least several gigahertz. The 40-dB cost reduction is not accompanied by a
40-dB utility reduction, fortunately. For example, once calibrated, the device can
even be used to determine frequency within 1–2%.

Chapter 9 is devoted to microwave diodes. Engineers accustomed to lower-
frequency design are often surprised at the wide variety of functions that diodes
can perform. Especially surprising to many newcomers is that some diodes are ca-
pable of amplification and even of oscillation.

Chapter 10 builds on that foundation to describe numerous mixers, heart of the
modern superheterodyne transceiver. Lumped and distributed implementations are
presented, as are active and passive circuits. Depending on the available technology
and the design constraints, any of these may be appropriate in a given situation.

Active circuits are more interesting, of course (at least to the author), and so Chap-
ter 11 presents a survey of transistors. The device physicists have been working over-
time for decades to give us JFETs, MOSFETs, MESFETs, HEMTs, VMOS, UMOS,
LDMOS, HBTs, . . . , and the list just keeps growing. We attempt to provide a some-
what unified treatment of these transistors, and focus on just two types (MOSFETs
and bipolars) as representative of a much wider class.
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xvi PREFACE

Chapter 12 considers how to squeeze the most out of whatever transistor technol-
ogy you are given. We spend a few pages describing how to bias transistors because, at
microwave frequencies, many of the lower-frequency techniques have serious imple-
mentation consequences (parasitics, again). We then describe methods for extending
bandwidth by factors of 2–3 with modest increases in circuit complexity. And for the
first time anywhere (to the author’s knowledge), we present a detailed derivation of
the transfer function and optimum conditions for the bridged T-coil bandwidth boost
network.

In Chapter 13, we shift our goals from “give me all the bandwidth you can” to
“give me the lowest-noise amplification possible.” We discuss noise models and then
present the theory of noise matching. We discover that the conditions that maximize
power transfer almost never coincide with those that minimize noise factor, and so a
compromise strategy is necessary. Again, although we focus the discussion on just
one or two types of transistors, the general concepts presented apply to all amplifiers.

Once you’ve built what you believe is a low-noise amplifier, you have to prove it.
Chapter 14 describes the principles underlying noise figure measurement, along with
descriptions of how to get the wrong answer (it’s very easy). Depending on your ob-
jectives (making your LNA look good, or your competitor’s look bad), you can either
commit or avoid those errors.

Chapter 15 describes how to produce controlled instability to build oscillators. The
old joke among frustrated microwave engineers is that “amplifiers oscillate, and os-
cillators amplify.” We hope that the simplified presentation here allows you to design
oscillators that really do oscillate, and even on frequency.

Virtually every modern transceiver has a frequency synthesizer somewhere. Chap-
ter 16 describes phase-locked loop synthesizers, along with an extended discussion
of spur-producing design defects (and their mitigation). Although the theoretical dis-
cussion can get very complex, the design examples should help the impatient hobbyist
put together a working design without having to understand every equation.

Chapter 17 analyzes the important subject of phase noise. It’s not sufficient for
an oscillator to oscillate. The putative scarcity of spectrum obligates all transmit-
ters to follow a “good neighbor” policy and not transmit much energy outside of its
assigned band. All oscillators are imperfect in this regard, so Chapter 17 identifies
where phase noise comes from and how you can reduce it.

Chapter 18 describes phase noise measurement methods. As with noise figure,
there are many subtle (and not so subtle) ways to bungle a phase noise measurement,
and we try to steer you clear of those.

Chapter 19 describes spectrum analyzers, oscilloscopes, and probes. Too often,
engineers place all of their faith in the instrument, forgetting that connecting their
circuit to these devices is up to them. And if done with insufficient care, the quality
of the measurement can degrade rapidly. This chapter highlights the more common
of these errors – and ways to avoid them. Also, since high-frequency probes are so
expensive, we offer a way to build one for a few dollars. To supplement the probe,
we also offer a couple of fast pulse-generator circuits with which you may test probe
and oscilloscope combinations.
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PREFACE xvii

Chapter 20 presents numerous ways to implement power amplifiers at RF and
microwave frequencies. At one time, it was sufficient to design for a particular gain
and output power. Unfortunately, demands have increased steadily as the telecom-
munications revolution has unfolded, and now one must achieve high efficiency, low
cost, high robustness to varying load conditions, and high linearity. We attempt to
survey numerous methods for achieving all of these goals.

The aim of Chapter 21 is showing how to get power into and out of the air. Anten-
nas are mysterious, and we hope to take at least some of the mystery out of antenna
design with the material in this chapter. We focus on microstrip patch antennas, but
we precede that discussion with an examination of classic nonplanar antennas (e.g.,
the dipole) to identify important concepts.

Finally, Chapters 22 and 23 focus on the design of passive filters. The presenta-
tion is divided roughly into lumped design in Chapter 22 and microstrip distributed
filters in Chapter 23. Throughout, we make a concerted effort to focus on practical
details, such as the effect of component tolerance, or finite Q. We hope that the nu-
merous design examples and simulation results will illuminate the design procedures
and allow you to converge rapidly on an acceptable, repeatable design.

Again, these chapters are ordered in a quasirandom way. You are in no way obli-
gated to read them linearly in the sequence presented. Skip around as you like. It’s
your book.

This text has been informed by the many wonderful mentors, colleagues, and stu-
dents who have generously shared their knowledge and viewpoints over the years.
Stanford Professor Malcolm McWhorter (now Emeritus) oversaw the development
of a delightfully unorthodox BNC microstrip mounting arrangement for EE414’s pre-
requisite, an introductory microwave laboratory course called EE344. As discussed
later in this book, this mounting method is ideal for students and hobbyists because it
allows for the rapid and inexpensive prototyping of circuits in the low-gigahertz fre-
quency range. Howard Swain and Dieter Scherer, both formerly of Hewlett-Packard
and both virtuoso designers of widely used microwave instruments, helped to cre-
ate EE344 and have continued to help teach it. The present mentor of the course,
Professor Donald Cox, has graciously communicated lessons learned from teaching
EE344 over the years, and the contents of this book have been adjusted as a direct re-
sult. I am also greatly indebted to Professor David Rutledge of Caltech, not only for
generously allowing the inclusion of Puff in the CD-ROM collection of software ac-
companying this text but also for the great wealth of knowledge he has imparted to
me, both in person and from his many publications. I’ve also benefitted enormously
from the fact that simple proximity to David Leeson automatically increases your
knowledge of microwave systems by several dB. Having so knowledgeable a faculty
colleague has been a godsend.

I have also been the beneficiary of the hard work of several dedicated graduate stu-
dents who built and tested most of the projects described in this book. Stanford Ph.D.
candidates Sergei Krupenin, Arjang Hassibi, Talal Al-Attar, Moon-Jung Kim, and
Michael Mulligan merit special mention in particular for their efforts. Rob Chavez
of Agilent, while nominally a student in EE414, worked long hours to help other
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xviii PREFACE

students and the teaching assistant. Future EE414 students, as well as readers of this
book, owe him thanks for the insights and suggestions that have shaped this material.

Funding is the fuel that keeps the academic engine purring, and here I have been
most fortunate. Generous equipment grants from Hewlett-Packard and Agilent Tech-
nologies have given generations of students the privilege of hands-on work with
leading-edge gear that not many schools can afford. Support from the William G.
Hoover Faculty Scholar Chair and The David and Lucile Packard Foundation has
given me tremendous freedom, making it possible to develop new courses, pursue
some crazy research ideas, and write textbooks.

Finally, I am most deeply grateful to my loving wife, Angelina, for her patient
support during the writing of this book, and for otherwise living up to her name in
every way. Without her forbearance, it would have been impossible to complete two
book manuscripts in one long year.
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C H A P T E R O N E

A MICROHISTORY OF
MICROWAVE TECHNOLOGY

1.1 INTRODUC TION

Many histories of microwave technology begin with James Clerk Maxwell and his
equations, and for excellent reasons. In 1873, Maxwell published A Treatise on Elec-
tricity and Magnetism, the culmination of his decade-long effort to unify the two
phenomena. By arbitrarily adding an extra term (the “displacement current”) to the
set of equations that described all previously known electromagnetic behavior, he
went beyond the known and predicted the existence of electromagnetic waves that
travel at the speed of light. In turn, this prediction inevitably led to the insight that
light itself must be an electromagnetic phenomenon. Electrical engineering students,
perhaps benumbed by divergence, gradient, and curl, often fail to appreciate just how
revolutionary this insight was.1 Maxwell did not introduce the displacement cur-
rent to resolve any outstanding conundrums. In particular, he was not motivated by
a need to fix a conspicuously incomplete continuity equation for current (contrary
to the standard story presented in many textbooks). Instead he was apparently in-
spired more by an aesthetic sense that nature simply should provide for the existence
of electromagnetic waves. In any event the word genius, though much overused to-
day, certainly applies to Maxwell, particularly given that it shares origins with genie.
What he accomplished was magical and arguably ranks as the most important intel-
lectual achievement of the 19th century.2

Maxwell – genius and genie – died in 1879, much too young at age 48. That year,
Hermann von Helmholtz sponsored a prize for the first experimental confirmation of
Maxwell’s predictions. In a remarkable series of investigations carried out between

1 Things could be worse. In his treatise of 1873, Maxwell expressed his equations in terms of quater-
nions. Oliver Heaviside and Josiah Willard Gibbs would later reject quaternions in favor of the
language of vector calculus to frame Maxwell’s equations in the form familiar to most modern
engineers.

2 The late Nobel physicist Richard Feynman often said that future historians would still marvel at
Maxwell’s work, long after another event of that time – the American Civil War – had faded into
merely parochial significance.

1
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2 CHAPTER 1 A MICROHISTORY OF MICROWAVE TECHNOLOGY

F IGURE 1.1. Spark transmitter and receiver of Hertz

1886 and 1888 at the Technische Hochschule in Karlsruhe, Helmholtz’s former pupil,
Heinrich Hertz, verified that Maxwell was indeed correct. Another contestant in the
race, Oliver Lodge (then a physics professor at University College in Liverpool), pub-
lished his own confirmation one month after Hertz, having interrupted his work in
order to take a vacation. Perhaps but for that vacation we would today be referring to
lodgian waves with frequencies measured in megalodges. Given that Hertz is Ger-
man for heart and that the human heart beats about once per second, it is perhaps all
for the best that Lodge didn’t win the race.

How did Hertz manage to generate and detect electromagnetic waves with equip-
ment available in the 1880s? Experimental challenges certainly extend well beyond
the mere generation of some sort of signal; a detector is required, too. Plus, to verify
wave behavior, you need apparatus that is preferably at least a couple of wavelengths
in extent. In turn, that requirement implies another: sufficient lab space to contain
apparatus of that size (and preferably sufficient to treat the room as infinitely large,
relative to a wavelength, so that unwanted reflections from walls and other surfaces
may be neglected). Hertz, then a junior faculty member, merited a modest labo-
ratory whose useful internal dimensions were approximately 12 m by 8 m.3 Hertz
understood that the experimental requirements forced him to seek the generation of
signals with wavelengths of the order of a meter. He accomplished the difficult feat
of generating such short waves by elaborating on a speculation by the Irish physicist
George Francis FitzGerald, who had suggested in 1883 that one might use the known
oscillatory spark discharge of Leyden jars (capacitors) to generate electromagnetic
waves. Recognizing that the semishielded structure of the jars would prevent efficient
radiation, Hertz first modified FitzGerald’s idea by “unrolling” the cylindrical con-
ductors in the jars into flat plates. Then he added inductance in the form of straight
wire connections to those plates in order to produce the desired resonant frequency
of a few hundred megahertz. In the process, he thereby invented the dipole antenna.
Finally, he solved the detection problem by using a ring antenna with an integral
spark gap. His basic transmitter–receiver setup is shown in Figure 1.1. When the

3 Hugh G. J. Aitken, Syntony and Spark, Princeton University Press, Princeton, NJ, 1985.
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1.1 INTRODUC TION 3

switch is closed, the battery charges up the primary of the Ruhmkorff coil (an early
transformer). When the switch opens, the rapid collapse of the magnetic field induces
a high voltage in the secondary, causing a spark discharge. The sudden change in
current accompanying the discharge excites the antenna to produce radiation.

Detection relies on the induction of sufficient voltage in the ring resonator to pro-
duce a visible spark. A micrometer screw allows fine adjustment, and observation in
the dark permits one to increase measurement sensitivity.4

With this apparatus (a very longwave version of an optical interferometer), Hertz
demonstrated essential wave phenomena such as polarization and reflection.5 Mea-
surements of wavelength, coupled with analytical calculations of inductance and
capacitance, confirmed a propagation velocity sufficiently close to the speed of light
that little doubt remained that Maxwell had been right.6

We will never know if Hertz would have gone beyond investigations of the pure
physics of the phenomena to consider practical uses for wireless technology, for he
died of blood poisoning (from an infected tooth) in 1894 at the age of 36. Brush and
floss after every meal, and visit your dentist regularly.

Maxwell’s equations describe electric and magnetic fields engaged in an eternal
cycle of creation, destruction, and rebirth. Fittingly, Maxwell’s death had inspired
von Helmholtz to sponsor the prize which had inspired Hertz. Hertz’s death led
to the publication of a memorial tribute that, in turn, inspired a young man named
Guglielmo Marconi to dedicate himself to developing commercial applications of
wireless. Marconi was the neighbor and sometime student of Augusto Righi, the
University of Bologna professor who had written that tribute to Hertz. Marconi had
been born into a family of considerable means, so he had the time and finances
to pursue his dream.7 By early 1895, he had acquired enough apparatus to begin
experiments in and around his family’s villa, and he worked diligently to increase
transmission distances. Marconi used Hertz’s transmitter but, frustrated by the inher-
ent limitations of a spark-gap detector, eventually adopted (then adapted) a peculiar
creation that had been developed by Edouard Branly in 1890. As seen in Figure 1.2,
the device, dubbed a coherer by Lodge, consists of a glass enclosure filled with a
loosely packed and perhaps slightly oxidized metallic powder. Branly had acciden-
tally discovered that the resistance of this structure changes dramatically when nearby

4 Hertz is also the discoverer of the photoelectric effect. He noticed that sparks would occur more
readily in the presence of ultraviolet light. Einstein would win his Nobel prize for providing the
explanation (and not for his theory of relativity, as is frequently assumed).

5 The relative ease with which the waves were reflected would inspire various researchers to propose
crude precursors to radar within a relatively short time.

6 This is not to say that everyone was immediately convinced; they weren’t. Revolutions take time.
7 Marconi’s father was a successful businessman, and his mother was an heiress to the Jameson Irish

whiskey fortune. Those family connections would later prove invaluable in gaining access to key
members of the British government after Italian officials showed insufficient interest. The British
Post Office endorsed Marconi’s technology and supported its subsequent development.
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4 CHAPTER 1 A MICROHISTORY OF MICROWAVE TECHNOLOGY

F IGURE 1.2. Branly’s coherer

F IGURE 1.3. Typical receiver with coherer

electrical apparatus is in operation. It must be emphasized that the detailed principles
that underlie the operation of coherers remain mysterious, but that ignorance doesn’t
prevent us from describing their electrical behavior.8

A coherer’s resistance generally has a large value (say, megohms) in its quiescent
state and then drops to kilohms or less when triggered by some sort of an EM event.
This large resistance change in turn may be used to trigger a solenoid to produce an
audible click, as well as to ink a paper tape for a permanent record of the received
signal. To prepare the coherer for the next EM pulse, it has to be shaken (or stirred)
to restore the “incoherent” high-resistance state. Figure 1.3 shows how a coherer can
be used in a receiver. It is evident that the coherer is a digital device and therefore
unsuitable for uses other than radiotelegraphy.

The coherer never developed into a good detector, it just got less bad over time.
Marconi finally settled on the configuration shown in Figure 1.4. He greatly reduced
the spacing between the end plugs, filled the intervening space with a particular mix-
ture of nickel and silver filings of carefully selected size, and partially evacuated the
tube prior to sealing the assembly. As an additional refinement in the receiver, a so-
lenoid provided an audible indication in the process of automatically whacking the
detector back into its initial state after each received pulse.

Even though many EM events other than the desired signal could trigger a co-
herer, Marconi used this erratic device with sufficient success to enable increases

8 Lodge named these devices coherers because the filings could be seen to stick together under some
circumstances. However, the devices continue to function as detectors even without observable
physical movement of the filings. It is probable that oxide breakdown is at least part of the expla-
nation, but experimental proof is absent for lack of interest in these devices.
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1.1 INTRODUC TION 5

F IGURE 1.4. Marconi’s coherer

in communication range to about three kilometers by 1896. As he scaled upward in
power, he used progressively larger antennas, which had the unintended side effect
of lowering the “carrier” frequencies to below 100 kHz from his initial frequencies
of ∼100 MHz. This change was most fortuitous, because it allowed reflections from
the ionosphere (whose existence was then unknown) to extend transmission distances
well beyond the horizon, allowing him to claim successful transatlantic wireless com-
munications by 12 December 1901.9 Wireless technology consequently ignored the
spectrum above 1 MHz for nearly two more decades, thanks to a belief that commu-
nication distances were greatest below 100 kHz.

As the radio art developed, the coherer’s limitations became increasingly intoler-
able, spurring the search for improved detectors. Without a body of theory to impose
structure, however, this search was haphazard and sometimes took bizarre turns. A
human brain from a fresh cadaver was once tried as a coherer, with the experimenter
claiming remarkable sensitivity for his apparatus.10

That example notwithstanding, most detector research was based on the vague
notion that a coherer’s operation depends on some mysterious property of imper-
fect contacts. Following this intuition, a variety of experimenters stumbled, virtu-
ally simultaneously, on various types of point-contact crystal detectors. The first
patent application for such a device was filed in 1901 by the remarkable Jagadish
Chandra Bose for a detector using galena (lead sulfide).11 See Figures 1.5 and 1.6.
This detector exploits a semiconductor’s high temperature coefficient of resistance,
rather than rectification.12 As can be seen in the patent drawing, electromagnetic

9 Marconi’s claim was controversial then, and it remains so. The experiment itself was not double-
blind, as both the sender and the recipient knew ahead of time that the transmission was to consist
of the letter s (three dots in Morse code). Ever-present atmospheric noise is particularly promi-
nent in the longwave bands he was using at the time. The best modern calculations reveal that the
three dots he received had to have been noise, not signal. One need not postulate fraud, however.
Unconscious experimenter bias is a well-documented phenomenon and is certainly a possibility
here. In any case, Marconi’s apparatus evolved enough within another year to enable verifiable
transatlantic communication.

10 A. F. Collins, Electrical World and Engineer, v. 39, 1902; he started out with brains of other spe-
cies and worked his way up to humans.

11 U.S. Patent #755,840, granted 19 March 1904. The patent renders his name Jagadis Chunder Bose.
The transliteration we offer is that used by the academic institution in Calcutta that bears his name.

12 Many accounts of Bose’s work confuse his galena balometer with the point-contact rectifying
(“catwhisker” type) detectors developed later by others and thus erroneously credit him with the
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6 CHAPTER 1 A MICROHISTORY OF MICROWAVE TECHNOLOGY

F IGURE 1.5. Actual detector mounts used by Bose
(galena not shown) [courtesy of David Emerson]

radiation is focused on the point contact, and the resistance change that accompanies
the consequent heating registers as a change in current flowing through an external
circuit. This type of detector is known as a bolometer. In refined form, bolometers
remain useful as a means of measuring power, particularly of signals whose fre-
quency is so high that there are no other means of detection. Bose used this detector
in experiments extending to approximately 60 GHz, about which he first published
papers in 1897.13 His research into millimeter-wave phenomena was decades ahead
of his time.14 So too was the recognition by Bose’s former teacher at Cambridge, Lord
Rayleigh, that hollow conductors could convey electromagnetic energy.15 Waveguide
transmission would be forgotten for four decades, but Rayleigh had most of it worked
out (including the concept of a cutoff frequency) in 1897.

invention of the semiconductor diode. The latter functions by rectification, of course, and thus
does not require an external bias. It was Ferdinand Braun who first reported asymmetrical con-
duction in galena and copper pyrites (among others), back in 1874, in “Ueber die Stromleitung
durch Schwefelmetalle” [On Current Flow through Metallic Sulfides], Poggendorff’s Annalen der
Physik und Chemie, v. 153, pp. 556–63. Braun’s other important development for wireless was
the use of a spark gap in series with the primary of a transformer whose secondary connects to the
antenna. He later shared the 1909 Nobel Prize in physics with Marconi for contributions to the
radio art.

13 J. C. Bose, “On the Determination of the Wavelength of Electric Radiation by a Diffraction Grat-
ing,” Proc. Roy. Soc., v. 60, 1897, pp. 167–78.

14 For a wonderful account of Bose’s work with millimeter waves, see David T. Emerson, “The Work
of Jagadis Chandra Bose: 100 Years of MM-Wave Research,” IEEE Trans. Microwave Theory and
Tech., v. 45, no. 12, 1997, pp. 2267–73.

15 Most scientists and engineers are familar with Rayleigh’s extensive writings on acoustics, which
include analyses of ducting (acoustic waveguiding) and resonators. Far fewer are aware that he
also worked out the foundations for electromagnetic waveguides at a time when no one could
imagine a use for the phenomenon and when no one but Bose could even generate waves of a high
enough frequency to propagate through reasonably small waveguides.
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1.1 INTRODUC TION 7

F IGURE 1.6. Bose’s bolometer patent (first page)

This patent appears to be the first awarded for a semiconductor detector, although
it was not explicitly recognized as such because semiconductors were not yet ac-
knowledged as a separate class of materials (indeed, the word semiconductor had
not yet been coined). Work along these lines continued, and General Henry Harri-
son Chase Dunwoody filed the first patent application for a rectifying detector using
carborundum (SiC) on 23 March 1906, receiving U.S. Patent #837,616 on 4 Decem-
ber of that year. A later application, filed on 30 August 1906 by Greenleaf Whittier
Pickard (an MIT graduate whose great-uncle was the poet John Greenleaf Whittier)
for a silicon (!) detector, resulted in U.S. Patent #836,531 just ahead of Dunwoody,
on 20 November (see Figure 1.7).

As shown in Figure 1.8, one connection consists of a small wire (whimsically
known as a catwhisker) that makes a point contact to the crystal surface. The other
connection is a large area contact canonically formed by a low–melting-point alloy
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8 CHAPTER 1 A MICROHISTORY OF MICROWAVE TECHNOLOGY

F IGURE 1.7. The first silicon diode patent

F IGURE 1.8. Typical crystal detector

(usually a mixture of lead, tin, bismuth, and cadmium known as Wood’s metal, which
has a melting temperature of under 80◦C), that surrounds the crystal.16 One might
call a device made this way a point-contact Schottky diode, although measurements

16 That said, such immersion is unnecessary. A good clamp to the body of the crystal usually suffices,
and it avoids the use of toxic metals.
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1.1 INTRODUC TION 9

F IGURE 1.9. Simple crystal radio

are not always easily reconciled with such a description. In any event, we can see
how the modern symbol for the diode evolved from a depiction of this physical ar-
rangement, with the arrow representing the catwhisker point contact.

Figure 1.9 shows a simple crystal radio made with these devices.17 An LC circuit
tunes the desired signal, which the crystal then rectifies, leaving the demodulated
audio to drive the headphones. A bias source is not needed with some detectors (such
as galena), so it is possible to make a “free-energy” radio.18 As we’ll see, some-
one who had been enthralled by the magic of crystal radios as a boy would resurrect
point-contact diodes to enable the development of radar. Crystal radios remain a
focus of intense interest by a corps of dedicated hobbyists attracted by the simple
charm of these receivers.

Pickard worked harder than anyone else to develop crystal detectors, eventually
evaluating over 30,000 combinations of wires and crystals. In addition to silicon,
he studied iron pyrites (fool’s gold) and rusty scissors. Galena detectors became
quite popular because they are inexpensive and need no bias. Unfortunately, proper
adjustment of the catwhisker wire contact is difficult to maintain because anything
other than the lightest pressure on galena destroys the rectification. Plus, you have
to hunt around the crystal surface for a sensitive spot in the first place. On the other
hand, although carborundum detectors need a bias of a couple of volts, they are more

17 Today, crystal usually refers to quartz resonators used, for example, as frequency-determining
elements in oscillators; these bear no relationship to the crystals used in crystal radios. A galena
crystal may be replaced by a commercially made diode (such as the germanium1N34A), but purists
would disapprove of the lack of charm. An ordinary U.S. penny (dated no earlier than 1983), baked
in a kitchen oven for 15 minutes at about 250◦C to form CuO, exhibits many of the relevant char-
acteristics of the galena (e.g., wholly erratic behavior). Copper-based currencies of other nations
may also work (the author has verified that the Korean 10-won coin works particularly well). The
reader is encouraged to experiment with coins from around the world and inform the author of the
results.

18 Perhaps we should give a little credit to the human auditory system: the threshold of hearing cor-
responds to an eardrum displacement of about the diameter of a hydrogen atom!
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10 CHAPTER 1 A MICROHISTORY OF MICROWAVE TECHNOLOGY

mechanically stable (a relatively high contact pressure is all right) and found wide
use on ships as a consequence.19

At about the same time that these crude semiconductors were first coming into
use, radio engineers began to struggle with the interference caused by the ultrabroad
spectrum of a spark signal. This broadband nature fits well with coherer technology,
since the dramatically varying impedance of the latter makes it difficult to realize
tuned circuits anyway. However, the unsuitability of spark for multiple access was
dramatically demonstrated in 1901, when three separate groups (led by Marconi, Lee
de Forest, and Pickard) attempted to provide up-to-the-minute wireless coverage of
the America’s Cup yacht race. With three groups simultaneously sparking away, no
one was able to receive intelligible signals, and race results had to be reported the
old way, by semaphore. A thoroughly disgusted de Forest threw his transmitter over-
board, and news-starved relay stations on shore resorted to making up much of what
they reported.

In response, a number of engineers sought ways of generating continuous sine
waves at radio frequencies. One was the highly gifted Danish engineer Valdemar
Poulsen20 (famous for his invention of an early magnetic recording device), who
used the negative resistance associated with a glowing DC arc to keep an LC circuit
in constant oscillation.21 A freshly minted Stanford graduate, Cyril Elwell, secured
the rights to Poulsen’s arc transmitter and founded Federal Telegraph in Palo Alto,
California. Federal soon scaled up this technology to impressive power levels: an arc
transmitter of over 1 megawatt was in use shortly after WWI!

Pursuing a different approach, Reginald Fessenden asked Ernst F. W. Alexander-
son of GE to produce radio-frequency (RF) sine waves at large power levels with
huge alternators (very big, very high-speed versions of the thing that recharges your
car battery as you drive). This dead-end technology culminated in the construction

19 Carborundum detectors were typically packaged in cartridges and were often adjusted by using
the delicate procedure of slamming them against a hard surface.

20 Some sources persistently render his name incorrectly as “Vladimir,” a highly un-Danish name!
21 Arc technology for industrial illumination was a well-developed art by this time. The need for

a sufficiently large series resistance to compensate for the arc’s negative resistance (and thereby
maintain a steady current) was well known. William Duddell exploited the negative resistance to
produce audio (and audible) oscillations. Duddell’s “singing arc” was perhaps entertaining but
not terribly useful. Efforts to raise the frequency of oscillation beyond the audio range were un-
successful until Poulsen switched to hydrogen gas and employed a strong magnetic field to sweep
out ions on a cycle-by-cycle basis (an idea patented by Elihu Thompson in 1893). Elwell subse-
quently scaled up the dimensions in a bid for higher power. This strategy sufficed to boost power
to 30 kW, but attempts at further increases in power through scaling simply resulted in larger
transmitters that still put out 30 kW. In his Ph.D. thesis (Stanford’s first in electrical engineer-
ing), Leonard Fuller provided the theoretical advances that allowed arc power to break through
that barrier and enable 1-MW arc transmitters. In 1931, as chair of UC Berkeley’s electrical en-
gineering department – and after the arc had passed into history – Fuller arranged the donation
of surplus coil-winding machines and an 80-ton magnet from Federal for the construction of
Ernest O. Lawrence’s first large cyclotron. Lawrence would win the 1939 Nobel Prize in physics
with that device.
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1.2 BIRTH OF THE VACUUM TUBE 11

of an alternator that put out 200 kW at 100 kHz! It was completed just as WWI ended
and was already on its way to obsolescence by the time it became operational.22

The superiority of the continuous wave over spark signals was immediately evi-
dent, and it stimulated the development of better receiving equipment. Thankfully,
the coherer was gradually supplanted by a number of improved devices, including
the semiconductor devices described earlier, and was well on its way to extinction by
1910 (although as late as the 1950s there was at least one radio-controlled toy truck
that used a coherer).

Enough rectifying detectors were in use by late 1906 to allow shipboard operators
on the East Coast of the United States to hear, much to their amazement (even with
a pre-announcement by radiotelegraph three days before), the first AM broadcast by
Fessenden himself on Christmas Eve. Delighted listeners were treated to a recording
of Handel’s Largo (from Xerxes), a fine rendition of O Holy Night by Fessenden on
the violin (with the inventor accompanying himself while singing the last verse), and
his hearty Christmas greetings to all.23 He used a water-cooled carbon microphone
to modulate a 500-W (approximate), 50-kHz (also approximate) carrier generated by
a prototype Alexanderson alternator located at Brant Rock, Massachusetts. Those
unfortunate enough to use coherers missed out on the historic event. Fessenden re-
peated his feat a week later, on New Year’s Eve, to give more people a chance to get
in on the fun.

1.2 BIRTH OF THE VACUUM TUBE

The year 1907 saw the invention, by Lee de Forest, of the first electronic device
capable of amplification: the triode vacuum tube. Unfortunately, de Forest didn’t un-
derstand how his invention actually worked, having stumbled upon it by way of a
circuitous (and occasionally unethical) route.

The vacuum tube traces its ancestry to the humble incandescent light bulb of
Thomas Edison. Edison’s bulbs had a problem with progressive darkening caused
by the accumulation of soot (given off by the carbon filaments) on the inner surface.
In an attempt to cure the problem, he inserted a metal electrode, hoping somehow to
attract the soot to this plate rather than to the glass. Ever the experimentalist, he ap-
plied both positive and negative voltages (relative to one of the filament connections)
to this plate, and noted in 1883 that a current mysteriously flows when the plate is
positive but not when negative. Furthermore, the current that flows depends on fil-
ament temperature. He had no theory to explain these observations (remember, the
word electron wasn’t even coined by George Johnstone Stoney until 1891, and the
particle itself wasn’t unambiguously identified until J. J. Thomson’s experiments of

22 Such advanced rotating machinery so stretched the metallurgical state of the art that going much
above, say, 200 kHz would be forever out of the question.

23 “An Unsung Hero: Reginald Fessenden, the Canadian Inventor of Radio Telephony,” 〈http: //www.
ewh.ieee.org /reg /7/millennium/radio/radio unsung.html〉.
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12 CHAPTER 1 A MICROHISTORY OF MICROWAVE TECHNOLOGY

F IGURE 1.10. Fleming valve

1897), but Edison went ahead and patented in 1884 the first electronic (as opposed
to electrical) device, one that exploits the dependence of plate current on filament
temperature to measure line voltage indirectly.24 This instrument never made it into
production, given its inferiority to a standard voltmeter; Edison just wanted another
patent, that’s all (that’s one way he ended up with 1093 of them).

At about this time, a consultant to the British Edison Company named John Am-
brose Fleming happened to attend a conference in Canada. He took this opportunity
to visit both his brother in New Jersey and Edison’s lab. He was greatly intrigued
by the “Edison effect” (much more so than Edison, who was a bit puzzled by Flem-
ing’s excitement over so useless a phenomenon), and eventually he published papers
on the effect from 1890 to 1896. Although his experiments created an initial stir, the
Edison effect quickly lapsed into obscurity after Röntgen’s announcement in Janu-
ary 1896 of the discovery of X-rays as well as the discovery of natural radioactivity
later that same year.

Several years later, though, Fleming became a consultant to British Marconi and
joined in the search for improved detectors. Recalling the Edison effect, he tested
some bulbs, found out that they worked satisfactorily as RF rectifiers, and patented
the Fleming valve (vacuum tubes are thus still known as valves in the U.K.) in 1905
(see Figure 1.10).25 The nearly deaf Fleming used a mirror galvanometer to provide a
visual indication of the received signal and included this feature as part of his patent.

While not particularly sensitive, the Fleming valve is at least continually respon-
sive and requires no mechanical adjustments. Various Marconi installations used
them (largely out of contractual obligations), but the Fleming valve never was pop-
ular – contrary to the assertions of some histories – thanks to its high power, poor
filament life, high cost, and low sensitivity when compared with well-made crystal
detectors.

De Forest, meanwhile, was busy in America setting up shady wireless compa-
nies to compete with Marconi. “Soon, we believe, the suckers will begin to bite,” he
wrote hopefully in his journal in early 1902. And, indeed, his was soon the largest
wireless company in the United States after Marconi Wireless. Never one to pass up
an opportunity, de Forest proceeded to steal Fleming’s diode and even managed to

24 U.S. Patent #307,031, filed 15 November 1883, granted 21 October 1884.
25 U.S. Patent #803,684, filed 19 April 1905, granted 7 November 1905.
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1.2 BIRTH OF THE VACUUM TUBE 13

F IGURE 1.11. De Forest triode audion

receive a patent for it in 1906 (#836,070, filed 19 May, granted 13 November). He
simply replaced Fleming’s mirror galvanometer with a headphone and then added
a huge forward bias (thus reducing the sensitivity of an already insensitive detec-
tor). Conclusive evidence that de Forest had stolen Fleming’s work outright came to
light when historian Gerald Tyne obtained the business records of H. W. McCand-
less, the man who made all of de Forest’s first vacuum tubes (de Forest called them
audions).26 The records clearly show that de Forest had asked McCandless to du-
plicate some Fleming valves months before he filed his patent. Hence there is no
room for a charitable interpretation that de Forest independently invented the vac-
uum tube diode.

His next achievement was legitimate and important, however. He added a zigzag
wire electrode, which he called the grid, between the filament and wing (later known
as the plate), and thus the triode was born (see Figure 1.11). This three-element au-
dion was capable of amplification, but de Forest did not realize this fact until years
later. In fact, his patent only mentions the triode audion as a detector, not as an am-
plifier.27 Motivation for the addition of the grid is thus still curiously unclear. He
certainly did not add the grid as the consequence of careful reasoning, as some his-
tories claim. The fact is that he added electrodes all over the place. He even tried
“control electrodes” outside of the plate! We must therefore regard his addition of
the grid as merely the result of quasirandom but persistent tinkering in his search for
a detector to call his own. It would not be inaccurate to say that he stumbled onto the
triode, and it is certainly true that others would have to explain its operation to him.28

26 Gerald F. J. Tyne, Saga of the Vacuum Tube, Howard W. Sams & Co., 1977.
27 U.S. Patent #879,532, filed 29 January 1907, granted 18 February 1908. Curiously enough, though,

his patent for the two-element audio does imply amplification.
28 Aitken, in The Continuous Wave (Princeton University Press, Princeton, NJ, 1985) argues that

de Forest has been unfairly accused of not understanding his own invention. However, the bulk of
the evidence contradicts Aitken’s generous view.
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14 CHAPTER 1 A MICROHISTORY OF MICROWAVE TECHNOLOGY

From the available evidence, neither de Forest nor anyone else thought much of
the audion for a number of years (annual sales remained below 300 units until 1912).29

At one point, he had to relinquish interest in all of his inventions following a bank-
ruptcy sale of his company’s assets. There was just one exception: the lawyers let
him keep the patent for the audion, thinking it worthless. Out of work and broke, he
went to work for Fuller at Federal.

Faced with few options, de Forest – along with Federal engineers Herbert van Etten
and Charles Logwood – worked to develop the audion and discovered its amplifying
potential in late 1912, as did others almost simultaneously (including rocket pioneer
Robert Goddard).30 He managed to sell the device to AT&T that year as a telephone
repeater amplifier, retaining the rights to wireless in the process, but initially had a
tough time because of the erratic behavior of the audion.31 Reproducibility of device
characteristics was rather poor and the tube had a limited dynamic range. It func-
tioned well for small signals but behaved badly upon overload (the residual gas in
the tube would ionize, resulting in a blue glow and a frying noise in the output sig-
nal). To top things off, the audion filaments (then made of tantalum) had a life of
only about 100–200 hours. It would be a while before the vacuum tube could take
over the world.

1.3 AR MSTRONG AND THE REGENER ATIVE
A MPLIF IER/DETEC TOR/OSCILL ATOR

Thankfully, the audion’s fate was not left to de Forest alone. Irving Langmuir of
GE Labs worked hard to achieve a more perfect vacuum, thus eliminating the erratic
behavior caused by the presence of (easily ionized) residual gases. De Forest had
specifically warned against high vacua, partly because he sincerely believed that it
would reduce the sensitivity but also because he had to maintain the fiction – to him-
self and others – that the lineage of his invention had nothing to do with Fleming’s
diode.32

29 Tyne, Saga of the Vacuum Tube.
30 Goddard’s U.S. Patent #1,159,209, filed 1 August 1912 and granted 2 November 1915, describes a

primitive cousin of an audion oscillator and thus actually predates even Armstrong’s documented
work.

31 Although he was officially an employee of Federal at the time, he negotiated the deal with AT&T
independently and in violation of the terms of his employment agreement. Federal chose not to
pursue any legal action.

32 Observing that the gas lamp in his laboratory seemed to vary in brightness whenever he used his
wireless apparatus, de Forest speculated that flames could be used as detectors. Further investi-
gation revealed that the lamps were responding only to the acoustic noise generated by his spark
transmitter. Out of this slender thread, de Forest wove an elaborate tale of how this disappointing
experiment with the “flame detector” nonetheless inspired the idea of gases as being responsive to
electromagnetic waves and so ultimately led him to invent the audion independently of Fleming.

Whatever his shortcomings as an engineer, de Forest had a flair for language. Attempting to
explain the flame detector (U.S. Patent #979,275), he repeatedly speaks of placing the gases in

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511812941.002
Downloaded from https://www.cambridge.org/core. The Librarian-Seeley Historical Library, on 18 Dec 2019 at 06:19:42, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511812941.002
https://www.cambridge.org/core


1.3 THE REGENER ATIVE A MPL IF IER/DETEC TOR/OSCILL ATOR 15

F IGURE 1.12. Armstrong regenerative receiver (see U.S. Patent #1,113,149)

Langmuir’s achievement paved the way for a bright engineer to devise useful
circuits to exploit the audion’s potential. That bright engineer was Edwin Howard
Armstrong, who invented the regenerative amplifier/detector33 in 1912 at the tender
age of 21. This circuit (a modern version of which is shown in Figure 1.12) employs
positive feedback (via a “tickler coil” that couples some of the output energy back to
the input with the right phase) to boost the gain andQ of the system simultaneously.
Thus high gain (for good sensitivity) and narrow bandwidth (for good selectivity) can
be obtained rather simply from one tube. Additionally, the nonlinearity of the tube
may be used to demodulate the signal. Furthermore, overcoupling the output to the
input turns the thing into a wonderfully compact RF oscillator.

Armstrong’s 1914 paper, “Operating Features of the Audion,”34 presents the first
correct explanation for how the triode works, backed up with ample experimental evi-
dence. A subsequent paper, “Some Recent Developments in the Audion Receiver,”35

describes the operation of the regenerative amplifier/detector and also shows how
overcoupling converts the amplifier into an RF oscillator. The paper is a model of
clarity and is quite readable even to modern audiences. The degree to which it enraged
de Forest is documented in a remarkable printed exchange immediately following the
paper. One may read de Forest’s embarrassingly feeble attempts to find fault with
Armstrong’s work. In his frantic desperation, de Forest blunders badly, demonstrat-
ing difficulty with rather fundamental concepts (e.g., he makes statements that are

a “condition of intense molecular activity.” In his autobiography (The Father of Radio), he de-
scribes the operation of a coherer-like device (which, he neglects to mention, he had stolen from
Fessenden) thus: “Tiny ferryboats they were, each laden with its little electric charge, unloading
their etheric cargo at the opposite electrode.” Perhaps he hoped that their literary quality would
mask the absence of any science in these statements.

33 His notarized notebook entry is actually dated 31 January 1913, mere months after de Forest’s own
discovery that the audion could amplify.

34 Electrical World, 12 December 1914.
35 Proc. IRE, v. 3, 1915, pp. 215–47.
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16 CHAPTER 1 A MICROHISTORY OF MICROWAVE TECHNOLOGY

equivalent to asserting that the average value of a sine wave is nonzero). He thus ends
up revealing that he does not understand how the triode, his own invention (more of
a discovery, really), actually works.

The bitter enmity that arose between these two men never waned.
Armstrong went on to develop circuits that continue to dominate communications

systems to this day. While a member of the U.S. Army Signal Corps during World
War I, Armstrong became involved with the problem of detecting enemy planes from
a distance, and he pursued the idea of trying to home in on the signals naturally gener-
ated by their ignition systems (spark transmitters again). Unfortunately, little useful
radiation was found below about 1 MHz, and it was exceedingly difficult with the
tubes available at that time to get much amplification above that frequency. In fact, it
was only with extraordinary care that Henry J. Round achieved useful gain at 2 MHz
in 1917, so Armstrong had his work cut out for him.

He solved the problem by building upon a system patented by Fessenden, who
sought to solve a problem with demodulating CW (continuous wave) signals. In Fes-
senden’s heterodyne demodulator, a high-speed alternator acting as a local oscillator
converts RF signals to an audible frequency, allowing the user to select a tone that
cuts through the interference. By making signals from different transmitters easily
distinguished by their different pitches, Fessenden’s heterodyne system enabled un-
precedented clarity in the presence of interference.

Armstrong decided to employ Fessenden’s heterodyne principle in a different way.
Rather than using it to demodulate CW directly, Armstrong’s superheterodyne uses
the local oscillator to convert an incoming high-frequency RF signal into one at a
lower but still superaudible frequency, where high gain and selectivity can be ob-
tained with relative ease. This lower-frequency signal, known as the intermediate
frequency (IF), is then demodulated after much filtering and amplification at the IF
has been achieved. Such a receiver can easily possess enough sensitivity so that the
limiting factor is actually atmospheric noise (which is quite large in the AM broad-
cast band). Furthermore, it enables a single tuning control, since the IF amplifier
works at a fixed frequency.

Armstrong patented the superheterodyne in 1917 (see Figure 1.13). Although the
war ended before Armstrong could use the superhet to detect enemy planes, he con-
tinued to develop it with the aid of several talented engineers (including his lifelong
friend and associate, Harry Houck), finally reducing the number of tubes to five from
an original complement of ten (good thing, too: the prototype had a total filament cur-
rent requirement of 10 A). David Sarnoff of RCA eventually negotiated the purchase
of the superhet rights; as a consequence, RCA came to dominate the radio market
by 1930.

The demands of the First World War, combined with the growing needs of tele-
phony, drove a rapid development of the vacuum tube and allied electronics. These
advances in turn enabled an application for wireless that went far beyond Marconi’s
original vision of a largely symmetrical point-to-point communications system that
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1.3 THE REGENER ATIVE A MPL IF IER/DETEC TOR/OSCILL ATOR 17

F IGURE 1.13. Superheterodyne receiver block diagram

mimicked the cable-based telegraphy after which it was modeled. Once the technol-
ogy for radiotelephony was in place, pioneering efforts by visionaries like Fessenden
and “Doc” Herrold highlighted the commercial potential for wireless as a point-to-
multipoint entertainment medium.36 The lack of any historical precedent for this
revolutionary idea forced the appropriation of a word from agriculture to describe it:
broadcasting (the spreading of seeds). Broadcast radio rose so rapidly in prominence
that the promise of wireless seemed limitless. Hundreds of radio start-up companies
flooded the market with receivers in the 1920s, at the end of which time the super-
heterodyne architecture had become important. Stock in the leader, RCA, shot up
from about $11 per share in 1924 to a split-adjusted high of $114 as investors poured
money into the sector. Alas, the big crash of 1929 precipitated a drop to $3 a share
by 1932, as the wireless bubble burst.

With the rapid growth in wireless came increased competition for scarce spectrum,
since frequencies commonly in use clustered in the sub–1-MHz band thought to be
most useful. A three-way conflict involving radio amateurs (“hams”), government
interests, and commercial services was partly resolved by relegating hams to fre-
quencies above 1.5 MHz, a portion of spectrum then deemed relatively unpromising.
Left with no options, dedicated hams made the best of their situation. To everyone’s
surprise, they discovered the enormous value of this “shortwave” spectrum, corre-
sponding to wavelengths of 200 meters and below.37 By freeing engineers to imagine
the value of still-higher frequencies, this achievement did much to stimulate thinking
about microwaves during the 1930s.

36 Charles “Doc” Herrold was unique among radio pioneers in his persistent development of radio
for entertainment. In 1909 he began regularly scheduled broadcasts of music and news from a suc-
cession of transmitters located in and near San Jose, California, continuing until the 1920s when
the station was sold and moved to San Francisco (where it became KCBS). See Broadcasting’s
Forgotten Father: The Charles Herrold Story, KTEH Productions, 1994. The transcript of the pro-
gram may be found at 〈http: //www.kteh.org /productions/docs/doctranscript.txt〉.

37 See Clinton B. DeSoto, Two Hundred Meters and Down, TheAmerican Radio Relay League, 1936.
The hams were rewarded for their efforts by having spectrum taken away from them not long after
proving its utility.
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18 CHAPTER 1 A MICROHISTORY OF MICROWAVE TECHNOLOGY

1.4 THE WIZARD WAR

Although commercial broadcasting drove most wireless technology development
after the First World War, a growing awareness that the spectrum above a few mega-
hertz might be useful led to better vacuum tubes and more advanced circuit techniques.
Proposals for broadcast television solidified, and development of military commu-
nications continued apace. At the same time, AT&T began to investigate the use of
wireless technology to supplement their telephone network. The need for additional
spectrum became increasingly acute, and the art of high-frequency design evolved
quickly beyond 1 MHz, first to 10 MHz and then to 100 MHz by the mid-1930s.

As frequencies increased, engineers were confronted with a host of new difficul-
ties. One of these was the large high-frequency attenuation of cables. Recognizing
that the conductor loss in coaxial cables, for example, is due almost entirely to the
small diameter of the center conductor, it is natural to wonder if that troublesome
center conductor is truly necessary.38 This line of thinking inspired two groups to
explore the possibility of conveying radio waves through hollow pipes. Led respec-
tively by George C. Southworth of Bell Labs and Wilmer L. Barrow of MIT, the two
groups worked independently of one another and simultaneously announced their de-
velopments in mid-1936.39 Low-loss waveguide transmission of microwaves would
soon prove crucial for an application that neither Southworth nor Barrow envisioned
at the time: radar. Southworth’s need for a detector of high-frequency signals also led
him to return to silicon point-contact (catwhisker) detectors at the suggestion of his
colleague, Russell Ohl. This revival of semiconductors would also have a profound
effect in the years to come.

A reluctant acceptance of the inevitably of war in Europe encouraged a reconsid-
eration of decades-old proposals for radar.40 The British were particularly forward-
looking and were the first to deploy radar for air defense, in a system called Chain
Home, which began operation in 1937.41 Originally operating at 22 MHz, frequen-
cies increased to 55 MHz as the system expanded in scope and capability, just in time
to play a crucial role in the Battle of Britain. By 1941 a 200-MHz system, Chain
Home Low, was functional.

The superiority of still higher frequencies for radar was appreciated theoreti-
cally, but a lack of suitable detectors and high-power signal sources stymied practical

38 Heaviside had thought about this in the 1890s, for example, but could not see how to get along
without a second conductor.

39 See e.g. G. C. Southworth, “High Frequency Waveguides – General Considerations and Exper-
imental Results,” Bell System Tech. J., v. 15, 1936, pp. 284–309. Southworth and Barrow were
unaware of each other until about a month before they were scheduled to present at the same con-
ference, and they were also initially unaware that Lord Rayleigh had already laid the theoretical
foundation four decades earlier.

40 An oft-cited example is the patent application for the “Telemobilskop” filed by Christian Hülsmeyer
in March of 1904. See U.S. Patent #810,510, issued 16 January 1906. There really are no new ideas.

41 The British name for radar was RDF (for radio direction finding), but it didn’t catch on.
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1.4 THE WIZARD WAR 19

F IGURE 1.14. First page of Varian’s klystron patent

development of what came to be called microwaves. At that time, the word connoted
frequencies of approximately 1 GHz and above. Ordinary vacuum tubes suffer from
fundamental scaling limitations that make operation in the microwave bands diffi-
cult. The finite velocity of electrons forces the use of ever-smaller electrode spacings
as frequencies increase in order to keep carrier transit time small relative to a pe-
riod (as it must be for proper operation). In turn, small electrode spacings reduce
the breakdown voltage, thereby reducing the power-handling capability of the tube.
Because power is proportional to the square of voltage, the output power of vacuum
tubes tends to diminish quadratically as frequency increases.

In 1937, Russell Varian invented a type of vacuum tube that exploits transit time
effects to evade these scaling limits.42 See Figure 1.14. Developed at Stanford Uni-
versity with his brother Sigurd and physicist William Hansen, the klystron first ac-
celerates electrons (supplied by a heated cathode) to a high velocity (e.g., 10% of the

42 U.S. Patent #2,242,275, filed 11 October 1937, granted 20 May 1941.
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20 CHAPTER 1 A MICROHISTORY OF MICROWAVE TECHNOLOGY

speed of light). The high-velocity electron beam then passes through the porous par-
allel grids of a cavity resonator. A signal applied across these grids accelerates or
decelerates the electrons entering the cavity, depending on the instantaneous polar-
ity of the grid voltage. Upon exiting, the electrons drift in a low-field region wherein
faster electrons catch up with slower ones, leading to periodic bunching (the Greek
word for which gives us klystron). The conversion of a constant electron density into
a pulsatile one leads to a component of beam current at the signal frequency. A sec-
ond resonator then selects this component (or possibly a harmonic, if desired), and a
coupling loop provides an interface to the external world. The klystron suffers less
from transit delay effects: partly because the electrons are accelerated first (allowing
the use of a larger grid spacing for a given oscillation period) and then subsequently
controlled (whereas, in a standard vacuum tube, grid control of electron current oc-
curs over a region where the electrons are slow); and partly because transit delay is
essential to the formation of electron bunches in the drift space. As a result, excep-
tionally high output power is possible at microwave frequencies.

The klystron amplifier can be turned into an oscillator simply by providing for some
reflection back to the input. Such reflection can occur by design or from unwanted
mismatch in the second resonator. The reflex klystron, independently invented (ac-
tually, discovered) by Varian and John R. Pierce of Bell Labs around 1938 or 1939,
exploits this sensitivity to reflections by replacing the second resonator with an elec-
trode known as a repeller. Reflex klystrons were widely used as local oscillators for
radar receivers owing to their compact size and to the relative ease with which they
could be tuned (at least over a useful range).

Another device, the cavity magnetron, evolved to provide staggering amounts of
output power (e.g., 100 kW on a pulse basis) for radar transmitters. The earliest form
of magnetron was described by Albert W. Hull of GE in 1921.43 Hull’s magnetron is
simply a diode with a cylindrical anode. Electrons emitted by a centrally disposed
cathode trace out a curved path on their way to the anode thanks to a magnetic field
applied along the axis of the tube. Hull’s motivation for inventing this crossed-field
device (so called because the electric and magnetic fields are aligned along differ-
ent directions) had nothing whatever to do with the generation of high frequencies.
Rather, by using a magnetic field (instead of a conventional grid) to control cur-
rent, he was simply trying to devise a vacuum tube that would not infringe existing
patents.

Recognition of the magnetron’s potential for much more than the evasion of patent
problems was slow in coming, but by the mid-1930s the search for vacuum tubes
capable of higher-frequency operation had led several independent groups to re-
examine the magnetron. An example is a 1934 patent application by Bell Labs engi-
neer Arthur L. Samuel.44 That invention coincides with a renaissance of magnetron-
related developments aimed specifically at high-frequency operation. Soon after, the

43 See Phys. Rev., v. 18, 1921, p. 31, and also “The Magnetron,” AIEE J., v. 40, 1921, p. 715.
44 U.S. Patent #2,063,341, filed 8 December 1934, granted 8 December 1936.
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1.4 THE WIZARD WAR 21

brilliant German engineer Hans E. Hollmann invented a series of magnetrons, some
versions of which are quite similar to the cavity magnetron later built by Henry A. H.
Boot and John T. Randall in 1940.45

Boot and Randall worked somewhat outside of the mainstream of radar research
at the University of Birmingham, England. Their primary task was to develop im-
proved radar detectors. Naturally, they needed something to detect. However, the
lack of suitable signal sources set them casting about for promising ideas. Their
initial enthusiasm for the newly developed klystron was dampened by the mechani-
cal engineering complexities of the tube (indeed, the first ones were built by Sigurd
Varian, who was a highly gifted machinist). They decided to focus instead on the
magnetron (see Figure 1.15) because of its relative structural simplicity. On 21 Feb-
ruary 1940, Boot and Randall verified their first microwave transmissions with their
prototype magnetron. Within days, they were generating an astonishing 500 W of
output power at over 3 GHz, an achievement almost two orders of magnitude beyond
the previous state of the art.46

The magnetron depends on the same general bunching phenomenon as the klystron.
Here, though, the static magnetic field causes electrons to follow a curved trajectory
from the central cathode to the anode block. As they move past the resonators, the
electrons either accelerate or decelerate – depending on the instantaneous voltage
across the resonator gap. Just as in the klystron, bunching occurs, and the resonators
pick out the fundamental. A coupling loop in one of the resonators provides the out-
put to an external load.47

The performance of Boot and Randall’s cavity magnetron enabled advances in
radar of such a magnitude that a prototype was brought to the United States under
cloak-and-dagger circumstances in the top-secret Tizard mission of August 1940.48

45 U.S. Patent #2,123,728, filed 27 November 1936, granted 12 July 1938. This patent is based on
an earlier German application, filed in 1935 and described that year in Hollmann’s book, Physik
und Technik der Ultrakurzen Wellen, Erster Band [Physics and Technology of Ultrashort Waves,
vol. 1]. Hollmann gives priority to one Greinacher, not Hull. This classic reference had much
more influence on wartime technological developments in the U.K. and the U.S. than in Germany.

46 As with other important developments, there is controversy over who invented what, and when.
It is a matter of record that patents for the cavity magnetron predate Boot and Randall’s work, but
this record does not preclude independent invention. Russians can cite the work of Alekseev and
Maliarov (first published in a Russian journal in 1940 and then republished in Proc. IRE, v. 32,
1944); Germans can point to Hollmann’s extensive publications on the device; and so on. The
point is certainly irrelevant for the story of wartime radar, for it was the Allies alone who exploited
the invention to any significant degree.

47 This explanation is necessarily truncated and leaves open the question of how things get started.
The answer is that noise is sufficient to get things going. Once oscillations begin, the explanation
offered makes more sense.

48 During the war, British magnetrons had six resonant cavities while American ones had eight. One
might be tempted to attribute the difference to the “not invented here” syndrome, but that’s not
the explanation in this case. The British had built just one prototype with eight cavities, and that
was the one picked (at random) for the Tizard mission, becoming the progenitor for American
magnetrons.
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22 CHAPTER 1 A MICROHISTORY OF MICROWAVE TECHNOLOGY

F IGURE 1.15. Magnetrons49

The magnetron amazed all who witnessed its operation, and Tizard returned to the
United Kingdom with a guarantee of cooperative radar development from the (offi-
cially) still-neutral Americans.

The success of Tizard’s mission rapidly led to formation of the Radiation Labora-
tory at the Massachusetts Institute of Technology. By mid-November the “Rad Lab,”
as it was (and is) known, was an official entity. Eventually, it would actively compete
with the Manhattan Project for both funds and personnel. During the course of the
war, more money would be spent on developing radar than on developing the atomic
bomb.

The magnetron enabled startling advances in both airborne and ground-based radar,
with many groups working together (for the most part, anyway). Bell Labs and the
Rad Lab were both rivals and comrades, for example. The famous SCR-584 gun-
laying radar combined Rad Lab radar with Bell Lab’s analog computer to enable both
the tracking of a target and the automated aiming and firing of artillery.

49 George B. Collins, Microwave Magnetrons (MIT Rad. Lab. Ser., vol. 6), McGraw-Hill, NewYork,
1948.
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1.4 THE WIZARD WAR 23

By the war’s end, magnetrons were producing 100-kW pulses at 10 GHz, and
24-GHz radar was in development.50 The breathtaking speed with which the state of
the art advanced on so many fronts simultaneously is evident upon inspection of the
27-volume set of books written by the Rad Lab staff shortly after the war.51 Radar
technology would soon be adapted for everything from cooking to radioastronomy.
The evolution of Pickard’s silicon catwhisker diodes into sophisticated centimeter-
wave mixer diodes would set the stage for the invention of the transistor and the start
of the semiconductor era. In a significant sense, the modern age of electronics could
fairly be dated to the Second World War.

The war also saw the rapid development of the radio art well beyond radar. The
utility of portable wireless communications was appreciated early on, and in 1940
Motorola delivered the handheld Handie-TalkieAM transceiver to the U.S.Army Sig-
nal Corps (which dubbed it the SCR-536).52 By 1941, commercial two-way mobile
FM communications systems had appeared, with its battlefield counterpart following
in 1943 (the 15-kg SCR-300 backpack transceiver, the first to be called a Walkie-
Talkie).53

The value of mobile communications was proven time and again during the war,
so it was natural for that appreciation to stimulate the development of postwar mo-
bile wireless. The city of St. Louis, Missouri, became the first to enjoy a commercial
mobile radiotelephone service dubbed, appropriately enough, the Mobile Telephone
Service (MTS).54 Operating in the 150-MHz band with six channels spaced 60 kHz
apart, the transceivers used FDD, frequency-division duplexing (i.e., one frequency
each for uplink and downlink), and frequency modulation.55 Because different fre-
quencies allowed multiple users to communicate simultaneously, this system also
represents an early use of frequency-division multiple access (FDMA) in a mobile
wireless network.56

50 It would fail because of the high atmospheric absorption by water vapor near that frequency. That
failure would give birth to the field of microwave spectroscopy, though, so there’s a happy ending
to the story.

51 If you count the index then there are 28 volumes. In any case, the entire set of Rad Lab books is
now available as a 2–CD-ROM set from Artech House.

52 The designation SCR stands for Signal Corps Radio, by the way. The Handi-Talkie used a com-
plement of five tubes and operated on a single crystal-selectable frequency between 3.5 MHz and
6 MHz. It would soon become an icon, recognizable in countless newsreels and movies about the
Second World War. Similarly, the SCR-584 and its rotating antenna would serve as set dressing
for many postwar science-fiction “B” movies, scanning the skies for them.

53 The ever-patriotic Armstrong, who had served in the Army Signal Corps during the First World
War, offered his FM patents license-free to the U.S. government for the duration of the war.

54 June 17, 1946, to be precise. See “Telephone Service for St. Louis Vehicles,” Bell Laboratories
Record, July 1946.

55 Nevertheless, the service offered only half-duplex operation: the user had to push a button to talk
and then release it to listen. In addition, all calls were mediated by operators; there was no provi-
sion for direct dialing.

56 To underscore that there really are no new ideas, Bell himself had invented a primitive form of
FDMA for his “harmonic telegraph,” in which a common telegraph line could be shared by many
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24 CHAPTER 1 A MICROHISTORY OF MICROWAVE TECHNOLOGY

In the 1950s, radar continued to develop, and microwave ovens (patented by
Raytheon engineer Percy Spencer) made their debut. Powered by magnetrons and
operating at 900 MHz, these early ovens were quite a bit larger than the ovens now
found in home kitchens.57

Planar microwave circuits also debuted in that decade as printed circuit boards be-
came increasingly common. The successful Soviet launching of Sputnik in October
of 1957 kicked off the space race and gave rise to aerospace applications for mi-
crowave technology. The widening availability of ever-better microwave equipment
also led to important achievements in radioastronomy, including the first measure-
ments of the cosmic background radiation, starting around 1955. However, the sig-
nificance of those experiments went unappreciated until much later, so the field was
left clear for Arno Penzias and Robert Wilson of Bell Labs to win the Nobel Prize in
physics.58

As transistors improved throughout the 1950s and early 1960s, they came to dis-
place vacuum tubes with increasing frequency, at ever-increasing frequencies. Per-
fectly suited for realization in planar form and for aerospace applications, solid-state
amplifiers came to dominate low-power microwave technology. At the same time, the
never-ending quest for still better performance at higher frequencies led to the devel-
opment of transistors in gallium arsenide (GaAs). Although the superior mobility of
electrons in GaAs had been appreciated in the 1950s, the difficulty of economically
producing GaAs of sufficiently high purity and low defect density delayed signifi-
cant commercialization until the late 1960s. Carver Mead of Caltech succeeded in
demonstrating the first Schottky-gate GaAs FET in 1965; the metal–semiconductor
FET (MESFET) would eventually dominate cell-phone power amplifiers through
the 1990s.

Cellular finally made its debut in limited fashion in early 1969 in the form of pay-
phones aboard a train running between New York City and Washington, D.C. The
450-MHz system, limited as it was to this single route, nonetheless possessed the
defining features of cellular: frequency re-use and handoff.59 A few years later, Mo-
torola filed a patent that is often cited as the first expression of the cellular idea as
it is practiced today.60 By 1975, the Bell System had finally received FCC approval

users who were differentiated by frequency. Individually tuned tuning forks assured that only the
intended recipient’s telegraph would respond.

57 Contrary to widespread belief, the 2.45-GHz frequency used by most microwave ovens does not
correspond to any resonance with the water molecule. Higher frequencies are more strongly ab-
sorbed but penetrate less deeply. Lower frequencies penetrate to a greater depth but don’t heat
as effectively. A broad frequency range exists over which there is a reasonable balance between
depth of penetration and speed of heating.

58 See H. Kragh, Cosmology and Controversy, Princeton University Press, Princeton, NJ, 1996.
59 C. E. Paul, “Telephones Aboard the Metroliner,” Bell Laboratories Record, March 1969.
60 Martin Cooper et al., U.S. Patent #3,906,166, filed 17 October 1973, granted 16 September 1975.

Bell and Motorola were in a race to realize the cellular concept. Although Bell had been working
on the theoretical aspects over a longer period, Motorola was allegedly the first to build an actual
system-scale prototype and also the first to complete a cellular call with a handheld mobile phone
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1.4 THE WIZARD WAR 25

to offer trial service, but it didn’t receive permission to operate it until 1977. Trial
service finally began in 1978 in Chicago, Illinois, with a transition to full service fi-
nally taking place on 12 October 1983. Dubbed AMPS, for Advanced Mobile Phone
Service, the analog FM-based system operated in a newly allocated band around
800 MHz (created by reclaiming spectrum previously assigned to upper UHF televi-
sion channels). Just as MTS and IMTS had, AMPS used frequency-division multiple
access (FDMA), in which multiple users may communicate simultaneously by as-
signment to different frequencies. It also used frequency-division duplexing (FDD),
as had IMTS, to enable a user to talk while listening, just as with an ordinary phone.
Recall that, in FDD, different frequencies are used for transmitting and receiving.

Certainly other countries had been designing similar systems as well. There are too
many to name individually, but it is particularly noteworthy that the 450-MHz Nordic
Mobile Telephone System (NMT-450, inaugurated in1981) was the first multinational
cellular system – serving Finland, Sweden, Denmark, and Norway. Aside from the
frequency range, its characteristics are very similar to those of AMPS. Within a
decade, the first generation of cellular service had become pervasive.61 This unantic-
ipated rapid growth has happily driven the growth of microwave systems. Previously
reserved for military and aerospace applications, the growth in consumer microwave
systems continues to force important innovations aimed at cost reductions and mass
production.

Looking to the future, one might imagine a sort of Moore’s law for spectrum driving
carrier frequencies ever upward. However, one must consider that signal attenuation
due to absorptive effects in the atmosphere (see Figure 1.16) start to become signifi-
cant in dry air at tens of gigahertz. Below about 40–50 GHz, atmospheric absorption
at sea level is typically below 1 dB/km, but heavy rainfall may exacerbate the loss
considerably.62 There are strong absorption peaks centered at around 22 GHz and
63 GHz (give or take a gigahertz here and there). The lower-frequency absorption
peak is due to water, and the higher-frequency one is due to oxygen. The oxygen ab-
sorption peak contributes a path loss in excess of 20 dB/km, so it is quite significant.
This attenuation, however, may be turned into an attribute if one wishes to permit
re-use of spectrum over shorter distances. This property is exploited in various pro-
posals for the deployment of picocells and other short-distance services at 60 GHz.

(on 3 April 1973, according to Cooper, as reported by Dan Gillmor in the 29 March 2003 San Jose
Mercury News).

61 This growth surprised almost everyone. In a famous (notorious?) study by McKinsey and Com-
pany commissioned by AT&T around 1982, the total U.S. market for cell phones was projected to
saturate at 900,000 well-heeled subscribers by 2000. In fact, there were over 100 million U.S. sub-
scribers in 2000, so the prediction was off by over 40 dB. Today, more than a million cell phones
are sold worldwide each day, and the total number of subscribers exceeds one billion (double the
installed base of PCs). Acting on the implications of the McKinsey study, AT&T sold its cellu-
lar business unit early on – only to pay $11.5 billion to re-enter the market in 1993–1994 when the
magnitude of its error had finally become too large to ignore.

62 These values are in addition to the Friis path loss.
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26 CHAPTER 1 A MICROHISTORY OF MICROWAVE TECHNOLOGY

F IGURE 1.16. Approximate atmospheric attenuation vs.
frequency at sea level, in dry air63

The large amount of spectrum offers high data rates, and the poor propagation is
turned to advantage in forcing high frequency re-use (“it’s not a bug, it’s a feature”).

More recently, the FCC has allocated spectrum between the two lowest oxygen ab-
sorption peaks for commercial broadband wireless applications. Dubbed “E-band,”
the spectrum spans 71–76 GHz, 81–86 GHz, and 92–95 GHz and is to be used for
high-speed point-to-point wireless LANs and for broadband internet access. Again,
the relatively high atmospheric absorption (perhaps 10–20 dB/km in heavy rain) is
deemed an attribute to permit maximal spectral re-use while minimizing interfer-
ence. Another advantage is the ease with which such short-wavelength emissions are
formed into tight beams with antennas of compact size.

The development of microwave technology was driven for decades by military,
aerospace, and radioastronomical applications. In the last twenty years, however,
there has been a decided shift toward consumer microwave products. The days of
handcrafted, low-volume, price-is-no-object microwave electronics has largely given
way to the disposable cell phone and WLAN card of today. The annual sales volume
of products operating in the classic microwave frequency range is staggering. In ex-
cess of 1.3 million cell phones are sold daily, and there seems to be no end to the
demand for communication devices. Wireless LANs, pagers, satellite television ser-
vices, GPS, ultrawideband (UWB) links, automobile anticollision radar, and RF ID
tags constitute but a small subset of consumer microwave applications. And we must

63 After Millimeter Wave Propagation: Spectrum Management Implications, Federal Communica-
tions Commission, Bulletin no. 70, July 1997.
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1.6 APPENDIX A: CHAR AC TERIST ICS OF OTHER WIRELESS SYSTEMS 27

not forget nuclear magnetic resonance (an outgrowth of post-WWII microwave re-
search, abetted by the wide availability of postwar surplus radar gear), which begat
magnetic resonance imaging. If history is any guide to the future, we can rest assured
that we will be surprised by the ways in which microwave technology develops.

1.5 SOME CLOSING COM MENTS

From examining the history of mobile and portable wireless, it might appear that the
band from approximately 500 MHz to about 5 GHz is overrepresented. The appear-
ance of favoritism is not an artifact of selective reporting. That segment of spectrum
is popular, and for excellent reasons.

First, let’s consider what factors might constrain operation at low carrier frequen-
cies. One is simply that there’s less spectrum there. More significant, however, is
that antennas cannot be too small (relative to a wavelength) if they are to operate
efficiently. Efficient low-frequency antennas are thus long antennas. For mobile or
portable applications, one must choose a frequency high enough that efficient an-
tennas won’t be too long. At 500 MHz, whose free-space wavelength is 60 cm, a
quarter-wave antenna would be about 15 cm long. That value is readily accommo-
dated in a handheld unit.

As frequency increases, we encounter a worsening path loss. One causal factor
is the increasing tendency for reflection, refraction, and diffraction, but another can
be anticipated from the Friis formula. Increasing the frequency tenfold, to 5 GHz,
increases the Friis path loss factor by 20 dB. At these frequencies, interaction with
biological tissues is nonnegligible, so simply increasing power by a factor of 100 to
compensate is out of the question. Operation at higher frequency is accompanied by
an ever-decreasing practical radius of communications.

Thus we see that there is an approximate decade span of frequency, ranging from
500 MHz to 5 GHz, that will forever remain the sweet spot for large-area mobile
wireless. Unlike Moore’s law, then, useful spectrum does not expand exponentially
over time. In fact, it is essentially fixed. This truth explains why carriers went on a
lunatic tear in the late 1990s, bidding hundreds of billions of dollars for 3G spectrum
(only to find the debt so burdensome that many carriers have been forced to make
“other arrangements”). No doubt, there will be ongoing efforts to maximize the util-
ity of that finite spectrum – and also to reclaim spectrum from other services (e.g.,
UHF television) that arguably use the spectrum less efficiently.

1.6 APPENDIX A: CHAR AC TERIST ICS OF
OTHER WIRELESS SYSTEMS

It is impossible to list all the services and systems in use, but here we provide a brief
sampling of a few others that may be of interest. (A detailed U.S. spectrum allocation
chart may be downloaded for free from 〈http: //www.ntia.doc.gov/osmhome/allochrt.
pdf 〉.) The first of these is the unlicensed ISM (industrial-scientific-medical) band;
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28 CHAPTER 1 A MICROHISTORY OF MICROWAVE TECHNOLOGY

Table 1.1. ISM band allocations and summary

Parameter 900 MHz 2.4 GHz 5.8 GHz

Frequency range 902–928 MHz 2400–2483.5 MHz 5725–5850 MHz
Total allocation 26 MHz 83.5 MHz 125 MHz
Maximum power 1 W 1 W 1 W
Maximum EIRPa 4 W 4 W (200 W for 200 W

point-to-point)

a EIRP stands for “effective isotropically radiated power” and equals the product
of power radiated and the antenna gain.

Table 1.2. UNII band allocations and summary

Parameter Indoor Low-power UNII / ISM

Frequency range 5150–5250 MHz 5250–5350 MHz 5725–5825 MHz
Total allocation 100 MHz 100 MHz 100 MHz
Maximum power 50 mW 250 mW 1 W
Maximum EIRP 200 mW; unit must 1 W 200 W

have integral antenna

Table 1.3. Random sampling of
some broadcast systems

Service /system Frequency span Channel spacing

AM radio 535–1605 kHz 10 kHz
TV (ch. 2–4) 54–72 MHz 6 MHz
TV (ch. 5–6) 76–88 MHz 6 MHz
FM radio 88.1–108.1 MHz 200 kHz
TV (ch. 7–13) 174–216 MHz 6 MHz
TV (ch. 14–69) 470–806 MHz 6 MHz

see Table 1.1. Microwave ovens, transponders, RF ID tags, some cordless phones,
WLANs, and a host of other applications and services use these bands. Notice that
these bands reside within the “sweet spot” for mobile and portable wireless identified
earlier.

Another unlicensed band has been allocated recently in the United States. The
unlicensed national information infrastructure (UNII) band adds 200 MHz to the
existing 5-GHz ISM band and also permits rather high EIRPs in one of the bands.
See Table 1.2.

Because mobile and cellular systems are not the only uses for wireless, Table 1.3
gives a brief sampling of other (broadcast) wireless systems.
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1.7 APPENDIX B: WHO REALLY INVENTED R ADIO?

The question is intentionally provocative, and is really more of a Rorschach test than
purely a matter of history (if there is such a thing). Frankly, it’s an excuse simply
to consider the contributions of some radio pioneers, rather than an earnest effort to
offer a definite (and definitive) answer to the question.

First, there is the matter of what we mean by the words radio or wireless. If we
apply the most literal and liberal meaning to the latter term, then we would have
to include technologies such as signaling with smoke and by semaphore, inventions
that considerably predate signaling with wires. You might argue that to broaden the
definition that much is “obviously” foolish. But if we then restrict the definition to
communication by the radiation of Hertzian waves, then we would have to exclude
technologies that treat the atmosphere as simply a conductor. This collection of tech-
nologies includes contributions by many inventors who have ardent proponents. We
could make even finer distinctions based on such criteria as commercialization, prac-
ticality, forms of modulation, and so forth. The lack of agreement as to what the
words radio and invention mean is at the core of the controversy, and we will not
presume to settle that matter.

One pioneer who has more than his fair share of enthusiastic supporters is dentist
Mahlon Loomis, who patented in 1872 a method for wireless electrical communica-
tion.64 In a configuration reminiscent of Benjamin Franklin’s electrical experiments,
Loomis proposed a system of kites to hold wires aloft. A sufficiently high voltage
applied to these wires would allow electrical signals to be conducted through the
atmosphere, where a receiver would detect induced currents using a galvanometer.
Allegedly, experiments conducted by Loomis in his home state of West Virginia were
successful, but there is no accepted primary evidence to support this claim, and calcu-
lations based on modern knowledge cast tremendous doubt in any case.65 Supporters
of Loomis have a more serious difficulty, for William Henry Ward had patented much
the same idea (but one using more sophisticated apparatus) precisely three months
earlier; see Figure 1.17.66 Needless to say, reliably conducting enough DC current
through the atmosphere to produce a measurable and unambiguous response in a gal-
vanometer is basically hopeless, and neither Loomis nor Ward describes a workable
system for wireless telegraphy.

64 U.S. Patent #129,971, granted 30 July 1872. This one-page patent has no drawings of any kind. It
may be said that one with “ordinary skill in the art” would not be able to practice the invention
based on the information in the patent. Loomis was a certifiable crackpot whose writings on other
subjects make for entertaining reading.

65 Seemingly authoritative reports of successful tests abound (in typical accounts, senators from sev-
eral states are present for the tests, in which communications between two mountaintops 22 km
apart is allegedly demonstrated and then independently verified). However, I have never been able
to locate information about these tests other than what Loomis himself provided. Others quoting
these same results apparently have had no better success locating a primary source, but continue
to repeat them without qualification.

66 U.S. Patent #126,536, granted 30 April 1872.
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30 CHAPTER 1 A MICROHISTORY OF MICROWAVE TECHNOLOGY

F IGURE 1.17. First page of Ward’s patent

Then there’s David Edward Hughes, who noticed that – as a result of a loose con-
tact – his homemade telephone would respond to electrical disturbances generated by
other apparatus some distance away. After some experimentation and refinement, he
presented his findings on 20 February 1880 to a small committee headed by Mr. Spot-
tiswoode, the president of the Royal Society. The demonstration included a portable
wireless receiver, the first in history. One Professor Stokes declared that, although
interesting, the phenomenon was nothing more than ordinary magnetic induction in
action, not a verification of Maxwell’s predictions. So strong a judgment from his
esteemed colleagues caused Hughes to abandon further work on wireless.67

That same year, Alexander Graham Bell invented the photophone,68 a device for
optical wireless communication that exploited the recent discovery of selenium’s
photosensitivity.69 Limited to daylight and line-of-sight operation, the photophone

67 Hughes was sufficiently discouraged that he did not even publish his findings. The account given
here is from Ellison Hawks, Pioneers of Wireless (Methuen, London, 1927), who in turn cites a
published account given by Hughes in 1899.

68 A. G. Bell and S. Tainter, U.S. Patent #235,496, granted 14 December 1880.
69 This property of selenium also stimulated numerous patents for television around this time. Such

was the enthusiasm for selenium’s potential that The Wireless & Electrical Cyclopedia (Catalog
no. 20 of the Electro Importing Company, New York, 1918) gushed: “Selenium will solve many
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1.7 APPENDIX B: WHO REALLY INVENTED R ADIO? 31

F IGURE 1.18. First page of Dolbear’s patent

never saw commercial service, and it remains largely a footnote in the history of wire-
less. Bell himself thought it important enough that four of his eighteen patents are
related to the photophone.

Wireless telegraphy based on atmospheric conduction continued to attract atten-
tion, though. Tufts University professor Amos E. Dolbear patented another one of
these systems in 1886; see Figure 1.18.70 This invention is notable chiefly for its ex-
plicit acknowledgment that the atmosphere is a shared medium. To guarantee fair
access to this resource by multiple users, Dolbear proposed assigning specific time
slots to each user. Thus, Dolbear’s patent is the first to describe time-division multi-
ple access (TDMA) for wireless communications. Marconi would later purchase the
rights to this patent.

We must also not forget Heinrich Hertz. The apparatus he constructed for his
researches of 1886–1888 is hardly distinguishable from that used by later wireless pi-
oneers. His focus on the fundamental physics, coupled with his premature passing,
is the reason others get the credit for the invention of wireless communication.

Like Hertz, Lodge did not initially focus on applications of wireless technology for
communications. For example, his demonstration in 1894 at a meeting of the Royal

problems during this century. It is one of the most wonderful substances ever discovered.” I sup-
pose that’s true, as long as you overlook its toxicity. . . .

70 U.S. Patent #350,299, granted 5 October 1886.
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32 CHAPTER 1 A MICROHISTORY OF MICROWAVE TECHNOLOGY

Institution in London (titled “The Work of Hertz” and which marked the public debut
of the coherer in wireless technology) did not involve the transmission or reception
of intentional messages.71 Lodge himself later acknowledged that his initial lack of
interest in wireless communications stemmed from two biases. One was that wired
communications was an established and reliable technology; it was hard to imagine
how wireless technology could ever achieve parity. The other bias was perhaps the
result of knowing too much and too little at the same time. Having proven the iden-
tity of Hertzian waves and light, Lodge erroneously concluded that wireless would
be constrained to line-of-sight communications, limiting the commercial potential of
the technology. Lodge was hardly alone in these biases; most “experts” shared his
views. Nonetheless, he continued to develop the technology, and he patented the use
of tuned antennas and circuits for wireless communication (see Figure 1.19) years
before the development of technology for generating continuous waves. He coined
the term “syntony” to describe synchronously tuned circuits. As the reader may have
noted, the term didn’t catch on. Poor Lodge; almost nothing of what he did is re-
membered today.

Lodge published extensively, and his papers inspired Alexander Popov to under-
take similar research in Russia.72 Popov demonstrated his apparatus to his colleagues
of the Russian Physical and Chemical Society on 7 May 1895, a date which is still
celebrated in Russia as Radio Day although, like Lodge’s a year earlier, his demon-
stration did not involve actual communication.

According to anecdotal accounts written down thirty years after the fact, Popov
then demonstrated wireless telegraphy on 24 March 1896, with the transmission and
reception of the message “Heinrich Hertz” achieved over a distance of approximately
250 meters. He followed this up with the first ship-to-shore communication one year
later. Continuing refinements in his apparatus enabled the first wireless-assisted naval
rescue in 1899–1900.73

Unlike Hughes, Dolbear, Hertz, Lodge, and Popov, who were all members of an
academic elite, young Guglielmo Marconi was a member of a social elite. He be-
gan to work in earnest in December of 1894, shortly after reading Righi’s obituary
of Hertz, and had acquired enough knowledge and equipment by early 1895 to begin
experiments in and around his family’s villa (the Griffone). Ever mindful of com-
mercial prospects for his technology, he applied for patents early on, receiving his
first (British #12,039) on 2 June 1896.

71 Aitken, Syntony and Spark.
72 Also rendered as Aleksandr Popoff (and similar variants) elsewhere.
73 The range of dates reflects one of the problems with establishing the facts surrounding Popov’s

contributions. Different sources with apparently equal credibility cite dates ranging from 1899 to
1901 for the rescue of the battleship General-Admiral Apraskin in the Gulf of Finland. And it is
unfortunate that so significant an achievement as allegedly occurred on 24 March 1896 (still other
sources give different dates, ranging over a two-week window) would have gone undocumented
for three decades. See Charles Susskind, “Popov and the Beginnings of Radiotelegraphy,” Proc.
IRE, v. 50, October 1962.
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1.7 APPENDIX B: WHO REALLY INVENTED R ADIO? 33

F IGURE 1.19. First page of Lodge, U.S. Patent #609,154
(filed 1 February 1898, granted 10 August 1898)

From the documented evidence, Marconi demonstrated true wireless communica-
tions before Popov – although initially to small groups of people without academic
or professional affiliations. Neither Marconi nor Popov used apparatus that rep-
resented any particular advance beyond what Lodge had a year earlier. The chief
difference was the important shift from simply demonstrating that a wireless ef-
fect could be transmitted to the conscious choice of using that wireless effect to
communicate.

So, does the question of invention reduce to a choice between Marconi and Popov?
Or between Marconi and Lodge? Lodge and Popov? What about Tesla?

Tesla?
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34 CHAPTER 1 A MICROHISTORY OF MICROWAVE TECHNOLOGY

Nikola Tesla’s invention of the synchronous motor made AC power a practicality,
and the electrification of the world with it. Tesla subsequently became obsessed with
the idea of transmitting industrially significant amounts of power wirelessly. Based
on his experience with gases at low pressure, he knew they were readily ionized and
thus rendered highly conductive (this behavior is the basis for neon and fluorescent
lights). Just as Loomis and Ward had before him, Tesla decided to use the atmos-
phere as a conductor. Deducing that the upper atmosphere, being necessarily of low
pressure, must also be highly conductive, Tesla worked to develop the sources of
exceptionally high voltage necessary to produce a conductive path between ground
level and the conductive upper atmosphere. Tesla estimated that he would need tens
of megavolts or more to achieve his goals.74 Ordinary step-up transformers for AC
could not practically produce these high voltages. The famous Tesla coil (a staple of
high school science fairs for a century, now) resulted from his efforts to build practi-
cal megavolt sources. Based on his deep understanding of resonant phenomena, the
Tesla coil uses the significant voltage boosts that tuned circuits can provide.

Tesla’s first patent in this series (see Figure 1.20) is U.S. #645,576, filed 9 Septem-
ber1897 and granted 20 March1900. It specifically talks about the conduction of elec-
trical energy through the atmosphere, but not about the transmission of intelligence.75

This patent is among several cited in a famous 1943 U.S. Supreme Court deci-
sion (320 US 1, argued April 9–12 and decided on June 21) that is frequently offered
as establishing that Tesla was the inventor of radio. The background for this case is
that the Marconi Wireless Telegraph Corporation of America had asserted some of
its wireless patents against the United States government shortly after the First World
War, seeking damages for infringement. The decision says very clearly that Mar-
coni’s patent for the four-resonator system is invalid because of prior art. Of three
other patents also asserted against the U.S., one was held not to be infringed, an-
other to be invalid, and a third to be both valid and infringed, resulting in a judgment
against the U.S. government in the trivial sum of approximately $43,000. The 1943
decision put that narrow matter to rest by citing prior inventions by Lodge, Tesla, and
one John Stone Stone in invalidating the four-circuit patent (which had begun life as
British patent #7,777). The decision thus certainly declares that Marconi is not the
inventor of this circuit, but it does not quite say that Marconi didn’t invent radio. It
does note that the four-resonator system enabled the first practical spark-based wire-
less communications (the four-resonator system is largely irrelevant for continuous

74 Later, he would begin construction of a huge tower on Long Island, New York, for transmitting
power wirelessly. Designed by renowned Gilded Age architect Stanford White (whose murder
was chronicled in Ragtime), the Wardenclyffe tower was to feature an impressive array of ultra-
violet lamps, apparently to help create a more conductive path by UV ionization. Owing to lack
of funds, it was never completed. Parts were eventually sold for scrap, and the rest of the structure
was demolished.

75 His later patents do discuss transmission of intelligence, but his claims specifically exclude the use
of Hertzian waves. He was completely obsessed with using the earth as one conductor – and the
atmosphere as the other – for the transmission of power.
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1.7 APPENDIX B: WHO REALLY INVENTED R ADIO? 35

F IGURE 1.20. Tesla’s first wireless patent?

wave systems), but the Court does not then make the leap that either Lodge, Tesla,
or Stone was therefore the inventor of radio.76 The oft-cited decision thus actually
makes no affirmative statements about inventorship, only negative ones. One might
speculate that the Court consciously avoided making broader statements precisely
because it recognized the ambiguity of the words invent and radio.

What we can say for certain is that, of these early pioneers, Marconi was the first
to believe in wireless communications as more than an intellectual exercise. He cer-
tainly did not innovate much in the circuit domain (and more than occasionally, shall
we say, adapted the inventions of others), but his vision and determination to make
wireless communications a significant business were rewarded, for he quickly made
the critically important discovery that wireless is not necessarily limited to line-of-
sight communication, proving the experts wrong. Marconi almost single-handedly
made wireless an important technology by believing it could be an important business.

76 The reader is invited to verify the author’s assertion independently. The entire case is available
on-line at 〈http: //www.uscaselaw.com/us/320/1.html〉.
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36 CHAPTER 1 A MICROHISTORY OF MICROWAVE TECHNOLOGY

So, who invented radio? As we’ve said, it depends on your definition of invention
and radio. If you mean the first to conceive of using some electrical thing to commu-
nicate wirelessly, then Ward would be a contender. If you mean the first to build the
basic technical apparatus of wireless using waves, then Hertz is as deserving as any-
one else (and since light is an electromagnetic wave, we’d have to include Bell and
his photophone). If you mean the first to use Hertzian waves to send a message inten-
tionally, either Popov or Marconi is a credible choice (then again, there’s Bell, who
used the photophone explicitly for communication from the very beginning). If you
mean the first to appreciate the value of tuning for wireless, then Lodge and perhaps
Tesla are inventors, with Lodge arguably the stronger candidate.

Given the array of deserving choices, it’s not surprising that advocacy of one per-
son or another often has nationalistic or other emotional underpinnings, rather than
purely technical bases. Situations like this led President John F. Kennedy to observe
that “success has many fathers.” Wireless certainly has been a huge success, so it’s
not surprising to encounter so many claimants to fatherhood.
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C H A P T E R T W O

INTRODUC TION TO RF AND
MICROWAVE CIRCUITS

2.1 DEFINIT IONS

The title of this chapter should raise a question or two: Precisely what is the definition
of RF? Of microwave? We use these terms in the preceding chapter, but purposely
without offering a quantitative definition. Some texts use absolute frequency as a
discriminator (e.g., “microwave is anything above 1 GHz”). However, the meaning
of those words has changed over time, suggesting that distinctions based on absolute
frequency lack fundamental weight. Indeed, in terms of engineering practice and de-
sign intuition, it is far more valuable to base a classification on a comparison of the
physical dimensions of a circuit element with the wavelengths of signals propagating
through it.

When the circuit’s physical dimensions are very small compared to the wave-
lengths of interest, we have the realm of ordinary circuit theory, as we will shortly
understand. We will call this the quasistatic, lumped, or low-frequency realm, regard-
less of the actual frequency value. The size inequality simplifies Maxwell’s equations
considerably, allowing one to invoke the familiar concepts of inductances, capaci-
tances, and Kirchhoff ’s “laws” of current and voltage.

If, on the other hand, the physical dimensions are very large compared to the
wavelengths of interest, then we say that the system operates in the classical optical
regime – whether or not the signals of interest correspond to visible light. Devices
used to manipulate the energy are now structures such as mirrors, polarizers, lenses,
and diffraction gratings. Just as in the quasistatic realm, the size inequality enables
considerable simplifications in Maxwell’s equations.

If the circuit’s physical dimensions are roughly comparable to the wavelengths
of interest, then we have what we will term the microwave or distributed realm. In
this intermediate regime, we generally cannot truncate Maxwell’s equations much
(if at all), complicating the acquisition of design insight.1 Here, we might be able

1 Optical fibers have cross-sectional dimensions comparable to a wavelength, and thus their analysis
falls in this regime rather than in conventional optics – this is the reason for our distinction between
classical optics and this intermediate realm.

37
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38 CHAPTER 2 INTRODUC TION TO RF AND MICROWAVE CIRCUITS

Table 2.1. Radio frequency band designations

Band Frequency range Wavelength range

Extremely low frequency (ELF) <30 Hz >10,000 km
Super low frequency (SLF) 30 Hz to 300 Hz 10,000 km to 1000 km
Ultra low frequency (ULF) 300 Hz to 3 kHz 1000 km to 100 km
Very low frequency (VLF) 3 kHz to 30 kHz 100 km to 10 km
Low frequency (LF) 30 kHz to 300 kHz 10 km to 1 km
Medium frequency (MF) 300 kHz to 3 MHz 1 km to 100 m
High frequency (HF) 3 MHz to 30 MHz 100 m to 10 m
Very high frequency (VHF) 30 MHz to 300 MHz 10 m to 1 m
Ultra high frequency (UHF) 300 MHz to 3 GHz 1 m to 10 cm
Super high frequency (SHF) 3 GHz to 30 GHz 10 cm to 1 cm
Extremely high frequency (EHF) 30 GHz to 300 GHz 1 cm to 1 mm
Ludicrously high frequency (LHF) >300 GHz <1 mm

to discuss inductances and capacitances at the same time we speak of reflections, for
example. It may also be the case that it is inappropriate or even impossible to iden-
tify individual inductances and capacitances, because energy may be stored in both
electric and magnetic fields that share the same region of space. In the microwave
regime we need to accommodate transmission line behavior, and radiation of energy
(whether wanted or unwanted) potentially becomes significant. The primary focus
of this book is on bridging the lumped and distributed realms.

The techniques and intuitions that guide the design of systems are thus best clas-
sified according to these normalized wavelength regimes. Consequently there may
be considerable overlap in frequency (one can make perfectly respectable Fresnel
lenses that operate in the gigahertz frequency range, for example, if you are willing
to build relatively large structures), which explains why a classification system based
on arbitrary frequency limits is not as useful as we would wish.

As a final comment on this subject, we will generally ignore the optical regime
in this textbook. However, the reader should not infer from this neglect that opti-
cal techniques are not useful or relevant for what is conventionally called RF circuit
design. It is simply that this book has to terminate somewhere.

2.2 CONVENTIONAL FREQUENCY BANDS

In seeming contradiction with the foregoing argument that arbitrary frequency bound-
aries have a weak physical justification, in Table 2.1 we now list frequency bands and
their common (but by no means universal) designations. Not all sources agree on the
precise frequency limits of these bands (particularly for the bands below VLF and
above EHF), so it’s best to supplement these band designations with actual frequency
values.

In relating wavelength to frequency, just remember that the product of frequency
(in hertz) and wavelength (in meters) is the speed of light (very nearly 3 ×108 m/s).
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2.2 CONVENTIONAL FREQUENCY BANDS 39

Table 2.2. Microwave band
designations (IEEE 521-1984)

Band Frequency range

L 1.0 GHz to 2.0 GHz
S 2.0 GHz to 4.0 GHz
C 4.0 GHz to 8.0 GHz
X 8 GHz to 12 GHz
Ku 12 GHz to 18 GHz
K 18 GHz to 27 GHz
Ka 27 GHz to 40 GHz
V 40 GHz to 75 GHz
W 75 GHz to 110 GHz

So, a 1-MHz signal has a free-space wavelength of almost exactly 300 m; a 1-GHz
signal has a 300-mm wavelength. It’s useful to note that the frequency in gigahertz,
multiplied by the wavelength in millimeters, is about 300.

An alternative classification system has its origins in radar work during World
War II. Based on letters originally chosen at random to confuse the enemy, a lack
of standardization has succeeded in confusing just about everyone.2 The frequency
ranges associated with the letters have changed somewhat over time, and they vary
from country to country (and even within a country) and also from company to com-
pany. For these reasons, the letter-based designations are perhaps best considered
obsolete and should be avoided (or, at least, supplemented with actual frequency
values, as is the case with the previous designations). Nevertheless, they are still
used, so we offer here a table of such bands (Table 2.2) as documented in IEEE
521-1984, the only international standard of which the author is aware. The designa-
tions Ku and Ka arose from “under K” and “above K,” respectively.

Other systems of letter designations you may encounter are the waveguide bands
and those due to organizations and companies such as NASA, Hewlett-Packard,
Sperry, Motorola, Narda, Raytheon, and others. These designations are all a bit dif-
ferent, and they may include bands designated by additional letters and omit others.
Bear this in mind as you survey the literature.

Ordinary AM radio signals are in the MF band, and FM radio operates in the VHF
band – as do the lower television channels (2–13, in three noncontiguous bands that
straddle FM radio). Television channels 14–69 use the UHF part of the spectrum,
along with all current cellular telephone systems, the Global Positioning System
(GPS, at 1.575 GHz), microwave ovens (2.45 GHz) and most cordless telephones (at
900 MHz and 2.4 GHz). Police radar has operated at progressively higher frequencies

2 Wartime secrecy concerns were so great that the various groups in the Allied radar design commu-
nity didn’t even standardize nomenclature among themselves. We are still living with the resulting
legacy of confusion, and probably always will.
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40 CHAPTER 2 INTRODUC TION TO RF AND MICROWAVE CIRCUITS

over time, starting with 10-GHz X-band systems and moving to K- and then Ka-band
(and even to laser-based optical systems) in order to stay ahead of improved radar
detector technology available to consumers.

The seemingly high occupation rate of the UHF band in the foregoing list is not
an artifact of selective reporting. In sharp contrast to the world of microprocessors,
where Moore’s law regularly delivers exponentially greater computing resources, the
UHF frequency band is a “sweet spot” for kilometer-scale terrestrial wireless and
shall remain so forever. As we shall see in Chapter 21, efficient coupling to a potential
radiator generally requires antennas not very much shorter than (i.e., at least 1/5 to
1/10 of) a wavelength. Because wireless also often implies mobility, one frequently
must consider antenna lengths compatible with portable form factors. If we arbitrar-
ily set 10 cm as the upper limit of tolerable antenna length, then our requirement of
efficient radiation forces us to a wavelength of no longer than roughly 0.5–1.0 m (or a
frequency no lower than about 300–600 MHz; correspondingly, some early cellular
telephone systems operated at 450 MHz).

As frequency increases, it becomes progressively easier to build efficient anten-
nas. However, propagation becomes rapidly worse as radio waves take on more and
more characteristics of light waves, experiencing greater attenuation and diffraction.
Furthermore, biological effects become more prominent, limiting the amount of ra-
diated power one might use to overcome path loss (remember: a typical microwave
oven operates at 2.45 GHz). As a consequence, it’s difficult to deploy a wide-area
terrestrial network much above a few gigahertz. The 5-GHz band used by recently
developed wireless data networks (e.g., IEEE 802.11a) probably represents a practi-
cal upper limit, within an octave or so. The finiteness of the useful available spectrum
(roughly spanning the decade from 500 MHz to 5 GHz) accounts not only for the
huge prices paid in spectrum auctions but also for the focus of this textbook: the de-
sign, construction, and measurement of discrete RF circuits up to the (fuzzy) upper
limit of practical terrestrial wireless communications bands.

It would be wrong, however, to leave the reader with the impression that circuits
and systems not within the scope of this book are somehow unworthy of considera-
tion. For applications that do not need to operate over a large geographical area, or
for which the increasing atmospheric absorption is actually an attribute, it is perhaps
useful to know that water vapor absorbs strongly at around 22 GHz, and oxygen at
around 63 GHz (see Figure 2.1). These absorption peaks are often exploited in covert
communications, particularly between satellites, so that any ground-based eavesdrop-
pers would detect little but noise. Similarly, automobile anticollision radar systems
operate at frequencies high enough (e.g., 77 GHz) to provide the spatial resolutions
desired while exploiting the high free-space attenuation to reduce interference among
cars. Proposals for “piconets” operating in similar bands (e.g., 60 GHz) also seek to
exploit the low spatial cross-talk of signals in these frequency ranges. The ability to
use arrays of antennas to produce narrow beams of high-power density helps to off-
set the path loss at these higher frequencies. Explicit recognition of the potential of
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2.3 LUMPED VERSUS DISTR IBUTED CIRCUITS 41

F IGURE 2.1. Approximate atmospheric attenuation vs.
frequency at sea level, in dry air3

these bands for useful communications has been conferred recently with the desig-
nation of “E-band” spectrum by the FCC in the V- and W-band frequency range.

With that material as a background, we now turn to the main focus of this book,
beginning with a more detailed examination of what is meant by lumped and distrib-
uted circuits.

2.3 LUMPED VERSUS DISTRIBUTED CIRCUITS

As we have argued, there are two important regimes of operating frequency, distin-
guished by whether one may treat circuit elements as lumped or distributed. The
fuzzy boundary between these two regimes concerns the ratio of the physical dimen-
sions of the circuit relative to the shortest wavelength of interest. At high enough
frequencies, the size of the circuit elements becomes comparable to the wavelengths
and so one cannot employ with impunity intuition derived from lumped circuit theory.
Wires must then be treated as the transmission lines that they truly are, Kirchhoff ’s
“laws” no longer hold generally, and identification of R, L, and C ceases to be obvi-
ous (or even possible).

In order to draw a proper boundary between lumped and distributed domains, we
need to revisit (briefly) Maxwell’s equations.

3 After Millimeter Wave Propagation: Spectrum Management Implications, Federal Communications
Commission, Bulletin no. 70, July 1997.
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42 CHAPTER 2 INTRODUC TION TO RF AND MICROWAVE CIRCUITS

M A XWELL AND KIRCHHOFF

Many students (and a surprising number of practicing engineers, unfortunately) for-
get that Kirchhoff ’s voltage and current “laws” are approximations that hold only in
the lumped regime (to which we have frequently alluded, but not yet defined). They
are derivable from Maxwell’s equations if we assume quasistatic behavior, thereby
eliminating the coupling terms that give rise to the wave equation. To understand
what all this means, let’s review Maxwell’s equations (for free space) in differential
form:

∇ • µ0 H = 0, (1)

∇ • ε0 E = ρ, (2)

∇ × H = J + ε0
∂E
∂t

, (3)

∇ × E = −µ0
∂H
∂t
. (4)

The first equation says that there is no net magnetic charge (i.e., there are no mag-
netic monopoles). If there were net magnetic charge, it would cause divergence in
the magnetic field. We won’t be using that equation at all.

The second equation (Gauss’s law) acknowledges that there can be net electric
charge and says that electric charge is the source of divergence of the electric field.
We won’t really use that equation either.

The third equation (Ampere’s law, with Maxwell’s famous modification) says that
both “ordinary” current and a time-varying electric field produce the same effect: a
magnetic field. The term that involves the derivative of the electric field is the fa-
mous displacement (capacitive) current term that Maxwell pulled out of thin air to
produce the wave equation.

Finally, the fourth equation (Faraday’s law) says that a changing magnetic field
gives rise to (curl in) the electric field.

Wave behavior arises fundamentally because of the coupling terms in the last two
equations: A change in E causes a change in H , which causes a change in E , and so
on. If we were to set either µ0 or ε0 to zero, the coupling terms would disappear and
no wave equation would result; circuit analysis could then proceed on a quasistatic
(or even static) basis.

As a specific example, setting µ0 to zero makes the electric field curl-free, allow-
ing E to be expressed as the gradient of a potential (within a minus sign here or there).
It then follows identically that the line integral of the E-field (which is the voltage)
around any closed path is zero:

V =
∮

E • dl =
∮
(−∇φ) • dl = 0. (5)

This last equation is merely the field-theoretical expression of Kirchhoff ’s voltage
law (KVL).
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2.3 LUMPED VERSUS DISTR IBUTED CIRCUITS 43

To derive KCL (Kirchhoff ’s current law), we proceed in the same manner but now
set ε0 equal to zero. Then, the curl of H depends only on the current density J, al-
lowing us to write:

∇ • J = ∇ • (∇ × H) = 0. (6)

That is, the divergence of J is identically zero. No divergence means no net current
buildup (or loss) at a node.

Of course, neither µ0 nor ε0 is actually zero. To show that the foregoing is not
hopelessly irrelevant as a consequence, recall that the speed of light can be expressed
as4

c = 1/
√
µ0ε0. (7)

Setting µ0 or ε0 to zero is therefore equivalent to setting the speed of light to infinity.
Hence, KCL and KVL are actually the result of assuming infinitely fast propagation;
we thus expect them to hold reasonably well as long as the physical dimensions of
the circuit elements are small compared with a wavelength, so that the finiteness of
the speed of light is not noticeable:

l � λ, (8)

where l is the length of a circuit element and λ is the shortest wavelength of interest.
To develop a feel for what this constraint means numerically, consider a circuit

element whose longest dimension is 1 cm. If we arbitrarily say that “much less than”
means “at least about a factor of 10 smaller than,” then such an element can be treated
as lumped if the highest frequency signal has a wavelength greater than roughly
10 cm. In free space, this wavelength corresponds to a frequency of about 3 GHz.
On typical circuit board materials, the frequency may be lower by about a factor of 2
or more. The calculation reveals a simple truth: People-sized objects can’t be treated
as lumped circuit elements in the multi-GHz frequency range.

Summarizing, the boundary between lumped circuit theory (where KVL and KCL
hold, and where one can identify R, L, and C) and distributed systems (where
KVL /KCL don’t hold and where R,L,C can’t always be localized) depends on the
size of the circuit element relative to the shortest wavelength of interest. If the circuit
element (and interconnect is certainly a circuit element in this context) is very short
compared with a wavelength, we can use traditional lumped concepts and incur lit-
tle error. If not, then use of lumped ideas is inappropriate. In this textbook, we will
consider circuits whose dimensions can be comparable to a wavelength. Distributed
effects must therefore be taken into account.

4 Applying the “duck test” version of Occam’s razor (“if it walks like a duck and quacks like a duck,
it must be a duck”), Maxwell showed that light and electromagnetic waves are the same thing. After
all, if it travels at the speed of light and reflects like light, it must be light. Most would agree that
the derivation of Maxwell’s equations represents the crowning intellectual achievement of the 19th
century.
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44 CHAPTER 2 INTRODUC TION TO RF AND MICROWAVE CIRCUITS

2.4 L INK BETWEEN LUMPED AND
DISTRIBUTED REGIMES

We now turn to the problem of extending into the distributed regime design intuition
developed in the lumped regime. The motivation is more than merely pedagogical
for, as we shall see, extremely valuable design insights emerge from this exercise.
One example is that delay, instead of gain, may be traded for bandwidth in amplifiers.

Interconnect is an example of a system that may be treated successfully at lower
frequencies as a simple RC line, for instance. With that type of mindset, reduction
of RC “parasitics” in order to increase bandwidth becomes a major preoccupation
of the circuit and system designer (particularly of the IC designer). Unfortunately,
reduction of parasitics below some minimum amount is practically impossible. Intu-
ition from lumped circuit design would therefore (mis)lead us into thinking that the
bandwidth is limited by these irreducible parasitics. Fortunately, a proper treatment
of interconnect as a transmission line, rather than as a finite lumped RC network,
reveals otherwise. We find that we may still convey signals with exceedingly large
bandwidth as long as we acknowledge (indeed exploit) the true, distributed nature
of the interconnect. By using, rather than fighting, the distributed capacitance (and
inductance), we may therefore effect a decoupling of delay from bandwidth. This
new insight is extremely valuable, and it applies to active as well as passive net-
works. Aside from giving us an appreciation for transmission line phenomena, such
an understanding will lead us to amplifier topologies that relax significantly the gain–
bandwidth trade-off that characterizes lumped systems of low order.

Given these important reasons, we now undertake a study of distributed systems
by extension of lumped circuit analysis.

2.5 DRIVING-POINT IMPEDANCE OF
ITER ATED STRUC TURES

We begin by studying the driving-point impedance of uniform, iterated structures.
It’s important to note that certain nonuniform structures (e.g., exponentially tapered
transmission lines5) have exceedingly useful properties, but we’ll limit our present
discussion to a consideration of uniform structures only.

Specifically, consider the infinite ladder network shown in Figure 2.2. Even though
resistor symbols are used here, they represent arbitrary impedances.

To find the driving-point impedance of this network without summing an infinite
series, note that the impedance to the right of node C is the same as that to the right
of B and the same as that to the right of A.6 Therefore, we may write

5 For those of you who are curious, the exponentially tapered line allows one to achieve a broadband
impedance match instead of the narrowband impedance match that a quarter-wave transformer pro-
vides. The transformation ratio can be controlled by choice of taper constants.

6 This is an extremely useful technique for analyzing such structures, but a surprisingly large per-
centage of engineers have never heard of it or perhaps don’t remember it. In any event, it certainly
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2.5 DRIVING-POINT IMPEDANCE OF ITER ATED STRUC TURES 45

F IGURE 2.2. Ladder network

Zin = Z + [(1/Y ) ‖ Zin], (9)

which expands to

Zin = Z + Zin/Y

1/Y + Zin
	⇒ (Zin − Z)

(
1

Y
+ Zin

)
= Zin

Y
. (10)

Solving for Zin then yields

Zin = Z ± √
Z2 + 4(Z/Y )

2
= Z

2

[
1 ±

√
1 + 4

ZY

]
. (11)

In the special case where Z = 1/Y = R,

Zin =
(

1 + √
5

2

)
R ≈ 1.618R. (12)

This ratio of Zin to R (or its reciprocal) is known as the golden ratio (or golden mean
or section), and it shows up in contexts as diverse as the aesthetics of Greek geome-
ters, Renaissance art and architecture, and solutions to several interesting (but largely
useless) network theory problems.

IDEAL TR ANSMISSION LINE AS
INFINITE L ADDER NETWORK

Let’s now consider the more general case of the input impedance in the limit, where
|ZY | � 1 and where we continue to disallow negative values of Zin. In that case, we
can simplify the result to

Zin ≈ √
Z/Y . (13)

We see that if Z/Y happens to be frequency-independent, then the input impedance
will also be frequency-independent.7 One important example of a network of this
type is the model for an ideal transmission line. In the case of a lossless line, Z =
sL and Y = sC, where L and C represent differential (in the mathematical sense)
circuit elements. The input impedance (called the characteristic impedance, Z0) for
an ideal, lossless, infinite transmission line is therefore

saves a tremendous amount of labor over a more straightforward approach, which would require
summing various infinite series.

7 Ladder networks with this property are called “constant-k” lines, since Z/Y = k2 for a constant k.
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46 CHAPTER 2 INTRODUC TION TO RF AND MICROWAVE CIRCUITS

F IGURE 2.3. Lumped RLC model of
infinitesimal transmission line segment

Zin ≈ √
Z/Y = √

sL/sC = √
L/C. (14)

Because Y, the admittance of an infinitesimal capacitance, approaches zero as the
length of the differential element approaches zero, while the reactance of the differen-
tial inductance element approaches zero at the same time, the ratio 1/YZ approaches
infinity and so satisfies the inequality necessary to validate our derivation. The result –
that we are left with a purely real input impedance for an infinitely long transmission
line – should be a familiar one, but perhaps this particular path to it might not be.

An often-asked question concerns the fate of the energy we launch down a trans-
mission line. If the impedance is purely real, then the line should behave as a resistor
and should dissipate energy like a resistor. But the line is composed of purely reac-
tive (and thus dissipationless) elements, so there would appear to be a paradox.

The resolution is that the energy doesn’t end up as heat if the line is truly infinite.
The energy just keeps traveling down the line forever, and so is lost to the external
world just as if it had heated up a resistor and its environs; the line acts like a black
hole for energy.

2.6 TR ANSMISSION LINES IN MORE DETAIL

The previous section examined the impedance behavior of a lossless infinite line. We
now extend our derivation of the characteristic impedance Z0 to accommodate loss.
We also introduce an additional descriptive parameter, the propagation constant γ.

2.6.1 LUMPED MODEL FOR LOSSY TR ANSMISSION LINE

To derive the relevant parameters of a lossy line, consider an infinitesimally short
piece of line, of length dz, as shown in Figure 2.3. Here, the elements L, R, C, and
G are all quantities per unit length and simply represent a specific example of the
more general case considered earlier.

The inductance accounts for the energy stored in the magnetic field around the
line, while the series resistance accounts for the inevitable energy loss (such as due
to skin effect; see Section 6.2) that all ordinary conductors exhibit. The shunt ca-
pacitance models the energy stored in the electric field surrounding the line, and the
shunt conductance accounts for the loss due to such mechanisms as ordinary ohmic
leakage and loss in the line’s dielectric material.
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2.6 TR ANSMISSION LINES IN MORE DETAIL 47

2.6.2 CHAR AC TERIST IC IMPEDANCE OF
A LOSSY TR ANSMISSION LINE

To compute the impedance of a lossy line, we follow a method exactly analogous to
that in Section 2.5:

Z0 = Z dz+
(

1

Y dz
‖ Z0

)
= Z dz+ Z0

1 + (Y dz)Z0
. (15)

Since we will consider the limiting behavior of this expression as dz approaches zero,
we may use the first-order binomial expansion of 1/(1 + x):

Z0 = Z dz+ Z0

1 + (Y dz)Z0
≈ Z dz+ Z0[1 − (Y dz)Z0 ]

= Z0 + dz(Z − YZ2
0). (16)

Cancelling Z0 from both sides, we see that the final term in parentheses must equal
zero. Hence, the characteristic impedance is

Z0 =
√
Z

Y
=

√
R + jωL

G+ jωC
. (17)

If the resistive terms are negligible (or if RC just happens to equal GL), then the
equation for Z0 collapses to the result we derived earlier:

Z0 = √
L/C. (18)

Because the impedance approaches
√
L/C at sufficiently high frequency, indepen-

dent of R or G, it is sometimes known as the transient, surge, or pulse impedance.
It is this impedance that is used in the ratings of coaxial cables. The impedance of
such cables at DC will be quite different in general, according to Eqn. 17, explaining
why “50-!” cable doesn’t measure anywhere near that value on an ohmmeter.

2.6.3 THE PROPAGATION CONSTANT

In addition to the characteristic impedance, one other important descriptive parame-
ter is the propagation constant, usually denoted by γ. Whereas the characteristic
impedance tells us the ratio of voltage to current at any one point on an infinitely
long line, the propagation constant enables us to say something about the ratio of
voltages (or currents) between any two points on such a line. That is, it quantifies the
line’s attenuation properties.

Consider the voltages at the two ports of a given subsection. The ratio of these
voltages is readily computed from the ordinary voltage divider relationship:

Vn+1 = Vn

{
Z0 ‖ 1

Y dz

Z dz+ [
Z0 ‖ 1

Y dz

]
}
. (19)
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48 CHAPTER 2 INTRODUC TION TO RF AND MICROWAVE CIRCUITS

Thus,

Vn+1

Vn
= Z0 ‖ 1

Y dz

Z dz+ [
Z0 ‖ 1

Y dz

] = Z0

Z0ZY(dz)2 + Z0 + Z dz
. (20)

Because we will use this expression in the limit of very small dz, we may dis-
card the term that is proportional to (dz)2 and again use the binomial expansion of
1/(1 + x) to preserve only the first-order dependence on dz (remember, we’re engi-
neers – the whole universe is first-order to us!). This yields

Vn+1

Vn
≈ Z0

Z0 + Z dz
= 1

1 + Z
Z0
dz

≈ 1 − Z

Z0
dz = 1 − √

ZY dz. (21)

Despite our glibness, the net error in these approximations actually does converge to
zero in the limit of zero dz.

Let us rewrite the previous equation as a difference equation:

Vn+1 = Vn
(
1 − √

ZY dz
) 	⇒ Vn+1 − Vn

dz
= −√

ZYVn. (22)

In the limit of zero dz, the difference equation becomes a differential equation:

dV

dz
= −√

ZYV. (23)

The solution to this first-order differential equation should be familiar:

V(z) = V0e
−√

ZYz. (24)

That is, the voltage at any position z is simply the voltage V0 (the voltage at z = 0)
multiplied by an exponential factor. The exponent is conventionally written as −γz
so that, at last,

γ = √
ZY = √

(R + jωL)(G+ jωC). (25)

To develop a better feel for the significance of the propagation constant, first note
that γ will be complex in general. Hence, we may express γ explicitly as the sum of
real and imaginary parts:

γ = √
(R + jωL)(G+ jωC) = α + jβ. (26)

Then

V(z) = V0e
−γz = V0e

−(α+jβ)z = V0e
−αze−jβz. (27)

The first exponential term gets smaller as distance increases; it represents the pure
attenuation of the line. The second exponential factor has a unit magnitude and con-
tributes only phase.
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2.6 TR ANSMISSION LINES IN MORE DETAIL 49

2.6.4 REL ATIONSHIP OF γ TO LINE PAR A METERS

To relate the constants α and β explicitly to transmission line parameters, we make
use of a couple of identities. First, recall that we may express a complex number in
both exponential (polar) and rectangular form as follows:

Mejφ = M cosφ + jM sinφ. (28)

Here, M is the magnitude of the complex number and φ is its phase. The polar form
allows us to compute the square root of a complex number with ease (thanks to Euler):

√
Mejφ = √

Mejφ/2 = √
M cos(φ/2)+ j

√
M sin(φ/2). (29)

The last factoid we need to recall from undergraduate math is a pair of half-angle
identities:

cos(φ/2) =
√

1
2 (1 + cosφ); (30)

sin(φ/2) =
√

1
2 (1 − cosφ). (31)

Now, γ is the square root of a complex number:

γ = √
ZY = √

(R + jωL)(G+ jωC)

=
√
(RG− ω2LC)+ jω(LG+ RC). (32)

Making use of our identities and turning the crank a few revolutions, we obtain:

α =
√

1
2

[√
ω4(LC)2 + ω2[(LG)2 + (RC)2] + (RG)2 + (RG− ω2LC)

]; (33)

β =
√

1
2

[√
ω4(LC)2 + ω2[(LG)2 + (RC)2] + (RG)2 − (RG− ω2LC)

]
. (34)

These last two expressions may appear cumbersome, but that’s only because they
are. We may simplify them considerably if the product RG is small compared with
the other terms. In such a case, the attenuation constant may be written as

α ≈
√

1
2

[√
ω4(LC)2 + ω2[(LG)2 + (RC)2] − ω2LC

]
, (35)

which, after a certain amount of bloodletting, further simplifies to

α ≈ R

2

√
C

L
+ G

2

√
L

C
. (36)

This, in turn, may be further approximated by

α ≈ R

2

√
C

L
+ G

2

√
L

C
≈ R

2Z0
+ GZ0

2
. (37)
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50 CHAPTER 2 INTRODUC TION TO RF AND MICROWAVE CIRCUITS

Thus, the attenuation per length will be small if the resistance per length is small
compared with Z0 and if the conductance per length is small compared with Y0.

Turning our attention now to the equation for β, we have

β = Im[γ ] ≈ ω
√
LC. (38)

In the limit of zero loss (both G and R = 0), these expressions simplify to:

α = Re[γ ] = 0; (39)

β = Im[γ ] = ω
√
LC. (40)

Hence, a lossless line doesn’t attenuate (no big surprise). Since the attenuation is the
same (zero) at all frequencies, a lossless line has no bandwidth limit. In addition, the
propagation constant has an imaginary part that is exactly proportional to frequency.
Since the delay of a system is simply (minus) the derivative of phase with frequency,
the delay of a lossless line is a constant, independent of frequency:

Tdelay = − ∂

∂ω
)(ω) = − ∂

∂ω
(−βz) = √

LCz. (41)

We can now appreciate the remarkable property of distributed systems alluded to
in the Introduction: The capacitance and inductance do not directly cause a band-
width reduction. They result only in a propagation delay. If we were to increase the
inductance or capacitance per unit length, the delay would increase but bandwidth
(ideally) would not change. This behavior is quite different from what one observes
in low-order lumped networks.

Also in stark contrast with low-order lumped networks, a transmission line may
exhibit a frequency-independent delay, as seen here. This property is extremely de-
sirable, for it implies that all Fourier components of a signal will be delayed by
precisely the same amount of time; pulse shapes will be preserved. We have just seen
that a lossless line has this property of zero dispersion. Since all real lines exhibit
nonzero loss, though, must we accept dispersion (nonuniform delays) in practice?
Fortunately, as Heaviside8 first pointed out, the answer is no. If we exercise some
control over the line constants, we can still obtain a uniform group delay even with a
lossy line (at least in principle). In particular, Heaviside discovered that choosingRC
equal to GL (or, equivalently, choosing the L/R time constant of the series imped-
ance Z equal to the C/G time constant of the shunt admittance Y ) leads to a constant
group delay. There is nonzero attenuation, of course (can’t get rid of that, unfortu-
nately), but the constant group delay means that pulses only get smaller as they travel
down the line; they don’t smear out (disperse).

8 By the way, he was the first to use vector calculus to cast Maxwell’s equations in modern form and
also the one who introduced the use of Laplace transforms to solve circuit problems.
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2.7 BEHAVIOR OF FINITE-LENGTH TR ANSMISSION LINES 51

Showing that Heaviside was correct isn’t too hard. Setting RC and GL equal in
our exact expressions for α and β yields:

α = Re[γ ] = √
RG; (42)

β = Im[γ ] = ω
√
LC. (43)

Note that the expression for β is the same as that for a lossless line and thus also leads
to the same frequency-independent delay.

Although the attenuation is no longer zero, it continues to be frequency-indepen-
dent; the bandwidth is still infinite as long as we choose L/R = C/G. Furthermore,
the characteristic impedance becomes exactly equal to

√
L/C at all frequencies, rather

than approaching this value asymptotically at high frequencies.
SettingLG = RC is best accomplished by increasing eitherL orC, rather than by

increasing R or G, because the latter strategy increases the attenuation (presumably
an undesirable effect). Michael Pupin of Columbia University, following through on
the implications of Heaviside’s work, suggested the addition of lumped inductances
periodically along telephone transmission lines to reduce signal dispersion. Such
“Pupin coils” permitted significantly improved telephony in the 1920s and 1930s.9

2.7 BEHAVIOR OF FINITE-LENGTH
TR ANSMISSION LINES

Now that we’ve deduced a number of important properties of transmission lines of
infinite length, it’s time to consider what happens when we terminate finite-length
lines in arbitrary impedances.

2.7.1 TR ANSMISSION LINE WITH
M ATCHED TER MINATION

The driving-point impedance of an infinitely long line is simply Z0. Suppose we cut
the line somewhere, discard the infinitely long remainder, and replace it with a sin-
gle lumped impedance of value Z0. The driving-point impedance must remain Z0;
there’s no way for the measurement apparatus to distinguish the lumped impedance
from the line it replaces. Hence, a signal applied to the line simply travels down the
finite segment of line, eventually gets to the resistor, heats it up, and contributes to
global warming.

9 Alas, the use of lumped inductances introduces a bandwidth limitation that true, distributed lines do
not have. Since bandwidth and channel capacity are closely related, all of the Pupin coils (which
had been installed at great expense) eventually had to be removed (at great expense) to permit an in-
crease in the number of calls carried by each line. We will explore this idea further when we study
filter design.
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52 CHAPTER 2 INTRODUC TION TO RF AND MICROWAVE CIRCUITS

2.7.2 TR ANSMISSION LINE WITH
ARBITR ARY TER MINATION

In general, a transmission line will not be terminated in precisely its characteristic im-
pedance. Now, a signal traveling down the line maintains a ratio of voltage to current
that is equal (of course) to Z0 until it encounters the load impedance. The termina-
tion impedance imposes its own particular ratio of voltage to current, however, and
the only way to reconcile the conflict is for some of the signal to reflect back toward
the source.

To distinguish forward (incident) quantities from the reflected ones, we will use
the subscripts i and r , respectively. If Ei and Ii are the incident voltage and current,
then it’s clear that

Z0 = Ei

Ii
. (44)

At the load end of things, the mismatch in impedances gives rise to a reflected volt-
age and current. We still have a linear system, so the total voltage at any point on the
system is the superposition of the incident and reflected voltages. Similarly, the net
current is also the superposition of the incident and reflected currents. Because the
current components travel in opposite directions, the superposition here results in a
subtraction. Thus, we have

ZL = Ei + Er

Ii − Ir
. (45)

We may rewrite this last equation to show an explicit proportionality toZ0 as follows:

ZL = Ei + Er

Ii − Ir
= Ei

Ii

[
1 + Er/Ei

1 − Ir/Ii

]
= Z0

[
1 + Er/Ei

1 − Ir/Ii

]
. (46)

The ratio of reflected to incident quantities at the load end of the line is called -L and
will generally be complex. Using -L, the expression for ZL becomes

ZL = Z0

[
1 + Er/Ei

1 − Ir/Ii

]
= Z0

[
1 + -L

1 − -L

]
. (47)

Solving for -L then yields

-L = ZL − Z0

ZL + Z0
. (48)

If the load impedance equals the characteristic impedance of the line, then the reflec-
tion coefficient will be zero. If a line is terminated in either a short or an open, then
the reflection coefficient will have a magnitude of unity; this value is the maximum
magnitude it can have (for a purely passive system such as this one, anyway).

We may generalize the concept of the reflection coefficient so that it is the ratio of
the reflected and incident quantities at any arbitrary point along the line:

-(z) = Ere
γz

Eie−γz = Er

Ei
e2γz = -Le

2γz. (49)
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2.8 SUM M ARY OF TR ANSMISSION LINE EQUATIONS 53

Here we follow the convention of defining z = 0 at the load end of the line and lo-
cating the driving source at z = −l. With this convention, the voltage and current at
any point z along the line may be expressed as:

V(z) = Vie
−γz + Vre

γz; (50)

I(z) = Iie
−γz − Ire

γz. (51)

As always, the impedance at any point z is simply the ratio of voltage to current:

Z(z) = Vie
−γz + Vre

γz

Iie−γz − Ireγz
= Z0

[
1 + -Le

2γz

1 − -Le2γz

]
. (52)

Substituting for -L and doing a whole heck of a lot of crunching yields

Z(z)

Z0
=

ZL
Z0
(e−γz + eγz)+ (e−γz − eγz)

ZL
Z0
(e−γz − eγz)+ (e−γz + eγz)

. (53)

Writing this expression in a more compact form, we have

Z(z)

Z0
=

ZL
Z0

− tanh γz

1 − ZL
Z0

tanh γz
. (54)

In the special case where the attenuation is negligible (as is commonly assumed, to
permit tractable analysis), a considerable simplification results:

Z(z)

Z0
=

ZL
Z0

− j tanβz

1 − j
ZL
Z0

tanβz
= ZL cosβz− jZ0 sinβz

Z0 cosβz− jZL sinβz
. (55)

Here, z is the actual coordinate value and will always be zero or negative.
As a final comment, note that this expression is periodic. This behavior is strictly

true only for lossless lines, of course, but practical lines will behave similarly as long
as the loss is negligible. Periodicity implies that one need consider the impedance
behavior only over some finite section (specifically, a half-wavelength) of line. This
observation is exploited in the construction of the Smith chart, a brief study of which
is taken up in Chapter 3.

2.8 SUM M ARY OF TR ANSMISSION LINE EQUATIONS

We’ve seen that both the characteristic impedance and the propagation constant are
simple functions of the per-length series impedance and shunt admittance:

Z0 =
√
Z

Y
=

√
R + jωL

G+ jωC
; (56)

γ = √
ZY = √

(R + jωL)(G+ jωC). (57)
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54 CHAPTER 2 INTRODUC TION TO RF AND MICROWAVE CIRCUITS

Using these parameters – in conjunction with the definition of reflection coefficient –
allows us to develop an equation for the driving-point impedance of a lossy line ter-
minated in an arbitrary impedance:

Z(z)

Z0
=

ZL
Z0

− tanh γz

1 − ZL
Z0

tanh γz
. (58)

In the case of a lossless (or negligibly lossy) line, the expression for impedance takes
on a reasonably simple and periodic form, setting the stage for discussion of the
Smith chart:

Z(z)

Z0
=

ZL
Z0

− j tanβz

1 − j
ZL
Z0

tanβz
= ZL cosβz− jZ0 sinβz

Z0 cosβz− jZL sinβz
. (59)

2.9 ARTIF IC IAL L INES

We’ve just seen that an infinite ladder network of infinitesimally small inductors and
capacitors has a purely real input impedance over an infinite bandwidth. Although
structures that are infinitely long are somewhat inconvenient to realize, we can al-
ways terminate a finite length of line in its characteristic impedance. Energy, being
relatively easy to fool, cannot distinguish between real transmission line and a re-
sistor equal to the characteristic impedance, and the driving-point impedance of the
properly terminated finite line remains the same as that of the infinite line, and still
over an infinite bandwidth.

There are instances when we might wish to approximate a continuous transmission
line by a finite lumped network. Motivations for doing so may include convenience of
realization or greater control over line constants. However, use of a finite lumped ap-
proximation guarantees that the characteristics of such an artificial line cannot match
those of an ideal line over an infinite bandwidth.10 The design of circuits that employ
lumped lines must take this bandwidth limitation into account.

One important use of artificial lines is in the synthesis of delay lines; see Fig-
ure 2.4. Here, we use LC L-sections to synthesize our line. As in the continuous
case, the driving-point impedance is just

Zin = √
L/C, (60)

while the delay per section is just

TD = √
LC. (61)

10 One easy way to see this is to recognize that a true transmission line, being a delay element, pro-
vides unbounded phase shift as the frequency approaches infinity. A lumped line can provide only
a finite phase shift (because of the finite number of energy storage elements) and hence a finite
number of poles.
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2.9 ARTIF IC IAL L INES 55

F IGURE 2.4. Lumped delay line

The value of a lumped delay line is that one may obtain large delays without having
to use, say, a kilometer of coaxial cable.

2.9.1 CUTOFF FREQUENCY OF LUMPED L INES

Unlike the distributed line, the lumped line presents a real, constant impedance only
over a finite bandwidth. Eventually, the input impedance becomes purely reactive,11

indicating that real power can be delivered neither to the line nor to any load con-
nected to the other end of the line. This behavior is the basis for a class of filters we
consider in a separate chapter. Indeed, the birth of filter theory traces directly to the
limited frequency response of this structure.

The frequency above which no power is delivered is known as the line’s cutoff fre-
quency, which is readily found by using the formula for the input impedance of an
infinite (but lumped) LC line, reprised here from Section 2.5 for convenience:

Zin = Z

2

[
1 ±

√
1 + 4

ZY

]
. (62)

Here, let Y = jωC and Z = jωL. Then the input impedance is

Zin = jωL

2

[
1 ±

√
1 − 4

ω2LC

]
. (63)

At sufficiently low frequencies, the term under the radical has a net negative value.
The resulting imaginary term, when multiplied by the jωL/2 factor, provides the
real component of the input impedance.

As the frequency increases, however, the magnitude of the term under the radical
sign eventually becomes zero. At and above this frequency, the input impedance is
purely imaginary, and no power can be delivered to the line. The cutoff frequency is
therefore given by

ωh = 2/
√
LC. (64)

Since the lumped line’s characteristics begin to degrade well below the cutoff fre-
quency, one must usually select cutoff well above the highest frequency of interest.
Satisfying this requirement is particularly important if good pulse fidelity is necessary.

11 From inspection of the network, it should be clear that the driving-point impedance eventually
collapses to that of the input inductor, since the capacitors act ultimately like shorts.
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56 CHAPTER 2 INTRODUC TION TO RF AND MICROWAVE CIRCUITS

F IGURE 2.5. One choice for
terminating lumped lines

F IGURE 2.6. Alternative choice for
terminating lumped lines

F IGURE 2.7. Half-sections for line termination

In designing artificial lines, the L/C ratio is chosen to provide the desired line
impedance, while the LC product is chosen small enough to provide a high enough
cutoff frequency to allow the line to approximate ideal behavior over the desired
bandwidth. If a specified overall time delay is required, the first two requirements
define the minimum number of sections that must be used.

2.9.2 TER MINATING LUMPED L INES

There’s always a question as to how one terminates the circuit of Figure 2.4. One
choice, shown in Figure 2.5, is to end in a capacitance and simply terminate across it.
Another choice (Figure 2.6) is to end in an inductance. Though both of these choices
will work after a fashion, a better alternative is to compromise by using a half-section
at each end of the line, as shown in Figure 2.7.

Such a compromise extends the bandwidth over the circuit of Figure 2.5 or Fig-
ure 2.6. Each half-section contributes half the delay of a full section, so putting one
on each end adds the delay of a full section. Furthermore, and more important, a
half-section has twice the cutoff frequency of a full section, which is precisely why
better bandwidth is obtained.

Many applications require delay elements that approximate a quarter-wavelength
piece of transmission line, as we’ll see when we discuss elements such as couplers
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2.9 ARTIF IC IAL L INES 57

F IGURE 2.8. Simple π -section and T-section
networks for approximation of λ/4 delay line

and combiners. Either π -section or T-section elements are suitable, with the most
common versions using just three elements; see Figure 2.8. These two networks ex-
hibit the same transfer function, so one may base a choice on practical considerations,
such as accommodation of parasitics.

As usual, the ratio L/C is chosen as a function of the characteristic impedance of
the line to be simulated: √

L/C = Z0. (65)

Furthermore, it is straightforward to demonstrate that, when the networks shown are
driven and terminated in Z0, they exhibit a quadrature phase lag at a frequency

ω0 = 1/
√
LC. (66)

Solving for the element values then yields:

C = 1/ω0Z0; (67)

L = Z0/ω0. (68)

2.9.3 m -DERIVED HALF SEC TIONS

The port impedance of theLC half-section begins to increase significantly beginning
at about 30–40% of the cutoff frequency owing to the parallel resonance formed by
the output capacitance and the rest of the reactance it sees. This behavior can be mod-
erated by the use of half-sections that are only marginally more elaborate than the
single LC pair. Specifically, if the capacitor is replaced by a series LC branch, the
frequency range over which the impedance stays roughly constant can be increased
even further because the decreasing impedance of the series resonant branch helps
offset the increasing impedance.

A simple network that achieves the desired result is shown in Figure 2.9. A more
detailed derivation is presented in the chapter on filters. For now, accept that the ele-
ment values are given by the following equations:
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58 CHAPTER 2 INTRODUC TION TO RF AND MICROWAVE CIRCUITS

F IGURE 2.9. m-derived half-section
for line termination

L1 = mL

2
; (69)

L2 = 1 −m2

2m
L; (70)

C1 = mC

2
. (71)

A network modified in this manner is called an m-derived half-section because, for
any value of the parameterm, the nominal characteristic impedance remains the same
as that of the simple LC half-section. This can be verified by direct substitution into
Eqn. 62.

The impedance stays roughly constant up to about 85% of the cutoff frequency
for a value of m equal to roughly 0.6. This choice is therefore a common one. The
m-derived half-section may be used either as terminating sections on the ends of an
artificial line or as elements for constructing the entire line. We will revisit many of
these concepts in the context of filter design when we take up that important topic in
Chapter 22.

2.10 SUM M ARY

We have identified a fuzzy boundary between the lumped and distributed regimes,
and we found that lumped concepts may be extended into the distributed regime.
In carrying out that extension, we discovered that there are several (perhaps many)
ways to trade gain for delay rather than bandwidth. As a final observation on this
subject, perhaps it is worthwhile to reiterate that avoiding a straight gain–bandwidth
trade-off requires a gross departure from single-pole dynamics. Hence, all the struc-
tures we’ve seen that trade gain for delay involve many energy storage elements.
Another way to look at this issue is to recognize that, if we are to be able to trade de-
lay for anything, we must have the ability to provide large delays. But large delays
imply a large amount of phase change per unit frequency, and if we are to operate
over a large bandwidth then the total phase change required is very large. Again,
this need for large amounts of phase shift necessarily implies that many poles (and
hence many inductors and capacitors) will be required, resulting in the relatively
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2.10 SUM M ARY 59

complicated networks we’ve seen.12 Yet if one is pursuing operation over the largest
possible bandwidth, use of these distributed concepts is all but mandatory. As we
shall see in Chapter 12, distributed concepts may be applied to active circuits to allow
the realization of amplifiers with exceptionally large bandwidth by trading delay in
exchange for the improved bandwidth.

12 An exception is the superregenerative amplifier. There, the time-varying nature of the system ef-
fectively causes weighted aliases of a single stage’s response to combine in a way that produces a
response similar to that of a cascade of such stages.
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C H A P T E R T H R E E

THE SMITH CHART AND
S-PAR A METERS

3.1 INTRODUC TION

The design of microwave circuits and systems has its origins in an era where devices
and interconnect were usually too large to allow a lumped description. Furthermore,
the lack of suitably detailed models and compatible computational tools forced engi-
neers to treat systems as two-port “black boxes” with graphical methods. The most
powerful of these graphical aids, the Smith chart, dates from the 1930s, an age where
slide rules dominated. Although Smith charts today are perhaps less relevant as a
computational aid than they were then, RF instrumentation, for example, continues
to present data in Smith-chart form. It also remains true that visualizing certain op-
erations in terms of the Smith chart can inform design intuition in rich ways that
modern computational aids may unfortunately bypass. This chapter thus provides
a brief history and derivation of the Smith chart, along with an explanation of why
a particular set of variables (S-parameters) won out over other parameter sets (e.g.,
impedance or admittance) to describe microwave two-ports.

3.2 THE SMITH CHART

Introductory presentations of the Smith chart are frequently devoid of any historical
context, leaving the student with the impression that it sprang forth spontaneously
and fully formed. This impression, in turn, makes many students feel mentally defi-
cient if they are unable to appreciate instantly the subtle beauty, logic, and power that
the chart must “obviously” possess. The real story, though, is that the Smith chart
is the result of cumulative incremental refinements spanning about a decade. The
Smith chart was evidently not quite obvious to Smith, so perhaps it should not be so
immediately obvious to us. And besides, who was Smith, anyway?

Phillip Hagar Smith joined Bell Labs in the late1920s, shortly before the big stock-
market crash. He spent the early part of his career working on antenna systems where,
naturally, the problem of impedance matching arises frequently. He found himself
having to perform similar calculations over and over. The considerable tedium of

60
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3.2 THE SMITH CHART 61

those calculations led him to invent a succession of graphical aids (remember, there
were no spreadsheets, only slipsticks). By the mid-1930s, he had devised rectan-
gular and polar-plot representations of impedance that facilitated computation. By
around 1937, he had learned enough mathematics (specifically, the art of conformal
mapping) from his Bell Labs colleagues to complete the last steps and produce the
version of the chart as it is basically known today.1

The reader may take comfort in the fact that few people besides Smith and his
Bell Labs friends initially gave a rat’s patootie about the chart.2 It took nearly two
years before he could get a publisher to print his article about it. Finally, in January
of 1939, Electronics magazine published Smith’s paper about his new chart.3 For the
most part, its publication reportedly evoked either a collective yawn or quizzical head
scratching (sometimes both). This reaction is hardly surprising, for in that slide-rule
age, engineers were always inventing charts, nomographs, and other graphical com-
putational aids of one sort or another. The Smith chart had to compete with all of
them for attention. The somewhat intimidating appearance of the chart undoubtedly
also inhibited acceptance.

This situation changed upon the formation of the MIT Radiation Laboratory on
the eve of the Second World War. The many physicists developing radar at the Rad
Lab were unintimidated by (perhaps even attracted to) the mathematics underlying
the Smith chart, having already encountered it in other contexts. Their comfort with
the math, combined with the urgency of the task at hand, led to a rapid adoption of
the Smith chart as an invaluable design tool. Before the war’s end, a large commu-
nity of engineers had become intimately familiar with the Smith chart. Spreading the
word further was abetted by Smith himself in another publication in 1944.4

The mathematical basis for the Smith chart is the bilinear transformation (a ra-
tio of two linear functions), which relates reflection coefficient to normalized load
impedance:

� =
ZL
Z0

− 1
ZL
Z0

+ 1
= ZnL − 1

ZnL + 1
. (1)

This bilinear relationship between the normalized load impedance and � is also bi-
unique: knowing one is equivalent to knowing the other. This observation is important
because the familiar curves of the Smith chart are simply a plotting, in the �-plane,
of contours of constant resistance and reactance.

It’s natural to ask why one should go to the trouble of plotting the equivalent of
impedance in a nonrectilinear coordinate system, since it’s certainly more straight-
forward to plot the real and imaginary parts of impedance directly in conventional

1 R. Rhea, “Phillip H. Smith: A Brief Biography” (Introduction to reprint of Smith’s book, Elec-
tronic Applications of the Smith Chart: In Waveguide, Circuit, and Component Analysis, by Noble
Publishing, 2000).

2 Louis Smullin, private communication.
3 “A Transmission Line Calculator.”
4 “An Improved Transmission Line Calculator,” Electronics, v. 17, January 1944, p. 130.
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62 CHAPTER 3 THE SMITH CHART AND S-PAR A METERS

F IGURE 3.1. Mapping of constant-resistance lines
in Z -plane to circles in �-plane

Cartesian coordinates. There are at least two good reasons for the seemingly non-
obvious choice. One is that trying to plot an infinite impedance on a finite-sized piece
of paper poses self-evident practical problems. Plotting � instead neatly handles im-
pedances of arbitrary magnitude because |�| cannot exceed unity for passive loads.
The other reason is that� repeats every half-wavelength when a lossless transmission
line is terminated in a fixed impedance. Hence, plotting � is a natural and compact
way to encode this periodic behavior. Much of the computational power of the Smith
chart derives from this compact encoding, allowing engineers to determine rapidly
the length of line needed to transform an impedance to a particular value, for exam-
ple, or to read off the magnitude of the reflection coefficient by inspection.

The relationship between impedance and � given in Eqn. 1 may be considered a
mapping of one complex number into another. In this case, we’ve already noted that
it is a special type of mapping known as a bilinear transformation. Among the vari-
ous properties of this transformation, a particularly relevant one is that circles remain
circles when mapped. In this context, a line is considered a circle of infinite radius.
Hence, circles and lines map into either circles or lines.

With the aid of Eqn. 1, it is straightforward to show that the imaginary axis of the
Z-plane maps into the unit circle in the �-plane, while other lines of constant resis-
tance in the Z-plane map into circles of varying diameter that are all tangent at the
point � = 1; see Figure 3.1.

Lines of constant reactance are orthogonal to lines of constant of resistance in the
Z-plane, and this orthogonality is preserved in the mapping (as they are in all confor-
mal maps). Since lines map to lines or circles, we expect constant reactance lines to
transform to the circular arcs shown in Figure 3.2. The Smith chart simply consists
of both constant-resistance and constant-reactance contours in the �-plane without
the explicit presence of the �-plane axes.

Because, as mentioned earlier, the primary role of the Smith chart these days is as
a standard way to present impedance (or reflectance) data, it is worthwhile taking a
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3.2 THE SMITH CHART 63

F IGURE 3.2. Mapping of constant-reactance lines
in Z -plane to contours in �-plane

little time to develop a familiarity with it. The center of the Smith chart corresponds
to zero reflection coefficient and hence to a resistance that is equal to the normalizing
impedance.

The bottom half of the Z-plane maps into the bottom half of the unit circle in
the �-plane, and thus capacitive impedances are always found there. Similarly, the
top half of the Z-plane corresponds to the top half of the unit circle and inductive
impedances. Progressively smaller circles of constant resistance correspond to pro-
gressively larger resistance values. The point � = −1 corresponds to zero resistance
(or reactance), and the point � = 1 corresponds to infinite resistance (or reactance).

As a simple, but specific, example, let us plot the impedance of a seriesRC network
in which the resistance is 100� and the capacitance is 25 pF, all normalized to a 50-�
system. Since the impedance is the sum of a real part (equal to the resistance) and
an imaginary part (equal to the capacitive reactance), the corresponding locus in the
�-plane must lie along the circle of constant resistance for whichR = 2. The reactive
part varies from minus infinity at DC to zero at infinite frequency. Since it is always
negative in sign, the locus must be just the bottom half of that constant resistance
circle, traversed clockwise from � = 1 as frequency increases, as seen in Figure 3.3.

Note that this curve is the impedance locus for any capacitance in series with
100 �. All that varies with capacitance value is the frequency that corresponds to a
particular point on the curve. A corollary is that, for a fixed frequency, the addition
(or subtraction) of capacitance merely shifts the position along this same semicircu-
lar arc. All such curves converge to a common point of infinite impedance, at zero
frequency.

An inductor in series with that same 100-� resistor would trace out the upper half
of the circle. Again, a clockwise traversal corresponds to increasing frequency. As
with theRC example, a change in inductance simply produces motion along the semi-
circle at any given frequency. The impedance loci of all series RL networks share a
common point of infinite impedance at infinite frequency.
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64 CHAPTER 3 THE SMITH CHART AND S-PAR A METERS

F IGURE 3.3. Impedance of series RC as frequency varies

It’s not too great a leap beyond the foregoing examples to recognize that the im-
pedance of a seriesRLC network traces out a circle as frequency varies. At the series
resonant frequency, the impedance is purely real, corresponding to a point on the
horizontal axis.

The Smith chart is also amenable to the evaluation of shunt impedances. We may
express reflectance in terms of admittances or impedances with equal ease:

ZnL − 1

ZnL + 1
= 1/YnL − 1

1/YnL + 1
= −YnL − 1

YnL + 1
. (2)

Aside from the sign change, the equations for reflectance in terms of impedance and
admittance are the same. Thus contours of constant conductance are also circles, and
contours of constant susceptance are circular arcs orthogonal to the constant conduc-
tance circles. The minus sign is readily accommodated by simply flipping the chart
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3.2 THE SMITH CHART 65

F IGURE 3.4. Constant conductance (left) and constant
susceptance contours on admittance chart

over as in Figure 3.4. When oriented as shown, inductive susceptances are found in
the lower half of the circle, and capacitive ones in the upper half. Some commer-
cial versions of the Smith chart have both impedance and admittance contours (often
rendered as different colors, or different shades of gray). The complexity of the com-
bination can be a bit intimidating until familiarity breeds contentment.

A parallel GC network traces out a semicircle in the upper half of the admittance
chart as frequency sweeps from zero to infinity. All such curves are tangent at the
point of infinite admittance, converging there at infinite frequency. Similarly, a par-
allel GL network traces out a semicircle in the lower half of the chart. Again, all
such semicircles are tangent at the point of infinite admittance, converging there at
zero frequency. A parallel GLC network traces out a complete circle as frequency
varies. These traversals are counterclockwise with increasing frequency, in contrast
with the clockwise traversals of series impedance plots.

In addition to helping to visualize how the addition of shunt and series elements
changes impedances or admittances, the Smith chart also enables us to evaluate
rapidly how an impedance varies along a transmission line. Examination of commer-
cially available Smith charts reveals the phrases “wavelengths toward generator” and
“wavelengths toward load,” coupled with orienting arrows disposed counterclock-
wise and clockwise, respectively. The meaning is simple enough: Imagine terminat-
ing a lossless line in some impedance. If we move “toward the generator” by some
amount, we know that the reflectance changes in some manner. Specifically,

�(z) = �Le
2γz, (3)

so we conclude that the magnitude of the reflectance does not change; only the phase
angle does. Now, the Smith chart is the result of converting impedance into reflectance
(�). Thus, � is actually plotted with conventional Cartesian coordinates, but the cor-
responding axes are not printed on ordinary Smith charts (however, we have included
these axes for tutorial purposes here). Just pretend that they are there, and you can
see how � can be read off quickly. The center of the Smith chart corresponds to a
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66 CHAPTER 3 THE SMITH CHART AND S-PAR A METERS

F IGURE 3.5. Single-frequency impedance locus

perfect match and is the origin of �’s invisible rectangular coordinate system. Con-
tours of constant � are thus simply circles centered about the origin, with mismatch
increasing with radius. Therefore, as we move along the transmission line, we sim-
ply traverse some part of a circle that is concentric with the unit circle, allowing us
to compute readily the impedance at any point along the line. See Figure 3.5.

Not only is the Smith chart useful analytically, it is also of inestimable value in de-
ducing the length of line required to produce a specified impedance transformation,
as is made clear in Chapter 4. A constant-reflectance magnitude circle correspond-
ing to the maximum tolerable � may be overlaid on the Smith chart, facilitating the
determination of whether matching objectives have been achieved.

As a further aid, a typical Smith chart has an additional set of rulers in a separate
group below the chart proper. These are calibrated both in terms of reflectance and
as translations of reflectance into other measures of impedance mismatch: standing-
wave ratio (SWR) and return loss (RL).

There are numerous other properties of Smith charts, and the types of computa-
tions that may be performed graphically and rapidly with them are truly remarkable.
We will study only one (but it’s an important one) – impedance matching – in the
next chapter. Since machine computation has diminished the role of Smith charts,
we have presented only a truncated description and direct the interested reader to
Smith’s paper of 1944 for further applications.5

3.3 S-PAR A METERS

Engineers have devised many (perhaps too many) ways to describe systems. To sim-
plify analysis and perhaps elucidate important design criteria, it is often valuable to

5 Many books and papers have been written by others about the Smith chart, but you might as well
learn directly from the man himself, starting with his 1944 paper, which describes the chart pretty
much as we know it today. For a more thorough treatment, see his book, Electronic Applications of
the Smith Chart: In Waveguide, Circuit, and Component Analysis, McGraw-Hill, New York, 1969
(reprinted by Noble Publishing, 2000).
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F IGURE 3.6. Port variable definitions

use macroscopic descriptions, which preserve input–output behavior but discard de-
tails of the internal structure of the system. At lower frequencies, the most common
representations use impedance or admittance parameters, or perhaps a mixture of the
two (called, sensibly enough, hybrid parameters).

The basis for linear two-port representations is simply that the voltage (or current)
at one port may be expressed as a linear combination of the current (or voltage) at
that port and the voltage or current at the other port. Depending on the particular
choice of variables, the coefficients may be dimensionless or may have the dimen-
sions of impedance or admittance. For example, in the impedance representation we
express port voltages in terms of port currents. For the two-port shown in Figure 3.6,
the relevant equations are:

V1 = Z11I1 + Z12I2; (4)

V2 = Z22I2 + Z21I1. (5)

It is most convenient to open-circuit the ports in succession to determine the var-
ious Z-parameters experimentally, because various terms then become zero. For
instance, determination of Z11 is easiest when the output port is open-circuited be-
cause the second term in Eqn. 4 is zero under that condition. Driving the input port
with a current source and measuring the resulting voltage at the input allows direct
computation of Z11. Similarly, open-circuiting the input port, driving the output with
a current source, and measuring V1 allows determination of Z12.

Short-circuit conditions are used to determine admittance parameters, and a com-
bination of open- and short-circuit conditions allow determination of hybrid param-
eters. The popularity of these representations to characterize systems at low fre-
quencies traces directly to the ease with which one may determine the parameters
experimentally.

At high frequencies, however, it is quite difficult to provide adequate shorts or
opens, particularly over a broad frequency range. Furthermore, active high-frequency
circuits are frequently rather fussy about the impedances into which they operate, and
may oscillate or even expire when terminated in open or short circuits. A different
set of two-port parameters is therefore required to evade these experimental prob-
lems. Called scattering parameters (or simply S-parameters), they exploit the fact
that a line terminated in its characteristic impedance gives rise to no reflections.6

6 K. Kurokawa, “Power Waves and the Scattering Matrix,” IEEE Trans. Microwave Theory and
Tech., v. 13, March 1965, pp. 194–202.
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68 CHAPTER 3 THE SMITH CHART AND S-PAR A METERS

F IGURE 3.7. S-parameter port variable definitions

Interconnections between the instrumentation and the system under test therefore
can be of a comfortable length since no short or open circuit needs to be provided,
greatly simplifying fixturing.

As implied earlier, terminating ports in open or short circuits is a convenience
for lower-frequency two-port descriptions because various terms then become zero,
simplifying the math. Scattering parameters retain this desirable property by defin-
ing input and output variables in terms of incident and reflected (scattered) voltage
waves, rather than port voltages or currents (which are difficult to define uniquely at
high frequencies, anyway).

As can be seen in Figure 3.7, the source and load terminations are Z0. With the
input and output variables defined as shown, the two-port relations may be written as

b1 = s11a1 + s12a2, (6)

b2 = s22a2 + s21a1, (7)

where

a1 = Ei1/
√
Z0, (8)

a2 = Ei2/
√
Z0; (9)

b1 = Er1/
√
Z0, (10)

b2 = Er2/
√
Z0. (11)

The normalization by the square root of Z0 is a convenience that makes the square
of the magnitude of the various an and bn equal to the power of the corresponding
incident or reflected wave.

Driving the input port with the output port terminated in Z0 sets a2 equal to zero,
which allows us to determine the following parameters:

s11 = b1

a1
= Er1

Ei1
= �1; (12)

s21 = b2

a1
= Er2

Ei1
. (13)

Thus, s11 is simply the input reflection coefficient, while s21 is a sort of gain since it
relates an output wave to an input wave. Its magnitude squared is a type of power
gain known as the transducer power gain, with Z0 as source and load impedance,
but we defer a discussion of its precise definition to an appendix (see Section 3.4).
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Similarly, terminating the input port and driving the output port yields:

s22 = b2

a2
= Er2

Ei2
= �2; (14)

s12 = b1

a2
= Er1

Ei2
. (15)

Here, we see that s22 is the output reflection coefficient; s12 is the reverse transmis-
sion, whose magnitude squared is the reverse transducer power gain withZ0 as source
and load impedance.

Once a two-port has been characterized with S-parameters, direct design of sys-
tems may proceed in principle without knowing anything about the internal workings
of the two-port. For example, gain equations, noise figure, and stability criteria can
be recast in terms of S-parameters.7 However, it is important to keep in mind that a
macroscopic approach necessarily discards potentially important information, such
as sensitivity to parameter or process variation. For this reason, S-parameter mea-
surements are best used to derive element values for models whose topologies have
been determined from first principles or physical reasoning.

To summarize, the reasons that S-parameters have become nearly universal in
high-frequency work are that “zero”-length fixturing cables are unnecessary, there
is no need to synthesize a short or open circuit, and terminating the two-port in Z0

greatly reduces the potential for oscillation.

3.4 APPENDIX A: A SHORT NOTE ON UNITS

The inability to identify unique voltages and currents in distributed systems, coupled
with the RF engineer’s preoccupation with power gain, has made power the natural
quantity on which to focus in RF circuits and systems. Power levels are expressed
in watts, of course, but what can confuse and frustrate the uninitiated are the various
decibel versions. For example, “dBm” is quite commonly used. The “m” signifies
that the 0-dB reference is one milliwatt, while a “dBW” is referenced to one watt. If
the reference impedance level is 50 �, then 0 dBm corresponds to a voltage of about
223 mV rms.

As clear as these definitions are, there are some who actively insist on confusing
volts with watts, redefining 0 dBm to mean 223 mV rms regardless of the impedance
level. Not only is this redefinition unnecessary, for one may always define a dBV, it
is also dangerous. As we will see, critical performance measures – such as linearity
and noise figure – intimately involve true power ratios, particularly in studying cas-
caded systems. Confusing power with voltage ratios leads to gross errors. Hence,
throughout this text, 0 dBm truly means one milliwatt, and 0 dBV means one volt.
Always.

7 A representative reference that covers this topic is G. Gonzalez, Microwave Transistor Amplifiers,
2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1997.
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70 CHAPTER 3 THE SMITH CHART AND S-PAR A METERS

With that out of the way, we return to some definitions. Common when discussing
noise or distortion products in oscillators or power amplifiers is “dBc,” where the “c”
here signifies that the 0-dB reference is the power of the carrier.

Most engineers are familiar with the engineering prefixes ranging from that for
10−12 (pico) to that for 1012 (tera). Supplementing those below pico are femto (f ), atto
(a), zepto (z), and yocto (y), some of which sound like the names of lesser-known
Marx brothers. Above tera are peta (P), exa (E), zetta (Z), and yotta (Y). You can
see that abbreviations for prefixes associated with positive exponents are capitalized
(with the exception of that for kilo, to avoid confusion with K, the unit of absolute
temperature) and that those for negative exponents are rendered in lower case (with
µ being used for “micro” to avoid confusion with the abbreviation for “milli”). With
these additional prefixes, you may express quantities spanning an additional 24 orders
of magnitude. Presumably, 48 orders of magnitude should suffice for most purposes.

By international convention, if a unit is named after a person then only the abbre-
viation is capitalized (W and watt, not Watt; V and volt, not Volt, etc.).8 This choice
assures that “two Watts” refers only to two members of the Watt family, and not to
two joules per second, for example. Absolute temperature is measured in kelvins (not
the redundant “degrees kelvin”) and is abbreviated K. The liter (or litre) is an excep-
tion; its abbreviation may be l or L, the latter to avoid confusion with the numeral 1.

Finally, a good way to start a fistfight among microwave engineers is to argue
over the pronunciation of the prefix “giga-”. Given the Greek origin, both gs should
be pronounced as in “giggle,” the choice now advocated by both ANSI (American
National Standards Institute) and the IEEE (Institute of Electrical and Electronics
Engineers). However, there is still a sizable contingent who pronounce the first g as
in “giant.” The depth of emotion felt by some advocates of one or the other pronun-
ciation is all out of proportion to the importance of the issue. Feel free to test this
assertion at the next gathering of microwave engineers you attend. Ask them how
they pronounce it, tell them they’re wrong (even if they aren’t), and watch the Smith
charts fly.

DEFINIT IONS OF POWER GAIN

While we’re on the subject of definitions, we ought to discuss “power gain.” You
might think, quite understandably, that the phrase has an unambiguous meaning, but
you would be wrong. There are four types of power gain that one frequently encoun-
ters in microwave work, and it’s important to keep track of which is which.

Plain old power gain is defined as you’d expect: It’s the power actually deliv-
ered to some load, divided by the power actually delivered by the source. However,
because the impedance loading the source may not be known (particularly at high
frequencies), measuring this quantity can be quite difficult in practice. As a conse-
quence, other power gain definitions have evolved.

8 The decibel is named after Alexander Graham Bell. Hence dB, not db, is the proper abbreviation.
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Transducer power gain (a term we have already used in this chapter) is the power
actually delivered to a load divided by the power available from the source. If the
source and load impedances are some standardized value then computing the power
delivered and the available source power is relatively straightforward, sidestepping
the measurement difficulties alluded to in the previous paragraph. From the defini-
tion, you may also see that transducer gain and power gain will be equal if the input
impedance of the system under consideration happens to be the complex conjugate
of the source impedance.

Available power gain is the power available at the output of a system divided by
the power available from the source. Insertion power gain is the power actually de-
livered to a load with the system under consideration inserted, divided by the power
delivered to the load with the source connected directly to the load. Depending on
context, any of these power gain definitions may be the appropriate one to consider.

Finally, note that if the input and output ports are all matched then the four defi-
nitions of power gain converge. Only in that instance would it be safe to say “power
gain” without being more specific.

3.5 APPENDIX B: WHY 50 (OR 75) �?

Most RF instruments and coaxial cables have standardized impedances of either 50
or 75 ohms. It is easy to infer from the ubiquity of these impedances that there is
something sacred about these values, and that they should therefore be used in all de-
signs. In this appendix, we explain where these numbers came from in the first place
in order to see when it does and does not make sense to use those impedances.

3.5.1 POWER-HANDLING CAPABIL ITY

Consider a coaxial cable with an air dielectric. There will be, of course, some volt-
age at which the dielectric breaks down. For a fixed inner conductor diameter, one
could increase the outer diameter to increase this breakdown voltage. However, the
characteristic impedance would then increase, which by itself would tend to reduce
the power deliverable to a load. Because of these two competing effects, there is a
well-defined ratio of conductor diameters that maximizes the power-handling capa-
bility of a coaxial cable.

Having established the possibility that a maximum exists, we need to dredge up a
couple of equations to find the actual dimensions that lead to this maximum. Specif-
ically, we need one equation for the peak electric field between the conductors and
another for the characteristic impedance of a coaxial cable:

Emax = V

a ln(b/a)
(16)

and

Z0 =
√
µ

ε
· ln(b/a)

2π
≈ 60√

εr
· ln

(
b

a

)
, (17)
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72 CHAPTER 3 THE SMITH CHART AND S-PAR A METERS

where a and b are (respectively) the inner and outer radius and εr is the relative di-
electric constant, which is essentially unity for our air-line case.

The next step is to recognize that the maximum power deliverable to a load is pro-
portional to V 2/Z0. Using our equations, that translates to:

P ∝ V 2

Z0
= Emax · a2 ln(b/a)2(

60/
√
εr

) · ln(b/a)
=

√
εr [E 2

max · a2 ln(b/a)]

60
. (18)

Next, take the derivative, set it equal to zero, and pray for a maximum instead of a
minimum:

dP

da
= d

da

[
a2 ln

(
b

a

)]
= 0 
⇒ b

a
= √

e. (19)

Plugging this ratio back into our equation for the characteristic impedance gives us a
value of 30 �. That is, to maximize the power-handling capability of an air dielec-
tric transmission line of a given outer diameter, we want to select the dimensions to
give us a Z0 of 30 �.9

But wait: 30 does not equal 50, even for relatively large values of 30. So it ap-
pears we have not yet answered our original question. We need to consider one more
factor: cable attenuation.

3.5.2 ATTENUATION

It may be shown (but we won’t show it) that the attenuation per length due to dielec-
tric loss is practically independent of conductor dimensions. Using a simple equation
that accounts only for the attenuation due to resistive loss, we have

α ≈ R/2Z0, (20)

where R is the series resistance per unit length. At sufficiently high frequencies (the
regime we’re concerned with at the moment), R is due mainly to the skin effect. To
reduceR, we would want to increase the diameter of the inner conductor (to get more
“skin”), but that would tend to reduce Z0 at the same time, and it’s not clear how to
win. Again, we see a competition between two opposing effects, and we expect the
optimum to occur once more at a specific value of b/a and hence at a specific Z0.

Just as before, we invoke a couple of equations to get to an actual numerical result.
The only new one we need here is an expression for the resistance R. If we make the
usual assumption that the current flows uniformly in a thin cylinder of a thickness
equal to the skin depth δ, we can write

R ≈ 1

2πδσ

[
1

a
+ 1

b

]
, (21)

9 Smith actually received a patent for this result. The single claim in the patent explicitly claims the
ratio,

√
e (about 1.6487).
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where σ is the conductivity of the wire and δ is the same as always:

δ =
√

2

ωµσ
. (22)

With these equations, the attenuation constant may be expressed as:

α = R

2Z0
≈

1

2πδσ

[
1

a
+ 1

b

]√
εr

2

[
60 ln

(
b

a

)] . (23)

Taking the derivative, setting it equal to zero, and now praying for a minimum in-
stead of a maximum yields:

dα

da
= 0 
⇒ d

da

1/a + 1/b

ln(b/a)
= 0 
⇒ ln

(
b

a

)
= 1 + a

b
; (24)

after iteration, this yields a value of about 3.6 for b/a. That value corresponds to a
Z0 of about 77 �. Now we have all the information we need.

First off, cable TV equipment is based on a 75-� world because it corresponds
(nearly) to minimum loss. Power levels there are low, so power-handling capability
is not an issue. So why is the standard there 75 and not 77 ohms? Simply because
engineers like round numbers.

This affinity for round numbers is also ultimately the reason for 50 � (at last).
Since 77 � gives us minimum loss and 30 � gives us maximum power-handling ca-
pability, a reasonable compromise is an average of some kind. Whether you use an
arithmetic or geometric mean, the result after rounding is 50 �. And that’s it.

3.5.3 SUM M ARY

Now that we understand how the macroscopic universe came to choose 50 �, it
should be clear that one should feel free to choose very different impedance levels
if performance is limited neither by the power-handling nor the attenuation charac-
teristics of the interconnect. As a result, IC engineers in particular have the luxury
of selecting vastly different impedance levels than would be the norm in discrete de-
sign. Even in certain discrete designs, it is worth evaluating the trade-offs associated
with using 50 � (or some other standard value) rather than simply using the standard
values as a reflex.
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C H A P T E R F O U R

IMPEDANCE M ATCHING

4.1 INTRODUC TION

Designers of low-frequency analog circuits are often puzzled by the seeming ob-
session of microwave engineers with impedance matching. Analog circuit design
textbooks, for example, almost never have a chapter on this topic. Instead, engi-
neers working at lower frequencies usually express specifications in terms of voltage
gain, for example, with little or no reference to impedance matching. In striking
contrast, RF engineers are indeed frequently preoccupied with the problem of im-
pedance matching. The principal reason for the difference in philosophical outlook is
that power gain is so abundant at low frequencies that designers there have the luxury
of focusing on convenience, rather than necessity. For example, a textbook trans-
former could provide impedance matching to maximize power gain, but electronic
voltage amplifiers are more readily realized (and are certainly more flexible) than are
coils of wire wound around magnetic cores. The need for an impedance transfor-
mation is usually acknowledged only implicitly (if at all) and is frequently satisfied
with a crude transformation to an unspecified low value with a voltage buffer, for ex-
ample. On the other hand, RF power gain is often an extremely limited resource, so
one must take care not to squander it. Impedance-transforming networks thus play a
prominent role in the radio frequency domain.

There are many good reasons for seeking an impedance match at RF beyond sim-
ply maximizing gain. One is that a match makes a system insensitive to the lengths
of interconnecting lines. Discrete RF and microwave components are generally de-
signed for standardized impedances (such as 50 �) for precisely this reason. This
standardization greatly facilitates assembly of such components into larger systems
by eliminating the need for impedance transformers between them. Even so, coupling
into and out of these standardized components may still require impedance transfor-
mations if the source or load impedances happen to differ from the standard values.
This situation arises frequently in the case of coupling to antennas or other resonant
structures, for example.

74
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4.2 THE M A XIMUM POWER TR ANSFER THEOREM 75

Maximizing power gain is not the only objective that requires impedance transfor-
mations. For every amplifier there is a particular value of impedance that minimizes
its noise figure. As luck would have it, this magic value rarely coincides with the con-
ditions that produce maximum gain or with standardized levels such as 50 �. Once
again, impedance transformations are necessary.

Yet another motivation for providing a match is that filters are often the perfor-
mance-limiting components in communications systems.1 Important filter character-
istics, such as passband and delay flatness, can be quite sensitive to the driving and
terminating impedances, so impedance matching once again arises as a requirement.

Impedance matching is also valuable in high-power systems, where the presence
of standing waves arising from mismatch may cause peak voltages to exceed break-
down limits at various points along a transmission line. Catastrophic breakdown is
not the only possible outcome, for the output power and efficiency of a transmitter
may depend critically on the impedance of the load it drives. An improper impedance
may degrade efficiency (and thereby exacerbate thermal problems), cause unstable
operation (including oscillation), prevent the attainment of a specified output power,
or even damage the transmitter.

To study the important problem of impedance matching in greater detail, we start
by presenting a theorem whose lessons provide much of the rationale for considering
impedance matching at all.

4.2 THE M A XIMUM POWER TR ANSFER THEOREM

Most undergraduate engineering students encounter the maximum power transfer
theorem at some point in their coursework. Evidence is strong, however, that the
full implications of the theorem are conveyed to students with less than perfect fi-
delity (debates rage about whether the problem lies in transmission or reception; we
will not presume to settle the matter here). The question answered by the maximum
power transfer theorem is this: Given a fixed source impedance ZS, what load imped-
ance ZL maximizes the power delivered to that load? See Figure 4.1, which shows a
network driven by a sinusoidal source.2

The power delivered to the load impedance by the source is entirely consumed by
RL, since reactive elements do not dissipate power. Hence, the power delivered to
the load is just

|VR|2
RL

= RL|VS |2
(RL + RS)2 + (XL + XS)2

, (1)

1 This need not be the case in principle, but engineering practice frequently makes it so, for one com-
monly uses the least expensive filter that can meet design objectives.

2 Where many students go awry is to forget the “fixed source impedance” part of the problem state-
ment. If we were truly free to choose any source impedance, then of course we should choose to
make it zero, not equal to the load! Then we could extract infinite power from the source.
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76 CHAPTER 4 IMPEDANCE M ATCHING

F IGURE 4.1. Network for maximum power transfer theorem

where the voltages VR and VS are the rms voltages across the load resistance and
source, respectively.

In order to maximize the power delivered to RL, it’s clear that XL and XS should
be algebraic inverses so that they sum to zero. That is, we want to have a net zero
reactance. It’s relatively easy to produce this condition at a single frequency or to
approximate it over a narrow band. Further maximizing Eqn. 1 under that condition
leads to the result that RL should equal RS. Hence, the maximum transfer of power
occurs when the load and source impedances are complex conjugates.

Notice that this prescription implicitly tells us that the impedance transformation
must be accomplished losslessly. The addition of, say, a series resistance to assure
that the source impedance sees an equal resistance does not maximize power deliv-
ered to the load, because that added resistance is not part of the load to which we
ultimately wish to deliver power.3

We can thus state a general strategy for maximizing power transfer: Using only
lossless elements, null out any reactances while transforming the existing resistances
until source and load match.

It is fortunate that there are many ways to implement that strategy, for it’s true that
no single impedance matching method is ideal in all cases. We’ll therefore present a
number of commonly used methods, which may be used alone or in combination.

M ATCHING BENCHM ARKS

All engineering involves trade-offs of one sort or another, and impedance matching
is no exception to this rule. Because perfection is unattainable, we must set realistic
goals for impedance matching. There are no hard and fast rules about what consti-
tutes a good match, however; the required performance is very much dependent on
the application. It is therefore important to develop fluency in describing mismatch
in the several equivalent ways in which it is commonly reported: reflection coeffi-
cient �, which is the same as S11; return loss (RL), which is simply the reciprocal of
S11 (or its algebraic inverse when using dB quantities); and the standing-wave ratio
(SWR), defined as

3 Sometimes an added resistance is helpful for producing other results, such as taming parasitic os-
cillations in amplifiers. However, these ends are quite distinct from maximizing power gain.
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4.3 M ATCHING METHODS 77

Table 4.1. Equivalent
measures of mismatch

|�| (|S11|) RL (dB) SWR

0 infinite 1.00
0.025 32.0 1.05
0.05 26.0 1.11
0.075 22.5 1.16
0.1 20.0 1.22
0.15 16.5 1.35
0.2 14.0 1.50
0.25 12.0 1.67
0.3 10.5 1.86
0.35 9.1 2.07
0.4 8.0 2.33
0.45 6.9 2.64
0.5 6.0 3.00

SWR = 1 + |�|
1 − |�| . (2)

Recall that SWR is the ratio of the peak amplitude on the line to the minimum
amplitude. A perfect match produces no reflections that would alternately interfere
destructively and constructively with the forward wave, and thus it produces a 1:1
SWR. The worse the mismatch, the greater the disparity between the amplitudes re-
sulting from constructive reinforcement and destructive interference, and the greater
the SWR.

Because contours of constant reflectance magnitude are simply concentric circles,
the distance from the center of the Smith chart is a direct measure of mismatch. As
a convenience, the relationships among all of these metrics is taken care of on a typ-
ical (full) Smith chart. There is a set of auxiliary rulers below the chart proper that
allows you to read off the mismatch in any of the equivalent ways in which mismatch
is measured. Table 4.1 provides equivalent information.

As we’ve already mentioned, the quality of the match required is a function of the
application. That said, it’s generally the case that SWR values above 3 are rarely tol-
erated. A more typical specification might be expressed as a minimum return loss
of 10 dB, with values in excess of 15 dB considered highly desirable. These goals
correspond to SWR values of very roughly 2 :1 and 1.5 :1, respectively.

4.3 M ATCHING METHODS

The maximum power transfer theorem tells us only that we wish to nullify the reac-
tive part while simultaneously transforming the resistive part of the load to a value
equal to that of the source. There are a great many ways of accomplishing these ends,

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511812941.005
Downloaded from https://www.cambridge.org/core. The Librarian-Seeley Historical Library, on 18 Dec 2019 at 06:16:30, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511812941.005
https://www.cambridge.org/core


78 CHAPTER 4 IMPEDANCE M ATCHING

all possessing different trade-offs among such dimensions as size, complexity, and
bandwidth. We will first examine a collection of techniques that are relatively nar-
rowband in nature; then we consider a number of methods for realizing broadband
impedance matches.

4.3.1 CL ASSIC LUMPED M ATCHING METHODS

Review of Resonant Circuits

A great many of the narrowband impedance matching methods developed over the
years are explainable with a unified treatment based on an understanding of lumped
resonant circuits. Consequently, we first review briefly some properties of RLC res-
onant circuits.

The Q of a parallel RLC network at resonance is

Q = R/
√
L/C. (3)

The quantity
√
L/C has the dimensions of resistance and is sometimes called the

characteristic impedance of the network.4 It has the following significance: it is
equal to the magnitude of the capacitive and inductive reactances at resonance. This
is easily shown:

|ZC | = |ZL| = ω0L = L/
√
LC = √

L/C. (4)

We will find that this quantity recurs with some frequency,5 so keep it in mind.
Before we continue, let’s see if our equation for Q makes sense. As the parallel

resistance goes to infinity, Q does, too. This behavior seems reasonable since, in the
limit of infinite resistance, the network degenerates to a pure LC system. With only
purely reactive elements in the network, there is no way for energy to dissipate and
so Q should go to infinity, just as the equation says it should. Plus, Q also increases
as the impedance of the reactive elements decreases (by decreasing L/C), since the
pure resistance becomes less significant compared with the reactive impedances.

For completeness, we may derive a couple of additional expressions for the Q of
our parallel RLC network at resonance:

Q = R

|ZL,C | = R

ω0L
= ω0RC. (5)

The ability of such networks to transform impedances is suggested by the behavior
of the inductive and capacitive branch currents at resonance. We can readily compute
how these currents may differ significantly from the overall network current (which

4 This term is usually applied to transmission lines, but we see that it has a certain importance even
in lumped networks.

5 Recall that the characteristic impedance of a transmission line is given by the same expression,
where L and C are there interpreted as the inductance and capacitance per unit length.
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F IGURE 4.2. Not-quite-parallel RLC tank circuit

is simply due to the parallel resistance) and thereby extract some important insights
about impedance transformation techniques.

At resonance, the voltage across the network is IinR. Since the inductive and
capacitive reactances are equal at resonance, the inductive and capacitive branch cur-
rents will be equal in magnitude:

|IL| = |IC | = |V |
Z

= |Iin|R
ω0L

= |Iin|R
√
LC

L
= |Iin| R√

L/C
= Q|Iin|. (6)

That is, the current flowing in the inductive and capacitive branches is Q times as
large as the net current into the whole network. Hence, if Q = 1000 and we drive
the network at resonance with a one-ampere current source, then that one ampere
will flow through the resistor but a thrilling one thousand amperes will flow through
the inductor and capacitor (until they vaporize). From this simple example, you can
well appreciate the incompleteness of simply stating that the inductor and capacitor
cancel at resonance!

We might infer from these dramatic boosts in current that the network has some-
how performed a downward impedance transformation. That is, the impedance in
the high-current branches must be lower than the impedance across the entire combi-
nation. To pursue this idea further, consider the case illustrated by Figure 4.2. We’ve
chosen to put a resistor in series with the inductor to reflect the practical truth that in-
ductors are generally much lossier than capacitors. The model shown in the figure is
therefore a realistic first approximation to typical parallel RLC circuits encountered
in practice.

Since we’ve already analyzed the purely parallel RLC network in detail, it would
be nice if we could re-use as much of that work as possible. So, let’s convert the
circuit of Figure 4.2 into a purely parallel RLC network by replacing the series LR
section with a parallel one. Clearly, such a substitution cannot be valid in general,
but over a suitably restricted frequency range (e.g., near resonance) the equivalence
is pretty reasonable. To show this formally, let’s equate the impedances of the series
and parallel LR sections:

jω0LS + RS = (jω0LP ) ‖ RP = (ω0LP )
2RP + jω0LPR

2
P

R2
P + (ω0LP )2

. (7)

If we equate real parts and note that Q = RP/ω0LP = ω0LS/RS ,6 we obtain

6 If the series and parallel sections are to be equivalent, then their Qs certainly must be equivalent.
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F IGURE 4.3. Upward impedance transformer

RP = RS(Q
2 + 1). (8)

Similarly, equating imaginary parts yields

LP = LS

(
Q2 + 1

Q2

)
. (9)

We may also derive a similar set of equations for computing series and parallel RC
equivalents:

RP = RS(Q
2 + 1); (10)

CP = CS

(
Q2

Q2 + 1

)
. (11)

Let’s pause for a moment and look at these transformation formulas. Upon closer
examination, it’s clear that we may express them – in a universal form that applies
to both RC and LR networks – as

RP = RS(Q
2 + 1), (12)

XP = XS

(
Q2 + 1

Q2

)
, (13)

where X is the imaginary part of the impedance. This way, one need only recall a sin-
gle pair of “universal” formulas to convert any “impure” RLC network into a purely
parallel (or series) one that is straightforward to analyze. Both parallel terms are al-
ways larger than their corresponding series terms. We must keep in mind that the
equivalences hold only over a narrow range of frequencies centered about ω0.

The L-Match

Now we’re ready to reinterpret all of these results as descriptive of impedance trans-
formers. As we’ve noted, the multiplication by Q of voltages or currents in resonant
RLC networks hints at their impedance-modifying potential. Indeed, the series–
parallel RC/LR network conversion formulas developed in the previous section ac-
tually show this property explicitly. To make this clearer, consider once again the
circuit of Figure 4.2, now redrawn slightly as Figure 4.3.
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F IGURE 4.4. Downward impedance transformer

Here, we treat RS as a load resistance for the network. When this resistance is
viewed across the capacitor, it is transformed to an equivalentRP according to the for-
mulas developed in the previous section. From inspection of those “universal” equa-
tions, it is clear that RP will always be larger than RS , so the network of Figure 4.3
transforms resistances upward. If a downward impedance conversion is needed then
we simply interchange ports, as shown in Figure 4.4.

There is a nice, intuitive way to keep track of which way the impedance trans-
formation goes. For example, if the circuit in Figure 4.4 is driven by a test voltage
source, the result is a parallel RLC network since the Thévenin resistance of the test
source is zero. Now, the inductive current in a parallel RLC network at resonance is
Q times as large as the current through RP . This increase in current is seen by the
source and may be interpreted as a reduction in resistance.

It should also be clear that interchanging the inductor and capacitor doesn’t al-
ter the transformation ratio, so you may accommodate other design considerations
in deciding whether to use a high-pass or low-pass configuration. For example, if
the source or load already possesses some reactance, it may be possible to absorb
these undesired elements into the impedance transformer with the correct topologi-
cal choice. Another consideration is the bandwidth over which a reasonable match
is maintained. As it happens, the high-pass versions tend to be better in this regard.
This is to be expected from Murphy’s law, because the low-pass version is usually
more useful (and thus used more often) for filtering undesired spectral components.

This circuit is known as an L-match because of its shape (you might have to con-
tort yourself a bit to see this), not because it contains an inductor. Its chief attribute
is its simplicity. However, there are only two degrees of freedom (one can choose
only L and C). Hence, once the impedance transformation ratio and frequency have
been specified, network Q (which might influence the frequency-selective properties
of the network, including bandwidth) is automatically determined. If you want a dif-
ferent value of Q, you must use a network that offers additional degrees of freedom;
we’ll study some of these shortly.

As a final note on the L-match, the “universal” equations can be simplified ifQ2 �
1. If this inequality is satisfied, then the following approximate equations hold:

RP ≈ RSQ
2 = RS

(
1

ω0RSC

)2

= 1

RS

LS

C
, (14)

which may be rewritten as
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RPRS ≈ LS

C
= Z2

0 , (15)

whereZ0 is the characteristic impedance of the network, as discussed in Section 4.3.1.
Stated alternatively, select the characteristic impedance of the matching network equal
to the geometric mean of the source and load impedances. When we consider the
classic quarter-wavelength transmission line transformer, we will encounter a pre-
scription that is highly reminiscent of this one.

One may also deduce that Q is approximately the square root of the transforma-
tion ratio:

Q ≈ √
RP/RS. (16)

Finally, the reactances don’t vary much in undergoing the transformation:

XP ≈ XS. (17)

As long as Q is greater than about 3 or 4, the error incurred will be under about 10%.
If Q is greater than 10, the maximum error will be in the neighborhood of 1% or
so. For quick, back-of-the-envelope calculations, at least, these simplified equations
are adequate. Final design values can always be computed using the full “universal”
equations if needed.

The L-match is also a nice, simple network with which to illustrate impedance
matching graphically in terms of the Smith chart. We can think about the impedance-
matching problem as a sort of game in which the goal is to return home from an
arbitrary initial location, where “home” is located at the precise center of the Smith
chart.7 The rules of the game are such that motion is not along straight lines; that’s
what makes the game challenging and interesting. Indeed, the curved coordinate sys-
tem that underlies the Smith chart means that each step we take will traverse a circular
arc. The challenge is to assemble a sequence of arcs that will take us home. Devel-
oping a familiarity with how those trajectories correspond to the addition of shunt or
series elements is the key to designing the matching networks we present explicitly –
as well as to devising new ones on your own.

The addition of a series reactive element simply moves us along a circle of con-
stant resistance. Similarly, the addition of a shunt susceptance simply moves us along
a circle of constant conductance. Because impedance matching networks generally
consist of a combination of series and shunt elements, it is helpful to use (or at least
imagine) the complete ZY Smith chart when designing matching networks. Later we
will add more trajectories to this mix, such as those that correspond to the addition
of transmission line segments and those arising from changes in frequency.

These points are best illustrated with a specific example, so let’s revisit the L-match
network in Smith-chart terms. In Figure 4.5 we presume that the load resistance RS

7 A completely equivalent description is to seek to arrive at an arbitrary terminus from home as the
initial position. The same rules of motion apply; one just runs the game in reverse. For an actual on-
line impedance-matching “video game” played in this fashion, see 〈http: //contact.tm.agilent.com/
Agilent /tmo/an-95-1/classes/imatch.html〉.
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F IGURE 4.5. L-match example

F IGURE 4.6. L-match example with ZY Smith chart
(thin lines are constant-conductance circles)

is too low, so that we want to transform it upward. Addition of a series inductance LS

to that load moves us along the circle of constant resistance corresponding to R =
RS , and the subsequent addition of a shunt capacitance C moves us along a circle
of constant conductance. Ultimately, we want to end up at the center of the Smith
chart, so this circle of constant conductance must include the terminal point G = 1.
To design the match, then, simply draw two circles: one of constant conductance cor-
responding to G = 1, and the other of constant resistance corresponding to RS. The
intersection(s) of those two circles fixes both the inductance and the capacitance. A
subsequent denormalization then yields the component values, completing the design.

As seen in Figure 4.6, we first move clockwise along a circle of constant resistance
from the load resistance point, RS , by adding a series inductance. We add just enough
inductance to get to point P because it also lies on the (gray) circle of constant con-
ductance for G = 1. That choice is significant because the subsequent addition of
an appropriate shunt capacitance can move us clockwise along that circle down to
the center of the Smith chart to complete the match. From reading off the shunt ad-
mittance or series reactance corresponding to point P, we can readily compute the
capacitance and inductance, respectively.8

Note that there is another point of intersection of the two circles, at P2, implying
the existence of another (equivalent) matching network. In this case, a series capac-
itance takes us counterclockwise down to point P2 along the constant-RS circle, and

8 For each point of intersection, we’re talking about a single impedance from which both the capac-
itance and inductance may be found.
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F IGURE 4.7. The π -match (low-pass version)

the addition of a shunt inductance takes us counterclockwise along the circle of con-
stant conductance for G = 1. We add enough shunt inductance to end up again at
the point G = 1. The shunt admittance and series reactance corresponding to point
P2 allow us to compute the shunt inductance and series capacitance to complete
the design. The corresponding network corresponds to the high-pass version of the
upward-transforming L-match.

From the Smith-chart constructions, we can also see that complex load impedances
are readily accommodated as well. If, for example, the load already has some series
inductance, then one doesn’t have to add as much to get to point P, after which the
design proceeds as before. Thus, we appreciate better how the correct choice of net-
work can reduce the impact of parasitics by actually using them as circuit elements.

The Smith-chart constructions also help us remember that this network topology
cannot transform downward. If the normalized load resistance exceeds unity, then
the addition of a series reactance necessarily moves us along a constant-resistance
circle that never intersects the G = 1 constant-conductance circle. Thus, there is no
way for the addition of a shunt element to bring us to the center of the Smith chart.
These same sorts of constructions allow us to deduce that merely exchanging ports
will enable the desired impedance transformation.

The π-Match

As already discussed, one limitation of the L-match is that it allows us to specify only
two of center frequency, impedance transformation ratio, and Q. To acquire a third
degree of freedom, one can employ the network shown in Figure 4.7.

This circuit is known as a π -match, again because of its shape. The most expe-
dient way to understand how this matching network functions is to view it as two
L-matches connected in cascade, one that transforms down and one that transforms
up; see Figure 4.8. Here, the load resistance RP is transformed to a lower resistance
(known as the image or intermediate resistance, here denoted RI) at the junction of
the two inductances. The image resistance is then transformed up to a value Rin by
a second L-match section.

Now, it may feel suspiciously like a government-works project to use one L-section
to go down and then another to go back up. However, we have gained an important
additional degree of freedom. Recall that, for an L-match, Q is fixed at a value
roughly equal to the square root of the impedance transformation ratio. Typically,
the Q of an L-match isn’t particularly high because huge transformation factors are
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F IGURE 4.8. The π -match as a cascade of L-matches

F IGURE 4.9. T-match

infrequently required. The π -match decouples Q from the transformation ratio by
introducing an intermediate resistance value to transform to; this allows us to achieve
much higher Q than is generally available from an L-match, even if the overall trans-
formation ratio isn’t particularly large.

Since we now have three degrees of freedom (the two capacitances and the sum
of the two inductances), we can independently specify center frequency, Q (or band-
width), and overall impedance transformation ratio. However, as with the L-match
(or any other kind of match), impractical or inconvenient component values can re-
sult, so some creativity or compromise may be required to generate a sensible design.
In many instances, cascading several matching networks may be helpful (e.g., ex-
tending the π -match concept with additional sections).

As a parting note, one final bit of trivia deserves mention. An additional reason that
the π -match is popular is that the parasitic capacitances of whatever connects to it can
be absorbed into the network design. This property is particularly valuable because
capacitance is frequently the dominant parasitic element in many practical cases.

The T-Match

The π -match results from cascading two L-sections in one particular way. Connect-
ing up the L-sections another way leads to the dual of the π -match: the T-match,
shown in Figure 4.9. Here, what would be a single capacitor in a practical imple-
mentation has been decomposed explicitly into two separate ones to show clearly
that this network consists of two conventional L-matches connected together at their
high-impedance ports. The (parallel) image resistance is seen across these capaci-
tors, either looking to the right or looking to the left as in the π -match.

The T-match is completely equivalent in performance to the π -match. It is the
preferred choice when the source and termination parasitics are primarily inductive
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F IGURE 4.10. Tapped-capacitor
matching network

in nature, allowing them to become part of the network, just as port capacitances are
readily absorbed into the π -match.

Note that there remain other ways to cascade L-sections. They occasionally merit
consideration, but are used infrequently enough that we simply call attention to their
existence.

Tapped Capacitors and Inductors

A resistive voltage divider transforms impedances but is lossy. If we replace the
resistances with pure reactances then the resulting network continues to transform
impedance, but now without loss. There will also be residual reactance, but that can
be tuned out separately. An example of such a circuit is shown in Figure 4.10.

The operation of this impedance transformer is best understood by noting that a
voltage reduction in a perfectly lossless network must be accompanied by an imped-
ance reduction proportional to the square of the voltage attenuation if power is to be
conserved. This network is not perfectly lossless, but we do expect the impedance
transformation ratio to be (roughly)

R2

Rin

≈
(

1/sC2

1/sC1 + 1/sC2

)2

=
(

C1

C1 + C2

)2

, (18)

so that the network either transforms a resistance Rin downward to a value R2 or
transforms a resistance R2 upward to a value Rin.

To confirm this expectation, let us analyze the resistively loaded capacitive divider
in isolation. The admittance of the combination is readily found after a little labor:

Yin = jωC1 − ω2R2C1C2

jωR2(C1 + C2) + 1
. (19)

The real part is

Gin = ω2R2C
2
1

ω2R2
2(C1 + C2)2 + 1

. (20)

At sufficiently high frequencies, the equivalent shunt conductance indeed simpli-
fies to

Gin ≈ ω2R2C
2
1

ω2R2
2(C1 + C2)2

= G2 ·
[

C1

C1 + C2

]2

= G2

n2
, (21)
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F IGURE 4.11. Tapped-inductor transformer

as anticipated. Equation 21 also defines a factor, n, which is the turns ratio of an
ideal transformer that would yield the same resistance transformation as the capac-
itive divider. The concept of an equivalent turns ratio will prove particularly useful
in unifying the treatment of various oscillators.

For the sake of completeness, we also compute the imaginary part of the admit-
tance:

Bin = ωC1 + ω3R2
2C1C2(C1 + C2)

ω2R2
2(C1 + C2)2 + 1

; (22)

at sufficiently high frequencies, this approaches a limiting value of

Bin ≈ ω · C1C2

C1 + C2
= ω · Ceq , (23)

where Ceq is the equivalent capacitance of the series combination of the two individ-
ual capacitances.

The foregoing series of equations serves well for analysis and particularly to de-
velop design intuition. Equations 21 and 23 are also extremely useful for first-cut,
back-of-the-envelope designs.

We now consider briefly the tapped inductor as a matching network (see Fig-
ure 4.11). As you might expect, its behavior is quite similar to that of its tapped-
capacitor counterpart. We won’t go through a detailed derivation of the design equa-
tions since they’re completely analogous to those for the tapped-capacitor case, but
we will make the following observation: R2 must be less than Rin because, once
again, we have a voltage divider.

Clearly, tapping as a method of impedance transformation applies more broadly
than it does to pure capacitor or pure inductor networks. Indeed we shall see that coup-
ling into and out of resonators is often accomplished through the use of impedance-
transforming taps.

4.3.2 CL ASSIC TR ANSMISSION LINE
IMPEDANCE TR ANSFOR MERS

As frequency increases, lumped implementations become progressively less appropri-
ate. We therefore need to expand our palette of options to include several distributed
matching techniques.

The most famous by far is the quarter-wave transmission line transformer. In
terms of the Smith chart, recall that the addition of line to a load simply causes us to
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F IGURE 4.12. Lumped λ/4 impedance match

traverse a circle (again), this one representing a contour of constant reflectance, and
that these contours are centered about the origin (R = 1). Also recall that imped-
ance repeats every half-wavelength, representing one full rotation around the Smith
chart. Thus, the addition of a piece of line that is a quarter-wavelength long causes
us to travel precisely halfway around the constant-reflectance circle. Consequently,
a given load impedance Z1 at the end of the line transforms into its reciprocal (within
a normalization constant) when viewed at the other end of the line. Specifically,

Z2 = Z2
0/Z1. (24)

This relationship tells us that we may use a quarter-wave piece of line as an imped-
ance transformer by suitably selecting its characteristic impedance as follows:

Z0 = √
Z1Z2. (25)

This transformer is necessarily a narrowband element because its length meets the
quarter-wave criterion at only one frequency. Another consideration is that there are
limitations on the practical impedances one may realize, particularly in microstrip
form. Thus, it may be difficult to realize the desired transformer in cases that require
characteristic impedances that are below about 10–15 � or above about 150–200 �

for typical microstrip.
If (as at low frequencies) the length of line required is impractically large or if

the required characteristic impedance is inconvenient, then a lumped implementa-
tion may be preferable. The simplest of these is a π - or T-network approximation to
a λ/4 line. See Figure 4.12.

The component values are given by these simple relationships:

L = √
R1R2/ω0; (26)

C = 1/ω0

√
R1R2. (27)

Here R1 and R2 are the source and load impedances. You can see that these for-
mulas simply correspond to making the magnitudes of the inductive and capacitive
reactances equal to the geometric mean of the source and load impedances.

The reader may have noticed that this network is actually a special case of a π -
match. Its virtue is ease of design.

Quarter- and half-wave transmission lines thus have well-known special imped-
ance transformation properties: the former reciprocates, and the latter replicates. Be-
cause complex loads thus remain complex, completing the design of an impedance
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match in general requires an additional element to cancel out any remaining imagi-
nary part.

There is a third, less well-known, “magic” line length whose properties occasion-
ally prove useful in the design of impedance transformers. Lines that are λ/8 in
length have the ability to transform a complex load into a purely real one. To demon-
strate this property, we first reprise the equation for the input impedance of a lossless
line terminated in an arbitrary load:

Z(z) = Z0
ZL + jZ0 tanβz

Z0 + jZL tanβz
, (28)

where the coordinate z is zero at the load and takes on positive values elsewhere.
Setting βz equal to π/4 yields

Z = Z0
ZL + jZ0

Z0 + jZL

= Z0
(RL + jXL) + jR0

R0 + j(RL + jXL)
= Z0

RL + j(R0 + XL)

(R0 − XL) + jRL

. (29)

Rationalizing the denominator and solving, we obtain

Z = Z0
RL(R0 − XL) + RL(R0 + XL) + j [(R0 + XL)(R0 − XL) − R2

L]

(R0 − XL)2 + R2
L

. (30)

Clearly, the impedance is not automatically purely real, but it is straightforward
to identify the conditions under which the imaginary part disappears:

(R0 + XL)(R0 − XL) − R2
L = 0 ⇒ R2

0 = X2
L + R2

L. (31)

Thus, if we select the characteristic impedance of a λ/8 line equal to the magnitude
of the (complex) load impedance, then the transformed impedance will be purely real
and with value

Z = Z0
RL(R0 − XL) + RL(R0 + XL)

(R0 − XL)2 + R2
L

, (32)

which (after simplification) becomes

Z = Z0
RL

R0 − XL

= Z0
RL

|ZL| − XL

. (33)

Note that the relationships among the variables guarantee a nonnegative resistance,
satisfying necessary conditions on passivity. Further note that, as the load impedance
approaches a pure reactance, the transformed resistance approaches infinity. Again,
this result is to be expected on the basis of energy conservation alone, for the combi-
nation of a lossless line with a lossless reactance cannot result in a lossy impedance.

The λ/8 line, useful though it may be, rarely suffices to effect a match by itself,
for merely converting a complex load into a real one is insufficient in general. The
ultimate goal is to produce not merely a random real impedance but rather a partic-
ular value that is equal to Z0. A classic microwave matching technique with more
general utility is known as the single-stub match (see Figure 4.13). It exploits the
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F IGURE 4.13. Illustration of single-stub impedance matching

F IGURE 4.14. Single-stub match example with
Smith chart (thin lines are admittance circles)

impedance variation along a transmission line with a mismatched load, and its ac-
tion is best described in terms of Smith-chart trajectories. The addition of line moves
the impedance around a circle of constant reflectance. Since we will ultimately add
some shunt impedance (the stub), we want to add enough line to take us to a constant-
conductance circle corresponding to G = 1. Then we add enough stub to take us to
the center of the Smith chart.

As seen in Figure 4.14, adding some line moves us counterclockwise on a constant-
reflectance circle whose radius, of course, is established by the value of ZL (normal-
ized). There are two values of line length l1 that take us to the correct constant-
conductance circle (G = 1), at which point we have obtained the correct real part.
It is customary, but not obligatory, to select the shorter of the two possible lengths,
as we have done here.9 This choice reduces departures from expectations resulting

9 Not only does this choice reduce the required length of line, it often leads to a somewhat broader
band match. As a rule, it’s generally a good idea to choose the option that minimizes length un-
less there’s some other overriding consideration (e.g., bias convenience). Losses are smaller, the
chances for radiation frequently diminish, and the structure occupies less space.
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4.3 M ATCHING METHODS 91

from the lossiness of real lines and also produces more compact structures. How-
ever, under some conditions (e.g., at very high frequencies), the required line length
might be uncomfortably short. In such cases, it may be more convenient to select the
longer length or occasionally even add integer multiples of a half-wavelength. Other
practical considerations, such as ease of conveying bias to amplifiers, may also favor
the other choice.

Once the value of l1 is chosen, all that remains is to cancel any remanent imaginary
part with a suitable shunt stub. In principle, an appropriate length of line terminated
in either a short or an open would accomplish the desired end. Most recommenda-
tions found in the literature advocate the use of shorted lines as stubs for several quite
sensible reasons. One is that it is possible to approximate a good short to a better
degree than one may approximate a good open, since a fringing field always frus-
trates the production of a good RF open circuit. Another is that radiation from an
open-circuited line may further perturb the impedance of the stub, to say nothing of
the possibility of creating (or receiving) interference. Counterbalancing all of those
good reasons is the inconvenience of implementing shorts in microstrip. Experience
shows that the use of open-circuited stubs in microstrip form generally yields satis-
factory results in spite of the concerns expressed, so we will assume from this point
on that completing the impedance match will involve the shunt connection of an ap-
propriate length of open-circuited line. In our example, note that selection of the
shorter value of l1 has already taken us to a point on the constant-conductance cir-
cle that requires the addition of a shunt capacitance to complete the match. Had we
chosen the other line length, an inductive stub would have been required.

For completeness, we should also note that one could (again, in principle) com-
plete the impedance match by using a stub in series with the load. However, this
approach is more mechanically inconvenient than the shunt approach because it re-
quires breaking existing connections. The shunt stub is therefore overwhelmingly
more popular for microstrip.

The single-stub tuner, while perfectly effective as described, requires that the shunt
stub connect to the line at a load-specific distance from the load. If the load imped-
ance or distance is not known with infinite accuracy (or varies owing to manufacturing
tolerances, etc.), then one must arrange for some adjustment of this point of attach-
ment. Unfortunately, providing for a variable stub location is a nontrivial task, as is
arranging for variation of the stub length. Commercial tuners are generally coaxial
affairs and often use a stub with a sliding short (the combination is known colloqui-
ally as a trombone), but it is highly inconvenient to arrange for a sliding anything in
microstrip form.

Accommodation of large changes in load impedance is possible with fewer me-
chanical engineering difficulties. Multiple-stub tuners consist of two or three (or
occasionally more) single-stub tuners spaced apart by some fixed amount; see Fig-
ure 4.15. The added degree of freedom provided by the extra stub compensates partly
for the degrees of freedom lost by fixing the stub locations, allowing the double-stub
arrangement to provide a usefully wide tuning range. Of the many possible choices for
the stub separation, most common multiple-stub tuners use a spacing ofλ/8. One may
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92 CHAPTER 4 IMPEDANCE M ATCHING

F IGURE 4.15. Double-stub tuner (with open-circuited stubs;
mechanism for varying length not shown)

show that, with such a spacing, the tuner can produce a match to any load whose ad-
mittance contains a conductance less than 2G0 (as measured to the right of point X in
Figure 4.15). Although we have drawn open-circuited stubs, they are typically imple-
mented as sliding shorts. Again, the inconvenience of arranging for this type of short
implies that you will almost certainly not encounter this structure in microstrip form.

As can be seen in Figure 4.16, the Smith-chart presentation for this tuner can be a
bit intimidating. Nevertheless, we may still identify the arcs that together comprise
a solution to the matching problem. In this particular case, we proceed to the origin
in a series of zigzag arcs. As with other cases, the set of trajectories we show is not
the only possible one that works.

The first arc corresponds to the transformation produced by the length of line lx
that lies between the load and stub 1. It is customary to place the tuner as close to the
load as practical, making lx considerably less than a wavelength, but this choice is
not an absolute requirement. In Figure 4.16 we have chosen a completely arbitrary
value of lx . The arc traced out in moving from the load to the first stub lies along the
circle of constant reflectance magnitude corresponding to the impedance mismatch
between the load and the line.

The second arc corresponds to the action of stub 1. Here, we have assumed that the
length is short enough that the open-circuited stub presents a capacitive susceptance.
Therefore, the arc moves clockwise on a circle of constant conductance.

The third arc once again takes us along a circle of constant reflectance magnitude.
We have assumed here that the length of stub 1 has been adjusted so that this third
arc terminates on a constant-conductance circle corresponding to G = 1. From this
point, the capacitive susceptance of stub 2 causes the admittance to traverse the G =
1 circle clockwise until a match is finally obtained.

We see that the double-stub tuner provides for an impedance match by spiraling
the real part of the admittance stepwise, in zigzag fashion, toward the G = 1 circle.
In practice, this tuning is almost always performed by trial and error – a method that is
generally much faster than computing and then implementing an analytical solution.
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4.3 M ATCHING METHODS 93

F IGURE 4.16. Double-stub match example with Smith chart
(thin lines are admittance circles)

4.3.3 BROADBAND IMPEDANCE-M ATCHING TECHNIQUES

The matching methods we’ve presented so far are fundamentally narrowband tech-
niques, as the design procedures seek the desired correct impedance transformation
at a single frequency only. One must therefore accept whatever impedance varia-
tion the design produces over the operational bandwidth. As luck would have it,
the match is frequently acceptable over just a small fractional bandwidth. If a good
match over a very wide frequency range is required then we must employ more so-
phisticated design methods, and the resulting transformation networks can quickly
become rather elaborate. Before describing some of those methods, though, it’s use-
ful to consider an important bound initially derived by Hendrik Bode and extended
by Robert Fano:10 ∫ ∞

0
ln

[
1

|�(ω)|
]
dω ≤ π

τ
, (34)

where τ is the time constant of the simple single-pole load impedance assumed in
Bode’s original derivation (Fano generalized the analysis to arbitrary loads). This
inequality tells us that it is impossible to obtain a perfect match over a nonzero band-
width (at best, we can obtain a perfect match at a finite number of frequencies within
any finite frequency interval). It also tells us that we may pay for improved match

10 H. W. Bode, Network Analysis and Feedback Amplifier Design, Van Nostrand, New York, 1945.
Robert M. Fano extended Bode’s work on matching theory for his Sc.D. thesis, excerpted in
“Theoretical Limitations on the Broadband Matching of Arbitrary Impedances,” J. Franklin Insti-
tute, January 1950, pp. 57–83 (part I) and February 1950, pp. 139–54 (part II).
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94 CHAPTER 4 IMPEDANCE M ATCHING

over a given frequency range by worsening the match elsewhere. That is, designing
for the best match over a given bandwidth will come at the expense of the largest
possible mismatch at all other frequencies. This prescription is actually identical to
that guiding the design of filters, where we wish to approach as closely as possi-
ble a zero transmission loss over some bandwidth coupled with infinite attenuation
everywhere else. Consequently, the same approximation concepts that apply in the
classical filter design problem apply here as well. One might consider absorbing the
load into a structure reminiscent of a filter, for example, to produce or approximate
Chebyshev-like reflectance behavior over some passband. We take up the subject of
filter design in separate chapters, but for now it suffices to recognize that the broad-
band impedance-matching problem is the same as the bandpass filter design problem.

We can manipulate Eqn. 34 into a somewhat more intuitively useful form to pro-
vide an upper bound on the matching bandwidth for a specified reflectance (again,
for an assumed single-pole load). Note that there is no contribution to the integral
whenever the reflectance is unity. If we assume an (unattainable) ideal situation in
which the reflectance is a uniform value �match within a bandwidth (ω and unity
outside that bandwidth, then we can evaluate the integral directly:∫ ∞

0
ln

[
1

|�(ω)|
]
dω = −

∫ (ω

0
ln[|�match|] dω = −((ω) ln[|�match|] ≤ π

τ
. (35)

Solving for �match yields

|�match| ≤ exp

[
− π

((ω)τ

]
. (36)

It is also helpful to solve Eqn. 35 for the matching bandwidth:

(ω ≤ π

τ ln[|�match|] . (37)

Or, expressing the bandwidth in hertz,

(f ≤ − 1

2 τ ln[|�match|] . (38)

We therefore see that the larger the permissible mismatch, the greater the bandwidth
over which that match can be provided. To provide some quantitative orientation, ac-
cepting a �match of 0.2 (corresponding to a 1.5 VSWR) in the passband means that
the matching bandwidth will not exceed about 0.31/τ Hz. In this case, the matching
bandwidth is about double the −3-dB bandwidth of the load.

One extremely valuable broadband matching device is the multisection stepped-
impedance line – and its continuous counterpart, the tapered transmission line. Al-
though limited to the broadband transformation of purely real loads, these transform-
ers are nonetheless extremely useful. The physical intuition motivating these designs
is straightforward enough: If we need to connect two lines of differing impedance
(and thus, presumably, of different dimensions), then using a sufficiently gradual and
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4.3 M ATCHING METHODS 95

continuous transition between these two lines may avoid the generation of significant
reflections.

We can place this idea on a more quantitative basis by examining how a single-
stage quarter-wave transformer behaves away from the nominal center frequency.
We start with

Z(z) = Zm

ZL + jZm tanβz

Zm + jZL tanβz
, (39)

where Zm is the characteristic impedance of the matching section.
When the line is precisely λ/4 in length, we obtain the familiar impedance inver-

sion:

Z(z) = Z2
m

ZL

. (40)

When used as an impedance matching device, we select the λ/4 line’s characteristic
impedance equal to the geometric mean of the source and load impedances:

Zm = √
Z0ZL. (41)

That’s the ideal behavior, but now we’d like to consider what happens if the fre-
quency is a bit above or below the nominal value. To do so in the most useful way,
we first recast the impedance relationship in terms of reflectance:

� =
Z(z)

Z0
− 1

Z(z)

Z0
+ 1

= Zm(ZL + jZm tanβz) − Z0(Zm + jZL tanβz)

Zm(ZL + jZm tanβz) + Z0(Zm + jZL tanβz)
. (42)

Collecting terms, simplifying, and then taking the magnitude yields

|�| =
∣∣∣∣ ZL − Z0

ZL + Z0 + j2
√
Z0ZL tanβz

∣∣∣∣ = |ZL − Z0|√
(ZL + Z0)2 + 4Z0ZL(tanβz)2

(43)

Now, at frequencies corresponding to wavelengths near λ/4 (βz near π/2), the
tangent is very large. At the same time, we may approximate the sine as unity there.
Consequently, we may approximate the reflection coefficient in that neighborhood as

|�| ≈ |ZL − Z0|√
4Z0ZL(tanβz)2

= |ZL − Z0|
2
√
Z0ZL|tanβz|

≈ |ZL − Z0|
2
√
Z0ZL

|cosβz| =
∣∣ZL

Z0
− 1

∣∣
2
√

ZL

Z0

|cosβz|. (44)

Since we are primarily concerned with how the reflectance behaves as one deviates
a bit from center frequency, it is perhaps helpful to express the reflectance in terms
of this deviation explicitly:

|�| ≈
∣∣ZL

Z0
− 1

∣∣
2
√

ZL

Z0

|cosβz| =
∣∣ZL

Z0
− 1

∣∣
2
√

ZL

Z0

|sin θ |. (45)
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96 CHAPTER 4 IMPEDANCE M ATCHING

Here θ yields information about the deviation from center frequency, expressed as a
phase angle:

θ = π/2 − βz. (46)

We see from Eqn. 45 that, for a fixed deviation from the center frequency, the re-
flectance magnitude gets worse (bigger) as the impedance transformation ratio grows.
For very large mismatches the growth is approximately proportional to the square
root of the impedance ratio. Thus, the larger the transformation ratio we demand of a
single λ/4 section, the more dramatic the growth in mismatch away from the center
frequency. For very small θ, the growth is approximately linear (as can be deduced
from the small-angle approximation to the sine function), growing more rapidly (ap-
proximately as θ3) for larger angles.

If �max is the maximum reflectance that may be tolerated, then we may solve
Eqn. 45 directly for the phase deviation limits:

|�max | ≈
∣∣ZL

Z0
− 1

∣∣
2
√

ZL

Z0

|sin θmax | ⇒ |θmax | ≈ sin−1


2|�max |

√
ZL

Z0∣∣ZL

Z0
− 1

∣∣

. (47)

The next step will be to bring frequency explicitly into this expression in order to
compute the bandwidth over which the reflectance magnitude stays below the speci-
fied maximum.

First, recall that the phase constant β is

β = ω/vp. (48)

Next, we know that the physical length of the line is λ/4 at the center frequency ω0.

So,

θ = π

2
− βz = π

2
− ω

vp

λ

4
= π

2
− ω

vp

vp

4f0
= π

2

(
1 − ω

ω0

)
. (49)

We are interested in the two frequency limits that correspond to ±|θmax |. If we call
these two frequencies ω1 and ω2, then a little manipulation of quantities eventually
allows us to write

(
ω2 − ω1

ω0

)
= 4

π
|θmax | ≈ 4

π
sin−1


2|�max |

√
ZL

Z0∣∣ZL

Z0
− 1

∣∣

. (50)

Equation 50 is thus an approximation for the fractional bandwidth (multiply by 100
to get an expression in percent) for a specified reflectance tolerance and impedance
transformation ratio. As a specific example, suppose that we may tolerate a reflectance
magnitude of 0.2 (corresponding to a realistic SWR limit of 1.5), with an impedance
ratio of 4. For this set of numbers, the normalized total match bandwidth is approx-
imately 0.344. If we tighten up the specifications to permit a maximum reflectance
magnitude half as large, 0.1 (SWR = 1.22), then the bandwidth also halves – from
about 34% to 17%.
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4.3 M ATCHING METHODS 97

F IGURE 4.17. Circuit for derivation of
small-reflection approximation

To supplement all of the foregoing mathematics, it’s important to understand qual-
itatively why the frequency sensitivity of the match worsens as the transformation
ratio increases. First, recognize that the ability to obtain a match at all is some-
what miraculous, for we have two interfaces (one at each end of the transforming
line) at which definite impedance mismatches exist. Despite the reflections that are
necessarily produced at those interfaces, the λ/4 transformer is nonetheless able to
produce an impedance match at discrete frequencies. The transformer doesn’t pro-
duce this result by somehow preventing reflections from occurring at the interfaces.
Rather, it arranges for the ever-present reflections to cancel. The more dramatic the
impedance mismatch at the interfaces, the more heroic the required cancellations.
Thus the question isn’t “Why does the match get worse?” but rather “Why is it ever
good?” Consequently, it’s not surprising that there should be a departure from the
matched condition as frequency moves off center, with a steepness increasing with
the mismatch.

Given this insight, it should seem reasonable that one might moderate the mismatch
growth by moderating the impedance mismatches themselves, reducing thereby a
dependency on miraculous cancellations. A more moderate impedance mismatch,
however, necessarily implies an insufficient transformation ratio. To solve that prob-
lem, we could simply use, say, two λ/4 sections in cascade to provide the overall
impedance transformation, with each section carrying only part of the total burden.
Clearly, we may continue this process to any number of sections. The type of broad-
band impedance-matching device that results from this thinking is thus known as the
(multisection) stepped-impedance transformer. The greater the number of sections,
the better the bandwidth – though at the expense of increased total length. Questions
that naturally arise concern the number of sections required (or total line length) and
how the impedances of the individual sections should be chosen to meet design ob-
jectives. As one might imagine, some distributions of impedances are better than
others. As with filter design (a topic we cover separately), one may seek a variety
of passband behaviors, such as maximally flat or equiripple reflectance, with perfor-
mance trading off with design complexity.

To explore some of these ideas rigorously involves mathematics of sufficient com-
plexity to obscure most design insight. Therefore, we won’t be rigorous. However,
the approximations we will invoke are not so idealized as to render the results practi-
cally irrelevant. The demanding reader is invited to carry out an independent deriva-
tion without the simplifying assumptions.

Consider the two interfaces of a segment of line and also the reflections associated
with the corresponding impedance mismatches (see Figure 4.17). An incident wave
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98 CHAPTER 4 IMPEDANCE M ATCHING

F IGURE 4.18. Multisection transformer structure

undergoes partial reflection at the Z1–Z2 interface. The portion that is not reflected
continues on to the Z2–Z3 interface, where another reflection occurs. That reflected
wave undergoes yet another partial reflection at the Z2–Z1 interface. The unreflected
portion continues on its journey to superpose with the reflected portion of the inci-
dent wave, while the reflected portion heads back to the Z2–Z3 interface, and so on.
If we neglect everything (specifically, everything involving the product of reflection
coefficients) except for the two principal reflections, we obtain

�tot ≈ �1 + �2 exp(−j2θ), (51)

where θ is the electrical length of the line expressed as a phase angle and where the
reflection coefficients �1 and �2 correspond to those at the Z1–Z2 and Z2–Z3 in-
terface, respectively. The exponential term merely expresses the fact that there is a
round-trip delay of 2θ for the portion of the wave emerging from the first interface,
traveling to the second interface, and being reflected back to the input of the line.

The reader may verify that this approximate expression for the overall reflectance
yields the correct answer (zero) for a λ/4 transmission line transformer.

We now use Eqn. 51, the result of invoking a small-reflection approximation
(because in ignoring the multiple reflections we implicitly assume that the prod-
uct of the reflection coefficients is small compared to unity), as a computational atom
in cascading sections to build up larger structures. See Figure 4.18. For simplicity,
we will assume that all the sections are of the same length (commensurate), with an
effective electrical length θ. This choice is made to simplify what comes but should
not be taken to mean that it is necessarily optimal.

We now use the small-reflection approximation in a pairwise fashion to obtain

�tot ≈ �1 + �2 exp(−j2θ) + �3 exp(−j4θ) + · · · , (52)

where the various �n are the reflection coefficients at the discontinuities. If, in addi-
tion to the assumption of commensurate lines, we assume that the final load is real
and that all impedances vary monotonically from one end of the structure to the other,
then all of the reflection coefficients will be positive and real. Again, it is not nec-
essary to satisfy these assumptions, but doing so enables the acquisition of valuable
design insight (and also conforms to common engineering practice).11

Inspection of Eqn. 52 reveals that it is highly reminiscent of a Fourier series. In
fact, it is a Fourier series. Recognizing the versatility of such a series for represent-
ing functions of a quite general character, one might imagine a synthesis procedure

11 Relaxing the monotonicity condition, for example, allows the design of a certain class of filters
(although the small reflection approximation usually no longer suffices for a good analysis).
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4.3 M ATCHING METHODS 99

by which one chooses the individual reflection coefficients to approximate a desired
overall reflectance function.12 Depending on the optimization objectives, one could
select the coefficients to minimize the maximum reflectance within some specified
passband or to guarantee monotonicity, for example. Again, the underlying philoso-
phies of approximation are identical to those that guide the design of filters, a topic
we treat later in a separate chapter. Consequently, one may select the coefficients
to produce reflectance that is maximally flat (the so-called Butterworth condition, in
which the maximum number of derivatives of the reflectance function is zero at cen-
ter frequency) or of an equiripple nature (as in a Chebyshev approximation, where
the error oscillates between specified limits), for example.13

We have seen that the performance of a stepped-impedance transformer improves
as the number of sections increases, owing to the reduction in transformation ratio
per section. It’s a short leap from there to a continuous impedance variation. Just
as there are many options for how to scale the impedance steps in the multisection
transformer, there’s a great body of literature on how one should “schedule” the im-
pedance of a tapered matching device. By the Second World War, engineers had
already translated the tapered acoustic horn (which performs an exactly analogous
impedance transformation) into electromagnetic form.14 The exponentially tapered
line, in particular, has enjoyed enduring popularity because of the ease with which it
is designed and understood. As its name suggests, the impedance of such a line has
a simple exponential dependence on position:

Z(z) = Z1 exp(kz). (53)

If the line is of some total length L and is to match an impedance Z1 to Z2, then the
taper constant k is immediately determined from

k = 1

L
ln

Z2

Z1
. (54)

In order to carry out an actual design, one needs guidance on the choice of the
total length. Intuitively, it seems reasonable that a better match would be obtained
with more gradual tapers (larger L, or smaller k), and indeed this is the case. A use-
ful criterion is to select the total length at least as large as half the wavelength of the

12 Now you can appreciate why we choose to make the lines commensurate: it simply makes the
reflectance function look like a Fourier series. However, this choice is not necessarily optimum,
and the reader is invited to consider approximation methods that accommodate a distribution of
segment lengths as well as segment impedances.

13 Stepped transformers that produce the Butterworth maximally flat condition are sometimes known
as binomial transformers because the coefficients are given by the binomial expansion.

14 Harold A. Wheeler, “Transmission Lines with Exponential Taper,” Proc. IRE, January 1939, pp.
65–71. Also see, e.g., George L. Ragan, Microwave Transmission Circuits (MIT Rad. Lab. Ser.,
vol. 9), McGraw-Hill, NewYork, 1948. We have Lord Rayleigh to thank for the acoustic horn. His
work on acoustics also inspired him to consider electromagnetic analogies, leading him to analyze
rectangular and circular waveguides before 1900. He was so far ahead of his time that this work
had been largely forgotten by the time a use arose for it. Even today, many practicing microwave
engineers are unaware of Rayleigh’s contribution in this area.
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100 CHAPTER 4 IMPEDANCE M ATCHING

lowest frequency component to which an impedance match is being provided. Thus,

k ≤ 2

λmax

ln
Z2

Z1
. (55)

Once the taper constant and line length have been chosen, the impedance as a
function of position has been completely specified. All that remains is translating
that impedance information into physical dimensions in order to build actual lines.
Once again, however, we must be sure to take into account the practical limits on re-
alizable impedances. As we’ve noted, impedance levels for most microstrip lines are
typically constrained to lie within a factor of 3 or 4 of 50 �.

Subsequent work undertaken in the decade after the Second World War revealed
that the exponential taper is not quite electrically optimum (although one may argue
that it is certainly optimum in terms of performance obtained for the design effort
expended). A design by Klopfenstein is optimum in the sense that, for a given per-
missible worst-case passband reflection, it is the shortest. Or, for a given total length,
the Klopfenstein taper exhibits the lowest mismatch.15 The Klopfenstein achieves
this optimality by distributing the mismatch in a way that produces an equiripple
reflectance over the passband. This egalitarian error distribution (known as a mini-
max optimum, because the maximum error is minimized within the passband) derives
from extending to a continuum limit the design of a discrete Chebyshev multisegment
transformer. Unfortunately, its design is not readily carried out with pen and paper,
although computationally efficient algorithms have been available since 1968 or so.16

These various forms of tapered lines provide excellent matches to real loads over
a broad frequency band. Achieving a broadband match with a complex load is more
difficult, particularly as one seeks to approach the Bode–Fano limit. In applications
requiring only moderate performance over a moderate bandwidth, it may suffice
to absorb the imaginary part into the matching network, leaving a trivially solved,
purely real impedance-matching problem. However, if the load is complicated (not
just complex), then the reactance variation with frequency might be sufficiently ex-
treme to preclude success with this strategy. We need not contrive a scenario with
these characteristics, for providing a reasonably broadband match to a diode mixer
is a commonly encountered challenge in terms of both theoretical design and practi-
cal realization. We will base an example on this problem because studying it, as well
as its possible solutions, is highly instructive. Among others, it stimulates us to con-
sider a few additional Smith-chart trajectories that will suggest relatively simple but
powerful methods for greatly broadening the bandwidth of impedance matches. To
understand such broadband methods, we need to extend our collection of Smith-chart
patterns to include frequency variation, as the Smith loci we’ve presented up to this
point all correspond to variation of parameters at a single frequency.

15 R. W. Klopfenstein, “A Transmission Line Taper of Improved Design,” Proc. IRE, v. 44, April
1956, pp. 539–48.

16 M. A. Grossberg, “Extremely Rapid Computation of the Klopfenstein Impedance Taper,” Proc.
IEEE, v. 56, September 1968, pp. 1629–30.
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4.3 M ATCHING METHODS 101

F IGURE 4.19. Equivalent linear circuit model
for diode (absorbed power = 0 dBm)

F IGURE 4.20. First pass: addition
of series inductance

As a tutorial example, consider the problem of producing a reasonable match to a
detector diode’s impedance over a one-octave bandwidth. The first difficulty is that
a diode is a nonlinear element and so its impedance depends on the bias point. It is
common to characterize the small-signal impedance of mixer diodes when they are
biased to dissipate one milliwatt, but it is important to perform the impedance char-
acterization using the power levels that will prevail during use. In general, this power
is not the same as the LO power; one must use the actual power level absorbed by,
not incident on, the diode. Assume that a reasonable circuit model for a diode biased
to the proper condition is as shown in Figure 4.19. Note the small value of series in-
ductance (and low shunt capacitance). These numbers are typical for the beam-lead
chip diode used in this example. Packaged devices generally have substantially worse
parasitics.

The impedance of this network over a 6.5–13-GHz frequency span is shown in
Figure 4.21 as curve A.17 Noting that the impedance already happens to have about
the right resistance near the middle of the band suggests the simple addition of a
series inductance to rotate the impedance clockwise. This choice is made more at-
tractive by the fact that there is already some inductance to begin with. To compute
the required inductance, we only need to find the imaginary part of the impedance
corresponding to a real part R = 1 (normalized). The magnitude of that capacitive
reactance equals the magnitude of the desired inductive reactance needed to resonate
it away. For this particular example, an inductance of about 1.4 nH produces a near
match at the nominal center frequency of 10 GHz; see Figure 4.20.

17 This example is inspired by two applications notes from Hewlett-Packard (now Agilent): AN-
963, “Impedance Matching Techniques for Mixers and Detectors,” and AN-976, “Broadband
Microstrip Mixer Design – The Butterfly Mixer.” We have modified the techniques somewhat in
order to obtain a match over a full one-octave bandwidth, rather than the 1.5 :1 frequency ratio in
the applications notes.
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102 CHAPTER 4 IMPEDANCE M ATCHING

F IGURE 4.21. Rotation of impedance locus due to
added series inductance

F IGURE 4.22. Second pass,
step 1: addition of line

The rotation increases with frequency, however, so each point on curve A rotates
clockwise by a frequency-dependent amount to produce curve B (see Figure 4.21).
The point corresponding to the upper frequency limit f2 naturally rotates much more
than the impedance at the lower frequency limit. This behavior follows from the
fact that, for a fixed inductance, the added impedance is directly proportional to fre-
quency. Because we have chosen an inductance sufficient to produce a near-perfect
match at the center frequency, the frequency-dependent rotation causes the match to
degrade at the band edges. Such degradation is to be expected when simple, single-
frequency matching methods are used. Here, the return loss is only about 7 dB at
the band edges, corresponding to an SWR of about 2.7. This level of mismatch is
generally considered undesirable.

Let us examine an alternative method for providing an impedance match. Instead
of a series inductance, let’s try using a shunt element. To produce a match at the
nominal operating frequency, we simply add enough line to take us to the G = 1
normalized conductance circle. From there, a suitable shunt susceptance produces
a match, as we’ve already seen. For this diode, we need to add about 43◦ worth of
(50-�) line to produce the desired nominal rotation and complete the first step of a
single-stub match; see Figure 4.22.

Once again, the line that we add produces a frequency-dependent rotation because
its electrical length is proportional to frequency. Thus, if we add enough line to rotate
the admittance curve to the G = 1 circle at the center frequency, there is necessar-
ily an over-rotation at higher frequencies and an under-rotation at lower ones. This

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511812941.005
Downloaded from https://www.cambridge.org/core. The Librarian-Seeley Historical Library, on 18 Dec 2019 at 06:16:30, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511812941.005
https://www.cambridge.org/core


4.3 M ATCHING METHODS 103

F IGURE 4.23. Frequency variation of match with single-stub tuner

F IGURE 4.24. Second pass, step 2:
addition of shunt inductance

behavior is apparent in the loci of Figure 4.23. Curve C corresponds to the clockwise
rotation produced by adding a section of transmission line. Thanks to the frequency
dependence of this rotation, the addition of line causes the locus to elongate (com-
pared with curve A in Figure 4.21), in a manner similar to that observed when using
a series inductance.

The final step is to add some shunt susceptance to produce a match at the nominal
frequency. Once again, computing the necessary value begins with a measurement of
the existing capacitive susceptance corresponding to the intersection with the G = 1
circle. The inductance is chosen so that its susceptance magnitude equals that of the
capacitance. Here, we need to add a shunt inductance of about 450 pH to provide a
match at the nominal center frequency (see Figure 4.24).

Again, the rotation is dependent on frequency, exacerbating the elongation we’ve
already suffered from having added the short segment of line. In this case of a shunt
inductance, the rotation is larger at low frequencies than at high, and the net effect
is to produce the curve marked D. Thanks to the use of two elements that produce
frequency-dependent rotations, we find that the match degrades much more dramat-
ically for the shunt alternative than for the series example. In fact, the worst-case
return loss (suffered at the lower band edge in this case) is less than 2 dB – a level
of mismatch that would be intolerable in all but the most forgiving of applications.
This result underscores the value of exploring the several options that typically exist
before selecting the one that best satisfies all relevant optimization objectives. These
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104 CHAPTER 4 IMPEDANCE M ATCHING

F IGURE 4.25. Third pass,
step 1: addition of line

considerations may include not only the quality of the match but also realizability,
size, and convenience.

Suppose that, despite our discouraging experience with that particular shunt net-
work, we insist on pursuing an alternative that contains a shunt element. That in-
sistence might be motivated, for example, by a need to provide a DC return path
for the diode bias. Although it is not impossible to devise a bias circuit for the
series-inductance example, a shunt inductance or transmission line segment natu-
rally provides a DC path to ground and thus can also act as part of the bias network.

That choice still leaves us with the challenge of producing a reasonable match at
the band edges. A large improvement is possible by using a resonant circuit as a
matching element. The qualitative idea is simple: At the band edges, the mismatch
may be (or can be made to be) attributable to reactances of opposite types. To pro-
mote a match, then, requires an inductance at one band edge and a capacitance at
another. Neither single capacitors nor inductors exhibit the required behavior, but
resonant networks do. To make the most effective use of this observation, we need
to rotate the impedance locus if necessary so that the reactances at the band edges
are indeed of opposite types. That loose specification still leaves open the question
of what to do about the conductances. A good choice is to make the conductance at
the band edges equal to the reciprocal of the conductance at the center of the band.
We will see that this choice tends to result ultimately in an impedance locus roughly
centered about a perfect match. Furthermore, the reflectance corresponding to these
conductances provides a good estimate of the ultimate worst-case mismatch.

From inspection of Figure 4.23, it’s clear that we need to rotate the curve D coun-
terclockwise by some amount. Because the conductance already corresponds to a
match at center frequency, performing the rotation by adding a piece of line whose
characteristic impedance equals the Smith-chart normalization impedance cannot
produce the desired reciprocal conductance relationship. Indeed, from the curvature
of the admittance locus, it’s clear that we need to supplement a rotation with a trans-
lation (actually, a scaling or renormalization) in order to increase the conductance
at band center. This is readily achieved by selecting a line segment whose charac-
teristic impedance is higher than the ordinary normalizing impedance. Selecting a
line impedance of 120 � and electrical length of 43◦ at the 10-GHz center frequency
produces the desired result (see Figure 4.25).

The effects of this combined rotation and renormalization are shown as curve E

in Figure 4.26. Notice that the conductances at the band edges are indeed equal to
each other and also roughly equal to the reciprocal of the conductance at the center
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4.3 M ATCHING METHODS 105

F IGURE 4.26. Locus after rotation and conductance
equalization by added high-impedance line

F IGURE 4.27. Third pass, step 2:
addition of shunt line

frequency (very fussy engineers might choose a slightly higher line impedance to
shift the locus to the left a bit more). Keeping track of the susceptances at the band
edges, we note that curve E tells us that the network’s admittance appears capacitive
at the lower band edge and inductive at the higher one. Thus, a shunt resonator has
the right general characteristics to offset the network susceptances at the band edges
and thereby produce something close to a match. A too-high line impedance would
result in a failure of the ends to meet, while a too-low one would overcompensate,
causing the tails to cross. An improper electrical length would produce asymmetries
in the shape.

Note that the network’s inductive susceptance at the upper band edge is larger than
the capacitive susceptance at the lower band edge. This asymmetry is compensated
by introducing a complementary one, achieved by making the shunt line possess other
than a 90◦ electrical length at the center frequency. Here, we need to provide a bit
more capacitance at the upper band edge, meaning that we need to select the line a
little longer than 90◦ (so that it acts a little capacitive) at the center frequency. We
may produce the correct result by using a shunt 46-� line of 96◦ electrical length at
the center frequency (see Figure 4.27).

The final locus appears in Figure 4.28. As is apparent from inspection of the final
result, the admittance locus is now much more tightly distributed and also roughly
centered about the perfect match condition. Consequently, the mismatch oscillates in
some fashion. We know that if the locus were a perfect circle, the reflectance would
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106 CHAPTER 4 IMPEDANCE M ATCHING

F IGURE 4.28. Admittance locus after addition of
length of shorted line to produce convergence

then be perfectly constant. Other shapes are necessarily associated with ripple. If
we could produce an equiripple response whose worst-case reflectance just meets
our match criterion, we would have obtained a Chebyshev (minimax) optimum. Al-
though we have not quite achieved that result, it is clear that the worst-case mismatch
is substantially smaller than with either the series inductance or the single-stub match-
ing network. For this particular example, the return loss in fact exceeds 10 dB over
the entire octave range, corresponding to an SWR of better than 2 :1. Although this
quality of match is not excellent, it is well within the range of values commonly con-
sidered usable for many systems.

In the course of studying a variety of matching strategies for this example, we’ve
built up a collection of methods (“macros”) that have great general utility in pro-
ducing matches over reasonably broad bandwidths. Although using them involves
a somewhat ad hoc approach, this unstructured procedure is still commonly used
over more complex, formal synthesis methods. Not all of these macros have official
names, so we are going to invent some in summarizing these modules. The following
is hardly an exhaustive list, but it contains enough operations to constitute a credible
subset.

Rotation. Rotation can be produced by the addition of shunt susceptances or series
impedances. These admittances or impedances may be produced by lumped com-
ponents or suitable lengths of line, just as in the first step of a single-stub tuning
operation. Because the electrical length is frequency-dependent, the rotation angle
depends on frequency for all of these options.

Conductance (resistance) equalization. This operation makes the conductances
(resistances) at the band edges equal to each other and may be provided by appropri-
ate rotations.

Conductance (resistance) balance. This operation makes the band-edge conduc-
tances (resistances) equal to each other and equal to the reciprocal of the midband con-
ductance (resistance) as well. Doing so sets the stage for convergence, as described
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4.3 M ATCHING METHODS 107

in the next paragraph. Implementing rotations with line segments whose character-
istic impedance differs from the system’s normalization impedance is an expedient
way to provide balancing at the same time.

Convergence. Once equalization has been achieved, the admittances (imped-
ances) at the band edges can be brought close together by adding a shunt (series)
resonator, as required. Because such a resonator appears inductive on one side of
resonance and capacitive on the other, it has the ability to perform a minor mira-
cle: bringing both ends of an equalized trajectory together. Because of the focus on
equalizing reciprocal real parts, the imaginary parts may not have equal magnitudes
at the edges of the frequency band. Hence the termination may have to be operated
above or below its resonance at the center of the frequency band in order to produce
convergence. Often convergence is the penultimate step, rather than the final one.
Because of limitations on the range of line impedances that may be practically re-
alized, it may be not be possible for a single operation to create a converged locus
that is also centered about the origin of the Smith chart. A final rotation or transla-
tion (achieved, again, through the addition of a suitable length of line of the correct
impedance) can complete the match.

As a final comment, note that the general procedures outlined here do not directly
incorporate a specification on allowed mismatch in any formal way. Consequently,
there is no guarantee of success. That said, carrying out this design procedure (and
realizing the design in practical form) is simple enough that one often tries it first.
Fortunately, it is not uncommon to find that it yields an acceptable result.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511812941.005
Downloaded from https://www.cambridge.org/core. The Librarian-Seeley Historical Library, on 18 Dec 2019 at 06:16:30, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511812941.005
https://www.cambridge.org/core


C H A P T E R F I V E

CONNEC TORS, CABLES,
AND WAVEGUIDES

5.1 INTRODUC TION

Although the focus of this book is the implementation of discrete planar RF circuits,
we consider here a number of important components that are fundamentally 3-D in
nature: connectors, cables, and waveguides. We’ll see that the useful frequency range
of these components is bounded in part by the onset of moding, which (in turn) is
a function of their physical dimensions. In addition, we’ll examine the attenuation
characteristics of these various ways to get RF energy from one place to another.

5.2 CONNEC TORS

5.2.1 MODING AND ATTENUATION

For the flattest response over the largest possible bandwidth, an RF connector should
exhibit a constant impedance throughout its length. This requirement is satisfied by
maintaining constant dimensions throughout and by filling the intervening volume
uniformly with a homogeneous dielectric. As straightforward and obvious as this re-
quirement may seem, we will shortly see that there is at least one extremely popular
connector that fails to meet it.

The best and most commonly used RF connectors are coaxial in structure. One im-
portant attribute of coaxial geometries is their self-shielding nature; radiation losses
are therefore not an issue. One must always take care, however, to maintain transverse
electromagnetic (TEM) propagation in which, you might recall from undergraduate
electromagnetics courses, neither E nor H has a component in the direction of prop-
agation. At sufficiently high frequencies, non-TEM propagation can occur, and the
energy stored or propagated in higher-order modes can cause dramatic impedance
changes. As the frequency increases, the tendency to excite these modes increases.
Before actual propagation occurs, the energy stored in the modes necessarily repre-
sents reactive energy and correspondingly affects the impedance. Actual propagation
results in a resistive perturbation.

108
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5.2 CONNEC TORS 109

F IGURE 5.1. Cross-section of
coaxial structure

Very loosely speaking (with due apologies to Professor Maxwell), waveguide prop-
agation of higher-order modes occurs when the wavelengths are small enough that
waves can “squeeze” their way through some critical dimension of the structure.
Therefore, if the desire is to prevent such propagation, the conductor dimensions
must be small enough to suppress all but the TEM mode.1 For the coaxial case we are
presently considering, the relevant critical dimension is approximately the average
electrical circumference of the annular space between the inner and outer conduc-
tors. A non-TEM wave (specifically, the TE11 mode) can begin to propagate when its
wavelength equals this average circumference.2 The first such high-order mode thus
has a wavelength given approximately by

λc ≈ 2π [(a + b)/2]
√
εr = π(a + b)

√
εr , (1)

where a and b are the inner and outer radii of the space between the conductors, and
εr is the relative dielectric constant of the material that fills that space; see Figure 5.1.
The error in this approximation is below 3% for b/a between 1 and 15.

It is the common desire for mode-free operation that explains why connectors and
cables become progressively smaller as their intended operating frequency range in-
creases. Some common coaxial connectors are the UHF, N, BNC, TNC, SMA, SMB,
and SMC; see Figure 5.2.

The UHF connector is the oldest of these, having been developed in the 1930s by
E. Clark Quackenbush of Amphenol Corporation for the broadcast radio industry.3 It
is commonly used in amateur radio gear. The socket version is SO-239, which mates
to the PL-259 plug. Unfortunately, the bulky connector isn’t actually suitable for use
in the UHF range as it is now defined.4 In fact, it has an important design flaw (a

1 In the language of the profession, the word “mode” can be used as a verb. To mode means to launch
higher-order modes. Thus, one worries about the frequency where a connector or transmission line
begins “to mode.” Yes, it may sound funny “to noun,” but c’est la mode.

2 If mode nomenclature is unfamiliar to you, don’t worry. Section 5.4 discusses this topic in greater
detail.

3 At that time, Amphenol was still American Phenolic.
4 The frequency range implied by UHF changed over time, but the name of the connector unfortu-

nately did not.
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110 CHAPTER 5 CONNEC TORS, CABLES, AND WAVEGUIDES

F IGURE 5.2. Assorted coaxial connectors (not shown to scale)

nonconstant impedance along the connector) that degrades its characteristics signifi-
cantly toward the middle and upper end of the VHF range (30–300 MHz). The loss at
50 MHz can exceed 1 dB.5 As a consequence, the connector really shouldn’t be used
much above about 100 MHz and, frankly, ought to be retired altogether. Neverthe-
less, it is used in a lot of 2-meter FM amateur radio equipment, and even occasionally
in some 70-cm (440-MHz) radio gear, at the expense of significantly degraded per-
formance. Its only attribute is that it is cheap. Please join in the crusade to eliminate
this connector!

The N connector is named for its developer, Bell Labs researcher Paul Neill, and
has been widely used in RF test equipment since WWII. Its dimensions are such
that it is mode-free up to approximately 18 GHz.6 However, the most common ver-
sion has slots in the outer conductor, and this type is usually specified with an upper
frequency limit of 11–12 GHz. The slotless version works better, with good charac-
teristics up to 18 GHz. Be aware that not all cables equipped with N connectors are
necessarily specified to operate over this entire range.

Another issue is that, by design, the center pin mates with its counterpart with
a small gap (order of 75–100 µm) between shoulders of the conductors, as seen in
Figure 5.3. The outer (ground) conductors (not shown) are designed to mate first,
resulting in the space shown for the center conductors. The reason for the choice
is that it is impractical to demand the tight machining tolerances and low tempera-
ture coefficient of expansion that would allow elimination of the buffer space. If the
center pins were to connect without such a buffer space, tightening of the connector
until the outer surfaces mated would almost guarantee destruction of the center pins.
The small discontinuity associated with the effective change in dimensions causes
the impedance to degrade as the frequency increases. As can be surmised from the
figure, the reduction in conductor diameter is associated primarily with a parasitic
series inductance.7

5 Again, remember that a loss of “only” 1 dB is a 21% power loss!
6 Some references claim that the N stands for “Navy.”
7 A more sophisticated model takes into account the capacitive fringing as well, resulting in a CLC
π -model for the discontinuity. In any case, the discontinuity reduces the operating frequency range.
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5.2 CONNEC TORS 111

F IGURE 5.3. Detail of center pins when
outer conductors are mated

As with all threaded connectors, one should never, repeat never, use pliers to
tighten an N connector; otherwise the center pin can become damaged over time (and
you’ll scratch up the connector in any case). Use of a torque wrench to tighten to the
specified 12 in-lb (135 N-cm) is highly recommended to maximize longevity. Bar-
ring that, a finger-tight connection is acceptable, provided you do not do this too
often. While we’re on the subject of caveats, you should never use lubricants (or
other petroleum-based solvents) on connectors and cables. If the connectors are too
tough to tighten properly because they’ve been cross-threaded, replace them. Spray-
ing a lubricant won’t repair the fundamental damage, but it could further harm the
plastic portions of connectors and cables. If the connectors need cleaning, use com-
pressed air or special solvents that are specifically designed for this purpose.

The BNC connector, named for developers Neill and (Amphenol engineer) Carl
Concelman, is nearly ubiquitous in RF gear owing to its convenience and relatively
small size. The use of a bayonet (the “B” in BNC)8 ground connection in lieu of
threads allows for rapid connection and disconnection. The internal dimensions are
consistent with mode-free operation to at least 18 GHz, but the comparatively unsta-
ble bayonet connection begins to degrade performance above about1GHz. The upper
useful frequency limit is conventionally taken to be approximately 3–4 GHz, though
BNCs are occasionally used above this range – albeit at the expense of progressively
worse (and erratic) behavior. Vibration can modulate the impedance, leading to a
host of objectionable pathologies, particularly in mobile applications. This prob-
lem is solved in the otherwise identical threaded version of this connector, the TNC
(threaded Neill–Concelman, developed in the late 1950s), which is suitable for use
up to at least 11–12 GHz. The best can be used up to 18 GHz. The BNC shares with
the N connector – and with the SMA/B/C (to follow) – a small gap between the
shoulder of the inner pin and its receptacle, resulting in a reactive discontinuity that
becomes more significant with increasing frequency.

The demand for still smaller connectors in the 1960s led to the development of
the SMA (sub-miniature, type A). It is quite a bit smaller than the BNC and is usu-
ally specified to work up to at least approximately 18 GHz with semirigid coaxial

8 A common belief, reinforced by many textbook authors, is that “BNC” stands for “baby N con-
nector,” but BNC really stands for “bayonet Neill–Concelman,” to distinguish it from the threaded
Neill–Concelman (TNC, not “tiny N connector,” as still others claim). The misconception is evi-
dently traceable to an otherwise reliable source: Technique of Microwave Measurements (MIT Rad.
Lab. Ser., vol. 11), p. 10. Note that there also exists a less widely known C connector developed
by (and named for) – you guessed it – Concelman. The C connector looks a lot like a BNC but is
larger.
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112 CHAPTER 5 CONNEC TORS, CABLES, AND WAVEGUIDES

cable (often 12 GHz otherwise), although operation to a bit over 25 GHz is possi-
ble with care. Tightening to the proper specified torque of 56 N-cm (5 in-lb) ensures
minimal degradation of the connector’s characteristics over time. It is difficult to fin-
ger-tighten to sufficient torque yet too easy to over-tighten with an ordinary wrench.

Another small threaded connector is the SMC. It is less expensive than the SMA
and somewhat smaller. The SMC typically functions well up to 10 GHz, and proper
torque is in the range of 3–4 in-lb (34–45 N-cm). The SMB is a push-on/pull-off
version of the SMC, and it can be used over a reduced frequency range of roughly
4 GHz (about the same as the BNC, and for similar reasons).

The insertion loss of connectors depends on whether they are straight-through or
right-angle types as well as on whether they are threaded or snap-on. The precise
values of attenuation are rarely of importance, however, since cable loss almost al-
ways dominates. However, we can offer some crude approximations. As a very rough
rule of thumb, one can expect straight snap-on and threaded right-angle types to have
twice the loss (on a dB basis) of an otherwise equivalent threaded straight-through
version. Larger connectors have lower conductor losses per unit length but are phys-
ically longer, so insertion loss per connector tends to be narrowly distributed. The
loss in decibels grows with frequency, generally exhibiting something between a
square-root dependence and direct proportionality. In the low-gigahertz frequency
range, N and SMA connectors typically exhibit losses under approximately 0.04 dB
per root GHz (for straight-through versions) and under about 0.06 dB per root GHz
(for right-angle types). Manufacturers frequently quote substantially worse values
in their data sheets (either out of a sense of conservatism or so they won’t have to
test it in production). The BNC and TNC typically have losses that are under 0.1 dB
and 0.15 dB for straight and right-angle types, respectively, per root GHz. The loss
of a BNC is somewhat worse than for the TNC, increases faster with frequency, and
is somewhat unstable owing to the flaky ground connection. Corresponding values
for the SMC are similar, at about 0.15 dB and 0.2 dB per root GHz. Loss for the
SMB can be as high as about twice (on a dB basis) as for the SMC. Because there is
considerable variation among manufacturers, these numbers are to be taken only as
rough approximations.

For instrumentation that must support frequent connection and disconnection, a
different connector design is necessary. Ordinary connectors suffer from a gradual
degradation of the center pins, which occurs as a result of fatiguing of the corre-
sponding mating structure over time. And as mentioned earlier, manufacturing con-
siderations demand a small buffer space in the mating structure of the center pin,
guaranteeing increasing mismatch with increasing frequency. To avoid these prob-
lems, Amphenol and Hewlett-Packard modified a German design to produce a gen-
derless connector in which the center and outer conductors make a butt contact (as
opposed to the “pin and socket” model of the other connectors). The APC-7 (7-mm
“Amphenol precision connector” or “a precision connector”) is widely used in in-
strumentation up to at least 18 GHz.

To mate two APC connectors, first rotate the outer sleeve of one connector clock-
wise until the threads are exposed. This sleeve will be left loose. Then line up the two
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5.2 CONNEC TORS 113

connectors and tighten the sleeve of the other connector on the exposed threads of
the first. The sleeves should not butt against each other when you are finished; other-
wise, they may push the mating surfaces apart. It is critically important to rotate only
the sleeve while tightening. If the mating surfaces are allowed to rotate against one
another then the resulting abrasion will damage the connectors. Of course, touching
the mating surfaces is also taboo. Clearly, these types of connectors depend on main-
tenance of cleanliness and precise mechanical tolerances. Proper torque is therefore
essential (135 N-cm, or 12 in-lb) both to avoid damage and to maintain flat imped-
ance characteristics over frequency. In the absence of a torque wrench, ordinary
finger-tightness is sufficient.

For operation at still higher frequencies, progressively smaller dimensions are
necessary to avoid moding. The 3.5-mm, 2.92-mm (also known as the Wiltron K
connector, for the highest frequency band covered), 2.4-mm, 1.85-mm (or V connec-
tor, again for the frequency band covered), and 1.0-mm (W) connectors are specified
to operate up to about 33 GHz, 40 GHz, 50 GHz, 65 GHz, and 110 GHz, respec-
tively. All of these should be tightened to 90 N-cm (8 in-lb), with the exception of
the 1-mm connector, whose torque specification is 34 N-cm (3 in-lb). Again, use of
a torque wrench is absolutely mandatory to maintain good characteristics, which in-
clude a typical loss on the order of 0.1 dB per root GHz. The higher the frequency,
the fussier the requirements.

As a final note on these connectors, it should be mentioned that the SMA and
the precision 3.5-mm and 2.92-mm connectors can mate to each other in the sense
that the diameters and thread pitches are nominally compatible. However, the SMA
has a teflon dielectric, whereas the precision connectors are air with small dielectric
supports. To compensate, the SMA has a somewhat thinner outer sleeve. Further,
SMA connectors from some vendors are not manufactured to sufficiently tight tol-
erances. It is altogether too possible to cause connector damage, even with a single
connection–disconnection cycle. As a protective measure for instruments and other
fixtures for which connector replacement is an arduous operation, it is prudent to
attach a short extender (e.g., male on one end, female on the other) on 3.5-mm con-
nectors to act as a sacrificial connector. This way, any damage is done to the extender,
which may be removed and replaced with ease. “Connector savers” made explicitly
for this purpose are available from a number of vendors.

The recent (and ongoing) rapid growth in compact consumer wireless devices –
cellular telephones, GPS locators, wireless LAN cards, and the like – has driven the
development of a new class of exceptionally small, low-cost connectors. Somewhat
easing the design burden is that the physics of wireless propagation all but guarantees
operating frequencies below about 5–10 GHz for mobile applications. Representative
of connectors used in these applications are the MCX and MMCX, which are snap-
on/snap-off types (similar to the SMB, but significantly smaller) and are rated for use
up to approximately 6 GHz. One can generally expect insertion losses of better than
0.1 dB and 0.2 dB per root GHz for straight and right-angle versions, respectively.

Also popular with many wireless LAN access points are reverse versions of TNC
and SMA connectors. These choices discourage the casual connection of antennas
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114 CHAPTER 5 CONNEC TORS, CABLES, AND WAVEGUIDES

that may cause noncompliance with statutory limits on radiated power. Inevitably,
the result has mainly been the creation of a cottage industry for the manufacture of
suitable adapters.

75-� Connectors

The foregoing overview of connectors focuses on the standard types found in the
50-� world. There are fewer standard options in the 75-� universe. For example,
the F connector is overwhelmingly the most common connector for 75-� applica-
tions (such as cable TV) and has no 50-� counterpart. Regrettably, specifications on
the dimensions of the center pin are so loose that it is absurdly easy to produce a lousy
connection or even cause damage: The center pin’s diameter is permitted to range
from about 0.5 mm to slightly over 1.6 mm! To make matters worse, it is occasionally
possible to find cables (from some fly-by-night sources) whose center conductor di-
ameter falls outside even this generous window. Needless to say, attempting to mate
connectors at opposite ends of the range can cause connector damage or a failure to
connect. Most F connectors are useful up to about 1 GHz.

Several other 75-� connectors are derived from standard 50-� prototypes, and
one can find N, BNC, . . . in the 75-� world, although they are rarer than the 50-�
versions. It is important to note that the dimensions of the center pins are different
for the two impedance levels, so attempting to mate a male 50-�with a female 75-�
connector will almost certainly cause damage to at least one of the pair.

5.2.2 NONLINEAR EFFEC TS

Given that only conductors and very linear dielectrics (e.g., air or Teflon) are nom-
inally involved, it may come as a surprise that connectors can sometimes exhibit
nonlinear behavior. It is actually possible for nonlinear effects in connectors to cause
noticeable distortion (and even parasitic radiation of harmonic and intermod prod-
ucts), so if the engineer is unaware of this possibility, it can take a very long time to
track down.

There are two principal sources of nonlinearity in connectors. One is due to sim-
ple corrosion. Many metallic oxides, chlorides, and sulfides are semiconductors, and
corrosion can result in the formation of one or more of these types of compounds.
The nonlinearities may be associated with Schottky or tunnel barriers formed with
these materials. The obvious remedy is to protect all interfaces from corrosion. How-
ever, satisfying this simple dictum is not trivial, particularly in outdoor applications.
Compounding the challenge is that conductors are often plated with silver to mini-
mize high-frequency loss, and silver tarnishes quite readily.9

Another source of distortion can be magnetic materials that may saturate under
large-signal conditions. One does not normally use magnetic materials on purpose,

9 Contrary to popular belief, silver tarnish is primarily silver sulfide, not oxide. While we’re at it,
the green patina on copper is usually a chloride (near the ocean) or a sulfate (inland) rather than an
oxide.
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5.3 COA XIAL CABLES 115

but nickel and stainless steel (often used as corrosion-resistant platings) are common
culprits here. Many connectors are available with alternative coatings, and these
should be used where even low levels of intermodulation distortion are intolerable.

5.3 COA XIAL CABLES

5.3.1 WHY COA X?

The foregoing discussion on connectors for coaxial cables leaves unanswered a basic
question: Why use coax? Maybe the answer is obvious, but bear with us nonetheless.
At low frequencies, just about any old wires can be (and have been) used to get sig-
nals from one place to another with little loss. For example, twisted pairs are widely
used in data communications (e.g., the now-ubiquitous “CAT-5” computer network-
ing cable). The twisting ensures that both wires experience the same perturbations
by stray fields and proximity to other conductors, thus maintaining balanced charac-
teristics. Radiation losses are also reduced at the same time, permitting twisted-pair
line to function well enough to enable 100-Mbps and 1-Gbps data rates. Ongoing
work seeks to push those rates upward by another order of magnitude.

Ensuring that disturbances remain common-mode is certainly helpful but, as the
frequency increases, such unshielded structures begin to behave as antennas. As ex-
plained in the chapter on antennas, radiation becomes noticeable when the conductor
length is a reasonable fraction (i.e., a tenth) of a wavelength. Such radiation of en-
ergy implies that less signal makes it to the intended destination; attenuation has
increased.

The coaxial structure, being shielded, does not suffer from radiation losses. Mod-
ing is always a concern, and we’ve already seen that the desire to suppress it explains
the shrinking in connector and cable dimensions as the intended operating frequency
increases. As for attenuation, the lack of radiation loss means that only conductor
and dielectric losses need to be considered. These two mechanisms may be distin-
guished by their differing frequency dependence. Conductor losses, dominated by
skin effect, vary with the square root of frequency, whereas dielectric losses gener-
ally vary directly (or faster) with frequency.

To verify these assertions and to study these mechanisms in greater detail, we be-
gin with the following expression for the attenuation coefficient:10

α ≈ 1

2

(
R

Z0
+ G

Y0

)
, (2)

where α is the attenuation in nepers per unit length,11 R is the series resistance per
unit length, G is the shunt conductance per unit length, Z0 is the characteristic im-
pedance, and Y0 is 1/Z0.

10 See Chapter 2, Eqn. 37.
11 Recall that the amplitude attenuation is a factor of e for every increase in distance of 1/α. Nepers

and decibels are therefore proportional to each other, with one neper equal to 20 log10 e or about
8.69 dB.
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116 CHAPTER 5 CONNEC TORS, CABLES, AND WAVEGUIDES

The first term accounts for the conductor loss. If we assume operation in a fre-
quency regime where the skin depth is much smaller than the conductor thickness,
then we may estimateR by making the usual assumption that current flows uniformly
in a thin cylinder of a thickness equal to the skin depth δ:

R ≈ 1

2πδσ

[
1

a
+ 1

b

]
. (3)

Here σ is the conductivity of the wire and δ is the skin depth:

δ = √
2/ωµσ . (4)

Thus,

αc = [1/a + 1/b]
√
µ/32σ

πZ0

√
ω. (5)

We see that αc, the attenuation due to conductor loss, indeed varies as the square root
of frequency, as asserted earlier. We also see, sensibly enough, that larger conductor
diameters and higher conductivity all help to reduce this attenuation term.

The frequency dependence of dielectric loss may be anticipated qualitatively by
imagining the loss to arise from a sort of dipole “friction.” If we postulate that one
must expend a certain amount of energy to overcome this friction and thereby al-
low the reversal of dipole polarity, then the rate of energy loss (and thus the power
dissipated) should be proportional to frequency. We therefore expect the attenuation
due to this mechanism to vary directly with frequency. It is left as an exercise for
the reader to show that αd , the attenuation constant for dielectric loss, may be ex-
pressed as

αd = [tan δ]
√
µrεrµ0ε0

2
ω, (6)

where tan δ is the loss tangent of the dielectric material (it is perhaps unfortunate that
the symbol δ is used in both the skin-depth and loss-tangent formulas). In any event,
we see that dielectric loss does increase linearly with frequency on a neper and deci-
bel basis, assuming that the loss tangent is independent of frequency.12 Note that,
unlike conductor loss, the attenuation due to dielectric loss is independent of con-
ductor dimensions.

In accord with the preceding derivations, the attenuation of practical cables is ap-
proximately constant at very low frequencies, is subsequently rising as the square
root of frequency as skin loss dominates, and changes to a direct proportionality as
dielectric loss takes over. Some dielectric materials exhibit an increasing loss tan-
gent with frequency, resulting in attenuation that rises faster than the first power of
frequency. Upper limits on the operating frequency range of cables are often chosen
somewhat near the point where dielectric loss begins to dominate.

From the foregoing analysis, we see that the lowest attenuation is provided by
cables with air dielectric and the largest physical dimensions. Because of moding

12 Most dielectric materials used in coaxial cables satisfy this assumption fairly well.
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5.3 COA XIAL CABLES 117

F IGURE 5.4. Typical coaxial cable

concerns, there is some upper bound on these dimensions and, as a result, there exists
a lower bound on the achievable attenuation at any given frequency.

5.3.2 TYPES OF COA XIAL CABLE

For general-purpose use at lower frequencies (say, below 1 GHz or so), a common se-
ries of flexible coaxial cable is designated RG-n / U. The letters “RG” stand for “radio
guide” and the “U” for “universal.”13 The designation originally included rigid lines
as well as waveguide, but recent usage has focused on lower-frequency coaxial cable.
These come in a variety of sizes with various dielectrics; see Figure 5.4. Numerous
companies supply other types of cables featuring improved characteristics obtained
via either better dielectrics (e.g., PTFE or polyethylene foam) or superior conductor
and jacket properties. See Section 5.6 for characteristics of a representative sampling.

One problem with ordinary flexible coax is that repeated bending can cause degra-
dation through fatiguing of both the conductors and the insulators. Additionally, it
is relatively easy to bend the cable too sharply, resulting in dimensional distortions
that degrade electrical characteristics, perhaps permanently if kinked. Semirigid and
rigid coaxial cables were developed to solve these problems. Semirigid coax retains
some measure of flexibility by employing a somewhat pliable outer conductor, al-
lowing the cable to be bent into shapes it will retain. Use of special bending jigs
is recommended to avoid kinking. As with ordinary flexible coax (or any kind of
line, for that matter), too tight a turning radius will degrade electrical characteristics.
Rigid coax (also known as hardline), as its name implies, is not meant to be bent at
all, so manufacturers provide a variety of preformed shapes cut to various lengths.

Semirigid cable generally uses Teflon dielectric and comes in two common sizes:
0.141" and 0.085" diameters. There is also a 0.141" flexible cable with Teflon whose
characteristics are intermediate between those of semirigid and larger-diameter flex-
ible cable.

13 G. L. Ragan, Microwave Transmission Circuits (MIT Rad. Lab. Ser., vol. 9), McGraw-Hill, New
York, 1948, p. 244.
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118 CHAPTER 5 CONNEC TORS, CABLES, AND WAVEGUIDES

75-� Cables

Our focus is on 50-� connectors and cables because most RF instruments and sys-
tems use this impedance level. However, perhaps a few words about the 75-� world
are in order.

As explained elsewhere,14 50 � arose as a standard impedance from trading off
power-handling capability against attenuation. For coaxial air lines, an impedance of
30�maximizes power handling capability, while 77� results in minimum attenua-
tion. The average of these two values (after rounding) was chosen as a compromise
for general-purpose work.

In certain applications such as cable television, however, minimizing attenua-
tion is extremely important for reducing the number of costly repeaters that must be
deployed. In such applications the power levels are low, so the power-handling ca-
pability of the cable is unimportant. An impedance level of 75 � therefore arose as
the standard for video applications.

Characteristics of several common 75-� cables are also presented in Table 5.1
(Section 5.6).

5.4 WAVEGUIDES

We have seen that the attenuation of coaxial cable is typically dominated by con-
ductor loss at lower frequencies and by dielectric loss at higher frequencies. We’ve
already noted that attenuation could be reduced if we were to use air as a dielectric
and were free to increase cable dimensions without bound. However, moding con-
siderations prevent us from doing the latter. Evading this constraint is one objective
of waveguides.

Suppose that, rather than trying to prevent propagation of energy in higher-order
modes by using ever-smaller geometries, we actually exploit moding. That is, we
choose not to make use of TEM propagation. With such a choice, we are free to select
much larger conductor dimensions. Furthermore, since the higher-order modes do
not include DC, the center conductor of a coaxial cable is unnecessary. The resulting
structure is called a waveguide. From the foregoing description, it is clear that wave-
guides are nothing more than hollow pipes. Waveguide propagation was demonstrated
first in such circular hollow pipes (in the 1930s, independently and nearly simultane-
ously by Bell Labs engineer George C. Southworth and Wilmer L. Barrow of MIT),
but elliptical, rectangular, and square cross-sections have also been used.15 The math

14 See Section 3.5.
15 The first published theory of waveguide propagation was by Lord Rayleigh (John William Strutt)

in 1897. He was too far ahead of his time, however. No one cared about waveguide propagation at
a time when engineers could not practically generate signals that could propagate through pipes of
reasonably small dimensions. Almost four decades later, Barrow and Southworth were working
independently of each other (and without knowledge of Rayleigh’s work) until they were close to
publishing their own results.
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5.4 WAVEGUIDES 119

is simplest (by far) for the rectangular case. Consequently, that is overwhelmingly
the most common type of waveguide and is the only type we will consider in this
brief treatment. For a comprehensive derivation of waveguide modes for other ge-
ometries, the interested reader is directed to the excellent treatments found in Ramo,
Whinnery, and Van Duzer, Waves and Fields in Modern Communications Systems
(3rd ed., Wiley, New York, 1994) or in Electromagnetic Waves and Radiating Sys-
tems by E. C. Jordan (Prentice-Hall, Englewood Cliffs, NJ, 1950).

5.4.1 MODE NOMENCL ATURE

We’ve already used the term TEM, which refers to a mode in which both the electric
and magnetic fields are transverse to the direction of propagation. Single conductor
waveguides are unable to support TEM propagation, whose frequency range includes
DC. Instead, allowed modes are either TE or TM, depending on how the waveguide
is excited. In the standard system of nomenclature, the letter(s) following the “T”
describes which field component is transverse to the direction of propagation. Sub-
scripts complete the mode specification by identifying the number of half-waves at
cutoff that fit across the x- and y-directions of a rectangular waveguide, or along the
circumferential and diametrical directions for circular waveguide. Hence, TEm,n tells
us that there arem half-waves of E-field across the x-dimension and n half-waves of
E-field across the y-dimension for a rectangular waveguide.

Consider as a specific example the TE10 mode for a rectangular waveguide just at
cutoff. This mode has a vertically oriented electric field that is zero at the left and right
walls and is a maximum in the center (i.e., there is one half-wave in the x-direction).
Additionally, the electric field exhibits zero variation in the vertical direction.

As another example, a TE 01 designation means the following for a circular wave-
guide just at cutoff: The E-field exhibits no variation in the circumferential direction.
It is purely circumferential in orientation and has a zero value at the surface of the
waveguide. There is one peak – at the precise center of the waveguide.

Although waveguides can support an infinite number of modes, it is general prac-
tice to restrict the operating frequency range so that only one mode propagates. This
recommendation derives from the same basic idea that applies in the coax case: as one
approaches a mode cutoff frequency from below, reactive energy storage increases.
Once a mode actually propagates, an additional real component results. Both effects
cause impedance changes (or, in language more appropriate for waveguide work,
SWR degrades). The lowest frequency mode is conventionally used, so waveguide
dimensions must therefore be selected to span the desired operating frequency range.
Just as with coaxial cables, then, waveguide dimensions shrink with increasing op-
erating frequency. There is still a significant net improvement in attenuation because
of the larger conductor surface area for the waveguide case.

At high frequencies, it may be impractical to fabricate waveguides of sufficiently
small dimensions to suppress higher-order modes. In such cases, it is more sensible
to make use of higher-order propagation. Such overmoding is of particular value in
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120 CHAPTER 5 CONNEC TORS, CABLES, AND WAVEGUIDES

millimeter-wave work. Overmoded filters, waveguides, and other circuits are active
research topics in near-terahertz electronics.

5.4.2 ATTENUATION PROPERT IES OF WAVEGUIDE

For both TE and TM modes in rectangular waveguides, the attenuation ultimately
grows as the square root of frequency because of skin loss, and for the same reason
that applies to TEM propagation in coax: increases in frequency cause a reduction
in the effective volume through which the induced surface currents flow. This loss
mechanism seems so fundamental that it may surprise you to learn that it is possi-
ble to evade this behavior (at least in theory). There’s nothing that can be done about
the reduction in skin depth with increasing frequency, but if the associated surface
currents can be made to diminish as frequency increases then the net dissipation can
actually decrease.

Remarkably, this is exactly what happens for all TE 0,m modes in circular waveg-
uides. The distinguishing feature of these modes (which cannot propagate in rectan-
gular waveguides) is that there is no component of electric field normal to the conduc-
tor surface. In theory, the attenuation for such modes approaches zero as frequency
increases toward infinity. In practice, bends, surface roughness, and any departure
from perfect symmetry will ultimately excite other modes that are lossy. Neverthe-
less, with extraordinary care, it is possible to enjoy significantly smaller attenuation –
over a usefully wide frequency range – than is suffered by the other modes. Until the
development of optical fiber, circular waveguide was the lowest-loss way to convey
a signal from one point to another.

Theoretical derivations are wonderful, but perhaps the best illustration that wave-
guide is indeed capable of exceptionally low attenuation is to examine some actual
data. Off-the-shelf waveguide with loss on the order of 0.5 dB per 30 m at 10 GHz is
readily available. Compare this value with the 13-dB loss at 5 GHz of the best flex-
ible coaxial cable. One may also obtain waveguide that exhibits about 15-dB loss
(again, per 30 m) at 100 GHz. As a final point of comparison, consider that optical
fiber routinely exhibits losses of well under a decibel per kilometer at 400 THz.

5.5 SUM M ARY

We’ve seen that connectors must be chosen and treated with care if proper operation
is to be obtained and preserved over time. Both moding concerns and uniformity of
mechanical dimensions affect the operational frequency range, explaining why BNC
and TNC connectors, for example, have different upper frequency limits even though
their critical dimensions are identical.

These same notions were applied to coaxial cable, with additional consideration
given to the sources of attenuation. It was seen that larger dimensions reduce the
prominence of conductor loss, but the desire for mode-free operation imposes hard
limits on how far one may go in this direction.
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Table 5.1. Approximate attenuation and
Z0 of some flexible coaxial cables

Loss (dB) per 30 m @

Type Z0 100 MHz 400 MHz 1 GHz 5 GHz

RG8/ U 52 2 4 9 30
RG58/ U 52 5 11 18 60
RG174/ U 50 9 18 31 100
RG213/ U 50 2 4 9 30
9913 50 1.4 2.7 4.5 13
RG6/ U 75 2 4 6.5 –
RG11/ U 75 1.3 2.6 4.3 –
RG59/ U 75 2.5 5.1 8.2 –

One may evade these constraints by conveying power in structures whose dimen-
sions are not required to be very small compared with a wavelength. In fact, for
proper operation, we saw that waveguide dimensions must be at least a half wave-
length in order to allow higher-order modes to propagate at all; they are inherently
high-pass structures. This property explains why AM radio signals (with their ∼200–
600-m wavelengths) are essentially unable to propagate into highway tunnels while
FM signals (whose wavelengths are in the range of 3 m) can propagate reasonably
well.

The combination of larger surface area and the absence of a lossy dielectric al-
lows waveguides to exhibit extremely low loss. Higher breakdown voltages are also
generally associated with the larger dimensions of waveguide, so the power-handling
capability of waveguide is superior to that of coaxial cable.

5.6 APPENDIX: PROPERTIES OF COA XIAL CABLE

Table 5.1 lists the more popular types of coaxial cable, along with their characteris-
tic impedance and typical attenuation of a 30-m length at four different frequencies.
Note that the attenuation is in fact proportional to the square root of frequency at
low frequencies for all of the cables listed (theory does occasionally work, after all).
Skin loss dominates even up to 5 GHz, with dielectric loss becoming evident only as
a modest increase in the slope of the loss.

The differing attenuation characteristics among the various cable types are easily
explained. At only 0.1" (2.5 mm), the outer diameter of RG174 is the smallest of the
cables listed. The attenuation is consequently the largest, being dominated by con-
ductor loss. Because of its large attenuation, use of RG174 is restricted to rather short
runs.

At the other extreme is 9913, whose exceptionally low loss is attributable to its
large dimensions. The center wire itself is a rather hefty 9.5-gauge (0.405" diameter,
about 1 cm) conductor (chosen as the largest that can fit within a UHF connector).
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Table 5.2. Approximate attenuation
characteristics of some rigid lines

Loss (dB) per 30 m
Type @ 1 GHz

0.141" semirigid 13
0.5" semirigid 4
0.5" hardline 2.5
0.625" hardline 1.5
1.625" hardline 1

Owing to its bulk, 9913 is neither easily bent nor should it be. This cable has the low-
est loss of all conventionally available flexible cables, but it will begin to mode the
soonest.

Less bulky is RG8, which is widely used for amateur radio applications. Its inter-
mediate loss derives from its intermediate dimensions. One caveat is that the foam
dielectric material is not physically robust. Repeated bending of the cable can cause
displacement of the center conductor, resulting in impedance discontinuities. Ex-
treme movement can even result in short circuits.

For general-purpose applications, RG58 is perhaps the most widely used coax-
ial cable up to the VHF range of frequencies because it is lighter than RG8 and
has moderately low loss and reasonable power-handling capability. Note that RG58
(“thinnet”) replaced RG8 in early ethernet implementations before it, in turn, was
replaced by twisted pair.

Semirigid and rigid coaxial lines are used where one desires maximum mechanical
stability combined with low loss. Table 5.2 presents representative characteristics for
several types of semirigid coax and hardline (classified by outer dimension). Teflon-
filled 0.141" semirigid line typically exhibits under 1.8 dB/m loss at 18 GHz. The
low loss values of these cables make them particularly suitable for instrumentation
fixtures and for long runs.

As a final note, putting a connector on the end of these lines usually involves strip-
ping off a prescribed amount of shielding and then using the center conductor of the
cable as the male pin of the connector.
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C H A P T E R S I X

PASSIVE COMPONENTS

6.1 INTRODUC TION

In this chapter we examine the properties of passive components commonly used in
RF work. Because parasitic effects can easily dominate behavior at gigahertz fre-
quencies, our focus is on the development of simple analytical models for parasitic
inductance and capacitance of various discrete components.

6.2 INTERCONNEC T AT R ADIO FREQUENCIES:
SKIN EFFEC T

At low frequencies, the properties of interconnect we care about most are resistivity,
current-handling ability, and perhaps capacitance. As frequency increases, we find
that inductance might become important. Furthermore, we invariably discover that
the resistance increases owing to the skin effect alluded to in Chapter 5.

Skin effect is usually described as the tendency of current to flow primarily on the
surface (skin) of a conductor as frequency increases. Because the inner regions of the
conductor are thus less effective at carrying current than at low frequencies, the use-
ful cross-sectional area of a conductor is reduced, thereby producing a corresponding
increase in resistance.

From that perfunctory and somewhat mysterious description, there is a risk of
leaving the impression that all “skin” of a conductor will carry RF current equally
well. To develop a deeper understanding of the phenomenon, we need to appreciate
explicitly the role of the magnetic field in producing the skin effect. To do so quali-
tatively, let’s consider a solid cylindrical conductor carrying a time-varying current,
as depicted in Figure 6.1.

Assume for the time being that the return current (there must always be one in
any real system) is far enough away that its influence may be neglected. A time-
varying current I generates a time-varying magnetic fieldH. That time-varying field
induces a voltage around the rectangular path shown, in accordance with Faraday’s
law. Ohm’s law then tells us that the induced voltage in turn produces a current flow

123
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124 CHAPTER 6 PASSIVE COMPONENTS

F IGURE 6.1. Illustration of skin effect with isolated cylindrical conductor

along that same rectangular path, as indicated by the arrows. Now here’s the key ob-
servation: The direction of the induced current along path A is opposite that along
B. The induced current thus adds to the current flowing along one side of the rectan-
gle and subtracts from the other. Taking care to keep track of algebraic signs, we see
that the current along the surface is the one that gets augmented and that the current
below the surface is diminished. That is, current flow is strongest near the surface;
that’s the skin effect.

To develop this idea a little more quantitatively, let’s apply Kirchhoff ’s voltage
law (with proper accounting for the induced voltage term, both in magnitude and
sign) around the rectangular path to obtain

JBρl − JAρl + dφ

dt
= 0, (1)

where J is the current density, ρ is the resistivity, and the magnetic flux φ is perpen-
dicular to the rectangle shown.

We see that, as deduced previously, the current density along path A is indeed
larger than along B – by an amount that increases as either the depth, frequency, or
magnetic field strength increases and as the resistivity decreases. Any of these mech-
anisms acts to exacerbate the skin effect. Furthermore, the presence of the derivative
tells us that the current undergoes more than a simple decrease with increasing depth;
there is a phase shift as well.

If we now increase the radius of curvature to infinity, we may convert the cylinder
into the semi-infinite rectangular structure that is more commonly analyzed to intro-
duce skin effect; see Figure 6.2. We will provide the barest outline of how to set up
the problem and then simply present the solution.1

Computing the voltage induced by H around the rectangular contour proceeds
with KVL as before:

1 For a detailed derivation, consult any number of excellent texts on electromagnetic theory. See,
e.g., S. Ramo, T. Van Duzer, and J. R. Whinnery, Fields and Waves in Communications Electron-
ics, 3rd ed., Wiley, New York, 1994. Also see U. S. Inan and A. S. Inan, Electromagnetic Waves,
Prentice-Hall, Englewood Cliffs, NJ, 2000.
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6.2 INTERCONNEC T AT R ADIO FREQUENCIES: SKIN EFFEC T 125

F IGURE 6.2. Subsection of semi-infinite conductive block

Jρl − J0ρl = dφ

dt
= − d

dt

∫ z

0
Bl dz, (2)

where the subscript 0 denotes the value at the surface of the conducting block. Now
express J and H (and hence B) explicitly as sinusoidally time-varying quantities.
For example, let

J0 = Js0e
jωt , (3)

where the subscript s is chosen arbitrarily to denote the magnitude of these skin-effect
variables.

With these substitutions, the KVL equation allows us to write

ρ
dJs

dz
= −jωBs = −jωµHs , (4)

where we have used the relation between flux densityB and magnetic field strengthH,

B = µH ; (5)

here µ is the permeability (equal to the free-space value in nearly all integrated
circuits).

We need one more equation to finish setting up the differential equation. Ampère’s
law will give it to us:2

Iencl = w

∫ z

0
J dz = wH0 − wH. (6)

Making the same substitutions as before yields

2 Remember what Ampère’s law says in words: The integral of the magnetic field around a closed
path equals the total current enclosed by that path.
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126 CHAPTER 6 PASSIVE COMPONENTS

F IGURE 6.3. Application of skin depth concept to
resistance calculation (cross-section shown)

−dHs

dz
= Js. (7)

Combining Eqn. 4 and Eqn. 7 yields a simple second-order differential equation for
the current density:

d 2Js

dz2
= jωµ

ρ
Js , (8)

whose solution is
Js = Js0 exp(−z/δ) exp(−jz/δ); (9)

here
δ =

√
2ρ/ωµ =

√
2/ωµσ (10)

is known as the skin depth. Notice that the current density decays exponentially from
its surface value. Notice also (from the second exponential factor) that there is in-
deed a phase shift, as claimed earlier, with a 1-radian lag at a depth equal to δ.

For this case of an infinitely wide, infinitely long, and infinitely deep conductive
block, the skin depth is the distance below the surface at which the current density has
dropped by a factor of e. For copper at 1 GHz, the skin depth is approximately 2 µm.
For aluminum, that number increases a little bit, to about 2.5 µm. What this expo-
nential decay implies is that making a conductor much thicker than the skin depth
doesn’t help much, because the added material carries very little current. Further-
more, we may compute the effective resistance as that of a conductor of thickness
δ in which the current density is uniform. This fact is often used to simplify com-
putation of the AC resistance of conductors. To make sure that the result is valid,
however, the boundary conditions must match those used in deriving our system of
equations: The return currents must be infinitely far away, and the conductor must
resemble a semi-infinite block. The latter criterion is satisfied reasonably well if all
radii of curvature, and all thicknesses, are at least 3–4 skin depths.

As a specific example, let us estimate the AC resistance of an isolated wire. As-
sume that the wire’s diameter is much larger than the skin depth. In that case, we
may estimate the resistance by pretending that all of the current flows in an annulus
of depth δ (see Figure 6.3). The resistance is readily computed as
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6.2 INTERCONNEC T AT R ADIO FREQUENCIES: SKIN EFFEC T 127

F IGURE 6.4. Coaxial cable cross-section

R = ρl

A
≈ ρl

2πrδ
, (11)

where l is the length of the wire and we have assumed that r � δ in constructing the
last approximation.

In this case, calculations based on a simple skin-depth assumption yield excellent
results. That’s atypical; in many other cases, the results may be grossly in error. In
evaluating the risk of making such a mistake, it’s helpful to anticipate qualitatively
where the currents will be flowing. To do so, recall that, in introducing skin depth,
we invoked a qualitative argument that led us to several important insights. One of
these is that skin effect is strongest where the magnetic fields are strongest. So, in de-
termining which surfaces are likely to carry most of the current, we need to identify
where the fields are the strongest.

Consider a coaxial system of conductors, as in a cable. There are three surfaces,
but not all three exhibit skin effect. The outer cylindrical conductor conveys the re-
turn current for the central conductor. The coaxial structure is self-shielding in that
both electrical and magnetic fields external to the cable are ideally zero, thanks to
cancelling contributions by the two conductors (this attribute is why the coaxial struc-
ture is valued in the first place). The magnetic field is therefore the strongest in the
space between them, and thus the skin effect is felt most acutely at the surface of the
inner conductor and at the inner surface of the outer conductor. In Figure 6.4, the re-
gions of high current density are indicated crudely in black. The outer surface of the
outer conductor carries very little current (again, we’re assuming conductor thick-
nesses that are very much larger than the skin depth). Therefore, computation of its
resistance would consider only the black annulus at the inner surface of the outer
conductor. Not all skin exhibits the skin effect.

To reinforce that last statement, consider another qualitative example. Specifi-
cally, consider what happens when we have two parallel cylindrical conductors in
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128 CHAPTER 6 PASSIVE COMPONENTS

F IGURE 6.5. Cross-section of two-wire line

F IGURE 6.6. Thin, wide conductor cross-section
and current density (approximate)

proximity, where the current in one serves as the return current for the other. As in
the coaxial case, the magnetic field is strongest in the region between the two con-
ductors. Therefore, the maximum current densities are found where the wire surfaces
face each other; see Figure 6.5. For self-evident reasons, the phenomenon of current
crowding at a surface because of current flowing in a nearby conductor is sometimes
known as the proximity effect.

As one last example, consider a thin, wide conductor (again, with all other con-
ductors very far away). The currents will distribute themselves roughly as shown in
Figure 6.6. The current crowds toward the two ends (as a mnemonic aid, imagine
this structure to be the central slice of a cylindrical conductor; the current-carrying
ends of this slab correspond to the current-carrying outer surface of the cylinder).
Because of the relatively low current density along the long edges, further widening
of the conductor produces only modest resistance reductions. Thickening the con-
ductor would have a much stronger effect.

The current distribution changes if we bring a conductor near this one, turning a
complicated problem into a near-impossible one.

Computing the effective resistance for these last two structures is clearly not as
straightforward as for the isolated conductor. Indeed, accurately computing the ef-
fective resistance of such a simple-seeming structure as a single-layer coil is virtually
impossible because of all of the interactions among turns. This difficulty highlights
the danger of automatically assuming that all surfaces are equally effective at carry-
ing current.
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6.3 RESISTORS 129

F IGURE 6.7. Simple lumped RF
resistor model

Finally, for a collection of useful formulas, see Harold A. Wheeler, “Formulas for
the Skin Effect,” Proc. IRE, v. 30, September 1942, pp. 412–24.

6.3 RESISTORS

Even a component as simple as a resistor exhibits complex behavior at high frequen-
cies. We may construct a very simple model by acknowledging first that current flows
in both the connecting leads and the resistor proper. The energy stored in the mag-
netic field associated with that current implies the presence of some series inductance
(typically about 0.5 nH/mm for leads in axial packages, as a rough approximation3).
In addition, there is necessarily some capacitance that shunts the resistor as well,
since we have a conductor pair separated by a distance. The simplest (but by no
means unique) RF lumped circuit model for a physical resistor might then appear as
shown in Figure 6.7.

The presence of parasitic inductance and capacitance causes the impedance to de-
part from a pure, frequency-independent resistance. Very low values of resistance
suffer from an early impedance increase, starting approximately at a frequency where
the reactance of the series inductance becomes significant compared with the resis-
tance. Similarly, high resistances suffer a premature impedance decrease from the
shunt capacitance. The frequency range over which the impedance remains roughly
constant (at least for our simple model) is maximized for some intermediate (and
definite) resistance value. As one might suspect from transmission line theory, this
magic value is simply given by

Ropt = √
L/C = Z0. (12)

The formal derivation of Eqn. 12, which we will not carry out here, begins by writ-
ing an expression for the impedance magnitude and then solving for the condition
of maximal flatness by maximizing the number of derivatives whose value is zero at
zero frequency.4 We can construct an intuitive path to Eqn. 12 by considering two
limiting case. If the inductance is neglected, the time constant of the network is sim-
ply RC. If the capacitance is neglected, the time constant is L/R. Setting these two

3 For various equations for inductance and capacitance, see T. Lee, The Design of CMOS Radio-
Frequency Integrated Circuits, 2nd ed., Cambridge University Press, 2004.

4 Ibid. As mentioned there, it is often easier to carry out this procedure on the square of the magnitude.
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130 CHAPTER 6 PASSIVE COMPONENTS

Table 6.1. Approximate element values for simple lumped RF resistor model

Resistor type L C Z0 fmax

0.5-W axial-lead (3 cm total length) 15 nH 0.5 pF 170 ' 1.8 GHz
0.5-W axial-lead, trimmed to 1 cm total length 5 nH 0.5 pF 100 ' 3 GHz

0.25-W axial-lead (2 cm total length) 10 nH 0.25 pF 200 ' 3 GHz
0.25-W axial-lead, trimmed to 0.7 cm total length 3 nH 0.25 pF 100 ' 6 GHz

Type 0805 surface mount <1 nH 0.02–0.1 pF 150 ' 20 GHz
(see text)

F IGURE 6.8. More elaborate model for surface-mount
resistor in a microstrip environment

time constants equal and solving for R yields Eqn. 12. If the resistor value is smaller
than Z0 then the impedance of our model only rises, with a radian corner frequency
given approximately by R/L. If the resistance exceeds Z0 then the impedance ini-
tially drops, with a corner frequency of roughly 1/RC. If the resistance equalsZ0, the
bandwidth fmax over which the impedance remains approximately constant is given
by the resonant frequency of the LC combination. The smaller the LC product, the
greater the frequency range over which the resistor looks approximately resistive.

For reference, typical (and approximate) model parameter values for some rep-
resentative resistors are given in Table 6.1. Note that the maximally flat impedance
levels are in the range of 100–200 '. That is yet another reason why transmission
line impedances tend not to be far removed from that range of values.

Again, the table entries are highly approximate and should be taken only as a
rough guide. The shunt capacitance value for the surface-mount resistor in particu-
lar is hardly a reliable constant, depending as it does on the details of construction,
composition of materials, and so forth. In most cases, what one measures has more
to do with the fixturing than with the surface-mount resistor itself. Failure to accom-
modate this reality in extracting models from measurements is why published values
for the capacitance of surface-mount resistors span an order of magnitude. As an ex-
ample, a surface-mount resistor in a microstrip environment will generally behave
differently from one mounted in some other type of fixture because the presence of
the ground plane will change the electric field distribution. In this case, a more rea-
sonable circuit model might be that appearing in Figure 6.8.

A typical set of model parameters for a type 0805 resistor might be C = 80 fF
and L = 0.7 nH. Note that this model has no shunt capacitance across the resistor
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6.3 RESISTORS 131

F IGURE 6.9. Still another model for
a surface-mount resistor

itself. There probably is some, but it is so small that a good fit to measured behavior
is possible without including it. It’s important to note that there is no one “correct”
model, and many different models may yield equally acceptable answers. For exam-
ple, the models within many microwave CAD tools are often a sort of combination
of that in Figures 6.7 and 6.8; this is shown in Figure 6.9.

Note that the values for optimum Z0 are all in excess of typical line impedances
(such as 50 '). If, for example, we are to provide terminations for a 50-' line, then
the largest bandwidth is obtained with a parallel combination of devices rather than
with a single 50-' resistor. Four 0.25-W resistors of 200 ' each will do a reason-
ably good job of providing a 50-' termination over a bandwidth in excess of 1 GHz.
Similarly, a parallel combination of two 0805 surface-mount resistors will provide
an excellent termination over a bandwidth in excess of 10 GHz. The table also shows
why conventional resistors (particularly the 0.5-W variety) are rarely used in micro-
wave work. If higher-power terminations are required, it is preferable to make them
out of parallel combinations of lower-power, higher-frequency resistors for opera-
tion over the largest bandwidth.

As an aside, the numerical identifiers for surface-mount components convey some-
thing about the physical dimensions. Within truncation errors, the first pair of num-
bers is four times the length in millimeters, while the second pair is four times the
width.5 Some common sizes are shown in Table 6.2 along with their power dissipa-
tion levels.

The parasitic capacitance depends to some extent on whether one terminal is
grounded, the material comprising the body of the component, and whether the
component is mounted flush over a grounded plane or on end with one terminal in
the air. As a result, one cannot provide universally correct values of parasitic capac-
itance that are valid for all cases. Nevertheless, we can convey some rough idea of
the parasitics associated with these packages. Consider the largest size listed in the
table, the 2512, whose 6.4 × 3.2 × 3.2 dimensions are associated with ∼2.5-nH par-
asitic inductance and typically ∼0.18-pF shunt capacitance. If measured values are
unavailable (as is usually the case), one may estimate the series inductance for the

5 The original designations are actually in terms of mils (thousandths of an inch). Thus, each pair
of digits represents a dimension that, when multiplied by ten, yields the approximate dimension
in mils.
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132 CHAPTER 6 PASSIVE COMPONENTS

Table 6.2. Some surface-mount resistor
packages and characteristics

Approximate
dimensions

Package (mm×mm) Pdiss (mW)

0402 1.0×0.5 60
0603 1.6×0.8 60
0805 2.0×1.25 100
1206 3.2×1.6 125
1210 3.2×2.5 250
1812 4.5×3.2 500
2512 6.4×3.2 1000

other packages with the aid of the following equation for the inductance of an in-
finitesimally thin flat sheet:

Lsheet ≈ µl

2π

[
0.5 ln

(
2 l

w

)
+ w

3l

]
. (13)

This formula is appropriate because the resistive material is almost always a flat, thin
layer deposited on the surface of a much thicker insulating substrate (even for “thick
film” resistors). For the aspect ratios typically encountered in low-power surface-
mount components, the inductance is usually in the range of 0.3–0.5 nH/mm.

One uses this formula twice to estimate the total parasitic inductance. One com-
ponent of the total inductance is that of the main body, so its length and width are
first plugged into the equation. To this (usually) dominant term, one must also add
the inductance due to the flat vertical portions that contact the ends of component,
with the height now replacing the width in Eqn. 13. The solder meniscus effectively
thickens these vertical stubs, however, so it isn’t quite fair to use the full inductance
of each vertical section. As an arbitrary choice, 1/2 to 2/3 of the computed value
of the vertical stubs is not an unreasonable factor. Using the former factor, we es-
timate an inductance of about 2.6–2.7 nH for the 2512 package, in good agreement
with measurements.

Note that the inductance per length here is considerably lower than the 1-nH/mm
rule of thumb that typically applies to thin round component leads. The reason is that
the thick and wide shape of the surface mount components spreads out the magnetic
field lines, thereby reducing flux density and hence inductance.

As alluded to previously, estimating the capacitance of this type of structure is
somewhat complicated. Nevertheless, we can offer a crude lower bound based on the
formula for the capacitance per length of a dipole antenna made out of a cylindrical
conductor (see Chapter 21 for a derivation):

C ≈
{
c2 µ0

2π

[
ln

(
2 l

r

)
− 0.75

]}−1

≈ 2πε0

ln(2 l/r)− 0.75
≈ 5.56 × 10−11

ln(2 l/r)− 0.75
. (14)
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6.4 CAPACITORS 133

This equation yields an estimate of the capacitance (per length) between ground and
a conductor of length l and radius r , with values generally within a factor of 2 of
15 fF/mm for typical surface-mount component dimensions. The formula actually
assumes a vertically oriented cylindrical conductor above a ground plane, with one
terminal grounded.

The lower bound computed with this formula assumes (among other things) a unit
dielectric constant and no additional metal pads, etc. The capacitances will be boosted
by the dielectric constant of the package and also that of FR4. Furthermore, discon-
tinuous transition between the PC board and the terminals of the resistors will give
rise to shunt capacitances to ground from each terminal. Even though surface-mount
components are hardly unique in this respect qualitatively, their small inherent ca-
pacitance means that this effect is more noticeable than for other discrete resistor
types.

This approximate method may be used to estimate package parasitic capacitances
of surface-mount inductors, as well as those of ordinary components of circular cross-
section. Just remember that package parasitics may account for only a part of the
total; some parasitics may arise internally (e.g., turn-to-turn winding capacitance in
inductors). The computed package capacitance is therefore once again a lower bound
estimate of the parasitic capacitance.

As a final comment, note that many axial-lead resistors are based on a carbon
composition, which consists of a resistive powder formed into a cylindrical shape.
Unfortunately such resistors can exhibit significant 1/f noise, with a power spectral
density proportional to the DC bias current flowing through the resistor. Carbon film
resistors are substantially better in this regard, and metal film resistors are even better.
Although the 1/f corners are generally well below the RF range, one must be aware
that oscillators can upconvert low-frequency noise into phase noise near the carrier.6

Thus, even though 1/f noise is usually not an issue in circuits such as RF amplifiers,
it cannot be completely neglected in all RF circuits. Fortunately, surface-mount re-
sistors are generally of the film variety.

6.4 CAPACITORS

Many different dielectric materials are used in an effort to satisfy the numerous con-
flicting demands made on capacitor performance. Trade-offs among breakdown volt-
age, temperature coefficient, RF loss, and capacitance density inevitably lead to the
many types of capacitors presently available. Space does not permit an encyclopedic
review of all capacitor types, so we focus only on those that are commonly encoun-
tered in high-frequency circuits.

The lowest-loss capacitors are made with air (or vacuum) as the dielectric. Higher
densities with low loss may be obtained with mica (a naturally occurring mineral) and

6 Lee, op. cit. (see footnote 3).
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134 CHAPTER 6 PASSIVE COMPONENTS

Table 6.3. Three-character capacitor codes (EIA)

Temperature (◦C) Maximum percentage
capacitance change over

Minimum Maximum temperature range

X: −55 3: +45 A: ±1 P: ±10
Y: −30 4: +65 B: ±1.5 R: ±15
Z: +10 5: +85 C: ±2.2 S: ±22

6: +105 D: ±3.3 T: −33, +22
7: +125 E: ±4.7 U: −56, +22

F: ±7.5 V: −82, +22

polystyrene. Although polystyrene has excellent electrical properties, it possesses an
unfortunately low melting point, which limits use to temperatures below 85◦C. One
must consequently exercise care in soldering polystyrene capacitors.

Considerably more robust are capacitors made from PTFE, which (as noted ear-
lier) is also an exceptionally low-loss dielectric. However, the expense of fabricating
good thin films of PTFE has meant that capacitors made with it tend to have rather
large dielectric thicknesses, leading to low capacitance densities (but very high break-
down voltages).

Ceramic capacitors themselves come in a number of varieties, distinguished by
the characteristics of their dielectrics. To keep track of the many permutations, the
Electronics Industry Association has settled on a three-character nomenclature. The
first (second) character is a letter that indicates the minimum (maximum) operating
temperature, and the third character is a letter that conveys the maximum capacitance
change over the entire operating temperature range. The particulars are shown in Ta-
ble 6.3. For example, a capacitor with a designation of X7R exhibits at most a ±15%
capacitance variation over an operating temperature range of −55◦C to +125◦C.

Although a zero temperature coefficient is most commonly desired, there are im-
portant instances in which one wants instead a nonzero TC of a specified value.
Oscillators are one example; inductors typically exhibit a positive TC,7 so capac-
itors possessing a compensating negative TC are needed to produce an oscillation
frequency with an overall zero TC. The characteristics of capacitors with controlled
temperature coefficient are identified by the letter N (for “negative”) or, more rarely,
the letter P (yes, for “positive”), followed by the maximum TC magnitude in parts
per million per degree C. A designation of N750 thus represents a capacitor with
a −750-ppm/◦C temperature coefficient. Just to make things confusing, however,
there is an alternate system of codes that conveys the same information. Designed to
save space for printing on small components, the three-digit EIA code unfortunately

7 Consider that inductance is dimensionally proportional to length, and that most materials expand
when heated. Thus, most physical inductors possess positive TCs.
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6.4 CAPACITORS 135

Table 6.4. Capacitor TC codes

Older Three-digit Older Three-digit
designation EIA designation EIA

NP0 C0G N330 S2H
N033 S1G N470 T2H
N075 U1G N750 U2J
N150 P2G N1500 P3K
N220 R2G N2200 R3L

does not directly convey numerical information about the actual TC, so Table 6.4
provides the necessary translation between the two labeling conventions.

The first letter in the three-digit TC convention conveys information about the TC’s
significant digits. The values are a subset of the values of standard resistors. For ex-
ample, one can discern from the table that P = 1.5, R = 2.2, S = 3.3, T = 4.7, and
U = 7.5. The middle digit of the code is the exponent. The NP0 designation (C0G)
stands for “negative-positive-zero” and refers to the characteristics of a composite of
negative- and positive-TC materials to yield a nominally zero TC (typically, a maxi-
mum of ±30 ppm/◦C).8 The capacitance thus stays within approximately 0.15% of
the nominal value over the military temperature range (−55◦C to 125◦C). Capaci-
tance values of up to about 10 nF are available in the standard surface-mount package
sizes. The loss of NP0/C0G is the lowest of the standard types, with peak Q-values
in excess of 500–600 at low frequencies. This material also exhibits a low voltage
coefficient.

Other commonly used materials include the somewhat less stable (but higher di-
electric constant) X7R ceramic. Surface-mount types with values up to about 100 nF
are available. As mentioned earlier, the capacitance might vary as much as ±15%
over the military temperature range. Unlike C0G, the capacitance decreases (roughly
linearly) with increasing DC bias, with up to an additional 30% drop at the rated
voltage. This variation with voltage is associated with the piezoelectric nature of the
dielectric, and the nonlinear behavior can generate significant distortion when these
capacitors are used in the signal path. In addition, most X7R formulations are two
orders of magnitude lossier than C0G materials.

High-K (high dielectric constant) ceramics, such as Y5V, give us capacitors that
are physically the smallest but which suffer from extremely high TCs (e.g., up to an
astounding 80% drop in capacitance at zero bias over a temperature range of −30◦C
to 85◦C) and from losses that are a third of X7R. The voltage coefficient is also
strongly negative, and one may expect a capacitance drop of up to 75% at the rated
voltage. Such capacitances actually make effective mixers, so beware (or exploit this
behavior). Furthermore, such dielectrics are piezoelectric to a surprising degree. It

8 Note that these designations contain the numeral 0 and not the letter O.
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136 CHAPTER 6 PASSIVE COMPONENTS

Table 6.5. Capacitor tolerance
codes (EIA)

Tolerance Tolerance
Identifier (pF) (%)

B ±0.1
C ±0.25
D ±0.5
E ±25
F ±1 ±1
H ±2
J ±5
K ±10
M ±20

is not unusual for a sharp mechanical shock to generate spikes of volts (sometimes
many tens of volts). Even if the spike does not cause direct damage to delicate cir-
cuitry, it should be obvious that the microphonic behavior of high-K capacitors can
lead to a host of objectionable problems, especially if connected to sensitive circuit
nodes and subjected to vibration (as in mobile applications). The most common use
of these capacitors is therefore as supply bypasses, rather than in the signal path.
Values up to about 1µF are available in the standard surface-mount packages.

One should not overlook the option of making capacitors with the PC board as
the dielectric. It is frequently convenient for trimming purposes to realize some part
of a desired capacitance in PC board form to permit adjustment after fabrication. In
any case, it’s a good idea to be aware of how much capacitance is associated with
a given area of conductor, if for no other reason than to estimate layout parasitics.
With FR4, one can expect about 5 pF/cm2 with a 1/32" (0.8-mm) thick substrate, or
roughly 2.5 pF/cm2 on a 1/16" (1.6-mm) substrate. The loss of FR4 is quite tolera-
ble, being modestly better than that of X7R or Y5V. Of course, still lower loss (and
somewhat lower capacitance) is obtained with a higher-quality board material, such
as PTFE or RO4003. More discussion on the use of PC board traces for realizing
capacitances and inductances may be found in Chapter 7.

Capacitor values are encoded as three digits stamped somewhere on the body (if
the digits fit), followed by a letter that identifies the tolerance (see Table 6.5). The
first two digits are a mantissa, and the third is an exponent. The implicitly under-
stood unit is the picofarad. Hence, “221K” stands for a 220-pF capacitor with ±10%
tolerance, and “105M” denotes a 1-µF, ±20% capacitor. Occasionally some other
conventions are used, but this scheme is by far the most widespread. If in doubt, one
can always verify a conjecture with an actual measurement.

Just as with resistors, parasitic effects cannot be ignored at radio frequencies. The
simplest lumped RF model for real capacitors includes lead or terminal inductance
(as before, this may be estimated as roughly 0.5–1.0 nH/mm for typical round wire
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6.4 CAPACITORS 137

F IGURE 6.10. Simple lumped
capacitor model

leads), and a resistive term to account for losses; see Figure 6.10. The inductance for
surface-mount packages can be estimated using Eqn. 13, as before.

The resistive term of the model accounts for the effect of at least two distinct mech-
anisms. One is the loss of the dielectric, and the other is conductor loss (which is
exacerbated at high frequencies by skin effect). Loss is often characterized by a dis-
sipation factor D (or, equivalently, a loss tangent tan δ). Dissipation factor is simply
the reciprocal of Q, while loss tangent is defined as the ratio of the imaginary and
real parts of the dielectric constant. Strictly speaking, loss tangent applies only to
the dielectric material, but it is often used to include all losses in a capacitor. In this
latter case, loss tangent is the same as the capacitor dissipation factor. The reason
for these multiple ways of describing loss is cultural. Power electronics folks tend
to think in terms of power factor (the cosine of the phase angle between voltage and
current, which angle is the same as that of the impedance), RF engineers generally
think in terms ofQ, and materials scientists tend to focus on loss tangent (dissipation
factor, D).

The definition of power factor means that it is equal to the cosine of the arctangent
of Q (the proof is left to you, because it is obvious that you don’t have enough fun).
For sufficiently large Q, the power and dissipation factors converge. For example,
a Q-value in excess of 7 assures an error of less than about 1%. For all capacitors
worth using in the signal path, Q will certainly be large enough that one may take
loss tangent and power factor to be equal in practice.

Given these definitions, the component of effective series resistance (ESR) due to
dielectric loss is

R ≈ D/ωC. (15)

This formula is valid only at frequencies well below the series resonance. Clearly,
ESR is a frequency-dependent quantity, especially when skin-effect conductor loss
is considered as well.

At frequencies well above resonance, the resistance becomes proportional to fre-
quency because the inductive reactance dominates, leading to the following approx-
imation:

R ≈ DωL. (16)

We can deduce several important facts from the series RLC model. Above the
resonant frequency of the network, the combination appears inductive and the im-
pedance therefore increases with frequency. The minimum impedance is reached at
the resonant frequency. If a capacitor is used, say, as a power supply bypass, then
it is important to recognize that the quality of the bypassing will diminish at higher
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138 CHAPTER 6 PASSIVE COMPONENTS

Table 6.6. Representative capacitors and
lumped model parameters at 100 MHz

Type C L R SRF

Ceramic disc (C0G/NP0) 10 nF 10 nH 0.5 ' 17 MHz
0805 C0G/NP0 10 nF ∼1 nH 0.08 ' 50 MHz
0805 C0G/NP0 100 pF ∼1 nH 0.25 ' 500 MHz

frequencies because of series inductance. Simply exhibiting inductive behavior need
not preclude use, however, since the most relevant quantity is the magnitude of the
impedance. If this is sufficiently low, the capacitor can still be a satisfactory bypass
element even when operating above the resonant frequency.

As a rough calibration on the magnitudes of these parasitic elements, consider the
parameters (at 100 MHz) listed in Table 6.6. Here the disc capacitor is assumed to
have a total length (measured from the tip of one lead, through the disc body, to the
tip of the other lead) of about 10 mm. The 100-MHz test frequency considerably
exceeds the 17-MHz self-resonant frequency in this case, so the effective series resis-
tance is due more to the lead inductance than to the intrinsic capacitance. By exerting
a little effort to shorten lead length, it is possible both to increase the self-resonant
frequency and to reduce R by modest amounts.

It should be reiterated that loss is a strong function of both frequency and dielectric
composition. Thus, the resistance values in Table 6.6 cannot be treated as universal
constants. Your mileage may vary.

6.5 INDUC TORS

6.5.1 SURFACE-MOUNT INDUC TORS
AND FERRITE BEADS

The never-ending drive to miniaturize circuits has resulted in the wide availability of
tiny components, including inductors. Typical surface-mount inductors suitable for
RF and microwave use are available in values ranging from about 10 nH on the low
end to about 1 µH on the upper end. Manufacturers tend not to provide a great deal
of detailed information about these inductors, so the user is obligated to perform the
characterizations experimentally in all cases where it matters. That said, we can offer
some crude generalizations that prove useful for initial back-of-the-envelope calcu-
lations. The shunt capacitances of most surface-mount inductors seem to be fairly
narrowly distributed, with values typically around 0.1–0.2 pF; this corresponds to
self-resonant frequencies of 4–5 GHz for the smallest inductances and up to several
hundred megahertz for the largest. If higher self-resonant frequencies are required,
you must make your own inductors. The same comment applies if you require a
lower-loss inductor than is available commercially.
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6.5 INDUC TORS 139

F IGURE 6.11. Typical use of ferrite bead

Occasionally, it proves essential to increase the RF loss of a circuit. Such a need
may arise in connection with efforts to tame stubborn parasitic oscillations in an am-
plifier, for example, where the addition of “Q-spoiling” elements in series with the
base (or gate) of a transistor has a long history of success (indeed, this trick dates back
to the earliest days of the vacuum tube era). Often these annoying oscillations arise
when the net collector load appears inductive at a frequency where the transistor still
provides lots of gain. Thanks to feedback through the collector–base capacitance,
this inductive load can produce the appearance of a negative input resistance. With a
mixture of inductance, capacitance, and negative resistance, oscillation is all but as-
sured. Adding a big enough resistor in series with the base is effective in ensuring a
net positive base resistance, but it has the disadvantage of introducing a DC drop.

To introduce loss selectively at RF, one may use ferrite beads. These are nothing
more than cylindrically shaped pieces of a lossy magnetic material. Threading a wire
once or twice (or more, if necessary) through the center hole of a bead produces a
transformer whose secondary is loaded by a resistance representing the lossy ferrite;
see Figure 6.11. Because the coupling is effective only at RF, there is no DC loss.

Ferrite beads are routinely used in the suppression of electromagnetic interference
(EMI, also called RFI, for radio-frequency interference). Their usefulness for such
a wide variety of purposes has led many engineers to expect perhaps too much from
these simple elements.

6.5.2 FOR MUL AS FOR INDUC TANCE

We have already incorporated inductance in many of the foregoing equations in a
piecemeal manner. We now present a number of additional formulas for commonly
encountered geometries. In all that follows, the equations strictly apply only at DC
unless stated otherwise. At high frequencies, inductance drops because the shrink-
ing of skin depth causes the contribution of internal flux to diminish. Fortunately,
internal flux generally accounts for only a small percentage (<5%) of the total, so its
reduction does not cause dramatic changes in the overall inductance. Nonetheless, it
is worthwhile avoiding unpleasant surprises by knowing explicitly what assumptions
have gone into the derivations of formulas.
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140 CHAPTER 6 PASSIVE COMPONENTS

Flat Sheets

We’ve already presented a formula for the inductance of a current sheet. We repeat
it here so that all the inductance formulas are in one place for easy reference:

Lsheet ≈ µl

2π

[
0.5 ln

(
2 l

w

)
+ w

3l

]
= (2 × 10−7)l

[
0.5 ln

(
2 l

w

)
+ w

3l

]
. (17)

Wires

It is frequently desirable to know the inductance of lengths of conductor – either be-
cause parasitics need to be quantified or because one desires to use the inductance as
a circuit element. If we may neglect the influence of nearby conductors (i.e., if we
assume that the return currents are infinitely far away), then the DC inductance of a
round wire is given by9

L ≈ µ0 l

2π

[
ln

(
2 l

r

)
− 0.75

]
= (2 × 10−7)l

[
ln

(
2 l

r

)
− 0.75

]
. (18)

For a 2-mm–long standard IC bondwire, this formula yields 2.00 nH, leading to
an oft-cited rule of thumb that the inductance of thin, round conductors is approx-
imately 1 nH/mm. Notice that the inductance does grow faster than linearly with
length because there is mutual coupling between parts of the wire (i.e., there is a
weak transformer action) with a polarity that aids the inductance. From the logarith-
mic term, however, we see that this effect is minor. For example, going from 5 mm
to 10 mm changes the DC inductance per millimeter from 1.19 nH to 1.33 nH (at least
according to Eqn. 18). The inductance is similarly insensitive to the wire diameter,
so even the larger conductors found in discrete circuits possess inductances of the
same general order (e.g., 0.5 nH/mm).

If there is a conducting plane nearby – defined loosely as closer than a distance ap-
proximately equal to the length of the wire – then the inductance will be noticeably
lower than that given by Eqn. 18. Intuitively, this reduction comes about as follows.
Current flowing in the wire (which may be thought of, say, as positive charges mov-
ing in the x-direction) induces an image current in the ground plane (e.g., negative
charges also moving in the x-direction). Opposite charges moving in the same direc-
tion are equivalent to two currents flowing in opposite directions, so their magnetic
fields tend to cancel somewhat, leading to a reduction in magnetic flux. The closer
the plane, the more dramatic the reduction in flux (and hence in inductance).

Air-Core Solenoids

Although our focus is on components that may be realized in a largely planar universe,
more inductance per volume can be obtained with a classic 3-D textbook structure:
the single-layer solenoid. See Figure 6.12.

9 The ARRL Handbook, American Radio Relay League, 1992, pp. 2–18. The proximity of conduct-
ing planes may be ignored as long as they are located a distance away that is equal to one or two
lengths, at minimum.
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6.5 INDUC TORS 141

F IGURE 6.12. Single-layer solenoid

Assuming that the turns – unlike those in the figure – are tightly packed (“close-
wound”), the inductance in microhenries is given by a famous formula presented by
Wheeler in the late 1920s:

L ≈ n2r 2

9r + 10l
, (19)

where r and l are in inches.10 In SI units, the formula is:

L ≈ µ0n
2πr 2

l + 0.9r
, (20)

where a free-space permeability is assumed. These formulas provide remarkable ac-
curacy (typically better than 1%) for close-wound single-layer coils as long as the
length exceeds two thirds the radius.11 The formula underestimates the true induc-
tance by about 4% for l = 0.4r , so the formula remains useful for moderately short
coils.

For those interested in the origin of this famous and widely used expression, its
derivation begins with the standard undergraduate physics equation for an infinitely
long solenoid. For any segment of length l of this infinite structure, the inductance
in SI units is given by

L = µ0n
2A

l
= µ0n

2πr 2

l
, (21)

where A is the cross-sectional area of the solenoid and n is the number of turns con-
tained in the segment under consideration. The important thing to note is that the
inductance drops as the solenoid lengthens, all other parameters held constant.

The magnetic field strength along a finite-length solenoid naturally diminishes
near the ends. The inductance therefore drops; the solenoid acts electrically longer
than its physical length. If the solenoid’s length is very much greater than the radius,
the finiteness is not felt as acutely. Thus, the correction for end effects is a function of
the length-to-radius ratio. A famous paper by Nagaoka12 provides a table and curves

10 H. A. Wheeler, “Simple Inductance Formulas for Radio Coils,” Proc. IRE, v. 16, no. 10, October
1928, pp. 1398–1400.

11 As discussed later, the highestQ is generally obtained for particular ratios of wire diameter to wire
spacing, with the precise value depending on the ratio of coil length to coil diameter.

12 “The Inductance Coefficients of Solenoids,” J. College of Science (Tokyo), v. 27, art. 6, 15 August
1909, p. 1.
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142 CHAPTER 6 PASSIVE COMPONENTS

for the correction factor, and later work by Grover provides an infinite series that
may be truncated as necessary for a given level of accuracy. From these works one
may discern that, as a first approximation, a simple estimate for the effective electri-
cal length is the physical length, augmented by the radius. This ad hoc correction is
similar to that for the fringing term in capacitors, and it turns out to be surprisingly
good:

L = µ0n
2πr 2

l + r
. (22)

This formula is perfectly respectable (and relatively easy to remember, particularly
if you work primarily in SI units), but a more rigorous analysis reveals that it does
underestimate the inductance slightly, particularly for shorter coils. Wheeler’s for-
mula does a better job simply by adding 90%, rather than 100%, of the radius to the
length.

The effective shunt capacitance across the inductor terminals depends on the
boundary conditions to a significant degree. For example, if one terminal is grounded
then the effective capacitance is relatively insensitive to the capacitance between ad-
jacent turns and actually depends more on external fringing to ground. This latter
capacitance is somewhat difficult to compute analytically. To the best of the author’s
knowledge, no correct general analytical solution has ever been published.13 Conse-
quently, the best we can offer here is a semi-empirical formula which assumes (a) that
the wire insulation has a relative dielectric constant close to unity and (b) that one
terminal is grounded. Within the validity of these assumptions, the effective shunt
capacitance is approximately14

Ccoil ≈ πε0
[
0.4(l/D + 1)+ 0.9

√
D/l

]
D, (23)

where l and D are the coil length and diameter, respectively. This equation matches
Medhurst’s data to better than 5% (roughly corresponding to the accuracy limits of
his data) for l/D values ranging from 0.1 to 50.15 Note that the primary dependence
is on the coil diameter, with a weaker dependence on total length. Hence, for a given
value of inductance, the highest self-resonant frequencies tend to be obtained with
coils possessing the smallest radii.

To obtain accurate estimates of the total shunt capacitance, one must be careful to
account also for the capacitance associated with any length of ungrounded lead. For
this purpose, one may use the formula for the capacitance per length of an isolated
wire, repeated here for convenience:

13 Many have been offered, but close inspection reveals gross errors.
14 This equation is based on data from Medhurst, Wireless Engineer, February 1947, pp. 35–43, and

March 1947, pp. 80–92. The coefficients have been chosen to improve accuracy and reduce com-
plexity over Medhurst’s proposed formulas, as well as to employ SI units.

15 Medhurst claims much better accuracy for his version of the formula, but in fact his maximum
error is as large as 8%.
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Cwire ≈ 2πε0

ln(2 l/r)− 0.75
≈ 5.56 × 10−11

ln(2 l/r)− 0.75
. (24)

Recall that typical values are generally of the order of 10 pF/m.
In addition to the inductance value and parasitic shunt capacitance, effective series

resistance is of great importance. To estimate it, one would be tempted quite nat-
urally to make use of the skin-effect formula. Unfortunately, that formula assumes
a uniformly illuminated semi-infinite block of conductor. In a solenoid, however,
conditions are quite different: the magnetic field of one turn affects the current dis-
tribution of neighboring (and other) turns, so that the boundary conditions (and thus
the effective cross-sectional areas) are considerably modified. Use of an unmodified
skin-effect formula therefore usually leads to rather gross errors. Accounting analyt-
ically for the loss will be difficult if we want to handle the general case, but relatively
simple expressions result if we focus specifically on the conditions that lead to max-
imum Q.

Here again, we are fortunate that Medhurst’s extensive investigations allow us to
express succinctly the conditions for maximizing theQ of air-core inductors. In what
follows, it’s to be understood that the optimum conditions are relatively flat, so the
Q-value achieved is not overly sensitive to departures from the optimum conditions.

First, Medhurst expresses the coilQwith a deceptively simple formula as follows:

Q = 7.5Dψ
√
f , (25)

where D is the coil diameter in meters, f is the frequency in hertz, and ψ is a com-
plicated function of length l, coil diameter D, wire diameter d, and turns spacing s.
The square-root frequency factor is to be expected on the basis of skin-effect consid-
erations (operation well below self-resonance is assumed), but that’s about as far as
one can go with that knowledge. For metals other than copper, one must scale the
constant of 7.5 linearly with the relative conductivity of the material.

The functionψ is too convoluted to express generally in a compact analytical form
because it depends on both l/D and d/s. However, if our goal is to maximizeQ, then
it is not hard to provide an expression that yields the maximum value of ψ at each
l/D. Such an expression is not helpful for analysis but is well suited to design, which
(after all) is our aim:

ψopt ≈ 0.96 tanh
(
0.86

√
l/D

)
. (26)

Empirical as it is, this expression fits Medhurst’s data to better than 3.6% for l/D up
to 10 and to better than 4.5% for values greater than 10. Notice that the optimum ψ is
a function only of l/D. Choosing l/D about 5 or so yields a value of ψ of about 0.88,
which is close enough to the maximum value of ψ under all conditions that little is
gained by using much larger l/D ratios.

Because Eqn. 26 implies that maximizing Q requires maximizing both D and ψ ,
one must choose the largest coil diameter consistent with achieving a self-resonant
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144 CHAPTER 6 PASSIVE COMPONENTS

frequency well above (e.g., by a factor of at least 2–3) the desired operating fre-
quency. One may use Eqn. 23 in conjunction with the desired inductance value to
compute an upper bound on D.

Having effectively computedD and l (the latter from having chosen the l/D ratio),
one may then use Wheeler’s formula to compute the number of turns, n:

n =
√
L(0.9r + l )/(µ0π)

r
. (27)

The winding pitch is thus n/l turns per meter.
The ratio of wire diameter to turns spacing (measured between adjacent wire cen-

ters) is roughly estimated as

dopt

sopt
≈

{
0.5 + 0.07(l/D) for l/D � 7,

1 for l/D > 7.

(28)

(29)

Again, these last two equations are derived from crude fitting to Medhurst’s data and
yield the d/s values leading to Eqn. 26.

The optimum wire diameter is therefore

dopt ≈ l

n

[
1 + sopt

dopt

]−1

, (30)

and the spacing between turns (measured from center to center of adjacent wires) is
found from taking the ratio of Eqn. 30 to either Eqn. 28 or Eqn. 29.

The last bit of data that might be useful in designing these coils concerns the prop-
erties of wire. The conductivity of pure copper is about 5.7 ×107 S/m. The diameter
of bare copper wire is usually presented in tabular form, but a simple (though ap-
proximate) formula is

D ≈ 0.32

10(AWG)/20
, (31)

where the diameter D is in inches and AWG is the (American) wire gauge. This
formula yields values correct to within about 2% for bare wires between 10 and 40
gauge, a range that spans the most commonly used sizes. Note that it implies a de-
crease in diameter by a factor of 10 for every wire gauge increase of 20, so the relative
behavior of the wire gauge on diameter is the same as that of voltage expressed in
decibels.

Solving for the wire gauge as a function of diameter (again, in inches) yields

AWG ≈ 6.4 − 20 log d. (32)

There are no correspondingly simple formulas for enameled wire, but adding an arbi-
trary 0.0045" to the values for bare wire yields diameters that are typically correct to
approximately 5% or better. It should be mentioned that insulator thicknesses vary
somewhat from manufacturer to manufacturer, so values calculated from these equa-
tions must be verified in all cases where it matters. These formulas are presented
mainly as guides for back-of-the-envelope types of calculations.
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6.5 INDUC TORS 145

A Coil Design Example

To illustrate how one might use these equations, we now carry out the optimal de-
sign of a coil intended for use over AM radio frequencies (that is to say, below about
1.6 MHz).

1. Assume that the target inductance is 200µH, based on the capacitance with which
it is ultimately to be resonated.

2. We select l/D = 5, as suggested.
3. We desire the self-resonant frequency to exceed at least 3–5 MHz. Choosing the

higher value for added margin, we find that the maximum allowed self-capacitance
is about 5 pF. From Eqn. 23 we solve for D:

Dmax ≈ Ccoil

πε0
[
0.4(l/D + 1)+ 0.9

√
D/l

] . (33)

Here, we compute a maximum coil diameter of 6.4 cm (about 2.5"), making the coil
about 32 cm long. This computation neglects the capacitance of any leads. This
consideration is relevant here because the computed coil dimensions are some-
what large, and the lead wires may contribute noticeably to the total capacitance.

4. The number of turns required is

n =
√
L(0.9r + l )/(µ0π)

r
, (34)

or about 131 in this case.
5. Because the optimum d/s is about 0.85 for the chosen value of l/D, the optimum

wire diameter is computed from Eqn. 30 as 1.1 mm and the spacing from turn to
turn as 1.3 mm.

6. The required gauge of wire to use is found from Eqn. 32, and is here computed
as 33.5. One may use wire from 32 to 36 gauge without a significant departure
from expectations.

7. Evenly wind 131 turns of the chosen wire on an appropriate low-loss form to pro-
duce a winding with the design diameter and length.

The Q as predicted by Eqn. 25 is about 530. Note that this calculation neglects
any loading or radiation losses, as well as any dielectric losses associated with wire
insulation or coil form material. Loss due to eddy currents induced in nearby con-
ductors is similarly neglected. The predicted Q is thus perhaps best regarded as a
maximum to aspire to achieve, rather than a value that is to be routinely encountered.
Nevertheless, the procedure outlined here does identify the optimum inductor design
to a good approximation.

Coils Wound on Magnetic Cores

One problem with solenoidal structures is that they are not self-shielding. Unwanted
and troublesome coupling can therefore occur between the inductor and other parts
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146 CHAPTER 6 PASSIVE COMPONENTS

of a circuit, with attendant negative performance implications. Cylindrical shields
are thus often placed over such inductors. However, such a shield is uncomfortably
similar to (actually, the same as) a shorted single-turn secondary transformer wind-
ing. To avoid serious reduction of inductance and Q from induced image currents
(eddy currents), the shield’s diameter should be at least twice that of the coil (and
preferably more) to place the image currents a reasonably large distance away and
render their effects negligible.

An alternative is to use a toroidal inductor. Such a structure is magnetically (but
not electrostatically) self-shielding if the core material is of sufficiently high perme-
ability. The magnetic flux will then be concentrated in the core, leaving little to leak
out. Sadly, all known magnetic core materials are rather lossy at high frequencies,
so toroids are widely used only at lower frequencies (typically well below a few hun-
dred megahertz).

Most manufacturers of toroids specify the core’s “AL” value, which they often cite
as some number of millihenries per thousand turns. Unfortunately, that convention
implies a linear dependence of inductance on the number of turns, and this often trips
up the uninitiated (or the sleepy). A more rigorous unit would be nH/turns2, which
uses the same numerical value as AL.

To maximize the self-resonant frequency of a toroidal inductor, spread the turns
evenly around the entire circumference of the core, but leave a reasonable separation
between the two terminals of the inductor.

Many RF transformers consist of coupled windings with equal numbers of turns
(or simple integer ratios of turns). These often should be wound in multifilar fash-
ion. That is, a multistrand (but individually insulated) bundle of wires are wound as
a unit. This strategy minimizes differences among the turns in parasitics and mutual
coupling coefficients.

Single Loop

Another useful formula is for the inductance of a single loop. Despite the simplicity
of the structure, there is no exact, closed-form expression for its inductance (ellip-
tic functions arise in the computation of the total flux). However, a useful “cocktail
napkin” approximation is given by

L ≈ µ0πr. (35)

This formula tells us that a loop of 1-mm radius has an inductance of approximately
4 nH.

In deriving this approximation, the flux density in the center of the loop is arbitrar-
ily assumed to be half the average value in the plane of the loop; then the inductance
is computed as simply the ratio of total flux to the current. In view of the rather coarse
approximation involved, it is remarkable that the formula does as well as it typically
does. Note that, for a single turn and in the limit of zero length, Wheeler’s formula
(Eqn. 22) converges to within about 10% of µ0πr , providing some independent val-
idation of Eqn. 35.
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6.6 MAGNETICALLY COUPLED CONDUCTORS 147

Much better accuracy is provided by the following expression, which takes into
account a nonzero wire diameter as well as magnetic coupling among infinitesimal
wire segments:16

L ≈ µ0r[ln(16r/d )− 2], (36)

where d is the diameter of the wire. With this equation, we see that Eqn. 35 strictly
holds only for an r/d ratio of about 10.

To make a crude approximation even more so, Eqn. 35 can be extended to noncir-
cular cases by arguing that all loops with equal area have about the same inductance,
regardless of shape. Thus, we may also write:

L ≈ µ0

√
πA, (37)

where A is the area of the loop. A closed contour of area one square centimeter has
an inductance of about 7 nH, according to this formula. This equation, very approx-
imate as it is, turns out to be quite handy in estimating the magnitude of various
component and layout parasitics – as well as in evaluating the likely efficacy of pro-
posed layout changes.

We can check the reasonableness of these expressions by considering the induc-
tance of a loop of extremely large radius. Since we can treat any suitably short
segment of such a loop as if it were straight, we can use the equation for the induc-
tance of a loop to estimate the inductance of a straight piece of wire.

We’ve already computed that a circular loop of 1-mm radius has an inductance of
4 nH, so we have roughly 4 nH per 6.3 mm of length (circumference), which is in
the same range as the value given by the more accurate formulas.

6.6 MAGNETICALLY COUPLED CONDUCTORS

6.6.1 TRANSFORMERS

It used to be that any electrical engineering graduate student would be familiar with
the properties of an ideal transformer, at minimum. However, recent classroom evi-
dence reveals that many schools omit material about transformers these days, so
perhaps here is as good a place as any to plug that curricular hole (readers not in
need of this refresher are invited to skip this section). We’ll develop a model for ideal
transformers first, and then patch it up to model real transformers.

A conventional transformer is a magnetically coupled system of inductors. Trans-
formers get their name from their valuable ability to transform voltages, currents,
and impedance levels over a relatively broad frequency range. In the simplest case,
there are only two inductors, a primary and secondary. Just as the voltage across an

16 Ramo, Whinnery, and Van Duzer, Fields and Waves in Modern Radio, Wiley, New York, 1965,
p. 311.
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148 CHAPTER 6 PASSIVE COMPONENTS

F IGURE 6.13. Ideal 1: n transformer

isolated inductor is the result of a changing flux, a changing flux produced by the
primary of a transformer can induce a voltage in the secondary, and vice versa.

For the ideal 1 : n transformer shown in Figure 6.13, n is the secondary-to-primary
turns ratio. A changing magnetic flux common to both inductors thus generates n
times the voltage at the secondary as at the primary (the polarity dots in the symbol
identify which terminals are in phase). Energy conservation tells us that this voltage
boost must be paid for by a corresponding current reduction of precisely the same
factor. Because the ratio of voltage to current thus changes by n2 in going from pri-
mary to secondary, an impedance transformation of that factor occurs at the same
time. A turns ratio of 3, for example, corresponds to an impedance transformation
ratio of 9. The ever-elusive ideal transformer would perform this function over an in-
finitely wide frequency range (including DC), and with zero loss. Even though such
an element is physically unrealizable, it is nonetheless a useful starting point for con-
structing models of real transformers, as we’ll soon see.

In the foregoing ideal example, we have implicitly assumed that all of the mag-
netic flux produced by, say, the primary couples to the secondary. The aim in most
(but not all) transformer design is to approach this ideal as closely as possible. How-
ever, as with everything else in life, this aim is imperfectly met in practice, so our
model must acknowledge a lack of perfect coupling or otherwise accommodate pre-
scribed values besides unity.

Let us call L1 the inductance of the primary alone (i.e., with the secondary open-
circuited) and L2 that of the secondary alone. From the physics of the arrangement,
we expect the voltage at any port to be the superposition of a self- and mutual term.
The V–I equations for the (still) lossless but imperfectly coupled transformer may
therefore be expressed as follows:

v1 = L1
di1

dt
+M

di2

dt
; (38)

v2 = M
di1

dt
+ L2

di2

dt
. (39)

HereM, the mutual inductance between the windings, enables us to model the degree
of coupling between primary and secondary. Reciprocity (another concept empha-
sized less and less these days) is what permits us to use the same value of M in both
primary and secondary voltage equations, even for asymmetrical transformers. De-
pending on the physical arrangement, the mutual inductance may take on positive or
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6.6 MAGNETICALLY COUPLED CONDUCTORS 149

F IGURE 6.14. First-pass lossless
transformer model (T version)

F IGURE 6.15. Transformer circuit model without common terminal

negative values, unlike isolated passive inductances. If the coupled flux adds to the
self-flux, the mutual inductance is negative. If it opposes the self-flux, it is positive.

Although the total voltage across either the primary or secondary is the superpo-
sition of contributions from both the primary and secondary, the individual terms in
the equations are isomorphic to that for an ordinary inductance. The corresponding
circuit model for a transformer (Figure 6.14) thus contains only inductive elements.
Here we have implicitly assumed a common connection between ports.

If the primary and secondary are very close to each other, then nearly all of the
flux from one inductor will couple to the other. If far apart (or if their fields are or-
thogonally disposed), the coupling will be negligible and M will be very small. It is
useful to describe the continuum of possibilities with a quantitative measure of coup-
ling known, reasonably enough, as the coupling coefficient, defined as:

k ≡ M√
L1L2

. (40)

Thus, the coupling coefficient is the ratio of the mutual inductance to the geomet-
ric mean of the individual inductances. For passive elements, the magnitude of the
coupling coefficient may not exceed unity.

Our first-pass model is perfectly respectable, but it suffers from some deficiencies
that occasionally motivate the development of alternatives. One specific limitation
of the model shown is that it does not explicitly incorporate a turns ratio between
primary and secondary; that information is buried inside of the various inductance
parameters. A less important limitation is that the primary and secondary share a
common terminal. That deficiency is readily repaired simply by cascading the model
with an ideal 1 :1 transformer, as shown in Figure 6.15.
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150 CHAPTER 6 PASSIVE COMPONENTS

F IGURE 6.16. Alternative lossless transformer model

An alternative model that allows us to separate the ports completely and also ex-
plicitly incorporate an arbitrary turns ratio is depicted in Figure 6.16. Here

Lpe = L1(1 − k2), (41)

Lpm = k2L1, (42)

and
n = L2/M. (43)

This model contains an ideal transformer at its heart and then uses an isolated (un-
coupled) leakage inductance Lpe, to account for the flux that doesn’t participate in
primary–secondary coupling. The magnetizing inductance Lpm models that portion
of the primary inductance that does participate in coupling. It is therefore equal to
the total primary inductance, diminished by an amount equal to the leakage induc-
tance. The magnetizing inductance also properly accounts for a real transformer’s
failure to function at DC, and it explains why low-frequency transformers are gener-
ally bulkier than are high-frequency ones.

In cases where the coupling coefficient is close to unity, the magnetizing inductance
is generally quite close in value to the primary inductance. For quick calculations of
transformer circuits involving tight coupling, they may be treated as equal in most
cases.

Having developed a lossless model that accommodates imperfect coupling as well
as arbitrary turns ratios, we now need to account for a variety of parasitic elements
that are always present. One potential source of significant parasitics is the material
around or on which the inductor is wound. Although integrated circuit transformers
almost never employ magnetic core materials (the transformers behave essentially as
if they were wound on an air core), core materials are common for discrete circuits.
All magnetic core materials exhibit loss of at least two types. Hysteresis loss arises
from the inelasticity of magnetic domain walls. To support magnetic state changes,
these walls must move. One may visualize a sort of friction as accompanying and in-
hibiting this wall movement. The energy lost per magnetic state transition is usually
well modeled as constant for a fixed amplitude excitation, so the total power dissi-
pated due to this mechanism is approximately proportional to frequency. We may
account for this loss by adding a frequency-dependent resistance in shunt with the
primary winding of our model.

Eddy current loss besets transformers as much as it does ordinary conductors. Cur-
rents may be induced in any nearby conductor, including electrically conductive core
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6.6 MAGNETICALLY COUPLED CONDUCTORS 151

materials, adjacent windings, and conductive substrates. Because the induced volt-
age is proportional to frequency, eddy current losses are proportional to the square
of frequency, as we’ve seen in the inductor case. The core losses augment those at-
tributable to winding resistance, with due accounting for the skin effect.

In addition to the loss terms, the electric field surrounding and suffusing the wind-
ings stores electrostatic energy. Hence, a high-frequency model must also include
capacitances to account for this additional energy storage mechanism. Further com-
plications arise when attempting to model behavior at frequencies where the dimen-
sions of the transformer are not very small relative to a wavelength. In those cases, a
simple lumped description of the transformer will be inadequate, and we must treat
the windings as coupled transmission lines.

Finally, to make matters even more complex than they already are, all core materi-
als become noticeably nonlinear at sufficiently high flux density, and all parameters
are generally functions of temperature as well. These factors explain the profusion
of materials; no single core material satisfies all requirements of interest.

The most important implication of the other nonidealities is that the various par-
asitics limit both frequency response and efficiency. The magnetizing inductance
shorts out the primary of the ideal transformer at DC, preventing transformer action
there, while the winding capacitances perform a similar disservice at high frequen-
cies. The net result of these nonidealities is to make classical transformers a rarity at
gigahertz frequencies.

6.6.2 COUPLED WIRES

Not all transformers are intentionally realized. We need to appreciate that the mag-
netic fields surrounding conductors drop off relatively slowly with distance. As a
result, there can be substantial magnetic coupling between adjacent (and even more
remote) conductors. As with intentional transformers, a measure of this coupling is
the mutual inductance between them. For two parallel, infinitesimally thin round
wires of equal length, this inductance is given approximately by

M ≈ µ0 l

2π

[
ln

(
2 l

D

)
− 1 + D

l

]
, (44)

where l is the length of the wires andD is the distance between them.17 For a 10-mm
length and a spacing of 1 mm, the mutual inductance works out to about 4 nH. Since
the inductance of each wire in isolation is about 10 nH, the 4-nH mutual inductance
represents a coupling coefficient of 40%. In practice, one can expect coupling coef-
ficients of this general order of magnitude between, say, adjacent pins of a typical
integrated circuit package. Furthermore, the logarithmic dependence of M on spac-
ing means that the coupling decreases slowly with distance, so the level of unwanted

17 This formula is adapted from Frederick Terman, Radio Engineers’Handbook, McGraw-Hill, New
York, 1943, Chap. 2.
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F IGURE 6.17. Guanella 1:1 “balun”

coupling between even nonadjacent pins can be troublesome. Obviously, the un-
desired cross-talk among pins can degrade signal integrity at high frequencies and
otherwise cause a host of troublesome pathologies.

6.6.3 BROADBAND TR ANSMISSION
LINE TR ANSFOR MERS

Although this textbook’s focus is on planar circuits, there are many practical instances
where a planar circuit must use a distinctly nonplanar transformer somewhere. An
example might be power amplifiers, where on-board transformers may not be up to
the task. Other examples include broadband impedance transformers, where oper-
ation over several decades of frequency might be desired. Planar structures using
ordinary PC board materials simply cannot provide this level of performance.

We’ve already examined conventional transformers and alluded to the limited band-
width arising from winding capacitance and leakage inductance. We now briefly dis-
cuss transmission line transformers, which (because of their unique construction)
suffer much less from these limitations, permitting operation over unusually large
bandwidths.

The first description of this class of transformers was evidently by Guanella in an
impossible-to-find reference in 1944.18 Description of a related, but different, class
of transformers by Ruthroff is much more frequently referenced because of its su-
perior accessibility.19 Both Guanella and Ruthroff ’s transformers are distinguished
from their classic counterparts by having a DC path from input to output and for in-
ducing nominally zero net flux in the transformer core material. This latter property
greatly reduces the (frequency-dependent) hysteresis losses that often set the upper
frequency of operation for many practical transformers.

The basic Guanella connection is shown in Figure 6.17. It is often called a balun
in the literature, but because the transformer itself does not set the output common-
mode voltage (AC-wise), it isn’t quite a classic balun. Whatever is connected to the
output determines the common-mode voltage. In the circuit of Figure 6.17, ground-
ing the center tap of the output load resistor will cause the overall circuit to behave
as a balun.

18 G. Guanella, “Novel Matching Systems for High Frequencies,” Brown-Boverie Review, v. 31, Sep-
tember 1944, pp. 327–9.

19 C. L. Ruthroff, “Some Broad-band Transformers,” Proc. IRE, v. 47, August 1959, pp. 1337–42.
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6.6 MAGNETICALLY COUPLED CONDUCTORS 153

F IGURE 6.18. Guanella 1:1 balun as common-mode choke
(resistances not shown for clarity)

Broadband operation is enabled by exploiting the transmission line nature of the
windings making up the primary and secondary. Indeed, Guanella’s exposition of the
subject explicitly uses transmission lines for the windings. Thus, the winding capac-
itances that limit the bandwidth of conventional transformers are absorbed into the
fundamental operation of the transformer. If the characteristic impedance of the line
equals that of the load, bandwidth will be maximized. The upper frequency range
is therefore extended by two mechanisms working together: absorption of reactive
parasitics into transmission line constants, and the reduction of hysteresis loss by
keeping the core flux small.

The latter property is appreciated by considering what happens when the upper
(primary) winding in Figure 6.17 is driven by an input voltage. The input current that
flows in response causes a voltage to be induced in the secondary. Because of the 1:1
turns ratio, the winding voltages are the same and so are the currents. However, the
primary and secondary currents flow in opposite directions, so the net magnetic flux
they induce in the core is ideally zero. As a consequence, hysteresis-based core losses
are correspondingly small. Indeed, for many practical realizations of the Guanella
transformer, dielectric loss dominates over other core loss sources. The usual pre-
occupation in selecting transformer core material is low hysteresis and conductive
losses, but dielectric loss is important in cores for transmission line transformers.

The ability of this circuit to reject common-mode signals over a wide bandwidth is
routinely exploited in instrumentation. When used this way, the circuit is often called
a common-mode choke (see Figure 6.18). It is valuable because the common-mode
rejection provided by the transformer greatly relaxes the required common-mode re-
jection of subsequent circuits. The front-end vertical amplifiers of oscilloscopes, for
example, routinely interpose common-mode chokes between the input connectors
and the front ends of the amplifiers.

Imagine that a ground loop causes the internal and external grounds to be at dif-
ferent AC potentials. Just to keep things straight, let’s arbitrarily assign the internal
ground node a potential of zero volts, and let the external ground voltage be V1. The
voltage difference between these two nodes appears directly across the bottom wind-
ing, causing that same voltage to be induced across the top winding. Keeping track of
signs, we see that this induced voltage is subtracted from the input voltage, causing
the amplifier input to see Vin, exactly. The ground noise has been removed, thanks
to the common-mode choke.
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F IGURE 6.19. Guanella 1: 4 balun

The purpose of the core material in these types of transformers is merely to pro-
vide sufficient common-mode reactance (because the aim of the circuit is to provide
a purely differential output). The lower frequency limit of successful common-mode
rejection is thus set by the common-mode inductance. The balun functions properly
until the corresponding common-mode reactance ceases to be large relative to the
characteristic impedance of the transmission line windings.

The 1:1 configuration can be extended to yield other impedance transformation
ratios by an appropriate combination of series and parallel connections of windings.
As just one example, consider driving two 1:1 transformers in parallel, but taking the
output in series, to produce a 1: 4 balun. See Figure 6.19.

Typically, the point A would be grounded. Alternatively, the midpoint of the out-
put load could be grounded (as in the 1:1 case) to force a common-mode output
voltage of zero. If wound with coaxial lines, the conductors should be sequenced as
center and shield of one cable, then center and shield of a second cable, in that order,
from top to bottom in Figure 6.19. Alternatively, the transmission line windings may
be implemented with simple multifilar (in this case, quadrifilar) bundles.

The general idea of driving windings in parallel and taking outputs in series may
be readily extended to create 1 : n2 baluns, where n is an integer equal to the number
of 1 :1 building blocks used.

The Ruthroff configurations are somewhat different and, as we shall see, exhibit
worse bandwidth as a consequence. We will consider just two basic examples of
Ruthroff 1 : 4 transformers. One is a balun, and the other isn’t.

In Figure 6.20, the configuration on the left has an unbalanced input and output.
It is therefore sometimes called an “unun,” but it sounds goofy no matter how many
times you say it aloud (and pretty much no matter what your native language is). It
looks funny in print, too. In any case, it works like this: An applied voltage impressed
across the lower winding causes that same voltage to be induced in the upper winding.
The series connection of the two windings causes the output voltage to double, pro-
ducing the desired 1: 4 impedance transformation. This configuration is also some-
times called a bootstrapped connection because of the series-aided voltage boost.

The configuration on the right of Figure 6.20 applies a voltage across the top wind-
ing, inducing the same voltage across the bottom winding. Again keeping track of
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6.6 MAGNETICALLY COUPLED CONDUCTORS 155

F IGURE 6.20. Ruthroff 1 : 4 “unun” (left) and balun

polarities, we see that the left side of the resistive load sees a voltage equal to the
input voltage, while the right side sees its algebraic inverse. The voltage across the
load is consequently once again twice the input voltage, producing a 1: 4 transforma-
tion. Because neither end of the load resistor is grounded, it is considered a balanced
configuration.

The Ruthroff versions have a somewhat more limited bandwidth because they sum
an applied voltage with one that has propagated along a (transmission line) winding.
The latter necessarily has a delay, which produces a fundamental upper frequency
limit. The transformer functions well only as long as the delay along the wind-
ing is short relative to a period. Shortening the lines improves the upper frequency
limit, but it degrades the lower frequency limit by reducing the common-mode in-
ductance. Using cores with higher permeability can help compensate to an extent,
but there’s only a limited selection of suitable materials with low dielectric loss and
high permeability.

In the Guanella version, the output is taken across two transmission lines. The de-
lay is thus common-mode and therefore imposes no upper frequency limit. For much
more information on this class of transformers, see Jerry Sevick’s Transmission Line
Transformers, 2nd ed., American Radio Relay League, Newington, CT, 1990.

6.6.4 NARROWBAND TR ANSMISSION
LINE TR ANSFOR MERS

If broadband operation is not required, impedance transformations may be imple-
mented with simpler transmission line transformers. For example, a popular 1 : 4
narrowband balun is easily constructed out of a half-wavelength piece of transmis-
sion line.

In Figure 6.21, a resistor of value R is connected around a half-wavelength trans-
mission line. The resistor is shown as a series connection of two resistors (of value
R/2 each) to simplify analysis. Because of the line’s length, a voltage V applied at
the left end of the line undergoes an inversion when traveling to the right end of the
line. The midpoint of the resistor is thus at ground potential. The right end of the
line is therefore loaded by a resistance R/2, which – when reflected back to the left
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156 CHAPTER 6 PASSIVE COMPONENTS

F IGURE 6.21. Narrowband 1: 4 transmission line balun

F IGURE 6.22. Classic Marchand balun

end of the line – remains R/2. This reflected load resistance is in parallel with the
other R/2 resistance that is already at the left end of the line, producing a net input
resistance of R/4. Thus, a balanced load of resistance R is transformed down to an
unbalanced input resistance of R/4 (and vice versa).

To facilitate connection of the balanced load, the transmission line is typically bent
into a U or O shape. This balun is extremely useful at frequencies high enough for
practical realization in microstrip in particular.

A final balun we will consider is a translation into stripline form of a coaxial de-
sign originally due to Nathan Marchand.20 It may be regarded as two couplers joined
together and excited in antiphase. As seen in Figure 6.22, an unbalanced input drives
an open-circuited λ/2 line. Signals at the two ends of that line are therefore precisely
out of phase. These two out-of-phase signals drive a pair of couplers whose outputs
are thus likewise out of phase. Because the coupled lines are each grounded on one
end, the differential output is a balanced one, as desired.

Edge-coupled structures such as microstrip are not well suited to realizing the tight
couplings normally desired in a Marchand balun. If additional layers of metal are
available, broadside coupled layouts may be used to provide the required tight coup-
ling without requiring absurdly small spacings.

Although the classic Marchand balun is a narrowband structure, it may be broad-
banded significantly by using multisection lines in place of the single λ/4 segments
shown (see Chapter 7). Operation over multi-octave or decade bandwidths is then
possible. Finally, trimming of the output phase balance may be performed by adjust-
ing the length of the uncoupled segment between the two coupled lines.

20 N. Marchand, “Transmission Line Conversion Transformers,” Electronics, v. 17, December 1944,
pp. 142–5.
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6.7 SUM M ARY

We’ve seen that seemingly ordinary components must be modeled in progressively
more sophisticated ways as frequency increases. Nominally simple components are
seen to have important behaviors that may be ignored only at low frequencies. Even
resistors, capacitors, and inductors must be treated as complicated impedances for
proper design of microwave circuits. As an aid to developing appropriate models, this
chapter has presented numerous equations and rules of thumb for estimating parasitic
inductance and capacitance. Finally, we’ve considered various types of transformers,
even though such components are rarely realized in purely planar form.
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C H A P T E R S E V E N

MICROSTRIP, STR IPL INE, AND
PL ANAR PASSIVE ELEMENTS

7.1 INTRODUC TION

A recurring theme in RF design is the need to pay careful attention to the electrical
characteristics of everything along the signal path. This concern extends to printed
circuit (PC) boards, so this chapter considers their high-frequency properties as well
as those of numerous passive components made with PC board materials. We will
focus on a particular type of transmission line known as microstrip, which is partic-
ularly suited to the realization of planar microwave circuits. In addition, numerous
passive components can be made out of transmission lines, so capacitors, induc-
tors, resonators, power combiners, and a variety of couplers – including baluns and
hybrids – are presented as well.

7.2 GENER AL CHAR AC TERIST ICS OF PC BOARDS

Just as with PC boards used at lower frequencies, those for RF applications consist
of metal layers separated by a dielectric of some kind. By convention in the United
States, the metal thickness is given indirectly as a certain weight of copper per square
foot. Thus, “1 ounce” copper (a common value) is approximately 1.34 mil (35 µm)
thick.1 Half-ounce and 2-oz copper are other common values. The DC resistivity of
bulk copper is approximately 1.8 µ�-cm, so the corresponding sheet resistivity of
1-oz copper is about 0.5 m� /square. The skin depth in copper is about 2.1 µm at
1 GHz, raising the sheet resistivity to roughly 8 m� /square at that frequency. De-
pending on how the copper is formed and deposited, the resistivity may be larger
than the bulk value by as much as a factor of 2.2 One additional factor that affects

1 A mil is 0.001" and is not to be confused with a millimeter; 1 mil is actually about 25 µm.
2 Because skin effect maximizes the current density on the surface facing the ground plane, the rough-

ness of that surface is most relevant for resistance calculations. As it happens, adhesion promoters
are often used to ensure that the conducting metals stick to the substrate. The interface between
the promoters and the metal may be relatively rough, producing surprisingly high conductor loss
at high frequencies.
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7.2 GENER AL CHAR AC TERIST ICS OF PC BOARDS 159

the resistivity is the surface roughness; current must flow over a somewhat greater
distance if the surface is rough. An estimate for the factor by which the resistance is
boosted is given by3

Fsr ≈ 1 + 2

π
tan−1

[
1.4

(
�

δ

)]
, (1)

where � is the rms surface roughness and δ is the skin depth. We see from this equa-
tion that surface roughness becomes a more prominent factor if its rms value is not
small relative to skin depth.

Common dielectric thicknesses are 1/32" (0.8 mm), 1/16"(1.6 mm), and occa-
sionally 1/8" (3.2 mm). In multilayer boards, materials 1/64" (0.4 mm) thick are
also encountered. These are all approximate values, and actual thicknesses are often
stated as multiples of 5 or 10 mils in the United States (and correspondingly round
numbers in countries using the metric system).

For general-purpose work at lower frequencies, by far the most commonly used
PC board dielectric is a fiberglass–epoxy composite called FR4 (for “flame-retardant
formulation number 4”), or its more flammable counterpart, G10. The dielectric loss
of FR4 dominates over conductor loss at microwave frequencies, with typical micro-
strip transmission lines (to be discussed in detail in Section 7.3) exhibiting a loss of
0.03 dB/cm/GHz for 1/16" (1.6-mm) material. Because of the dominance of dielec-
tric loss, the attenuation really does increase linearly with frequency on a decibel
scale over quite a wide frequency range (say, ∼50 MHz to at least 5 GHz). This func-
tional dependency implies a constant loss per wavelength at any frequency. In this
case, the value is approximately 0.5 dB per wavelength.

In addition to somewhat high loss, FR4 is not manufactured to tight specifica-
tions, so it is normally considered unsuitable for the mass production of critical RF
circuits. For example, 1.6-mm–thick FR4 boards purchased by Stanford University
over the past several years from a number of vendors exhibit relative dielectric con-
stants ranging from roughly 4.2 to 4.7 at 1 GHz. The distribution is not uniform, but
to the extent that such a nonscientific, sparse sampling is at all representative, one
might infer that the dielectric constant varies more than 5% from a nominal value of
approximately 4.5.4 Statistical theory being what it is, one should probably antici-
pate having to accommodate a greater variation from the mean, say ±10%. If such
accommodation is possible and if the loss can be tolerated, FR4 can be used beyond
5 GHz (some intrepid folks have even used it at 10 GHz), despite the conventional
wisdom that FR4 is unsuitable for applications above a few gigahertz.

It should also be noted that planar transmission lines are immersed in an inho-
mogeneous dielectric medium (e.g., part FR4 and part air). A weighted average of

3 E. O. Hammerstad and F. Bekkadal, A Microstrip Handbook, ELAB Report, STF 44 A74169,
N7034, University of Trondheim, Norway, 1975.

4 To make matters more complex, a different ratio of epoxy to glass is frequently used for very
thin FR4 substrates, causing the dielectric constant to be 5–10% lower for such material (used in
laminates).
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160 CHAPTER 7 MICROSTRIP, STR IPL INE, AND PL ANAR PASSIVE ELEMENTS

the dielectric constants accommodates this inhomogeneity to keep equations simple,
at least in appearance. At high frequencies, however, the higher-dielectric constant
substrate steals a progressively greater proportion of the flux, causing the effective
dielectric constant to increase. High-frequency signals thus propagate more slowly
than do lower-frequency ones; such transmission lines are consequently dispersive.
One may typically expect a ∼5% increase in FR4’s effective dielectric constant as
the frequency increases from 100 MHz to 5 GHz. The distortion of time waveforms
arising from this dispersion may cause difficulty in broadband (e.g., high-speed dig-
ital) applications, where pulse fidelity is important.5

Because FR4 is made by binding glass fibers together within an epoxy matrix,
anisotropies are possible if the fibers are not randomly oriented. It is not unheard
of to encounter different dielectric constants in different directions, for example, so
that transmission lines that are orthogonal to each other may have different charac-
teristic impedances. Despite its various shortcomings, FR4’s extremely low cost and
wide availability continue to motivate engineers to devise ways to expand its use
beyond noncritical, hobbyist, and low-volume prototyping RF applications. It is rel-
evant here to note that the clock frequencies of digital systems have reached what
previously had been known as the microwave realm.

In extremely low-cost consumer devices (e.g., toys, pocket radios, etc.), an even
less expensive board material is not infrequently encountered. Phenolic is often a
caramel brown, typically has an “organic chemical” odor, and is remarkably lossy.
Although phenolic is occasionally used for RF toys up to 100 MHz, it is totally un-
suitable for serious applications. It is mentioned here simply to answer the question:
“What is that cheap, malodorous board made of?”

Microwave-compatible materials must be used in more demanding circumstances,
of course. Many of the best soft substrate materials have historically been based on
PTFE (polytetrafluoroethylene, better known by the DuPont trade name Teflon™).
It is rather difficult to produce multilayer boards with such materials, however, and al-
ternatives have been developed to solve this problem. A popular example is RO4003
from Rogers Corporation (〈http: //www.rogers-corp.com/mwu〉). This material is
based on a woven glass–reinforced hydrocarbon and ceramic thermoset plastic ma-
terial. Transmission lines built on RO4003 exhibit approximately one fourth the loss
of FR4 on a decibel basis. Its dielectric constant is 3.38, controlled to within 1.5%.
Its low loss and stable, narrowly distributed characteristics – as well as its ease of
manufacture – make such materials particularly suited for many applications.

Occasionally, one encounters polyphenylene oxide (PPO) as a PC board material.
The lower loss of PPO (relative to FR4) led to its use in some high-frequency Tek-
tronix oscilloscope plug-ins, for example. If you do come across it, take note that
working with PPO requires extreme care because of its low melting temperature; it is
the high-tech equivalent of butter. Manually soldering or de-soldering components

5 This property has not prevented intrepid engineers from using equalizers to reduce the effects of dis-
persion. Through such means, exceptionally high bandwidth signals may be conveyed by FR4 lines.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511812941.008
Downloaded from https://www.cambridge.org/core. The Librarian-Seeley Historical Library, on 18 Dec 2019 at 06:16:41, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511812941.008
https://www.cambridge.org/core


7.2 GENER AL CHAR AC TERIST ICS OF PC BOARDS 161

Table 7.1. Some characteristics of FR4 and RO4003 at 300 K

Property FR4 RO4003

Bulk εr @ 1 GHz 4.5 ± 10%, typ. 3.38 ± 1.5%
(5.4 max @ 1 MHz, from IPC-4101)

TC of εr (ppm/◦C) ? +40

Dissipation factor 0.015 @ 1 GHz, typ. 0.002 @ 10 GHz
(0.035 max @ 1 MHz, from IPC-4101)

Dimensional stability <500 ppm <300 ppm

TC of thermal expansion 15 in-plane, 100 in z-direction (typ.) 15 in-plane,
(ppm/◦C) 50 in z-direction

is just barely feasible and must be done with as much speed as you can muster. Si-
multaneously, one must be careful not to apply any forces while soldering, or else
physical distortion is likely.

We’ll focus mainly on FR4 (and, to a lesser extent, RO4003) for this rest of this
book, so we summarize some of their relevant characteristics in Table 7.1.6 Some
entries for FR4 are guesses, since few parameters are actually controlled – as might
be expected from the rather loose limits dictated by IPC-4101, the relevant standard
for FR4.

As a final note on FR4, it is sometimes helpful to know that it is an excellent in-
sulator. In addition to exhibiting low surface leakage (200-G� surface resistance is
typical, if the surface is clean), its breakdown voltage is very high. A 1.6-mm–thick
substrate will typically withstand in excess of 40 kV (sometimes above 60 kV). Ex-
cellent high-voltage capacitors may be handcrafted with FR4.

In more demanding applications, one may employ a variety of hard substrates,
such as alumina, beryllia, quartz, and sapphire. Hard substrates have substantially
better thermal conductivity than the soft substrates we’ve considered, but the for-
mer are much more expensive. Alumina is the most popular of the hard materials
because it is the least expensive and has a number of reasonable electrical character-
istics. Metals adhere to it well, so interconnect is not a problem. It also machines
with relative ease. At the same time, it is very hard and strong, allowing it to survive
its mounting on other substrates that have mismatched thermal coefficients. The ma-
terial can also be polished to a fine degree, allowing deposited interconnect to have
similarly low surface roughness, thus decreasing high-frequency conductor losses.
Alumina’s relatively high dielectric constant (∼10) is, however, both an advantage
and a liability. At low frequencies it enables more compact circuits than are possi-
ble with FR4, yet at high frequencies it forces geometries that are uncomfortable or
impossible to manufacture reliably. Furthermore, as we’ll discuss shortly, the higher

6 See Appendix C (Section 7.10) for a table of other dielectric materials and their corresponding di-
electric constants.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511812941.008
Downloaded from https://www.cambridge.org/core. The Librarian-Seeley Historical Library, on 18 Dec 2019 at 06:16:41, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511812941.008
https://www.cambridge.org/core


162 CHAPTER 7 MICROSTRIP, STR IPL INE, AND PL ANAR PASSIVE ELEMENTS

dielectric constant implies that waves traveling along conductors on the surface suffer
a greater inhomogeneity, with consequent negative implications for high-frequency
performance.

The crystalline form of alumina, sapphire, can be polished even more finely, so
it is occasionally used when cost is truly no object and where one is obsessed with
reducing surface roughness to the absolute minimum. Paradoxically, its extreme
smoothness inhibits metal adhesion, so some sort of adhesion-promoting layer must
be interposed between the sapphire surface and the actual interconnecting metal. If
the adhesion layer is itself not smooth, the advantages of sapphire can be quickly
nullified.

Because it is desirable to minimize problems stemming from dielectric inhomo-
geneities, fused silica (quartz) is occasionally used instead of alumina or sapphire.
With a dielectric constant of about 3.8, millimeter-wave circuits (and beyond) de-
mand considerably relaxed machining tolerances. Its dielectric loss is also the lowest
of all the hard substrates currently in use, remaining low well into the millimeter-
wave bands. Unfortunately, quartz is incredibly brittle, so machining it is pretty much
out of the question, and one must take extreme care in mating it to a mounting sur-
face lest mismatches in thermal expansion coefficients result in cracking. Quartz is
exceptionally smooth, so it possesses all of the advantages and disadvantages of sap-
phire in that respect. All in all, this material is an incredible pain to work with.

Recently, low-temperature co-fired ceramic (LTCC) substrates have become pop-
ular. These materials exhibit loss intermediate between FR4 and RO4003, for exam-
ple, but are more easily manufactured than are traditional microwave substrates such
as alumina.

We’ll mention just one more material: Beryllia at one time was frequently found
in high-power modules because it has good thermal conductivity and a thermal ex-
pansion coefficient that is well matched to that of copper. One must not machine it
because breathing its toxic dust can induce a fatal reaction in some individuals. It’s
best to avoid the material altogether – but if you can’t, never grind or crack BeO!

7.3 TR ANSMISSION LINES ON PC BOARDS

The planar nature of PC boards effectively precludes the realization of coaxial struc-
tures. Furthermore, it is highly inconvenient in any case to make connections to
intermediate points along a coaxial line. In 1951, Robert M. Barrett proposed the re-
alization of planar versions of many classical microwave components by using PC
board fabrication methods.7 Three papers by researchers at the Federal Telecommu-
nications Laboratory of ITT developed this general idea further (see the December

7 R. M. Barrett and M. H. Barnes, “Microwave Printed Circuits,” Radio and TV News (Radio-
Electronic Engineering Section), v. 46, September 1951, pp. 16–31. Barrett credits V. H. Rumsey
and H. W. Jamieson as having been the first to use a planar line (stripline) for a power divider, dur-
ing WWII. Anecdotal reports also credit the prolific Harold Wheeler with having experimented
with coplanar lines in the late 1930s.
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F IGURE 7.1. Stripline (cross-section)

F IGURE 7.2. Microstrip (cross-section)

1952 Proceedings of the IRE, as well as the March 1955 IRE Transactions on Mi-
crowave Theory and Techniques).8 These and subsequent efforts resulted in planar
transmission lines now known as stripline and microstrip structures (see Figures 7.1
and 7.2). Although it took quite some time for these to catch on outside the labora-
tory, they are now by far the most common ways to build microwave circuits.

As seen in the figures, a stripline is constructed by sandwiching a conductor be-
tween two ground planes, whereas a microstrip is a conductor disposed above a single
ground plane. The stripline structure is nearly self-shielding (leakage can occur only
through the sides). It is therefore particularly useful in minimizing both losses and
unwanted coupling due to radiation. Furthermore, the fact that the line is immersed in
a uniform dielectric means that TEM propagation is supported. An important draw-
back, however, is the inconvenience of making connections to the center conductor.

In Figure 7.1, the stripline is shown as it is almost universally realized: a symmet-
rical structure in which the line proper is positioned midway between the two ground
planes. The characteristic impedance of this line is given approximately by9

Z0 ≈ 60

εr
· ln

[
6H

πW(0.8 + T/W )

]
. (2)

8 Perhaps most notable among these is by D. D. Grieg and H. F. Engelmann, “Microstrip – A New
Transmission Technique for the Kilomegacycle Range,” Proc. IRE, v. 40, December 1952, pp.
1644–50. This paper marks the debut of the term microstrip in the literature. By the way, ITT had
bought Federal Telegraph (of arc technology fame), and it was that group (renamed Federal Tele-
phone) that published this work on microstrip.

9 This formula is a modification of one due originally to Seymour B. Cohn, “Characteristic Imped-
ance of the Shielded-Strip Transmission Line,” IRE Trans. Microwave Theory and Tech., July 1954,
pp. 52–7.
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164 CHAPTER 7 MICROSTRIP, STR IPL INE, AND PL ANAR PASSIVE ELEMENTS

This formula is most accurate for narrow lines, defined by W/(H − T ) < 0.35. For
a total dielectric thickness of 1/8" (about 3.2 mm) using 1-oz copper, a 50-� line re-
quires a conductor width of approximately 1.25 mm. Even though this width is not
quite “narrow” in the sense of our inequality, it is close enough that Eqn. 2 is still
reasonably accurate, at least for impedances near 50 �.

For a more accurate estimate, one may use Cohn’s more elaborate original expres-
sions:10

Z0 = ηK(k)

4
√
εrK ′(k)

, (3)

where

k =
[

cosh

(
πW

2H

)]−1

(4)

and η is the impedance of free space,

η = √
µ0/ε0 ≈ 120π. (5)

Furthermore, to such an excellent approximation that we will treat them as equal-
ities,

K ′(k)
K(k)

=




[
1

π
ln

(
2

1 + √
k ′

1 − √
k ′

)]
for 0 ≤ k ≤ 0.707,

[
1

π
ln

(
2

1 + √
k

1 − √
k

)]−1

for 0.707 ≤ k ≤ 1,

(6)

(7)

where K(k) is the complete elliptic integral (of the first kind) and K ′ is its comple-
mentary function (in case you cared). Finally, it helps to know that

k ′ =
√

1 − k2. (8)

However, more widely used than stripline is microstrip – even though it is nei-
ther a shielded nor a homogeneous structure. It is important to note that propagation
cannot be purely TEM because of this inhomogeneity: the dielectric constant of the
material above the line (air) differs from that below it. Satisfying the boundary con-
ditions on the electric field at the interface requires a field component in the direction
of propagation. Loosely speaking, the portion of the wave below the line “wants” to
propagate at a lower velocity than the portion above. Perhaps it is thus no surprise
that rigorous theoretical treatments of this inhomogeneous structure are complex.
The notion of “quasi-TEM” propagation is therefore usually invoked as a simplify-
ing concept, in which the structure is treated as equivalent to a line surrounded by a
uniform material whose dielectric constant has been suitably adjusted downward to
yield an effective (averaged) dielectric constant.

10 Also see K. C. Gupta, R. Garg, and R. Chadha, Computer-Aided Design of Microwave Circuits,
Artech House, Dedham, MA, 1981. Cohn’s formula, based on conformal mapping techniques,
does not take into account nonzero conductor thickness.
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Despite its shortcomings, microstrip is extremely popular because the line isn’t
buried, making it readily accessible. The standard way to make prototype boards in-
volves etching a copper-clad piece of FR4 on which the desired pattern has been
defined in a chemical resist. A faster way, and one that uses no toxic substances, is
to lay down the conductor pattern with adhesive copper foil tape. A utility knife is
ideal for trimming the foil to the desired dimensions. This construction technique is
of course limited to use at frequencies low enough that the dimensional (in)stability
may be tolerated.

Copper foil tape is usually a special-order item from electronics supply distribu-
tors; it is not commonly stocked by most chain electronic stores. However it is readily
available from a surprising source: hardware stores and garden shops. It is sold as a
barrier to snails. A representative brand is SureFire™ Slug & Snail copper barrier
tape, sold by chains such as Ace Hardware. To use copper foil tape, first prepare the
circuit board by gently abrading away any protective surface coating with a plastic
scouring pad (a metal pad would work, but it’s just a bad idea to use something that is
guaranteed to leave conductive bits all over your circuit board and workbench). Then
cut the copper tape to the desired dimensions and position it on the FR4. Smooth
the tape with a plastic object such as the barrel of a pen, and trim any excess foil as
needed. That’s all there is to it. The beauty of this method, aside from its simplic-
ity, is that modifications are trivial. If you make a mistake (such as cutting off too
much material with the knife), no problem: remove the tape, clean the board again,
and affix a new piece of tape. Whether formed in this way or with conventional PC
board fabrication methods, components are easily connected to the line, facilitating
construction, probing, adjustment, troubleshooting, and repair.

One unanticipated design challenge is the variety of published equations for the
characteristic impedance of these lines. Fortunately, a comparison reveals that these
equations typically differ in their predictions by only a few percent (at least, for im-
pedances near 50 �; deviations can become large for other impedances). For the
microstrip case, a representative set of equations is as follows:11

Z0 ≈
√

µr

εr

µ0

ε0
· H

W
·
[
1 + 1.735ε−0.0724

r ·
(
W

H

)−0.836 ]−1

. (9)

In nearly all cases, the permeability µ is that of free space, 4π × 10−7 H/m, or ap-
proximately 1.257 µH/m.

11 R. S. Carson, High Frequency Amplifiers, 2nd ed., Wiley, New York, 1982, p. 78. For much more
accurate (and infinitely more complicated) equations, see E. Hammerstad and O. Jensen, “Accu-
rate Models for Microstrip Computer-Aided Design,” IEEE MTT-S Digest, June 1980, pp. 407–9;
R. H. Jansen and M. Kirschning, “Arguments and an Accurate Model for the Power-Current For-
mulation of Microstrip Characteristic Impedance,” Archiv für Elektronik und Übertragungstechnik,
v. 37, no. 3/4, March /April 1983, pp. 108–12; and M. Kirschning and R. H. Jansen, “Accurate
Wide-Range Design Equations for the Frequency-Dependent Characteristic of Coupled Microstrip
Lines,” IEEE Trans. Microwave Theory and Tech., v. 32, no. 1, January 1984, pp. 83–90. These
quasi-empirical equations result from fitting to a large number of field-solver simulations.
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Table 7.2. Representative physical widths of
microstrip lines in FR4 (εr = 4.4)

H W for 50 � W for 100 � fc @ 50 �

1/16" (1.6 mm), 1-oz. Cu 3.0 mm 0.65 mm 26 GHz
1/32" (0.8 mm), 1-oz. Cu 1.5 mm 0.30 mm 48 GHz

Note that Eqn. 9 neglects any dependence on conductor thickness. As a result, it
is somewhat in error, although generally by completely negligible amounts. To de-
velop a first approximation, one may pretend that the vertical sides of the conductor
contribute to the width as if they were folded flat. Thus, one may take the increase
in effective width to be on the order of 2T .

For fussier folks, the following equation may be used to compute a more accurate
value for the effective width:

Weff = W + T

π
·
[

ln

(
2H

T

)
+ 1

]
. (10)

No matter how it’s computed, the effective width should be used in Eqn. 9. As a
specific numerical example, consider a board 1/32" (0.8 mm) thick with 1-oz copper
cladding (which, as stated earlier, is ∼35µm thick). Assuming a bulk relative dielec-
tric constant of 4.4, the mathematical correction given by Eqn.10 in this case amounts
to an effective electrical width increase of just ∼1.5T, or 2.0 mil (50 µm). This cor-
rection is similar in magnitude to typical manufacturing tolerances (e.g., 3 mil) and
is certainly smaller than what one can consistently achieve with the manual knife-
and-copper tape method. Hence, it is frequently ignored. For this example, then, the
physical width needs to be approximately 1.5 mm, or about 58 mil (i.e., 0.058") for a
50-� line (see Table 7.2). On 1/16" FR4 boards, it so happens that slicing 1/4"-wide
copper foil tape (a standard width in the U.S.) straight down the middle yields con-
ductors that produce a 50-� impedance to a very good approximation.

As mentioned earlier, the loss of a 50-� microstrip line over 1/16" material is typ-
ically about 0.07–0.09 dB/inch /GHz (∼0.03 dB/cm/GHz) for FR4, while that for
RO4003 is a fourth that value.12 Figure 7.3 is a plot of typical transmission as a func-
tion of frequency for a 50-� microstrip line. In this particular case, the corresponding
loss is approximately 0.03 dB/cm/GHz. As is evident from the plot, the attenuation
(on a dB scale) does increase linearly with frequency over quite a wide frequency
range (here, the plot extends over a two-decade range, from 50 MHz to 5.05 GHz).

As with connectors and any other conveyance for electromagnetic energy, one
must be aware of the possibility of moding with transmission lines. In the case of
microstrip (and stripline), moding begins to occur either when the frequency is high

12 Continue to keep in mind, however, the variability of FR4. Also note again that this loss behavior
implies a constant dB loss per wavelength.
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7.3 TR ANSMISSION LINES ON PC BOARDS 167

F IGURE 7.3. Typical transmission vs. frequency of
50-� microstrip line on 1.6-mm FR4

enough that a half-wavelength just fits across the width of the line, or approximately
when a quarter-wavelength fits between the line and the ground plane.13 The for-
mer condition describes a transverse resonance, whereas the latter corresponds to
conditions favorable to the coupling of energy to a surface wave that may propagate
along/within the dielectric.

The inhomogeneity of microstrip makes it difficult to derive these limits rigorously.
However, one may derive a very crude estimate by glibly ignoring this inhomogeneity.
Thus, the first transverse resonance possesses a wavelength given approximately by:

λc ≈ 2W
√
εr . (11)

The corresponding frequency is thus

fc ≈ c/2W
√
εr . (12)

Fringing effects cause the line to act electrically as if it were somewhat wider than W.

Derivation of a formula for the onset of surface-wave moding is even more in-
volved. Continuing with our crude rules of thumb, though, we may estimate this
moding frequency very roughly as:

fT ≈ c/4H
√
εr . (13)

13 The distance between the line and its image is a half-wavelength under this condition, so the mod-
ing limits can all be expressed in terms of half-wavelength criteria.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511812941.008
Downloaded from https://www.cambridge.org/core. The Librarian-Seeley Historical Library, on 18 Dec 2019 at 06:16:41, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511812941.008
https://www.cambridge.org/core


168 CHAPTER 7 MICROSTRIP, STR IPL INE, AND PL ANAR PASSIVE ELEMENTS

A more rigorous derivation yields14

fT = c

2πH

1√
εr − 1

atan(εr). (14)

The approximate equation is seen to be somewhat conservative in that it predicts on-
set of surface-wave “launching” at a lower frequency than where it actually occurs.
These two equations converge as εr approaches infinity.

For 50-� lines on FR4, the W/H ratio is quite close to 2, so the cutoff frequencies
for these two conditions are similar. Since smaller dimensions are required to push
up the mode-free bandwidth, maintenance of a constant line impedance requires that
the substrate thickness shrink with the line width. The trade-off is that narrower lines
have higher conductor losses, so line attenuation increases as one seeks to operate
at ever higher frequencies. This unfortunate property is common to all transmission
lines (e.g., microstrip, stripline, coaxial) and is one characteristic that motivates the
use of waveguides at higher frequencies.

The last column of Table 7.2 gives approximate values for the frequency corre-
sponding to the onset of transverse resonance. Good impedance characteristics are
preserved for frequencies somewhat (e.g., 5–10%) below mode cutoff. Finally, note
that even 1/16" FR4 has a high enough mode-free bandwidth to operate at any fre-
quency that makes sense for this material.

7.3.1 COPL ANAR WAVEGUIDE (CPW)
AND COPL ANAR STRIP (CPS)

Microstrip, as convenient as it is, still suffers from some deficiencies. One is that
significant energy can be coupled into the substrate, leading to loss if the substrate
is dissipative. Another is that probing tiny structures is exceedingly difficult because
the ground plane is on the other side of the dielectric. And connections to ground can
suffer because of the inductance of via connections. Populating the circuit with nu-
merous vias to ground to solve these problems adds manufacturing complexity and
expense, so that option does not represent a very practical solution.

An alternative is to use coplanar conductors, thus assuring that both ground and
signal lines are accessible from the top surface. Needless to say, the coplanar arrange-
ment greatly facilitates probing at millimeter wave frequencies and beyond. If three
lines in a ground–signal–ground configuration are used, it is generally known as a
coplanar waveguide (CPW) or coplanar transmission line. If a pair of lines is used in
a ground–signal configuration, it is generally known as a coplanar strip (CPS). See
Figure 7.4.

These structures have an additional advantage: different line widths and spac-
ings can produce the same characteristic impedance. Thus lines may remain small

14 G. Vendelin, “Limitations on Stripline,” Microwave Journal, v. 13, no. 5, 1970, pp. 63–9.
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7.3 TR ANSMISSION LINES ON PC BOARDS 169

F IGURE 7.4. Coplanar waveguide (left) and coplanar strip

everywhere except at places that must interface to larger connectors, for example.
Consequently, CPW provides excellent transitions to coaxial connectors. For these
coplanar structures, performance generally improves as the ratio W/H shrinks be-
cause the increasing edge coupling implies less energy coupled into a potentially
lossy substrate. At the same time, dispersion is also reduced for the same reason.

From Figure 7.4 it is apparent that these two structures are complementary, in a
sense. That complementarity is formally acknowledged by using the same variable
W for both the gap between CPW lines and the width of CPS conductors. The re-
sulting equations for the characteristic impedance also reflect this complementarity,
as we’ll see. Thanks to the conformal mapping techniques used in the derivation,
elliptic functions arise in the expressions, as they do for stripline. The terms “con-
formal mapping” and “elliptic functions” are actually codewords for “impossible to
follow the derivation” and “hard to compute with.” Any doubts about that statement
are readily dispelled by examining the following equations.15

We have:

Z0 =




ηK ′(k)
4
√
εeK(k)

for CPW;

ηK(k)√
εeK ′(k)

for CPS.

(15)

(16)

Those look simple, but the subexpressions are not quite trivial. First,

k = S/2

S/2 + W
, (17)

εe = 1 + εr − 1

2

K ′(k)K(k1)

K(k)K ′(k1)
. (18)

In turn,

k1 = sinh

(
π

S

4H

)/
sinh

(
π
S/2 + W

2H

)
. (19)

15 We use the same notation and equations presented by I. Bahl and P. Bhartia, Microwave Solid-State
Circuit Design (Wiley, New York, 1988), with simplifications and minor corrections. In turn they
cite as the original source G. Ghione and C. Naldi, “Analytical Formulas for Coplanar Lines in
Hybrid and Monolithic MICs,” Electronic Letters, v. 20, 1984, pp. 179–81.
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Then, we have again

K ′(k)
K(k)

=




[
1

π
ln

(
2

1 + √
k ′

1 − √
k ′

)]
for 0 ≤ k ≤ 0.707,

[
1

π
ln

(
2

1 + √
k

1 − √
k

)]−1

for 0.707 ≤ k ≤ 1,

(20)

(21)

where K(k) is again the complete elliptic integral of the first kind, and K ′ is again
its complementary function.

Finally, it remains true that

K ′(k) = k(k ′) (22)

and that
k ′ =

√
1 − k2. (23)

Although we see that the equations are hardly simple, they are nonetheless readily
encoded in a spreadsheet or similar tool.

Because these edge-coupled structures concentrate the electric field in the lateral
direction, the substrate becomes less important as the spacing/height ratio shrinks.
Consequently, line attenuation may actually improve if the substrate is lossy. At the
same time, reducing the amount of flux in the substrate diminishes the effective in-
homogeneity, resulting in reduced dispersion.

7.3.2 L INE-TO-L INE DISCONTINUIT IES

On occasion, one may wish to employ transmission lines of differing characteris-
tic impedance. Even if one never uses more than one impedance, it is not always
convenient (or possible) to run only perfectly straight lengths of transmission line.
Consequently it’s important to understand the nature of discontinuities that may exist
between segments of transmission line. For example, if one connects two lines of
unequal characteristic impedance (unequal width), the corresponding circuit model
is not simply that of two constant-impedance lines in cascade – contrary to what you
might expect. There is an additional complexity resulting from the distortion in field
patterns that accompanies the distortion in geometry. Additional field components
generally must be produced in the vicinity of the discontinuity in order to satisfy
boundary conditions there, necessarily causing a departure from pure TEM propaga-
tion; higher-order modes must be excited. Recalling that deriving the characteristic
impedance assumes TEM propagation, it should be no surprise that a more complex
circuit model is required to describe line behavior in such cases. For similar rea-
sons, complexities may arise if there are any bends, even if one intends a constant
line impedance.

Thus an assumption of pure TEM propagation does not allow us to stitch the fields
together properly at geometric discontinuities. If, as is common, these discontinu-
ities excite modes that do not propagate then their effect is primarily to add a reactive
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7.3 TR ANSMISSION LINES ON PC BOARDS 171

F IGURE 7.5. More realistic model of
“open”-circuited microstrip line

F IGURE 7.6. Approximate picture of end fringing (top view)

component to the impedance. If the energy is primarily stored in the electric field,
the reactance is capacitive; if stored in the magnetic field, the reactance is inductive.
If the physical extent of the discontinuity is short at all wavelengths of interest, then
a single “lump” is an adequate description. Otherwise, a π - or T-model (or possibly
cascades of such models) is needed.

Consider first the simple case of an open-circuited line. Because of fringing, the
electric field does not drop abruptly to zero at the end of the line. This phenomenon
is familiar; it’s the reason parallel-plate capacitors (and antennas) act as if they are
somewhat larger than their physical dimensions. As a consequence, a more accurate
model for the “open”-circuited line is actually a capacitively loaded line, as shown
in Figure 7.5.

An effective length extension of approximately H/2 is a reasonable first estimate,
where H is the dielectric thickness as defined before (see Section 7.9 for a derivation,
if you are really in the mood for lots of equations). From a top view (Figure 7.6), the
fringing field also extends above and below the line, perhaps adding another effective
area of approximately (H/2)2. Thus, as a second crude approximation,

Ceq ≈ ε

H

(
W

H

2
+ H 2

4

)
= ε

(
W

2
+ H

4

)
. (24)

If a more accurate estimate of the effective length extension �l is required, one
may use an empirical formula due to Hammerstad and Bekkadal:16

�l

H
≈ 0.412

(
εre + 0.3

εre − 0.258

)(
W/H + 0.262

W/H + 0.813

)
. (25)

Here εre is the effective relative dielectric constant, which is given by

16 Hammerstad and Bekkadal, A Microstrip Handbook.
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F IGURE 7.7. Sharp bend

F IGURE 7.8. Excess capacitance
of sharp bend

εre = εr + 1

2
+ εr − 1

2

(
1 + 10

H

W

)−1/2

. (26)

Now consider a bend in a line of nominally fixed characteristic impedance. First,
notice that this structure does not maintain constant conductor width throughout the
bend (loosely identified as the region between the two intersecting boundary lines
shown in Figure 7.7). The additional metal in the vicinity of the outer corner acts, to
first order, as a shunt capacitance (a more sophisticated model would be a low-pass
π -network with two shunt capacitances separated by some series inductance17 ). In
noncritical applications, that capacitive loading may be ignored. More often, how-
ever, the reactive loading (and consequent low-pass filtering) is troublesome, and
something must be done about it.

At minimum, we need some idea about how large a capacitance is produced by the
corner so that we may evaluate its effect. As a very crude approximation, the shunt
capacitance may be estimated as equal to that of the lighter triangle in Figure 7.8.
The logical consequence of this identification is that compensation can be effected
simply by slicing off the offending metal, as shown in Figure 7.9. The figure shows a
more general situation in which the chamfer is of length a, because a detailed analy-
sis reveals that optimum compensation results when an area somewhat greater than

17 The series inductance models the fact that there is magnetic energy storage due to the current flow-
ing in the bend. Alternatively, a T-network with two series inductances and a shunt capacitance is
a perfectly acceptable model as well.
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F IGURE 7.9. Mitered (chamfered) bend

F IGURE 7.10. Mitering right-angle bend with lines of different widths

that highlighted in Figure 7.8 is removed. As a specific example, a value of approx-
imately 1.8W, rather than

√
2W, provides optimum compensation for a right-angle

bend.18 Fortunately, the optimum conditions are relatively flat, so small deviations
from the optimum dimensions do not cause dramatic degradation.

To accommodate bends involving lines of different widths, one may use the ap-
proach suggested by Figure 7.10.19 Here, the angle θ is given by

θ = tan−1(W1/W2) (27)

and the inner corner-to-miter distance b is

b = 0.4
√
W 2

1 + W 2
2 . (28)

The factor 0.4 is the default used by Puff, but it may be adjusted if necessary.
An alternative to a mitered transition is a smooth, circular bend with a radius of

curvature that is at least several times the width of the line (a minimum value of 3×
is often used as a rule of thumb). Parasitic reactances can be reduced to negligible
levels with this type of bend, known variously as a swept or circular bend; see Fig-
ure 7.11. The mitered bend is much more popular because it works well enough for

18 D. M. Pozar, Microwave Engineering, 2nd ed., Wiley, New York, 1998.
19 This method is taken from the Puff 2.1 user’s manual, chap. 7.
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F IGURE 7.11. Circular (or swept) bend

F IGURE 7.12. Step discontinuity

most applications, it is supported by more layout tools, and engineers are congeni-
tally lazy (er, efficient).

Another commonly occurring case is a step transition from one impedance (width)
to another. Again to first order, the step discontinuity can be modeled as a shunt ca-
pacitance; this is shown in Figure 7.12. As with all of these cases, exact equations for
the parasitics associated with the step discontinuity are somewhat involved. How-
ever, an intuitively appealing (but admittedly crude) approximation can be developed
by treating the wider portion of the line as simply producing a capacitive discontinu-
ity. The capacitance may be computed to a first approximation as that of a parallel
plate capacitor of area l(W2 −W1), where l is the length of the wide portion. A small
refinement in the estimate may be obtained by accounting for the small amount of
fringing capacitance, but this is needed only for capacitors made with small l. In
either case, a first-order model consists of two segments of transmission line of width
W1 and at whose junction there is a shunt capacitance to ground.

When connecting together two lines of different width, it is best to use a tapered
transition rather than a step. A sufficiently gradual taper reduces the density of en-
ergy stored reactively in higher-order modes. A rough guideline as to what constitutes
“sufficiently gradual” is to select the length of the tapered region at least as long as
a quarter-wavelength of the lowest-frequency component for which a match must be
preserved. Although a simple linear taper is shown in Figure 7.13 (because it’s easy to
draw, and the author is lazy), other taper shapes are better, as discussed in Chapter 4.

From the foregoing examples, it’s easy to get the impression that every discontinu-
ity is inherently capacitive in nature. Just to disabuse you of that notion, in Figure 7.14
we depict a case where one encounters an inductive parasitic. And now that we’ve
given away the general answer, we can pretend that we could have anticipated it all
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F IGURE 7.13. Tapered transition between two lines

F IGURE 7.14. Notched line

along. The narrower section produces current crowding, increasing the magnetic en-
ergy density there. This increase may be interpreted as the action of an inductance.

Alternatively, consider the following: If the smaller-width section were of infinite
length, then propagation would be TEM and its impedance would be higher than that
of the wider section. Thus, for any suitably short segment of such a line terminated
in a lower impedance, its impedance behavior will be similar to that of an induc-
tance. Even though we know that TEM propagation is a poor assumption near the
step change in conductor width, we will nonetheless calculate the inductance value
as if propagation were TEM.

From the equation for the impedance of a transmission line segment (see Eqn. 31
in Section 7.4), we may derive the following expression for the inductance of a short
stub, given our stated assumptions:

L ≈
lZ0,n

√
εr,eff,n

[
1 −

(
Z0,w

Z0,n

)2]
c

, (29)

where the subscripts n and w stand for narrow and wide, respectively. At least this
equation has the correct general behavior, with the inductance going to zero as the
notch depth does. Yet because of the loosely justified assumptions used in its deriva-
tion, one should not rely on this equation except for a crude estimate.

More elaborate models take into account not only the shunt capacitance that arises
from the same length-extension mechanism considered earlier (end-to-ground fring-
ing) but also a capacitance in parallel with the inductance that arises from end-to-end
fringing. These enhancements are left as “an exercise for the reader.”

Another geometry that arises frequently is a T-connection of lines. In this case,
the capacitive coupling between the two lines near the inner corners of the junction
effectively produces a bypass path. See Figure 7.15. As suggested by the arrows,
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F IGURE 7.15. Illustration of
T-junction shortening

capacitive coupling (for the most part) essentially short-circuits around the corner,
making irrelevant a small segment of the vertical line where it meets the horizontal
line. That is, that small segment behaves as if it is absent; the vertical line acts shorter
than expected. For many situations, the effective shortening is not a problem. How-
ever, there are also certain configurations in which the lines must be some specified
length. In those cases, one must lengthen the lines for them to possess the correct
electrical length. A first-order estimate is that the line should be lengthened by ap-
proximately H, the dielectric thickness. Equation 61 (in Section 7.6) provides a more
accurate estimate for the required lengthening.

As with the T-junction, shortening occurs at the junction of a wide and narrow line,
and for the same reason. The amount of shortening, �l, is approximately given by20

�l

H
= 120π

Z1

√
εre,ser

[
0.5 − 0.16

Z1

Z2

(
1 − 2 ln

[
Z1

Z2

])]
. (30)

7.3.3 TR ANSIT IONS BETWEEN CONNEC TORS
AND TR ANSMISSION LINES

The transition from a coaxial connector to a planar transmission line can introduce
serious impedance artifacts if badly handled. Just as with the line-to-line case, one
important requirement is to avoid sharp bends in order to minimize the impact on
impedance. Strictly satisfying this requirement, however, usually implies the mount-
ing of connectors so that their conductor axes are in the plane of the circuit board
(Figure 7.16). Needless to say, this electrically optimal arrangement is inconvenient
in many cases, as it limits the position of connectors to the periphery of the PC board.

It is much more convenient to mount connectors on the surface of a PC board,
but such an orientation necessarily forces signals to traverse a right-angle bend. A
mitered or circular transition through the PC board is not practically realized, so it
would seem that serious degradation of signal quality is simply inevitable. While
some amount of degradation certainly can’t be avoided, its magnitude can be reduced

20 Puff 2.1 manual, p. 37. In turn, the manual cites the original source as Hammerstad and Bekkadal,
A Microstrip Handbook.
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7.3 TR ANSMISSION LINES ON PC BOARDS 177

F IGURE 7.16. Connector mounted in plane (side view)

F IGURE 7.17. Improved SMA-to-microstrip transition
(view from line side of PC board)

considerably by following a few simple layout rules. These compensation methods
can be anticipated from our experience with the pure microstrip examples we’ve al-
ready studied. We expect the right-angle bend to introduce a shunt capacitance, just
as in the earlier planar cases. Compensation then involves modification of the layout
to reduce the capacitance in the vicinity of the bend. As a specific example, consider
the mounting of an SMA connector. Much of the ground plane should be removed
from around the center pin to reduce the shunt capacitance and thereby maintain an
approximately constant impedance through the transition; see Figure 7.17. Versions
of other connectors intended for PC board mounting should follow the same general
layout strategy.

Note that the PC board versions of both the SMA and BNC normally require the
drilling of five holes (one for the center conductor and four more for the grounded
mounting flange). For rapid prototyping purposes, one may instead use a chassis-
mount (“bulkhead”) BNC, so that only one hole needs to be drilled. There is a
challenge, though, because the threaded bushing of such a BNC is much longer than
the thickness of any PC board. Thus, if one drills a hole large enough to accom-
modate the bushing, the center pin ends up sticking out a large distance from the
surface of the board. Nevertheless, it is possible to use such BNCs if one employs a
somewhat unorthodox mounting arrangement: Drill a single hole just large enough
to allow only the BNC’s Teflon dielectric – not the threads – to protrude through the
board. Mount the BNC so that the threads may then be soldered to the ground-plane
side (the heat required may exceed what many small soldering irons can provide),
being careful to solder a nice, continuous bead around the full circumference.21 Fin-
ish by soldering the microstrip line to the center pin, which should be nearly flush

21 Make sure that the connectors are not coated with stainless steel; these won’t solder! In these
or other stubborn cases, sandpaper or a file can be used to remove surface coatings that prevent
soldering.
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178 CHAPTER 7 MICROSTRIP, STR IPL INE, AND PL ANAR PASSIVE ELEMENTS

F IGURE 7.18. Unorthodox mounting method for
bulkhead BNC (side view)

with the board (use material 1/16" – or 1.6 mm – thick for a near-perfect fit). Then
trim the connector’s dielectric if necessary so that it ends up flush with the PC board.
Clearly, such an unprofessional-looking mounting arrangement is completely unsuit-
able for a commercial product, but it is surprisingly effective for hobbyist and student
applications in the low-gigahertz frequency range. In any case, it is certainly a good
match to the qualities of FR4 and is by far the lowest-cost method for building decent
circuits in that frequency range.

Despite its cheesiness, this arrangement is precisely the one used with excellent
results in a microwave circuits laboratory course at Stanford for the past two decades.
See Figure 7.18. If you build the coax-to-microstrip transition in the unorthodox
manner described, you will invariably find that the discontinuity at the right-angle
transition is a bit inductive in character, indicating that this mounting method actually
overcompensates for the typically capacitive bend. The addition of a little capaci-
tance in the vicinity of the transition (with a suitable amount of copper foil tape) can
improve the quality of the transition significantly. Iteration with the guidance of a
network analyzer or time-domain reflectometer (TDR) is highly recommended if the
quality of the transition is important.

7.4 PASSIVES M ADE FROM TR ANSMISSION
LINE SEGMENTS

In this section, we recognize explicitly that a line is in reality an impedance trans-
former. This transformation derives fundamentally from the delay in voltage and
current associated with finite propagation velocity. The length-dependent phase shift
between V and I causes a corresponding length-dependent change in impedance.
The versatility of transmission lines as circuit elements ultimately derives from ex-
ploitation of this effect.

Recall that, for a lossless line terminated at some distance l in some arbitrary load
impedance ZL, the impedance looking into the end at z = 0 may be expressed as

Z(l)

Z0
= ZLn + j tanβl

1 + jZLn tanβl
, (31)

where β is the imaginary part of the propagation constant, γ :

β = Im[γ ] = ω
√
LC = ω/v, (32)
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7.4 PASSIVES M ADE FROM TR ANSMISSION LINE SEGMENTS 179

where v is the propagation velocity. Calculating the latter is a bit complicated in the
case of microstrip because the line is not surrounded by a uniform dielectric. The
effective dielectric constant is therefore intermediate between that of the board ma-
terial and that of air. Additional approximate equations for the effective dielectric
constant are as follows:22

εr,eff ≈
{

1 + 0.63 · (εr − 1) · (W/H )0.1255 for W/H � 0.6;
1 + 0.6 · (εr − 1) · (W/H )0.0297 for W/H < 0.6.

(33)

(34)

For typical 50-� lines on FR4, W/H ≈ 2 and so the effective dielectric constant is
around 3.5 (if the actual bulk εr is 4.5). Wavelengths are thus a bit more than half
that in free space.

We should expect, from physical arguments and intuition, that short segments of
transmission line can be used to realize either inductances or capacitances. Specifi-
cally, let’s review two extreme cases. In the first, assume that the transmission line
is terminated in an open circuit. Then a short segment of such a line appears simply
as a capacitor, since all we have are two conductors separated by a dielectric. Con-
versely, a short segment of line terminated in a short circuit will appear inductive,
since we now have a current loop.

To derive an explicit formula for the capacitance, let the load impedance go to in-
finity in Eqn. 32. Then, the input impedance of a short piece of open-circuited line
is approximately

Z ≈ Z0

jω(l/v)
. (35)

The capacitance is therefore

C = l

vZ0
= l

√
εr,eff

cZ0
. (36)

A helpful mnemonic is that the time constant Z0C is simply the one-way time of
flight.

In applications where space is not a burdensome constraint, one should not over-
look the option of making capacitors in this manner. Even if one does not realize
all of a desired amount of capacitance this way, it is convenient for adjustment pur-
poses to have at least part of the capacitance come from PC board traces that may
be trimmed after fabrication. It is valuable in any case to know how much capaci-
tance is associated with a given area of conductor, if only to facilitate estimation of
layout parasitics. With FR4, for example, one can expect about 2.5 pF/cm2 when
using a 1/16" (1.6-mm)–thick substrate. Furthermore, the loss of FR4 is somewhat
less than – but in the same general range as – that of X7R or Y5V ceramic dielec-
tric materials used in discrete capacitors. Of course, lower loss (but somewhat lower

22 Carson, High Frequency Amplifiers. These equations are allegedly inferior to the Hammerstad–
Bekkadal equation (Eqn. 26) offered earlier.
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180 CHAPTER 7 MICROSTRIP, STR IPL INE, AND PL ANAR PASSIVE ELEMENTS

capacitance per unit area) is obtained with a higher-quality board material, such as
PTFE or RO4003.

An important consideration is that the linear dimensions must be small compared
to a wavelength at the highest frequency of interest. Otherwise, distributed effects
will alter the impedance behavior.

Similarly, for the inductance of a short line terminated in a short circuit we have

L = lZ0

v
= lZ0

√
εr,eff

c
. (37)

Again, we find that the time constant (here, L/Z0) is the one-way time of flight.
Additional formulas for inductances of various kinds are given in Appendix A

(Section 7.8). Many of these have appeared earlier in Chapter 6 but are collected in
this appendix for convenient reference.

Once a component has been designed, one must verify that the calculated line di-
mensions are indeed very small compared with an electrical wavelength (which may
be computed using the given expressions for effective dielectric constant). If not, the
approximations will be significantly in error.

In practice, these inductors and capacitors might not always be connected to open
or short circuits. To validate the foregoing nonetheless, we can control the charac-
teristic impedance of the lines so that their terminations may be considered as opens
or shorts in comparison (see e.g. Eqn. 29). So, to make a capacitor, we would want
to choose its Z0 as low as possible (or practical). Conversely, we wish to choose Z0

as high as possible to make an inductor, so that any impedance loading it appears
approximately as a short circuit, relatively speaking.

Aside from the flexibility of being able to realize component values that span a
continuum, using transmission line elements often permits us to build components
featuring better characteristics than discrete ones. For example, building a 1-nH in-
ductor is much easier in microstrip than in discrete form.

There are a few practical issues to consider when implementing transmission line
components. First, one cannot specify arbitrarily high characteristic impedances for
inductors because there is always a lower bound on the width of lines that may be
fabricated reliably. Assuming a typical manufacturing tolerance of 2 mil, and sup-
posing that this variation is allowed to represent at most 20% of the total width, one
may assume a minimum practical linewidth of about 10 mil.23 Hence, on 1/16" FR4,
practical line impedances rarely exceed about 200 �. This value is nonetheless suffi-
ciently high for many purposes. The effective series resistance tends to be somewhat
large, however, so such inductors cannot be used where a high Q is required.

23 These values are typical for FR4. On more rigid substrates, reliable fabrication of narrower lines
becomes possible. Depending on the substrate type, linewidths of perhaps 1 mil (25µm) represent
the current state of the art, although such narrow lines are hardly common.
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7.5 RESONATORS 181

When realizing a capacitor, there are two practical constraints. If the linewidth
gets too large, it may become an appreciable fraction of a wavelength, invalidating
the approximations. The other limitation is simply one of board space.

In the next section, we relax the constraint on dimensions and also consider slightly
lossy lines. In so doing we derive an explicit expression for the effective series re-
sistance of elements constructed out of transmission line, allowing the computation
of Q.

7.5 RESONATORS

The foregoing section imposes the constraint that all segments be very short com-
pared with a wavelength. However, Eqn. 31 is not restricted to this condition; the
constraint on length simply guarantees that only pure reactances are produced. In this
section, we consider transmission line segments that purposefully violate our previ-
ous constraint in order to produce “impure” reactances. Specifically, let us study the
input impedance of a shorted line that is nominally λ/4 in electrical length. At the
frequency where the line is precisely λ/4 in extent, the input impedance is ideally
infinite (assuming no loss). As the frequency increases from this condition, the line
is somewhat longer than λ/4. As a consequence, the input impedance appears ca-
pacitive (as can be verified by examination of Eqn. 31). At frequencies where the
effective line length is less than λ/4, the input impedance appears largely inductive.
From this description, it should be clear that such a line behaves very much like a par-
allel RLC tank, even to providing a path at DC. One important difference, however,
is that the transmission line version has multiple resonances whereas the lumped tank
only has one.

A dual analysis of an open-circuited λ/4 line reveals that it behaves a great deal
like a series RLC network. Whether open- or short-circuited, the resonant nature of
λ/4 lines is widely exploited to make tanks for oscillators and filters (as discussed in
detail in Chapters 15 and 23, respectively).

For this class of resonators, the Q-value is a function of conductor and dielectric
losses, as well as of radiation. Because of its importance, we now undertake an ap-
proximate derivation of this critical parameter. In doing so, we will make liberal use
of lessons learned from lumped RLC networks, having already drawn an analogy
between them and resonant λ/4 lines.

For a lumped, series resonant tank, the Q-value at resonance may be expressed as
the ratio of the inductive (or capacitive) reactance to the real part of the impedance.
Now for a lossy transmission line, the normalized impedance is given by

Z(l)

Z0
= ZLn + tanh γl

1 + ZLn tanh γl
, (38)

where the origin is again considered to be located at the load, and the coordinate l is
the location of the port at which the impedance is measured.
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182 CHAPTER 7 MICROSTRIP, STR IPL INE, AND PL ANAR PASSIVE ELEMENTS

In our case the load impedance is infinite, so the expression for the normalized
input impedance simplifies to

Z(l)

Z0
= 1

tanh γl
= 1

tanh(α + jβ)l
. (39)

Because the loss cannot be too great for any resonator worth using, we will simplify
our derivation by assuming that αl � 1. When this condition is satisfied, the input
resistance at resonance is approximately given by

Reff ≈ Z0αl = Z0(αλ/4). (40)

We’ve already found an expression for the equivalent inductance of a short piece
of line, but we cannot use it here because our line is not short in this instance. In-
stead, by equating the slope of the impedance of the line with that of a corresponding
lumped LC network, one finds that there is precisely a factor-of-2 difference:

L = Z0π

4ω0
. (41)

That the effective resonator inductance is smaller by a factor of 2 may be anticipated
from energy considerations. The current varies sinusoidally, rather than being con-
stant, and thus the energy stored in the magnetic field is half what one would compute
from an assumption of constant current.

With this equation for effective inductance, we may compute the quality factor of
an open-circuited λ/4 line as simply

Q = ω0L

Reff

= π

αλ
= ω0

2αvp
= ω0

√
εr,eff

2αc
. (42)

These expressions for Q are quite general, and they allow us to deduce achievable
resonator Q-values from measured or calculated transmission line attenuation and
velocity factors (and vice versa).24

As a specific example, let’s use the values cited earlier for FR4. The attenuation
of a 50-� microstrip line might be approximately 0.07 dB/inch /GHz, correspond-
ing to an α per GHz of about 0.35 Np/m.25 At 1 GHz, a 0.35-Np/m attenuation value
implies an unloaded resonator Q of about 50 (typical loaded Qs are half as large),

24 A frequently asked question is: “Why is Q expressed only in terms of inductance?” Recall that,
at resonance, the reactances of the capacitance and inductance are equal. So, you get the same an-
swer if you use the capacitance to compute Q (don’t take my word; try it). The focus on inductors
is simply historical: discrete inductors generally have worse Q than capacitors, so engineers have
always been obsessed with inductor Q.

25 Remember that a neper (Np) is a factor of e. An amplitude change of one neper therefore corre-
sponds to a power change of about 8.69 dB.
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given a typical effective relative dielectric constant of 3.5.26 Because the line atten-
uation for FR4 is roughly proportional to frequency over a broad range (implying
a dominance by dielectric loss), the achievable resonator Q changes little with fre-
quency when this board material is used. If improvements are needed but changing
the substrate is not permitted (say, for cost reasons), then one may judiciously com-
bine high-quality passive elements with microstrip ones. For example, if we need to
improve a resonator implemented with an open-circuited microstrip line, we could
shorten it (making it look more inductive) and then connect a capacitor from the end
of the line to ground in order to compensate. Shortening the line reduces the peak
voltage along the line and thereby reduces the dielectric loss. Excellent circuits are
thus enabled by selectively using good discrete elements to supplement those made
in inexpensive microstrip.

It is instructive to compare FR4’s unloaded resonator Qs of ∼50 (a usefully large
value, to be sure) with what one may achieve with other materials and geometries. If
RO4003 is used, a fourfold boost in Q is a reasonable expectation because of its su-
perior dielectric loss properties. Use of coaxial cables with low loss dielectrics easily
enables another tripling of Q, allowing the realization of resonators with Q-values
of the order of 1000. Cavity resonators, made out of a closed conducting box or a
solid block of special dielectric material, are capable of still another order of magni-
tude increase in Q. This progressive increase in Q may be understood qualitatively
as follows. Exposed planar structures (such as microstrip) have the lowest Q-values
because radiation losses add to conductor and dielectric loss. Coaxial structures are
better because they can’t radiate. Cavity resonators are even better – partly because
of their lower surface-to-volume ratio and partly because of the absence of an addi-
tional dissipative conductor. The former consideration is important because, loosely
speaking, energy is stored in volumes and dissipated on surfaces. A cube (or better,
a sphere) has a more favorable surface-to-volume ratio than does a cylinder. The di-
electric resonator has no dissipative conductors at all, so if a material with suitably
low loss tangent is employed then exceptionally high Q-values (tens of thousands)
are possible.

7.6 COMBINERS, SPL ITTERS, AND COUPLERS

It is frequently necessary to combine signals from multiple sources to create a sin-
gle output. An example is found in power amplifiers, in which the outputs of several
lower-power stages are to be combined to produce a single high-power output. As
with other linear passive elements, these combiners can be used in reverse to act as
power splitters. When used as splitters, it is possible to obtain either differential or
quadrature outputs, depending on the design details.

26 Recall that the effective constant accounts for the inhomogeneous dielectric medium of microstrip
lines.
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F IGURE 7.19. Lumped resistive 6-dB splitter/combiner
(“Y” version on left, “�” version on right)

F IGURE 7.20. T- and Y-junction splitter/combiner

These elements are of such utility that engineers have expended a great deal of
effort to devise numerous implementations. Space constraints force us to focus on
the more commonly encountered types. We also present both lumped and distributed
versions, partly to aid our understanding of one as a logical extension of the other
and partly to expand our palette of options.

7.6.1 RESIST IVE COMBINERS

The simplest splitter/combiner consists of a network of three resistors, as illustrated
by Figure 7.19. With the values shown, the reader may verify independently that the
network provides a match if all ports are terminated in Z0. At the same time, there is
a 6-dB attenuation in this case. A compensating trait, however, is that the resistive
splitter works well over a large bandwidth.

7.6.2 DISTRIBUTED COMBINERS

Alternative combiners are available for those cases where attenuation is unacceptable.
The simplest lossless microstrip splitter/combiner consists of a junction of three lines,
with the characteristic impedance of two of the lines set equal to twice that of the
third. This is shown in Figure 7.20.

Because each arm must be terminated in its characteristic impedance, this partic-
ular type of combiner requires different terminations on the three ports. This prop-
erty is one potential disadvantage. The T-combiner also suffers from a significant
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7.6 COMBINERS, SPL ITTERS, AND COUPLERS 185

F IGURE 7.21. Wilkinson splitter/combiner (stylized)

F IGURE 7.22. Decomposition of arbitrary voltages into
common- and differential-mode components

impedance discontinuity at the junction of the three arms. As shown, a triangular
notch is usually cut out of the vertical section opposite the Z0 arm in order to provide
a first-order compensation for the shunt capacitive loading caused by the discon-
tinuity. The Y-combiner suffers less from this problem because of the less abrupt
transition. One could use curved transitions (instead of the sharp ones shown) for
still better performance.

A highly ingenious modification of theY-junction by Ernest J. Wilkinson provides
a simultaneous match on all ports as well as isolation between the output ports.27 In
the most general implementation, power may be split among an arbitrary number of
ports. We first examine the simplest case of equal power splitting between two ports.

As seen in Figure 7.21, there are three explicit ports. We shall see that there is ac-
tually a fourth port, located at the midpoint of the resistor. Because this port is not
normally used as an output, it is rarely identified explicitly. However, it is occasion-
ally useful nonetheless to imagine its existence, as we shall see when we consider
generalizations of Wilkinson’s divider.

To determine the values of Z and R corresponding to the conditions of port iso-
lation and equal power division, we may exploit the symmetry of the structure and
explore the operation of the combiner with common-mode and differential-mode in-
puts. Recall from ordinary circuit theory that any pair of voltages (V1,V2) or currents
may be expressed as the superposition of their average (common-mode) value with
their difference, as seen in Figure 7.22. In microwave work, it is customary to refer to

27 Wilkinson, then at Sylvania, describes this element in “N-Way Hybrid Power Combiner,” IRE
Trans. Microwave Theory and Tech., v. 13, January 1960, pp. 116–18.
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F IGURE 7.23. Wilkinson combiner (still stylized)

F IGURE 7.24. Wilkinson combiner after simplification
for even-mode excitation

even- and odd-mode (instead of common- and differential-mode) excitations. They
mean the same thing; it’s just a matter of differing linguistic traditions. No matter
what you call these decompositions, the response of the Wilkinson combiner to any
arbitrary pair of input voltages may be computed simply by finding the responses to
common-mode and differential inputs separately, and then summing those responses.

First consider the common-mode response. To do so, imagine driving both inputs
of the combiner with identical voltages. In that case, we know by symmetry that the
upper and lower halves of the combiner behave identically. To emphasize this sym-
metry, we may redraw the circuit slightly as shown in Figure 7.23.

All we have done is replace the single output line with a parallel combination of
two double-impedance lines (note the shorting wire added at the apex). By symmetry,
we know that no current flows across an imaginary horizontal line bisecting the com-
plete structure. Consequently, we may separate the upper and lower half-circuits.28

No current flows through the resistor, so we may remove it altogether. Similarly, no
current flows through the tiny vertical bar that shorts the two double-impedance lines
together. Carrying out a complete separation thus leaves us with a simplified circuit
in which each of the two halves conveys complete information about the circuit’s
even-mode response. If we arbitrarily choose to eliminate redundancy by eliminat-
ing the bottom half, then the resulting circuit appears as shown in Figure 7.24. It is
evident that an impedance match for the even mode is possible if we choose Z equal
to the geometric mean of the input and output termination impedances:

Z = √
(Z0)(2Z0) = √

2Z0. (43)

Having used the even mode to discover the required characteristic impedance of
the arms, we next use odd-mode analysis in hopes that it might tell us something

28 An equally valid alternative to the path taken here would be to connect the upper and lower
half-circuits in parallel, because corresponding mirror-image points are of equal voltage under
common-mode excitation. This approach leads to the same answer.
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F IGURE 7.25. Wilkinson combiner after
simplification for odd-mode excitations

about the resistor R. In this case, a purely differential (odd) excitation produces anti-
symmetric responses, again enabling simplifications. Because the voltages along the
upper and lower halves are now mirror images of each other, a horizontal line mid-
way through the structure represents a constant-voltage contour of zero value; it’s a
virtual ground. After simplification, the combiner reduces to the half-circuit shown
in Figure 7.25. Here we see that the apex of the high-impedance arms is grounded.
When transformed to the input by the quarter-wavelength arm, this short becomes an
open. Thus, the only loading seen by the odd-mode input is provided by the resistor.
To provide a match to the odd-mode component, we need only satisfy(

R

2
= Z0

)
�⇒ R = 2Z0. (44)

Just as with any other symmetrical circuit (such as a differential amplifier, for
example), we see that use of even- and odd-mode decomposition enables great sim-
plifications in analysis and design. In this specific case, it’s allowed us to identify the
conditions for providing matches separately to even and odd components and then
arrange for the satisfaction of these conditions. Finally, this analysis method also
reveals that the Wilkinson combiner indeed provides the isolation claimed at the out-
set. We’ve already seen that, for even excitations, the upper and lower half-circuits
are decoupled from each other because of an effective open-circuiting of all connec-
tions between them. For odd excitations, the upper and lower half-circuits are again
decoupled, this time because of the virtual short circuit that forms at the midpoint
of the bridging resistance and at the apex of the arms. Because arbitrary excitations
are always expressible as the sum of even and odd mode excitations, the decoupling
holds generally. Thanks to all of these attributes, the Wilkinson splitter/combiner is
an extremely popular microwave element.

Our analysis has revealed that the bridging resistance acts as the termination for
odd-mode components only. In normal operation, the Wilkinson splitter/combiner is
operated symmetrically (i.e., in a purely even mode). Hence, the bridging resistance
normally has only to dissipate incidental odd-mode energy that might arise from im-
perfect matching between loads connected to the two halves. Nevertheless, incidental
doesn’t guarantee small, so it is important to compute the worst-case dissipation and
then select the resistor’s power-handling capability accordingly. A common error is
to omit such a calculation until olfactory cues call attention to the insufficiency of the
resistor’s power ratings.
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F IGURE 7.26. Wilkinson splitter/combiner
(stylized, and definitely not optimum)

F IGURE 7.27. Wilkinson splitter/combiner
(more representative of real layouts)

Practical layouts for the Wilkinson splitter/combiner improve upon the subopti-
mal initial arrangement shown in Figure 7.26. For reasons that should be clear by
now, the transition to the output lines is usually smoother in practice. In fact, practi-
cal Wilkinson combiners often use curved transitions throughout its entire structure
(see Figure 7.27).

Identical Wilkinson combiners may be cascaded to provide additional outputs.
Such binary (or corporate) arrays are sometimes used in power amplifier modules
to combine the outputs of several low-power amplifiers. Wilkinson’s original paper
describes another generalization of his technique to accommodate splitting into an
arbitrary number of paths (not just binary values). That technique in turn may be
extended to permit unequal power splitting as well. These possibilities are best ap-
preciated with a visual aid like Figure 7.28.

As with the two-way case, seeking an impedance match for the even mode permits
us to deduce that the required impedance of the λ/4 arms is given by

Z = √
(NZ0)(Z0) = Z0

√
N. (45)

Providing a match to odd components requires the connection of a resistor of value
R = Z0 from each line to a common point (the virtual port to which we’ve already
alluded) – a point to which no other connections are normally made.

If N exceeds about 10, the required line impedance can grow to values that are
difficult to realize practically in microstrip form. Another practical consideration is
that connecting the bridging resistors gets complex for N > 2, since a simple series
connection no longer suffices. To eliminate or alleviate both of these difficulties, it
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F IGURE 7.28. Generalized N-way Wilkinson splitter/combiner

is sometimes preferable to use a binary tree version, either alone or in combination
with N-way implementation.

One may also use the generalized equal divider as a starting point for designing a
divider that provides unequal power division. Suppose, for example, we wish to split
the output power in a ratio of M :1. We begin consideration of this case with that of
the generalized equal divider in which N = (M + 1); see Figure 7.29.

In the first step of the evolutionary sequence shown in the figure, we simply tie to-
gether M of the (M + 1) output lines. To preserve matching on that output, the load
impedance must be Z0/M there. After appropriate simplifications by way of com-
puting the parallel combination of the rest of the higher-power branch, we obtain the
second of the three designs shown in Figure 7.29.

Next, we scale the result so that the geometric mean of the load impedances equals
Z0. This normalization reduces the likelihood that the impedance of the narrower line
is too high for practical realization. The output terminations are thus scaled upward
by a factor K, and the impedances of the arms are scaled appropriately as well. The
power ratio M thus equals K2. Finally, the two separate resistances for terminating
the odd mode are combined into a single resistor.

Clearly, power may be divided unequally among additional outputs as well. One
need only begin with the generalized N-way divider and then proceed in an analo-
gous fashion.

The Wilkinson combiner may also be realized in lumped form (Figure 7.30). This
alternative version is somewhat more amenable to tuning (as long as the frequency
of operation isn’t too high) and can be made quite compact, particularly at lower fre-
quencies. It shares a limited bandwidth with its microstrip counterpart. As is evident
from the figure, the lumped version simply replaces each λ/4 arm of the microstrip
combiner with a simple π -network transmission line approximation. We adapt here
the relevant design equations from Chapter 2.
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F IGURE 7.29. Evolution of unequal splitter/combiner from N-way Wilkinson

First, choose the L/C ratio to produce the correct arm impedance:√
L/C = √

2Z0. (46)

Next choose the LC product to produce the correct center frequency:

1/
√
LC = ω0. (47)

Solving for each element yields:

C = 1/
√

2ω0Z0, (48)

L = √
2Z0/ω0. (49)
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F IGURE 7.30. Lumped two-way Wilkinson splitter/combiner

Thus, the impedance magnitude of each element is simply the characteristic im-
pedance of the corresponding line. Note also that the two input capacitors may be
combined into a single one. Thus, only three capacitors would be used in practical
implementations. Four are shown in the figure for purely pedagogical reasons.

Finally, the inductors must be spaced far enough apart that we may neglect mag-
netic coupling between them. The required separation is smaller if the inductors are
orthogonal to each other or if they are shielded (e.g., wound as toroids).

7.6.3 HYBRIDS AND BALUNS 29

Hybrids are extremely versatile elements. The first hybrid was invented to solve a
difficult problem in telephony, that of enabling duplex communication over a sin-
gle wire pair. The most straightforward ways to provide duplex capability require
three or four wires (one each for transmit and receive, as well as ground returns for
each). Thanks to hybrids, a single wire pair suffices to support full duplex commu-
nications. This feat relies on the ability to decompose signals into common-mode
(even-mode) and differential (odd-mode) components. By using, say, the even mode
to carry transmissions and the odd mode to receive, one can use a single wire pair to
achieve duplex operation, as seen in Figure 7.31.

A voltage applied to port 1 generates equal secondary voltages at transformer sec-
ondaries A and B. The voltage across A drives a current flow into port D. In turn,
the voltage across port B drives port C with the opposite polarity. The voltage across
port D is the same as that across C, but of the opposite polarity. If you’ve managed
to follow all that and keep track of the polarities, we see that port 1’s voltage ulti-
mately appears across the resistor bridging port 3. That is, port 1 couples to port 3. At
the same time, that the voltages across ports D and C are equal but opposite means
that no net voltage appears across port 2; ports 1 and 2 are isolated from each other.

29 Balun derives from “balanced-to-unbalanced” and thus rhymes with gallon.
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F IGURE 7.31. Classic telephone hybrid30

F IGURE 7.32. Some symbols for a hybrid coupler

Thus, this connection of transformers remarkably allows a microphone and speaker
connected to ports 1 and 2 to share a common wire pair at port 3 without creating an
unwanted internal feedback loop.31

As one might gather from this description, there are a great many ways to imple-
ment the general idea of discrimination on the basis of symmetry, because there are
many ways to realize circuits that are selectively responsive to either differential- or
common-mode signals. In the case of the classic telephone hybrid, a broadband multi-
tap transformer wound on a soft iron core provides this discrimination. At microwave
frequencies, the nonideality of classical transformers motivates alternative realiza-
tions, but the underlying principles are the same.

Before discussing hybrids any further, it’s probably a good idea to provide a defi-
nition. The meaning of hybrid has changed over time, but today it generally refers to
any four-port device that possesses the following properties: matched impedances at
all ports; at least one isolated output port (i.e., a port that produces zero output under
certain input conditions); and equal power division. Thus hybrids are often differen-
tiated by the particular phase relationships among the output port signals.

Two of many symbols for hybrids are shown in Figure 7.32. The figure on the left
shows an internal termination for the isolated port. Many hybrids are constructed this

30 This balun is but one of several types used in dial telephones.
31 In actual telephones, the port isolation is deliberately made a little imperfect (by selecting a can-

cellation impedance R different from the line impedance) so that a person may hear his or her own
voice. The acoustic feedback enabled by this sidetone helps individuals choose an appropriate
speaking amplitude.
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F IGURE 7.33. Ring (or rat-race) hybrid

way as a convenience. In the simplified version on the right, the diagonal lines iden-
tify which port pairs are coupled together, leaving open the question of termination
on the isolated port.

As we will see in this section, there are many different types of hybrids, distin-
guished by implementation details and phase relationships among the port signals.
A 180◦ hybrid, named for its ability to provide two antiphase outputs, is useful for
performing single-ended-to-differential conversion (and vice versa); it can serve as
a splitter or combiner (but not all splitters or combiners are hybrids). In planar mi-
crowave form, a narrowband 180◦ hybrid consists of a closed path (e.g., a circular
loop) of microstrip whose electrical circumference is 3λ/2. Three taps (labeled A,
B, C, and D in Figure 7.33) are separated from each other by λ/4. A signal supplied
to A splits between the clockwise and counterclockwise paths. In traveling to point
B, the clockwise-going signal has been shifted by λ/4 and the counterclockwise sig-
nal by 5λ/4, so they add in phase. In traveling to C, the signals undergo phase shifts
of λ/2 and λ, respectively, leading to cancellation; no signal emerges from that tap.
Finally at tap D, the signals have shifted 3λ/4 in each direction, leading once again
to in-phase addition. Note that the signals emerging from B and D are shifted in
phase from each other by λ/2. Thus a single-ended input at A becomes a differen-
tial signal between B and D. And by reciprocity, a differential input supplied at B
and D combine to produce a single-ended output at A.

The rat-race hybrid is quite versatile, for with different port assignments the hy-
brid performs different functions. For example, a signal supplied to port B will split
into two equal in-phase signals at ports A and C (by symmetry, a signal supplied to
port C will also produce in-phase outputs at B and D). In this case, port D is the
isolated port. Running the argument in reverse, we conclude that equal signals sup-
plied to ports A and C will sum to produce an output at port B. For this reason, port
B is sometimes called the sum port, denoted by 6, even if it used as an input.

A signal supplied to port D produces a differential output between ports A and
C, with port B now acting as the isolated port. Consequently, a differential signal
supplied between ports A and C produces an output at port D. Therefore, port D
is sometimes called the difference port, denoted by �. By superposition, we may
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conclude that the application of any two arbitrary signals to ports A and C results in
the appearance of their sum at port B and their difference at port D.32

It is important to note that the characteristic impedance of the ring proper must
differ from that of each of the taps if we are to provide an impedance match. The pre-
cise value can be derived by recognizing that the power splits evenly between the two
identically loaded output taps. Therefore, the source driving point A sees an equiva-
lent load impedance of Z0/2 that is effectively driven in parallel through two paths,
each of which has an impedance we’ll call Zring. Recall that a quarter-wave line can
be used as an impedance matcher if its characteristic impedance is chosen as the geo-
metric mean of the source and load impedances. Here, the source impedance is Z0

and the effective load impedance is Z0/2, so a match results when

Zring

2
=

√
Z0 · Z0

2
= Z0√

2
�⇒ Zring = √

2Z0. (50)

A hybrid of this type is known as a ring (or rat-race) hybrid.33 It should be clear
that a circular shape is not strictly necessary. The only requirements are that the total
perimeter and tap locations satisfy the various wavelength criteria, and that the imped-
ance of the ring proper be

√
2 times that of the taps. Note that these wavelength-based

criteria imply that such a hybrid is of necessity a narrowband element. The precise
value of bandwidth depends on the amplitude or phase mismatch (or port reflectance)
that may be tolerated. That said, typical useful bandwidths are generally on the order
of15% for relatively flat amplitude and phase (again, the precise bandwidth is entirely
a function of what is meant by “relatively flat”). If reflectance is more important than
amplitude flatness, the bandwidth is considerably larger (e.g., 50%).

When the hybrid is used to produce differential outputs from a single, ground-
referenced one (or vice versa), it is also known as a balun (for balanced-to-unbalanced
converter). It is often mispronounced “bail-un.” Occasionally you may see the term
unbal used to connote single-ended-to-differential conversion, but balun is much
more common.

Because the classic ring hybrid’s diameter is a function of wavelength (roughly
on the order of λ/2), there may be practical implementation problems at both very
high and very low frequencies. At extremely high frequencies, the diameter of the
ring may be so small that it is of the same order as the feedline width. Aside from
the simple layout challenges that such crowding implies, the mutual proximity of the
feedlines may significantly perturb operation of the hybrid. To fix things up a bit,
one may increase the circumference of the ring by integer multiples of λ/2, taking
care to reposition the ports as necessary to maintain the proper phase relationships.

32 Here, “arbitrary” doesn’t really mean arbitrary, of course. We are limited to signals within the
narrow bandwidth over which the hybrid functions as it should.

33 It is sometimes also called a hybrid ring, but in this context hybrid is the noun and ring is the
adjective, so “ring hybrid” is more grammatically correct.
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F IGURE 7.34. Simple lumped 180◦ splitter/combiner (diplexer version)

At very low frequencies, the problem is simply one of excessive size. In such
cases it is often preferable to consider a lumped alternative, where a microstrip hy-
brid might occupy an unacceptably large area. The network shown in Figure 7.34
is actually a diplexer (i.e., a network that splits signals into two frequency bands).
The low-pass and high-pass filters produce frequency-dependent lagging and leading
phase, respectively. The low-pass filter acts as a lumped approximation to a λ/4 line,
while the high-pass filter is its dual. Each filter’s corner frequency is thus chosen to
produce a phase shift magnitude of 90◦ at the center frequency of operation. Even
though the phase shift of each filter certainly varies with frequency, the difference be-
tween the output phases is a constant 180◦ over a broad frequency range (although the
amplitudes are strictly equal at only one frequency). This lumped implementation
shares with its microstrip cousin the limitation of relatively narrowband operation.
Even though it lacks an isolated output, it’s frequently called a hybrid anyway.34

If Z0 is the source resistance driving the input port, then we wish the input imped-
ance of each filter to equal 2Z0. If a load of value 2ZL connects the two outputs to
each other (equivalent to a single ZL connected to ground from each output), then we
need to choose the characteristic impedance of each filter arm equal to the geometric
mean of 2Z0 and ZL:(√

L/C = √
2Z0ZL

) �⇒ L/C = 2Z0ZL. (51)

The other equation needed to complete the design derives from choosing the corner
frequencies of each filter to produce the necessary quadrature phase shift at the center
frequency of operation for the hybrid:

ω0 = 1/
√
LC. (52)

34 Occasionally the argument is made that – since the two antiphase outputs can be isolated from each
other if the ports are driven with equal amplitudes – the use of hybrid for this circuit represents no
misuse of the term.
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Solving for each element yields:

C = 1/ω0

√
2Z0ZL; (53)

L = √
2Z0ZL/ω0. (54)

Thus, for a 1-GHz hybrid driven by 50 � and terminated in 100 � (50 � from each
output to ground), the component values are about 11.3 nH and 2.25 pF. Either dis-
crete components or microstrip equivalents (or some combination of these) may be
used to implement this hybrid.

If, as is frequently the case, there is some parasitic capacitance in parallel with the
load resistance, then one may resonate it away with a suitable inductance (in princi-
ple) if necessary. In a similar fashion, parasitics in series with the load may also be
removed (again, over a narrow frequency band).

If one desires a more exact lumped analogue to the distributed coupler, the individ-
ual λ/4 segments may be replaced by low-pass π -sections. For somewhat improved
bandwidth, the λ/2 section is best implemented by a high-pass T-network.35 The
reason is, once again, that the phase shifts behave in a complementary fashion with
frequency, leading to a more constant phase shift overall, even though the amplitude
is hardly constant with frequency. The overall coupler then appears as shown in Fig-
ure 7.35.

The element values are chosen so that all reactances equal the ring impedance at
the center frequency of operation:

C1 = 1/ω0Z0

√
2; (55)

L1 = Z0

√
2/ω0. (56)

Lumped implementations have about the same narrow bandwidth (order of 10–15%)
as the distributed versions. They have become increasingly popular because of their
potential for realization in a smaller space than their classical distributed counterparts,
particularly at low frequencies. Even at higher frequencies, the greater amenability
to trimming makes the lumped implementations attractive in certain cases.

In still other applications, it is desirable to generate (or combine) two signals that
are in quadrature, rather than in antiphase, with each other. Examples of such appli-
cations include phase shifters (since combining variable proportions of in-phase and
quadrature components yields arbitrary phase shifts); single-sideband generation and
detection; and quadrature modulation (including the important case of driving diode
mixers with quadrature signals to perform this modulation). A popular microstrip
element for performing these functions is the 90◦ (quadrature) hybrid, also known as
a branchline coupler or hybrid. See Figure 7.36.

35 S. Parisi, “A Lumped-Element Rat-Race Coupler,” Applied Microwaves, August /September 1989,
pp. 84–93.
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F IGURE 7.35. One possible lumped implementation of a 180◦ hybrid

F IGURE 7.36. Branchline hybrid (unmitered 3-dB version shown)

Each arm making up the sides of the central box is nominally λ/4 in length, so
it’s not too hard to see how there could be a quadrature relationship between sig-
nals at adjacent ports. Beyond that observation, however, it is difficult to figure out
the branch impedances by inspection (that is, if you don’t already know the answer).
Again, even- and odd-mode analyses per Figure 7.37 allow us to complete the design
with a minimum of fuss. In order to maximize the similarity with our analysis of the
Wilkinson divider, let us perform even- and odd-mode analysis on adjacent ports A
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F IGURE 7.37. Stylized branchline hybrid for
even- and odd-mode analysis

F IGURE 7.38. Equivalent half-circuit for even mode

and C. If we use current source drives, then the superposition of even and odd exci-
tations allows to analyze what happens when we drive only the main input port.

A common-mode drive allows us to bisect the circuit, just as in the Wilkinson
case; see Figure 7.38. Because a common-mode excitation guarantees the absence
of current flow between the upper and lower half-circuits, bisection results in two
open-circuited stubs, each λ/8 in length. Each stub consequently behaves as a shunt
capacitance of admittance jGP . It is straightforward to use the circuit of Figure 7.38
to show that, if the input impedance is to equal Z0 when the output is terminated in
Z0, we need to satisfy

G2
P − G2

S = Y 2
0 , (57)

where GS = 1/ZS. Inspection of the corresponding equations for the odd-mode case
reveals that the same matching constraint applies to both even- and odd-mode exci-
tations. Producing a match for one component thus automatically produces a match
for the other component.

We see that there are infinitely many combinations of arm impedances that provide
a match. We need to impose an additional constraint to fix the individual values of the
characteristic impedances. That additional constraint is a specification of the ratio of
powers to be delivered to the two outputs. A superposition of even- and odd-mode
responses allows us to compute the ratio of powers delivered to the output ports:

Pout1

Pout2
=

(
Z0

ZP

)2

. (58)

If (as is almost always the case) we desire to split power evenly, then solving for
the corresponding impedances yields:
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F IGURE 7.39. Simulated performance of a representative
4.7-GHz branchline coupler

ZP = Z0; (59)

ZS = Z0/
√

2. (60)

These are the impedances shown in Figure 7.36. The equal power split is often em-
phasized by referring to the coupler as a 3-dB quadrature hybrid.

Although sharp corners are shown in the crude drawing of the branchline coupler,
it is common to miter the outer corners of the Z0/

√
2 arms. One may also use a cir-

cular layout instead of a square, although the square version is much more common.
Like its rat-race cousin, the classic branchline hybrid is a relatively narrowband

device. As the frequency varies, so does the phase shift. Again, the useful bandwidth
depends on one’s definition of “useful,” but as a general rule, the fractional bandwidth
is of the order of 10–15%, just as with the ring hybrid (and for the same reasons).
This small value demands high accuracy in modeling and fabrication. This neces-
sity is well illustrated by a simulation (in this case, by Sonnet Lite 9.51) of a simple
4.7-GHz branchline coupler. Even though this particular coupler’s design uses un-
mitered corners (as in Figure 7.36) and thus is not optimum, its general performance
limits are typical. As can be seen in Figure 7.39, the coupling magnitude quickly de-
viates significantly from the 3-dB target as the frequency varies more than about 5%
away from the design center frequency. At the same time, return loss and isolation
degrade rapidly as well.

The asymmetry in the simulated response is due mainly to the lack of any disconti-
nuity correction. As mentioned previously, sharp corners can produce deviations from
ideal behavior. Outer corners add shunt capacitance (to first order), and inner corners
cause the series and shunt arms of the coupler to possess electrical lengths that are no
longer equal to each other. Mitering corrects for the former effect, as we have seen
numerous times. A first-order correction for the latter effect may be accomplished
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F IGURE 7.40. One possible lumped implementation of a 90◦ hybrid

by lengthening the shunt arms by an amount d2, which can be derived from an ex-
pression we’ve already given (as Eqn. 30) but reprise here for convenience:36

d2

H
= 120π

Zseries

√
εre,ser

[
0.5 − 0.16

Zseries

Zshunt

(
1 − 2 ln

[
Zseries

Zshunt

])]
. (61)

The required lengthening is typically about 1.3H for FR4 branchline couplers.
Just as with earlier examples, one may realize a lumped analogue of the microstrip

version by replacing each λ/4 section with a suitable approximation, as seen in the
upper schematic of Figure 7.40. After combining elements, the complete lumped net-
work consists of the four capacitors and four inductors shown in the lower circuit
diagram. The component values are given by these familiar relationships:

L1 = Z0/
√

2ω0, (62)

C1 = √
2/ω0Z0, (63)

L2 = Z0/ω0, (64)

C2 = 1/ω0Z0. (65)

There are other possible lumped implementations, and some of these may have
better characteristics. For example, one may alternate high- and low-pass sections

36 See footnote 20.
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to improve bandwidth, exploiting their complementary phase change with frequency
to provide first-order insensitivity of phase shift to frequency.37 This property is the
same as that exploited in the simple lumped approximation to the ring hybrid pre-
sented earlier.

We’ll later see that, among the great many uses for a quadrature coupler, an ex-
tremely valuable one is in mitigating the problem of poor impedance matching in
power amplifiers (see Chapter 20).

7.6.4 DIREC TIONAL COUPLERS

Directional couplers, which may be hybrids, are a subset of power splitters in that
they route input power to separate destinations. As they are typically constructed,
directional couplers are four-port devices capable of splitting power by prescribed
amounts that generally differ considerably from 1:1. One common application for
directional couplers is as signal sampling devices. Feedback from the output of a
power amplifier, for example, is often provided by a directional coupler. This feed-
back signal might be used simply as an output power indication, or it may be used to
close a negative feedback loop for the reduction of distortion.

Directional couplers are valuable for several reasons. One is that they are able to
resolve signals into their separate forward- and reverse-signal components. It is from
this latter property that directional couplers get their name. The modern network an-
alyzer depends critically on this ability to make precise measurements of impedance,
for example. We will explore this theme more fully in Chapter 8.

Another attribute is the presence of an isolated port when implemented by hybrids.
Power supplied to the input port ideally does not couple at all to the isolated port.
When used as an input, the isolation reduces the interaction between the sources
driving the two ports. This isolation is valuable when carrying out two-tone inter-
modulation tests on receivers, for example, where a lack of isolation between two
signal generators might cause one or the other instrument to misbehave and thereby
corrupt the measurement.

As with many other examples we have seen, directional couplers may be realized
in lumped or distributed form.

Although it is fundamentally a four- (or more) port device, a directional coupler
is frequently used as a three-port element. As with all cases, each port, including
any unused port (the isolated output, usually), must be terminated in its character-
istic impedance. Most commercially available three-port couplers have an internal
broadband terminator.

Figures of merit for a directional coupler include coupling factor, isolation, and
directivity. The coupling factor is defined as the ratio of input power to the power
delivered to the coupled (auxiliary) port:

37 See e.g. K. Ali and A. Podell, “A Wide-band GaAs Monolithic Spiral Quadrature Hybrid and Its
Circuit Applications,” IEEE J. Solid-State Circuits, v. 26, no. 10, October 1991.
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CF ≡ PIN

PAUX

∣∣∣∣
forward

. (66)

Most sources simply use C to denote the coupling factor, but we want to avoid con-
fusion with the symbol for capacitance and so append the subscript F. However, we
will be sloppy and let CF denote both a power ratio and its decibel version, leav-
ing it to the reader to determine from the context and other clues which one is being
discussed at any given time.

Typical values of coupling factor might range from 3 dB up to over 20 dB. A
larger coupling factor means that more power is coupled to the main (through) out-
put, not to the auxiliary (coupled) output. The nomenclature can get a bit confusing,
because a higher coupling factor corresponds to less power coupled to the coupled
output.38 By the same token, the lower the coupling factor, the greater the attenua-
tion in going from the input to the through output. Just to keep you disoriented, some
data sheets and textbooks define the coupling factor more rigorously as the reciprocal
of Eqn. 66, so that the decibel versions will have negative signs. Though such a def-
inition is more correct (because the fractional power coupled to the coupled output
is indeed subunity), convention has dropped the minus sign from common usage.

If the directional coupler is operated in reverse, with power now supplied to the
through output with the input terminated, ideally no signal should be measured at the
auxiliary output (that’s the reason for the “directional” nomenclature). Inevitably,
though, some reverse power will leak through to the auxiliary output. A measure of
how well the reverse leakage is suppressed is the isolation factor, defined as

I ≡ PIN

PAUX

∣∣∣∣
reverse

. (67)

Isolation factors of 30–60 dB are not uncommon for commercially available units.
The two quantities are often combined to yield a figure of merit called the direc-

tivity, D:

D ≡ I

CF

= PAUX| forward

PAUX|reverse
. (68)

Thus directivity is a measure of how well the coupler discriminates between forward
and reverse components. We desire an infinite directivity, but all real couplers fall
short of the ideal. Microstrip couplers in particular tend to have relatively low direc-
tivity (e.g., a common range might be 10–15 dB), owing to a significant difference
between odd- and even-mode phase velocities, as we shall explain shortly. For this
reason, stripline (or coaxial) geometries are favored over microstrip in commercial
couplers.

For completeness, note that the insertion loss of a coupler depends on the degree
of coupling. The more power is conveyed to the coupled output, the less remains to

38 This is simply an artifact of eliminating the minus sign from the decibel version.
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Table 7.3. Ideal insertion
loss versus coupling factor

Coupling Insertion
factor (dB) loss (dB)

3 3
6 1.3

10 0.46
15 0.14
20 0.044

F IGURE 7.41. Broadband directional coupler
(transformer version)

appear at the through output. Assuming an otherwise lossless coupler, the insertion
loss may be related to the coupling factor as follows:

(Pout = Pin − Pcoupled) �⇒ Pout

Pin

= 1 − Pcoupled

Pin

= 1 − 10−CF/10, (69)

where the coupling factor CF is in decibels. Table 7.3 provides a few numbers to
clarify the relationship between insertion loss and coupling. For coupling factors ex-
ceeding about 10 or 15 dB, the insertion loss in most practical couplers is dominated
by parasitic mechanisms (e.g., skin effect or dielectric loss), rather than by the power
diverted to the coupled port.

Directional couplers may be implemented in distributed or lumped form. Of the
latter class, a widely used broadband implementation is the transformer-based cou-
pler shown in Figure 7.41. As seen in the figure, this coupler offers a choice of port
assignments (differentiated by parentheses). As we’ll see shortly, the coupled output
signal of one choice is inverted relative to the input, and that of the other choice is in
phase with the input voltage.

Of the many variations described by Sontheimer and Frederick around 1969, this
particular choice has enjoyed enduring popularity because of its good performance
and the ease with which it is constructed.39 Good directivity is routinely obtained

39 See Carl G. Sontheimer and Raymond E. Frederick, “Broadband Directional Coupler,” U.S. Patent
#3,426,298, granted 4 February 1969.
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F IGURE 7.42. Broadband 0◦ directional coupler
(approximate analysis)

over two or so decades of frequency. With the addition of a few elements to improve
performance at the band edges and with the use of calibration to characterize and
compensate algorithmically for the remaining deficiencies, this type of coupler can
function over several decades of frequency.

Depending on port assignments, this coupler can provide a coupled output that is
either in or out of phase with the main input. In Figure 7.41, the port assignments
corresponding to the in-phase version are given in parentheses. We will analyze the
in-phase version first. Because an exact analysis would obscure the operational prin-
ciples, we present a simplified derivation. We’ll ultimately provide the results of a
complete derivation that yields more accurate design equations.

In Figure 7.42, we assume that the coupling factor is large enough (transformer
turns ratio is high enough) that we may neglect the current flowing in the n-turn
winding of T2. With this assumption, one may regard this coupler as using one trans-
former (T1) to sense the current flowing into the input port, and the other (T2) to
sense the input voltage. The former statement is only approximately true, but the lat-
ter involves no approximations. If we may neglect any current flowing into a load
(not shown) connected to the coupled port, then a scaled version of the input current
flows through the secondary of T2 and also through the resistive termination. The
voltage across the resistor is therefore proportional to this current. If we may arrange
for the input port’s impedance to equal R, then

Iin = Vin

R
, (70)

and the voltage dropped across the resistor shown is

VR = Iin

n
R = Vin

nR
R = Vin

n
. (71)

Now, the voltage across the secondary of T2 is a scaled version of the input voltage
(specifically, it’s Vin/n). The voltage at the coupled output is therefore simply

Vcoupled = VR + Vin

n
= 2

Vin

n
. (72)
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F IGURE 7.43. Broadband 180◦ directional coupler
(approximate analysis)

Note that if the current Iin were negative in sign (corresponding to a reverse current,
flowing from the through port to the input port), then the voltage developed across
the resistor would be negative as well, leading to a cancellation at the coupled port.
Thus, we see that the output at the coupled port is preferentially responsive to the
forward component and discriminates against the reverse one.

The transformer turns ratio, n, determines the coupling factor. The greater the
value of n, the smaller the amount of power fed to the coupled port. When the
coupled port is terminated with a resistor of value R, the voltage drops to half the
open-circuit value given by Eqn. 72. The coupling factor (in dB) is thus given by

CF ≈ 20 log n. (73)

Carrying out an exact analysis isn’t difficult, but it is tedious. Because of its mini-
mal intuitive value, we omit the details of that analysis and simply present the results
as the following set of equations:

Vthru = Vin

(
2n2 − 1

2n2 + 1

)
, (74)

Vcoupled = Vin

(
2n

2n2 + 1

)
, (75)

Viso = −Vin

(
1

2n3 + n

)
. (76)

We see that, as the turns ratio increases, the voltage at the through output converges
to the input voltage. At the same time, the voltage at the coupled port approaches
Vin/n, as anticipated. Finally, the signal at the isolated port drops rapidly with in-
creasing n. Also note the inversion at the isolated port.

An alternative set of port assignments yields a coupler that possesses an isolated
port and produces a 180◦ phase inversion between input and coupled ports (see Fig-
ure 7.43). In this implementation, current into the input port is sampled exactly by T1.
If we are permitted to assume that the coupling factor is large, then the voltages at the
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through and input ports are nearly equal. Thus, a reasonable approximation of the
input voltage appears across the n-turn primary of T2, and a scaled version of that
approximation appears across the secondary of T2. Assuming that the current flow-
ing into any load connected to the isolated port may be neglected, then the current
flowing through the resistor R is simply Iin/n. Consequently

VR = −Iin

n
R = −Vin

nR
R = −Vin

n
, (77)

where we have once again assumed that the input port’s impedance equals R, so that

Iin = Vin

R
. (78)

Note that the voltage VR is equal in magnitude to that developed across the secondary
of T2, but opposite in polarity. Thus, these voltages add destructively to produce zero
output at the isolated port.

The coupling factor (again, in dB) is approximately

CF ≈ 20 log n. (79)

A reverse current produces constructive interference at the isolated port, thus provid-
ing discrimination between forward and reverse components of input current.

An exact analysis yields the following expressions for the through, coupled, and
isolated port outputs:

Vthru = Vin

(
4n4 − 2n2

4n4 + 1

)
, (80)

Vcoupled = −Vin

(
4n3

4n4 + 1

)
, (81)

Viso = −Vin

(
2n

4n4 + 1

)
. (82)

From these expressions we discern that the approximations used earlier are reason-
able. Imperfect cancellations result in not-quite-zero output at the isolated port, but
increases in the turns ratio rapidly reduce that port’s output to tiny values. Similarly,
the magnitude of the voltage at the coupled port so rapidly converges to Vin/n as n

increases that one may use the approximation (Eqn. 79) for the coupling factor in
nearly all practical cases.

Aside from its broadband nature, the transformer-based coupler accommodates a
wide range of termination impedances.40 Because the transformer itself imposes no
fundamental limit on the allowable impedances, the same coupler may be used for 50-
� or 75-� systems, for example. The broadband transformer coupler is commonly
wound on a binocular core (a solid block of magnetic material with two adjacent
cylindrical holes), or on two parallel stacks of toroidal ferrite cores, or simply on a
pair of toroids.

40 Actually, these two attributes are related here.
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F IGURE 7.44. Lumped narrowband directional coupler

If broadband operation is not essential, then one may use alternative realizations to
avoid what many engineers consider to be the inconvenience of winding transform-
ers. One of these employs a pair of lumped quadrature phase shifters (T-network
approximations of λ/4 transmission lines are used in the particular version shown in
Figure 7.44), coupled together with capacitors.

To understand how this type of coupler functions, consider driving the input with
a test signal (through a resistance equal to Z0). Ignoring for now the left-hand coup-
ling capacitor of value Cc, most of the input power proceeds directly to the through
port, experiencing a quadrature delay in the process. The remainder of the power
traversing the top delay line flows downward through the right-hand Cc. Half of that
power in turn is delivered to the load terminating the coupled output, and the other
half flows leftward through the bottom quadrature delay line to the isolated port. Note
that this signal has now experienced a total of two quadrature phase shifts since orig-
inating from the input port and is therefore 180◦ out of phase with the input signal.
We’ll call that the reverse signal.

There is also a direct path to the isolated port from the input, through the left-hand
coupling capacitor. The signal flowing through that path is equal in magnitude, but
precisely out of phase, with the reverse signal. They therefore cancel when they sum
at the isolated port, which explains how that port got its name.

Finally, there is one more path between input and coupled ports. A forward sig-
nal may propagate from the input, down through the left-hand coupling capacitor to
the bottom quadrature delay line, and finally to the coupled port. This signal adds in
phase with that coming from the input through the upper delay line and down through
the right-hand coupling capacitor (both signals have experienced a quadrature delay
and traversed a coupling capacitor). Thus, the coupled output is nonzero by some
prescribed amount controlled by the value of Cc, while the isolated output ideally
produces no output at all.

Notice that this analysis implicitly assumes that all ports are properly terminated
(otherwise, the power splittings will not be as described).

If we assume that the reactance of the coupling capacitance is much greater than
Z0 within the band of interest (meaning that we limit ourselves to coupling factors
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no smaller than, say, 15 to 20 dB), then we can offer a simplified design procedure in
which the T-section delay line element values are given by familiar relationships. At
minimum, it provides a serviceable first pass from which a final design may evolve
after a very few iterations. In a great many cases, this procedure yields a fully prac-
tical design by itself.

We again choose the L/C ratio according to the desired characteristic impedance:√
L/C = Z0. (83)

We then select the LC product as a function of the desired center frequency:

1/
√
LC = ω0. (84)

The element values are thus chosen so that the reactances equal the characteristic
impedance:

C = 1/ω0Z0; (85)

L = Z0/ω0. (86)

To finish the design, choose the capacitance Cc to produce the desired level of coup-
ling. The ratio of coupled to through power is simply the square of the voltage divide
factor associated with Cc and Z0:

(ωZ0Cc)
2

1 + (ωZ0Cc)2
= 10−CF/10, (87)

where CF is the coupling factor expressed in decibels.
In the case of the very weak coupling we are considering, (ωZ0Cc)

2 is negligibly
small compared to unity. In that regime, solving Eqn. 87 for the coupling capacitance
yields the following approximation:

Cc ≈ (1/ωZ0)[10−CF/20 ]. (88)

It is also straightforward to use Eqn. 85 to relate the coupling capacitance to the delay
line capacitance:

Cc ≈ (1/ωZ0)[10−CF/20 ] = C [10−CF/20 ]. (89)

According to these formulas, a 1-GHz, 15-dB, 50-� coupler would use 3.18-pF
capacitors and 7.96-nH inductors to synthesize the lines, along with coupling capac-
itances of approximately 0.565 pF. Again, this latter value may be somewhat more
approximate than would be implied by (falsely) reporting three significant digits, but
it serves as a good starting point for subsequent refinement based on accurate sim-
ulations or experimental data. For this particular example, simulations reveal that
the coupling factor is extremely close to the design target: about 14.9 dB at 1 GHz
(15 dB at 970 MHz). At 1 GHz, the isolated output provides 30 dB of attenuation
(33 dB at 970 MHz) relative to the main input. Thus the directivity is just a bit in
excess of 15 dB at the design center frequency and rises to 18 dB at 970 MHz. Per-
haps it is not too surprising that maximum directivity occurs somewhat below the
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F IGURE 7.45. Microstrip directional coupler with
lumped capacitive coupling

design target frequency, for the coupling capacitance adds some capacitive loading
(another side effect of which is a tiny reduction in characteristic impedance). If abso-
lutely necessary, compensation for this effect may be provided by reducing the line
capacitance. However, the small amounts of correction required generally fall within
standard component tolerances, usually rendering such fine adjustments unnecessary
in practice. Finally, the input return loss exceeds 15 dB up to 1.24 GHz for this par-
ticular design.

A variation on this theme combines true λ/4 transmission lines with lumped coup-
ling capacitors; see Figure 7.45. This combination is sometimes favored because it
eliminates a collection of passive components while retaining the relative ease with
which the coupling is varied through suitable adjustment of the coupling capacitances.
This configuration is most practical when the frequency is high enough to enable re-
alization of the transmission line in a reasonably small space. For good predictability,
the two lines need to be separated from each other by an amount sufficient to assure
that essentially all of the coupling is due to the lumped capacitances. Generally, “suf-
ficient separation” corresponds to a line-to-line spacing that is at least several times
(e.g., 5×) the dielectric thickness. In practice the separation is frequently constrained
by the physical size of available coupling capacitors. The coupling capacitor value is
computed using the same formula that applies for the purely lumped implementation
(Eqn. 88). The capacitors’ parasitics must be kept small enough to ignore or must
otherwise be accommodated explicitly in simulations, as with all things microwave.
Within those constraints, this particular implementation is capable of excellent per-
formance, as it is least sensitive to the most serious deficiencies of FR4.

The previous coupler design results from replacing some lumped components with
distributed ones. We may continue this process to devise a coupler that uses no lumped
elements at all. The necessary coupling is provided by a suitable choice of spacing
between two microstrip lines, as seen in Figure 7.46.

At first glance, the coupler in this figure looks like a trivial extension of that in
Figure 7.45, with the necessary coupling capacitance now provided by lateral prox-
imity. However, note that the isolated and coupled ports have exchanged positions
in the figure. To understand why this is not a labeling error, recognize that the coup-
ling between the two lines now could be due to a combined action of electric and

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511812941.008
Downloaded from https://www.cambridge.org/core. The Librarian-Seeley Historical Library, on 18 Dec 2019 at 06:16:41, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511812941.008
https://www.cambridge.org/core


210 CHAPTER 7 MICROSTRIP, STR IPL INE, AND PL ANAR PASSIVE ELEMENTS

F IGURE 7.46. Classical microstrip directional coupler

F IGURE 7.47. Determination of even- and odd-mode impedances
(not drawn to scale)

magnetic fields. We therefore need to analyze how this coupler functions without
preconceptions based on the previous example. To do so, we must first expand upon
the concepts of even- and odd-mode excitation introduced earlier.

The concept of a characteristic impedance for a single, isolated microstrip line
is straightforward enough. The (approximate) formula for this quantity is similarly
simple and familiar:

Z0 = √
L/C, (90)

where L and C are the inductance and capacitance per unit length. However, when
we bring a second line into proximity with the first, additional degrees of freedom
are introduced into the system and hence we can no longer speak of a single charac-
teristic impedance. To take some of the mystery out of that statement, let’s consider
what happens when we excite a pair of lines with common- and differential-mode
signals. For simplicity’s sake, let’s examine the capacitances that couple each line to
ground (and to each other), as shown in the cross-section of Figure 7.47.

For the even mode illustrated in the left-hand figure, the equality of line voltages
assures the irrelevance of interline coupling capacitance C12. The common-mode ca-
pacitance (per line) is thus smaller than for a single isolated line (Z0). By convention,
we define the even-mode impedance, Z0e, as twice the common-mode impedance.
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F IGURE 7.48. Port and signal definitions with generalized excitation

This way, Z0e approaches Z0 as the coupling strength goes to zero. Note that Z0e is
higher than Z0.

41

Under odd-mode (antisymmetric) voltage excitation, the coupling capacitance no
longer has zero voltage across it and therefore now plays a role. If we consider that
capacitance to consist of two capacitances of value 2C12 in series, then the midpoint
of those two capacitors is at ground potential. The effective capacitance on each line
is therefore larger (C1 + 2C12). If we define the odd-mode impedance Z0o as half the
differential impedance, then it approaches Z0 in the limit of zero coupling. We see
that Z0o is less than Z0.

From the picture, it should be evident that the even- and odd-mode impedances de-
viate from each other by increasing amounts as the lines are brought closer together.
That is, the more closely coupled the lines, the greater the separation between even-
and odd-mode impedances. Because of this relationship, these impedances convey
the same knowledge as does the coupling coefficient, and design for a specified de-
gree of coupling may be cast alternatively in terms of mode impedances.

Let us now derive explicit relationships among the port voltages as a function of
mode impedances. To simplify what is to come, we label the ports and identify sig-
nal variables as in Figure 7.48. We wish to discover the port voltage relationships
for the specific case when the input line alone is driven through its termination by a
source of value Vin; the other ports are all grounded through their respective termi-
nations. Note that we may treat the coupled port as driven (through a termination)
with a voltage source of zero value. As with any pair of voltages, we may decompose
these two input signals into the sum of a common- and differential-mode excitation,
as shown in the figure. The common-mode value is simply the average of the two
input voltages, or just Vin/2. Similarly, the total differential-mode value is the dif-
ference between the two, or Vin, half of which is given to each of the two differential
sources in the decomposition of Figure 7.48.

41 With currents flowing in the same direction in the two lines, the inductance increases. This increase
also contributes a boost to the even-mode impedance. Similarly, the opposing current flows under
odd-mode excitation reduce the inductance, contributing to a reduction in odd-mode impedance.
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F IGURE 7.49. Coupler with purely common-mode (even-mode) excitation

In order to find the port voltages corresponding to the original problem, we will
compute the various node voltages for even- and odd-mode excitations separately,
then sum the results to obtain the complete solution. The symmetry of the structure
itself simplifies the derivation considerably, as we’ll see momentarily.

First, we reprise the equation for the input impedance of a loaded (but lossless)
line:

Z(θ) = Zn

ZLn + j tan θ

1 + jZLn tan θ
, (91)

where ZLn is the load impedance, normalized to Zn, and θ is the effective electrical
length of the lines (to accommodate explicitly the possibility of lengths other than
λ/4 or, equivalently, behavior at other than the nominal frequency), expressed as a
phase angle. We’ll be using this equation quite a bit.

Let us first consider the even mode. In this case, we set the differential volt-
age to zero, so that both lines are driven (through their termination resistors) by the
common-mode voltage. See Figure 7.49. By symmetry, we know immediately that
V1e = V3e and V2e = V4e. In turn, a voltage divider equation allows us to relate V1e

to Vin:

V1e

Vin/2
=

Z0e
Z0/Z0e + j tan θ

1 + j(Z0/Z0e) tan θ

Z0 + Z0e
Z0/Z0e + j tan θ

1 + j(Z0/Z0e) tan θ

= Z0 + jZ0e tan θ

Z0(1 + j(Z0/Z0e) tan θ) + (Z0 + jZ0e tan θ)
, (92)

which simplifies a bit to

V1e

Vin/2
= Z0 + jZ0e tan θ

2Z0 + (j tan θ)(Z2
0/Z0e + Z0e)

. (93)

Now consider the odd-mode behavior, as depicted in Figure 7.50. By (anti)sym-
metry, we know that V1o = −V3o and V2o = −V4o. Again, a simple voltage divider
equation allows us to relate V1o to Vin:
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F IGURE 7.50. Coupler with purely differential-mode
(odd-mode) excitation

V1o

Vin/2
= Z0 + jZ0o tan θ

2Z0 + (j tan θ)(Z2
0/Z0o + Z0o)

. (94)

Now we can solve for the voltage at the input of the line, V1, by summing the even
and odd contributions:

V1 = V1e + V1o

= Vin

2

[
Z0 + jZ0e tan θ

2Z0 + (j tan θ)(Z2
0/Z0e + Z0e)

+ Z0 + jZ0o tan θ

2Z0 + (j tan θ)(Z2
0/Z0o + Z0o)

]
.

(95)

If the main line is to present a match to the source, the term in brackets must be unity.
Imposing this requirement and solving, we ultimately find that

Z0 = √
Z0eZ0o. (96)

Thanks to symmetry and reciprocity, satisfying Eqn. 96 produces an impedance
match at all four ports – not only at the input to the main line. However it is im-
portant to note that such an impedance does not properly terminate the even- and
odd-mode waves individually. Indeed, we see that the odd-mode impedance is less
than Z0 while the even-mode impedance is greater than Z0. The mere fact of their
inequality implies that it is impossible to provide a perfect match to both components
with a single termination. Each component thus suffers a reflection upon reaching
the end of the line. It just so happens that the reflections cancel if the impedances
satisfy Eqn. 96, leading to a net match overall.

The voltage at the coupled port is just as readily computed, again by summing the
even and odd contributions:

V3 = V3e + V3o

= Vin

2

[
Z0 + jZ0e tan θ

2Z0 + (j tan θ)(Z2
0/Z0e + Z0e)

− Z0 + jZ0o tan θ

2Z0 + (j tan θ)(Z2
0/Z0o + Z0o)

]
.

(97)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511812941.008
Downloaded from https://www.cambridge.org/core. The Librarian-Seeley Historical Library, on 18 Dec 2019 at 06:16:41, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511812941.008
https://www.cambridge.org/core


214 CHAPTER 7 MICROSTRIP, STR IPL INE, AND PL ANAR PASSIVE ELEMENTS

Simplifying things a bit yields

V3 = Vin

2

[
(j tan θ)(Z0e − Z0o)

2Z0 + (j tan θ)(Z0e + Z0o)

]
. (98)

Here, the magnitude of the term in brackets is the (subunity) coupling factor, |V3/V1|.
It is a maximum when θ is an odd multiple of π/2, corresponding to lengths that are
odd multiples ofλ/4, which explains the popularity of quarter-wavelength couplers.42

The maximum value of coupling is readily found from Eqn. 98 as

CF = Z0e − Z0o

Z0e + Z0o
. (99)

A little rearranging yields
Z0e

Z0o
= 1 + CF

1 − CF

, (100)

which – when combined with Eqn. 96 – yields:

Z0e = Z0

√
1 + CF

1 − CF

; (101)

Z0o = Z0

√
1 − CF

1 + CF

. (102)

We thus see that, as asserted earlier, the (normalized) even- and odd-mode imped-
ances indeed convey the same information as the coupling factor. They may therefore
be used interchangeably.

With these relationships, we may now write

V3 = Vin

2




j tan θ
Z0e − Z0o

Z0e + Z0o

2Z0

Z0e + Z0o
+ j tan θ


 = Vin

2


 (j tan θ)CF

2Z0

Z0e + Z0o
+ j tan θ




= Vin

2

[
(j tan θ)CF√

1 − C2
F + j tan θ

]
. (103)

The coupling is thus seen to differ little from the maximum value as long as the
tangent term overwhelms the other term in the denominator. Thanks to this easily
fulfilled requirement, the coupling factor is roughly constant over a relatively broad
bandwidth (e.g., an octave), centered about the nominal λ/4 condition.

Sometimes thinking about a result raises more questions than it answers. Depend-
ing on your philosophical bent, you might decide that it’s therefore best not to think.
That might be the case here. It’s certainly true that most published descriptions of this
coupler are almost purely mathematical and thus bypass a conundrum: In deriving the
expression for the signal developed at the coupled port, we use even- and odd-mode

42 See e.g. B. M. Oliver, “Directional Electromagnetic Couplers,” Proc. IRE, v. 42, November 1954,
pp. 1686–92.
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excitations that are precise algebraic inverses of each other. Consequently, we might
expect their superposition to result in a near cancellation and thereby always produce
a negligible voltage at the coupled port. Yet that isn’t what happens. The resolution
to this seeming paradox is that, again, the even- and odd-mode components generate
reflections upon reaching the end of the line. As with the main line, the two compo-
nents undergo reflections of opposite polarity (and of identical magnitude). Unlike
the main line, there is already an inverse relationship between the excitations to begin
with (leading to a broadband destructive interference at the isolated port). Conse-
quently, the two polarity reversals produce reflections that add constructively upon
arriving at the coupled port. The more tightly coupled the lines, the greater the dif-
ference between the mode impedances and the stronger these reflections. Because
the coupled output is thus generated by the action of reflected waves, this device is
sometimes called a backward-wave coupler. We’ll soon see why we have spent this
much time on a verbal explanation of how this coupler operates.

We can proceed in like fashion to discover that the voltage at the isolated port
is ideally zero. This result is independent of frequency, at least in principle, for it
arises from an exact cancellation of even- and odd-mode waves. For microstrip in
particular, however, isolation is imperfect in practice because the required miracu-
lous cancellations by destructive interference do not quite materialize, for reasons
that will be discussed shortly.

Finally, a little additional work shows that the signal at the through port is given by

V2

V1
=

√
1 − C2

F√
1 − C2

F cos θ + j sin θ
. (104)

In the limit of very weak coupling, Eqn. 104 is well approximated by

V2

V1
=

√
1 − C2

F√
1 − C2

F cos θ + j sin θ
≈ 1

cos θ + j sin θ
= e−jθ, (105)

reflecting the fact that – in the weak-coupling regime – nearly all of the power is
transmitted to the through port, experiencing a phase lag of θ in the process.

We’ve derived the coupling factor as a function of mode impedances and electrical
line length. To carry out an actual design, though, we need to relate those quanti-
ties to layout dimensions. Regrettably, there do not seem to be any simple, generally
applicable formulas for microstrip that yield accurate values for the necessary spac-
ing as a function of desired coupling.43 The simplest ones of any useful accuracy are

43 Quite accurate, but complicated, analytical expressions are offered by M. Kirschning and R. H.
Jansen in “Accurate Wide-Range Design Equations for the Frequency-Dependent Characteristics
of Coupled Microstrip Lines,” IEEE Trans. Microwave Theory and Tech., v. 32, no. 1, January
1984, pp. 83–90. These equations yield answers that are generally in close agreement (e.g., within
a couple of percent) with the results of field-solver simulations and experimental measurements.
The equations accommodate dispersion, loss, unequal mode velocities, and other practical effects.
The commercial simulator APL AC is an example of one that uses these equations.
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216 CHAPTER 7 MICROSTRIP, STR IPL INE, AND PL ANAR PASSIVE ELEMENTS

perhaps the equations of Akhtarzad et al., which unfortunately must be solved im-
plicitly for the width and spacing of the lines:44

We

H
= 2

π
cosh−1

(
2d − g + 1

g + 1

)
; (106)

Wo

H
=




2

π
cosh−1

(
2d − g − 1

g − 1

)
+ 4

π(1 + εr/2)
cosh−1

(
1 + 2

W/H

S/H

)
if εr < 6,

2

π
cosh−1

(
2d − g − 1

g − 1

)
+ 1

π
cosh−1

(
1 + 2

W/H

S/H

)
if εr ≥ 6.

(107)

(108)

For these equations, note that:

g = cosh

(
πS

2H

)
; (109)

d = cosh

[
π

(
W

H
+ S

2H

)]
. (110)

The ratios We/H and Wo/H are those of single isolated microstrip lines, whose char-
acteristic impedances are Z0e/2 and Z0o/2 (respectively) and thus may be found
using the equations presented earlier for ordinary microstrip lines. After completing
that step, Akhtarzad’s equations are solved iteratively for the actual line width and
spacing for the coupled lines.

The foregoing equations are the ones used by the simulator Puff for its ideal
coupled-line simulations. The difference in mode velocities (and in conductor and
substrate losses) are not comprehended in these equations. Fortunately, Puff also of-
fers a more comprehensive simulation that does take these effects into account. Thus,
one could perform an initial design with the equations of Akhtarzad et al. to find some
initial line dimensions, then evaluate the design with the more accurate simulations.
Because the ideal equations are good enough to generate a reasonable first-pass de-
sign, usually only one or two iterations are required to converge on an acceptable
final design.

If we accept the need for iteration then it may be acceptable for the initial design to
be somewhat inexact. If so, then perhaps the complexity of the foregoing equations
can be avoided altogether. If we neglect the second term in Akhtarzad’s equations for
the odd-mode width /height ratios, then we may obtain a closed-form approximation
for the spacing/height ratio:

44 Sina Akhtarzad, Thomas R. Rowbotham, and Peter B. Johns, “The Design of Coupled Microstrip
Lines,” IEEE Trans. Microwave Theory and Tech., v. 23, June 1975, pp. 486–92. Also see R. Garg
and I. J. Bahl, “Characteristics of Coupled Microstriplines,” IEEE Trans. Microwave Theory and
Tech., v. 27, June 1979, pp. 700–5, with corrections in v. 28, March 1980, p. 272.
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S

H
≈ 2

π
cosh−1




cosh

(
π

2

Wo

H

)
+ cosh

(
π

2

We

H

)
− 2

cosh

(
π

2

Wo

H

)
− cosh

(
π

2

We

H

)


. (111)

Once we have found S/H, the next step is finding W/H with the aid of Eqn. 106 or
Eqn. 107. The design is completed by specifying the length of the coupled section
(e.g., as λ/4). Again, because the odd- and even-mode velocities differ, it’s tradi-
tional to select the length using the average velocity of the two modes.

Having a closed-form equation for S/H certainly simplifies the procedure enough
for design to proceed rapidly with the aid of a spreadsheet, for instance, but the pro-
cedure is still not quite simple. We therefore offer the following alternative, quasi-
empirical formula that applies for loosely coupled (10-dB or more) lines for 50-�
systems. It’s simple enough to require only a few keystrokes on an ordinary hand
calculator and is valuable for computing rapid, crude estimates:45

S

H
≈ 1.11ln

0.32

1 −
√

1 − CF

1 + CF

, (112)

where the coupling factor CF is a pure ratio here, not the decibel equivalent. For very
small values of CF , the formula simplifies to the following approximation:

S

H
≈ 1.11ln

0.32

CF

. (113)

These formulas result from combining the analytical relationship between odd-mode
impedance and coupling factor,

Z0o

Z0
=

√
1 − CF

1 + CF

, (114)

together with an empirical formula for the normalized odd-mode impedance as a
function of S/H :

Z0o

Z0
≈ 1 − 0.32 exp

(
−1.11

S

H

)
. (115)

Finally, we assume that – in the weak-coupling regime – the lines are of the same
width as uncoupled microstrip lines. In practice, the width needs to be reduced as
coupling gets tighter, but the amount of narrowing is small for weakly coupled lines.
We consequently neglect any width adjustments.

Our crude formula (Eqn. 112) is satisfactory only for noncritical designs or for
generating a reasonable starting point for further refinement. The formula misbe-
haves for coupling values tighter than about 10 dB, as it has been optimized for the

45 This formula is based largely on comparisons between simulations from RFSim99 for 1.6-mm FR4
and the results of Sonnet Lite field-solver simulations.
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218 CHAPTER 7 MICROSTRIP, STR IPL INE, AND PL ANAR PASSIVE ELEMENTS

Table 7.4. Comparison of empirical formula and RFSim99
(FR4, H = 1.6 mm, ε = 4.6)

CF , dB S, mm W, mm S, mm CF , dB CF , dB
(target) (Puff ) (Puff ) (formula) (formula) (RFSim99)

10 0.21 2.49 0.24 10.9 9.2
15 0.76 2.88 1.183 13.6 13.9
20 1.70 3.02 2.15 18.2 18.9
25 3.39 3.10 3.10 26.5 25.8
30 9.73 3.19 4.14 57.5 41.7

range most commonly encountered in practice for edge-coupled structures (10–30-
dB coupling factors). Table 7.4 compares the predictions of Eqn. 112 with values
as computed by the simulation tools RFSim99 and Puff over that range of coupling
factors.

The second and third columns of the table show the spacing and width as computed
by Puff, which uses the Akhtarzad equations. The spacings necessary to achieve the
coupling factors of column 1 as computed by the crude formula (Eqn. 112) are given
in the fourth column. As a comparison, the last two columns summarize the coupling
factors computed by the crude formula and by RFSim99 for the spacing (and width,
for RFSim99) given by Puff. The algorithm used by RFSim99 is undocumented; we
present its results simply to get a rough idea of how well our crude formula does
relative to those used in available tools. As can be seen, the crude formula agrees
reasonably well both with Puff and with RFSim99 over a 10–25-dB coupling range.
All three disagree rather significantly for the 30-dB coupling case. Fortunately, such
a weak value of coupling is rarely desired. Note also the very small spacing required
to achieve a 10-dB coupling factor. Achieving still tighter coupling is thus effec-
tively precluded from practical implementation with this structure. Finally, note that
Puff ’s computation of linewidth shows only a small variation for coupling factors of
15 to 30 dB. Thus, it may suffice to use lines whose widths are computed as for an
isolated microstrip line, at least for initial designs.

When built in microstrip form as shown, such a coupler invariably exhibits rela-
tively low directivity. The reason is that the velocities of the even and odd modes are
not the same, thanks to the inhomogeneity of microstrip. To understand how this in-
homogeneity produces unequal mode velocities, contrast the capacitive fringing field
for a common-mode excitation with that for a differential-mode excitation. For the
odd mode, fringing is much stronger than for the even mode. Because there is sub-
stantially more line-to-line fringing, there is more fringing field above the substrate
than for the even mode. The effective dielectric constant is correspondingly lower
for the odd mode, and the phase velocity is higher. Since the phase velocities for the
two modes differ, the line length can only be λ/4 for at most one of those modes. It is
customary to compute a line length that is λ/4 for the average of the two modes. The
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7.6 COMBINERS, SPL ITTERS, AND COUPLERS 219

F IGURE 7.51. Results of Puff simulation of a 2-GHz,
20-dB coupled-line coupler (1.6-mm FR4)

inequality of mode velocities implies imperfect phase shift. This, in turn, degrades
isolation and therefore directivity in particular. For this reason, commercial couplers
are almost never built in microstrip, using instead stripline or coaxial geometries.

The results of a Puff simulation of a 20-dB coupler (Figure 7.51) underscore the
extent to which unequal mode velocities can degrade isolation for microstrip. Instead
of infinite isolation (and therefore infinite directivity), the signal at the isolated port
is not much below that at the coupled port. The directivity barely exceeds a pathetic
4 dB here, whereas a typical stripline implementation could be expected to provide
∼30-dB directivity. This particular microstrip example provides such poor perfor-
mance, in fact, that the output power at the isolated port actually exceeds that at the
coupled port above about 2.6 GHz. A related phenomenon is the lack of quadrature
between the signal at the isolated port and the input. The isolated port’s output lags
the input by nearly 180 degrees at the nominal center frequency. On the other hand,
neither the coupled output nor the input match suffers significant degradation, as ex-
pected. The coupling bandwidth remains about an octave, for example.

From our qualitative argument we know more than simply that the odd-mode phase
velocity is too fast; we also know why. Consequently, we can propose some methods
for reducing the velocity disparity. Of the several methods that have been devised
over the years, the most popular at moderate frequencies is simply to add some capac-
itance across the gap. Capacitances added there do not affect the even-mode velocity
(in theory), so they represent a simple means by which one may equalize the two
phase velocities. One way to realize the necessary capacitance is with serpentine or
meander-type structures (e.g., sawtooth-like boundaries) to increase the line-to-line
edge capacitance. This method works best for tightly coupled lines, but the lack of
any simple descriptive equations makes designing such compensated couplers a de-
cidedly nontrivial task. It’s easier to use discrete capacitors, placed at the ends of an
ordinary coupled line. Adjustment to maximize directivity is often best effected by
symmetrically sliding a pair of fixed capacitors along the line, rather than by using
variable capacitors at the ends; see Figure 7.52. With care, use of these capacitors

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511812941.008
Downloaded from https://www.cambridge.org/core. The Librarian-Seeley Historical Library, on 18 Dec 2019 at 06:16:41, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511812941.008
https://www.cambridge.org/core


220 CHAPTER 7 MICROSTRIP, STR IPL INE, AND PL ANAR PASSIVE ELEMENTS

F IGURE 7.52. Compensated microstrip directional coupler

can improve directivity by ∼10 dB, typically. At high frequencies, however, it may
be difficult to find or fabricate capacitors of sufficient quality and of the right physi-
cal size. Also, avoiding parasitics in the mere act of connecting the capacitors to the
lines becomes progressively more difficult as frequencies increase.

At frequencies where adding capacitors is impractical, one may deposit dielec-
tric materials directly over the line (effectively making the structure appear more
stripline-like) or bring a grounded shield plate down over the lines (again, mak-
ing the structure appear more stripline-like). These approaches work well, but they
considerably increase manufacturing complexity, offsetting the chief advantage of
microstrip construction.

A completely different approach to improving directivity is to avoid a dependency
on two different modes altogether. By eliminating a reliance on interference to pro-
duce the coupled and isolated outputs, the bandwidth over which high directivity is
obtained can be extended considerably.

A structure with these attributes is the forward-wave or codirectional coupler.46

It superficially resembles the conventional backward-wave coupler, but it suppresses
the generation of backward waves by tapering the end sections to provide a good
broadband termination for both even- and odd-mode components simultaneously.47

When reflections from both modes are suppressed, there are no longer two compo-
nents to interfere constructively at the port nearest the input to create the coupled
signal. That port consequently now becomes the isolated output, and what was for-
merly the isolated output becomes the coupled output.

Despite its attributes, the codirectional coupler is rarely used primarily because
there are no simple design equations. For the most part, the codirectional coupler
has therefore remained an academic curiosity. Its days as an example of microwave

46 Pertti K. Ikäläinen and George L. Matthaei, “Wide-band, Forward-Coupling Microstrip Hybrids
with High Directivity,” IEEE Trans. Microwave Theory and Tech., v. 35, August 1987, pp. 719–25.

47 The even- and odd-mode impedances must not differ too much if the tapered lines are to provide a
good match to both modes. Hence, the coupling must be relatively weak in order for the codirec-
tional coupler to provide high directivity.
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F IGURE 7.53. Codirectional arc coupler [courtesy of
Matthew Morgan and Sander Weinreb]

exotica may finally be drawing to an end, however, as a simplified and elegant form
of the codirectional coupler has been reported recently.48 As seen in Figure 7.53, this
version of a forward-wave coupler simply consists of two quarter-circle arcs, sepa-
rated by a gap. The two design degrees of freedom represented by the arc radius and
minimum arc-to-arc gap constrains the design space enough to permit reasonably
rapid convergence to an acceptable design with the aid of an electromagnetic field
solver. A 12-dB codirectional coupler designed in this way exhibits a 20-dB direc-
tivity over an octave spanning 50 GHz to 110 GHz.49 It would be difficult to obtain
this level of performance with a standard uncompensated backward-wave coupler in
standard microstrip.

Making accurate measurements at these frequencies is another challenge. One
difficulty is simply providing good terminations. The best are on chip, to avoid the
inevitable degradations that attend transitions. However, even on-chip terminations
can have poor performance at millimeter-wave frequencies, owing to discontinu-
ities associated with vias, for example. To solve these problems, one may use a disk
terminator made out of material whose sheet resistivity is 50 � per square (see Fig-
ure 7.54). Thanks to its symmetry, any moding that arises in the disk still excites
only a square’s worth of material, keeping the resistance constant. The diameter of
the disk determines the lower frequency limit, which should be set roughly equal to
at least λ/4 at the lowest frequency of interest. The upper frequency limit is set by

48 Matthew Morgan and Sander Weinreb, “Octave-Bandwidth High-Directivity Microstrip Codirec-
tional Couplers,” MTT-S Intl. Microwave Symposium, Philadelphia, 2003. These types of couplers
can practically provide only relatively loose coupling values because it is extremely difficult to
suppress the backward wave under tight coupling.

49 Ibid.
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F IGURE 7.54. Illustration of disk terminators [courtesy of
Matthew Morgan and Sander Weinreb]

the onset of moding in the feedline itself or by the excitation of asymmetrical modes
owing to unwanted (but ever-present) imperfections.

Neither the codirectional nor ordinary backward-wave coupler is suitable for the
production of very tight coupling, however.50 As we’ve seen in the case of the quadra-
ture hybrid, equal power splitting is often precisely what is needed, but 3-dB coupling
is practically unattainable with ordinary edge-coupled lines, even with substrates fea-
turing a high dielectric constant. In some cases, the version shown in Figure 7.45 can
provide somewhat higher couplings without requiring heroic fabrication techniques
and thus might be preferable (for manual prototyping, if nothing else).51 Naturally,
such an option only makes sense at frequencies that are amenable to the use (and
mounting) of available discrete capacitors – and for coupling that is still not too tight.

Noting that a single coupled pair makes use of only a single edge per line, one
might wonder if using additional lines might be an alternative method for obtaining
greater coupling for a given interline spacing. For example, one might propose the
use of two pairs of lines in an interdigitated arrangement, as shown in Figure 7.55.

The two pairs of coupled lines possess three pairs of coupled edges, instead of
just one. Consequently, a given interline spacing produces much tighter coupling.
Or, a larger spacing may be used to produce a given degree of coupling, relaxing
dimensional tolerances. Clearly, this process of interdigitation may be continued in-
definitely in principle. However, the law of diminishing returns – along with the
practical difficulties of fabricating ever-narrower lines (made necessary by the paral-
lel connections) and implementing the connections implied by the flying bondwires
in Figure 7.55 – drives most engineers to use just two pairs, although more are used
on occasion.

50 If additional conductor layers are available then one may place one line above the other; such
area-coupled (broadside-coupled) lines can have much tighter coupling than edge-coupled ones.
This theme will recur when we examine various ways to implement filters.

51 This statement presumes that the operational frequencies are low enough that one may safely ne-
glect the parasitics of the discrete components.
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F IGURE 7.55. Coupler with additional lines for
tighter coupling (linewidths not to scale)

The solution of the coupling problem frequently forces us to solve another. If we
assume that the reason for seeking tighter coupling is to make practical the implemen-
tation of a 3-dB coupler, then it is not much of a leap to assume that it is important
to preserve symmetry to avoid degrading the equality of outputs that a 3-dB coupler
provides. Regrettably, the through and coupled outputs emerge from diagonally op-
posed corners instead of from the same side. Consequently, it is nigh impossible to
avoid some degradation as a result of this fundamental lack of output symmetry.

In 1969 an engineer at Texas Instruments, Julius Lange, described an ingenious so-
lution to both the coupling and symmetry problems.52 His coupler design augments
interdigitation with a clever splitting of one of the lines into two pieces. This way, a
simple rearrangement allows both the through and coupled outputs to emerge from
the same side, enabling a symmetrical feed to whatever follows the coupler itself. In
its simplest form, the Lange coupler appears as shown in Figure 7.56. If additional
layers of metal are available, they may be used instead of the bondwires shown (in
conjunction with vias). In all cases, one must take care to ensure that the parasitics
of the interconnect don’t degrade performance.

As mentioned before, the use of paralleled lines implies that the individual lines
themselves must possess characteristic impedances that are higher than the termi-
nation impedances. The coupled lines will thus be narrower than the port feedlines
(despite the equal relative dimensions shown in Figure 7.56). More typically, an ac-
tual layout might appear as shown in Figure 7.57. From the typical layout, one may
better appreciate the fabrication complexities involved (particularly if more fingers
are used), as well as the challenge of making a good transition between the coupled
sections and the much wider feedlines that connect to the four ports.

Aside from those considerations, the design of a Lange coupler involves some-
what more complex analytical formulas. Even with that additional complexity, final

52 J. Lange, “Interdigitated Stripline Quadrature Hybrid,” IEEE Trans. Microwave Theory and Tech.,
v. 20, December 1969, pp. 1150–1.
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F IGURE 7.56. Lange coupler (linewidths not to scale)

F IGURE 7.57. More representative layout of a
microstrip Lange coupler (bondwire version)

refinement with the aid of electromagnetic field solvers is still almost always neces-
sary. With that disclaimer out of the way, we offer a sequence of equations that may
be used to generate a credible first-pass design.53

First, from Ou54 we have

Z2
0 = Z0eZ0o(Z0e + Z0o)

2

[Z0e + (k − 1)Z0o][Z0o + (k − 1)Z0e]
(116)

and

C = (k − 1)Z2
0e − (k − 1)Z2

0o

(k − 1)(Z2
0e + Z2

0o) + 2Z0eZ0o
, (117)

53 A coherent presentation of this procedure is found in T. C. Edwards and M. B. Steer, Foundations
of Interconnect and Microstrip Design, 3rd ed., Wiley, New York, 2000, and also in V. Fusco, Mi-
crowave Circuits, Prentice-Hall, Reading, MA, 1987.

54 W. P. Ou, “Design Equations for Interdigitated Directional Coupler,” IEEE Trans. Microwave The-
ory and Tech., v. 26, October 1978, pp. 801–5.
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7.6 COMBINERS, SPL ITTERS, AND COUPLERS 225

where k is the number of fingers. Here C is the direct coupling factor, not the dB
version.

Osmani then combined Ou’s derivations to yield a series of equations you would
actually use for designing a Lange coupler.55 First define a factor q as

q = [C2 + (1 − C2)(k − 1)2]; (118)

then compute the odd-mode impedance from

Z0o = Z0

√
1 − C

1 + C

(k − 1)(1 + q)

(C + q) + (k − 1)(1 − C)
. (119)

The even-mode impedance is computed next, using

Z0e = Z0o
C + q

(k − 1)(1 − C)
. (120)

Finally, use the method of Akhtarzad to determine actual conductor dimensions and
spacings to complete the design.

Like the branchline coupler, the 3-dB Lange coupler may be used as a quadrature
combiner or splitter. One practical limitation is that the coupling lines can get rather
narrow, to say nothing of the difficulty of implementing the connections suggested
by the bondwires shown in Figure 7.56 (even if vias in conjunction with an additional
metal layer are used instead). A compensating advantage is that the Lange coupler
operates over a much broader bandwidth than the 10% or 15% bandwidth provided by
a branchline hybrid. As with ordinary coupled-line couplers, the useful bandwidth
of a Lange coupler typically exceeds an octave.56 This attribute explains the Lange’s
popularity in spite of the fabrication challenges.

The following simulations (by Sonnet Lite 9.51) of a 12-GHz coupler highlight
the performance of a conventional Lange coupler in greater detail. As can be seen in
Figure 7.58, the coupling is close to 3 dB over a frequency range that extends from
below 8 GHz to above 16 GHz. Over that same frequency range, the input return loss
exceeds 18 dB.

In light of all this attention given to tight coupling, it’s easy to get the false impres-
sion that achieving maximum coupling is always an overriding goal. It’s therefore
important to note that there are many instances – such as SWR measurement, or sam-
pling an amplifier’s output to measure power or to close a feedback loop – that do not
always call for maximum coupling. Consequently one should feel free to consider a
conventional backward-wave coupler with lines that are shorter than λ/4, especially
where space is an important engineering consideration.

55 R. M. Osmani, “Synthesis of Lange Couplers,” IEEE Trans. Microwave Theory and Tech., v. 29,
February 1981, pp. 168–70.

56 This statement applies to the coupling magnitude, not to maintenance of quadrature.
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226 CHAPTER 7 MICROSTRIP, STR IPL INE, AND PL ANAR PASSIVE ELEMENTS

F IGURE 7.58. Simulated performance of a 12-GHz Lange coupler

F IGURE 7.59. Multisection coupler (symmetrical version shown;
relative dimensions not to scale)

7.6.5 BROADBAND AND SIZE REDUC TION TECHNIQUES

Many of the couplers we’ve studied make extensive use of line segments whose
lengths are expressed as some fraction of a wavelength, generally implying narrow-
band operation. This property is sometimes an attribute instead of a limitation owing
to the incidental filtering of out-of-band noise and interference that might be provided
as a by-product of frequency-dependent coupling. However, there are also many in-
stances (particularly in instrumentation) where broadband operation is desirable. It is
therefore valuable to consider methods for extending the frequency range over which
these couplers may operate.

The most common broadbanding technique – use more sections – is simple in
concept but somewhat difficult in execution. Just as in the stepped-impedance trans-
former, broader band operation is enabled by cascading sections, each of which car-
ries a smaller burden for the overall performance. See Figure 7.59. This idea may
be applied to the coupled line to provide good coupling and directivity over decade
bandwidths.

Consider, as we did with the classical single-section backward-wave coupler, a
wave flowing from the input port to the through port. That wave induces a backward
wave in a coupled line. In this specific instance, it induces a succession of backward
waves as it traverses the various coupled sections. For example, a wave traveling
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7.6 COMBINERS, SPL ITTERS, AND COUPLERS 227

along the zeroth section induces a backward wave in the coupled line with a particu-
lar coupling coefficient C0, then another with a coupling coefficient C1 upon entering
the next section, and so on. As all of the induced waves flow backward toward the
coupled port, they superpose to yield the overall coupled signal.

Now we’ve already seen that the backward-wave coupler actually depends on
reflections for operation. Weak coupling produces small differences in mode im-
pedances, and hence it generates small reflections. If we additionally assume that
cascading such weak couplers does not appreciably alter this general property of weak
reflections, we may again invoke the small-reflection approximation and thereby es-
timate the overall coupling as a simple weighted sum of delayed couplings.

We begin by generating an approximation for the coupling factor that is valid in
this limit of weak coupling. Starting with Eqn. 103, we may develop the following
expression:

V3

V1
= (j tan θ)CF√

1 − C2
F + j tan θ

≈ (j tan θ)CF

1 + j tan θ
= (j sin θ)CF

cos θ + j sin θ
= [(j sin θ)CF ]e−jθ ; (121)

here, as before, CF is the maximum coupling. Note that the only approximation made
stems from the weak coupling assumption (CF small compared to unity). Aside from
that approximation, Eqn.121remains valid over an arbitrarily large bandwidth (again,
in principle).

Next, note that the contribution of the N th section to the coupled output is delayed
by 2Nθ, because there is a delay of Nθ incurred while the forward wave travels to the
N th section, and another Nθ delay during which the induced backward wave travels
back to the coupled port. Summing all of these backward waves yields

V3

V1
≈ j sin θ [C0e

−jθ + C1e
−j(θ+2θ) + · · · + CNe−j(θ+2Nθ)], (122)

where the total number of coupled sections is N + 1.
Recognizing that the summed term in the brackets of Eqn. 122 is of the form of a

Fourier series, we can see that (as in the other examples in which we’ve invoked the
small-reflection approximation) the coefficients Cn may be chosen to produce an ar-
ray of useful behaviors. Here, it is the coupling that may be made maximally flat or
equiripple, for example.57

The transitions between sections are generally mitered, rather than abrupt as shown
in Figure 7.59. As with the single-section coupler, it is common to implement each

57 There is naturally an extremely close connection between this structure and the multisection im-
pedance transformer. For a good summary, see Inder Bahl and Prakash Bhartia, Microwave Solid
State Circuit Design, Wiley, New York, 1988. Also see Matthaei, Young, and Jones, Microwave
Filters, Impedance Matching Networks, and Coupling Structures, reprinted byArtech House, Ded-
ham, MA, 1980. Known as MYJ or “the (big) black book,” this classic volume comprehensively
describes the state of the art of its title subject as of the mid-1960s.
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F IGURE 7.60. Multisection Wilkinson divider (stylized)

section as nominally λ/4 in length (measured at the center of the frequency band).
And as with the single-section coupler, unequal even- and odd-mode phase veloc-
ities (as well as dispersion) degrade the multisection coupler’s performance when
implemented in microstrip. Compensation for these effects (e.g., with lumped ca-
pacitors, as described earlier) is essential if reasonable broadband performance is to
be achieved with microstrip implementations.

The Wilkinson divider can be made to operate over similarly broad frequency
spans through cascading, also achieving decade or more bandwidths instead of the
octave-range values commonly provided by a single stage.58 It may be viewed as
a combination of a Wilkinson divider with impedance transformers. As with the
multisection impedance transformer, the small-reflection approximation allows us to
understand that the greater the number of sections, the greater the bandwidth.

In the stylized circuit of Figure 7.60, each section is λ/4 in length. In practical lay-
outs, the arms are almost never straight and parallel segments as shown in the stylized
figure. Instead, the arms are generally implemented as semicircular loops. At least
two considerations motivate this choice. One is that such a geometry improves the
aspect ratio, especially in the case of many sections. The other is that parallel lines
are also coupled lines, and the coupling may perturb the operation of the divider.

In the case of the branchline coupler, the underlying idea is that coupling resonant
systems together results in the creation of resonances above and below the original,
uncoupled resonances. A proper choice of initial resonant frequencies and coupling
strength can lead to broader band operation. In fact, this mechanism is responsible
for the surprisingly large bandwidth of the Lange coupler. Even though it is most
familiar to engineers in the context of amplifier and filter design, the same insights
apply to the coupling problem. For example, one may cascade branchline couplers
(Figure 7.61) to broaden considerably the frequency range over which they function
well. Regrettably, there are no simple formulas for the general design of such branch-
line couplers, only algorithms.59

The arms are again λ/4 in length at the center frequency of operation, and the dis-
tribution of line impedances and choice of number of sections determines both the

58 Seymour B. Cohn, “A Class of Broadband 3-Port TEM Hybrids,” IEEE Trans. Microwave Theory
and Tech., v. 16, February 1968, pp. 110–18.

59 O. Maraguchi et al., “Optimum Design of 3-dB Branchline Coupler Using Microstrip Lines,” IEEE
Trans. Microwave Theory and Tech., v. 31, August 1983, pp. 674–8.
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F IGURE 7.61. Multisection branchline coupler

F IGURE 7.62. Schiffman “alligator clip”
reduced-size broadband coupler

bandwidth and the passband ripple. As with the single branchline coupler and many
other examples we’ve presented, one may replace each λ/4 arm with a π -section
CLC network to realize a lumped version of the broadband multisection quadrature
hybrid.

One trade-off produced by cascading is an increase in size. To reduce the cost of
that trade-off, one may use structures such as shown in Figure 7.62.60 The idea is to
compress the length of the coupled sections through the use of zigzag (or serpentine
or meander) geometries. The effective electrical length lies somewhere between the
horizontal dimension occupied by the line and the total length along the teeth of the
zigzag edges. As one might expect, no analytical formulas exist for the precise de-
sign of such couplers. However, if one begins with a three-section stepped-impedance
prototype (whose design itself is nontrivial, but not impossible), then an initial zigzag
design is achievable using a simple heuristic procedure.61 For the segment with the
closest spacing, choose the section length so that the total zigzag length is the same
as that of the prototype. For the third segment (the one with the widest spacing),
assume that the edge-to-edge spacing is measured between midpoints of the teeth.
Then, simply choose the line spacing and length reduction of the middle section as
the geometric means of the first and third section values. Simulate and refine as nec-
essary to converge on an acceptable design. Over a 1–8-GHz frequency range, a

60 As reported by S. Uysal, Nonuniform Line Microstrip Directional Couplers and Filters, Artech
House, Dedham, MA, 1993.

61 See Dana Brady, “The Design, Fabrication and Measurement of Microstrip Filter and Coupler
Circuits,” High Frequency Electronics, July 2002, pp. 22–30.
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prototype design exhibits a ∼10-dB directivity, a coupling of 19 dB with 1.5-dB rip-
ple, and a worst-case return loss of 16 dB.62 Although this performance level by itself
is not quite up to commercial standards, the design represents a credible first pass
from which a suitable coupler might emerge after several iterations.

Finally, it’s important to note that many of these solutions (interdigitation, mean-
der lines, etc.) are necessitated to a large extent by an insistence on simple planar
realizations. If additional levels of metal are available, then broadside-coupled (rather
than edge-coupled) structures will provide tight coupling much more simply. Indeed,
significant size reductions may then be enabled by using broadside-coupled spirals,
for example.

7.7 SUM M ARY

This chapter has presented the basic characteristics of microstrip transmission lines,
along with numerous approximate equations and rules of thumb for estimating cir-
cuit constants and parasitics. Many of these approximations facilitate the charac-
terization and mitigation of reactive discontinuities formed at bends and other tran-
sitions between segments of line, or between connectors and lines. We considered
the use of suitably designed segments of transmission line as capacitors, inductors,
and resonators, and we presented an extended discussion of couplers, splitters, and
combiners.

7.8 APPENDIX A: R ANDOM USEFUL
INDUC TANCE FOR MUL AS

We have already presented some formulas for inductance in a previous chapter in a
piecemeal manner. We now present a number of additional formulas for commonly
encountered geometries. In all that follows, the equations strictly apply only at DC
unless stated otherwise. At high frequencies, inductance drops somewhat because the
shrinking of skin depth causes the contribution of internal flux to diminish. Fortu-
nately, internal flux generally accounts for only a small percentage (e.g., below 5%) of
the total inductance at DC, so its reduction at high frequency does not cause dramatic
changes in the overall inductance. Nonetheless, it is worthwhile avoiding unpleasant
surprises by knowing explicitly what assumptions have gone into the derivations.

In the sections that follow here, transmission line effects are neglected, so the for-
mulas apply only when dimensions are short compared with a wavelength.

7.8.1 FL AT SHEETS AND ROUND WIRES

In Chapter 6 we presented a formula for the inductance of a current sheet. It is re-
peated here so that all the inductance formulas are in one place for easy reference:

62 Brady, ibid.
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Lsheet ≈ µ0 l

2π

[
0.5 ln

(
2 l

w

)
+ w

3l

]
= (2 × 10−7)l

[
0.5 ln

(
2 l

w

)
+ w

3l

]
. (123)

See Section 6.5.2 for details.
The DC inductance of a round wire is given by 63

L ≈ µ0 l

2π

[
ln

(
2 l

r

)
− 0.75

]
= (2 × 10−7)l

[
ln

(
2 l

r

)
− 0.75

]
. (124)

7.8.2 SINGLE LOOP

A useful approximation for a circular loop is given by:

L ≈ µ0πr. (125)

This formula tells us that a loop with radius of 1 mm has an inductance of about 4 nH.
Better accuracy is provided by the following equation, which takes into account a

nonzero wire diameter:64

L ≈ µ0r[ln(8r/a) − 2], (126)

where a is the radius of the wire. Given Eqn. 126, we see that Eqn. 125 strictly holds
only for an r/a ratio of about 20.

Making a crude approximation even more so, we could extend Eqn. 125 to noncir-
cular cases by arguing that all loops with equal area have about the same inductance,
irrespective of shape. Then we could write

L ≈ µ0

√
πA, (127)

where A denotes area of the loop. See Section 6.5.2 for details.

7.8.3 PL ANAR SPIR ALS

In keeping with the planar world view that dominates this text, we now consider a
popular geometry for realizing small-valued inductances in a PC board (or IC) con-
text. Planar spirals with circular, octagonal, hexagonal, and square shapes have all
been used. The inductance and Q-values attainable are very much second-order func-
tions of shape (despite much lore to the contrary), so engineers should feel free to
use their favorite shape with impunity. A square spiral is the simplest to lay out and
is thus the overwhelming favorite of lazy engineers (a set of which the author is a
proud member).

63 The ARRL Handbook, American Radio Relay League, 1992, pp. 2–18. The proximity of conduct-
ing planes may be ignored as long as they are located a distance away that is equal to one or two
lengths, at minimum.

64 Ramo, Whinnery, and Van Duzer, Fields and Waves in Modern Radio, Wiley, New York, 1965,
p. 311.
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Table 7.5. Coefficients for inductance formula

Shape c1 c2 c3 c4

Square 1.27 2.07 0.18 0.13
Hexagon 1.09 2.23 0.00 0.17
Octagon 1.07 2.29 0.00 0.19
Circle 1.00 2.46 0.00 0.20

The formulas for all of these shapes can be cast in a unified form as

L = µn2davgc1

2

[
ln

(
c2

ρ

)
+ c3ρ + c4ρ

2

]
, (128)

where n is the number of turns, davg is the average of the inner and outer diameters,
and ρ is a fill factor, defined as

ρ ≡ dout − din

dout + din

. (129)

From this last equation, you can see why the term “fill factor” is appropriate: ρ ap-
proaches unity as the inductor windings fill the entire space, and it approaches zero
as the inductor becomes more and more hollow.

The various cn coefficients are a function of geometry and are given in Table 7.5
for four representative shapes.65 To an excellent approximation, the coefficient c1 is
the area for a given outer dimension, normalized to the area of the largest circle that
can be inscribed within the layout. The factor c2 is the primary term, while c3 and c4

may be considered first- and second-order correction factors, respectively. When all
four factors are used, the equations are typically accurate to within a couple of per-
cent (and almost never in error by more than 5%), thus generally obviating the need
for a full electromagnetic field solver to evaluate the inductance of such structures.

On those rare occasions where other regular polygons are of interest, one may use
the following analytical formula:

L ≈ µn2davgAout

πd 2
out

[
ln

(
2.46 − 1.56/N

ρ

)
+

(
0.20 − 1.12

N 2

)
ρ2

]
, (130)

where Aout is the outer area and N is the number of sides of the polygon. This for-
mula is simply a restatement of Eqn. 128 with analytical approximations used for the
coefficients c1, c2, and c4. The coefficient c3 is set to zero, which is a good approxi-
mation for all regular polygons with more than four sides. This analytical formula is
only one or two percent more inaccurate than the tabulated one.

TheQ of a planar spiral inductor may be estimated roughly by using the skin-effect
formula to compute an approximation of the effective resistance. This formula isn’t

65 S. S. Mohan et al., “Simple Accurate Inductance Formulas,” IEEE J. Solid-State Circuits, Febru-
ary 2000.
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quite adequate because it neglects the influence of a given turn’s field on the cur-
rent distribution in adjacent turns. Hence, one should expect the estimate to be rather
crude at best.

Generally speaking, somewhat hollow inductors have the highest Q because the
innermost turns tend not to contribute much magnetic flux but do contribute signif-
icant resistance. Hence, removing them is a good idea in general. Although there
is no simple rule for what is optimum in all cases, a reasonable guideline is to have
a 3 :1 ratio between the outer and inner diameters. Fortunately, the optimum condi-
tions are relatively flat, so this guideline is satisfactory for most practical cases.

In addition to series resistance, one is also generally interested in the self-resonant
frequency. The self-capacitance gives rise to this resonance, which is due mainly to
the overlap between the line that makes connection to the center of the spiral and the
rest of the turns of the inductor. That overlap capacitance can be estimated from a
simple parallel-plate formula. The turn-to-turn capacitance is usually negligible be-
cause the individual terms all appear in series.

7.9 APPENDIX B: DERIVATION OF FRINGING CORREC TION

DANGER, WILL ROBINSON – INTEGR ALS, CHEESE
AND A BREEZE AHEAD!

A rigorous calculation of fringing capacitance is rather difficult. When precise an-
swers are needed, or if the geometry is complex, often the best practical choice is to
employ numerical methods. Unfortunately, such an approach often obscures design
insight. As a complement to those valuable numerical approaches, we offer here an
analytical expression whose inaccuracy perhaps can be forgiven in view of its sim-
plicity and near universality. And although its derivation may not exactly fit on a
cocktail napkin, the final result certainly does (as is made clear by its incorporation
into Eqn. 12).

Field theorists have devised many ingenious strategies for accomplishing what we
seek. The approach we’ll take is inspired by one of the many wonderful chapters
in Feynman’s Lectures on Physics, in particular, “The Principle of Least Action.”66

There, Feynman points out that powerful minimum principles can frame novel and
elegant solutions to old problems. For example, if you were to forget the current
divider law for two parallel resistors, you could derive it using the principle that cur-
rents will distribute themselves in a way that minimizes the total power dissipation.
Any other current distribution would result in a higher total dissipation (try it!). Sat-
isfying the same minimum principle is the voltage divider law.

Similarly, if our task is to deduce the electric field between two conductors, it is
valuable to know that charges will distribute themselves to minimize the total energy
stored in the system – and also to remember that a unique potential distribution is
linked to the charge distribution. Because (for a given voltage) energy is proportional

66 Volume II, Chapter 19 (Addison-Wesley, Reading, MA, 1964).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511812941.008
Downloaded from https://www.cambridge.org/core. The Librarian-Seeley Historical Library, on 18 Dec 2019 at 06:16:41, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511812941.008
https://www.cambridge.org/core


234 CHAPTER 7 MICROSTRIP, STR IPL INE, AND PL ANAR PASSIVE ELEMENTS

to capacitance, we may infer from this minimum principle that the correct potential
distribution is the one among all possible distributions that minimizes the computed
capacitance.67 We use this observation by proposing a “reasonable” functional form
for the potential distribution, computing the capacitance it implies, and then choos-
ing parameters (if any) to minimize that capacitance. Feynman’s minimum principle
then says that we will have generated the best possible approximation to the truth
for that particular guess (even if it is wrong). Furthermore, we will know that our
approximation error will always be positive (since our approximate formula will nec-
essarily overestimate the true capacitance).

To start, we equate two different formulas for the energy stored in a capacitor:

1

2
CV 2

0 = 1

2
ε

∫
Vol

|∇V |2 d Vol, (131)

where ∇V is the gradient of the potential V (recall that the electric field is equal to
minus this gradient). The term on the left comes from ordinary circuit theory, and
that on the right is from field theory.

Next (and this is the tricky part), guess a “reasonable” form for the potential. To
aid in guessing, first look at our structure, which is shown in Figure 7.63. The electric
field lines are idealized as perfectly vertical until the very end of the line is reached,
and then as progressively curving outward more and more until they are perfectly cir-
cular at a distance H beyond the end. Along the radial line shown in the figure – and
at an angle θ with respect to the ground plane – assume that the potential increases in
some fashion as the radius r increases from 0 to H. Further assume (rather fancifully)
that, at a given r , the potential increases linearly from 0 as the angle θ varies from 0
to π/2. Assume also that negligible energy is stored in the electric field for r > H.

This latter assumption avoids an embarrassing prediction of potentials in excess of
the applied voltage, V0, as the radius approaches infinity. It also causes us to under-
estimate the energy stored. This error is at least in the right direction to offset the
systematic overestimation inherent in the method when used with any incorrect po-
tential distribution (although there is the possibility of overcompensation). Finally,
assume that the plates are infinitesimally thin.

Given these assumptions (and they are just that), we may postulate an approximate
potential function of the form

Ṽ (r , θ) = V0

(
r

H

)k(2θ

π

)
, (132)

where k is some parameter whose value is to be determined later. The tilde denotes
that it is a postulated – and approximate – potential. You can verify that this equation
satisfies the conditions stated previously (but not necessarily all relevant boundary
conditions; if it did then it would have to be the correct solution). Note that we ne-
glect variations in the z-direction (i.e., out of the plane of the page).

67 The same minimum principle can be used to derive formulas for inductance.
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7.9 APPENDIX B: DERIVATION OF FRINGING CORREC TION 235

F IGURE 7.63. Very approximate field distribution for
fringing capacitance estimation (side view)

With that potential function in hand, the rest is just plugging and chugging:

C̃ = 4ε

π2H 2k

∫
Vol

|∇Ṽ |2 d Vol = 4εW

π2H 2k

∫
Area

|∇Ṽ |2r dr dθ; (133)

∇Ṽ

Ṽ
= k

r
r + 1

rθ
θ

(
or ∇Ṽ = Ṽ

r

(
kr + 1

θ
θ

))
, (134)

where r and θ are the r- and θ -directed unit vectors, respectively. After combining
these equations and evaluating the double integral as r ranges from 0 to H and as θ

varies from 0 to π/2, we obtain

C̃

W
= πεk

12
+ ε

πk
, (135)

where W is the width of the line.
Now, we want to select k to minimize the estimated capacitance. Setting the first

derivative of Eqn. 135 to zero yields

k = √
12/π, (136)

which – given the approximate nature of this entire endeavor – may be treated as es-
sentially unity (meaning that we could have just started with k = 1 and ended up with
pretty much the same answer).

Substitution of this value of k into Eqn. 135 finally gives us an approximate equa-
tion for the per-width fringing capacitance:

C̃

W
= ε√

3
. (137)

Note that this capacitance is independent of H. To the extent that the approximations
leading to its derivation are valid, it is therefore a universal fringing correction whose
value is very roughly 5 fF/mm. That is, any open structure will contribute approxi-
mately this capacitance per length of edge, at least to cocktail-napkin accuracy.68 The

68 This statement is true for a finite-length conductor over an infinite ground plane. For two equal-size
plates, the universal correction is precisely half the value, or about 2.5 fF/mm. But the length ex-
tension remains H/

√
3 (or, rounding, H/2) per edge. Also remember that we have ignored field

variations in the z-direction, so the correction becomes increasingly dubious as W/H diminishes.
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236 CHAPTER 7 MICROSTRIP, STR IPL INE, AND PL ANAR PASSIVE ELEMENTS

Table 7.6. Circular parallel-plate capacitance

Cheesy Cheesy
“Exact” correction Residual correction Residual

correction factor cheese error factor cheese error
H/D factor (using H/2) (%)

(
using H/

√
3
)

(%)

0.005 1.023 1.010 1.2 1.012 1.1
0.01 1.042 1.020 2.1 1.023 1.6
0.025 1.094 1.051 4.0 1.059 3.2
0.05 1.167 1.102 5.5 1.119 4.1
0.10 1.286 1.210 5.9 1.244 3.3

foregoing assumes a vacuum dielectric, but we’ll pretend that the correction remains
valid even for microstrip.

Because capacitance is proportional to the ratio of effective area WLeff to plate
spacing H, the fringing capacitance is equivalent to an ideal fringing-free parallel-
plate capacitor whose dimensions are W by H/

√
3.

But wait, you say: Equation 24 contains H/2, not H/
√

3. Here’s how we get
H/2: First, we know that our proposed functional form is wrong (consider its be-
havior at large radii). Thus, by the minimum principle we know that our estimate
is probably too high

(√
3 is too low

)
if the field for r > H were truly negligi-

ble. But by how much is our estimate high? We don’t know (if we did, we could
remove the error altogether). But under the assumption that the estimate isn’t too
horribly wrong, we arbitrarily round the denominator upward a little bit to get to
the closest convenient number, 2. Cheesy? You bet. Can we evaluate the extent of
cheesiness? Consider Table 7.6, which presents correction factors for the capacitance
between circular parallel plates of diameter D and spacing H. We define a correc-
tion factor as the ratio of actual (or estimated) capacitance to the value given by the
simple fringing-free undergraduate physics formula. Values in the second column
are obtained from numerical field solutions, and in the third from assuming that the
capacitors act as if we extended the radius by an amount H/2 (so that the effective
diameter is D + H ).

As expected, the correction factors are very close to unity for small spacings, so
all three formulas yield answers that differ negligibly from each other. As H/D ra-
tios grow, however, the fringing-free parallel-plate formula underestimates the true
capacitance by increasing amounts. The true capacitance is nearly 30% larger than
the value computed by the fringing-free formula when the H/D ratio is 0.1. Appli-
cation of the cheesy correction factor results in a residual error that is under 6% at
that same spacing. This close tracking is encouraging, because the correction factor
was derived for a rectangular structure but was applied successfully to a circular one.
Hence, our assertion of a universal fringing correction seems not so unreasonable.

As a final comment, if we use the H/
√

3 factor actually derived instead of the
H/2 arbitrarily substituted for it, the error improves a little bit in the particular case
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7.10 APPENDIX C: DIELEC TRIC CONSTANTS OF OTHER M ATERIALS 237

Table 7.7. Other dielectrics

Material εr Material εr

Al2O3 (96%) (alumina) 9.5 Mica 5.4
Al2O3 (99.5%) 9.8 Mylar 3
AlN 8.7 Paper 2.7 typ.
BaTiO3 ∼600 Plexiglas 3.45
BeO (99.5%); toxic! 6.6 Polyethylene 2.25
Diamond 5.5 Polystyrene 2.55
Fused silica 3.82 PTFE (Teflon) 2.1
GaAs 13 TiO2 ∼100
Ge 16 RT/duroid 2.5
Glass (borosilicate) 4.8 Si 11.7

Source: Primarily AppCAD (Agilent Technologies).

of Table 7.6, as can be seen in the last two columns.69 At a normalized spacing of
0.1, the correction factor becomes 1.24; this reduces the error to almost a full order
of magnitude below the fringing-free estimate, to a little bit above 3%. So, which
to use? Fortunately, the contribution by fringing constitutes a second-order correc-
tion to first-order formulas, so small errors in those corrections result in very small
overall errors. The choice of whether to use H/2 or H/

√
3 (or some other value) is

thus not of critical import, and the selection can be made on the basis of other cri-
teria. The slothful author uses the simpler value of H/2 most of the time, since it
minimizes another kind of energy – his own.

7.10 APPENDIX C: DIELEC TRIC CONSTANTS
OF OTHER M ATERIALS

It’s important not to allow this book’s focus on FR4 to convey the impression that
other materials are not used in microwave circuits. To the contrary; FR4 is rarely
used in “serious” microwave work. Its primary virtue is its low cost, making it in-
creasingly popular for high-volume consumer applications. This book’s choice of
FR4 as a tutorial medium is an acknowledgment of this growing popularity as well
as a response to the general absence of information on FR4 in most of the microwave
literature. When seeking the best performance, however, other dielectric materials
are strongly favored over FR4. In Table 7.7 we provide an incomplete sampling of
additional dielectric materials. Not all of them are necessarily good dielectrics for
microwave work, but they may be frequently encountered.

69 A value of 2H/3 is even better for this particular data set, with almost no error at H/D = 0.1.
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C H A P T E R E I G H T

IMPEDANCE MEASUREMENT

8.1 INTRODUC TION

Both time- and frequency-domain characterizations provide comprehensive informa-
tion about a system. The latter require the ability to generate and measure sinusoidal
voltages and currents over a broad frequency range. The network analyzer, in either
scalar or vector incarnations, is an example of such an instrument.

An alternative is to use time-domain methods to characterize a system. The prin-
cipal tool of this type is the time-domain reflectometer (TDR), which is in essence
a miniature radar system. The TDR launches a pulse (“the main bang”) into the de-
vice under test and then observes any echoes. The timing of a reflection with respect
to the main bang indicates the location of a discontinuity, and the shape of the re-
flected pulse conveys important information about its nature. With a reflectometer,
then, one can quickly locate and characterize both resistive and reactive discontinu-
ities (and evaluate their fixes). A network analyzer can also provide this information
but requires considerably more labor to do so.

We consider both network analyzers and TDRs in this chapter, beginning with the
latter.

8.2 THE TIME-DOM AIN REFLEC TOMETER

There are two primary applications of TDRs: finding and characterizing impedance
discontinuities. These capabilities translate directly into the ability to correct defects
and evaluate the quality of any compensation performed.

8.2.1 LOCATING DISCONTINUIT IES

As shown in Figure 8.1, a TDR consists of just two main modules: a pulse generator
and an oscilloscope. A pulse generator applies a fast risetime step to the device under
test (DUT). A portion of the signal is tapped off and fed to an oscilloscope, whose
sweep is synchronized with the step. The synchronizing signal is timed to allow the
display of the voltage both a bit before the rising edge and well after.

238

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511812941.009
Downloaded from https://www.cambridge.org/core. The Librarian-Seeley Historical Library, on 18 Dec 2019 at 06:21:01, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511812941.009
https://www.cambridge.org/core


8.2 THE T IME-DOM AIN REFLEC TOMETER 239

F IGURE 8.1. Time-domain reflectometer

A pulse’s risetime determines its spectral content and, hence, the bandwidth over
which the TDR can perform a useful characterization. Similarly, the oscilloscope’s
bandwidth must be consistent with the desired characterization bandwidth. A com-
mon rule of thumb is that the −3-dB bandwidth of a step is related inversely to the
10–90% risetime as follows:

f−3dBtr ≈ 0.35. (1)

This relationship, although strictly correct only for single-pole systems, allows us
to estimate the performance requirements of a TDR system. For example, suppose
we wish to characterize a transmission line up to 10 GHz. Using our rule of thumb,
we find that the TDR’s risetime must be shorter than about 35 ps. The fastest com-
mercially available TDRs are capable of characterizing systems beyond 50 GHz,
implying risetimes of under 7 ps.1

The risetime of the incident pulse determines not only the bandwidth over which
the system is characterized but also the spatial resolution of the characterization. If a
pulse reflects off of a discontinuity some distance xd from the source, then the total
time taken in the round trip back to the source is

tprop = 2xd
vprop

, (2)

so that
xd = tpropvprop

2
, (3)

where vprop is the propagation velocity. Clearly, if the pulse’s risetime is too slow then
reflections will be obscured during the rising edge. Roughly speaking, the spatial res-
olution is approximately equal to the distance traveled during the risetime. The first
reflectometers were developed to locate faults in very long cables, where the ability
to pin down the location of an open or short to within 100 meters or so suffices. Given
that the speed of light along a typical cable is about 60–80% of the free-space value,
the corresponding delay is about 4 ns per meter. Risetimes in the range of hundreds

1 Here we are excluding systems that employ cryogenics and superconductors. Laboratory demon-
strations of pulse generators with sub-picosecond risetimes suggest that bandwidth will continue
to increase.
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240 CHAPTER 8 IMPEDANCE MEASUREMENT

of nanoseconds – implying bandwidths in the low-megahertz range – can therefore
be satisfactory for such cable fault–finding applications. The far faster sub–10-ps
risetimes cited earlier for today’s leading-edge gear correspond to the ability to lo-
cate discontinuities to a resolution of a few millimeters in free space. Such risetimes
and their corresponding spatial resolutions are much more compatible with the size
of typical microwave circuit elements and modules.

It is not necessary to know the propagation velocity to locate a discontinuity, de-
spite the seeming implications of Eqn. 3. With microstrip, for example, just run a
finger along the line while observing the TDR trace. When the bump produced by
your finger coincides with the bump produced by the discontinuity you’re trying to
investigate, you’ve found it: the discontinuity will be right underneath your finger.
(Of course this method should not be used if the TDR pulse is of an unusually high
power!)

8.2.2 CHAR AC TERIZ ING DISCONTINUIT IES

One reason that the TDR is so valuable is that it conveys much more information
than merely the location of discontinuities. This is most directly understood from the
relationship between the reflection coefficient and the termination impedance:

� = ZLn − 1

ZLn + 1
, (4)

where ZLn is the normalized load impedance,

ZLn ≡ ZL

Z0
. (5)

Note that the reflection coefficient is a complex quantity in general, possessing
both a magnitude and phase (or real and imaginary part). It thus contains information
about how the spectral components of the step response are modified in reflecting off
of the discontinuity. Note also that � contains similarly complete information about
the load impedance (Eqn. 4 may be solved for ZLn in terms of �). Adding the as-
sumption of linearity allows us to bring to bear on the problem all of the powerful
tools of linear system theory. In particular, finding the step response is a moldy sta-
ple of system theory, and that is precisely what the TDR displays. Even though we’ll
start with a formal mathematical approach, we’ll quickly examine a few representa-
tive cases to extract physical insight on how one might guess the correct answer for
these and many other cases of practical relevance.

The response to any input is the sum of the input excitation as well as any re-
flection that arises. The reflection is merely � times the incident signal. Hence the
transfer function that relates the total output to the input is

H(s) = 1 + � =
(

2ZLn

ZLn + 1

)
. (6)
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8.2 THE T IME-DOM AIN REFLEC TOMETER 241

F IGURE 8.2. Idealized TDR trace for open, shorted, and resistive loads

F IGURE 8.3. Idealized TDR trace of capacitively
terminated transmission line

When using this equation, it’s important to keep track of the fact that the inverse
Laplace transform of Eqn. 6 is valid only for times that are greater than the round-trip
time of flight,

tprop = 2xd
vprop

. (7)

Before this time, the response is just the value of the input alone (e.g., one volt if we
have assumed a unit step excitation).

Using these relationships, it is straightforward to determine the TDR traces for
several commonly encountered cases. For example, consider open- and short-circuit
loads. In those two cases, the normalized load impedances are infinite and zero, re-
spectively, with corresponding values of 2 and 0 forH(s). Keeping in mind that these
values apply only after the time-of-flight delay, the unit step responses thus appear
as shown in Figure 8.2. For resistive loads in between these two extremes, the step
response will jump to some level between zero and 2 V. If the load resistance is less
than the characteristic impedance, the final value will be below 1 V. If greater, the fi-
nal value will lie between 1 V and 2 V; and if equal to Z0, no discontinuity will be
observed.

Now consider the step response when reactive loads terminate a line. If the load
element is a capacitance, then

2ZLn

ZLn + 1
= 2

1 + 1/ZLn

= 2

1 + sZ0C
. (8)

This is simply the transfer function of a single-pole low-pass filter, whose step re-
sponse should be familiar; see Figure 8.3. In like manner, the step response for any
number of discontinuities can be readily determined. Without providing detailed
derivations (which are left as a pleasant exercise for the reader), Figure 8.4 presents a
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242 CHAPTER 8 IMPEDANCE MEASUREMENT

F IGURE 8.4. Idealized TDR traces for several discontinuities
(incident amplitude = 1 V in all cases)

short catalog of simple yet practically relevant discontinuities and their correspond-
ing TDR traces.

The shapes of the TDR traces can be anticipated from purely physical arguments
with a minimum of mathematics. In all of the reactive examples, there is only one
time constant because we have considered only single-reactance loads. A single time
constant implies a single exponential factor. An inductive termination (case a) ap-
pears initially as an open circuit, but ultimately acts as a short. The time constant
of the exponential transition between these two conditions is the ratio of inductance
to the effective resistance it sees (here, Z0). In case c, the inductance sees a total
resistance of 2Z0 (one Z0 each to the left and right), and the final value is 1 V.
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8.2 THE T IME-DOM AIN REFLEC TOMETER 243

F IGURE 8.5. Ideal and more realistic TDR traces for shunt capacitance

In case b, that of a series resistive discontinuity, the step response must jump up
because the effective load resistance is the resistance as viewed from the discontinu-
ity to the right. Here, that is the sum of R and Z0. A simple voltage divider equation
yields the result shown in the figure ( just remember that the open-circuit step ampli-
tude is 2 V).

Arguments similar to the foregoing can be used to sketch the TDR traces for the
rest of the examples given in Figure 8.4.

In practice, the observed TDR traces will differ somewhat from the idealized ones
shown in the figure. The main difference is due to the finite risetime of the step ex-
citation. If one considers a practical step to be the result of low-pass filtering an
infinitely fast one, then the actual TDR traces may be deduced by low-pass filtering
the ideal traces through a filter whose step response has the same risetime as that of
the actual step. This filter will slow down rising edges and cause a rounding of sharp
corners.

8.2.3 PAR A METER EXTR AC TION

Using our catalog of TDR traces, it is often possible to measure small inductances
and capacitances – or even to extract a more complex circuit model – from a mea-
sured step response. Doing so requires that we consider explicitly how the limited
bandwidth of all real systems affects the shape of the waveform. As a specific exam-
ple, consider the shunt capacitive discontinuity described by Figure 8.5.

The reflection coefficient is

� = ZLn − 1

ZLn + 1
= 1/(sCZ0 + 1) − 1

1/(sCZ0 + 1) + 1
= −sCZ0

sCZ0 + 2
, (9)

and � is seen to have a pole at a frequency given by

ω = 2/CZ0. (10)

Spectral components above this pole frequency are attenuated by the low-pass fil-
ter that is effectively formed with the capacitor. This filtering is the reason for the
change in shape shown in Figure 8.5. The sharp edge gets smeared out, resulting in
the smooth bump shown in the bottom trace. Despite the rounding, the areas of the
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244 CHAPTER 8 IMPEDANCE MEASUREMENT

F IGURE 8.6. Somewhat more realistic TDR trace for series inductance

bumps are the same (we will exploit this invariance later in an alternative measure-
ment method). If the capacitive discontinuity is small enough that this filtering effect
may be neglected, then the reflection coefficient may be approximated by

� ≈ −sCZ0

2
. (11)

The incident and reflected signals thus may be related approximately by a deriv-
ative:

Vr = �Vi ≈ −CZ0

2

dVi

dt
. (12)

The peak value of Vr is proportional to the peak value of the input slope, so

C ≈ −2Vr
Z0

(
dVi

dt

)−1

≈ −2Vr,pk
Z0

(
Vi

τ

)−1

, (13)

where Vr,pk is as shown in Figure 8.5, Vi is the amplitude of the input step, and τ

is the time constant of the input step. (We have used the fact that, for a single-pole
system, the maximum slope of the step response is simply the amplitude of the step,
divided by the time constant.) The 10–90% risetime of a step is approximately equal
to 2.2τ , so we could also write

C ≈ |Vr,peak|
1.1Z0

(
trise

Vi

)
. (14)

An analogous derivation for the case of a series inductive discontinuity yields the
following estimate:

L ≈ 2Z0Vr

(
dVi

dt

)−1

≈ Z0Vr,pk

1.1

(
trise

Vi

)
, (15)

where a typical waveform is as shown in Figure 8.6. This method can provide re-
markable measurement resolution. Suppose, for example, that a given TDR system
possessed the ability to resolve a voltage as small as1mV along with a15-ps–risetime,
1-V step. The smallest measurable capacitance and inductance would be about 0.3 fF
and 0.7 pH! Needless to say, it would be exceedingly difficult to make measurements
of such small values using other methods. From this calculation, it is clear that even
relatively insensitive and slow TDR systems are capable of impressive measurements
of inductance and capacitance.
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8.2 THE T IME-DOM AIN REFLEC TOMETER 245

F IGURE 8.7. Mitered bend

An Alternative Measurement Approach

The foregoing method is based on derivatives. Because various imperfections along a
line can distort the waveshapes considerably, it is usually difficult to apply the method
in as straightforward a fashion as implied. In such cases, a measurement based on an
integral formulation will almost always yield more satisfactory results.

Beginning again with

Vr = �Vi ≈ −CZ0

2

dVi

dt
, (16)

we can say that ∫
Vr dt = −CZ0

2
�⇒ C = − 2

Z0

∫
Vr dt. (17)

Similarly, ∫
Vr dt = L

2Z0
�⇒ L = 2Z0

∫
Vr dt. (18)

Estimating the area of a bump seems to be considerably easier for most people than
estimating slopes and the like. As a consequence, the area method is preferable when-
ever the bumps are significantly rounded.

8.2.4 COMPENSATION

By identifying the location and type of discontinuity, the TDR enables you to de-
sign compensators (should that prove necessary). Because of the speed with which
TDR characterizations may be performed, the efficacy of any compensation scheme
is rapidly evaluated. As a specific example, consider the mitered bend pictured in
Figure 8.7.

The optimum amount of mitering is easily determined experimentally with a TDR.
Pieces of the corner are sliced off until the reflections are minimized. To achieve this
same result with, say, a vector network analyzer or a slotted line SWR measurement
would require more (and perhaps considerably more) work.

An important consideration is that a given discontinuity may mask the existence
or size of other discontinuities further down the line. For example, a large series
inductance (or a large shunt capacitance) may reduce the bandwidth of the TDR
pulse downstream of the discontinuity, reducing the ability to characterize other
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discontinuities past the inductor. Therefore, the proper method is to fix the discon-
tinuity nearest the source first, retest with the TDR, attend to the next discontinuity,
and so forth until all problems are fixed.

8.2.5 SUM M ARY OF TDR

The TDR is an indispensable complement to traditional frequency-domain equip-
ment, permitting the characterization of microwave systems over a broad frequency
range in a remarkably short time. The ability to locate discontinuities is a particu-
larly valuable capability of TDRs, as is the related ability to evaluate expediently the
quality of any compensation methods over a broad band of frequencies.

An excellent applications note on the use of the TDR may be found in the Febru-
ary 1964 issue of the Hewlett-Packard Journal (v. 15, no. 6). Though four decades
old, the principles have not changed.

8.3 THE SLOTTED L INE

8.3.1 INTRODUC TION

The development of the automatic vector network analyzer (VNA, or simply network
analyzer) has revolutionized the characterization of microwave circuits. By comput-
ing all of the S-parameters of a network over a broad frequency range, the network
analyzer provides the designer with a comprehensive overview of circuit behavior
that would be extremely cumbersome to obtain manually.

Before describing the VNA, we begin with a study of one instrument that the VNA
has largely displaced: the slotted line. There are several motives for this retrospec-
tion. One is pedagogical, for the slotted line affords us an opportunity to investigate
directly the quintessential wave phenomena of reflection and interference. Another
is practical, because the slotted line exploits these phenomena to measure impedance
at high frequencies with comparatively inexpensive equipment. Yet another is that
important calibration issues that also apply to the VNA are quite naturally introduced
with the slotted line. Finally, the labor involved in making accurate measurements
with a slotted line is large enough to explain what motivated development of the net-
work analyzer.

A detailed description of the VNA then follows, including illustrative examples
of how it is used. There is a focus on identifying and mitigating sources of error –
along with a comprehensive description of calibration techniques – because much of
the modern VNA’s power derives from its ability to characterize and remove its own
errors.

The chapter concludes with instructions on how to build an inexpensive slotted
line system capable of measuring impedance over a 1–5-GHz range.
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8.3.2 THE OLD DAYS: SLOTTED-L INE
IMPEDANCE MEASUREMENT

Prior to the development of the network analyzer, characterization of microwave
systems was a cumbersome process. Consider first the basic problem of measuring
impedance. At low frequencies, it is a relatively simple matter to use a bridge mea-
surement technique or to excite a network with, say, a voltage and then measure the
current that flows in response. Finding the ratio of voltage to current is straightfor-
ward, even if one must keep track of the relative phase between them in order to
compute both the real and imaginary parts of the impedance:

Z = V

I
= |Z|ejφ. (19)

As frequency increases, however, the situation gets progressively more complicated.
Adding to the usual difficulties associated with making instruments operate at high
frequencies are the serious problems of fixturing: the impedance of a given length
of conductor perturbs the measurement more and more significantly as frequency in-
creases. To guarantee that one is truly characterizing the device under test – rather
than a combination of the device and the interconnect – requires extraordinary care.

A recurring theme in good engineering is the conversion of a liability into an asset
(“it’s not a bug, it’s a feature”). In this case we acknowledge a priori the futility of
trying to reduce fixturing impedances to insignificant levels. Rather than attempt to
quantify and remove the effect of the fixturing on the measured impedance, we con-
sider instead the effect of the load impedance on the fixturing. To understand why
this change in viewpoint is so valuable, recall that the amplitude of a sinusoidal volt-
age is independent of position only along a properly terminated transmission line (or
waveguide). Any mistermination gives rise to a reflection that periodically interferes
constructively and destructively with the incident wave, producing standing waves
along the line. The amplitude and phase of the standing waves depend uniquely on the
mismatch between the load impedance and the line’s characteristic impedance, Z0.

Measurement of the standing waves, coupled with knowledge ofZ0, thus allows com-
putation of the load impedanceZL. The core of this impedance measurement method
is therefore the bi-unique relationship between impedance and reflection coefficient:

ZLn = 1 + �

1 − �
; (20)

here ZLn is the normalized load impedance,

ZLn ≡ ZL/Z0, (21)

and the reflection coefficient is a complex quantity,

� = |�|ejφ. (22)
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248 CHAPTER 8 IMPEDANCE MEASUREMENT

F IGURE 8.8. Typical plot of amplitude vs. position for two values of �

The mathematical basis for the measurement technique becomes clear by first ex-
pressing the voltage along a transmission line as the sum of forward and reflected
components:

V(z) = Vf + Vr = Vf (e
−jβz + �ejβz) = Vf e

−jβz(1 + �ej2βz). (23)

Here z = 0 is defined as the location of the load, with z increasingly negative as one
approaches the source, and β is the phase constant, 2π/λ.

The magnitude of the line voltage as a function of position is

|V(z)| = |Vf e−jβz||(1 + �ej2βz)|
= |Vf ||(1 + �ej2βz)| = |Vf ||(1 + |�|ej(φ+2βz))|, (24)

where φ is the phase angle of the reflection coefficient. Note from Eqn. 24 that the
voltage magnitude is periodic. These standing waves have a periodicity of λ/2, so
the distance between (say) minima corresponds to π radians of phase; see Figure 8.8.
The minimum and maximum amplitudes occur when the exponential factor is −1
and +1:

Vmin = |Vf |(1 − |�|); (25)

Vmax = |Vf |(1 + |�|). (26)

Recall that the standing wave ratio (SWR) is defined as the ratio of maximum to
minimum amplitudes:

SWR = Vmax

Vmin
= 1 + |�|

1 − |�| . (27)

From Eqn. 27 it is clear that measurement of SWR allows the computation of |�|.
To complete the measurement we need φ, the phase of �. The key is to note that

the minimum amplitude occurs when

1 + |�|ej(φ+2βz) = 1 − |�| (28)

or (equivalently)
φ + 2βz = (2n + 1)π, (29)

where n is any integer. Therefore, the phase of � can be computed from
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8.3 THE SLOTTED L INE 249

φ = (2n + 1)π − 2βz, (30)

where z is the location of the minimum (again, z is a negative quantity in our coor-
dinate system).2

A practical consideration is that the precise location of the electrical reference
plane z = 0 is not always obvious. As a consequence, an additional experiment is
generally required to determine this piece of information. The traditional (and sim-
plest) method is simply to terminate the line in as good a short circuit as possible.
Clearly, the minima will be nulls (ideally, anyway), again periodically disposed along
the line. Any of these nulls may be taken as the location of the reference plane z = 0,
although it is customary to choose the one closest to the physical short. Pick one and
record its position. Also note the spacing between successive minima (this is equal
to λ/2), so that you can readily compute the phase constant β. Then replace the short
with the impedance to be measured. Measure SWR to enable a calculation of |�|,
and note the shift in the position of the minima relative to the zero reference estab-
lished with the shorted load, counting shifts away from the load as having a negative
sign. Plug that value into Eqn. 30 and solve for φ. Then use Eqn. 22 in Eqn. 20 to
find the (normalized) load impedance. The actual load impedance is found simply
by multiplying this value by Z0.

The beauty of this technique is that the fixturing does not need to be short com-
pared with a wavelength. In fact, the fixture’s length actually must exceed one half-
wavelength (and preferably be several half-wavelengths) in order for standing waves
to be characterized.

The measurement requires knowledge of the voltage as it varies along the line.
In turn this requires that we have physical access to the line. A slotted-line system
therefore consists of an air-dielectric transmission line (or waveguide) that is slit
open to admit a probe (which is generally a simple high-impedance diode detector
capacitively coupled to the line). The slit and probe are carefully designed to mini-
mize disturbance of the fields. In the case of a coaxial line, a lengthwise slit in the
outer conductor has a minimal effect because no currents flow circumferentially. The
primary effect of the slit is a small reduction in capacitance per unit length and a
consequent small increase in characteristic impedance. A suitably narrow slit min-
imizes this effect to negligible levels and also ensures a minimum of radiation and
its attendant losses.3 Similarly, the coupling to the diode detector may be adjusted to
minimize perturbation of the measurement by detector loading.

2 In principle, one could also use the maxima in the measurement. However, the minima are sharper,
so that a given amplitude measurement uncertainty translates into a smaller (perhaps much smaller)
timing (phase) uncertainty than if the maxima were used.

3 As long as the slit is comparable to (or narrower than) the wall thickness, it will act much like a
waveguide far beyond cutoff. As a result, it is almost always the case that radiation can be con-
sidered truly negligible, and many texts consequently don’t even both to mention the possibility of
radiation at all.
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F IGURE 8.9. Coaxial slotted line

The probe is mounted on a slider with a calibrated ruler so that its position along the
line can be measured (a coaxial line is shown in Figure 8.9, but a slotted waveguide
also works). In most slotted lines, the probe’s depth into the line is adjustable, al-
lowing a trade-off between detector sensitivity and disturbance of the field pattern.
Fortunately, the probe’s presence does not affect the location of nulls (because the
electric field is zero there), so the probe may be adjusted to high sensitivity for deter-
mining that data accurately. However, the probe will affect the shape of the standing
waves – with distortion increasing with amplitude – leading to errors in measuring
the value (and location) of the peaks. The amount of asymmetry in amplitude-vs.-
position provides a qualitative assessment of probe disturbance.

An Example

Having described the method and equipment, it’s helpful to go through an actual nu-
merical example to elucidate the procedure.

Step 1. Establish the location of the reference plane. Connect a short-circuit load
and note the location of the minima (which should be nearly nulls if the short is rea-
sonably good and if line losses are negligible). Feel free to increase the probe depth
for greater detector output to allow a more accurate pinpointing of the null locations.

Assume for our example that these minima occur at z = −1 mm, −121 mm, and
−241 mm. Note also that the wavelength is twice the distance between nulls, or
240 mm.

Step 2. Replace the short with the impedance to be measured. Withdraw the probe
enough to reduce distortion of the pattern (as evaluated by symmetry) and also verify
that the probe output is small enough to lie within its calibrated range. Readjust the
probe position if necessary to satisfy both requirements. Note both the voltage SWR
and the new locations of the minima. If, as is generally the case, the probe produces
an output voltage proportional to power, don’t forget to compute the SWR by taking
the square root of the ratio of the probe output at the maxima and minima.

Assume for our example that the measured SWR is 1.6 and that these new minima
are located at z = −41 mm, −161 mm, and −281 mm.
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8.3 THE SLOTTED L INE 251

Step 3. Choose one of the null positions from step 1 as the origin, and calculate the
difference between this coordinate and the corresponding minimum observed with
the load connected.

Here, choose z = −1 mm as the origin (it’s the closest to the load). Then the dis-
placement we use in the calculation of φ is −41 mm − (−1 mm) = −40 mm. Given
a wavelength of 240 mm, we compute φ as

φ = (2n + 1)π − 2βz = π − 4π

240 mm
(−40 mm) = 5π

3
, (31)

where we have arbitrarily chosen n = 0.

Step 4. Compute �.
First find |�| from the SWR measurement:

|�| = SWR − 1

SWR + 1
= 0.6

2.6
≈ 0.23. (32)

Next, use the phase angle calculated in step 3 to complete the calculation of �:

� = |�|ejφ ≈ 0.23ej5π/3 = 0.23

[
cos

5π

3
+ j sin

5π

3

]
≈ 0.115 − j0.2. (33)

Step 5. Compute the normalized impedance using Eqn. 20:

ZLn ≈ 1 + (0.115 − j0.2)

1 − (0.115 − j0.2)
= (1.115 − j0.2)(0.885 − j0.2)

0.8852 + 0.22
≈ 1.15 − j0.486.

(34)
Then multiply by Z0 (here assumed to be 50 #) to find the load impedance at last:

ZL ≈ 57.5 − j24.3. (35)

We see that the load impedance (at this frequency) is equivalent to a resistance in
series with a moderate capacitance.

And that’s all there is to it (more or less).
From this example, it should be clear that the slotted-line method involves a fair

amount of effort to characterize impedance at a single frequency, let alone over a
broad frequency range. This is one reason that the method is used less frequently
today, although it continues to live on in millimeter-wave work, where VNAs are
either prohibitively expensive or simply unavailable, or where fixturing disconti-
nuities may obscure measurement. It remains without question the best option for
hobbyists or labs on a budget, since slotted-line gear is readily available on the sur-
plus market at low cost. As an even lower-cost alternative, instructions on how to
build a simple microstrip-based “slotted” line instrument are given in Section 8.9.

Error Sources (and Their Mitigation)

Mechanical imperfections are one source of error. For example, if the center and outer
conductors are not perfectly cylindrical and truly concentric, then the impedance of
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F IGURE 8.10. Schematic of typical probe

the line won’t be independent of position. Similarly, if the probe carriage assembly
does not maintain a constant distance from the center conductor, a position-dependent
error will arise. Finally, the dielectric supports that are necessary for mechanical sta-
bility inevitably disturb the field patterns as well. In Figure 8.9 the support is shown
as continuous along the bottom, but periodically distributed posts, spaced no closer
than is necessary to provide adequate mechanical support, are also frequently used to
minimize perturbations. In any case, the best slotted lines are superb examples of me-
chanical engineering, with near perfect concentricity. Many are equipped with low-
backlash verniers to allow position measurement to a precision of better than 25 µm.

Another (and generally dominant) source of error is associated with the charac-
teristics of the probe. Most probes are simple diode circuits intended to behave ap-
proximately as square-law detectors. They thus generate an output voltage roughly
proportional to power. See Figure 8.10. The resistor R1 is not a physical component
of slotted-line probes. It is shown in the schematic simply to remind us that the volt-
age being sampled by the probe is that of a transmission line, whose impedance is
about Z0 (assuming that mismatches are small).

To gain a crude understanding of the attributes and limitations of a diode as a
power detector, assume that the load capacitor in Figure 8.10 appears as such a low
impedance at RF that negligible voltage appears across it. Further assume that the
diode continues to exhibit an exponential relationship between current and voltage,
even in the RF regime:

iD = IS

(
exp

[
qvD

kT

]
− 1

)

= IS

[
qvD

kT
+ 1

2!

(
qvD

kT

)2

+ 1

3!

(
qvD

kT

)3

+ 1

4!

(
qvD

kT

)4

+ · · ·
]
. (36)

Next, let the diode voltage (which is equal to the probe voltage with the given as-
sumptions) be a sinusoid:

vD = Vp sinωt. (37)

Because of the nonlinearity, the diode current will consist of even and odd harmonics
of the input frequency. All of these harmonics have a zero time average, so the only
contribution to a DC diode current is from the zero-frequency component. Only the
even-order terms in the expansion of Eqn. 36 can produce DC components, so

〈iD〉 =
〈
IS

[
1

2!

(
qvD

kT

)2

+ 1

4!

(
qvD

kT

)4

+ · · ·
]〉
. (38)
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8.3 THE SLOTTED L INE 253

Clearly, the quadratic term is the one that provides an average diode current pro-
portional to the square of the voltage, or proportional to power. All other terms con-
tribute error (as judged by conformance with a linear power law), with an increasing
prominence as the voltage increases. If we are arbitrarily willing to tolerate, say, a
contribution from the fourth-order term as large as 5% as that from the quadratic,
then we must satisfy

1

4!

(
qvD

kT

)4

<
1

20

[
1

2!

(
qvD

kT

)2]
(39)

or, equivalently, (
qvD

kT

)2

< 0.6. (40)

Therefore, as a very crude approximation we must limit peak diode voltage to values

vD <
√

0.6(kT/q) ≈ 20 mV. (41)

Although practical diode detectors vary considerably in their characteristics, it is
generally the case that one should probably distrust output voltages readings when
they exceed about 5–10 mV (perhaps corresponding to input powers on the order
of −20 dBm or thereabouts). Deviations from ideal behavior increase rapidly as
the output voltage increases because the higher-order even terms rapidly increase
in significance. The useful range can be extended by incorporating a resistive load,
though at the expense of reduced output level. To understand why the simple trick
of resistive loading should be effective, note that the peak open-circuit output volt-
age approaches the input voltage at high amplitudes, behavior that is linear (and
therefore clearly subquadratic). Loading the circuit with a resistor produces a con-
dition intermediate between the short-circuit case (where the current grows too fast
with large input amplitudes) and the open-circuit case (where the current doesn’t
grow fast enough), leading to a significant range extension. Best results are typically
found when using a load within a factor of 2 of 470 #, with the optimum found by
experiment. With the proper load, the acceptable input power range can be extended
another 10 dB or more. The reduction of output level, however, produces a trade-off
between sensitivity and accuracy.

From the foregoing, it is clear that minimizing the peak voltages applied to the
detector improves accuracy. However, for a given level of sensitivity, reducing the
peak level implies a desire to minimize the voltage ratio to be measured by the detec-
tor. If we measure both the minimum line voltage and some voltage other than the
maximum (as well as the position at which this other voltage is measured), then we
can accomplish precisely this reduction in the dynamic range required of the detec-
tor. This other voltage can be related mathematically to the maximum because the
precise shape of the standing wave is known. Specifically, it can be shown that the
following relationship holds:4

4 See e.g. Terman and Pettit, Electronic Measurements, 2nd ed., McGraw-Hill, New York, 1952,
p. 140. This method is described also in Microwave Measurements (MIT Rad. Lab. Ser., vol. 20),
McGraw-Hill, New York, 1948.
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F IGURE 8.11. Alternate measurement method for high SWR

SWR = λ/π*, (42)

where the quantity * is as defined in Figure 8.11. This method requires only that the
probe accurately measure a voltage ratio of about 1.41 :1 (corresponding to a power
ratio of 2 :1). It is especially useful when attempting to measure very high SWR
values, where the maximum-to-minimum voltage ratios are large.

One obvious way to improve accuracy is simply to calibrate the probe to determine
explicitly the actual relationship between input and output. However engineers, being
the lazy (oops, efficient) lot they are, have devised clever workarounds that completely
bypass the need to calibrate a probe altogether. Because SWR is dimensionless, a
purely ratiometric measurement is all that is required. Consider interposing a cali-
brated attenuator between the signal generator and the slotted line. The attenuation
is set to its minimum value (say), the probe is slid along the line until a minimum is
found, and the voltage there is noted. The probe is then moved to find the maximum,
and the attenuation factor increased until the output is the same as at the minimum.
This attenuation factor is precisely the desired ratio Vmax/Vmin. Note that this mea-
surement places essentially no demands on the probe at all, having replaced with a
readily realized linear attenuator the need to characterize a nonlinear probe.

Finally, a considerable improvement in sensitivity is possible if the signal gen-
erator produces a modulated output. Rather than measuring the DC output of the
probe, a demodulator, followed by a bandpass amplifier, provides the output. Using
a modulating frequency well above the 1/f noise corner of the system improves
SNR, allowing the use of higher postdetector gain and a consequent reduction in the
required level of coupling of the probe to the line. This reduction in perturbation im-
proves accuracy.

8.4 THE VEC TOR NETWORK ANALYZER

8.4.1 BACKGROUND

Each data point with a slotted line requires setting the frequency to the desired value,
locating the new reference null with a shorted load, and then measuring SWR and
locating the minima with the device under test (DUT) connected as load. The vec-
tor network analyzer (VNA) automates this process and adds greater functionality as

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511812941.009
Downloaded from https://www.cambridge.org/core. The Librarian-Seeley Historical Library, on 18 Dec 2019 at 06:21:01, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511812941.009
https://www.cambridge.org/core


8.4 THE VEC TOR NETWORK ANALYZER 255

F IGURE 8.12. Typical VNA core block diagram (simplified)

well, permitting a rapid and complete characterization of all of the S-parameters of a
microwave system over an exceptionally broad frequency range (e.g., from 50 MHz
to 110 GHz in one instrument!).

At the heart of the VNA is a device (e.g., a directional coupler) that miraculously
resolves signals along a line into its forward and reflected components. This decom-
position into the two components is valuable because the measurement of impedance
can be reduced to measurement of reflection coefficient, as we’ve seen with the
slotted-line measurement method. Similarly, measurement of power gain involves
ratios of forward components, and so on. Thus a VNA can characterize the full set
of S-parameters for a two-port.

A representative block diagram of a VNA reveals the central role of the directional
coupler (or equivalent). As shown in Figure 8.12, a frequency synthesizer provides
the input to the network analyzer. Both the output power and frequency are con-
trollable. A part of the synthesizer output is sampled as the incident signal, and the
rest is steered by a pair of SPDT switches. When the switches are in the position
marked “F,” the DUT is driven in the forward direction, and the top directional cou-
pler provides an auxiliary output that corresponds to the signal reflected from port 1
of the DUT. At the same time, the lower directional coupler provides an output cor-
responding to the power coming out of port 2 of the DUT.

To make measurements of reverse characteristics, the switches are moved to posi-
tion “R,” reversing the roles of ports 1 and 2 of the DUT. The incident, reflected, and
transmitted signals are sent to a receiver/detector (not shown) whose job is to mea-
sure the magnitude and phase of these signals, followed by processing of the data
and presentation in a display.
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F IGURE 8.13. Transmission measurement

It is clear that a VNA comprises all of the building blocks of a complete trans-
ceiver, and more. Not only does the VNA have to cover an exceptionally wide range
of frequencies (e.g., 50 MHz to110 GHz in one instrument, albeit with degraded char-
acteristics toward the limits of this range), it must also make accurate measurements
of signals spanning a wide dynamic range of amplitudes at the same time. Operation
over such a wide range requires identifying and correcting as many sources of error,
both external and internal, as possible. The modernVNA employs sophisticated com-
putational means to accomplish this error reduction, but it requires a knowledgeable
operator to ensure that the calibration is performed correctly. Mistakes in calibration
are an all-too-common source of anomalous results, so we will spend considerable
time examining the error sources associated with the VNA’s various measurement
modes.

8.4.2 BASIC MEASUREMENT MODES
AND ERROR SOURCES

First consider making a transmission measurement (either in the forward or reverse
direction); see Figure 8.13. There will generally be some cable and fixturing external
to the VNA. The total electrical length and loss of these external elements are vari-
able. More to the point, they are beyond the control of the VNA because fixturing is
a prerogative of the user.

One basic calibration step is therefore the measurement of fixturing loss and delay
so that these can be subtracted from a subsequent measurement performed with the
DUT in place. This step, called the through (often abbreviated as “thru”) measure-
ment, involves removing the DUT and connecting the rest of the fixturing together
directly. The VNA then measures the fixture’s phase shift and loss over the user-
specified frequency range, storing the data for later subtraction.

After a through calibration, the DUT is inserted and the VNA is ready to measure
its insertion loss and phase shift. In many cases, one is interested in the time delay
rather than phase. Since delay is simply (minus) the derivative of phase with respect
to frequency, the VNA can readily compute the delay from phase data. There are
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F IGURE 8.14. Phase shift vs. frequency, ideal versus VNA display

some subtleties, however, that one must appreciate if correct measurements are to be
made. One such consideration is that the instrument measures phase at a discrete set
of frequencies, rather than continuously over the entire band. Hence, the derivative
must be approximated by a ratio of finite differences:

dφ

dω
≈ *φ

*ω
. (43)

The frequency interval in the denominator of Eqn. 43 is known as the frequency
aperture and is controllable by the user. A narrow aperture provides fine resolution
but may be sensitive to noise in the data. A wide aperture is less sensitive to noise
because it effectively performs an averaging over the frequency interval, but it can
miss fine structure precisely because of this averaging. Modern instruments default
to an aperture that is satisfactory for most applications but which may be overridden
by the user if desired.

Another subtlety is that the phase detector within a VNA functions over a finite
interval, modulo some phase. A typical detector range is ±π radians, so the VNA
cannot distinguish phase shifts outside of this range from those lying within it. Hence,
a pure time delay’s phase appears as a periodic sawtooth when plotted against fre-
quency in linear coordinates; this is shown in Figure 8.14. The user must employ
physical arguments or other knowledge to splice the various regions together prop-
erly; the VNA fundamentally lacks the information necessary to do so. However,
there is an advantage to the sawtooth-like display when plotting: it reduces the total
vertical height for a given resolution.

A related consequence of the modulo-φ behavior is that, if a VNA’s computation
of delay uses an aperture value that corresponds to a phase step in excess of π radians,
then the displayed delay will be in error. To guard against these types of problems,
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F IGURE 8.15. Idealized VNA display after
calibration with shorted load

it is good practice to examine both the phase and delay curves and not just the delay.
Simple checks of reasonableness are carried out rapidly, so there is hardly an excuse
for not performing them.

In addition to transmission measurements, the other basic VNA operating mode
is measurement of reflection. Just as with the slotted line, it is necessary to estab-
lish a reference plane. And, just as with the slotted line, a short-circuit load is best
used for this purpose.5 Therefore, in the simplest calibration for a reflection mea-
surement, the best available short-circuit load is connected to the test port in place
of the DUT. The VNA measures the magnitude and phase of the reflection over the
specified frequency range and stores this data, using it to locate the reference plane
and correct for fixturing losses (the VNA cannot use the information about fixtur-
ing losses from the through measurement because the latter does not identify the loss
over the relevant fixturing path length). After this calibration step, a display of S11

with the short-circuit load should consist of data points tightly clustered about the
−1 point, as shown in Figure 8.15.

If other than a tight distribution (e.g., an arc) is observed, carefully check the fix-
turing (particularly the connectors), correct any problems, and repeat the calibration.
After re-verification, theVNA is ready to perform one-port reflectance measurements.
As we saw with the slotted line, such a measurement is equivalent to an impedance
measurement. Depending on context, the user may wish the data to be displayed as
reflection coefficient or impedance. The modern VNA can provide a display either
of � in polar form or of impedance on a Smith chart. The format is deliberately left
unspecified in Figure 8.15 because, for the special case of a shorted load, the data are
located in the same spot.

A subtle issue is that the calibration with the shorted load establishes the reference
plane at the physical location of the short within the calibration standard. The fixtur-
ing may add some physical length beyond that plane. One could correct for this by
performing the calibration with a short at the actual DUT terminals. Another option
is to make use of the “port extension” feature of modern VNAs in which the in-
strument algorithmically adds length, effectively moving the reference plane further

5 In principle, an open circuit would serve as well. However, physical approximations to a short are
better than those to an open.
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F IGURE 8.16. Directional coupler port definitions

away from the VNA connectors. The correct extension is determined by producing
the best possible short at the DUT terminals and then varying the extension value to
achieve the best distribution near the −1 point on the Smith chart.

Another consideration is that, after calibration, an open-circuit load ordinarily
should not produce a dot. Because of fringing, there will always be some capacitive
load shunting the otherwise open-circuited port. There may also be radiation out of
that port. The net result is that the display will generally be an arc if the VNA has
been calibrated properly. A common error is to attempt to “correct” this calibration
“problem” by making ad hoc adjustments to port extension or time-delay settings,
thus actually degrading calibration.

The foregoing description focuses on how external fixturing errors can be removed.
Using the through and short calibrations, the VNA can reduce by large amounts the
errors in transmission and reflection measurements. For even greater accuracy, the
VNA is capable of characterizing its own internal errors with the aid of additional
calibration steps. To appreciate how the VNA performs these additional corrections,
it is necessary to identify the errors corrected in these various calibrations.

The VNA depends on directional couplers to decompose signals into incident and
reflected components. As with everything else, practical directional couplers are im-
perfect. To quantify these imperfections, we need to define the various figures of
merit that apply to the directional coupler as it is configured for use in a VNA (see
Figure 8.16). It should be noted that Figures 8.12 and 8.16 both use a simplified sym-
bol for the directional coupler. It is clear that the directional coupler is generally a
four-port device, but a VNA typically uses only three of them, terminating the fourth
(the isolated output) internally with a matched load.

Recall that a directional coupler is characterized by parameters such as coupling
factor, isolation, and directivity. For a VNA in particular we desire an infinite direc-
tivity, but all real couplers fall short of the ideal. The lack of infinite directivity is
a significant error source, and correcting for this deficiency is a major aim of VNA
calibration.

To illustrate how directivity errors can corrupt measurements, first examine Fig-
ures 8.12 and 8.16 to review how directional couplers are hooked up inside a VNA.
Notice that the main input of each directional coupler is connected to a port of the
DUT. Thus, when performing a reflectance measurement, the synthesizer drives the
through output. Power flows from the synthesizer, “backwards” through the coupler,
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to the DUT. Any power reflected by the DUT feeds back into the main input of the
directional coupler, and a portion of the reflected power exits the auxiliary port for
sampling and measurement.

If the directivity were infinite then the auxiliary port signal would be due entirely
to the power reflected from the DUT, allowing direct measurement of the reflected
power. However, a finite directivity implies that some of the power flowing from the
synthesizer to the main input leaks out of the auxiliary port as well. The VNA would
then measure an auxiliary port signal that is a weighted sum of both the forward and
reflected power. Because these may add both in and out of phase over frequency, typ-
ical manifestations of imperfect directivity are ripples in, say, the measured reflection
coefficient as a function of frequency.

A representative calculation illustrates the magnitude of the problem. Suppose we
have a 10-dB coupler with 30-dB directivity and then attempt to measure the imped-
ance of a load that has a 20-dB return loss. That is, C = 10 dB, D = 30 dB, I =
C +D = 40 dB, and RL = 20 dB. The signal reflected by the DUT is RL = 20 dB
below the incident power level, and the amount of the reflected signal surviving to
the auxiliary output is C = 10 dB below that, for a total of 30 dB below incident.
The unwanted signal at the auxiliary port is I = 40 dB below incident. Thus we see
that the error power is an unacceptable 10% of the signal power in this example. If
we were to attempt to measure a return loss of 30 dB, the situation would be even
worse, for the error power would then equal the desired signal power.

Another error that behaves much like directivity error arises from reflections at
interfaces with adapters, cables, and fixturing. These reflections necessarily produce
signals at the auxiliary output of the coupler and, as in the previous example, such
parasitic signals can obscure the component of signal that is due to the actual reflec-
tion from the DUT.

Source mismatch is yet another potential source of error. Consider the flow of
power from the source, through the coupler, and to the load. Some power reflects
off of the load and returns to the source. If there is a mismatch in source impedance,
there will be a subsequent re-reflection from the source back through the coupler.
Some of that power reflects off the DUT and finds its way out of the auxiliary port.
From the qualitative description of this process, this error term is clearly most sig-
nificant when the load has a high reflection coefficient.

A third type of error is related to one we’ve already examined: frequency response.
The couplers, cables, and adapters – as well as the part of the system that actually
measures magnitude and phase – may all have frequency-dependent characteristics.

The three types of one-port errors – directivity, source mismatch, and frequency
response – can be removed by performing three experiments. For example, consider
attaching a perfectly resistive matched load as the DUT. In this case, the auxiliary
output of the directional coupler should have no signal. Any deviation from that con-
dition indicates an effective directivity error, which can be measured and stored for
later removal. The extent to which directivity errors are nulled out depends critically
on the quality of the “perfect” load used in this step of the calibration sequence.
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A common choice for the other two experiments is to use both a shorted and open
load. As with the perfect load, the ultimate accuracy of VNA measurements depends
on how close the impedance of the loads are to zero and infinity. It is particularly
hard to implement a good open circuit at high frequencies because stray capacitance
is difficult to control. To underscore the difficulty involved, note that a 0.1-pF stray
capacitance (which is about the right value for an open-circuited APC-7 connector)
has an impedance of only about 160 # at 10 GHz. Also, radiation from the open end
is an increasing problem as frequency increases, and this loss produces a real com-
ponent of impedance in parallel with the parasitic shunt capacitance. This problem
is mitigated by sliding a short along a line until it is positioned a quarter wavelength
away from the reference plane. The shorted line is a closed structure that prevents
radiation.

When calibrating for two-port operation, the three experiments are augmented
with a fourth: a through measurement to characterize the frequency response of the
fixturing, as described previously. Hence, the quartet of experiments is often known
as the “short /open/ load/thru” (SOLT) two-port calibration method.

There are several minor variations on the SOLT technique, all aimed at solving the
problem of imperfect impedance standards. One of these replaces the fixed matched
load with a sliding load. Here, a movable load with a near-perfect match is slid along
an air line, and the whole assembly is used in place of the fixed load. As the load slides
along the line, the small reflections combine with the incident signals in a periodic
manner – alternately adding and subtracting – leading to a data set that is distributed
in a circle in the complex plane. The directivity vector is the center of that circle.
Three points uniquely determine a circle, so in principle only three measurements
are needed. In practice, a larger number is used to improve the error estimation.

Yet another variation replaces the sliding load with an offset load, which may be
thought of as a sliding load in which the load no longer slides. If two points and
the angle of the offset are known, the center of the circle can again be determined.
These two points are obtained with two loads of different length. The sliding or off-
set loads are popular at millimeter-wave frequencies, where good approximations to
ideal loads are simply not available. At these frequencies, a shim of known thickness
is inserted between mounting flanges to produce the second measurement.

An alternative calibration suite is known as the thru-reflect-line (TRL) method.6

This method corrects for the same errors as the SOLT method, but it depends less
on the perfection of the impedance standards used as calibration loads. As the name
of the method suggests, the first step in the calibration is to connect the two ports of
the external fixture together in a low-reflectivity “through” configuration to charac-
terize the fixturing. The next step is to connect a grossly mismatched load to each
port of the fixture separately (hence the name “reflect”). The precise nature of the

6 This calibration suite was first described by G. Engen and C. Hoer in “Thru-Reflect-Line: An Im-
proved Technique for Calibrating the Dual Six-Port Automatic Network Analyzer,” IEEE Trans.
Microwave Theory and Tech., v. 27, December 1979, pp. 987–93.
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mismatch is not too important (although the phase of the reflection coefficient should
be known to within approximately 90◦ because the response of most phase detectors
is periodic), and its magnitude need not be known; it just has to have the same high
reflectance at both ports (a nominal short is frequently used). Finally, the two ports
are again connected together through the low-reflectivity fixturing, but now with a
different cable (or other fixturing) length than was used in the first thru measurement.
Again in a concession to the limitations of practical phase detectors, this line should
be nominally a quarter-wavelength longer than the thru at the band center. For best
accuracy, it’s advisable to limit the frequency span to a value that assures that the
length difference corresponds to phase angles not too different from 90◦. The precise
limits vary from instrument to instrument and also as a function of required accu-
racy. That said, a typical value for the lower end is 15–25◦ while that for the upper
end is 155–165◦, implying that a given line is useful for calibration over roughly an
8 :1 range. If a larger frequency range must be spanned, then additional lines with
different lengths should be used.

The TRL method is particularly attractive for noncoaxial systems such as micro-
strip, where good impedance standards are difficult to realize (or are simply un-
available commercially). It is even attractive for coaxial media, because impedance
standards are expensive and the TRL procedure requires no expensive elements (in
principle, anyway).

An alternative calibration suite corrects for the same errors as does the TRL suite,
but it facilitates on-wafer measurements in particular. Called LRM for line-reflect-
match, this calibration method does not use lines of different length.7 This con-
sideration is especially important for on-wafer measurements, because it is highly
inconvenient to move probes around to perform calibration. Aside from the inconve-
nience, it is certainly true that repeatability in electrical measurements is limited by
the repeatability of contacting. Obviously, moving probes around is antithetical to
that repeatability. And in many cases, it is not possible to change the probe-to-probe
distance at all, effectively ruling out a TRL calibration altogether.

To permit a TRL-like calibration result without requiring variable-length or exces-
sively long calibration standards, the LRM suite relies on the availability of a good
broadband match (the M in LRM). As such, the ultimate quality of the calibration is
dependent on the quality of this matched load. A particular vulnerability is the series
inductance typically encountered when contacting any structure with a probe, and
the aim of many practical implementations of LRM calibration is to determine this
inductance and remove it algorithmically.

As its name implies, the other standards are a line and a high-reflectance load. The
latter is usually an open circuit, so that the LRM standards are a subset of those used

7 D. F. Williams and R. B. Marks, “LRM Probe-Tip Calibrations Using Nonideal Standards,” IEEE
Trans. Microwave Theory and Tech., v. 43, February 1995, pp. 466–9. This paper is not the first de-
scription of LRM, but it summarizes well the set of practical considerations related to LRM’s use.
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for SOLT. The dependence on a broadband match effectively forces a dependence
on standards purchased from a vendor, such as Cascade Microtech, just as one must
generally purchase calibration standards for the other methods.

8.4.3 SPECIAL CONSIDER ATIONS FOR MICROSTRIP

As implied in the preceding paragraph, microstrip environments pose some chal-
lenges for calibration. Consider, for example, a microstrip fixture for measuring the
S-parameters of a transistor. It is not entirely obvious how to carry out, say, an SOLT
calibration sequence for such a noncoaxial structure. Since one important aim of cal-
ibration is to null out fixturing artifacts, we evidently wish to implement and use a
short, open, matched load as well as a through line at various stages of the calibra-
tion, all at the physical location where the DUT (here, a transistor) would be placed.
An open circuit sounds easy enough (but it isn’t really, because of ever-present fring-
ing capacitance), and so does a thru. The former can be approximated simply by
not installing a DUT, and the latter can be approximated by a second fixture that is
identical to the first but in which the microstrip line extends all the way across. Im-
plementing a reasonable approximation to a short is similarly straightforward, with
a third fixture (again, otherwise identical to the first) in which the ports are shorted
to ground (e.g., through a short, wide piece of copper foil). The tough one is im-
plementing a good matched termination. A surface-mount resistor at the end of the
microstrip line, for example, might suffice for crude prototyping, but it is unsatisfac-
tory for accurate characterization because its series inductance and shunt capacitance
cause the impedance of the “matched” load to vary with frequency.

A reasonable solution to this problem becomes apparent when we re-examine what
errors are being calibrated out with the matched load connected to the VNA. For the
most part, internal VNA directivity errors are being nulled out at this step of a SOLT
calibration, so there is no need for the rest of the fixturing to be involved at all. Hence,
the ordinary coaxial matched impedance standard may be connected directly to the
VNA port without worrying at all about whether a microstrip test environment will
eventually be used. We will call this method the modified SOLT technique.

The modified SOLT calibration unfortunately will not fix errors in effective direc-
tivity caused by a mismatch past the APC port. Hence, if that transition is poor or
if precise answers are necessary, then a TRL calibration should be performed. For
exacting work, then, the TRL calibration method is best, but the modified SOLT is
often a good enough compromise.

A final consideration is that the “open” condition with a microstrip is imperfect (as
it is with all open structures) because of fringing capacitance (on the order of 50 fF).
A partial correction for this is possible through the use of software connector sub-
traction. Many VNAs have the ability to remove the effect of a connector by means
of software. Alas, microstrip is not one of the ordinary options. Of the options that
are typically available, the best approximation is the APC, whose ∼100-fF fringing
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capacitance is reasonably close to that of a typical open line on FR4. A residual error
remains, however, and one may use the “variable port extension” feature of many
VNAs to reduce this residual error substantially.

Finally, one must always observe power limits to avoid nonlinear operation or even
damage. In general, one should apply less than about 20 dBm (100 mW) to avoid
damage and less than about 0 dBm to avoid nonlinearity. These are only rough rules
of thumb, so be sure to consult the actual documentation for a given instrument for
the correct values.

8.5 SUM M ARY OF CALIBR ATION METHODS

The previous section describes so many permutations that it is easy to get a bit con-
fused (things would have been even more confusing had we covered all that exist).
Here is a summary of the calibration methods along with some comments to remind
you what their relative attributes and weaknesses are, allowing you to make an in-
formed choice of calibration technique.

The simplest is the short-thru one- and two-port calibration, which only corrects
for external fixturing and detector frequency response errors. Errors from finite di-
rectivity and source mismatch are not corrected. This technique is also known as
response calibration.

Better for one-port measurements is the short-open-load (SOL) suite of calibra-
tions. As long as the impedance standards are perfect, this method is capable of null-
ing out errors from finite directivity as well as source mismatch and detector frequency
response errors. A thru measurement may be added to yield a SOLT calibration, which
is a two-port method that corrects for all of the errors corrected by SOL and also cor-
rects for the remaining cabling of a two-port fixture.

Variations on the basic SOLT theme include replacing the load measurement with
either a sliding load or a fixed offset load. The modified SOLT method employs an
SOT sequence with a microstrip (or other noncoaxial) fixture to null out all but VNA
directivity errors. Use of a standard coaxial matched load without the fixture com-
pletes the calibration by (almost) zeroing out directivity errors.

The thru-reflect-line (TRL) method eliminates the need for using perfect imped-
ance standards as calibration loads and corrects the same errors as the SOLT technique.
The TRL method is particularly attractive in characterizing noncoaxial systems such
as microstrip. With TRL calibration, it is possible to reduce directivity and source
mismatch errors to levels as low as −60 dB at 18 GHz and also to essentially elim-
inate frequency response errors. These values should be compared to the −40-dB
directivity and −35-dB source mismatch errors typically achieved with the SOLT
method (fixed load). The sliding and offset load options improve the SOLT errors to
levels in between those of fixed SOLT and TRL methods.

Finally, the LRM calibration suite corrects for the same errors as does TRL but has
the additional advantage of not requiring lines of different lengths. By thus not re-
quiring a change in probe distance, fixturing complexities are reduced. Furthermore,
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repeatability is improved because fixturing artifacts remain more constant throughout
the calibration cycle. The drawback is the need to purchase expensive (and fragile)
calibration substrates from an external vendor.

8.6 OTHER VNA MEASUREMENT CAPABIL IT IES

Thanks to the extensive use of computation, the modern VNA is capable of more than
a complete measurement of S-parameters. For example, once the S-parameters are
measured over a broad frequency range, the frequency response data can be trans-
formed to time response data. Step responses and TDR traces can be generated from
VNA data. Although the time taken to perform all of the measurements and com-
putations is substantially larger than it would take for a “real” TDR, this additional
functionality is nonetheless welcome.

Because of the algorithmic nature of the transform, it is possible to perform a little
mathematical magic that would be impractical to carry out with actual time-domain
instrumentation. For example, consider a case where a TDR trace contains reflections
from multiple sources. The early discontinuities can mask the effect of subsequent
ones in a real TDR measurement. A VNA, however, can remove the first discontinu-
ity, allowing examination of the previously masked reflections. The extent to which
a VNA can perform this removal (called gated impedance or gated TDR measure-
ments) depends on the accuracy and noise of the S-parameter measurements.

8.7 REFERENCES

Aside from the sources cited in footnotes, the reader may also find useful “Vector Mea-
surement of High Frequency Networks” (Hewlett-Packard High Frequency Vector
Measurement Seminar Notes, April 1989). These notes contain an excellent high-
level summary of how a VNA is used, with a concise discussion of error sources and
calibration methods. Another useful reference is the user manual of almost any VNA,
such as the HP8720C (a 130-MHz–20-GHz instrument) or the HP8510C (capable of
operating from 50 MHz to over 100 GHz).

8.8 APPENDIX A: OTHER IMPEDANCE
MEASUREMENT DEVICES

8.8.1 THE SWR METER

A classic device for rapidly assessing impedance mismatches is the standing-wave
ratio meter. In its simplest form, it is a directional coupler (with weak coupling) com-
bined with a means to measure amplitude. The device under test is connected to the
through port of the main line, as shown in Figure 8.17.

In the least expensive incarnations, a diode-based peak detector and meter provide
a relative power indication. The detector is first connected to measure the coupled
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F IGURE 8.17. Classic SWR meter

signal corresponding to the incident power. Typically, a potentiometer is adjusted
to normalize the indicated reading on the meter to full scale. Then, the detector is
connected to the other coupled port to measure the reflected power. The display is
calibrated to provide the SWR directly.

It should be apparent that other directional couplers may be used, particularly in
view of the inferior directivity of microstrip coupled-line couplers. The edge-coupled
version shown in Figure 8.17 is merely illustrative (and certainly easy for the week-
end experimenter to cobble together).

8.8.2 THE GRID-DIP OSCILL ATOR

A staple of ham shacks in days gone by was the grid-dip oscillator (GDO). Although
it is not typically used at gigahertz frequencies (commercial units typically top out
at the lower end of the UHF range), there’s no fundamental reason why it couldn’t
function satisfactorily there, physical constraints permitting (we could even imagine
integrating one into a probe-station probe). In any case, it gives us an opportunity to
integrate multiple RF and microwave principles.

The idea behind a classic GDO is simple. If a network is simply brought near an
oscillator’s own tank, the oscillator’s losses will increase owing to the energy cou-
pled into the external network. This increase in loss will be particularly acute if the
external network is resonant at the same frequency as the oscillator’s own tank. The
energy given up to the external load produces a consequent reduction in bias, and
this dip is measured with a simple meter. The GDO thus consists of an oscillator that
may be tuned over some frequency range, a probe that allows the necessary coupling
to an external network, and a meter for indicating the dip.

The grid-dip oscillator is exceptionally versatile. If the GDO is well calibrated
then it can readily determine the resonant frequency of external tanks, facilitating
their tuning to within at least a coarse accuracy (say, a couple of percent). If one
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F IGURE 8.18. JFET-based “grid”-dip oscillator

connects an unknown inductor to a capacitor whose value is accurately known, the
GDO’s measurement of the resonant frequency can be used to calculate the value of
the unknown inductor. A known inductor similarly allows determination of an un-
known capacitor.

A simple modification allows GDOs to measure frequency as well, by using the
instrument as both a local oscillator and mixer. Coupling the GDO to an external
oscillator results in mixing action due to the inherent nonlinearity of vacuum tubes.
By simply putting headphones into the plate circuit of the GDO’s oscillator tube,
one can listen to the beat frequency vary as the GDO is tuned. When the audible
beat frequency diminishes to zero, the GDO’s frequency has been adjusted to that
of the external oscillator, and the value may be read off the calibrated dial directly.
Frequency determinations on the order of a percent or so are generally possible, de-
pending on the quality of the dial calibration and GDO stability.

A rough translation of a representative GDO circuit into JFET form appears as
Figure 8.18.8 Commercial dippers come with a set of precisely wound plug-in coils
whose inductance values are typically known to better than a percent. The user se-
lects an inductance whose corresponding GDO frequency span is roughly centered
about the value of interest. The plug-in coils serve not only as a component in the
GDO’s tank but also as the probe for coupling to the DUT.

To use a GDO properly, it’s important to avoid the temptation to over-couple the
instrument to the DUT. The reason is that coupling changes the resonant mode fre-
quencies. Thus, one should couple the GDO to the DUT only as tightly as necessary
to attain a reliable dip. Typically, one initially brings the instrument so near the DUT
that overcoupling is likely, just to get an indication of a large magnitude. Then, while
backing the instrument away from the DUT, the GDO is constantly readjusted to
track the dip.

8 Variations on this basic circuit have appeared in countless publications, kits, and commercial in-
struments through the decades. The translation we offer here is most closely based on a circuit from
The Radio Amateur’s Handbook, 29th ed., Rumford Press, Concord, NH, 1952.
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8.9 APPENDIX B: PROJEC TS

8.9.1 MICROSTRIP ‘ ‘SLOTTED’ ’ - L INE PROJEC T

As we’ve seen, the modern network analyzer is a truly remarkable instrument that is
capable of extremely accurate characterizations of microwave networks over a broad
frequency range. Unfortunately, this capability comes at a price: A typical gigahertz
VNA costs more than the average sports utility vehicle, and the few that are avail-
able on the surplus market are rarely discounted much. Clearly, a VNA is generally
priced out of the reach of most hobbyists (and even out of the reach of many aca-
demic laboratories), so the slotted line is the device of choice for those on a budget.
On top of that, the slotted line is a superb pedagogical tool for teaching the principles
of Smith-chart manipulations (e.g., providing explicit explanations for phrases such
as “wavelengths toward the generator” and so forth). As mentioned earlier, many
slotted lines are available on the surplus market for quite reasonable prices, at least
for lines designed for use in the low-gigahertz frequency range.

This section describes a much cheaper (and much cheesier) alternative: a microstrip
“slotted”-line system capable of measuring impedance and frequency to 5 GHz and
beyond. This instrument (and that is a loose use of the term, to be sure) has important
attributes: it costs very little (the total parts and materials cost should not exceed $5–
$10) and is extremely easy to make using ordinary tools and materials. The trade-off
is that the instrument’s accuracy is not particularly good, and the shaky mechanicals
are not terribly robust. However the performance is adequate for virtually any home
project in the low-gigahertz range of frequencies. With care, the instrument can be
made to perform well enough for a great many student laboratory projects as well.

The design presented here is based on FR4 material and right-angle mounted bulk-
head BNCs of the type described in the chapter on microstrip, in keeping with a focus
on minimizing cost. In particular, a microstrip line is much easier to make than a
slotted coaxial airline. Of course, better performance can be obtained by using lower-
loss PC board material in tandem with better connectors, and the reader is certainly
invited to improvise variations on the basic design as budget, patience, and perfor-
mance requirements dictate.

The first step is to get a piece of FR4 longer than the largest electrical wavelength
of interest – but not so long that the loss is excessive over the desired operating fre-
quency range. For a minimum operating frequency of 1 GHz, a good compromise is
about 25 cm. A line of this length typically exhibits about 0.8 dB of loss at 1 GHz and
perhaps 4 dB of loss at 5 GHz (compared with a worst-case loss of less than 1 dB for
a true coaxial slotted line). If you are going to use the instrument only at the higher
frequencies, performance will improve by shortening the line to reduce the loss (we
only need the line to be long enough to contain a couple of minima, and the loss per
wavelength is roughly constant, with a value of a bit under 1 dB per λ).

Mount BNCs at the two ends, and then construct a 50-# microstrip line using
copper foil tape. It is important that the foil be as smooth as possible. Next, affix a
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F IGURE 8.19. Metric ruler for microstrip line (drawn at half size)

F IGURE 8.20. Bottom view of slotted line and side view
of probe assembly (not to scale)

nonconductive metric ruler just below the line (if you don’t have a suitable ruler then
use a photocopier to duplicate, at 200%, the metric ruler shown as Figure 8.19). Be-
cause photocopier accuracy varies considerably, verify that the enlargement hasn’t
distorted the scale factor of the ruler. Careful interpolation between the 5-mm mark-
ings should allow a precision of ∼1 mm, though accuracy is a different matter!

The next step is to construct the detector. Here we use a Schottky diode–based
detector circuit capacitively coupled to the microstrip line. It’s a simple circuit, and
the biggest challenge you’ll face is mechanical: to construct the slider while guaran-
teeing proper and consistent coupling of the detector to the line.

The probe is a common needle (such as the kind that come with new shirts) care-
fully jammed into the bottom side of one part of the slider and cemented with a little
epoxy, then clipped to length (see Figure 8.20). The probe is surrounded by a short
length of insulation (preferably Teflon taken from a piece of hookup wire) to act as
the dielectric between the probe and the line and also to provide a smooth rolling ac-
tion. The probe motion – and the line itself – must be as smooth as possible in order
to maintain a constant coupling as the probe slides along the line.

The slider assembly is made out of two pieces of FR4 that are bolted together.
Teflon tape (or very smooth copper foil tape) may be affixed to the inner surface of
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270 CHAPTER 8 IMPEDANCE MEASUREMENT

F IGURE 8.21. Schematic of probe assembly

the piece that’s on the line side of the unit to reduce sliding friction and abrasion. Its
thickness needs to be carefully controlled to ensure that the probe makes good con-
tact with the line.

The foil side of both pieces faces the main board. The foil that contacts the ground
plane of the main board provides the ground contact for the probe circuitry. The
slider contains the probe circuitry, which consists of a diode detector and a resistive
load (see Figure 8.21).

The Schottky can be any low-capacitance, high-frequency unit (such as the HP
5082-2835 or -2860), whose anode lead is connected to the actual probe tip. The
input signal amplitudes must be small enough that the diode acts approximately as a
square-law detector, making the output voltage roughly proportional to power. The
proportionality constant, as long as it truly is a constant, is fortunately irrelevant since
only ratios are used in computing SWR. However, the square-law behavior necessi-
tates taking the square root of the probe output voltages in order to compute SWR.

The resistive load is shown as 470 #, but you are encouraged to experiment with
its value in order to maximize the detector’s useful range. A surface-mount chip re-
sistor is used to keep parasitics small, although the output side of the detector is not
terribly sensitive to parasitics of typical magnitude.

The capacitance of the slider, plus the input capacitance of most meters and scopes
to which the output of the probe is connected, will generally be large enough not to re-
quire any additional capacitance. To maximize usefulness, the ability to measure sub-
millivolt signals is desirable. Some amplification may be necessary to boost detector
outputs to levels that are conveniently measurable with inexpensive instruments.

So, when all is said and done, how good is the microstrip slotted line? The lossi-
ness of FR4 and the right-angle mounted BNCs, probe coupling irregularity, lack of
probe calibration, and the hand-built nature of the line itself all conspire to make this
impedance measurement tool a rather crude one. As a rough rule of thumb, one can
expect reasonable accuracy for impedances between about Z0/5 and 5Z0. For the
most common case of producing a good match to Z0, the tool works extremely well
and allows the attainment of S11 values below −15 dB with ease. Results at 1 GHz
generally are surprisingly good, with progressive degradation as the frequency in-
creases to 5 GHz and beyond.

If the instrument is to be used only at the higher frequencies, there are several nec-
essary refinements. Replace the right-angle BNCs with inline SMA connectors, use
RO4003 instead of FR4, and abandon the idea of handcrafting the line out of cop-
per foil tape; it is insufficiently uniform, so conventional PC board manufacturing
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techniques are required. Finally, a better diode may have to be used (e.g., the M/A-
COM MA4E2054, which is specified beyond 10 GHz). If the line is shortened by a
factor of 5 or so, satisfactory operation between 5 and 10 GHz is possible when all
of these refinements are combined.

Measuring Frequency with the Slotted Line

If frequency measurements to ∼10% accuracy are acceptable, then the slotted line is a
remarkably economical alternative to a gigahertz frequency counter. Since standing-
wave minima are separated by half a wavelength, knowledge of the propagation
velocity is the only additional information needed to allow computation of the fre-
quency. For 1.6-mm–thick FR4, the effective dielectric constant is typically within
5–10% of 3.5, leading to an on-board wavelength that is a factor of 0.535 times the
free-space wavelength. This value corresponds to a 160-mm wavelength at 1 GHz.
To make frequency measurements, then, simply open- or short-circuit the line to
guarantee maximum SWR, and measure the distance between minima. Accuracy
is enhanced by measuring the distance between several minima (if present) and di-
viding by the number of half-wavelengths. Double the measurement to compute the
wavelength, then divide that value (in millimeters) into 160 mm to find the frequency
in gigahertz.

As a numerical example, suppose we measure a distance of 25 mm between nulls.
Then the wavelength is 50 mm, so dividing that value into 160 mm yields a frequency
of 3.2 GHz.

Without calibration of any kind, ∼10% absolute accuracy is possible. With cali-
bration, the error can be reduced by a factor of 5 to 10, depending on the care taken in
construction and calibration. Furthermore, the line can be used to measure frequency
well beyond where it is useful as an impedance measurement instrument, because
only the distance between nulls is important for frequency measurement; character-
istics such as loss and the like are completely irrelevant.

8.9.2 HOMEGROWN SUB-NANOSECOND
PULSE GENER ATORS

The art of fast pulse and step generation is highly specialized, and it is unrealistic to
expect that we could generate pulses with risetimes competitive with state-of-the-art
instruments by using only what’s available in the typical home laboratory. However,
you may be pleasantly surprised to find that it isn’t difficult to generate pulses with
risetimes in the neighborhood of ∼200 ps using components readily available to hob-
byists. Such a pulse generator is especially valuable for evaluating the quality of
oscilloscopes and particularly of scope probes.

A trivial modification to the pulse generator converts it into a triggerable generator,
also with 200-ps risetime. Of the possible ways to generate pulses of this speed, the
most economical for hobbyists is unquestionably to make use of an abnormal mode
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F IGURE 8.22. Free-running avalanche
mode pulse generator

of transistor operation: avalanche breakdown. In this type of breakdown, the collec-
tor voltage is high enough to rip electrons from their orbits, creating hole–electron
pairs. The electrons accelerate toward the positive terminal (here assumed to be the
collector), while the holes accelerate toward the base. As the freed carriers acceler-
ate, some bash into other silicon atoms, creating still more hole–electron pairs, and
so on, causing a rapid increase in collector current.

The simple pulse generator circuit shown in Figure 8.22 exploits this avalanch-
ing. In this circuit, the collector supply voltage is chosen well above the transistor’s
breakdown voltage, and its precise value is not at all critical. However, under no cir-
cumstances should you derive this voltage directly from the mains; it is simply too
dangerous to do so! Rather, a battery-operated circuit is highly recommended. A
particularly handy source of high voltage is the xenon flash circuitry of disposable
cameras. These may often be obtained at low cost (or even free) from neighborhood
photo labs. Typically 200–300 V may be found across the one large capacitor in such
units, and this level of voltage is more than adequate to avalanche almost any tran-
sistor of interest. Exercise caution when removing the board from the camera case
and (certainly) while wiring it up. The main capacitor can store a dangerous amount
of charge for quite some time.

The capacitor CL may be made out of copper foil tape over ground plane on 1.6-
mm FR4. A good starting value is a square strip approximately 0.75 cm on a side.
Foil may be added or trimmed as necessary to adjust pulse duration and amplitude.
It’s important to minimize the length of the connection to the collector. Any induc-
tance between the collector and CL will slow down the pulse. It only takes a few
nanohenries to slow down the circuit by a factor of 2 or more.

Together with CL, the load resistor RL determines the pulse repetition rate. A
reasonable target for the pulse repetition frequency is in the neighborhood of very
roughly 100 kHz, typically corresponding to RL in the range of 100 k# to a few
megohms. Slow repetition rates are typically associated with worsening jitter, and
very high repetition rates result in large dissipation.
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Once avalanching begins, the collector current increases rapidly for two reasons:
the direct effect of avalanche electron multiplication in the collector, and the in-
crease in base current produced by the avalanching holes. The increased base current
increases the collector current through ordinary transistor action. This positive feed-
back mechanism is enhanced by biasing the base through a relatively large impedance
to allow the hole current that comes out of the base to raise the base voltage signifi-
cantly. A typical value for RB is in the neighborhood of kilohms to tens of kilohms.
The precise value is not critical, but if you are trying to optimize any given imple-
mentation, adjustment of this value is one place to start. Similarly, series parasitic
inductance is not a problem (in fact, it is somewhat beneficial). To underscore that
the inductance may be useful, it is shown explicitly in the schematic of Figure 8.22.

The pulse width depends on the size of the collector capacitor (larger capacitances
lead to taller and wider pulses) and the characteristics of the transistor. Low collector–
base capacitance is favored to allow the base and collector voltages to move rapidly
in opposite directions. A more critical parameter is the ratio of BVCBO to BVCEO.

The former is a measure of collector–base breakdown voltage with the emitter open-
circuited, while the latter is the breakdown voltage with the base open-circuited. The
latter is always smaller than the former precisely because of the same internal pos-
itive feedback mechanism already described. For most small-signal transistors, the
ratio of these two breakdown voltages falls within the range 1.5–2.0, but a few (such
as the 2N2369 or Zetex FMMT-417) have ratios that exceed 2.5 or so. Those few are
the ones that are particularly well suited for making avalanche pulsers.

It is important to underscore that transistors are almost never specified by manufac-
turers for avalanche mode operation. Even if you do find a transistor that avalanches
well, you should not expect all transistors of a given type to avalanche similarly. Con-
sequently some hand selection will generally be necessary. That said, typically more
than 75% of a given batch of 2N2369 transistors will avalanche well enough to pro-
vide a 5–10-V peak pulse into 50 # with rise and fall times close to 200 ps – speeds
that were state of the art for quite expensive laboratory instruments in the mid-1960s.
The ∼1-A/ns current slew rate is difficult to achieve through conventional means, so
having to try a handful of transistors seems a modest price to pay indeed. This high
a slew rate also underscores the importance of assiduously reducing parasitic induc-
tance in series with the emitter circuit: a single nanohenry of stray inductance drops
an entire volt!

The pulse generator is a versatile instrument with multiple uses in high-speed
work. As one specific example, the bandwidth of a scope–probe combination can
be rapidly evaluated with such a generator by observing the displayed rise and fall
times. Aberrations introduced by defective or improperly calibrated instruments and
cables are also readily observed. Given that the typical alternative is to measure fre-
quency response by sweeping a sine-wave generator over a gigahertz range, the pulse
generator is clearly an extremely inexpensive option.

A simple modification turns the free-running pulse generator into a triggered de-
vice. See Figure 8.23. Here, the supply voltage is adjusted to a value just below
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F IGURE 8.23. Triggered avalanche mode pulse generator

where free-running operation is enabled. Then a trigger pulse, coupled into the base
circuit through a small-value (e.g., 1–10-pF, depending on the amplitude and risetime
of the trigger pulse), low-inductance capacitor will push the transistor over the edge
and into avalanche breakdown.
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C H A P T E R N I N E

MICROWAVE DIODES

9.1 INTRODUC TION

The modern microwave diode owes its existence to the demands of military radar
during the Second World War. Vacuum tubes of the time were simply unable to oper-
ate in the multi-GHz radar frequency bands. Fortunately, the seeds of a breakthrough
had been planted in the mid-1930s by Bell Labs scientist George C. Southworth dur-
ing his early work with cylindrical waveguides. Proving the old adage that “necessity
is the mother of invention,” an inspired bit of thinking by his colleague, Russell Ohl,
led him to try out crystal detectors (then nearly obsolete) as power sensors, hoping
that the low capacitance associated with point contacts would permit operation at the
high frequencies he was using (within an octave of 1 GHz).1 Promising results of
tests on silicon confirmed that such diodes do indeed succeed where vacuum tubes
fail. A crash development program by the MIT Radiation Laboratory and others
successfully delivered reliable point-contact silicon diodes capable of operating at
frequencies in excess of 30 GHz by the end of the war.2

In this chapter, we examine diodes of this type. However, we also broaden the term
“diode” to include many other two-terminal semiconductor elements that find use in
microwave circuits. So, in addition to ordinary junction and Schottky diodes, we’ll
consider varactors (parametric diodes), tunnel diodes (including backward diodes),
PIN diodes, noise diodes, snap-off (step recovery) diodes, Gunn diodes, MIM diodes,
and IMPATT diodes. Space constraints force us to leave out a few of the less widely
used yet very interesting types (TRAPATT, LSA, etc.).3

1 Acting on Ohl’s suggestion, Southworth obtained a few old-style silicon catwhisker detectors from
a local surplus shop and, after some experimentation and refinement, enjoyed success.

2 Torrey and Whitmer describe this remarkable program in volume 15 of the MIT Radiation Labora-
tory Series, McGraw-Hill, New York, 1948.

3 For a comprehensive review of other diode types, see Sze’s The Physics of Semiconductor Devices
(Wiley, NewYork, 1981) as well as a volume he edited, High-Speed Semiconductor Devices (Wiley,
New York, 1990).
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276 CHAPTER 9 MICROWAVE DIODES

This chapter also contains an appendix (Section 9.13) describing how to make a
Schottky diode by baking pocket change in a home oven, and how to use it in a crys-
tal radio that operates in the distinctly macrowave frequency band of ∼1 MHz.

9.2 JUNC TION DIODES

The workhorse of diodes is the “plain old” junction type. Most textbooks on de-
vice physics fail to mention that the junction diode was discovered before it was
invented. The first was made accidentally at Bell Laboratories during an experiment
with silicon crystal growth that inadvertently left opposite ends of an ingot doped
with opposite polarities. In early 1940 Russell Ohl examined a wafer that had been
cut from a particular part of that ingot that happened to straddle the transition from
n-type to p-type. He discovered first its photovoltaic properties while trying to un-
derstand the cause of erratic resistance measurements. Generating nearly half a volt,
his solar cell astounded his colleagues, who were accustomed to seeing an order of
magnitude less from the cuprous oxide and selenium cells of the day. Although the
junction diode’s rectification properties were also noted at the time, the far supe-
rior frequency response of point-contact devices engaged the attention of engineers
throughout the war years. Serious development of junction diodes was thus deferred
until the end of the 1940s, when dissatisfaction with the mechanical instability of
point contacts encouraged engineers to pay closer attention to junction devices.

As do point-contact diodes, junction diodes exhibit an exponential relationship
between voltage and current:

iD = IS exp

(
vD

nVT

)
, (1)

where IS is a temperature-dependent current, VT is the thermal voltage (kT/q), and
n is the ideality factor (ideally unity). For most practical diodes, the ideality fac-
tor generally lies somewhere between 1 and 2.4 At room temperature, the forward
diode current doubles every 18n millivolts and increases by a factor of 10 every 60n
millivolts.

At radio frequencies, one must also consider parasitic and junction capacitances,
as well as parasitic resistance and inductance. Under reverse bias, the small-signal
capacitance is well approximated by

Cj = Cj0

(1 − Vj/ψ0)m
, (2)

whereCj0 is the capacitance at zero bias,Vj is the junction voltage (positive in forward
bias), ψ0 is nominally the contact potential (related to the bandgap of the material,
and typically on the order of 1V for silicon), andm is a constant whose value depends

4 The ideality factor approaches unity only when surface leakage and recombination in the depletion
layer may be ignored.
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9.2 JUNC TION DIODES 277

F IGURE 9.1. Simple small-signal
diode model

on the doping profile. For linearly graded junctions, m is 1/3; for abrupt junctions,
it is 1/2. Values of m in excess of 1/2 are possible through the use of hyperabrupt
junctions (described in greater detail in Section 9.4).

The junction capacitance of real diodes conforms surprisingly well to this equation
for reverse bias and also for weak forward bias. In deep forward bias, the capacitance
typically limits at a value about 2–3 times Cj0, rather than growing without bound as
the junction voltage approaches ψ0.

The voltage dependency of this capacitance is both an asset and a liability. When
an electronically controllable capacitance is desired, as in a varactor (more on this
in Section 9.4), one wishes to enhance this characteristic. In other cases, the capaci-
tance variation is an unwelcome source of distortion.

One basic requirement for a diode is that its impedance in the forward direction
be much lower than that in reverse. In forward bias at high frequencies, the imped-
ance is dominated by the parasitic series resistance. In the blocking direction, the
diode’s impedance is well approximated as a series combination of a resistance and
the junction capacitance; see Figure 9.1. In this model, Rj represents the fundamen-
tal bias-dependent diode resistance whose value in forward bias is

Rj = nVT

IBIAS
, (3)

where nVT is the same as in Eqn. 1 and IBIAS is the bias current through the diode. A
range of ideality factors between 1 and 2 implies Rj values of 25–50 � at 1-mA of
bias current at room temperature. In reverse bias, we may usually assume that Rj is
so much larger than the reactance of Cj at RF that it may be treated as infinite.

The back-to-front impedance ratio is approximately

ZR

ZF
≈ RS + 1/jωCj

RS
= 1 + 1

jωRSCj
. (4)

The reciprocal of RSCj is known as the diode cutoff frequency. Maximizing the
reverse-to-forward impedance ratio is equivalent to saying that the cutoff frequency
should be much higher than the intended operating frequency. For standard junc-
tion diodes, the series resistance and diode capacitance are opposing functions of
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278 CHAPTER 9 MICROWAVE DIODES

F IGURE 9.2. Representative test circuit and typical waveforms
for reverse recovery

F IGURE 9.3. Representative test circuit and typical waveforms
for forward recovery

cross-sectional area, so that their product is independent of area to first order. This
lack of scaling constrains the operational frequency range of junction diodes.

An additional consideration is that a junction diode cannot turn off abruptly be-
cause, being a minority-carrier device, it remains on until the stored minority charge
is actively removed or dies off through recombination. The time that the diode re-
mains in the conductive state is known as the reverse recovery interval; see Figure 9.2.
The value of trr is measured from the time the diode current reverses polarity to the
time it has decayed to some specified value Irr , and thus it depends on the latter. It is
also a function of the forward current that precedes the transition to off, increasing as
IF increases. In addition, it is a function of the peak reverse current IRM , decreasing
as IRM increases.

Some diodes are designed to produce a very rapid transition to the nonconduc-
tive state at the end of reverse recovery. The rapid shift from on to off generates
high-frequency harmonics of an imposed fundamental signal. Uses of such snap-off
(or step recovery) diodes are discussed further in Section 9.8.

Less commonly discussed is a phenomenon known as forward recovery. Just as
diodes can’t make an instantaneous transition from conduction to blocking, they also
take nonzero time to turn on. As a consequence, it is possible for the forward voltage
of a diode to exhibit considerable overshoot before settling down to its steady-state
value of, say, 0.7 V. Alas, the forward recovery time is rarely specified. Instead, data
concerning forward recovery is usually given in terms of the maximum forward drop,
VFM , under some prescribed test conditions. An example is the simple circuit shown
in Figure 9.3. The amplitude of the step is adjusted to produce some specified value
of steady-state current, and VFM is then measured. It is not unusual for VFM to be
3–4 times as large as the steady-state forward drop. Diodes of the same nominal type
may exhibit considerable spread in forward recovery behavior.

In addition to the parasitic series resistance already described, packaged diodes
will always have additional parasitics. At minimum, one may expect a certain amount
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9.3 SCHOTTKY DIODES 279

F IGURE 9.4. Simple high-frequency
small-signal model of packaged diode

of series inductance and shunt capacitance. A reasonable high-frequency model for a
packaged diode thus appears something like Figure 9.4. This model is fairly general
and applies to virtually all packaged diodes.

Series inductance LS accounts for the parasitic inductance associated with the
physical length of the diode, and shunt capacitance CP models the unavoidable ca-
pacitive coupling between the two ends of the diodes. The package parasitics are, of
course, dependent on the particulars of the package. That said, typical values for the
series parasitic inductance are usually within a factor of 2 of 1 nH, and the shunt ca-
pacitance typically within a factor of 2 of 100 fF, for most packages currently used
in microwave work. As a calibration point, perhaps it is useful to know that the
4-mm–long type-PP glass package commonly used by lower-frequency diodes, such
as the popular 1N914 and 1N4148, exhibits approximately 3-nH inductance (assum-
ing zero additional lead length beyond the ends of the glass envelope) and ∼150-fF
shunt capacitance.

More complex models may include additional inductance in series with the model
of Figure 9.4 to account for additional inductance (such as that associated with leads)
beyond that of the device package itself.

9.3 SCHOTTKY DIODES

Schottky diodes (also known as hot carrier diodes) actually predate the junction va-
riety. Ferdinand Braun, inventor of an early form of oscilloscope, published the first
paper on crystal rectifiers, in 1874.5 Exactly 25 years later he returned to that earlier
work in an effort to improve the nascent radio art, but apparently he did not apply for
any patents. That distinction belongs to the remarkable Jagadish Chandra Bose, who

5 “Ueber die Stromleitung durch Schwefelmetalle,” Poggendorf’s Annalen der Physik und Chemie,
v. 153 (now v. 229), pp. 556–63. In recognition of his many important contributions, he shared the
1909 Nobel Prize with Guglielmo Marconi.
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280 CHAPTER 9 MICROWAVE DIODES

needed detectors for the ∼60-GHz radiation he was generating with special spark-
gap apparatus.6 He applied in 1901 for a patent on a galena-based point-contact diode
acting as a bolometer, not as a rectifier (it was granted in 1904). That the operat-
ing principles would not be fully understood for decades did not inhibit researchers
from patenting numerous related detectors in the early years of the century. Signif-
icant among them was a rectifying silicon detector patented in 1906 by the prolific
Greenleaf Whittier Pickard.7

Pickard’s silicon detector played an important role in stimulating the develop-
ment of modern semiconductors for, as mentioned, it was just such a detector that
was tried, almost in desperation, by Southworth. As he had hoped, a point contact
does indeed guarantee exceptionally low device capacitance, far lower than that of a
vacuum tube. More important, in rare defiance of Murphy’s law, the resistance as-
sociated with a point contact scales inversely with the contact radius, rather than the
area:

RS = 1/4σr , (5)

where σ is the conductivity and r is the contact radius. This equation for spreading
resistance holds as long as the point contact’s radius is much smaller than (a) the thick-
ness of the semiconductor and (b) the radius of the other contact. Now, the parasitic
capacitance does scale directly with area. Since the capacitance therefore shrinks
faster than the resistance grows, the parasitic RC product drops approximately lin-
early with the radius, rather than remaining constant. This scaling behavior differs
greatly from that of planar junction devices, and it accounts for the superior frequency
response of point-contact devices.

The key to good high-frequency performance, then, is to produce as small a con-
tact area as is consistent with providing a reliable contact. Methods for producing
exceptionally sharp tips (typically of tungsten) – as well as the development of thin,
highly polished wafers of pure silicon – enabled the achievement of K-band compat-
ible point-contact Schottky diodes by the early 1940s.8 It should be noted that the
estimated contact diameters of ∼2µm were not matched by integrated circuit lithog-
raphy until the 1980s.

The differences between those early point-contact diodes and modern ones are ac-
tually relatively minor. Packages have improved, resulting in a reduction of parasitic
inductance in particular. A more important difference is in the quality of the semi-
conductors. Monocrystalline germanium and silicon ingots were not available until
the 1950s, so early diodes were made from polycrystalline wafers. Carrier transport
is inferior in polycrystalline material, so resistivity is significantly higher for a given
doping level. The poly wafers were broken into shards, with much of the breakage

6 This is not a typographical error. Bose was working with millimeter-wave radiation in the 19th
century!

7 Alan Douglas, in “The Crystal Detector” (IEEE Spectrum, April 1981), tells us that Pickard had
tested over 31,000 combinations of minerals and wires by 1920.

8 The 1N26 has a maximum specified conversion loss of 8.5 dB at 24 GHz.
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F IGURE 9.5. Schottky
diode symbol

occurring along grain boundaries. Efforts were made to select material from within
the larger grains in hopes of obtaining approximations to monocrystalline samples.
The selected pieces were mounted on threaded studs, then the edges ground. After
assembly into a cartridge and adjustment of the catwhisker (usually of tungsten),
diodes were tested and sorted according to quality. A considerable spread in charac-
teristics was common, and good diodes were zealously guarded by individual radar
engineers. Today, of course, semiconductors are uniformly excellent, so yield loss
and series resistance are now much lower. Recent work has resulted in GaAs point-
contact diodes capable of operating above 170 GHz by using tungsten catwhiskers
possessing 100-nm–diameter tips.9 Modern deep sub-micron photolithography has
advanced enough to produce exceptionally small contacts, so most Schottkys made
today exploit this ability by forming an array of tiny contacts all over the surface
of the diode. The catwhisker is then pressed against the surface with a reasonable
pressure (for good stability), making contact with one of the tiny contact dots. Ex-
perimental “dot matrix” devices with cutoff frequencies in the range of 10 THz have
been demonstrated, with much of the performance due to the etching away of para-
sitic material.10

Since Schottky diodes do not function by minority carrier injection, there is no re-
verse recovery delay. Also, many modern Schottky devices exhibit ideality factors n
that are very close to unity, often within a range of 1.05 to 1.1:

iD = IS exp

(
vd

nVT

)
. (6)

For a 1-mA forward current, the dynamic resistance is therefore typically not much
greater than 25� at room temperature. Figure 9.5 displays the symbol for a Schottky
diode.

9.4 VAR AC TORS

The voltage-dependent capacitance exhibited by both Schottky and ordinary junction
diodes is extremely useful for making voltage-tuned circuits, and varactors conse-
quently find wide use in voltage-controlled oscillators (VCOs), for example.

We’ve already seen that a linear doping profile leads to a relatively lazy voltage
dependence, whereas abrupt doping produces a more dramatic capacitance variation
with voltage. Diodes with this latter type of doping can provide a typical capacitance

9 “Die MIM oder MIS Dioden,” 〈http: //mste.laser.physik.uni-muenchen.de /∼mst /mim.html〉.
10 〈http: //info.iaee.tuwien.ac.at /gme/jb97/97 07.htm〉.
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282 CHAPTER 9 MICROWAVE DIODES

F IGURE 9.6. Typical varactor V–C curve

tuning ratio of about 2 :1. Although it might initially appear that one could not im-
prove upon the results of abrupt doping, an even greater sensitivity to voltage may be
obtained by using hyperabrupt doping profiles. These are accomplished by approxi-
mating an exponential doping profile.

The voltage dependency of diodes made with all of these profiles is still reasonably
well approximated by the relationship given earlier, repeated here for convenience:

Cj = Cj0

(1 − Vj/ψ0)m
. (7)

We’ve already observed that the exponent m is 1/3 and 1/2 for linearly graded and
abrupt junctions, respectively. For certain hyperabrupt profiles, m can even exceed
unity (values in excess of 2 are readily available commercially). As a consequence,
hyperabrupt doping profiles can produce diodes whose capacitance varies over a
decade range. Such diodes permit the tuning of LC oscillators over a 3 :1 frequency
range, enabling the realization of electronically tuned AM radios, for example.

A typical voltage-vs.-capacitance curve for a hyperabrupt varactor is shown in
Figure 9.6.

PAR A METRIC A MPL IF ICATION

As the Second World War drew to a close, researchers at the MIT Radiation Lab-
oratory discovered a puzzling phenomenon. Under certain conditions, an ordinary
point contact diode could provide power gain. No violation of energy conservation
is implied, since both a DC bias and a local oscillator were present as potential power
sources, but it was unclear exactly how energy from either or both of these sources
could end up at the signal frequency. Subsequent investigation with an analog com-
puter revealed that the presence of a nonlinear junction capacitance is essential to
producing this effect. Beyond this key observation, though, no other explanation
was offered.11

11 Torrey and Whitmer, op. cit. (see footnote 2).
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F IGURE 9.7. Simplified parametric amplifier

Today, this phenomenon is known as parametric amplification. The nomenclature
derives from the purposeful variation of a circuit parameter in some prescribed man-
ner. In the case of the parametric diode, the essential features of how amplification
may arise can be explained qualitatively by considering a simple LC tank in which
the capacitance is a conventional parallel-plate capacitor, except with a variable spac-
ing. At any fixed value of plate spacing, and given some initial charge, the tank will
oscillate at its natural frequency. If any loss were present, of course, it would cause
the amplitude to decay exponentially with time.

Now consider what happens if we suddenly pull the plates of the capacitor apart
some distance just as the capacitor voltage reaches its peak. At that instant, the at-
tractive electrostatic force between the two plates is at a maximum, so we have to
work against the field in order to pull the plates apart. Where does the energy of that
work go? With no dissipative mechanisms in the tank, that energy is clearly injected
into the LC tank, causing the amplitude to increase. To restore the capacitance with-
out perturbing the energy, we can quickly push the plates together again 90◦ later,
when the tank voltage is zero. Another 90◦ later, we pull the plates apart once again,
and so on. By injecting energy twice every cycle in this manner, we can continue to
increase the amplitude of the oscillation; we have achieved amplification.

Note that the frequency at which we vary the plate spacing is twice that of the
tank resonance. The former, known as the pump frequency, is supplied by a sepa-
rate oscillator in practical realizations. The pump oscillator periodically modulates
the diode capacitance, causing a negative resistance to appear at the tank’s resonant
frequency.

So, if we’re not violating energy conservation, where does the energy come from
in a practical paramp? In a standard amplifier, the DC power supply is the ultimate
source of the added signal energy. In a parametric amplifier, the energy comes from
the pump oscillator. Just as we had to do work to separate the plates in our thought ex-
periment, the pump has to do work in the actual parametric amplifier. The parametric
amplifier can therefore be thought of as a system that violates linear time invariance,
allowing energy at one frequency to show up as energy at a different frequency.

The simplified paramp schematic of Figure 9.7 shows in more detail how the pump
oscillator and main input are applied to the diode, and where the output port is lo-
cated. The RF input, vRF , is fed to the diode through a bandpass filter F1, which is
tuned to the input frequency. At the same time, the pump input (nominally at twice
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284 CHAPTER 9 MICROWAVE DIODES

the input frequency) is also fed to the diode through another bandpass filter, F2, which
is tuned to the pump frequency. The pump modulates the diode capacitance, causing
it to produce a negative effective resistance at the RF input frequency. The left-hand
loop is then capable of producing a net gain, resulting in an amplified output avail-
able across RL.

The valuable attribute of a paramp is that only reactances are directly involved in
the amplification process, so very low noise figures are possible. In fact, until the in-
vention of the maser, the lowest-noise amplifiers in existence were paramps. Today,
they are rarely used because conventional amplifiers frequently perform well enough
without requiring a pump at twice the signal frequency. Nonetheless, it is instructive
that amplification can occur parametrically. At the very minimum, it shows us that it
is possible to obtain gain from a two-terminal element, an observation that has rele-
vance for the section that follows.

As a final note on this subject, distributed amplifiers (also known as traveling wave
amplifiers) have been constructed with parametric diodes.

9.5 TUNNEL DIODES

In the summer of 1957, a young Leo Esaki was working on his Ph.D. thesis at a young
Sony Corporation. The topic was an investigation of how the breakdown voltage of
germanium diodes varies with doping concentration. Since it was “well known” what
to expect, the thesis topic probably appeared rather unpromising at first, something
in danger of consignment to the dustbins of science (to paraphrase a familiar saying).
Esaki himself perhaps sensed this danger, so he chose to fill in gaps in the literature,
employing doping levels so extreme that no one else had bothered to try them, and
observing the temperature dependence over a very wide range.

First, he confirmed that heavier doping leads to reduced breakdown voltages. That
wasn’t new. What was novel was his surprising observation that, with incredibly
heavy (degenerate) doping, it is possible to reduce the apparent breakdown voltage to
less than zero. That is, in some cases, it is necessary to apply an increasing forward
bias to reduce the current. Over that regime of operation, such a heavily doped diode
exhibits a negative incremental resistance. With still more forward bias, the diode
characteristics eventually converge to those of a standard diode.

As seen in Figure 9.8, a tunnel diode’s forward current increases to a peak value
(IP ) and then decreases to a valley current (IV ) as the forward voltage increases from
zero to VP to VV . Convergence with ordinary junction diode behavior takes place be-
yond VV . Esaki did more than simply report these observations; he explained them as
consequences of quantum mechanical tunneling.12 Up to that time, tunneling was a
theoretical construct that physicists found useful for considering various phenomena,
but that no one had observed directly. Esaki’s direct demonstration of tunneling – in

12 L. Esaki, “New Phenomenon in Narrow Germanium p–n Junctions,” Phys. Rev., v. 109, 1958,
p. 603.
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9.5 TUNNEL DIODES 285

F IGURE 9.8. Typical tunnel diode characteristics

so simple a structure, no less – was so dramatic that he was awarded a Nobel Prize
in physics in 1975.

Aside from its purely scientific significance, the negative resistance exhibited by
a tunnel diode is potentially useful as a microwave gain element. Consider, for ex-
ample, an amplifier formed from a standard resistive voltage divider in which one of
the resistances has a negative value:

vO

vIN
= R1

R1 + R2
. (8)

With R2 < 0, the output voltage exceeds the input voltage, so we have made an
amplifier.

Commercially available Ge tunnel diodes exhibit typical valley currents ranging
from a few hundred microamps to several milliamps (a few are as high as 20 mA,
but these are unusual), at a forward bias of about 350 mV. Peak currents are typi-
cally 5–10 times higher than the valley current and occur at roughly 65-mV forward
bias. Typical peak negative conductances range from several microsiemens to a few
hundred millisiemens.

An important figure of merit concerns the frequency range over which the diode
produces a net negative resistance. Consider again our general diode model (Figure
9.9). The shunt capacitance CP and series inductance LS can be neutralized at any
given frequency (at least in principle) by external tuning elements, so the only model
elements that need to be considered are RS , Rj (which can be negative), and Cj . The
parallel RjCj network can be transformed into a series equivalent RC, whose resis-
tance is

R = Rj

1 + (ωRjCj )2 . (9)

The net resistance is thereforeRS +R, which will be negative up to a frequency limit
(also known as the resistive cutoff frequency) given by

ωmax = 1

RjCj

√
1 − Rj

RS
. (10)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511812941.010
Downloaded from https://www.cambridge.org/core. The Librarian-Seeley Historical Library, on 30 Dec 2019 at 21:57:39, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511812941.010
https://www.cambridge.org/core


286 CHAPTER 9 MICROWAVE DIODES

F IGURE 9.9. Simple high-frequency model
of tunnel diode

F IGURE 9.10. Simplified tunnel
diode oscillator

Good tunnel diodes minimize the junction (and stray) capacitance and series resis-
tance.

Another obvious use of a negative resistance is in realizing oscillators. Connecting
a tunnel diode to a resonator makes an oscillator, provided that the diode’s negative
resistance exceeds the positive resistance that models the parallel tank loss. See Fig-
ure 9.10. In this simplified oscillator, the RLC circuit (with the inductor connected
through the DC power supply) is a lossy resonator. The tunnel diode is placed in par-
allel with the tank and then biased to its negative resistance region. Oscillation occurs
as long as the tank loss (including loading) can be negated by the diode’s effective
resistance. In many high-frequency applications, the tank is not a lumped RLC but
rather a resonant cavity (a class that includes resonant transmission lines).

Because the extreme doping levels implied that neither very pure materials nor ex-
treme cleanliness during fabrication was necessary, many were optimistic that tunnel
diodes – with their simple structure, high operational frequency, and ease of manufac-
ture – would displace transistors in many applications. Work on microwave systems
and even computers based on tunnel diodes was undertaken in laboratories through-
out the world.

Nevertheless, the reader may be aware of a total lack of dominance by the tun-
nel diode in modern microwave technology. One reason that the tunnel diode never
lived up to its early promise is that, being a two-terminal element, it is very difficult
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F IGURE 9.11. Typical backward diode characteristics

to construct unilateral amplifiers. Hence, tunnel diode circuits have the unfortunate
quality that changes in the load impedance cause changes all the way up to the input.
This property makes cascading quite difficult. Hence, except for very specialized or
simple stand-alone circuits, the tunnel diode was found unsuitable. Another factor is
that the negative resistance region spans a relatively small voltage range, so that use-
ful signal levels are constrained to a fraction of a volt, leading to typical signal output
powers below1mW. Finally, stabilizing the gain against variations in bias and temper-
ature is generally necessary. Manufacturers have thus largely abandoned production,
and the few tunnel diodes available today are remarkably expensive, reflecting in-
dustry’s reluctance to make them. By one estimate, fewer than 10,000 tunnel diodes
were sold worldwide in 1999. Nevertheless, tunnel diodes have remained a favorite
of academic research, and publications continue to appear.

BACKWARD DIODE

The backward diode is simply a tunnel diode whose anode and cathode have been
interchanged and which employs doping levels that cause near-equal values of peak
and valley current. The resulting V–I characteristic looks approximately as shown in
Figure 9.11. By interchanging the roles of anode and cathode, a diode with very low
“forward” drop results, thereby approximating more closely the characteristics of an
ideal diode, at least in the forward direction. However, note that the “reverse” break-
down of a backward diode is under a volt, so this diode has limited utility as a power
rectifier. It finds occasional use as a small-signal detector or mixer.

9.6 PIN DIODES

The minority-carrier storage problem that afflicts standard junction diodes is ex-
ploited in the PIN (for p-intrinsic-n) diode. (There is an important theme here: A
problem in one context can often be turned into a critical advantage in another, if
one just thinks about it for a little bit.) As its name implies, PIN diodes interpose a
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F IGURE 9.12. PIN diode attenuator/switch circuits

very lightly doped (i.e., intrinsic or near-intrinsic) semiconductor layer between the
standard junction layers. Because of the high resistivity of this interposed layer, its
resistance dominates that of the whole diode. When the diode is forward biased, in-
jected charge raises the conductivity of the intrinsic region.

At low frequencies, the PIN diode simply behaves pretty much as an ordinary diode,
since recombination processes are fast enough to kill off the injected charge over the
period of a slowly varying terminal voltage. However, carrier lifetimes are particu-
larly large when the doping is light, so the diode is unable to keep up with quick vari-
ations in applied voltage (e.g., at MHz rates and above). The charge density therefore
remains roughly constant, causing the PIN diode to appear like a resistor. Further-
more, the value of resistance is a function of the DC bias current through the diode.

Because the PIN diode thus behaves as an electronically controllable resistance, it
has found wide application in the RF domain as a modulator, variable attenuator, and
switch. Since it is amenable to fabrication by standard microelectronic processing
techniques, a PIN can be made physically small, with correspondingly small para-
sitics. Filter components can then be electronically connected to (or removed from)
a circuit to effect band switching, for example. Automatic gain control (AGC) is an-
other application in which PIN diodes excel. The circuits depicted in Figure 9.12
show typical methods for using a PIN as attenuators or switches.

The top circuit in the figure places the PIN diode in series between the input and
load. The bias current for the diode is supplied through the control input with the
aid of RF chokes whose impedance is large at all signal frequencies of interest. A
DC blocking capacitor prevents this DC current from flowing into the input source.
No blocking capacitor is generally needed on the output because the ground-returned
RFC forces the DC output voltage to be zero. At low bias currents, the diode is a
high impedance, and little signal propagates from input to output. In the limit of zero
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bias, the feedthrough is due entirely to the total shunt capacitance in parallel with the
diode. Typical values of maximum attenuation range from perhaps 20 to 40 dB, with
increasing degradation from feedthrough at higher frequencies. At high bias currents,
the conductance of the diode is very high, connecting input to output. Typical in-
sertion losses are below 1 dB. In this limit, the PIN therefore may be considered a
switch.

The second circuit uses a shunt arrangement in which the PIN diode places an
additional resistance in parallel with the load. Here, a high bias current is associ-
ated with maximum attenuation whereas a low bias current provides the minimum
attenuation.

The two circuits are frequently combined into a T-arrangement, with a shunt branch
in the middle that provides a path to short out any feedthrough component. High levels
of isolation (e.g., >70–80 dB) are possible with a T-switch, but at the expense of
somewhat higher minimum values of loss.

It should be clear that permutations of the basic configurations can be used to im-
plement more complex switching arrangements, such as single-pole, double-throw
(SPDT) and others. These are left as an “exercise for the reader.”

Finally, because the PIN is fundamentally an electronically controlled resistor, it
may be used in applications wherever a potentiometer might be used at lower frequen-
cies. Examples include (but are certainly not limited to) voltage-controlled filters and
phase shifters.

9.7 NOISE DIODES

When a sufficiently large reverse bias is applied across a junction, the electric field
may be able to rip bound electrons from their host atoms. If the field and mean
free path are large enough, the freed electrons may accelerate sufficiently to liberate
still more electrons during subsequent collisions. These secondary electrons them-
selves may accelerate and liberate even more electrons, and so forth. This avalanche
breakdown is therefore associated with an extremely rapid rise in current once the
breakdown voltage is reached. Stated another way, the voltage is roughly insensitive
to current in the breakdown region. For this reason, such diodes (often called Zener
diodes, even though Zener’s breakdown mechanism isn’t the same as avalanching)
are widely used as voltage references or voltage regulators.

It was discovered early on that Zener diodes are extremely noisy (actually, this
noisiness was first observed in gas-filled “vacuum” tube predecessors, which also
function by avalanche breakdown).13 Engineers must work hard to ensure that this
noise doesn’t enter critical signal paths and thereby degrade signal-to-noise ratio.

In keeping with the idea that “if life gives you lemons, make lemonade,” this noisi-
ness has been exploited to make broadband white noise sources whose effective noise

13 It should be mentioned that avalanching gas-filled waveguide noise sources have been used as na-
tional laboratory noise standards to which diode noise sources are traced.
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290 CHAPTER 9 MICROWAVE DIODES

F IGURE 9.13. Typical noise diode

temperatures are in the many thousands of degrees – but without requiring the actual
heating of a resistor to such temperatures. Such diodes are therefore indispensable as
safe, compact, and low-power noise sources for noise figure measurement, to name
one prominent example.

The noise fundamentally arises from the stochastic nature of avalanching: an elec-
tron goes some random distance, acquires a random energy, bashes into an atom, and
frees a random number of electrons. The spectrum of avalanching is consequently
extremely broad, so as long as the device parasitics are small, the output noise ex-
tends over an exceptionally wide frequency range.

One problem is that there is considerable variation in noise from diode to diode,
so each one must be calibrated against some primary standard if the diodes are them-
selves to be used as secondary standards in noise measurement. Other characteristics,
such as changes over time or with ambient temperature variations, must be accommo-
dated or controlled. Subsurface or guard-ring–stabilized zeners have been developed
to reduce instability over time. Partly as a result of the somewhat nonstandard struc-
ture and partly because of the labor involved in calibration, noise diodes that are
traceable to an NIST (or other laboratory) standard are quite expensive (of the order
of $2000 at the time of this writing).

Figure 9.13 shows a typical connection of a noise diode. The diode is biased with
a current chosen to provide a stable, flat noise spectrum (the resistive T-network aids
in impedance matching). The RF choke prevents shunting of high-frequency compo-
nents to ground, and the DC blocking capacitor (not present in all designs) prevents
the DC diode voltage from upsetting whatever load receives the output of the noise
diode.

More elaborate circuits include some additional components to extend the fre-
quency range over which the spectrum is white. The added circuitry is often hand-
tailored for each diode.

9.8 SNAP DIODES

Again in keeping with the lemonade philosophy, snap diodes (also known as snap-off
or step recovery diodes) are p–n junction diodes carefully designed to exploit the mi-
nority carrier storage inherent in such diodes. Recall that applying a reverse bias to
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9.8 SNAP DIODES 291

F IGURE 9.14. Illustration of reverse recovery

a diode that was previously in forward bias does not instantly cause a p–n diode to
turn off; the injected minority carriers must be removed first. Until then, the diode
remains on, conducting current with a low voltage drop (e.g., 0.7 V). This departure
from ideal behavior has implications for RF circuits and even for switching power
supplies, where conduction in the reverse direction can result in significant loss in
efficiency. In extreme cases, it can even cause component failure.

The snap diode converts this drawback into an advantage. More precisely, it makes
use of the rather abrupt transition from on to off that occurs once the stored charge
has been removed. It is therefore possible to produce signals with extremely fast rise-
times with snap diodes. By the principle of time-frequency duality, we recognize that
fast risetimes imply high-frequency spectral content. Snap diodes have been used as
harmonic multipliers and generators of control pulses for sampling gates and other
very fast circuits. Hewlett-Packard, the company that pioneered snap diodes,14 still
uses them in front ends for multi-GHz sampling oscilloscopes. It is possible to ob-
tain snap diodes capable of producing sub–10-ps risetimes.

To understand better why snap diodes are useful, consider the circuit – and its as-
sociated waveforms – shown in Figure 9.14. In the figure, the dashed curve is the
source voltage VS and the solid curve is the output voltage VOUT . If the diode had
infinitely fast reverse recovery then the output voltage would never go negative, in-
stead going to zero as soon as the input voltage goes negative. However, a nonzero
recovery time causes the diode to continue to remain on for some time, with a flow
of significant reverse current until the stored minority charge has been removed. The
diode current rapidly goes to zero once this charge is gone, leading to a sharp transi-
tion from on to off. In the figure, the reverse recovery interval just happens to occupy
about 90◦ of the applied sinusoid.

14 A. F. Borr, J. Moll, and R. Shen, “A New High-Speed Effect in Solid-State Diodes,” ISSCC Digest
of Technical Papers, February 1960.
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292 CHAPTER 9 MICROWAVE DIODES

From inspection of the output waveform, the spectrum clearly contains significant
harmonic energy. With a periodic input, the output spectrum consists of harmonics of
the input fundamental, resulting in a comblike spectrum with significant energy out
to approximately the inverse risetime of the snap recovery.15 Filters can be used to
select the desired component(s), enabling use of the snap diode as a frequency mul-
tiplier. This way, a 100-MHz input signal can be used to generate gigahertz outputs,
for example. On the other hand, this frequency multiplication can be troublesome
if it occurs unexpectedly. An all-too-common example is an ordinary power supply
rectifier, where a 60-Hz input may be multiplied upward in frequency into the high
AF and low RF range, causing interference. This phenomenon is particularly ob-
jectionable in audio amplifiers and AM radios, where the interference may result in
audible artifacts.

An alternative description of snap diode operation is that it produces a sharpen-
ing up of slow waveforms. It is in this context that snap diodes are often employed
in high-speed samplers, where a slower pulse is sped up by a snap diode circuit to
produce the exceptionally fast pulses needed for operating a sampling switch.

The snap-off speed is dependent on doping because the rate at which minority car-
riers are swept out is related to the internal electric field. Heavier doping leads to
higher built-in fields and hence faster snap-off speeds. Furthermore, doping profiles
that maximize electric field are also helpful. The exponential grading used by hyper-
abrupt varactors is particularly suitable for making snap diodes. Generally speaking,
the larger the value of grading coefficient m, the snappier the diode.

Since breakdown voltage is also related to doping, one expects to find lower break-
down voltages associated with faster turn-off, all other factors held equal, and this cor-
relation is indeed observed in practice. The fastest snap diodes are low–breakdown-
voltage varactors.

The reverse recovery time is a function of the forward current (more stored charge
implies longer recovery), and the spectral content is therefore also a function of the
bias. In comb generators or frequency multipliers, provisions for adjusting the bias
are frequently added to the simple test circuit shown in Figure 9.14. The bias and input
amplitude may be varied to optimize some performance parameter (e.g., amount of
tenth harmonic). Using these degrees of freedom in conjunction with filters allows
many snap diode frequency multipliers to provide conversion gains as high as −15 dB
or so, with the conversion gain changing little until the bandwidth limit (which may
be estimated using the bandwidth–risetime rule of thumb) is reached.

As a final note on snap diodes, it is important to distrust most Spice simulations
of reverse recovery. The diode models provided by most vendors fail to capture the
subtle effects needed for accurate simulations. In particular, the equations for charge
storage seem to be fundamentally in error, with incomplete accommodation of true
carrier transit time.

15 The old rule of thumb relating bandwidth and risetime (f−3dBtr = 0.35) may be taken as a first
approximation here.
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9.9 GUNN DIODES 293

9.9 GUNN DIODES

One way of thinking about how an oscillator works is to consider it a combination
of a negative resistance and a resonator. The negative resistance is often realized at
the lower microwave frequencies with a transistor connected in a positive feedback
configuration – as in a Colpitts oscillator, for example. At extremes of frequency,
however, the phase shift through the active element itself is large enough to cause the
oscillation frequency to depend less on the resonator and more on the transistor. In
the limit, the oscillation frequency is constrained by factors such as fmax.

An alternative is to employ a two-terminal element that is capable of generating a
negative resistance through some fancy physics. Recall that the effective mass of an
electron in a solid generally differs from that in free space because of interaction with
all of the other charges in the material. These other charges include those that flow
as a result of an applied field. Thus, there exists a possibility of a field-dependent
effective electron mass.

Now, gallium arsenide (GaAs) is a material whose band structure includes two
conduction band valleys separated by a relatively small energy difference (indium
phosphide, InP, is another). Electrons in these two valleys have two different ef-
fective masses, with heavier electrons in the higher energy valley. At low electric
fields, conduction involves only electrons in the lower energy valley. As the field
strength increases, that valley fills up. Eventually, the field strength reaches a thresh-
old (around 300–350 kV/m for GaAs) beyond which the upper valley begins to fill.
Because of the higher electron mass, the drift velocity decreases as the electric field
increases across this transition. Because the current density is proportional to ve-
locity, we have the interesting situation that there is a range of field strengths over
which current actually decreases as the applied voltage increases. See Figure 9.15.
The behavior we have just described is an incremental negative resistance. It was first
observed experimentally by J. B. Gunn, for whom the effect and device have been
named.16 However, theoretical predictions of the Gunn effect were actually made
several years earlier, by Ridley and Watkins17 and by Hilsum.18 Since it is much eas-
ier to say “Gunn” than it is to say “Ridley, Watkins, and Hilsum,” the former name
has stuck.

The attractive property of a Gunn diode is that it is a bulk device; calling it a diode
is to use the term in its most general sense: a two-terminal element. A Gunn diode
contains no junctions. No exotic processing or expensive lithography is required.
“Simply” package it properly and bias the material to the negative resistance region,
and it’s ready to go.

16 “Microwave Oscillation of Current in III-V Semiconductors,” Solid-State Commun., v. 1, 1963,
p. 88.

17 “The Possibility of Negative Resistance Effects in Semiconductors,” Proc. Phys. Soc. London,
v. 78, 1961, p. 293.

18 “Transferred Electron Amplifiers and Oscillators,” Proc. IRE, v. 50, 1962, p. 185.
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294 CHAPTER 9 MICROWAVE DIODES

F IGURE 9.15. Typical V–I plot of Gunn diode

When used in CW oscillator applications, the bias current is typically adjusted to
a value 10–20% below the value that produces the maximum output power, corre-
sponding to applied voltages on the order of three times the threshold voltage Vth.
For pulsed applications, the voltage may be an additional factor of 3 higher for larger
output power on a transient basis.

Gunn oscillators for frequencies ranging from approximately 5 GHz to 150 GHz
are commercially available,19 with CW output power spanning a few milliwatts to
several hundred milliwatts or so and with DC-to-RF conversion efficiencies in the
range of ∼10%. Pulsed power output values are a couple of hundred times higher at
any given frequency, and the largest Gunns are capable of pulsed output power in the
kilowatt range.

An important consideration in all amplifiers and oscillators is their noise. A com-
monly used device noise parameter is called the noise measure, M, which for a
two-terminal element is simply the factor by which the effective device resistance is
noisier than a passive resistor of the same absolute value:

M ≡ v2
n

4kT |R|(f . (11)

Gallium arsenide Gunn diodes typically exhibit noise measures of the order of 15 dB
at 10 GHz.

There is a trade-off between frequency and power capability in device design that
leads to a bound on the product of output power and (at least) the square of frequency.
An approximate but intuitively appealing derivation begins with the observation that
some critical device dimension usually limits frequency response. Hence, this di-
mension must scale directly with wavelength (or inversely with frequency). But as
the critical dimension scales, so does the breakdown voltage (assuming a constant
critical breakdown field). Power is proportional to the square of voltage and thus in-
versely proportional to the square of frequency. For CW operation, this maximum
is about 500 W-GHz2 and about 105 W-GHz2 in pulsed mode.20 The inverse square

19 The tuning range of any given Gunn oscillator is typically under 10–20% and is generally limited
by the resonator technology.

20 D. M. Pozar, Microwave Engineering, 2nd ed., Wiley, New York, 1998, p. 590.
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F IGURE 9.16. Representative V–I characteristics of symmetrical MIM diode

frequency dependence worsens to an inverse cubic relationship as one moves deeper
and deeper into the millimeter-wave bands.

The bias voltage affects the phase delay between applied voltage and the current
that flows, and hence it affects the effective reactance of the Gunn diode. This reac-
tance forms part of whatever resonant structure is used to set the oscillation frequency.
As a consequence, there is a nonzero supply pushing effect, and one must stabilize
bias voltages if this is to be minimized. Alternatively, the sensitivity to supply volt-
age provides a means of fine-tuning the frequency of a Gunn oscillator.

Temperature also has a strong effect, with both the threshold and peak output
power voltages decreasing as temperature rises. Typical values for the temperature
coefficient of those voltages are around −5000 ppm/◦C. Prevention of supply push
is therefore complicated if the temperature varies.

9.10 MIM DIODES

Another structure that depends on tunneling is the metal-insulator-metal diode. If the
insulator is very thin (on the order of a few nanometers or less, just as for the tun-
nel diode, and for the same reasons), significant tunnel current may flow. Because of
the nonlinear dependence on voltage, MIM structures act as symmetrical nonlineari-
ties. See Figure 9.16. With a suitable bias (which may include zero), MIM diodes are
capable of detection, just as are more conventional diodes. Since current transport
through the insulator takes place through tunneling and since the other electrodes are
of very conductive metal, such diodes are capable of operation at exceptionally high
frequencies. Operation up to near-optical frequencies is not out of the question for
integrated implementations of MIMs.

9.11 IMPATT DIODES

Around 1956, Read21 proposed an avalanching diode structure that would generate
a negative resistance. A greatly simplified version of his reasoning is as follows:

21 W. T. Read, “A Proposed High-Frequency, Negative Resistance Diode,” Bell System Tech. J., v. 37,
March 1958, p. 401. This paper was circulated within Bell Labs two years before publication.
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296 CHAPTER 9 MICROWAVE DIODES

F IGURE 9.17. Simple high-frequency
model of IMPATT diode

Operate a diode in avalanche breakdown, but lengthen it enough so that there is a
nonnegligible carrier transit delay across the device.22 Because of this delay, it may
be possible for the current density to lag behind an applied sinusoidal voltage. If
this lag can be made large enough, it may be possible to arrange for the current to
decrease while the voltage increases. If this happens, we have created a negative re-
sistor, which may be used in all of the applications we’ve cited for the other negative
resistors (tunnel and Gunn diodes).

Inspired by Read, several groups sought to reduce his theoretical ideas to practice.
Some early work turned out to be surprisingly easy to carry out. By coincidence, or-
dinary manufacturing practice of the 1950s just happened to produce diodes with a
structure suitable for creating a negative resistance. As one Bell Labs engineer noted
upon testing a junk box full of ten-year-old diodes, they “just seemed to want to
work.”23 In relatively short order, oscillators at tens of gigahertz were demonstrated
with remarkably simple circuits (essentially consisting of just the diode and a res-
onator tuned to the diode’s resonant frequency).

As can be seen from Figure 9.17, an IMPATT’s avalanche and drift region is mod-
eled as a parallelLC resonator, reflecting the tight coupling between the carrier transit
delay and the operational frequency. Variations on Read’s original structure provide
differing trade-offs among efficiency, tuning range, and operating frequency, but it is
generally true that IMPATTs are narrowband devices with typical tuning ranges mea-
sured in the low tens of percent.24 The IMPATT must therefore be selected to match
the resonant cavity in which it is to be mounted. Coarse tuning can be performed by
adjusting the dimensions of the cavity, and fine tuning (including modulation) can be
effected by varying the bias voltage across the diode.

By the late 1960s, IMPATTs capable of operating up to 340 GHz had been demon-
strated. Devices with 5 W of CW power at 14 GHz and 30 W pulsed at 8.5 GHz
further underscored the promise of these devices. Peak efficiencies of 10–20% are

22 Avalanching by itself involves significant delay, to which the delay along the rest of the structure
must be added when computing the total delay.

23 B. C. De Loach, Jr., “The IMPATT Story,” IEEE Trans. Electron Devices, v. 23, no. 7, July 1976.
24 For an excellent treatment of these and other microwave diodes, see S. Sze, Physics of Semicon-

ductor Devices, Wiley, New York, 1981, pp. 567–613.
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9.13 APPENDIX: HOMEGROWN DIODES AND CRYSTAL R ADIOS 297

comparable to values achieved by Gunn diodes. Limits on performance are signif-
icantly better than for Gunns, with CW silicon sources constrained to below 3 kW-
GHz2 and pulsed ones three times better than that.25

Because of the need for avalanching and also because output power is related to
the output voltage swing, rather high voltages are needed to operate IMPATT de-
vices. Typical values range around 50–100 V, and IMPATTs may be connected in
series for higher output power.

The high output powers at high frequencies would seem to make IMPATT sources
attractive alternatives to traditional vacuum tube sources (such as magnetrons) for
many applications. Unfortunately, as we’ve already seen, avalanching is fundamen-
tally a noisy process, so oscillators made with IMPATTs have high levels of phase
noise. This drawback limits their use to the small set of applications that do not re-
quire low levels of noise, and it also explains why Gunn diodes dominate even with
their somewhat lower output power. Noise measures for IMPATTs are typically in
excess of 30 dB and can approach 50–60 dB under some conditions, particularly as
the voltage is increased. It is common practice to operate IMPATT oscillators at bias
voltages ∼15% below values that produce the maximum output power as a compro-
mise between noise measure and output power.

As a closing comment on avalanche mode devices, it should be mentioned that ex-
perimenters stumbled upon an “anomalous” mode of IMPATT operation, later termed
TRAPATT (for trapped plasma avalanche transit time).26 This mode is operative at
lower frequencies and enables remarkably high efficiencies. Pulsed output power of
400 W at 1 GHz and an impressive efficiency of 60% are mentioned by De Loach
(see footnote 23). These devices share with their IMPATT cousins the problem of
high noise, and commercial application of TRAPATTs is relatively rare.

9.12 SUM M ARY

We’ve seen numerous ways in which two-terminal devices can be designed to pro-
vide a rich variety of functions that are useful at RF and microwave frequencies.
High-frequency amplifiers, attenuators, modulators, switches, detectors, oscillators,
and short-pulse generators are readily constructed with remarkably simple circuits.

9.13 APPENDIX: HOMEGROWN ‘‘PENNY’’ DIODES
AND CRYSTAL R ADIOS

Although silicon is today the dominant semiconductor by a huge margin, we shouldn’t
forget that there are many other semiconducting materials, both organic and inor-
ganic. We’ve already noted that Braun first described quintessential semiconduct-
ing behavior – rectification – in 1874, long before the word “semiconductor” was

25 Pozar, Microwave Engineering.
26 De Loach, “The IMPATT Story.”
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F IGURE 9.18. Typical crystal detector

coined and well before the invention of radio. He found that many naturally oc-
curring minerals, such as galena (PbS), iron pyrites (FeS2 , more commonly known
as fools’ gold), tennantite /tetrahedrite (Cu3AsS3-4/Cu3SbS3-4), and chalcopyrites
(CuFeS2/Cu2S•Fe2S3) disobeyed Ohm’s “law” by conducting current unequally in
the two polarities. An understanding of solid-state quantum physics lay more than fifty
years in the future, so Braun was unable to provide a satisfactory theoretical explana-
tion for his puzzling experimental observations. Even today, quantitative descriptions
of many compound semiconductors are somewhat elusive, owing to the difficulty of
making sufficiently pure and perfect samples of these complicated substances.

Three decades later, as the age of wireless dawned, simpler group-IV semicon-
ductors finally made their debut, again by accident. Around the turn of the century
Acheson inadvertently created carborundum (SiC) during attempts to make synthetic
diamonds. Not nearly as precious yet almost as hard as diamond, it found almost im-
mediate and enduring application as an abrasive. It was left to Gen. Henry Harrison
Chase Dunwoody to discover and exploit its semiconducting nature to make radio
detectors in 1907.

At nearly the same time, Greenleaf Whittier Pickard discovered that silicon was an
excellent semiconductor and patented its use as a radio detector. This achievement
represents the first recognition and use of an elemental semiconductor. Pickard went
on to study the field exhaustively, eventually testing over 30,000 combinations of
minerals and contacting wires (whimsically known as catwhiskers), patenting many
of these in the process. See Figure 9.18. One, consisting of a contact between the
minerals zincite (ZnO) and bornite (Cu5FeS4), found fairly wide use. Pickard named
it the Perikon detector, for PERfect pIcKard cONtact. Pickard was clearly a better
scientist than a product marketeer.

All of these mineral-based materials were used to make what became known
as crystal27 radios. Remarkably, these typically operate without any power source

27 The term crystal rectifier was coined by Prof. G. W. Pierce of Harvard University around 1909,
who studied these materials exhaustively (but ultimately in vain) in search of an explanation for
why they behaved as they did. At least he showed that all contemporary theories were wrong,
leaving the path clear for the quantum theorists.
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F IGURE 9.19. Simple crystal radio (not optimized)

beyond what is contained in the incoming radio wave. In its simplest form, a crystal
radio consists of an antenna, a diode, and a headphone; see Figure 9.19. The op-
tional capacitor is rarely needed with most practical headphones, but it is shown for
completeness and for consistency with circuit diagrams from the era.

To understand how such a simple radio could possibly work, it is important to
know that the incoming wave is amplitude modulated (AM), meaning that speech or
music is encoded as variations in the amplitude of the radio-frequency carrier wave
that actually propagates through space. The modulated wave has zero average value,
and our ears are too slow to respond to anything but the average. The diode rectifies
the symmetrical AM signal, producing an asymmetrical signal whose time-varying
average is proportional to the modulation.

The reason that no batteries are needed is that the human auditory system is truly
amazing. The threshold of hearing at 1 kHz corresponds to an eardrum displace-
ment on the order of the diameter of a hydrogen atom! So, the magic here isn’t in
the radio, it’s in the biology. Of course, the absence of any electrical amplification
means that crystal radios require rather good antennas and reasonable proximity to
radio stations.

The standard crystal for these radios consists of a lump of galena (the best being
argentiferous, which – although silver-bearing – is known as steel galena because of
its appearance), to which one contact was historically made through immersion in
a low–melting-point alloy of lead, cadmium, and bismuth known as Wood’s metal.
This contact is not at all critical, the aim being merely to make a low-resistance con-
tact to the crystal. Wood’s metal is actually unnecessary, and simple clamping is
sufficient. The jaws of an alligator clip work just fine.

The other contact, though, is tricky, because it is the region near the interface be-
tween the catwhisker and the surface of the crystal that is the seat of rectification.
If the contact pressure is too great, a short circuit results; if too light, the resistance
is excessive. Consisting of a very fine wire (e.g., 2 mil in diameter), the catwhisker

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511812941.010
Downloaded from https://www.cambridge.org/core. The Librarian-Seeley Historical Library, on 30 Dec 2019 at 21:57:39, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511812941.010
https://www.cambridge.org/core


300 CHAPTER 9 MICROWAVE DIODES

must make only the lightest of contacts to the surface of the galena. One must also
hunt around the surface to find a suitably sensitive spot. Because of the tenuous con-
tact, it is easily jarred, requiring frequent adjustment. These days, it is much easier
to make a good crystal radio because excellent diodes that do not require adjustment
are available commercially. The 1N34A germanium diode (available from a decreas-
ing number of sources) is particularly suitable for crystal radio work because it is a
sealed unit, but it lacks the charm of a catwhisker to fiddle with.

An alternative to galena was frequently used by soldiers during the Second World
War: razor blades. A rusty one works okay, since it turns out that Fe2O3, the dominant
oxide in ordinary rust, is a semiconductor (Pickard discovered this in 1906). Better
still are the “Blue Pal” blades once made by the American Safety Razor Company,
because of their thin oxide coating of high quality.28 An improvised catwhisker, made
out of a sharpened pencil lead or safety pin, was generally used in these “foxhole”
radios.

It turns out that one can make a remarkably good diode out of an ordinary penny.
In fact, this diode is much better than those made of razor blades and almost as good
as store-bought diodes.

In the early 1920s, two fellows named Grondahl and Geiger (not that Geiger) dis-
covered accidentally that Cu2O (cuprous oxide) is a semiconductor (as it happens, it
is always p-type). What set this discovery apart from all the earlier semiconductor
work was that copper oxide devices have sufficiently uniform characteristics over the
surface that a large-area contact (instead of a point contact) is practical. Although a
large area is undesirable for high-frequency operation, it is precisely what is needed
for high-current applications. Power supply rectifiers thus became the first applica-
tion for this material, displacing the less reliable, far bulkier, and power-consumptive
vacuum tubes then in use. The ∼1010◦C (∼1850◦F) required processing tempera-
ture, however, precludes making this oxide safely at home. Furthermore, a quick
look at the phase diagram for the Cu/O system reveals that, at atmospheric pres-
sure, the temperature must be controlled within fairly narrow limits (the window is
only about 20–30◦C wide) to guarantee formation of Cu2O. If the temperature devi-
ates from this window, one forms cupric oxide, CuO, instead. The literature of the
day (much of it authored by Walter Brattain, who would later win the Nobel Prize in
physics for co-inventing the transistor, and his colleague Joseph Becker) states re-
peatedly that CuO is crud29 and describes various methods for getting rid of it (e.g.,
sandblasting, grinding, and electrolytic treatments).

Nevertheless, a little experimentation by the author has shown that CuO, crud
though it may be, is indeed another semiconducting oxide of copper (in fact, it ap-
pears always to be n-type), and one that can be made easily at home. At atmospheric

28 Other manufacturers also used an oxide coating, but the Blue Pal is the razor blade most often
mentioned in reminiscences. The blue color is evidently due to the tempering process during
manufacture.

29 This is a perfectly valid scientific term, an acronym for “cupric, random useless debris.”
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9.13 APPENDIX: HOMEGROWN DIODES AND CRYSTAL R ADIOS 301

pressure and temperatures below 1000◦C, one almost can’t help but form CuO. You
don’t need a clean room. It can even be a dirty room.

The recipe for making a penny diode is therefore as follows.

1. Obtain a penny dated no earlier than 1983. This is a requirement because pennies
made before then are a homogeneous alloy of copper and zinc (in 95/5 ratio), and
the zinc apparently greatly weakens the action. Newer pennies are actually al-
most entirely zinc on which has been electroplated a 10–15-µm coating of very
pure copper. (The change actually occurred in mid-1982, but it’s not always easy
to tell just by looking which of the two types a given penny is, so it’s safest to
choose one from 1983 and later.)

2. Clean the penny thoroughly but gently using a copper pot cleaner and an old
toothbrush until it shines with copper’s characteristic gleam. Do not use abra-
sives (remember, the copper coating is exceedingly thin). It’s not a bad idea to
handle the penny only by the edges to avoid contaminating the surface with skin
oils. Better still, wear gloves. Or don’t. Who knows? Maybe perspiration is a
key dopant.

3. After rinsing and drying (it’s okay to hasten the process by daubing with a paper
towel), place the penny on a cookie sheet (a folded sheet of aluminum foil is fine),
and into an oven that has been preheated to at least 500◦F (use the maximum your
oven will allow), and bake for 15–30 minutes.

4. Turn off the oven and let it cool. Verify that the pennies are now covered uni-
formly with a nice, dark brownish film. These pennies are still legal tender, by
the way. All you’ve done is accelerate their natural oxidation.30

You may wish to bake many pennies at the same time, rather than just one. They’re
cheap (extensive calculations with a supercomputer show that they cost approxi-
mately one cent each), it’s the best use of the energy needed to run the oven, and it
increases your chances of finding “lively” specimens.

For a catwhisker, a tiny phosphor-bronze wire is the canonical choice. However,
one can also use a bent safety pin, although one must be extremely careful to use the
lightest touch. A pencil lead is even better because it has a little more “give” to it,
making the structure less critically sensitive to contact pressure. A 0.5-mm HB grade
lead from Pentel is known to work quite well; others may work fine also. When using
such a lead, make contact with the surface at an angle, rather than head-on, so that
the edge of the lead touches the penny surface. A tungsten filament salvaged from a
light bulb may also be suitable.

30 This topic presents an opportunity to clear up two common misconceptions. Contrary to wide-
spread belief, it is not illegal to destroy a penny. Also, many people are taught incorrectly that
copper turns green when it oxidizes (as in the Statue of Liberty, or roofing copper). However, most
of the time the green patina is actually either hydrated copper sulfate (if inland) or hydrated cop-
per chloride (if near a body of salt water). Cuprous oxide is a pleasant red color, and cupric oxide
is dark brown or black.
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302 CHAPTER 9 MICROWAVE DIODES

F IGURE 9.20. Penny diode (side view)

To make the ohmic contact, just clamp the penny to a piece of scrap wood under
the head of an ordinary wood screw or two. The pressure of a tightened screw is
more than sufficient to make an excellent conducting contact to the penny. Connect
one wire to this screw. Since CuO made using the recipe given is apparently al-
ways n-type, the screw connection is the cathode, while the catwhisker is the anode
terminal.

As seen in Figure 9.20, a short segment of pencil lead can be secured to a safety
pin with a few turns of stiff wire. If two washers are used to allow some rotation of
the safety pin (as shown), then there are enough degrees of freedom to provide con-
siderable adjustment of the location and pressure of the pencil lead. As suggested
earlier, one may dispense with the pencil lead altogether and use the safety pin as the
catwhisker. However, one must then take great care to use only the lightest pressure.
Even with such care, you will probably find adjustment tricky and unstable.

Now, to use this diode in a crystal radio, a good idea is to tune in a strong station
initially using a 1N34A germanium diode, because it may be difficult or frustrating to
have to deal with too many variables simultaneously. Once a station has been tuned
in, disconnect the germanium diode and replace it with the penny diode, leaving all
other settings the same. Now begins the fun part, that of hunting around the sur-
face for a good spot, and fiddling with the pressure of the catwhisker to obtain the
maximum sensitivity. Then, just as everything is working great, the slightest motion
might make it stop working altogether (or it will quit on you for no apparent reason),
forcing you to do it all over again. Depending on your personality, this behavior is
either delightful and charming or maddening to distraction. If the latter holds, then
simply use the 1N34A all the time.

If, on the other hand, you are of the former bent, you may be interested in trying
other semiconductors once you’ve enjoyed the penny diode to the fullest. Visit your
local mineral shop, and use the partial list given here as Table 9.1 (as well as those
mentioned in Braun’s research) as a guide in your quest for diodes made from rocks.

Of those in the table, galena is by far the best. It is widely available, relatively
inexpensive (I recently bought a golfball-sized hunk for about $5, but your mileage
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Table 9.1. Some natural semiconductors

Name Formula Polarity

Galena PbS varies
Iron pyrite Fe2S
Iron oxide Fe2O3 p-type
Carborundum SiC varies
Chalcopyrite CuFeS
Cuprous oxide Cu2O p-type
Cupric oxide CuO n-type
Copper pyrite Cu2S
Zincite ZnO n-type
Psilomelane MnO2

may vary), and generally full of lively spots of great sensitivity. In general, though, a
real catwhisker made of very fine wire will have to be used if the best results are to be
obtained. The best catwhiskers tend to be of phosphor-bronze wire, not because of
their chemical composition but simply because they have the right degree of spring-
iness to maintain a given contact pressure. However, fine wire salvaged from a small
junked motor (say, from a microprocessor fan) will work well enough as long as it
stays clean.

If you’d like to hunt for other materials, it is helpful to note that researchers in the
early days were guided in their search by a vague notion that imperfect contacts were
important. So, look for materials that are metallic compounds. Chances are high
that you can get rectification out of them. Good choices are various metallic oxides
and sulfides (as you can tell by examining Table 9.1). Or try to make them yourself.
Take a nail, and make it rust. Grab a hunk of copper that’s turned green from expo-
sure to the elements. If your family objects to your experimenting with a valuable
patina-covered antique, drop some pennies in salt water and try to make your own
copper chloride.

Try baking copper-bearing coins from other countries. The best results I’ve ever
obtained, in fact, have been with the 10-won coin from South Korea. The quality and
number of active sites greatly exceeds that of a penny. A 5-won coin is of the same
composition, so it presumably would work as well (as of this writing, a 5-won coin is
worth just under a half a cent, making it the least expensive substrate material of all).
Other coins I’ve tried include a New Taiwan dollar, a German Pfennig, a Singapore
dollar, and a Danish 25-øre coin. None of these works nearly as well as a penny, but
functioning sites could still be found.

Finally, a special headphone or earphone must be used with this setup. Ordinary
headphones, such as those from personal stereos, are intended to be used with am-
plifiers and typically are 32 � in impedance. Other, much higher-impedance head-
phones are needed here. Luckily, these (and germanium diodes) are readily available
at low cost from the following source:
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Antique Electronic Supply
6221 S. Maple Ave.
Tempe, Arizona 85283
ph: 480-820-5411
fax: 800-706-6789 from the US and Canada, 480-820-4643 from elsewhere
website URL: http: //www.tubesandmore.com
e-mail: info@tubesandmore.com

They have a small piezoelectric earphone for $2.50 (catalog item P-A480) and a
headset for $15.25 (part number P-A466). Either will work fine with the crystal radio
circuit described in this document. Both the earphone and headset have enough in-
ternal capacitance that no additional parallel capacitance is required.
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C H A P T E R T E N

MIXERS

10.1 INTRODUC TION

Electrical engineering education focuses so much on the study of linear, time-invariant
(LTI) systems that it’s easy to conclude that there’s no other kind. Violations of the
LTI assumption are usually treated as undesirable, if acknowledged at all. Small-
signal analysis, for example, exists precisely to avoid the complexities that non-
linearities inevitably bring with them. However, the high performance of modern
communications equipment actually depends critically on the presence of at least
one element that fails to satisfy linear time invariance: the mixer. The superhetero-
dyne1 receiver uses a mixer to perform an important frequency translation of signals.
This invention of Armstrong has been the dominant architecture for 75 years because
frequency translation solves many problems simultaneously.2

In the architecture shown in Figure 10.1, the mixer heterodynes an incoming RF
signal to a lower frequency,3 known as the intermediate frequency (IF). Although
Armstrong originally sought this frequency lowering simply to make it easier to ob-
tain the requisite gain, other significant advantages accrue as well. As one example,
tuning is now accomplished by varying the frequency of a local oscillator rather than
by varying the center frequency of a multipole bandpass filter. Thus, instead of ad-
justing several LC networks in tandem to tune to a desired signal, one simply varies a
single LC combination to change the frequency of a local oscillator (LO). The inter-
mediate frequency stages can then use fixed bandpass filters.4 Selectivity is therefore

1 Why “super”heterodyne? The reason is that Reginald Fessenden had already invented something
called the “heterodyne,” so Armstrong had to name it something different.

2 Proving once again that success has many fathers (while failure is an orphan, to complete John F.
Kennedy’s saying), Lucien Lévy and Walter Schottky, among others, laid claim to the superhetero-
dyne. While it is certainly true that Armstrong was not the first to conceive of the heterodyne
principle, he was the first to recognize how neatly it solves so many thorny problems and was cer-
tainly the first to pursue its development vigorously. Schottky eventually conceded his historical
claim, but Lévy went to his grave embittered (and largely forgotten).

3 Actually, one may also translate to a higher frequency.
4 Recognition that one could use a fixed IF distinguished Armstrong’s version from Lévy’s.
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306 CHAPTER 10 MIXERS

F IGURE 10.1. Superheterodyne receiver block diagram

determined by these fixed-frequency IF filters, which are much easier to realize than
variable-frequency filters. Additionally, the overall gain of the system is distributed
over a number of different frequency bands (RF, IF, and baseband), so that the re-
quired receiver gain (typically 120–140 dB on a power basis) can be obtained without
much worry about potential oscillations arising from parasitic feedback loops. These
important attributes explain why the superheterodyne architecture still dominates
nearly a century after its invention.

10.2 MIXER FUNDA MENTALS

Since linear, time-invariant systems cannot produce outputs with spectral components
not present at the input, mixers must be nonlinear or have time-varying elements to
provide frequency translation. Historically, many devices (e.g., electrolytic cells,
magnetic ribbons, rusty scissors, vacuum tubes, transistors, and brain tissue) operat-
ing on a host of diverse principles have been used, demonstrating that virtually any
nonlinear element can be used as a mixer.5

At the core of all mixers presently in use is a multiplication of two signals in the
time domain. The fundamental usefulness of multiplication may be understood from
examination of the following trigonometric identity:

(A cosω1t)(B cosω2 t) = AB

2
[cos(ω1 − ω2)t + cos(ω1 + ω2)t]. (1)

Multiplication thus results in equal-power output signals at the sum and difference
frequencies of the input, signals whose amplitudes are proportional to the product of
the RF and LO amplitudes. Hence, if the LO amplitude is constant (as it usually is),
any amplitude modulation in the RF signal is transferred to the IF signal. By a simi-
lar mechanism, an undesired transfer of modulation from one signal to another can
also occur through nonlinear interaction in both mixers and amplifiers. In that con-
text it is called cross-modulation, and its suppression through improved linearity is
an important design consideration.

5 Of course, some nonlinearities work better than others; we will focus on the more practical types.
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10.2 MIXER FUNDA MENTALS 307

Having recognized the fundamental role of multiplication, we now enumerate and
define the most significant characteristics of mixers.

10.2.1 CONVERSION GAIN

One important mixer characteristic is conversion gain (or loss), which is defined as
the ratio of the desired IF output to the value of the RF input. For the multiplier de-
scribed by Eqn. 1, the conversion gain is therefore the IF output, AB/2, divided by A
(if that is the amplitude of the RF input). Hence, the conversion gain in this example
is B/2, or half the LO amplitude.

Conversion gain, if expressed as a power ratio, can be greater than unity in active
mixers, while passive mixers are generally capable only of voltage or current gain at
best.6 Conversion gain in excess of unity is often convenient because the mixer then
provides amplification along with the frequency translation. However, it does not
necessarily follow that sensitivity improves, since noise figure must also be consid-
ered. For this reason, passive mixers may offer superior performance in some cases
despite their conversion loss.

10.2.2 NOISE F IGURE: SSB VERSUS DSB

Noise figure is defined as one might expect: it’s the signal-to-noise ratio (SNR) at
the input (RF) port divided by the SNR at the output (IF) port. There’s an important
subtlety, however, that often trips up both the uninitiated and a substantial fraction
of practicing engineers. To appreciate this difficulty, we first need to make an impor-
tant observation: In a typical mixer, there are actually two input frequencies that will
generate a given intermediate frequency. One is the desired RF signal, and the other
is called the image signal. In the context of mixers, these two signals are frequently
referred to collectively as sidebands.

The reason that two such frequencies exist is that the IF is simply the magnitude
of the difference between the RF and LO frequencies. Hence, signals both above
and below ωLO by an amount equal to the IF will produce IF outputs of the same
frequency. The two input frequencies are therefore separated by 2ωIF . As a specific
numerical example, suppose that our system’s IF is 100 MHz and we wish to tune to
a signal at 900 MHz by selecting an LO frequency of 1 GHz. Aside from the desired
900-MHz RF input, a 1.1-GHz image signal will also produce a difference-frequency
component at the IF of 100 MHz.

The existence of an image frequency complicates noise figure computations be-
cause noise originating in both the desired and image frequencies therefore become

6 Sometimes cited as an exception is a class of systems known as parametric converters or ampli-
fiers, in which power from the LO is transferred to the IF through reactive nonlinear interaction
(typically with varactors), thus making power gain possible. This fact tells us that such systems are
more properly classified as active.
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308 CHAPTER 10 MIXERS

IF noise, while there is generally no desired signal at the image frequency. In the
usual case where the desired signal exists at only one frequency, the noise figure that
one measures is called the single-sideband noise figure (SSB NF), while the rarer
case where both the “main” RF and image signals contain useful information leads to
a double-sideband (DSB) noise figure. Clearly, the SSB noise figure will be greater
than for the DSB case since both have the same IF noise, while the former has signal
power in only a single sideband. Hence, the SSB NF will normally be 3 dB higher
than the DSB NF.7 Unfortunately, DSB NF is reported much more often because it is
numerically smaller and thus (falsely) conveys the impression of better performance,
even though there are few communications systems for which DSB NF is an appro-
priate figure of merit.8 Frequently, a noise figure is stated without any indication as
to whether it is a DSB or SSB value. In such cases, one may usually assume that a
DSB figure is being quoted.

Noise figures for mixers tend to be considerably higher than those for amplifiers
because noise from frequencies other than at the desired RF can mix down to the IF.
Representative values for SSB noise figures range from 10 to 15 dB or more. It is
mainly because of this larger mixer noise that one uses LNAs in a receiver. If the
LNA has sufficient gain then the signal will be amplified to levels well above the
noise of the mixer and subsequent stages, so the overall receiver NF will be domi-
nated by the LNA instead of the mixer. If mixers were not as noisy as they are, then
the need for LNAs would diminish considerably.

10.2.3 L INEARITY AND ISOL ATION

Dynamic range requirements in modern, high-performance telecommunications sys-
tems are quite severe, frequently exceeding 80 dB and approaching 100 dB in many
instances. As discussed in Chapter 13, the floor is established by the noise figure,
which conveys something about how small a signal may be processed, while the ceil-
ing is set by the onset of severe nonlinearities that accompany large input signals.

As with amplifiers, the compression point is one measure of this dynamic range
ceiling and is defined the same way. Ideally, we would like the IF output to be propor-
tional to the RF input signal amplitude; this is the sense in which we interpret the term
“linearity” in the context of mixers. As with amplifiers (and virtually any other phys-
ical system), however, real mixers have some limit beyond which the output has a
sublinear dependence on the input. The compression point is the value of RF signal9

7 The 3-dB difference assumes that the conversion gain to two equal sidebands is the same. Although
this assumption is usually well satisfied, it need not be.

8 Two important exceptions in which both sidebands contain useful information are radioastronomy
(as in the measurements of the cosmic background radiation – the echoes of the Big Bang), and
direct-conversion receivers. We revisit this DSB-vs.-SSB explanation in Chapter 14.

9 Some manufacturers (and authors) report an output compression point. If the conversion gain at
that point is known, the figure can be reflected back to the input point. Sadly, many insist on burying
that bit of information, making it extremely difficult to perform fair comparisons of mixer perfor-
mance. We will always state explicitly whether the figure is an input or output parameter.
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10.2 MIXER FUNDA MENTALS 309

F IGURE 10.2. Definition of mixer linearity parameters

at which a calibrated departure from the ideal linear curve occurs. Usually, a 1-dB
(or, more rarely, a 3-dB) compression value is specified. One should specify either
the input or output signal strength at which this compression occurs, together with
the conversion gain, to allow fair comparisons among different mixers.

The two-tone third-order intercept is also used to characterize mixer linearity. A
two-tone intermodulation test is a relevant way to evaluate mixer performance be-
cause it mimics the real-world scenario in which both a desired signal and a potential
interferer (perhaps at a frequency just one channel away) feed a mixer input. Ideally,
each of two superposed RF inputs would be translated in frequency without inter-
acting with each other. Of course, practical mixers will always exhibit some inter-
modulation effects and the output of the mixer will thus contain frequency-translated
versions of third-order IM components whose frequencies are 2ωRF1 ± ωRF 2 and
2ωRF 2 ± ωRF1. The difference-frequency terms may heterodyne into components
that lie within the IF passband and are therefore generally the troublesome ones,
while the sum-frequency signals can usually be filtered out.

As a measure of the degree of departure from linear mixing behavior, one can
plot the desired output and the third-order IM output as a function of input RF level.
The third-order intercept is the extrapolated intersection of these two curves. In gen-
eral, the higher the intercept, the more linear the mixer. Again, one ought to specify
whether the intercept is input- or output-referred, as well as the conversion gain, to
permit fair comparisons among mixers. Additionally, it is customary to abbreviate
the intercept as IP3, or perhaps IIP3 or OIP3 (for input and output third-order inter-
cept, respectively). These definitions are summarized in Figure 10.2.

Cubic nonlinearity can also cause trouble with a single RF input. As a specific
example, consider building a low-cost AM radio. The standard IF for AM radios
happens unfortunately to be 455 kHz (mainly for historical reasons). Tuning in a
station at 910 kHz (a legitimate AM radio frequency) requires that the LO be set to
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1365 kHz.10 The cubic nonlinearity could generate a component at 2ωRF − ωLO ,
which in this case happens to coincide with our IF of 455 kHz.

One might be tempted to assert that such a component is not a problem since it
adds to the desired output. One therefore might even be tempted to consider this an
asset. However, the third-order IM products have amplitudes that are no longer pro-
portional to the input signal amplitude. Hence, they represent amplitude distortion
that can corrupt the “correct” output (we’re talking about an amplitude-modulated
signal, after all).

Even if the exact numerological coincidence of the foregoing example does not
occur, various third-order IM terms can possess frequencies within the passband of
the IF amplifier, ultimately degrading signal-to-noise or signal-to-distortion.

Another parameter of great practical importance is isolation. It is generally de-
sirable to minimize interaction among the RF, IF, and LO ports. For instance, since
the LO signal power is generally quite large compared with that of the RF signal,
any LO feedthrough to the IF output might cause problems at subsequent stages in
the signal processing chain. This problem is exacerbated if the IF and LO frequen-
cies are similar, so that filtering is ineffective. Even reverse isolation is important in
many instances, since poor reverse isolation might permit the strong LO signal (or
its harmonics) to work its way back to the antenna, where it can radiate and cause
interference to other receivers.

10.2.4 SPURS

Mixers, by their nature, may heterodyne a variety of frequency components that you
never intended to mix. For example, harmonics of some signal (desired or not) could
lie (or be generated) within the passband of the mixer system and subsequently beat
against the local oscillator (and its harmonics). Some of the resulting components
may end up within the IF passband. The signals that do ultimately emerge from
the output of the IF system are known as spurious responses, or just spurs. Evalua-
tion of mixer spurs is straightforward in principle but highly tedious in practice. The
availability of software tools to take care of this task has taken the tedium out of the
calculations, but it’s instructive to describe the process, just the same.11

Let m and n be the harmonic numbers of the RF input and LO frequencies, re-
spectively. Then the spur products present at the output of the mixer (prior to any
filtering) are given by

fspur = mfRF + nfLO. (2)

10 A local oscillator frequency of 455 kHz also works, but it is a less practical choice because such
“low-side injection” requires the local oscillator to tune over a larger range than if the LO frequen-
cies were above the desired RF.

11 An excellent (and free) program that performs this calculation (and many others of great value to
the RF/microwave designer) is AppCAD, originally from HP, now from Agilent. Both older DOS
and newer Windows versions are available. The program RFSim99 also has a spur search tool.
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10.2 MIXER FUNDA MENTALS 311

Table 10.1. Spur table for
FM radio example

m fRF , low fRF , high n

−3 73.8 93.9 3
−2 72.0 92.1 2

1 88.0 108.2 −1
2 82.7 102.8 −2
3 80.9 101.0 −3

The apparent simplicity of that equation is misleading: The calculation must be
repeated for all combinations and signs of m and n, ranging up to the maximum har-
monic order you care to consider. To make a laborious procedure even more so, one
must actually consider RF signals of frequencies below the nominal input passband –
at least down to the lower passband edge frequency divided by the maximum value
of m. One must also consider input frequencies above the upper passband edge. Be-
cause no input filter is perfect, harmonics of the LO can still heterodyne with RF
signals above the input passband to produce in-band spurs at the output of the mixer.

For each (m, n) pair, examine the spur frequency to determine whether it lies
within the IF passband (or sufficiently close to it) and so merits further consideration.
For each spur that does, work backward to the implied RF input frequency and eval-
uate the likelihood that there will be a signal at that frequency of sufficient strength
to be a source of trouble. Then make appropriate modifications to the input filtering,
if necessary, to avoid those troubles.

This exercise is sometimes performed with the worst-case assumption that there is
no filtering of any kind at the RF input port. In that case, the number of calculations
grows very large quite quickly. If one is patient enough, however, the information
generated can be used to guide the design of the input filter.

As a specific example, suppose we wish to design a mixer for an FM receiver
whose nominal input passband is to accommodate signals spanning 88.1 MHz to
108.1 MHz. With a conventional 10.7-MHz IF, the LO needs to tune from 77.4 MHz
to 97.4 MHz (assuming low-side injection). To keep the numbers easy, assume a bit
unrealistically that the IF system possesses a nominal bandwidth of approximately
200 kHz. Further assume that we need not consider harmonic orders higher than 3.12

With these assumptions, we can construct Table 10.1.
Examining just the first entry in the table, we see that the third harmonic of RF sig-

nals in the 73.8–93.9-MHz frequency band may heterodyne with the third harmonic

12 Remember, the spectrum of a signal rolls off approximately as 1/n, where n is the number of
derivatives needed to produce impulses from the time-domain representation of the signal. Most
signals of practical interest have spectra that roll off fast enough that consideration of orders higher
than about 5 or 7 is probably overkill for typical situations. Your mileage may vary, however.
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312 CHAPTER 10 MIXERS

F IGURE 10.3. General two-port nonlinearity

of the LO to produce signals within the10.6–10.8 MHz IF passband. Notice that input
filtering would only be partially effective at best, because much of the spurious input
band overlaps the desired FM radio band. If there were indeed significant interferers
within this spurious band, our only choice would be to improve the spectral purity of
the LO in order to minimize its third harmonic content. Such an improvement also
benefits the spur problems implied by the last row of the spur table. Similarly, re-
duction in second harmonic content is the only practical way to avoid the problems
implied in the second and fourth rows. The third row is actually not undesired: it de-
scribes the intended mode of operation for the receiver and is included simply for
completeness.

By carrying out this laborious procedure for any contemplated system, it is pos-
sible to assess the sensitivity to various imperfections and thus to evaluate the need
for remediation.

10.3 NONLINEARITY, T IME VARIATION, AND MIXING

We now consider how to implement the multiplication that is the heart of mixing
action. Some mixers directly implement a multiplication, while others provide it in-
cidentally through a nonlinearity. We follow a historical path and first examine a
general two-port nonlinearity13 (see Figure 10.3), since mixers of that type predate
those designed specifically to behave as multipliers.

If the nonlinearity is “well-behaved” (in the mathematical sense), we can describe
the input–output relationship with a series expansion:

vOUT =
N∑
n=0

cn(vIN)
n. (3)

To use such an N th-order nonlinearity as a mixer, the signal vIN would be the sum
of the RF input and the local oscillator signals. In general, the output will consist
of three types of products: DC terms, harmonics of the inputs, and intermodulation
products of those harmonics.14 Not all of these spectral components are desirable, so
part of the challenge in mixer design is to devise topologies that inherently generate
few undesired terms.

13 We will shortly see the advantages of three-port mixers.
14 Keep in mind that fundamentals are harmonics.
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10.3 NONLINEARITY, T IME VARIAT ION, AND MIXING 313

Even-order nonlinear factors in Eqn. 3 contribute DC terms; these are readily fil-
tered out by AC coupling, if desired. Harmonic terms, at mωLO and mωRF , extend
from the fundamental (m = 1) all the way up to the N th harmonic. As with the DC
terms, they are also often relatively easy to filter out because their frequencies are
usually well away from the desired IF.

The intermodulation (IM) products are the various sum- and difference-frequency
terms. These have frequencies expressible as pωRF ± qωLO , where integers p and q

are greater than zero and sum to values up to N. Only the second-order intermodula-
tion term (p = q = 1) is normally desired.15 Unfortunately, other IM products might
have frequencies close to the desired IF, making them difficult to remove, as we shall
see. Since it is generally true that high-order nonlinearities (i.e., large values of N
in the power series expansion) tend to generate more of these undesirable terms,16

mixers should approximate square-law behavior (the lowest-order nonlinearity) if
they only have one input port (as shown in Figure 10.3). We now consider specifi-
cally the properties of a square-law mixer to identify its advantages over higher-order
nonlinear mixers.

TWO-PORT EX A MPLE: SQUARE-L AW MIXER

To see explicitly where the desired multiplication arises in a square-law mixer, note
that the only nonzero coefficients in the series expansion are the c1 and c2 terms.17 If
we assume that the input signal vIN is the sum of two sinusoids,

vIN = vRF cos(ωRF t) + vLO cos(ωLOt), (4)

then the output of this mixer may be expressed as the sum of three distinct compo-
nents:

vOUT = vfund + vsquare + vcross, (5)

where

vfund = c1[vRF cos(ωRF t) + vLO cos(ωLOt)], (6)

vsquare = c2{[vRF cos(ωRF t)]
2 + [vLO cos(ωLOt)]

2}, (7)

vcross = 2c2vRF vLO[cos(ωRF t)][cos(ωLOt)]. (8)

The fundamental terms are simply scaled versions of the original inputs and there-
fore represent no useful mixer output; they must be removed by filtering. The vsquare

15 The order of a given IM term is the sum of p and q, so a second-order IM product arises from the
quadratic term in the series expansion.

16 As with most sweeping generalities, there are exceptions to this one. In building frequency multi-
pliers, for example, high-order harmonic nonlinearities are extremely useful. However, in mixer
design it is usually true that higher-order nonlinearities are undesirable.

17 There may also be a nonzero DC term (i.e., c0 may be nonzero), but this component is easily re-
moved by filtering, so we will ignore it at the outset to reduce equation clutter.
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314 CHAPTER 10 MIXERS

components similarly represent no useful mixer output, as is evident from the fol-
lowing special case of Eqn. 1:

[cosωt]2 = 1
2 [1 + cos 2ωt]. (9)

Thus, we see that the vsquare components contribute a DC offset (as well as second
harmonics) of the input signals. These also must generally be removed by filtering.

The useful output comes from the vcross components because of the multiplica-
tion evident in Eqn. 8. Using Eqn. 1, we may rewrite vcross in a form that shows the
mixing action more clearly:

vcross = c2vRF vLO[cos(ωRF − ωLO)t + cos(ωRF + ωLO)t]. (10)

For a fixed LO amplitude, the IF output amplitude is linearly proportional to the RF
input amplitude. That is, this nonlinearity implements a linear mixing, since the out-
put is proportional to the input.

The conversion gain for this nonlinearity is readily found from Eqn. 10:

Gc = c2vRF vLO

vRF
= c2vLO. (11)

Just as any other gain parameter, conversion gain may be a dimensionless quantity
(or a transconductance, transresistance, etc.). It is customary in discrete designs to
express conversion gain as a power ratio (or its decibel equivalent), but the unequal
input and output impedance levels in typical IC mixers also makes a voltage or cur-
rent conversion gain appropriate. To avoid confusion, of course, it is essential to state
explicitly the type of gain.18

As asserted earlier, the square-law mixer’s advantages are that the undesired spec-
tral components are usually at a frequency quite different from the intermediate fre-
quency and are thus readily removed. For this reason, two-port mixers are frequently
designed to conform to square-law behavior to the maximum practical extent.

Square-law mixers may be implemented with virtually any common nonlinearity,
because the quadratic term typically dominates. In the simplified schematic of Fig-
ure 10.4, the bias, RF, and LO terms are shown as driving a bipolar base in series.
The bias voltage VBIAS is chosen as necessary to place the active device in the desired
operating region. For example, a JFET or MESFET would require a negative bias,
and an ordinary MOSFET and bipolar transistor would need a positive bias. Refine-
ments would be needed to provide a stable bias, of course.

The discrete tank in the output circuit may be implemented with a λ/4 transmis-
sion line resonator at frequencies where the size may be tolerated. The summation of
RF and LO signals can be accomplished in practical circuits with resistive or reactive

18 All too frequently, published “power” gain figures for IC implementations are essentially volt-
age gain measurements and are therefore grossly in error if the input and output impedance levels
differ significantly, as they often do. It seems necessary to emphasize that watts and volts are not
the same.
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10.3 NONLINEARITY, T IME VARIAT ION, AND MIXING 315

F IGURE 10.4. Square-law mixer (simplified)

F IGURE 10.5. Square-law mixer
(alternative configuration)

combiners. Because the RF and LO signals are in series, there is poor isolation be-
tween them. An alternative (but functionally equivalent) arrangement that reduces
the effect of the relatively large LO signal on the RF port is as shown in Figure 10.5.

The RF signal drives the base directly (through a DC-blocking capacitor), while
the LO drives the source terminal. This way, the base-to-emitter voltage is the sum
of ground-referenced LO and RF signals. The bias current is set directly with a cur-
rent source, while the DC base voltage is determined by the value of VBIAS. Resistor
RBIAS is chosen large enough to avoid excessive loading and also to minimize its
noise contribution.

Perfect square-law device behavior is not at all necessary to obtain mixing action.
The bipolar circuit in the figure functions as a result of the quadratic term in the se-
ries expansion for the exponential iC–vBE relationship that dominates over a range of
input amplitudes. Precisely because many nonlinearities are well approximated by a
square-law shape over some suitably restricted interval, one can estimate the conver-
sion gain for other nonlinear devices used as mixers once the value of the quadratic
coefficient (c2) is found. To underscore this point, let’s estimate the conversion gain
for a bipolar transistor. To simplify the calculation, we continue to ignore dynamic
effects. Then we can use the exponential vBE law:
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316 CHAPTER 10 MIXERS

iC ≈ ISe
vBE/VT , (12)

where VT is the thermal voltage kT/q, not the threshold voltage.
Expansion of this familiar relationship up to the second-order term yields19

iC ≈ IC

[
1 + vIN

VT

+ 1

2

(
vIN

VT

)2]
. (13)

By inspection (well, almost),

c2 = gm

2VT

, (14)

so that an estimate of the conversion gain is

Gc = c2vLO = gm · vLO
2VT

. (15)

The conversion gain here is a transconductance that is proportional both to (a) the
standard incremental transconductance and (b) the ratio of the local oscillator drive
amplitude to the thermal voltage. The conversion gain for a bipolar transistor is there-
fore dependent on bias current, LO amplitude, and temperature.

Let us now consider an ideal square-law long-channel FET, for which

iD = µCoxW

2L
(VGS −VT )

2. (16)

Short-channel (high-field) devices are more linear as a result of velocity saturation,
and thus they are generally inferior to long devices as mixers.20

If the gate–source voltage VGS is the sum of RF, LO, and bias terms then we may
write

iD = µCoxW

2L
{[VBIAS + vRF cos(ωRF t) + vLO cos(ωLOt)] −VT }2, (17)

from which one may readily find that the conversion gain (here a transconductance)
is simply

GC = µCoxW

2L
vLO = ID

V 2
OD

vLO = gm
2vLO
VOD

, (18)

where VOD is the DC bias value of the gate overdrive (VGS −VT ). Note that this ideal
square-law FET has a conversion transconductance that is similar in form to that of a
bipolar transistor, with the overdrive voltage playing the role of the thermal voltage.

19 We have implicitly assumed that the base–emitter drive contains a DC component as well as the
RF and LO components, so that IC is nonzero.

20 The reader is reminded once again that “short-channel” actually means “high-field.” Hence, even
“short” devices may still behave quadratically for suitably small drain–source voltages.
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10.4 MULTIPL IER-BASED MIXERS 317

F IGURE 10.6. FET dual-gate mixer (simplified)

Note also that this ideal device has a conversion transconductance that is indepen-
dent of bias.21 It is still dependent on temperature (through mobility variation) and
LO drive amplitude, however.

As in the corresponding derivation for a MOSFET, the foregoing computation ig-
nores parasitic series base and emitter resistances. These resistances can linearize the
transistor and hence weaken mixer action. Proper selection of device type is there-
fore necessary to maximize performance.

Another method for improving RF–LO isolation is the dual-gate FET mixer. As
its name implies, this mixer uses a FET that possesses two gates. For all practical
purposes, this structure may be regarded as equivalent to two FETs in a cascode-like
configuration, as seen in Figure 10.6.

In this circuit, M1 functions as a transconductor with deliberately poor output re-
sistance; it is generally operated in the triode region. With that choice of bias, the
LO drive applied to M2 causes the drain current, and resistance, of M1 to vary at the
LO rate. The drain current of M1 (and hence of M2) thus contains components at the
sum and difference frequencies, as in any other mixer.

As with the other circuits, the LC tank can be replaced by its transmission line
equivalent at frequencies where it makes sense to do so.

10.4 MULTIPL IER-BASED MIXERS

We’ve seen that nonlinearities produce mixing incidentally through the multiplica-
tions they provide. Precisely because the multiplication is only incidental, these non-
linearities usually generate a host of undesired spectral components. Furthermore,

21 This independence of bias holds only in the square-law regime. Enough bias must therefore be
supplied to guarantee this condition. Hence, VBIAS is not permitted to equal zero. In fact, it must
be chosen large enough to guarantee that the gate–source voltage always exceeds the threshold
voltage, since a MOSFET behaves exponentially in weak inversion.
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F IGURE 10.7. Single-balanced mixer

since two-port mixers have only one input port, the RF and LO signals are gener-
ally not well isolated from each other. This lack of isolation can cause the problems
mentioned earlier, such as overloading of IF amplifiers, as well as radiation of the
LO signal (or its harmonics) back out through the antenna.

Mixers based directly on multiplication generally exhibit superior performance be-
cause they ideally generate only the desired intermodulation product. Furthermore,
because the inputs to a multiplier enter at separate ports, there can be a high degree
of isolation among all three signals (RF, LO, IF). Finally, FET technologies provide
excellent switches, with which one can implement outstanding multipliers.

10.4.1 SINGLE-BAL ANCED MIXER

One extremely common family of multipliers first converts the incoming RF voltage
into a current, then performs a multiplication in the current domain. The simplest
multiplier cell of this type is shown in Figure 10.7.22 Again, the MOSFET symbol is
simply a proxy for any active device. This topology, with suitable accommodation
of differing bias requirements, functions with MESFETs, MOSFETs, JFETs, and
bipolars.

In this mixer, vLO is chosen large enough so that the transistors alternately switch
(commutate) all of the tail current from one side to the other at the LO frequency.23

The tail current is therefore effectively multiplied by a square wave whose frequency
is that of the local oscillator:

iout(t) ≈ (sgn[cosωLOt])[IBIAS + IRF cosωRF t]. (19)

Because a square wave consists of odd harmonics of the fundamental, multiplica-
tion of the tail current by the square wave results in an output spectrum that appears

22 Mixers of this general kind are often lumped together and called Gilbert mixers, but only some
actually are. True Gilbert multipliers function entirely in the current domain, deferring the prob-
lem of V–I conversion by assuming that all variables are already available in the form of currents.
See Barrie Gilbert’s landmark paper, “A Precise Four-Quadrant Multiplier with Subnanosecond
Response,” IEEE J. Solid-State Circuits, December 1968, pp. 365–73.

23 One may also interchange the roles of LO and RF input, but the resulting mixer has lower conver-
sion gain and worse noise performance (among other deficiencies).
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10.4 MULTIPL IER-BASED MIXERS 319

F IGURE 10.8. Representative output spectrum of single-balanced mixer

F IGURE 10.9. RF transconductors for mixers

as shown in Figure 10.8 (ωRF is here chosen atypically low compared with ωLO to
reduce clutter in the graph).

The output thus consists of sum and difference components, each the result of an
odd harmonic of the LO mixing with the RF signal. In addition, odd harmonics of the
LO appear directly in the output as a consequence of the DC bias current multiplying
with the LO signal. Because of the presence of the LO in the output spectrum, this
type of mixer is known as a single-balanced mixer. Double-balanced mixers, which
we’ll study shortly, exploit symmetry to remove the undesired output LO component
through cancellation.

Although the current source of Figure 10.7 includes a component that is perfectly
proportional to the RF input signal, V–I converters of all real mixers are imperfect.
Hence, an important design challenge is to maximize the linearity of the RF transcon-
ductance. Linearity is most commonly enhanced through some type of source degen-
eration, in both common-gate and common-source (or common-base and common-
emitter) transconductors; see Figure 10.9. The common-gate circuit uses the source
resistance RS to linearize the transfer characteristic. This linearization is most ef-
fective if the admittance looking into the source terminal of the transistor is much
larger than the conductance of RS. In that case, the transconductance of the stage
approaches 1/RS.
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F IGURE 10.10. Single-balanced mixer with
linearized transconductance

Inductive degeneration is usually preferred over resistive degeneration for several
reasons.24 An inductance has no thermal noise to degrade noise figure and no DC
voltage drop to diminish supply headroom. This last consideration is particularly rel-
evant for low-voltage / low-power applications. Finally, the increasing reactance of
an inductor with increasing frequency helps to attenuate high-frequency harmonic
and intermodulation components.

A more complete single-balanced mixer that incorporates a linearized transcon-
ductance is shown in Figure 10.10. The value of VBIAS establishes the bias current of
the cell, while RB is chosen large enough not to load down the gate circuit (and also
to reduce its noise contribution). The RF signal is applied to the gate through a DC
blocking capacitor CB. In practice, a filter would be used to remove the LO and other
undesired spectral components from the output.

The conversion transconductance of this mixer can be estimated by assuming that
the LO-driven transistors behave as perfect switches. Then the differential output
current may be regarded as the result of multiplying the drain current of M1 by a
unit-amplitude square wave. Since the amplitude of the fundamental component of
a square wave is 4/π times the amplitude of the square wave, we may write:

GC = 2
π
gm, (20)

where gm is the transconductance of the V–I converter and GC is itself a transcon-
ductance. The coefficient is 2/π (−3.92 dB) rather than 4/π because the IF signal
is divided evenly between sum and difference components.

24 Capacitive degeneration is sometimes suggested but is markedly inferior to inductive degenera-
tion because it increases noise and distortion at high frequencies. It also provides no DC path for
biasing, so additional circuitry must be added in any case. An inductive element solves all of these
problems.
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F IGURE 10.11. Active double-balanced mixer

F IGURE 10.12. Linearized differential RF
transconductor for double-balanced mixer

10.4.2 AC TIVE DOUBLE-BAL ANCED MIXER

To prevent the LO products from getting to the output in the first place, two single-
balanced circuits may be combined to produce a double-balanced mixer; see Fig-
ure 10.11. We assume once again that the LO drive is large enough to make the dif-
ferential pairs act like current-steering switches. Note that the two single-balanced
mixers are connected in antiparallel as far as the LO is concerned but in parallel for
the RF signal. Therefore, the LO terms sum to zero in the output, and the converted
RF signal is doubled in the output. This mixer thus provides a high degree of LO–IF
isolation, easing filtering requirements at the output. With care, this circuit routinely
provides 40 dB of LO–IF isolation, with values in excess of 60 dB possible.

As in the single-balanced active mixer, the dynamic range is limited in part by the
linearity of the V–I converter at the RF port of the mixer. So, most of the design
effort is spent attempting to find better ways of providing this V–I conversion. The
basic linearizing techniques used in the single-balanced mixer may be adapted to the
double-balanced case, as shown in Figure 10.12.

In low-voltage applications, the DC current source can be replaced by a paral-
lel LC tank to create a zero-headroom AC current source. The resonant frequency
of the tank should be chosen to provide rejection of whatever common-mode com-
ponent is most objectionable. If several such components exist, one may use series

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511812941.011
Downloaded from https://www.cambridge.org/core. The Librarian-Seeley Historical Library, on 18 Dec 2019 at 06:16:56, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511812941.011
https://www.cambridge.org/core


322 CHAPTER 10 MIXERS

F IGURE 10.13. Minimum supply–headroom
double-balanced mixer

combinations of parallel LC tanks. With such a choice, a complete double-balanced
mixer appears as shown in Figure 10.13. The expression for the conversion transcon-
ductance is the same as for the single-balanced case.

These mixers may also be modified to act as low-noise mixers by the simple ex-
pedient of adding suitable gate inductances to the inductively degenerated pair that
receives the RF input. By following a prescription essentially identical to that for
stand-alone LNAs, it is possible to construct a low-headroom, low-noise mixer that
may obviate the need for a separate LNA in some applications. Adjustment of the
tuning of the input loop allows a variable trade-off among conversion gain, noise fig-
ure, and distortion.

Noise Figure of Gilbert-Type Mixers

Computing the noise figure of mixers is difficult because of the cyclostationary na-
ture of the noise sources. One simulation-based technique involves characterization
of the time-varying impulse response, arguing that a mixer is at least linear, if not
time-invariant.25 Although the method is accurate and quite suitable for analysis, its
complexity does inhibit acquisition of design insight. Nonetheless, we can identify
several important noise sources and make general recommendations about how to
minimize noise figure.

One noise source is certainly the transconductor itself, so that its noise figure estab-
lishes a lower bound on the mixer noise figure. The same approach used in computing
LNA noise figure may be used to compute the transconductor noise figure.

The differential pair also degrades noise performance in a number of ways. One
noise figure contribution arises from imperfect switching, which causes attenuation

25 C. D. Hull and R. G. Meyer, “A Systematic Approach to the Analysis of Noise in Mixers,” IEEE
Trans. Circuits and Systems I, v. 40, no. 12, December 1993, pp. 909–19.
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10.4 MULTIPL IER-BASED MIXERS 323

of the signal current. Hence, one challenge in such mixers is to design the switches
(and associated LO drive) to provide as little attenuation as possible.

Another noise figure contribution of the switching transistors arises from the in-
terval of time in which both transistors conduct current and hence generate noise.
Additionally, any noise in the LO is also magnified during this active gain interval.
Minimizing this simultaneous conduction interval reduces this degradation, so suf-
ficient LO drive must be supplied to make the differential pair approximate ideal,
infinitely fast switches to the maximum practical extent. Finally, the 3-dB attenua-
tion inherent in ignoring either the sum or difference signal automatically degrades
noise figure (by 3 dB), because the noise cannot be discarded so readily. As a result,
practical current-mode mixers typically exhibit SSB noise figures of at least 10 dB,
with values more frequently in the neighborhood of 15 dB.

Linearity of Gilbert-Type Mixers

The IP3 of this type of mixer is bounded by that of the transconductor, so the three-
point method used to estimate the IP3 of ordinary amplifiers may also be used here
to estimate the IP3 of the transconductor. If the LO-driven transistors act as good
switches, then the overall mixer IP3 generally differs little from that of the transcon-
ductor. To guarantee good switching it is important to note that, while sufficient LO
drive is necessary, excessive LO drive should be avoided. To understand why exces-
sive LO drive is a liability rather than an asset, consider the effect of ever-present
capacitive parasitic loading on the common source connection of a differential pair.
As each gate is driven far beyond what’s necessary for good switching, the common
source voltage is similarly overdriven. A spike in current results. In extreme cases,
this spike can cause transistors to leave the saturation region. Even if that does not
occur, the output spectrum can become dominated by the components arising from
the spikes, rather than the downconverted RF. Hence, one should use only enough
LO drive to guarantee reliable switching, and no more.

A Short Note on Simulation of Mixer IP3 with Time-Domain Simulators

Just as we noted with simulations of intermodulation distortion in amplifiers, com-
mon circuit simulators (such as Spice) provide accurate mixer simulations only reluc-
tantly, if at all. The problem stems from two fundamental sources: the wide dynamic
range of signals in a mixer forces the use of far tighter numerical tolerances than
are adequate for “normal” circuit simulations; and the large span of frequencies of
important spectral components forces long simulation times. Hence, obtaining an
accurate value for IP3 from a transient simulation, for example, is usually quite chal-
lenging. The reader is therefore cautioned to treat mixer simulation results with a
healthy degree of skepticism.

Because even the “accurate” options available in some simulation tools are or-
ders of magnitude too loose to be useful for IP3 simulations, one specific action that
mitigates some of these problems is to tighten tolerances progressively until the sim-
ulation results stop changing significantly. In particular, the behavior of the IM3
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324 CHAPTER 10 MIXERS

component in an IP3 simulation is an extremely sensitive indicator of whether the
tolerances are sufficiently tight. If the IM3 terms do not exhibit a +3 slope (on a dB
scale), chances are good that the tolerances are too loose. One must also make sure
that the amplitudes of the two input tones are chosen small enough (i.e., well below
either the compression or intercept points) to guarantee quasilinear operation of the
mixer; otherwise, higher-order terms in the nonlinearity will contribute significantly
to the output and confound the results. In the early phases of design, the three-point
method may be applied to the transconductor to estimate its IP3 without having to
suffer the agony of a transient simulation.

Another subtle consideration is to guarantee equal time spacing in the transient
simulation, since FFT algorithms generally assume uniform sampling. Some sim-
ulators use adaptive time stepping to speed up convergence, so significant spectral
artifacts can arise when computing the FFT. One may set the time step to a tiny frac-
tion of the fastest time interval of interest to assure convergence without resort to
adaptive time stepping. As an example, one might have to use a time step that is three
orders of magnitude smaller than the period of the RF signal. Hence, for a 1-GHz
RF input, one might have to use a 1-ps time step. It is this combination of iteration,
tight time step, and numerical tolerance problems that causes IP3 simulations to exe-
cute so slowly. As with the case of amplifiers, alternatives to time-domain simulators
have evolved in response to these problems.26

Additional Linearization Techniques

Because the linearity of these current-mode mixers is controlled primarily by the
quality of the transconductance, it is worthwhile to consider additional ways to ex-
tend linearity. Philosophically, there are four methods for doing so: predistortion,
feedback, feedforward, and piecewise approximation. These techniques can be used
alone or in combination. What follows is a representative (but hardly exhaustive) set
of examples of these methods.

Predistortion cascades two nonlinearities that are inverses of each other, and it
shares with feedforward the need for careful matching. Predistortion is actually
nearly ubiquitous, as it is the principle underlying the operation of current mirrors.
In a mirror, an input current is converted to a gate-to-source voltage through some
nonlinear function that is then undone to produce an output current exactly propor-
tional to the input. Predistortion is also fundamental to the operation of true Gilbert
mixers, where a pair of junctions computes the inverse hyperbolic tangent of an input
differential current, and a differential pair subsequently undoes that nonlinearity.

Negative feedback computes an estimate of error, inverts it, and adds it back to the
input, thereby helping to cancel the errors that distortion represents. The reduction
in distortion is large as long as the loop transmission magnitude is large. Because

26 Measuring these quantities in the laboratory also requires some care. As with the simulation, the
amplitudes of the two input tones must be low enough to avoid excitation of higher-order nonlin-
earities (which would cause a slope of other than +3) yet sufficiently larger than the noise floor.
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10.4 MULTIPL IER-BASED MIXERS 325

F IGURE 10.14. Classic bipolar cascomp

a negative feedback system computes the error a posteriori, the overall closed-loop
bandwidth must be kept a small fraction of the inherent bandwidth capabilities of the
elements comprising the system – else the error estimate will be irrelevant at best
and destabilizing at worst. The series feedback examples of this chapter are popular
methods for linearizing high-frequency transconductors.

Feedforward is another linearization technique; it computes an estimate of the
error at the same time the system processes the signal, thereby evading the band-
width and stability problems of negative feedback. However, the error computation
and cancellation then depend on matching, so the maximum practical reduction in
distortion tends to be substantially less than generally attainable with negative feed-
back. Feedforward is most attractive at high frequencies, where negative feedback
becomes less effective owing to the insufficiency of loop transmission.

An example of feedforward correction applied to a transconductor is Pat Quinn’s
“cascomp” circuit, originally implemented with bipolar transistors.27 As Figure10.14
shows, this transconductor consists of a cascoded differential pair to which an addi-
tional differential pair has been added. Some linearization is provided by the source
degeneration resistor R, but significant nonlinearity remains in the transconductance
of inner differential pair Q1–Q2. To see this explicitly, consider that the voltage across
the resistor is the input voltage minus the difference in gate-to-source voltages of Q1
and Q2:

VR = vIN − (vBE1 − vBE2) = vIN − (vBE1. (21)

The goal is to have a differential output current precisely proportional to vIN , so any
nonzero (vBE represents an error. The cascoding pair possesses the same (vBE as
the input pair, which is measured by the inner differential pair. A current proportional
to this error is subtracted from the main current to linearize the transconductance.

27 “Feedforward Amplifier,” U.S. Patent #4,146,844, issued 27 March 1979, reissued 1984.
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F IGURE 10.15. High-linearity gm cell

The name “cascomp” derives from this combination of a cascode and error compen-
sation. Although the inner pair is shown as an ordinary differential pair for simplicity,
it is frequently advantageous to linearize it and thus relax the requirements on the
correction, thereby increasing the range over which the transconductance remains
constant.

Another nonfeedback approach is piecewise approximation, which exploits the
observation that virtually any system is linear over some sufficiently small range. It
divides responsibility for linearity among several systems, each of which is active
only over a small enough range so that the composite exhibits linearity over an ex-
tended range.

Gilbert’s bipolar “multi-tanh” arrangement is an example of piecewise approx-
imation. In MOS form ( just to keep you disoriented), it appears as shown in Fig-
ure10.15.28 Each of the three differential pairs behaves as a reasonably linear transcon-
ductance over an input voltage range centered about VB , zero, and −VB , respectively.
For input voltages near zero, the transconductance is provided by the middle pair and
is roughly constant for small enough vIN . As the input voltage deviates significantly
from zero, the tail current eventually steers almost completely to one side of the mid-
dle pair but, with an appropriate selection of bias voltage VB , one of the outer pairs
takes over and continues to contribute an increase in output current; see Figure 10.16.

The overall transconductance is the sum of the individual offset transconductances
and can be made roughly constant over an almost arbitrarily large range by using a
sufficient number of additional differential pairs, each offset appropriately. The trade-
off is an increase in power dissipation and input capacitance.

10.4.3 PASSIVE DOUBLE-BAL ANCED MIXER

So far, we’ve examined active mixers, which have the attribute of providing conver-
sion gain. However, active devices with sufficient gain may simply be unavailable

28 The name derives from the fact that the transfer characteristic of a bipolar differential pair is a
hyperbolic tangent.
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F IGURE 10.16. Illustration of linearization by piecewise approximation

F IGURE 10.17. Simple double-balanced passive MOS mixer

at very high frequencies, so we need to consider passive mixers as well. Aside from
their potential for very high-frequency operation, such mixers may also have the po-
tential for low-power operation at very low supply voltages.

In the active mixers considered so far, representations of the RF signal in the form
of currents, rather than the RF voltages themselves, are effectively multiplied by a
square-wave version of the local oscillator. An alternative that avoids the V–I conver-
sion problem is to switch the RF signal directly in the voltage domain. This option
is considerably easier to exercise in FET than in bipolar form, which is why bipolar
mixers are almost exclusively of the active, current-mode type.

The simplest passive commutating FET mixer consists of four switches in a bridge
configuration; see Figure 10.17. Unlike most of the other circuits in this chapter, bipo-
lar devices cannot substitute gracefully for the FET devices shown. Bipolar transistors
are excellent current-mode switches, but they are not good voltage-mode switches.

The switches are driven by local oscillator signals in antiphase so that only one di-
agonal pair of transistors is conducting at any given time. When M1and M4 are on, vIF
equals vRF ; when M2 and M3 are conducting, vIF equals −vRF . A fully equivalent
description is that this mixer multiplies the incoming RF signal by a unit-amplitude
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328 CHAPTER 10 MIXERS

square wave whose frequency is that of the local oscillator. Hence, the output contains
many mixing products that result from the odd-harmonic Fourier components of the
square wave.29 Luckily, these are often readily filtered out, as discussed previously.

The voltage conversion gain of this basic cell is easy to compute from the fore-
going description. Assuming multiplication by a unit-amplitude square wave, we
may immediately write

Gc = 2/π, (22)

where (again) the 2/π factor results from splitting the IF energy evenly between the
sum and difference components.30

In practice, the actual voltage conversion gain may differ somewhat from 2/π be-
cause real transistors do not switch in zero time. Hence, the incoming RF signal is
not multiplied by a pure square-wave signal in general. Perhaps contrary to intuition,
however, the effect of this departure from ideal assumptions is usually to increase
the voltage conversion gain above 2/π.

A more general expression for the voltage conversion gain is somewhat cumber-
some to derive, so we will only state the relevant insights here.31 The output of the
mixer may be treated as the product of three time-varying components and a scaling
factor:

VIF (t) = vRF (t) ·
[
gT (t)

gTmax

· m(t)

]
·
[
gTmax

gT

]
. (23)

The function gT (t) is the time-varying Thévenin-equivalent conductance as viewed
from the IF port, while gTmax and gT are the maximum and average values (respec-
tively) of gT (t). The mixing function, m(t), is defined as

m(t) = g(t) − g(t − TLO/2)

g(t) + g(t − TLO/2)
, (24)

where g(t) is the time-varying conductance of each switch and TLO is the period of
the LO drive. The mixing function has no DC component, is periodic in TLO , and
has only odd harmonic content if the LO signal has perfect half-wave symmetry.

The Fourier transform of the first bracketed term in Eqn. 23 has a value of 2/π at
the LO frequency for a square-wave drive (as asserted earlier) and a value of 1/2 for a
sinusoidal drive, so the effective mixing function indeed contributes a higher conver-
sion gain for a square-wave drive. However, the second bracketed term is unity for

29 This situation is the same as with the current-mode mixers, however. Also, even harmonics of the
LO terms may be nonzero if the duty cycle of the square wave is not exactly 50%.

30 If we assume equal source and load terminations, then this gain corresponds to a 3.92-dB voltage
and power loss. Many practical implementations (such as the discrete passive mixers discussed
in Sections 10.4.4–6) typically exhibit a somewhat greater conversion loss than this theoretical
limit because of additional sources of attenuation (e.g., nonzero switch drop, skin-effect loss, etc.).
Common conversion losses for mixers of this type are in the neighborhood of 5–6 dB.

31 For a detailed derivation, see A. Shahani et al., “A 12mW Wide Dynamic Range CMOS Front-End
for a Portable GPS Receiver,” IEEE J. Solid-State Circuits, December 1997.
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10.4 MULTIPL IER-BASED MIXERS 329

a square-wave drive (because the peak and average conductances are equal) but π/2
for a sinusoidal drive. The overall conversion gain is greater with a sinusoidal drive
because the second term more than compensates for the smaller contribution by the
(effective) mixing function. The difference is not particularly large, however. With a
sinusoidal drive, the conversion gain is π/4 (−2.1 dB), compared with the 2/π gain
(−3.92 dB) obtained with a square-wave drive.

Owing to the spectrum of the (effective) mixing function, undesirable products can
appear at the IF port of this type of mixer. The subject of filtering therefore deserves
careful consideration, especially in connection with the issue of input and output ter-
minations. In virtually all discrete designs, the source and load impedances are real
and well-defined at 50 *. In other cases, such as integrated circuit implementations,
the load at the IF port of the mixer might not be terminated in this fashion. In MOS
forms, for example, the load at the IF port is frequently capacitive to an excellent ap-
proximation. In such cases, the capacitive loading can be exploited to form a simple
low-pass filter in conjunction with the resistance of the switches. A thorough analy-
sis32 reveals that the transfer function of this filter is simply

H(s) =
[
s
CL

gT
+ 1

]−1

. (25)

We see that the pole frequency is simply the ratio of the average conductance (again,
as viewed from the IF port, back through the switches) to the load capacitance. This
inherent filtering action may be tailored to provide a much-desired attenuation of un-
wanted mixer products.

Both noise figure and IP3 are strong functions of the LO drive, since the resis-
tance of the switches in the on state must be kept low and constant to optimize both
parameters. The IP3 is also a function of the amount of voltage boost provided by
the L-match. This boost may be adjusted downward to trade conversion gain for
improved IP3 and, in some cases, it may be appropriate to remove the L-match al-
together. Typical SSB noise figures of 10 dB and input IP3 of 10 dBm are readily
achievable with an LO drive amplitude of 300 mV.33 As a crude estimate, the SSB
noise figure of this type of mixer is approximately equal to the power conversion loss.

As a final note on the noise performance of this type of mixer, one might expect
the absence of DC bias current to imply the absence of 1/f noise. However, because
a mixer is a periodically time-varying system, it’s still possible for spectral compo-
nents centered at integer multiples of the local oscillator to fold down to DC, for
example. Thus, 1/f noise may still appear at the output of the mixer without requir-
ing any DC bias in the mixer itself. That is, a DC current may nonetheless arise. In
cases where it is important to minimize 1/f noise in the mixer output, it is generally
helpful (a) to reduce the LO drive to the minimum value consistent with acceptable
mixing action and (b) to design the local oscillator carefully to minimize its close-in

32 Ibid.
33 This value applies to a sine-wave LO.
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F IGURE 10.18. Simple diode mixer

F IGURE 10.19. Simple single-diode mixer

phase noise in particular (see Chapter 18). Finally, terminating the mixer in a rela-
tively high resistance keeps induced DC currents small and thus reduces 1/f noise.
These considerations are particularly important in the design of receivers that are sen-
sitive to 1/f noise, such as the direct-conversion (also known as the homodyne or
zero-IF) receiver and low-IF receiver.

To reduce the power consumed by the LO drivers, the gate capacitance of the
switches may be resonated with an inductor (for narrowband applications), resulting
in a power reduction by a factor of Q2. It is trivial to reduce the power to the order
of a milliwatt or less, even at gigahertz frequencies.

10.4.4 SINGLE-DIODE MIXER

The simplest and oldest passive mixer uses a single diode. In the circuit of Fig-
ure 10.18, the output RLC tank is tuned to the desired IF, and vIN is the sum of RF,
LO, and DC bias components. The nonlinear V–I characteristic of the diode pro-
vides diode currents at a number of harmonic and intermodulation frequencies, and
the tank selects only those at the IF.

It is tempting to reject this circuit as hopelessly unsophisticated, since it provides
neither conversion gain nor isolation, for example. However, at the very highest fre-
quencies, it may be difficult to implement mixers any other way. Indeed, all of the
radars used in the Second World War featured single-diode mixers. Much of the mod-
ern work in the millimeter-wave bands simply would not be possible without these
types of mixers. A more detailed schematic of such a mixer is shown in Figure 10.19.

Here, the input is the sum of RF and LO components only; the DC bias term is
provided through an RF choke (or quarter-wave line). Capacitive coupling is used
throughout to prevent this bias from upsetting circuits driving the input and driven

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511812941.011
Downloaded from https://www.cambridge.org/core. The Librarian-Seeley Historical Library, on 18 Dec 2019 at 06:16:56, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511812941.011
https://www.cambridge.org/core


10.4 MULTIPL IER-BASED MIXERS 331

F IGURE 10.20. Classic transformer-based
single-balanced diode mixer

by the output. The necessary summation at the input may be provided by numerous
means, such as resistive combiners or various types of hybrids. The latter are often
preferred because of the isolation they offer.

As another note on this circuit, we remind you that it can be used as a crude de-
modulator if the input signal is an AM signal (at either RF or IF). When used in this
manner, the output inductor is removed entirely, no LO is used, and a simple RC net-
work provides the output filtering. Millions of “crystal” radio sets used this type of
detector (known in this context as an envelope detector), and nearly all AM super-
heterodyne radios built today use a single-diode demodulator.

10.4.5 TWO-DIODE MIXERS

There are seemingly an infinite number of ways to use diodes as mixers. As we’ll
see, it will appear that a diode bridge can be used as just about anything, depending
on which terminals are defined as input and output and which way the diodes point.34

With two diodes, it’s possible to construct a single-balanced mixer. In this case,
one may obtain isolation between LO and IF, but there is poor RF–IF isolation; see
Figure 10.20. The transformer-based version works very well at low to moderate fre-
quencies (say, up to 1–2 GHz). In this range, the transformer in many commercial
implementations is typically a small trifilar-wound toroid. Two of the windings are
connected in series to create the secondary winding. This method of construction
ensures good symmetry in the secondary windings as well good primary–secondary
coupling.

Assume that the LO drive is sufficient to make the diodes act as switches, regard-
less of the magnitude of the RF input. With a positive value for vLO , both diodes
will conduct (note the reference dots on the transformer windings) and effectively

34 The nonlinear junction capacitance of diodes can be used to build a parametric amplifier. The
nonlinearity can be used to transfer energy from a local oscillator (known as the pump in paramp
parlance) to the signal, instead of the more conventional transfer of power from a DC source to the
signal frequency. Parametric amplifiers can be extremely low-noise devices, since only pure reac-
tances are needed to make them work. Prior to invention of the maser, such amplifiers exhibited
the lowest noise at microwave frequencies, enabling important achievements in radioastronomy.
Chapter 9 discusses parametric amplifiers in a little more detail.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511812941.011
Downloaded from https://www.cambridge.org/core. The Librarian-Seeley Historical Library, on 18 Dec 2019 at 06:16:56, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511812941.011
https://www.cambridge.org/core


332 CHAPTER 10 MIXERS

F IGURE 10.21. Typical single-balanced diode mixer
with rat-race hybrid (filters not shown)

connect vRF to the IF output. When vLO goes negative, the diodes open-circuit and
disconnect vRF .

The poor RF–IF isolation should be self-evident from the comment that the diodes
connect the RF and IF ports together whenever the diodes are on. Similarly, it
should be evident that symmetry guarantees excellent RF–LO isolation. Whenever
the diodes are on, the RF voltage can develop only a common-mode voltage across
the transformer windings, so no voltage can be induced at the LO port (at least ide-
ally; asymmetries always exist in practice to spoil perfection).

At the highest frequencies, the transformer is almost always replaced by a hybrid
of some sort. A typical example uses a ring hybrid to provide the antiphase diode
drive; see Figure 10.21. For this configuration to provide good performance, the LO
and RF frequencies must both lie within the narrow bandwidth of the hybrid. The
maximum permitted frequency separation is therefore about 10%. Fortunately, that
constraint does not prevent sensible frequency plans. Another requirement is for the
IF port to present a very low impedance termination at the frequency of the RF (and
LO) input signal. A lumped resonant circuit (at lower frequencies) or transmission
line stub (at higher frequencies, as shown in the figure) can be designed to have the
desired behavior. One must ensure that component parasitics do not cause the filter
to attenuate signals at the desired IF. A second requirement is that the IF port must
present a low-reflectance termination at the desired (e.g., difference) IF frequency
and at the image (e.g., sum) IF frequency as well. Failure to terminate the image
component is a common oversight and often leads to pathological mixer behavior.35

Note that, as suggested by Figure 10.21, the input ports can be driven two ways.
The conversion loss is identical for the two possibilities, and isolation doesn’t depend
on the choice, either. However, the spurs generated by the two options are not the
same. Depending on system details, there may be an advantage to one connection or
the other.

35 These pathologies are not always undesired, but dependence on them is risky.
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F IGURE 10.22. Mixer layout with noncircular ring hybrid
(IF return and RF/LO bypass not shown)

The lines connecting the hybrid to the diodes also need to be of matched length
(more precisely, they must possess a small phase angle difference). If this requirement
is not well satisfied then the conversion loss will increase, matching may degrade, and
linearity may suffer as well. The lines also need to be transmission lines for as much
of the distance to the diodes as possible. Furthermore, the diode packages should be
chosen so that the parasitics are consistent with operation at the desired frequency.
Since the best package is no package, beam-lead devices are frequently used at the
highest frequencies.

A more subtle consideration is that the feed to the diodes needs to be modified with
a path to (an AC) ground for the IF signal. At high frequencies, a high-Z0 grounded
stub that is a quarter-wavelength at the RF (LO) is preferable. Two such stubs are
required here, one from each diode to ground. If the diodes are to operate with some
DC bias (as is occasionally, but infrequently, the case), the stubs may be returned to
the DC bias supply. The connection must be well bypassed to ground at the RF/ LO
frequencies.

As a final remark on this single-balanced case, it should be noted that the area within
the hybrid is permitted to contain circuitry – if care is exercised to avoid unwanted
coupling. A reasonable guideline is to space the diodes and other elements away
from the ring proper by a distance equal to at least 4–5 dielectric thicknesses. Fre-
quently, the ring itself is also deformed into a rectangular or elliptical shape in order
to accommodate layout constraints. See Figure 10.22. An unfortunate by-product of
this type of layout is an increased need for electromagnetic field-solver simulations
to verify that the design functions as desired.

Don’t Try This at Home (or Anywhere Else)

In homage to the “bad circuit ideas” sections that populate The Art of Electronics of
Horowitz and Hill, we will mention that an all-too-common variation on the single-
balanced mixer replaces the rat-race hybrid with a branchline coupler. Because the
latter provides a quadrature phase shift rather than an inversion, it is surprising that
such a replacement can work at all. Even more surprising is its enduring popularity.
To accept seriously degraded performance just to save a half-wavelength of intercon-
nect seems an injudicious trade-off. The slimmest justification for using this approach
might be that broadband branchline couplers could be used. However, the utility of
a bad broadband mixer is questionable.
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F IGURE 10.23. Classic double-balanced diode ring mixer

10.4.6 DOUBLE-BAL ANCED DIODE MIXER

By adding two more diodes and one more transformer, we can construct a double-
balanced mixer to provide isolation among all ports (see Figure 10.23). We initially
show conventional transformers, but this structure may also be translated into quasi-
planar form by using, for example, Marchand-based baluns, as we’ll see later.36

As with the transformer-based single-balanced version, this mixer is popular up
to the low-gigahertz frequency range. To understand how it operates, once again as-
sume that the LO drive is sufficient to cause the diodes to act as switches. In the
circuit shown, the left pair of diodes conducts whenever the LO drive is negative
whereas the right pair of diodes conducts whenever the LO drive is positive.

With the LO drive positive, the voltage at “Right Mid” must be zero by symme-
try, since the center tap of the input transformer is tied to ground. Thus, vIF equals
vRF (again, note the polarity dots). With the LO drive negative, it is “Left Mid” that
has a zero potential, and vIF equals −vRF . Hence, this mixer multiplies vRF approx-
imately by a unit-amplitude square wave whose frequency is that of the LO.

Isolation is guaranteed by the symmetry of the circuit. The LO drive forces a zero
potential at either the top or bottom terminal of the output transformer, as noted pre-
viously. If the RF input is zero, there will be no IF output. Hence, this configuration
provides LO–IF isolation. Similarly, we can show LO–RF isolation by considering a
zero IF input. Since again there is a zero potential at either the top or bottom terminal
of the output transformer, there will be no primary voltage and hence no secondary
voltage.

To an excellent approximation, the impedance seen at the IF port is the source im-
pedance that drives the RF port – as long as the LO drive power is high enough to
place the diodes in a highly conductive state, and assuming a 1:1 turns ratio between
the RF port and any two adjacent taps of T2.

These passive mixers are available commercially in discrete form and perform ex-
ceptionally well. The upper limit on the dynamic range is typically constrained by

36 See Stephen Maas, “Harmonic Balance Simulation Speeds RF Mixer Design,” 〈http: //www.
planetanalog.com/story/OEG20020328S0107〉, 28 March 2002. Also see his book, Microwave
Mixers, 2nd ed., Artech House, Norwood, MA, 1993. Maas has written extensively on the sub-
ject, and anyone interested in microwave mixers would profit enormously from reading his many
publications on the topic.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511812941.011
Downloaded from https://www.cambridge.org/core. The Librarian-Seeley Historical Library, on 18 Dec 2019 at 06:16:56, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511812941.011
https://www.cambridge.org/core
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diode breakdown, while isolation is a function of the matching levels achieved (both
in diode characteristics and transformer winding parasitics).

The conversion gain of the double-balanced passive mixer is readily computed
by noting that the RF signal is effectively multiplied by a close approximation to a
unit-amplitude square wave, assuming the LO drive is large enough. The amplitude
of the fundamental is 4/π, and multiplication results in sum and difference compo-
nents with half that amplitude. Consequently, the conversion gain ideally should be

20 log(2/π) ≈ −3.92 dB. (26)

In practice, mixers with a single quad of diodes typically exhibit minimum con-
version losses in the neighborhood of 5–6 dB for LO drives above about 5–7 dBm.
The difference is partly due to losses in the diodes and transformers and also to the
fact that the LO drive does not cause the diodes to switch on and off instantaneously.
If LO drive power is limited, the mixer can still function, albeit with degraded perfor-
mance. For example, a 0-dBm LO power will typically produce a 9-dB conversion
loss. The compression point of such mixers tracks the LO power and is typically
about 6 dB below the nominal LO power (on an input-referred basis). Reduced LO
levels therefore degrade SFDR (spurious-free dynamic range) rapidly, since the noise
floor rises (owing to attenuation) and the intercept point diminishes.

Higher RF levels can be accommodated if series connections of diodes are used
in place of each diode in Figure 10.23, the drawback being an increased LO drive
requirement to guarantee complete switching of the diodes. There are mixers that
possess 1-dB compression points in excess of 21 dBm while requiring 27 dBm (!) of
LO drive.

Isolation between RF and LO ports becomes increasingly important with these
high-level mixers, but it rarely exceeds 30 dB. The potential for LO signals to leak
back through the RF port for re-radiation by the antenna is also a factor that must
be taken into account in any careful design. Filters or unilateral amplifiers may be
used – in conjunction with an appropriate frequency plan – to mitigate the re-radiation
problem.

10.4.7 IM AGE TER MINATION

When actually using such mixers, one should be aware that it is important to terminate
all ports in the proper characteristic impedance: not only at the RF, IF, and desired
LO frequencies, but at the image frequencies as well. If only narrowband termina-
tions are used, it is possible for reflections of various intermodulation products to
degrade performance seriously (or at least alter it in ways that may be difficult to an-
ticipate). Hence, it is generally insufficient merely to use a standard RLC tank as an
output bandpass filter without a diplexer37 or an intermediate buffering stage to guar-
antee a proper resistive termination at the sum and difference frequencies. Failure to

37 Recall that a diplexer splits an input signal into high- and low-frequency bands. A diplexer can
also be used as part of a duplexer (a device that permits simultaneous transmit and receive). The
terms are so similar that they are often confused with each other.
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F IGURE 10.24. Diplexer for simultaneous termination of IF and image

satisfy this condition can be the source of many perplexing phenomena. Normally,
poor image termination produces degraded SFDR as expected, but occasionally it
improves SFDR. To avoid such unpredictable behavior, attention to termination at
all frequencies is essential.

As is evident from the schematic of Figure 10.24, a simple diplexer consists of
low-pass and high-pass branches. Assuming that the desired IF is the difference com-
ponent, the low-pass branch provides the desired output while the high-pass branch
provides the image signal. Terminating both outputs guarantees that the mixer’s IF
output port sees a broadband resistive termination. The particular diplexer shown is
considered relatively elaborate. If filtering requirements are more modest, one may
use a simpler implementation consisting of a single LC pair in each branch.

At higher frequencies, transformers with adequate characteristics may be unavail-
able. In those cases, various stripline couplers may be adapted to replace them. One
in particular, based on the Marchand balun, has been used successfully to implement
broadband mixers into the lower-frequency end of the millimeter-wave bands. The
tight coupling required is virtually impossible to provide with edge-coupled struc-
tures, so microstrip implementations are effectively precluded. Instead, broadside-
coupled versions in stripline are more practical. To keep the figures simple, however,
we will draw them in a fashion that does not explicitly reflect a stripline arrangement.
Just keep this in mind as you view the drawings.

The classic Marchand (Figure 10.25) by itself isn’t quite suitable, however; there
aren’t enough ports! That slight problem is readily solved by slicing the upper line
in half. Then both the leftmost and rightmost ends may serve as RF (LO) and LO
(RF) input ports, and the newly created terminals in the center of the top line serve
to drive the diode quad (Figure 10.26).38 We see from the figure that the left pair of
coupled lines provides a balanced drive (say, of RF) to one opposing pair of termi-
nals of the diode quad, while the right pair of coupled lines provides a balanced LO

38 See the Maas citations in footnote 36.
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F IGURE 10.25. Classic Marchand balun

F IGURE 10.26. Double-balanced mixer based on Marchand balun
(core only shown; see text)

drive to the other. Thus, the diodes see a drive arrangement that is exactly the same
as in the classic transformer-based version.

A moderately tricky part is arranging for the IF signal to find a way out of this
structure. By examining the classic prototype of Figure 10.23, we can conclude that
we need to synthesize the equivalent of a center tap between the two RF-driven ter-
minals of the diode quad. An expedient way of doing so is to connect a line that is
λ/4 at the center of the RF–LO span to each of those terminals and then tie the other
ends together. However, the IF signal appears at the RF port as well. To prevent this
loss of isolation, one could capacitively couple the RF drive to the diode quad. If the
capacitor is small enough, it will attenuate the IF signal without materially affecting
the RF signal. Replacing the capacitor with a parallel-resonant trap (tuned to the IF)
will improve RF–IF isolation significantly but is considerably harder to implement.

We still need to provide a return path for the IF signal. As in the single-balanced
case, tying a pair of grounded λ/4 lines to the other two diode quad terminals solves
that problem neatly.

In yet another variation, neither IF-blocking capacitors nor resonant traps are used.
Instead, the RF signal drives the structure through the high-pass port of a diplexer.
The common port of the diplexer feeds the mixer core, and the IF signal is extracted
from the lowpass port of the diplexer.

The baluns that drive the mixer core, and the various stubs that connect to it, need
to be designed carefully if satisfactory operation is to be obtained over a broad band.
The lengths of the coupled sections are chosen λ/4 at the center of the operating
range. Operation over a 2–3 :1 ratio above and below that center frequency is then
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F IGURE 10.27. Complex mixer example

possible. Thus, the overall operating frequency range of the couplers can span 5 :1
to 10 :1.

The circuit’s bandwidth may be considerably less, however, because of the λ/4
stubs. For example, the shorted stubs will appear as short circuits instead of opens
at double the nominal frequency, and thus a 2 :1 frequency range becomes the limit.
If the stubs are implemented with very narrow (very high-impedance) lines, how-
ever, the increase in losses at higher frequencies can prevent short circuits; hence the
bandwidth may be better than might seem reasonable on the basis of lossless line
assumptions.

10.4.8 OTHER MIXER CONFIGUR ATIONS

Complex Mixers

In many types of modulation, one must effectively keep track of the image fre-
quencies. In some cases, the purpose is to cancel the undesired image and so relax
requirements on external image filters. In other cases, the image is simply another
modulation sideband. The quadrature (or complex) mixer lies at the heart of receivers
of this type.

In Figure 10.27, a quadrature hybrid (typically a Lange or branchline coupler)
splits an incoming RF signal into in-phase and quadrature components. These two
signals feed a pair of mixers driven by in-phase LO signals. The outputs are then fil-
tered, and the surviving IF components are fed to another quadrature hybrid, which
performs phase-shifting, summing, and differencing operations on the quadrature IF
components. The upper and lower image signals (sidebands) are available as sepa-
rate outputs.

Subharmonic Mixers

At the extremes of frequency, it may not be practical or possible to generate the LO
drives required to implement an ordinary superheterodyne stage. This situation arises
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F IGURE 10.28. Example of subharmonic mixer (N = 2)

commonly in radioastronomy, for example, where one often wishes to detect radia-
tion of sub-millimeter (or shorter) wavelength. We don’t have to solve an RF signal
generation problem, since the signal is provided by nature, but we are left with a dif-
ficult LO generation problem.

One solution is take advantage of nonlinearities. After all, they’re hard to avoid,
so one might as well exploit them. For example, suppose we need an LO drive with
a frequency f1, but it turns out to be impractical or inconvenient to acquire this. One
could use a nonlinear element to generate harmonics of that frequency, filter to select
the harmonic desired, and use that signal to drive a mixer.

An alternative is to take advantage of the spur modes that are generally present in
practical mixer circuits. In this case, we drive the LO port at a frequency f1/N and
select the spur mode corresponding to the LO’s N th harmonic. Because we drive the
LO port with a signal whose fundamental is a subharmonic of the actual LO desired,
such a mixer is known as a subharmonic mixer.

The usual goal in mixer design is to suppress spur modes, but here we wish to en-
hance the effect – at least for one particular spur mode. A common circuit for doing
so is shown in Figure 10.28. Here we assume that the RF input signal and the desired
LO frequency are so close that they may be treated as equal. Furthermore, we as-
sume that the LO actually supplied is at half this frequency, so that the subharmonic
order N = 2. The open-circuited transmission line in the upper portion of the cir-
cuit thus presents an open circuit to the desired RF signal but a short circuit to the
LO drive that is supplied, because the line is only a quarter-wavelength long there.
At the same time, the short-circuited line presents a short circuit to the RF signal and
an open circuit to the LO drive that is supplied. The voltage across the diodes is thus
the sum of the RF input signal and LO drive. The use of two diodes connected in
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inverse parallel assures an enhancement of even-mode spurs. The low-pass IF filter
does its best to remove undesired hash, but its ability to do so is limited precisely be-
cause of the spur-mode enhancement inherent in this architecture. Nevertheless, this
circuit is often the only option available at extremely high frequencies.
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C H A P T E R E L E V E N

TR ANSISTORS

11.1 HISTORY AND OVERVIEW

With the growing sophistication in semiconductor device fabrication has come a rapid
expansion in the number and types of transistors suitable for use at microwave fre-
quencies. At one time, the RF engineer’s choices were a bipolar or possibly a junction
field-effect transistor. The palette of options has since grown to a dizzying collection
of MOSFETs, VMOS, UMOS, LDMOS, MESFETs, pseudomorphic and metamor-
phic HEMTs (MODFETs), and HBTs, all offered in an ever-expanding variety of
materials systems. We’ll attempt to provide a description of these types of devices,
starting with a deciphering of their abbreviations. Then we’ll focus on a small subset
of these devices in an expanded discussion of modeling.

The bipolar transistor was discovered – not invented – in December of 1947 while
the Bell Labs duo of John Bardeen and Walter Brattain was attempting to build a MOS
field-effect transistor at the behest of their boss, William Shockley.1 Their repeated
failures led them to suspect that the problem lay with the surface, where the neat
periodicity of the bulk terminates abruptly, leaving unsatisfied bonds to latch onto
contaminants. To verify this “surface state” hypothesis, they undertook a detailed
study of semiconductor surface phenomena. One of their experiments, designed
to modulate the postulated surface states, itself happened to exhibit power gain. It
wasn’t the MOSFET they had been trying to build; it was a germanium point-contact
bipolar transistor. Its behavior was never quantitatively understood, and repeatabil-
ity of characteristics was only a fantasy. But it was good enough to earn the team –
including Shockley – the 1956 Nobel Prize in physics. Although the point-contact
transistor had minimal commercial impact, at least it gave us the names for the elec-
trodes of a transistor. From Figure 11.1, you can appreciate where the base terminal
got its name – it’s the mechanical base for a point-contact device.

1 Michael Riordan and Lillian Hoddeson, Crystal Fire, Norton, New York, 1997. This superb book
is a must-read for anyone who is even remotely interested in the history of semiconductors. Also
see the excellent review article by W. Brinkman et al., “The History of the Transistor and Where It
Will Lead Us,” IEEE J. Solid-State Circuits, v. 32, no. 12, December 1997, pp. 1858–65.
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F IGURE 11.1. Point-contact bipolar transistor
[photo courtesy of and copyright Lucent Bell Labs]

Shockley disliked point-contact transistors, partly because it was a messy three-
dimensional structure and partly because he hadn’t been one of its direct inventors.2

Working diligently in secret to develop a transistor he could call his own, he invented
the junction bipolar transistor as it is known today: a sandwich of three semicon-
ductor layers of alternating polarity, whose essential behavior is understandable with
relatively simple one-dimensional analyses. Unlike its point-contact predecessor, the
junction transistor was a true invention. In a scientific tour de force, Shockley cor-
rectly predicted its fundamental electrical characteristics in1948 – well before the first
crude one was demonstrated in mid-1950.3 The modern bipolar device is consider-
ably more complicated than depicted in Figure 11.2. We will consider enhancements
to this picture a bit later, when we derive models for the bipolar transistor.

Field-effect transistors finally debuted in 1953, but in the form of junction FETs
(JFETs), not MOSFETs.4 See Figure 11.3. Shockley had invented the device a year
earlier. Varying the voltage on the reverse-biased gate junction varies the extent
of a depletion layer, adjusting the effective cross-section of – and therefore current
through – a semiconducting bar. As conventionally built, JFETs are depletion-mode
devices, meaning that their default state is one of conduction. One must actively
turn them off. Because their gate electrode is one terminal of a reverse-biased diode,
JFETs exhibit very large DC resistance, and their low-frequency power gain is cor-
respondingly high.

2 Shockley says so himself in “The Path to the Conception of the Junction Transistor,” IEEE Trans.
Electron Devices, v. 23, no. 7, July 1976, pp. 597–620.

3 William Shockley, Morgan Sparks, and Gordon K. Teal, “P–N Junction Transistors,” Phys. Rev., v.
83, 1 July 1951, pp. 151–62.

4 George C. Dacey and Ian M. Ross, “Unipolar Field-Effect Transistor,” Proc. IRE, August 1953,
pp. 970–9.
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11.1 HISTORY AND OVERVIEW 343

F IGURE 11.2. Junction bipolar transistor (vastly simplified,
but similar to first prototype)

F IGURE 11.3. n-channel junction FET (simplified;
most practical devices have two gate diffusions)

The first transistors were made of germanium, whose high leakage motivated a
shift to silicon. Unfortunately, silicon’s much higher melting point made the pro-
duction of high-quality monocrystalline ingots almost impossible. Gordon Teal of
Texas Instruments succeeded in building the first ones in early 1954, using a grown-
junction process.5 Thanks to Teal, TI’s monopoly on silicon transistors was not bro-
ken until four years later, when Fairchild Semiconductor introduced their superior
silicon “mesa” devices (which used layers defined by diffusion), followed soon after
by planar silicon devices in 1959 (the first year of Moore’s law).6

Research into MOSFETs continued, and Dawon Kahng and Martin Atalla of
Bell Labs finally succeeded in building a working silicon MOSFET in 1960.7 They
exploited the surprising discovery that silicon’s own oxide tames the troublesome

5 Teal is an unsung hero of the early semiconductor age. He had chosen the study of germanium for
his doctoral thesis in part because “its utter uselessness intrigued and challenged” him, as he later
wrote (see the July 1976 issue of the IEEE Transactions on Electron Devices). At Bell Labs, he
stubbornly insisted on developing monocrystalline material, despite initial opposition from Shock-
ley, who thought polycrystalline material would be forever adequate. Without Teal’s high-quality
crystals of uniform characteristics, progress in the field would have been infinitely more difficult
than it was.

Teal left Bell Labs for his home state of Texas for family reasons. That’s how he came to present
a paper on 10 May 1954 at the IRE National Conference on Airborne Electronics. He spoke after
a succession of presenters had affirmed the hopelessness of any short-term success with silicon.
Teal wowed the audience by pulling some silicon transistors out of his pocket and announcing their
imminent availability from TI.

6 J.A. Hoerni, “Planar Silicon Transistors and Diodes,” IRE Electron Devices Meeting, October1960.
7 D. Kahng and M. M. Atalla, IRE Solid-State Devices Research Conference, Carnegie Institute of

Technology, 1960. Also see D. Kahng, U.S. Patent #3,102,230, filed 1960, issued 1963.
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F IGURE 11.4. Typical MOSFET (greatly simplified,
but with realistic relative gate electrode size)

surface states that had set Bardeen and Brattain on the road to discovering the tran-
sistor a dozen years earlier. Despite this success, however, the MOSFET’s relatively
poor device physics would limit its use to applications where low cost and high cir-
cuit density were prized above performance. Not until the late 1980s would Moore’s
law finally work its magic to the point where microwave MOSFETs became avail-
able. Thanks to its physical structure, it is relatively simple to tailor a MOSFET to
operate as a depletion- or enhancement-mode device.

As with our simple rendering of a bipolar transistor, the drawing of Figure 11.4
leaves out a great many details. The modern MOSFET is a highly sophisticated,
barely recognizable descendant of the Kahng–Atalla device of 1960. This evolu-
tion has been forced by the continuing drive toward ever-smaller geometries while
maintaining acceptable device reliability in the face of increasing stresses (electrical,
thermal, and mechanical). We will shortly consider a slightly more detailed picture
of a MOSFET when we take up the issue of modeling.

A variant of the MOSFET, known as LDMOS (for laterally diffused MOS), has
enjoyed wide deployment in cellular base–station power amplifiers. Its combination
of reasonable gain, good linearity, moderately high output power, and low cost has
made it particularly attractive for those applications. See Figure 11.5. As its name
suggests, it employs an additional diffused (or implanted) layer. The purpose of the
added n-layer is essentially to provide a large series resistance to reduce the peak
electric field near the drain. The drain depletion layer extends into this region (rather
than punching through to the source) and thus permits the device to operate with
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F IGURE 11.5. Typical LDMOS cross-section
(layers not drawn to scale)

F IGURE 11.6. VMOS and UMOS cross-sections (layers not drawn to scale)

higher supply voltages than would otherwise be possible. The trade-off is a higher
resistance in the “on” state. Breakdown voltages of 70–100 V allow robust operation
with 28–50-V supplies. At the same time, the effective gate length is defined by the
position of the n+ source diffusion, relative to the p-well. As such, the gate length
can be substantially smaller than ordinary lithographic tools would usually support
(observe that, in Figure 11.5, the gate electrode extends into the drain region). In the
case of typical LDMOS devices used for base stations, the effective gate length is of
the order of 0.25 µm, enabling good performance out to 3–5 GHz.

To simplify packaging, the source connection may be made at the bottom of the
die. In those cases, a deep p+ “sinker” diffusion is commonly used to provide a
low-resistance connection from the top surface (where the actual source terminal re-
sides) to the contact on the underside of the die.

One reason that LDMOS is attractive is that it may be fabricated using rather simple
equipment, as its structure differs only slightly from that of conventional low-power
MOSFETs. However, it remains a lateral device because its current still flows only
along the surface, in contrast with the vertical flow of bipolar transistors. Because the
density of current per surface area is thus not particularly large, power MOS devices
consume significant die area.

A modest modification reduces the total device area needed to support a particular
current. Depending on the particular geometry used, such transistors are known as
VMOS or UMOS power FETs. As is evident from Figure 11.6, the current flow is pri-
marily vertical. In effect, VMOS and UMOS devices provide double the number of
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channels for the same number of processing steps. Furthermore, and in common with
LDMOS, the channel length is not determined by photolithography. The gate length
is controlled by adjusting the depth of the n+ source diffusion into the p-region. This
control allowed VMOS devices with submicron channel lengths to be constructed in
an era when lithography was limited to resolutions of several microns. In fact, VMOS
devices were the first commercially available MOSFETs for which carrier velocity
saturation affected electrical characteristics in a first-order fashion. The combina-
tion of short channel length (for high speed), an electric-field–absorbing drain ex-
tension (for high breakdown voltage), and vertical current flow (for high current den-
sity per die area) has made VMOS and UMOS devices popular for many RF power
applications.

Silicon has come to dominate the industry because it is easily understood (being
an elemental semiconductor), straightforward to process, and readily forms a su-
perb insulating oxide – not because any one electrical parameter is outstanding. For
example, the mobility of electrons is much higher in germanium than in silicon. Un-
fortunately, germanium’s oxide is water soluble. That fact, plus its high leakage
current (arising from its lower bandgap), has made germanium all but disappear as a
commercially important semiconductor.

Gallium arsenide’s far superior low-field electron mobility had been appreciated
in the mid-1950s, but the difficulties of mastering the liquid-phase epitaxy required
to grow the binary semiconductor limited the availability of the raw material. Point-
contact GaAs diodes capable of operating well beyond Ka band were available by the
late1950s, but making transistors was another thing altogether. Doping to make bipo-
lar transistors proved even trickier than it had with silicon (in particular, doped p-type
GaAs is very troublesome), and the lack of a native oxide makes GaAs MOSFETs
much more of an oxymoron than in silicon. Carver Mead of Caltech finally succeeded
in making a crude GaAs transistor in 1965, three years after the first GaAs-based
LEDs had been demonstrated.8 By using a Schottky (metal-to-semiconductor) diode
to form a gate, the metal–semiconductor FET (MESFET) sidesteps the MOSFET’s
need for a gate oxide as well as the JFET’s and bipolar’s need for forming a conven-
tional junction. Unlike modern silicon MOSFETs, the MESFET uses actual metal
for the gate (e.g., TiWN cladded with gold), making the parasitic series gate re-
sistance much lower for MESFETs than for MOSFETs of the same dimensions.
Like its ordinary JFET cousin, the MESFET is normally a depletion-mode device
(enhancement-mode MESFETs do exist, though they are much less common). After
considerable refinement, the GaAs MESFET came to dominate power amplifiers for
cell phones through the 1980s and mid-1990s. See Figure 11.7. Note that, in addi-
tion to a gate–source Schottky diode, there is also gate–drain diode. Under normal
operation, both of these diodes are in reverse bias.

For modern MOSFETs and MESFETs both, the gate–source capacitance is of
the order of roughly 1 pF/mm of gate width, and the intrinsic voltage gains (gmrds)

8 See Schottky Barrier Gate Field Effect Transistor,” Proc. IEEE, v. 54, 1966, p. 307. A more practi-
cal MESFET is described by W. W. Hooper and W. I. Lehrer, Proc. IEEE, v. 55, 1967, p. 1237.
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11.1 HISTORY AND OVERVIEW 347

F IGURE 11.7. Typical n-channel GaAs MESFET

are generally in the range of 10–20. Although dependent on process technology, the
maximum transconductance is generally around1–2 mS/mm, and the maximum drain
current is very roughly 1–2 mA/mm. These numbers are provided simply to convey
a rough order-of-magnitude calibration. They are hardly constants of nature and thus
should only be used for the coarsest back-of-the-cocktail napkin calculations.

For cell-phone handset power amplifiers, the GaAs MESFET now has been largely
supplanted by another of Shockley’s forward-looking ideas: the heterojunction bipo-
lar transistor (HBT). Ordinary semiconductor devices use a single material for all
layers; the only electronic differences among the layers are related to doping. All
junctions are therefore homojunctions in these classic devices. Shockley had recog-
nized about 1950 that combining semiconductors with different bandgaps represents
powerful degrees of freedom in device design.9 In a bipolar transistor, for example,
heavier base doping reduces parasitic base resistance and increases breakdown volt-
age and output resistance, but it degrades the current gain. At the same time, heavier
emitter doping improves current gain but increases emitter capacitance. These trade-
offs can be eased considerably by using a wide-bandgap material for the emitter.
By suppressing base-to-emitter hole injection, such a heterojunction permits heav-
ier base doping and lighter emitter doping without seriously degrading current gain.
High-frequency performance improves as a direct result of reducing the parasitic base
resistance and emitter capacitance. The heavier base doping also reduces the extent
to which the collector–base depletion layer extends into the base region. That, in
turn, reduces basewidth modulation (the Early effect) and thereby increases the out-
put resistance.

Although this basic idea had been appreciated for decades, it wasn’t until the
1970s that semiconductor technology had advanced enough to enable construction of
devices. An important constraint is that the different semiconductors must have sub-
stantially equal lattice constants, for otherwise their interface will be full of defects.
The most widely used heterojunction bipolar transistor is made with AlGaAs for the

9 U.S. Patent #2,569,347, issued 25 September 1951. The first open publication on the concept is
apparently by Herbert Kroemer (“Theory of a Wide-Gap Emitter for Transistors,” Proc. IRE, No-
vember 1957, pp. 1535–7), who evidently learned of Shockley’s patent from the paper’s reviewers.
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F IGURE 11.8. Typical GaAs HBT (idealized)11

emitter and GaAs for the base (and collector).10 Also popular is the silicon germa-
nium (SiGe) HBT, although it is not quite a true heterojunction device in Shockley’s
original sense of the term. For material stability reasons, the SiGe HBT is unable to
use a large enough mole fraction of germanium in the base region to effect a signifi-
cant shift in bandgap. Rather, a germanium concentration gradient in the base serves
mainly to enhance the classic dopant-induced electric field already present there. This
electric field speeds up carrier transport across the base, increasing high-frequency
current gain. The popularity of SiGe is due to its compatibility with mainstream IC
fabrication process technology, since the SiGe transistor is not very different from a
conventional bipolar device.

Grading layers (see Figure 11.8) serve to moderate stresses at the GaAs–AlGaAs
interfaces arising from the small mismatch in lattice constants. They are made as thin
as possible to reduce any parasitic series resistance they might contribute.

More recently, indium phosphide HBTs have become available, partly driven by
the material’s compatibility with infrared generation and detection. Many InP HBTs
used in RF applications are double-heterojunction devices, with InAlAs emitters,
InGaAs bases, and InP collectors. The additional base–collector heterojunction in-
creases breakdown voltage while reducing leakage current and output capacitance.
The InGaAs base material has 50% higher mobility than GaAs.

10 It is customary to refer to the technology according to the material comprising the substrate. Thus,
an HBT with an AlGaAs emitter and GaAs substrate would generally be called a GaAs HBT.
In those instances where it is important to identify the emitter explicitly, one might speak of a
GaAs/AlGaAs HBT.

11 S. M. Sze (ed.), High-Speed Semiconductor Devices, Wiley, New York, 1990.
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11.1 HISTORY AND OVERVIEW 349

Note that HBTs are vertical-flow devices, as opposed to the lateral-flow MOSFET
and MESFET. The fabrication techniques currently in use (e.g., MOCVD, MBE)
invariably produce the mesa-like structures of Figure 11.8. Silicon mesa devices
were displaced by planar transistors because mesa structures have exposed junctions,
resulting in poor device lifetimes and highly variable characteristics. As of yet, no
similar revolution seems to be in the offing for HBTs.

The tailoring of device properties through the use of heterojunctions is not limited
to realization of HBTs. In 1980, the high electron mobility transistor (HEMT) made
its debut, based on pioneering work throughout the 1970s by tunnel diode inventor
Leo Esaki.12 This device relies on the insight that carriers drift fastest in dopant-
free regions. Unfortunately, an ordinary MESFET’s threshold voltage depends on
the doping level. Thus, threshold voltage and mobility are effectively coupled in a
classic MESFET. One cannot adjust the threshold voltage to arbitrary values with-
out degrading high-frequency performance. Conversely, maximizing high-frequency
performance might correspond to an inconvenient or unusable threshold voltage.

To acquire the additional degree of freedom necessary to decouple these two prop-
erties, one may use an appropriately doped wide-bandgap material (e.g., AlGaAs)
with which the Schottky gate contact is formed together with a narrower-bandgap
intrinsic semiconductor (e.g., GaAs) below it. Thanks to the bandgap difference,
carrier flow can be well confined to the intrinsic layer (creating a “two-dimensional
electron gas”), while other key device characteristics (such as threshold voltage) are
controlled by the doping levels in the wide-bandgap layer. Thanks to superior carrier
transport in the undoped channel, mobilities are readily doubled or tripled, improv-
ing device transconductance and high-frequency performance by similar factors.

The spacer layer above the undoped channel (see Figure 11.9) helps isolate the
channel from the donors in the n+ AlGaAs layer. Its presence is necessary to main-
tain high mobility in the channel, but it must be made as thin as possible to maximize
the coupling of charge into the channel.

The HEMT is also known by several other names, such as the modulation-doped
FET (MODFET) or heterostructure FET (HFET). Less common abbreviations you
may encounter include TEGFET or 2DEGFET (both for two-dimensional electron
gas FET) and SDFET (selectively doped FET). An informal survey suggests that
HEMT is the most popular term, with HFET and MODFET lagging well behind.

Subspecies of HEMTs include the pseudomorphic and metamorphic varieties.
Pseudomorphic refers to the exploitation of useful electrical effects that may attend
intentional strain caused by (slight) mismatches in the lattice constant (as long as
the mismatch is not so great as to generate serious defects). These electrical ef-
fects may include increased bandgap differences and enhanced mobility. In a typ-
ical pseudomorphic HEMT (pHEMT), the undoped high-mobility GaAs channel
of a conventional HEMT is replaced with a still higher–mobility undoped InGaAs

12 In 1973, Esaki won the Nobel Prize in physics for his discovery of tunneling in heavily doped p–n
junctions.
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F IGURE 11.9. Typical GaAs HEMT13

channel for even better high-frequency performance. Other versions are based on an
InAlAs/ InGaAs/ InP material combination.

Metamorphic HEMTs (mHEMTs) expand the number of suitable material com-
binations by accommodating lattice mismatch with compositionally graded layers.
Such strain-absorbing buffer layers permit larger mole fractions of indium to be used
in the undoped channel, for example. Even if defects result from the lattice mismatch,
they can be confined to the buffer layers, where they are electrically innocuous for
the most part.

Because HEMTs are modified MESFETs, they are commonly depletion-mode de-
vices. As such, biasing them can be somewhat inconvenient if only a single supply is
available. In fact, this inconvenience has been a significant factor in driving the shift
toward HBTs in handset power amplifiers. By eliminating the need for a negative
supply voltage generator, the HBT reduces handset size and cost and also improves
battery life.

Another characteristic worth mentioning is that GaAs and InP have significantly
worse thermal conductivity than silicon. Silicon’s thermal conductivity is triple that
of GaAs and double that of InP. These differences are particularly important for
power amplifiers, yet even for allegedly low-power systems there may be instan-
taneous power densities large enough for thermal effects to manifest themselves on
occasion. Engineers accustomed to working only with silicon-based devices are often
surprised by the extent to which thermally related phenomena must be accommodated
in a design.

13 Sze, op. cit.
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11.2 MODELING 351

Finally, it must be mentioned that device engineers have by no means exhausted
their considerable creativity. Thus, the incomplete sampling we have provided here
will necessarily grow more incomplete with time. The use of silicon carbide (SiC)
and gallium nitride (GaN), for example, is being actively studied, and one can expect
the list to extend well beyond those materials in the future.

11.2 MODELING

Active devices are generally quite nonlinear, and they contain many parameters whose
values may vary considerably as a function of frequency, temperature, and bias. Ac-
commodating nonlinearities in circuit analysis is challenging enough, so having to
consider reactances as well further complicates an already difficult task. Although
the advent of cheap computation has made it feasible to include “everything” in a
device model, doing so is best for analysis, not for design.

An alternative approach largely abandons hope of understanding the underly-
ing physics and instead bases design primarily on measured parameters (such as
S-parameters). This approach can yield excellent results because it is based on the
“truth,” but the lack of physically based compact models means that extensive data
sets may be required for a robust design, and prediction of performance beyond the
data set (or even for a different device of the same nominal type) may not be possible.

A common complaint is that one or another model is “wrong.” It’s important to
recognize that all models are wrong at some level, so a search for a correct model will
never terminate. Rather, the proper engineering philosophy is to seek models that
are capable of answering the questions that are asked. If the questions are simple,
then simple models may be perfectly acceptable. Complexity beyond that required
to perform the task at hand just makes the acquisition of insight less likely.

A recurring theme in modeling for design is the reduction of complexity through
selective and conscious neglect of phenomena that may be considered of second order.
Part of the art, of course, is to discern which phenomena truly are second order for a
particular situation. It is also important to know the model’s limits of validity, and
then to apply the model only within those boundaries.

The purpose of this chapter is to review models that are physically based and com-
paratively simple. As such, they are appropriate for first-pass designs of circuits.
These models are also indispensable for subsequent refinement of a design, should
more sophisticated simulations or experimental measurements reveal the need for
modifications. Without guidance from simple models, it can be difficult to discern
which parameters should be adjusted, in what direction, and by (approximately) how
much.

We will present small-signal models for FETs and bipolars. For the latter, we will
assume that the collector–base junction is never forward biased (i.e., the transistor
never saturates). We will also spend a little time discussing how to extract key model
parameters from often cryptic data-sheet information.
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11.3 SM ALL-S IGNAL MODELS FOR BIPOL AR TR ANSISTORS

11.3.1 A SIMPLE DC MODEL

At frequencies low enough that reactances may be neglected and for a fixed col-
lector–emitter voltage, the relationship between collector current and base–emitter
voltage is well approximated by an exponential:

iC ≈ IS

[
exp

(
vBE

VT

)]
, (1)

where VT , the thermal voltage, is equal to kT/q, which has a value of approximately
25 mV at room temperature. Remarkably, practical silicon devices conform to this
exponential behavior within a few percent over 6–8 orders of magnitude of collector
current. It is occasionally useful to note that Eqn. 1 implies a doubling of collector
current for every 18-mV increase in vBE , and a decade increase for every 60 mV.

The parameter IS is the saturation current, and the way it is described in some
texts encourages many to infer (incorrectly) that it is some sort of a constant. In fact,
its behavior is more subtle:

IS = I0 exp

(
−VG0

VT

)
, (2)

where VG0 is the bandgap voltage (extrapolated to 0 kelvins, and equal to about 1.2 V
for silicon). A quasi-empirical expression for I0 is

I0 = AeBT r, (3)

where Ae is the emitter area, B is a process-dependent constant, T continues to be
the absolute temperature, and r is a process-dependent quantity we’ll call the curva-
ture coefficient. For the relatively deep, diffused emitters of older bipolar processes,
r typically has a value between 2 and 3, whereas for the shallow, implanted (and
very heavily doped14 ) diffusions that are common in modern high-speed processes,
r is typically closer to 4. Clearly IS is a temperature- and fabrication-dependent
“constant.”

Equation 1 assumes operation of the transistor in the forward active region, in
which only the base–emitter junction is in forward bias. Furthermore, it assumes
values of collector current far in excess of IS , an assumption that is certainly well
satisfied for all microwave devices under normal operation.

From Eqns. 1–3 it may be discerned that the base–emitter voltage drops about
2 mV for every degree increase in temperature, at constant collector current. See
Figure 11.10. Use of Eqn. 1 alone would lead one to predict the wrong sign for this
temperature coefficient, underscoring the importance of using a detailed expression

14 Bandgap narrowing and nonlinearity in the heavily doped emitters are probably responsible for
the high values of r.
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F IGURE 11.10. Approximate behavior of VBE vs. temperature
at constant collector current

for IS. Not shown in the figure is a small curvature in the temperature behavior. This
curvature is small enough that it may be neglected except when constructing certain
types of voltage references (so-called bandgap references).

Another key relationship is that between collector and base current:

IC = βFIB. (4)

Trade-offs made in device design for good high-frequency performance usually re-
sult in lower β-values than exhibited by lower-frequency transistors. Nominal values
are frequently below 100 and may be as low as 10. Keep in mind that β may vary con-
siderably from device to device and even for a single device (as a function of current
and temperature).

Clearly, the relationship between iC and vBE is nonlinear. Analysis of circuits con-
taining a single nonlinearity can be complicated; analysis of those with more than
one can be hopeless. As a consequence, linearized models (also known as incremen-
tal or small-signal models) have evolved to permit tractable analysis, albeit at the
expense of a restricted range of validity.

In the case of the bipolar transistor, development of a suitable model begins by
considering the base–emitter voltage as the sum of a DC term and a small signal
superimposed on it:

vBE = VBE + vbe. (5)

Inserting Eqn. 5 into Eqn. 1 and expanding in a Taylor series yields

iC ≈ IS

[
exp

(
VBE + vbe

VT

)]

= IS

[
exp

(
VBE

VT

)][
1 +

(
vbe

VT

)
+ 1

2!

(
vbe

VT

)2

+ · · ·
]

, (6)

which yields a linear relationship if we throw away all the terms that make it nonlin-
ear (remember, we’re efficient engineers!):
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iC ≈ IC

[
1 + vbe

VT

]
= IC +

(
IC

VT

)
vbe = IC + ic. (7)

That is, the total collector current is the sum of the DC term and a term that is ap-
proximately proportional to the small-signal base–emitter voltage:

ic =
(

IC

VT

)
vbe = gmvbe. (8)

The proportionality constant, gm, is known as the transconductance (conductance be-
cause it is a ratio of current to voltage, and trans because the current and voltage are
measured at two different ports). The transconductance is therefore modeled by a
voltage-dependent current source.

There is also a relationship between collector and base currents. Thus, we have a
relationship between base current and base–emitter voltage:

ib = ic

β0
=

(
gm

β0

)
vbe = vbe

rπ
. (9)

The symbol β0 is used to underscore that the small-signal ratio of collector and base
currents may differ from that at DC. That said, one usually takes it to equal βF in
most circumstances. Such a substitution is generally justified because β is so vari-
able that it makes little sense to be overly fussy.

The linear small-signal relationship between base current and base–emitter volt-
age is represented by a simple resistor between the base and emitter terminals.

In all real bipolar transistors, the collector current is also a weak function of the
collector–emitter voltage, rather than solely a function of base–emitter voltage. The
reason is that the thickness of the collector–base depletion layer increases with in-
creasing collector voltage and so the effective electrical width of the base region is
similarly dependent on the collector voltage. Because the collector current depends
on the basewidth, increases in collector voltage cause increases in collector current.
This phenomenon, known as basewidth modulation (or the Early effect, after Bell
Labs engineer James Early, who first identified and described this mechanism), is
modeled by a collector–emitter resistor, ro.15 If one plots curves of collector current
as a function of collector–emitter voltage, the effects of basewidth modulation man-
ifest themselves in an upward tilt. Extrapolating all such curves back to the VCE-axis
results in a near common intercept. That intercept is (minus) the Early voltage, VA.

At a given collector bias current, the collector–emitter resistor has a value

ro = VA/IC. (10)

15 There is also a reduction in base current, which may be accounted for by adding another resistor
between collector and base. Under the conditions that typically prevail in microwave circuits, that
resistor can almost always be ignored. Those interested in more sophisticated modeling should
consult Ian Getreu’s classic Modeling the Bipolar Transistor (Tektronix, Beaverton, OR, 1979)
or The Design and Analysis of Analog Integrated Circuits by P. Gray and R. Meyer (Wiley, New
York, 1996).
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F IGURE 11.11. Low-frequency hybrid-π model
for bipolar transistor

Typical Early voltages are of the order of 10–50 V for most microwave bipolar
transistors.

To complete the DC portion of the model, recognize that a transistor is made of
semiconducting materials whose resistance is nonzero. Thus, there is always some
resistance in series with each terminal. For the most part, base resistance is most
significant, so we generally ignore resistances in series with the other two terminals
(however, the validity of this neglect should be checked in all cases where it might
matter). The small-signal model that results from all of these considerations then ap-
pears as in Figure 11.11.

A little bit about the nomenclature: The “π” in “hybrid-π” comes from the shape
of the model (yes, a little imagination is required), while hybrid refers to the fact that
not all of the parameters have the same dimensions – here, we have resistances and
a (trans)conductance.

As we’ll see when we consider FETs, all transistor models have the same basic
topology. The reason is simple: All transistors in use today are fundamentally voltage-
controlled current sources. That is, they are transconductors.16 The small-signal mod-
els naturally reflect this universal truth. Differences lie primarily in the nature of the
impedances connected to the various terminals of the transconductor.

Now, what about the “small signal” part? That is, how small is small? The answer
is readily obtained from recognizing that truncation of the Taylor series expansion is
fundamentally at the heart of the linearization. We might therefore define the limits
of “small” as corresponding to where the neglected terms become some significant
percentage of the main linear term. As a specific and arbitrary choice, suppose we
are satisfied if the second-order term remains no larger than 10% of the first-order
one. In that case, we desire

1

2!

(
vbe

VT

)2

<
1

10

(
vbe

VT

)
�⇒

(
vbe

VT

)
<

1

5
. (11)

16 Many textbooks describe bipolar transistors as current-controlled devices. That point of view,
while potentially leading to mathematically correct descriptions, is one step removed from the
actual physics. It is the base–emitter voltage that fundamentally lowers the barrier height at the
base–emitter junction, injecting carriers into the base region, where they diffuse (and drift) toward
the collector. Any base current that flows is a parasitic current whose ideal value is zero. That’s
hardly the description of a fundamental control variable!
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F IGURE 11.12. More typical IC bipolar transistor structure
(layers not drawn to scale)

Thus, small-signal analysis becomes progressively more unreliable as the variation in
base–emitter voltage exceeds about 5 mV at room temperature. Note that the bound-
ary between small and large is somewhat fuzzy, with the allowable error very much
a function of the problem being solved. Nevertheless, it remains true that small is
never very many millivolts for a bipolar transistor.

11.3.2 A SIMPLE HIGH-FREQUENCY MODEL

To develop a simple model, it’s helpful to consider a cross-section that’s more repre-
sentative of actual devices; see Figure 11.12. Even though this cross-section is itself
a simplified representation, it is considerably more elaborate than the simple NPN
sandwich presented earlier. Here, the current flow is principally vertical, although
there is a component of lateral flow before carriers head upward to the collector con-
tact. Often, to reduce the corresponding parasitic series collector resistance, an extra
collector contact is provided to the right of the emitter in Figure 11.12. The function
of the heavily doped buried layer is likewise to reduce this resistance – by placing
a low-resistance path in parallel with the high-resistance epitaxial collector proper.
A second base contact to the right of the emitter contact will reduce parasitic base
resistance.

At high frequencies, we have to account for at least the most basic frequency-
dependent device behavior. To do so, first recognize that a bipolar transistor consists
of two junctions. The base–emitter junction is normally in forward bias, while the
collector–base junction is normally reverse-biased. Hence there must be, at mini-
mum, two junction capacitances (one each for the base–emitter and collector–base
terminal pairs).

The small-signal capacitance is well approximated by

Cj = Cj0

(1 − Vj/ψ0)m
, (12)

where Cj0 is the junction capacitance at zero bias, Vj is the junction voltage (positive
in forward bias), ψ0 is nominally the contact potential (dependent on the bandgap
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F IGURE 11.13. Excess carrier concentration in the base region
at different base–emitter voltages

of the material, and typically of the order of 1 V for silicon), and m is a constant
that depends on the doping profile. For linearly graded junctions, m is 1/3, and for
abrupt junctions, it is 1/2. Values of m in excess of 1/2 are possible through the use
of hyperabrupt junctions (as discussed in greater detail in Chapter 9).

Junction capacitance behavior conforms surprisingly well to this equation for re-
verse bias, and even for weak forward bias. In deep forward bias, the capacitance
typically limits at a value about 2–3 times Cj0, rather than growing without bound
as the junction voltage approaches ψ0. In amplifiers, the voltage dependency of this
capacitance is usually considered a liability because it is a source of distortion. In
special circumstances, nonlinearities can be exploited for a number of purposes, such
as harmonic generation.

For the reverse-biased collector–base junction, the parallel-plate capacitance is all
there is. For the forward-biased base–emitter junction, however, we have to do a little
more work. To understand how there could be a capacitance besides a parallel-plate
term (which is, essentially, what is being modeled by Eqn. 12), consider Figure 11.13:
a simple (and highly approximate) plot of excess carrier concentration as a function
of position in the base.

The concentration of injected carriers at the emitter edge is exponentially related to
the total base–emitter voltage. Shown in the figure are hypothetical distributions for
three different values of vBE. Neglecting recombination leads to the perfect straight-
line distributions shown. The concentrations all go to zero at the collector edge
because that junction is in reverse bias. Carriers flow principally by diffusion from
the region of high concentration (at the emitter edge) to the collector edge, where the
concentration is zero.17

The total charge in the base region is proportional to the area of the triangle for any
given vBE. If vBE increases then extra charge must be supplied by the base terminal;

17 In virtually all modern transistors, the base doping varies with position, creating a built-in electric
field that greatly enhances transport of carriers across the base. This field opposes drift in the op-
posite direction, which is one reason why a transitor has much poorer frequency response when
operated with collector and emitter reversed.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511812941.012
Downloaded from https://www.cambridge.org/core. The Librarian-Seeley Historical Library, on 18 Dec 2019 at 06:19:27, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511812941.012
https://www.cambridge.org/core


358 CHAPTER 11 TR ANSISTORS

F IGURE 11.14. Higher-frequency hybrid-π model
for bipolar transistor

F IGURE 11.15. High-frequency hybrid-π model
for bipolar transistor including some parasitics

if vBE decreases, charge must be extracted. This behavior is modeled by a capaci-
tance. Unlike an ordinary junction capacitor, however, this one has a value that is
proportional to vBE (the bigger the value of vBE , the bigger the triangles swept out
for a given change in vBE). With our linearization, this proportionality implies that
the capacitance, called the diffusion capacitance Cb, is proportional to the DC col-
lector bias current. Thus, the base–emitter capacitance is the sum of the ordinary
(voltage-dependent) junction term and this (current-dependent) diffusion term:

Cπ = Cje + Cb. (13)

Including all of these capacitances thus leads to the model shown in Figure 11.14.18

Packaged devices have additional parasitics. The most significant are inductances
in series with each terminal; see Figure 11.15. A challenge is to minimize these
unwanted inductances. Excessive parasitic emitter inductance is particularly unwel-
come. For example, a 1-nH emitter inductance represents an impedance of more than
6 " at 1 GHz. This built-in impedance can cause a significant decrease in the gain
of a stage and also threaten gain flatness by introducing the possibility of resonance.
Many high-frequency packages offer two emitter leads, for example, precisely to
lower the effective series inductance.

18 Note that we are neglecting the output resistance, ro. Although such an omission usually produces
negligible errors, one should check the validity of that assumption in any case where it might
matter. Examples include high-gain circuits as well as low-noise amplifiers, where the input im-
pedance may be a sensitive function of such a resistor.
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F IGURE 11.16. Circuit for f T determination

A more elaborate model of package parasitics might include various resistances
(perhaps modeling lead losses) and capacitances (e.g. between all terminal pairs) as
well. However Figure 11.14 captures most phenomena of interest to the RF and mi-
crowave engineer. Again, keep in mind that we are looking for models that give us
design insight, not necessarily the correct answers. Simulators, using much more
elaborate models, take care of the analysis problem for us.

11.3.3 HIGH-FREQUENCY FIGURES OF MERIT

A common figure of merit is the frequency at which the short-circuit common–emitter
current gain is extrapolated to drop to unity. For the circuit shown in Figure 11.16,19

ωT = gm

Cπ + Cµ

. (14)

Notice that this figure of merit is completely insensitive to any impedance in series
with the base terminal. Since the base is driven by a current source, any such imped-
ance is totally irrelevant for ωT .

20 However, actual circuit performance is certainly
sensitive to these impedances, revealing one serious deficiency of this particular (and
overused) measure. All too often, this parameter is maximized at the expense of more
practically relevant ones. Another problem is that any shunt impedance across the
collector–emitter terminals is similarly ignored, here because they are shorted out.

Because there is nothing fundamental about current gain (for example, in prin-
ciple one could always use an ideal transformer to obtain any current gain without
consuming any power) and because ωT is otherwise an incomplete figure of merit,
a different measure of device performance is often offered to supplement ωT . The
maximum frequency of oscillation, ωmax , tells us when the power gain of the tran-
sistor has dropped (or is extrapolated to drop) to unity. For our simple model,

ωmax = 1
2

√
ωT/rbCµ. (15)

This measure is more satisfactory because it explicitly shows that the series base re-
sistance has a definite impact on high-frequency performance.

19 In deriving this directly from the circuit, the contribution to the output current by Cµ is neglected
but its contribution to the input current isn’t.

20 “A current source in series with a Buick is still a current source.”
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For measurement of both ωT and ωmax , the various gains are plotted as a function
of frequency until they drop with a clear single-pole trend.21 Each trend is extrapo-
lated to the unity gain frequency. This extrapolation is necessitated by the appearance
of more complex behaviors as frequency increases. In the case of ωT , it is possi-
ble with our model never to reach the unity gain frequency because of feedthrough
via Cµ.

Although the preceding discussion is based on the silicon bipolar transistor, the
basic model applies to HBTs as well – at least for the purpose they are meant to serve
(acquisition of design insight). Model element parameters, of course, will differ.

11.3.4 EXTR AC TION OF MODEL PAR A METERS
FROM DATA SHEETS

Despite (or because of ) the large amount of data contained in data sheets, it can be
challenging to extract model parameters. Again keeping in mind that everything we
say and do in modeling is wrong to some degree, it is nevertheless possible to outline
a parameter extraction method that is sufficiently accurate for back-of-the-envelope
calculations. The model elements of interest are the capacitances Cµ and Cπ and the
parasitic base resistance rb. We may be interested in the inductances in series with
the terminals as well. Occasionally, we may also care about mutual inductances be-
tween terminals (RF power transistors for base stations are an example, since they
are typically made of multiple devices wired in parallel).

The value of Cµ is usually given directly on data sheets but often labeled Cob,
which derives its name from its measurement in a common-base test circuit with the
emitter terminal open. A quick look at our transistor model reveals that the capaci-
tance actually measured in such a test is what we have been calling Cµ.

The junction portions of Cπ and Cje are typically given as well. However, they
are almost always measured at reverse bias. Since the base–emitter junction is oper-
ated in forward bias, the Cje values that are given must be converted somehow into
forward-bias values. The easiest way is simply to find the zero bias value and double
it. (Eqn. 12 cannot be used as a basis for this conversion because it is invalid for
ordinary forward bias.) Fortunately, Cje is rarely dominant, so a somewhat large un-
certainty in its value is acceptable.

The diffusion capacitance term, Cb, is best inferred from a plot of ωT as a func-
tion of collector current (see Eqn. 14). As a rough approximation, one may extract
an estimate of the diffusion capacitance per current from data-sheet parameters as

Cb

IC
≈ 1

VT ωT,pk

, (16)

where ωT,pk is the maximum value of ωT , VT is the thermal voltage (kT/q), and the
collector current corresponds to the value that produces ωT,pk.

21 The current gain thus falls off as 1/f , whereas the power gain falls off as 1/f 2.
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At low currents, where the diffusion term is negligible, the capacitances are fixed
and ωT increases linearly with gm and, hence, with collector current. Ultimately,
the diffusion term dominates the denominator, leading to a constant ωT . Then, to
a reasonable approximation, Cb is simply gm/ωT in that regime of constant ωT . In
real devices, ωT ultimately drops with increasing IC because of high-level injection
effects that cause the base to widen and thereby increase the charge stored at a su-
perlinear rate, so one should make the determination in the flattest possible region.
In true HBTs, high-level injection effects are suppressed to such an extent that it is
easier to make this determination for those devices than for ordinary homojunction
bipolar transistors.

Deducing rb is the most difficult of all, and one must generally accept a fairly high
uncertainty in its inferred value. As shown in Chapter 13, the input resistance will
have a real part that is the sum of rb and an induced resistance created by the inter-
action of emitter inductance and the transistor:

rin ≈ rb + ωTLe. (17)

Most data sheets for microwave transistors provide a plot of input impedance as
a function of frequency. Find where the input resonance occurs, and note the resis-
tance at resonance; this is rin. Use the resonant frequency and knowledge of device
capacitances to deduce the total package inductance. Since the total inductance is the
sum of base and emitter inductance, you need to make some judgment or calculation
about how the total is partitioned between the two leads. For many packages, an even
split is a good choice. Finally, use knowledge of ωT to complete the computation of
rb. Unfortunately, ωTLe is in many cases a significant fraction of the measured rin,

so that estimation of rb is associated with a large uncertainty.
It’s also helpful to note that rb varies with bias point. At low collector current,

the base current is correspondingly low. The voltage dropped along the series resis-
tance in the base is therefore small, and the entire base–emitter interface is effective
at injecting carriers into the base region. At high currents, the drop along the base
resistance is large. Thanks to this drop, the voltage varies along the base–emitter
interface, being larger near the surface than deeper in the structure because of the
shorter path between base and emitter contacts. The base–emitter interface thus in-
jects current nonuniformly, with greater emission near the surface. The mean distance
between the base contact and the effective emitting regions thus diminishes, produc-
ing a corresponding reduction in rb. Typically, the ratio of maximum to minimum rb
is a factor of about 2.

11.4 FET MODELS

Fortunately, MOSFETs, MESFETs, and HEMTs share a common model (to zeroth
order). As asserted earlier, it is quite similar to that for a bipolar transistor, displayed
in Figure 11.17. We consciously avoid presenting any detailed large-signal V–I equa-
tions because, for modern MOSFETs and MESFETs, the number of second-order
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F IGURE 11.17. Simple incremental FET model

effects is so large as to make any simple set of equations quantitatively useless. It’s
not even qualitatively correct to make statements such as “the current varies quadrat-
ically with the gate–source voltage.” Therefore, we’ll offer a few qualitative and
quasi-quantitative observations.

First, all FETs work by modulating the conductivity of a semiconductor. In the
case of depletion-mode devices such as a JFET or a typical MESFET/HEMT, the
default state is one of conduction and so we apply a control voltage to reduce the
conductivity. In the case of an n-channel device, the gate–source voltage will be neg-
ative.22 A parameter known as the pinchoff voltage corresponds to the gate–source
voltage that produces an extrapolated drain current of zero. In enhancement-mode
devices, the default state is one of nonconduction and so we must induce conductivity
by the application of a sufficient gate–source voltage. Conduction is extrapolated to
begin once the gate–source voltage exceeds a certain threshold voltage. From these
descriptions, you see that the threshold voltage and the pinchoff voltage are actually
describing the same point, just approached from opposite default conditions.

There are two distinct regimes of operation for a FET. In triode, by analogy with
its vacuum tube ancestor, the FET acts like a voltage-controlled (albeit nonlinear)
resistor. For small drain–source voltages, the resistance is inversely proportional to
the gate overdrive (the gate–source voltage beyond threshold):

rds ∝ 1/(vGS − vT ). (18)

The FET remains in this resistive region of operation as long as the drain–source volt-
age is smaller than the gate–source voltage. For higher drain–source voltages, the

22 Nearly all microwave devices are designed to have electrons carry the current. Thus, microwave
bipolar transistors are generally NPN devices, and microwave FETs are usually n-channel transis-
tors. The reason is that electron mobility is always greater than hole mobility. In silicon, there is a
2 :1 disparity, making PNP or p-channel FETs reasonably practical. For other materials, however,
the disparity can exceed an order of magnitude. Thus commercial p-channel GaAs MESFETs, for
example, do not exist.
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gate voltage at the drain end of the device is insufficient to induce carriers. The con-
ductive channel is then said to be pinched off. Nonetheless, current still flows. This
statement should bother you, for it’s based on a nonphysical sleight of hand. The
density of charges goes to zero, but these charges flow infinitely fast (got that?). By
the magical properties of “infinity times zero,” the product can be finite (or anything
that you want). In reality, true pinchoff does not occur; the charge density goes down
near the drain end, but not to zero. At the same time, the carrier velocity does not go
to infinity but rather to a maximum velocity determined by material properties: the
saturation velocity. It’s the ultimate speed limit for a given material.23 Gallium ar-
senide’s saturation velocity is about double that of silicon, explaining its popularity
for RF and microwave applications.

Once pinchoff (sort of ) occurs, the drain current saturates (because the veloc-
ity and charge density both do). This regime of operation is thus called, reasonably
enough, saturation. In the ever-elusive classical, textbook FET, the drain current in
saturation depends quadratically on gate overdrive:

iD = K(vGS − vT )
2, (19)

where K is whatever it needs to be to make the drain current correct. For JFETs, it’s
traditional to express K as

K = IDSS/V
2
P , (20)

where IDSS is the drain current at zero gate–source voltage. In this case, the threshold
voltage would be replaced by the pinchoff voltage in Eqn. 19.

As with bipolar transistors, the current doesn’t really saturate perfectly; a depen-
dence on drain–source voltage remains. This effect is modeled in the same way, by
the addition of a drain–source resistance ro.

From this point on, we focus instead on the small-signal picture, leaving the large-
signal details to more elaborate simulation models. Perhaps it is sufficient to note
that in MESFETs there are gate–source and gate–drain Schottky diodes, both oper-
ating in reverse bias during normal operation. Either or both diodes can be forward
biased under unusual operating conditions, however. In contrast, MOSFETs have no
junctions tied directly to the gate.

Note that there are two transconductances in our small-signal model. A typi-
cal MOSFET actually has two gates. One is the nominal gate, and the other is the
substrate. Because variations in potential on both terminals can modulate the drain
current, two separate transconductances are needed in the model. If the source and
substrate terminals are tied together (as in all discrete devices), the model simplifies
because the back-gate effect and its corresponding model elements disappear.

23 This statement is true only as long as the charges flow along a path that is at least several mean-free
paths (the average distance between collisions or other scattering events) in extent. If the path is
short enough, then carriers will flow ballistically and the concept of a saturation velocity breaks
down.
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F IGURE 11.18. MOSFET capacitances

The transconductance may be expressed in a number of ways, but a compact one is

gm = B
ID

VOD

, (21)

where ID is the drain current bias value and VOD is the gate overdrive voltage. The
equation is valid only for VOD greater than several kT/q, so the transconductance per
unit current is guaranteed by nature to be worse for FETs (of any kind) than for bipo-
lars. The parameter B is ideally 2 for square-law devices, and it approaches unity for
real devices.

Not shown in the simple model of Figure11.17 are resistances in series with the ter-
minals. Because the gate electrode is usually made of thin polysilicon in MOSFETs,
the series gate resistance may not be neglected in general. Device designers go to
great pains to subdivide silicon MOSFETs into several paralleled pieces to keep the
total gate resistance low. Because MESFET gates are made out of much lower-
resistivity metal, the series gate resistance tends to be correspondingly lower than for
MOSFETs.

In the case of a MESFET (and its cousins), the gate capacitance charging resis-
tance, Ri, is sometimes important. The main transconductance depends on the volt-
age across the gate–source capacitance, so the presence of Ri produces a low-pass
filter. A typical range of values for Ri is 5–10 ".

11.4.1 DYNA MIC ELEMENTS

Capacitances limit the high-frequency performance of FET circuits, just as they limit
the performance of bipolar ones, so we need to understand where they come from
and roughly how big they are.

First, since the source and drain regions form reverse-biased junctions with the
substrate, one expects the standard junction capacitance from each of those regions to
the substrate. These capacitances are denoted Cjsb and Cjdb, as shown in Figure 11.18,
where the extent of the depletion region has been greatly exaggerated.
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There are also various parallel-plate capacitance terms in addition to the junction
capacitances. The capacitors shown as Cov in Figure 11.18 represent gate–source and
gate–drain overlap capacitances; these are highly undesirable, but unavoidable. Dur-
ing manufacture, the source and drain regions may diffuse laterally by an amount
similar to the depth that they diffuse. Hence, they bloat out a bit during processing
and extend underneath the gate electrode by some amount. As a crude approxima-
tion, one may take the amount of overlap, LD, as 2/3 to 3/4 of the depth of the
source–drain diffusions. Hence,

Cov ≈ εox

tox
WLD = 0.7CoxWxj , (22)

where xj is the depth of the source–drain diffusions, εox is the oxide’s dielectric con-
stant (about 3.9ε0), and tox is the oxide thickness.

The parallel-plate overlap terms are augmented by fringing, and thus the “over-
lap” capacitance would be nonzero even in the absence of physical overlap. In this
context, one should keep in mind that, in modern devices, the gate electrode is ac-
tually considerably thicker than the channel is long, so the relative dimensions of
Figure 11.18 are misleading. Think of a practical gate electrode as a tall oak tree in-
stead of a thin plate. In addition, the interconnecting wires to the source and drain
are hardly of negligible dimensions. Because the thickness of the gate electrode now
scales little (if at all), the “overlap” capacitance now changes somewhat slowly from
generation to generation.

Another parallel-plate capacitance is the gate-to-channel capacitance, Cgc. Since
both the source and drain regions extend into the region underneath the gate, the ef-
fective channel length decreases by twice the bloat, LD. Hence, the total value of
Cgc is

Cgc = CoxW(L − 2LD). (23)

In strong inversion, the charge carriers at the surface and those in the bulk are of
the opposite type. In between there is a depletion region. As a result, there is also a
capacitance between the channel and the bulk, Ccb, that behaves as a junction capac-
itance. Its value is approximately

Ccb ≈ εSi

xd

W(L − 2LD); (24)

here xd is the depth of the depletion layer, whose value is given by

xd =
√

2εSi

qNsub

|φs − φF |. (25)

The quantity within the absolute-value bars is the difference between the surface po-
tential and the Fermi level in the substrate. In strong inversion (for both triode and
saturation regions), this quantity has a magnitude of twice the Fermi level.

Now, the channel is not an explicitly accessible terminal of the device, so find-
ing how the various capacitive terms contribute to the terminal capacitances requires
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Table 11.1. Approximate MOSFET terminal capacitances

Off Triode Saturation

Cgs Cov Cgc/2 + Cov 2Cgc/3 + Cov

Cgd Cov Cgc/2 + Cov Cov

Cgb CgcCcb/(Cgc + Ccb) 0 0
< Cgb < Cgc

Csb Cjsb Cjsb + Ccb/2 Cjsb + 2Ccb/3

Cdb Cjdb Cjdb + Ccb/2 Cjdb

knowledge of how the channel charge divides between the source and drain. In gen-
eral, the values of the terminal capacitances depend on the operating regime because
bias conditions affect this partitioning of charge. For example, when there is no in-
version charge (the device is “off”), the gate–source and gate–drain capacitances are
just the overlap terms to a good approximation.

When the device is in the linear region there is an inversion layer, and one may
assume that the source and drain share the channel charge equally. Hence, half of
Cgc adds to the overlap terms. Similarly, the Cjsb and Cjdb junction terms are each
augmented by half of Ccb in the linear region.

In the saturation regime, potential variations at the drain region don’t influence
the channel charge. Hence, there is no contribution to Cgd by Cgc; the overlap term
is all there is. The gate–source capacitance is affected by Cgc, but “detailed consid-
erations”24 show that only about 2/3 of Cgc should be added to the overlap term.
Similarly, Ccb contributes nothing to Cdb in saturation but does contribute 2/3 of its
value to Csb.

The gate–bulk capacitance may be taken as zero in strong inversion (both in tri-
ode and in saturation, as the channel charge essentially shields the bulk from what’s
happening at the gate). When the device is off, however, there is a gate-voltage–
dependent capacitance whose value varies in a roughly linear manner between Cgc

and the series combination of Cgc and Ccb. Below (but near) threshold, the value is
closer to the series combination and approaches a limiting value of Cgc in deep accu-
mulation, where the surface majority carrier concentration increases above that of the
bulk, owing to the positive charge induced by the strong negative gate bias. In deep
accumulation, the surface is strongly conducting and may therefore be treated as es-
sentially a metal, leading to a gate–bulk capacitance that is the full parallel-plate value.

The variation of this capacitance with bias presents one additional option for real-
izing varactors. To avoid the need for negative supply voltages, the capacitor may be
built in an n-well using n+ source and drain regions to form an accumulation-mode
MOSFET capacitor. The terminal capacitances are summarized in Table 11.1.

24 The 2/3 factor arises from the calculation of channel charge, and inherently comes from integrat-
ing the triangular distribution assumed in Figure 11.18 in the square-law regime.
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As a final comment, you may take as a rough rule of thumb (if no other infor-
mation is given to you) that the gate–source capacitance of all FETs is of the order
of 1 pF per millimeter of gate width. Scaling trends have curiously led to a rough
constancy of this factor, despite orders-of-magnitude changes in device feature sizes.
However, we cannot guarantee that this constancy will extend into the future. This
number is offered simply as a crude guide to aid zeroth-order, back-of-the-cocktail
napkin calculations with which to impress your party guests.

Transit Time Effects (Nonquasistatic Behavior)

The lumped models of this chapter clearly cannot apply over an arbitrarily large fre-
quency range. As a rough rule of thumb, one may usually ignore with impunity
the true distributed nature of transistors up to roughly a tenth or fifth of ωT . As
frequencies increase, however, crude lumped models become progressively inade-
quate. The most conspicuous shortcomings may be traced to a neglect of transit time
(“nonquasistatic” or NQS) effects.

To understand qualitatively the most important implications of transit time effects,
consider applying a step in gate-to-source voltage. Charge is induced in the chan-
nel and drifts toward the drain, arriving some time later owing to the finite carrier
velocity. Hence, the transconductance has a phase delay associated with it.

A side effect of this delayed transconductance is a change in the input impedance:
the delayed feedback from the channel back through the gate capacitance necessar-
ily prevents a pure quadrature relationship between gate voltage and gate current. As
a consequence, the applied gate voltage performs work on the channel charge. This
dissipation must be accounted for in any correct circuit model. Van der Ziel25 has
shown that, at least for long-channel devices, the transit delay causes the gate admit-
tance to have a real part that grows as the square of frequency:

gg = ω2C2
gs

5gd0
. (26)

To get roughly calibrated on the magnitudes implied by Eqn. 26, assume that gd0

is approximately equal to gm. Then, to a crude approximation,

gg ≈ gm

5

(
ω

ωT

)2

. (27)

Hence, this shunt conductance is negligible as long as operation well below ωT is
maintained. However, for accurate computations of power gain at high frequencies
and thermal noise, this conductance must be included. We shall see later that a proper
noise figure calculation must take this noise source into account, for example. Finally,
because the derivation of the extrapolated unity–power gain frequency presented ear-
lier neglects nonquasistatic effects, it overestimates the true value of ωmax.

25 Noise in Solid State Devices and Circuits, Wiley, New York, 1986.
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368 CHAPTER 11 TR ANSISTORS

As a final note on NQS effects, we note that a series resistance could be used in-
stead of a shunt conductance by transforming the parallel ggCgs circuit into a series
RiCgs. In that case, the model parameter Ri is given by

Ri ≈ 1/5gd0. (28)

A common error is to define the gate-to-source voltage as across the capacitor (in
the MESFET, the transconductor’s current indeed depends on that capacitor volt-
age). After the transformation to a series representation, the control voltage for the
transconductor is the voltage across the series combination for a MOSFET.

11.4.2 DIFFERENCES IN THE MESFET AND HEMT

The basic small-signal models for the MESFET and HEMT are essentially the same as
that for the MOSFET, although the particular functional dependencies are different.
In most of the literature on MESFETs, nonquasistatic effects are rarely mentioned,
even though they must be present.

In the case of the HEMT, gate current leakage is often nonnegligible. In those
cases, simply adding a shunt resistance across the gate capacitance suffices to model
the effect.

11.5 SUM M ARY

We’ve seen that it is possible to develop simple small-signal transistor models that
are nonetheless useful enough both for first-pass designs and as a guide to subsequent
iteration, even if analysis is performed with more sophisticated computer models. A
method for extracting model parameters from data sheets allows the engineer to make
progress even if suitable models are not offered by the manufacturer.
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C H A P T E R T W E L V E

A MPLIF IERS

12.1 INTRODUC TION

The design of amplifiers for signal frequencies in the microwave bands involves more
detailed considerations than at lower frequencies. One simply has to work harder to
obtain the requisite performance when approaching the inherent limitations of the de-
vices themselves. Additionally, the effect of ever-present parasitic capacitances and
inductances can impose serious constraints on achievable performance. Indeed, par-
asitics are so prominent at RF that an important engineering philosophy is to treat
parasitics as circuit elements to be exploited, rather than fought.

Having evolved during an era where modeling and simulation capabilities were
primitive, traditional microwave amplifier design largely ignores the underlying de-
tails of device behavior. Instead, S-parameter sets describe the transistor’s macro-
scopic behavior over frequency. In doing so, vast simplifications can result, but at
a cost. By effectively insulating the engineer from the device physics, it is difficult
to extrapolate beyond the given data set. Furthermore, real transistors are nonlinear,
so the S-parameter characterizations are strictly relevant only for the bias conditions
used in their generation.

Because simulation and modeling tools have advanced considerably since that
time, we will consider the design of both broadband and narrowband amplifiers from
a device-level point of view, rather than with the more traditional Smith-chart–based
approach. Thus, we will not spend time examining stability and gain circles, for ex-
ample.1 Readers interested in the classical approach are directed to any of a number
of representative texts that cover the topic in detail.2

We’ll assume that the reader is already familiar with basic amplifier configurations
(such as common-emitter, cascode, etc.), so we will instead focus on several tech-
niques for extending bandwidth. We’ll also study a collection of “strange impedance
behaviors” that can afflict amplifiers, as well as their cures.

1 This neglect should not be interpreted as a condemnation. The traditional approach allows one to
proceed with design in the absence of models. That ability can be a powerful asset.

2 See e.g. G. Gonzalez, Microwave Transistor Amplifiers, 2nd ed., Prentice-Hall, New York, 1996.
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370 CHAPTER 12 A MPLIF IERS

F IGURE 12.1. “Foolproof”
bipolar bias circuit

12.2 MICROWAVE BIASING 101

We begin, though, with a consideration of practical ways to bias transistors. Com-
pared with design practice at lower frequencies, appropriate biasing idioms are more
limited at RF because it is difficult to keep the bias circuit’s parasitics from interact-
ing with the signal path at microwave frequencies. In some cases, you might be able
to arrange for the bias circuit to serve double duty (e.g., act as part of the matching
network). In all cases, you must keep in mind the physical details of implementing
any proposed bias network. Developing this habit is a challenge for newcomers to
RF and microwave circuits. Many designs that appear promising on paper are spoiled
by inattention to bias circuit implementation details.

As it is impossible to examine an exhaustive collection of bias circuits, we will
present just a few of the more commonly used types most appropriate for use in dis-
crete circuits. The selected examples and their analyses should be sufficient, though,
to give the reader a fairly comprehensive understanding of the subject.

12.2.1 BIPOL AR TR ANSISTOR BIASING

In noncritical applications, it may be acceptable to use the bias circuit shown in Fig-
ure 12.1. We assume that the base is AC coupled to whatever drives this stage. Thus,
the bias is established only by the elements explicitly shown in the figure. The circuit
is “foolproof” in the sense that the transistor is guaranteed to be biased somewhere in
the forward active region for any supply voltage high enough to forward bias a diode.

Perhaps the easiest proof is by reductio ad absurdum. First, recall that a bipolar
transistor can find itself in only one of three possible regions of operation: cutoff, sat-
uration, and active. In cutoff, there is essentially no collector current. In saturation,
there is significant forward bias on both junctions. The collector–emitter voltage
is then the difference between two junction voltages and is necessarily smaller than
either. In the forward active region, only the base–emitter junction is in forward bias.

Now we have all we need. First assume that the transistor is in cutoff. Then there
is no current through any branch and hence no voltage drop across the two resistors.
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12.2 MICROWAVE BIASING 101 371

F IGURE 12.2. AppCAD simulation results for simple foolproof bias circuit

The base–emitter voltage is thus VCC , which contradicts the assumption that the tran-
sistor is in cutoff.

As a second try, assume that the transistor is in saturation. Then, the collector–
emitter voltage is less than the base–emitter voltage. If that’s the case, the current
through the feedback resistor RB must flow out of the base. That condition is in-
compatible with the assumption of forward bias on the base–emitter junction, so the
transistor can’t be in saturation. All that’s left is the active region. QED.

An additional virtue of this circuit is that the emitter is truly grounded (not just
bypassed to ground). By not interposing any elements (like a resistor) between the
emitter and ground, parasitic inductance is minimized. This consideration is impor-
tant because series inductance can degrade RF gain, produce unwanted resonances,
and otherwise alter the input impedance in ways that may be undesired.

Offsetting those attributes is relatively poor bias stability. The voltage on the col-
lector equals the base–emitter voltage, augmented by the drop across RB. In turn,
the latter depends on the base current, and is thus sensitive to β:

VC = VBE + IC

β
RB. (1)

Regrettably, β increases with temperature at the rate of about 0.6%/K. Therefore,
the collector voltage decreases – and the collector current increases – with increasing
temperature.

In the particular bias design analyzed in Figure 12.2, we see that the collector cur-
rent varies over a 2.6 :1 ratio over the military temperature range. A smaller variation
results if the supply voltage is increased, because a given absolute change inVC repre-
sents a decreasing percentage of the voltage dropped across the collector load resistor
as VCC increases. Similarly, bias stability improves if the target collector voltage is
decreased because, again, the total drop across the load increases.
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F IGURE 12.3. More stable “foolproof” bipolar
bias circuit (VBE -based feedback bias)

If neither of those options is acceptable, the addition of a single resistor can pro-
vide improvements by reducing the dependency on β. See Figure 12.3. Suppose that
the current through the two bias resistors is large compared to the base current. Now,
the voltage across RB2 is simply VBE. If the base current can indeed be neglected,
then the voltage across RB1 is VBE(RB1/RB2) to a good approximation. Thus, the
collector voltage is approximately

VC ≈ VBE(1 + RB1/RB2). (2)

The output voltage, and thus the current, is dependent primarily on VBE. Because
VBE typically drops about 2 mV/K, the collector voltage will drop with increasing
temperature as well. Over the military temperature range, the change in VBE can be
expected to be about 350 mV. With a fixed supply voltage, that behavior implies an
increase in collector current with increasing temperature, just as in our original fool-
proof bias circuit. AppCAD’s analysis of this circuit reveals that the current variation
is now 2.1 :1 over temperature, for the same conditions as before. If the supply volt-
age is raised to 5 V, the variation drops to 1.5 :1 over temperature.

These feedback bias methods allow the emitter to be tied to ground. Bias stability
results from negative feedback’s reduction of DC gain. Unfortunately, this negative
feedback is implemented with broadband elements and is thus equally effective at re-
ducing signal gain, too. One option for fixing this problem is to interpose a choke
between the base and the resistive feedback network to decouple the action of the DC
bias network from the signal path at the input; see Figure 12.4. If RB1 and RB2 are
sufficiently large compared with RC , then the loading of the output node by the bias
network can be neglected.

It’s important to resist the urge to make the choke infinitely large. Remember that
every inductor has parasitic capacitance. Above the corresponding self-resonant fre-
quency, the inductor actually looks capacitive. Thus, it’s best to adopt a philosophy
of moderation, choosing a choke that is no larger than absolutely necessary. A rough
rule of thumb is to choose the reactance of the choke equal to 5–10 times the imped-
ance seen at the base at the lowest signal frequency of interest.
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12.2 MICROWAVE BIASING 101 373

F IGURE 12.4. Use of choke to decouple
DC and AC signal paths

F IGURE 12.5. Use of a capacitor to decouple
DC and AC signal paths

An alternative that becomes increasingly attractive as frequency increases is to re-
place the choke with a high-impedance λ/4 line. If the junction of RB1 and RB2 is
well bypassed to ground with a suitable capacitance, the other end of the line will
present a very high impedance. Clearly, use of a λ/4 bias feed is limited to relatively
narrowband systems. Within that constraint, however, the technique is extremely
useful.

Yet another alternative is to break the feedback resistorRB1 into two pieces and ca-
pacitively bypass the midpoint to ground; this is shown in Figure 12.5. When using
this method, it’s important to bear in mind that the resistor RB1b needs to be large
enough compared with RC not to load the output too much. At the same time, the
parallel combination of RB1a and RB2 needs to be large enough not to load the input
excessively. Satisfying these requirements is somewhat at odds with achieving good
bias stability, however.

As with the choke, one must resist the temptation to specify an excessively large
value for C. A good rule of thumb is to select it large enough so that its reactance
is 5–10 times smaller than the effective resistance it faces at the lowest frequency at
which the amplifier is to operate.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511812941.013
Downloaded from https://www.cambridge.org/core. The Librarian-Seeley Historical Library, on 18 Dec 2019 at 06:18:08, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511812941.013
https://www.cambridge.org/core


374 CHAPTER 12 A MPLIF IERS

F IGURE 12.6. Bias for β- and
VBE -independence

Just to round out this collection of common bipolar bias methods, in Figure 12.6
we present a classic topology that is popular at lower frequencies. Because of the
emitter degeneration, it isn’t quite as popular at microwave frequencies – except in
applications that are tolerant of the probable gain reduction that accompanies the
presence of irreducible parasitics.

There are many ways to analyze this bias configuration, but the rigorous ones tend
to obscure the principles of operation. Instead, we’ll provide an approximate analysis
that is more useful for design. As always, one should then verify that design objec-
tives have in fact been met, using more rigorous analyses. That said, the method that
we’ll present will yield conservative results in the vast majority of practical cases.

Bias current variation arises from changes in β and VBE over temperature, and
from device to device. The circuit of Figure 12.6 suppresses both of these sources.
To understand most directly how, let’s consider the individual contributions of each
to the overall variation in bias point. In effect, we’ll invoke a small-signal assump-
tion and simply add the two variations together to estimate the total.

To estimate the change in bias caused by VBE-variation over temperature, first re-
call that, at constant collector current, VBE decreases by about 2 mV/K, so that VBE
might change by a total of about 350 mV over the full military temperature range. If
we neglect β-variation for this calculation, then we may assume that the base volt-
age is fixed. Then, the variation in collector current is due entirely to changes in the
emitter voltage caused by the change in VBE:

�IC,VBE = �VBE

RE

. (3)

Expressing this as a fraction of the nominal collector current, we can write

�IC,VBE

IC,NOM
= �VBE

IC,NOMRE

. (4)

Thus, we can suppress changes in collector current to any desired degree by choos-
ing a sufficiently large nominal voltage drop across RE. For example, by choosing

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511812941.013
Downloaded from https://www.cambridge.org/core. The Librarian-Seeley Historical Library, on 18 Dec 2019 at 06:18:08, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511812941.013
https://www.cambridge.org/core


12.2 MICROWAVE BIASING 101 375

F IGURE 12.7. Equivalent circuit for β- and
VBE -independent bias

the nominal emitter voltage equal to 3.6 V, we can keep the variation in collector
current (due to VBE variation) down to about 10% over the entire temperature range.
This result shouldn’t be surprising, because the mechanism that reduces the sensitiv-
ity to this variation is precisely the same as that which reduces the gain to desired
signals. That is, the circuit can’t really distinguish between desired inputs and unde-
sired voltage variations, so whatever is effective at suppressing one will be equally
effective at reducing the other.

We now consider how to reduce sensitivity to variations in β. It’s important to
understand that β varies considerably from device to device (even of the same nom-
inal type) and also over temperature. Generally speaking, the variation in β is about
0.6%/K. Over the military temperature range, it’s not unusual to see a 2 :1 or 3 :1
change in β. Compounding that variation is the normal manufacturing spread.3 As a
result, a conservative bias design needs to accommodate perhaps a 5 :1 (or greater)
variation in β. To see how best to do so, let’s first replace the input circuit with its
Thévenin equivalent; see Figure 12.7. Here,

VTH = VCC
RB2

RB1 + RB2
(5)

and

RTH = RB1 ‖ RB2. (6)

In this part of the analysis, we assume that VBE is fixed at its nominal value. Thus,
the variation in collector current results from the change in base voltage that accom-
panies changes in base current arising from β-variation:

VB = VTH − IC

β
RTH . (7)

3 Few manufacturers’ data sheets specify the variation, often opting for a minimum β without a max-
imum or simply stating a “typical” value (whatever that means). If you take their data too literally,
you may overdesign the bias network.
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F IGURE 12.8. N-channel depletion-mode FET self-bias
(bypass across degeneration not shown)

It’s clear that choosing a sufficiently small RTH will make the base voltage insensi-
tive to β to any desired degree. That, in turn, will make variations in collector current
as insensitive to β as needed. As a crude rule of thumb, selecting the current through
the base bias resistors equal to 5–10 times the maximum base current will yield satis-
factory stability. For a more quantitative guide, first note that the maximum collector
current coincides with maximum β. Then we may write

�VB = RTH

(
IC,max

βmax
− IC,min

βmin

)
. (8)

With the aid of Eqn. 8, you can select a specific RTH to produce as small a �VB as
your budget allows.

In summary: First select the voltage drop across the emitter degeneration suffi-
ciently large to suppress base–emitter voltage variations, and then select the base
bias resistors sufficiently small to suppress β-variations. Finally, bypass the degener-
ation resistor to restore the stage’s AC gain to the value desired. Owing to parasitics,
this last step becomes increasingly difficult as frequency increases. Again, a numeri-
cally small parasitic inductance becomes a large impedance at high frequencies. Just
a single nanohenry is 63 � at 10 GHz.

12.2.2 DEPLET ION-MODE FET BIASING

All junction FETs are depletion-mode devices, as are most MESFETs and HEMTs.
Thus, in normal operation, the gate–source voltage will be negative for n-channel
devices. In configurations that do not demand maximum efficiency, it may be ac-
ceptable to use a simple source-degeneration resistor for biasing. With that choice,
it is possible to return the gate terminal to a DC ground. The resulting configuration
is often known as self-bias (see Figure 12.8), and it dates back to the earliest days
of the vacuum tube era. In particular, n-channel depletion-mode FETs are close (in
fact, the closest) semiconductor analogues to vacuum tubes. One may usually trans-
late classical vacuum tube circuits into JFET versions with ease, for example, with
only minor changes necessitated by supply voltage differences.
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12.2 MICROWAVE BIASING 101 377

Even though the gate current is typically very small, the gate terminal must not
be allowed to float to a random potential. An explicit DC path must always be pro-
vided to set the gate voltage, or else many pathologies will result. Here, we assume
that the gate is AC-coupled to the previous stage, so that RG sets the DC gate poten-
tial to zero volts. Fortunately, the value of RG may be chosen within wide limits. Its
minimum acceptable value is set by a desire to avoid attenuation, and so it only has
to be 5–10 times the impedance driving the gate, for example. The upper value is set
by the worst-case gate leakage current (generally occurring at the upper temperature
limit) and the maximum tolerable shift in gate voltage. As seen in Figure 12.8, the
gate resistor can be replaced by a choke or, in narrowband applications, a λ/4 piece
of high-impedance line.

The value of RS is readily computed from knowing the desired drain current and
the VGS that corresponds to that current. Thus,

RS = |VGS |@ID

ID
. (9)

Analytical equations that allow determination of VGS for the target drain current are
convenient, but not required; one may use experimental V–I data if device equations
are unavailable.

Because the resulting drain current is controlled by the device’s particular V–I
characteristics, this bias circuit is device-dependent. If the transistor is replaced, a
different value of RS may be required if the drain current is to remain within tol-
erance. Clearly, this device-specific dependency must be accommodated if mass
reproducibility is a requirement.

It’s also important to note that the temperature variation of the resulting drain cur-
rent is not directly controlled in this simple circuit, so one must accept whatever
temperature drift results. Two competing effects produce temperature variation. One
is a decrease in carrier mobility with increasing temperature. This mechanism by it-
self causes drain current to decrease. The other is the −2-mV/K typical change in the
threshold voltage (traditionally called the pinchoff voltage, VP , in JFET terminology)
with temperature.4 By itself, that mechanism tends to increase the drain current. For
each JFET, there is a particular drain current for which these two competing effects
cancel to first order, leading to a substantially constant drain current.

To facilitate the design and characterization of self-bias networks, AppCAD offers
a handy tool with which one can determine the value of the bias resistor and also as-
sess the variation in drain current over temperature. See Figure 12.9. Of course, a

4 The difference in nomenclature reflects a difference in viewpoint arising from how enhancement
and depletion devices differ. A depletion-mode device’s default state is one of conduction. Thus,
the gate voltage is regarded as the means whereby current is reduced. Eventually, you can shut off
the current by pinching off the channel. An enhancement-mode device’s default state, however, is
one of nonconduction. A sufficient gate voltage – the threshold voltage – must be applied before it
turns on.
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F IGURE 12.9. Sample JFET self-bias design spreadsheet from AppCAD

full-featured circuit simulator will also provide equivalent information, but the over-
head in running AppCAD’s bias design tool is much smaller. Certainly, its tutorial
value is large, for one can rapidly develop design insights that one can’t always get
quickly from staring at equations.

That said, here’s an equation anyway:

ID = K(VGS − VP )
n, (10)

where n = 2 for classic JFETs. The constant K is sometimes called the FET per-
veance, by analogy with a similar constant in equations that describe V–I behavior
of vacuum tubes. For classic square-law FETs, the constant K has the dimensions
of current per squared voltage.

When deciphering data sheets, it may be helpful to know that the parameter IDSS
is the drain current that flows with zero VGS. Also, the pinchoff voltage is usually
given by the manufacturer as the value of VGS corresponding to a drain current that is
some small percentage of IDSS , rather than the theoretical (but experimentally prob-
lematic) value of zero. The bias design tool allows the user to specify that percentage
or, alternatively, an absolute drain current. In the example shown, the value is 5%
of IDSS. To distinguish such an arbitrary pinchoff definition from the rigorous one,
the data-sheet pinchoff voltage is identified as a primed variable. The tool then ex-
tracts the “true” VP by extrapolating the VGS–ID behavior to zero current. The reader
will note that this latter pinchoff voltage is indeed more negative than the data-sheet
pinchoff voltage, as expected.

From the numbers used in the example (which are representative of practical dis-
crete devices), you can see that the drain current happens to increase with temperature
in this case. The current at the maximum temperature is 50% larger than that at the
minimum temperature for this particular device with this particular set of numbers.
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12.2 MICROWAVE BIASING 101 379

F IGURE 12.10. Some MESFET biasing options
if extra supply is available (VG < 0)

Finally, in applications that are intolerant of the efficiency or headroom reduc-
tions caused by the voltage dropped across a degeneration resistor, one must provide
a negative voltage to bias the gate. The bias voltage can be applied through an induc-
tor or resistor, as shown in Figure 12.10. In narrowband applications, another option
is to use a λ/4 line to feed the gate, just as in the degenerated case. The necessity
for an extra supply is an inconvenience one tolerates only reluctantly. Gallium ar-
senide MESFETs once dominated handset power amplifiers, yet their displacement
in increasing numbers by HBTs is due, in no small measure, to the latter’s ability to
operate with a single supply voltage.

Finally, we should mention that many of the bias topologies used for bipolars may
be adapted to work with FETs as well. As just one example, the circuit of Figure 12.6
functions fine with a FET, with due allowance for the negative VGS. The reader is
encouraged to consider replacements of this type if one of the topologies we’ve ex-
plicitly presented proves unsuitable for some reason.

12.2.3 AC TIVE BIAS

All of the foregoing examples use passive elements to establish bias. As we’ve seen,
it is not trivial to realize a stable bias using only passive elements, especially if we
want to avoid interfering with the signal path. To round out our survey of biasing
ideas, we now consider the addition of active elements that can provide an extra de-
gree of freedom, which may be exploited to control bias to a much finer degree than
is otherwise possible.

To validate what is to come, we assume that the spectrum of signals we wish to
amplify does not extend all the way down to DC. That way, the bias circuitry may
again be treated separately from the signal path. As a philosophical approach, then,
we wish to compare our bias current or voltage with some sort of reference, and then
close a bias feedback loop around the amplifier to enforce a negligible difference be-
tween the bias point and that reference. As might be expected, there are a great many
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F IGURE 12.11. Example of active bias

ways to implement this general idea. We will consider just one to illustrate the basic
principle.

A brute-force method would be to use an op-amp as the active element. In some
cases, that choice might even be a good one. For most commonly encountered in-
stances, however, use of an op-amp for this purpose is vast overkill. Often, a single
additional transistor suffices. As a specific example, consider the simple circuit dis-
played in Figure 12.11.

As with all of the bias circuits here, there are many variations on this basic theme.
The PNP transistor supplies just enough base current to the NPN device to keep the
emitter potential of the PNP transistor a diode drop above its own base potential. The
latter is established by the bias divider formed by RB1 and RB2. By thus setting the
voltage dropped across R, the current through that resistor is similarly set. Since the
current through the PNP device is only the base current of the NPN, we may neglect
it in concluding that the current through R is essentially the collector current through
the NPN transistor:

IC ≈
VCC −

[
VCC

(
RB2

RB1 + RB2

)
+ VEB,PNP

]
R

. (11)

From inspection of Eqn. 11, it’s clear that this bias method forces a collector cur-
rent that does not depend on the undependable. However, it’s not entirely foolproof.
The capacitor C must be chosen large enough (and of a sufficient quality) to act as a
good RF short at all frequencies of interest. Also, we have created a feedback loop
with two active devices, so the potential for unstable behavior has increased. In cases
where that potential is realized, it may be beneficial to kill the gain of the feedback
loop by adding some resistance in series with the emitter, or by inserting resistance
between the collector of the PNP and the base of the NPN. When doing the latter, it
may be helpful to bypass the collector to ground with a capacitor (large enough to
form the dominant pole) or with a resistor–capacitor series combination (to create a
lag compensator to improve stability). Not directly connecting the PNP’s collector
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12.3 BANDWIDTH EXTENSION TECHNIQUES 381

F IGURE 12.12. Amplifier with series peaking
(bias details omitted)

to the NPN’s base is desirable for another reason, too, since it is best not to add the
output capacitance of the PNP to the total capacitance on the base of the NPN.

The bias methods described here are by no means exhaustive, but they are suffi-
ciently representative that the reader can probably generate many others based on the
underlying ideas.

12.3 BANDWIDTH EXTENSION TECHNIQUES

12.3.1 SERIES AND SHUNT PEAKING

Back in the 1930s, in the early days of television development, one problem of criti-
cal importance was that of designing amplifiers with a reasonably flat response over
the astounding video bandwidth of ∼4 MHz. Though obtaining this bandwidth is
trivial today, it was challenging with the vacuum tubes available at the time. In an era
where the number of vacuum tubes primarily determined the cost of a circuit, engi-
neers adopted the philosophy of allowing any number of passive components while
restricting to an absolute minimum the number of vacuum tubes.

One of the earliest examples of following that prescription is the series-peaked
amplifier, shown in Figure 12.12. Here, we assume that the inductor value is the only
degree of freedom. The load resistance is set by the gain sought, and the capaci-
tance represents the irreducible parasitic load that would otherwise limit bandwidth
to 1/RC.

If we assume that the transistor itself has negligible parasitics, then we can treat
it as a pure transconductor. Since all we’re after is insight about bandwidth, we may
neglect the transistor (within the assumptions stated) and focus solely on the trans-
resistance of the output network,

vout

ic

[
R ‖

(
sL + 1

sC

)][
1/sC

sL + 1/sC

]
− R

s2LC + sRC + 1
. (12)

To facilitate derivations, express the inductance as

L = R2C/m (13)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511812941.013
Downloaded from https://www.cambridge.org/core. The Librarian-Seeley Historical Library, on 18 Dec 2019 at 06:18:08, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511812941.013
https://www.cambridge.org/core


382 CHAPTER 12 A MPLIF IERS

F IGURE 12.13. Simplified shunt-peaked amplifier
(biasing not shown)

and let RC = τ , the reciprocal of the bandwidth without the peaking network. Then,
we will explore what happens to the transresistance as we vary m:

vout

ic
= RL

[
s2τ 2

m
+ sτ + 1

]−1

. (14)

With this equation it is straightforward to show that (a) the maximum bandwidth is√
2 times that of the uncompensated case (L = 0) and (b) it occurs for m = 2. A

choice ofm = 3 leads to maximally flat delay, with a corresponding bandwidth boost
factor of about 1.36. For both cases, the bandwidth boost comes entirely from the
resonant peaking provided by complex poles.

Series peaking requires only the addition of a single inductor yet increases band-
width by ∼40%. Although this improvement is impressive considering the trivial
modification that produces it, it is possible to do better still simply by moving the in-
ductor to a different position. Such shunt peaking was used in countless television
sets at least up to the 1970s. It continues to make intermittent appearances, having
been used in the video display circuits of the original compact Macintosh computers
as well as in a host of broadband amplifiers for optical communications.

Figure 12.13 depicts a shunt-peaked amplifier in its simplest form. This amplifier
is a standard common-emitter configuration, with the addition of the inductance in
series with the collector load resistor. The term shunt peaking comes from the obser-
vation that the added inductance appears in a branch that is in parallel with (in shunt
with) the load capacitance. Note that, unlike the series-peaked case, any device out-
put capacitance may be absorbed into the load, allowing the theoretical benefits to be
enjoyed more fully in practice.

Given our assumptions, we may model the amplifier for small signals as shown
in Figure 12.14. But before launching into a detailed derivation, it’s helpful to think
about why repositioning the inductor this way should provide a greater bandwidth
extension than for the series case.

First, we know that the gain of a purely resistively loaded common-emitter ampli-
fier is proportional to gmRL. We also know that, when a capacitive load is added, the
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12.3 BANDWIDTH EXTENSION TECHNIQUES 383

F IGURE 12.14. Model of shunt-peaked amplifier

gain eventually falls off as frequency increases because the capacitor’s impedance
diminishes. The addition of an inductance in series with the load resistor provides
an impedance component that increases with frequency (i.e., it introduces a zero),
which helps offset the decreasing impedance of the capacitance – leaving a net im-
pedance that remains roughly constant over a broader frequency range than that of
the original RC network.

An equivalent time-domain interpretation may be provided by considering the step
response. The inductor delays current flow through the branch containing the resis-
tor, making more current available for charging the capacitor, reducing the risetime.
To the extent that a faster risetime implies a greater bandwidth, an appropriate choice
of inductor therefore increases the bandwidth.

Formally, the impedance of the RLC network may be written as

Z(s) = (sL + R) ‖ 1

sC
= R[s(L/R) + 1]

s2LC + sRC + 1
. (15)

We recognize that there are two poles (possibly complex), just as in the series peak-
ing case. In addition, there is indeed a zero, as argued earlier.

Since the gain of the amplifier is the product of gm and the magnitude of Z(s),
let’s now compute the latter as a function of frequency:

|Z(jω)| = R

√
[ω(L/R)]2 + 1

(1 − ω2LC)2 + (ωRC)2
. (16)

As with the series-peaked amplifier, we now introduce a factor m, defined as the ratio
of the RC and L/R time constants, to facilitate subsequent derivations:

m = RC

L/R
. (17)

Then, our transfer function becomes

Z(s) = (sL + R) ‖ 1

sC
= R

τs + 1

s2τ 2m + sτm + 1
, (18)

where τ = L/R.

We did not show the details of how to derive the optimum conditions for the series-
peaked case because shunt peaking is superior (as we will see momentarily). It is
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F IGURE 12.15. Frequency response of shunt-peaked amplifier
(maximum bandwidth m)

instructive to study the procedures involved, so let’s now examine the shunt-peaked
amplifier more closely.

The magnitude of the impedance, normalized to the DC value (= R) as a function
of frequency, is

|Z(jω)|
R

=
√

(ωτ)2 + 1

(1 − ω2τ 2m)2 + (ωτm)2
, (19)

so that
ω

ω1
=

√
(−m2/2 + m + 1) +

√
(−m2/2 + m + 1)2 + m2, (20)

where ω1 is the uncompensated −3-dB frequency (= 1/RC).
The goal is to determine values of m that lead to desired behaviors. As with the

series case, there is more than one choice. Maximizing the bandwidth is one obvious
possibility. Taking the derivative of Eqn. 20, setting it to zero, and enduring some
pain, one finds that this maximum occurs at a value of

m = √
2 ≈ 1.41, (21)

which extends the bandwidth to a value about 1.85 times as large as the uncompen-
sated bandwidth. Anyone who has labored to meet a tough bandwidth specification
can well appreciate the value of nearly doubling bandwidth through the addition of a
single inductance at no increase in power.

Unfortunately, however, this choice of m leads to nearly a 20% peak in the fre-
quency response, a value often considered undesirably high. See Figure 12.15. To
moderate the peaking, one might seek a bandwidth other than the absolute maximum
by increasing m. One common choice is to set the magnitude of the impedance equal
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12.3 BANDWIDTH EXTENSION TECHNIQUES 385

to R at a frequency equal to the uncompensated bandwidth. Solving for this condi-
tion yields a value of 2 for m, with a corresponding bandwidth

ω = ω1

√
1 + √

5 ≈ 1.8ω1. (22)

Hence, the bandwidth in this case is still quite close to the maximum. Further calcu-
lation shows that the peaking is substantially reduced, to about 3%.

The arbitrary choice that leads to this result is often used because it yields such a
significant bandwidth enhancement without excessive frequency response peaking.
However, there are many cases where one desires the frequency response to be com-
pletely free of peaking. Thus, perhaps one might seek the value of m that maximizes
the bandwidth without producing any peaking.

The conditions for such maximal flatness may be found through the following gen-
eral technique: Form an expression for the frequency response magnitude (or, as is
often more convenient, the square of the magnitude); then maximize the number of
derivatives whose value is zero at DC.

Carrying out this method manually is frequently labor-intensive, but in this par-
ticular example, a straightforward calculation reveals that the magic value of m is:

m = 1 + √
2 ≈ 2.41, (23)

which leads to a bandwidth that is about 1.72 times as large as the unpeaked case.
Hence, at least for the shunt-peaked amplifier, both a maximally flat response and a
substantial bandwidth extension can be obtained simultaneously.

In other situations, there may be a specification on the time response of the am-
plifier rather than on its frequency response. Examples of practical interest are ultra-
wideband (UWB) systems, many of which require good pulse fidelity. Another is an
oscilloscope vertical deflection amplifier, whose time response (characterized, say,
by the step or pulse response) must be similarly “well behaved.” That is, not only
must we amplify uniformly the various spectral components of the signal over as
large a bandwidth as practical, but the phase relationships among its Fourier compo-
nents must be preserved as well. If the spectral components do not experience equal
delay (measured in absolute time, not degrees), potentially severe distortion of the
waveshape can occur. Such “phase distortion” is objectionable for the bit errors it
can cause in digital systems and for its obvious negative implications for the fidelity
of such analog instrumentation as oscilloscopes.

To quantify this type of distortion, first consider the phase behavior of a pure time
delay. If all frequencies are delayed by an equal amount of time, then this fixed
amount of time delay must represent a linearly increasing amount of phase shift as
frequency increases. Phase distortion will be minimized if the deviation from this
ideal linear phase shift is minimized.

Evidently, then, we wish to examine the delay as a function of frequency. If this
delay is the same for all frequencies, we will have no phase distortion (other than
the change in shape that results from the ordinary filtering any bandlimited amplifier
provides). Formally, the delay is defined as follows:
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F IGURE 12.16. Pulse response for shunt-peaked amplifier (maximum bandwidth m)

TD(ω) ≡ −dφ

dω
, (24)

where φ is the phase shift of the amplifier at frequency ω.
Unfortunately, it is impossible for a network of finite order to provide a constant

time delay over an infinite bandwidth: infinite phase shift would ultimately be re-
quired, but poles and zeros contribute only bounded amounts of phase shift. All we
can do in practice, then, is to provide an approximation to a constant delay over some
finite bandwidth.

By analogy with the frequency response case, we see that a maximally flat time
delay will result if we maximize the number of derivatives of TD(ω) whose value is
zero at DC. Again, this method is general.

Because arctangents arise in expressing the phase shift due to poles and zeros,
computing the relevant derivatives is generally quite a bit more unpleasant than in the
magnitude case. Even for our shunt-peaked amplifier, which is only second order,
the amount of labor is substantial. Ultimately, however, one may derive the follow-
ing cubic equation for m (computational aids are of tremendous benefit here):

m3 − 3m2 − 1 = 0, (25)

whose relevant root is:

m = 1 + [(
3 + √

5
)
/2

]1/3 + [(
3 − √

5
)
/2

]1/3 ≈ 3.104, (26)

corresponding to a bandwidth improvement factor of a bit under 1.6.
The two plots that appear as Figures 12.16 and 12.17 allow us to assess the value

of maximally flat delay by comparing the pulse response of a shunt-peaked amplifier
designed for absolute maximum bandwidth with one designed for maximally linear
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12.3 BANDWIDTH EXTENSION TECHNIQUES 387

F IGURE 12.17. Pulse response for shunt-peaked amplifier (maximally flat delay)

Table 12.1. Shunt peaking summary

m = R2C/L Bandwidth Normalized peak
Condition (approx.) boost factor freq. response

Maximum bandwidth 1.41 1.85 1.19
|Z| = R @ ω = 1/RC 2 1.8 1.03
Best magnitude flatness 2.41 1.72 1
Best delay flatness 3.1 1.6 1
No shunt peaking infinite 1 1

phase. As is apparent, the two pulse responses have roughly similar rise and fall
times, indicating roughly similar bandwidths. However, the pulse response is much
better behaved for the linear phase case.

Since the conditions for maximally flat frequency response and maximally flat
time delay do not coincide, one must compromise, as is the case for the series-peaked
amplifier. We therefore see that, depending on requirements, there is a range of use-
ful inductance values; see Table 12.1. A largerL (smallerm) gives a larger bandwidth
extension but poorer pulse fidelity, while a smaller L yields less bandwidth improve-
ment but better pulse response.

Shunt Peaking Example

Even though shunt peaking traces its origins to video amplifiers from the 1930s, it is
relevant and useful even in the modern era for the same reasons it was originally val-
ued: it allows one to squeeze extra performance from a given technology. It is useful
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388 CHAPTER 12 A MPLIF IERS

F IGURE 12.18. Shunt-peaked amplifier example

to note that the technique does not require a high-Q peaking inductor and is therefore
easily implemented. To underscore this point, consider the problem of designing a
1.5-GHz common-emitter broadband amplifier. Let us assume that phase linearity is
important for this application, so let’s selectm = 3.1 for best group delay uniformity.

Let the total capacitive loading on the collector be 1.5 pF (from both the transistor
and loading by interconnect and subsequent stages), and assume that the load re-
sistance cannot be made smaller than 100 � without increasing by an unacceptable
amount the power consumed in keeping the gain constant. If the bandwidth is en-
tirely controlled by the output node, then the bandwidth of the amplifier is just a bit
over 1 GHz – somewhat shy of the 1.5-GHz goal.

If we assume that the minimum acceptable collector load resistance is used, then
the required shunt peaking inductor is readily calculated as

L ≈ R2C/3.1 = 4.8 nH. (27)

This value is readily implemented in many technologies, both discrete and integrated;
see Figure12.18. The estimated bandwidth increases to approximately1.7 GHz, com-
fortably in excess of the requirement. Again, shunt peaking provides this improve-
ment without increasing the power consumed by the stage. Finally, note that the Q
of the collector network is of the order of unity at the band edge, so inductors with
truly modest Q (such as IC spiral inductors) suffice. Any resistance in series with the
inductor can form part of the resistive load, making inductor loss even less important.

From the simulation results presented in Figure 12.19, it’s easy to see that the
bandwidth has been boosted to just below 1.7 GHz. The linear frequency axis makes
it easier to see that the phase is reasonably linear until frequencies approach the
bandwidth of the amplifier, implying a relatively constant delay over the amplifier
passband, as intended.

12.3.2 MORE ON ZEROS AS BANDWIDTH ENHANCERS

The shunt-peaked amplifier highlights the utility of zeros. Thinking about a zero as an
“antipole” helps to understand why it can extend bandwidth. One problem, though,
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12.3 BANDWIDTH EXTENSION TECHNIQUES 389

F IGURE 12.19. LTSpice simulation of shunt-peaked amplifier (m = 3.1 for best delay)

is that it is impossible to assure that the zero is at precisely the same frequency as the
pole it is to cancel, so we ought to evaluate the effect of this inexactness with the aid
of the following transfer function:

H(s) = ατs + 1

τs + 1
. (28)

For simplicity’s sake, note that no gain or attenuation factor is included in this ex-
pression. Thus, the ideal value of the constant α is unity, so that H(s) is ideally unity
at all frequencies.

Let’s now consider the step response of this combination (often known as a pole–
zero doublet). The initial- and final-value theorems tell us that the initial value is α
and the final value is unity. Because the system state evolves exponentially with the
time constant of the pole,5 we can rapidly sketch a couple of possible step responses:
one with α1 < 1, and one with α2 > 1. See Figure 12.20.

We see that the response jumps immediately to α but then settles down (or up, as
the case may be) to the final value, with a time constant of the pole. If α happens to
equal unity then the response reaches final value in zero time. In all practical circuits,
of course, additional poles force a nonzero risetime, but the general idea should be
clear from this example. Certainly we can appreciate that the bandwidth extension
does not come entirely for free, if we care about the details of the time response.

5 For some inexplicable reason, there seems to be a fair amount of confusion about this point. The
presence of the zero merely alters the initial error, but this error always settles to the final value
with a time constant of just the pole.
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F IGURE 12.20. Possible step responses of pole–zero doublet

F IGURE 12.21. Zero-peaked common-emitter amplifier

This type of cancellation may be implemented as in the degenerated common-
emitter amplifier shown in Figure 12.21. Here, CE is not chosen large enough to
behave as a short at all frequencies of interest. Instead, it is chosen just large enough
to begin shorting out RE when C begins to short out R. It is therefore relatively
straightforward to understand that ideal compensation should result when RECE ≈
RC. Proper adjustment is necessary to obtain the best response.

12.3.3 TWO-PORT BANDWIDTH ENHANCEMENT

Shunt peaking is a form of bandwidth enhancement in which a one-port network
is connected across the amplifier and load. Series peaking interposes a two-port
network between amplifier and load. Although shunt peaking provides a larger band-
width enhancement than does series peaking, it would be improper to conclude that
two-port enhancement is therefore inferior (especially since a one-port is a degener-
ate subset of a two-port).
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F IGURE 12.22. Amplifier with shunt and series peaking

F IGURE 12.23. Shunt and (double) series peaking

One may augment shunt peaking by additionally separating the load capacitance
from the output capacitance of the device. If a series inductor is used to perform
this separation, the overall result is a combination of shunt and series peaking; see
Figure 12.22. We won’t spend any time analyzing this combination because it is an
intermediate step on the way to a much better bandwidth extension method. The next
(also intermediate) evolutionary step is to add an inductance between the device and
the rest of the network, as shown in Figure 12.23.

This combination is functionally identical to the previous iteration if we ignore the
transistor’s output capacitance (becauseL3 is then in series with a current source). So
let’s now consider it qualitatively as follows. Just as in the step response of an ordi-
nary shunt-peaked amplifier, the flow of current into the load resistor continues to be
deferred by the action of L1. This action alone speeds up the charging of the load ca-
pacitance. In addition to that mechanism, the transistor initially has to drive only its
own output capacitance (not shown) for some time becauseL3 delays the diversion of
current into the rest of the network. Hence, risetime at the collector improves, which
we again interpret as implying an improved bandwidth. Some time after the collec-
tor voltage has risen significantly, the voltage across the load capacitance begins to
rise as current finally starts to flow through L2. Hence, such a network charges the
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capacitances serially in time, rather than in parallel. The trade-off is an increased de-
lay in exchange for the improved bandwidth. We will see that this bandwidth–delay
trade-off is a recurrent theme.

To save space, the combination of three inductors can be realized conveniently
as a single pair of magnetically coupled inductors (i.e., a transformer), since the
equivalent circuit model of such a connection is precisely the arrangement we seek
(consider the T-model of a transformer in particular). That is, inductance L2 comes
for free (and may take on positive or negative values, depending on the relative cur-
rent directions through the two windings; this network requires a negative value).
The inductors may be implemented as a pair of coils that have been placed proximate
enough to produce the desired amount of coupling. In the 500-series oscilloscopes of
Tektronix, for example, the inductors are realized as single-layer coils wound around
a plastic rod. Merely spacing the two coils from each other by the correct distance
produces the correct coupling factor.

In the special case where L1 = L3 = L, one may derive the transresistance of the
load network as

vout

ic
= R

s(L/R) + 1

s2(L + L2)C + sRC + 1
. (29)

Note that the transfer function of the T-coil network is essentially identical to that for
shunt peaking in that there are two complex poles and one zero. As mentioned pre-
viously, we therefore cannot identify any possible advantage of this network if we
continue to neglect the output capacitance of the transistor.

Adding a small bridging capacitance across the inductors to create a parallel res-
onance provides further improvement. The increased circulating currents associated
with the resonance help to push the bandwidth out even further. Derivation of the
transresistance for this case is straightforward but most tedious, so we defer the de-
tails to the Appendix (Section 12.8). As shown there, the result of that tedium is

vout

ic
= R

2s2LC + s(L/R) + 1

s4L(L + 2L2)CCB + s 32RCLCB

+ s2[CB(L + L2) + 2LC] + sRC + 1

. (30)

After considerably more agony than suffered in deriving the equations for the shunt-
peaking case, one may show that the coupled inductances should each have a value
given by

L1 = L3 = L = R2C

2(1 + |k|) , (31)

whereL is interpreted as the primary or secondary inductance with the other winding
open-circuited (see the Appendix for a complete derivation). Hence, this is the value
of inductance used in designing and laying out each spiral in an IC implementation,
for example, or each single-layer solenoid in a lower-frequency discrete realization.

The bridging capacitance should have a value of

CB = C

4

[
1 − |k|
1 + |k|

]
. (32)
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F IGURE 12.24. Amplifier with bridged T-coil
bandwidth enhancement

It it also shown in theAppendix that a coupling coefficient of1/3 yields a Butterworth-
type (maximally flat magnitude) response, while a k of 1/2 leads to maximally flat
group delay. These coupling coefficients are not particularly large and thus are read-
ily obtained in practice. Two adjacent bondwires typically have coupling coefficients
in this range, for example.

Applying these conditions then leads to the circuit pictured in Figure 12.24. The
resulting network is called a bridged T-coil and has been used for over forty years
in oscilloscope circuitry.6 The bridged T-coil is capable of almost tripling the band-
width (the practical maximum is a 2

√
2 improvement, or about 2.83×, obtained with

the Butterworth condition) if the output capacitance of the device is negligibly small
compared with the load capacitance.

It may be shown that the bandwidth is maximized if the junction of the two in-
ductors drives the higher-capacitance node. In Figure 12.24, we have assumed that
the load capacitance is larger than the output capacitance of the transistor (remem-
ber, we have frequently assumed that the transistor’s output capacitance is zero). The
collector and load capacitance connections may be reversed if the output capacitance
happens to exceed the load capacitance.

As a final refinement, some additional compensation for the output capacitance
of the transistor may be provided by adding more inductance in series with it, ef-
fectively providing more series peaking. A nearly equivalent result may be obtained
merely by tapping the inductors at other than their midpoint (in this case, closer to
the load resistor end).

6 The design equations, however, remained a trade secret for the entire time that the 500- and 7000-
series oscilloscopes of Tektronix were in production. These networks are presented without design
equations – and with only the sketchiest qualitative descriptions – in Bob Orwiler’s Oscilloscope
Vertical Amplifiers, Tektronix Circuit Concepts Series, Tektronix, Beaverton, OR, 1969.
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F IGURE 12.25. Bridged T-coil bandwidth enhancement example

Modifying our earlier shunt-peaked design example yields the circuit of Fig-
ure 12.25. Here, to keep the comparison fair, we have continued to assume that
we desire a maximally flat group delay. As can be seen, the total inductance has
doubled. However, since the two inductors are situated on top of each other with a
small offset, the additional area is modest (on the order of 50%). In addition, the
125-fF bridging capacitance might be provided as an inherent by-product of merely
placing the inductors near each other. The theoretical bandwidth improvement factor
provided by this circuit is about 2.7.7 Hence, roughly a 2.9-GHz bandwidth can be
expected, substantially better than the 1.7-GHz bandwidth of the shunt-peaked case.
It is important to underscore that this improvement is obtained without an increase
in power and without requiring any advances in device technology.

The simulation results of Figure 12.26 show that, indeed, the bridged T-coil net-
work provides the expected bandwidth boost. In addition, the linear frequency axis
allows us to see from the phase plot that linear phase behavior (constant delay) is
well approximated up to about the bandwidth of the amplifier.

We will later appreciate the structure displayed in Figure 12.25 as itself an inter-
mediate evolutionary step on the way to a completely “distributed amplifier” (to be
discussed shortly), in which parasitic capacitances are absorbed into structures that
trade gain for delay, not for bandwidth. (Consider a transmission line, for exam-
ple – it consists of inductance and capacitance, but these elements impose no limit
on bandwidth because the capacitances are charged serially in time.) Meanwhile, the
circuit may be considered simply as a more sophisticated way to divert current away
from the load resistor and into the load capacitance.

7 Again, this value assumes that the output capacitance of the transistor is negligibly small compared
with the load capacitor. If this inequality is not well satisfied, additional series compensation will
be required to achieve bandwidth boosts of this order.
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12.4 THE SHUNT-SERIES A MPL IF IER 395

F IGURE 12.26. LTSpice simulation of bridged T-coil amplifier (linear phase)

12.4 THE SHUNT-SERIES A MPLIF IER

In contrast with the open-loop architectures we’ve studied so far, an alternative ap-
proach to the design of broadband amplifiers is to use negative feedback. One par-
ticularly useful broadband circuit that employs negative feedback is the shunt-series
amplifier. Its name derives from the use of a combination of shunt and series feed-
back, and its utility derives from the relative constancy of input and output imped-
ances over a broad frequency range (which makes cascading much less complicated)
as well as from its ease of design. In addition, the dual feedback loops confer the
usual benefits normally associated with negative feedback: a reduced dependency on
device parameters, improved distortion, broader bandwidth, and rosier cheeks.

Stripped of biasing details, the shunt-series amplifier appears as shown in Fig-
ure 12.27. Here RS is the resistance of the input source and RL is the load resistance.
Thus, the amplifier core consists of just RF , RE , and the transistor. To understand
how this amplifier works, initially assume that RE is large enough (relative to the
reciprocal of the transistor’s gm) that it degenerates the overall transconductance to
approximately 1/RE. SinceRE is in series with the input and output loops, the degen-
eration by RE is the “series” contribution to the name of this amplifier. To continue
the analysis, assume also that RF is large enough so that its loading on the output
node may be neglected. With these assumptions, the voltage gain of the amplifier
from the base to the collector is approximately −RL/RE.

Although we have assumed that RF has but a minor effect on gain, it has a con-
trolling influence on the input and output resistance. Specifically, it reduces both
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F IGURE 12.27. Shunt-series amplifier (biasing not shown)

quantities through the (shunt) feedback it provides. Additionally, the reduction of
input and output resistances helps to increase the bandwidth still further by reducing
the sum of open-circuit time constants.8

To compute the input resistance Rin, we use the fact that the gain from base to col-
lector is approximately −RL/RE. If (as seems reasonable) we may neglect base cur-
rent, then the input resistance is due entirely to current flowing throughRF . Applying
a test voltage source at the base terminal allows us to compute the effective resis-
tance in the usual way. Just as in the classic Miller effect, connecting an impedance
across two nodes that have between them an inverting gain results in a reduction of
impedance. Formally, Rin is given by

Rin = RF

1 − AV

≈ RF

1 + RL/RE

, (33)

where AV is the voltage gain from base to collector.
Now, to compute the output resistance, apply a test voltage source to the collector

node and again take the ratio of vtest to itest ; this yields

Rout = RF + RS

1 + RS/R1
≈ RF

1 + RS/RE

. (34)

If the source and load resistances are equal (a particularly common situation in dis-
crete realizations), then the denominators of Eqns. 33 and 34 are approximately equal.
Since the numerators are also approximately equal, it follows that Rin and Rout are
themselves nearly equal. If RS = RL = R, then we may write

Rout ≈ Rin ≈ RF

1 + R/RE

≈ RF

1 − AV

. (35)

The ease with which this amplifier provides a simultaneous impedance match at
both input and output ports accounts in part for its popularity. Once the impedance

8 See T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 2nd ed., Cambridge
University Press, 2004, Chap. 8.
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12.4 THE SHUNT-SERIES A MPL IF IER 397

level and gain are chosen, the required value of the feedback resistor is easily de-
termined. Combining knowledge of the load resistance with the required gain leads
quickly to the necessary value ofRE. To complete the design, a suitable device width
and bias point must be chosen. Generally, these choices are made to ensure sufficient
gm to validate the assumptions used in developing this set of equations.

12.4.1 DETAILED DESIGN OF SHUNT-SERIES A MPL IF IER

The foregoing presentation outlines the first-order behavior of the shunt-series am-
plifier in order to help develop design intuition. To carry out a more detailed design,
however, we now consider some of the second-order factors neglected in the previ-
ous section.

Low-Frequency Gain and Input–Output Resistances

We start by computing the gain from base to collector since it allows us to find the input
and output resistances easily. Once the base-to-collector gain and input resistance
are known, the overall gain is trivially found from the voltage divider relationship.

First, recall that the effective transconductance of a common-emitter amplifier
with emitter degeneration is:

gm,eff = gm

1 + gmRE

. (36)

Note from Eqn. 36 that the effective transconductance is approximately 1/RE as long
as gmRE is much larger than unity.

Applying a test voltage from base to ground causes a collector current to flow
through both the load and feedback resistors. Some fraction of the test voltage also
feeds forward directly to the output. Superposition allows us to treat each of these
contributions to the output voltage separately:

vout = −gm,eff vtest
RFRL

RF + RL

+ vtest
RL

RF + RL

. (37)

Solving for the gain yields

AV = vout

vtest
= −RL

RE

·
[

1

1 + 1/gmRE

]
·
[

1

1 + RL/RF

]
·
[
1 − 1

gm,effRF

]
. (38)

Although not the most compact expression, Eqn. 38 shows the gain derived earlier
from first-order theory, multiplied by three factors (in brackets), each of which is
ideally unity.

The first “nonideal” factor reflects the influence of finite gm on the effective
transconductance. While gm,eff approaches 1/RE in the limit of large gmRE , this
first factor shows quantitatively the effect of finite gmRE. The second term is the re-
sult of the loading by RF on the output node. As long as RF is substantially larger
than the load resistance RL, the gain reduction is small.
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The final gain reduction factor is due to feedforward of the input signal to the out-
put. This feedforward reduces the gain because the ordinary gain path inverts, while
the feedforward path does not. Hence, the feedforward term partially cancels the de-
sired output. The transconductance of the feedforward term is 1/RF , so as long as
this parasitic transconductance is small compared with the desired transconductance
gm,eff , the gain loss is negligible.

Having examined the complete gain equation term by term, we now present a
much more compact (but still exact) expression, useful for calculations to follow:

AV = − RL

Reff

·
[
RF − Reff

RF + RL

]
, (39)

where Reff is simply the reciprocal of the effective transconductance. The upshot is
simply that, in order to obtain the desired gain, one must choose a value of RE (or
Reff) that is somewhat smaller than would be anticipated on the basis of the first-order
equations.

Now that we have a complete expression (two, even) for the low-frequency gain,
we can obtain a more accurate value for the resistance between base and ground:

Rin = RF

1 − AV

, (40)

which (after using Eqn. 39) becomes

Rin = RF

1 + RL

Reff

(
RF − Reff

RF + RL

) = Reff (RF + RL)

Reff + RL

. (41)

In general, one designs specifically for a particular value of gain. Assuming success
at achieving that goal, the value of feedback resistance necessary to produce a desired
input resistance is readily found simply from Eqn. 40.

The output resistance (i.e., as seen by RL) is also simple to find. Again, we ap-
ply a test voltage source to the collector node and compute the ratio of test voltage
to test current. Performing this exercise yields

Rout = vtest

itest
= RF + RS

1 + gm,effRS

= RF + RS

1 + RS/Reff

= Reff (RF + RS)

Reff + RS

. (42)

Comparing the expressions for input and output resistance, we see that if RS and RL

are equal (as is commonly the case) then Rin and Rout will also be precisely equal.
This happy coincidence is one reason for the tremendous popularity of this topology.9

9 It should be noted that there is a minor difference in that finite β causes the input and output re-
sistance to be somewhat unequal, although the error is small for typical values of β. The input
resistance is smaller by a factor of approximately 1 − 1/(2β), while the output resistance is higher
by a factor of about 1 + 1/(2β). The gain is also slightly lower, by a factor of about 1 − 2β.
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12.4 THE SHUNT-SERIES A MPL IF IER 399

It should be emphasized that, when carrying out a design (as opposed to analy-
sis), the desired gain is known. Hence, if the input and output resistances are to be
equal, selection of the feedback resistor is trivial from Eqn. 40. The value of RE is
then chosen to provide the correct gain, completing the design.

Bandwidth and Input–Output Impedances

Having presented exact expressions for various low-frequency quantities (gain and
input–output resistances), we now derive approximate expressions for the bandwidth
as well as the input and output impedances of this amplifier.

Before plowing through a slew of equations, let’s see if we can anticipate the qual-
itative behavior of these quantities. Because this amplifier is a low-order system, we
expect gain and bandwidth to trade off more or less linearly. Furthermore, precisely
because it is a low-order system, an open-circuit time constant estimate of bandwidth
should be reasonably accurate.

We also expect the input impedance to possess a capacitive component, partly
because of the presence of Cgs but also because of the augmentation of Cgd by the
Miller effect. The output impedance, on the other hand, could behave differently be-
cause the shunt feedback that reduces the output resistance becomes less effective as
frequency increases. As a result, the output impedance could actually rise with fre-
quency, leading to an inductive component in the output impedance.

Having made those predictions, let us proceed with a calculation of the open-
circuit time constant sum. To simplify the development, assume that the only device
capacitances are Cgs and Cgd. Furthermore, neglect the series base resistance. Fi-
nally, assume that the source and load resistance are equal to each other and to a
value R.

The effective resistance facing Cgd is clearly RF in parallel with a resistance
given by

rlef t + rright + gm,eff rlef t rright, (43)

so the resistance is

RF ‖ (RS + RL + gm,effRSRL) = RF ‖ R(2 + gm,effR); (44)

after substitution for RF , this may be rewritten as

R(1 − AV ) ‖ R(2 + gm,effR). (45)

Note that, in the limit of large gain, the resistance facing Cgd approaches

|AV |(R/2), (46)

as might be anticipated from considering the Miller effect.
Computing the resistance facing Cgd is somewhat more involved, but ultimately

one may derive the following expression:

R(RF + R + 2RE) + RERF

(2R + RF )(1 + gmRE) + gmR2
. (47)
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In the limit of large gain, this quantity simplifies to

R

RE

1

gm
. (48)

Note that the ratioR/RE is approximately the magnitude of the gain (from base to col-
lector). Because both open-circuit resistances are then roughly proportional to gain,
the gain–bandwidth product of the shunt-series amplifier is approximately constant.

The estimated bandwidth of the amplifier in this limit is therefore

(BW ) ≈
[
|AV |

(
Cgs

gm
+ RCgd

2

)]−1

. (49)

Having derived an approximate expression for the bandwidth, we now consider
the input impedance. As stated earlier, the input impedance should possess a capaci-
tive component because ofCgs and the Miller-multipliedCgd. A crude approximation
to the total capacitance may be obtained simply by assuming that the impedance at
the base controls the bandwidth of the amplifier. That is, assume that the time con-
stant of the amplifier’s pole is the product of the source resistance RS (= R) and the
capacitance at that node. With this assumption, the effective input capacitance is just
the bracketed portion of Eqn. 49 divided by R:

Cin ≈ Cgs

gmRE

+ Cgd

|AV |
2

. (50)

In almost all practical cases, the Miller-augmented Cgd dominates.
Note that the presence of this capacitance, which effectively appears between base

and ground, makes it impossible to achieve a perfect input impedance match at all
frequencies. Furthermore, as the frequency increases, Cgs progressively shorts out,
connecting the emitter-degeneration resistance RE to the base node. Hence, even the
input resistance tends to degrade as well, diminishing as the frequency increases.

These effects can be mitigated to a certain extent by using some simple techniques.
First, an L-match can be used to transform up the resistive part to the desired level,
such as 50 �, at some nominal frequency (generally a little beyond where the quality
of the match has begun to degrade noticeably). Of the possible types of L-matches,
the best choice is usually the one that places an inductance in series with the base
and a shunt capacitance across the amplifier input, because such a network becomes
transparent at low frequencies (where no correction is required).

The series inductance of the L-match generally leaves a residual inductive compo-
nent. This inductance is easily compensated by simply augmenting the shunt capac-
itance of the L-network. With this compensation, the frequency range over which a
reasonably good input match is obtained can often be doubled.

To compute the output impedance, apply a test voltage source to the collector and
calculate the ratio of the test voltage to the current that it supplies. In the limit of high
gain, one finds that the output impedance includes an inductive component whose
value is approximately
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12.4 THE SHUNT-SERIES A MPL IF IER 401

Lout ≈ ARCgs/gm, (51)

where Cgd has been neglected.
To develop a deeper understanding of the origins of this inductance, note that the

base voltage is some fraction of the test voltage applied to the collector. Specifically,
the base voltage is an attenuated and low-pass–filtered version of the applied collec-
tor voltage attributable to the capacitance at the base. Hence, the base voltage lags
behind the voltage at the collector. The transistor then converts the lagging base volt-
age into a lagging collector current. From the viewpoint of the test source, it must
supply a current with a component that lags the applied voltage. This phase relation-
ship between voltage and current is characteristic of an inductance.

From this insight, we can assess the effect of neglecting Cgd. Since Cgd supplies a
leading component of voltage at the base, it tends to offset the inductive effect. As a
result, the output inductance actually observed can be considerably smaller than the
upper bound estimated by Eqn. 51 if Cgd is not negligibly small.

Design Example

Let’s now consider a design example, which will reinforce important concepts and
also force us to contend with the challenges introduced by the need to provide bias.
Suppose that we want to design a general-purpose10-dB–gain block, with 50-� input
and output resistances to facilitate cascading. In that case, we are seeking a voltage
gain magnitude of about 3.2. From our first-order equations, we would want an emit-
ter degeneration resistance of approximately (50 �)/(1+ 3.2) = 12 �. However, we
know that the first-order gain equation is optimistic in that it neglects the transistor’s
own (emitter) output resistance. Thus, let’s arbitrarily choose RE = 10 �, with the
understanding that we may have to revise the value a bit.

Next, we select the value of the feedback resistor:

RF ≈ Z0(1 − AV ) = (50 �)(1 + 3.2) ≈ 2 = 210 �. (52)

We will set it at 220 �, the nearest standard 10% tolerance value. As with RE , we
understand that the calculated value for RF is subject to adjustment.

Now that we’ve completed the core amplifier design, we need to select a bias point
for the transistor and then figure out how to establish that bias. One consideration is
that we would like to validate (at least reasonably well) our use of the approximate
gain equation. That, in turn, means that we need to select a sufficiently high col-
lector bias current so that 1/gm added to RE = 10 � is no larger than the first-order
estimate of 12 �. If we choose a 10-mA IC, then 1/gm is about 2.5 � at room tem-
perature, which is reasonably close. Even though it’s over the limit, we’ll stay with
that value for now. Note that the bias current also sets a bound on the output swing
(and hence on output power). Depending on the design objectives, it may be neces-
sary to increase the bias current even further. For this design example, let us assume
that our output swing requirements are sufficiently modest that 10 mA suffices.

Next, we need to select a transistor with acceptable characteristics (e.g., sufficient
cutoff frequency, low parasitics, etc.) at this collector current. For the remainder of
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F IGURE 12.28. Complete shunt-series amplifier

this example, assume that we use a 2SC3302 microwave transistor, whose character-
istics are satisfactory.

Now that we’ve selected the bias condition, we must design a network that es-
tablishes it stably. Suppose we select the topology shown in Figure 12.28. We’ve
added several elements to produce a stable bias, but the AC circuit remains essen-
tially unchanged. The drop across resistor RB1 is multiplied by the sum of RF and
RB2 to produce the collector voltage. To validate that statement and to ensure mini-
mal dependency on transistor β, we require the current through those resistors to be
large relative to the base current. At the same time, we don’t wish to load down the
input too much, or else gain and input match will suffer. To quantify the range of ac-
ceptable values, suppose the nominal base current is 100 µA for this transistor at the
target 10-mA collector bias current and that the nominal base voltage is roughly 1 V.
Thus, RB1 must be no larger than about 1 k� in order for the current through it to be
at least 10 times the base current. To avoid excessive loading, we would like RB1 to
be no smaller than 10 times the source resistance, or 500 �. We arbitrarily select a
value of 680 �, since it lies roughly in the middle of those two limits and is a stan-
dard 10% tolerance resistor value. This value corresponds to a current through RB1

of very roughly 1.2 mA.
Next, assume that the supply voltage is 10 V. Because junction capacitances di-

minish as the reverse bias across them increases, we might feel motivated to drop as
much of that 10 V across the transistor as possible. However, we need to leave some
drop across the collector load resistor to enable some output swing. In the absence
of any more detailed design goals, let us arbitrarily choose to drop half the supply
voltage across RL. Thus, we select RL equal to (5 V)/(10 mA) = 500 �.

To finish choosing the bias elements, we wish to drop about 4 V across the sum of
RF and RB2, making the total resistance about 3.3 k� when given a 1.2-mA current
through the bias network. Subtracting RF from that sum leaves us with a bit over
3 k�. We will round it up to 3.3 k�, the nearest 10% value, in effect neglecting the
DC drop across RF .
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F IGURE 12.29. LTSpice simulation of first-pass design

Finally, the coupling capacitors, C, simply need to be large enough so that their
reactance is small relative to 50 � at the lowest signal frequency of interest. If we
violate our philosophy of moderation and use too large a capacitor, the risks of para-
sitics at high frequencies (e.g., series resistance and inductance) are too large. It may
be necessary to use parallel combinations of capacitors if the amplifier must span a
very large frequency range. Paralleled combinations may be desired in any case to
keep the physical width of signal paths constant and thereby avoid introducing im-
pedance discontinuities.

As always, we also need to be somewhat concerned about the parasitics associ-
ated with the feedback bypass capacitor CB. Fortunately, as we’ll see shortly, we do
not require heroic characteristics. For now, it suffices to specify a value such that the
reactance is at least 10 times smaller than RB2.

The simulation graphed in Figure 12.29 shows that this preliminary design is rea-
sonably close to meeting the design objectives. The bias current is 9.5 mA, and the
gain is just shy of 9 dB. The former is close enough to the target not to warrant any
adjustment. If desired, the 1-dB gain discrepancy may be eliminated by reducing the
emitter degeneration value by a couple of ohms.

We did not specify any bandwidth target for this design, but note that simulations
reveal a bandwidth of almost exactly 1 GHz. By coincidence, this value happens to
be the same as that of the uncompensated open-loop amplifiers studied in connec-
tion with a variety of bandwidth extension methods. If a greater bandwidth were
necessary, we could apply many of those same bandwidth extension methods here.
One particularly straightforward one is a simple inductance in series with the shunt
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F IGURE 12.30. LTSpice simulation of shunt-series amplifier with feedback inductance

feedback path to create a zero, just as in a shunt-peaked amplifier. If that zero is
placed properly, it can offset the effect of the most dominant pole, pushing band-
width out. In this case, we would want to choose a zero in the general vicinity of the
1-GHz bandwidth we presently observe. Because our feedback resistor is 220 �, we
would initially try an inductor of about

L ≈ RF

ωzero
= 220 �

2π109
≈ 35 nH. (53)

The simulation in Figure 12.30 shows the result of including this inductance. As can
be seen, the bandwidth is now about 1.7 GHz. Note that the boost factor is similar
to what shunt peaking provides. The ∼0.5-dB gain peaking is not normally consid-
ered too objectionable but can be eliminated, if necessary, by reducing the value of
the feedback inductance.

Because inductance in the feedback path is helpful in extending bandwidth, we
need not be terribly concerned about the inductive parasitics of CB. And because of
the relatively large feedback resistance, we probably do not need to worry about re-
sistive parasitics, either. However, one must always verify these suppositions.

This first-pass design is certainly incomplete, but fairly straightforward optimiza-
tions are all that are required to finalize it. These we leave “as an exercise for the
reader.”

We close our examination of this topology with a consideration of how to improve
the input match. Although the shunt-series feedback topology is highly effective at
providing a broadband match at both ports, the match is never perfect over an arbi-
trarily broad frequency range. At the input port, for example, the capacitive input
impedance of the transistor itself produces an ever-worsening mismatch as frequency
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12.4 THE SHUNT-SERIES A MPL IF IER 405

F IGURE 12.31. One proper method for providing
an improved match at high frequencies

increases. We typically find that the real part reduces as well. These effects are nat-
ural consequences of the gain reduction as the band edge is approached. As the gain
goes down, the feedback diminishes in effectiveness and so the input impedance ap-
proaches that of an open-loop stage.

If we wish to extend the frequency range over which a good match is obtained,
we need either to redesign the shunt-series amplifier (e.g., modify the feedback net-
works in some ways) or simply to cascade a matching network with the amplifier as it
stands. If we select the latter strategy, we must constrain our search to those matching
idioms that leave untouched the good match that the shunt-series amplifier already
provides at lower frequencies. Furthermore, we seek those matching networks that
do not complicate biasing.

As a specific example, suppose that measurements of the input impedance near
the 1-GHz bandwidth allow us to deduce that a reasonable model for the amplifier
input around that frequency is a 25-� resistance shunted by a1-pF capacitance. There
are several matching networks that would theoretically transform us to a purely real
50 �, but not all of them satisfy the criteria we have established. As an example of
an unsatisfactory solution, suppose we attempt to resonate out the capacitance with
a suitable shunt inductance, then transform the remaining real part upward. There
are at least two problems with that proposed solution. One is that a shunt inductance
produces a DC short between the amplifier input and ground. Fixing that problem re-
quires the inconvenience of adding a large capacitance in series with that inductance,
forcing us now to worry about its parasitics. A more serious problem is that this net-
work completely destroys whatever match might have existed at lower frequencies.
Thus, in exchange for fixing the match at 1 GHz, we end up ruining the amplifier’s
match just about everywhere else.

A much better choice is to use a simple low-pass L-match (see Figure 12.31). The
series inductance Lm and shunt capacitance Cm facilitate biasing. Plus, such a net-
work has no effect at low frequencies, and thus we might be able to leave largely
untouched the good match already provided there.

In terms of Smith-chart loci, the series inductance is chosen to rotate the imped-
ance enough to touch theG = 1 circle. Addition of the shunt capacitance then rotates
us to the center of the Smith chart, completing the match. Depending on objectives,
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406 CHAPTER 12 A MPLIF IERS

F IGURE 12.32. Matching network layout for amplifier

one may target a perfect match at a frequency intermediate between (a) where the un-
compensated amplifier exhibits a poor match and (b) the upper frequency limit where
the compensated amplifier is to exhibit an acceptable match. When seeking mod-
erate improvements in matching bandwidth (say, tens of percent), simple iteration
usually suffices to converge on an acceptable design.

The matching network can be realized at lower frequencies with lumped elements
and at higher frequencies by microstrip equivalents. A representative layout might
appear as shown in Figure 12.32. If a broadband improvement in the match is re-
quired (say, around an octave or so), one may employ the more sophisticated resonant
networks described in Chapter 4. When seeking an exceptionally broadband match
improvement (e.g., approaching a decade or more), the best strategy is to form, for
example, a Chebyshev-like filter in which the last stage is the input impedance of the
amplifier. This way, it is possible to improve the bandwidth of the match to a good
fraction of the Bode–Fano limit.

12.4.2 THE DISTR IBUTED A MPL IF IER
(TR AVEL ING-WAVE A MPL IF IER)

Without question, the most elegant exploitation of distributed concepts is the 1936
distributed amplifier of U.K. inventor William S. Percival.10 He apparently didn’t
talk about it very much, though, and widespread awareness of this scheme had to
await the publication in 1948 of a landmark paper by Ginzton, Hewlett, Jasberg, and
Noe.11

In the abstract to their paper, the authors note that “the ordinary concept of ‘maxi-
mum bandwidth–gain product’does not apply to this distributed amplifier.” Let’s see
how this structure achieves a gain-for-delay trade-off without affecting bandwidth.

As is evident in Figure 12.33, inputs to the transistors are supplied by a tapped de-
lay line, and the outputs of the transistors are fed into another tapped delay line. Al-
though simple sections are shown, the best performance is obtained when m-derived
or (bridged) T-coil sections are employed, as discussed earlier. The distributed am-
plifier is thus the logical continuation of a progression of using complexity to enable
delay–gain–bandwidth trade-offs.

10 W. S. Percival, “Thermionic Valve Circuits,” British Patent Specification no. 460,562, filed 24 July
1936, granted January 1937.

11 E. L. Ginzton, W. R. Hewlett, J. H. Jasberg, and J. D. Noe, “Distributed Amplification,” Proc.
IRE, August 1948, pp. 956–69.
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12.4 THE SHUNT-SERIES A MPL IF IER 407

F IGURE 12.33. Distributed amplifier (FET version)

A voltage step applied to the input propagates down the input line, causing a step
to appear at each transistor in succession. Each transistor generates a current equal
to its gm multiplied by the value of the input step, and the currents of all the transis-
tors ultimately sum in time coherence if the delays of the input and output lines are
matched.

Since each tap on the output line presents an impedance of Z0/2, the overall volt-
age gain (neglecting losses) is

AV = ngmZ0/2. (54)

In contrast with ordinary amplifier cascades, we see that this amplifier has an ideal
gain that depends linearly on the number of stages. It is important in this connection
to observe that this amplifier architecture is essentially an additive one: the overall
gain is the result of summing, not multiplying, individual stage gains. As a conse-
quence, the overall amplifier may provide gains in excess of unity even at frequencies
where the individual stages do not. A conventional cascade of amplifiers cannot per-
form this miracle. Consequently, the distributed amplifier can operate at substantially
higher frequencies than can conventional amplifiers. Furthermore, note that the de-
lay is similarly proportional to the number of stages; this amplifier does trade gain for
delay, since bandwidth does not factor into the trade-off in any direct or obvious way.
In fact, bandwidth limitations primarily result from line attenuation that increases
with frequency. In turn, this attenuation is partly due to the transistor’s dissipative
parasitics.

Another way to understand this amplifier’s advantages is to recognize that one
source of limited bandwidth in conventional amplifiers is the drop in input imped-
ance with increasing frequency that accompanies input capacitance. Unlike dissi-
pative attenuation, which increases with frequency, a lumped amplifier’s limited
bandwidth results primarily from worsening reflections as frequency increases. The
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408 CHAPTER 12 A MPLIF IERS

F IGURE 12.34. Simple incremental FET model

traveling-wave amplifier evades this problem by absorbing the device’s input capac-
itance into the constants of the tapped delay line.12 Thus, by using that capacitance
to produce delay, the amplifier’s input impedance remains substantially constant and
equal to Z0, until the cutoff frequency of the line itself is approached. In designing
such an amplifier, then, it is important to use enough sections to ensure that the band-
width is not limited by the cutoff frequency of the lines. Although the lines in this
case are a hybrid mix of lumped and distributed components, a worst-case estimate
for the line cutoff frequency (sometimes called the Bragg cutoff ) may be computed
on the basis of lumped assumptions. That is,

ωc ≈ 2/
√
LC, (55)

where the inductanceL is the total inductance of the line segment between transistors
and where C is the sum of the line segment capacitance and the device capacitance.
We can always make the line cutoff frequency as high as needed by subdivision into
sufficiently small segments.

Several factors conspire to make traveling-wave amplifiers (TWAs) function im-
perfectly. The most important of these may be appreciated by first considering a sim-
ple model for a transistor (in this case, a MESFET, but it could model a MOSFET
as well, with a suitable adjustment of parameters): see Figure 12.34.

Note that the model neglectsCgd , because its inclusion would inhibit the extraction
of useful design insights. For similar reasons, we have neglected inductive parasitics
in series with the three terminals. We have also neglected the gate–source shunt con-
ductance arising from nonquasistatic (NQS) effects. This neglect can be quite serious
for distributed amplifier analysis in particular because the extreme bandwidths typi-
cally associated with TWAs almost certainly extend to regions where NQS loading
is significant.

It is important to note from this model that the transistor loads the input and out-
put lines differently. The input capacitances are larger than the output capacitances,
so significant adjustment is necessary to guarantee matched delays and matched

12 We are assuming that the input impedance of the device looks capacitive at high frequencies. How-
ever, this assumption is not always satisfied, and the departure from this assumption must be taken
into account in practical designs if good results are to be achieved.
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12.4 THE SHUNT-SERIES A MPL IF IER 409

impedances. Satisfying these requirements requires that the drain lines be longer and
wider than the gate lines in order to equalize delay and characteristic impedance, re-
spectively. The specific conditions that we must satisfy are approximately as follows:

Z0,in ≈ √
Lin/(Cin + Cgs), (56)

Z0,out ≈ √
Lout/(Cout + Cds); (57)

Td,in ≈ √
Lin(Cin + Cgs)(lin), (58)

Td,out ≈ √
Lout (Cout + Cds)(lout ). (59)

In these equations, Lin and Cin represent the total inductance and capacitance of
a segment of input line of length lin separating the input taps (we are thus assuming
that the segments are so short relative to a wavelength at the highest frequency of
interest that we may still treat them as lumped elements). The delay between those
taps is Td,in. The corresponding quantities for the output lines are identified with the
subscript out. Normally, we desire both equal impedances and delays.

From the equations we see that both the input and output lines must be designed
to have a characteristic impedance that is higher than Z0 without the transistors.
Furthermore, the input line must be designed for a higher native impedance than the
output line because the transistor’s output capacitance loads the output line less heav-
ily than the input capacitance loads the input line. If we assume, as is usually the
case, that one design objective is for both the input and output ports to have the same
characteristic impedanceZ0, then we may derive a specific condition on the line con-
stants as follows:

Z0 ≈
√

Lin

Cin + Cgs

⇒ Td,in ≈ Lin

Z0
(lin); (60)

Z0 ≈
√

Lout

Cout + Cds

⇒ Td,out ≈ Lout

Z0
(lout ). (61)

Now setting the delays equal yields

(Lin)(lin) = (Lout )(lout ) ⇒ Lin

Lout

= lout

lin
. (62)

Thus, the segment lengths must be chosen in an inverse ratio to the segment induc-
tances. The input line segments must have higher inductance than the output line
segments in order to equalize impedances, and the output lines need to be longer to
equalize delays.

We still don’t have quite enough information to proceed with an actual design; we
need specific design goals and constraints. For example, we could seek to maximize
the gain with no constraints; maximize the gain with fixed segment lengths; maxi-
mize the bandwidth for a given gain; or maximize the gain–bandwidth product for a
fixed power consumption. Aiming for each of these objectives will lead to distinct
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410 CHAPTER 12 A MPLIF IERS

designs. We will be able to provide only an outline of how to implement strategies
for achieving some of these goals.

If one wishes to maximize gain with fixed transistors and fixed segment lengths
without power constraints, then the optimization will in fact yield the number of
stages corresponding to this condition. As we increase the number of stages in an
effort to increase the gain, the total line length increases as well. But thanks to line
attenuation (which is exponential), we eventually reach a point where adding one
more stage introduces more attenuation than gain. The precise number of stages that
produces this maximum gain is a function of device technology, bias point, device
dimensions, and line constants. For this academic condition, one may show that the
optimum number of stages is approximately

Nopt ≈ ln(αinlin/αout lout )

αinlin − αout lout
, (63)

where αin and αout are the attenuation constants for the input and output lines
(including the effect of transistor loading).13 Note that this equation does not pro-
vide guidance about how to choose the optimum transistor or its bias. Instead, it
presumes that we are simply handed a fixed device and are given its bias (from which
we compute the transistor’s contribution to line loadings). In integrated circuit im-
plementations, we have total control over the device width. Even in a discrete design
context, we often have at least some selection of device sizes, but this particular
optimization procedure doesn’t take advantage of that important degree of freedom.
Further note that the design procedure does not accommodate any specific bandwidth
target.

As a more realistic (but considerably more difficult) alternative, we would gen-
erally fix the bias voltages on the transistors, as well as their total width. These
constraints are equivalent to fixing the total power consumption and gain. Thus,
identifying the optimum number of stages in this case yields a design whose band-
width is maximized within a fixed power budget.

In seeking any of these optima, it is important to acknowledge that the resistive
device parasitics alter the characteristics of the input and output lines in troublesome
ways. For example, accounting for nonquasistatic transistor dynamics (neglected in
Figure 12.34) reveals a shunt conductance that grows as the square of frequency. That
NQS loss compounds the other device losses, as well as the loss inherent in all real
lines. To complicate matters, the line loss is also frequency dependent. If dominated
by skin effect, the loss will grow as the square root of frequency. If dielectric loss
dominates, then the growth will be linear in frequency. If both mechanisms are sig-
nificant, the loss will exhibit some mixture of those two behaviors.

Whatever their origins, the loss mechanisms produce attenuation and dispersion.
We also see from the transistor model that the input and output lines are coupled
through the drain–gate capacitor. All of these second-order phenomena combine to

13 See David M. Pozar, Microwave Engineering, 2nd ed., Wiley, New York, 1998.
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12.4 THE SHUNT-SERIES A MPL IF IER 411

degrade performance. They certainly make the design somewhat more challenging.14

In general, iteration with a combination of circuit simulators and electromagnetic field
solvers are required to converge on a good design. That these challenges are not in-
surmountable is clear from the record-setting gain–bandwidth products that TWAs
exhibit.

To underscore that observation, perhaps it helps to know that vacuum tube dis-
tributed amplifiers were successfully used in many Tektronix oscilloscopes for many
years (their model 513 was their first to use this type of amplifier). The amplifiers were
used in the final vertical deflection stage and typically involved six or seven “matched”
pairs of vacuum tubes. Bandwidths of roughly ωT/2 were routinely achieved, so that
100-MHz general-purpose oscilloscopes were available by around 1960.15

Given these attributes, one may reasonably ask why this type of amplifier is not
ubiquitous today. A significant reason is that it is rather power hungry, since many
stages are required to provide a given gain. Another is that TWAs are rather noisy,
as the transistors are typically driven by nothing approaching a noise match. Yet
another is that the active devices that first supplanted vacuum tubes – bipolar tran-
sistors – have several characteristics that make them unsuitable for use in distributed
amplifiers. The biggest offender is a significant parasitic base resistance, rb, which
spoils line Q and therefore degrades the line. Bipolar distributed amplifiers con-
sequently acquired an unsavory reputation. Finally, the lumped lines could not be
integrated until very recently, when devices improved enough that frequencies of op-
eration increased to a range where fully integrated lines become practical. Distributed
amplifiers all but disappeared as a consequence.

They finally made their reappearance in about 1980, when workers in GaAs tech-
nology rediscovered the principle. Since that time, distributed amplifiers have been
constructed in a variety of compound semiconductor technologies, with InP versions
achieving 100-GHz bandwidths.

12.4.3 INTER MODUL ATION DISTORTION
IN BROADBAND A MPLIF IERS

The narrowband focus of the chapter on low-noise amplifiers (Chapter 13) extends
to the way nonlinearities are characterized. The value of third-order intercept as a
linearity measure depends on the ability to neglect harmonic and intermodulation
distortion products that lie outside the bandwidth of the system.

14 One may always use a cascode cell, of course, to reduce the coupling problem – at the expense of
a reduction in headroom. Having to accommodate the additional delay through the common-gate
device also adds complexity to the design process.

15 The distributed amplifiers in the Tektronix 585A 100-MHz oscilloscope used 6DJ8 duo-triodes,
which have fT values of roughly 300 MHz. The delay lines were composed of T-coils, which
provide better bandwidth than ordinary m-derived lumped approximations. It is likely that the
proximity of the coils also provided some bridging capacitance, further boosting bandwidth.
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412 CHAPTER 12 A MPLIF IERS

By contrast, broadband amplifiers accept, amplify, and distort signals over a wide
range of frequencies. Consequently, distortion measures that are appropriate for rel-
atively narrowband systems may convey an inadequate assessment of linearity for
broadband systems, such as cable television amplifiers and emerging ultrawideband
(UWB) systems. In those cases, third-order intercept needs to be replaced by, or at
least supplemented with, alternative linearity measures.

The case of cable television serves as a practical and illustrative example. There
could be as many as 91channels, each 6 MHz wide, transmitted to the subscriber from
the “head end.” With a total bandwidth exceeding half a gigahertz, there is little hope
of filtering out the many distortion products that are inevitably generated by ever-
present nonlinearities. As it happens, the human eye is exquisitely sensitive to certain
types of artifacts. Thus, even though the signal-to-distortion ratio may be numeri-
cally large (e.g., comfortably in excess of what any digital system would require for a
completely negligible bit-error rate), that alone may not guarantee acceptable visual
quality. As cable television systems came to be deployed in large numbers beginning
in the 1970s, engineers became aware of an important source of these visibly objec-
tionable distortions. The most important of these are composite triple beat (CTB) and
composite second-order (CSO) distortions. As their names imply, CTB is caused by
the intermodulation of three carriers and CSO by the intermodulation of two carriers.

Consider three carriers of frequencies f1, f2, f3. If they are near each other, the
intermodulation product (f1 + f2 − f3), as just one example, will also lie near the
original carrier frequencies. If this triple-beat product is not sufficiently small, it will
produce a visible “crawling” effect that is quite noticeable until large carrier-to-CTB
ratios are approached. Note that there are other intermodulation products of those
same three frequencies that will lie near the original triplet. In fact, any combination
involving one sum and one difference will produce a triple-beat component near the
original frequencies.

Extensive experimentation has revealed that these products are judged by most
people to be of negligible consequence when they lie below the carrier by about
50 dB. The FCC consequently requires that cable TV equipment satisfy a 51-dB
carrier-to-CTB ratio. Most commercially available headend amplifiers typically ex-
ceed that minimum requirement by 10 dB or more.

Because CTB is a third-order distortion, it theoretically drops 3 dB for every 1-dB
drop in power. Thus, for every decibel reduction in power, the C-CTB ratio improves
by 2 dB while the SNR degrades 1 dB. Similarly, the C-CSO ratio improves 1 dB for
every 1 dB of reduction in power. As with IP3, these theoretical expectations are not
always met in practice; one can always construct an amplifier that does not conform
to these relationships. That said, the rules of thumb stated apply much more often
than not.

Measuring CTB is similar to measuring third-order intercept. This time, three sig-
nal generators feed the device under test. As with measuring IP3, the signal generator
outputs should be isolated from each other (or individual attenuators used ahead of
the summing point) to prevent one generator from upsetting another.
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12.5 TUNED A MPL IF IERS 413

Commercial instrumentation uses unmodulated carriers (CW) for the CTB mea-
surement. Such a condition is considered the most demanding, because modulated
carriers have smaller average carrier power and hence produce lower levels of CTB
on average. Typically, one finds about a 10-dB improvement in subjective CTB in
going from the CW measurement to tests with actual television signals.

12.5 TUNED A MPLIF IERS

12.5.1 INTRODUC TION

We’ve already seen that the design of broadband amplifiers can be aided by such
bandwidth extension tricks as shunt peaking. However, it is not always necessary (or
even desirable) to provide gain over a large frequency range. Often, all that is needed
is gain over a narrow frequency range centered about some high frequency.

Such tuned amplifiers are used extensively in communications circuits to provide
selective amplification of wanted signals and a degree of filtering out of unwanted
signals. As we’ll see shortly, eliminating the requirement for broadband operation
allows one to obtain substantial gain at relatively high frequencies. That is, to zeroth
order, the effort required to achieve a gain of 100 over a bandwidth of 1 MHz is
roughly independent of the center frequency about which that bandwidth is obtained;
the difficulty of obtaining a specified gain–bandwidth product is approximately con-
stant and independent of center frequency (within certain limits). Furthermore, the
power required to obtain this gain can be considerably less for a narrowband imple-
mentation. This last consideration is particularly important when designing portable
equipment, where battery life is a major concern.

12.5.2 COM MON-EMITTER A MPL IF IER
WITH SINGLE TUNED LOAD

To understand why the gain–bandwidth product should be roughly independent of
center frequency, consider the amplifier shown in Figure 12.35. If we drive from a
zero-impedance source (as shown) and if we can neglect series base resistance, then
the collector-base capacitance Cgd may be absorbed into the capacitance C. In that
case, we can model the circuit as an ideal transconductor driving a parallelRLC tank.
At low frequencies, the inductor is a short and the incremental gain is zero; while at
high frequencies, the gain goes to zero because the capacitor acts as a short. At the
resonant frequency of the tank, the gain becomes simply gmR since the inductor and
capacitor cancel.

For this circuit, the total −3-dB bandwidth is (as usual) simply 1/RC. Hence, the
product of gain (measured at resonance) and bandwidth is just

G(BW ) = gmR · 1

RC
= gm

C
. (64)
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F IGURE 12.35. Amplifier with single tuned load
(biasing details omitted)

So for this example, with all of its simplifying assumptions, we obtain a gain–
bandwidth product that is independent of center frequency, as advertised.

To underscore the profound implications of this last statement, consider two alter-
native methods for obtaining a gain of 1000 at 10.7 MHz (for the IF section of an FM
radio, for example). We could attempt a broadband amplifier design, which would
require us to achieve a gain–bandwidth product of over 10 GHz (not a trivially ac-
complished goal). Or, we could recognize that, for the FM radio example, we need
only obtain this gain over a 200-kHz bandwidth,16 in which case we only need some-
thing like a 200-MHz gain–bandwidth product – a considerably easier task.

The fundamental difference between these two approaches, of course, is due to
the cancellation of the load capacitance by the inductor in the tuned amplifier. As
long as we have direct access to the terminals of any parasitic capacitance (and can
make them appear across the tank), we can resonate out this capacitance with an ap-
propriate choice of inductance and obtain a constant gain–bandwidth product at any
arbitrary center frequency.

Of course, real circuits don’t work quite as neatly; we suspect that we probably
won’t be able to get gain at 100 THz from Jell-O™ transistors, for example, no mat-
ter how good our inductor is. But it remains true that, as long as we seek center
frequencies that are “reasonable,”17 tuned loads allow us to obtain roughly constant
gain–bandwidth products.

12.5.3 DETAILED ANALYSIS OF THE TUNED A MPL IF IER

The analysis we just performed invokes many simplifying assumptions. In particular,
the choice of a zero source resistance and zero base resistance allowed us to absorb
the collector–base capacitance into the tank network, permitting the inductance to
offset its effects.

16 This value applies to commercial broadcast FM radio; your mileage may vary.
17 We’ll quantify this better a little later, but for now pretend that “reasonable” means “reasonably

well below ωT .”
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12.5 TUNED A MPL IF IERS 415

F IGURE 12.36. Amplifier with single tuned load

F IGURE 12.37. Incremental model for circuit

Because Cgd might have a more serious effect if it were no longer possible to ab-
sorb it directly into the tank, let’s consider more realistic models for the circuit and
examine what happens. Specifically, let’s now allow for nonzero source resistance
and nonzero series base resistance; see Figure 12.36. The corresponding incremental
model is shown in Figure 12.37. Using this model, we can compute two important
impedances (actually, admittances, to be precise). First, we’ll find the equivalent ad-
mittance seen to the left of the RLC tank, then we’ll find the admittance seen to the
right of the source resistance RS.

In carrying out this analysis, it is better to apply a test voltage source across the
tank to find the equivalent admittance seen to its left. Remember, you’ll get the same
answer whether you use a test voltage or a test current (assuming you make no errors,
or at least the same errors), but a test voltage is more convenient here because it most
directly fixes the value of vbe, the voltage that determines the value of the controlled
source.

The precise details are somewhat messy and essentially unrewarding, but the end
result is that the admittance seen by the tank consists of an equivalent resistance
(which we’ll ignore for now) in parallel with an equivalent capacitance. This capac-
itance is given by:

Ceq = Ccb[1 + gmReq] = Ccb[1 + gm(RS + rg)]. (65)

Notice that Ceq can be fairly large. This is actually an alternative manifestation of
the Miller effect, this time viewed from the output port. Some fraction of the voltage
applied to the collector appears across vbe, where it excites the gm generator. The re-
sulting current adds to that through the capacitors and has to be supplied by the test
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416 CHAPTER 12 A MPLIF IERS

source, so the source sees a lower impedance. One component of that current is due
to a simple capacitive voltage divider and is thus in phase with the applied voltage.
It therefore represents a resistive load on the tank, causing a gain reduction. Another
component of the current leads the applied voltage and hence represents an additional
capacitive load on the tank.

The additional capacitive loading by Ceq shifts downward the resonant frequency
of the output tank. Although this shift can be compensated by a suitable adjustment
of the inductance, it is generally inadvisable to operate in a regime where the resonant
frequency depends critically on poorly controlled, poorly characterized, and poten-
tially unstable transistor parasitics. It is therefore desirable to selectC relatively large
compared with the expected variation in parameters, so that the total tank capacitance
remains fairly independent of process and operating point. The unfortunate trade-off
is a reduction in the gain–bandwidth product for a given transconductance.

A more serious effect of Ccb becomes apparent when we consider the input im-
pedance (or more directly, the input admittance). Since the intermediate details are
again of little use outside of deriving the one bit of trivia we’re about to state, we’ll
simply present the result:

yin = yLyF

yL + yF
+ gmyF

yL + yF
, (66)

where we have set rb to zero, yin is the admittance seen to the right of the source re-
sistance RS , yF is the admittance of Ccb, and yL is the admittance of the RLC tank.18

If, as is often the case, the magnitude of the feedback admittance yF is small com-
pared to that of yL, then we may write

yin ≈ yF + gm(jωCcb)

yL
. (67)

The significance of this result becomes apparent when you observe that yL has a net
negative imaginary part at frequencies where the tank looks inductive (i.e., below
resonance), so that the second term on the right-hand side of the equation (and, there-
fore, yin) can have a negative real part – that is, the input of the circuit can act as
if a negative resistor were connected to it. Having negative resistances around can
encourage oscillation (which is just fine if this is your intent, but more typically it
isn’t). We certainly have all of the necessary ingredients: inductance, capacitance,
and negative resistance. If there were no Ccb, there would be no such problem.

The difficulty with Ccb, then, is that it couples the input and output circuits in po-
tentially deleterious ways. It loads the output tank and decreases gain, detunes the
output tank, and can cause instability. This latter problem is particularly severe if one
attempts to add a tuned circuit to the input. Furthermore, even before true instability

18 To avoid obscuring the argument any more than it probably already has been, we have neglected
the transistor’s output admittance in this development; it may be absorbed into yL if a more exact
analysis is desired.
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12.6 NEUTR AL IZATION AND UNIL ATER AL IZATION 417

F IGURE 12.38. Cascode amplifier with single tuned load

sets in, the interaction of tuned circuits at both ports may make it extremely chal-
lenging to achieve proper tuning.

Unfortunately, Ccb will always be nonzero (in fact, it is typically about 30–50%
of the main base capacitance, so it is hardly negligible). To mitigate its various un-
desirable effects therefore requires the use of some topological tricks.

We will shortly explore in greater detail the question of amplifier stability. For
now, we will consider a number of techniques that can improve it.

12.6 NEUTR ALIZATION AND UNIL ATER ALIZATION

One strategy derives naturally from recognizing that the stability problem stems from
coupling the input and output ports. Removing the coupling should therefore be of
benefit. This decoupling of output from input should feel familiar – it is precisely
what eliminates the Miller effect from common-emitter amplifiers, and what works
there works here as well. See Figure 12.38. By providing isolation between input
and output ports with the common-base stage, we eliminate (or at least greatly sup-
press) detuning and the potential for instability, thereby enabling the attainment of
larger gain–bandwidth products.

Another topology that achieves these objectives is the emitter-coupled amplifier
(which may be viewed as an emitter follower driving a common-base stage); see Fig-
ure 12.39. Once again, this structure isolates the output from the input and therefore
does not suffer as seriously from the instability and detuning problems of the simple
common emitter stage.

Both the cascode and emitter-coupled amplifier behave similarly with regard to
isolation. The cascode provides roughly twice the gain for a given total current
(because all of this current can be used to set gm), while the emitter-coupled ampli-
fier requires less total supply voltage (since the two transistors aren’t stacked as in the
cascode). The choice of which topology to use is usually based on such headroom
and gain considerations.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511812941.013
Downloaded from https://www.cambridge.org/core. The Librarian-Seeley Historical Library, on 18 Dec 2019 at 06:18:08, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511812941.013
https://www.cambridge.org/core


418 CHAPTER 12 A MPLIF IERS

F IGURE 12.39. Emitter-coupled amplifier with single tuned load

The circuits of Figures 12.38 and 12.39 are examples of nearly “unilateral” am-
plifiers, that is, ones in which signals can flow only one way over large bandwidths.
You can well appreciate the value of unilateralization; aside from conferring the cir-
cuit benefits we’ve already discussed, it makes analysis and design much easier by
reducing or eliminating unintended and undesired feedback.

If we cannot (or choose not to) eliminate undesired feedback, another approach is
to cancel it to the maximum possible extent. Since this cancellation is rarely perfect
over large bandwidths, this approach is generally called “neutralization”19 to dis-
tinguish it from more broadband unilateralization techniques that do not depend on
cancellations.

The classic neutralized amplifier appears as shown in Figure 12.40. Notice that the
inductor has been replaced by something slightly more complex: a tapped inductor,
or autotransformer. By symmetry, the voltages at the top and bottom of the induc-
tor are exactly 180◦ out of phase in the connection shown.20 Therefore, the collector
voltage and the voltage at the top of neutralizing capacitor CN are 180◦ out of phase.
Now, if the undesired coupling from collector to base is due only to Cgd then, by
symmetry, selection of CN equal to Cgd guarantees that there is no net feedback from
collector to base! The current through the neutralizing capacitor is equal in magni-
tude and opposite in sign to that through Cgd; we have removed the coupling from
output to input by adding more coupling from output to input (it’s just out of phase
so that the net coupling is zero).

19 Neutralization was developed for AM broadcast radios in the 1920s by Harold Wheeler while
working for Louis Hazeltine. His invention allowed the attainment of large, stable gains from
tuned RF amplifiers and thus reduced the number of gain stages required (and hence the number
of vacuum tubes required) in a typical radio, permitting significant cost reductions over many rival
approaches.

20 Note that autotransformers are not strictly necessary here. They are just a historically common
and certainly convenient means of obtaining two voltages that are precise inverses of each other.
Clearly, other ways to provide a signal and its inverse exist (consider the example of Figure 12.41).
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12.6 NEUTR AL IZATION AND UNIL ATER AL IZATION 419

F IGURE 12.40. Neutralized common-emitter amplifier

F IGURE 12.41. Neutralized common-emitter amplifier
(more practical for ICs)

Neutralization was originally implemented with tapped transformers, but the poor
quality of (and large area consumed by) on-chip transformers makes this particu-
lar method unattractive for IC implementation. Observe, however, that the tapped
transformer is used simply to obtain a signal inversion. Since inversions are eas-
ily obtained other ways, practical neutralized IC amplifiers are still realizable. One
topology uses a differential pair to obviate the need for a transformer; this is shown
in Figure 12.41.

Because perfect neutralization with these techniques depends on feeding back a
current that is precisely the same as that through Cgd , the neutralizing capacitor CN

must match Cgd precisely. Unfortunately, Cgd is somewhat voltage-dependent. Per-
haps because of the difficulty of providing precise cancellation in the face of this
variability, neutralization has found limited application in semiconductor amplifiers.
Vacuum tubes, with their highly linear and relatively constant coupling capacitances,
are much better candidates for use of this technique. Nevertheless, with sufficient

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511812941.013
Downloaded from https://www.cambridge.org/core. The Librarian-Seeley Historical Library, on 18 Dec 2019 at 06:18:08, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511812941.013
https://www.cambridge.org/core


420 CHAPTER 12 A MPLIF IERS

F IGURE 12.42. Simple transistor models

diligence, it is possible to obtain usefully large gain–bandwidth improvements in
semiconductor-based amplifiers by using neutralization.

12.7 STR ANGE IMPEDANCE BEHAVIORS AND STABIL ITY

One of the many reasons that microwave circuit design is regarded as mysterious
by so many is the number of unexpected impedance transformations that arise. Of
course, these are unexpected only if you’ve never encountered them. We now exam-
ine a number of these allegedly strange impedance behaviors (SIBs), specifically so
they’ll cease to be strange.

To illustrate a general analytical approach and at the same time to place many
seemingly disconnected phenomena into a unified context, let’s consider how the
impedances looking into various transistor terminals depend on impedances con-
nected to the other terminals. We will simplify the analyses as appropriate for the RF
regime. More comprehensive analyses would lead to more accurate answers, but our
aim is to develop design insight, so we will preserve only the minimum complexity
consistent with that goal.

First, consider the simple hybrid-π models for a transistor shown in Figure 12.42.
The model on the left treats the base–emitter voltage as the independent control vari-
able. This choice is most closely tied to the fundamental physics underlying transistor
operation, but it is not the only possible one. As seen on the right of the figure, it is
also acceptable to treat the base current as the control variable. The two models are
equivalent if we set the current gain as

β = gmvbe

ib
= gm

sCbe

= ωT

jω
= −j

ωT

ω
. (68)

Note the meaning of Eqn. 68 in English: the current gain magnitude is inversely
proportional to frequency, dropping to unity at ωT , as it should. Equation 68 also
means that the current gain has a quadrature phase lag associated with it, a result of
the quadrature lag in voltage that the input capacitance provides. Finally, Eqn. 68
claims that the current gain grows without bound as the frequency approaches zero.
This error tells us that this model is not valid at frequencies where the equation pre-
dicts current gains much larger than the DC current gain, β0, so we must be careful
not to apply this model in that frequency regime (the model’s lower frequency limits
are less constraining for FETs, owing to their vastly superior DC current gain). Sim-
ilarly, the voltage-controlled model predicts an infinite base–emitter impedance at
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12.7 STR ANGE IMPEDANCE BEHAVIORS AND STABIL ITY 421

F IGURE 12.43. Circuit model for
base impedance calculation

DC, instead of the finite value of a real bipolar device. Again, as long as we only use
the model at frequencies where the input current is dominated by the input capaci-
tance, the model will yield useful answers. Finally, note that both of these models
apply generally to all transistors, not just bipolars. As a result, the conclusions we
will reach are broadly applicable to all transistor circuits.

Within the constraints identified, both models will yield the same answer (they’re
equivalent), but it may be easier to obtain design insights from one model or the other,
depending on circumstances. It’s therefore useful to consider both options.

We now use the current-controlled model to derive a simple expression for the
impedance looking into the base when the emitter is terminated in an arbitrary im-
pedance, Z. See Figure 12.43. In this case, it’s most expedient to drive the base
terminal with a test current source. Then, the voltage dropped across the emitter load
impedance is just

VZ = Z(β + 1)ib. (69)

Thus, from the point of view of the input port, where only ib flows, the emitter im-
pedance has been multiplied by a factor of (β + 1). Adding the input capacitor, we
find that the total input impedance is

Zb = 1

jωCbe

+ Z(β + 1) = 1

jωCbe

+ Z

(
−j

ωT

ω
+ 1

)
. (70)

Now consider a few special cases. A purely resistive Z turns into a capacitor (and
a resistor). This capacitance appears in series with the base–emitter capacitance and
hence reduces the overall input capacitance. This action may be regarded as the re-
sult of bootstrapping the base–emitter capacitance provided by an emitter follower.
The larger the value of R, the closer to unity the gain of the follower and the smaller
the input capacitance.

Suppose now that the emitter load is a pure inductance. In that case,

Zb = 1

jωCbe

+ jωL

(
−j

ωT

ω
+ 1

)
= 1

jωCbe

+ ωTL + jωL. (71)
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F IGURE 12.44. Circuit model for
emitter impedance calculation

That is, the inductive load contributes a pure resistance to the input port, aside from
an inductance. Just to provide a reference point, a 1-nH inductance in the emitter cir-
cuit of a transistor whose ωT is a modest 10 GHz produces a 63-� resistance in series
with the input. Obviously, it is critically important to minimize inductive parasitics
in the emitter circuit if unwanted resistive input impedances are to be avoided. The
faster the transistor, the more challenging this objective. Generating an input resis-
tance by inductive degeneration is not necessarily undesirable, however, as seen in
the case of certain low-noise amplifier topologies. In general, an effect large enough
to be troublesome in one context may be used to advantage in another.

Now let us examine the effect of a capacitive load. In that case,

Zb = 1

jωCbe

+
(

1

jωC

)(
−j

ωT

ω
+ 1

)
= 1

jωCbe

− ωT

ω2C
+ 1

jωC
. (72)

Note that the input impedance is capacitive, in series with a negative resistance. If
the magnitude of this negative resistance exceeds that of the positive resistance driv-
ing the base electrode, instability will result. Even before the onset of truly unstable
behavior, the negative resistance can alter the input impedance in ways that produce
resonant peaking and otherwise degrade the quality of an input match. Given how
common it is to encounter a capacitive load on an emitter follower, it’s particularly
important to be aware of this mechanism.

Now let us examine how the impedance looking into the emitter varies as a function
of the impedance connected to the base terminal. See Figure 12.44. In the emitter-
loaded case, the impedance was multiplied by (β+1); here, it is divided by the same
factor. That is,

Ze = 1

jωCbe

+ Z

(β + 1)
= 1

jωCbe

+ Z

−j(ωT/ω) + 1
. (73)

To simplify matters even further, assume that we consider frequencies low enough
that the magnitude of the current gain is well above unity. In that case,

Ze = 1

jωCbe

+ Z

−j(ωT/ω) + 1
≈ 1

jωCbe

+ jZ

(
ω

ωT

)
. (74)

We see that a resistance in series with the base turns into an inductance when viewed
from the emitter. This seeming creation of a reactance out of a resistance is a bit illu-
sory, for it is really the interaction of the base–emitter capacitance with the resistance
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F IGURE 12.45. Circuit model for
generalized Miller effect analysis

that produces this result. In fact, the appearance of an inductance is actually the re-
sult of gyration of the base–emitter capacitance. Again, whether this inductance is
beneficial or pernicious depends on the rest of the circuit. Depending on those de-
tails, either result is a possibility.

A capacitive base impedance contributes a positive resistance, and an inductance
contributes a negative resistance. Just as in the capacitively loaded follower, such a
negative resistance can be either an asset or a liability. The engineer must be aware of
both cases and either exploit or suppress this mechanism as appropriate. Proceeding
as before, we may compute the impedance looking into the emitter as

Ze ≈ 1

jωCbe

+ j

(
ω

ωT

)
(jωL) = 1

jωCbe

−
(
ω2

ωT

)
L, (75)

so that the real part of the impedance is given by

Rin ≈ − ω

ωT

|ZL|. (76)

The ease with which this circuit provides a negative resistance accounts for its popu-
larity in certain types of oscillators. However, it should be obvious that this ease also
underscores the importance of minimizing parasitic gate inductance when a negative
resistance is not desired.

We close by revisiting the Miller effect discussed in Section 12.4, but this time in
a slightly different form. To do so properly, we need to restore the collector–base ca-
pacitance to our model – see Figure 12.45. The base–emitter capacitance is directly
in shunt with the input port, so we may remove it temporarily and then take it into
account at the very end. Applying a test voltage to the input port and computing the
input impedance (without Cbe), we obtain

Zin = 1 + sCcbZ

sCcb(1 + gmZ)
. (77)

At frequencies where the admittance of is Ccb small compared to that of the load, the
input impedance contributes the following component to the input impedance:

Zin ≈ 1

sCcb(1 + gmZ)
. (78)

In the special case where the collector load is a pure resistance, we obtain the familiar
capacitive multiplication of the classic Miller effect.
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If we additionally assume that the transconductance is much larger than the ad-
mittance of the load, then

Zin ≈ 1

sCcbgmZ
= 1

jωCcbgmZ
. (79)

From Eqn. 79, we see that a purely inductive load contributes a negative resistance to
the input impedance. This result is consistent with the lessons of our previous analy-
sis of the tuned RLC common-emitter amplifier. We also see that a purely capacitive
load contributes a pure resistance to the input impedance.

We’ve seen that impedance transformations of a variety of types can occur in RF
circuits. Often these transformations may be exploited, but just as often they are
undesired. In both cases, the ability to perform zeroth-order analyses of the types
presented here allow you to determine their origins and general dependencies. That
information alone is often sufficient to inspire methods for any necessary remedia-
tion – without having to resort to more detailed analyses until very near the end of
the design process. For example, the appearance of negative resistances at the base
terminal (e.g., from inductive collector loads or capacitive emitter loads) can be coun-
teracted by the purposeful addition of suitable positive series resistances. These may
be simple resistors or, as is common in discrete RF circuits, ferrite beads. The latter
have the advantage of presenting no resistance at DC, thereby minimally disturbing
the bias network.

These impedance transformations often force purposeful mismatches at the inter-
faces to an amplifier. Even though maximizing power transfer is frequently extremely
important, it may be impossible to do so and also maintain stable operation. Deliber-
ately mismatching the input or output port (or both) is frequently necessary to assure
stability. And, in the case of low-noise amplifier design, such mismatching may be a
necessary trade-off in exchange for improved noise performance.

As a final comment, it’s again important to adopt a philosophy of moderation.
Here, it’s important not to design an amplifier to have much more gain or much
more bandwidth than necessary. More is definitely not better. For example, it may
be that the source and load terminations degrade outside the nominal bandwidth. If
the amplifier has excessive bandwidth, these uncontrolled impedances may very well
provoke instability.

STABIL ITY FAC TORS, CIRCLES, AND
M A XIMUM AVAIL ABLE GAIN

We’ve studied various SIBs from a device-level viewpoint in order to develop a fun-
damental understanding of their sources and cures. In classical microwave design,
it is more common to talk about stability in terms of two-port parameters and with
plots of stable source and load impedances in Smith-chart form. Although we’ve al-
ready declared our intention not to mention that classical approach, it’s worthwhile
saying at least a few words about the topic, if for no other reason than to leave the
reader at least sufficiently conversant to use such data if it is presented in that form.
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First, it is common to encounter various stability factors. One, due to Linvill, pro-
vides a simple indication of whether a given two-port can ever go unstable, given
open-circuited input and output ports.21 It is expressed in terms of the admittance
two-port parameters of a device as follows:

C = |y21y12|
2g11g22 − Re[y21y12 ]

. (80)

For unconditional stability, we need C < 1. Note that the Linvill stability factor
is particularly sensitive to small changes in the reverse transadmittance y12. In terms
of model parameters, y12 is essentially jωCcb, so selecting devices with low collec-
tor–base (or drain–gate) capacitances is helpful. One must also take great care in
layout to avoid inadvertently increasing the capacitance between those two termi-
nals. Alternatively, neutralization or unilateralization techniques may be applied to
reduce y12 and thereby improve stability.

The equation for the Linvill factor also tells us that resistively loading the input
and output ports improves stability. In words, it expresses the intuitively satisfying
observation that if we throw away loop gain, stability improves.

Because the two-port parameters for a Linvill test assume open-circuited ports,
the C factor does not evaluate amplifier stability under conditions that usually apply
to microwave circuits. An alternative stability factor, due to Stern, allows one to as-
sess what combinations of source and load impedances will produce instability.22 By
a somewhat unfortunate arbitrary choice of numerator and denominator, Stern fac-
tors greater than unity correspond to stable operation. The Stern stability factor is
defined as follows:

K = 2(g11 + GS)(g22 + GL)

|y21y12| + Re[y21y12 ]
, (81)

where GS and GL are the conductive parts of the source and load admittances, re-
spectively. As with C, the Stern factor tells us that stability improves as we reduce
the feedback capacitance (either through device selection or neutralization) and as
we load the input and output ports with increasing conductances.

These two stability factors are not the only ones that have been defined or used,
but they are by far the most commonly encountered.

In many microwave transistor data sheets, manufacturers kindly provide informa-
tion about stability by plotting regions of impedances that correspond to unstable (or
stable) operation. This information lets the engineer know whether instability is pos-
sible for some combination of source and load impedances and thus, perhaps, suggests
how to avoid it. As a simple example, consider the illustration in Figure 12.46. This
particular transistor can exhibit instability for the collection of impedances shown in
the smaller circle toward the upper right. Some of those impedances are outside of
the unit circle, implying negative real parts, for example. Under ordinary conditions

21 J. Linvill and J. Gibbons, Transistors and Active Circuits, McGraw-Hill, New York, 1961.
22 Arthur P. Stern, “Stability and Power Gain of Tuned Transistor Amplifiers,” Proc. IRE, March

1957.
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F IGURE 12.46. Illustration of stability circle idea

we would not intentionally drive an amplifier this way, but as we saw in the discus-
sion on SIBs, it is possible to produce such negative resistances unintentionally.

Even if we successfully avoid negative real parts, the particular plot of Figure12.46
shows that there are some values of source impedance with positive real parts that
nonetheless produce amplifier instability. These must be avoided, obviously, but
doing so may frustrate the attainment of such other objectives as maximizing gain or
minimizing noise figures.

Together with the source stability circle, one also needs to examine the output im-
pedance stability circle in order to assess comprehensively the stability of a proposed
design.

Since we’ve mentioned gain, perhaps it is appropriate here to introduce the figure
of merit known as the maximum available gain (MAG) of a transistor (or any other
two-port). As its name implies, it is the power gain provided when a simultaneous
conjugate source and output load match is achieved and when the device has been
unilateralized, so that any gain-reducing reverse transadmittance is zero.

We may derive a simple expression for the maximum available gain by consider-
ing a two-port consisting of an input and output admittance together with a single
transadmittance. The conjugate match condition means that only the conductances
survive. The power delivered to the matched output load is thus

Pout = V 2
in|[voltage gain]|2g22 = V 2

in

|y21|2
(2g22)2

g22 = V 2
in

|y21|2
4g22

. (82)

The power delivered to the input of the two-port is

Pin = V 2
ing11, (83)

so the power gain is

MAG = |y21|2
4g11g22

. (84)

If the transistor is unconditionally stable for all loads, then actually obtaining some-
thing close to the MAG may be possible in practice. In the more typical case, however,
the impedance corresponding to maximum gain may produce instability. A similar
comment applies to the conditions that produce minimum noise. There is no guaran-
tee for a particular device that one can obtain maximum gain, minimum noise figure,
and stable operation simultaneously.
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12.8 APPENDIX: BR IDGED T-COIL TR ANSFER FUNC TION 427

F IGURE 12.47. Bridged T-coil: original circuit

Finally, we reiterate the wisdom of adopting a philosophy of moderation. There is
a tendency to believe that more is always better. However, choosing a transistor with
huge excesses in high-frequency performance beyond what is strictly required may
produce serious problems. The broader the frequency range over which the transis-
tor provides gain, the broader the frequency range over which you are obligated to
control the source and load impedances to assure stability. It is too common to en-
counter cases where a cheaper and “less capable” transistor enables a more robust
design.

12.8 APPENDIX: DERIVATION OF BRIDGED
T-COIL TR ANSFER FUNC TION

To the author’s knowledge, no one has ever published a derivation of the bridged
T-coil’s transfer function, although final design equations may be found in the open
literature. Regrettably, not all of these sources quite agree (especially with respect
to minus signs here and there), and few even bother to state the assumptions under-
lying the derivations. Because of this situation, we present a detailed derivation in
this appendix, preserving many more intermediate steps than we normally would.

Deriving transfer functions in general is straightforward, but tedious. To reduce
the pain in this particular case – and thereby reduce the probability of errors – we
will use an even- and odd-mode decomposition of the same type we use in analyzing
various structures in Chapter 7.

The network we will analyze is shown in Figure 12.47. Note that we’ve chosen
to represent the single bridging capacitance as two series-connected capacitors. The
reason for doing so will become clear shortly.

The circuit as drawn in the figure is almost symmetrical. Unfortunately, almost
is the same as not, so you might conclude that there’s no option other than to ana-
lyze the circuit using textbook brute-force approaches of writing, then solving, a pile
of KVL and KCL equations. The network is fortunately of sufficient simplicity that
it would yield to persistence with such an approach, although reluctantly. Conse-
quently, it makes a terrific homework problem for students deserving of punishment.
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428 CHAPTER 12 A MPLIF IERS

F IGURE 12.48. Bridged T-coil: equivalent circuit with
common- and differential-mode sources

We can’t hope to avoid altogether the need to solve some equations (it’s a fourth-
order network, after all), but at least we might be able to decompose the problem
into several smaller pieces, each of which is straightforwardly solved (and checked),
thereby materially increasing the likelihood of deriving a correct final result. The
first step toward that goal is to recast the problem in symmetrical form, as shown in
Figure 12.48.

We’ve now converted the network into a completely symmetrical one, thus making
it possible to use the powerful armaments of differential- and common-mode analysis
to solve the problem. Although we have added a resistor to the input circuit to en-
able these decompositions, its presence changes nothing, for we only care about the
ratio of output voltage to input current. It’s entirely irrelevant how that input current
is generated; “amps is amps.” That irrelevance also allows us to place a pair of volt-
age sources in series with the resistors – to be used in evaluating the differential- and
common-mode responses separately. Superposition will then yield the overall trans-
fer function we are seeking. Note that this superposition produces a zero net voltage
at the bottom of the right-hand resistor, corresponding correctly to the grounded con-
nection of the original network.

12.8.1 DIFFERENTIAL-MODE RESPONSE

For evaluating the odd-mode transfer function, the two voltage sources are of equal
magnitude but of opposite sign. Thanks to the antisymmetric excitation of this sym-
metric circuit, we can ground the midpoint of the bridging capacitor and the main
inductors as in Figure 12.49. This grounding of the midpoint means that

vout,d = 0, (85)

where the subscript d explicitly identifies the variable as corresponding to a differ-
ential analysis.
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12.8 APPENDIX: BR IDGED T-COIL TR ANSFER FUNC TION 429

F IGURE 12.49. Equivalent circuit for
differential-mode analysis

The input current is readily computed as

iin,d = vin/2

R + [sL ‖ (1/2sCB)]
= vin

2

[
2s2LCB + 1

2s2RLCB + sL + R

]

= vin

2R

[
2s2LCB + 1

2s2LCB + s(L/R) + 1

]
. (86)

Note that the differential-mode input impedance has two purely imaginary poles and
a pair of complex zeros. The natural frequencies are the same, so this input imped-
ance has the same asymptotic value of 2R for DC and infinitely high frequency.

12.8.2 COM MON-MODE RESPONSE

For a common-mode excitation, the bridging capacitance has no voltage across it.
Because there is then no current flow through it, we may eliminate it entirely. This is
shown in Figure 12.50. The complexity of the remaining network can be reduced fur-
ther in either of two ways. One is to short together the corresponding mirror-image
node pairs (causing L and R to become L/2 and R/2; the input current we mea-
sure is then twice the current we seek). The other is to slice the network down the
center (requiring a doubling of L2 and a halving of C; the input current we measure
is then directly the current we’re looking for). Both choices will yield the same re-
sult, so the choice may be based on other considerations, such as convenience. Here,
there’s no significant advantage to either one, so we’ll randomly choose the former;
see Figure 12.51.

The input–output voltage transfer function is simply that of a second-order LC
low-pass filter:

vout,c = vin

2

[
1/(sC)

s
(
L
2 + L2

) + R
2 + 1

sC

]
= vin

2

[
1

s2
(
L
2 + L2

)
C + sRC

2 + 1

]
. (87)
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430 CHAPTER 12 A MPLIF IERS

F IGURE 12.50. Equivalent circuit for
common-mode analysis

F IGURE 12.51. Simplified equivalent circuit
for common-mode analysis

Similarly, the input current (which, again, is twice the current we’re looking for) is
the output voltage multiplied by the admittance of the output capacitor:

2iin,c = (sC)vout,c = vin

2

[
sC

s2
(
L
2 + L2

)
C + sRC

2 + 1

]
, (88)

or

iin,c = vin

2

[
sC

s2(L + 2L2)C + sRC + 2

]
. (89)

12.8.3 THE COMPLETE TR ANSFER FUNC TION

Having found the even- and odd-mode output voltages and input currents, we can
sum the partial results to find the overall ratio of output voltage to input current. First,
the total output voltage is

vout = vout,d + vout,c = 0 + vin

2

[
1

s2
(
L
2 + L2

)
C + sRC

2 + 1

]
. (90)

The total input current corresponding to that output voltage is
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iin = iin,d + iin,c

= vin

2R

[
2s2LCB + 1

2s2LCB + s L
R

+ 1

]
+ vin

2

[
sC

s2(L + 2L2)C + sRC + 2

]
, (91)

which may be rewritten as

iin = vin

2

[(
1

R

)
2s2LCB + 1

2s2LCB + s L
R

+ 1
+ sC

s2(L + 2L2)C + sRC + 2

]
. (92)

The transresistance of the entire bridged-T network is therefore

vout

iin
=

1

s2
(
L
2 + L2

)
C + sRC

2 + 1(
1

R

)
2s2LCB + 1

2s2LCB + s L
R

+ 1
+ sC

s2(L + 2L2)C + sRC + 2

. (93)

Simplifying in steps, we obtain the following sequence of equations:

vout

iin
=

[(
1

R

)
(2s2LCB + 1)

(
s2

(
L
2 + L2

)
C + sRC

2 + 1
)

2s2LCB + s L
R

+ 1

+ sC
(
s2

(
L
2 + L2

)
C + sRC

2 + 1
)

s2(L + 2L2)C + sRC + 2

]−1

, (94)

and then

vout

iin
= 2s2LCB + s L

R
+ 1(

1
R

){
(2s2LCB + 1)

[
s2

(
L
2 + L2

)
C + sRC

2 + 1
]}

+ (
sC

2

)(
2s2LCB + s L

R
+ 1

)
. (95)

Multiplying out and then collecting and ordering the terms in the denominator, we
obtain the complete fourth-order transresistance at last:

vout

iin
= [R]

2s2LCB + s L
R

+ 1

s4L(L + 2L2)CCB + 2s 3RLCCB

+ s2(LC + 2LCB + L2C) + sRC + 1

. (96)

Observe that there are four poles and two zeros. By inspection, the zeros are com-
plex. We can’t say much about the poles by inspection other than to note that, if they
are complex, they will appear in conjugate pairs.

Before commencing with an actual design, we need to impose some constraints.
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12.8.4 DESIGN EQUATIONS FOR M A XIM ALLY
FL AT M AGNITUDE RESPONSE

We can simplify considerably our derivation for the maximally flat case by noting
that a necessary condition for maximal flatness is that the complex zeros cancel a
complex pole pair. It then follows that the remaining pole pair itself must have a
maximally flat magnitude response. It’s not hard to show that this latter condition is
satisfied if the poles are complex, with a damping ratio

ζ = 1/
√

2. (97)

To deduce the conditions that produce the required pole–zero cancellation, we use
synthetic division. After executing that operation, the damping-ratio requirement is
readily imposed on the remaining second-order polynomial, completing the deriva-
tion of the design equations. We begin by performing the following division, starting
with the leading term (the bracketed R of Eqn. 96 is just a scaling factor, so we have
chosen not to keep it around):

s4L(L + 2L2)CCB + 2s 3RLCCB + s2(LC + 2LCB + L2C) + sRC + 1

2s2LCB + s L
R

+ 1
. (98)

The first step in the division of Eqn. 98 yields the quadratic factor,

s2

2
(L + 2L2)C, (99)

and a corresponding cubic remainder,

s 3LC

[
2RCB − L + 2L2

2R

]
+ s2L

(
2CB + C

2

)
+ sRC + 1. (100)

Carrying out the next step in the division generates the linear factor,

s

2

C

CB

[
2RCB − L + 2L2

2R

]
, (101)

and its corresponding quadratic remainder function,

s2

[
2LCB − LC

2
+ LC(L + 2L2)

4R2CB

]
+ s

[
(L + 2L2)C

4RCB

]
+ 1. (102)

The last step produces the constant factor,

1 − C

4CB

+ (L + 2L2)C

8R2C2
B

, (103)

and a final linear remainder function,

s

[
(2L + 2L2)C

4RCB

− L

R
− LC(L + 2L2)

8R3C2
B

]
+

[
C

4CB

− (L + 2L2)C

8R2C2
B

]
. (104)
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12.8 APPENDIX: BR IDGED T-COIL TR ANSFER FUNC TION 433

Now, both bracketed terms in the final remainder function must equal zero if the
synthetic division has succeeded in yielding the quadratic factor corresponding to the
poles not cancelled by the zeros. Thus,

C

4CB

− (L + 2L2)C

8R2C2
B

= 0 (105)

and
(2L + 2L2)C

4RCB

− L

R
− LC(L + 2L2)

8R3C2
B

= 0. (106)

Solving Eqn. 105 gives us one important relationship,

R2CB = L + 2L2

2
; (107)

solving Eqn. 106 yields another,

CB = C

4

[
L + 2L2

L

]
. (108)

Combining Eqns. 107 and 108 gives us an equation for an actual element value at last:

L = R2C

2
. (109)

Next, note that the terms in Eqn. 103 sum to unity. Thus, synthetic division has
discovered the quadratic polynomial corresponding to the uncanceled pole pair:

s2 (L + 2L2)C

2
+ s

[
RC − (L + 2L2)C

4RCB

]
+ 1. (110)

With the aid of Eqn. 107 and Eqn. 108, we may rewrite Eqn. 110 much more simply as

s2R2CBC + sRC

2
+ 1. (111)

Comparing Eqn. 111 with the standard quadratic form,

s2

ω2
n

+ 2ζs

ωn

+ 1, (112)

we readily find that

ωn = 1/R
√
CBC, (113)

ζ = 1
4

√
C/CB. (114)

We therefore have another equation that relates the bridging capacitance to the
load capacitance. Combining Eqn. 114 with Eqn. 108 gives us

CB = C

16ζ2
= C

4

[
L + 2L2

L

]
. (115)
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F IGURE 12.52. Equivalent circuit for
identical coupled inductors

We can then derive an equation for the remaining component, L2, by combining
Eqn. 109 and Eqn. 115:

L2 = R2C

4

(
1

4ζ2
− 1

)
. (116)

Note that it is entirely possible for L2 to take on negative values. In fact, we’ll see
that the bridged T-coil does indeed require a negative inductance because the useful
damping ratios exceed 0.5. Although isolated passive inductors cannot have negative
values, the mutual inductance within a model for a transformer can possess either
sign. Fortunately, L2 may be realized in precisely this manner in our case.

Observe that, so far, the only condition that we have imposed is pole–zero cancel-
lation. Thus, all of these equations apply more generally than to just the maximally
flat magnitude response condition.

To summarize the design procedure, we assume that we are given R and C. We
compute the main inductance with Eqn. 109, the bridging capacitance with Eqn. 115,
and then the remaining inductance with Eqn. 116 to complete the design. Note that
carrying out the design is substantially less difficult than deriving the design equa-
tions in the first place!

We now impose a specific condition – maximal magnitude response flatness – to
illustrate the design procedure. Following the steps, we first find the main inductance
value as

L = R2C

2
. (117)

Letting R = 100 � and C = 1.5 pF, we find that L = 7.5 nH. Next, the bridging
capacitance is readily found from Eqn. 115 to be(

ζ = 1
4

√
C/CB = 1/

√
2

) ⇒ CB = C/8, (118)

or 0.1875 pF for our particular component values. Finally,

L2 = R2C

4

(
1

4ζ2
− 1

)
= −R2C

8
, (119)

or −1.875 nH, completing the determination of element values.
We now turn to the problem of how one realizes the required negative inductance.

Recall that a transformer may be modeled as an inductive T-network. In the specific
case of two identical coupled inductors, the model appears as shown in Figure 12.52.
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12.8 APPENDIX: BR IDGED T-COIL TR ANSFER FUNC TION 435

The inductance Lpri is the inductance of the primary (or secondary, in this sym-
metrical case), measured with the secondary open-circuited. It is thus perhaps a more
directly useful quantity on which to focus for design, because it is the inductance of
the coils you would lay out for the primary and secondary windings. Coupling these
windings together affects only the partitioning of that total inductance between the
arms; the sum remains constant at Lpri.

The sign of the mutual inductance M depends on whether the magnetic fields of
the two main inductors aid or oppose one another. If they aid, then the mutual induc-
tance will be negative in sign. Comparing the equivalent circuit of Figure 12.52 with
the elements in our bridged-T network, we may write

L = Lpri − kLpri = Lpri(1 − k), (120)

L2 = kLpri = kL

1 − k
. (121)

Thus, we may express the bridging capacitance equation as

CB = C

4

[
L + 2L2

L

]
= C

4

[
Lpri(1 − k) + 2(kLpri)

Lpri(1 − k)

]
= C

4

[
1 + k

1 − k

]
. (122)

Similarly, the equation for the main inductance may be recast as[
L = R2C

2
= Lpri(1 − k)

]
⇒ Lpri = R2C

2(1 − k)
. (123)

Now, just to confuse you, the coupling coefficient is most often treated as a posi-
tive quantity, so equations generally use the absolute value of k. In that case, Eqn. 122
and Eqn. 123 would appear as

CB = C

4

[
1 − |k|
1 + |k|

]
(124)

and

Lpri = R2C

2(1 + |k|) , (125)

respectively. It is left to the reader to know that the remaining inductor is negative,
with value

L2 = −|k|Lpri. (126)

In most published formulas, the explicit absolute-value bars are absent, so some
caution is warranted. In at least one case, the sign confusion has tripped up the author
of a paper purportedly offering an alternative design procedure that allegedly obvi-
ates the need for coupled windings. Until two-terminal negative inductors become
available, that paper’s conclusions must be regarded skeptically.

For the (Butterworth) case of maximally flat magnitude response, the coupling
coefficient’s magnitude is 1/3.
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436 CHAPTER 12 A MPLIF IERS

Finally, let us compute the bandwidth obtained under these conditions to assess
the bandwidth boost factor. First, with the bridging capacitance we’ve computed for
maximal flatness,

ωn = 1

R
√
CBC

= 1

R
√
(C/8)C

=
√

8

RC
. (127)

The damping ratio remains
ζ = 1/

√
2. (128)

As it happens, this particular damping ratio corresponds to the very special case where
the −3-dB bandwidth precisely equals ωn.

23 Thus,

ω−3dB =
√

8

RC
. (129)

Now, the −3-dB bandwidth without the bridged-T network is simply 1/RC. Hence,
the bandwidth boost factor provided by the network is

√
8, or about 2.83, as stated

in the main part of the chapter. Again, the network miraculously provides this near-
tripling of bandwidth without increasing power consumption and without requiring
better transistors.

12.8.5 DESIGN EQUATIONS FOR
M A XIM ALLY FL AT DEL AY

For this case, we once again require that the zeros cancel a pole pair to leave us with
another complex pole pair. The only difference is that the damping ratio of the re-
maining pole pair is now chosen to maximize delay flatness rather than magnitude
response flatness. As a first step, we find the time delay as (minus) the derivative of
the phase function:

TD = d

dx

[
tan−1

(
2ζx

1 − x 2

)]
, (130)

where x is the frequency, normalized to ωn:

x ≡ ω/ωn. (131)

Next, it helps to remember that

d

dx
(tan−1 x) = 1

x 2 + 1
. (132)

Then,

TD = d

dx

[
tan−1

(
2ζx

1 − x 2

)]
= 2ζ(−x 2 + 1) + 4ζx 2

4ζ2x 2 + (−x 2 + 1)2
. (133)

23 This pole constellation corresponds to that of a second-order Butterworth low-pass filter.
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12.8 APPENDIX: BR IDGED T-COIL TR ANSFER FUNC TION 437

Computing the first derivative and simplifying a little yields

[4ζ2x 2 + (−x 2 + 1)2][4(−ζx) + 8(ζx)]

− [2ζ(−x 2 + 1) + 4ζx 2][4(2xζ2) − 4(−x 2 + 1)x]

[4ζ2x 2 + (−x 2 + 1)2]2
, (134)

which inspection reveals to be already zero at DC.
Moving on to the second derivative and setting it equal to zero at DC eventually

yields
4ζ − (2ζ)(8ζ2 − 4) = 0. (135)

Solving for the damping ratio, we find

ζ = √
3/2 (136)

and a corresponding normalized bandwidth of

ω−3dB

ωn

=
(√

5 − 1

2

)1/2

≈ 0.7862. (137)

In turn, the damping ratio implies a capacitance ratio,

CB

C
= 1

12
, (138)

which, when combined with the alternative expression for that ratio,

CB

C
= 1

4

[
1 − |k|
1 + |k|

]
, (139)

implies that the coupling coefficient magnitude is 1/2.
Continuing, we find that the natural frequency is

ωn = 1

R
√
CBC

= 1

R
√
(C/12)C

=
√

12

RC
, (140)

allowing us to compute the bandwidth boost factor as

ω−3dB

1/(RC)
= ω−3dB

ωn

√
12 ≈ 2.72. (141)

We see that we pay only a small bandwidth penalty to achieve maximally linear
phase, relative to maximal gain flatness. Overall, this network is not overly sensitive
to variations in element values, so exquisite control over component tolerances is not
a requirement.

12.8.6 DESIGN EQUATIONS FOR
M A XIMUM BANDWIDTH

So that our derivations will be complete, we now present the design equations for max-
imum bandwidth – still subject to the constraint of a perfect pole–zero cancellation.
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F IGURE 12.53. LTSpice simulation of bridged T-coil (maximum bandwidth)

In that case, we first find the damping ratio of a second-order factor that corresponds
to maximum bandwidth. The details are unenlightening, so we will simply present
the result:

ζ =
(

5 − √
15

2

)1/2

≈ 0.7507. (142)

Then,

CB ≈ C/9, (143)

Lpri ≈ R2C/1.229, (144)

L2 ≈ 0.38538Lpri ≈ 0.31357(R2C). (145)

The bandwidth boost factor then improves a modest 10% or thereabouts, becoming
almost exactly 3, at the cost of a 1-dB passband ripple.

As is evident from Figure 12.53, this choice maximizes bandwidth at the expense
of both gain and delay flatness. Given that these objectionable impairments are suf-
fered in exchange for only a small additional bandwidth boost, this choice has not
been used in any published implementation, and no references even allude to it. We
simply provide this final data point for the sake of completeness.

12.8.7 SUM M ARY

As one of two final observations on this network, it’s important to recognize the util-
ity of reciprocity. Although all of the derivations assume a particular assignment of
input–output ports and variables, we may reverse these assignments without chang-
ing the transfer function. Thus, we may drive the “output” capacitor with an input
current source, and extract the output voltage across the former input port. This rever-
sal is advantageous if the output capacitance of the transistor that drives this network
is greater than the capacitive load the network ultimately drives. Then absorbing
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12.8 APPENDIX: BR IDGED T-COIL TR ANSFER FUNC TION 439

the transistor’s capacitance into the network will have the maximum beneficial ef-
fect overall.

Finally, it is worth regarding this circuit from yet another viewpoint. The bridged-
T network may be thought of as one cell of a lumped transmission line model. To the
extent that it behaves well, the input impedance of this delay element should appear
resistive over a broad band. Thus, the effect of reactive loading that normally limits
amplifier bandwidth is suppressed to a large degree.
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C H A P T E R T H I R T E E N

LNA DESIGN

13.1 INTRODUC TION

The first stage of a receiver is typically a low-noise amplifier (LNA), whose main
function is to provide enough gain to overcome the noise of subsequent stages (typi-
cally a mixer). Aside from providing this gain while adding as little noise as possible,
an LNA should accommodate large signals without distortion and frequently must
also present a specific impedance, such as 50 �, to the input source. This last con-
sideration is particularly important if a filter precedes the LNA, since the transfer
characteristics of many filters (both passive and active) are quite sensitive to the
quality of the termination.

We will see that one can obtain the minimum noise figure (NF) from a given device
by using a particular magic source impedance whose value depends on the character-
istics of the device. Unfortunately this source impedance generally differs, perhaps
considerably, from that which maximizes power gain. Hence it is possible for poor
gain and a bad input match to accompany a good noise figure. One aim of this chapter
is to place this trade-off on a quantitative basis to assure a satisfactory design without
painful iteration.

We will focus mainly on a single narrowband LNA architecture that it is capable
of delivering near-minimum noise figures along with an excellent impedance match
and reasonable power gain. The narrowband nature of the amplifier is not necessar-
ily a liability, since many applications require filtering anyway. The LNA we’ll study
thus exhibits a balance of many desirable characteristics.

Before doing so, however, we need to take a brief detour to study the noise prob-
lem in general terms.

13.2 CL ASSICAL TWO-PORT NOISE THEORY

In this section we give a macroscopic description of noise in two-ports. Focusing on
such system noise models can greatly simplify analysis and lead to the acquisition of
useful design insight.

440
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13.2 CL ASSICAL TWO-PORT NOISE THEORY 441

F IGURE 13.1. Noisy two-port driven by noisy source

13.2.1 NOISE FAC TOR

A useful measure of the noise performance of a system is the noise factor, usually
denoted F. To define it and understand why it is useful, consider a noisy (but linear)
two-port (Figure 13.1) driven by a source that has an admittance Ys and an equivalent
shunt noise current īs .

If we are concerned only with overall input–output behavior, it is an unnecessary
complication to keep track of all of the internal noise sources. Fortunately, the net ef-
fect of all of those sources can be represented by just one pair of external sources: a
noise voltage and a noise current. This huge simplification allows rapid evaluation of
how the source admittance affects the overall noise performance. As a consequence,
we can identify the criteria one must satisfy for optimum noise performance.

The noise factor is defined as

F ≡ total output noise power

output noise due to input source
, (1)

where, by convention, the source is at a temperature of 290 kelvins.1 The noise fac-
tor is a measure of the degradation in signal-to-noise ratio that a system introduces.
The larger the degradation, the larger the noise factor. If a system adds no noise of
its own, then the total output noise is due entirely to the source and the noise factor
is thus unity.

In the model of Figure 13.2, all of the noise appears as inputs to the noiseless net-
work, so we may compute the noise figure there. A calculation based directly on
Eqn. 1 requires that we compute the total power due to all of the sources and then
divide that result by the power due to the input source. An equivalent (and simpler)
method is to compute the total short-circuit mean-square noise current and then di-
vide that total by the short-circuit mean-square noise current due to the input source.
This alternative method is equivalent because the individual power contributions are
proportional to the short-circuit mean-square current, with a proportionality constant
(which involves the current division ratio between the source and two-port) that is
the same for all of the terms.

1 You might wonder why a relatively cool 290 K is the reference temperature. Then reason is simply
that kT is then 4.00×10−21 J. Like many practical engineers, Harald T. Friis of Bell Labs preferred
round numbers (see his “Noise Figures of Radio Receivers,” Proc. IRE, July 1944, pp. 419–22).
His suggestion of 290 K as the reference temperature had particular appeal in an era of slide-rule
computation, and it was adopted rapidly by engineers and ultimately by standards committees.
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442 CHAPTER 13 LNA DESIGN

F IGURE 13.2. Equivalent noise model

In carrying out this computation, one generally encounters the problem of com-
bining noise sources that have varying degrees of correlation with one another. In
the special case of zero correlation, the individual powers superpose. For example,
if we assume (as seems reasonable) that the noise powers of the source and of the
two-port are uncorrelated, then the expression for noise figure becomes

F = i2s + |in + Ysen|2
i2s

. (2)

Note that, while we have assumed that the noise of the source is uncorrelated with
the two equivalent noise generators of the two-port, Eqn. 2 does not assume that the
two-port’s generators are also uncorrelated with each other.

To accommodate the possibility of correlations between en and in, express in as
the sum of two components. One, ic, is correlated with en, and the other, iu, isn’t:

in = ic + iu. (3)

Since ic is correlated with en, it may be treated as proportional to it through a con-
stant whose dimensions are those of an admittance:

ic = Ycen. (4)

The constant Yc is known as the correlation admittance.
Combining Eqns. 2–4, the noise factor becomes

F = i2s + |iu + (Yc + Ys)en|2
i2s

= 1 + i2u + |Yc + Ys |2e2
n

i2s
. (5)

The expression in Eqn. 5 contains three independent noise sources, each of which
may be treated as thermal noise produced by an equivalent resistance or conductance
(whether or not such a resistance or conductance actually is the source of the noise):

Rn ≡ e2
n

4kT�f
, (6)

Gu ≡ i2u

4kT�f
, (7)

Gs ≡ i2s

4kT�f
. (8)
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13.2 CL ASSICAL TWO-PORT NOISE THEORY 443

Using these equivalences, the expression for noise factor can be written purely in
terms of impedances and admittances:

F = 1 + Gu + |Yc + Ys |2Rn

Gs

= 1 + Gu + [(Gc +Gs)
2 + (Bc + Bs)

2]Rn

Gs

, (9)

where we have explicitly decomposed each admittance into a sum of a conductance
G and a susceptance B.

13.2.2 OPTIMUM SOURCE ADMITTANCE

Once a given two-port’s noise has been characterized with its four noise parameters
(Gc,Bc,Rn, andGu), Eqn. 9 allows us to identify the general conditions for minimiz-
ing the noise factor. Taking the first derivative with respect to the source admittance
and setting it equal to zero yields

Bs = −Bc = Bopt , (10)

Gs =
√
Gu/Rn +G2

c = Gopt . (11)

Hence, to minimize the noise factor, the source susceptance should be made equal to
the inverse of the correlation susceptance, while the source conductance should be
set equal to the value in Eqn. 11.

The noise factor corresponding to this choice is found by direct substitution of
Eqns. 10 and 11 into Eqn. 9:

Fmin = 1 + 2Rn[Gopt +Gc] = 1 + 2Rn

[√
Gu/Rn +G2

c +Gc

]
. (12)

We may also express the noise factor in terms of Fmin and the source admittance:

F = Fmin + Rn

Gs

[(Gs −Gopt )
2 + (Bs − Bopt )

2]. (13)

Thus, contours of constant noise factor are non-overlapping circles in the admittance
plane;2 see Figure 13.3.

The ratioRn/Gs appears as a multiplier in front of the second term of Eqn. 13. For
a fixed source conductance, Rn tells us something about the relative sensitivity of the
noise figure to departures from the optimum conditions. A large Rn implies a high
sensitivity; circuits or devices with high Rn obligate us to work harder to identify,
achieve, and maintain optimum conditions. We will shortly see that operation at low
bias currents is associated with large Rn, in keeping with the general intuition that
achieving high performance only gets more difficult as the power budget tightens.

It is important to recognize that, although minimizing the noise factor has some-
thing of the flavor of maximizing power transfer, the source admittances leading to
these conditions are generally not the same, as is apparent by inspection of Eqn. 10

2 They are also circles when plotted on a Smith chart because the mapping between the two planes
is a bilinear transformation, which preserves circles.
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444 CHAPTER 13 LNA DESIGN

F IGURE 13.3. Example of noise figure circles (for
Agilent ATF-551M4 pHEMT, from AppCAD)

and Eqn. 11. For example, there is no reason to expect the correlation susceptance
to equal the input susceptance (except by coincidence). As a consequence, one must
generally accept less than maximum power gain if noise performance is to be opti-
mized, and vice versa.

13.2.3 L IMITATIONS OF CL ASSICAL
NOISE OPTIMIZATION

The classical theory just presented implicitly assumes that one is given a device with
particular, fixed characteristics and then defines the source admittance that will yield
the minimum noise figure. This is the usual situation in discrete RF design. However,
classical optimization does not directly accommodate the freedom to select device
dimensions in integrated circuit design. Thus, additional considerations need to sup-
plement the classical approach in order to proceed rationally toward some optimum.
Because of the focus on discrete circuits here, we won’t expand on this theme any fur-
ther. We raise the issue only to point out the incompleteness of the classical approach.3

13.2.4 NOISE F IGURE AND NOISE TEMPER ATURE

In addition to noise factor, other figures of merit that often crop up in the literature
are noise figure and noise temperature. The noise figure is simply the noise factor
expressed in decibels.4

3 For more on this topic in a CMOS IC context, see T. Lee, The Design of CMOS Radio-Frequency
Integrated Circuits, 2nd ed., Cambridge University Press, 2004.

4 Just to complicate matters, the definitions for noise factor and noise figure are switched in some
texts.
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13.3 DERIVATION OF A BIPOL AR NOISE MODEL 445

Table 13.1. Noise figure, noise
factor, and noise temperature

NF (dB) F TN (kelvins)

0.5 1.122 35.4
0.6 1.148 43.0
0.7 1.175 50.7
0.8 1.202 58.7
0.9 1.230 66.8
1.0 1.259 75.1
1.1 1.288 83.6
1.2 1.318 92.3
1.5 1.413 120
2.0 1.585 170
2.5 1.778 226
3.0 1.995 289
3.5 2.239 359

Noise temperature, TN , is an alternative way of expressing the effect of an ampli-
fier’s noise contribution; it is defined as the increase in temperature required of the
source resistance for it to account for all of the output noise at the reference temper-
ature Tref (which is 290 K). It is related to the noise factor as follows:

F = 1 + TN

Tref
�⇒ TN = Tref · (F − 1). (14)

An amplifier that adds no noise of its own has a noise temperature of zero kelvins.
Noise temperature is particularly useful for describing the performance of cas-

caded amplifiers, as we’ll see later in this chapter, and those whose noise factor is
quite close to unity (or whose noise figure is very close to 0 dB), since the noise tem-
perature offers a higher-resolution description of noise performance in such cases.
This can be seen in Table 13.1. Noise figures in the range of 2–3 dB are generally
considered very good, with values around or below 1 dB considered outstanding.

13.3 DERIVATION OF A BIPOL AR NOISE MODEL

Before we can appreciate the attributes (and limitations) of the narrowband LNA
topology, it’s necessary first to derive an appropriate noise model for a bipolar tran-
sistor. To make the analysis tractable and facilitate the acquisition of design insight,
we’ll need to make a number of simplifying assumptions. These assumptions are not
seriously erroneous as long as the device is operated at frequencies well below (say,
at least a factor of 5 below) fT . At still higher frequencies, rapid degradation of other
device characteristics (such as gain) militates against the use of the device in the first
place and so obviates the need for analysis, accurate or otherwise.
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446 CHAPTER 13 LNA DESIGN

F IGURE 13.4. Noise model for bipolar transistor

Each of the two junctions in a bipolar transistor produces shot noise, modeled by
a shunt current source whose mean-square spectral density is 2qIDC , where IDC is
the value of the bias current through the junction. The shot noise currents from the
two junctions may be treated as uncorrelated for most practical purposes, so we will
ignore correlations in all that follows. This neglect will allow us to add noise powers
directly. That is, a funny (and very useful) kind of superposition is enabled by invok-
ing statistical independence of noise sources.

In addition to the shot noise components (which are in a sense fundamental, be-
cause no cleverness in device design can eliminate them), there is also a source of
thermal noise: series base resistance, rb. This noise is represented by a series volt-
age source whose mean-square density is 4kTrb. In modern devices its noise usually
dominates (by a good margin) over that due to any series emitter or collector resis-
tance, so we will neglect these. As we’ll see, rb is highly undesirable. Aside from
generating noise (and thereby degrading noise figure), its presence often raises to in-
convenient values the source resistance that yields minimum noise figure (as we’ll
soon see).

Although it is tempting to attribute thermal noise to all resistors appearing in a
transistor model (e.g., rπ), doing so can amount to double counting. For example, rπ
results from linearizing junction behavior, and junction noise is already modeled by
shot noise. There is thus a difference between resistances that result from such lin-
earization and those that are simply ordinary resistors. The former do not generate
thermal noise, whereas the latter do.

Finally, the collector–emitter output resistance is usually (but not always) large
enough to be neglected at high frequencies, so we will omit it in all subsequent
analyses.5

A small-signal transistor model based on these considerations appears as Fig-
ure 13.4. This model, simple as it is, nonetheless captures the most important effects
for calculating the noise figure of a bipolar amplifier. It’s sufficient for deriving a
usefully accurate expression for the noise figure of an amplifier and also for discov-
ering the optimum source resistance.

5 The collector–emitter resistance models the Early effect; it is not thermally noisy because it is
the result of linearizing the effect of junction-width variations. Finally, there is a collector–base
feedback resistance that also arises from basewidth modulation. Its effect can almost always be
completely ignored at RF.
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13.3 DERIVATION OF A BIPOL AR NOISE MODEL 447

F IGURE 13.5. Model for noise figure calculation

Of the many possible ways to express noise factor, one that is especially useful
here is

F ≡ total output noise power

output noise power due to source
, (15)

where (as usual) the source temperature is 290 K.
To calculate the noise factor using Eqn. 15, connect a (thermally noisy) source re-

sistance to the circuit of Figure 13.4 and calculate away; see Figure 13.5. Note that
the circuit is terminated in a short. In an actual circuit, of course, the output would be
loaded with a resistor of some nonzero value – unless the goal is to make a high-tech
space heater. However it should be clear from Eqn. 15 that a collector load resistance
appears as a multiplier in both the numerator and denominator. As a consequence, it
ultimately cancels out and so any value will work for our purposes. We have there-
fore chosen a zero load resistance, a particularly convenient value.

A considerably sleazier trick is that we have arbitrarily eliminated the collector–
base capacitance. Its presence complicates the analysis enough that its removal is
necessary simply for clarity. As long as the collector load is a low impedance, this
neglect is usually not too serious. In the general case, however, where arbitrary col-
lector loads are to be considered, omitting Cµ can result in significant error. The
largest error is in computing the source resistance that leads to the minimum noise
figure. Depending on the detailed nature of the load impedance, the optimum source
resistance could go up or down. Fortunately, the actual value of that minimum noise
figure is usually not greatly affected, so we will proceed to derive the noise figure
with a full awareness of the several assumptions that underlie its development.

Given those assumptions and the use of a short-circuit load, the noise factor is sim-
ply a ratio of short-circuit currents flowing in the collector branch labeled with in.
The numerator is the sum of the mean-square short-circuit currents due to all noise
sources, and the denominator is the mean-square short-circuit current due only to the
source noise. Hence, we have

F =
2qIC + 2qIB |zπ ‖ (rb + RS)|2g2

m + (4kTrb + 4kTRS)

∣∣∣∣ zπ

RS + rb + zπ

∣∣∣∣
2

g2
m

4kTRS

∣∣∣∣ zπ

RS + rb + zπ

∣∣∣∣
2

g2
m

,

(16)
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448 CHAPTER 13 LNA DESIGN

where the simple additions of terms in the numerator are a direct consequence of ne-
glecting any correlations among the noise generators.

It’s a good idea to study this equation one term at a time to try to make some sense
of it. In the denominator, the mean-square voltage spectral density of the source resis-
tor noise, 4kTRS , is first multiplied by the square of a voltage divide factor magnitude
to find the mean-square voltage across rπ . That squared voltage in turn is multiplied
by the square of the transconductance, gm, to find the squared collector current and
thus complete the denominator.

Examining the terms in the numerator from right to left, note that the noise voltage
generator of resistor rb is in series with that of RS. It therefore undergoes precisely
the same transformations, explaining why the last of the three additive terms in the
numerator has the form shown.

The base shot noise current sees a total impedance that is a parallel combination of
zπ (which, in turn, is rπ in parallel with Cπ) and the sum (rb +RS). Multiplying the
mean-square shot noise current by the squared magnitude of that impedance gives us
the mean-square voltage across rπ . Again multiplying that factor by the square of gm
yields the base shot noise contribution to the mean-square collector current.

Finally, the collector shot noise undergoes no scaling or other transformations at
all, so it adds directly to all of the other contributions in the numerator.

Equation 16 can be simplified by cancelling some common terms to yield (after a
little reordering)

F = 1 + rb

RS

+ 2qIC + 2qIB |zπ ‖ (rb + RS)|2g2
m

4kTRS |zπ/(RS + rb + zπ)|2g2
m

, (17)

which simplifies still further to

F = 1 + rb

RS

+ 2qIC |RS + rb + zπ |2
4kTRS |zπ |2g2

m

+ 2qIB(rb + RS)
2

4kTRS

. (18)

We can continue to cancel common terms to obtain an even simpler form:

F = 1 + rb

RS

+ |RS + rb + zπ |2
2RS |zπ |2gm + (rb + RS)

2gm

2βFRS

. (19)

In arriving at this last expression, we have made use of the fact that the transconduc-
tance of a bipolar transistor is qIC/kT and that the ratio of collector to base current
is βF .

Note that the second term accounts for noise caused directly by the base resis-
tance, the third term is due to collector shot noise, and the last term is the base current
shot noise term. This is the last form of the equation that allows us to make these
identifications.

Note also that Eqn. 19 contains three classes of terms (when everything is mul-
tiplied out). One is independent of RS , another is proportional to RS , and the third
is inversely proportional to RS. At very small source resistance the inversely pro-
portional term dominates, and at very large values the proportional term dominates.
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13.3 DERIVATION OF A BIPOL AR NOISE MODEL 449

Somewhere between “very small” and “very large” there is an optimum value that
minimizes the sum (and hence the noise figure). Before computing the optimum it-
self, let’s understand intuitively why an optimum RS should exist at all.

At very low source resistances, the contribution by the base resistance is more sig-
nificant compared to that of the source itself, and noise figure therefore suffers.

At very high source resistances, the contribution to the output noise by the base
shot noise is greater (because the impedance it faces is larger, generating a greater
voltage across rπ, resulting in a greater current out of the collector). At the same time,
the output noise due to the source itself is smaller, because of the harsher voltage di-
vider seen by RS. The magnitude of the collector shot noise does not change, but its
size relative to the contribution by RS is worse, so noise figure degrades further still.
The optimum balances the contribution of the base resistance against the effects of
base and collector shot noise.

The noise factor equation we will use is a slightly expanded version of Eqn. 19:

F = 1 + rb

RS

+ (RS + rb)
2 + |zπ |2 + 2(RS + rb)Re{zπ }

2RS |zπ |2gm + (rb + RS)
2gm

2βFRS

. (20)

Let’s now do the math to derive the optimum value for RS.

OPTIMUM SOURCE RESISTANCE

The procedure for finding this optimum is straightforward enough. Take the first
derivative with respect to the source resistance, set it equal to zero, and hope for a
minimum:

d

dRS

(
1 + rb

RS

+ |RS + rb + zπ |2
2RS |zπ |2gm + (rb + RS)

2gm

2βFRS

)
= 0. (21)

Grinding inexorably toward the answer generates the sequence

d

dRS

(
rb

RS

+ (RS + rb)
2 + |zπ |2 + 2(RS + rb)Re{zπ }

2RS |zπ |2gm
+ (r 2

b + R2
S + 2rbRS)gm

2βFRS

)
= 0, (22)

d

dRS

(
rb

RS

+ R2
S + r 2

b + |zπ |2 + 2rb Re{zπ }
2RS |zπ |2gm + (r 2

b + R2
S)gm

2βFRS

)
= 0. (23)

In Eqn. 23 we have taken out terms that are independent of RS and therefore whose
derivative is zero (we already took out the unity additive factor in getting to Eqn. 19,
in case you were wondering where it went). If you simply want to use the final an-
swer, rather than follow each step of this derivation, feel free to skip ahead!

Separating terms that are proportional to RS from those that are inversely propor-
tional to it leads us to
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d

dRS

[
1

RS

(
rb + r 2

b + |zπ |2 + 2rb Re{zπ }
2|zπ |2gm + r 2

b gm

2βF

)
+ RS

(
1

2|zπ |2gm + gm

2βF

)]
= 0. (24)

Taking the derivative at last and setting it to zero yields(
1

R2
S

)(
rb + r 2

b + |zπ |2 + 2rb Re{zπ }
2|zπ |2gm + r 2

b gm

2βF

)
= 1

2|zπ |2gm + gm

2βF
, (25)

so that the optimum source resistance (squared) is

R2
S =

rb + r 2
b + |zπ |2 + 2rb Re{zπ }

2|zπ |2gm + r 2
b gm

2βF
1

2|zπ |2gm + gm

2βF

, (26)

which reduces a bit to

R2
S = 2|zπ |2gmrb + r 2

b + |zπ |2 + 2rb Re{zπ } + g2
mr

2
b |zπ |2/βF

1 + |zπ |2g2
m/βF

. (27)

Equation 27 is the last form that is traceable directly to our noise model without
additional approximations. However, further simplification is possible if we allow
one or two very reasonable approximations. One is that the operational frequency is
well above 1/rπCπ (= ωT/β), but not so high that the lumped model is invalid. The
other is that the bias current is high enough that Cπ is dominated by the diffusion
capacitance. With these assumptions, we may write

R2
S ≈

(
ωT

ω

)2(2rb
gm

+ r 2
b

βF
+ 1

g2
m

)
+ r 2

b + 2rb rπ
(ω/ωT )2β2

F

1 + (ωT/ω)
2

βF

. (28)

If, as is often the case, the last term in the numerator is small compared to the term
preceding it, then

R2
S ≈

(
ωT

ω

)2(2rb
gm

+ r 2
b

βF
+ 1

g2
m

)
+ r 2

b

1 + (ωT/ω)
2

βF

. (29)

As a specific numerical example, consider using a 2SC3302 microwave transistor
at 1 GHz. Assume that the collector bias current is 10 mA, at which the transcon-
ductance is 400 mS, β = 80, and ωT = 10π Gr/s. The remaining unknown is the
value of rb, which might remain unknown because it is rarely given in data sheets
(the 2SC3302 is no exception). Fortunately, however, a plot of input impedance over
frequency is given, and it shows a resonance at approximately 800 MHz when the
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13.4 THE NARROWBAND LNA 451

bias current is 20 mA (at which we may estimate Cπ to be about 23 pF, using other
data-sheet information). This resonance is the result of package and lead inductance
interacting withCπ. Under that resonant condition, the input resistance is about mid-
way on the Smith chart between the 25-� and 50-� contours, so we’ll estimate the
total resistance as 37–38 �. This resistance is the sum of rb and a real term pro-
duced by the series emitter inductance associated with the packaging and leads. As
is shown in the next section, this induced resistance has a value ωTLe. The parasitic
inductance is not easily estimated, but one can calculate from the resonance that the
total inductance is approximately 1.7 nH. This value is also quite believable from
the physical dimensions of the package. Assuming that this total inductance splits
evenly between base and emitter (even if it doesn’t) allows us to estimate that the
contribution by the induced resistance to the total is approximately 30 �. Because
this value is so close to the total estimated input resistance, our uncertainty in rb is
large. However, we’ll press on, and use a value of 7–8 � for rb.

Under these conditions, the optimum source resistance is ∼35 � (at which the
noise figure is 2 dB at 1 GHz), a value close enough to 50 � that only a modest NF
penalty (of a bit greater than 0.1 dB) is incurred in this case if one performs no imped-
ance transformation. At a bias current of 5 mA, both the noise figure and the penalty
for operating at 50 � increase (the latter to about 0.2 dB), for an overall minimum
noise figure of about 3 dB (again, this value is for operation at 1 GHz).

As a check on our derivations, compare the calculated noise figure of 2 dB to the
minimum value of 1.7 dB given in the data sheet for 1-GHz operation. Repeating our
calculation for 500-MHz operation yields a 1.6-dB NF (at 5 mA), compared with a
data-sheet value of 1.5 dB for that condition. Considering the crude nature of the ap-
proximations and parameter extractions, the overall level of agreement is satisfactory.

Finally, remember to keep in mind that an amplifier has to amplify. Achieving a
low noise figure is important, but it is only half the battle. For this reason, selection of
a suitable bias must take into account gain as well as noise figure. In the specific case
of the 2SC3302, somewhat higher gain is obtained at the larger bias current, mainly
because fT is near its maximum value there. Since the minimum achievable noise
figure does not change dramatically over the bias current range considered, there is
considerable freedom, so other factors (such as implementation issues) may be taken
into account as well.

13.4 THE NARROWBAND LNA

The derivations of the previous section show that the source impedance that yields
minimum noise factor is generally unrelated to the conditions that maximize power
transfer. Furthermore, the high-frequency input impedance of a bipolar transistor
is intrinsically capacitive, so providing a good match to a 50-� real source without
degrading noise performance would appear difficult. Since presenting a known re-
sistive impedance to the external world is almost always a critical requirement of
LNAs, we will impose this requirement on our design as well.
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452 CHAPTER 13 LNA DESIGN

F IGURE 13.6. Inductively degenerated
common-emitter amplifier

A particularly good method for producing a real input impedance without degrad-
ing noise is to employ inductive emitter degeneration. This method has its origins
in analogous vacuum tube amplifiers of the 1930s. It functions equally well for
FET-based amplifiers and so, with minor modifications to accommodate biasing dif-
ferences, the description that follows may be understood to apply to LNAs built with
other types of transistors.

With a degenerating inductance, base current undergoes an additional phase shift
beyond the ordinary quadrature relationship expected of a capacitor, causing the ap-
pearance of a resistive term in the input impedance. An important advantage of this
method is that one has control over the value of the real part of the impedance through
choice of inductance, as is clear from computing the input resistance of the circuit in
Figure 13.6.

To simplify the analysis, consider a device model that includes only a transcon-
ductance and a base–emitter capacitance. In that case, it is not hard to show that the
input impedance has the following form:

Zin = sL+ 1

sCπ

+ gm

Cπ

L ≈ sL+ 1

sCπ

+ ωTL. (30)

Hence, the input impedance is that of a series RLC network, with a resistive term
that is directly proportional to the inductance value.

More generally, an arbitrary source degeneration impedance Z is modified by a
factor equal to [β(jω) + 1] when reflected to the gate circuit, where β(jω) is the
current gain:

β(jω) = ωT

jω
. (31)

The current gain magnitude goes to unity at ωT as it should, and has a capacitive
phase angle because of Cπ. Hence, for the general case,

Zin(jω) = 1

jωCπ

+ [β(jω)+ 1]Z = 1

jωCπ

+ Z +
[
ωT

jω

]
Z. (32)
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13.4 THE NARROWBAND LNA 453

F IGURE 13.7. Narrowband LNA with inductive
emitter degeneration (biasing not shown)

Note that a capacitive degeneration would contribute a negative resistance to the
input impedance.6 Hence, any parasitic capacitance from emitter to ground offsets
the positive resistance from inductive degeneration. It is important to take this effect
into account in any actual design (or use it to your advantage).

Whatever the value of this resistive term, it is important to emphasize that it does
not bring with it the thermal noise of an ordinary resistor, because a pure reactance
is noiseless. We may therefore exploit this property to provide a specified input im-
pedance without degrading the noise performance of the amplifier.

However, the form of Eqn. 30 clearly shows that the input impedance is purely
resistive at only one frequency (at resonance), so this method can provide only a
narrowband impedance match. Fortunately, there are numerous instances when nar-
rowband operation is not only acceptable but desirable, so inductive degeneration is
certainly a valuable technique. The LNA topology we will examine for the rest of
this chapter is therefore as shown in Figure 13.7.

The inductance Le is chosen to provide the desired input resistance (equal to Rs ,
the source resistance). Since the input impedance is purely resistive only at reso-
nance, an additional degree of freedom, provided by inductance Lb, is needed to
guarantee this condition.7 Now, at resonance, the base-to-emitter voltage is Q times
as large as the input voltage. The overall stage transconductance Gm under this con-
dition is therefore

Gm = gm1Qin = gm1

ω0Cπ(Rs + ωTLe)
= ωT

2ω0Rs

, (33)

where we have used the approximation that ωT is the ratio of gm1 to Cπ.

The design procedure is thus reasonably straightforward. First select a bias current
consistent with the gain and noise figure targets. Then compute the optimum source

6 Capacitively loaded followers are infamous for their poor stability. This negative input resistance
is fundamentally responsible, and explains why adding some positive resistance in series with the
base or gate circuit helps solve the problem.

7 It may be that package and other parasitic inductance provides more than this value. In such cases
a series capacitance may be needed to resonate the input loop at the desired frequency.
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454 CHAPTER 13 LNA DESIGN

resistance to minimize noise figure. Next add enough emitter degeneration induc-
tance to produce an input impedance whose real part is equal to the optimum source
resistance, and then add enough of the right kind of impedance (e.g., more induc-
tance) in the base circuit to remove any residual reactive input component, thereby
bringing the input loop into resonance. Finally, interpose a lossless matching net-
work (if necessary) between the actual source and the amplifier to transform from
50 � (or other source value) to the optimum value of RS. This matching network
often can be merged with whatever inductance (for example) is needed to resonate
the input loop.

This particular procedure is attractive because it balances all parameters of interest.
An excellent match is guaranteed by the inductive degeneration, and the technique
provides nearly the lowest noise figure possible at the given bias conditions. The
resonant condition at the input also assures good gain at the same time, since the ef-
fective stage transconductance is proportional to ωT/ω.

The foregoing analysis suffices to highlight the first-order behavior of the circuit.
A more detailed analysis accommodates other effects, such as finite transistor r0. It
is straightforward to show that the input impedance of the circuit in Figure 13.7 is

Zin(jω) = 1

jωCπ

+ jωL+ gm
L

Cπ

(
r0

r0 + jωL+ ZL

)
, (34)

where ZL is the impedance attached to the collector. Comparing this result with
our previous equation, we see that finite output resistance alters the third term in
the impedance equation. In particular, we see that the term in parenthesis has a unit
magnitude only in the limit. In general, the real part of Zin will be reduced, and
the imaginary part may be altered as well, shifting the resonant frequency of the
input loop. If, as is common, the load is a parallel resonant tank, then the quantity
|ZL + jωL| might be large enough (relative to r0) at or near its resonance to cause
a significant dip in the real part of the input impedance. Depending on the relative
resonant frequencies of the input and output loops, it’s possible for the dip to appear
below, at, or above the desired center frequency for the overall amplifier. Needless
to say, the magnitude and location of the dip are important considerations. If the dip
occurs far away from the desired operating frequency, its existence may not pose too
great a problem. However, it is common for the dip to occur within a couple of per-
cent of the center frequency (because the resonant frequencies of the input and output
circuits are usually designed to be close), resulting in poor input match somewhere
in the band of interest.

One possible solution is to employ cascoding. However, it’s only partially ef-
fective because the same r0 that causes the problem in the first place also limits
the effectiveness of cascoding. In stubborn cases, it may be necessary to use sev-
eral common-base cascoding stages in a stack. Lowering the load resistance of the
collector load may also help, but at the cost of reduced gain. Employing some com-
bination of these strategies usually results in a satisfactory design. Simple awareness
of the issue usually suffices to avoid unhappy surprises.
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13.5 A FEW PR AC TICAL DETAILS 455

F IGURE 13.8. Narrowband LNA with
microstrip load (biasing not shown)

13.5 A FEW PR AC TICAL DETAILS

13.5.1 REAL IZ ING THE EMITTER
DEGENER ATION INDUC TANCE

The narrowband LNA depends on inductive emitter degeneration to produce a real
term in the input impedance. Quite often at microwave frequencies, the needed value
is so small that it is difficult to produce. For example, continuing with a 2SC3302
biased at 10 mA, we would require ∼2 nH to produce 50 �, and perhaps 2–3 times
that inductance if the bias were reduced to 5 mA (the increase in the impedance target
for minimum NF, plus the reduction in ωT , causes the needed inductance to increase
faster than you might otherwise expect). However, 2 nH is not far from as small as
one can expect to achieve without extreme measures, particularly since a fair frac-
tion of this amount is already included in the packaging. Controlling the exact value
is therefore challenging. In cases where the packaging and lead inductance already
exceed the value you need, the input impedance will actually appear inductive and
thus require a capacitance to resonate the input loop. To avoid this necessity, extreme
care in layout and construction is essential.

13.5.2 COLLEC TOR LOAD

It is generally the case that a resonant collector load is desired. Such a load increases
gain by resonating out any output capacitance. Furthermore, the additional filtering
of unwanted signals is highly desirable.

There are several practical options for realizing such a load. One is to use a dis-
crete inductor of some appropriate value. A preferable one for our purposes is to
implement the inductor out of a suitable length of microstrip, because of its versatil-
ity. See Figure 13.8.

The length is adjusted to produce resonance. And, if needed, a downward im-
pedance transformation is readily obtained by merely tapping the output off of some
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456 CHAPTER 13 LNA DESIGN

F IGURE 13.9. Narrowband LNA
biased by VBE multiplier

intermediate position along the line. Clearly, the impedance is a minimum (zero) at
the VCC end of the line and a maximum at the collector end. To a first (and crude)
approximation, the impedance varies quadratically along the line.

The sharpness of the resonance can be adjusted by varying the width of the line.
The width controls the L/C ratio of the line, and therefore controls Q. The other at-
tractive attribute of the line is that it makes biasing relatively simple, as will be seen
in the next section.

13.5.3 BIASING

There are numerous ways to bias a single-ended amplifier at low frequencies. Our
options narrow somewhat at microwave frequencies because we cannot always toler-
ate the impedances that necessarily attend discrete implementations of bias networks.
For example, it is very common at lower frequencies to bias the base through a volt-
age divider and then insert a stabilizing emitter degeneration resistor. To buy back
signal gain, a bypass capacitor is placed across this resistor.

In our case, it is probably not practical to use this approach because any “junk”
in the emitter circuit only makes our job of implementing tiny inductances tougher.
However, since the goal of resistive emitter degeneration is to reduce DC gain through
negative feedback, we can seek alternative ways of accomplishing the same net goal.
We can apply negative feedback to the base from the collector; as shown in Fig-
ure 13.9.

The details of operation are left as an exercise for the reader, but a quick quali-
tative description is that the DC voltage across R1 is VBE. If we may neglect base
current, then the current through R1 and R2 are the same. Consequently the voltage
across R2 is a multiplied-up version of the voltage across R1 and thus a multiple of
VBE. The DC output voltage is therefore
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13.6 L INEARITY AND L ARGE-S IGNAL PERFOR M ANCE 457

VOUT = VBE(1 + R2/R1). (35)

Since VBE is temperature sensitive, so is the output voltage. However, the variation
is small enough for our purposes that it is still a useful circuit.

The collector load resistor, R3, is bypassed by a capacitor so that the top of the
microstrip load will remain a reasonable signal ground. This bypassing need not be
perfect, however, because additional inductance here only forces us to shorten the
load a little bit. Moving the bias feedback takeoff point from the emitter to the col-
lector thus solves a thorny problem.

As a final note on this bias method, the resistors have to be chosen small enough
so that the current flowing through them is large compared with variations in tran-
sistor base current, if the bias point is to remain roughly insensitive to base current.
This requirement is somewhat at odds with the desire to keep the resistors large in
order to minimize their contribution to thermal noise. Fortunately, it is usually not
difficult to find an acceptable compromise, and net degradations in noise figure can
be kept to the level of tenths of a decibel or less.

13.6 L INEARITY AND L ARGE-SIGNAL PERFOR M ANCE

In addition to noise figure, gain, and input match, linearity is also an important con-
sideration because an LNA must do more than simply amplify signals without adding
much noise. It must also remain linear even when strong signals are being received.
In particular, the LNA must maintain linear operation when receiving a weak signal in
the presence of a strong interfering one, for otherwise a variety of pathologies may re-
sult. These consequences of intermodulation distortion include desensitization (also
known as blocking) and cross-modulation. Blocking occurs when the intermodu-
lation products caused by the strong interferer swamp out the desired weak signal,
while cross-modulation results when nonlinear interaction transfers the modulation
of one signal to the carrier of another. Both effects are undesirable, of course, so
another responsibility of the LNA designer is to mitigate these problems to the max-
imum practical extent.

The LNA design procedure described in this chapter does not address linearity di-
rectly, so we now develop some methods for evaluating the large-signal performance
of amplifiers, with a focus on the acquisition of design insight. As we’ll see, although
the narrowband LNA topology achieves its good noise performance somewhat at the
expense of linearity, the trade-off is not serious enough to prevent the realization of
LNAs with more than enough dynamic range to satisfy demanding applications.

While there are many measures of linearity, the most commonly used are third-
order intercept (IP3) and 1-dB compression point (P1dB).

8 Third-order intercept was
first proposed around1964 as a linearity measure atAvantek. To relate these measures

8 In direct-conversion (homodyne) receivers, the second-order intercept is more important.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511812941.014
Downloaded from https://www.cambridge.org/core. The Librarian-Seeley Historical Library, on 30 Dec 2019 at 21:57:41, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511812941.014
https://www.cambridge.org/core


458 CHAPTER 13 LNA DESIGN

to readily calculated circuit and device parameters, suppose that the amplifier’s out-
put signal may be represented by a power series.9 Furthermore, assume that we will
evaluate these measures with signals small enough that truncating the series after the
cubic term introduces negligible error:

i(VDC + v) ≈ c0 + c1v + c2v
2 + c3v

3; (36)

this expression describes the specific case of a transconductance.
Now consider two equal-amplitude sinusoidal input signals of slightly different

frequencies:
v = A[cos(ω1t)+ cos(ω2 t)]. (37)

Substituting Eqn. 37 into Eqn. 36 allows us, after simplification and collection of
terms, to identify the components of the output spectrum.10 The DC and fundamen-
tal components are as follows:

[c0 + c2A
2] + [

c1A+ 9
4c3A

3
]
[cos(ω1t)+ cos(ω2 t)]. (38)

Note that the quadratic factor in the expansion contributes a DC term that adds to the
output bias. The cubic factor augments the fundamental term, but by a factor propor-
tional to the cube of the amplitude, and thus contributes more than a simple increase
in gain. In general, DC shifts come from even powers in the series expansion, while
fundamental terms come from odd factors.

There are also second- and third-harmonic terms, which result from the quadratic
and cubic factors in the series expansion, respectively:[

c2A
2

2

]
[cos(2ω1t)+ cos(2ω2 t)] +

[
c3A

3

4

]
[cos(3ω1t)+ cos(3ω2 t)]. (39)

In general, nth harmonics come from nth-order factors. Harmonic distortion prod-
ucts, being of much higher frequencies than the fundamental, are usually attenuated
enough in tuned amplifiers so that other nonlinear products dominate.

The quadratic term also contributes a second-order intermodulation (IM) product,
as in a mixer: [

c2A
2

2

]
[cos(ω1 + ω2)t + cos(ω1 − ω2)t]. (40)

As with the harmonic distortion products, these sum and difference frequency terms
are effectively attenuated in narrowband amplifiers if ω1 and ω2 are nearly equal, as
assumed here.

9 We are also assuming that input and output are related through an anhysteretic (memoryless) pro-
cess. A more accurate method would employ Volterra series, for example, but the resulting com-
plexity obscures much of the design insight we are seeking.

10 This derivation makes considerable use of the following trigonometric identity: (cos x)(cos y) =
[cos(x + y)+ cos(x − y)]/2.
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13.6 L INEARITY AND L ARGE-S IGNAL PERFOR M ANCE 459

Finally, the cubic term gives rise to third-order intermodulation products:(
3
4c3A

3
)
[cos(ω1 + 2ω2)t + cos(ω1 − 2ω2)t

+ cos(2ω1 + ω2)t + cos(2ω1 − ω2)t]. (41)

Note that these products grow as the cube of the drive amplitude. In general, the
amplitude of an nth-order IM product is proportional to the nth power of the drive
amplitude.

The sum frequency third-order IM terms are of diminished importance in tuned
amplifiers because they typically lie far enough out of band to be significantly at-
tenuated. The difference frequency components, however, can be quite troublesome
because their frequencies may lie “in band” if ω1 and ω2 differ by only a small
amount (as would be the case of a signal and an adjacent channel interferer, for ex-
ample). It is for this reason that the third-order intercept is an important measure of
linearity.

From the previous sequence of equations it is straightforward to compute the
input-referred third-order intercept (IIP3) by setting the amplitude of the IM3 prod-
ucts equal to the amplitude of the linear fundamental term:

|c1A| =
∣∣∣∣3

4
c3A

3

∣∣∣∣ �⇒ A2 = 4

3

∣∣∣∣ c1

c3

∣∣∣∣, (42)

where we have assumed only a weak departure from linearity in expressing the funda-
mental output amplitude. It is important to emphasize that the intercept is an extrapo-
lated value because the corresponding amplitudes computed from Eqn. 42 are almost
always so large that truncating the series after the third-order term introduces signif-
icant error. In both simulations and experiment, the intercept is evaluated by extrap-
olating trends observed with relatively small amplitude inputs. At such small inputs,
the fundamental terms contributed by higher-order nonlinearities will be negligible.

Since Eqn. 42 yields the square of the voltage amplitude, it follows that dividing
by twice the input resistanceRs gives us the power at which the extrapolated equality
of IM3 and fundamental terms occurs:

IIP3 = 2

3

∣∣∣∣ c1

c3

∣∣∣∣ 1

Rs

. (43)

We see that IIP3 is proportional to the ratio of the first and third derivatives of the
transfer characteristic, evaluated at the bias point. Equivalently, it is proportional to
the ratio of the small-signal gain to the second derivative of that gain (again evaluated
at the bias point).

Figure 13.10 summarizes the linearity definitions. In this figure, it is customary to
plot the output powers as a function of the power of each of the two (equal-amplitude)
input tones, rather than their sum.

Since third-order products grow as the cube of the drive amplitude, they have a
slope that is three times that of the first-order output when plotted on logarithmic
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460 CHAPTER 13 LNA DESIGN

F IGURE 13.10. Illustration of LNA performance parameters

scales, as in the figure. Note that, in Figure 13.10, the 1-dB compression point occurs
at a lower input power than IIP3. This general relationship is nearly always the case
(by a healthy margin) in practical amplifiers.

Having defined the linearity measures, we now consider ways to estimate IIP3 –
with and without the aid of Eqn. 43.

METHODS FOR EST IM ATING IP3

One way to find IP3 is through a transient simulation in which two sinusoidal input
signals of equal amplitude and nearly equal frequency drive the amplifier. The third-
order intermodulation products of the output spectrum are compared with the funda-
mental term as the input amplitude varies, and then the intercept is computed.

While simple in principle, there are several significant practical difficulties with
the method. First, since the distortion products may be several orders of magni-
tude smaller than the fundamental terms, numerical noise of the simulator can easily
dominate the output unless exceptionally tight tolerances are imposed.11 A closely
related consideration is that the time steps must be equally spaced and small enough
not to introduce artifacts in the output spectrum.12 When these conditions are satis-
fied, the simulations typically execute quite slowly and generate large output files.
Pure frequency-domain simulators (e.g., harmonic balance tools) can compute IP3
in much less time, but they are currently less widely available than time-domain sim-
ulators such as Spice.

11 The tolerances must be much tighter, in fact, than the “accurate” default options commonly offered.
12 This requirement stems from the assumption, made by all FFT algorithms used by practical sim-

ulators, that the time samples are uniformly spaced.
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Equation 43 offers a simple expression for the third-order intercept in terms of
the ratio of two of the power series coefficients, and thus it suggests an alterna-
tive method that might be suitable for hand calculations. Though one is rarely given
these coefficients directly, it is a straightforward matter to determine them if an an-
alytical expression for the transfer characteristic is available. Even without such an
expression, there is an extremely simple procedure, easily implemented in “ordinary”
simulators such as Spice, that allows rapid estimation of IP3. This technique, which
we’ll call the three-point method, exploits the fact that knowing the incremental gain
at three different input amplitudes is sufficient to determine the three coefficients c1,
c2, and c3.

13

To derive the three-point method, start with the series expansion that relates input
and output:

i(VDC + v) ≈ c0 + c1v + c2v
2 + c3v

3. (44)

The incremental gain (transconductance) is the derivative of Eqn. 36:

g(v) ≈ c1 + 2c2v + 3c3v
2. (45)

Although any three different values of v would suffice in principle, particularly
convenient ones are 0, V and −V, where these voltages are interpreted as deviations
from the DC bias value. With those choices, one obtains the following expressions
for the corresponding incremental gains:

g(0) ≈ c1; (46)

g(V ) ≈ c1 + 2c2V + 3c3V
2, (47)

g(−V ) ≈ c1 − 2c2V + 3c3V
2. (48)

Solving for the coefficients yields

c1 = g(0), (49)

c2 = g(V )− g(−V )
4V

, (50)

c3 = g(V )+ g(−V )− 2g(0)

6V 2
. (51)

Substituting into Eqn. 43 these last three equations for the coefficients then gives us
the desired expression for IIP3 in terms of the three incremental gains:14

13 This method is an adaptation of a classic technique from the vacuum tube era that allows estima-
tion of harmonic distortion.

14 Having determined all of the coefficients in terms of readily measured gains, it is easy to derive
similar expressions for harmonic and second-order IM distortion. The latter quantity is especially
relevant for direct-conversion receivers.
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F IGURE 13.11. Hypothetical amplifier gm

IIP3 = 4V 2

Rs

·
∣∣∣∣ g(0)

g(V )+ g(−V )− 2g(0)

∣∣∣∣. (52)

Finding IIP3 with Eqn. 52 is much faster than via a transient simulation because
determining the incremental gains involves so little computation for either a simu-
lator or a human. The three-point method is thus particularly valuable for rapidly
estimating IIP3 in the early stages of a design. It is also valuable in guiding the selec-
tion of a bias point (or circuit technique) that will maximize IP3. Note from Eqn. 52
that, if we were able to choose a bias point or otherwise arrange the circuit so that the
small-signal gain at the bias point equals the average of the gains evaluated at V, then
IIP3 would actually be infinite. That is, if the second derivative of the gain vanishes
at the bias point, IIP3 will go to infinity. If, for example, the small-signal transcon-
ductance of a device varies with bias point as in Figure 13.11, then bias points A or C
would maximize IIP3. In summary, if maximizing IIP3 is the goal, then one should
bias the amplifier to the middle of where the small-signal gain varies linearly with
input amplitude.15

13.7 SPURIOUS-FREE DYNA MIC R ANGE

So far, we have identified two general limits on allowable input signal amplitudes.
The noise figure defines a lower bound, while distortion sets an upper bound. Loosely
speaking, then, amplifiers can accommodate signals ranging from the noise floor to
some linearity limit. Using a dynamic range measure helps designers avoid the pit-
fall of improving one parameter (e.g., noise figure) while inadvertently degrading
another.

This idea has been put on a quantitative basis through a parameter known as the
spurious-free dynamic range (SFDR). The term “spurious” means “undesired” and is
often shortened to “spur.”16 In the context of LNAs, it usually refers to the third-order
products but may occasionally apply to other undesired output spectral components.

15 The corresponding derivation of a two-point method for IP2 estimation reveals that one should
bias an amplifier where the first derivative of the small-signal gain is zero – assuming the goal is
to maximize IP2. In general, biasing an amplifier for a zero nth derivative of small-signal gain
maximizes IP(n+ 1).

16 Occasionally (and erroneously), “spurii” is used for the plural of “spurious,” even though “spuri-
ous” is not a Latin word. “Spurs” is the preferred plural.
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13.7 SPURIOUS-FREE DYNA MIC R ANGE 463

F IGURE 13.12. Spurious-free dynamic range (third-order)

To understand the rationale behind using SFDR as a specific measure of dynamic
range, define as a more general measure the lesser of signal-to-noise or signal-to-
distortion ratio, and evaluate this measure as one varies the amplitude of the two tones
applied to the amplifier. As the input amplitude increases from zero, the first-order
output initially has a subunity SNR but eventually emerges from the noise floor. Be-
cause third-order distortion depends on the cube of the input amplitude, IM3 products
will be well below the noise floor at this point for any practical amplifier. Hence, the
dynamic range improves for a while as the input signal continues to increase, since
the desired output increases while the undesired output (here, the noise) stays fixed.
Eventually, however, the third-order IM terms also emerge from the noise floor. Be-
yond that input level, the dynamic range decreases, since the IM3 terms grow three
times as fast (on a dB basis) as the first-order output.

The SFDR is defined as the signal-to-noise ratio corresponding to the input ampli-
tude at which an undesired product (here, the third-order IM power) just equals the
noise power, and is therefore the maximum dynamic range that an amplifier exhibits
in the preceding paragraph, as is clear from Figure 13.12.

To incorporate explicitly the noise figure and IIP3 in an expression for SFDR, first
define Noi as the input-referred noise power in decibels. Then, since the third-order
IM products have a slope of 3 on a decibel scale, the input power below IIP3 at which
the input-referred IM3 power equals No is given by

�Pi = OIP3 −No

3
(53)

(again, all powers are expressed in decibels). The SFDR is just the difference be-
tween the output power implied by Eqn. 53 and No:
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F IGURE 13.13. Cascaded systems for noise figure computation

SFDR = [OIP3 −�Po] −No. (54)

Because the third-order IM products have a slope of 3, we know that

3�Po = OIP3 −No. (55)

Hence,
SFDR = 2

3 [OIP3 −No] = 2
3 [IIP3 −Noi]. (56)

Observe that the input-referred noise power (in watts this time) is simply the noise
factor F multiplied by the noise power kT�f. Note also that input-referred quantities
may be used in Eqn. 54 because the same gain factor scales both terms.

It is satisfying that SFDR is indeed bounded on one end by IIP3 and on the other
by the noise floor, as argued qualitatively at the beginning of this section. The factor
2/3 comes into play because of the particular way in which the limits are defined.

13.8 CASCADED SYSTEMS

The overall noise figure and dynamic range of a cascade of systems depends on the
individual noise figures, intercepts, and gains. The dependency on the gain results
from the fact that, once the signal has been amplified, the noise of subsequent stages
is less important. As a result, system noise figure tends to be dominated by the noise
performance of the first couple of stages in a receiver.

How the individual noise figures combine to yield the overall noise figure is com-
plicated by the variety of impedance levels typically found in the system. To develop
an equation for the system noise figure, consider the block diagram of Figure 13.13.
Here, each Fn is a noise factor and eachGn is a power gain (specifically, the available
gain, the gain one would obtain with a matched load). Since noise factor depends on
source resistance, one must compute the individual noise figures relative to the out-
put impedance of the preceding stage to keep the calculation honest. This issue arises
less frequently in discrete designs, where impedance levels are often standardized,
but it requires careful attention in IC implementations.

Noise factor may be expressed in several ways, but one form that is particularly
useful for the task at hand is

F = RS + Re

RS

= 1 +Ne, (57)

where Re is a (possibly) fictitious resistance that accounts for the observed noise in
excess of that due to RS. The quantity Ne is thus an excess noise power ratio, equal
to F − 1.
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13.8 CASCADED SYSTEMS 465

Reflecting this power ratio back to the input of the preceding stage simply involves
a division by the available power gain of that preceding stage. Reflecting the excess
noise contribution of a given stage all the way back to the input thus requires divi-
sion by the total available gain between that stage and the overall input. The total
noise factor is the sum of these individual contributions and is therefore given by the
following expression:

F = 1 + F1 − 1 + F2 − 1

G1
+ F3 − 1

G1G2
+ · · · + FN − 1∏N−1

n=1 Gn

, (58)

which simplifies to

F = F1 + F2 − 1

G1
+ F3 − 1

G1G2
+ · · · + FN − 1∏N−1

n=1 Gn

. (59)

In terms of noise temperature, the cascaded result may be expressed as

Te12 = Te1 + Te2

Gav1
+ Te3

Gav1Gav2
+ · · · . (60)

From this last expression, it’s easy to see why noise temperature is favored for cas-
cade noise calculations: the overall noise temperature is merely the sum of all the
input-referred noise temperatures. The same statement does not apply to noise figure.

It is clear that the system noise figure is in fact dominated by the noise perfor-
mance of the first few gain stages. Hence, in trying to achieve a good noise figure,
most of the design effort will generally focus on the first few stages.

L INEARITY OF CASCADED SYSTEMS

The other figure of merit that bounds system dynamic range is the intercept point.
Even though we have discussed only third-order intercepts, it should be mentioned
that there are also instances in which the second-order intercept is a relevant linear-
ity measure. A notable example is the degenerate case of a superheterodyne in which
the IF is zero. Such direct-conversion receivers have become increasingly common
in recent years.

A difficulty in developing the desired equation is that the distortion products of
one stage combine with those of a later stage in ways that depend on their relative
phases. Hence, there is no simple, fixed relationship between the individual and over-
all intercepts. However, it is possible to derive a conservative (worst-case) estimate
by assuming that the amplitudes of the distortion products add directly. This choice
in turn makes it most natural to express the gains as voltage ratios, in contrast with
the use of power gains in the expression for system noise figure. This is shown in
Figure 13.14, where each Avn is a voltage gain and each IIVMn is an Mth-order input
intercept voltage.

To facilitate the derivations, call VdM,n the Mth-order (intermodulation) distortion
product at the output of the nth stage due to a voltage V applied to the input of that
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F IGURE 13.14. Cascaded systems for input intercept calculation

stage. Further note from the definition of an input intercept that the input-referred
Mth-order IM distortion product may be written as

VdM = VM

IIVMM−1
. (61)

Let us carry out the derivation for the specific case of the third-order intercept, and
for a cascade of just two stages. The third-order IM at the output of the first stage is

Vd3,1 = V 3

IIV32
1

. (62)

The third-order IM voltage at the output of the second stage is the sum of two com-
ponents. One is simply a scaled version of the distortion produced by the first stage,
while the other is the distortion produced by the second stage. Adding these directly
together yields the following pessimistic estimate:

Vd3,tot = Av2Vd3,1 + Vd3,2. (63)

The input-referred third-order distortion is found by dividing through by the total
gain:

Vd3 in,tot = Av2Vd3,1 + Vd3,2

Av1Av2
. (64)

Substituting Eqns. 61 and 62 into Eqn. 64 yields

1

IIV32
tot

= A2
v1

IIV32
1

+ (Av1Av2)
2

IIV32
2

. (65)

This last equation confirms that the later stages bear a greater burden because of the
gain that precedes them. We can also see that the reciprocal IIV3 of a given stage,
normalized by the total gain up to the output of that stage, contributes to the overall
reciprocal input-referred intercept in root-sum-squared fashion.

Although Eqn. 65 applies strictly to a two-stage cascade, it is readily extended to
an arbitrary number of stages as follows:

1

IIV32
tot

=
n∑

j=1

{
1

IIV32
j

j∏
i=1

A2
vi

}
. (66)

One may follow a similar procedure to determine the overall input-referred intercept
for distortion products of any order.
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F IGURE 13.15. Example of cascade system calculations (AppCAD)

Calculations of cascaded noise figure and linearity can get tedious rather quickly,
particularly if one is iterating to identify and achieve some optimum. With enough
diligent effort, one could always construct a spreadsheet to perform the calculations,
and this is precisely what many engineers have done for years. Fortunately, numerous
tools that automate the process are now freely available. A popular one is AppCAD
from Agilent, which can generate examples such as seen in Figure 13.15.

Analyses such as this are invaluable not only for evaluating performance, but
also for identifying the performance-limiting blocks in a system. As a convenience,
AppCAD highlights entries corresponding to the stages that most strongly control the
overall system noise figure and linearity. In the example shown, we see that the input
preselector filter and LNA have the most influence over noise figure (as expected),
while the linearity of the IF amplifier determines the overall system linearity to a
large extent (again, as expected). If we were to find the system’s performance defi-
cient in either of these dimensions, we would know where our design effort would
be most profitably spent.

13.9 SUM M ARY

We’ve seen that an inductively degenerated LNA achieves simultaneously an excel-
lent impedance match, nearly minimum noise figure, and reasonable gain.

The three-point method was also introduced, permitting an approximate, but quan-
titative, assessment of linearity more quickly than is possible with straightforward
time-domain simulators. Even though the method neglects dynamics, measurements
on practical amplifiers usually reveal reasonably good agreement with predictions.
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468 CHAPTER 13 LNA DESIGN

Reasonable agreement may generally be expected as long as the device is operated
well below ωT .

If better linearity is required, either power consumption or gain must degrade in
exchange for the improved linearity. For example, the bias conditions can be altered
to decrease input Q, or negative feedback can be employed. Combining the signal
amplitude limitations implied by the noise and distortion figures of merit yields a
measure of the maximum dynamic range of an amplifier, the spurious-free dynamic
range.

Finally, we examined ways to compute the noise figure and estimate the intercept
point of a cascade of systems.

13.10 APPENDIX A: BIPOL AR NOISE F IGURE EQUATIONS

Repeated here are the equations for optimum source resistance (both “exact” and ap-
proximate), and the corresponding noise factor:

R2
S = 2|zπ |2gmrb + r 2

b + |zπ |2 + 2rb Re{zπ } + g2
mr

2
b |zπ |2/βF

1 + |zπ |2g2
m/βF

, (67)

R2
S ≈

(
ωT

ω

)2(2rb
gm

+ r 2
b

βF
+ 1

g2
m

)
+ r 2

b + 2rb rπ
(ω/ωT )2β2

F

1 + (ωT/ω)
2

βF

; (68)

F = 1 + rb

RS

+ (RS + rb)
2 + |zπ |2 + 2(RS + rb)Re{zπ }

2RS |zπ |2gm + (rb + RS)
2gm

2βFRS

. (69)

It might also be helpful to have the following expressions related to the impedance zπ :

|zπ | = rπ/
√
(ωrπCπ)2 + 1; (70)

Re{zπ } = rπ/(ωrπCπ)
2 + 1. (71)

13.11 APPENDIX B: FET NOISE PAR A METERS

13.11.1 THEORY

The basic noise model for a MOSFET, JFET, and MESFET consists of two intrin-
sic sources. We will initially neglect extrinsic noise sources, such as those associated
with the lossiness of gate electrode material. See Figure 13.16.

One intrinsic noise current generator is tied from source to drain and has a mean-
square value given by

i2nd = 4kTγgd0�f , (72)

where γ is theoretically 2/3 and gd0 is the drain–source conductance at zero VDS.
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F IGURE 13.16. MOS noise model

Table 13.2. Summary of FET
two-port noise parameters

Parameter Expression

Gc ∼0

Bc ωCgs
(
1 − α|c|√δ/5γ

)
Rn

γgd0

g2
m

= γ

α
· 1

gm

Gu

δω2C2
gs(1 − |c|2)
5gd0

There is also a gate current noise, modeled by a current source tied from gate to
source, whose mean-square value is

i2ng = 4kTδgg�f , (73)

where
gg = ω2C2

gs/5gd0 (74)

and δ is theoretically 4/3.
Moreover, the gate noise is correlated with the drain noise, with a correlation co-

efficient defined formally as

c ≡ ing · i∗nd
/√

i2ng · i2nd . (75)

The long-channel value of c is theoretically j0.395. We will also neglectCgd in order
to simplify the derivation. Wheres the achievable noise figure is little affected byCgd ,
the input impedance can be a strong function of Cgd , and this effect must be taken
into account when designing the input matching network.

We will omit a derivation of the noise parameters and simply summarize the re-
sults in Table 13.2, where α is the ratio gm/gd0.

With these parameters, we can determine both the source impedance that mini-
mizes the noise figure as well as the minimum noise figure itself:
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Bopt = −Bc = −ωCgs
(
1 − α|c|√δ/5γ

)
. (76)

From Eqn. 76, we see that the optimum source susceptance is essentially inductive
in character, except that it has the wrong frequency behavior. Hence, achieving a
broadband noise match is fundamentally difficult.

Continuing, the real part of the optimum source admittance is

Gopt =
√
Gu/Rn +G2

c = αωCgs
√
(δ/5γ )(1 − |c|2), (77)

and the minimum noise figure is given by

Fmin = 1 + 2Rn[Gopt +Gc] ≈ 1 + 2√
5

ω

ωT

√
γδ(1 − |c|2). (78)

In this last expression, the approximation is exact if one treats ωT as simply the ratio
of gm to Cgs. Note that if there were no gate current noise (i.e., if δ were zero) then
the minimum noise figure would be 0 dB. That unrealistic prediction alone should
be enough to suspect that gate noise must indeed exist. Also note that, in principle,
increasing the correlation between drain and gate current noise would improve noise
figure, although correlation coefficients unrealistically near unity would be required
to effect large reductions in noise figure.

The foregoing development ignores several important factors. One is the thermal
noise associated with non-superconducting gate electrode material. Although care-
ful device layout by the manufacturer can keep this value small, it often significantly
raises the minimum noise figure. We’ve also neglected the thermal noise associated
with the substrate. At microwave frequencies, this component is indeed negligible
for typical MOSFETs, but one must verify whether this is the case in any specific
instance where it matters.

13.11.2 PR AC TICE

The model parameters necessary to compute noise accurately are not always given
to us. If design for low noise is to proceed nonetheless, we must develop an alter-
native approach to obtaining model parameters. A purely empirical method has the
appeal of relying on no theoretical assumptions at all, but its practical implementa-
tion requires the design of a suitable, finite experimental suite. Fortunately, the very
dimensions of the two-port noise parameters themselves suggest a compact method
for obtaining data suitable for use over a wide range of conditions – and suitable also
for the extraction of relevant noise parameters for other simulation models.

We’ve already noted that the two-port noise parameters are impedances or admit-
tances. Even though they do not necessarily represent physical quantities that are
directly measurable, they nonetheless obey the same scaling laws. For example, sup-
pose we completely characterize the noise parameters for one MOSFET of some unit
size. For constant bias voltages (implying constant current densities), the imped-
ance parameters for two such devices in parallel are half that for a single one while
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13.11 APPENDIX B: FET NOISE PAR A METERS 471

the admittance parameters are double. Dimensionless parameters remain unchanged.
Generalizing, the noise parameters for a device of width W are

Gc = W

W0
Gc0, (79)

Bc = W

W0
Bc0, (80)

Gu = W

W0
Gu0, (81)

Rn = W0

W
Rn0. (82)

The subscript “0” identifies a parameter corresponding to a unit device of width W0.

The noise factor, F, is a dimensionless quantity and is therefore independent of width
(though the source admittance that produces a given F scales with width).

These scaling laws mean that one need only characterize the noise parameters for
a single device size (which we’ll call a unit cell). Although this characterization must
include variation of bias over some range, its elimination of the need to also sweep
device width is of self-evident value. The necessary parameters may be extracted
from contours of constant noise figure, for example. Extrapolations based on these
scaling relationships will be accurate as long as one takes care to select a reference
device large enough to make negligible any fixturing and layout parasitics, and as
long as one truly uses multiple instances of this unit cell in the final design, which is
well-established practice for good matching in analog design.
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C H A P T E R F O U R T E E N

NOISE F IGURE MEASUREMENT

14.1 INTRODUC TION

One of the most important performance metrics for low-level amplifiers is noise fig-
ure, NF, or noise factor, F. The two terms are used interchangeably in the literature,
but we adopt the following arbitrary convention in this text: We will denote noise
figure by NF, and define it as 10 logF. We will be somewhat sloppy about using the
terms (reflecting common usage), but context should make clear whether or not the
decibel version is being discussed.

The definition of noise factor now in use was first formally proposed by Harald
Friis1 of Bell Labs. At its core, the definition involves signal-to-noise ratios (SNRs):

F ≡ SNR i
SNRo

. (1)

This definition shows that F is the factor by which an amplifier degrades the signal-
to-noise ratio of the input signal. As such, it is never smaller than unity. As simple
and straightforward as the definition appears to be, numerous subtleties are buried in
it, and it will soon be clear that we have provided an incomplete definition. Accurate
measurement of noise figure depends on a full appreciation of all of these subtleties
as well as an understanding of how to identify and correct sources of measurement
error. As we’ll soon see, automated noise figure instruments do not eliminate the need
for a knowledgeable operator. As has been noted, “automated equipment merely lets
you produce more wrong answers per unit time.” The purpose of this chapter is to
reduce the rate of erroneous answer generation.

14.2 BASIC DEFINIT IONS AND NOISE
MEASUREMENT THEORY

One important subtlety concerns the temperature at which the measurement of noise
figure is made. Specifically, the temperature of the source has a profound effect on

1 “Noise Figures of Radio Receivers,” Proc. IRE, July 1944, pp. 419–22.
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14.2 BASIC DEFINIT IONS AND NOISE MEASUREMENT THEORY 473

the noise figure. Intuitively, this temperature dependence may be understood as fol-
lows. The device under test (DUT) generates its own internal noise, independent of
the source temperature. If the latter is very low, then the source noise will be cor-
respondingly low, so the noise added by the DUT will have a comparatively greater
effect. The measured noise figure will thus be higher than if the source were hot-
ter (and thus noisier). Because of this sensitivity, a meaningful comparison of noise
figures requires that the measurements be made at a standard temperature. Friis pro-
posed a reference temperature, denoted T0, of 290 kelvins (about 62◦F or 17◦C),
a temperature which is considerably cooler than the interior of most laboratories.
An oft-cited reason for this choice is the approximate equality of this temperature
with that commonly seen by antennas used in terrestrial wireless communications.
However, perhaps a stronger motivation for its selection is simply that kT0 is then
4.00 × 10−21 J, a round number with undeniable appeal in an era of slide-rule com-
putation, particularly to an eminently practical gentleman like Friis.

The final statement on standard conditions, made by a committee of the Institute
of Radio Engineers (IRE, a forerunner of the IEEE), is that the noise figure measure-
ment is to be made with a source whose available noise power is the same as that of
an input termination whose temperature is 290 K. Recall that available power is de-
fined as the power that could be delivered to a (conjugately) matched load. Hence,
even if the source does not in fact happen to drive a matched load, the power remains
available. Available power is precisely what the words imply: a potential, indepen-
dent of the actual load. The standards committee accepted Friis’s recommendation
for basing noise figure on available power, because this parameter can be related di-
rectly to the temperature of a thermal noise generator, such as a resistor. Confusion
about this definition is all too common and can lead to serious errors, as will be made
clear later in this chapter.

A second consideration is that determining input and output signal-to-noise ratios
is by no means trivial.2 Since noise figure is an intrinsic property of the DUT alone
(assuming linearity, as we must if noise figure is to be uniquely definable) and thus
not of how you drive the DUT, it should be possible to devise a measurement that
does not involve the use of an explicit signal. To do so, it is helpful to note that the
available noise appearing at the output of the DUT results from two contributions.
One is the amplified available source noise power (with the source at T0 = 290 K),
which has a value

Nos = kT0BGav, (2)

where B is the noise (brickwall) bandwidth and Gav is the available power gain of
the DUT.

The other component of output noise is simply the noise added by the DUT itself.
We call this noise contributionNa. The total available output noise power is therefore

2 A third subtlety arises in cases where the system contains frequency-translating elements such as
mixers. We defer a discussion of this consideration to Section 14.8.
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474 CHAPTER 14 NOISE F IGURE MEASUREMENT

N1 = kT0BGav +Na. (3)

Now let’s revisit, and revise, the noise figure definition of Eqn. 1:

F ≡ SNR i
SNRo

= Si/Ni

So/No
. (4)

This quantity must be evaluated at 290 K, as stated earlier.
Interpreting all quantities as available powers, the ratio of output signal So to input

signal Si is the available gain, Gav. The available input noise power is simply kT0B,
and the available output noise power is N1 as defined in Eqn. 3. So we may write

F = Si/Ni

So/No
= 1

Gav

(
No

Ni

)
= 1

Gav

(
N1

Ni

)
= N1

Nos
= kT0BGav +Na

kT0BGav
. (5)

The last expression on the right,

F = kT0BGav +Na
kT0BGav

, (6)

is the definition officially adopted by the IRE.3 It initially appears more attractive as
a basis for measurement than Eqn. 1 because it contains no terms related to an ex-
plicit input or output signal. Using Eqn. 6, measurement of noise figure reduces to
the measurement of noise, available gain, and bandwidth. Unfortunately, there are
still serious practical difficulties associated with trying to base a measurement di-
rectly on this equation. In particular, it is not easy to measure the product of the
effective noise bandwidth and available gain, BGav, with high accuracy. The exper-
imental difficulties are perhaps best appreciated after comparing the various noise
measurement methods discussed in Section 14.6.

One of these alternative noise figure evaluation methods, which is implemented in
commercial instruments such as the HP8970A, cleverly sidesteps the need to make
gain–bandwidth measurements by employing a ratio of noise measurements per-
formed at two different source temperatures. As a general philosophy, it is always
advantageous to replace absolute measurements with ratiometric ones wherever di-
mensional considerations permit it. Fortunately noise factor is a dimensionless quan-
tity, so a purely ratiometric measurement is possible. Gain–bandwidth product is not
dimensionless, so measuring it should not be fundamentally necessary here.

The basis for the ratiometric technique is that the use of a hot source increases the
component of output noise due to the source – without changing the noise added by
the DUT. If the ratio of the source temperatures is accurately known, then measur-
ing the output noise powers under the hot and cold conditions permits us to solve for
the noise added by the DUT and, hence, compute the noise figure.

Figure 14.1 plots output noise power as a function of source temperature, illustrat-
ing how such a ratiometric measurement solves our problem. Comparing features of

3 See Proc. IRE, v. 51, no. 3, March 1963, pp. 434–42.
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14.2 BASIC DEFINIT IONS AND NOISE MEASUREMENT THEORY 475

F IGURE 14.1. Output noise power vs. source temperature

this drawing with Eqn. 6, note that the slope and y-intercept tell us everything we
need to compute F :

F = kT0BGav +Na
kT0BGav

= 1 + Na

kT0BGav
= 1 + y-intercept

(T0)(slope)
. (7)

Clearly, the need to measure gain and bandwidth has disappeared because two
points determine a line. In spite of the simplicity seemingly implied by this obser-
vation, engineers have devised a surprising number of different ways to use noise
data from two points to determine noise figure. Just keep in mind that underlying
the apparent complexity in what follows is the extremely simple geometric picture
of Figure 14.1.

If we make a noise power measurement at a source temperature, Th, that is above
the reference temperature by an amount Tex , then the available output noise power
becomes

N2 = kBGavTh +Na = kBGav(T0 + Tex)+Na. (8)

After combining the hot measurement with the one at T0 (Eqn. 3), a little algebra
allows us to find that the noise factor may be expressed as

F = Tex/T0

N2/N1 − 1
. (9)

The ratioN2/N1 is often called the “Y-factor” in the literature (why? because it comes
afterX.. . ). Figure 14.1 shows a cold temperature equal to the reference temperature,
T0, but it should be clear that any temperature other than Th could be used to figure
out the slope and intercept of the line. More generally, if the cold temperature Tc is
not T0 then the numerator changes, so that the noise factor becomes

F = Tex/T0 − Y(Tc/T0 − 1)

Y − 1
. (10)

The ratio Tex/T0 is a property of the noise source, and it is information that’s
(almost) supplied by the manufacturer. The qualifier “almost” applies because the
manufacturer actually specifies a slightly different quantity called the excess noise
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476 CHAPTER 14 NOISE F IGURE MEASUREMENT

F IGURE 14.2. Typical noise diode

ratio (ENR), which is defined as the ratio of noise powers actually delivered to a
50-� load (or occasionally some other standard impedance level). However the ratio
Tex/T0 results from a consideration of available powers (as does the Y-factor). The
two ratios are equivalent only in the special case where the noise source happens to
have an impedance of precisely 50�. Despite the best efforts of manufacturers, this
condition is not perfectly satisfied in practice, so substituting ENR for Tex/T0 is one
(generally small) potential source of error. Because it is much easier to determine
ENR, however, that’s what the NBS (the National Bureau of Standards, now the Na-
tional Institute for Standards and Technology, NIST) decided to do, and consequently
that’s what manufacturers measure and report.

In the “old days,” actual hot and cold sources were used, commonly with resistors
at 77 K (the boiling point of liquid nitrogen) and 373 K (the boiling point of water,
although the resistor was electrically heated to this temperature, not immersed in an
actual water bath). Clearly, the greater the temperature difference, the more accu-
rately we can compute the slope and intercept for a given magnitude of uncertainty
in the power measurement. A limitation on the hot side is the difficulty of accurately
determining or controlling the temperature. And the higher the temperature, the more
significant the problems of materials properties (e.g., melting).

Nowadays, it is common to use noise diodes4 (see Chapter 9), which can produce
the noise of an exceptionally hot source (e.g., 10,000 K, higher than the melting point
of any known metal) while remaining at room temperature. The same diode can pro-
vide the cold reference as well, simply by turning it off, causing an internal resistive
matching network to provide an available noise power that corresponds to the ambi-
ent temperature. See Figure 14.2, where RF choke (RFC) is simply an inductor large
enough to be considered an open circuit at all frequencies of interest.

One drawback is that, unlike true hot and cold resistors, such diodes are not fun-
damental standards; their hot noise cannot be computed from first principles. Since
ENR must be known to great accuracy to be useful, it is usually traceable to a primary
noise standard (which is a heated or cooled physical resistor) maintained by national
laboratories, such as the NIST. This traceability accounts in part for the relatively
high cost of noise diodes.5

4 See e.g. HP Journal, April 1983, p. 26.
5 The more significant explanation for the high cost, however, is simply that it is what the market

will bear.
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14.3 NOISE TEMPER ATURE 477

F IGURE 14.3. Noise temperature

14.3 NOISE TEMPER ATURE

Noise temperature, Te, is an alternative figure of merit used in place of noise figure in
some cases. As we saw in Figure 14.1, noise temperature is (minus) the extrapolated
intercept of the noise power curve with the temperature axis. An intuitively appeal-
ing meaning of noise temperature can be extracted by translating the noise power
curve to the right by a temperature equal to the noise temperature; see Figure 14.3.

The translated curve is that of a noiseless amplifier (because the noise at zero source
temperature is zero) with the same slope (= available gain–bandwidth product, times
k) as the original amplifier. As can be seen, this noiseless amplifier produces an avail-
able output noise power equal to the available output noise of the original amplifier,
if the source is now heated to a temperature T0 + Te. The increase in available out-
put noise power due to the hotter source is precisely equal to the available noise (Na)
added by the original DUT:

Na = kTeBGav. (11)

Noise temperature is used in characterizing satellite communications systems for
several reasons. One is that objects in the sky generally don’t have an effective tem-
perature anywhere near 290 K, so choosing such a reference temperature would have
a weaker physical justification. The other is that space communication systems gener-
ally have exceptionally low noise figures, and noise temperature is a higher-resolution
measure of very low noise figure values. Table 14.1 compares noise figure, noise fac-
tor, and noise temperature over a range generally considered to be very low-noise.

It is sometimes helpful to note that, in the very low–noise figure regime (e.g., be-
low about 1 dB), the noise figure in decibels is approximately the noise temperature
divided by 70–75. Stated alternatively, each tenth of a decibel corresponds to roughly
7.0–7.5 K.

To relate noise temperature and noise factor, return again to the official IRE noise
figure definition:

F ≡ N1

Nos
= kT0BGav +Na

kT0BGav
. (12)

Substituting Eqn. 11 for Na yields

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511812941.015
Downloaded from https://www.cambridge.org/core. The Librarian-Seeley Historical Library, on 18 Dec 2019 at 06:20:26, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511812941.015
https://www.cambridge.org/core


478 CHAPTER 14 NOISE F IGURE MEASUREMENT

Table 14.1. Comparison of noise figure,
noise factor, and noise temperature

NF (dB) F Te (kelvins)

0.5 1.122 35.4
0.6 1.148 43.0
0.7 1.175 50.7
0.8 1.202 58.7
0.9 1.230 66.8
1.0 1.259 75.1
1.1 1.288 83.6
1.2 1.318 92.3

F = kT0BGav +Na
kT0BGav

= kT0BGav + kTeBGav

kT0BGav
, (13)

which simplifies to

F = 1 + Te/290. (14)

If the noise added by the DUT equals the noise power of the source then the noise fig-
ure will be 3 dB, corresponding to a noise temperature of 290 K. Many LNAs with
effective noise temperatures well below 100 K (corresponding to noise figures below
1.3 dB) are commercially available.

The noise temperature may be found indirectly by relating Eqn. 14 to Eqn. 9, or
directly from the cold and hot noise measurements of Figure 14.1. Pursuing the latter
strategy, we may write

N1 = kTcBGav +Na = k(Te + Tc)BGav, (15)

N2 = kThBGav +Na = k(Te + Th)BGav, (16)

so that

Y = N2

N1
= k(Te + Th)BGav

k(Te + Tc)BGav
. (17)

Solving for Te yields

Te = Th − YTc
Y − 1

. (18)

The most common reason that noise temperature is used is that the quantity F −1
recurs frequently in calculations of cascaded noise figure, as we shall see in Sec-
tion 14.4. By rearranging Eqn. 14, it’s clear that noise temperature Te is proportional
to F − 1, so its use simplifies such calculations considerably.

Because noise figure and noise temperature each fully convey the information of
the other (as implied by Eqn. 14, for example), you may use either. The choice of
which to use is made largely on the basis of culture and convenience.
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F IGURE 14.4. Cascaded systems

SPOT NOISE F IGURE

In many cases, one is interested in the noise performance of an amplifier as a function
of frequency. In those situations, the measurement bandwidth is restricted to some
known value (e.g., 4 MHz, as in the HP8970) and then the noise figure for that band-
width is reported at a specific frequency. Since the parameter is thus a noise figure
measured in a narrow band centered around a specific spot, it is known as the spot
noise figure. The noise figures most often reported in the literature are spot noise
figures.

14.4 FRI IS ’S FOR MUL A FOR THE NOISE F IGURE
OF CASCADED SYSTEMS

Computing the noise figure of a cascade of systems is often carried out incorrectly.
Once again, the problem is a failure to appreciate certain subtleties. One difficulty
is that, unlike gain, individual noise figures do not combine in any simple way to
yield the overall cascaded noise figure. Another is that each stage may see a differ-
ent source impedance, and the noise figure must be computed with respect to that
impedance. To understand these and other issues in detail, we now derive the correct
equation – called Friis’s formula – for the cascaded noise figure.

Consider a noisy system that is driven by yet another noisy system, as shown in
Figure 14.4. The first stage has a noise factor F1 and available power gain G1 mea-
sured with RS as source resistance. The second stage has an available power gainG2

and a noise factor F2 when these quantities are measured with the output of the pre-
vious stage as source resistance. If there were additional stages, the available gain
and noise figure of each one would be determined using the output impedance of the
preceding stage as the source resistance. A common error is to use RS as the source
impedance for all stages, but this choice is correct only if the output impedances hap-
pen to be RS. In cascades consisting of discrete modules, that requirement might be
satisfied, but it is important not to generalize improperly from that common case.

The easiest way to derive Friis’s formula is to use the concept of noise tempera-
ture. Because the available output noise power added by each DUT is kTeBGav, the
available noise power at the output of the first DUT is

No1 = kTsBGav1 + kTe1BGav1 = k(Ts + Te1)BGav1. (19)
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480 CHAPTER 14 NOISE F IGURE MEASUREMENT

The second stage takes this noise, amplifies it, and adds to it another kTeBGav of its
own:

No2 = k(Ts + Te1)BGav1Gav2 + kTe2BGav2. (20)

We could just as well regard the overall system as a single amplifier with available
gain Gav1Gav2, driven by a source Rs. Hence, we may also write

No2 = k(Ts + Te12)BGav1Gav2, (21)

where Te12 is the overall noise temperature of the cascade. Combining Eqns. 20 and 21
yields

Te12 = Te1 + Te2

Gav1
. (22)

The overall noise temperature is therefore the noise temperature of the first stage,
plus the input-referred noise temperature of the second stage. This formula reflects
the understanding that the signal boost provided by the first stage diminishes the ef-
fect of noise of subsequent stages. Clearly, Eqn. 22 can be extended to an arbitrary
number of stages, yielding one form of Friis’s cascade noise figure formula:

Te12 = Te1 + Te2

Gav1
+ Te3

Gav1Gav2
+ · · · . (23)

An alternative expression in terms of noise factors is readily derived by using Eqn. 14
to relate noise temperature and noise factor:

F12 = F1 + F2 − 1

Gav1
+ F3 − 1

Gav1Gav2
+ · · · . (24)

From inspection of the last two equations, we see that the expression for cascaded
noise temperature is somewhat simpler (none of those pesky −1 terms to clutter up
the equation). The noise temperature contributed by the nth stage can be computed
simply by dividing through by the product of the available gains of the (n−1) stages
preceding it. For this reason, the noise temperature formulation is frequently favored
when considering cascaded systems.

14.5 NOISE MEASURE

From Friis’s formula we see that, if an amplifier has good noise figure but low gain,
suppression of noise from subsequent stages is poor. Unfortunately, classical noise
optimization design methods sometimes lead to an “optimum” amplifier design with
precisely this combination of characteristics. Because both the noise figure and gain
of an amplifier are important in general, another figure of merit known as noise mea-
sure is sometimes used to guide engineers toward a balanced design. Its formal
definition initially seems to combine these two quantities in a puzzling way:

M ≡ F − 1

1 − 1/Gav
. (25)
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14.6 TYP ICAL NOISE F IGURE INSTRUMENTATION 481

The rationale for this definition becomes clear when we examine Friis’s formula
for the special case of an infinite cascade of identical amplifiers:

Ftot = F + F − 1

Gav
+ F − 1

G2
av

+ · · · , (26)

which ultimately simplifies to

Ftot = 1 + F − 1

1 − 1/Gav
= 1 +M. (27)

Therefore, this definition of noise measure is actually the normalized noise temper-
ature of the infinite cascade:

Te,tot = (Ftot − 1)T0 = MT0 �⇒ M = Te,tot/T0. (28)

We see that, for good noise performance, we want the noise measure to be not much
greater than the normalized noise temperature of the device itself.

Just to keep you on your toes, noise measure is defined in some references as Ftot

rather than as Ftot − 1. Be sure to identify which definition is being used, because
the difference can introduce considerable error for low-noise systems. Finally, note
that this definition of noise measure has no particular relationship to the definition of
noise measure for negative resistance devices, such as Gunn and tunnel diodes (see
Chapter 9).

14.6 TYPICAL NOISE F IGURE INSTRUMENTATION

Having derived multiple expressions for noise figure, we’re now in a position to ex-
amine several different methods for carrying out an actual measurement. As usual,
we start with a little history, partly for entertainment but partly because methods that
were used long ago tend to be ones that hobbyists can implement economically today.

14.6.1 THE (GOOD?) OLD DAYS

From Figure 14.1 we see that measuring noise figure is equivalent to determining the
equation of the noise power-vs.-source temperature line. Measuring two points along
the line is sufficient, but so is knowing a single point and the line’s slope. The former
method is the modern way, but it is worthwhile discussing the latter. Even though it
poses nontrivial experimental challenges, the equipment required is within the reach
of most RF hobbyists, so a description of this technique merits inclusion here.

Prior to the development of calibrated hot and cold sources, the only noise source
available was at room temperature. With that limitation, one can determine the avail-
able output noise only at that one (perhaps inaccurately known and poorly controlled)
temperature. So immediately, we see an error source: the noise source is probably at
a temperature higher than 290 K. Even so, this error source is usually not the domi-
nant one.
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482 CHAPTER 14 NOISE F IGURE MEASUREMENT

F IGURE 14.5. Signal generator method for noise figure measurement

The tricky part is that of accurately determining the slope of the line, kGavB.

Boltzmann’s constant is pretty solid, but measuring the product of available power
gain and noise bandwidth (which generally does not equal the −3-dB bandwidth)
is fraught with difficulty. The experimental setup for doing so is straightforward in
principle; it’s just the practice that’s hard.

To measureGavB, simply connect a signal generator to the DUT and sweep the fre-
quency to plot the power gain-vs.-frequency curve.6 See Figure 14.5. In most cases,
no provisions are made to ensure a conjugate match (because it is exceedingly tedious
to do so at each of many test frequencies), so the power gain that is measured differs
from the available gain, leading to more potential errors. The power frequency re-
sponse curve is integrated (e.g., graphically, or by measuring the −3-dB bandwidth
and multiplying by some fudge factor between 1 and 1.57) to find the product GB.

To complete the experiment, the output powerN1 is measured with the noise source
(e.g., a simple resistor of value Rs) connected to the input. The noise factor is then

F ≡ N1

Nos
= N1

kT0BGav
. (29)

This measurement method requires simple apparatus: a signal generator, calibrated
power meter (or oscilloscope; see Section 14.10 for methods of estimating noise by
inspection) and a resistor (which might be provided by simply turning off the genera-
tor). Figuring out the gain–bandwidth product from the measured frequency response
is rather labor-intensive, but if you’d rather not have to choose between buying a car
and buying an automated noise figure meter, the traditional method is the best choice.
That said, it is quite difficult to reduce noise figure uncertainties below about 1–2 dB
with this method, so characterization of very low-noise amplifiers with this technique
is generally out of the question, practically speaking.

Another issue is that the measurement time per frequency point is large, so that it
is cumbersome to make real-time evaluations of tweaks made to improve noise fig-
ure. It takes patience to use the signal generator method.

There is one case (at least, this is the only one the author can think of ) where the
signal generator method might actually have an advantage, however. Consider the

6 If the signal generator’s output is not constant over the band, it is necessary to measure its output to
perform a proper gain calculation. Carrying out this process is tedious (so the temptation to omit
it is strong), but failure to do so is a common source of error.
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14.6 TYP ICAL NOISE F IGURE INSTRUMENTATION 483

problem of measuring accurately the noise figure of an exceptionally noisy system.
In particular, suppose that the DUT is so noisy that the noise temperature greatly
exceeds the reference temperature. In this case, it is possible for the output noise
powers under the hot and cold conditions to be rather similar, leading to a Y-factor
close to unity. Because the formula for noise factor with a hot–cold measurement
method contains the term Y − 1 in its denominator (see Eqn. 18), the measurement
can be quite sensitive to small errors in Y when Y is nearly unity. The signal gener-
ator method, on the other hand, does not suffer from this sensitivity because it does
not derive slope from measuring noise at two temperatures; there are no subtractions
along the way. Thus we can say: for low-noise amplifiers, the hot–cold method is
better, but for extremely noisy systems, the signal generator method may be better.
The author readily concedes that this last case is somewhat contrived, for a highly
accurate measurement of a high noise figure is rarely needed.

14.6.2 ON TO THE MODERN ER A . . .

The availability of a calibrated hot noise source greatly facilitates accurate noise
figure determinations. As mentioned previously, early sources used actual resistors
heated or cooled to easily determined or controlled temperatures, such as the boiling
points of water and liquid nitrogen. A hot source at the temperature of boiling water
is entirely feasible for the home experimenter ( just be careful not to burn yourself
or start a fire) and also highly accurate – if the water is reasonably pure and correc-
tions are made for boiling-point shifts with altitude. However, this sort of hot source
is not nearly as hot as those used in commercial instrumentation, so accuracy is once
again degraded.

An alternative to a heated resistor is to exploit the shot noise of a vacuum tube
diode. When operated in the temperature-limited regime, such a device exhibits shot
noise of a magnitude that is traceable to first principles.7 Temperature-limited diodes
such as the 5722 – which was designed expressly for this purpose – have a mean-
square noise current density of 2qI and can easily produce ENRs of several (e.g., 5)
decibels.

Many commercial cold loads operate at 77 K, but not many hobbyists happen to
have a Dewar full of LN2 about the house.8 Perhaps a more practical choice for
the weekend experimenter is to use a room-temperature cold source, but accurate
measurements demand knowledge of the actual room temperature (and still, your
measurements won’t be that accurate). A modest improvement is possible by using
ice in water to provide a 273-K cold temperature. If you have access to (denatured)

7 If operated in the space-charge–limited regime, less than full shot noise is observed, complicat-
ing computations. For this reason, such diodes are operated with a combination of abnormally low
cathode temperature and abnormally high current density to assure temperature-limited behavior.

8 Although, if you do, a waveguide aimed at a bucket of liquid nitrogen is allegedly a good way to
realize a cold source at 77 K.
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484 CHAPTER 14 NOISE F IGURE MEASUREMENT

F IGURE 14.6. Y-factor measurement technique (simplified)

ethanol and dry ice, an equilibrium mixture of those two substances will typically
have a temperature of about 195 K (−78◦C). However, alcohol is flammable, so if
you do choose this mixture then be sure to observe all appropriate safety precautions
(in particular, keep the alcohol well away from whatever makes the hot source hot).

Once you have both a hot and cold source, there are several measurement options
from which to choose. One method, called the “Y-factor method” for reasons that
will become clear, avoids the need for a calibrated power meter, replacing it instead
with a more easily realized calibrated adjustable attenuator. See Figure 14.6. The at-
tenuator in instruments of this kind is frequently a waveguide operated beyond cutoff,
owing to the ease with which the attenuation can be related to mechanical parameters.

This measurement technique relies on the fact that the ratio of output powers with
the hot and cold source (= Y ), plus knowledge of the hot and cold temperatures, is
sufficient to compute noise figure. To carry out a measurement with this method, set
the attenuation factor to unity, connect the cold load, and note the output power read-
ing on the meter. The absolute value is completely unimportant. Then connect the
hot load and adjust the attenuator until you obtain the same power reading as before.
Since the attenuation factor is therefore the value that reduces a power N2 to a value
N1, the attenuation factor is precisely equal to Y. The noise factor is then computed
from Eqn. 10:

F = Tex/T0 − Y(Tc/T0 − 1)

Y − 1
. (30)

The accuracy achieved depends on the accuracy of the Y-factor determination, as
well as on the knowledge of the hot and cold temperatures. With assiduous attention
to controlling all error sources, this technique can provide accuracies that are on a par
with what can be achieved with commercial instrumentation (assuming equal noise
temperatures for the sources). The trade-off is again one of time per measurement.

ActualY-factor noise determinations are usually carried out with a slightly different
configuration to permit measurement of spot noise figure as a function of frequency,
rather than a gross noise figure over the entire bandwidth of the amplifier. The typi-
cal setup modifies the one shown in Figure 14.6 by adding a mixer, local oscillator,
and intermediate-frequency (IF) amplifier, just as in a superheterodyne receiver;9 see
Figure 14.7.

9 An LO, mixer, and IF amplifier can also be added to the setup of Figure 14.5 to improve the signal
generator method, readily permitting evaluation of spot noise figure with that system. The noise
bandwidth of the IF filter determines the width of the spot, and its value needs to be known to cal-
culate spot noise figure correctly.
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14.6 TYP ICAL NOISE F IGURE INSTRUMENTATION 485

F IGURE 14.7. More typical Y-factor measurement setup

Here, the LO frequency is swept to sample the noise from the DUT at different
frequencies. The IF amplifier–filter combination ensures that this noise is measured
over some narrow, controlled bandwidth centered about the frequency determined by
the LO setting. In many implementations, a filter is additionally interposed between
the DUT and the instrumentation to limit bandwidth (perhaps to attenuate image re-
sponse, for example).

If a spectrum analyzer is used as the power meter in any of these methods, it is
necessary to precede it with a high-gain, low-noise preamplifier because spectrum
analyzers generally have rather high noise figures (e.g., 30 dB) resulting from de-
sign trade-offs made in favor of good large-signal linearity. The gain of the preamp
must be large compared with the noise figure of the analyzer in order to effect a sub-
stantial reduction in NF. The overall noise figure will then be close to that of the
preamp alone. Even so, the noise figure of the preamp–spectrum analyzer combina-
tion will generally remain high enough that it cannot be ignored, and Friis’s formula
for cascaded noise figure should be used to correct the measured values. As a con-
crete numerical example, assume that the preamp has a noise figure and available
power gain of 3 dB and 40 dB, respectively, and that the analyzer has a noise figure
of 30 dB. The combination has a noise factor given by Friis’s formula,

F = 2 + 1000 − 1

104
≈ 2.1, (31)

or 3.2 dB, a large improvement over 30 dB and now only slightly greater than the
preamp’s inherent noise figure. Friis’s formula will ultimately be used again, once the
DUT is connected to the combination, with 3.2 dB now considered the second stage’s
noise figure and the DUT’s available gain used in the denominator. If the noise fig-
ure of the preamp is not known, connect the hot and cold sources directly to its input
and then make a measurement of noise figure. Once the combination has been char-
acterized in this manner, it may be used to determine the noise figure of the DUT.

When making spot noise figure measurements with the spectrum analyzer, set the
analyzer’s resolution bandwidth equal to the desired width of the spot – and as great
as possible to minimize the noise of the detected signal. Similarly, choose a video
bandwidth (much) narrower than the resolution bandwidth in order to reduce noise in
the displayed data (recall that video bandwidth controls the averaging of the output
signal, after the detector). These considerations derive from the following relation-
ship, which applies for spectrum analyzers that employ a rectify-and-average type of
detector:
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rms output noise voltage

detected DC voltage
=

√
b

2B
, (32)

where b and B are the video and IF noise bandwidths, respectively.
The basic arrangement shown in Figure 14.6 is also quite close to what lies at the

core of most modern automatic noise figure instruments. The HP8970, for example,
contains all of those components, with the addition of a filter and preamplifier (as in
the spectrum analyzer example) and a collection of attenuators at the input and out-
put. With these additional elements, the instrument is able to measure (and correct
for) insertion gain (loss) of the DUT and fixturing during the noise figure measure-
ment. Additionally, the noise figure of the meter circuitry must also be known in
order to complete an accurate noise figure measurement. What follows is a typical
sequence of operations for making a noise figure measurement with a commercial
instrument (specifically, the 8970B).

1. Read off the ENR calibration values for the hot /cold noise source, and enter
those numbers into the instrument’s memory. The 8970B has a list of the common
calibration frequencies already in ROM, so the user normally only has to enter the
ENR values.

2. Select the start frequency, stop frequency, and frequency increment (step size).
3. Connect the noise source to the instrument in order to permit measurement of

the meter’s noise figure, set frequency to the desired value, and press the “calibrate”
key to initiate the calibration sequence. The meter successively activates and deacti-
vates the noise source to compute the meter’s hot and cold noise powers:

Phm = k(Th + Tem)BGm; (33)

Pcm = k(Tc + Tem)BGm. (34)

The ratio of these two powers is completely insensitive to gain–bandwidth product
and has only the noise temperature of the meter as an unknown:

Phm

Pcm
= Th + Tem
Tc + Tem �⇒ Tem = PcmTh − PhmTc

Phm − Pcm . (35)

The instrument measures the value of Tem at three input gain settings.
The 8970 allows the results of several calibration measurements at each frequency

to be averaged. The number of measurements is controlled with the “increase” key.
Hold it down until the desired number of runs is displayed. This step precedes acti-
vation of the “calibrate” mode.

4. Insert the DUT between the noise source and the instrument and select “noise
figure and gain.” To the maximum practical extent, avoid cables. The shorter the
fixturing the better – to minimize pre-DUT loss (and thus any errors introduced by
uncertainties in its subsequent subtraction) and to reduce RFI pickup. The instru-
ment then measures the hot and cold powers of the cascade (DUT + meter):

Ph,tot = k(Th + Te,tot)BGmGDUT ; (36)

Pc,tot = k(Tc + Te,tot)BGmGDUT . (37)
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14.7 ERROR SOURCES 487

The ratio of these two powers is also insensitive to gain–bandwidth product and has
only the noise temperature of the DUT–meter combination as an unknown:

Ph,tot

Pc,tot
= Th + Te,tot

Tc + Te,tot
�⇒ Te,tot = Pc,totTh − Ph,totTc

Ph,tot − Pc,tot
. (38)

The ratio of the differences of noise powers enables computation of the DUT’s
gain:

GDUT = Ph,tot − Pc,tot

Phm − Pcm . (39)

The gain of the meter has dropped out completely, so its value is theoretically irrel-
evant. Having computed the gain of the DUT, the noise temperature of the meter,
and the noise temperature of the meter and DUT combination, Friis’s formula can be
used to solve for the noise figure of the DUT alone:

Te,tot = TDUT + Tem

GDUT
�⇒ TDUT = Te,tot − Tem

GDUT
. (40)

Note that the resulting calculation is correct only if GDUT is equal to the available
gain. Mismatches may make these unequal and thereby introduce error.

The 8970 also allows the user to enter the cold temperature. The default is 296.5 K,
which is close to typical room temperature.

A separate measurement of fixturing loss (e.g., with a network analyzer) enables
correction for any pre-DUT fixturing attenuation. Most instruments allow the user
to enter loss values (via the “loss compensation” feature of the 8970, for example)
and automatically perform the subtraction of the loss factor. The instrument con-
verts noise temperature into noise figure and displays both NF and GDUT . It takes
you much longer to read this description than it does for the instrument to carry out
the measurement.

14.7 ERROR SOURCES

There are several ways in which noise figure measurements can go awry. Under-
standing what these are is a key to making accurate measurements. What follows is
a short list of common problems, mistakes, and their fixes.

14.7.1 EXTERNAL NOISE

More than occasionally, external interference couples into the test setup. This inter-
ference can be noise radiated by RF sources ranging from TV and radio to digital
equipment (particularly computers and their displays). Noise figure measurements
are best carried out in a shielded (“screen”) room to prevent this interference from in-
jecting into the system. If this option is not available, a poor second choice is to make
a spot noise measurement at a frequency removed from the interference, assuming
that it is narrowband enough to enable this strategy. Many noise figure measurement
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488 CHAPTER 14 NOISE F IGURE MEASUREMENT

systems provide for an oscilloscope connection to monitor the spectrum. If such an
output is not available, a normal spectrum analyzer may be used instead. With the
aid of a monitor, discrete peaks caused by interference can be identified quite easily,
and the measurement frequency moved appropriately away from the interference.

14.7.2 F IXTURING LOSS

Fixturing anomalies are an endless source of errors. For example, a proper measure-
ment of noise figure requires accurate characterization of any loss (e.g., from cable
attenuation) that precedes the DUT proper. This loss (in dB) is subtracted from the
measured overall NF (if, and only if, the loss is at 290 K) to yield the DUT’s true NF.
If the loss is large, however, the uncertainty in the final answer can be considerable
because the instrument will have subtracted two nearly equal numbers. For exam-
ple, suppose that the pre-DUT fixturing power loss is 20 dB (a frighteningly large
value) and that the DUT itself has a 2-dB noise figure. The noise figure meter will
measure a 22-dB noise figure, but inevitably within some error band (say, 0.5 dB).
Assume for now that the error results in a composite measured NF of 21.5 dB. A sep-
arate measurement of the fixturing loss might have a similar uncertainty of 0.5 dB;
suppose we measure 20.5 dB in this case. After subtraction, we compute a DUT NF
of 1 dB, instead of the correct value of 2 dB, a huge error. In fact, for amplifiers
with very low noise figure and large pre-DUT loss, it is entirely possible to compute
negative values! Therefore, be suspicious of noise figure measurements in which a
large attenuation has been mathematically removed. As a general rule, it is desirable
to limit any such pre-DUT attenuation to values smaller than the anticipated noise
figure. The lower this loss, the better.

If the loss is not at 290 K, then the noise temperature of the loss element is

Te = (L− 1)TL, (41)

where L is the loss and TL is the temperature at which the loss is measured. The
resulting value of noise temperature may be used to perform an accurate correction.

14.7.3 SECOND STAGE CONTRIBUTION

Another common error is a failure to take into account the noise of stages that follow
the DUT (the “second stage contribution”). A related consideration is that all com-
mercial noise figure meters assume that the measured DUT gain is the same as the
available gain. If the DUT has a large output impedance mismatch with that of the
noise figure meter’s input port, then this assumption will be a poor one and the calcu-
lation of the second stage contribution will be in error, as can be seen from Eqn. 40.

Impedance mismatch between the output of the noise source and the input of the
DUT is also a concern. Reflections off of the DUT input travel back to the noise
source, and any mismatch there causes a re-reflection back toward the DUT. The
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14.7 ERROR SOURCES 489

superposition of the incident power and this reflected power can cause the noise
power from the source to differ from what it would be with a matched load. Com-
plicating the situation is that the noise source may have a different impedance in the
hot and cold modes, compounding the error, since the noise figure and available gain
may consequently change.10

Correction for all of these errors requires knowledge of all three of the mismatches,
as can be seen from the following formula:11

KG = (1 − |$s |2)|1 − $1$2|2
(1 − |$2|2)|1 − $1$s |2 . (42)

Here, KG is the factor by which the measured insertion gain should be multiplied in
order to yield the correct value of available gain. The reflection coefficients are re-
ferred to various ports as follows: $1 is defined looking into the input of the noise
measurement instrumentation, $2 into the output of the DUT, and $s into the output
of the noise source. Note that if these reflection coefficients are zero, KG is unity.
Note also that knowledge of both the magnitude and phase of the reflection coeffi-
cients is necessary in order to perform the correction. If only the magnitudes of the
reflection coefficient are known, the best one can do is bound the error. As a specific
example of the latter, assume that the magnitudes of $1, $2, and $s are 0.33, 0.33,
and 0.11, respectively. Then the true available gain could be anywhere between about
0.95 and 1.3 times the measured insertion gain.

14.7.4 NOISE SOURCE CALIBR ATION UNCERTAINTY

Uncertainty in the ENR of the noise source is an additional error source. As stated
previously, noise diodes must be calibrated against a standard. Calibrations are never
perfect, and noise diodes may not be perfectly stable (although commercially avail-
able solid-state ones are remarkably good). One may typically expect instrument-
grade noise diodes (such as the popular HP346B) to possess uncertainties in ENR on
the order of 0.1 dB at low frequencies (e.g., 10 MHz), increasing to perhaps 0.2 dB at
higher frequencies (e.g., 18 GHz). The percentage error represented by these uncer-
tainties gets progressively more significant as the noise figure of the DUT diminishes.

A noise diode’s output is not perfectly constant over the operating frequency range,
and neither does it follow any other simple functional law traceable to first princi-
ples; hence, noise source calibrations are made at a number of discrete frequencies
(10 or 20 is a typical number). In between the calibration points, you (or the noise
figure meter) must perform interpolations. The actual noise output may differ from
the interpolated value, adding another error term.

10 See N. J. Kuhn, “Curing a Subtle but Significant Cause of Noise Figure Error,” Microwave Jour-
nal Magazine, June 1984.

11 “Fundamentals of RF and Microwave Noise Figure Measurements,” Hewlett-Packard Applica-
tions Note 57-1, July 1983.
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490 CHAPTER 14 NOISE F IGURE MEASUREMENT

14.7.5 COLD TEMPER ATURE = T0

Yet another common problem is that the cold noise source temperature is rarely
290 K. A diode noise source has a cold temperature equal to that of the ambient, and
most laboratories are 4–5◦C warmer than T0. As a rough rule of thumb, the mea-
sured noise temperature is too low by one degree for each degree the noise source is
above T0. Thus it is typical to underestimate the noise figure of a DUT because of
the warm laboratory problem. For more rigorous corrections, an accurate measure-
ment of the cold temperature must be made, with Eqn. 10 then used to compute the
adjustment. This correction is most important in the case of very low noise figures.
It is also important to consider that noise diodes (and perhaps other sources) heat up
during use, so that the source temperature may change as a function of time during
the measurement.

14.7.6 FAILURE OF L INEARITY: DIODE DETEC TORS

The straight line of Figure 14.1 underlies both the definition and measurement of
noise figure. If the device under test is nonlinear, noise figure can’t be uniquely de-
fined. A relevant example is that of diodes used as square-law detectors (frequently
known as video detectors for historical reasons). In cases such as these, a different
figure of merit is used to convey information about noise performance.

One such figure of merit is tangential signal sensitivity (TSS). Its original defini-
tion is a highly subjective evaluation of noise: An operator observes the noisy output
of the detector on an oscilloscope in the absence of any signal and notes the position
of the positive noise peaks. Then the signal is turned on, and the operator adjusts
the amplitude until the negative-going noise peaks with signal present appear just to
touch the positive-going noise peaks noted earlier with the signal absent. Formally,
TSS is defined as the level of input signal that produces this condition. The problem
with this definition is that noise, being random, has theoretically unbounded peaks.
So, the operator has to make an arbitrary judgment when an equality of peaks occurs,
and different operators may guess differently (the same operator may also make dif-
ferent determinations at different times). To eliminate this subjectivity, most diode
manufacturers now define TSS as the available input signal power that causes the
output signal power to exceed the output noise power by 8 dB. These numbers cor-
respond to an output power ratio of about 6.3 and a voltage ratio of 2.5. Note that, if
the input power is within the range for which the diode acts as a square-law device,
then an output signal-to-noise voltage ratio of 2.5 is produced for an input power
ratio of 2.5. A typical value of TSS for diodes might be −60 dBm.

Another figure of merit is the nominal detectable signal (NDS), which is defined
as the available input power that results in an output SNR of unity. Both TSS and
NDS are generally functions of frequency and bias current, so these must be speci-
fied to make TSS and NDS values meaningful.
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F IGURE 14.8. Spectrum of SSB input to mixer

F IGURE 14.9. Spectrum of DSB input to mixer

14.8 SPECIAL CONSIDER ATIONS FOR MIXERS

When the DUT is (or contains) a mixer, there is a question of whether one should per-
form a single-sideband (SSB) or double-sideband (DSB) noise figure measurement.
In most cases, the SSB noise figure is the appropriate choice, since few communica-
tions systems transmit the same signal in both the main and image bands. The only
two exceptions the author is aware of are direct-conversion (homodyne) receivers, in
which the main signal occupies the same spectrum as its image, and deep-space ra-
diometry, where noise (that of the universe) is the signal. Because DSB noise figure
is lower by 3 dB (assuming equal conversion gains for the two sidebands), “spec-
manship” games are all too frequent, and this figure is often reported instead of SSB.

To place the DSB–SSB issue on a firm foundation, consider that the IRE (now
IEEE) noise figure definition has in its numerator all output noise, yet its denomina-
tor contains only signal-related noise. If the signal is contained in only one sideband,
then the relevant spectra appear roughly as shown in Figure 14.8. Here the signal
exists only within bandwidth B2. From this picture, the correct definition of noise
factor is:

FSSB ≡ Na + kT0G1B1 + kT0G2B2

kT0G2B2
. (43)

Note that the formula allows for the possibility of unequal receiver bandwidths and
unequal conversion gains for the two bands.

In the rarer DSB case, the desired signal resides in both bands; see Figure 14.9.
The corresponding noise factor is:
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FDSB ≡ Na + kT0G1B1 + kT0G2B2

kT0G1B1 + kT0G2B2
. (44)

If the bandwidths are equal and the conversion gains are also equal, then the DSB NF
will be 3 dB lower than the SSB value, as stated earlier. More generally, allowing
for unequal conversion gains (but still assuming equal bandwidths),

FSSB = FDSB(1 +G1/G2). (45)

In many cases, a mixer is preceded by an image-suppression filter. In this com-
monly occurring situation, it is appropriate to characterize the combination of the
filter and mixer as a unit. Because the job of the filter is to produce unequal conver-
sion gains to the two sidebands, there will no longer be a 3-dB difference between
the SSB and DSB NF.

Another important subtlety concerns the nature of terminations on the several mixer
ports. Because a mixer has three ports – RF, IF, and LO – misterminations on any of
the ports can result in complicated reflections capable of corrupting measurements.
A particularly common error is to terminate the IF port of a passive mixer in a load
that is matched only at (say) the difference frequency while exhibiting a highly re-
active impedance at the sum frequency. Even though we might only care about the
difference component, reflections at the sum frequency can cause pathological be-
havior of both noise and conversion gain.

Additionally, the gain and noise characteristics of mixers typically vary with LO
power. For the measurements to be meaningful, then, the LO power must be spec-
ified. Preferably, the noise figure (and conversion gain) should be presented as a
function of LO power over a range that spans practical values. Finally, mixers are
generally sensitive to AM noise on the LO. They may send this noise out the IF port,
producing yet another source of error.

14.9 REFERENCES

Various applications notes from Hewlett-Packard (now Agilent Technologies) are ex-
cellent sources of information about noise measurement. Some that are of particular
interest include “Accurate andAutomatic Noise Figure Measurements,” (HPApplica-
tions Note 64-3, June 1980) and “Fundamentals of RF and Microwave Noise Figure
Measurements,” (HP Applications Note 57-1, July 1983). Another good source of in-
formation is the documentation for the HP8970B noise figure meter, which describes
in detail the theory underlying the operation of this instrument.

14.10 APPENDIX: TWO CHEESY EYEBALL METHODS

Making measurements of noise can be rather involved if it is to be done accurately.
Typically, a special noise figure instrument (or possibly a spectrum analyzer) is re-
quired to determine the noise density as a function of frequency. For very quick
assessments of relatively large amounts of noise, a crude measurement is sometimes
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acceptable. In those cases, an oscilloscope and your eyeball may be the only in-
struments you need. If we assume that the noise is Gaussian, then the peak-to-peak
values very rarely exceed about 5–7 times the rms value. So, the level-zero eyeball
measurement is to connect the noisy DUT to the oscilloscope, make some judgment
about what the displayed peak-to-peak value seems to be, then divide by about 6 to
develop an estimate of the rms value.

This method is very crude, of course, and in no small measure because of the diffi-
culty in determining what the “true” peak-to-peak value happens to be. The situation
is further complicated by the fact that the oscilloscope brightness setting affects what
appear to be the peaks; the brighter the trace, the taller the apparent peaks. The same
operator may also make significantly different determinations at different times as a
function of sleep deprivation, emotional state, and caffeine levels.

A clever extension of the eyeball technique removes much of this uncertainty by
converting the measurement into a differential one.12 Here, the noisy signal simul-
taneously drives both channels of a dual-trace oscilloscope, operating in alternating
sweep mode rather than chop mode (to avoid introducing a correlation between the
two sweeps through the oscilloscope’s chopping oscillator). With a sufficiently large
initial position difference, there will be a dark band between these two traces. Adjust
the position controls until the dark band just disappears, with the two traces merging
into a single blurry mess with a monotonically decreasing brightness from the center
outward. Note that this description implies an independence of the result on the ab-
solute intensity. Remove the noisy signals, and then measure the distance between
the two baselines. The resulting value is twice the rms voltage to a good approxima-
tion. Absolute accuracies of about 1 dB are possible with this simple method.

The reason this technique works is that a sum of two identical Gaussian distribu-
tions has a maximally flat top when the two distributions are separated by exactly
twice the rms value.

Because the eye is an imperfect judge of contrast, it is not possible to establish
with infinite precision when the dark band disappears. When following the procedure
as outlined, most people will perceive the band to have disappeared a little before it
actually does. The error resulting from this uncertainty is on the order of 1 dB for
most people. Thus, perhaps 0.5 dB should be subtracted from the measurement if you
are very fussy. An alternative is to measure the noise two different ways, one using
the procedure given, and another with the two traces initially on top of each other.
With the latter initial condition, adjust the spacing until the darker area first seems
to appear. Average the two readings, and also compute the difference between the
two readings as a measure of uncertainty. With care and a little practice, sub–1-dB
repeatability is readily achievable.

12 G. Franklin and T. Hatley, “Don’t Eyeball Noise,” Electronic Design, v. 24, 22 November 1973,
pp. 184–7.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511812941.015
Downloaded from https://www.cambridge.org/core. The Librarian-Seeley Historical Library, on 18 Dec 2019 at 06:20:26, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511812941.015
https://www.cambridge.org/core


C H A P T E R F I F T E E N

OSCILL ATORS

15.1 INTRODUC TION

Given the effort expended in avoiding instability in most feedback systems, it would
seem trivial to construct oscillators. Murphy, however, is not so kind; the situation
is a lot like bringing an umbrella in order to make it rain. An old joke among RF
engineers is that every amplifier oscillates, and every oscillator amplifies.

In this chapter, we consider several aspects of oscillator design. First, we show
why purely linear oscillators are a practical impossibility. We then present a lin-
earization technique utilizing describing functions that greatly simplify analysis, and
help to develop insight into how nonlinearities affect oscillator performance. With
describing functions, it is straightforward to predict both the frequency and ampli-
tude of oscillation.

A survey of resonator technologies is included, and we also revisit PLLs, this time
in the context of frequency synthesizers. We conclude this chapter with a survey of
oscillator architectures. The important issue of phase noise is considered in detail in
Chapter 17.

15.2 THE PROBLEM WITH PURELY L INEAR OSCILL ATORS

In negative feedback systems, we aim for large positive phase margins to avoid in-
stability. To make an oscillator, then, it might seem that all we have to do is shoot
for zero or negative phase margins. We may examine this notion more carefully with
the root locus for positive feedback sketched in Figure 15.1.1

This locus recurs frequently in oscillator design because it applies to a two-pole
bandpass resonator with feedback. As seen in the locus, the closed-loop poles lie

1 For those unfamiliar with root loci, these are simply all possible values of a system’s closed-loop
poles as some parameter is varied. Usually that parameter is the gain around the loop, but it can
also be something else, such as a loop-transmission pole frequency. For details, see e.g. T. H. Lee,
The Design of CMOS Radio-Frequency Integrated Circuits, 2nd ed., Cambridge University Press,
2004.

494

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511812941.016
Downloaded from https://www.cambridge.org/core. The Librarian-Seeley Historical Library, on 18 Dec 2019 at 06:19:20, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511812941.016
https://www.cambridge.org/core


15.3 DESCRIB ING FUNC TIONS 495

F IGURE 15.1. Root locus for oscillator example

exactly on the imaginary axis for some particular value of loop-transmission magni-
tude. The corresponding impulse response is therefore a sinusoid that neither decays
nor grows with time, and it would seem that we have an oscillator.

There are a couple of practical difficulties with this scenario, however. First, the
amplitude of the oscillation depends on the magnitude of the impulse (it is a linear
system, after all). This behavior is generally undesirable; in nearly all cases, we want
the oscillator to produce a constant-amplitude output that is independent of initial
conditions. Another problem is that if the closed-loop poles don’t lie precisely on the
imaginary axis, the oscillations will either grow or decay exponentially with time.

These problems are inherent in any purely linear approach to oscillator design.
The solution to these problems therefore lies in a purposeful exploitation of non-
linear effects; all practical oscillators depend on nonlinearities. To understand just
how nonlinearities can be beneficial in this context, and to develop intuition useful
for both analysis and design, we now consider the subject of describing functions.

15.3 DESCRIB ING FUNC TIONS

We’ve seen that linear descriptions of systems often suffice, even if those systems are
nonlinear. For example, the incremental model of a bipolar transistor arises from a
linearization of the device’s inherent exponential transfer characteristic. As long as
excitations are “sufficiently small,” the assumption of linear behavior is well satisfied.

An alternative to linearizing an input–output transfer characteristic is to perform
the linearization in the frequency domain. Specifically, consider exciting a nonlinear
system with a sinusoid of some particular frequency and amplitude. The output will
generally consist of a number of sinusoids of various frequencies and amplitudes.
A linear description of the system can be obtained by discarding all output compo-
nents except the one whose frequency matches that of the input. The collection of
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496 CHAPTER 15 OSCILL ATORS

all possible input–output phase shifts and amplitude ratios for the surviving compo-
nent comprises the describing function for the nonlinearity. If the output spectrum is
dominated by the fundamental component, then results obtained with the describing
function approximation will be reasonably accurate.

To validate further our subsequent analyses, we will also impose the following re-
striction on the nonlinearities: they must generate no subharmonics of the input (DC
is a subharmonic). The reason for this restriction will become clear momentarily.
For RF systems, this requirement is perhaps not as restrictive as it initially appears,
because bandpass filters can often be used to eliminate subharmonic and harmonic
components.

As a specific example of generating a describing function, consider an ideal com-
parator, described by the following equation:

Vout = B sgnVin. (1)

If we drive such a comparator with a sine wave of some frequency ω and amplitude
E, then the output will be a square wave of the same frequency but of a constant am-
plitude B, independent of the input amplitude. Furthermore, the zero crossings of the
input and output will coincide (so there is no phase shift). Hence, the output can be
expressed as the following Fourier series:

Vout = 4B

π

∞∑
1

sinωnt

n
(n odd). (2)

Preserving only the fundamental term (n = 1) and taking the ratio of output to input
yields the describing function for the comparator:

GD(E) = 4B

πE
. (3)

Since there is no phase shift or frequency dependence in this particular case, the de-
scribing function depends only on the input amplitude.

Note that the describing function for the comparator shows that the effective gain
is inversely proportional to the drive amplitude, in contrast with a purely linear sys-
tem in which the gain is independent of drive amplitude. We shall soon see that this
inverse gain behavior can be extremely useful, for it can provide negative feedback
to stabilize the amplitude.

15.3.1 A BRIEF CATALOG OF DESCRIB ING FUNC TIONS

Having shown how one goes about generating describing functions, in Figures 15.2–
15.4 we present (without derivation) describing functions for some commonly en-
countered nonlinearities.2 In the example of Figure 15.4, the value of R must be less

2 See e.g. J. K. Roberge’s excellent book, Operational Amplifiers, Wiley, New York, 1975.
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15.3 DESCRIB ING FUNC TIONS 497

F IGURE 15.2. Transfer characteristic and describing function for saturating amplifier

F IGURE 15.3. Describing function for amplifier with crossover distortion

F IGURE 15.4. Transfer characteristic and GD for Schmitt trigger

than unity; otherwise, the Schmitt never triggers and the output of the comparator
will then be only a DC value of either B or −B.

It is important to note that describing functions themselves are linear even though
the functions that they describe may be nonlinear (got that?). Hence, superposition
holds; the describing function for a sum of nonlinearities is equal to the sum of the
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498 CHAPTER 15 OSCILL ATORS

F IGURE 15.5. Large-signal transconductor

individual describing functions. This property is extremely useful for deriving de-
scribing functions for nonlinearities not included in the short catalog presented here.

15.3.2 A UNIVERSAL DESCRIB ING FUNC TION
FOR TR ANSISTORS AND VACUUM TUBES

Although the foregoing collection of describing functions is extremely useful, partic-
ularly relevant for the RF oscillator design problem are describing functions for one-
and two-transistor circuits, since the high frequencies that characterize RF operation
are difficult to generate with many transistors in a loop.

To illustrate a general approach, consider the circuit in Figure 15.5. The capaci-
tor is assumed large enough to behave as a short at frequency ω, and the transistor
is ideal. We will be using this circuit in tuned oscillators, so the bandpass action
provided by the tank guarantees that describing function analysis will yield accurate
results.

Before embarking on a detailed derivation of the large-signal (i.e., describing func-
tion) transconductance, let’s anticipate the qualitative outlines of the result. As the
amplitude V1 increases, the emitter voltage VE is pulled to higher values, reaching a
maximum roughly when the input does. Soon after the base drive heads back down-
ward from the peak, the transistor cuts off as the input voltage falls faster than the
current source can discharge the capacitor. Because the current source discharges
the capacitor between cycles, the base–emitter junction again forward-biases when
the input returns to near its peak value, resulting in a pulse of collector current. The
cycle repeats, so the collector current consists of periodic pulses.

Remarkably, we do not need to know any more about the detailed shape of collec-
tor current in order to derive quantitatively the large-signal transconductance in the
limit of large drive amplitudes. The only relevant fact is that the current pulses con-
sist of relatively narrow slivers in that limit, as in the hypothetical plots3 of voltage
and current in Figure 15.6.

3 The word “hypothetical” is here a euphemism for “wrong.” However, even though the detailed
waveforms shown are not strictly correct, the results and insights obtained are. In particular, this
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15.3 DESCRIB ING FUNC TIONS 499

F IGURE 15.6. Hypothetical emitter and base voltage, and
collector current for large input voltage

Whatever the current waveform, Kirchhoff ’s current law demands that its average
value equal IBIAS. That is,

〈iC〉 = 1

T

∫ T

0
iC(t) dt = IBIAS. (4)

Now, the fundamental component of the collector current has an amplitude given by

I1 = 2

T

∫ T

0
iC(t) cosωt dt. (5)

We may not know the detailed functional form of iC(t), but we do know that it consists
of narrow pulses in the limit of large drive amplitudes. Furthermore, these current
pulses occur roughly when the input is a maximum, so the cosine may be approxi-
mated there by unity for the short duration of the pulse. Then,

I1 = 2

T

∫ T

0
iC(t) cosωt dt ≈ 2

T

∫ T

0
iC(t) dt = 2IBIAS. (6)

That is, the amplitude of the fundamental component is approximately twice the bias
current, again in the limit of large V1. The magnitude of the describing function is
therefore

Gm = I1

V1
≈ 2IBIAS

V1
. (7)

It is important to note that this derivation does not depend on detailed transistor
characteristics at any step along the way. Because no device-specific assumptions are

picture allows us to understand why the describing function transconductance for large drive am-
plitudes is essentially the same for bipolars and MOSFETs (both long- and short-channel), as well
as for JFETs and vacuum tubes.
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500 CHAPTER 15 OSCILL ATORS

used, Eqn. 7 is quite general, applying to MOSFETs (both long- and short-channel)
as well as to bipolars, JFETs, GaAs MESFETs, and even vacuum tubes.

In deriving Eqn. 7, we have assumed that the drive amplitude, V1, is “large.” To
quantify this notion, let us compute the Gm/gm ratio for long- and short-channel
MOSFETs (such as VMOS RF power devices) and bipolar devices.

For long-channel devices, the ratio of gm to drain current IBIAS may be written as
follows:

gm

IBIAS
= 2

VGS − Vt

, (8)

so that
Gm

gm

= VGS − Vt

V1
. (9)

Evidently, “large” V1 is defined relative to (VGS − Vt) for long-channel MOSFETs.
Repeating this exercise for short-channel devices yields4

gm

IBIAS
= 2

VGS − Vt

− 1

EsatL + (VGS − Vt)
, (10)

which, in the limit of very short channels, converges to a value precisely half that of
the long-channel case. Thus,

VGS − Vt

V1
≤ Gm

gm

<
2(VGS − Vt)

V1
. (11)

Finally, for bipolar devices,
gm

IBIAS
= 1

VT

, (12)

so that
Gm

gm

= 2VT

V1
. (13)

In bipolar devices, large V1 is therefore defined relative to the thermal voltage, kT/q.
Although the equation for Gm is valid only for large V1, practical oscillators usu-

ally satisfy this condition, so this restriction is much less constraining than one might
think. We will also see in the next chapter that large V1 is highly desirable for reduc-
ing phase noise, so one may argue that all well-designed oscillators automatically
satisfy the conditions necessary to validate the approximations used. Nevertheless,
it is important to recognize that Gm can never exceed gm, so one must be careful not
to misapply equations such as Eqn. 13. To underscore this point, Figure 15.7 shows,
in an approximate way, the actual behavior of Gm/gm contrasted with the behavior
as predicted by Eqn. 13. Although this equation applies strictly to the bipolar case,
the overall behavior shown in the figure holds generally.

Having presented numerous describing functions, we now consider an example to
illustrate how to use them to analyze oscillators.

4 Here, we have used the approximate, analytic model for short-channel MOSFETs introduced in
Chapter 5 of Lee, op. cit. (see footnote 1).
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15.3 DESCRIB ING FUNC TIONS 501

F IGURE 15.7. Gm /gm vs. V1

F IGURE 15.8. Colpitts oscillator
(biasing details not shown)

15.3.3 EX A MPLE: COLPITTS OSCILL ATOR

Relaxation oscillators – such as the function generator – are rarely used in high-
performance transceivers because they generate signals of inadequate spectral purity.
Much more common are tuned oscillators, primarily for reasons that we may appre-
ciate only after studying the subject of phase noise. For now, simply accept as an
axiom the superiority of tuned oscillators. Our present focus, then, is the use of de-
scribing functions to predict the output amplitude of a typical tuned oscillator, such
as the Colpitts circuit shown in Figure 15.8.5 We shall see later in this chapter that a
variety of oscillators differing in trivial details are named for their inventors. In keep-
ing with standard practice, we will retain this naming convention, but the reader is
advised to focus on operating principles rather than nomenclature.

The basic recipe for these oscillators is simple: Combine a resonator with an active
device. The distinguishing feature of a Colpitts oscillator is the capacitively tapped
resonator, with positive feedback provided by the active device to make oscillations
possible. In Figure15.8, the resistance R represents the total loading due to finite tank
Q, transistor output resistance, and whatever is driven by the oscillator (presumably

5 Edwin Henry Colpitts devised his oscillator in early 1915, while at Western Electric. His colleague
Ralph Vinton Lyon Hartley had demonstrated his oscillator just a month earlier, on February 10th.
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IBIAS/

F IGURE 15.9. Describing function model of Colpitts oscillator

F IGURE 15.10. Simplified model of Colpitts oscillator

the oscillator’s output is used somewhere). The current source is frequently replaced
by an ordinary resistor in practical implementations, but it is used here to simplify
(marginally) the analysis.

From our describing function derivation, we know that the transistor may be char-
acterized by a large-signal transconductance Gm. For the sake of simplicity, we will
ignore all dynamic elements of the transistor, as well as all parasitic resistances, al-
though an accurate analysis ought to take these into account. The transistor also has a
large-signal source–gate resistance, of course, which must be modeled as well. Tak-
ing a cue from describing functions, it seems reasonable to define this resistance as
the ratio of the fundamental component of source current to the source–gate voltage.
We’ve actually already found this ratio; it is simply 1/Gm. Thus, we may model the
oscillator with the circuit shown in Figure 15.9.

To simplify the analysis further, first reflect the input resistance Ri across the main
tank terminals by treating the capacitive divider as an ideal transformer so that we
end up with a simple RLC tank embedded within a positive feedback loop. Note that
the resulting circuit has zero phase margin at the resonant frequency of the tank, so
that will be the oscillation frequency in this particular case. Note also that the de-
pendent current generator produces an output (sinusoid) whose amplitude is GmV1 =
2IBIAS at all times, so it may be replaced with an independent sine generator of this
amplitude. Acting on these observations leads to the circuit of Figure 15.10, where
Ceq is the series combination of the two capacitors,

Ceq = C1C2

C1 + C2
, (14)
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15.3 DESCRIB ING FUNC TIONS 503

and
ω = 1/

√
LCeq. (15)

Similarly, Req is the parallel combination of the original tank resistance R and the
reflected large-signal input resistance of the transistor:6

Req ≈ R ‖ 1

n2Gm

, (16)

where n is the capacitive voltage divide factor,

n ≡ C1

C1 + C2
. (17)

The amplitude V1 is simply the amplitude, Vtank, of the tank voltage, multiplied by
the capacitive divide factor, so we may write

Vtank ≈ V1

n
. (18)

Now we have collected enough equations to get the job done. The amplitude of
the tank voltage at resonance is simply the product of the current source amplitude
and the net tank resistance:

Vtank ≈ V1

n
≈ 2IBIASReq ≈ (2IBIAS)

[
R ‖ 1

n2Gm

]
= (2IBIAS) · R

n2GmR + 1
, (19)

which ultimately simplifies to

Vtank ≈ 2IBIASR(1 − n). (20)

Thus, the amplitude of oscillation is directly proportional to the bias current and the
effective tank resistance. The loading of the tank by the transistor’s input resistance
is taken into account by the (1 − n) factor, and is therefore controllable by choice
of the capacitive divide ratio. Since R also controls Q, it is usually made as large
as possible, and adjustment of IBIAS is consequently the main method of defining the
amplitude.

As a specific numerical example, consider the ∼60-MHz oscillator circuit of Fig-
ure 15.11. For the particular element values shown, the capacitive divide factor n

is about 0.155.7 The expected oscillation amplitude (Vtank) is therefore about 1.4 V.
Measurements made on a bipolar version of this circuit reveal an amplitude of 1.3 V,
in good agreement with theoretical predictions. It is important to underscore again
that this result is largely independent of the type of active device used to build the

6 In this and related equations, the reason for the “approximately equals” symbol is that we are treat-
ing the capacitive divider as an ideal impedance transformer. The approximation is good as long
as the in-circuit Q is large.

7 In practice, it is generally true that best phase performance tends to occur for a C2/C1 ratio of about
4, corresponding to n = 0.2. This rule of thumb can be put on a more rigorous theoretical basis by
making use of the time-varying theory discussed in Chapter 17.
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504 CHAPTER 15 OSCILL ATORS

F IGURE 15.11. Colpitts oscillator example

oscillator. The prediction was originally made for a MOSFET design but experimen-
tally verified with a bipolar device.

15.3.4 DETAILED COLPITTS DESIGN EX A MPLE

We now consider a 1-GHz microstrip implementation of a Colpitts oscillator to sup-
plement the lower-frequency example just completed. Also, instead of a single-
frequency design, suppose that we elect to make this a voltage-controlled oscillator
(VCO).

Many oscillator topologies are almost indistinguishable theoretically, but conver-
gent evolution has led to only a few popular choices. One consideration is that not
all are equally amenable to convenient biasing or provide good tuning range. For ex-
ample, you could choose a topology that grounds the collector of a transistor or that
ties it to some positive VCC. Or you could select one that grounds the base. Each
of these choices leads to a different collection of bias headaches and sensitivities to
parasitic-induced problems.

The Colpitts implementation shown in Figure 15.12 has worked well for many.
Here, we have chosen to set the collector’s DC potential at ground; negative voltages
are used to bias the transistor. This choice of polarity is driven by several considera-
tions: Returning the tank to ground is nice because it avoids having to bypass a col-
lector supply (with either chokes or BFCs), and it also eliminates an output coupling
capacitor. All these simplifications make it easy to terminate one end of the inductor
in an excellent short (locating the inductor close to the edge of a PC board helps to
take full advantage of this topology without the inconvenience of vias). Furthermore,
the control voltage generated by many PLLs is ground-referenced, so annoying bias-
ing gymnastics are avoided by connecting the varactor to the ground-referenced load
structure.

In this configuration, a suitable length of microstrip line acts as an inductor. That
inductance resonates with a capacitance formed by the series combination of the var-
actor and the sum of C2 and the emitter capacitance. The tuning range is therefore a
function of the varactor capacitance versus that other total capacitance. Fortunately,
with the particular arrangement shown, it is possible to arrange for the varactor to
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15.3 DESCRIB ING FUNC TIONS 505

F IGURE 15.12. Slightly simplified schematic of VCO

dominate the total capacitance. This condition is readily produced by choosing a
large enough C2, which is what we want in order to maximize tuning range. Un-
like some other Colpitts arrangements, then, parasitic capacitances across C2 are
relatively benign. We can’t make C2 arbitrarily large, however, because it is also
part of the feedback voltage divider. If it is too large, the feedback may diminish to
the point where oscillation ceases. Arbitrarily choosing C2 equal to the maximum
capacitance of the varactor is a reasonable initial choice. The maximum varactor
capacitance, in turn, is determined by the minimum value of junction voltage ap-
plied across the varactor. Just to attach numbers to the quantities, suppose that the
VCO is driven by a PLL that produces a control voltage between 0.5 V and 4.5 V.
Then we would compute the varactor capacitance maximum at a junction reverse bias
of 0.5 V.

Another important practical consideration is to keep the base bypass path as short
as possible. Any inductance in series with the base can result in parasitic oscillations
at frequencies you never imagined could exist. Even before such parasitic modes be-
come unstable, they can perturb the oscillator in many undesirable ways.

Load Inductor Design

Assume a net capacitance of 8 pF at the center of the tuning range (calculated by using
the geometric mean of what you get when you look at the minimum and maximum
varactor capacitances of 8 pF and 18 pF, respectively, in series with 22 pF C2 + 4 pF
of emitter cap and strays8 ), you’d want an inductance of about 3 nH. This is a little
tricky – but not impossible – to implement by manual cut-and-try means. You must
exercise extreme care to minimize the stray inductance of the varactor connection.
If you succeed, the calculated tuning range will be about ±15% about the nominal
frequency.

8 This is a pessimistic estimate of total “other” capacitance; your mileage may vary, especially if you
use a transistor in place of the varactor.
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506 CHAPTER 15 OSCILL ATORS

To ease the inductor design problem and simultaneously increase tuning range, if
necessary, you can increase the maximum control voltage across the varactor to re-
duce its minimum capacitance. However, doing so often means that you will have to
design and build an amplifier to take the control voltage from the PLL chip and gain
it up appropriately.

Bias

From our describing function analysis, we know that the oscillation amplitude is a
function of bias current and losses (which include the action of the load resistance).
The last item is under a designer’s control to a certain extent through choice of out-
put tap location. The shortness of the load inductor limits the ease with which one
can select and vary the tap location, so selection of an appropriate bias current will
be an important design variable. Depending on the tapping point, a 0–7-dBm out-
put will probably result with bias currents in the range of low to medium numbers
of milliamps. Be sure that, in laying out the bias network, you avoid stray capaci-
tance where it would affect the frequency of the tank or degrade the tuning range. As
with any other tapped tank, this load structure doesn’t guarantee control over both
the real and imaginary parts of the output impedance, so additional matching may be
required.

Another consideration is that the anode of the varactor may see a zero DC volt-
age, yet there will also be an AC component, too. The control voltage needs to be
sufficiently larger than the peak anode voltage to avoid forward-biasing the varactor.
Oscillation might even cease if this problem occurs, causing the loop to get confused.
Hence there is a constraint on the tank amplitude.

The simplified schematic shows no values for the biasing components. As a start-
ing point, try dropping a volt or two across the emitter resistor and then selecting the
base bias dividers to carry a current of approximately the collector current divided
by 10. These rough rules of thumb provide for acceptable bias stability in most cases,
but that statement needs to be verified in all situations where it matters. Bias stability
in the face of beta variation is improved by increasing the current through the base
bias divider, while stability with respect to VBE variation is improved by dropping
more voltage across the emitter resistor.

Additional Practical Notes

The tank inductor can be the source of difficulties because of its short length. You
might have reasoned that, the narrower the line, the better the tuning range, because a
shorter line could then be used for a given impedance, leading the line to act more like
a pure inductor than a quasiresonator. After all, resonator loss is only a second-order
function of width because most of the loss in FR4 is due to the dielectric, so using
narrow lines may not be so unattractive here.

However, shortness is a problem for largely mechanical reasons. To allow a some-
what longer line to be used, consider a wider line than you might normally try. Just
make sure that all dimensions remain well below a quarter-wavelength, or else strong
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distributed effects will throw off your calculations (or force you to perform more elab-
orate calculations). It is preferable in real designs to choose a length that will not
produce high impedances at some multiple(s) of the oscillation frequency, because
those distortion products will not be filtered out by the tank (remember, the “inductor”
you’ve made is in reality a transmission line that is terminated in a short). In this lab
experiment, however, there is no distortion specification, so you don’t have to obsess
about this issue now. It’s just mentioned here so that, when you go out into “the real
world,” you can’t complain that some ivory-tower academic never told you about it.

Another mildly tricky issue is that the tuning range is narrow enough, and the var-
actor tolerances loose enough, that the center frequency of the VCO may not be quite
the value you want. If you’re close to the right frequency, you may not have to rip
out the inductor and start over. To raise the frequency a little bit, add some copper
near the ground end of the line to decrease inductance. To decrease frequency a tiny
bit, narrow up the line by slicing a little piece out of it. To decrease frequency fur-
ther, solder a short length of wider foil onto the line to increase capacitance (again,
the closer to the collector, the larger the effect).

If the output power level is too low, the main cure is more bias current. If power
varies wildly over the tuning range, the cure is to tap the output from a point closer to
the collector end of the line. The loss of the line, and hence its effective resistance,
varies with frequency. If this frequency-dependent loss dominates, then the ampli-
tude will vary significantly with frequency. Tapping the output closer to the collector
loads down the tank more severely, but at least the load is more constant. An increase
in bias current can compensate for the drop in average output power. The trade-off is
one of loop gain versus output power flatness versus filtering quality (heavier loading
implies degraded Q).

Start-up, Second-Order Effects, and Pathologies

In the foregoing analysis, nothing specific was mentioned about conditions for guar-
anteeing the start-up of oscillations. From the general root locus of Figure 15.1,
however, it should be clear that a necessary condition is a greater-than-unity value
of small-signal loop transmission. To evaluate whether start-up might be a problem,
one should set the transconductance equal to its small-signal value (an appropri-
ate choice, since the circuit is certainly in the small-signal regime before oscillations
have started) and then compute the loop transmission magnitude. If it does not exceed
unity, the oscillator will not start up. To fix this problem, adjust some combination
of bias current, device size, and tapping ratio.

In the case of the example just considered, let us identify the minimum accept-
able transconductance for guaranteeing start-up. That minimum gm, together with
the given value of bias current, defines the width of the device. We use the model of
Figure 15.13. The amplitude of the voltage across the tank at resonance is just

Vtank = V1

n
= gmV1Req = gmV1

[
R ‖ 1

n2gm

]
, (21)
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508 CHAPTER 15 OSCILL ATORS

F IGURE 15.13. Start-up model of Colpitts oscillator

which reduces to the following expression for the minimum transconductance:

gm > 1/R[n − n2]. (22)

With n = 0.155 and R = 850 ", the absolute minimum acceptable transconduc-
tance works out to approximately 9 mS. However, note that merely having enough
transconductance to achieve net unity loop gain with no oscillation is not sufficient to
make a good oscillator. Additionally, the describing function is accurate only in the
limit of large amplitudes and thus only if the small-signal transconductance is sub-
stantially larger than the large-signal value. A reasonable choice for a first-cut design
is to select gm to be five times the minimum acceptable value. Hence, we will design
for a 45-mS small-signal transconductance.

To estimate the necessary device width, initially assume that the gate overdrive
is small enough that the device conforms to square-law behavior. Then we may use
Eqn. 8 to estimate the overdrive:

gm

IBIAS
= 2

VGS − Vt

�⇒ VGS − Vt ≈ 44 mV. (23)

This overdrive is indeed small compared with typical values of ESATL (e.g., 1–2 V),
so we will continue to assume operation in the long-channel regime. Solving for W/L

in this regime yields a value of about 6000 for typical values of mobility and Cox.

For a 0.5-µm channel length, then, the width should be roughly 3000 µm, which is
quite large. This large width is a consequence of the low bias current. A higher bias
current would permit the use of a substantially smaller device.

Aside from the neglect of start-up conditions in this development, several other
simplifying assumptions were invoked to reduce clutter in the derivations. Transistor
parasitics were ignored, for example. We now consider how to modify the analysis
to take these into account.

The gate–drain (base–emitter) and drain–bulk (collector–ground) capacitances
appear in parallel with the tank, and a first-order correction for their effect simply
involves a reduction in the explicit capacitance added externally to keep the oscil-
lation frequency constant. However, these capacitances are nonlinear, so distortion
may be unsatisfactorily high if they constitute a significant fraction of the total tank
capacitance. Temperature drift properties may also be affected.
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15.3 DESCRIB ING FUNC TIONS 509

The source–gate (emitter–base) and source–bulk (emitter–ground) capacitances
appear directly in parallel with C2, and the same comments apply as for the other
device capacitances.

One must also worry about the output resistance of the transistor, for it loads the
tank as well. Many high-speed transistors have low Early voltages (e.g., 10–20 volts
or less), so this loading can be significant at times. In serious cases, cascoding (or
some equivalent remedy) may be necessary to mitigate this problem. In other in-
stances, this loading merely needs to be taken into account to predict the amplitude
more accurately.

As a final comment on the issue of amplitude, it must be emphasized that there is
always the possibility of amplitude instability, since feedback control of the ampli-
tude is fundamentally involved. That is, instead of staying constant, the amplitude
may vary in some manner (e.g., quasisinusoidally). This type of behavior is known
as squegging and is the bane of oscillator designers. To see how squegging might
arise and to develop insights concerning its prevention or cure, we employ the same
analytical tools used to evaluate the stability of other feedback systems. That is, we
invoke the concepts of loop transmission, crossover frequency, and phase margin.
The main subtlety is that we must evaluate these quantities in terms of the envelope
of the RF signal. Another is that the nonlinearity of amplitude control renders our
linearized analyses relevant only near the operating point assumed in the lineariza-
tion. Proceeding with awareness of those considerations, we would cut the loop at
some convenient point (while taking care to preserve all loadings, just as we must in
evaluating any loop transmission), and then apply an RF signal to the input of the cut
loop. The amplitude of this test signal should be chosen the same as the nominal am-
plitude that prevails in actual closed-loop operation, to make sure that we evaluate
stability under conditions that correspond to normal operation. Given the nonlinear
nature of amplitude control, it’s also prudent to examine the loop transmission at sev-
eral amplitudes in order to identify (or preclude) ranges of amplitudes that may result
in squegging behavior.

Next, we have a choice of evaluating either the time- or frequency-domain re-
sponse (or both). In the former, we would examine the loop transmission’s response
to a step change in amplitude. To evaluate the envelope loop transmission in the fre-
quency domain, we apply a sinusoidally modulated RF carrier to the input of the cut
loop and then sweep the frequency of the modulation, noting the gain and phase of
the output modulation relative to the input modulation.

For tuned oscillators with drain-fed tanks, a natural choice is actually to cut the
loop at the drain. Inject an RF current into the tank at that point, and then let the RF
current’s amplitude undergo a step change. The tank by itself provides the equiva-
lent of single-pole filtering of the step, and the capacitive coupling into the source
terminal of the transistor contributes additional dynamics.

To illustrate the procedure in detail, consider a Colpitts oscillator. To simplify
analysis, we first make an equivalent circuit, shown on the right of Figure 15.14. That

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511812941.016
Downloaded from https://www.cambridge.org/core. The Librarian-Seeley Historical Library, on 18 Dec 2019 at 06:19:20, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511812941.016
https://www.cambridge.org/core


510 CHAPTER 15 OSCILL ATORS

F IGURE 15.14. Colpitts oscillator and equivalent model
for evaluation of envelope loop transmission

F IGURE 15.15. Capacitively coupled circuit with nonlinear load

the two circuits are in fact equivalent is readily verified by comparing loop transmis-
sions. The drain connection is a particularly convenient point to cut the loops for
making this comparison. We see that the two circuits are in fact identical as long as
the elements explicitly shown in the schematics include all device parasitics.

Having derived an equivalent circuit for computing the envelope loop transmis-
sion, we now decompose the loop transmission into individual pieces. First, we
analyze the capacitively coupled circuit shown in Figure 15.15.9 Here, the load cur-
rent consists of DC and RF components:10

iL(t) = IDC + idc(t) + [IO + io(t)] cosωt. (24)

The quiescent values of DC current and RF current amplitude are IDC and IO ,
respectively, corresponding to an RF drive amplitude of V1. Perturbing that drive
amplitude by an amount vin(t) produces three effects in general. One is a change in
the DC value of the voltage across the capacitor by an amount vc(t), because of rec-
tification by the nonlinear load. If the amplitude of the RF input voltage changes,
then that DC capacitor voltage generally changes as well.

9 This analysis is that presented by Kenneth K. Clarke and Donald T. Hess in Communications Cir-
cuits: Analysis and Design, Krieger, Malabar, FL, 1994.

10 We use the term “DC” nonrigorously, to distinguish envelope from RF components.
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15.3 DESCRIB ING FUNC TIONS 511

That rectification also changes the DC current through the nonlinear load by an
amount idc(t). Finally, there is a change in the amplitude io(t) of the RF current
flowing into the nonlinear load. That amplitude change results from direct action by
vin(t), compounded by the change in the DC current through the load.

We wish to determine the small-signal admittance io(s)/vin(s), but doing so by
inspection is nontrivial. Note that our very statement of the problem essentially pre-
sumes that small-signal analysis holds. If we validate this assumption by considering
only cases where |vin(t)| � V1, then we may express each of the currents idc(t) and
io(t) as a simple linear combination of the voltages vc(t) and vin(t). After Laplace
transformation, we therefore have

idc(s) = G00vc(s) + G01vin(s), (25)

io(s) = G10vc(s) + G11vin(s), (26)

where the various constants Gmn are conductances to be determined later.
Because it remains true that

idc(s) = −sCvc(s), (27)

we may equate the two expressions for idc(s) to obtain

−sCvc(s) = G00vc(s) + G01vin(s) �⇒ vc(s) = −G01

sC + G00
vin(s). (28)

This equation says that the small-signal DC capacitor voltage is simply a low-pass–
filtered version of the small-signal RF input amplitude.

Substitution of Eqn. 28 into Eqn. 26 then yields the desired small-signal relation-
ship between input envelope voltage and output envelope current:

io(s) = G10
−G01

sC + G00
vin(s) + G11vin(s) �⇒ io(s)

vin(s)
= G11 − G01G10

sC + G00
; (29)

after some rearrangement, this becomes

io(s)

vin(s)
= G11(sC + G00) − G01G10

sC + G00
= G11

(
sC

G00
+ 1

)
− G01G10

G00G11

sC

G00
+ 1

. (30)

The derivation so far is completely general; Eqn. 30 is not limited to MOSFETs
or bipolars, for example. Without knowing anything about the various conductances,
we can say that the admittance in question consists of a pole and a zero. This re-
sult makes physical sense, for we have one energy storage element (and therefore
one pole). Furthermore, the capacitor provides a feedthrough path that emphasizes
high-frequency content (of both the carrier and the envelope); that’s the action of a
zero. It’s satisfying that the analysis presented so far passes this macroscopic rea-
sonableness test.
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512 CHAPTER 15 OSCILL ATORS

Turning now to the task of figuring out what those conductances are, note that the
formal definitions for the various proportionality constants are readily obtained from
the time-domain versions of Eqn. 25 and Eqn. 26:

G00 ≡ didc

dvc

∣∣∣∣
vin=0

, (31)

G01 ≡ didc

dvin

∣∣∣∣
vc=0

, (32)

G10 ≡ dio

dvc

∣∣∣∣
vin=0

, (33)

G11 ≡ dio

dvin

∣∣∣∣
vc=0

. (34)

Note that at least two of these conductances should be familiar. From its definition
we see that G00 is simply the nonlinear load’s small-signal ratio of DC current to
DC voltage; it is thus the ordinary small-signal conductance, evaluated at the bias
point. Similarly, G11 is the change in the RF output current amplitude, divided by
the change in the RF input voltage amplitude, evaluated at constant capacitor drop.
Thus, G11 is the describing function conductance of the nonlinear load.

Two conductances we haven’t encountered before involve the ratio of a DC term
and an RF term. One, G01, is the ratio of the change in rectified DC current, divided
by the change in the amplitude of the RF input voltage that produces that rectified
current, evaluated at constant capacitor drop. The other, G10, is the change in the am-
plitude of the RF output current, divided by the change in DC capacitor voltage, for
a constant-amplitude RF input voltage.

The last piece we need is a quantitative description of the envelope behavior of
the drain tank. Specifically, consider a step change in the envelope of a sinusoidal
drive current. The envelope response of the tank voltage will behave as a single-pole
low-pass filter’s response to a step voltage. Because the single-sided bandwidth of an
RC low-pass filter is simply 1/RC, we anticipate the corresponding time constant for
an RLC bandpass filter to be 1/2RC.11 At resonance, the drain load thus contributes
an envelope impedance given by

vtank(s)

io(s)
= RT

2sRT C + 1
. (35)

11 We emphasize single-sided to show more clearly the analogy between a low-pass and bandpass
filter. It is customary to measure a low-pass filter’s bandwidth from DC to the positive-frequency
−3-dB corner, rather than between the positive- and negative-frequency −3-dB corners. The pole
time constant associated with that single-sided corner controls the risetime and is, of course, sim-
ply RC. For a bandpass filter, the single-sided bandwidth is 1/2RC, meaning that the pole time
constant that governs the envelope risetime is 2RC.
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F IGURE 15.16. Possible root locus for envelope feedback loop

F IGURE 15.17. Another possible root locus for envelope feedback loop

The complete loop transmission is therefore

A
io(s)

vin(s)

vtank(s)

io(s)
= A


G11

(
sC

G00
+ 1

)
− G01G10

G00G11

sC

G00
+ 1


 RT

2sRT C + 1
. (36)

Notice that we have two poles and a zero. Note also, somewhat ominously, that the
envelope loop transmission is positive in sign. Positive feedback per se does not en-
sure instability, but we must avoid loop transmission magnitudes that are too large.

One possible root locus corresponding to this loop transmission reveals why squeg-
ging can occur; see Figure 15.16. Since we don’t know exactly where the zero might
be, another possibility is that shown in Figure 15.17. In this case, the poles never be-
come complex, but one of the poles can end up with a positive real part. If any pole
enters the right half-plane, the envelope will be unstable. If there is a complex pole

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511812941.016
Downloaded from https://www.cambridge.org/core. The Librarian-Seeley Historical Library, on 18 Dec 2019 at 06:19:20, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511812941.016
https://www.cambridge.org/core
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pair in that half-plane, the instability will be observed as a (quasi)sinusoidal modu-
lation. If the poles are real, then the modulation will be relaxation-like in character.

Regrettably, we cannot make quantitative statements without considering a spe-
cific nonlinear load. Still more regrettably, a rigorous derivation is nigh impossible for
real MOSFETs (it’s hard enough for a bipolar transistor). Therefore, most practical
evaluations of squegging require simulations at some point in the analysis. Discover-
ing G01 and G10 through simulation is straightforward, though.12 Thus, even though
simple analytical expressions for these parameters may not be readily forthcoming,
simulations will yield actual values for them without much trouble.

Even without carrying out such simulations, we can identify general strategies to
stop squegging if it occurs. By analogy with the success of dominant pole compensa-
tion in ordinary amplifiers, we would consider increasing the tank Q. The attendant
narrowing in bandwidth means that the pole it contributes to the amplitude control
loop moves to a lower frequency (becomes more dominant). That forces crossover
to occur at a lower frequency, where presumably there is greater phase margin.

If the resonator bandwidth cannot be practically narrowed, we may still reduce the
amplitude loop’s crossover frequency using other methods. For example, we could
reduce the loop transmission by varying the capacitive tapping ratio to feed back less
signal. And of course we always retain the option of combining strategies.

One possible difficulty is that many of these parameters are interdependent. De-
pending on how one achieves an increase in tank Q, for example, the envelope imped-
ance of the tank could increase which, in turn, would increase the loop transmission
magnitude, frustrating efforts at stabilization. Thus, some deliberation is necessary
to identify the best strategies for any given circuit.

In very stubborn cases, it may be necessary to impose external amplitude control
(e.g., by explicitly measuring the amplitude, comparing it with a reference voltage,
and then appropriately adjusting the bias current; see Figure 15.18). This decoupling
of amplitude control from fundamental oscillator operation not only permits the ex-
ercise of additional degrees of freedom to solve the stability problem, it also allows
one to design the oscillator without having to make compromises for factors such as
start-up reliability (or speed) and amplitude stability.

Two additional terms that describe unwanted oscillator behaviors are frequency
pulling and supply pushing. Both of these terms refer to shifts in oscillator frequency
that occur due to parasitic effects. Pulling may occur from numerous sources, rang-
ing from load changes to parasitic coupling from other periodic signals. Buffering
and other isolation strategies help reduce pulling.

Supply pushing reflects the unfortunate fact that oscillator frequency is not entirely
independent of supply voltage. For example, device capacitances may change as a

12 The reader may reasonably ask why we should not simply simulate the entire oscillator. The an-
swer is that squegging frequencies are usually quite a bit lower than the main oscillation frequency,
so simulation times can quickly get out of hand. Using the results of a more rigorous analysis
allows you to identify which simulations ought to be run.
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15.4 RESONATORS 515

F IGURE 15.18. Oscillator with separate amplitude control

function of bias voltage, causing shifts in the oscillation frequency. Supply pushing
is suppressed by selecting tank element values that swamp out such parasitic ele-
ments and by employing regulated supplies. It is important to filter the latter very
well – and also to watch out for 1/f fluctuations in the supply voltage, since these
can cause (close-in) phase modulations of the oscillator.

15.4 RESONATORS

The previous describing function example analyzed a tuned oscillator. Since tuned
circuits inherently perform a bandpass filtering function, distortion products and noise
are attenuated relative to the fundamental component. Not surprising, then, is that
the performance of these circuits is intimately linked to the quality of available res-
onators. Before proceeding onward to a detailed discussion of oscillator circuitry,
then, we first survey a number of resonator technologies.

RESONATOR TECHNOLOGIES

Quarter-Wave Resonators

Aside from the familiar and venerable RLC tank circuit, there are many ways to make
resonators. At high frequencies, it becomes increasingly difficult to obtain adequate
Q from lumped resonators because required component values are often impractical
to realize.

One alternative is to use a resonator made out of a λ/4 piece of transmission line
terminated in a short. For small displacements about the resonant condition, the line
appears very much like a parallel RLC network. The required physical dimensions
generally favor practical realization in discrete form in the UHF band and above.
As an example, the free-space wavelength at 300 MHz is one meter, so that a λ/4
resonator would be about 10 inches (25 cm). On FR4, it becomes roughly 6 inches
(15 cm) long or thereabouts.
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F IGURE 15.19. Illustration of bulk shear mode

Dimensions become compatible with IC realizations at mid-gigahertz frequencies.
At 3 GHz, for example, the free-space λ/4 is about 1 inch (2.5 cm). With dielectric
materials that are commonly available, λ/4 IC resonators smaller than half an inch
(∼1 cm) or so are possible.

There is an important difference, however, between a shortedλ/4 line and a lumped
RLC resonator: the line appears as an infinite (or at least large) impedance at all odd
multiples of the fundamental resonance. Sometimes this periodic behavior is de-
sired, but it can also result in oscillation simultaneously on multiple frequencies or
in a chaotic hopping from one mode to another. Additional tuned elements may be
required to suppress oscillation on unwanted modes.

Quartz Crystals

The most common non-RLC resonator is made of quartz. The remarkable properties
and potential of quartz for use in the radio art were first seriously appreciated around
1920 by Walter G. Cady of Bell Laboratories.13 Quartz is a piezoelectric material
and thus exhibits a reciprocal transduction between mechanical strain and electric
charge. When a voltage is applied across a slab of quartz, the crystal physically de-
forms. When a mechanical strain is applied, charges appear across the crystal.14

Most practical quartz crystals used at radio frequencies15 employ a bulk shear vi-
brational mode; see Figure 15.19. In this mode, the resonant frequency is inversely
proportional to the thickness of the slab, according to the rough formula in the figure
(SI units assumed).16

Even though quartz does not exhibit a particularly large piezoelectric effect, it has
other properties that make it extremely valuable for use in RF circuitry. Chief among

13 W. G. Cady, “The Piezo-Electric Resonator,” Proc. IRE, v. 10, April 1922, pp. 83–114. His first
oscillator was somewhat complex, based as it was on a two-port piezoelectric filter.

14 Piezoelectricity’s mechanical-to-electrical transduction was discovered by Jacques and Pierre
Curie (before the latter met and married Marie Sklodowska). See “Développement, par pres-
sion, de l’électricité polaire dans les cristaux hémièdres à faces inclinées” [Development, by
Pressure, of Electrical Polarization in Hemihedral Crystals with Inclined Faces], Comptes Rendus
des Séances de l’Académie des Sciences, v. 91, 1880, pp. 294–5. Their friend, physicist Gabriel
Lippman, then predicted the existence of the inverse effect on thermodynamic grounds, with ver-
ification by the Curies shortly afterward.

15 The crystals used in digital watches employ a torsional mode of vibration to allow resonance at a
low frequency (32.768 kHz) in a small size.

16 The formula given neglects the influence of the other dimensions.
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15.4 RESONATORS 517

F IGURE 15.20. Symbol and model for crystal

them is the exceptional stability (both electrical and mechanical) of the material. Fur-
thermore, it is possible to obtain crystals with very low temperature coefficients by
cutting the quartz at certain angles.17 Additionally, the transduction is virtually loss-
less, and Q-values are in the range of 104 to 106.18

An electrical model for a quartz resonator is shown in Figure 15.20. The capac-
itance C0 represents the parallel-plate capacitance associated with the contacts and
the lead wires, while Cm and Lm represent the mechanical energy storage. Resis-
tance RS accounts for the nonzero lossiness that all real systems must exhibit.

To a very crude approximation, the resistance of well-made crystals is inversely
proportional to the resonant frequency and generally follows a relationship like this:

RS ≈ 5 × 108

f0
. (37)

This formula is a quasi-empirical one and should be used only if measurements aren’t
available.19

The values of Cm and Lm can be computed if RS , Q, and the resonant frequency
are given. In general, because of the extraordinarily high Q-values that quartz crys-
tals possess, the effective inductance value will be surprisingly high while the series
capacitance value is vanishingly small. For example, a 1-MHz crystal with a Q of 105

has an effective inductance of about 8 henries (no typo here, that’s really 8 henries)
and a Cm of about 3.2 fF (again, no typo). It is apparent that crystals offer significant
advantages over lumped LC realizations, where such element values are unattainable
for all practical purposes.

Above about 20–30 MHz, the required slab thickness becomes impractically small.
For example, a100-MHz fundamental-mode crystal would be only about17µm thick.
However, crystals of reasonable thickness can still be used if higher vibrational modes

17 It is also possible to obtain controlled, nonzero temperature coefficients. This property has been
exploited to make temperature-to-frequency transducers that function at temperatures too extreme
for ordinary electronic circuits.

18 At lower frequencies, damping by air lowers Q significantly. The higher Q-values correspond to
crystals mounted inside a vacuum.

19 This formula strictly applies only to “AT-cut” crystals operating in the fundamental mode.
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518 CHAPTER 15 OSCILL ATORS

are used. The boundary conditions are such that only odd overtones are allowed. Be-
cause of a variety of effects, the overtones are not exactly integer multiples of the
fundamental (but they’re close, off by 0.1% or so in the high direction). Third- and
fifth-overtone crystals are fairly common, and seventh- or even ninth-overtone os-
cillators are occasionally encountered. However, as the overtone order increases, so
does the difficulty of guaranteeing oscillation on only the desired mode.

As another extremely crude rule of thumb, the effective series resistance grows as
the square of the overtone mode. Hence,

RS ≈ 5 × 108

f0
N 2, (38)

where f0 is here interpreted as the frequency of the N th overtone.
Because the overtones are not at exact integer multiples of the fundamental mode,

the crystal must be cut to the correct frequency at the desired overtone. Well-cut
overtone crystals possess Q-values similar to those of fundamental-mode crystals.

Quartz crystal fabrication technology is an extremely advanced art. Crystals with
resonant frequencies guaranteed within 50 ppm are routinely available, and substan-
tially better performance can be obtained, although at higher cost. The general chem-
ical inertness of quartz guarantees excellent stability over time, and a judicious choice
of cut in conjunction with passive or active temperature compensation and/or con-
trol can lead to temperature coefficients of well under 1 ppm/◦C. For these reasons,
quartz oscillators are nearly ubiquitous in communications equipment and instru-
mentation (not to mention the lowly wristwatch, where a one-minute drift in a month
corresponds to an error of only about 20 ppm).

Surface Acoustic Wave (SAW) Devices

Because quartz crystals operate in bulk vibrational modes, high-frequency operation
requires exceedingly thin slabs. A 1-GHz fundamental-mode quartz crystal would
have a thickness of only about 1.7 µm, for example. Aside from obvious fabrication
difficulties, thin slabs break easily if the electrical excitation is too great. Because of
their high Q, it is easy to develop large-amplitude vibrations with very modest elec-
trical drive. Even before outright fracture occurs, the extreme bending results in a
host of generally undesired nonlinear behavior.

One way to evade these limitations is to employ surface, rather than bulk, acous-
tic waves. If the material supports such surface modes, then the effective thickness
can be much smaller than the physical thickness, allowing high resonant frequencies
to be obtained with crystals of practical dimensions.

Lithium niobate (LiNbO3) is a piezoelectric material that supports surface acoustic
waves with little loss, and it has been used extensively to make resonators and filters at
frequencies practically untouchable by quartz. Control of frequency to quartz crystal
accuracy is not yet obtainable at low cost, unfortunately, but performance is ade-
quate to satisfy high-volume, low-cost applications such as automatic garage-door

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511812941.016
Downloaded from https://www.cambridge.org/core. The Librarian-Seeley Historical Library, on 18 Dec 2019 at 06:19:20, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511812941.016
https://www.cambridge.org/core
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F IGURE 15.21. Hartley oscillator
(biasing not shown)

openers, which work around 250–300 MHz, typically, as well as front-end filters for
cellular telephones.

Sadly, neither quartz nor lithium niobate is compatible with ordinary IC fabrica-
tion processes. Also disappointing is the lack of any piezoelectric activity in silicon.
Hence, no inherently high-Q resonator can be made with layers normally found
in ICs.

15.5 A CATALOG OF TUNED OSCILL ATORS

There seems to be no limit to the number of ways to combine a resonator with a tran-
sistor or two to make an oscillator, as will become evident shortly. In the examples
that follow, only the most minimal explanations are usually provided, perhaps leav-
ing the reader in doubt as to which topology is “best.” It is generally true that, with
sufficient diligence and care, just about any of these topologies can be made to per-
form well enough for a given application. When we consider the issue of phase noise,
more rational selection criteria will become evident.

15.5.1 BASIC LC FEEDBACK OSCILL ATORS

The basic ingredients in these oscillators are simple: one transistor plus a resonator.
Many of the oscillators are named after the fellows who first came up with the topolo-
gies but, as we’ll see, a more or less unified description of these designs is possible.

We’ve already met one version of the Colpitts oscillator. In alternative versions,
the feedback is from emitter back to the base, rather than from collector to emit-
ter. That is, the transistor may be connected either as an emitter follower or as a
common-emitter amplifier. Either way, there is net positive feedback.

The Hartley oscillator is essentially identical to the Colpitts, but it uses a tapped
inductor for feedback instead of a tapped capacitor; see Figure 15.21. The Hartley
oscillator has its origins in the very early days of radio, when tapped inductors were
readily available. It is much less common today.

One could also use a tapped resistor, in principle, but that particular configuration
doesn’t seem to have a name attached to it.
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520 CHAPTER 15 OSCILL ATORS

F IGURE 15.22. Clapp oscillator
(biasing still not shown)

F IGURE 15.23. Redrawn Clapp oscillator

The Clapp oscillator (Figure 15.22) is a modified Colpitts oscillator, with a se-
ries LC replacing the lone inductor.20 The Clapp oscillator is actually just a Colpitts
oscillator with an additional tap on the capacitive divider chain, as is evident in the
redrawn schematic of Figure 15.23. The extra tap allows the voltage swing across the
inductor (and capacitive divider) to exceed considerably that of either the collector
or emitter – and therefore to exceed the supply and even device breakdown voltages.
The larger signal energy helps overcome the effect of various noise processes to im-
prove spectral purity (specifically, phase noise, as discussed in Chapter 17).

Of these topologies, the Colpitts is almost certainly the most commonly encoun-
tered. Its use of tapped capacitors is most compatible with IC and microstrip im-
plementations, although the inductor is generally not. One other important reason
for the popularity of the Colpitts configuration is that it is capable of excellent phase
noise performance, as we’ll see.

Another oscillator idiom actually owes its existence to the instability of some tuned
amplifiers. Recall that it is possible for a common-source amplifier to have a nega-
tive input admittance if it operates with a tuned load below the resonant frequency of
the load (so that it looks inductive).21 This negative resistance can be used to over-
come the loss in another resonant circuit to produce oscillations. The TITO oscillator

20 See James K. Clapp, “An Inductive-Capacitive Oscillator of Unusual Frequency Stability,” Proc.
IRE, v. 36, 1948, pp. 356–8, 1261. Clapp invented his modification of the Colpitts oscillator while
working for the General Radio Corporation.

21 Satisfying this condition is not sufficient, however.
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15.5 A CATALOG OF TUNED OSCILL ATORS 521

F IGURE 15.24. Tuned input–tuned output (TITO)
oscillator (bias details incomplete)

F IGURE 15.25. Colpitts crystal oscillator

(Figure 15.24) uses a Miller-effect coupling capacitor. In many designs (particularly
at very high frequencies), an explicit coupling capacitor is unnecessary; the device’s
inherent feedback capacitance is sufficient to provide the desired negative resistance.
This observation underscores the difficulty of using tuned circuits in both the input
and output circuits of nonunilateral amplifiers at high frequencies.

Because of its pair of tuned circuits, the TITO oscillator is theoretically capable
of producing signals with good spectral purity. However, its need of two inductors
makes this topology unattractive for IC implementation. An additional strike against
it is the need for careful tuning of two resonators if proper operation is to be obtained.

15.5.2 CRYSTAL OSCILL ATOR POTPOURRI

Many crystal oscillators are recognizably derived from LC counterparts. In Fig-
ure 15.25, for example, the crystal is used in its series resonant mode (where it ap-
pears as a low resistance) to close the feedback loop only at the desired frequency.

The inductance across the crystal is frequently (but not always) needed in practi-
cal designs to prevent unwanted off-frequency oscillations due to feedback provided
by the crystal’s parallel capacitance (C0). The inductance resonates out this capaci-
tor so that only the series RLC arm of the crystal controls the feedback.
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F IGURE 15.26. Modified Colpitts
crystal oscillator

F IGURE 15.27. Pierce crystal oscillator

A variation on this theme is shown in Figure 15.26. In this particular configura-
tion, the capacitive divider off of the tank provides the feedback as in a classic LC

Colpitts. However, the crystal grounds the base only at the series resonant frequency
of the crystal, permitting the loop to have sufficient gain to sustain oscillations at
that frequency only. This topology is useful if one terminal of the crystal must be
grounded.

Yet another topology is the Pierce oscillator,22 depicted in Figure 15.27. In this os-
cillator, assume that the capacitors model transistor and stray parasitics, so that the
transistor itself is ideal. Given this assumption, the only way to satisfy the zero–
phase margin criterion is for the oscillation frequency to occur a bit above the series
resonance of the crystal. That is, the crystal must look inductive at the oscillation fre-
quency. This property confers the advantage that no external inductance is therefore

22 Radio pioneer, entrepreneur, and Harvard professor George Washington Pierce made many con-
tributions to the wireless art, of which the crystal oscillator bearing his name is but one example.
See G. W. Pierce, “Piezoelectric Crystal Resonators and Crystal Oscillators Applied to the Pre-
cision Calibration of Wavemeters,” Proc. Amer. Acad. of Arts and Sci., v. 59, October 1923, pp.
81–106. Also see his U.S. Patent #2,133,642, filed 25 February 1924, granted 18 October 1938. He
made these developments soon after Cady demonstrated an early piezoelectric oscillator to him.
In addition to his work in oscillators, Pierce gave us the name “crystal rectifier” for point-contact
diodes and painstakingly disproved a thermally based explanation of their operation. His 1909
textbook, Principles of Wireless Telegraphy, was the first runaway best-seller of the technology’s
early days.
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15.5 A CATALOG OF TUNED OSCILL ATORS 523

F IGURE 15.28. Quadrature oscillator block diagram

required for this oscillator to function (the RF choke may be replaced by a large-
valued resistor or current source). Hence, it is more amenable to integration than a
Colpitts, for example, particularly at low frequencies.

That the crystal must look inductive can be argued as follows. If we are to have a
phase margin of zero and if the transistor’s transconductance already provides a 180◦

phase shift, then the passive elements must supply the other 180◦. There’s no way
for a two-pole RC network to provide 180◦ (close, but close doesn’t count here), so
the crystal must look inductive.

Because the output frequency of a Pierce oscillator thus does not coincide with the
series resonance of the crystal, one must use a crystal that has been cut to oscillate
at the desired frequency with a specified load capacitance (in this case, the value of
the two capacitors in series).

As a final note on the Pierce oscillator, it happens to form the basis of many “digi-
tal” oscillators. An ordinary CMOS inverter, for example, can act as the gain element
if biased to its linear region (e.g., with a large-valued feedback resistor Rbias , just as
with the single-transistor implementation). Just add the appropriate amount of input
and output capacitance, toss in the crystal from input to output, and chances are very
good that you’ll have an oscillator. Generally one or two stages of buffering (with
more inverters of course) are necessary to obtain full CMOS swings and also to iso-
late load changes from the oscillator core.

15.5.3 OTHER OSCILL ATOR CONFIGUR ATIONS

In some applications, it is desirable to have two outputs in quadrature. One oscilla-
tor architecture that naturally provides quadrature outputs (at least in principle) uses
a pair of integrators in a feedback loop; this is shown in Figure 15.28. From the mag-
nitude condition, we can deduce that the frequency of oscillation is

ωosc = K. (39)

Thus tuning may be effected by varying the integrator gain. Furthermore, the desired
quadrature relationship is obtained across any of the integrators.

In practice, unmodeled dynamics cause a departure from ideal behavior. Consider,
for example, the effect of additional poles on the root locus. Rather than consisting of
a purely imaginary pair, the locus with additional poles breaks away from the imag-
inary axis. Furthermore, these unmodeled parasitics tend to be rather unreliable, so
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F IGURE 15.29. Generalized impedance converter

that allowing the oscillation frequency to depend on them is undesirable. Despite
these obstacles, however, 1-GHz quadrature oscillators with reasonable quadrature
phase (error under 0.5 degrees) have been reported.23

15.6 NEGATIVE RESISTANCE OSCILL ATORS

A perfectly lossless resonant circuit is very nearly an oscillator, but lossless elements
are difficult to realize. Overcoming the energy loss implied by the finite Q of practi-
cal resonators with the energy-supplying action of active elements is one potentially
attractive way to build practical oscillators, as in the TITO example.

The foregoing description is quite general, covering both feedback and open-loop
topologies. Among the former is a classic textbook circuit, the negative impedance
converter (NIC). The NIC can be realized with a simple op-amp circuit that employs
both positive and negative feedback. Specifically, consider the configuration shown
in Figure 15.29.

If ideal op-amp behavior is assumed, it is easy to show that the input impedance
is related to the feedback impedance as follows:

Zin = Zf/(1 − A). (40)

If the closed-loop gain A is set equal to precisely 2, then the input impedance will
be the algebraic inverse of the feedback impedance. If the feedback impedance is in
turn chosen to be a pure positive resistance, then the input impedance will be a purely
negative resistance. This negative resistance may be used to offset the positive resis-
tance of all practical resonators to produce an oscillator.

As usual, the inherent nonlinearities of all real active devices will limit ampli-
tudes, and describing functions can be used to estimate the oscillation amplitude, if
desired. Describing functions may also be used to verify that the oscillator will, in
fact, oscillate.

23 R. Duncan et al., “A 1 GHz Quadrature Sinusoidal Oscillator,” IEEE CICC Digest, 1995, pp. 91–4.
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15.6 NEGATIVE RESISTANCE OSCILL ATORS 525

F IGURE 15.30. Negative resistance oscillator

F IGURE 15.31. Canonical RF negative
resistance (biasing not shown)

As a specific example, consider the oscillator of Figure 15.30. To guarantee oscil-
lation, we require the net resistance across the tank to be negative. Thus, we must
satisfy the inequality

Rt > Rf . (41)

The nonlinearity that most typically limits the amplitude at low frequencies is the finite
output swing of all real amplifiers. Since there is a gain of 2 from the tank to the op-
amp output, the signal across the tank will generally limit to a value somewhat greater
than half the supply, corresponding to periodic saturation of the amplifier output.

At higher frequencies, it is possible for the finite slew rate of the amplifier to con-
trol the amplitude (partially, if not totally). In general, this situation is undesirable
because the phase lag associated with slew limiting can cause a shift in oscillation
frequency. In extreme cases, the amplitude control provided by slew limiting (or al-
most any other kind of amplitude limiting) can be unstable, and squegging can occur.

Finally, the various oscillator configurations presented earlier (e.g., Colpitts, Pierce,
etc.) may themselves be viewed as negative resistance oscillators.

A more practical negative resistance is easily obtained by exploiting yet another
“parasitic” effect: Inductance in the base circuit of a common-base amplifier can
cause a negative resistance to appear at the emitter terminal, as seen in Figure 15.31.
A straightforward analysis reveals that Zin has a negative real part for frequencies
greater than the resonant frequency of the inductor and Cbe (if Ccb is neglected). For
frequencies much larger than that resonant frequency but much smaller than ωT , the
real part of Zin is approximately
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F IGURE 15.32. Simple differential
negative resistance oscillator

Rin ≈ −ω2L

ωT

= − ω

ωT

|ZL|. (42)

The ease with which this circuit provides a negative resistance accounts for its popu-
larity. However, it should be obvious that this ease also underscores the importance
of minimizing parasitic base inductance when a negative resistance is not desired.

A circuit that has become a frequently recurring idiom in recent years uses a cross-
coupled differential pair to synthesize the negative resistance. “It is left as an exercise
for the reader” to analyze the circuit of Figure 15.32.

As will be shown in Chapter 17, spectral purity improves if the signal amplitudes
are maximized (because this increases the signal-to-noise ratio). In many oscillators,
such as the circuit of Figure 15.32, the allowable signal amplitudes are constrained
by the available supply voltage or breakdown voltage considerations. Since it is the
energy in the tank that constitutes the “signal,” one could take a cue from the Clapp
oscillator and employ tapped resonators to allow peak tank voltages that exceed the
device breakdown limits or supply voltage, as in the negative resistance oscillator24

shown in Figure 15.33.25

The differential connection might make it a bit difficult to see that this circuit
indeed employs a tapped resonator, so consider the simplified half-circuit of Fig-
ure 15.34. In the simplified half-circuit, the transistors are replaced by a negative
resistor and the positive resistors are not shown at all. Furthermore, the two capac-
itors are replaced by their series equivalent, while the junction of the two inductors
corresponds to the drain connection of the original circuit.

24 J. Craninckx and M. Steyaert, “A CMOS 1.8GHz Low-Phase-Noise Voltage-Controlled Oscilla-
tor with Prescaler,” ISSCC Digest of Technical Papers, February 1995, pp. 266–7. The inductors
are bondwires stitched across the die.

25 It is best to have a tail current source to constrain the swing, but we omit this detail in the interest
of simplicity.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511812941.016
Downloaded from https://www.cambridge.org/core. The Librarian-Seeley Historical Library, on 18 Dec 2019 at 06:19:20, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511812941.016
https://www.cambridge.org/core


15.6 NEGATIVE RESISTANCE OSCILL ATORS 527

F IGURE 15.33. Negative resistance oscillator
with modified tank (simplified)

F IGURE 15.34. Simplified half-circuit of
negative resistance oscillator

It should be clear that the swing across the equivalent capacitance (or across L2)
can exceed the supply voltage (and even the transistor breakdown voltage) because
of the tapped configuration, so that this oscillator is the philosophical cousin of the
Clapp configuration. Useful output may be obtained either through a buffer inter-
posed between the oscillator core and load or through a capacitive voltage divider to
avoid spoiling resonator Q. As a consequence of the large energy stored in the tank
with either a single- or double-tapped resonator, this topology is capable of excellent
phase noise performance, as will be appreciated in Chapter 17.

Tuning of this (and all other LC) oscillators may be accomplished by realizing
all or part of C1 or C2 as a variable capacitor (such as the junction capacitor formed
with a p+ diffusion in an n-well) and tuning its effective capacitance with an ap-
propriate bias control voltage. Since many junction capacitors have relatively poor
Q, it is advisable to use only as much junction capacitance as necessary to achieve
the desired tuning range. In practice, tuning ranges are frequently limited to below
5–10% if excessive degradation of phase noise is to be avoided. A simple (but il-
lustrative) example of a voltage-controlled oscillator using this method is shown in
Figure 15.35.

As a final comment on negative resistance oscillators, it should be clear that many
(if not all) oscillators may be considered as negative resistance oscillators because,
from the point of view of the tank, the active elements cancel the loss due to finite Q
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F IGURE 15.35. Voltage-controlled negative
resistance oscillator (simplified)

of the resonators. Hence, whether to call an oscillator a “negative resistance” type is
actually more a philosophical decision than anything fundamental.

15.7 SUM M ARY

In this chapter we examined how the amplitude of oscillation can be stabilized through
nonlinear means and also extended feedback concepts to include a particular type of
linearized nonlinearity: describing functions. Armed with describing functions and
knowledge of the rest of the elements in a loop transmission, both oscillation fre-
quency and amplitude can be determined.

We looked at a variety of oscillators, of both open-loop and feedback topologies.
The Colpitts and Hartley oscillators use tapped tanks to provide positive feedback,
while the TITO oscillator employs the negative resistance that a tuned amplifier with
Miller feedback can provide. The Clapp oscillator uses an extra tap to allow resonator
swings that exceed the supply voltage, permitting signal energy to dominate noise.

Crystal oscillator versions of LC oscillators were also presented. Since a quartz
crystal behaves much like an LC resonator with extraordinarily high Q, it permits
the realization of oscillators with excellent spectral purity and low power consump-
tion. The Colpitts configuration oscillates at the series-resonant frequency of the
crystal and thus requires an LC tank. The Pierce oscillator operates at a frequency
where the crystal looks inductive, and therefore it requires no external inductance.
The off-resonant operation, however, forces the use of crystals that have been cut
specifically for a particular load capacitance.

A random sampling of other oscillators was also provided, including a quadrature
oscillator using two integrators in a feedback loop as well as several negative resis-
tance oscillators. Again, tapped resonators were seen to be beneficial for improving
phase noise.
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C H A P T E R S I X T E E N

SYNTHESIZERS

16.1 INTRODUC TION

Phase-locked loops (PLLs) have become ubiquitous in modern communications sys-
tems because of their remarkable versatility. As one important example, a PLL may
be used to generate an output signal whose frequency is a programmable and ratio-
nal multiple of a fixed input frequency. Such frequency synthesizers are often used
to provide the local oscillator signal in superheterodyne transceivers. PLLs may also
be used to perform frequency modulation and demodulation as well as to regenerate
the carrier from an input signal in which the carrier has been suppressed. Their ver-
satility also extends to purely digital systems, where PLLs are indispensable in skew
compensation, clock recovery, and the generation of clock signals.

To understand in detail how PLLs may perform such a vast array of functions,
we will need to develop linearized models of these feedback systems. But first, of
course, we begin with a little history to put this subject in its proper context.

16.2 A SHORT HISTORY OF PLL s

The earliest description of what is now known as a PLL was provided by de Belles-
cize in 1932.1 This early work offered an alternative architecture for receiving and
demodulating AM signals, using the degenerate case of a superheterodyne receiver
in which the intermediate frequency is zero. With this choice, there is no image to
reject, and all processing downstream of the frequency conversion takes place in the
audio range.

To function correctly, however, the homodyne or direct-conversion receiver re-
quires a local oscillator (LO) whose frequency is precisely the same as that of the
incoming carrier. Furthermore, the local oscillator must be in phase with the incom-
ing carrier for maximum output. If the phase relationship is uncontrolled, the gain
could be as small as zero (as in the case where the LO happens to be in quadrature with

1 “La réception synchrone,” L’Onde Électrique, v. 11, June 1932, pp. 230–40.
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530 CHAPTER 16 SYNTHESIZERS

the carrier) or vary in some irritating manner. De Bellescize described a way to solve
this problem by providing a local oscillator whose phase is locked to that of the carrier.

For various reasons, the homodyne receiver did not displace the ordinary superhet-
erodyne receiver, which had come to dominate the radio market by about 1930. How-
ever, there has recently been a renewal of interest in the homodyne architecture be-
cause its relaxed filtering requirements possibly improve amenability to integration.2

The next PLL-like circuit to appear was used in televisions for over three decades.
In standard broadcast television, two sawtooth generators provide the vertical and
horizontal deflection (“sweep”) signals. To allow the receiver to synchronize the
sweep signals with those at the studio, timing pulses are transmitted along with the
audio and video signals.

To perform synchronization in older sets, the TV’s sweep oscillators were adjusted
to free-run at a somewhat lower frequency than the actual transmitted sweep rate. In a
technique known as injection locking,3 the timing pulses caused the sawtooth oscilla-
tors to terminate each cycle prematurely, thereby effecting synchronization. As long
as the received signal had relatively little noise, the synchronization worked well.
However, as signal-to-noise ratio degraded, synchronization suffered either as tim-
ing pulses disappeared or as noise was misinterpreted as timing pulses. In the days
when such circuits were the norm, every TV set had to have vertical and horizon-
tal “hold” controls to allow the consumer to fiddle with the free-running frequency
and, therefore, the quality of the lock achieved. Improper adjustment caused verti-
cal rolling or horizontal “tearing” of the picture. In modern TVs, true PLLs are used
to extract the synchronizing information robustly even when the signal-to-noise ratio
has degraded severely. As a result, vertical and horizontal hold adjustments thank-
fully have all but disappeared.

The next wide application of a PLL-like circuit was also in televisions. When vari-
ous color television systems were being considered in the late 1940s and early 1950s,
the Federal Communications Commission (FCC) imposed a requirement of compati-
bility with the existing black-and-white standard, and it further decreed that the color
television signal could not require any additional bandwidth. Since monochrome

2 However, the homodyne requires exceptional front-end linearity and is intolerant of DC offsets.
Furthermore, since the RF and LO frequencies are the same, LO leakage back out of the antenna is
a problem. Additionally, this LO leakage can sneak back into the front end, where it mixes with the
LO with some random phase, resulting in a varying DC offset that can be several orders of mag-
nitude larger than the RF signal. These problems are perhaps as difficult to solve as the filtering
problem, and are considered in greater detail in Chapter 19 of T. H. Lee, The Design of CMOS
Radio-Frequency Integrated Circuits, 2nd ed., Cambridge University Press, 2004.

3 See Balth. van der Pol, “Forced Oscillations in a Circuit with Nonlinear Resistance (Reception with
Reactive Triode),” Philosophical Magazine, v. 3, January1927, pp. 65–80, as well as R. B.Adler, “A
Study of Locking Phenomena in Oscillators,” Proc. IRE, v. 34, June 1946, pp. 351–7. The circadian
rhythms of humans provide another example of injection locking. In the absence of a synchro-
nizing signal from the sun, a “day” for most people exceeds 24 hours. Note that the free-running
frequency is again somewhat lower than the locked frequency.
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16.2 A SHORT HISTORY OF PLL s 531

television had been developed without looking forward to a colorful future, it was de-
cidedly nontrivial to satisfy these constraining requirements. In particular, it seemed
impossible to squeeze a color TV signal into the same spectrum as a monochrome
signal without degrading something. The breakthrough was in recognizing that the
30-Hz frame rate of television results in a comblike (rather than continuous) spec-
trum, with peaks spaced 30 Hz apart. Color information could thus be shoehorned
in between these peaks without requiring additional bandwidth. To accomplish this
remarkable feat, the added color information is modulated on a subcarrier of ap-
proximately 3.58 MHz.4 The subcarrier frequency is carefully chosen so that the
sidebands of the chroma signal fall precisely midway between the spectral peaks of
the monochrome signal. The combined monochrome (also known as the luminance
or brightness signal) and chroma signals subsequently modulate the final carrier that
is ultimately transmitted. The U.S. version of this scheme is known as NTSC (for
National Television Systems Committee).

Color information is encoded as a vector whose phase with respect to the subcar-
rier determines the hue and whose magnitude determines the amplitude (“saturation”)
of the color. The receiver must therefore extract or regenerate the subcarrier quite
accurately to preserve the 0◦ phase reference; otherwise, the reproduced colors will
not match those transmitted.

To enable this phase locking, the video signal includes a “burst” of a number of
cycles (NTSC specifications dictate a minimum of 8) of a 3.58-MHz reference oscil-
lation transmitted during the retrace of the CRT’s electron beam as it returns to the
left side of the screen. This burst signal feeds a circuit inside the receiver whose job
is to regenerate a continuous 3.58-MHz subcarrier that is phase-locked to this burst.
Since the burst is not applied continuously, the receiver’s oscillator must free-run
during the scan across a line. To prevent color shifts, the phase of this regenerated
subcarrier must not drift. Early implementations did not always accomplish this goal
successfully, leading some wags to dub NTSC “never twice the same color.”5

Europe (with the exception of France6 ) chose to adopt a similar chroma scheme,
but there the phase drift problem was addressed by alternating the polarity of the
reference every line. This way, phase drifts tend to average out to zero over two
successive lines, reducing or eliminating perceived color shifts. Thus was born the
phase-alternating line (PAL) system.

4 If you really want to know, the exact frequency is 3.579545 MHz, derived from the 4.5-MHz spac-
ing between the video and audio carrier frequencies, multiplied by 455/572.

5 In fact, the very earliest such circuits dispensed with an oscillator altogether. Instead, the burst
signal merely excited a high-Q resonator (a quartz crystal), and the resulting ringing was used as
the regenerated subcarrier. The ringing had to persist for over 200 cycles without excessive decay.
Cheesy!

6 The French color television system is known as SECAM, for Séquentiel Couleur avec Mémoire.
In this system, luminance and chrominance information are sent serially in time and reconstructed
in the receiver.
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F IGURE 16.1. Phase-locked loop architecture

Another early application of PLL-like circuits was in stereo FM radio. Again,
to preserve backward compatibility, the stereo information is encoded on a subcar-
rier, this time at 38 kHz. Treating the monaural signal as the sum of a left and right
channel (and bandlimited to 15 kHz), stereo broadcast is enabled by modulating the
subcarrier with the difference between the left and right channels. This L − R differ-
ence signal is encoded as a double-sideband, suppressed-carrier (DSB-SC) signal.
The receiver then regenerates the 38-kHz subcarrier and recovers the individual left
and right signals through simple addition and subtraction of the L + R monaural and
L−R difference signals. To simplify receiver design, the transmitted signal includes
a low-amplitude pilot signal at precisely half the subcarrier frequency, which is dou-
bled at the receiver and used to demodulate the L − R signal. As we’ll see shortly,
a PLL can easily perform this frequency-doubling function even without a pilot, but
for the circuits of 1960, it was a tremendous help.

Early PLLs were mainly of the injection-locked variety because the cost of a com-
plete, textbook PLL was too great for most consumer applications. Except for a few
exotic situations, such as satellite communications and scientific instrumentation,
such “pure” PLLs didn’t exist in significant numbers until the 1970s, when IC tech-
nology had advanced enough to provide a true PLL for stereo FM demodulation.
Since then, the PLL has become commonplace, found in systems ranging from the
mundane to the highly specialized.

From the foregoing, it should be clear that phase locking enables a rich variety of
applications. With that background as motivation, we now turn to the task of model-
ing “textbook” PLLs.

16.3 L INEARIZED PLL MODEL

The basic PLL architecture, shown in Figure 16.1, consists of a phase detector and a
voltage-controlled oscillator (VCO).7 The phase detector compares the phase of an
incoming reference signal with that of the VCO and then produces an output that is
some function of the phase difference. The VCO simply generates a signal whose
frequency is some function of the control voltage.

7 Some oscillators control frequency through an adjustment of current. Nevertheless, it is common
practice to refer to both current- and voltage-controlled oscillators as VCOs, unless there is some
overriding need to make a distinction.
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16.3 L INEARIZED PLL MODEL 533

F IGURE 16.2. Linearized PLL model

The general idea is that the output of the phase detector drives the VCO frequency
in a direction that reduces the phase difference; that is, it’s a negative feedback sys-
tem. Once the loop achieves lock, the phase of the input reference and VCO output
signals ideally have a fixed phase relationship (most commonly 0◦ or 90◦, depending
on the nature of the phase detector).

Although both the phase detector and VCO may be highly nonlinear in practice, it
is customary to assume linearity when analyzing loops that have achieved lock. We
will eventually consider a more general case (including the acquisition process), but
we have to begin somewhere, and it’s best to start simple and add complexity as we
go along.

Let us begin with a linearized PLL model, as seen in Figure 16.2. Because we are
generally interested in the phase relationship between the input and output signals,
the input and output variables are phases in this model, rather than the time wave-
forms of the actual inputs and outputs. Hence, if you are accustomed to thinking of
signals as voltages in a block diagram, the input and output voltages are now propor-
tional to phases.

Another consequence of choosing phase as the input–output variable is that the
VCO, whose output frequency depends on a control voltage, is modeled as an inte-
grator, since phase is the integral of frequency. The VCO gain constant Ko has units
of radians per second per volt; it merely describes what change in output frequency
results from a specified change in control voltage. Also note that, unlike ordinary
amplifiers whose outputs are bounded, the VCO is a true integrator. The longer we
wait, the more phase we accumulate (unless someone turns off the oscillator).

The phase detector is modeled as a simple subtractor that generates a phase error
output �e that is the difference between the input and output phases. To accommo-
date gain scaling factors and the option of additional filtering in the loop, a block
with transfer function H(s) is included in the model as well.

16.3.1 F IRST-ORDER PLL

The simplest PLL is one in which the function H(s) is simply a scalar gain (call it
KD, with units of volts per radian). Because the loop transmission then possesses just
a single pole, this type of loop is known as a first-order PLL. Aside from simplicity,
its main attribute is the ease with which large phase margins are obtained.
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534 CHAPTER 16 SYNTHESIZERS

Offsetting those positive attributes is an important shortcoming, however: band-
width and steady-state phase error are strongly coupled in this type of loop. One
generally wants the steady-state phase error to be zero, independent of bandwidth,
so first-order loops are infrequently used.

We may use our linear PLL model to evaluate quantitatively the limitations of a first-
order loop. Specifically, the input–output phase transfer function is readily derived:

�out(s)

�in(s)
= K0KD

s +K0KD
. (1)

The closed-loop bandwidth is therefore

ωh = K0KD. (2)

To verify that the bandwidth and phase error are linked, let’s now derive the input-
to-error transfer function:

�e(s)

�in(s)
= s

s +K0KD
. (3)

If we assume that the input signal is a constant-frequency sinusoid of frequency
ωi, then the phase ramps linearly with time at a rate of ωi radians per second. Thus,
the Laplace-domain representation of the input signal is

�in(s) = ωi

s2
, (4)

so that
�e(s) = ωi

s(s +K0KD)
. (5)

The steady-state error with a constant frequency input is therefore

lim
s→0

s�e(s) = ωi

K0KD
= ωi

ωh
. (6)

The steady-state phase error is thus simply the ratio of the input frequency to the
loop bandwidth; a one-radian phase error results when the loop bandwidth equals
the input frequency. A small steady-state phase error therefore requires a large loop
bandwidth; the two parameters are tightly linked, as asserted earlier.

An intuitive way to arrive qualitatively at this result is to recognize that a nonzero
voltage is required in general to drive the VCO to the correct frequency. Since the
control voltage derives from the output of the phase detector, there must be a nonzero
phase error. To produce a given control voltage with a smaller phase error requires
an increase in the gain that relates the control voltage to the phase detector output.
Because an increase in gain raises the loop transmission uniformly at all frequencies,
a bandwidth increase necessarily accompanies a reduction in phase error.

To produce zero phase error, we require an element that can generate an arbitrary
VCO control voltage from a zero phase detector output, implying the need for an in-
finite gain. Yet to decouple the steady-state error from the bandwidth, this element
needs to have infinite gain only at DC, rather than at all frequencies. An integrator
has the prescribed characteristics, and its use leads to a second-order loop.
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16.3 L INEARIZED PLL MODEL 535

F IGURE 16.3. Model of second-order PLL

F IGURE 16.4. Loop transmission of second-order PLL

16.3.2 SECOND-ORDER PLL

The model for a second-order PLL is shown in Figure 16.3. The 90◦ negative phase
shift contributed by the added integrator has to be offset by the positive phase shift
of a loop-stabilizing zero. As with any other feedback system compensated in this
manner, the zero should be placed well below the crossover frequency to obtain ac-
ceptable phase margin.

In this model, the constant KD has the units of volts per second because of the
extra integration. Also thanks to the added integration, the loop bandwidth may be
adjusted independently of the steady-state phase error (which is zero here), as is clear
from studying the loop transmission magnitude behavior graphed in Figure 16.4. The
stability of this loop can be explored with the root-locus diagram of Figure 16.5.

As the loop transmission magnitude increases (by increasingKDK0), the loop be-
come progressively better damped because an increase in crossover frequency allows
more of the zero’s positive phase shift to offset the negative phase shift of the poles.
For very large loop transmissions, one closed-loop pole ends up at nearly the fre-
quency of the zero, while the other pole heads for infinitely large frequency.

In this PLL implementation, the loop-stabilizing zero comes from the forward
path. Hence, this zero also shows up in the closed-loop transfer function.

It is straightforward to show that the phase transfer function is

�out

�in
= τzs + 1

s2/KDK0 + τzs + 1
, (7)

from which we determine that
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536 CHAPTER 16 SYNTHESIZERS

F IGURE 16.5. Root locus of second-order PLL

ωn = √
KDK0 (8)

and

ζ = ωnτz

2
= τz

√
KDK0

2
. (9)

Furthermore, the crossover frequency for the loop may be expressed as

ωc =
[
ω4
n

2ω2
z

+ ω2
n

√
1

4

(
ωn

ωz

)4

+ 1

]1/2

, (10)

which simplifies considerably if the crossover frequency is well above the zero fre-
quency (as it is frequently is):

ωc ≈ ω2
n

ωz
. (11)

Figure 16.4 and Eqn. 10 both show that the crossover frequency always exceeds
ωn, which – from Figure 16.4 and Eqn. 8 – is the extrapolated crossover frequency
of the loop with no zero. Finally, it should be clear increasing the zero’s time con-
stant improves the damping, given a fixed ωn. Thus, the bandwidth and stability of
a second-order loop may be adjusted as desired while preserving a zero steady-state
phase error.

16.4 PLL REJEC TION OF NOISE ON INPUT

It can be shown that maximizing the bandwidth of the PLL helps to minimize the
influence of disturbances that alter the frequency of, say, a voltage-controlled oscil-
lator. This insight is not too deep – making a system faster means that it recovers
more quickly from errors, whatever the source.

However, there is a potential drawback to maximizing the bandwidth, above and
beyond the stability issue. As the loop bandwidth increases, the loop gets better at
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16.5 PHASE DETEC TORS 537

F IGURE 16.6. Multiplier as phase detector

tracking the input. If the input is noise-free (or at least less noisy than the PLL’s
own VCO), then there is a net improvement overall. However, if the input signal
is noisier than the PLL’s VCO, then the high-bandwidth loop will faithfully repro-
duce this input noise at the output. Hence, there is a trade-off between sensitivity to
noise on the input to the loop (a consideration that favors smaller loop bandwidths)
and sensitivity to noise that disturbs the VCO frequency (which favors larger loop
bandwidths).

In general, tuned oscillators (e.g., LC or crystal-based) are inherently less (often
much less) noisy, at a given power level, than relaxation oscillators (such as ring or
RC phase-shift oscillators). Hence, if the reference input to the PLL is supplied from
a tuned oscillator while the VCO is based on a relaxation oscillator topology, larger
bandwidths are favored. If, instead, the situation is the reverse (a rarer occurrence)
and a relaxation oscillator supplies the reference to a crystal oscillator–based PLL,
then smaller loop bandwidths will generally be favored.

16.5 PHASE DETEC TORS

We’ve taken a look at the classical phase-locked loop at the block diagram level, with
a particular focus on the linear behavior of a second-order loop in lock. We now
consider a few implementation details to see how real PLLs are built and how they
behave. In this section, we’ll examine several representative phase detectors.

16.5.1 THE ANALOG MULT IPL IER
AS A PHASE DETEC TOR

In PLLs that have sine-wave inputs and sine-wave VCOs, the most common phase
detector by far is the multiplier, often implemented with a Gilbert-type topology. For
an ideal multiplier, it isn’t too difficult to derive the input–output relationship. See
Figure 16.6.

Using some trigonometric identities, we find that the output of the multiplier may
be expressed as:

AB cosωt cos(ωt +�) = AB

2
[cos(�)− cos(2ωt +�)]. (12)
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538 CHAPTER 16 SYNTHESIZERS

F IGURE 16.7. Multiplier phase detector output vs. phase difference

Note that the output of the multiplier consists of a DC term and a double-frequency
term. For phase detector operation, we are interested only in the DC term. Hence,
the average output of the phase detector is

〈AB cosωt cos(ωt +�)〉 = AB

2
[cos�]. (13)

We see that the phase detector gain “constant” is a function of the phase angle and is
given by

KD = d

d�
〈Vout〉 = −AB

2
[sin(�)]. (14)

If we plot the average output as a function of phase angle, we get something that
looks roughly as shown in Figure 16.7. Notice that the output is periodic. Further
note that the phase detector gain constant is zero when the phase difference is zero
and is greatest when the input phase difference is 90◦. Hence, to maximize the use-
ful phase detection range, the loop should be arranged to lock to a phase difference
of 90◦. For this reason, a multiplier is often called a quadrature phase detector.

When the loop is locked in quadrature, the phase detector has an incremental gain
constant given by

KD|�=π/2 = d

d�
〈Vout〉

∣∣∣∣
�=π/2

= −AB
2
. (15)

In what follows, we will glibly ignore minus signs. The reason for this neglect is that
a loop may servo to either a 90◦ or −90◦ phase difference (but not to both), depend-
ing on the net number of inversions provided by the rest of the loop elements.

Because there are two phase angles (within any given 2π interval) that result in a
zero output from the phase detector, there would seem to be two equilibrium points
to which the loop could lock. However, one of these points is a stable equilibrium
while the other is a metastable point from which the loop must eventually diverge.
That is, only one of these lock points corresponds to negative feedback.

When speaking of phase errors for a quadrature loop, we calculate the departure
from the equilibrium condition of a 90◦ phase difference. Thus, when the phase dif-
ference is 90◦ in an ideal quadrature loop, the phase error is considered to be zero.
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F IGURE 16.8. Multiplier with one square-wave input

16.5.2 THE COM MUTATING MULT IPL IER
AS A PHASE DETEC TOR

In the previous section, we assumed that both inputs to the loop were sinusoidal.
However, one or both of these inputs may be well approximated by a square wave in
many cases of practical interest, so let us now modify our results to accommodate a
single square-wave input. In this case, we have the situation depicted in Figure 16.8,
where “sgn” is the signum function, defined as:

sgn(x) =
{

1 if x > 0,

−1 if x < 0,

(16)

(17)

Now recall that a square wave of amplitudeB has a fundamental component whose
amplitude is 4B/π. If we assume that we care only about the fundamental component
of the square wave, then the average output of the multiplier is

〈Vout〉 = 4

π

AB

2
[cos(�)] = 2

π
AB[cos(�)]. (18)

The corresponding phase detector gain is similarly just 4/π times as large as in the
purely sinusoidal case:

KD|�=π/2 = d

d�
〈Vout〉

∣∣∣∣
�=π/2

= −2AB

π
. (19)

Although the expressions for the phase detector output and gain are quite similar
to those for the purely sinusoidal case, there is an important qualitative difference be-
tween these two detectors. Because the square wave consists of more than just the
fundamental component, the loop can actually lock onto harmonics or subharmon-
ics of the input frequency. Consider, for example, the case where the B square-wave
input is at precisely one third the frequency of the sinusoidal input frequency. Now,
square waves8 consist of odd harmonics, and the third harmonic will then be at the

8 We are implicitly assuming that the square waves are of 50% duty cycle. Asymmetrical square
waves will also contain even as well as odd harmonic components, providing an “opportunity” to
lock to even multiples of the incoming reference in addition to odd multiples.
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540 CHAPTER 16 SYNTHESIZERS

same frequency as the input sine wave. Those two signals will provide a DC output
from the multiplier.

Because the spectrum of a square wave drops off as 1/f ,9 the average output gets
progressively smaller as we attempt to lock to higher and higher harmonics. The
attendant reduction in phase detector gain constant thus makes it more difficult to
achieve or maintain lock at the higher harmonics, but this issue must be addressed
in all practical loops that use this type of detector. Sometimes harmonic locking is
desirable, and sometimes it isn’t. If it isn’t, then the VCO frequency range usually
has to be restricted (or acquisition carefully managed) to prevent the occurrence of
harmonic locking.

Another observation worth making is that multiplication of a signal by a periodic
signum function is equivalent to inverting the phase of the signal periodically. Hence,
a multiplier used this way can be replaced by switches (also known as commutators,
by analogy with a component of rotating machines). The passive diode ring mixers
function as commutating mixers. In some IC technologies (such as CMOS), com-
mutating mixers supplement Gilbert-type multipliers.

16.5.3 THE EXCLUSIVE-OR GATE
AS A PHASE DETEC TOR

If we now drive an analog multiplier with square waves on both inputs, we could ana-
lyze the situation by using the Fourier series for each of the inputs, multiplying them
together, and so forth. However, it turns out that analyzing this particular situation
in the time domain is much easier, so that’s what we’ll do. The reader is welcome
(indeed, encouraged) to explore the alternative method and perform the analysis in
the frequency domain as a recreational exercise.

In this case, the two square-wave inputs produce the output shown in Figure 16.9.
As we change the input phase difference, the output takes the form of a square wave
of varying duty cycle, with a 50% duty cycle corresponding to a quadrature relation-
ship between the inputs. Since the duty cycle is in fact proportional to the input phase
difference, we can readily produce a plot (Figure 16.10) of the average output as a
function of the input phase difference.

The phase detector constant is a constant in this instance; it is equal to

KD = 2AB/π. (20)

We see that, within a scale factor, this phase detector has the same essential behavior
as an analog multiplier with sinusoidal inputs, again interpreting phase errors relative
to quadrature.

9 Here’s another fun piece of trivia with which to amaze party guests: In general, the spectrum of a
signal will decay as 1/f n, where n is the number of derivatives of the signal required to yield an
impulse. Hence, the spectrum of an ideal sine wave has an infinitely fast rolloff (since no number
of derivatives ever yields an impulse), that of an impulse doesn’t roll off (since n = 0), that of a
square wave rolls off as 1/f , that of a triangle wave as 1/f 2, and so on.
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16.5 PHASE DETEC TORS 541

F IGURE 16.9. Multiplier inputs and output

F IGURE 16.10. Multiplier characteristic with two square-wave inputs

As in the case with one square-wave input, this phase detector allows the loop to
lock to various harmonics of the input. Again, depending on the application, this
property may or may not be desirable.

If we examine the waveforms for this detector more closely, we see that they have
precisely the same shape as would be obtained from using a digital exclusive-OR gate,
the only difference being DC offsets on the inputs and outputs as well as an inversion
here or there. Hence, an XOR may be considered an overdriven analog multiplier.
For the special case where the inputs and output are logic levels that swing between
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542 CHAPTER 16 SYNTHESIZERS

F IGURE 16.11. Characteristic of XOR as quadrature phase detector

ground and some supply voltage VDD (as in CMOS), the phase detector output has
an average value that behaves as graphed in Figure 16.11.

The corresponding phase detector gain is then

KD = VDD/π. (21)

Because of the ease with which they are implemented, and because of their compati-
bility with other digital circuitry, XOR phase detectors are frequently found in simple
IC PLLs.

16.6 SEQUENTIAL PHASE DETEC TORS

Loops that use multiplier-based phase detectors lock to a quadrature phase relation-
ship between the inputs to the phase detector. However, there are many practical in-
stances (de Bellescize’s homodyne AM detector is one example) where a zero phase
difference is the desired condition in lock. Additionally, the phase detector constants
at the metastable and desired equilibrium points have the same magnitude, result-
ing in potentially long residence times in the metastable state, perhaps delaying the
acquisition of lock.

Sequential phase detectors can provide a zero (or perhaps 180◦) phase difference
in lock, and they also have vastly different gain constants for the metastable and sta-
ble equilibrium points. In addition, some sequential phase detectors have an output
that is proportional to the phase error over a span that exceeds 2π radians.

Sequential detectors do have some disadvantages. Since they operate only on
transitions, they tend to be quite sensitive to missing edges (although there are modi-
fications that can reduce this sensitivity), in contrast with multipliers that look at the
whole waveform. Another consequence of their edge-triggered nature is that they in-
troduce a sampling operation into the loop. As we will see later, sampling inherently
adds something similar to a time delay into the loop transmission. The associated in-
creasing negative phase shift with increasing frequency imposes an upper bound on
the allowable crossover frequencies that is often substantially more restrictive than if
a different phase detector were used.
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16.6 SEQUENTIAL PHASE DETEC TORS 543

F IGURE 16.12. Phase detector with extended range

F IGURE 16.13. Characteristic of extended-range phase detector

16.6.1 SEQUENTIAL DETEC TORS
WITH EXTENDED R ANGE

A widely used circuit that provides both extended lock range and an in-phase lock
condition consists of two D flip-flops and a reset gate; see Figure 16.12. The desig-
nations R and V stand for “reference” and “VCO,” while U and D stand for “up” and
“down” – terms that will mean something shortly.

For this circuit, the up and down outputs have an average difference that behaves
as shown in Figure 16.13. Note that the linear input range now spans 4π radians, with
a constant phase detector gain of

KD = VDD/2π. (22)

One characteristic that occasionally causes trouble is the potential for the genera-
tion of runt pulses. If the reset path in Figure 16.12 acts too fast, then the minimum
pulsewidth generated at the U and D outputs may be too narrow for the next stage
to function reliably. This problem occurs when the R and V inputs are very close to
each other, and thus it degrades behavior near the locking point. This degradation
typically takes the form of an inability to resolve phase errors reliably near lock. This
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544 CHAPTER 16 SYNTHESIZERS

“dead zone” problem is readily solved by simply slowing the reset path. The inser-
tion of some appropriate number of inverters after the AND gate will guarantee that
the U and D outputs will be of a width consistent with proper operation of subse-
quent stages. In lock, both U and D outputs are asserted simultaneously for identical
amounts of time.

16.6.2 PHASE DETEC TORS VERSUS
FREQUENCY DETEC TORS

In many applications, it is important (or at least useful) to have some information
about the magnitude of any frequency difference between the two inputs. Such in-
formation could be used to aid acquisition, for example.

Multiplier-based phase detectors cannot provide such information, but sequential
phase detectors can. Consider the extended range phase detector of the previous sec-
tion. If the frequency of the VCO exceeds that of the reference then the U output
will have a high duty cycle, because it is set by a rising edge of the higher-frequency
VCO but isn’t cleared until there is another rising edge on the lower-frequency ref-
erence. Hence, this type of phase detector provides not only a large and linear phase
detection range but also a signal that is indicative of the sign and magnitude of
the frequency error. These attributes account for this detector’s enormous popular-
ity. Detectors with this frequency discrimination property are known collectively as
phase-frequency detectors.

It should be mentioned that this detector does have some problems, however.
Being a sequential detector, it is sensitive to missing edges. Here, it would misinter-
pret a missing edge as a frequency error and the loop would be driven to “correct”
this error. Additionally, the slope of the phase detector characteristic near zero phase
error may actually be somewhat different from what is shown in Figure 16.13 because
both the U and D outputs are narrow slivers in the vicinity of the lock point. Because
all real circuits have limited speed, the nonzero risetimes will cause a departure from
the ideal linear shape shown, since the areas of the slivers will no longer have a linear
relationship to the input time (phase) differences.

In some systems, this problem is solved by intentionally introducing a DC offset
into the loop so that the phase detector output must be nonzero to achieve lock. By
biasing the balanced condition away from the detector’s center, the nonlinearities can
be greatly suppressed. Unfortunately, this remedy is inappropriate for applications
that require small error, since the added offset translates into a static phase error.

16.7 LOOP FILTERS AND CHARGE PUMPS

So far, we’ve examined the behavior of PLLs using a linear model, as well as a num-
ber of ways to implement phase detectors. We now consider how to implement the
rest of the loop. We’ll take a look at various types of loop filters and work through
an actual example to illustrate a typical design procedure.
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16.7 LOOP FILTERS AND CHARGE PUMPS 545

F IGURE 16.14. PLL with typical loop filter

The VCO requires some control voltage to produce an output of the desired fre-
quency. To provide this control voltage with a zero output from the phase detector
(and hence zero phase error), the loop filter must provide an integration. Then, to en-
sure loop stability, the loop filter must also provide a zero. A classic PLL architecture
that satisfies these requirements appears as Figure 16.14.

It should be easy to deduce the general properties of the loop filter without resort-
ing to equations. At very low frequencies, the capacitor’s impedance dominates the
op-amp’s feedback, so the loop filter behaves as an integrator. As the frequency in-
creases, though, the capacitive reactance decreases and eventually equals the series
resistanceR2. Beyond that frequency, the capacitive reactance becomes increasingly
negligible compared with R2, and the gain ultimately flattens out to simply −R2/R1.

Stating these observations another way, we have a pole at the origin and a zero
whose time constant isR2C. Furthermore, the value ofR1 can be adjusted to provide
whatever loop transmission magnitude we’d like, so the op-amp circuit provides us
with the desired loop filter transfer function.

It must be mentioned that PLLs need not include an active loop filter of the type
shown. In the simplest case, a passiveRC network could be used to connect the phase
detector with the VCO. However, the static phase error will then not be zero, and the
loop bandwidth will be coupled (inversely) with the static phase error. Because of
these limitations, such a simple loop filter is used only in noncritical applications.

The circuit of Figure 16.14 is commonly used in discrete implementations, but a
different (although functionally equivalent) approach is used everywhere else. The
reason is that it is wasteful to build an entire op-amp simply to obtain the desired
loop filter transfer function. A considerable reduction in complexity and area (not to
mention power consumption) can be obtained by using an element that is specially
designed for this single purpose: a charge pump, working in tandem with an RC net-
work. Here, the phase detector controls one or more current sources, and the RC
network provides the necessary loop dynamics.

Figure 16.15 shows how a charge pump provides the necessary loop filter action.
Here, the phase detector is assumed to provide a digital “pump up” or “pump down”
signal. If the phase detector determines that the VCO output is lagging the input
reference, it activates the top current source, depositing charge onto the capacitor
(pumping up). If the VCO is ahead, the bottom current source is activated, withdraw-
ing charge from the capacitor (pumping down).
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546 CHAPTER 16 SYNTHESIZERS

F IGURE 16.15. Basic charge pump with loop filter

If there were no resistor, then we would have a pure integration. As usual, the series
resistor provides the necessary loop-stabilizing zero by forcing the high-frequency
asymptotic impedance to a nonzero value.

Since switched current sources are easily implemented with a very small number
of transistors, the charge pump approach allows the synthesis of the desired loop fil-
ter without the complexity, area, and power consumption of a textbook op-amp. The
nature of the control also meshes nicely with the many digital phase detectors (e.g.,
sequential phase detectors) that exist, such as the one shown in Figure 16.12. When
that detector is used with the charge pump of Figure 16.15, the net pump current is
given by

I = Ipump&�
2π

, (23)

where Ipump = Iup = Idown. This current, multiplied by the impedance of the filter
network connected to the current sources, gives the VCO control voltage.

Control-Line Ripple and Higher-Order Poles

Even when the charge pump is well designed, we must assume the existence of some
ripple on the control voltage. The loop-stabilizing zero improves stability at the ex-
pense of degraded high-frequency filtering. Consequently, there can be significant
high-frequency content on the control line that drives theVCO. This “hash” can come
from having to compensate for charge pump leakage, from the higher-order mixing
products in a multiplier-type detector (i.e., essentially the double frequency term), or
from asymmetries in the charge pump or phase detector. Many of these components
are periodic and so produce stationary sidebands (spurs). One obsession of synthe-
sizer designers is the systematic eradication of spurs. Unfortunately, spurs arise very
easily from noise injected into the control line, including noise from the supply, sub-
strate, or even from external fields coupling into the chip. A typical RF VCO may
possess tuning sensitivities of tens or hundreds of megahertz per volt, so even a few
millivolts of noise can generate noticeable spectral artifacts. The resultant modula-
tion of the VCO frequency may be unacceptable in many applications.

The design of a practical charge pump is somewhat more difficult than might be
supposed from examining Figure 16.15. The subtleties involved are perhaps best
appreciated by studying a representative design; see Figure 16.16. Analysis of this
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16.7 LOOP FILTERS AND CHARGE PUMPS 547

F IGURE 16.16. Example of PLL charge pump

CMOS circuit highlights some of the more important design considerations associ-
ated with charge pump design. Transistors M1 through M4 are differential switches
operated by the up and down commands from the phase detector. Depending on the
state of those commands, either source current Iup or sink current Idown is steered to
the output node Op. Thus, Iout equals Iup or Idown, depending on the phase detector
state.

The switches are cascoded by transistors M5 to M8 for high output impedance
because any leakage increases spur power. To understand why, consider the locked
condition. With low leakage, very little net charge needs to be delivered by the charge
pump per cycle. There is thus very little ripple on the control line and hence very lit-
tle modulation of the VCO. As leakage increases, however, the charge pump must
make up for an increasing amount of lost charge, implying the necessity for an in-
creasing static phase error. For example, if the leakage is such that the control voltage
droops between phase measurements, then the phase error must increase until the net
charge deposited as a result of up pulses is just enough greater than that deposited
from the down pulses to compensate for the leakage. Cascoding helps reduce con-
trol line ripple by reducing leakage, and therefore reduces the spur energy (and static
phase error). Because the voltage droops between corrections, which occur with a
frequency equal to that of the reference input, the control-line ripple also has a fun-
damental periodicity equal to that of the reference. The spurs are therefore displaced
from the carrier by an amount equal to the reference frequency. The existence of
large reference frequency spurs is usually a sign of poor charge pump design; see
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548 CHAPTER 16 SYNTHESIZERS

F IGURE 16.17. Output spectrum of synthesizer with
somewhat leaky charge pump

Figure 16.17. Clearly visible are the reference spurs spaced 11 MHz away from the
4.96-GHz carrier. There are additional spurs (spaced integer multiples of 11 MHz
away) corresponding to the Fourier components of the ripple on the control line.

For similar reasons it is also important to have equal up and down currents. If one is
stronger than the other, a compensating static phase error must again appear, with its
attendant consequences for control-line ripple. To mitigate this problem, the charge
pump design here uses relatively large devices (to reduce threshold mismatch) and
operates them at moderately large overdrive. In addition, a simple unity-gain buffer
forces the unused charge pump output to have the same common-mode voltage as
the main output, thus removing systematic mismatch that would arise from operation
with unequal drain–source voltages. Supplementing that strategy is a replica bias
loop, whose output voltage is compared with the voltage at the unused output of the
charge pump. A simple op-amp drives these two voltages to equality (compensation
capacitor C is for loop stability) and thus ensures that all conducting devices in the
main core have the same bias voltages as in the replica. The resulting up and down
tail currents are then equal, within the limits of random mismatch.

Attention to these sorts of details enables the suppression of the reference spurs
by large factors, as is apparent from Figure 16.18. Spurs are invisible in this plot and
are thus below the noise floor of −70 dBc. The >25-dB reduction in reference spur
power represents an improvement by a factor of more than 300 (on a power basis).

We see the critical role played by the loop filter in removing the “teeth” produced
by the phase detection process (which, if you recall, is fundamentally a sampled sys-
tem in digital implementations) in addition to other noise that may couple there. We
need to consider how to design the best possible loop filters. For a given loop band-
width, a higher-order filter provides more attenuation of out-of-band components.
However, the higher the order, the harder it is to make the loop stable. For this reason,
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16.7 LOOP FILTERS AND CHARGE PUMPS 549

F IGURE 16.18. Spectrum of improved synthesizer

F IGURE 16.19. Idealized PLL charge pump with third-order loop filter

many simple synthesizer loops are second order, but these rarely provide competi-
tive performance. Designing higher-order loops requires ever increasing vigilance
to guard against instability – and also taxes our mathematical skills. The law of di-
minishing returns leads us to discover that a fourth-order loop is about optimum, so
we will focus on the design of a third-order loop filter. See Figure 16.19.

Remembering that the VCO adds another pole (at the origin), we see that choosing
a three-pole loop filter results in the creation of a fourth-order loop. Elements CA,
Rx , andCx supply additional filtering beyond that provided by a simple second-order
loop. In the past, no simple closed-form design method existed, so designing such
a filter involved staring at lots of plots before giving up and going back to a second-
or third-order loop. Luckily this situation has changed quite recently, and we can of-
fer a simple cookbook recipe that is close enough to optimum for most purposes.10

Alternatively, many widely available CAD tools (e.g., National Semiconductor’s

10 H. R. Rategh and T. H. Lee, Multi-GHz Frequency Synthesis and Division, Kluwer, Dordrecht,
2001.
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550 CHAPTER 16 SYNTHESIZERS

PLL LpFltr) automate the design, leading to somewhat better loop filters than pro-
duced by our cookbook procedure.

Step 1. Specify a phase margin. Once this value is chosen, it sets a constraint on
capacitor values. Specifically,

(PM) ≈ tan−1
(√
b + 1

) − tan−1
(
1/

√
b + 1

)
, (24)

where

b = C0

CA + CX . (25)

It’s probably prudent to choose a phase margin a few degrees above the target
value in order to absorb the inevitable negative phase contributions by the sampled
nature of the loop, unmodeled poles, and other destabilizing sources. For example,
suppose the specified phase margin target is 45◦. If we therefore design for 50◦, we
find (through iteration, for example) that b should be about 6.5. This would be a typ-
ical design value.

Step 2. Select loop crossover frequency, based on specifications on tracking band-
width, for example. Combined with the results of step 1, we find the location of the
loop stabilizing zero as follows.

We know that maximizing the loop bandwidth maximizes the frequency range over
which the presumably superior phase noise characteristics of the reference oscillator
are conferred upon the output. Unfortunately, the loop is a sampled data system, and
we can push up the crossover frequency to only about a tenth of the phase compari-
son frequency before the phase lag inherent in a discrete-time phase detector starts to
degrade phase margin seriously. As a specific example, assume that the reference fre-
quency (and hence the phase comparison frequency) is 2 MHz. Choosing a crossover
frequency of 200 kHz is safe, since it is a decade below the reference frequency. It
would be imprudent to target a crossover frequency much higher than this value.

For the crossover frequency we have

ωc ≈
√
b + 1

τz
=

√
b + 1

R0C0
. (26)

Step 3. Calculate C0, the value of the zero-making capacitor:

C0 = IP

2π

K0

N

b√
b + 1

1

ω2
c

, (27)

where IP is the charge pump current, N is the divide modulus, and K0 is the VCO
gain constant in radians per second per volt.

Step 4. Calculate R0 = τz/C0. This completes the design of the main part of the
loop filter.

Step 5. Select τx = RXCX within the following range:

0.01< τx/τz < 0.1. (28)
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Within these wide limits is considerable freedom of choice. You can choose to de-
sign for the arithmetic mean, or the geometric mean, or some other kind of mean.
Typically, one selects τx to be 1/30 to 1/20 of τz. A bigger time constant results in
somewhat better filtering action but tends to be associated with lower stability. Since
loop constants aren’t constant, it is prudent to design for some margin.

Step 6. Complete the remaining calculations. Back in step 1, we developed a con-
straint on the capacitance ratios. Having found one of the capacitances, we now know
the sum of CA and CX. You are free to select the individual values over a quite wide
range, as long as they sum to the correct value. Arbitrarily setting them equal is a
common choice.11 Having done so then allows us to determine their absolute values,
which subsequently allows us to determine the value of RX.

This completes the design of the loop filter.

16.8 FREQUENCY SYNTHESIS

Oscillators built with high-Q resonators exhibit the best spectral purity but cannot
be tuned over a range of more than several hundred parts per million or so. Since
most transceivers must operate at a number of different frequencies that span a con-
siderably larger range than that, one simple way to accommodate this lack of tuning
capability is to use a separate resonator for each frequency. Clearly, this straightfor-
ward approach is practical only if the number of required frequencies is small.

Instead, virtually all modern gear uses some form of frequency synthesis, in which
a single quartz-controlled oscillator is combined with a PLL and some digital ele-
ments to provide a multitude of output frequencies that are traceable to that highly
stable reference. In the ideal case, then, one can obtain a wide operating frequency
range and high stability from one oscillator.

Before undertaking a detailed investigation of various synthesizers, however, we
need to digress briefly to examine an issue that strongly influences architectural
choices. A frequency divider is used in all of the synthesizers we shall study, and it
is important to model properly its effect on loop stability.

16.8.1 DIVIDER ‘ ‘DEL AY’ ’

Occasionally, one encounters the term “divider delay” in the literature on PLL syn-
thesizers in the context of evaluating loop stability. We’ll see momentarily that the
phenomenon is somewhat inaccurately named, but there is indeed a stability issue
associated with the presence of dividers in the loop transmission.

11 The noise generated by the resistors in the filter will produce broadband modulation of the VCO,
resulting in phase noise. Minimizing the phase noise would impose additional constraints on the
loop filter design, complicating the situation enough that the cookbook procedure offered here is
all we’ll consider. It is a good idea to select values that make the overall realization less depen-
dent on parasitics. Generally speaking, using the largest capacitors consistent with the required
time constants will help reduce broadband noise modulation of the control voltage.
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F IGURE 16.20. Action of sample-and-hold

The use of a frequency divider generally implies that the phase detector is digital
in nature.12 As a consequence, knowledge about phase error is available to the loop
only at discrete instants. That is, the loop is a sampled-data system. If a divider is
present, the loop samples the phase error less frequently than might be implied by
the VCO frequency. To model the PLL correctly, then, we need to account properly
for this sampled nature.

To develop the necessary insight, consider a process in which a continuous-time
function is sampled and held periodically; see Figure 16.20. The sample-and-hold
(S/H) operation shown introduces a phase lag into the process. Mathematics need
not be invoked to conclude that this is so; simply “eyeball” the sampled-and-held
waveform and consider its time relationship with the original continuous-time wave-
form. You should be able to convince yourself that the best fit occurs when you slide
the original waveform to the right by about a half of a sample time.

More formally, the “hold” part of the S/H operation can be modeled by an ele-
ment whose impulse response is a rectangle of unit area and T-second duration, as
seen in Figure 16.21. This element, known formally as a zero-order hold (ZOH), has
a transfer function given by13

H(s) = 1 − e−sT
sT

. (29)

The magnitude of the transfer function is

|H(jω)| = sinω(T/2)

ω(T/2)
, (30)

while the phase is simply

� [H(jω)] = −ω(T/2). (31)

12 Although there are exceptions (e.g., subharmonic injection-locked oscillators), we will limit the
present discussion to the more common implementations.

13 If you would like a quick derivation of the transfer function, note that the impulse response of the
zero-order hold is the same as that of the difference of two integrations (one delayed in time). That
should be enough of a hint.
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F IGURE 16.21. Impulse response of zero-order hold

The time delay is thus T/2 seconds. The same result is obtained by recognizing that
a rectangular impulse response centered about zero seconds has zero phase by sym-
metry. Shifting that response to the right by T/2 seconds gives us the graph shown
in Figure 16.21. Independently of how we compute it, the fact that there is a delay
is the reason for the term “divider delay.” However, since the magnitude term is not
constant with frequency, the term “delay” is not exactly correct.14

Now let’s apply this information to the specific example of a PLL with a frequency
divider in the loop transmission. From the expression for phase shift, we can see the
deleterious effect on loop stability that dividers can introduce. As the divide modulus
increases, the sampling period T increases (assuming a fixed VCO output frequency).
The added negative phase shift thus becomes increasingly worse, degrading phase
margin. As a consequence, loop crossover must be forced to a frequency that is low
compared with 1/T in order to avoid these effects. Since the sampling rate is de-
termined by the output of the dividers and hence of the frequency at which phase
comparisons are made (rather than the output of the VCO), a high division factor can
result in a severe constraint on loop bandwidth, with all of the attendant negative im-
plications for settling speed and noise performance. It is therefore common to choose
loop crossover frequencies that are about a tenth of the phase comparison rate.

Finally, practical dividers are not jitter-free. That is, a noise-free input does not
produce a noise-free output, so one must expect some degradation in the synthesized
output. A common rule of thumb is to accommodate this reality by designing for
a synthesizer output noise power that is 2–3 dB lower than necessary. That rule of
thumb should only be used in the absence of detailed information about the magnitude
of this noise. That said, this extra margin suffices for a great many practical designs.

16.8.2 SYNTHESIZERS WITH STATIC MODULI

Having developed an understanding of the constraints imposed by the presence of a
frequency divider in the loop transmission, we now turn to an examination of various
synthesizer topologies.

14 The magnitude is close to unity, however, for ωT < 1.
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554 CHAPTER 16 SYNTHESIZERS

F IGURE 16.22. Classic PLL frequency synthesizer

A simple PLL frequency synthesizer uses one reference oscillator and two fre-
quency dividers, as shown in Figure 16.22. The loop forces the VCO to a frequency
that makes the inputs to the PLL equal in frequency. Hence, we may write:

fref

N
= fout

M
, (32)

so that
fout = M

N
fref . (33)

Thus, by varying the divide moduli M and N, any rational multiple of the input
reference frequency can be generated. The long-term stability of the output (i.e., the
average frequency) is every bit as good as that of the reference, but stability in the
shortest term (phase noise) depends on the net divide modulus as well as on the prop-
erties of the PLL’s VCO and loop dynamics. Within the PLL’s loop bandwidth, the
output phase noise will be M/N times that of the reference oscillator, since a phase
multiplication necessarily accompanies a frequency multiplication. Outside of the
PLL loop bandwidth, feedback is ineffective, and the output phase noise will there-
fore be that of the PLL’s own VCO. In practice, additional sources of noise (e.g.,
divider and phase detector) will cause the synthesized phase noise to be larger than
the theoretical minimum. For this reason, the design target should be set at a level
that is, say, 2 dB more stringent than required.

Note that the output frequency can be incremented in steps of fref/N and that
this frequency represents the rate at which phase detection is performed in the PLL.
Stability considerations as well as the need to suppress control-voltage ripple force
the use of loop bandwidths that are small compared with fref/N. To obtain the maxi-
mum benefit of the (presumed) low noise reference, however, we would like the PLL
to track that low noise reference over as wide a bandwidth as possible. Additionally,
a high loop bandwidth speeds settling after a change in modulus. These conflicting
requirements have led to the development of alternative architectures.

One simple modification that is occasionally used is shown in Figure 16.23. For
this synthesizer, we may write:

fout = M

NP
fref . (34)
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16.8 FREQUENCY SYNTHESIS 555

F IGURE 16.23. Modified PLL frequency synthesizer

F IGURE 16.24. Integer-N frequency synthesizer

The minimum output frequency increment is evidently fref/NP, but the loop com-
pares phases at fref/N, or P times as fast as the previous architecture. This modifi-
cation therefore improves the loop bandwidth constraint by a factor of P, at the cost
of requiring the PLL to oscillate P times faster and requiring the ÷M counter to run
that much faster as well.

Yet another modification is the integer-N synthesizer of Figure 16.24. In this
widely used synthesizer, the divider logic consists of two counters and a dual-modulus
prescaler (divider). One counter, called the channel spacing (or “swallow”) counter,
is made programmable to enable channel selection. The other counter, which we’ll
call the frame counter (also known as the program counter), is usually fixed and de-
termines the total number of prescaler cycles that comprise the following operation:
The prescaler initially divides by N +1 until the channel spacing counter overflows,
then divides by N until the frame counter overflows; the prescaler modulus is reset
to N + 1, and the cycle repeats.

Let S be the maximum value of the channel spacing counter and F the maximum
value of the frame counter. Then the prescaler divides the VCO output by N + 1 for
S cycles and by N for F − S cycles before repeating. The effective overall divide
modulusM is therefore

M = (N + 1)S + (F − S)N = NF + S. (35)
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F IGURE 16.25. Block diagram for frequency synthesizer
with dithered modulus

The output frequency increment is thus equal to the reference frequency. This ar-
chitecture is the most popular way of implementing the basic block diagram of Fig-
ure 16.22, and it gets its name from the fact that the output frequency is an integer
multiple of the reference frequency.

16.8.3 SYNTHESIZERS WITH DITHERING MODULI

In the synthesizers studied so far, the desired channel spacing directly constrains the
loop bandwidth. An approach that eases this problem is to dither between two divide
moduli to generate channel spacings that are smaller than the reference frequency;
this is shown in Figure 16.25. As an illustration of the basic idea, consider that divid-
ing alternately by (say) 4 then 5 with a 50% duty ratio is equivalent to dividing by 4.5
on average. Changing the percentage of time spent on any one modulus thus changes
the effective (average) modulus, so that the synthesized output can be incremented
by frequency steps smaller than the input reference frequency.

There are many strategies for switching between two moduli that yield the same
average modulus, of course, yet not all of them are equally desirable because the in-
stantaneous frequency is also of importance. The most common strategy is used by
the fractional-N synthesizer, where we divide the VCO output by one modulus (call
it N +1) everyK VCO cycles and by the other modulus (N ) for the rest of the time.
The average divide factor is thus

Neff = (N + 1)
(

1
K

) +N(
1 − 1

K

) = N + 1
K

, (36)

so that
fout = Nefffref = (

N + 1
K

)
fref . (37)

We see that the resolution is determined by K, so that the minimum frequency
increment can be much smaller than the reference frequency. However, unlike the
other synthesizers studied so far, the phase detector operates with inputs whose fre-
quency is much higher than the minimum increment (in fact, the phase detector is
driven with signals of frequency fref), thus providing a much-desired decoupling of
synthesizer frequency resolution from the PLL sampling frequency.
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16.8 FREQUENCY SYNTHESIS 557

To illustrate the operation of this architecture in greater detail, consider the prob-
lem of generating a frequency of 1.57542 GHz with a reference input of 10 MHz.
The integral modulus N therefore equals 157, while the fractional part (1/K) equals
0.542. Thus, we wish to divide by 158 (= N + 1) for 542 out of every 1000 VCO
cycles (for example) and by 157 (= N) the other 458 cycles.

Of the many possible strategies for implementing this desired behavior, the most
common (but not necessarily optimum) one is to increment an accumulator by the
fractional part of the modulus (here 0.542) every cycle. Each time the accumulator
overflows (here defined as equalling or exceeding unity), the divide modulus is set
to N + 1.

The residue after overflow is preserved, and the loop continues to operate as be-
fore. It should be apparent that the resolution is set by the size of the accumulator
and is equal to the reference frequency divided by the total accumulator size. In our
example of a 10-MHz reference, a five-digit BCD accumulator would allow us to
synthesize output steps as small as 100 Hz.

There is one other property of fractional-N synthesizers that needs to be mentioned.
Since the loop operates by periodically switching between two divide moduli, there
is necessarily a periodic modulation of the control voltage and, hence, of the VCO
output frequency. Therefore, even though the output frequency is correct on average,
it may not be on an instantaneous basis, and the output spectrum therefore contains
sidebands. Furthermore, the size and location of the sidebands depend on the partic-
ular moduli as well as on loop parameters.

In practical loops of this kind, compensation for this modulation is generally nec-
essary. Many forms of compensation are enabled by the deterministic nature of the
modulation – we know in advance what the control-line ripple will be. Hence, a
compensating control voltage variation may be injected to offset the undesired mod-
ulation. In practice, this technique (sometimes called API, for analog phase interpo-
lation) is capable of providing between 20 and 40 dB suppression of the sidebands.
Achieving the higher levels of suppression (and beyond) requires intimate knowledge
of the control characteristics of the VCO, including temperature and supply voltage
effects, so details vary considerably from design to design.15

An alternative to this type of cancellation is to employ two identical loops. To
the extent that the two match, both synthesizers will have the same ripple. One may
extract the ripple component (e.g., through a DC blocking capacitor), invert it, and
then inject it into the first loop. On a steady-state basis, this feedforward correction
cancels the ripple component. The drawback is the need to build two loops (thus
doubling complexity, area, and power), assure that they’re identical, and prevent the
two synthesizers from interacting in some undesired way.

One may also eliminate the periodic control voltage ripple altogether by employ-
ing a more sophisticated strategy for switching between the two moduli. For example,
one might randomize this switching to decrease the amplitudes of spurious spectral
components at the expense of increasing the noise floor. A powerful improvement on

15 See e.g. V. Mannassewitsch, Frequency Synthesizers, 3rd ed., Wiley, New York, 1987.
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F IGURE 16.26. Offset synthesizer loop

that strategy is to use delta-sigma techniques to distribute the noise nonuniformly.16

If the spectrum is shaped to push the noise out to frequencies far from the carrier,
subsequent filtering can readily remove the noise. The loop itself takes care of noise
near the carrier, so the overall output can possess exceptional spectral purity.

16.8.4 COMBINATION SYNTHESIZERS

Another approach is to combine the outputs of two or more synthesizers. The addi-
tional degree of freedom so provided can ease some of the performance trade-offs,
but at the expense of increased complexity and power consumption.

The most common expression of this idea is to mix the output of a fixed frequency
source with that of a variable one. The offset synthesizer (Figure 16.26) is one archi-
tecture that implements that particular choice. With this architecture, the loop does
not servo to an equality of output and reference frequencies because the additional
intermediate mixing offsets the equilibrium point. Without an intermediate mixing,
note that the balance point would correspond to a zero frequency output from the
low-pass filter that follows the (first and only) mixer. In the offset loop, then, the
balance point corresponds to a zero frequency output from the final low-pass filter.
Armed with this observation, it is a straightforward matter to determine the relation-
ship between fout and fref .

The low-pass filters selectively eliminate the sum-frequency components arising
from the mixing operations. Hence, we may write

f1 = fout − fref , (38)

f2 = f1 − foffset
= fout − fref − foffset . (39)

Setting f2 equal to zero and solving for the output frequency yields

16 The classic paper on this architecture is by Riley et al., “Sigma-Delta Modulation in Fractional-N
Frequency Synthesis,” IEEE J. Solid-State Circuits, v. 28, May 1993, pp. 553–9. The terms “delta-
sigma” and “sigma-delta” are frequently used interchangeably, but the former nomenclature was
used by the inventors of the concept.
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16.8 FREQUENCY SYNTHESIS 559

fout = fref + foffset . (40)

Thus, the output frequency is the sum of the two input frequencies.
An important advantage of this approach is that the output frequency is not a

multiplied version of a reference. Hence, the phase noise similarly undergoes no
multiplication, making it substantially easier to produce a low–phase noise output
signal. A related result is that any phase or frequency modulation on either of the two
input signals is directly transferred to the output without scaling by a multiplicative
factor. As a consequence of these attributes, the offset synthesizer has found wide
use in transmitters for FM/PM systems, particularly for GSM.

There are other techniques for combining two frequencies to produce a third. For
example, one might use two complete PLLs and combine the outputs with a mixer.
To select out the sum rather than the difference (or vice versa), one would conven-
tionally use a filter. One may also ease the filter’s burden by using a single-sideband
mixer (also known as a complex mixer) to reduce the magnitude of the undesired
component. However, such loops are rarely used in IC implementations owing to the
difficulty of preventing two PLLs from interacting with each other. A common prob-
lem is for the two loops to (attempt to) lock to each other parasitically through sub-
strate coupling or incomplete reverse isolation through amplifiers and other circuitry.
These problems are sufficiently difficult to solve that such dual-loop synthesizers are
rarely used at present.

16.8.5 DIREC T DIGITAL SYNTHESIS

There are some applications that require the ability to change frequencies at a rela-
tively high rate. Examples include certain frequency-hopped spread-spectrum sys-
tems, in which the carrier frequency changes in a pseudorandom pattern.17 Con-
ventional synthesizers may be hard-pressed to provide the fast settling required, so
alternative means have been developed. The fastest-settling synthesizers are open-
loop systems, which can evade the constraints imposed by the stability considerations
of feedback systems (such as PLLs).

One extremely agile type of synthesizer employs direct digital synthesis (DDS).
The basic block diagram of such a synthesizer is shown in Figure 16.27. This synthe-
sizer consists of an accumulator (ACC), a read-only memory (ROM) lookup table
(with integral output register), and a digital-to-analog converter (DAC). The accu-
mulator accepts a frequency command signal (finc) as an input and then increments
its output by this amount every clock cycle. The output therefore increases linearly
until an overflow occurs and the cycle repeats. The output� thus follows a sawtooth
pattern. A useful insight is that phase is the integral of frequency, so the output of
the accumulator is analogous to the integral of the frequency input command. The

17 This strategy is particularly useful in avoiding detection and jamming in military scenarios, for
which it was first developed, because the resulting spectrum looks very much like white noise.
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F IGURE 16.27. Direct digital frequency synthesizer

frequency of the resulting sawtooth pattern is then a function of the clock frequency,
accumulator word length, and input command.

The phase output of the accumulator then drives the address lines of a ROM cosine
lookup table that converts the digital phase values into digital amplitude values.18 Fi-
nally, a DAC converts those values into analog outputs. Generally, a filter follows
the DAC to improve spectral purity to acceptable levels.

The frequency can be changed rapidly (with a latency of only a couple clock
cycles), and in a phase-continuous manner, simply by changing the value of finc.
Furthermore, modulation of both frequency and phase is trivially obtained by adding
the modulation directly in the digital domain to finc and �, respectively. Finally,
even amplitude modulation can be added by using a multiplying DAC (MDAC), in
which the analog output is the product of an analog input (here, the amplitude mod-
ulation) and the digital input from the ROM.19

The chief problem with this type of synthesizer is that the spectral purity is
markedly inferior to that of the PLL-based approaches considered earlier. The num-
ber of bits in the DAC set one bound on the spectral purity (very loosely speaking, the
carrier-to-spurious ratio is about 6 dB per bit), while the number of ROM points per
cycle determines the location of the harmonic components (with a judicious choice
of the n points, the first significant harmonic can be made to occur at n − 1 times
the fundamental). Since the clock will necessarily run much faster than the output
frequency ultimately generated, these types of synthesizers produce signals whose
frequencies are a considerably smaller fraction of a given technology’s ultimate speed
than VCO/PLL-based synthesizers. Frequently, the output of a DDS is upconverted
through mixing with the output of a PLL-based synthesizer (or used as one of the
inputs in an offset synthesizer) to effect a compromise between the two.

18 With a little additional logic, one can easily reduce the amount of ROM required by 75%, since
one quadrant’s worth of values is readily reused to reconstruct an entire period.

19 One may also perform the amplitude modulation in the digital domain simply by multiplying
the ROM output with a digital representation of the desired amplitude modulation before driving
the DAC.
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F IGURE 16.28. Simplified block diagram of MC12181
frequency synthesizer (from the data sheet)

16.9 A DESIGN EX A MPLE

At this point, working through a practical design example is useful for putting all
of the foregoing into context. Suppose that we wish to design a synthesizer whose
output frequency is to be 1 GHz, starting with a reference oscillator of 25 MHz. To
make things easier, we will use an off-the-shelf IC (the MC12181 from Motorola; see
Figure 16.28) that contains a phase detector, charge pump, reference oscillator, and
divider logic. All we have to do is connect a crystal (for the reference oscillator), a
handful of auxiliary passive components, and a VCO – and then design a loop filter
to go with it.

The frequency multiplication factor can be set to any one of sixteen integer values,
from 25 to 40, using four configuration bits. The reference frequency that is multiplied
upward by that programmable factor is controlled by an external crystal connected
to two pins of the chip. Here we encounter the first subtlety: the oscillator inside the
12181 is a traditional Pierce topology that acts much like a common-emitter bipo-
lar amplifier, although the actual circuit is more complicated. An external resistor
of around 50 k2 must be connected across the crystal to establish the bias for the
oscillator. Furthermore, two capacitors are needed to provide additional phase shift
(beyond what the crystal provides) to satisfy the conditions for oscillation. As men-
tioned in the previous chapter, the crystal in a Pierce thus operates at a frequency
somewhat above its series resonance, so that it presents a net inductive impedance
under normal operation. The exact oscillation frequency depends on both the crystal
and the two capacitors, although it is much more sensitive to the crystal’s resonant
frequency (because of the vastly steeper reactance-vs.-frequency curve of crystals,
relative to that of capacitors). Each crystal intended for use in a Pierce is specially
cut to oscillate on frequency only with a specified capacitive load. If absolute fre-
quency accuracy is important (as it almost always is) and if that capacitive load is
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562 CHAPTER 16 SYNTHESIZERS

uncertain, then the capacitors should be variable ones that allow tuning to the correct
frequency.

High-frequency crystals are very thin, making them fragile and difficult to man-
ufacture. The designers of the 12181 know this and consequently specify a 25-MHz
upper frequency, which corresponds to about the maximum frequency at which man-
ufacturers will provide an inexpensive fundamental-mode crystal. Unfortunately,
25 MHz is still high enough that some manufacturers prefer to make an 8.33-MHz
crystal to save cost, expecting the user to operate it on the third overtone. An ordi-
nary oscillator circuit, unfortunately, may satisfy conditions for oscillation at both the
fundamental and overtone frequencies, so a modification must be made to poison the
loop conditions at the fundamental mode frequency lest some very weird and unde-
sirable effects result. The easiest way to accomplish this feat is to add an inductance
in series with one of the capacitors to produce a series resonance at the fundamental.
This resonance produces a short to ground that reduces loop gain to zero, prevent-
ing oscillation at that frequency. To restore proper operation at the third overtone, a
capacitor in shunt with the added inductor would have to be provided. Here, let us
assume that we have procured a 25-MHz fundamental-mode crystal, allowing us to
sidestep that complexity.

The MC12181 immediately divides the crystal oscillator frequency by 8, then feeds
that divided-down signal to the phase detector. The loop thus performs phase com-
parisons at a rate fref/8, or 3.125 MHz in this case. To avoid having to account for
divider delay, we would like to set the loop’s crossover frequency to a small fraction
of the comparison frequency.

Now let us suppose that we use the third-order loop filter of Figure 16.19 to cre-
ate a fourth-order PLL. We need to specify the phase margin and the loop crossover
frequency. We also need to know the VCO gain constant for the particular oscillator
we will be connecting to the synthesizer chip. For purposes of this exercise, suppose
the specified phase margin target is 45◦ and that the loop is to cross over at 100 kHz
(628 krps), well below the 3.125-MHz comparison frequency. Finally, assume that
the VCO happens to have a gain constant of 100 Mrps/V. With that data in hand, we
now follow the procedure presented previously (in Section 16.7).

Step 1. Our specified phase margin target is 45◦, so we conservatively design for
50◦, for which b is about 6.5, where

b = C0

CA + CX . (41)

Step 2. Having chosen a crossover frequency of 628 krps, we can readily find the
time constant corresponding to the loop-stabilizing zero:

ωc ≈
√
b + 1

τz
=

√
b + 1

R0C0
. (42)

For our numbers, τz = R0C0 works out to about 4.4µs.
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F IGURE 16.29. PLL LpFltr design values and Bode plot of loop transmission

Step 3. We next calculate C0 from

C0 = IP

2π

K0

N

b√
b + 1

1

ω2
c

. (43)

For the MC12181, the nominal charge pump current IP is 2 mA. For our design, N
is 320 (remember, there is a built-in divide-by-8 prescaler ahead of the 4-bit pro-
grammable divider) and K0 is 100 Mrps/V, so C0 is about 600 pF.

Step 4. We have R0 = τz/C0 = 7.3 k2, completing the design of the main part of
the loop filter.

Step 5. We now turn to the design of the additional ripple filter. We will arbitrarily
set τx = RXCX to 1/20 of τz, or 220 ns.

Step 6. Having set C0, we now know the sum of CA and CX; here, it is 92 pF.
Arbitrarily setting the capacitances equal yields 46 pF each. The nearest standard
value is 47 pF, which is close enough to the calculated value not to matter. Hav-
ing determined those capacitances, we can now compute the value of RX as about
4.7 k2, which just happens to be a standard 10% value as well.

Design of a third-order loop filter is also facilitated by a number of CAD tools. For
example, National Semiconductor’s PLL LpFltr program will carry out designs for
second- and third-order loop filters and also plot the gain and phase of the loop trans-
mission for the PLL it’s just designed. Because it uses a more sophisticated algorithm
than the simplified procedure outlined here, the values it yields for the loop filter com-
ponents differ a bit from the ones we’ve computed. See Figure 16.29.
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Once we have carried out all of the loop filter calculations, the design of the syn-
thesizer is complete.

PR AC TICAL CONSIDER ATIONS

In the design example just described, we assumed that the VCO gain constant is truly
constant. Furthermore, we implicitly assumed that the VCO’s control voltage range
matches the output voltage swing provided by the MC12181. Finally, we completely
neglected any loading of the charge pump by the control port of the VCO. Not all of
these assumptions are well satisfied in practical designs, so we need to consider what
happens in actual PLLs.

First, a nonconstant VCO gain implies that the loop dynamics will vary as the con-
trol voltage varies. To avoid endangering loop stability at some value(s) of control
voltage, the loop filter must be designed conservatively to accommodate the worst-
case VCO gain. Doing so is quite tedious. Rather than carry out those tedious analyt-
ical solutions, many designers use macromodels of the synthesizer and then perform
Monte Carlo analyses to evaluate the distribution of phase margins that may result.
Fortunately, suitable simulation tools are readily available. For example, Spice works
fine for this purpose as long as a good macromodel is used. A transistor-level model
is generally much too detailed for a practical simulation.

If the output voltage range of the synthesizer chip is not adequate to drive the VCO,
then level shifting and amplification of the charge pump output may be required. In
addition, if the VCO’s control port is not a high impedance then it will load the out-
put of the charge pump. Because such loading may degrade stability and cause spur
generation, buffering may be needed as well. This auxiliary circuitry must have a
high enough bandwidth not to add any appreciable phase lag to the loop transmis-
sion. A good rule of thumb is to make sure that the added circuitry has its first pole at
least a decade above the highest crossover frequency possessed by the loop over the
control voltage range. Also, the noise of the level shifter must be kept low because
any control voltage noise can modulate the VCO output. Within the PLL bandwidth,
this noise can be tracked out. Outside of the loop bandwidth, however, this control
voltage noise will cause the noise floor of the VCO output spectrum to rise.

Finally, the capacitance of the VCO control port needs to be small relative to CX,
for otherwise stability may be endangered once again.

16.10 SUM M ARY

We examined a number of frequency synthesizers in this chapter. Stability consider-
ations force loop crossover frequencies well below the phase comparison frequency,
while phase noise considerations favor large loop bandwidths. Because the output
frequency increment is tightly coupled to the phase comparison frequency in sim-
ple architectures, it is difficult to synthesize frequencies with fine increments while
additionally conferring to the output the good phase noise of the reference. The

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511812941.017
Downloaded from https://www.cambridge.org/core. The Librarian-Seeley Historical Library, on 18 Dec 2019 at 06:19:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511812941.017
https://www.cambridge.org/core
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fractional-N synthesizer decouples the frequency increment from the phase compar-
ison rate, allowing the use of greater loop bandwidths. However, while phase noise is
thereby improved, various spurious components can be generated owing to ripple on
the control voltage. Suppression of these spurious tones is possible either by cancel-
lation of the ripple (since it is deterministic in the case of the classical fractional-N
architecture) or via use of randomization or noise shaping of the spectrum.

16.11 APPENDIX: INEXPENSIVE PLL DESIGN
L AB TUTORIAL

Designing a microwave-frequency PLL synthesizer can involve rather expensive hard-
ware, both for construction as well as testing. It’s possible to convey the essence of
PLL operation to students without incurring such expense by operating at much lower
frequencies.

The particular examples we’ll study use a commercially available PLL chip, the
4046. It is a very inexpensive (∼$0.25–$1) CMOS device that contains two phase
detectors (one XOR and one sequential phase detector) and a VCO. We will consider
the design of a PLL with each of the phase detectors and a couple of loop filters.

Although the 4046 is a relatively slow device (with a maximum oscillation fre-
quency of only about 1 MHz or so), the design procedure we’ll follow is generally
applicable to PLLs whose output frequency is much higher, so what follows isn’t
a purely academic exercise. In any event, the device remains useful for many ap-
plications even today, and it is certainly an exceptionally inexpensive PLL tutorial
lab-on-a-chip.

16.11.1 CHAR AC TERIST ICS OF THE 4046 CMOS PLL

Phase Comparator I

The chip contains two phase detectors. One, called “Phase Comparator I” by its man-
ufacturer, is a simple XOR gate. Recall from the section on phase detectors that an
XOR has a gain constant given by

KD = VDD/π V/rad. (44)

Throughout these design examples, we will use a power supply voltage of 5 V, so the
specific numerical value for our designs will be

KD = VDD/π ≈ 1.59 V/rad. (45)

Phase Comparator II

The chip’s other phase comparator is a sequential phase detector that operates only
on the positive edges of the input signals. It has two distinct regions of behavior de-
pending on which input is ahead.
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566 CHAPTER 16 SYNTHESIZERS

F IGURE 16.30. Characteristic of Phase Comparator II

If the signal input edge precedes the VCO feedback edge by up to one period, the
output of the phase detector is set high (that is, to VDD) by the signal edge and sent
into a high-impedance state by the feedback edge. (We’ll see momentarily why it
can be advantageous to have this high-impedance state.) If, however, the signal input
edge lags the VCO output by up to one period, then the output is set low (to ground)
by the VCO edge and sent into a high-impedance state by the signal input edge. And
that’s all there is to this phase detector.

The high-impedance state allows one to reduce the amount of ripple on the control
line when in the locked state. Hence, the amount of unintended phase and frequency
modulation of the VCO during lock can be much smaller than when other detectors
are used. It should also be clear that a PLL that uses this sequential phase detector
forces a zero phase difference in lock, in contrast with the quadrature condition that
results with an XOR detector.

The other bit of information we need in order to carry out a design is the phase
detector gain constant. Unfortunately, this particular detector does not have a par-
ticularly well-defined KD because the output voltage in the high-impedance state
depends on external elements, rather than on the phase error alone. A good solution
to this problem is to remove the uncertainty by forcing the output voltage to VDD/2
during the high-impedance condition (e.g., with a simple resistive divider). With this
modification, KD can be determined.

For phase errors of less than one period (signal input leading), the average out-
put voltage will be linearly proportional to the phase error. The minimum output is
VDD/2 for zero phase error and is a maximum value of VDD with a 2π phase error.
The minimum output is determined by the added resistive divider, while the maxi-
mum output is simply controlled by the supply voltage.

Similarly, in the case of a lagging input signal, the average output voltage will be
VDD/2 for zero phase error and zero volts for a 2π phase error. Hence, the phase
detector characteristic looks as shown in Figure 16.30. After solving Schrödinger’s
equation with appropriate boundary conditions, we find that the slope of the line is:
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KD = VDD/4π V/rad. (46)

For our assumed VDD of 5 V, the phase detector gain is approximately 0.40 V/rad.

VCO Characteristics

The VCO used in the 4046 is reminiscent of the emitter-coupled multivibrator used
in many bipolar VCOs. Here, an external capacitor is alternately charged one way,
then the other, by a current source. A simple differential comparator switches the po-
larity of the current source when the capacitor voltage exceeds some trip point. The
feedback polarity is chosen to keep the circuit in oscillation.

The main VCO output is a square wave, derived from one output of the differ-
ential comparator. An approximation to a triangle wave is also available across the
capacitor terminals. The triangle wave signal is useful if a sine-wave output is de-
sired, since either a filtering network or nonlinear waveshaper can be used to convert
the triangle wave into some semblance of a sine wave.

Frequency control is provided through adjustment of the capacitive charging cur-
rent. Both the center frequency and VCO gain can be adjusted independently by
choosing two external resistors. One resistor,R2, sets the charging current (and hence
the VCO frequency) in the absence of an input, thus biasing the output frequency-
vs.-control voltage curve. The other resistor, R1, sets the transconductance of a
common-source stage and therefore adjusts the VCO gain.

Conspicuously absent from the data sheets, however, is an explicit formula for
relating the VCO frequency to the various external component values. A quasi-
empirical (and highly approximate) formula that provides this crucial bit of informa-
tion is as follows:20

ωosc ≈
2

(
VC − 1

R1
+ 4

R2

)
C

. (47)

From this formula, the VCO gain constant is easily determined by taking the deriva-
tive with respect to control voltage:

K0 ≈ 2

R1C
rad /s/V. (48)

Miscellany

Notice that the phase detector gains are functions of the supply voltage. Additionally,
the VCO frequency is a function of VDD as well. Hence, if the supply voltage varies
then so will the loop dynamics, for example. If power supply variations (including
noise) are not to influence loop behavior, it is necessary to provide a well-regulated

20 This formula is the result of measurements on only one particular device with a 5-V power supply.
Your mileage may vary, especially if you use resistance values below about 50–100 k2 (the VCO
control function gets quite nonlinear at higher currents). Caveat nerdus.
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568 CHAPTER 16 SYNTHESIZERS

F IGURE 16.31. PLL with Phase Comparator II

and well-filtered supply. As a convenience, the 4046 includes a 5.2-V (plus or minus
about 15%) zener diode that may be used for this purpose.

The 4046 also includes a simple source follower to buffer the control voltage. This
feature is handy for those applications in which the PLL is being used as an FM de-
modulator, for example. The demodulated signal is equal to the VCO control voltage,
so a buffered version of this control signal is convenient for driving external circuitry.

Finally, the chip includes an “inhibit” control signal that shuts off the oscillator
and source follower to reduce chip dissipation to the 100-µW range (even less if the
signal input is a constant logic level).

16.11.2 DESIGN EX A MPLES

Second-Order PLL with Passive RC Loop Filter and PD II

We know that active filters can provide superior performance, particularly with regard
to steady-state error. However, there are some applications for which fully passive
filters are adequate and thus for which active filters are simply devices that consume
additional area and power.

Suppose we use Phase Comparator II and a simple RC low-pass loop filter (with-
out a loop-stabilizing zero). Design a circuit to meet the following specifications.

crossover frequency: 1 krad /s
phase margin: 45◦

center frequency: 20 kHz

Solution. First, we recognize that the high-impedance characteristic of this phase
detector requires the use of the resistive divider, as mentioned earlier. Then, to pro-
vide the ability to drive an arbitrary RC network, it is advisable to add a buffer. The
resulting PLL appears as shown in Figure 16.31.

The value of R is not particularly critical, but it should be large enough to avoid
excessive loading of the phase detector’s weak outputs. Values on the order of tens
of kilohms are acceptable. Note that the loop transmission is

−L(s) = KDHf (s)K0

s
= VDD

4π
· 1

sR3C1 + 1
· K0

s
. (49)
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16.11 APPENDIX: INEXPENSIVE PLL DESIGN L AB TUTORIAL 569

The phase margin specification requires us to choose the pole frequency of the loop
filter equal to the desired crossover frequency, since we do not have a loop-stabilizing
zero. Having made that choice, we adjust the VCO gain through selection of R1C.

Finally, we choose R2 to satisfy the center frequency specification.
Carrying out these steps – and being mindful that resistance values should be no

lower than about 50 k2 to validate the quasi-empirical VCO equation – yields the
following sequence of computations, half-truths, and outright lies.

1. As already stated, the phase margin specification requires a loop filter time con-
stant of 1 ms. Somewhat arbitrarily choose R3 = 100 k2, so that C1 = 0.01µF.
Both values happen to correspond to standard component values.

2. Because the crossover frequency must be 1 krps while R3C1 and the phase detec-
tor gain constant are both known,K0 must be chosen to yield the desired crossover
frequency:

|L(jωc)| = KD · 1√
2

· K0

103 rps
= 1 �⇒ R1C = 0.582 ms. (50)

Arbitrarily choose the capacitor equal to a standard value, 0.001µF, so that the re-
quired resistance is 582 k2 (not quite a standard value, but close to 560 k2, which
is). Just for reference, the corresponding VCO gain constant is about 3.56 krps/V.

3. Now select R2 to yield the desired center frequency (here defined as the VCO
frequency that results with a control voltage of VDD/2) with the VCO capacitor
chosen in step 2. From the quasi-empirical VCO formula, we find that R2 should
be approximately 67.3 k2 (the closest standard 10% value is 68 k2). Because of
variability from device to device, it is advisable to make R2 variable over some
range if the VCO center frequency must be accurately set.

That completes the design.
With the parameters as chosen, let us compute the VCO tuning range, the steady-

state phase error throughout this range, and the lock range (something we haven’t
explicitly discussed before). The lock range is defined here as the range over which
we may vary the input frequency before the loop loses lock.

For the frequency tuning range, we again use the VCO formula. With the chosen
values, the VCO can tune about 1 kHz above and below the center frequency. This
range sets an upper bound on the overall PLL frequency range.

Because of the passive loop filter, the static phase error will not be zero in general
since a nonzero phase detector output is required to provide a nonzero VCO control
voltage.21 If we now assume that the VCO gain constant is, well, constant, then we
can compute precisely how much control voltage change is required to adjust the fre-
quency over the range computed in step 1. If the corresponding phase error exceeds
the ±2π span of the phase detector, the loop will be unable to maintain lock over the
entire ±1-kHz frequency range.

21 Here, zero control voltage is interpreted as a deviation from the center value of VDD/2.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511812941.017
Downloaded from https://www.cambridge.org/core. The Librarian-Seeley Historical Library, on 18 Dec 2019 at 06:19:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511812941.017
https://www.cambridge.org/core


570 CHAPTER 16 SYNTHESIZERS

The voltage necessary to move the output frequency is found from K0 and is re-
lated to the phase detector gain constant and the phase error as follows:

&Vctrl = &ω

K0
= KD�error . (51)

Using our component values, the phase error is predicted to be about 4.4 rad at 1 kHz
off the center frequency. Actual measurements typically reveal that, at the lower fre-
quency limit (1 kHz below center), the phase error is about 4.3 rad.

At 1 kHz above center, though, the typical measured phase error is actually about
5.9 rad. The reason for this rather significant discrepancy is that the VCO frequency
isn’t quite linearly related to the control voltage at higher control voltages. It turns out
that a larger-than-expected control voltage is required to reach the upper frequency
limit. Hence, a larger phase detector output is required and so a larger corresponding
phase error results. Since angles of both 4.3 rad and 5.9 rad are still within the phase
detector’s linear range, however, it is the VCO’s limited tuning range – rather than
the phase detector’s characteristics – that determines the overall PLL’s lock range in
this particular case.

Second-Order PLL with Passive RC Loop Filter and PD I

It is instructive to re-do the previous design with the XOR phase detector replacing
the sequential phase detector. Because the XOR has four times the gain of PD II,
the value of K0 must be adjusted downward by this factor to maintain the crossover
frequency. We may adjustK0 by increasingR1 to four times its previous value. Main-
taining a 20-kHz center frequency requires that R2 be adjusted as well (downward).
Because the XOR does not have a high-impedance output state, the resistive divider
and buffer may be eliminated.

Once these changes have been made, the locked loop displays dynamics that are
similar to those observed with the previous design. However, the VCO modifications
alter the VCO tuning range and, therefore, the corresponding phase error:

&Vctrl = &ω

K0
= KD�error �⇒ �error = &ω

K0KD
. (52)

Because R1 has been changed upward, the VCO tuning range has decreased to a
fourth of its previous value while the product of phase detector gain and VCO gain
remains unchanged. Now, the XOR is linear over only a fourth of the phase error
span of the sequential phase detector. Hence, for a given crossover frequency and
damping, use of the XOR phase detector can cause the loop to possess a narrower
lock range.

It is left as an exercise for the reader to carry out actual numerical calculations to
verify these assertions. (In this case, it turns out that the VCO tuning range is still
the limiting factor, but just barely.)

As a few final notes on the use of the XOR, it should be mentioned that this type
of detector is sensitive to the duty cycle of the input signals. The ideal triangular
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16.11 APPENDIX: INEXPENSIVE PLL DESIGN L AB TUTORIAL 571

F IGURE 16.32. PLL with active loop filter (defective)

characteristic of the XOR phase detector is obtained only when both inputs possess
a 50% duty cycle. If there are any asymmetries, the average output will no longer
reach both supply rails at the extremes of phase error. The sequential phase detector
is an edge-triggered device and so does not suffer this duty-cycle sensitivity.

Another important note is to reiterate that the XOR phase detector allows locking
onto harmonics of the input, since the action of the XOR is equivalent to multiplying
two sine waves together. The rich harmonic content of square waves provides many
opportunities for a coincidence in frequency between components of the input and
VCO output, permitting lock to occur. If harmonic locking is undesirable, then use
of an XOR phase detector may cause some problems.

Second-Order PLL with Active RC Loop Filter and PD II

Now let’s consider replacing the simple passive RC loop filter with an active filter.
Let this filter provide a pole at the origin to drive the steady-state phase error to zero.
Additionally, assume that we want to achieve precisely the same crossover frequency
and phase margin as in the earlier design, but with the additional requirement that
the loop maintain lock at least ±10 kHz away from the center frequency.

To satisfy the phase margin requirement, we need to provide a loop-stabilizing zero
to offset the negative phase contribution of our loop filter’s integrator. Our first-pass
PLL then should look something like Figure 16.32 (VCO components not shown).

Why “first-pass”? The circuit has a small embarrassment: if the input is ahead of
the VCO, the phase detector provides a positive output. The inverting loop filter then
drives the VCO toward a lower frequency, exacerbating the phase error; we have a
positive feedback loop. To fix this problem, we must provide an additional inversion
in the control line.

There is another problem with the circuit: The op-amp’s noninverting terminal is
grounded. The implication is that the output of the loop filter can never integrate up,
since the minimum output of the phase detector is ground. To fix this last (known)
problem, we need to connect the noninverting terminal to VDD/2, as shown in Fig-
ure 16.33. Now we can set about determining the various component values.

First, note that our loop transmission is as follows:

−L(s) = KDHf (s)K0

s
= VDD

4π
· sR4C1 + 1

sR3C1
· K0

s
. (53)
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572 CHAPTER 16 SYNTHESIZERS

F IGURE 16.33. PLL with active loop filter (fixed)

In order to achieve a 45◦ phase margin, the zero must be placed at crossover, since
the two poles at the origin contribute a total phase shift of −180◦. Hence, R4C1 must
equal 1 ms. Choosing values with the same moderately constrained arbitrariness as
in the passive filter case, we let R4 = 100 k2, so that the value of C1 is 0.01µF.

Next, note that the loop transmission magnitude is controlled by both R3 and K0,
so we would have an underconstrained problem if achieving a specified crossover fre-
quency were the only consideration. Since there is a requirement on the lock range
of the loop, however, there is an additional constraint that allows us to fix both R3

and K0. Specifically, the control voltage has an effect on VCO frequency only from
about 1.2 to 5 volts, according to the empirical formula.22 The center of this voltage
range is 3.1 V, not the 2.5 V implicitly assumed. If we continue to use 2.5 V as our
definition of center, though, the lock range will not be symmetrical about 20 kHz.
But since there is no specification about a symmetrical lock range, we will remain
consistent in our use of 2.5 V as the control voltage that corresponds to the center
frequency of the VCO.

With that choice, the lower frequency limit is smaller than the higher one. To
satisfy our 10-kHz specification, we must be able to change the VCO frequency by
10 kHz (or more) with the control voltage at its minimum value of 1.2 V, correspond-
ing to a deviation of 1.3 V from the center. Hence, we require

K0 >
2π · 10 kHz

1.3 V
≈ 4.8 × 104 rps/V. (54)

Maintaining a center frequency of 20 kHz with this VCO gain constant leads to the
following choices for the three VCO components:

C = 0.001µF, R1 = 42 k2, R2 = 130 k2.

Here, the closest standard (10% tolerance) resistors for R1 and R2 are 39 k2 and
120 k2, respectively.

Finally, having determined everything else, the crossover frequency requirement
fixes the value of the op-amp input resistor:

22 The control voltage term is not allowed to take on a negative value in the formula.
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R3C1 = KDK0

ω2
c

· √
2 ≈ 27.7 ms. (55)

Therefore, R3 equals 2.8 megohms (2.7 meg is the closest standard value), and the
design is complete.

Note that, for this design, it is definitely the VCO tuning range (and not the phase
detector characteristics) that determines the lock range. With a loop filter that pro-
vides an integration, any steady-state VCO control voltage can be obtained with zero
phase error. As a result, the phase detector characteristics are irrelevant with respect
to the steady-state lock range.

16.11.3 SUM M ARY

The design examples presented in this lab exercise are representative of typical prac-
tice, although they are a tiny subclass of the vast universe of possible PLL applications.
The frequencies involved here are below 1 MHz, yet the basic principles remain valid
at microwave frequencies. The frequency reduction (by a factor of 3–4) enables stu-
dents to gain experience with PLLs without the expense and fixturing headaches that
afflict gigahertz-frequency PLL design.
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C H A P T E R S E V E N T E E N

OSCILL ATOR PHASE NOISE

17.1 INTRODUC TION

We asserted in Chapter 15 that tuned oscillators produce outputs with higher spectral
purity than relaxation oscillators. One straightforward reason is simply that a high-Q
resonator attenuates spectral components removed from the center frequency. As a
consequence, distortion is suppressed, and the waveform of a well-designed tuned
oscillator is typically sinusoidal to an excellent approximation.

In addition to suppressing distortion products, a resonator also attenuates spectral
components contributed by sources such as the thermal noise associated with finite
resonator Q, or by the active element(s) present in all oscillators. Because amplitude
fluctuations are usually greatly attenuated as a result of the amplitude stabilization
mechanisms present in every practical oscillator, phase noise generally dominates –
at least at frequencies not far removed from the carrier. Thus, even though it is pos-
sible to design oscillators in which amplitude noise is significant, we focus primarily
on phase noise here. We show later that a simple modification of the theory allows
for accommodation of amplitude noise as well, permitting the accurate computation
of output spectrum at frequencies well removed from the carrier.

Aside from aesthetics, the reason we care about phase noise is to minimize the
problem of reciprocal mixing. If a superheterodyne receiver’s local oscillator is com-
pletely noise-free, then two closely spaced RF signals will simply translate downward
in frequency together. However, the local oscillator spectrum is not an impulse and
so, to be realistic, we must evaluate the consequences of an impure LO spectrum.

In Figure 17.1, two RF signals heterodyne with the LO to produce a pair of IF sig-
nals. The desired RF signal is considerably weaker than the signal at an adjacent
channel. Assuming (as is typical) that the front-end filter does not have sufficient
resolution to perform channel filtering, downconversion preserves the relative ampli-
tudes of the two RF signals in translation to the IF. Because the LO spectrum is of
nonzero width, the downconverted RF signals also have width. The tails of the LO
spectrum act as parasitic LOs over a continuum of frequencies. Reciprocal mixing
is the heterodyning of RF signals with those unwanted components. As is evident

574
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17.1 INTRODUC TION 575

F IGURE 17.1. Illustration of reciprocal mixing due to LO phase noise

from the figure, reciprocal mixing causes the undesired signal to overwhelm the de-
sired signal in this particular case. Reduction of LO phase noise is essential in order
to minimize the occurrence and severity of reciprocal mixing.

The theoretical and practical importance of oscillators has motivated the develop-
ment of numerous treatments of phase noise. The sheer number of publications on
this topic underscores the importance attached to it. At the same time, many of these
disagree on rather fundamental points, and it may be argued that the abundance of
such conflicting research quietly testifies to the inadequacies of many of those treat-
ments. Complicating the search for a suitable theory is that noise in a circuit may
undergo frequency translations before ultimately becoming oscillator phase noise.
These translations are often attributed to the presence of obvious nonlinearities in
practical oscillators. The simplest theories nevertheless simply ignore the nonlinear-
ities altogether and frequently ignore the possibility of time variation as well. Such
linear, time-invariant (LTI) theories manage to provide important qualitative design
insights, but these theories are understandably limited in their predictive power. Chief
among the deficiencies of an LTI theory is that frequency translations are necessarily
disallowed, begging the question of how the (nearly) symmetrical sidebands observed
in practical oscillators can arise.

Despite this complication, and despite the obvious presence of nonlinearities nec-
essary for amplitude stabilization, the noise-to-phase transfer function of oscillators
nonetheless may be treated as linear. However, a quantitative understanding of the
frequency translation process requires abandonment of the principle of time invari-
ance implicitly assumed in most theories of phase noise. In addition to providing a
quantitative reconciliation between theory and measurement, the time-varying phase
noise model presented in this chapter identifies an important symmetry principle,
which may be exploited to suppress the upconversion of 1/f noise into close-in phase
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576 CHAPTER 17 OSCILL ATOR PHASE NOISE

F IGURE 17.2. “Perfectly efficient” RLC oscillator

noise. At the same time, it provides an explicit accommodation of cyclostationary ef-
fects – which are significant in many practical oscillators – and of amplitude-to-phase
(AM–PM) conversion as well. These insights allow a reinterpretation of why certain
topologies, such as the venerable Colpitts oscillator, exhibit good performance. Per-
haps more important, the theory informs design, suggesting novel optimizations of
well-known oscillators and even the invention of new circuit topologies. We examine
some tuned LC oscillator circuit examples to reinforce the theoretical considerations
developed, concluding with a brief consideration of practical simulation issues.

We first need to revisit how one evaluates whether a system is linear or time-
invariant. This question rarely arises in the analysis of most systems, and perhaps
more than a few engineers have forgotten how to tell the difference. Indeed, we find
that we must even take care to define explicitly what is meant by the word system.
We then identify some very general trade-offs among key parameters, such as power
dissipation, oscillation frequency, resonator Q, and circuit noise power. Then, we
study these trade-offs qualitatively in a hypothetical ideal oscillator in which linear-
ity of the noise-to-phase transfer function is assumed, allowing characterization by
an impulse response.

Although the assumption of linearity is defensible, we shall see that time invari-
ance fails to hold even in this simple case. That is, oscillators are linear, time-varying
(LTV) systems, where system is defined by the noise-to-phase transfer characteris-
tic. Fortunately, complete characterization by an impulse response depends only on
linearity, not time invariance. By studying the impulse response, we discover that
periodic time variation leads to frequency translation of device noise to produce the
phase noise spectra exhibited by real oscillators. In particular, the upconversion of
1/f noise into close-in phase noise is seen to depend on symmetry properties that
are potentially controllable by the designer. Additionally, the same treatment easily
subsumes the cyclostationarity of noise generators. As we’ll see, that accommoda-
tion explains why class-C operation of active elements within an oscillator can be
beneficial. Illustrative circuit examples reinforce key insights of the LTV model.

17.2 GENER AL CONSIDER ATIONS

Perhaps the simplest abstraction of an oscillator that still retains some connection to
the real world is a combination of a lossy resonator and an energy restoration element.
The latter precisely compensates for the tank loss to enable a constant-amplitude os-
cillation. To simplify matters, assume that the energy restorer is noiseless (see Fig-
ure 17.2). The tank resistance is therefore the only noisy element in this model.
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17.2 GENER AL CONSIDER ATIONS 577

In order to gain some useful design insight, first compute the signal energy stored
in the tank:

Esig = 1
2CV

2
pk, (1)

so that the mean-square signal (carrier) voltage is

V 2
sig = Esig

C
, (2)

where we have assumed a sinusoidal waveform.
The total mean-square noise voltage is found by integrating the resistor’s thermal

noise density over the noise bandwidth of the RLC resonator:

V 2
n = 4kTR

∫ ∞

0

∣∣∣∣Z(f )R

∣∣∣∣
2

df = 4kTR · 1

4RC
= kT

C
. (3)

Combining Eqn. 2 and Eqn. 3, we obtain a noise-to-carrier ratio (the reason for this
“upside-down” ratio is simply one of convention):

N

S
= V 2

n

V 2
sig

= kT

Esig
. (4)

Sensibly enough, one therefore needs to maximize the signal levels to minimize the
noise-to-carrier ratio.

We may bring power consumption and resonator Q explicitly into consideration
by noting thatQ can be defined generally as proportional to the energy stored divided
by the energy dissipated:

Q = ω0Esig

Pdiss
. (5)

Hence, we may write
N

S
= ω0kT

QPdiss
. (6)

The power consumed by this model oscillator is simply equal to Pdiss, the amount
dissipated by the tank loss. The noise-to-carrier ratio is here inversely proportional
to the product of resonator Q and the power consumed, and it is directly propor-
tional to the oscillation frequency. This set of relationships still holds approximately
for many real oscillators, and it explains the traditional obsession of engineers with
maximizing resonator Q, for example.

Other important design criteria become evident by coupling these considerations
with additional knowledge of practical oscillators. One is that oscillators generally
operate in one of two regimes that are distinguished by their differing dependence of
output amplitude on bias current (see Figure 17.3), so that one may write

Vsig = IBIASR, (7)

where R is a constant of proportionality with the dimensions of resistance. This con-
stant, in turn, is proportional to the equivalent parallel tank resistance, so that
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578 CHAPTER 17 OSCILL ATOR PHASE NOISE

F IGURE 17.3. Oscillator operating regimes

Vsig ∝ IBIASRtank, (8)

implying that the carrier power may be expressed as

Psig ∝ I 2
BIASRtank. (9)

The mean-square noise voltage has already been computed in terms of the tank
capacitance as

V 2
n = kT

C
, (10)

but it may also be expressed in terms of the tank inductance:

V 2
n = kT

C
= kT

1/ω2
0L

= kTω2
0L. (11)

An alternative expression for the noise-to-carrier ratio in the current-limited regime
is therefore

N

C
∝ kTω2

0L

I 2
BIASRtank

. (12)

Assuming operation at a fixed supply voltage, a constraint on power consump-
tion implies an upper bound on the bias current. Of the remaining free parameters,
then, only the tank inductance and resistance may be practically varied to minimize
the N/C ratio. That is, optimization of such an oscillator corresponds to minimizing
L/Rtank. In many treatments, maximizing tank inductance is offered as a prescrip-
tion for optimization. However, we see that a more valid objective is to minimize
L/Rtank.

1 Since generally the resistance is itself a function of inductance, it follows
that identifying (and then achieving) this minimum is not always trivial. An addi-
tional consideration is that, below a certain minimum inductance, oscillation may

1 D. Ham and A. Hajimiri, “Concepts and Methods in Optimization of Integrated LC VCOs,” IEEE
J. Solid-State Circuits, June 2001.
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17.3 DETAILED CONSIDER ATIONS: PHASE NOISE 579

cease. Hence, the optimization prescription here presumes oscillation – and in a
regime where the output amplitude is proportional to the bias current.

17.3 DETAILED CONSIDER ATIONS: PHASE NOISE

To augment the qualitative insights of the foregoing analysis, let us now determine
the actual output spectrum of the ideal oscillator.

Assume that the output in Figure 17.2 is the voltage across the tank, as shown. By
postulate, the only source of noise is the white thermal noise of the tank conductance,
which we represent as a current source across the tank with a mean-square spectral
density of

i2
n

�f
= 4kTG. (13)

This current noise becomes voltage noise when multiplied by the effective imped-
ance facing the current source. In computing this impedance, however, it is important
to recognize that the energy restoration element must contribute an average effective
negative resistance that precisely cancels the positive resistance of the tank. Hence,
the net result is that the effective impedance seen by the noise current source is sim-
ply that of a perfectly lossless LC network.

For a relatively small offset frequency �ω from the center frequency ω0, the im-
pedance of an LC tank may be approximated by

Z(ω0 +�ω) ≈ −j · ω0L

2(�ω/ω0)
. (14)

We may write the impedance in a more useful form by incorporating an expression
for the unloaded tank Q:

Q = R

ω0L
= 1

ω0GL
. (15)

Solving Eqn. 15 for L and substituting into Eqn. 14 yields

|Z(ω0 +�ω| ≈ 1

G
· ω0

2Q�ω
. (16)

Thus, we have traded an explicit dependence on inductance for a dependence on Q

and G.
Next, multiply the spectral density of the mean-square noise current by the squared

magnitude of the tank impedance to obtain the spectral density of the mean-square
noise voltage:

v2
n

�f
= i2

n

�f
· |Z|2 = 4kTR

(
ω0

2Q�ω

)2

. (17)

The power spectral density of the output noise is frequency-dependent because of the
filtering action of the tank, falling as the inverse square of the offset frequency. This
1/f 2 behavior simply reflects the facts that (a) the voltage frequency response of an
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580 CHAPTER 17 OSCILL ATOR PHASE NOISE

RLC tank rolls off as 1/f to either side of the center frequency and (b) power is pro-
portional to the square of voltage. Note also that an increase in tank Q reduces the
noise density (all other parameters held constant), underscoring once again the value
of increasing resonator Q.

In our idealized LC model, thermal noise causes fluctuations in both amplitude
and phase, and Eqn. 17 accounts for both. The equipartition theorem of thermody-
namics tells us that, if there were no amplitude limiting, noise energy would split
equally into amplitude and phase noise domains. The amplitude-limiting mecha-
nisms present in all practical oscillators remove most of the amplitude noise, leaving
us with about half the noise given by Eqn. 17.

Additionally, we are often more interested in how large this noise is relative to the
carrier, rather than its absolute value. It is consequently traditional to normalize the
mean-square noise voltage density to the mean-square carrier voltage and then report
the ratio in decibels, thereby explaining the “upside down” ratios presented previ-
ously. Performing this normalization yields the following equation for phase noise:

L{�ω} = 10 log

[
2kT

Psig
·
(

ω0

2Q�ω

)2]
. (18)

The units of phase noise are thus proportional to the log of a density. Specifically,
they are commonly expressed as “decibels below the carrier per hertz” (dBc/Hz),
specified at a particular offset frequency �ω from the carrier frequency ω0. For ex-
ample, one might speak of a 2-GHz oscillator’s phase noise as “−110 dBc/Hz at a
100-kHz offset.” Purists may complain that the “per hertz” actually applies to the
argument of the log, not to the log itself; doubling the measurement bandwidth does
not double the decibel quantity. Nevertheless, as lacking in rigor as “dBc/Hz” is, it
is a unit in common usage.

Equation 18 tells us that phase noise (at a given offset) improves as both the car-
rier power and Q increase, as predicted earlier. These dependencies make sense.
Increasing the signal power improves the ratio simply because the thermal noise is
fixed, while increasing Q improves the ratio quadratically because the tank’s imped-
ance falls off as 1/Q�ω.

Because many simplifying assumptions have led us to this point, it should not be
surprising that there are some significant differences between the spectrum predicted
by Eqn. 18 and what one typically measures in practice. For example, although real
spectra do possess a region where the observed density is proportional to 1/(�ω)2,
the magnitudes are typically quite a bit larger than predicted by Eqn. 18 because there
are additional important noise sources besides tank loss. For example, any physical
implementation of an energy restorer will be noisy. Furthermore, measured spec-
tra eventually flatten out for large frequency offsets, rather than continuing to drop
quadratically. Such a floor may be due to the noise associated with any active ele-
ments (such as buffers) placed between the tank and the outside world, or it can
even reflect limitations in the measurement instrumentation itself. Even if the output
were taken directly from the tank, any resistance in series with either the inductor
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17.3 DETAILED CONSIDER ATIONS: PHASE NOISE 581

F IGURE 17.4. Phase noise: Leeson versus Eqn. 18

or capacitor would impose a bound on the amount of filtering provided by the tank
at large frequency offsets and thus ultimately produce a noise floor. Finally, there is
almost always a 1/(�ω)3 region at small offsets.

A modification to Eqn. 18 provides a means to account for these discrepancies:

L{�ω} = 10 log

[
2FkT

Psig

{
1 +

(
ω0

2Q�ω

)2}(
1 + �ω1/f 3

|�ω|
)]

. (19)

These modifications, due to Leeson, consist of a factor F to account for the increased
noise in the 1/(�ω)2 region, an additive factor of unity (inside the braces) to account
for the noise floor, and a multiplicative factor (the term in the second set of paren-
theses) to provide a 1/|�ω|3 behavior at sufficiently small offset frequencies.2 With
these modifications, the phase noise spectrum appears as in Figure 17.4.

The Leeson model is extremely valuable for the intuitive insights it may provide
about oscillators. However, it is important to note that the factor F is an empirical
fitting parameter and therefore must be determined from measurements, diminishing
the predictive power of the phase noise equation. Furthermore, the model asserts that
�ω1/f 3 , the boundary between the 1/(�ω)2 and 1/|�ω|3 regions, is precisely equal
to the 1/f corner of device noise. However, measurements frequently show no such
equality, and thus one must generally treat �ω1/f 3 as an empirical fitting parameter
as well. Also it is not clear what the corner frequency will be in the presence of more
than one noise source, each with an individual 1/f noise contribution (and generally
differing 1/f corner frequencies). Finally, the frequency at which the noise flattens
out is not always equal to half the resonator bandwidth, ω0/2Q.

Both the ideal oscillator model and the Leeson model suggest that increasing res-
onator Q and signal power are ways to reduce phase noise. The Leeson model addi-
tionally introduces the factor F, but without knowing precisely what it depends on,

2 D. B. Leeson, “A Simple Model of Feedback Oscillator Noise Spectrum,” Proc. IEEE, v. 54, Feb-
ruary 1966, pp. 329–30.
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582 CHAPTER 17 OSCILL ATOR PHASE NOISE

it is difficult to identify specific ways to reduce it. The same problem exists with
�ω1/f 3 as well. Finally, blind application of these models has periodically led to
earnest but misguided attempts by some designers to use active circuits to boost Q.

Sadly, increases in Q through such means are necessarily accompanied by increases
in F as well because active devices contribute noise of their own, and the anticipated
improvements in phase noise fail to materialize. Again, the lack of analytical ex-
pressions for F can obscure this conclusion, and one continues to encounter various
doomed oscillator designs based on the notion of active Q boosting.

That neither Eqn. 18 nor Eqn. 19 can make quantitative predictions about phase
noise is an indication that at least some of the assumptions used in the derivations
are invalid, despite their apparent reasonableness. To develop a theory that does not
possess the enumerated deficiencies, we need to revisit, and perhaps revise, these
assumptions.

17.4 THE ROLES OF L INEARITY AND TIME VARIATION
IN PHASE NOISE

The preceding derivations have all assumed linearity and time invariance. Let’s re-
consider each of these assumptions in turn.

Nonlinearity is clearly a fundamental property of all real oscillators, as its pres-
ence is necessary for amplitude limiting. It seems entirely reasonable, then, to try to
explain certain observations as a consequence of nonlinear behavior. One of these
observations is that a single-frequency sinusoidal disturbance injected into an os-
cillator gives rise to two equal-amplitude sidebands, symmetrically disposed about
the carrier.3 Since LTI systems cannot perform frequency translation and nonlinear
systems can, nonlinear mixing has often been proposed to explain phase noise. As
we shall see momentarily, amplitude-control nonlinearities certainly do affect phase
noise – but only indirectly, by controlling the detailed shape of the output waveform.

An important insight is that disturbances are just that: perturbations superimposed
on the main oscillation. They will always be much smaller in magnitude than the
carrier in any oscillator worth using or analyzing. Thus, if a certain amount of in-
jected noise produces a certain phase disturbance, we ought to expect that doubling
the injected noise will double the disturbance. Linearity would therefore appear to be
a reasonable (and experimentally testable) assumption as far as the noise-to-phase
transfer function is concerned. It is therefore particularly important to keep in mind
that, when assessing linearity, it is essential to identify explicitly the input–output
variables. It is also important to recognize that this assumption of linearity is not
equivalent to a neglect of the nonlinear behavior of the active devices. Because it is
a linearization around the steady-state solution, it therefore already takes the effect
of device nonlinearity into account. It is precisely analogous to amplifier analysis,

3 B. Razavi, “A Study of Phase Noise in CMOS Oscillators,” IEEE J. Solid-State Circuits, v. 31, no.
3, March 1996.
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F IGURE 17.5. LC oscillator excited by current pulse

F IGURE 17.6. Impulse responses of LC tank

where small-signal gains are defined around a bias solution found using large-signal
(nonlinear) equations. There is thus no contradiction here with the prior acknowl-
edgment of nonlinear amplitude control. Any seeming contradiction is due to the
fact that the word system is actually ill-defined. Most take it to refer to an assem-
blage of components and their interconnections, but a more useful definition is based
on the particular input–output variables chosen. With this definition, a given circuit
may possess nonlinear relationships among certain variables and linear ones among
others. Time invariance is also not an inherent property of the entire circuit; it is sim-
ilarly dependent on the variables chosen.

We are left only with the assumption of time invariance to re-examine. In the
previous derivations we extended time invariance to the noise sources themselves,
meaning that the measures that characterize noise (e.g., spectral density) are time-
invariant (stationary). In contrast with linearity, the assumption of time invariance
is less obviously defensible. In fact, it is surprisingly simple to demonstrate that os-
cillators are fundamentally time-varying systems. Recognizing this truth is the main
key to developing a more accurate theory of phase noise.4

To test whether time invariance holds, consider explicitly how an impulse of current
affects the waveform of the simplest resonant system, a losslessLC tank (Figure17.5).
Assume that the system has been oscillating forever with some constant amplitude;
then consider how the system responds to an impulse injected at two different times,
as shown in Figure 17.6.

If the impulse happens to coincide with a voltage maximum (as in the left plot
of the figure), the amplitude increases abruptly by an amount �V = �Q/C, but be-
cause the response to the impulse superposes exactly in phase with the pre-existing

4 A. Hajimiri and T. Lee, “A General Theory of Phase Noise in Electrical Oscillators,” IEEE J. Solid-
State Circuits, v. 33, no. 2, February 1998, pp. 179–94.
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584 CHAPTER 17 OSCILL ATOR PHASE NOISE

oscillation, the timing of the zero crossings does not change. Thus, even though we
have clearly changed the energy in the system, the amplitude change is not accom-
panied by a change in phase. On the other hand, an impulse injected at some other
time generally affects both the amplitude of oscillation and the timing of the zero
crossings, as in the right-hand plot.

Interpreting the zero-crossing timings as a measure of phase, we see that the
amount of phase disturbance for a given injected impulse depends on when the in-
jection occurs; time invariance thus fails to hold. An oscillator is therefore a linear
yet (periodically) time-varying (LTV) system. It is especially important to note that
it is theoretically possible to leave unchanged the energy of the system (as reflected
in the constant tank amplitude of the right-hand response) if the impulse injects at a
moment near the zero crossing when the net work performed by the impulse is zero.
For example: a small positive impulse injected when the tank voltage is negative ex-
tracts energy from the oscillator, whereas the same impulse injected when the tank
voltage is positive delivers energy to the oscillator. Just before the zero crossing, an
instant may be found where such an impulse performs no net work at all. Hence the
amplitude of oscillation cannot change, but the zero crossings will be displaced.

Because linearity (of noise-to-phase conversion) remains a good assumption, the
impulse response still completely characterizes that system – even with time vari-
ation present. The only difference relative to an LTI impulse response is that the
impulse response here is a function of two arguments, the observation time t and the
excitation time τ. Because an impulsive input produces a step change in phase, the
impulse response may be written as

hφ(t, τ) = "(ω0τ)

qmax
u(t − τ), (20)

where u(t) is the unit step function. Dividing by qmax , the maximum charge displace-
ment across the capacitor, makes the function "(x) independent of signal amplitude.
This normalization is a convenience that allows us to compare different oscillators
fairly. Note that "(x), called the impulse sensitivity function (ISF), is a dimension-
less, frequency- and amplitude-independent function periodic in 2π. As its name
suggests, the ISF encodes information about the sensitivity of the oscillator to an im-
pulse injected at phase ω0 t. In the LC oscillator example, "(x) has its maximum
value near the zero crossings of the oscillation and a zero value at maxima of the os-
cillation waveform. In general, it is most practical (and most accurate) to determine
"(x) through simulation, but there are also analytical methods (some approximate)
that apply in special cases.5 In any event, to develop a feel for typical shapes of ISFs,
consider two representative examples: the LC and ring oscillators of Figure 17.7.

5 F. X. Kaertner, “Determination of the Correlation Spectrum of Oscillators with Low Noise,” IEEE
Trans. Microwave Theory and Tech., v. 37, no. 1, January 1989. Also see A. Hajimiri and T. Lee,
The Design of Low-Noise Oscillators, Kluwer, Dordrecht, 1999.
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17.4 THE ROLES OF L INEARITY AND TIME VARIAT ION IN PHASE NOISE 585

F IGURE 17.7. Example ISF for (a) LC oscillator and (b) ring oscillator

F IGURE 17.8. Equivalent block diagram of the process
described (in part) by Eqn. 21

Once the impulse response has been determined (by whatever means), we may
compute the excess phase due to an arbitrary noise signal through use of the super-
position integral. This computation is valid here because superposition is linked to
linearity, not to time invariance:

φ(t) =
∫ ∞

−∞
hφ(t, τ)i(τ ) dτ = 1

qmax

∫ t

−∞
"(ω0τ)i(τ ) dτ. (21)

The equivalent block diagram shown in Figure 17.8 helps us visualize this computa-
tion in ways that are familiar to telecommunications engineers, who will recognize a
structure reminiscent of a superheterodyne system (more on this viewpoint shortly).

To cast this superposition integral into a more practically useful form, note that
the ISF is periodic and therefore expressible as a Fourier series:

"(ω0τ) = c0

2
+

∞∑
n=1

cn cos(nω0τ + θn), (22)

where the coefficients cn are real and where θn is the phase of the nth harmonic of
the ISF. (We will ignore θn in all that follows because we assume that noise com-
ponents are uncorrelated and so their relative phase is irrelevant.) The value of this
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586 CHAPTER 17 OSCILL ATOR PHASE NOISE

F IGURE 17.9. Equivalent system for ISF decomposition

decomposition is that – like many functions associated with physical phenomena –
the series typically converges rapidly, so that it is often well approximated by just the
first few terms of the series.

Substituting the Fourier expansion into Eqn. 21 and then exchanging summation
and integration, one obtains

φ(t) = 1

qmax

[
c0

2

∫ t

−∞
i(τ ) dτ +

∞∑
n=1

cn

∫ t

−∞
i(τ ) cos(nω0τ) dτ

]
. (23)

The corresponding sequence of mathematical operations is shown graphically in the
left half of Figure 17.9. Note that the block diagram again contains elements that are
analogous to those of a superheterodyne receiver. The normalized noise current is
a broadband “RF” signal, whose Fourier components undergo simultaneous down-
conversions (multiplications) by a “local oscillator” signal that is the ISF, whose
harmonics are multiples of the oscillation frequency. It is important to keep in mind
that multiplication is a linear operation if one argument is held constant, as it is here.
The relative contributions of these multiplications are determined by the Fourier co-
efficients of the ISF. Equation 23 thus allows us to compute the excess phase caused
by an arbitrary noise current injected into the system, once the Fourier coefficients
of the ISF have been determined (typically through simulation).

We have already noted the common observation that signals (noise) injected into a
nonlinear system at some frequency may produce spectral components at a different
frequency. We now show that a linear but time-varying system can exhibit qualita-
tively similar behavior, as implied by the superheterodyne imagery invoked earlier.
To demonstrate this property explicitly, consider injecting a sinusoidal current whose
frequency is near an integer multiple m of the oscillation frequency, so that

i(t) = Im cos[(mω0 +�ω)t], (24)

where �ω � ω0. Substituting Eqn. 24 into Eqn. 23 and noting that there is a negli-
gible net contribution to the integral by terms other than when n = m, we derive the
following approximation:
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φ(t) ≈ Imcm sin(�ωt)

2qmax�ω
. (25)

The spectrum of φ(t) therefore consists of two equal sidebands at ±�ω, even though
the injection occurs near some integer multiple of ω0. This observation is fundamen-
tal to understanding the evolution of noise in an oscillator.

Unfortunately, we’re not quite done: Eqn. 25 allows us to figure out the spec-
trum of φ(t), but we ultimately want to find the spectrum of the output voltage of
the oscillator, which is not quite the same thing. However, the two quantities are
linked through the actual output waveform. To illustrate what we mean by this link-
age, consider a specific case where the output may be approximated as a sinusoid, so
that vout(t) = cos[ω0 t +φ(t)]. This equation may be considered a phase-to-voltage
converter; it takes phase as an input, producing from it the output voltage. This con-
version is fundamentally nonlinear because it involves the phase modulation of a
sinusoid.

Performing this phase-to-voltage conversion and assuming “small” amplitude dis-
turbances, we find that the single-tone injection leading to Eqn. 25 results in two
equal-power sidebands symmetrically disposed about the carrier:

PSBC(�ω) ≈ 10 · log

(
Imcm

4qmax�ω

)2

. (26)

Note that the amplitude dependence is linear (the squaring operation simply reflects
the fact that we are dealing with a power quantity here). This relationship has been
verified experimentally for an exceptionally wide range of practical oscillators.

This result may be extended to the general case of a white noise source:

PSBC(�ω) ≈ 10 · log

[
(i2
n/�f )

∑∞
m=0 c

2
m

4q2
max�ω

2

]
. (27)

Together, Eqns. 26 and 27 imply both upward and downward frequency translations
of noise into the noise near the carrier, as illustrated in Figure 17.10. This figure
summarizes what the preceding equations tell us: Components of noise near integer
multiples of the carrier frequency all fold into noise near the carrier itself.

Noise near DC is upconverted, with relative weight given by coefficient c0, so 1/f
device noise ultimately becomes 1/f 3 noise near the carrier; noise near the carrier
stays there, weighted by c1; and white noise near higher integer multiples of the car-
rier undergoes downconversion, turning into noise in the 1/f 2 region. Note that the
1/f 2 shape results from the integration implied by the step change in phase caused
by an impulsive noise input. Since an integration (even a time-varying one) gives
a white voltage or current spectrum a 1/f character, the power spectral density will
have a 1/f 2 shape.

It is clear from Figure 17.10 that minimizing the various coefficients cn (by min-
imizing the ISF) will minimize the phase noise. To underscore this point quantita-
tively, we may use Parseval’s theorem to write
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588 CHAPTER 17 OSCILL ATOR PHASE NOISE

F IGURE 17.10. Evolution of circuit noise into phase noise

∞∑
n=0

c2
m = 1

π

∫ 2π

0
|"(x)|2 dx = 2"2

rms , (28)

so that the spectrum in the 1/f 2 region may be expressed as

L(�ω) = 10 · log

[
(i2
n/�f )"

2
rms

2q2
max�ω

2

]
, (29)

where "rms is the rms value of the ISF. All other factors held equal, reducing "rms
will reduce the phase noise at all frequencies. Equation 29 is the rigorous equation
for the 1/f 2 region, and it is one key result of this phase noise model. Note that no
empirical curve-fitting parameters are present in this equation.

Among other attributes, Eqn. 29 allows us to study quantitatively the upconversion
of 1/f noise into close-in phase noise. Noise near the carrier is particularly impor-
tant in communication systems with narrow channel spacings. In fact, the allowable
channel spacings are frequently constrained by the achievable phase noise. Unfortu-
nately, it is not possible to predict close-in phase noise correctly with LTI models.

This problem disappears if the new model is used. Specifically, assume that the
current noise behaves as follows in the 1/f region:

i2
n,1/f = i2

n · ω1/f

�ω
, (30)

where ω1/f is the 1/f corner frequency. Using Eqn. 27 yields the following for the
noise in the 1/f 3 region:
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L(�ω) = 10 · log

[
(i2
n/�f )c

2
0

8q2
max�ω

2
· ω1/f

�ω

]
. (31)

The 1/f 3 corner frequency is then

�ω1/f 3 = ω1/f · c2
0

4"2
rms

= ω1/f ·
(
"dc

"rms

)2

, (32)

from which we see that the 1/f 3 phase noise corner is not necessarily the same as
the 1/f device /circuit noise corner; it will generally be lower. In fact, since "dc is
the DC value of the ISF, there is a possibility of reducing by large factors the 1/f 3

phase noise corner. The ISF is a function of the waveform and hence is potentially
under the control of the designer, usually through adjustment of the rise and fall time
symmetry. This result is not anticipated by LTI approaches, and it is one of the most
powerful insights conferred by this LTV model. This result has particular signifi-
cance for technologies with notoriously poor 1/f noise performance, such as GaAs
MESFETs and CMOS. Specific circuit examples of how one may exploit this obser-
vation are presented in Section 17.5.

One more extremely powerful insight concerns the influence of cyclostationary
noise sources. As alluded to previously, the noise sources in many oscillators can-
not be well modeled as stationary. A typical example is the nominally white drain
noise current in a FET, or the shot noise in a bipolar transistor. Noise currents are a
function of bias currents, and the latter vary periodically and significantly with the os-
cillating waveform. The LTV model is able to accommodate a cyclostationary white
noise source with ease, because such a source may be treated as the product of a sta-
tionary white noise source and a periodic function:6

in(t) = in0(t) · α(ω0 t). (33)

In this equation, in0 is a stationary white noise source whose peak value is equal to
that of the cyclostationary source, and the noise modulation function (NMF) α(x)
is a periodic dimensionless function with a peak value of unity. See Figure 17.11.
Substituting the expression for noise current into Eqn. 21 allows us to treat cyclo-
stationary noise as a stationary noise source, provided we define an effective ISF as
follows:

"eff (x) = "(x) · α(x). (34)

Figure 17.12 shows "(x), α(x), and "eff (x) for a Colpitts oscillator, all plotted
over one cycle. The quasisinusoidal shape of "(x) is perhaps to be anticipated on the
basis of the ideal LC oscillator ISF examined earlier, where the output voltage and
ISF were approximately the same in shape but in quadrature. The NMF is near zero
most of the time, which is consistent with the Class-C operation of the transistor in

6 W. A. Gardner, Introduction to Random Processes, McGraw-Hill, New York, 1990.
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590 CHAPTER 17 OSCILL ATOR PHASE NOISE

F IGURE 17.11. Cyclostationary noise as product of
stationary noise and NMF

F IGURE 17.12. Accommodation of cyclostationarity

a Colpitts circuit; the transistor replenishes the lost tank energy over a relatively nar-
row window of time, as suggested by the shape of α(x). The product of these two
functions, "eff (x), has a much smaller rms value than "(x), explicitly showing the
exploitation of cyclostationarity by this oscillator.

This example underscores that cyclostationarity is therefore easily accommodated
within the framework we have already established. None of the foregoing conclu-
sions changes as long as "eff is used in all of the equations.7

7 This formulation might not apply if external cyclostationary noise sources are introduced into an
oscillator, such as might be the case in injection-locked oscillators. For a detailed discussion, see
P. Vanassche et al., “On the Difference between Two Widely Publicized Methods for Analyzing
Oscillator Phase Behavior,” Proc. IEEE /ACM/ICCAD, Session 4A, 2002.
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17.4 THE ROLES OF L INEARITY AND TIME VARIAT ION IN PHASE NOISE 591

Having identified the factors that influence oscillator noise, we’re now in a position
to articulate the requirements that must be satisfied in order to make a good oscilla-
tor. First, in common with the revelations of LTI models, both the signal power and
resonator Q should be maximized, all other factors held constant. In addition, note
that an active device is always necessary to compensate for tank loss, and that active
devices always contribute noise. Note also that the ISFs tell us there are sensitive and
insensitive moments in an oscillation cycle. Of the infinitely many ways that an ac-
tive element could return energy to the tank, the best strategy is to deliver all of the
energy at once, where the ISF has its minimum value. Thus in an ideal LC oscilla-
tor, the transistor would remain off almost all of the time, waking up periodically to
deliver an impulse of current at the signal peak(s) of each cycle. The extent to which
real oscillators approximate this behavior determines in large part the quality of their
phase noise properties. Since an LTI theory treats all instants as equally significant,
such theories are unable to anticipate this important result.

The prescription for impulsive energy restoration has actually been practiced for
centuries, but in a different domain. In mechanical clocks, a structure known as an
escapement regulates the transfer of energy from a spring to a pendulum. The escape-
ment forces this transfer to occur impulsively and only at precisely timed moments
(coincident with the point of maximum pendulum velocity), which are chosen to min-
imize the disturbance of the oscillation period. Although this historically important
analogue is hundreds of years old, having been designed by intuition and trial and
error, it was not analyzed mathematically until 1826 by Astronomer Royal George
Airy.8 Certainly its connection to the broader field of electronic oscillators has only
recently been recognized.

Finally, the best oscillators will possess the symmetry properties that lead to small
"dc for minimum upconversion of 1/f noise. After examining some additional fea-
tures of close-in phase noise, we consider in the following section several circuit
examples of how to accomplish these ends in practice.

CLOSE- IN PHASE NOISE

From the development so far, one expects the spectrum Sφ(ω) to have a close-in
behavior that is proportional to the inverse cube of frequency. That is, the spectral
density grows without bound as the carrier frequency is approached. However, most
measurements fail to show this behavior, and this failure is often misinterpreted as
the result of some new phenomenon or as evidence of a flaw in the LTV theory. It is
therefore worthwhile to spend some time considering this issue in detail.

The LTV theory asserts only that Sφ(ω) grows without bound. Most “phase” noise
measurements, however, actually measure the spectrum of the oscillator’s output

8 G. B. Airy, “On the Disturbances of Pendulums and Balances, and on the Theory of Escapements,”
Trans. Cambridge Philos. Soc., v. 3, pt. I, 1830, pp. 105–28. The author is grateful to Mr. Byron
Blanchard for bring this reference to his attention.
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F IGURE 17.13. Lorentzian spectrum

voltage. That is, what is often measured is actually SV (ω). In such a case, the out-
put spectrum will not show a boundless growth as the offset frequency approaches
zero, reflecting the simple fact that a cosine function is bounded even for unbounded
arguments. This bound causes the measured spectrum to flatten as the carrier is ap-
proached; the resulting shape is Lorentzian,9 as shown in Figure 17.13.

Depending on the details of how the measurement is performed, the −3-dB cor-
ner may or may not be observed. If a spectrum analyzer is used, the corner typically
will be observed. If an ideal phase detector and a phase-locked loop were available
to downconvert the spectrum of φ(t) and measure it directly, no flattening would be
observed at all. A −3-dB corner will generally be observed with real phase detectors
(which necessarily possess finite phase detection range), but the precise value of the
corner will now be a function of the instrumentation; the measurement will no longer
reflect the inherent spectral properties of the oscillator. The lack of consistency in
measurement techniques has been a source of great confusion in the past.

17.5 CIRCUIT EX A MPLES – LC OSCILL ATORS

Having derived expressions for phase noise at low and moderate offset frequencies,
it is instructive to apply to practical oscillators the insights gained. We examine first
the popular Colpitts oscillator and its relevant waveforms (see Figure 17.14 and Fig-
ure 17.15). An important feature is that the drain current flows only during a short
interval coincident with the most benign moments (the peaks of the tank voltage).
Its corresponding excellent phase noise properties account for the popularity of this
configuration. It has long been known that the best phase noise occurs for a certain

9 W. A. Edson, “Noise in Oscillators,” Proc. IRE, August 1960, pp. 1454–66. Also see J. A. Mullen,
“Background Noise in Nonlinear Oscillators,” Proc. IRE, August 1960, pp. 1467–73. A Lorentzian
shape is the same as a single-pole low-pass filter’s power response. It just sounds more impressive
if you say “Lorentzian.”
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17.5 CIRCUIT EX A MPLES – LC OSCILL ATORS 593

F IGURE 17.14. Colpitts oscillator (simplified)

F IGURE 17.15. Approximate incremental tank voltage and
drain current for Colpitts oscillator

narrow range of tapping ratios (e.g., a 3 :1 or 4 :1 C2/C1 capacitance ratio), but be-
fore LTV theory there was no theoretical basis for explaining a particular optimum.

The cyclostationary nature of the drain noise is evident in the graphs of Figure17.15.
Because the noise is largest when the ISF is relatively small, the effective ISF (the
product of the ISF and the noise modulating function) is much smaller than the ISF.

Both LTI and LTV models point out the value of maximizing signal amplitude. In
order to evade supply voltage or breakdown constraints, one may employ a tapped
resonator to decouple resonator swings from device voltage limitations. A common
configuration that does so is Clapp’s modification to the Colpitts oscillator (reprised
in Figure 17.16). Differential implementations of oscillators with tapped resonators
have also appeared in the literature.10 These types of oscillators are either of Clapp

10 J. Craninckx and M. Steyaert, “A 1.8GHz CMOS Low-Phase-Noise Voltage-Controlled Oscilla-
tor with Prescaler,” IEEE J. Solid-State Circuits, v. 30, no. 12, December 1995, pp. 1474–82. Also
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594 CHAPTER 17 OSCILL ATOR PHASE NOISE

F IGURE 17.16. Clapp oscillator

F IGURE 17.17. Simplified schematic of the VCO
in Margarit et al. (1999)

configurations or the dual (with tapped inductor). The Clapp configuration becomes
increasingly attractive as supply voltages scale downward, where conventional res-
onator connections lead to VDD-constrained signal swings. Use of tapping allows
signal energy to remain high even with low supply voltages.

Phase noise predictions using the LTV model are frequently more accurate for
bipolar oscillators owing to the availability of better device noise models. In Mar-
garit et al. (see footnote 10), impulse response modeling (see Section 17.8) is used
to determine the ISFs for the various noise sources within the oscillator, and this
knowledge is used to optimize the noise performance of a differential bipolar VCO.
A simplified schematic of this oscillator is shown in Figure 17.17.

A tapped resonator is used to increase the tank signal power, Psig. The optimum
capacitive tapping ratio is calculated to be around 4.5 (corresponding to a capacitance

see M. A. Margarit, J. I. Tham, R. G. Meyer, and M. J. Deen, “A Low-Noise, Low-Power VCO
with Automatic Amplitude Control for Wireless Applications,” IEEE J. Solid-State Circuits, v. 34,
no. 6, June 1999, pp. 761–71.
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17.5 CIRCUIT EX A MPLES – LC OSCILL ATORS 595

F IGURE 17.18. ISF for shot noise of each core transistor (after Margarit et al. 1999)

F IGURE 17.19. ISF for shot noise of tail current (after Margarit et al. 1999)

ratio of 3.5), based on simulations that take into account the cyclostationarity of the
noise sources. Specifically, the simulation accounts for noise contributions by the
base spreading resistance and collector shot noise of each transistor and also by the
resistive losses of the tank elements. The ISFs (taken from Margarit et al., in which
these are computed through direct evaluation in the time domain as described in Sec-
tion 17.8) for the shot noise of the core oscillator transistors and for the bias source
are shown in Figures 17.18 and 17.19, respectively. As can be seen, the tail current
noise has an ISF with double the periodicity of the oscillation frequency, owing to the
differential topology of the circuit (the tail voltage waveform contains a component
at twice the oscillator frequency). Noteworthy is the observation that tail noise thus
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596 CHAPTER 17 OSCILL ATOR PHASE NOISE

F IGURE 17.20. Measured and predicted phase noise of VCO in Margarit et al. (1999)

contributes to phase noise only at even multiples of the oscillation frequency. If the
tail current is filtered through a low-pass (or bandstop) filter before feeding the oscil-
lator core, then the noise contributed by the tail source can be reduced substantially;
decreases of 10 dB or more have been noted.11 Only the tail current’s 1/f noise would
remain as a noise contributor. The individual ISFs are used to compute the contribu-
tion of each corresponding noise source, and the contributions are then summed.

The reduction of 1/f noise upconversion in this topology is clearly seen in Fig-
ure 17.20, which shows a predicted and measured 1/f 3 corner of 3 kHz – in compari-
son with an individual device 1/f noise corner of 200 kHz. Note that the then-current
version of one commercial simulation tool, Spectre, fails in this case to identify a1/f 3

corner within the offset frequency range shown, resulting in a 15-dB underestimate
at a 100-Hz offset. The measured phase noise in the 1/f 2 region is also in excellent
agreement with the LTV model’s predictions. For example, the predicted value of
−106.2 dBc/Hz at 100-kHz offset is negligibly different from the measured value of
−106 dBc/Hz. As a final comment, this particular VCO design is also noteworthy
for its use of a separate automatic amplitude control loop; this allows for independent

11 A. Hajimiri and T. Lee, in The Design of Low-Noise Oscillators (Kluwer, Dordrecht, 1999), de-
scribe a simple shunt capacitor across the tail node to ground. E. Hegazi et al., in “A Filtering
Technique to Lower Oscillator Phase Noise” (ISSCC Digest of Technical Papers, February 2001),
use a parallel tank between the tail source and the common-source node to achieve a 10-dB phase
noise reduction.
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17.6 A MPLITUDE RESPONSE 597

F IGURE 17.21. Simple symmetrical
negative resistance oscillator

optimization of the steady-state and start-up conditions, with favorable implications
for phase noise performance.

As mentioned, a key insight of the LTV theory concerns the importance of sym-
metry, the effects of which are partially evident in the preceding example. A configu-
ration that exploits this knowledge more fully is the symmetrical negative resistance
oscillator shown in Figure 17.21.12 This configuration is not new by any means, but
an appreciation of its symmetry properties is. Here, it is the half-circuit symmetry
that is important, because noise in the two half-circuits is only partially correlated at
best. By selecting the relative widths of the PMOS and NMOS devices appropriately
to minimize the DC value of the ISF ("dc) for each half-circuit, one may minimize
the upconversion of 1/f noise. Through exploitation of symmetry in this manner, the
1/f 3 corner can be dropped to exceptionally low values, even when device 1/f noise
corners are high (as is typically the case for CMOS). Furthermore, the bridgelike ar-
rangement of the transistor quad allows for greater signal swings, compounding the
improvements in phase noise. As a result of all of these factors, a phase noise of
−121 dBc/Hz at an offset of 600 kHz at 1.8 GHz has been obtained with low-Q (es-
timated to be 3–4) on-chip spiral inductors consuming 6 mW of power in a 0.25-µm
CMOS technology (see footnote 12). This result rivals what one may achieve with
bipolar technologies, as seen by comparison with the bipolar example of Margarit
et al. (1999). With a modest increase in power, the same oscillator’s phase noise be-
comes compliant with specifications for GSM1800.

17.6 A MPLITUDE RESPONSE

While the close-in sidebands are dominated by phase noise, the far-out sidebands
are greatly affected by amplitude noise. Unlike the induced excess phase, the excess

12 A. Hajimiri and T. Lee, “Design Issues in CMOS Differential LC Oscillators,” IEEE J. Solid-State
Circuits, May 1999.
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F IGURE 17.22. Overdamped and underdamped amplitude responses

amplitude A(t) due to a current impulse decays with time. This decay is the direct
result of the amplitude-restoring mechanisms always present in practical oscillators.
The excess amplitude may decay very slowly (e.g., in a harmonic oscillator with a
high-quality resonant circuit) or very quickly (e.g., in a ring oscillator). Some cir-
cuits may even demonstrate an underdamped second-order amplitude response. The
detailed dynamics of the amplitude-control mechanism have a direct effect on the
shape of the noise spectrum.

In the context of the ideal LC oscillator of Figure 17.5, a current impulse with
an area �q will induce an instantaneous change in the capacitor voltage, which in
turn will result in a change in the oscillator amplitude that depends on the instant of
injection (as shown in Figure 17.6). The amplitude change is proportional to the in-
stantaneous normalized voltage change, �V/Vmax , for small injected charge �q �
qmax :

�A = 4(ω0 t)
�V

Vmax
= 4(ω0 t)

�q

qmax
, �q � qswing, (35)

where the amplitude impulse sensitivity function 4(ω0 t) is a periodic function that
determines the sensitivity of each point on the waveform to an impulse; it is the
amplitude counterpart of the phase impulse sensitivity function "(ω0 t). From a de-
velopment similar to that for phase response, the amplitude impulse response can be
written as

hA(t, τ) = 4(ω0 t)

qmax
d(t − τ), (36)

where d(t − τ) is a function that defines how the excess amplitude decays. Fig-
ure 17.22 shows two hypothetical examples: d(t) for a low-Q oscillator with over-
damped response and for a high-Q oscillator with underdamped amplitude response.

As with our evaluation of the phase response, we invoke a small-signal linear ap-
proximation here. Again, we are not neglecting the fundamentally nonlinear nature
of amplitude control; we are simply taking advantage of the fact that amplitude noise
will certainly be small enough to validate a small-signal linear approximation for any
oscillator worth the analysis effort. We will assume without loss of generality that
the amplitude-limiting system of most oscillators can be approximated as first or sec-
ond order, again for small disturbances. The function d(t − τ) will thus typically be
either a dying exponential or a damped sinusoid.
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F IGURE 17.23. Phase, amplitude, and total sideband powers
for the overdamped amplitude response

For a first-order system,

d(t − τ) = e−ω0(t−τ)/Q · u(t − τ). (37)

Therefore, the excess amplitude response to an arbitrary input current i(t) is given
by the superposition integral,

A(t) =
∫ t

−∞
i(τ )

qmax
4(ω0τ)e

−ω0(t−τ)/Q dτ. (38)

If i(t) is a white noise source with power spectral density, then the output power
spectrum of the amplitude noise, A(t), can be shown to be

Lamplitude{�ω} = 42
rms

q2
max

· i2
n/�f

2 · [ω2
0/Q

2 + (�ω)2]
, (39)

where 4rms is the rms value of 4(ω0 t). If Ltotal is measured then the sum of both
Lamplitude and Lphase will be observed and hence there will be a pedestal in the phase
noise spectrum at ω0/Q, as shown in Figure 17.23. Also note that the significance
of the amplitude response depends greatly on 4rms , which in turn depends on the
topology.

As a final comment on the effect of amplitude-control dynamics, an underdamped
response would result in a spectrum with some peaking in the vicinity of ω0/Q.

17.7 SUM M ARY

The insights gained from LTI phase noise models are simple and intuitively satisfy-
ing: One should maximize signal amplitude and resonator Q. An additional, implicit
insight is that the phase shifts around the loop generally must be arranged so that os-
cillation occurs at or very near the center frequency of the resonator. This way, there
is a maximum attenuation by the resonator of off-center spectral components.
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600 CHAPTER 17 OSCILL ATOR PHASE NOISE

Deeper insights provided by the LTV model are that the resonator energy should
be restored impulsively at the ISF minimum instead of evenly throughout a cycle,
and that the DC value of the effective ISF should be made as close to zero as possi-
ble in order to suppress the upconversion of 1/f noise into close-in phase noise. The
theory also shows that the inferior broadband noise performance of ring oscillators
may be offset by their potentially superior ability to reject common-mode substrate
and supply noise.

17.8 APPENDIX: NOTES ON SIMUL ATION

Exact analytical derivations of the ISF are usually not obtainable for any but the
simplest oscillators. Various approximate methods are outlined in the reference of
footnote 4, but the only generally accurate method is a direct evaluation of the time-
varying impulse response. In this direct method, an impulsive excitation perturbs the
oscillator and the steady-state phase perturbation is measured. The timing of the im-
pulse with respect to the unperturbed oscillator’s zero crossing is then incremented,
and the simulation is repeated until the impulse has been “walked” through an entire
cycle.

The impulse must have a small enough value to ensure that the assumption of lin-
earity holds. Just as an amplifier’s step response cannot be evaluated properly with
steps of arbitrary size, one must judiciously select the area of the impulse rather than
blindly employing some fixed value (e.g., 1 C). If one is unsure whether the impulse
chosen has been sized properly, linearity may always be tested explicitly by scaling
the size of impulse by some amount and then verifying that the response scales by
the same factor.

Finally, some confusion persists about whether the LTV theory properly accom-
modates the phenomenon of amplitude-to-phase conversion exhibited by some os-
cillators. As long as linearity holds, the LTV theory does accommodate AM-to-PM
conversion – provided that an exact ISF has been obtained. This is because changes
in the phase of an oscillator arising from an amplitude change appear in the im-
pulse response of the oscillator. A slight subtlety arises from the phase relationships
among sidebands generated by these two mechanisms, however. Summed contribu-
tions from these two sources may result in sidebands with unequal amplitudes, in
contrast with the purely symmetrical sidebands that are characteristic of AM and PM
individually.
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C H A P T E R E I G H T E E N

MEASUREMENT OF
PHASE NOISE

18.1 INTRODUC TION

The importance and origin of oscillator phase noise are discussed in the chapters on
oscillators and phase noise. We now take up the problem of how to measure it. Even
more than is the case with amplifier noise figure, the measurement of phase noise is
easily corrupted by numerous sources of error, so an awareness of what these errors
are (and of how to reduce them) is essential. Complicating the task is that many
references present several approximations without explicitly stating what these ap-
proximations are. In all that follows, we’ll endeavor to identify any approximations,
with a particular focus on their domain of validity.

In keeping with the guiding philosophy of this book, phase noise measurement
methods suitable for the weekend experimenter are presented in addition to tech-
niques more commonly used in professional laboratories.

18.2 DEFINIT IONS AND BASIC MEASUREMENT METHODS

As discussed in Chapter 15, all real oscillators exhibit some variation in phase and
amplitude:

Vout(t) = Vm[1 + ε(t)] cos[ωt + φ(t)]. (1)

Because of the undesired amplitude and phase modulations, represented by ε(t) and
φ(t), the output spectrum has broadly distributed energy at frequencies other than
the nominal oscillation frequency. A typical spectrum of Vout might thus appear as
in the plot of Figure 18.1, which shows clearly that the noise power varies with fre-
quency. In general, the displayed spectrum is a combination of both amplitude and
phase noise, but we are often interested primarily in that portion that is attributable to
phase variations. The reason is that some form of amplitude limiting is inherent in all
real oscillators. No analogous corrective mechanism exists to limit phase variations
(there is no way for the oscillator to establish where the “true” time origin is), so they
tend to dominate. However, it should not be inferred from this statement that ampli-
tude noise is inconsequential: Amplitude noise can cause all sorts of odd behavior,
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602 CHAPTER 18 MEASUREMENT OF PHASE NOISE

F IGURE 18.1. Idealized double-sided output spectrum of a real oscillator

particularly at frequencies well removed from the carrier.1 That said, phase noise is
the main preoccupation of most oscillator designers, so it will be ours as well.

The following definition of phase noise is often used to characterize oscillators:

L(�f ) ≡ PSSB(1 Hz)

Psig
, (2)

where PSSB(1 Hz) is the output phase noise power density measured at an offset fre-
quency, �f , away from the carrier and where Psig is the power of the carrier itself.
Thus L(�f ), known as “script-L,” is a density normalized to the power of the carrier.
It is more conventionally reported in decibel form (relative to the carrier) as some
number of dBc/Hz, even though the “per hertz” part applies to the argument of the
log, not to the log itself. Despite this lack of rigor, it is the convention. Just don’t be
misled: doubling the bandwidth does not double the decibel level of noise.

If (and this can be a big “if”) amplitude noise is known to be negligible, then phase
noise can be directly read off of a spectrum analyzer display. To do so, first normalize
the displayed noise power (Pnoise) at the desired offset (�f ) to a 1-Hz bandwidth by
dividing it by the resolution noise bandwidth setting. In many spectrum analyzers,
the internal IF filters that set the resolution bandwidth are synchronously tuned (i.e.,
a cascade of identical filter stages tuned to the same center frequency) and therefore
produce a Gaussian response shape. Their noise bandwidth is thus approximately 1.2
times the −3-dB resolution bandwidth. A final normalization by the signal power
then yields L(�f ), as shown in Figure 18.2.

As a specific numerical example, suppose the carrier powerPsig is 50 mW (17 dBm)
and that Pnoise is 2 nW (−57 dBm) when measured with a resolution bandwidth of
100 Hz (20 dBHz) at an offset of 600 kHz. Then the phase noise is approximately

L(�f ) = PSSB(1 Hz)

Psig
= 2 nW

50 mW
· 1

(1.2)(100 Hz)
= 3.33 × 10−10 Hz−1, (3)

1 For those who wish to see integrals galore, The Design of Low-Noise Oscillators (A. Hajimiri and
T. Lee, Kluwer, Dordrecht, 1999) discusses in great detail precisely how device noise becomes os-
cillator noise.
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18.2 DEFINIT IONS AND BASIC MEASUREMENT METHODS 603

F IGURE 18.2. Estimating L(�f ) from spectrum analyzer display

or about −95 dBc/Hz. Again, the assumptions are that amplitude noise is negligible
at this frequency offset and that a Gaussian filter is used to set the resolution band-
width. Many spectrum analyzers include a mode for performing the set of normal-
izations automatically: just move the cursor to the desired offset, and the instrument
calculates and displays its approximation to the phase noise L(�f ) (again, the “ap-
proximate” part is our assuming that any amplitude noise is negligible).

Note that the sensitivity of a spectrum analyzer–based measurement is limited by
the dynamic-range problems associated with the presence of the carrier. Increasing
the gain in an effort to improve sensitivity can easily result in carrier powers that
would overload the analyzer (a typical spurious-free dynamic range for a spectrum
analyzer might be around 70 dB). Interposing a notch filter between the device under
test (DUT) and the analyzer to remove the carrier can ease the dynamic range prob-
lem at the expense of distorting the spectrum near the carrier. If this distortion can be
tolerated (or at least characterized for later removal), then the notch filter is a simple
way to increase the useful range of the spectrum analyzer technique.

Another way to characterize phase noise is to report the actual power spectral den-
sity of the phase noise itself:

Sφ(�f ) ≡ φ2/B, (4)

where B is the noise bandwidth over which the measurement is performed. In the
case of small maximum phase deviations (|φ| � 1), we may invoke the approxima-
tion that half the phase “modulation” power goes into one sideband and the rest into
the other. In that special case, we may make the following approximation:

L(�f ) ≈ Sφ(f )/2. (5)

The factor of 2 arises simply because L(�f ) is defined as a single-sideband quantity,
and phase modulation of the carrier results in two sidebands.

Another measure that is occasionally used is the power spectral density of the fre-
quency noise. Now frequency is the time derivative of phase, and multiplication by
frequency is the spectral analogue of taking a time derivative. Hence,
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604 CHAPTER 18 MEASUREMENT OF PHASE NOISE

F IGURE 18.3. Ideal phase detector characteristic

sf (�f ) ≡ �f 2/B = f 2Sφ(f ) ≈ 2L(�f ), (6)

where (once again) the last approximation is based on assuming sufficiently small
phase deviations.

18.3 MEASUREMENT TECHNIQUES

Having provided the fundamental definitions of phase noise and having described a
simple direct measurement method using a spectrum analyzer, we now consider al-
ternative techniques for measuring phase noise.

The spectrum analyzer example underscores the dynamic-range problems atten-
dant upon any method that seeks to measure noise in the presence of a carrier sig-
nal. As noted previously, using a notch filter reduces these problems, permitting an
increase in sensitivity. An alternative is to employ heterodyne architectures to down-
convert toward DC signals near the carrier, permitting a measurement of noise in the
absence of an interfering carrier. The next three methods describe different strategies
for eliminating the carrier from the measurement.

18.3.1 PLL-BASED PHASE DETEC TOR TECHNIQUE

Since we wish to characterize phase fluctuations, it shouldn’t surprise you that the
most sensitive phase noise measurements are made with phase detectors at the core
of the instrumentation. Because of the phase detector’s central role, understanding
its characteristics is important.

An ideal phase detector would produce an output that is completely insensitive
to amplitude and exactly proportional to the phase difference between its two input
signals (e.g., one from the DUT and one generated from within the instrument); see
Figure 18.3. Because this characteristic is precisely what we want, Murphy guaran-
tees that it’s not what we get. Typically, an analog multiplier (Figure 18.4) is pressed
into service as an approximation to a phase detector. Using some trigonometric iden-
tities, we find that the output of the multiplier may be expressed as

AB cosωt cos(ωt + φ) = kd[cosφ − cos(2ωt + φ)], (7)

where kd is a constant.
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18.3 MEASUREMENT TECHNIQUES 605

F IGURE 18.4. Multiplier as phase detector

F IGURE 18.5. Multiplier phase detector output vs. phase difference

Note that the output of the multiplier consists of a DC term and a double-frequency
term. For phase detector operation, we are interested only in the DC term because it
is the only one that is a pure function of phase difference. This term is just the time-
averaged output of the phase detector:

〈AB cosωt cos(ωt + φ)〉 = kd[cosφ]. (8)

If we plot the average output as a function of phase angle, the result will look
something like Figure 18.5. Notice that the output is periodic and decidedly nonlin-
ear, even within a period. As a result of the periodicity, phase errors that are very
large are not distinguishable from those that are very small. Further note that the
phase detector’s sensitivity (slope) is zero when the phase difference is zero and at its
maximum when the input phase difference is 90◦. Hence, for the phase detector to
be useful, there must be a nominal quadrature phase relationship between the output
of the DUT and that of the reference oscillator.

From Figure 18.5 the peak output of the phase detector is seen to be kd volts, and
from Eqn. 8 kd is also the slope of the phase detector characteristic (volts/radian)
around the quadrature point. Thus, for small phase errors the output is linearly pro-
portional to phase error to a good approximation,

〈vOUT〉 ≈ kdφ. (9)

Not only do we want a linear proportionality to phase, we also desire insensi-
tivity to amplitude noise. Fortunately, this sensitivity is automatically minimized
when a quadrature relationship is satisfied, as can be seen from Eqn. 8. Maintenance
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606 CHAPTER 18 MEASUREMENT OF PHASE NOISE

F IGURE 18.6. Phase noise measurement with PLL

of quadrature is therefore important for several reasons in this type of phase noise
measurement.

The block diagram of Figure 18.6 shows how a phase-locked loop (PLL) guaran-
tees the desired quadrature relationship. The PLL, shown within the dotted boundary,
is designed to have a very low bandwidth, since its only job is to establish a nom-
inal 90◦ phase relationship between the two oscillators. Because the PLL causes
the voltage-controlled oscillator (VCO) to track the DUT’s output within the PLL’s
bandwidth, phase noise at offset frequencies smaller than that bandwidth will be ar-
tificially attenuated. Hence, only phase noise measurements made at offsets beyond
the PLL’s bandwidth will be trustworthy. This limitation must be taken into account
when designing the PLL’s low-pass filter (#1). Low-pass filter #2 averages the phase
error output from the multiplier over its bandwidth. It therefore sets the resolution
bandwidth of the phase noise measurement.

To calibrate this setup, disable the PLL and then adjust the VCO frequency to be
close to that of the DUT. The second filter passes the difference-frequency compo-
nent but rejects the sum-frequency component. Monitor the output of that filter with
a spectrum analyzer or oscilloscope. The spectrum analyzer measures rms values, so
multiply them by

√
2 to obtain kd. After determining this constant, enable the PLL;

the setup is now ready to perform calibrated phase noise measurements.
In practice, two isolation amplifiers (not shown) at both input ports of the mixer

are almost always needed to prevent unwanted phase locking of one oscillator to the
other. These oscillators should have independent power supplies in order to prevent
injection locking through supply noise. If a parasitic PLL were allowed to control
the system, then the two oscillators would track each other over the bandwidth of
the parasitic loop, improperly reducing the measured phase noise over some uncon-
trolled bandwidth.

The phase detector method generally requires that the VCO possess much lower
phase noise than the oscillator under test, since the VCO is used as the reference
oscillator that defines the “correct” zero-crossing instants against which the DUT’s
output is compared. It is possible to perform a calibration in which the reference
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18.3 MEASUREMENT TECHNIQUES 607

F IGURE 18.7. Phase shift of pure time delay

oscillator’s phase noise is characterized, allowing it to be subtracted out from subse-
quent measurements. The only requirement is that reference noise be small enough
to permit a reliable subtraction. It is generally accepted that the VCO’s phase noise
should be at least as good as that of the DUT if accurate subtractions are to be made.

18.3.2 DEL AY L INE DISCRIMINATOR TECHNIQUE

Although the PLL-based measurement is capable of exquisite sensitivity, it suffers
from the need for two oscillators and the complexity that always attends the building
of any PLL. A method that requires only one oscillator is the delay line technique.
Although its sensitivity is not as good as that of the two-oscillator PLL technique, its
simplicity makes the delay line method attractive for some applications.

The basis for this measurement method is simply the phase-vs.-frequency behavior
of a delay line. Since a pure time delay exhibits a linearly increasing negative phase
shift with frequency, a time-delay element may be viewed as a frequency-to-phase
converter; see Figure 18.7. The specific relationship between frequency (in hertz)
and phase (in radians) is:

φ = −2πfτ. (10)

If a phase detector is used to compare a signal with its time-delayed version, the out-
put will correspond to fluctuations in the relative frequency between the two signals.
If the noise is truly random, then the noise of the two inputs will be uncorrelated and
an accurate measurement will result. If there are correlations, however, the measure-
ments will be in error. For example, 1/f noise causes a slow frequency modulation.
If the line delay is short compared with the period of these 1/f phenomena, both in-
puts to the phase detector will move together, leading to a false indication of low
phase noise.

Since frequency fluctuations are related to phase fluctuations through Eqn. 6, this
technique yields an indirect measurement of phase noise. The output is fundamen-
tally proportional to the frequency noise, as seen from

�vOUT = kd�φ = kd2π�fτ �⇒ �f = �vOUT

kd2πτ
, (11)
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608 CHAPTER 18 MEASUREMENT OF PHASE NOISE

F IGURE 18.8. Phase noise measurement using delay line
frequency discriminator (simplified)

so that the power spectral density (PSD) of the frequency noise is

Sf (�f ) ≡ �f 2

B
=

(
�vOUT

kd2πτ

)2

B
. (12)

In turn, Eqn. 6 relates the PSDs of phase and frequency noise to each other:

Sφ(�f ) ≡ 1

f 2

(
�f 2

B

)
= 1

�f 2

(
�vOUT

kd2πτ

)2

B
. (13)

It also allows us to approximate script-L for small phase errors as

L(�f ) ≈ Sφ(�f )

2
= 1

2�f 2

(
�vOUT

kd2πτ

)2

B
= 1

2�f 2

�v2
OUT

(kd2πτ)2B
. (14)

The measurement setup thus appears (in simplified form) as seen in Figure 18.8.
To make a measurement, use a spectrum analyzer to observe the output noise as a
function of frequency. Because spectrum analyzers typically have poor noise figures
(e.g., 30 dB), sensitivity can be improved by preceding the analyzer with a high-gain,
low-noise amplifier (LNA). Because the carrier has been effectively removed, using
a preamplifier in this case causes no overload.

From Eqn. 14, the measured noise power must be scaled by several constant fac-
tors as well as by the square of the frequency,�f 2, because the display is actually of
the frequency noise. As a numerical example, suppose B is 100 Hz (20 dBHz) and
that kd2πτ is 10−5 s. Suppose further that the power measured over the resolution
bandwidth of the spectrum analyzer at 100 kHz is 2 nW (−57 dBm). Then the phase
noise at that 100-kHz offset from the carrier is −110 dBc/Hz.

A subtle issue is that the delay time must be chosen to produce a quadrature rela-
tionship between the two mixer input signals. For a given oscillator frequency, this
requirement implies that the allowable time-delay values are quantized to odd mul-
tiples of a quarter-period of oscillation. In practice, either a variable phase shifter
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18.3 MEASUREMENT TECHNIQUES 609

is added in series with the delay line or the oscillator frequency is made adjustable,
thereby producing the necessary quadrature relationship. If the time delay or oscilla-
tor frequency drifts during the measurement, errors will result because of departures
from quadrature. This unfortunate sensitivity is a distinct disadvantage relative to the
PLL method.

As noted earlier, a larger time delay allows a more accurate measurement of phase
noise close to the carrier. From Eqn. 14, we see that it also increases the output
voltage for a given level of phase noise, thereby improving the sensitivity of the mea-
surement at all offset frequencies. The main limitation on the length of the delay
is imposed by the need to keep phase differences within the phase detector’s linear
range. Arbitrarily calling the latter ∼1 rad, the delay must be chosen to satisfy

�φ = 2πfτ ≤ 1 �⇒ τ ≤ 1/2πf , (15)

where f is the lowest offset frequency at which the phase noise is to be measured
with reasonable accuracy.

As a specific numerical example, suppose we wish to characterize phase noise at
an offset of 1 kHz. Equation 15 implies that the time delay must be of the order of
160µs for an accurate measurement. About 30 kilometers (!) of typical coaxial cable
would be needed to make this possible. Obviously, this is an impractical length. Even
if one were willing to pay for that much cable, the attenuation at the carrier frequency
would eliminate any residual hope of making a measurement. If we arbitrarily take
10 meters of cable as an upper bound (and this is still a lot of cable), it would appear
that offset frequencies of a few megahertz represent a practical lower range. Below
such values of offset frequency, sensitivity degrades rapidly.

For far-out noise, the discriminator can approach the PLL method in sensitiv-
ity, but the limitation on allowable time delays prevents measurements of close-in
phase noise with high accuracy if physical lines are used. If one is willing to accept
some degradation in sensitivity, phase noise measurements at offsets somewhat be-
low 1 MHz (perhaps approaching 100 kHz) are possible, but accurate measurements
closer to the carrier than that are achievable only through the PLL method.

18.3.3 RESONANT DISCRIMINATOR TECHNIQUE

To overcome the practical difficulties of implementing sufficient time delays with
long cables, engineers have devised alternative methods. To understand how these
alternatives work, first recall that delay is proportional to the slope of a system’s
phase shift with frequency:

tD = −dφ
dω
. (16)

Instead of a length of cable, then, one might substitute another element whose phase
shift decreases linearly with frequency to a good approximation. As suggested by its
name, an ordinary resonator’s phase-vs.-frequency characteristic is exploited in the
resonant discriminator method. See Figure 18.9.
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610 CHAPTER 18 MEASUREMENT OF PHASE NOISE

F IGURE 18.9. Phase noise measurement using resonator
frequency discriminator (simplified)

With a resonator, there is a relationship betweenQ and phase shift, and hence be-
tween Q and time delay. To determine these relationships, first recognize that the
phase shift of a bandpass filter (such as a simple RLC tank) may be expressed as

φ = π

4
− atan

ω/ωn

Q[1 − (ω/ωn)2]
, (17)

where “atan” is short for “arctangent” and ωn is the center frequency. Evaluating the
time delay at ωn using Eqn. 16, we ultimately find that

tD|ω=ωn = 2Q

ωn
= 2

B
, (18)

where B is the −3-dB bandwidth in radians per second. The effect of a long cable
therefore can be mimicked to a certain extent simply by using a resonator with a
suitably low bandwidth. The main limitation is that, like all networks with a finite
number of poles, the total amount of phase shift is bounded, so the resonator can
only approximate a time delay over a finite bandwidth. Equation 18 shows us that the
greater the delay, the narrower this bandwidth. Toward the passband edges, the delay
diminishes, ultimately heading toward zero. The range over which the delay remains
usefully close to the value given by Eqn. 18 is conventionally (and arbitrarily) taken
to be half the bandwidth.

It is important to consider the behavior of the system outside of the nominal de-
lay range. For spectral components further away from the carrier than the resonator
bandwidth, the filter’s attenuation will be significant. In such a case, we may as-
sume that it has cleaned up the spectrum, causing one input to the phase detector to
be effectively noise-free. The measurement conditions thus converge to those in the
PLL-based setup, and the output will be the phase noise:

�vOUT = kd�φ. (19)

In summary, then, the resonator technique causes us to measure frequency noise
within the half-bandwidth of the resonator. This frequency noise must be scaled by the
offset in order to compute phase noise. Well beyond the resonator bandwidth, phase
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18.4 ERROR SOURCES 611

noise is measured directly; no scaling is required. In between these two regimes, the
displayed values are some mixture of phase and frequency noise, and meaningful
measurements are not to be expected.

It is also important to keep in mind that the resonator method shares with the delay
line technique a requirement of nominal quadrature. A variable phase shifter (or the
ability to vary the oscillator frequency) is thus also required to guarantee satisfaction
of this requirement.

Both discriminator techniques, limited though they may be, are good methods for
implementation by the hobbyist because of their simplicity. Unless there is a press-
ing need to characterize an oscillator’s phase noise very close to the carrier, these
methods will yield excellent results with modest equipment.

18.4 ERROR SOURCES

To make accurate phase noise measurements with any of these methods, it’s neces-
sary to identify and quantify the various sources of error. As might be expected, not
all methods are equally sensitive to all sources of error. Nonetheless, a unified noise
model is still possible. In all that follows, the noise may be assumed to appear as ad-
ditive sources just prior to the spectrum analyzer. What does differ from technique
to technique is the actual measurement consequence of this noise.

18.4.1 SPEC TRUM ANALYZER METHOD

To see what factors affect the spectrum analyzer technique, recall that

L(�f ) ≈ Sφ(f )

2
, (20)

which may also be expressed as

L(�f ) ≈ Sφ(f )

2
= �v2

OUT

4v2
peak

, (21)

where vpeak is the peak output voltage of the mixer. The noise floor of this measure-
ment is therefore set by the minimum value of�vout , which in turn is determined by
the noise of the mixer and the effective input noise of the spectrum analyzer:

L(�f ) ≈ Sφ(f )

2
= �v2

OUT

4v2
peak

= 1

4

�v2
n,mixer +�v2

n,SA

v2
peak

. (22)

Mixer output noise and spectrum analyzer input noise are assumed to be uncor-
related, so their powers are added directly together in Eqn. 22. Sensitivity is clearly
improved by using mixers capable of producing large outputs while exhibiting low
noise figures. Diode ring mixers in which each branch is a series combination of sev-
eral diodes (i.e., high-level mixers) are commonly used. Preceding the analyzer with
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612 CHAPTER 18 MEASUREMENT OF PHASE NOISE

an LNA is also extremely helpful, since an LNA reduces the effective input noise,
�vn,SA. Commercially available instruments are capable of achieving noise floors as
low as −180 dBc/Hz.

18.4.2 DEL AY L INE DISCRIMINATOR

In both discriminator methods, the spectrum analyzer displays the frequency noise
directly; the user must normalize the measurement by the square of the frequency
offset in order to convert the measurement into phase noise. Hence, any noise that
appears at the input to the spectrum analyzer appears as an effective frequency noise:

Sf (�f ) ≡ �f 2

B
=

(
�vOUT

kd2πτ

)2

B
= �v2

n,mixer +�v2
n,SA

B(kd2πτ)2
. (23)

In many practical implementations, a buffer amplifier is inserted between the de-
lay line output and the mixer input. If such an amplifier is used, its noise must also
be considered. Since the output noise of such an amplifier appears as an input to one
port of the mixer, it too acts as a frequency noise term – although scaled by a factor
equal to the phase detector’s gain. Hence, the total frequency noise power spectral
density is given by

Sf (�f ) ≡ �f 2

B
=

(
�vOUT

kd2πτ

)2

B
= �v2

n,mixer +�v2
n,SA

B(kd2πτ)2
+ �v2

n,buffer

B(2πτ)2
. (24)

The phase noise measurement floor is thus

L(�f ) ≈ Sf (�f )

2(�f )2
= 1

2

1

B[2π(�f )τ ]2

(
�v2

n,mixer +�v2
n,SA

kd
+�v2

n,buffer

)
. (25)

Note that the floor rises rapidly at low frequencies, consistent with our earlier obser-
vations on the weaknesses of this method.

18.5 REFERENCES

The following notes from Hewlett-Packard (nowAgilent Technologies) contain much
useful information about phase noise measurements: “Phase Noise Characterization
of Microwave Oscillators” (Product Note 11729B-1, August 1983); and “The Art of
Phase Noise Measurement” (Dieter Scherer, RF & Microwave Measurement Sym-
posium and Exhibition, October 1984).
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C H A P T E R N I N E T E E N

SA MPL ING OSCILLOSCOPES,
SPEC TRUM ANALYZERS,

AND PROBES

19.1 INTRODUC TION

Oscilloscopes and spectrum analyzers are ubiquitous pieces of test equipment in any
RF laboratory. The reason, of course, is that it is useful to study signals in both time
and frequency domains, despite the fact that both presentations theoretically provide
equivalent information.

Most electrical engineers are familiar with basic operational principles of lower-
frequency oscilloscopes. However, an incomplete understanding of how probes be-
have (particularly with respect to grounding technique) is still remarkably wide-
spread. The consequences of this ignorance only become worse as the frequency
increases and so, after a brief review of a conventional low-frequency scope, our
primary focus will be the additional considerations one must accommodate when
using scopes at gigahertz frequencies. Also, because the sampling oscilloscopes
commonly used at high frequencies have subtle ways of encouraging “pilot error,”
we’ll spend some time studying how they work and how to avoid being fooled by
them. High-speed sampling circuits are interesting in their own right, so these types
of scopes give us a nice excuse to spend a little bit of time examining how samplers
function.

Another amazing instrument is the modern spectrum analyzer (with cost approxi-
mately proportional to the square of amazement), which is capable of making mea-
surements over a wide dynamic range (e.g., 80–100 dB SFDR) and over a large
frequency span (e.g., near DC to 20 GHz in a single instrument).

To maximize the utility of this equipment and to avoid common measurement
errors, it’s important to understand their internal architecture as well as the character-
istics of the probes or other fixturing that connect the instruments to the device under
test. We begin with a brief overview of ordinary continuous time oscilloscopes.

613
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614 CHAPTER 19 OSCILLOSCOPES, SPEC TRUM ANALYZERS, AND PROBES

19.2 OSCILLOSCOPES

It used to be safe to assume that most engineers were familiar with a typical ana-
log oscilloscope, but modern laboratories and classrooms are increasingly populated
with digital instruments. Students and engineers consequently encounter ordinary
scopes with decreasing frequency. More typically nowadays, a layer of software in-
sulates the user from nature, inhibiting the acquisition of important insights. So, it’s
worth spending a little time with a quick review of the classic analog scope.

19.2.1 ‘ ‘PURE’ ’ ANALOG SCOPES

A typical continuous time (i.e., nonsampling) oscilloscope is portrayed in Figure19.1.
The precision broadband attenuator accepts the input signal and scales it by a cali-
brated amount to prevent overload of the vertical amplifier. The latter block provides
enough gain to drive the deflection plates of the CRT. A delay line following the ver-
tical amplifier gives the trigger and sweep circuitry enough time to begin working
before the input signal arrives at the CRT. This delay thus allows the oscilloscope to
display parts of the waveform that actually precede the triggering event. The delay
line may be implemented as a specially designed low-dispersion cable or as a lumped
approximation to a transmission line. If the former, it is often several meters in length.
Whether the former or the latter, the attenuation and dispersion characteristics of the
delay element are critical to the operation of the scope. Equalization circuitry is uni-
versally used to compensate for the delay line’s distortion.

All classic analog scopes use electrostatically deflected CRTs because the induc-
tance of magnetic deflection coils is too large to allow practical operation at fre-
quencies beyond a few megahertz. Televisions and computer monitors use magnetic
deflection because large deflection sensitivity is easily obtained through the use of
many turns, significantly reducing the depth (and thus the weight) of the CRT for a
given screen size. The modest deflection bandwidth requirements enable the use of
magnetic deflection in those applications. Electrostatic deflection is the only practi-
cal option for high-frequency oscilloscopes, at the cost of rather long (deep) tubes.

The sweep generator generates a sawtooth voltage to drive the horizontal deflection
plates. The sawtooth linearly deflects the CRT’s electron beam to produce a constant-
velocity horizontal sweep. A trigger circuit synchronizes this sawtooth with the input
signal by initiating the sweep only when the input exhibits some predetermined char-
acteristic, such as exceeding a particular voltage threshold. To produce a comforting
baseline even in the absence of signal, scopes have an optional trigger mode (“auto”)
in which a sawtooth is self-initiated if no triggering events have occurred after some
time.

This basic oscilloscope architecture has been around for quite some time. Fer-
dinand Braun (of crystal rectifier fame) invented a primitive form of oscilloscope
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19.2 OSCILLOSCOPES 615

F IGURE 19.1. Typical analog oscilloscope block diagram

around 1897.1 Consequently, the CRT is still sometimes known as a Braunsche Röhre
(“Braun tube”) in Germany. Refinements during subsequent decades include greatly
increased bandwidth and sensitivity. By the 1930s, electrostatically deflected CRTs
had advanced to the point where tens of volts would produce a beam deflection of one
centimeter. These types of CRTs are still used and are compatible with bandwidths
up to about 100 MHz.

As frequency increases, it becomes progressively more difficult to obtain large
voltage swings from practical amplifiers. To underscore this difficulty, note that the
maximum slope of a 100-V–amplitude, 1-GHz sine wave is over 600 V per nano-
second, or 600 kilovolts per microsecond. Building amplifiers that can supply peak
voltages of 100 V and produce such high slew rates at the same time is a decidedly
nontrivial task!

In order to understand the developments that have enabled improved deflection
sensitivity, it’s useful to note that ordinary plates have only a short time during which
they have any opportunity to deflect the electron beam. To solve this problem, dis-
tributed vertical deflection structures may be used instead of simple parallel plates to
increase the span of time over which the electron beam interacts with the deflecting
voltage. In such a structure, each plate is broken up into segments that are connected
together through a small inductance. The distributed deflection “plate” is thus actu-
ally a transmission line, as depicted in Figure 19.2. In practice, the entire distributed
structure is implemented as a box made out of spiral-wound flat stock. This arrange-
ment properly distributes the capacitance and inductance continuously throughout to
maximize the line’s useful bandwidth.

The electron velocity is matched to the delay of the line to maximize the interaction
time between the deflection voltage and the electron beam. An order-of-magnitude

1 “Ueber ein Verfahren zur Demonstration und zum Studium des zeitlichen Verlaufes variabler
Ströme” [On a Method of Demonstrating and Studying the Time Dependence of Variable Cur-
rents], Annalen der Physik und Chemie, February 1897. This first oscilloscope was magnetically
deflected and was used to study the output of electric utilities. Electronic amplifiers did not exist
then, so this early instrument was quite insensitive.
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616 CHAPTER 19 OSCILLOSCOPES, SPEC TRUM ANALYZERS, AND PROBES

F IGURE 19.2. Distributed vertical deflection plates

improvement in vertical deflection sensitivity to about 3V/cm results, allowing scopes
to function beyond 500 MHz with10-mV/cm sensitivity after amplification.2 The slew
rate requirement drops significantly to 30 kV/µs (still a most impressive number).

Extension of this general architecture into the gigahertz realm was achieved just
as the 1970s drew to a close. This bandwidth improvement was enabled primarily by
advances in CRT design.3 The use of distributed structures for both horizontal and
vertical deflection and of microchannel plate CRTs improves deflection sensitivities
by another factor of 3, greatly relaxing the demands on amplifier design.

The microchannel plate CRT exploits a simple observation: It is easier to deflect
an electron beam before it has acquired the high energies necessary to produce a
bright trace on the screen. So, do that. To obtain sufficient beam energy after deflec-
tion, the low-energy electron stream passes through a thin semiconducting plate that
is full of minute cylindrical channels (see Figure 19.3) and across which is imposed
a large enough voltage to produce a significant accelerating field. As electrons strike
the walls of these microscopic channels, they release secondary electrons that multi-
ply the beam current by large factors, producing a readily visible trace on the screen.
The tremendous sensitivity of this CRT allows the Tektronix 7104 to produce dis-
plays of single-shot 350-ps events that are visible to the naked eye in ordinary room
light. At the same time, it is capable of supporting sweep velocities greater than the
speed of light!

2 The CRT of the first commercial unit to do so, the Tektronix 7904, has distributed vertical deflec-
tion plates only; the horizontal deflection electrodes are of the ordinary parallel-plate variety. As
with other “classical” scopes, it is available on the surplus market for quite modest sums and should
be considered by the serious home experimenter. Its nominal 500-MHz bandwidth is not a hard
limit, for one may drive the CRT’s vertical deflection plates directly. The resulting sensitivity is
about 3–4 V/cm, with a bandwidth well in excess of 1 GHz.

3 Actually, GHz scopes first became commercially available around 1960, but these connected an
input signal directly to the CRT plates. Sensitivities were correspondingly poor (quite a few volts
were required to obtain any appreciable deflection), and the instruments were of limited useful-
ness as a consequence. These units occasionally appear on the surplus market; avoid them (unless
you want to warp the local gravitational field – they are huge!). The 7104 has a nominal 1-GHz
bandwidth at 10-mV/cm sensitivity when equipped with the model-7A29 plug-in amplifier, and it
can function up to about 2–3 GHz if the CRT plates are driven directly (resulting in a still useful
sensitivity of about 1 V/cm).
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19.2 OSCILLOSCOPES 617

F IGURE 19.3. Microchannel plate

The advantage of this kind of architecture is that – within the limits of noise, dis-
tortion, and fixturing quality – what you see is what’s really there. Unfortunately,
this fidelity comes at the cost of extremely sophisticated CRT technology. Worse, it
is unclear how one may extend the technology to achieve bandwidths significantly
beyond 1 GHz. The scaling relationships are daunting: A faster sweep means that
the beam spends less time on the screen, leading to a dimmer trace. Increasing the
acceleration voltage to increase brightness makes the beam harder to deflect, even
with a microchannel plate. Yet transistors capable of high-frequency operation have
lower breakdown voltages as a consequence of the smaller feature sizes necessary to
enable high bandwidth, reducing swing capability. And on it goes.

The rules of that game being what they are, engineers have understandably chosen
to play a different game.

19.2.2 SA MPL ING SCOPES

That different game is sampling. Pursuing a sampling architecture shifts the de-
sign problem to a purely electronic domain, enabling the use of CRTs that are only
marginally more sophisticated than those used in a typical television. The first pub-
lication on a modern sampling scope architecture appeared in 1950.4

The key idea underlying a sampling oscilloscope is best illustrated with the graph
shown in Figure 19.4. Here, the higher-frequency sine wave is sampled at instants
indicated by the dots. The sampled waveform is then filtered to yield the lower-
frequency sine wave in the figure. The lower-frequency wave is then easily displayed
on a conventional low-frequency oscilloscope. From this description, it’s clear that
a sampling scope is analogous to a flashing strobe light that appears to slow down

4 J. M. L. Janssen, “An Experimental ‘Stroboscopic’ Oscilloscope for Frequencies up to About
50Mc/s – I: Fundamentals,” Philips Tech. Rev., v. 12, no. 3, August 1950, pp. 52–9. The actual
hardware used a pentode vacuum tube as the sampling element and functioned up to about 30 MHz.
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618 CHAPTER 19 OSCILLOSCOPES, SPEC TRUM ANALYZERS, AND PROBES

F IGURE 19.4. Illustration of sampling

motion. Thinking about the sampling scope in this manner is very useful in under-
standing its properties, including the ways in which it can mislead.

Clearly, the main magic in this architecture is in the sampling circuitry itself. Aside
from subtleties in the trigger and sweep subcircuits, the rest is relatively mundane.
The high-frequency limit is controlled by the time resolution of the sampling cir-
cuitry. The narrower the sampling window (aperture), the higher this bandwidth. To
a reasonable approximation, the product of window width and bandwidth (in Hz)
is about 0.35. Sampling apertures of several picoseconds represent the state of the
art for commercial instruments and correspond to bandwidths in excess of approxi-
mately 50 GHz. Samplers based on superconducting technology are able to function
at still higher frequency. Laboratory demonstrations have shown the feasibility of
operation to several hundred gigahertz.

Since the sampling gate lies at the heart of this type of scope, it is worthwhile ex-
amining a few methods by which such narrow sampling apertures are achieved. The
block diagram of Figure 19.5 shows the structure of a typical sampler from the early
1960s to the 1980s.5 Here, the transistor acts as an avalanche pulser, much like the
one described in Chapter 8. The collector supply voltage is adjusted a bit below the
value that would result in spontaneous avalanching. When a positive-going trigger
pulse is applied to the base, the transistor goes into full avalanche breakdown.6 The
collector voltage then plummets while the emitter voltage simultaneously spikes up.
A typical transition time here is in the neighborhood of a couple of hundred picosec-
onds. The signals from the avalancher are thus impressively fast in their own right
and can be used directly to operate the sampling bridge for bandwidths up to, say,
approximately 1 GHz.

For still faster operation, the output of the avalancher needs to be conditioned
to produce even shorter rise and fall times. A broadband transformer, acting as a

5 This schematic is adapted from that for the Tektronix model S-6 14-GHz sampling head.
6 The first published use of avalanching for sampling scopes is evidently due to G. B. B. Chaplin

et al., “A Sensitive Transistor Oscillograph with D.C. to 300 Mc/s Bandwidth,” International Tran-
sistors and Association of Semiconductor Developers Convention, May 1959, pp. 815–23. Also
see U.S. Patent #3,069,559, granted 19 December 1962. The first commercial sampling scope was
introduced by Lumatron in 1959, although the 1960 debut of the HP 185A – with its 500-MHz sam-
pling plug-in unit – had more influence on subsequent developments in the field.
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19.2 OSCILLOSCOPES 619

F IGURE 19.5. Representative sampling gate circuitry (simplified)

common-mode choke, first removes any small common-mode component arising
from slightly different delays between the collector and emitter.7 The near-perfect dif-
ferential voltage at the output of the transformer reverse-biases the ordinarily forward-
biased snap diode SRD. Eventually the diode snaps off, generating an exceptionally
fast step (as described in Chapter 9). The characteristics of the SRD are such that the
risetime speeds up by an order of magnitude, to values in the 10-ps range.8

The fast step is converted into a narrow pulse through the use of shorted transmis-
sion line segments. If each line has a one-way time-of-flight delay�T, then the total
pulse width is of the order of 2�T. The typical risetimes of about 10 ps thus corre-
spond to pulse widths on the order of 20–30 ps. A delay of ∼50 ps/cm is typical for
commonly realized transmission line segments, so fast samplers employ rather short
lines (typically a few millimeters in length). Low dispersion is important in this ap-
plication, so the lines are often implemented with air as the dielectric.

The narrow pulses drive, say, a four-diode switch whose diodes are normally bi-
ased off. The pulses forward-bias the diodes, creating a conductive path from input
to output and thereby charging up the output hold capacitor CH to the value of the
input. This sampled-and-held voltage changes only at the sampling repetition fre-
quency (which might be as low as a few kHz), so subsequent stages need not have
particularly high bandwidth. In fact, the circuit of Figure 19.5 can be used in front
of a standard oscilloscope to extend its bandwidth well beyond a gigahertz. (Gener-
ating an appropriate trigger remains a challenge, however.)

Moving from avalanching transistors to SRDs provides greater than an order-of-
magnitude speedup, permitting sampling scopes to function up to ∼20 GHz. Another
similar improvement factor is provided by a shockwave transmission line.9 Imagine

7 In less demanding applications, this transformer can be eliminated, with compensation for relative
phase then provided simply by adjusting the interconnect lengths to the collector and emitter.

8 The HP 186A, introduced in 1962, was the first instrument to use SRDs.
9 The basic underlying idea had been described as early as 1960, but it remained a largely academic

curiosity until Mark Rodwell published his work on these types of lines in the late 1980s.
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620 CHAPTER 19 OSCILLOSCOPES, SPEC TRUM ANALYZERS, AND PROBES

F IGURE 19.6. Simplified model of general-purpose
probe loaded by oscilloscope

an artificial line in which the distributed capacitance is provided by the voltage-
dependent capacitance of semiconductor junctions. If we assume that the bias is
such that falling voltages produce increases in reverse junction bias, then edges will
experience reduced capacitance as they fall; they thus speed up. A pulse propagat-
ing down such a line will experience continual improvements in falling-edge speed
until limited by some other mechanism (e.g., dispersion or finite junction bandwidth).
Step risetimes below ∼700 fs have been reported, corresponding to bandwidths in
excess of ∼700 GHz, using Schottky diodes connected along a coplanar line.10

19.2.3 PROBES, COMPENSATION, NOISE,
AND GROUNDING

It is remarkable how many engineers pay for a sensitive spectrum analyzer or high-
speed oscilloscope – only to mate it with a probe used in a fashion that guarantees
high noise, low bandwidth, unflat passband, and otherwise erroneous measurements.
To understand this problem, we must first consider the detailed nature of a scope
probe.

Contrary to what one might think, a probe is most emphatically not just a glorified
piece of wire with a tip on one end and a connector on the other. Think about this
fact: Most “10 :1” probes (so-called because they provide a factor-of-10 attenuation)
present a 10 M� impedance to the circuit under test yet may provide a bandwidth
of hundreds of megahertz. But intuition would suggest that the maximum allow-
able capacitance consistent with this bandwidth is under about 100 attofarads (0.1
femtofarads)! So, how can probes provide such a large bandwidth while presenting a
10-M� impedance? The answer is that the combination of a probe and oscilloscope
isn’t an “ordinary”RC network.

A simplified model of the scope–probe combination is shown in Figure 19.6. The
1-M� resistor represents the oscilloscope input resistance, while Cscope represents
the scope’s input capacitance.

10 U. Bhattacharya, S. T. Allen, and M. J. W. Rodwell, “DC-725 GHz Sampling Circuits and Sub-
picosecond Nonlinear Transmission Lines Using Elevated Coplanar Waveguide,” IEEE Microwave
and Guided Wave Lett., v. 5, no. 2, February 1995, pp. 50–2. Elevating the lines reduces the coup-
ling of energy into the semiconductor substrate, reducing loss and dispersion.
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19.2 OSCILLOSCOPES 621

F IGURE 19.7. Possible step responses of pole–zero doublet

Inside the probe, there is a 9-M� resistor to provide the necessary 10 :1 attenua-
tion at low frequencies.11 To avoid the tremendous bandwidth degradation that would
result from use of a simple 9-M� resistor, the probe also has a capacitor in paral-
lel with that resistor. At high frequencies, the 10 :1 attenuation is actually provided
by the capacitive voltage divider. It may be shown (and it isn’t hard to show it) that
when the top RC equals the bottom RC, the attenuation is exactly a factor of 10, in-
dependent of frequency. There is a zero that cancels precisely the slow pole, leading
to a transfer function that has no bandwidth limitation.

Because it is impossible to guarantee perfect compensation with fixed elements, all
10 :1 probes have an adjustable capacitor. To appreciate more completely the neces-
sity for such an adjustment, let’s recall the effect of imperfect pole–zero cancellation
with the following transfer function (see Chapter 12):

H(s) = ατs + 1

τs + 1
. (1)

The initial value is α and the final value is unity. We can sketch (see Figure 19.7)
one step response with α1 < 1 and one with α2 > 1. In both cases the response jumps
immediately to α but then settles to the final value, with a time constant of the pole.
If α = 1 then the response would reach final value in zero time, though the additional
poles in all practical circuits limit the risetime to a nonzero value.

From Figure 19.7, it is easy to see the importance of adjusting the capacitor to
avoid gross measurement errors. This compensation is most easily performed by ex-
amining the response to a square wave of sufficiently low frequency to make visible
the slow settling due to the doublet’s pole and then adjusting the capacitor for the
flattest time response. Many scopes provide a square-wave output specifically for the
purpose of adjusting the probe. This adjustment needs to be checked before making
a measurement, or else large errors are possible.

Another common error is to use the generous ground leads frequently supplied
with most probes. Though convenient, long ground leads virtually guarantee erro-
neous measurements. The reasons are simple: the inductance of the ground wire

11 Probes for use at the highest frequencies often employ special cable with distributed resistance.
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622 CHAPTER 19 OSCILLOSCOPES, SPEC TRUM ANALYZERS, AND PROBES

F IGURE 19.8. Circuit model for scope
and probe with ground clip

F IGURE 19.9. Grounding arrangement
for higher-frequency probing

(about 0.5 nH/mm, typically) adds an impedance that creates a low-pass filter with
the impedance of the scope. Near the cutoff frequency, resonant peaking is possible.

As an example (see Figure 19.8), suppose the ground lead is 20 cm long (not an
atypical value, unfortunately). The parasitic inductance therefore might be of the
order of 50–100 nH (the exact value depends on the path shape). Given a typical
scope input capacitance of 15 pF, the low-pass filter formed has a cutoff frequency
below about 200 MHz. Clearly, it makes no sense to use this sort of arrangement with
a 1-GHz (or faster) scope; the bandwidth is limited to low values well before the sig-
nals actually get to the scope! Aside from the bandlimiting, the frequency response
may be far from flat, resulting in erroneous determinations of amplitude.

In addition to acting as an inductance, the ground lead can also form a fairly effec-
tive loop antenna with the probe, allowing it to pick up noise from far and wide. The
commonly observed fuzziness of traces is not, as many believe, an inherent prop-
erty. Reduction of the ground connection to the absolute minimum goes a long way
toward cleaning up such anomalies.

To avoid these problems, never use the long ground lead. Period. Immediately
pack it up and store it in your toolbox and let it gather dust. Instead, get into the prac-
tice of using the small spring-like attachment that fits around the ground collar of the
probe tip. If these springs have been lost (as many frequently are), it’s easy enough
to make replacements out of a suitable length of bus wire; see Figure 19.9. The au-
thor is fond of soldering a number of these onto prototype boards at key test points to
save the trouble of hunting down these ground springs at a later time. The reduction
of inductance by roughly two orders of magnitude permits probing at the maximum
frequencies supported by the probe.

Commercially available passive 10 :1 probes are generally capable of satisfactory
operation up to a couple of hundred megahertz. At gigahertz frequencies, most (but
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19.2 OSCILLOSCOPES 623

not all) probes are 50� to maintain compatibility with other microwave gear. Unfor-
tunately, this low value limits what nodes of a circuit can be studied; high-impedance
nodes will be loaded down by the probe, rendering the measurement useless. To solve
this problem, one may use an active FET probe, which contains a source follower
near the probe tip to minimize resistive and capacitive loading. This reduction in ca-
pacitance (to ∼100 fF to 1-pF values; even less with compensation) permits a higher
impedance level (e.g., 1–100 k�) – at the expense of degraded DC stability, reduced
absolute accuracy, and diminished bandwidth. Such probes can function beyond a
few gigahertz, however, and this range is adequate for a great many situations. An
example is the Agilent Model 1158A 10 :1 active probe. The integrated buffer in the
probe body enables a bandwidth in excess of 4 GHz while presenting an input resis-
tance and capacitance of 100 k� and 800 fF, respectively.

The probing of nodes on a microwave IC (or very small discrete modules) presents
special problems of its own, both because of the mechanical challenges involved and
because it is difficult to avoid a poor transition from the IC to the probe, and then
ultimately to whatever instrument is connected to the probe. The difficulties are in-
deed substantial, but fortunately not insurmountable. The GGB Industries Model 35
active probe, for example, operates from DC to 26 GHz, presenting an input resis-
tance and capacitance of 1.25 M� and 50 fF. A passive 50-� probe, the Model 110H,
operates up to 110 GHz, the upper limit compatible with a 1.0-mm W coax connec-
tor. By using a WR-5 waveguide connection, the Model 220 extends operation to
220 GHz.12 The waveguide connection implies, of course, an inability to function
down to DC. Indeed, if we wish to maintain operation at one mode, the bandwidth
is constrained not to exceed a single octave.

When using such probes for impedance measurement with a vector network ana-
lyzer, it’s necessary to perform calibrations first, just as with any other VNA imped-
ance measurement. To facilitate carrying out TRL or LRM calibrations (see Section
8.4.2), several companies offer special substrates on which various calibration struc-
tures have been fabricated. The geometries are almost always coplanar and usually
feature ground–signal or ground–signal–ground configurations.

Probes for microwave work, whether active or passive, tend to be rather expensive
and easily damaged. For students and hobbyists, an economical intermediate option
is to build your own passive probe based on a minor modification of the basic 10 :1
scope probe circuit, shown in Figure 19.10. The resistor R is chosen to provide the
basic attenuation desired, and the compensation capacitor C is selected to maximize
the bandwidth over which the response is flat to within some tolerance. Table 19.1
gives values for R and C for different attenuation factors.

12 The “X” in a WR-X waveguide designation refers to the critical (wide) dimension in hundredths of
an inch. Thus WR-5 waveguide has a 50-mil (not millimeter) critical dimension, or about1.27 mm.
The wavelength at cutoff is about 2.54 mm, which corresponds roughly to 120 GHz. We thus ex-
pect WR-5 to operate over a frequency range somewhat smaller than 120–240 GHz, and indeed
the specified operating range spans 140–220 GHz.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511812941.020
Downloaded from https://www.cambridge.org/core. The Librarian-Seeley Historical Library, on 18 Dec 2019 at 06:21:26, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511812941.020
https://www.cambridge.org/core


624 CHAPTER 19 OSCILLOSCOPES, SPEC TRUM ANALYZERS, AND PROBES

F IGURE 19.10. Basic schematic for
N :1 homemade passive probe

Table 19.1. Probe component values

Attenuation R (�) Cshunt /C

10 : 1 225 9
20 : 1 475 19
50 : 1 1.225k 49

100 : 1 2.475k 99

The capacitance Cshunt models the input and stray capacitance of the instrument
connected to the probe and also the parasitic capacitance across the termination resis-
tor in the probe proper. Given that systems intended to operate over large bandwidths
are typically designed to approximate a purely real 50-� input impedance, a typi-
cal value for Cshunt is of the order of 1 pF (if that much). A brief look at the table of
component values should give us pause, for the required compensation capacitance
quickly plummets as the attenuation factor increases. For example, if we try to build
a 100 :1 probe to produce a 2.5-k� input resistance, the required capacitance would
be of the order of 10 fF. It is essentially impossible to produce values this small re-
liably using manual methods. In any case, the compensation capacitance has to be
adjustable. The capacitance for a 10 :1 probe would be easier to implement, but a
250-� input resistance is probably too low for many applications. Better attenuation
choices would be 20 :1 or 50 :1, but these still require that we produce sub-picofarad
capacitances.

One way of avoiding these problems is to let the tip capacitanceCcomp be whatever
it is and then effect compensation by increasing the capacitance Cshunt . To construct
a probe using these ideas, mount all components in microstrip fashion on a suitable
piece of board (e.g., FR4). A small needle may be soldered down as the probe tip in
series with a surface-mount resistor R. Depending on the attenuation you have cho-
sen, the necessary Cshunt may be provided by a commercial trimmer capacitor (such
as a piston-type, which has very low series resistance and inductance) or by taking
advantage of the 2.5-pF/cm2 capacitance of 1.6-mm FR4. Make the capacitor out of
copper foil tape to facilitate its adjustment by the addition or trimming of tape. The
probe then might appear somewhat as in Figure 19.11.
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19.3 SPEC TRUM ANALYZERS 625

F IGURE 19.11. Homemade probe

F IGURE 19.12. Swept frequency spectrum analyzer block diagram

It is entirely practical to build 20 :1 and 50 :1 probes using this method. By care-
fully trimming the copper foil, bandwidths in the low-gigahertz range are readily
achieved. Mechanical stability can be enhanced somewhat by putting a piece of heat-
shrink tubing around the probe.

19.3 SPEC TRUM ANALYZERS

Several architectures have been used for building spectrum analyzers, but commercial
RF analyzers are all based on the superheterodyne. See Figure 19.12. The input sig-
nal, after some optional attenuation, is mixed to the intermediate frequency (IF) using
a local oscillator whose frequency is controlled by a ramp (or its digital equivalent).
This ramp also feeds the horizontal deflection circuitry of the display to establish a
frequency axis. The local oscillator has the difficult task of operating over a very wide
frequency range (e.g., several decades). The LO is commonly implemented with a
YIG sphere (pronounced to rhyme with “fig”; YIG stands for yttrium-iron-garnet) at
its core.

This device (see Figure 19.13) is the dual of a piezoelectric crystal, and thus it be-
haves as a parallel LC resonator with a parasitic series inductance (as opposed to
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626 CHAPTER 19 OSCILLOSCOPES, SPEC TRUM ANALYZERS, AND PROBES

F IGURE 19.13. YIG sphere, coupling loop, and
one possible equivalent circuit

F IGURE 19.14. YIG sphere and coupling loop (left), and in context
[courtesy of David Straight, M/A-Com]

the series resonator with a parasitic shunt capacitance that models a quartz crystal).
Typical unloadedQ-values are in excess of 104, resulting in excellent spectral purity.
Of greater relevance for spectrum analyzers is that the resonant frequency is linearly
proportional to the strength of an applied magnetic field, permitting tuning over the
exceptional range demanded of laboratory instruments.

As seen in Figure 19.14, the sphere is typically mounted on the end of a dielectric
support rod. A single-turn coupling loop made of a wide conductor ribbon (to reduce
the parasitic series inductance) surrounds the sphere and connects to the rest of the
oscillator. Not shown is the frequency-control magnet and associated electronics.
The complete assembly would be enclosed in a structure that is well shielded electro-
statically and magnetically to prevent ambient fields from perturbing the oscillator.

The IF filter’s noise bandwidth is known as the resolution bandwidth, and it can
usually be chosen from a set of several discrete values. This bandwidth determines
the frequency range over which the spectral power is measured. The IF filter is usu-
ally implemented as a cascade of synchronously tuned bandpass stages, resulting in
a Gaussian response shape. Such a filter has good phase linearity (or, alternatively,
approximately constant group delay) and a noise bandwidth that is about 1.2 times
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19.3 SPEC TRUM ANALYZERS 627

the −3-dB bandwidth. The difference in noise bandwidth (about 0.8 dB on a ratio
basis) needs to be taken into account when integrating the noise density to find the
total power.

To provide an amplitude measurement calibrated in decibels, a logarithmic ampli-
fier compresses the output of the IF filter. Because noise peaks are therefore dimin-
ished in magnitude relative to the average, the log amp introduces some measurement
distortion. In this case, the measurement of power is low by about 1.45 dB. Failure
to take logarithmic warping into account is a common mistake. Just remember, for
example, that you cannot simply average an ensemble of measurements expressed
in decibels. You must average the raw values first and then subsequently convert to
decibel values.

After filtering and logarithmic amplification, a “video” detector drives the verti-
cal deflection circuitry of the display.13 Another filter (known, appropriately enough,
as the video filter) smooths the output of the detector. The characteristics of the de-
tector in measuring random noise introduce a calibration issue of their own. Most
detectors are calibrated to read the proper rms values under the assumption of a sinu-
soidal input, multiplying the raw detector output by 1/

√
2. However, random noise

is not sinusoidal; the envelope of band-limited noise turns out to be Rayleigh distrib-
uted, resulting in an average value that is about a factor of 1.25 times the rms value.
Together these considerations suggest we should add about 1.05 dB to the measured
values in order to correct for the detector’s characteristics. Overall, to compensate
for both the log amp and envelope detector’s bias, one must add about 2.5 dB to the
raw measured power data.

19.3.1 RESOLUTION BANDWIDTH VERSUS
VIDEO BANDWIDTH

The presence of filters both ahead of and past the detector confuses many spectrum
analyzer users. The IF filter sets the bandwidth over which noise power is inte-
grated before detection. As a consequence, its value determines the displayed value
of noise. A factor-of-10 reduction in resolution bandwidth diminishes the displayed
noise power by 10 dB.

The video bandwidth, on the other hand, determines the total amount of noise su-
perimposed on the detector output. Since the desired signal from the detector is all
at DC, it follows that the narrower the video bandwidth, the more noise-free the dis-
played levels. The trade-off is that the video filter’s settling time increases, forcing
slower sweep rates as the video bandwidth is reduced. Thus, the resolution band-
width determines the measured value noise, and the video bandwidth reduces the
noisiness of the displayed noise.

13 The nomenclature traces its origins to the early days of radar, where the detector output similarly
drove a video display.
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628 CHAPTER 19 OSCILLOSCOPES, SPEC TRUM ANALYZERS, AND PROBES

19.3.2 TR ACKING GENER ATOR

Some spectrum analyzers allow an external oscillator to share the control voltage
used by the analyzers’s internal VCO. This separate oscillator, known as a tracking
generator because its frequency tracks that of the analyzer’s VCO, can be used as
a signal source to a device under test, allowing the measurement of the DUT’s fre-
quency response. As a consequence, the addition of a tracking generator converts
a spectrum analyzer into a scalar network analyzer. (It is scalar because phase is
ignored, precluding a full vector measurement.) Measuring the frequency response
magnitude of filters and amplifiers is rapidly and conveniently carried out with such
a setup. A tracking generator is thus a highly desirable accessory, and most commer-
cially available spectrum oscillators accommodate an optional tracking generator.

19.3.3 CAVEATS

It is always important to be aware of the performance limits of any instrument. This
advice is especially important in the digital age, where instruments happily provide
data with many digits regardless of the underlying integrity of the data. Just because
you paid for all those digits does not necessarily mean they’re all trustworthy.

One basic requirement is to observe the dynamic range limits of the analyzer. If
the input signal is too large then something in the analyzer will overload, generat-
ing distortion within the instrument. Such spurious responses may be improperly
attributed to the DUT, causing the engineer to waste a great deal of time chasing a
phantom problem. Fortunately, spectrum analyzer overload is readily detected and
avoided. If increasing the attenuation (decreasing the sensitivity) causes spurious
tones to change in relative power (or to disappear altogether), then the spectrum ana-
lyzer is the source of the problem. As a routine procedure, one should vary the input
sensitivity in order to verify that the measurement is truly attributable to the DUT
and not to the analyzer.

It’s also important to acknowledge the existence of a maximum allowed input
power. Exceeding this absolute upper limit can result in actual damage to the front
end. This problem almost never arises when characterizing low-level amplifiers.
However, when working with power amplifiers, it may be necessary to use external
attenuators with appropriate power ratings. On the other hand, if the input signal is
too small, the signal from the DUT will be corrupted (or even buried) by the noise
floor of the analyzer. Be wary of measurements made within a few decibels of the
inherent noise floor of the analyzer.

Another consideration is that the useful resolution bandwidth is limited by the phase
noise of the analyzer’s internal oscillator. Well-designed instruments are “self-aware”
in the sense that the IF filters are chosen to have a minimum bandwidth consistent
with the VCO characteristics. Alas, not all instruments are well designed, so it is
important to study the specifications carefully to understand the true limits of the
equipment.
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19.4 REFERENCES 629

In reading noise levels from the display, it is important to correct for the noise
bandwidth not only of the IF filters but also of the log amp and envelope detector. As
mentioned previously, some instruments include a cursor option for automatic cor-
rection of these effects, but not all do. For the latter, one must perform the corrections
manually.

Finally, note that harmonic distortion in the analyzer’s LO can result in multiple
responses to a single frequency input. This distortion is kept very small through care-
ful design, but it’s never zero. For large input powers, the distortion can result in
multiple responses that are noticeably above the noise floor, possibly causing one to
misinterpret the display as indicative of some pathology in the DUT. Again, a careful
understanding of a particular instrument’s characteristics and limitations will allow
the user to avoid being fooled by such artifacts.

19.4 REFERENCES

The following notes provide additional information of value: “Spectrum Analyzer
Measurement Seminar” (Hewlett-Packard, February 1988); and “Spectrum Analysis
. . . Spectrum Analyzer Basics” (Hewlett-Packard Applications Note 150, April 1974).

A wonderful paper by Mark Kahrs, “50 Years of RF and Microwave Sampling”
(IEEE Trans. Microwave Theory and Tech., v. 51, no. 6, June 2003, pp. 1787–1805),
provides an exceptional history of the subject of sampling. With an extensive refer-
ence list of over 250 papers, this review covers the subject with unusual thoroughness.
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C H A P T E R T W E N T Y

RF POWER A MPL IF IERS

20.1 INTRODUC TION

In this chapter, we consider the problems of efficiently and linearly delivering RF
power to a load. Simple, scaled-up versions of small-signal amplifiers are fundamen-
tally incapable of high efficiency, so we have to consider other approaches. As usual,
there are trade-offs – here, between spectral purity (distortion) and efficiency.

In a continuing quest for increased channel capacity, more and more communica-
tions systems employ amplitude and phase modulation together. This trend brings
with it an increased demand for much higher linearity (possibly in both amplitude
and phase domains). At the same time, the trend toward portability has brought with
it increased demands for efficiency. The variety of power amplifier topologies re-
flects the inability of any single circuit to satisfy all requirements.

SM ALL- VERSUS L ARGE-S IGNAL OPER ATING REGIMES

Recall that an important compromise is made in analyzing circuits containing non-
linear devices (such as transistors). In exchange for the ability to represent, say, an
inherently exponential device with a linear network, we must accept that the model
is valid only for “small” signals. It is instructive to review what is meant by “small”
and to define quantitatively a boundary between “small” and “large.”

In what follows, we will decompose signals into their DC and signal components.
To keep track of which is which, we will use the following notational convention:
DC variables are in upper case (with upper-case subscripts); small-signal compo-
nents are in lower case (with lower-case subscripts); and the combination of DC and
small-signal components is denoted by a combination of a lower-case variable and
an upper-case subscript.

Let’s start with the familiar exponential vBE law:

iC = IS evBE/VT , (1)

where we have neglected the −1 term, as is traditional.

630
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20.2 CL ASSICAL POWER A MPL IF IER TOPOLOGIES 631

Now express the base–emitter voltage as the sum of a DC and “small-signal” com-
ponent:

vBE = VBE + vbe. (2)

Next, substitute into the exponential law and use a series expansion:

iC = IS evBE/VT = IS eVBE/VT
[
1 + vbe

VT
+ 1

2

(
vbe

VT

)2

+ · · ·
]
. (3)

In traditional incremental analysis, we preserve only the DC and first-order terms.
To get a feel for when the neglect of higher-order terms is justified, let’s find the value
of vbe (the incremental base–emitter voltage) that gives us a second-order term that
is no larger than a tenth as large as the first-order term:

1

2

(
vbe

VT

)2

≤
∣∣∣∣ vbe10VT

∣∣∣∣. (4)

Solving for vbe yields
|vbe| ≤ 1

5VT . (5)

At room temperature, VT is about 25 mV, so the maximum allowable excursion
in base–emitter voltage is a measly ±5 mV, which corresponds to a collector current
change of approximately ±20% about the quiescent value. Even smaller excursions
are permitted if the second-order term is to be smaller than 10% of the first-order
term. Thus, you can well appreciate that “small signal” means small signal.

An analogous derivation for a FET reveals that small is defined there as relative
to the gate overdrive, VGS −VT , where VT is the threshold voltage. In terms of abso-
lute volts, the linear range of an FET is greater than that of a bipolar. However, this
apparent superiority comes at the expense of reduced transconductance.

Transistors in a typical power amplifier may traverse all regions of operation. Con-
sequently the base–emitter (or gate–source) voltage swings will generally exceed the
small-signal limits we’ve just identified. As a result, the amplifiers will exhibit sig-
nificant distortion that must be accommodated in both analysis and design. In nar-
rowband amplifiers, this distortion can be reduced most conveniently by using filters
with sufficiently highQ to pass only the carrier and modulation sidebands. In broad-
band PAs, one must use other means, such as negative feedback or feedforward – and
generally at the cost of less efficiency or more complexity.

20.2 CL ASSICAL POWER A MPLIF IER TOPOLOGIES

There are four types of power amplifiers, distinguished primarily by bias conditions,
that may be termed “classic” because of their historical precedence. These are la-
beled Class A, AB, B and C, and all four may be understood by studying the single
model sketched in Figure 20.1.1 The model isn’t unique, but it is representative.

1 Many variations on this theme exist, but the operating features of all of them may still be under-
stood with this model.
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632 CHAPTER 20 RF POWER A MPL IF IERS

F IGURE 20.1. General power amplifier model for classic topologies

In this general model, the resistor RL represents the load into which we are to
deliver the output power. A “big, fat” inductance, BFL, feeds DC power to the
collector and is assumed large enough that the current through it is substantially con-
stant. The collector is connected to a tank circuit through capacitor BFC to prevent
any DC dissipation in the load. One advantage of this particular configuration is
that the transistor’s output capacitance can be absorbed into the tank, as in a con-
ventional small-signal amplifier. Another is that the filtering provided by the tank
cuts down on out-of-band emissions caused by the ever-present nonlinearities that
accompany large-signal operation. To simplify analysis, we assume that the tank has
a high enoughQ that the voltage across the tank is reasonably well approximated by
a sinusoid, even if it is fed by nonsinusoidal currents.

20.2.1 CL ASS A A MPL IF IERS

The defining characteristic of a Class A PA is that bias levels are chosen to ensure
that the transistor conducts all the time. The primary distinction between Class A
power amplifiers and small-signal amplifiers is that the signal currents in a PA are a
substantial fraction of the bias level, and one would therefore expect potentially se-
rious distortion. The Class A amplifier moderates this distortion at the expense of
efficiency because there is always dissipation due to the bias current, even when there
is no input signal. To understand quantitatively why the efficiency is poor, assume
that the collector current is reasonably well approximated by

iC = IDC + irf sinω0 t, (6)

where IDC is the bias current, irf is the amplitude of the signal component of the
collector current, and ω0 is the signal frequency (and also the resonant frequency of
the tank). Although we have glibly ignored distortion, the errors introduced are not
serious enough to invalidate what follows.

The output voltage is simply the product of a signal current and the load resis-
tance. Since the big, fat inductorBFL forces a substantially constant current through
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20.2 CL ASSICAL POWER A MPL IF IER TOPOLOGIES 633

F IGURE 20.2. Collector voltage and current for ideal Class A amplifier

it, KCL tells us that the signal current is none other than the signal component of the
collector current. Therefore,

vo = −irfR sinω0 t. (7)

Finally, the collector voltage is the sum of the DC collector voltage and the sig-
nal voltage. The big, fat inductor BFL presents a DC short, so the collector voltage
swings symmetrically about VCC.2 The collector voltage and current are therefore
offset sinusoids that are 180◦ out of phase with each other, as shown in Figure 20.2.

If it isn’t clear from the equations, it should be clear from the figure that the tran-
sistor always dissipates power because the product of collector current and collector
voltage is always positive. To evaluate this dissipation quantitatively, compute the
efficiency by first calculating the signal power delivered to the resistor R:

Prf = i2rfR/2. (8)

Next, compute the DC power supplied to the amplifier. Let us assume that the quies-
cent collector current, IDC , is made just large enough to guarantee that the transistor
does not ever cut off. That is,

IDC = irf , (9)

so that the input DC power is

PDC = IDCVCC = irfVCC. (10)

2 This is not a typographical error. The collector voltage actually swings above the positive supply.
One way to argue that this must be the case is to recognize that an ideal inductor cannot have any
DC voltage across it (otherwise infinite currents would eventually flow). Therefore, if the collector
voltage swings below the supply, it must also swing above it. This kind of thinking is particularly
helpful in deducing the characteristics of various types of switched-mode power converters.
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The ratio of RF output power to DC input power is a measure of efficiency (usu-
ally called the collector efficiency), and is given by

η ≡ Prf

PDC
= i2rf (R/2)

irfVCC
= irfR

2VCC
. (11)

Now, the absolute maximum that the product irfR can have is VCC , for otherwise the
transistor would saturate on the (negative) peaks. Hence, the maximum theoretical
collector efficiency is just 50%. If one makes due allowance for nonzero saturation
voltage, variation in bias conditions, nonideal drive amplitude, and inevitable losses
in the tank and interconnect, values substantially smaller than 50% often result – par-
ticularly at lower supply voltages, where VCE,sat represents a larger fraction of VCC.
Consequently, collector efficiencies of 30–35% are not at all unusual for practical
Class A amplifiers.3

Aside from efficiency, another important consideration is the stress on the output
transistor. In a Class A amplifier, the maximum collector-to-emitter voltage is 2VCC ,
while the peak collector current has a value of 2VCC/R. Hence, the device must be
rated to withstand peak voltages and currents of these magnitudes, even though both
maxima do not occur simultaneously.

One common way to quantify these requirements is to define another figure of
merit, the “normalized power-handling capability,” which is simply the ratio of the
actual output power to the product of the maximum device voltage and current. For
this type of amplifier, the maximum value of this dimensionless figure of merit is

PN ≡ Prf

vCE,maxiC,max

= V 2
CC/(2R)

(2VCC)(2VCC/R)
= 1

8
. (12)

This figure of merit is also known as the utilization factor.
The Class A amplifier thus provides reasonable linearity at the cost of low effi-

ciency and relatively large device stresses. For this reason, pure Class A amplifiers
have been rare in RF power applications4 and relatively rare in audio power applica-
tions (particularly so at the higher power levels).5

It is important to underscore once again that the 50% efficiency value represents
an upper limit. If the collector swing is less than the maximum assumed in our dis-
cussion or if there are additional losses anywhere else, the efficiency drops. As the
swing approaches zero, the collector efficiency also approaches zero because the sig-
nal power delivered to the load goes to zero while the transistor continues to burn
DC power.

3 Another factor is that relative distortion drops with the output power. In applications where low
distortion is important, efficiency is often traded off for linearity, resulting in quite low efficiency.

4 Except, perhaps, in low-level applications, or in the early stages of a cascade.
5 An exception is the high-end audio crowd, of course, for whom power consumption is often not a

constraint. More recently, the linearity demands of third-generation (3G) wireless have resulted in
a resurgence of Class A amplifiers.
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20.2 CL ASSICAL POWER A MPL IF IER TOPOLOGIES 635

As a final comment on this topology, note that even though the amplifier distorts
because of large-signal operation, the amplifier does have linear modulation char-
acteristics since the output fundamental is in fact proportional to the fundamental
component of the drive current. As long as the drive current’s fundamental is itself
proportional to the desired modulation, the voltage developed across the load will
also be proportional to it, and linear modulation results. Thus, the amplifier is still
linear in the describing function sense (see Chapter 15).

20.2.2 CL ASS B A MPL IF IERS

A clue to how one might achieve higher efficiency than a Class A amplifier is actu-
ally implicit in the waveforms of Figure 20.2. It should be clear that if the bias were
arranged to reduce the fraction of a cycle over which collector current and collector
voltage are simultaneously nonzero, then transistor dissipation would diminish.

In the Class B amplifier, the bias is arranged to shut off the output device half of
every cycle. An exact 50% conduction duty cycle is a mathematical point, of course,
so true Class B amplifiers do not actually exist. Nevertheless, the concept is useful
in constructing a taxonomy. In any case, with intermittent conduction, we expect a
gross departure from linear operation. However, we must distinguish between distor-
tion in the output (an earmark of nonlinearity), and proportionality (or lack thereof )
between input and output powers (evaluated at the fundamental). A single-ended
Class B amplifier may produce a nonsinusoidal output yet still act linearly in this
sense of input–output power proportionality. We still care about out-of-band spec-
tral components, of course, and a high-Q resonator (or other filter) is absolutely
mandatory in order to obtain an acceptable approximation to a sinusoidal output.
However, despite this distortion, the Class B amplifier can possess linear modulation
characteristics, again in the describing function sense, and may therefore be used in
applications requiring linear amplification.

Although the single-transistor version of a Class B amplifier is what we’ll ana-
lyze here, it should be mentioned that most practical Class B amplifiers are push–pull
configurations of two transistors (more on this topic later).

For this amplifier, then, we assume that the collector current is sinusoidal for one
half-cycle and zero for the other half-cycle;

iC = irf sinω0 t for iC > 0. (13)

The output tank filters out the harmonics of this current, leaving a sinusoidal collec-
tor voltage as in the Class A amplifier. The collector current and collector voltage
therefore appear approximately as shown in Figure 20.3.

To compute the output voltage, we first find the fundamental component of the
collector current and then multiply this current by the load resistance:

ifund = 2

T

∫ T/2

0
ipk(sinω0 t)(sinω0 t) dt = ipk

2
, (14)
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636 CHAPTER 20 RF POWER A MPL IF IERS

F IGURE 20.3. Collector voltage and current for ideal Class B amplifier

a result we expect after cutting out half the output waveform. Thus,

vo ≈ ipk

2
R sinω0 t. (15)

Since the maximum possible value of vo is VCC , it is clear from Eqn. 15 that the max-
imum value of ipk is

ipk,max = 2VCC
R
. (16)

The peak collector current and maximum output voltage are therefore the same as for
the Class A amplifier.6

Computing the collector efficiency as before, we first calculate the output power
as

Po = v2
rf

2R
, (17)

where vrf is the amplitude of the swing across the load resistor. The maximum value
of the swing amplitude remains VCC , so that the maximum output power is

Po,max = V 2
CC

2R
. (18)

Computing the DC input power is a little more complicated, but straightforward
nonetheless. The average collector current is

iC = 1

2π

∫ π

0

2VCC
R

sin)d) = 2VCC
πR

, (19)

6 The assumption of half-sinusoidal current pulses is, necessarily, an approximation. The collec-
tor current in practical circuits differs mainly in that the transition to and from zero current is not
abrupt. Hence, the true device dissipation is somewhat greater, and the efficiency somewhat lower,
than predicted by ideal theory.
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20.2 CL ASSICAL POWER A MPL IF IER TOPOLOGIES 637

so that the DC power supplied is

PDC = VCCiC = 2V 2
CC

πR
. (20)

Finally, the maximum collector efficiency for a Class B amplifier is

η = Po,max

PDC
= π

4
≈ 0.785. (21)

The theoretical maximum collector efficiency is thus considerably higher than that
for the Class A PA. Again, however, the actual efficiency of any practical implemen-
tation will be somewhat lower than given by the analysis shown here as a result of
effects that we have neglected. Nonetheless, it remains true that, all other things held
equal, the Class B amplifier offers substantially higher efficiency than its Class A
cousin.

The normalized power capability of this amplifier is 1/8, the same as for the Class
A, since the output power, maximum collector voltage, and maximum collector cur-
rent are the same.7

With the Class B amplifier, we have accepted some distortion (but retained mod-
ulation linearity) and reduced gain in exchange for a significant improvement in
efficiency. Since this trade-off is effected by reducing the fraction of a period that the
transistor conducts current, it is natural to ask whether further improvements might
be possible by reducing the conduction angle even more. Exploration of this idea
leads to the Class C amplifier.

20.2.3 CL ASS C A MPL IF IER

In a Class C PA, the bias is arranged to cause the transistor to conduct less than half
the time. Consequently, the collector current consists of a periodic train of pulses.
It is traditional to approximate these pulses by the top pieces of sinusoids to facili-
tate a direct analysis.8 Specifically, one assumes that the collector current is of the
following form:

iC = IDC + irf sinω0 t for iC > 0, (22)

where the offset IDC (which is analogous to the bias current in a linear amplifier)
is actually negative for a Class C amplifier. Of course, the overall collector current
iC is always positive or zero. That is, the collector current is a piece of a sine wave
when the transistor is active and zero when the transistor is in cutoff. We continue

7 A two-transistor push–pull Class B amplifier has a normalized power capability that is twice as
large.

8 See e.g. Krauss, Bostian, and Raab, Solid-State Radio Engineering, Wiley, New York, 1981. They
provide a more complete analysis than presented here.
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638 CHAPTER 20 RF POWER A MPL IF IERS

F IGURE 20.4. Collector voltage and current for ideal Class C amplifier

to assume that the transistor behaves at all times as a current source (high output
impedance).9

We also continue to assume that the output tank has a high enough Q that the
voltage across the load remains substantially sinusoidal. The collector voltage and
collector current therefore appear as shown in Figure 20.4. Because we’re interested
in what distinguishes a Class C from a Class B PA, let’s focus our attention on the
behavior as the collector current pulses get relatively narrow. In that case, we can
simplify matters considerably by idealizing the pulses as triangles with the same peak
value and width; see Figure 20.5.

The average value of collector current is simply the area of the triangular pulse
divided by the period:

iC = 1

T

∫ T

0
iC(t) dt ≈

1
2 (2*)(iPK)

2π
= (*)(iPK)

2π
. (23)

The average power supplied by VCC is therefore

PDC = VCCiC ≈ VCC (*)(iPK)
2π

. (24)

Now, the fundamental component of the collector current has an amplitude given
by

ifund = 2

T

∫ T

0
iC(t) cosωt dt ≈ 2iC = (*)(iPK)

π
, (25)

9 Violation of this assumption leads to an exceedingly complex situation. Maximum efficiency is
typically obtained when the output power is nearly saturated. Under such conditions, Class C am-
plifiers force bipolar transistors into saturation (and MOSFETs into triode) for some fraction of a
period, making exact analysis difficult.
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20.2 CL ASSICAL POWER A MPL IF IER TOPOLOGIES 639

F IGURE 20.5. Idealized collector current waveform

where we have assumed that the pulses are so narrow that the cosine function is well
approximated by unity for the duration of the pulse. Note that Eqn. 25 says that,
independent of pulse shape, the fundamental component of current is always about
double the DC current – provided the collector current flows in narrow pulses. Thus,
idealization of the collector current pulses as triangular introduces no serious errors
in this regime, while simplifying the analysis enough to facilitate acquisition of use-
ful design insight.

One important insight is the nonlinearity implied by Eqn. 25. The peak output cur-
rent increases with the input voltage, and so does the conduction angle. There’s no
reason to expect the product of these two increases to be linear, and it isn’t (in fact,
the output amplitude is more closely approximated as depending on the square of the
input amplitude). Thus the output power depends nonlinearly on the input power,
unlike the Class A and B amplifiers.

The signal power delivered to the load is

Prf = i2fundR

2
≈

[
iPK

*
π

]2

2
. (26)

The collector efficiency is readily calculated as

η = Prf

PDC
≈

[
iPK

*
π

]2
R

2

VCC
(*)(iPK)

2π

=
[
iPK

*
π

]
R

VCC
= ifundR

VCC
. (27)
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640 CHAPTER 20 RF POWER A MPL IF IERS

Now the maximum output power is produced for

ifund,max = VCC

R
, (28)

so the collector efficiency approaches 100% for a sufficiently large product of peak
current and (narrow) conduction angle. We see from Eqns. 23 and 25 that adjust-
ing the base drive to produce narrower collector current pulses requires proportional
increases in the peak collector current if the output power is to remain constant. It
should thus be clear that the normalized power-handling capability of the Class C
amplifier approaches zero as the conduction angle approaches zero, because then the
peak collector current approaches infinity. Practical conduction angles are not near
zero for this reason.

Although the foregoing development treats the conduction angle as an indepen-
dent variable, it is more commonly the result of choosing a conveniently realized
input bias (such as zero volts) in combination with whatever input drive is available.
Accommodating that truth – plus balancing gain, efficiency, and power-handling ca-
pability – typically results in conduction angles between135◦ and150◦.10 The primary
virtue in carrying out the exercise is to develop some general intuition useful for de-
sign: efficiency can be high, but at the cost of reduced power handling capability,
gain, and linearity.

20.2.4 CL ASS AB A MPL IF IERS

We’ve seen that Class A amplifiers conduct 100% of the time, Class B amplifiers 50%
of the time, and Class C PAs somewhere between none and 50% of the time. The
Class AB amplifier, as its name suggests, conducts somewhere between 50% and
100% of a cycle, depending on the bias levels chosen. As a result, its efficiency and
linearity are intermediate between those of a Class A and Class B amplifier. This
compromise is frequently satisfactory, as one may deduce from the popularity of this
PA. All real Class B amplifiers are Class AB or C amplifiers, depending on the con-
duction angle.

20.2.5 CL ASS D A MPL IF IERS

The classic PAs use the active device as a controlled current source. An alternative
is to use transistors as switches. This alternative is attractive because a switch ide-
ally dissipates no power. At any given instant, there is either zero voltage across it
or zero current through it. Since the switch’s V–I product is therefore always zero,
the transistor dissipates no power and the efficiency must be 100%.

10 The astute reader will note that this conduction angle range is not small in the sense of the ap-
proximations used in the derivations presented. Nevertheless, the overall qualitative conclusions
remain valid.
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20.2 CL ASSICAL POWER A MPL IF IER TOPOLOGIES 641

F IGURE 20.6. Class D amplifier

One type of amplifier that exploits this observation is the Class D amplifier. At first
glance, it looks the same as a push–pull, transformer-coupled version of a Class B
amplifier. See Figure 20.6. In contrast with the parallel tanks we’ve typically seen,
a series RLC network is used in the output of this amplifier, since switch-mode
amplifiers are the duals of the current-mode amplifiers studied previously. As a con-
sequence, the output filters are also duals of each other.

The input connection guarantees that only one transistor is driven on at a given
time, with one transistor handling the positive half-cycles and the other the negative
half-cycles, just as in a push–pull Class B. The difference here is that the transis-
tors are driven hard enough to make them act like switches, rather than as linear (or
quasilinear) amplifiers.

Because of the switching action, each primary terminal of the output transformer
T 2 is alternately driven to ground, yielding a square-wave voltage across the primary
(and hence across the secondary). When one collector goes to zero volts, transformer
action forces the other collector to a voltage of 2VCC. The output filter allows only
the fundamental component of this square wave to flow into the load.

Since only fundamental currents flow in the secondary circuit, the primary cur-
rent is sinusoidal as well. As a consequence, each switch sees a sinusoid for the
half-cycle that it is on, and the transformer current and voltage therefore appear as
in Figures 20.7 and 20.8. Because the transistors act like switches (in principle, any-
way), the theoretical efficiency of the Class D amplifier is 100%.

The normalized power efficiency for this amplifier happens to be11

Po

vCE,on · iC,pk

= 1

π
≈ 0.32, (29)

which is considerably better than a Class A amplifier and somewhat better than a
push–pull Class B. Of course, the Class D amplifier cannot normally provide linear
modulation, but it does provide potentially high efficiency and does not stress the
devices very much.

11 It may help to keep in mind that the amplitude of the fundamental component of a square wave is
4/π times the amplitude of the square wave.
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642 CHAPTER 20 RF POWER A MPL IF IERS

F IGURE 20.7. Q1 collector voltage and current for ideal Class D amplifier

F IGURE 20.8. T 2 secondary voltage and current for ideal Class D amplifier

One practical problem with this (or any other switching) PA is that there is no
such thing as a perfect switch. Nonzero saturation voltage guarantees static dissipa-
tion in the switches, while finite switching speeds imply that the switch V–I product
is nonzero during the transitions. Hence, switch-mode PAs function well only at fre-
quencies well below fT . Furthermore, a particularly serious reduction in efficiency
can result in bipolar implementations if, due to charge storage in saturation, one tran-
sistor fails to turn completely off before the other turns on. Transformer action then
attempts to apply the full supply voltage across the device that is not yet off, and the
V–I product can be quite large.

20.2.6 CL ASS E A MPL IF IERS

As we’ve seen, using transistors as switches has the potential for providing greatly
improved efficiency, but it’s not always trivial to realize that potential in practice
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F IGURE 20.9. Class E amplifier

owing to imperfections in real switches (transistors). The associated dissipation de-
grades efficiency. To prevent gross losses, the switches must be quite fast relative
to the frequency of operation. At high carrier frequencies, it becomes increasingly
difficult to satisfy this requirement.

If there were a way to modify the circuit so that the switch voltage were zero for
a nonzero interval of time about the instant of switching, then the dissipation would
decrease. The Class E amplifier uses a high-order reactive network that provides
enough degrees of freedom to shape the switch voltage to have both zero value and
zero slope at switch turn-on, thus reducing switch losses. It does nothing for the
turn-off transition, which is often the more troublesome edge, at least in bipolar de-
signs. Another issue, as we’ll see later, is that the Class E amplifier has rather poor
normalized power-handling capability (worse, in fact, than a Class A amplifier), re-
quiring the use of rather oversized devices to deliver a given amount of power to a
load – despite the high potential efficiency (theoretically 100% with ideal switches)
of this topology. If these constraints are not a bother, then the Class E topology is
capable of excellent performance.

Another virtue of the Class E amplifier is that it is straightforward to design. Un-
like typical Class C amplifiers, practical implementations require little post-design
tweaking to obtain satisfactory operation.

With that preamble out of the way, let’s take a look at the Class E topology drawn
in Figure 20.9. The RF choke (RFC, the equivalent of a BFL) simply provides a
DC path to the supply and approximates an open circuit at RF. Note additionally that
the capacitor C1 is conveniently positioned, for any device output capacitance can be
absorbed into it.

Derivation of the design equations is sufficiently involved (and the payoff in terms
of design insight sufficiently small) that we’ll omit the details. Interested readers are
directed to the relevant literature for derivation of the following equations:12

12 N. O. Sokal and A. D. Sokal, “Class E, a New Class of High-Efficiency Tuned Single-Ended Power
Amplifiers,” IEEE J. Solid-State Circuits, v. 10, June 1975, pp. 168–76. Invention of the Class E
amplifier is usually traced to that paper, but Gerald D. Ewing’s doctoral thesis, “High-Efficiency
Radio-Frequency Power Amplifiers” (Oregon State University, Corvallis, 1964), is the earliest
exposition of the concept. I am grateful to Prof. David Rutledge of Caltech for providing this his-
torical note.
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F IGURE 20.10. Idealized waveforms for Class E amplifier

L = QR

ω
; (30)

C1 ≈ 1

ω(R · 5.447)
≈ 0.184

ωR
, (31)

C2 ≈ C1

(
5.447

Q

)(
1 + 1.42

Q− 2.08

)
. (32)

Although we provide equations for the output series LC network elements, they are
based on a simple, parasitic-free model for the transistor. In practice, one will have
to search for element values that maximize the efficiency while providing the desired
output power.

Once everything is tuned up, the collector current and voltage waveforms resem-
ble those shown in Figure 20.10. Note that the collector voltage has zero slope at
turn-on, although the current is nearly a maximum when the switch turns off. Hence,
switch dissipation can be significant during that transition if the switch isn’t infinitely
fast (as is the case with most switches you’re likely to encounter). This dissipation
can offset much of the improvement obtained by reducing the dissipation during the
transition to the “on” state.

Additionally, note that each of the waveforms has a rather dramatic peak-to-average
ratio. In fact, a detailed analysis shows that the peak collector voltage is approxi-
mately 3.6VCC , while the peak collector current is roughly 1.7VCC/R.
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F IGURE 20.11. Class E amplifier with output filter
and impedance transformer

The maximum output power delivered to the load is

Po = 2

1 + π2/4
· V

2
CC

R
≈ 0.577 · V

2
CC

R
, (33)

and the device utilization factor is therefore

Po

vCE,pk · iC,pk

≈ 0.098. (34)

As you can see, the Class E is more demanding of its switch specifications than even
a Class A amplifier. As long as this property can be accommodated, the Class E
amplifier is capable of excellent performance.

Finally, note that the drain current waveforms are distinctly nonsinusoidal. Ad-
ditional filtering is therefore almost certainly necessary if statutory limits on out-of-
band emissions are to be satisfied. Quite often, the required filtering may be com-
bined with an impedance transformation (for correct output power) and/or partially
absorbed into the Class E’s reactive network elements.

In Figure 20.11, C3 forms part of a downward-transforming L-match network.
Choosing the low-pass version provides some filtering for free. The series induc-
tance L serves double duty, completing the L-match and functioning as part of the
Class E seriesLC output network. If any additional filtering is required, it can be im-
plemented with series LC traps shunting the output load or with additional elements
interposed between the Class E stage proper and the output load.

There is a tendency to focus on the output side of a PA, but we shouldn’t overlook
drive requirements on the input side. At higher power levels in particular, the power
device is often so large that its input impedance ends up being quite low (independent
of device technology). It is not uncommon for the input impedance to be as low as
a single ohm (resistive plus reactive), so coupling power efficiently into the input of
this amplifier can be challenging on occasion.

As a final note on the Class E amplifier, bipolar implementations typically don’t
perform as well as ones built with FETs. The reason is that bipolar transistors exhibit
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F IGURE 20.12. Class F amplifier

a turn-off delay phenomenon due to minority carrier storage.13 The reactive net-
work of a Class E eases V–I overlap for the turn-on transition only; as mentioned
earlier, it does nothing to help the more problematic turn-off transition of a bipolar
implementation.

20.2.7 CL ASS F A MPL IF IERS

Implicit in the design of Class E amplifiers is the concept of exploiting the properties
of reactive terminations in order to shape the switch voltage and current waveforms
to your advantage. Perhaps the most elegant expression of this concept is found in
the Class F amplifier. As shown in Figure 20.12, the output tank is tuned to reso-
nance at the carrier frequency and is assumed to have a high enough Q to act as a
short circuit at all frequencies outside of the desired bandwidth.

The length of the transmission line is chosen to be precisely a quarter-wavelength
at the carrier frequency. Recall that the input impedance of such a line is proportional
to the reciprocal of the termination impedance:

Zin = Z2
0/ZL. (35)

We may deduce from this equation that a half -wavelength piece of line presents an
input impedance equal to the load impedance, since two quarter-wave sections give
us two reciprocations that undo each other.

With that quick review out of the way, we can figure out the nature of the im-
pedance seen by the collector. At the carrier frequency, the collector sees a pure
resistance of R = Z0, since the tank is an open circuit there, and the transmission is
therefore terminated in its characteristic impedance.

At the second harmonic of the carrier, the collector sees a short, because the tank
is a short at all frequencies away from the carrier (and its modulation sidebands),
and the transmission line now appears as a half-wavelength piece of line. Clearly,

13 For a more detailed discussion of this phenomenon, see the supplementary material included on
the CD-ROM that accompanies this book.
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F IGURE 20.13. Collector voltage and current waveforms for Class F PA

at all even harmonics of the carrier, the collector sees a short, since the transmis-
sion line appears as some integer multiple of a half-wavelength at all even harmonics.
Conversely, the collector sees an open circuit at all odd harmonics of the carrier, be-
cause the tank still appears as a short circuit; the transmission line appears as an odd
multiple of a quarter-wavelength and thus provides a net reciprocation of the load
impedance.

Now, if the transistor is assumed to act as a switch, then the reactive termina-
tions guarantee that all of the odd harmonics of the collector voltage will see no load
(other than that associated with the transistor’s own output impedance) and hence a
square-wave voltage ideally results at the collector (recall that a square wave with
50% duty ratio has only odd harmonics).

Because of the open-circuit condition imposed by the transmission line on all odd
harmonics above the fundamental, the only current that flows into the line is at the
fundamental frequency. Hence, the collector current is a sinusoid when the transistor
is on. And of course, the tank guarantees that the output voltage is a sinusoid even
though the transistor is on for only a half cycle (as in a Class B amplifier).

By cleverly arranging for the square-wave voltage to see no load at all frequen-
cies above the fundamental, the switch current is ideally zero at both switch turn-on
and turn-off times. The high efficiencies possible are suggested by the waveforms
depicted in Figure 20.13. The total peak-to-peak collector voltage is seen to be twice
the supply voltage. Therefore, the peak-to-peak component of VCE at the carrier fre-
quency is
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648 CHAPTER 20 RF POWER A MPL IF IERS

(4/π)2VCC. (36)

Note that the fundamental has a peak-to-peak value that actually exceeds the total
VCE swing, thanks to the magic of Fourier transforms.

Now, since only the fundamental component survives to drive the load, the output
power delivered is

Po = [(4/π)VCC]2

2R
. (37)

Since the switch dissipates no power, we can conclude that the Class F amplifier is
capable of 100% efficiency in principle. In practice, one can obtain efficiency supe-
rior to that of Class E amplifiers. Additionally, the Class F PA has substantially better
normalized power-handling capability, since the maximum voltage is just twice the
supply while the peak collector current is

iC,pk = 2VCC
R

· 4

π
= 8

π
· VCC
R
. (38)

The normalized power handling capability is therefore

Po

vCE,pk · iC,pk

=
[(4/π)VCC]2

2R

2VCC ·
(

8

π
· VCC
R

) = 1

2π
≈ 0.16, (39)

or exactly half that of the Class D amplifier. In some respects, the Class F amplifier
may be considered equivalent to a single-ended Class D amplifier.

It should be emphasized that Class C, D, E, and F amplifiers are all essentially
constant-envelope amplifiers. That is, they do not normally provide an output that is
proportional to the input and thus tend to perform best when all we ask of them is a
constant-amplitude output (as would be suitable for FM, for example). Nonetheless,
we will see later that it is still possible to use these amplifiers in applications requir-
ing linear operation. This capability is important because there is presently a shift
toward more spectrally efficient modulation methods (e.g., QAM) that involve am-
plitude modulation and for which linear operation is thus necessary. At present, this
requirement has frequently forced the use of Class AB amplifiers, with a correspond-
ing reduction in efficiency relative to constant-envelope PA topologies. A general
method for providing linear operation at constant-envelope efficiencies remains elu-
sive. In Section 20.3 we will consider in more detail the problem of modulating
power amplifiers.

Inverse Class F (F−1)

The dual of the Class F is itself a power amplifier with the same theoretical bounds
on efficiency as its cousin.14 Whereas the Class F amplifier’s termination appears

14 See e.g. S. Kee et al., “The Class E /F Family of ZVS Switching Amplifiers,” IEEE Trans. Mi-
crowave Theory and Tech., v. 51, May 2003.
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20.2 CL ASSICAL POWER A MPL IF IER TOPOLOGIES 649

F IGURE 20.14. Inverse Class F amplifier (three-resonator
lumped element example shown)

F IGURE 20.15. Collector voltage and current for
ideal inverse Class F amplifier

as an open circuit at odd harmonics of the carrier beyond the fundamental and as a
short circuit at even harmonics, the inverse Class F (often denoted by the shorthand
F−1) employs a termination that appears as an open circuit at even harmonics and as
a short circuit at the odd harmonics. See Figure 20.14.

Again, a transmission line may replace the lumped resonators when it is advanta-
geous or otherwise practical to do so. Here, a piece of line whose length is λ/2 at
the fundamental frequency replaces the paralleled series resonators and is interposed
between the drain and the output series LC tank.

For an infinite number of series resonators, the drain voltage waveform thus ap-
pears ideally as a (half ) sinusoid and the current waveform as a square wave; see
Figure 20.15. Once again, the lack of V–I overlap at the switching transitions ac-
counts for the high theoretical efficiency of this architecture, just as with the Class E
and standard Class F amplifiers.
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650 CHAPTER 20 RF POWER A MPL IF IERS

F IGURE 20.16. Alternative Class F amplifier

Alternative Class F Topology

The topology shown in Figure 20.12 is elegant, but the transmission line may be in-
conveniently long in many applications. Furthermore, the benefits of an infinite (or
nearly infinite) impedance at odd harmonics other than the fundamental are some-
what undermined in practice by the transistor’s own output capacitance. Hence, a
lumped approximation frequently performs nearly as well as the transmission line
version.

To create such a lumped approximation, replace the transmission line with a num-
ber of parallel-resonant filters connected in series. Each of these resonators is tuned
to a different odd harmonic of the carrier frequency. Quite often, simply one tank
tuned to 3ω0 is sufficient. Significant improvement in efficiency is rarely noted be-
yond the use of the two tanks shown in Figure 20.16. For example, use of one tank
tuned to the third harmonic boosts the drain efficiency maximum to about 88%, com-
pared to Class B’s maximum of about 78%. Addition of tanks tuned to the fifth and
seventh harmonics increases the Class F efficiency limit to 92% and 94%, respec-
tively.15 Given that practical tank elements are not lossless, the law of diminishing
returns rapidly makes the use of additional resonators worse than futile.

20.3 MODUL ATION OF POWER A MPLIF IERS

20.3.1 CL ASS A, AB, B, C, E, F

Modulating a Class A or B amplifier is straightforward in principle because the out-
put voltage is ideally proportional to the amplitude of the signal component of the
collector current, irf . Hence, if irf is itself proportional to the input drive, then lin-
ear modulation results. An approximation to this proportionality is achievable with
short-channel MOS devices and other FETs, which possess constant transconduc-
tance with sufficient gate voltage. Bipolar devices can provide reasonable linearity

15 F. H. Raab, “Class-F Power Amplifiers with Maximally Flat Waveforms,” IEEE Trans. Microwave
Theory and Tech., v. 45, no. 11, November 1997, pp. 2007–12.
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20.3 MODUL ATION OF POWER A MPL IF IERS 651

as a result of series base resistance, either externally provided or simply that of the
device itself. Nevertheless, linearity requirements have become increasingly severe
as wireless systems have evolved. A crude (but almost universally used) lineariza-
tion “method” is power backoff, meaning that we only ask for, say, 1 W out of an
amplifier capable of 10 W.16

The rationale for backoff is readily understood by considering the same sort of
weakly nonlinear amplifier model we invoked in Chapter 13 to define IP3. Because
third-order IM terms drop 3 dB for every 1-dB drop in input power, the ratio between
the fundamental and third-order components improves 2 dB for each 1-dB reduction
in input power (similarly, the corresponding ratios for fifth-order and seventh-order
IM terms theoretically improve by 4 dB and 6 dB, respectively, per 1-dB input power
drop). If this trend holds, then there is some input power level below which the out-
put IM3 (and other) distortion products are acceptably low in power relative to the
carrier. Because Class A efficiency and output power both diminish as the amount
of backoff increases, one should use the minimum value consistent with achieving
the distortion objectives. Typical backoff values once were generally below 6–8 dB
(and sometimes even as low as 1–3 dB) relative to the 1-dB compression point. These
days, it is not unusual to find that backoff values must be as high as 10–20 dB in
order to satisfy the stringent linearity requirements of some systems. Because it’s
sometimes easy to lose track of perspective when expressing quantities in decibels,
let’s re-examine that last interval of values: It says that after you beat your brains out
to design a ten-watt RF amplifier, you might find that it meets the specifications for
spectral purity only if output powers are kept below a few hundred milliwatts.

Compared to Class A amplifiers, the output IM products of a Class AB amplifier
exhibit weaker dependencies on input power (e.g., 2-dB drop in IM3 power per dB
reduction of input power), owing to the latter topology’s greater inherent nonlinear-
ity. Worse, it is unfortunately not unusual to encounter cases in which no amount of
backoff will result in acceptable distortion. Finally, as with the Class A amplifier,
backoff often degrades efficiency to unacceptably low levels (e.g., to below 5–10% in
some cases). We will shortly discuss appropriate linearization alternatives that one
might use to relax some of these trade-offs.

The Class C amplifier poses an even more significant challenge, as may be appre-
ciated by studying the equation for the output current derived earlier:

ifund = *ipk/π. (40)

Despite appearances, the fundamental component of the current through the resis-
tive load is generally not linearly proportional to ipk because the conduction angle
is also a function of ipk.17 Hence, Class C amplifiers do not normally provide linear

16 If someone else uses a cheesy technique, it’s a hack. If you use it, it’s a method.
17 That is, with the exception of Class A or B operation. For the other cases, proportionality between

drive and response does not occur and so linear modulation is not an inherent property.
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652 CHAPTER 20 RF POWER A MPL IF IERS

F IGURE 20.17. MOSFET Heising modulator with
Class C RF stage (simplified)

modulation capability and are therefore generally unsuitable for amplitude modula-
tion, at least when a modulated carrier drives the base circuit.

To obtain linear amplitude modulation from a nonlinear amplifier (e.g., Class C,
D, E, or F), it is often advantageous to consider the power supply terminal (drain cir-
cuit) as an input port. The general idea is simple: Varying the supply voltage varies
the output power. The control there can actually be more linear than at the standard
input (e.g. the gate). The first to act on this insight was apparently Raymond Heising
of AT&T, around 1919, for vacuum tube amplifiers (of course).18 The Heising mod-
ulator (also known as the constant current modulator because of its use of a choke)
is shown as Figure 20.17 in its simplest MOSFET incarnation.

The modulation amplifier M2 is loaded by a choke (“Mod. choke”), chosen large
enough to have a high reactance at the lowest modulation frequencies. The voltage
Vx is the sum of VDD and the modulation voltage developed across that choke. That
sum in turn is the effective supply voltage for M1 (biased to operate as a Class C
amplifier), fed to the drain through the RF choke as in our standard model for all of
the classic PA topologies. Since the two transistors share a common DC supply and
since the voltage Vx only approaches ground, transistor M1’s output can never quite
go to zero. Consequently, the basic Heising modulator is inherently incapable of
modulation depths of 100% (this property is a virtue in some instances, because over-
modulation – and its attendant gross distortion – becomes inherently impossible).
Typical maximum modulation percentages of 60–80% are not uncommon among
commercial examples. In applications where the full modulation range is required, a
quick fix is to place a capacitively bypassed resistor in series with the RF choke. The
DC drop across the resistor causes M1 to operate with a lower supply voltage than
does M2. The disadvantage is that the improvement in modulation depth comes at
the cost of degraded efficiency, owing to the dissipation in this added resistor.

18 See E. B. Craft and E. H. Colpitts, “Radio Telephony,” AIEE Trans., v. 38, 1919, p. 328. Also see
R. A. Heising, “Modulation in Radio Telephony,” Proc. IRE, v. 9, August 1921, pp. 305–22, and
also Radio Review, February 1922, p. 110.
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20.3 MODUL ATION OF POWER A MPL IF IERS 653

F IGURE 20.18. Alternative drain modulation example

There are alternative forms of drain modulation that do not suffer this painful trade
in efficiency for improved modulation depth. A popular example is shown in Fig-
ure 20.18. Here, one can find many combinations of supply voltage, transformer turns
ratio, and modulation amplitude that will force the drain voltage of M1 to go to zero
(not merely approach it) at an extremum of the modulation. For example, assume
that we choose a 1:1 transformer. Because we want the secondary voltage to be able
to go to zero, the swing at the primary must have an amplitude VDD2, too. In turn,
that requirement forces us to choose VDD1 somewhat larger than VDD2 (to accommo-
date nonzero drops across M2) as well as an appropriate gate drive level to produce
the desired modulation swing.

More commonly, a single drain supply voltage is used, leading to the need for
other than a 1:1 transformer turns ratio. By choosing a suitable voltage step-up ratio,
100% modulation can be achieved.

It is important to recognize here that the modulator is itself a power amplifier.
As such, these high-level modulators suffer from essentially the same trade-offs be-
tween efficiency and linearity as do the RF stages they modulate. Without care, the
power dissipated by the modulator could exceed that of the main RF power ampli-
fier. In a popular variation intended to address this problem, M2 is replaced by a
push–pull Class B stage for improved efficiency. In that case, the output drains of the
Class B stage connect to a transformer’s primary, whose center tap provides the con-
nection point for the DC supply. An even higher-efficiency alternative is to generate
the voltage Vx with a stage operating as a switch-mode (e.g., Class D) amplifier. A
challenge is to filter the switching noise sufficiently to meet stringent spectral purity
requirements, but the high potential efficiency often justifies the engineering effort.
Delta-sigma modulation is occasionally used in switching modulators to shape the
noise spectrum in a way that eases filtering requirements.

These few examples show that there are many ways to effect drain (high-level)
modulation.19 However, even though drain modulation permits the nominally linear
modulation of nonlinear amplifiers, the degree of linearity may still be insufficient

19 Although much of the literature makes no distinction between drain and Heising modulation, we
point out that the latter is a subset of the former.
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654 CHAPTER 20 RF POWER A MPL IF IERS

to satisfy stringent requirements on spectral purity. That shortcoming motivates con-
sideration of a variety of enhancements and alternatives.

20.3.2 L INEARIZATION TECHNIQUES

Envelope Feedback

It’s probably a bit generous to refer to power backoff and drain modulation as lin-
earization techniques. Backoff pays for linearity with efficiency, and efficiency is too
precious a currency to squander. Drain modulation, although superior to gate mod-
ulation for certain topologies, still ultimately relies on open-loop characteristics and
so the distortion is not under the direct control of the designer. In this subsection,
we consider a number of ways to improve the linearity of RF power amplifiers at a
minimal cost in efficiency.

When faced with the general problem of linearizing an amplifier, negative feed-
back naturally comes to mind. Closing a classic feedback loop around an RF power
amplifier is fraught with peril, however. If you use resistive feedback, the dissipa-
tion in the feedback network can actually be large enough in high-power amplifiers
to present a thermal problem, to say nothing of the drop in efficiency that always at-
tends dissipation. Reactive feedback doesn’t have this problem, but then one must
take care to avoid spurious resonances that such reactances may produce. Next, there
is the matter of loop transmission magnitude sufficiency, an issue that applies to all
amplifiers. It can be shown that nonlinearities are suppressed by a factor equal to the
magnitude of the loop transmission (actually, the return difference, but for large loop
transmission magnitudes these quantities are approximately equal), at the cost of an
equal reduction in closed-loop gain. A factor-of-10 reduction in closed-loop gain
will accompany a factor-of-10 improvement in third-order IM distortion (normalized
to the fundamental). One therefore needs an ample supply of excess gain to enable
large improvements in linearity. At radio frequencies, it is regrettably often true that
available gain is difficult enough to come by on an open-loop basis. Consequently
it may be hard to obtain significant improvements in linearity without reducing the
closed-loop gain to the point that one wins only by losing.

Attempts at other than a Pyrrhic victory by simply cascading a number of gain
stages cause the appearance of the classic stability problem. This problem increases
in severity as we seek larger bandwidths owing to the greater likelihood that parasitic
poles will fall in band and degrade stability margins.

The astute reader will note that the linearization need only be effective over a band-
width equal to that of the modulation, and that this bandwidth need not be centered
about the carrier. As a specific exploitation of this observation, suppose that we feed
back a signal corresponding to the envelope of the output signal (with a demodula-
tor, for example, which can be as crude as a diode envelope detector in noncritical
applications) and then use this demodulated signal to close the loop.20

20 See e.g. F. E. Terman and R. R. Buss, “Some Notes on Linear and Grid-Modulated Radio Fre-
quency Amplifiers,” Proc. IRE, v. 29, 1941, pp. 104–7.
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20.3 MODUL ATION OF POWER A MPL IF IERS 655

Closing the loop at baseband frequencies is potentially advantageous because it is
then considerably easier to obtain the requisite excess loop gain over the bandwidth
of interest. Still, meeting all of the relevant requirements is not necessarily trivial,
particularly if one seeks large improvements in linearity over a large bandwidth. A
brief numerical example should suffice to highlight the relevant issues.

Suppose that we want to reduce distortion by 40 dB over a bandwidth of 1 MHz.
Then we must have 40 dB of excess gain at 1 MHz. If the feedback loop is well
modeled as single pole, then the corresponding loop crossover frequency will be
100 MHz, implying the need for a stable closed-loop bandwidth of 100 MHz as well.
Assuring that the loop indeed behaves as a single-pole system over this bandwidth
is not impossible, but neither is it trivial.21 From the numbers, it’s readily apparent
that the difficulty increases rapidly if one seeks greater linearity improvements over
a broader bandwidth.

Even if one needs only relatively modest improvements in amplitude linearity,
constraints on the phase performance (referenced to baseband) could still present
design difficulties. Recall that the phase lag of a single-pole system is 45◦ at the
−3-dB frequency. If there is a tight specification on the permissible phase shift over
the passband (e.g. to constrain group delay variation), then the only recourse for a
single-pole system is to increase the bandwidth. If the allowable phase error is 5.7◦,
then the bandwidth must be chosen a decade above the baseband bandwidth. If that
error budget shrinks to 0.57◦, then the required bandwidth increases another order of
magnitude – to one hundred times the baseband bandwidth.22

These calculations all presume optimistically that the only error source is in the for-
ward path; the feedback is assumed perfect in all respects. This requirement translates
to the need for an exceptionally linear demodulator over a wide dynamic range, be-
cause a negative feedback system is desensitized only to imperfections in the forward
path. The overall system’s performance is limited by the quality of the feedback, so
any nonlinearities and phase shifts in the demodulator bound the effectiveness of the
loop.

These difficulties are sufficiently daunting that a collection of other techniques
have evolved as alternatives or supplements to classical negative feedback. Some of
these are purely open-loop techniques and thus are not constrained by stability con-
cerns. Furthermore, the linearization techniques we’ll present may be used singly or
in combination with other techniques, depending on the particular design objectives.

Feedforward

One open-loop linearization technique, feedforward, was devised by Harold Black
(before he invented the negative feedback amplifier); see Figure 20.19.

21 Relaxing the single-pole restriction can help moderate the excess bandwidth requirement but at
the risk of potentially creating a conditionally stable feedback system.

22 One may reduce the demand for excess bandwidths by employing suitable phase-compensating
all-pass filters.
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F IGURE 20.19. Feedforward amplifier

We note that the bandwidth over which feedforward provides significant linearity
improvements depends in part on the bandwidth over which the group delay of the
individual amplifiers may be tracked accurately by realizable time-delay elements.23

This tracking must remain accurate over time and in the presence of variations in
temperature and supply voltage. In many commercial examples, such as some GSM
base-station power amplifiers, the delay elements are largely realized with suitable
lengths of low-loss coaxial cable. As with most techniques that rely on matching, one
might expect improvements of perhaps 30 dB in practice (maybe above 40 dB with
great care). In certain cases, it may be possible to implement automated trimming
techniques, some of which rely on pilot signals sent through the amplifier. Automatic
calibration of this nature can enable feedforward to provide excellent linearity with
great consistency. If linearity must be improved further still, one retains the option
of combining this technique with others.

Despite the relatively high bandwidth achievable with feedforward, the low effi-
ciency that results from consuming power in two identical amplifiers is certainly a
drawback. Although the partial redundancy provided by having two separate gain
paths is sometimes a compelling and compensating asset, the efficiency is low enough
(typically below 10%) that the general trend is away from feedforward RF power am-
plifiers for most applications.

Pre- and Postdistortion

Another approach to open-loop linearization exploits the fact that cascading a nonlin-
ear element with its mathematical inverse results in an overall transfer characteristic
that is linear. Logically enough, the compensating element is called a predistorter
if it precedes the nonlinear amplifier and a postdistorter if it follows it. Predistor-
tion is by far the more common of the two (because the power levels are lower at the
input to the PA proper) and may be applied either at baseband or at RF. Baseband
predistortion is extremely popular because the frequencies are lower and because

23 Because real amplifiers generally do not exhibit constant group delay, designing the compensating
delay elements to track this real behavior is quite difficult.
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F IGURE 20.20. Illustration of RF predistortion

practical options include both analog and digital techniques (with the latter enjoying
increasing popularity owing to digital’s characteristic flexibility). Another attribute
of baseband predistortion is that it may also correct for nonlinearities suffered during
upconversion to RF; see Figure 20.20.

Because the principal nonlinearity in an amplifier is associated with gain com-
pression, predistorters succeed only to the extent to which they are able to undo the
compression accurately by providing an increasing gain as the input increases. It’s
important, however, to keep in mind that a predistorter cannot increase the saturated
output power of an amplifier, and consequently we should expect little or no improve-
ment in the 1-dB compression point. Because IP3 for “well-behaved” nonlinearities
is at least somewhat related to compression point, it shouldn’t surprise you that pre-
distortion rarely succeeds in reducing IM3 products by much more than about a dozen
decibels. If much greater reductions are needed, predistortion alone is unlikely to
succeed.24

Corrections for phase errors (including those that may be the result of AM-to-PM
conversion) may be provided by a phase shifter placed in series with the input. Most
amplifiers tend to exhibit larger phase lag for small amplitude inputs, so the control
for the phase shifter must be arranged to provide a compensating phase shift. Con-
straints here are usually less severe than for amplitude correction, but devising an
analog control circuit is complex enough that digital control has become popular.
Then, once you go to the trouble of building a digital controller, you might as well
use it to control both the gain and phase correctors. It’s just a short hop from there
to closing a true feedback loop around both the amplitude and phase paths, at which
point you’ve implemented polar feedback, a topic about which we’ll have more to
say shortly.

To achieve even the modest dozen-decibel improvement just alluded to – and re-
gardless of whether the predistortion is implemented as a purely analog circuit or as
a digitally controlled element – one must solve the problem of accurately producing
the desired inverse transfer characteristic and subsequently assuring that this inverse

24 Occasionally, claims of much large values are encountered in some of the literature. Upon close
examination, however, it turns out that many of these claims are for systems that combine backoff
(or some other method) with predistortion, whether or not backoff is explicitly acknowledged.
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remains correct over time (and with potentially varying load) in the face of the usual
variations in process, voltage, and temperature.25

Because a fixed predistorter may prove inadequate to accommodate such drifts,
it is natural to consider adaptive predistortion as an alternative. Such a predistorter
uses real-time measurements of voltage and temperature, for example, in computing
and updating the inverse function periodically. Successful implementation therefore
requires a model for the system as well as sensors to measure the relevant input vari-
ables. Sadly, system modeling is quite a difficult task, particularly if some of the
important variables (such as output load, which can vary wildly in portable applica-
tions) cannot be measured conveniently (if at all). Compounding the difficulty is that
the nonlinearity may be hysteretic (have memory) owing to energy storage. In such
cases, the present value of the output is a function not solely of the input but also of the
past values of the input. These limitations do not imply that predistortion is valueless
(quite the contrary, in fact, as many broadcast television transmitters rely on this tech-
nique) but they do explain why it’s difficult for predistortion to provide large linearity
improvements on a sustained basis. As with the other techniques, predistortion may
be applied in combination with other methods to achieve overall linearity objectives.

Envelope Elimination and Restoration

Originally developed by Leonard Kahn to improve single-sideband (SSB) transmis-
sion systems, envelope elimination and restoration (EER) is not a linearization tech-
nique per se but rather a system for enabling linear amplification from nonlinear
(constant-envelope) amplifiers through drain modulation.26 In EER, a modulated RF
signal to be linearly amplified is split into two paths; see Figure 20.21. One feeds
a limiting amplifier (essentially a comparator) to produce a constant-envelope RF
signal that is subsequently amplified at high efficiency by a constant-envelope (e.g.,
Class C) amplifier; the other path feeds an envelope detector (demodulator). The ex-
tracted modulation is then reapplied to the constant-envelope amplifier using drain
modulation. Because EER is not itself a linearization method (it’s better to regard it
as an efficiency-boosting technique), achievement of acceptable spectral purity may
require the supplementing of EER with true linearization techniques.27

Now, it is difficult to build an ideal element of any kind, particularly at RF.
Consequently it is worthwhile examining what we actually require of the limiter.

25 Predistortion as a method for providing overall linear operation should be familiar to you. A current
mirror, for example, actually relies on a pair of inverse, nonlinear conversions (first from current
to voltage, then back to current again) to provide truly linear behavior in the current domain. A
more sophisticated example that relies on the same basic cascade of nonlinear transductions (I to
V, then back again) is a true Gilbert gain cell.

26 L. R. Kahn, “Single Sideband Transmissions by Envelope Elimination and Restoration,” Proc.
IRE, v. 40, 1952, pp. 803–6. It really is Kahn and not Khan, by the way; the latter was Capt. Kirk’s
nemesis.

27 D. Su and W. McFarland, “An IC for Linearizing RF Power Amplifiers Using Envelope Elimina-
tion and Restoration,” IEEE J. Solid-State Circuits, v. 33, December 1998, pp. 2252–8.
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F IGURE 20.21. Kahn EER system

The role of the limiter in Kahn’s EER system is simply to provide adequate drive to
the PA stage to assure efficient operation. It so happens, however, that it may actu-
ally be advantageous for the input to the PA to follow the envelope of the RF input (at
least coarsely), rather than remaining fixed, in order to avoid unnecessarily large (and
wasteful) PA drives when the envelope is small. Design of a practical limiter may
be considerably easier as a result, because the problem essentially reduces to one of
building an amplifier instead of a hard limiter – but without much concern for ampli-
tude linearity.28 Depending on the characteristics of a particular PA, the limiter may
have to provide relatively high gain when the input amplitude is low in order to guar-
antee that the PA stage is always driven hard enough to assure high efficiency and
keep the noise floor low.29 It may also be necessary to insert a compensating delay
(generally in the RF path) to assure that the drain modulation is properly time-aligned
with the PA drive. Failure of alignment may affect the ability of EER to function well
with low power inputs, thereby resulting in a reduction in the usable dynamic range
of output power. Still, it is challenging in practice to achieve dynamic range values
much larger than about 30 dB.

Chireix Outphasing (RCA Ampliphase ) and LINC

A general term for techniques that may obtain linear modulation by combining the
outputs of nonlinear amplifiers has come to be called LINC (linear amplification with
nonlinear components).30 The first expression of a LINC idea in the literature is out-
phasing modulation, developed by Henri Chireix (pronounced a bit like “she wrecks”)
around1935. Outphasing produces amplitude modulation through the vector addition

28 We must still be conscious of careful design to avoid AM-to-PM conversion in those communi-
cations systems where such conversion may be objectionable. This comment applies to the entire
amplifier and thus holds regardless of whether or not one seeks to implement a classic filter.

29 F. Raab, “Drive Modulation in Kahn-Technique Transmitters,” IEEE MTT-S Digest, v. 2, June
1999, pp. 811–14.

30 D. C. Cox, “Linear Amplification with Nonlinear Components,” IEEE Trans. Commun., Decem-
ber 1974, pp. 1942–5.
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660 CHAPTER 20 RF POWER A MPL IF IERS

F IGURE 20.22. Block diagram of outphasing modulator

of two constant-amplitude signals of differing phase.31 The constant-amplitude char-
acteristic allows the use of highly efficient constant-envelope RF amplifiers, while
vector addition obviates the need for drain modulation and thus avoids its associated
dissipation.

Outphasing modulation enjoyed intermittent and modest commercial success in
the two decades following its invention, but its popularity soared when RCA chose
this technology for use in their famous line of broadcast AM transmitters, starting
with the 50-kW BTA-50G in 1956.32 The Ampliphase, as RCA’s marketing literature
called it, would dominate broadcast AM radio transmitter technology for the next
fifteen years.

To implement the outphasing method, first perform a single-ended to differential
conversion of a baseband signal (if it isn’t already available in differential form),
and then use the outputs to phase-modulate a pair of isochronous – but not synchro-
nous – RF carriers. Amplify the phase-modulated RF signals with highly efficient
constant-envelope amplifiers; then sum the two amplified phase-modulated signals
together using a simple passive network. The amplitude-modulated RF signal ap-
pears across the output of the combiner, as seen in Figure 20.22.

In typical implementations, the quiescent phase shift φ0 between the two ampli-
fier outputs is chosen equal to 135◦. The two signal paths are designed to produce
maximum phase deviations of 45◦ and −45◦ each, so that the total phase difference
between the two inputs to the combiner swings between 90◦ and 180◦. When the
phase difference is the former, the two signals add to produce the maximum output.
When the phase difference is 180◦, the two signals cancel, producing zero output.
These two extremes correspond to the peaks of a modulated signal with 100% depth.

31 H. Chireix, “High-Power Outphasing Modulation,” Proc. IRE, v. 23, 1935, pp. 1370–92.
32 D. R. Musson, “Ampliphase . . . for Economical Super-Power AM Transmitters,” Broadcast News,

v. 119, February 1964, pp. 24–9. Also see Broadcast News, v. 111, 1961, pp. 36–9. Outphasing
boosts efficiency enough to enable the construction of practical transmitters with at least 250 kW
of output power.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511812941.021
Downloaded from https://www.cambridge.org/core. The Librarian-Seeley Historical Library, on 18 Dec 2019 at 06:18:51, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511812941.021
https://www.cambridge.org/core
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F IGURE 20.23. Ampliphase phase modulator
(simplified CMOS version; bias details omitted)

Much of the design effort in an outphasing system concerns (a) obtaining linear
phase modulation and (b) realizing a combiner that has low loss yet prevents the
pulling of one amplifier by the other from degrading hard-won efficiency, linearity,
and stability. In the Ampliphase system, the phase modulator exploits the change in
phase obtained from varying the Q of a tank, whose center frequency is offset from
the carrier frequency by some amount; see Figure 20.23.

The output resistance of transistor M1 acts as a variable resistor, whose value
varies with the modulation. As the modulation voltage goes up, M1’s output resis-
tance goes down and so increases theQ of the output tank. Transistor M2 is simply
a transconductor, converting the RF voltage into a current. The phase angle of the
output voltage relative to that of the RF current in the drain of M1 is thus the same
(within a sign here or there) as the phase angle of the tank impedance. That angle in
turn is a function of the tank’sQ and is therefore a function of the modulation. Note
that a linear dependence of phase shift on modulation voltage is hardly guaranteed
with this circuit. Predistortion is used to obtain nominally linear modulation.

Another source of design difficulty is the output power combining network. In the
Ampliphase transmitter, the combiner is basically a pair of CLC π -networks (nec-
essary for impedance transformation anyway) whose outputs are tied together (each
π -network acts as a lumped approximation to a quarter-wave line). This is shown in
Figure 20.24.

This combiner appears simple, but looks are deceiving.33 Although shown to be
workable in a highly successful commercial design, it also illustrates a basic prob-
lem with outphasing. The effective impedance seen by the drain of each transistor
depends not only on the load connected to the final output but also on the relative
phase of the signal at the other transistor’s drain. To avoid having to accommodate

33 The appearance of simplicity is enhanced if we replace the π -networks with suitable pieces of
transmission line, although the variable compensating capacitances would still be required.
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F IGURE 20.24. Ampliphase output combiner
(simplified CMOS version; bias details omitted)

F IGURE 20.25. Block diagram of generalized LINC system

wild variations in drain load impedance, capacitors C1 and C2 must vary (in oppo-
site directions) as a function of instantaneous phase angle of the drive. Needless to
say, this requirement for a linear, controllable capacitance only serves to increase the
level of design difficulty. In fact, the quest for a practical, low-loss, linear combiner
that also provides a high degree of isolation remains unfulfilled. It is principally for
this reason that LINC does not dominate today, despite its architectural appeal.

The difficulties of obtaining linear phase modulation and arranging for the correct
quiescent phase – to say nothing of maintaining proper operation over time, temper-
ature, and supply voltage – are great enough that broadcast engineers, with a mixture
of affection and derision, occasionally took to referring to these transmitters as Am-
plifuzz . By the mid-1970s, the Ampliphase line had been, well, phased out.34

Since that time, engineers have hardly given up on LINC. The availability of so-
phisticated digital signal processing capability has inspired many to apply that com-
putational power to overcome some of LINC’s impairments. A very general block
diagram for the resulting LINC appears as Figure 20.25. Regrettably, signal pro-
cessing gives us only some of what is needed. Design of the combiner in particular
remains, for the most part, an ongoing exercise in futility.

34 Sorry.
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F IGURE 20.26. Example of power amplifier linearized with polar feedback

Polar Feedback

Because of the general need to correct both phase and amplitude nonlinearities in any
signal path, it seems logical to employ a feedback loop around each separately, as
we hinted in the discussion of predistortion. The polar feedback loop directly imple-
ments this idea.35 Polar feedback is often used in tandem with EER (for the amplitude
component), supplemented by a phase detector and phase shifter. See Figure 20.26.

The two control loops are readily identifiable in the figure. The amplitude control
loop compares the envelope of the output with that of the input, and the difference
drives a drain modulator, just as in EER. The gain functionHr(s) shapes control over
the dynamics of the amplitude feedback loop. For example, if it contains an integra-
tion, the steady-state amplitude error can be driven to zero. Because the bulk of the
loop transmission gain may be obtained at baseband through gain blockHr(s) (rather
than at RF), it is possible in principle to suppress nonlinearities by large factors.

The phase control loop examines the phase difference between amplitude-limited
versions of the input and output signals. A limiter is a practical necessity because
most phase detectors are sensitive to both amplitude and phase (or otherwise require
some minimum amplitude in order to function properly). Their presence is conve-
nient as well, considering that the basic architecture for EER requires one anyway.
The phase error signal drives a phase shifter placed in series with the input to the PA

35 V. Petrovic and W. Goslin, “Polar Loop Transmitter,” Electronics Letters, v. 15, 1979, pp. 1706–12.
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664 CHAPTER 20 RF POWER A MPL IF IERS

stage and adjusts it accordingly, with dynamics again controlled by a gain block, this
time of transfer function Hθ(s).

One important consideration is to assure that the amplitude and phase corrections
line up properly in time. Because the phase and amplitude control subsystems are
generally realized with rather different elements, however, there is no guarantee that
their delays (or any other relevant characteristics) will match. For example, the band-
width of the amplitude control loop is a function of the drain modulator’s bandwidth.
As mentioned before, a switch-mode modulator is often used to keep efficiency high.
High bandwidth in turn demands exceptionally high switching frequencies in the
modulation amplifier. As a result, bandwidths much in excess of 1 MHz are difficult
with current technology.

The phase shift loop typically suffers from far fewer constraints and is consequently
much higher in bandwidth, with a correspondingly smaller delay. It’s therefore usu-
ally necessary to insert a fixed compensating delay to assure that the delays through
the two control paths match. (In principle the phase shifter could bear the burden of
delay compensation, but making it do so complicates unnecessarily the design of the
shifter in most cases.)

Because proper operation of polar feedback requires matching the delays of two
very different types of control loops, it is decidedly challenging to obtain high per-
formance consistently. Another complication arises from ever-present AM-to-PM
conversion, which couples the two loops in ways that degrade stability. The stability
challenge is compounded by the amplitude dependency of AM-to-PM conversion.
Polar feedback remains a topic of active research, but thus far the difficulties of
achieving the necessary levels of matching (to say nothing of maintaining same over
time in the face of variations in supply, process, and temperature), as well as assur-
ing stability over the full bandwidth and dynamic range of inputs, have proven large
enough to prevent large-scale commercialization at the frequencies and bandwidths
of greatest interest for mobile communications.

Observe that one important idea behind polar feedback is that of decomposing an
RF signal into two orthogonal components and then closing a feedback loop around
each separately. Given that the polar variables of magnitude and phase represent only
one possible choice, perhaps it is a worthwhile exercise to consider another.

Cartesian Feedback

Polar- and rectangular-coordinate representations of a signal are equivalent, so in-
stead of a decomposition into magnitude and phase, we can decompose a signal into
in-phase I and quadrature Q components, for example. This rectangular (Carte-
sian) representation has favorable practical implications, so Cartesian feedback has
received considerable attention.36 The block diagram of Figure 20.27 shows that,

36 V. Petrovic and C. N. Smith, “The Design of VHF Polar Loop Transmitters,” IEE Comms. 82 Con-
ference, 1982, pp. 148–55. Also see D. Cox, “Linear Amplification by Sampling Techniques: A
New Application for Delta Coders,” IEEE Trans. Commun., August 1975, pp. 793–8.
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F IGURE 20.27. Transmitter linearized with Cartesian feedback

in contrast with a polar loop, a Cartesian feedback loop consists of two electrically
identical paths.

Here, the output undergoes a pair of orthogonal downconversions. Baseband sym-
bols I andQ are compared with their corresponding demodulated counterparts.37 The
baseband error signals are computed separately, amplified, upconverted back to RF,
and finally summed at the input to the PA stage. Most of the loop gain is obtained at
baseband from H(s), rather than at RF, greatly easing loop design.

The fact that both feedback paths are identical in architecture means that Carte-
sian feedback is free of the matching problem that vexes polar feedback. However,
there remain difficult design problems that, once again, have inhibited widespread
use of the architecture.

The most significant problem arises from a lack of strict orthogonality between
the two loops. Only if orthogonality holds will the two loops act independently and
allow design to proceed with relatively few concerns. If the two loops are coupled,
the dynamics may change in complex (Murphy-degraded) ways. Worse, the amount
by which the loops are not orthogonal may change with time, temperature, and volt-
age – and also as the RF carrier is tuned over some range. This problem is hardly
unique to Cartesian feedback; it’s potentially a concern in any system that possesses
multiple feedback paths (such as the polar feedback loop).

To evaluate the system-level consequences of this problem, consider a phase mis-
alignment of φ between the upconversion and downconversion LOs (we still assume
that each pair of LOs consists of orthogonal signals). As with any feedback loop, we

37 We assume that we have either performed a quadrature downconversion in order to obtain the I
and Q signals, or that we are in fact performing an upconversion of baseband symbols that we
have generated digitally. Thus the figure describes a transmitter or an amplifier.
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may evaluate the loop transmission by breaking the loop, injecting a test signal, and
observing what comes back. Doing so, we obtain

Leff (s,φ) = Lone(s) cosφ + [Lone(s) sinφ]2

1 + Lone(s) cosφ
, (41)

where Lone(s) is the transmission around each individual loop.38

The effective loop transmission expression helps us understand why Cartesian
feedback loops can exhibit “odd behaviors.” Depending on the amount of phase
misalignment, the overall loop transmission can range from that of a single loop
(when the misalignment is zero) all the way to a cascade of two single loops (when
the misalignment is π/2). As is true for many control loops, H(s) would be de-
signed to contain an integration (to drive steady-state error to zero, for example). If
the misalignment remains zero, that choice presents no problem. However, as the
misalignment grows, H(s) now contributes two integration poles to the loop trans-
mission, leading to zero phase margin at best. Any negative phase shift from other
sources drives phase margin to negative values.

Identification of this mechanism as one significant source of problems with Carte-
sian feedback is relatively recent. Solutions include automatic phase alignment (to
eliminate the source of the stability problem) and carefully crafting H(s) to tolerate
the wide variation in loop dynamics as the misalignment varies.39 Slow rolloff com-
pensation is one possible choice forH(s) if the latter strategy is pursued, which may
also be used in tandem with the former. Implementation of these corrective measures
enables Cartesian feedback to provide exceptionally large improvements in linearity
over extremely wide bandwidths.

20.3.3 EFF ICIENCY-BOOSTING TECHNIQUES

Having presented a number of linearization methods, we now focus attention on
efficiency-boosting techniques and architectures.

Adaptive Bias

The efficiency of any amplifier with nonzero DC bias current degrades as the RF input
power decreases (the Class A is worse than others in this regard). There are many RF
PAs, such as those in cell phones, that operate at less than maximum output power a
considerable fraction of the time and thus for which the average efficiency is terrible.
To improve efficiency at lower power levels, a time-honored technique is to employ
adaptive bias strategies.40 Varying the bias current and supply voltage dynamically
in accordance with the instantaneous demands on the amplifier can moderate consid-
erably the degradation in efficiency (at least in principle). At high modulation values,

38 J. Dawson and T. Lee, “Automatic Phase Alignment for a Fully Integrated CMOS Cartesian Feed-
back PA System,” ISSCC Digest of Technical Papers, February 2003.

39 Ibid.
40 F. E. Terman and F. A. Everest, “Dynamic Grid Bias Modulation,” Radio, July 1936, p. 22.
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F IGURE 20.28. Doherty amplifier

the PA stage would operate with a relatively high supply voltage (with correspond-
ingly higher gate bias, for example). At low modulations, the drain supply and gate
bias voltages would drop as well. This strategy makes the efficiency a much weaker
function of signal amplitude, as desired. Thanks to the advent of flexible, inexpen-
sive digital control circuitry, it is now considerably easier to implement adaptive bias
than it once was.

The controllable drain supply is essentially identical to the drain modulation am-
plifier in an EER system, with all of the same design challenges. An additional
challenge of adaptive biasing overall is that varying so many significant parameters
more or less simultaneously is hardly a prescription for linear behavior. Neverthe-
less, adaptive bias presents an additional degree of freedom to be exercised in the
never-ending series of trade-offs between efficiency and linearity.

The Doherty and Terman–Woodyard Composite Amplifiers

Another efficiency-boosting strategy is to use multiple amplifiers, each responsible
for amplification over some subset of the overall power range. By using only the
minimum number of amplifiers necessary to provide the desired output power, it’s
possible to reduce unnecessary dissipation. In effect, we implement the electronic
equivalent of a turbocharger. The earliest realization of this idea uses two amplifiers
and is due to Doherty;41 see Figure 20.28.

Amplifiers PA1 and PA2 are the main and auxiliary amplifiers, respectively. The
auxiliary amplifier is arranged to be cut off for low amplitude inputs. Assuming that
PA2’s output is an open circuit in this mode, it is straightforward to deduce that the
impedance seen by the output of PA1 is then 2Z0.

42

41 W. H. Doherty, “A New High-Efficiency Power Amplifier for Modulated Waves,” Proc. IRE, v.
24, 1936, pp. 1163–82.

42 The reader is reminded that the quarter-wave lines may be approximated by CLC π -networks
when appropriate or convenient to do so. See Section 2.9.2.
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At some predetermined threshold, the auxiliary amplifier turns on and begins to
contribute its power to the output. The λ/4 delay in feeding PA2 matches the λ/4
delay coupling the output of PA1 to the output of PA2. The contribution of PA2 to
Vx is thus in phase with that of PA1. The fact that Vx is larger when PA2 is active
implies an increase in the impedance seen by the main amplifier’s output delay line;
PA2 bootstraps PA1. When reflected back through the λ/4 line to PA2’s output, this
increased impedance at Vx is seen as a reduction in impedance. In turn, this reduc-
tion in PA2’s load resistance increases the power supplied by that amplifier. When
both amplifiers are contributing their maximum power, each amplifier sees a load
impedance of Z0 and contributes equally to the output.

After some reflection, one recognizes that this composite amplifier shares a key
characteristic with the push–pull Class B amplifier: half of the power is handled by
half of the circuit. In fact, the limiting peak efficiencies are identical, at about 78%,
when the two amplifiers are partitioned as in Doherty’s original design. Average ef-
ficiency is theoretically somewhat less than half this value.

The question of how best to select the threshold at which the auxiliary ampli-
fier begins to contribute to the output is answered in large part by examining the
envelope probability density function (PDF) of the signals to be processed by the
amplifier. This consideration is particularly important in view of the trend toward
complex modulation methods. For example, a 16-QAM signal theoretically exhibits
a 17-dB peak-to-average ratio. A 16-QAM signal with a 16-dBm (40-mW) average
output power thus may have occasional peaks as high as 33 dBm (2 W). Designing
a conventional 2-W amplifier and operating it with 40 mW of average power virtu-
ally assures terrible average efficiency. A Doherty-like technique would seem well
suited to accommodate modulations with such characteristics, since a highly effi-
cient, low-power main amplifier would be bearing the burden most of the time –
with the auxiliary amplifier activated only intermittently to handle the relatively rare
high-power peaks. We see that a PDF heavily weighted toward lower powers im-
plies that we should lower the threshold. If we were using some other modulation
whose PDF were heavily weighted toward higher power, then we would wish to raise
the threshold. Implementing arbitrary power division ratios may be accomplished a
number of ways, including adjustment of the coupling impedances and operating the
two amplifiers with different supply voltages.43

Further improvements in efficiency are possible by subdivision into more than two
power ranges. Although the complexity of the load structure that effects the power
combining rapidly increases in magnitude, the theoretical boosts in efficiency can be
substantial. A doubling in average efficiency is not out of the question, for example.44

The similarity with Class B doesn’t end with efficiency calculations, unfortunately.
A problem akin to crossover distortion afflicts the Doherty amplifier as well. It is

43 M. Iwamoto et al., “An Extended Doherty Amplifier with High Efficiency over a Wide Power
Range,” IEEE MTT-S Digest, May 2001, pp. 931–4.

44 F. H. Raab, “Efficiency of Doherty RF Power Amplifier Systems,” IEEE Trans. Broadcast., v. 33,
September 1987, pp. 77–83.
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F IGURE 20.29. Negative feedback for
improving modulation linearity

perhaps not surprising that efficiency is obtained at the expense of distortion, and
one must expend a great deal of engineering effort to suppress nonlinearities (e.g.,
by embedding a Doherty amplifier within a feedback loop) in both amplitude and
phase domains. And as with the outphasing system, the impedance seen at the output
of one amplifier is a function of the other amplifier’s output. Hence there is ample
opportunity for a host of misbehaviors arising from unanticipated interactions.

An extension of the Doherty amplifier is the modulator–amplifier combination
of Terman and Woodyard.45 It is similar to the Doherty amplifier in its use of two
amplifiers (driven by λ/4-delayed RF carrier signals) and of the same output com-
biner. The difference lies in the modulation capability, which is provided by injecting
modulation in phase to the gate circuit of both amplifiers simultaneously. Because
modulation is thus the result of nonlinearities inherent in the device transfer char-
acteristic, less than faithful modulation results. However, by wrapping a feedback
loop around the envelope signal, for example, large improvements in linearity may
be obtained at low cost in efficiency.

Finally, with all of these methods, negative feedback may be employed to reduce
distortion. In order to relax the requirements on gain–bandwidth product for the
feedback loop, one may sample the output signal, demodulate it, and then use the de-
modulated signal to close the loop. See Figure 20.29. Such architectures are often
distinguished by the demodulation method used. For example, if the demodulator
consists of a pair of mixers driven with carriers in quadrature, then the PA is some-
times said to be linearized through Cartesian feedback.

20.3.4 PULSEWIDTH MODUL ATION

Another technique for obtaining nearly linear modulation is through the use of
pulsewidth modulation (PWM). Amplifiers using this technique are occasionally
known as Class S amplifiers, although this terminology is by no means universal.

45 F. E. Terman and J. R. Woodyard, “A High-Efficiency Grid-Modulated Amplifier,” Proc. IRE, v.
26, 1938, pp. 929–45.
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670 CHAPTER 20 RF POWER A MPL IF IERS

Such amplifiers do not perform modulation through variation of drive ampli-
tude. Rather, it is accomplished by controlling the duty cycle of constant-amplitude
drive pulses. The pulses are filtered so that the output power is proportional to the
input duty cycle, and the goal of linear operation at high efficiency is achieved in
principle.

While PWM works well at relatively low frequencies (e.g., for switching power
converters up to the low-MHz range), it is fairly useless at the gigahertz carrier fre-
quencies of cellular telephones. The reason is not terribly profound. Consider, for
example, the problem of achieving modulation over a 10 :1 range at a carrier of
1 GHz. With a half-period of 500 ps, modulation to 10% of the maximum value re-
quires the generation of 50-ps pulses. Even if we were able to generate such narrow
pulses (very difficult), it is unlikely that the switch would actually turn on completely,
leading to large dissipation. Therefore, operation of PWM amplifiers over a large
dynamic range of output power is essentially hopeless at high frequencies. Stated
another way, the switch (and its drive circuitry) has to be n times faster than in a
non-PWM amplifier, where n is the desired dynamic range. As a result, it becomes
increasingly difficult to use pulsewidth modulation once carrier frequencies exceed
roughly 10 MHz.

20.3.5 OTHER TECHNIQUES

Gain or Power Boost by Cascading

Cascading is so obvious a method for increasing gain and power levels that even men-
tioning it invites scorn. However, there are enough subtleties in cascading PA stages
that it’s worth the risk of providing a brief discussion.

Power levels generally scale upward as we proceed from stage to stage in a cas-
cade of amplifiers. If the power consumed by the early stages is low enough, it may
be prudent to design those stages with a focus on linearity, deferring to a later stage
(or stages) the problem of obtaining high efficiency. In practice, then, the earliest
stages may be implemented as Class A amplifiers, with a transition to (say) Class B
or C for the last stage, for example.

When using drain modulation with a cascade of stages (e.g., Class C), the level of
drain modulation should scale with the power level so that the drive for each stage
in the cascade also scales. Without this scaling, there is a risk of overdriving one or
more stages, leading to overload-related effects such as slow recovery from peaks,
excessive AM-to-PM conversion, and poor linearity.

Finally, cascading always involves a risk of instability, particularly when the stages
are tuned. The risk is greatest with Class A amplifiers and is mitigated by using the
same general collection of techniques that are effective for low-level amplifiers. In
stubborn cases, the losser method offers relief when all others fail. As its name im-
plies, the method (if one could so dignify it) employs a resistor placed somewhere in
the circuit to throw away gain andQ. Resistors in series with the gate, or across the
gate–source terminals, are particularly effective.
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Gain Boost by Injection Locking

We alluded to injection locking in Section 16.2 and offer only a brief description here.
You should simply accept that it’s often possible to lock an oscillator’s phase to that
of a signal injected into an appropriate point in an oscillator circuit, provided certain
conditions are met (e.g. frequency of injected signal close enough to the free-running
oscillator frequency, amplitude of injected signal within a certain window, etc.). In
fact, unwanted injection locking (perhaps caused by signals coupled through the
substrate) is a very real problem in RF integrated circuits. As with other parasitic
phenomena, virtually every effect that is unwanted in one context can be turned into
an advantage in another.

Whereas cascading is an obvious means to increase gain, the relatively low in-
herent gain of CMOS devices generally implies the necessity for more stages than
would be the case in other technologies, such as bipolar. Aside from the increased
complexity, it’s quite likely that the power consumed would be greater as well. To
evade these limits, it’s sometimes advantageous to consider building an oscillator
and somehow influencing its phase or frequency. After all, an oscillator provides an
RF output signal with no RF input; the “gain” is infinite. It’s easier to influence a
signal than to produce it. Because the power required to effect locking can be small,
the apparent gain can be quite large.

Injection locking as an amplification technique is normally limited to constant-
envelope modulations because, as its very name implies, the input signal primarily
affects the phase. In principle, amplitude modulation could be provided as well (e.g.,
by varying the bias that controls the oscillation amplitude), but AM-to-PM conver-
sion is usually so serious that this combination is practical only for shallow amplitude
modulation depths.

An alternative possibility would be to combine injection locking with outphasing
to produce amplitude modulation. Such a combination would theoretically exhibit
high gain as well as high efficiency and, as a free bonus, present many subtle design
problems. Verifying this statement experimentally is left as an exercise for the reader.

Power Boost by Combining

Power combiners may work instead of – or in concert with – impedance transformers
to allow the attainment of higher output power than would otherwise be practical. One
popular combiner is the Wilkinson combiner introduced in Chapter 7. The Wilkinson
is attractive because it theoretically allows lossless power combining when operating
into a matched load;46 see Figure 20.30. Hence, the Wilkinson combiner enables an
ensemble of low-power amplifiers to provide high output power.

If larger than 2 :1 boosts in output power are needed, several stages of combin-
ing may be used in a structure known as a corporate combiner. This is shown in the

46 E. J. Wilkinson, “N-Way Hybrid Power Combiner,” IRE Transactions MTT, 1960. Unequal power
splitting factors are also possible with an asymmetrical structure.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511812941.021
Downloaded from https://www.cambridge.org/core. The Librarian-Seeley Historical Library, on 18 Dec 2019 at 06:18:51, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511812941.021
https://www.cambridge.org/core


672 CHAPTER 20 RF POWER A MPL IF IERS

F IGURE 20.30. Wilkinson power combiner

F IGURE 20.31. Corporate power combiner

schematic of Figure 20.31. These techniques routinely succeed in discrete form, but
integration presents numerous challenges. First, the transmission line segments of
the combiner are a quarter-wavelength long. As a result, the die area consumed by
combiners for power amplifiers in the low-gigahertz frequency range would be im-
practically large. As a specific example, consider that an on-chip quarter-wave line
would be about 4 cm long at 1 GHz. Another factor is the loss of on-chip transmis-
sion lines. Again, a 1-dB attenuation is a 21% power loss, and it is difficult to keep
losses even this low. Furthermore, the Wilkinson combiner won’t be lossless if it is
imperfectly terminated. Reflections resulting from any mistermination are absorbed
by the bridging resistor, with a consequent loss in efficiency.

Another use of multiple stages is to supply inputs in parallel and then take the
outputs in series; the voltage boost reduces the need for absurd impedance transfor-
mation ratios. One very simple implementation of this idea is to build a differential
power amplifier. In the ideal case, the differential output voltage swing is twice that
of a single-ended stage, permitting a quadrupling of output power for a given sup-
ply voltage as well as a moderation of any additional impedance transformations that
might be required. A balun can be used to convert the balanced differential output to
a single-ended ground-referenced one.
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A particularly elegant structure that extends this idea is the distributed active trans-
former (DAT).47 The name is perhaps a bit of a misnomer in that this amplifier is not
a distributed system in the same way that a transmission line is, for example; no dis-
tributed parameters are needed to describe it. Rather, the architecture gets its name
from distributing the total power burden among a number of devices, a concrete ex-
pression of “divide-and-conquer.”

Suppose that we require more than a doubling of voltage swing in order to achieve
our power goal (or to moderate any additional impedance transformation ratio). We
could quadruple the swing (and boost power by a factor of 16) by summing the
contributions of two differential amplifiers. The summation may be accomplished
conveniently by driving the primaries of transformers with the differential stages and
then simply connecting the secondaries in series. Figure 20.32 (p. 674) illustrates
this principle, extended to four differential stages, for a theoretical eightfold boost
in voltage swing (relative to that of a single device), corresponding to a power boost
of a factor of 64. (For simplicity, capacitances for producing a resonant load are not
shown in schematic or layout.)

In the simplified layout shown, each center-tapped drain load is the primary of an
on-chip transformer, realized out of coupled lines. The secondary here is a one-turn
square inductor, each arm of which is coupled to its corresponding center-tapped pri-
mary. Because the four arms are connected in series, the voltage contributions add
as desired and so produce a boosted output voltage across the load RL. The atten-
dant impedance transformation implies that the current flowing in the secondary is
smaller than in the primary by a factor ofN, permitting the use of narrower lines than
in the primary, as suggested by the relative line widths (shaded areas) in the figure.

Generalizing to N differential pairs with N output transformers, we see that the
maximum boost in voltage is 2N (again, relative to that of a single transistor) with
a corresponding power boost of 4N 2. Losses in real circuits certainly diminish per-
formance below those maximum limits, but the DAT remains a practical alternative
nonetheless. As a benchmark, an early realization of this concept delivered 2.2 W of
saturated output power with 35% drain efficiency (31% power-added efficiency) at
2.4 GHz, using a 0.35-µm CMOS process (see footnote 47). Gain is around 8.5 dB
for input and output impedances of 50 2.

20.3.6 PERFOR M ANCE METRICS

Prior to the advent of complex modulation schemes, it was largely sufficient to frame
the design of transmit chains in terms of the specifications we’ve already presented,

47 I. Aoki et al., “Distributed Active Transformer – A New Power-Combining and Impedance-
Transformation Technique,” IEEE Trans. Microwave Theory and Tech., v. 50, January 2002, pp.
316–31.
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674 CHAPTER 20 RF POWER A MPL IF IERS

F IGURE 20.32. Illustration of distributed active transformer
with simplified layout (after Aoki et al. 2002)

such as saturated output power, third-order intercept,1-dB compression point, power-
added efficiency, and the like. Engineers could rapidly estimate the level of backoff
necessary to achieve a certain level of distortion, for example, and that was often
enough to construct systems that functioned well. The relatively loose statutory con-
straints on out-of-band emissions reflected a concession to the crude state of the art.
That situation has changed as a result of continuing efforts to reduce waste of precious
spectrum through the use of more sophisticated modulation methods. That increased
sophistication brings with it an increased sensitivity to certain impairments and thus
an obligation to specify and control performance more tightly.

Adjacent channel power ratio (ACPR) is one example of such a performance met-
ric. Developed in response to the difficulty of using a conventional two-tone test to
predict adequately the interference generated by a transmitter using complex digital
modulations (e.g., CDMA systems), ACPR characterizes interference potential by
using representative modulations and then directly measuring the out-of-band power

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511812941.021
Downloaded from https://www.cambridge.org/core. The Librarian-Seeley Historical Library, on 18 Dec 2019 at 06:18:51, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511812941.021
https://www.cambridge.org/core


20.3 MODUL ATION OF POWER A MPL IF IERS 675

F IGURE 20.33. Example of ACPR specification

at frequency offsets corresponding to the location of adjacent channels.48 See Fig-
ure 20.33.

Even though quantitatively relating ACPR to IP3 may not be possible in all cases,
it remains typically true that ACPR improves with backoff in much the same way IP3
does. That is, for every 1-dB power backoff you can expect perhaps 2-dB ACPR im-
provement, with the out-of-band skirts moving as an ensemble. This statement holds
if third-order nonlinearity dominates, as is often (but not always) the case.

Methods for measuring ACPR are not quite standardized, so in order to interpret
reported values properly it’s important to know the measurement methods to which
the numbers correspond. As an example, handset ACPR for IS-95 CDMA needs to
be better than −42 dBc when measured at an 885-kHz offset frequency.49 A subtlety
is that some techniques measure the ratio of integrated power densities and others the
ratio of the densities themselves. Further differences involve the choice of integra-
tion bandwidths. For example, we could integrate the power density at an offset of
885 kHz over the 30-kHz bandwidth indicated in the figure, then divide by the inte-
gral of the power density over the 1.23-MHz bandwidth of the central lobe; strictly
speaking, it’s that ratio that needs to be −42 dBc or better.

In other (much more common) measurement methods, the power density is inte-
grated over a 30-kHz bandwidth centered about both measurement frequencies; then
a correction factor is applied to extrapolate the measured ratio to correspond to mea-
surements made using the previous method. That is, given certain assumptions, the
two raw ratios will differ by a correction factor

48 Analytical approaches relating two-tone measurements to ACPR can still yield useful insights,
however. For a comprehensive discussion of this approach, see Q. Wu et al., “Linear and RF
Power Amplifier Design for CDMA Signals: A Spectrum Analysis Approach,” Microwave Jour-
nal, December 1998, pp. 22–40.

49 Strictly speaking, IS-95 defines the air interface, IS-97 specifies performance of the base station,
and IS-98 that of the mobile units.
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3ACPR = 10 log
1.23 MHz

30 KHz
≈ 16.13 dB. (42)

Thus, about 16.1 dB needs to be subtracted from the ACPR measured by the second
method in order to correspond to the first.50 This second method assumes that the
average power density in the 30-kHz window about the carrier is the same as in the
rest of the 1.23-MHz band. It is important in this context to note that an IS-95 signal
typically exhibits 2 dB or so of ripple over that band.

Another measurement subtlety concerns the nature of signals used in ACPR eval-
uations. For CDMA systems, the modulations are “noiselike” in nature. As a result,
it’s tempting to use suitably band-limited noise as a signal for ACPR tests. However,
it’s important to understand that noise and noiselike are two different things, much
as it might be important to keep track of the difference between food and foodlike.
ACPR is a measure of distortion and, as such, is sensitive to average power level
and envelope details such as peak-to-average ratio. Those, in turn, are functions of
the code set used in generating the modulations. Different noiselike waveforms with
identical average power can cause a given amplifier to exhibit rather different ACPR.
It is not unusual to see values vary over a 15-dB range as a function of stimulus.

Along with new ways to characterize the effects of distortion comes new termi-
nology. The organic-sounding term spectral regrowth refers to the broadening in
spectrum that results from distortion. Because distortion increases with power level
and also as signals progress through the various stages in a transmitter, it is important
to accommodate spectral regrowth in allocating a distortion budget for the various
elements in the chain. Thus, to meet (say) a −42-dBc ACPR specification for the en-
tire transmitter, it would be prudent to design the PA stage proper to have a worst-case
ACPR at least a few (e.g., 3) decibels better than strictly needed to meet the ACPR
specifications.

The philosophical underpinnings of ACPR can be summed up as “be a good neigh-
bor.” Specifications are chosen with the hope that compliance will assure that one
transmitter minimally interferes with unintended receivers within reception range.
In general, however, specifying the out-of-band power at a few discrete frequencies
may be insufficient. An ACPR specification by itself, for example, does not preclude
relatively strong narrowband emissions. In such cases, it may be necessary to specify
a spectral mask instead. As its name implies, a spectral mask defines a continuum of
limits on emission. Three representative examples are shown in Figure 20.34. One
is for GSM (from version 05.05 of the standard), another is for indoor ultrawideband
(UWB) systems (as defined in the FCC Report and Order of February 2002), and
the third is for 802.11b wireless LAN.

The UWB mask in particular is notable for its complexity. The notch between
0.96 GHz and 1.61 GHz exists primarily in order to prevent interference with the

50 For more detailed information on measurement methods and interpretation of data, see “Testing
CDMA Base Station Amplifiers,” Agilent Applications Note AN 1307.
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F IGURE 20.34. Examples of transmit spectral masks

global positioning system (GPS). The mask is least constraining from 3.1 GHz to
10.6 GHz and so this slice of spectrum is frequently cited as “the” UWB spectrum
allocation. Also notice that the mask specifications are in terms of power spectral
density. The absence of a carrier in UWB systems makes the familiar “dBc” and
“dBc/Hz” units inapplicable.

Satisfying the “good neighbor” dictum by conforming to such masks is necessary,
but not sufficient. We must also ensure that our transmitter produces modulations that
intended receivers can demodulate successfully. The error vector magnitude (EVM)
is particularly well suited for quantifying impairments in many digitally modulated
transmitters. The error vector concept applies naturally to systems employing vector
modulations of some type (e.g., QAM).
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F IGURE 20.35. Illustration of
error vector

F IGURE 20.36. Measurement of EVM (802.11a example;
64-QAM constellation shown)

The error vector magnitude is simply the length of the error vector, as seen in Fig-
ure 20.35. Every symbol or chip has its own error vector. For 802.11b WLAN at
11 Mb/s, EVM is defined as the rms value over 1000 chips and must be less than a
very generous 35%. For 802.11a operating at 54 Mb/s (the maximum specified in
the standard), the allowable EVM is 5.6% – a considerably tighter specification than
for 802.11b.

When measuring EVM, instrumentation produces plots that look like the one
shown in Figure 20.36. In the ideal case, the constellation would appear as a perfect
8×8 square array of dots; the smudges would be points. The normalized rms smear-
ing out is the EVM. In the particular case shown, the EVM is approximately 2% –
well within specifications.
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20.4 ADDIT IONAL DESIGN CONSIDER ATIONS

20.4.1 POWER-ADDED EFF ICIENCY

In the foregoing development, collector efficiency is used to characterize the PAs.
However, the definition of collector efficiency involves only the RF output power
and the DC input power, so it can assign a high efficiency to a PA that has no power
gain. Another measure of efficiency has therefore been developed to yield a figure of
merit that takes power gain into account. Power-added efficiency (PAE) simply re-
places RF output power with the difference between output and input power in the
collector efficiency equation:

PAE ≡ Pout − Pin
PDC

. (43)

Clearly, power-added efficiency will always be less than the collector efficiency.

20.4.2 PA INSTABIL ITY

Amplifiers of any kind can be unstable with certain combinations of load and source
impedances, and power amplifiers are no exception. One extremely important prob-
lem results from collector-to-base coupling (or drain-to-gate coupling). As noted
in Chapter 12, this coupling can cause the input impedance to have a negative real
part. In small-signal amplifiers, this problem can be reduced or eliminated entirely by
using the various unilateralization techniques described earlier. Unfortunately, these
tricks are generally inappropriate for power amplifiers because the requirement for
high efficiency precludes the use of any technique (such as cascoding) that diminishes
supply headroom. In general, the problem is usually solved through the brute-force
means of degrading the input impedance (e.g., through the use of a simple resistor
across the input terminals) to make the feedback less significant. Unfortunately, this
action has the side effect of reducing gain. In general, MOSFETs – with their larger
inherent input impedances – exhibit this stability problem to a greater degree than
bipolar devices. In any case, there is usually a significant stability–gain trade-off due
to the feedback capacitance. And of course, thoughtful layout is required to avoid
augmenting the inherent device feedback capacitance from an unfortunate juxtapo-
sition of input and output wires.

Instability can even occur in switching-type amplifiers. Because all practical drive
waveforms have finite slopes, it is possible for the switching devices to dwell in the
linear region long enough for oscillations to occur. Even before onset of actual oscil-
lation, the input impedance (for example) may undergo rather dramatic shifts. Design
of the previous stage must accommodate this possibility in order to avoid destabi-
lization there.
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20.4.3 BREAKDOWN PHENOMENA

MOS Devices

Downward impedance transformations are required to deliver the desired amount of
power into the output load in many cases. Clearly, the transformation ratio could be re-
duced if a higher power supply voltage were permitted, and the reader may reasonably
ask why one could not simply demand a higher voltage be made available. The reason
is that devices have finite breakdown voltages. Furthermore, as semiconductor tech-
nology scales to ever-smaller dimensions to provide ever-faster devices, breakdown
voltages tend to diminish as well. Thus, increasing transformation ratios are required
as devices scale if one wishes to deliver a certain fixed amount of power to the load.

In MOS devices, one may identify four primary limits to allowable applied volt-
ages in PAs. These are drain (or source) diode zener breakdown, drain–source punch-
through, time-dependent dielectric breakdown (TDDB), and gate oxide rupture.

The drain and source regions are quite heavily doped to reduce their resistivity.
As a consequence, the diodes they form with the substrate have a relative low break-
down voltage, with typical values of the order of 10–12 V for 0.5-µm technologies.
Drain–source punchthrough is analogous to base punchthrough in bipolar devices
and occurs when the drain voltage is high enough to cause the depletion zone around
the drain to extend all the way to the source, effectively eliminating the channel. Cur-
rent flow then ceases to be controlled by the gate voltage.

Time-dependent dielectric breakdown is a consequence of gate oxide damage by
energetic carriers. With the high fields typical of modern short-channel devices, it
is possible to accelerate carriers (primarily electrons) to energies sufficient for them
to cause the formation of traps in the oxide. Any charge that gets trapped there then
shifts the device threshold. In NMOS transistors, the threshold increases so that the
current obtained for a given gate voltage decreases; in PMOS devices, the opposite
happens. TDDB is cumulative, so it places a limitation on device lifetime. Typically,
TDDB rules are designed with a goal of no more than 10% degradation in drive cur-
rent after 10 years.

Bipolar Devices

Bipolar transistors have no gate oxide to rupture, but junction breakdown and base
punchthrough impose important limits on allowable supply voltages. The collector–
base junction can undergo avalanche breakdown in which fields are sufficiently high to
cause significant hole–electron pair generation and multiplication. In well-designed
devices, this mechanism imposes the more serious constraint, although the extremely
thin bases that are characteristic of high-fT devices can often cause base punchthrough
to be important as well.

Another, more subtle problem that can plague bipolar devices is associated with
irreducible terminal inductances that act in concert with large di/dt values. When
turning off the device, significant base current can flow in the reverse direction until
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the base charge is pumped out (see the CD-ROM chapter on the charge control model).
When the base charge is gone, the base current abruptly ceases to flow, and the large
di/dt can cause large reverse voltage spikes across base to emitter. Recall that the
base–emitter junction has a relatively low reverse breakdown voltage (e.g., 6–7 V, al-
though some power devices exhibit significantly larger values) and that the damage
from breakdown depends on the energy and is cumulative. Specifically, β degrades
(and the device also gets noisier). Hence gain decreases, possibly causing incorrect
bias, and the spectrum of the output can show an increase in distortion products as
well as a steadily worsening noise floor. In performing simulations of power ampli-
fiers, it is therefore important to look specifically for this effect and to take corrective
action if necessary.51 Options include clamping diodes connected across the device
(perhaps integral with the device itself to reduce inductances between the clamp diode
and the output transistor) or simply reducingLdi/dt through improved layout or bet-
ter drive control.

It is possible (but rare) for a similar phenomenon to occur in MOS implemen-
tations. As the gate drive diminishes during turn-off, the gate capacitance drops
abruptly once the gate voltage goes below the threshold. Again, the Ldi/dt spike
may be large enough to harm the device.

20.4.4 THER M AL RUNAWAY

Another problem concerns thermal effects. In order to achieve high-power opera-
tion, it is common to use paralleled devices. In bipolars, the base–emitter voltage
for a constant collector current has a temperature coefficient of about −2 mV/◦C.
Therefore, as a device gets hotter, it requires less drive to maintain a specified col-
lector current. Thus, for a fixed drive, the collector current increases dramatically as
temperature increases.

Now consider what happens in a parallel connection of bipolars if one device hap-
pens to get a little hotter than the others. As its temperature increases, the collector
current increases. The device gets hotter still, steals more current, and so on. This
thermoelectric positive feedback loop can run out of control if the loop transmission
exceeds unity, resulting in rapid device destruction. To solve the problem, some small
resistive degeneration in each transistor’s emitter leg is extremely helpful. This way,
as the collector current tries to increase in any one device, its base–emitter voltage
decreases – offsetting the negative temperature coefficient – and thermal runaway is
avoided. Many manufacturers integrate such degeneration (often known as ballast-
ing) into the device structure so that none has to be added externally. Even so, it is
not uncommon to observe temperature differences of 10◦C or more in high-power
amplifiers because of this positive feedback mechanism.

Thermal runaway is normally not a problem in MOS implementations because
mobility degradation with increasing temperature causes drain current to diminish,

51 Again, it is important to have a good model that is based on the actual physical structure.
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682 CHAPTER 20 RF POWER A MPL IF IERS

F IGURE 20.37. Quadrature hybrids for producing input and output match

rather than increase, with a fixed gate–source drive. A subtle exception can occur if
feedback control is used to force the gate–source voltage to increase with tempera-
ture in order to maintain a constant drive current. In that case, device losses increase
with temperature, reviving the possibility of a thermal runaway scenario.

For either bipolar or MOS PAs, it is often prudent to include some form of thermal
protection to guard against overload. Fortunately, it is trivial in IC implementations
to measure temperature with an on-chip thermometer and arrange to reduce device
drive accordingly.

20.4.5 L ARGE-S IGNAL IMPEDANCE M ATCHING

Driving transistors at the large signal levels found in PAs presents a serious challenge
if a decent impedance match to the driving source is to be obtained. This state-
ment applies to bipolars and FETs alike. For example, the base–emitter junction of
a bipolar transistor is a diode, so the input impedance is inherently highly nonlin-
ear. Recognizing this difficulty, manufacturers of bipolar transistors often specify the
input impedance at a specified power level and frequency. However, since there is
generally no reliable guide as to how this impedance might change with power level
or other operating conditions and since is not even guaranteed at any set of condi-
tions, the designer is left with limited design choices.52 The traditional way of solving
this problem for low-to-moderate power PAs is to swamp out the nonlinearity with a
small-valued resistor connected from base to emitter. If the resistance is low enough,
it dominates the input impedance. In high-power designs, the required resistance can
easily drop well below 12. Again, this statement applies to both FETs and bipolars.

In cases where a crude shunt resistance is unacceptable and increased circuit com-
plexity is allowed, excellent input and output matching can be obtained through the
use of quadrature hybrids. Both 3-dB Lange and branchline couplers may be used in
the configuration of Figure 20.37.

52 This despite helpful applications notes from device manufacturers with optimistic titles such as
“Systematic methods make Class C amplifier design a snap.”
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20.4 ADDIT IONAL DESIGN CONSIDER ATIONS 683

Reflections caused by mismatches at the inputs or outputs of the two PAs are ab-
sorbed by the termination resistors shown, so that the input and output ports see
theoretically perfect matches. Each individual PA can operate with purposeful mis-
matches, if desired, to maximize output power or stability, for example. At the same
time, the quadrature couplers are also power combiners, so that each PA stage only
needs to provide half of the total output power. However, it is important to keep in
mind that the worse the nominal mismatch, the greater the required dissipation rating
of the resistors.

Finally, statutory requirements on spectral purity cannot always be satisfied with
simple output structures such as the single tanks used in these examples. Additional
filter sections usually must be cascaded in order to guarantee acceptably low distor-
tion. Unfortunately, every filter inevitably attenuates to some degree. In this context,
it is important to keep in mind that just 1 dB of attenuation represents a whopping
21% loss. Assiduous attention to managing all sources of loss is therefore required
to keep efficiency high.

20.4.6 LOAD-PULL CHAR AC TERIZATION OF PAs

All of the examples we’ve considered so far assumed a purely resistive load. Unfortu-
nately, real loads are rarely purely resistive, except perhaps by accident. Antennas in
particular hardly ever present their nominal load to a power amplifier, because their
impedance is influenced by such uncontrolled variables as proximity to other objects
(e.g., a human head in cell-phone applications).

To explore the effect of a variable load impedance on a power amplifier, one may
systematically vary the real and imaginary parts of the load impedance, plotting con-
tours of constant output power (or gain) in the impedance plane (or, equivalently,
on a Smith chart). The resulting contours are collectively referred to as a load-pull
diagram.

The approximate shape of an output power load-pull diagram may be derived by
continuing to assume that the output transistor behaves as a perfect controlled-current
source throughout its swing. The derivation that follows is adapted from the classic
paper by S. L. Cripps,53 who first applied it to GaAs PAs.

Assume that the amplifier operates in Class A mode. Then, the load resistance is
related to the supply voltage and peak collector current as follows:

Ropt ≡ 2VCC
IC,pk

, (44)

with an associated output power of

Popt ≡ [
1
2IC,pk

]2
Ropt . (45)

53 “A Theory for the Prediction of GaAs FET Load-Pull Power Contours,” IEEE MTT-S Digest, 1983,
pp. 221–3.
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684 CHAPTER 20 RF POWER A MPL IF IERS

Now, if the magnitude of the load impedance is less than this value of resistance, then
the output power is limited by the current IC,pk. The power delivered to a load in this
current-limited regime is therefore simply

PL = [
1
2IC,pk

]2
RL, (46)

where RL is the resistive component of the load impedance.
The peak collector voltage is the product of the peak current and the magnitude of

the load impedance:

Vpk = IC,pk ·
√
R2
L +X2

L. (47)

Substituting for the peak collector current from Eqn. 44 yields

Vpk = 2VCC
Ropt

·
√
R2
L +X2

L. (48)

To maintain linear operation, the value of Vpk must not exceed 2VCC. This require-
ment constrains the magnitude of the reactive load component:

|XL|2 ≤ (R2
opt − R2

L). (49)

We may interpret this sequence of equations as follows: For load impedance mag-
nitudes smaller than Ropt , the peak output current limits the power; contours of con-
stant output power are lines of constant resistance RL in the impedance plane, up to
the reactance limit in Eqn. 49.

If the load impedance magnitude exceeds Ropt then the power delivered is con-
strained by the supply voltage. In this voltage-swing–limited regime, it is more con-
venient to consider a load admittance, rather than load impedance, so that the power
delivered is

PL = [VCC/2]2GL, (50)

where GL is the conductance term of the output load admittance.
Following a method analogous to the previous case, we compute the collector cur-

rent as
iC = 2VCC

√
G2
L + B2

L, (51)

whereBL is the susceptance term of the output load admittance. The maximum value
that the collector current in Eqn. 51 may have is

iC,pk = 2VCCGopt . (52)

Substituting Eqn. 52 into Eqn. 51 and solving the inequality then yields

|BL|2 ≤ (G2
opt −G2

L). (53)

Our interpretation of these equations is that, for load impedance magnitudes larger
thanRopt , contours of constant power are lines of constant conductanceGL, up to the
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20.4 ADDIT IONAL DESIGN CONSIDER ATIONS 685

susceptance value given by Eqn. 49. The contours for the two impedance regimes
together comprise the load-pull diagram.

Load-pull contours are valuable for assessing the sensitivity of a PA to load varia-
tions, identifying optimum operating conditions, and possibly revealing hidden vul-
nerabilities. Experienced PA designers often acquire the ability to diagnose a number
of pathologies by inspection of a load-pull contour.

20.4.7 LOAD-PULL CONTOUR EX A MPLE

To illustrate the procedure, let’s construct the output power load-pull diagram for
a hypothetical Class A amplifier for which the peak voltage is 6.6 V and the peak
current is 1.65 A, leading to a 4-2 Ropt . To find the locus of all load admittances
(impedances) that allow us to deliver power within, say, 1 dB of the optimum design
value, we first compute that a 1-dB deviation from 4 2 corresponds to about 3.2 2
and 5.0 2. The former value is used in the current-limited regime, the latter in the
voltage-swing–limited regime.

In the current-limited regime, we follow the 3.2-2 constant-resistance line up to
the maximum allowable reactance magnitude of about 2.6 2, whereas in the swing-
limited regime we follow the constant-conductance line of 0.2 S up to the maximum
allowable susceptance magnitude of 0.15 S.

Rather than plotting the contours in the impedance and admittance planes, it is
customary to plot the diagram in Smith-chart form. Since circles in the impedance
or admittance plane remain circles in the Smith chart (and lines are considered to
be circles of infinite radius), the finite-length lines of these contours become circu-
lar arcs in the Smith chart, and the corresponding diagram appears as Figure 20.38,
here normalized to 5 2 and 0.2 S (instead of 50 2 and 0.02 S) to make the contour
big enough to see clearly.

The power delivered to a load will therefore be within 1 dB of the maximum
value for all load impedances lying inside the intersection of two circles: one of
constant resistance (whose value is 1 dB less than the optimum load resistance) and
the other of constant conductance (whose value is 1 dB less than the optimum load
conductance). Note from this description that one need not compute at all the re-
actance or susceptance magnitude limits; the intersection of the two circles auto-
matically takes care of this computation graphically. Hence, construction of theo-
retical load-pull diagrams is considerably easier than the detailed derivations might
imply.

It should be emphasized that the foregoing development assumes that the transistor
behaves as an ideal, parasitic-free, controlled current source. Device and packaging
parasitics, combined with an external load impedance, comprise the total effective
load for the diagram. Plus, real amplifiers are nonlinear to some degree. In construct-
ing practical load-pull diagrams, one has knowledge only of the externally imposed
impedance. Because of all these factors, real load-pull contours will generally be
translated, rotated, and distorted relative to the parasitic-free case.
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686 CHAPTER 20 RF POWER A MPL IF IERS

F IGURE 20.38. 1-dB load-pull contour (normalized to 5 2)
for Class A amplifier example

Practical Notes

Load-pull characterization of power amplifiers depends on the availability of ad-
justable, calibrated tuners. The real and imaginary parts are successively set to de-
sired values and then the gain and output power are measured at each step along the
way. As one might imagine, carrying out a complete set of measurements can be
an exceedingly tedious affair. Automated instruments are available for reducing the
manual labor, but they are certainly expensive.

There are two general types of commercial load-pull instruments. One is based on
stepper motor–driven mechanical tuners. These are somewhat large and slow but are
capable of excellent accuracy and repeatability. The other class of instrument uses
electronically switched elements (e.g., PIN diodes or other semiconductor switch)
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20.5 SUM M ARY 687

to effect the tuning. These instruments are more compact and faster than the classi-
cal motor-driven units. However, the parasitics associated with the tuners are much
worse for the all-electronic version, requiring the user to pay much more attention to
calibration and compensation.

20.5 SUM M ARY

We’ve seen that ClassA amplifiers offer good linearity but poor power-handling capa-
bility (0.125 on a normalized basis) and low efficiency (50% at absolute maximum).
Class B amplifiers improve on the efficiency (∼78.5% at best) by reducing the frac-
tion of a period during which the transistor is active while maintaining the potential
for linear modulation.

Class C amplifiers offer efficiencies approaching 100%, but normalized power-
handling capability and power gain both approach zero at the same time. Also, they
sacrifice linear operation to obtain their improvements in efficiency. Additionally,
bipolar Class C amplifiers actually do not satisfy many of the assumptions used in
our derivations and hence are difficult to design and construct; MOS and vacuum
tube implementations tend to be much less troublesome in this regard.

Amplifiers based on switching concepts do not readily provide linear modulation
capability either, but they (theoretically) offer 100% efficiency at nonzero power-
handling capability. Although such perfection is unrealizable, at least the limitation
is not an inherent property of the topology.

Class D amplifiers offer a normalized power-handling capability of approximately
0.16, but they suffer from potentially large “crowbar” dissipation due to noninfinite
switching speeds. Class E PAs solve the dissipation problem for the turn-on transition
but impose rather large stresses on the switch. Both Class E and Class F employ re-
active loading to shape the voltage and current waveforms in ways that reduce switch
dissipation, highlighting a powerful tool for improving efficiency.

We also examined numerous methods for enhancing linearity and efficiency, and
concluded by considering experimental characterization methods.
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C H A P T E R T W E N T Y- O N E

ANTENNAS

21.1 INTRODUC TION

As we noted early in this book, it is important to remember that conventional lumped
circuit theory results from approximating the way the universe behaves (in particu-
lar, from setting to zero some terms in Maxwell’s equations, effectively treating the
speed of light as infinite). The much vaunted “laws” of Kirchhoff1 are not really
laws at all; they are consequences of making simplifying approximations, and so
they ultimately break down.2 The lumped descriptions of circuit theory – in which
it is possible to identify elements as individual resistances, capacitances, and induc-
tances – are allowable only when the elements are small relative to a wavelength.
Although a rigorous proof of this length criterion is somewhat outside of the spirit of
a volume allegedly devoted to practical matters, perhaps a brief plausibility argument
might be permissible and sufficient.

If you are willing to accept as an axiom that the finiteness of the speed of light is
not noticeable when the propagation delay TD along a circuit element of length �l

is a small fraction of the shortest period of interest Tmin, then we would require(
TD = �l

v

)
� Tmin = 1

fmax

, (1)

where v is the propagation velocity and fmax is the maximum frequency of interest.
When rewritten, this inequality may be expressed as

�l � v

fmax

= λmin. (2)

The wavelength λmin is that of the highest frequency of interest.

1 Please, two hs and two f s, and pronounced “keerk off” rather than “kirtch off.”
2 Failure to acknowledge this fact is the source of an infinite variety of false conundrums, many of

which are debated ad nauseam on various internet chat sites (“proof that physics is broken” and
that sort of thing, written by folks who are often wrong but never in doubt).

688
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21.1 INTRODUC TION 689

Conventional circuit analysis is thus valid as long as circuit elements are “very
small” compared to the shortest relevant wavelength. You might be tempted to argue
that the restriction to “small” elements is not a serious practical constraint, because
we may always subdivide a large structure into suitably small elements, each of which
might be described accurately by a lumped approximation. However, the problem
with such an approach is that it implicitly assumes that all the energy in the network
is confined to the space occupied by the circuit elements themselves. In this chapter,
we remove that assumption by allowing for the possibility of radiation of electro-
magnetic energy. In so doing, we identify the conditions that must be satisfied for
significant radiation to occur. We shall see that radiation is theoretically possible
from conductors of any length yet is facilitated by structures whose dimensions are
at least a significant fraction of a wavelength. Understanding this length dependency
explains why we may almost always neglect radiation at low frequencies and why
most classical antennas are as big as they are.

As with filters, the subject of antennas is much too vast for comprehensive treat-
ment in just one chapter, of course.3 The main goals here are (a) to develop intuitive
insights that are infrequently provided by (or perhaps difficult to extract from) rig-
orous mathematical treatments found in some texts and (b) to supplement the brief
explanations commonly offered by many “how-to” books. Because this chapter is
thus intended to complement, rather than replace, existing descriptions, be fore-
warned that we will sometimes (actually, often) sacrifice some rigor in favor of the
development of design insight. In fact, there may be so much handwaving that you
will occasionally need a windbreaker. You will not see a single integral involving the
magnetic vector potential, for example.

Aside from a refreshing breeze, the most important tangible products of such an
approach are the development of simple analytical circuit models for antennas and
an appreciation of why there are so many different antenna configurations.

Although the book’s focus is on planar circuits, we will begin with a study of the
(electric) dipole antenna, not only because it is so widely used but also because its
analysis elucidates many issues common to all classical antennas. A clear under-
standing of a dipole’s limitations explains why certain modifications, such as the
addition of “capacity hats” or loading coils, can greatly improve the radiation proper-
ties of short dipoles. As will be shown, this same understanding reveals a relationship
among normalized length, efficiency, and achievable bandwidth that is reminiscent
of the gain–bandwidth trade-offs found in many amplifiers.

Equations describing the dipole also lead directly to a description of the magnetic
loop antenna because they are duals; the loop antenna is a magnetic dipole antenna.

3 Three excellent texts on this topic are Antenna Theory and Design by Stutzman and Thiele (Wiley,
New York, 1998), the classic Antennas by Kraus (McGraw-Hill, New York, 1988), and Antenna
Theory (2nd ed.) by Constantine A. Balanis (Wiley, New York, 1996). Much practical information
on antenna construction for amateur radio work may be found in The ARRL Antenna Handbook
and numerous other books by the American Radio Relay League.
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690 CHAPTER 21 ANTENNAS

In keeping with our planar viewpoint, the chapter spends a fair amount of time exam-
ining the microstrip patch antenna, which has become extremely popular in recent
years because it is easily made with the same low-cost mass-production techniques
that are used to make printed circuit boards. As will be seen, the intuitive founda-
tions established during a study of the dipole serve well in understanding the patch
antenna.

Because our preoccupation will be with equivalent circuit models for antennas,
other important characteristics (such as radiation patterns, directivity, and gain) are
sadly omitted here. The interested reader is directed to the references cited in foot-
note 3.

21.2 POYNTING’S THEOREM, ENERGY, AND WIRES

To develop a unified viewpoint that explains when a wire is a wire and when it’s
an antenna, it is critically important to discard the mental imagery – of electricity-
as-a-fluid traveling down wires-as-pipes – that is consciously implanted in students
before and during their undergraduate education. Instead understand that ideal wires,
strictly speaking, do not carry electromagnetic energy at all.4 Many (perhaps most)
students and engineers, to say nothing of lay people, find this statement somewhat
controversial. Nevertheless, the statement that wires do not carry energy is correct,
and it is easy to show.

To do so, start with the formula for power from ordinary low-frequency circuit
theory:

P = 1
2 Re{VI ∗}. (3)

In simple words, delivery of real power requires voltage, current, and the right phase
relationship between them (the asterisk in Eqn. 3 denotes complex conjugation). If
either V or I is zero, then no power can be delivered to a load. Furthermore, even if
both are nonzero, a pure quadrature (90◦ phase) relationship still results in an inabil-
ity to deliver real power.

The corresponding field-theoretical expression of the same ideas is Poynting’s the-
orem, which states that the (real) power associated with an electromagnetic wave is
proportional to the vector cross-product of the electric and magnetic fields:5

P = 1
2 Re{E × H∗}. (4)

To deliver real power, one must have E , H , and the right phase between them. If
either E or H is zero or if they are in precise quadrature, no power can be delivered.
Now the electric field inside a perfect conductor is zero. So, by Poynting’s theorem,

4 Heaviside was perhaps the first to express this idea explicitly.
5 As implausible as it may seem, the theorem is named for a real person, John Henry Poynting, who

presented it in 1884 before Hertz had begun his experiments. It’s just one of those remarkable co-
incidences that the Poynting vector points in the direction of energy flow.
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21.3 THE NATURE OF R ADIATION 691

no (real) energy flows inside such a wire; if there is to be any energy flow, it must
take place entirely in the space outside of the wire.6 Many students who comfortably
and correctly manipulate Poynting’s theorem to solve advanced graduate problems
in field theory nonetheless have a tough time when this particular necessary con-
sequence is expressed in words, for it seems to defy common sense and ordinary
experience (“I get a shock only when I touch the wire”).

The resolution to this seeming paradox is that conductors guide the flow of electro-
magnetic energy. This answer may seem like semantic hair-splitting, but it is actually
a profound insight that will help us to develop a unified understanding of wires, an-
tennas, cables, waveguides, and even optical fibers. So for the balance of this text
(and of your professional careers), retain this idea of conductors as guides, rather
than conduits, for the electromagnetic energy that otherwise pervades space. Then
many apparently different ways to deliver electromagnetic energy will be properly
understood simply as variations on a single theme.

21.3 THE NATURE OF R ADIATION

More than a few students have caught on to the fact that electrodynamic equations –
rife with gradient, divergence, and curl – are a devious invention calculated to torment
hapless undergraduates. And from a professor’s perspective, that is unquestionably
the most valuable attribute of E&M (S&M?) theory.

But, perhaps understandably, the cerebral hemorrhaging associated with this trau-
ma frequently causes students to overlook important questions: What is radiation,
exactly? How does a piece of wire know when and when not to behave as an an-
tenna? What are the terminal electrical characteristics of an antenna? How are these
affected by proximity to objects? Who invented liquid soap, and why?7

Let’s begin with a familiar example from lumped circuit theory. Without loss of
generality, consider driving a pure reactance (e.g., a lossless capacitor or inductor)
with a sinusoidal source. If we examine the relationship between voltage and cur-
rent, we find that they are precisely in time quadrature (“ELI the ICE man” and all
that8). The average power delivered by the source to any pure reactance is zero be-
cause energy simply flows back and forth between the source and the reactance. In
one quarter-cycle, say, some amount of energy flows to the reactance, and in the
next, that entire amount returns to the source. To deliver nonzero average power
requires that there be an in-phase component of voltage and current. Adding a re-
sistance across (or in series with) a reactance produces a shift in phase from a pure

6 This argument changes little when real conductors are considered. In that case, all that happens
is the appearance of a small tangential component of electric field, which is just large enough to
account for ohmic loss.

7 John Cusack in The Sure Thing (Embassy Films Associates, 1985, D: Rob Reiner).
8 Just in case this mnemonic is unfamiliar to you, it is a way of keeping track of the impedance phase

relations in inductors and capacitors. “ELI” tells us that E leads (comes before) I in inductors, and
“ICE” tells us that I comes before E in capacitors.
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F IGURE 21.1. Capacitance driven by
two isochronous sources

90◦ relationship, enabling one to produce just such an in-phase component and an
associated power dissipation.

The question of power flow in electromagnetic fields involves the exact same con-
siderations. Whenever the electric and magnetic fields are in precise time quadrature,
there can be no real power flow. If we define radiation as the conveyance of power
to a remotely located load, lack of real power flow therefore implies a lack of radi-
ation. We already know (from lumped circuit theory) that quadrature relationships
prevail in nominal reactances at frequencies where all circuit dimensions are very
short compared with the shortest wavelength of interest. For example, we treat as an
inductance a short length of wire connected to ground, and as a capacitance a con-
ductor suspended above a ground plane. These treatments are possible because the
fields surrounding the conductors are changing “slowly.”

Just as with those lumped reactance examples, real power delivery requires other
than a pure 90◦ phase relationship between the electric and magnetic fields. Classi-
cal antennas produce such a departure with the assistance of the finite speed of light
to add extra delay.9

To understand concretely how the finite speed of light helps produce (actually, en-
ables) radiation, consider a finite length of conductor driven at one end, say, by a
sinusoidal voltage source. Near the source, the magnetic and electric fields may be
well approximated as being in quadrature. However, because it takes nonzero time
for the signal to propagate along the conductor, the voltage (and hence the electric
field) at the tip of the conductor is somewhat delayed relative to the voltage and elec-
tric field at the driven end. The currents (and their associated magnetic fields) at the
two ends are similarly shifted in time. Thus the electric field at the far end is no longer
precisely 90◦ out of phase with the magnetic field at the source end, and nonzero aver-
age power is consequently delivered by the driving source. A lumped circuit analogy
that exhibits qualitatively similar features is the network in Figure 21.1, where a ca-
pacitance is driven by two sinusoidal generators of equal frequency.

From a casual inspection of this particular network, one might be tempted to as-
sert that there can be no power dissipation because a capacitor is a pure reactance. In
fact, this is the most common answer given by prospective Ph.D. candidates during

9 Of course, this departure from quadrature also occurs when a real resistance is in the circuit. Our
focus here is on radiation, so we will not consider dissipative mechanisms any further.
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21.3 THE NATURE OF R ADIATION 693

qualifying examinations. Let’s directly evaluate the correctness of this assertion by
computing the impedance seen by, say, the left source. The current through the ca-
pacitor is simply the voltage across it, divided by the capacitive impedance. So,

Zeq = VS

VS(1 − kejφ)sC
= 1

sC(1 − kejφ)
= 1

jωC [1 − k(cos φ + j sin φ)]
. (5)

The constant k is any real value (it is not meant to represent Boltzmann’s constant).
Notice that the factor in brackets has a purely real value whenever the phase angle
φ is either zero or 180◦. Under those conditions, the phase angle of the impedance
is ±90◦, implying zero dissipation. Energy is simply stored in the capacitor in one
quarter-cycle, then returned to the sources in the next. Any other phase angle produces
the equivalent of a real component of impedance as seen by the sources. Despite the
presence of a pure reactance, dissipation is nonetheless possible. The capacitor cer-
tainly continues to dissipate zero power, but there are still the two sources to consider.
A nonzero average power transfer between these isochronous (i.e., equal-frequency)
sources is possible. That is, one source can perform work on the other.

Analogous ideas apply to the radiation problem. Because of the finiteness of prop-
agation velocity, the electric and magnetic field components that normally simply
store energy in the space around the conductors suddenly become capable of deliv-
ering real power to some remotely located load; this is radiation. As a consequence,
the signal source that drives the conductor must see the equivalent of a resistance in
addition to any reactance that might be present. One way to think about it is that this
resistance, and radiation, may result from work performed by moving charges in one
part of the antenna on charges in other parts of the antenna.10 The fields associated
with radiation are actually present all the time (energy isn’t in the conductors, it’s in
space), but radiation results only when the proper phase relationships exist.

From the foregoing description of radiation, it is also not difficult to understand
why the length of an antenna is important. If the conductor (antenna) is very short
then the time delay will be very short, leading to negligible departure from quadra-
ture. More precisely, when the length of the conductor is very small compared to a
wavelength, the resistive component of the antenna impedance will be correspond-
ingly small. Normalization by the wavelength makes sense because a given length
produces a fixed amount of time delay, and this time delay in turn represents a lin-
early increasing phase shift as frequency increases (wavelength decreases).

Now that we have deduced that radiation is a necessary consequence of a lack of
pure quadrature, let us see if we can deduce the distance dependency of the radiation.
Recalling that the electric field of an isolated, stationary charge in free space falls

10 Richard Feynman, the late Caltech physics Nobelist, described the process most succinctly of all:
“If you shake an electron, light comes out.” That is, radiation results not only from the fields of
accelerated charges acting on the fields of other charges (either in the antenna or in surrounding
media) but also from the action of an accelerated charge interacting with its own field. That is,
the nonquadrature E and H fields that give rise to radiation need not arise from different parts of
a structure.
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694 CHAPTER 21 ANTENNAS

as the inverse square of distance, we might be tempted to argue that radiation must
also exhibit an inverse square law.11 To test this idea (again with a minimum of field
theory), suppose we have a source of electromagnetic energy (it is completely un-
necessary at this point to be more specific). Let’s follow the outward flow of energy
from the source through two successive (and concentric) spheres. If there is to be ra-
diation then the total energy passing through the two spherical shells must be equal;
otherwise the total energy would increase or decrease with distance, implying de-
struction or creation of energy.12 We may therefore write

energy = P̄1A1 = P̄2A2, (6)

where P̄ is the areal power density and A is the area. Now, because the surface area
of a sphere is proportional to the square of the radius, constancy of total energy im-
plies that the power density must decrease with the inverse distance squared. In free
space, the electric and magnetic fields are proportional to each other. Coupling this
fact with Poynting’s theorem, we know that the power density is proportional to the
square of the field strength:

P̄ ∝ |E|2 ∝ |H |2 ∝ 1/r 2. (7)

Hence, we see that there must exist a component of electric or magnetic field whose
amplitude falls as the first power of distance in order for radiation to be possible.13

This development is remarkable, for if we had to depend solely on fields with an
inverse-square spatial dependence (such as that of an isolated stationary charge) then
long-distance communications would be very difficult indeed (a 1/r 4 power rolloff
would be a catastrophe). Fortunately, a miracle of electrodynamics produces compo-
nents of time-varying electric and magnetic fields that roll off much less dramatically
(again, in free space). These radiation components are what make wireless commu-
nications practical. Although we certainly have not derived the precise form of the
fields, we have nonetheless deduced important facts about them from very elemen-
tary arguments.

In addition to allowing us to associate radiation with the existence of inverse-
distance fields, the foregoing tells us that the radiation of energy must be indistin-
guishable from energy dissipated in a resistor, from the point of view of the source.
Correspondingly, we shall see that radiation contributes a resistive component to an
antenna’s driving-point impedance, as asserted earlier.

11 Because there’s no such thing as absolute velocity, we may anticipate (from elementary relativ-
ity considerations) that radiation cannot result from a uniform motion of charge; acceleration is
required.

12 Or a monotonically increasing storage of energy in free space, which is incompatible with the as-
sumption of a steady state.

13 It is important to keep in mind that this conclusion depends on the assumption of free-space propa-
gation. If this assumption is violated (e.g., by the presence of lossy media) then other conclusions
may result.
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21.4 ANTENNA CHAR AC TERIST ICS 695

Note also that the development here actually makes a rather strong statement: no
distance dependency other than inverse distance can be associated with free-space ra-
diation. For example, if the fields were to fall off more rapidly, energy would have to
accumulate in the space between two successive concentric spheres. If the fields de-
cayed more slowly, energy would have to be supplied by that space. Since neither of
these two conditions is compatible with the steady state, we conclude that such field
components cannot support radiation. Instead, those other components must repre-
sent, at best, stored (reactive) energy, which flows back and forth between the source
and the surrounding volume. Thus, their effect is accounted for with either inductive
or capacitive elements in an antenna’s circuit model (depending on whether the en-
ergy is primarily stored in the magnetic or electric field), to whose development we
will turn shortly.

Having extracted about as much insight as is possible without resorting to any
higher mathematics, we now turn to a description of antenna performance charac-
teristics before considering the practical problem of constructing and modeling real
antennas.

21.4 ANTENNA CHAR AC TERIST ICS

Antennas are often characterized by their performance relative to a hypothetical
isotropic radiator. As its name implies, an isotropic antenna radiates its energy uni-
formly in all directions. Even though a true isotropic antenna does not exist, it serves
as a useful normalizing reference with which real antennas may be compared.

Practical antennas, of course, do not radiate energy in all directions with equal
strength. Measures of this anisotropy include directive gain and directivity. To un-
derstand these measures, first suppose that an antenna radiates a total power Ptot. The
antenna’s equivalent isotropic power density (EIPD) at a distance r is simply that
total radiated power divided by the surface area of a sphere of radius r:14

EIPD = Ptot

4πr 2
. (8)

The directive gain is defined as the actual radiated power density in a particular direc-
tion, divided by the EIPD. Directivity is simply the maximum value of the directive
gain.

The foregoing definitions all concern the radiated power. Because there are al-
ways losses in any real antenna, the total radiated power will be less than the power
delivered to the antenna terminals. To account for losses, one may speak of an elec-
trical efficiency

η = Prad

Ptot
, (9)

where Ptot is the total power supplied to the antenna’s electrical terminals.

14 The normalizations are usually performed in connection with a unit radius sphere, so the r 2 term
in Eqn. 8 is often absent.
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696 CHAPTER 21 ANTENNAS

F IGURE 21.2. Representative antenna radiation plot
(EZNEC 3.0 simulation; elevation plot)

The catch-all term antenna gain accommodates the combined effects of directivity
and subunity electrical efficiency. One often encounters the unit “dBi” in connection
with these measures. The reference unit “i” refers to the isotropic radiator’s perfor-
mance. Hence, an antenna gain of 3 dBi means that the antenna radiates 3 dB more
power in that direction than a hypothetical isotropic radiator. Thus, the term gain
when used in connection with antennas does not imply actual power gain (an absur-
dity, given an antenna’s passive nature) but gain relative to a standard antenna. That
standard antenna is typically an isotropic radiator but is sometimes a dipole antenna.

To confuse matters, the term omnidirectional antenna often appears in the liter-
ature. Contrary to what one might think, it is not just another term for isotropic
antenna. It’s commonly meant to describe an antenna whose directive gain is inde-
pendent of angle within some plane, not necessarily all planes. Thus, all isotropic
antennas are omnidirectional, but not all omnidirectional antennas are isotropic.

Given the anisotropic radiation of real antennas, a single number such as direc-
tivity or gain provides only an incomplete picture of an antenna’s performance. The
beamwidth parameter is thus used to supplement those measures by describing the
angle over which the power density stays within 3 dB (or some other standardized
value) of the peak density.

Finally, many antennas are designed to focus their energy primarily in one direc-
tion but do so imperfectly. Their radiation patterns may reveal the existence of other
directions in which energy may be transmitted. Control of such sidelobe radiation is
the aim of many antenna designs.

The plot in Figure 21.2 shows a representative radiation pattern (in this case, for
a conventional dipole antenna, to be discussed in more detail shortly). The view is
from the side (an elevation plot). The antenna is a straight rod extending vertically
from the center of the circular plot, mounted over a conducting earth that occupies
the lower half of the circle. We see that there is no radiation in the direction of the
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21.5 THE DIPOLE ANTENNA 697

F IGURE 21.3. 3-D radiation plot for antenna of Figure 21.2

F IGURE 21.4. Short center-fed
dipole antenna

antenna element itself, nor any along the ground. The radiation is a maximum for
an angle intermediate between those two extremes. In this case, the maximum oc-
curs at an elevation around 27◦ (near the position of the cursor), and the antenna’s
beamwidth (measured at the −3-dB points) is about 44◦.

It’s also instructive to view the 3-D radiation pattern, because it shows clearly the
omnidirectional nature of the radiation (again, omnidirectional in a given plane); see
Figure 21.3.

21.5 THE DIPOLE ANTENNA

The most common antenna is without question the dipole (both in electric and mag-
netic versions). The electric version of Figure 21.4 is probably quite familiar to you.
Countless millions of dipoles in the form of “rabbit ears” have sat on top of televi-
sion sets for decades (and still do), and countless millions more are presently found
in cell phones and on automobiles (over 400 million cell phones were sold world-
wide in 2002, for example). The lowly, ubiquitous AM radio also uses a dipole in the
form of its magnetic dual. As we’ll see, the dipole operates on principles that follow
directly from the description of radiation we’ve given.
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698 CHAPTER 21 ANTENNAS

21.5.1 R ADIATION RESISTANCE

We’ve argued that radiation must give rise to a resistive component of the input im-
pedance. This radiation resistance is extremely important because it determines, for
example, how effectively energy from a source can be coupled into radiated energy.
At the same time, by the principle of reciprocity we know that the antenna’s circuit
model is the same for transmitting as for receiving.

Deriving the radiation resistance of a dipole from first principles is difficult enough
that such antennas were used for a long time before such a derivation was actually
carried out. An extremely useful engineering approximation is readily derived, how-
ever, by simply assuming a current distribution along the antenna. We can be guided
toward a reasonable assumption by thinking about the dipole as approximately a two-
wire transmission line (yes, it’s a bent one, but if you insist on more rigor, you will
regret it) that is terminated in an open circuit. Then an approximately sinusoidal cur-
rent distribution results, with a boundary condition of nearly zero current at the open
end of the wire.15

Using this assumed current distribution and assuming that the antenna is made of
infinitesimally thin superconductors, one can derive the following approximation of
the radiation resistance of a short dipole:

Rr ≈ 20π2(l/λ)2. (10)

The formula agrees well with numerical simulations (based on the same assumptions)
for l/λ up to about 0.3. At a half-wavelength, the approximate formula predicts a ra-
diation resistance of about 50 (. In practice, the impedance of real antennas typically
exhibits a real part at resonance closer to 73 (. However, at frequencies a little bit
above resonance, the impedance is closer to 60 (, providing a good match to 50-(
lines (the minimal improvements that might be provided by a matching network are
almost always more than offset by the losses inherent in any practical implementa-
tion). The approximate formula of Eqn. 10 is therefore practically useful over a wider
range than is usually appreciated.

The accuracy of the formula can be improved a little bit if one treats the antenna as
slightly longer than its physical length. This effective extension results from the fact
that the current along the antenna doesn’t quite go to zero at the tip because of fring-
ing field. We will later see that one may purposefully enhance this effect to improve
(increase) the radiation resistance of short dipoles.

The length correction factor is a somewhat complicated (but rather weak) function
of the radius-to-wavelength ratio and is commonly taken as approximately 5% for
typical dipole antennas. That is, the physical length should be multiplied by roughly
1.05, and that product is inserted into Eqn. 10.

15 The current doesn’t quite go to zero at the end because there is some nonzero fringing capacitance,
but assuming that it does go to zero incurs a small enough error that the subsequent derivation is
usefully accurate.
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21.5 THE DIPOLE ANTENNA 699

F IGURE 21.5. Short monopole antenna over ground plane

One of Marconi’s key inventions is a valuable variation on the dipole antenna in
which image charges induced in the earth (or other conducting plane) effectively
double the length of the antenna. For such a vertical monopole antenna over an ever-
elusive perfect ground plane (Figure 21.5), the radiation resistance will be precisely
double the value given by Eqn. 10.16

The doubling of effective length contributes a quadrupling of the radiation re-
sistance. However, only the physical part of the vertical monopole (not the image)
actually radiates, halving that quadrupling (got that?). The radiation resistance of a
short monopole antenna is thus

Rr ≈ 40π2(l/λ)2. (11)

This equation is reasonably accurate for (l/λ)-values up to about 0.15–0.20. An in-
finitesimally thin superconducting quarter-wavelength monopole will have an im-
pedance of approximately 36 (, compared with the formula’s prediction of 25 (.

Again, real monopoles are likely to exhibit a minimum standing-wave ratio (SWR)
somewhere above resonance, and a typical length correction remains on the order of
∼5%.

In the simulated antenna SWR plot of Figure 21.6, we see that the SWR stays
below 2 :1 over a 15% total bandwidth. The cursor is positioned at the frequency
where the imaginary part of the antenna impedance goes to zero. At that frequency,
the resistive part is 36 ( in this example. The minimum SWR occurs at a somewhat
higher frequency, where the antenna impedance’s reactive part is slightly inductive.
Although the SWR never gets to 1 :1, it is nonetheless low enough over a usefully
large frequency range that little improvement in system performance would typically
be gained by adding a matching network (especially given that lossless matching net-
works do not exist).

As does an open-circuited transmission line, the monopole and dipole each exhibit
periodic resonances. The functional form of the radiation resistance varies somewhat

16 A monopole is often also called a dipole antenna because there is no fundamental difference be-
tween their operating principles and current distribution. In this text we will use both terms, with
the precise meaning to be inferred from the context.
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700 CHAPTER 21 ANTENNAS

F IGURE 21.6. Plot of ∼1-GHz monopole antenna voltage SWR
vs. frequency (EZNEC 3.0)

Table 21.1. Approximate radiation
resistance for short and

medium-length center-fed dipoles

Normalized
conductor length,
l/λ Rrad

0–0.25 20[π(l/λ)]2

0.25–0.5 24.7[π(l/λ)]2.4

0.5–0.64 11.1[π(l/λ)]4.17

as a function of resonant mode. For the center-fed dipole, very approximate equa-
tions for the radiation resistance are presented in Table 21.1.17

The formulas in the table can be modified for use with monopoles as well. Just re-
member that the image doubles the effective length of the antenna; plug this doubled
length into the formulas in the table (with ∼5% length corrections). Then, remember
that only the true antenna (and not its image) actually radiates, causing the radiation
resistance to drop by a factor of 2. Finally, the formulas will then apply for a range
of normalized lengths that are half the values given in the first column. Again, the
length is that of the actual conductor, not including the image.

17 Stutzman and Thiele, op. cit. (see footnote 3), p. 171. These formulas continue to assume infinites-
imally thin conductors and thus yield values that may not accurately track values exhibited by real
antennas. Also, the astute reader will note that the formulas are not continuous across the length
boundaries. At exactly a quarter-wavelength, for example, the two formulas straddling that length
do not agree, leaving one puzzled as to how to proceed. Such is the nature of approximations!
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21.5 THE DIPOLE ANTENNA 701

Finally, it’s important to understand that we rarely encounter perfect ground planes.
If we are trying to produce one with a conductive sheet, then it should be at least a
quarter-wavelength in radius. If a sheet is impractical (as at lower frequencies), sev-
eral rod conductors of that length will often produce a satisfactory approximation to
a ground plane.

21.5.2 REAC TIVE COMPONENTS OF
ANTENNA IMPEDANCE

Because radiation carries energy away, its effect is modeled with a resistance, as
is loss. In general, however, some energy also remains in the vicinity of the an-
tenna, flowing back and forth between the source and the surrounding volume. This
near-field nonradiative component thus represents stored energy, so it contributes an
imaginary component to the terminal impedance.

To derive highly approximate expressions for the effective reactance (inductance
and capacitance) of short antennas, we again use the idea that a dipole antenna be-
haves much like an open-circuited transmission line. If we assume TEM propagation
and unit values of relative permittivity and permeability, then the speed of light is
expressed as

c = 1/
√

LC, (12)

where L and C are here the inductance and capacitance per length. Now, we already
have the following equation for the approximate inductance per length of a wire with
circular cross-section (see Chapter 6):

L ≈ µ0

2π

[
ln

(
2 l

r

)
− 0.75

]
. (13)

The capacitance per unit length (in farads per meter) is thus very approximately

C ≈
{
c2 µ0

2π

[
ln

(
2 l

r

)
− 0.75

]}−1

≈ 2πε0

ln(2 l/r) − 0.75
≈ 5.56 × 10−11

ln(2 l/r) − 0.75
. (14)

For typical dimensions, the capacitance per length is very roughly of the order of
10 pF/m. For example, a 10-cm length of 18-gauge conductor (about 1 mm in radius)
has a capacitance of almost exactly 1 pF, according to the formula. Note that the
inductance grows somewhat faster – and the capacitance somewhat more slowly –
than linearly with length. Thus the capacitance per length is not a constant, but the
10-pF/m (or 10-fF/mm) estimate serves well for many back-of-the-envelope calcu-
lations. As with everything else, if you need better accuracy then you will have to do
more work. Fortunately, electromagnetic field solvers are readily available to handle
these more challenging situations.

Again treating the dipole antenna as an open-circuited transmission line, we expect
short dipoles to exhibit a primarily capacitive reactance, changing to a pure resistance
as we lengthen the line toward resonance (at half-wavelength), then to an inductance
as we pass resonance. This general trend is periodic, repeating every wavelength,
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702 CHAPTER 21 ANTENNAS

F IGURE 21.7. Circuit model for dipole antenna
(one mode only)

but the peak-to-peak variation in impedance diminishes because of the increasing cu-
mulative loss.18 We may also infer that the driving-point impedance of a monopole
changes periodically every half -wavelength.19

As a final comment, it must be reiterated that all of these equations assume that
the antenna is in free space, without any other objects nearby (except for a ground
plane in the case of the monopole). Measurements on real antennas often show sig-
nificant deviations from the predictions of these simple equations, partly because of
the simplemindedness underlying their derivation but mainly because one is rarely
able in practical circumstances to arrange for all objects to be very far removed from
the antenna. Objects less than a few wavelengths away from the antenna can have an
important influence on both the reactance and the radiation resistance. Loosely and
unreliably speaking, antenna reactance is primarily sensitive to the proximity of di-
electric substances (if the antenna is primarily dependent on an electric field) or of
magnetic substances (if the antenna is primarily dependent on the magnetic field).
The real term is generally most sensitive to nearby lossy substances.

Summarizing the results of this section, simple lossless dipoles may be modeled
by the simple circuit shown in Figure 21.7. In this model, the generator represents
the voltage induced by a received signal. For short dipoles, this voltage is simply the
product of electric field strength and the length of the antenna. When the antenna is
used as a transmitter, the generator is set to zero value (a short), and the power radi-
ated may be computed as the power delivered to Rrad . Any loss (arising, say, from
skin effect) would be modeled by an additional resistance in series with the radiation
resistance.

21.5.3 CAPACIT IVELY LOADED DIPOLE

We’ve seen that the radiation resistance of a short dipole varies as the square of nor-
malized length. Hence, good radiation requires a dipole to be a reasonable fraction

18 This observation dovetails nicely with an observation expressed in the chapter on power ampli-
fiers: One expedient method for providing a nonradiative load for high-power transmitter testing
is simply to use a great length of coaxial cable. The cumulative loss is large enough to prevent sig-
nificant reflection, thus assuring a good match. At the same time, the distributed nature of the loss
implies that the power is dissipated over a large volume, thereby reducing thermal problems. This
trick permits testing to proceed in the absence of specially designed high-power resistive loads.

19 Again, loss due to radiation and any other dissipative mechanism causes the variation in imped-
ance to diminish.
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21.5 THE DIPOLE ANTENNA 703

F IGURE 21.8. L-antenna

of a wavelength, or else the radiation resistance will be too low to permit coupling
energy into (or out of ) it with high efficiency. Unfortunately, it is not always practi-
cal to lengthen an antenna arbitrarily to satisfy this requirement, particularly at low
frequencies (remember, the free-space wavelength at 1 MHz is 300 meters). Some-
times an important constraint is imposed by a mechanical engineering problem: that
of supporting a tall, skinny thing.

One way to finesse the problem is to bend the antenna (it’s easier to support a
long horizontal thing than a tall vertical thing). To understand why this is potentially
beneficial, recall the observation that the fringing field of a straight dipole causes
the antenna to act somewhat longer than its physical length. The capacitance associ-
ated with the fringing field prevents the current from going all the way to zero at the
end, increasing the average current along the antenna, thus raising the radiation resis-
tance. Although the effect is normally small, resulting in a length correction of only
∼5% for ordinary dipole antennas, fringing can be purposefully enhanced to make
short dipoles act significantly longer.20 In applications where longer dipoles are not
permitted because of space limitations in the vertical dimension, one can employ ca-
pacitive loading – using what are known as capacity (or capacitive) hats to increase
the current at the end as well as the average current over the length of the dipole.
Various conductor arrangements may be used, including flat disks, spheres, and hor-
izontal wires (the latter is used in the L- and T-antenna). Alas, accurate equations for
these different cases are not easily derived.

Nonetheless, in the special case of an L-antenna (Figure 21.8), we can derive an
approximate formula by making the following assumption (windbreaker required
here): Pretend that the current distribution along a straight conductor is only moder-
ately perturbed when the antenna is bent into an L-shape. If this cheesy assumption
holds, then we have already derived the relevant formula:

Rr ≈ 40π2

(
l + d

λ

)2

, (15)

where l and d are as defined in the figure and the total length is assumed to be short
compared with a wavelength. This equation is so approximate that one should expect

20 It may be shown that the absolute theoretical maximum radiation resistance boost factor is 4, cor-
responding to a constant-amplitude current all along the dipole. In practice, the boost factors
achieved are considerably smaller than allowed by theory.
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F IGURE 21.9. Antenna with capacity hat

the need to trim the antenna to the proper length. However, it is a reasonable guide to
establish rough dimensions for an initial design. Certainly, the use of antenna analy-
sis programs such as EZNEC reduces the number of physical iterations required.

If the primary value of the horizontal segment is in boosting capacitance, then fur-
ther improvements might be enabled by using more segments. Commonly two (for a
T-antenna), three, and four horizontal conductors are used, symmetrically arranged
about the vertical portion. The capacity hat may be considered the limit of using an
infinite number of radial conductors; see Figure 21.9. Other capacitive structures,
such as spheres and spheroids, have also been used in place of the flat disk shown in
the figure.

21.5.4 INDUC TIVELY LOADED DIPOLE

After all our discussion about how radiation is generally insignificant until conduc-
tor dimensions are some reasonable fraction of a wavelength, it may be somewhat
surprising that the signal power available from a dipole antenna at any single fre-
quency is actually independent of its length. This invariance can be understood by
observing first that shorter dipoles deliver lower voltages. To first order, one may
take the open-circuit voltage as equal to the product of antenna length and received
electric field strength, so voltage scales linearly with length for short dipoles (up to a
point). At the same time, we’ve seen that the radiation resistance varies as the square
of length. Hence the ratio of voltage squared to resistance is independent of length.
As the dipole length diminishes, the lower voltage is delivered from lower Thévenin
resistances (the radiation resistances) and so the available power remains constant
(neglecting losses). For a lossless monopole, for example, the available power is

Pav = (Epk l)
2/8

40π2(l/λ)2
= (Epkλ)2

320π2
. (16)

Clearly, the available power is independent of length, depending instead on the
field strength and wavelength. Thus, for the lossless dipole assumed, theory says
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21.5 THE DIPOLE ANTENNA 705

that we could make antennas out of infinitesimally short segments. This conclu-
sion is seemingly at odds with ordinary experience, where radiation from ordinary
wires is routinely ignored with impunity in low-frequency circuit analysis and where
AM radio stations use antennas of such size that they must be supported by very tall
towers. The resolution to this apparent paradox is that the radiation resistance forms
a voltage divider with the Thévenin equivalent resistance of the driving source, aug-
mented by the ever-present resistive losses in any circuit. At frequencies where the
antenna is a tiny fraction of a wavelength, the radiation resistance is so small relative
to the resistance of the circuit connected to it that negligible power is delivered to
the radiation resistance. It is this gross impedance mismatch that commonly allows
us to ignore so glibly the possibly of radiation from short wires used as intercon-
nect. Any wire is theoretically capable of radiating at any time, but if it’s electrically
short then the impedance mismatch prevents significant radiation. That’s how a wire
knows when and when not to act as an antenna in ordinary circuits.

Suppose, though, that we were able to avoid this impedance mismatch. After
all, impedance transformers are readily designed. Could we then make antennas ar-
bitrarily short? The answer is a qualified Yes. One qualification can be appreciated
after recognizing that bandwidth and normalized antenna length are actually coupled.
Because short dipoles have a capacitive reactive component, addition of a suitable
inductance will permit the antenna circuit to be brought into resonance at a given de-
sired frequency of operation. Electrically speaking, the antenna acts longer insofar
as the disappearance of a reactive term is concerned. These loading inductances are
usually placed either at the base of the dipole (i.e., at the feedpoint) or near the center
of the dipole. However, as the antenna shrinks, so does its capacitance. To maintain
resonance, the compensating (loading) inductance must increase. Recalling that the
Q of a series resonant circuit is

Q = √
L/C/R, (17)

it should be clear that Q increases as a dipole antenna shortens (assuming no losses),
since inductance and capacitance are both roughly proportional to length and since
the radiation resistance is proportional to the square of the length. Therefore,

Q = √
L/C/R ∝ l−2 �⇒ B ∝ l2. (18)

The bandwidth is therefore proportional to the square of length. As a result, al-
lowable reductions in antenna length are limited by the desired communication band-
width. Furthermore, the narrower the bandwidth, the more sensitive the antenna’s
center frequency to the proximity of objects. Purposeful addition of series resistance
to mitigate this sensitivity and improve bandwidth is accompanied by an unfortu-
nate increase in loss. Even if no additional resistance is provided intentionally, there
is always some loss. If efficiency is to remain high, the additional series resistance
representing this loss must be small compared with the radiation resistance. To un-
derscore the practical difficulties involved, consider a monopole antenna that is 1%
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706 CHAPTER 21 ANTENNAS

F IGURE 21.10. Loop antenna
(air core version shown)

of a wavelength. The radiation resistance is then about 0.04 (. Needless to say, it is
exceedingly difficult to arrange for all RF losses to be small compared to resistances
of forty milliohms! The fundamental trade-off between efficiency and bandwidth
thus tightly constrains the practical extent to which a dipole may be shortened. The
coupling among bandwidth, normalized length, and efficiency drives most antenna
designs to at least as long as about 10% of wavelength. Practical dipole antennas are
rarely much shorter than this value, except for applications where the available signal
power is so large that inefficient antennas are acceptable.

Occasionally, one will encounter antennas that employ both capacitive and induc-
tive loading (e.g., capacity hat plus loading coil). The resulting additional degree of
freedom can permit one to relax the trade-off to a certain extent but can never fully
eliminate it.

21.5.5 M AGNETIC LOOP ANTENNA

The dual of an electric dipole is the magnetic dipole formed by a loop of current.
Just as the dipole antenna is sensitive primarily to the electric field, the loop antenna
(Figure 21.10) is sensitive mainly to the magnetic-field component of an incoming
wave. We’ll see momentarily that this duality makes the loop antenna attractive in
many situations where the electric dipole antenna suffers from serious problems. In
particular, at low frequencies, a loop antenna design is often more practical than its
electric dipole counterpart, explaining why loop antennas are almost universally used
in portable AM radios and in many pagers, for example.

The following equation for the effective radiation resistance of a loop antenna as-
sumes that the diameter is very short compared to a wavelength and that no magnetic
materials are used:21

Rrad ≈ 320π4

(
nA

λ2

)2

≈ 31,200

(
nA

λ2

)2

, (19)

where n, λ, and A (respectively) are the number of turns, the wavelength, and the
loop area.

21 A. Alford and A. G. Kandoian, “Ultrahigh-Frequency Loop Antennas,” Trans. AIEE, v. 59, 1940,
pp. 843–8; also see Kraus, op. cit. (footnote 3). The formula also assumes zero conductor loss.
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21.6 THE MICROSTRIP PATCH ANTENNA 707

Just as the short electric dipole antenna produces a net capacitive reactance, the
magnetic loop antenna has a net inductive reactance. Wheeler’s famous formula can
be used to estimate the inductance of an air-core loop:

L ≈ 10πµ0 n2r 2

9r + 10l
, (20)

which assumes dimensions and inductance in SI units – unlike Wheeler’s original
formulation, which uses dimensions in inches to yield inductances in microhenries.

It is important to take note of a new degree of freedom not present in the dipole case:
one can add more turns in order to increase radiation resistance. This improvement
comes about in the same way as does the impedance transformation of a conventional
transformer. The changing magnetic field of the incoming wave induces the same
voltage in each turn, so we get n times the per-turn voltage at the antenna terminals.
Since energy must be conserved, the current must drop by this same factor n, and so
the resistance (the ratio of voltage to current, says Professor Ohm) increases by n2.

Thus, even if the area of the loop is much smaller than λ2, the radiation resistance
may still be boosted to usable values.

We may now appreciate how the loop antenna can solve the thorny problem of
AM radio reception. Signals at the lower end of the AM band possess a wavelength
of almost 600 meters. The maximum allowable dimensions of any practical portable
device will necessarily be an absurdly small fraction of this wavelength. A standard
dipole antenna of any human-sized dimensions would thus have an infinitesimal radi-
ation resistance, making efficient operation practically impossible. The loop antenna
offers a welcome alternative. It is chiefly for this reason that loop antennas are the
only type of antenna used in portable AM radios. Further improvements are provided
by winding the antenna around a ferrite rod, whose large permeability concentrates
the magnetic field. These “loopstick” antennas dominate portable applications up to
frequencies where the lossiness of ferrites negates their usefulness (perhaps as high
as the VHF range). Loop antennas are also the choice in pagers, where the desire for
a very small form factor makes it difficult to realize an efficient dipole. The loop is
conveniently shaped as a rectangle and mounted inside the case of the pager.

21.6 THE MICROSTRIP PATCH ANTENNA

We’ve seen that radiation becomes practical whenever a conductor is an appreciable
fraction of a wavelength. This effect is not always wanted; for example, radiation
losses increase the attenuation of microstrip lines. Although undesirable in that con-
text, such radiation is of course precisely what is required to make antennas. When
built out of microstrip, these radiators are known as patch antennas, so named be-
cause of their shape. They have become extremely popular because of their planar
nature, making them amenable to inexpensive batch fabrication, just as any other
printed circuit. Despite a number of important limitations (excessive Q or, equiva-
lently, excessively narrow bandwidth), their convenience and compactness more than
compensate in many applications.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511812941.022
Downloaded from https://www.cambridge.org/core. The Librarian-Seeley Historical Library, on 18 Dec 2019 at 06:17:23, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511812941.022
https://www.cambridge.org/core


708 CHAPTER 21 ANTENNAS

F IGURE 21.11. Half-wave patch antenna
(conductor pattern and perspective view)

F IGURE 21.12. Typical radiation pattern for patch antenna of Figure 21.11

As seen in Figure 21.11, the patch is typically implemented in the form of a rectan-
gular piece of conductor (over a ground plane). To first order, the patch antenna can
be considered the limiting case of connecting a planar array of thin dipoles in paral-
lel so that they form a sheet. As such, the primary radiation is normal to the surface
of the patch; see Figure 21.12, where the patch lies in the xy-plane.

The precise nature of the radiation pattern can be adjusted within fairly wide limits
by controlling how one feeds the antenna. In the most basic configuration, patches
are fed at one end, at the center of an edge (as in Figure 21.11). However, one may
also use off-center feeds (offset feeds) to excite other than linear polarizations. This
ability is highly valuable, for many microwave communications systems employ po-
larizations to provide a measure of multipath mitigation.22 One may also capacitively

22 Reflection off of an object reverses the sense of polarization, changing a counterclockwise polar-
ization into a clockwise one, for example. Using an antenna that selectively rejects one of these
components thus reduces a communications link’s susceptibility to troublesome reflections.
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21.6 THE MICROSTRIP PATCH ANTENNA 709

F IGURE 21.13. Current density for a 1-GHz rectangular
patch antenna at center frequency (Mstrip40)

couple the feedline to the patch, either laterally or with an additional layer of con-
ductor beneath the patch proper.

For the antenna in Figure 21.11, assume that the length L is chosen equal to a half-
wavelength. In that case, the current is zero at x = 0 and x = L, with a maximum
at L/2, as in a classic dipole antenna. At the same time, the voltage is a minimum at
L/2 and a maximum at the source and far end, again just as in a classic dipole.

The current density plot of Figure 21.13, generated by the program Mstrip40, re-
veals that the current density does in fact vary sinusoidally, as expected, at least to
within “eyeball” resolution. Note also that the microstrip feedline’s current has a
fairly constant amplitude along the line, indicating the achievement of a good match.
The plot corresponds to the same patch orientation as in Figure 21.11.

One important characteristic of a patch antenna is its relatively narrow bandwidth
(typically on the order of 1%). To understand the origin of this property, it is useful to
think of the patch as more than a flat array of dipoles. Specifically, consider the struc-
ture as a cavity resonator (box) that is missing four out of six sides. Viewed in this
way, the radiation from the antenna is the result of energy leaking out of the resonant
cavity (specifically, radiation is due primarily to energy leaking from the two gaps of
width W ). Because the thickness of typical dielectric layers is extremely small rel-
ative to the other dimensions of a patch, the energy leaking out of the box is much
smaller than the energy stored within it. The resulting high Q-factor endows the
patch with a powerful ability to filter off-frequency signals, but it also demands much
more accuracy in design and manufacturing as well as exceptional stability of ma-
terial properties. The variability of FR4 virtually guarantees numerous cut-and-try
iterations, limiting most use of this material to prototyping and hobbyist applications
if ordinary patch geometries are to be used.
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710 CHAPTER 21 ANTENNAS

Because allowing more energy to leak out reduces Q, one simple way to increase
the bandwidth of a patch antenna is simply to use thicker substrates. The difficulty of
obtaining inexpensive, low-loss PC boards of suitable thickness occasionally moti-
vates antenna designers to use air as a substantial portion (or even all) of the dielectric.
Bandwidths of tens of percent are possible with such arrangements. To zeroth order,
the fractional bandwidth (neglecting losses) for a 2 :1 VSWR is given very approxi-
mately by the following empirical formula:23

B ≈ εr − 1

2εr

WH

Lλ
. (21)

Keeping in mind that radiation takes place primarily along the two edges of width
W, we would expect energy leakage, and thus the bandwidth, to be proportional to
the area (WH ) of the associated apertures, explaining the appearance of that factor
in the numerator. On the other hand, increasing L increases the energy stored (the
cavity increases in size); hence it belongs in the denominator, as shown.

To highlight the difficulties involved, let’s take a look at a specific numerical ex-
ample. Suppose we have a 1-GHz patch made with 1.6-mm–thick lossless dielectric,
a 1.8 :1 width / length ratio, and a relative dielectric constant of 4.6. In that case, the
estimated fractional bandwidth is about 0.7%. This small value underscores one of
the challenges of using a patch antenna, for tiny imprecisions in manufacture lead to
antennas that do not radiate efficiently at the desired frequency.

We have deferred presentation of an equation for the radiation resistance of patch
antennas for a reason: Numerous design equations have appeared in the literature,
spanning a broad range of complexity. Unfortunately, many of these disagree with
each other to the first order, so the reader is cautioned not to place too much faith in
them. In the interest of preserving the maximum level of intuitive value consistent
with usefulness, the equations presented here are simple (but highly approximate).
Furthermore, published equations generally neglect dielectric loss. Regrettably, FR4
is hardly a zero-loss material, so we’ll have to modify the equations to reduce the
approximation error in that case.

As noted previously, the classic patch antenna is designed as a half-wave radiator,
so its electrical length is chosen equal to a half-wavelength:

Leff = λ/2. (22)

In relating electrical and physical lengths, it’s important to consider both fringing
field and the effective dielectric constant:

23 This equation is a modification of one originally presented by D. R. Jackson and N. G. Alexopou-
los, “SimpleApproximate Formulas for Input Resistance, Bandwidth, and Efficiency of a Resonant
Rectangular Patch,” IEEE Trans. Antennas and Propagation, v. 3, March 1991, pp. 407–10. In the
original, instead of a factor of 2 in the denominator, there is a factor of 3.77 in the numerator. The
modification in Eqn. 21 makes the formula’s predictions match much better the field-solver and
experimental values that we have encountered.
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21.6 THE MICROSTRIP PATCH ANTENNA 711

Leff ≈ √
εr,eff [L + 2(H/2)] = √

εr,eff (L + H ), (23)

where H is the thickness of the dielectric and where the approximate length correc-
tion per edge, H/2, is the same as derived in Section 7.9. More elaborate length
corrections abound, but H/2 is good enough for most practical purposes.

The effective dielectric constant is given by

εr,eff ≈ 1 + 0.63 · (εr − 1) · (W/H )0.1255, W/H > 0.6, (24)

which is the same formula as used for ordinary microstrip lines (as is the correction
for fringing in Eqn. 23). Marginally easier to remember is the following alternative
approximation:

εr,eff ≈ 1 + 5
8 · (εr − 1) · (W/H )1/8, W/H > 0.6. (25)

Since the width W of a typical patch antenna is so much greater than the dielectric
thickness H, the effective dielectric constant is usually quite close to the dielectric
constant of the material (say, only 5–10% below it). For that reason, design formulas
presented in many references rarely make a distinction between these two dielectric
constants.

We need to perform a similar accommodation of fringing effects on the effective
width:

Weff ≈ √
εr,eff [W + 2(H/2)] = √

εr,eff (W + H ). (26)

Continuing with our design equations, we obtain

f0 ≈ 1.5 × 108

Leff

, (27)

at which resonant frequency the driving-point impedance is theoretically24

Z0 ≈
90

[
εr,eff

L+H

W+H

]2

εr,eff − 1
. (28)

Notice that the width-to-length ratio has the greatest influence on the edge imped-
ance of a patch antenna. For patches made on 1.6-mm–thick FR4 with an effective
relative dielectric constant of 4.2, this formula says that a ∼50-( feedpoint imped-
ance results from a W/L ratio of a bit more than 3 and that a square patch should
present an edge impedance of about 500 (. A more rigorous calculation, based on the
general-purpose electromagnetic field solver Mstrip40, says that a W/L ratio of about
4.7 is needed to produce an ∼50-( edge impedance. An antenna design–specific pro-
gram (Pcaad 2.1) based on a leaky cavity model yields a larger value still, in excess
of 5. So, you can see that there is imperfect agreement among the authorities.25 At

24 Jackson and Alexopoulos, ibid.
25 That said, it is important to note that the predictions of Mstrip40 are in close accord with the au-

thor’s own lab experience.
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712 CHAPTER 21 ANTENNAS

least they all agree in the basic prediction that the width needs to be rather large to
achieve 50 (. It is desirable for the width and lengths to be similar to avoid excita-
tion of modes along the width, because polarization might be affected as well as the
input impedance. In practice, the width should not be chosen larger than twice the
length and usually should be set nearly equal to it.

The situation becomes even murkier when we seek to take into account the nonneg-
ligible dielectric loss of materials such as FR4. Because dielectric loss is equivalent
to a shunt conductance, real patch antennas present a driving-point impedance that
is lower than predicted by lossless models. To accommodate the effect of dielectric
loss, recall that the effective shunt conductance across the terminals of a capacitor
built with a lossy dielectric is simply

G = ωε(WL/h) tan δ. (29)

This conductance is what one would measure across the capacitor terminals when
the plate dimensions are so small compared to a wavelength that each plate behaves
as a unipotential surface. Antennas necessarily violate this criterion, so we have to
do a little extra work to get the right answer. In the case of a half-wave patch, the
voltage varies roughly cosinusoidally along the length, with extrema at the driven
and far edges of the patch. We neglect any voltage variation along the width of the
antenna. Consequently, the power dissipated in the dielectric is smaller near L/2
than at the ends, and we therefore expect the effective conductance (as viewed from
the driving source) to be smaller than G. Now, for a voltage of amplitude V vary-
ing sinusoidally in time, we know that the power dissipated in a resistor R is simply
V 2/2R. By analogy, the total dissipation produced by a (co)sinusoidal spatial volt-
age variation is also V 2/2R, where V is the voltage at the driven end.

Because the spatial variation introduces a factor-of-2 reduction in dissipation (rel-
ative to the case where the voltage is constant), we may represent the total dielectric
loss by a single shunt resistor of value 2/G, connected between the driven end and
ground. The total driving-point impedance of the half-wave patch antenna is thus

Zideal ‖ 2

G
= Zideal ‖ 2

ωε(WL/h) tan δ
= Zideal ‖ 2h

ωεWL tan δ
. (30)

Experience with FR4, with its typical loss tangent of 0.022, shows that a W/L ratio
closer to 1.8 produces an ∼50-( feedpoint impedance for a 1-GHz half-wave patch
(W = 12.6 cm, L = 7.0 cm), meaning that the width must be reduced by a factor
of 2.6 over the lossless case in order to provide a match.26 Aside from producing a
more acceptable form factor (at the cost of reduced efficiency), the loss also widens
the bandwidth (here arbitrarily defined once again as where SWR < 2) to about 2%,
from about 0.7% in the lossless case. As noted earlier, the narrow bandwidth means
that – more so than with other microstrip structures – extensive cut-and-try is likely
to be required to produce satisfactory patch antennas.

26 Again, the predictions of Mstrip40 are in good agreement with this experience.
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21.6 THE MICROSTRIP PATCH ANTENNA 713

F IGURE 21.14. Half-wave patch antenna with
impedance-transforming inset feed (top view)

We’ve already noted that using large widths in an effort to provide a lower driving-
point impedance carries a risk of difficult-to-predict behaviors. A patch is therefore
often made square in many applications, necessitating impedance transformations.
A classical method is to interpose a quarter-wavelength segment of line between the
source and the antenna. If the transforming line’s characteristic impedance is made
equal to the geometric mean of the source and load impedances, a match results.

As a specific numerical example, suppose we need to design a 50-( patch an-
tenna for use in a portable application in the 2.5-GHz ISM (industrial, scientific, and
medical) frequency band. Using a hypothetical lossless counterpart to FR4, a rec-
tangular patch would have dimensions of about 27 mm by 80 mm. The length is
very reasonable, but the width isn’t quite compatible with the form factors of many
portable devices. In any case, a 3 :1 width-to-length ratio is risky owing to the pos-
sible excitation of transverse modes. Suppose that we choose a square patch instead,
whose impedance is theoretically as high as 500 (. A 160-( quarter-wavelength line
would perform the necessary transformation. Realizing such an impedance requires
a narrow line, and manufacturing tolerances are consequently important in such a
case. Easing the burden is that a real patch of those dimensions would more likely
present an impedance nearly a factor of 2 lower, permitting the use of a matching
line whose impedance is closer to a quite comfortable 100 (. Notice that we are un-
concerned about the bandwidth of the impedance transformers, because the patch is
the bandwidth-constraining element.

Yet another impedance transformer option is available with patches (indeed, with
any resonant antenna). Because of the standing-wave setup in the antenna, voltages
and currents vary along the patch. In the half-wave case we’ve been studying, the
boundary conditions force the current to be a minimum at the feedpoint and at the
far end of the patch, with a maximum in the middle. At the same time, the voltage
is a minimum in the middle and a maximum at the source and far end. The imped-
ance, being the ratio of voltage to current, therefore varies along the antenna – from
a maximum at the normal feedpoint to a minimum at the middle of the patch – much
as it would for an open-circuited half-wave transmission line. One may exploit this
impedance variation by using an inset feed, as shown in Figure 21.14.
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714 CHAPTER 21 ANTENNAS

To a first approximation, we again treat the structure as a transmission line. Thus
we again assume that the standing waves (voltage and current) vary (co)sinusoidally
along the length of the patch (recall that these assumptions are the same as those used
in deriving the radiation resistance of an ordinary dipole). The current is nearly zero
at both ends of the patch, increasing roughly sinusoidally as one moves toward the
center. At the same time, the voltage is a peak at the ends, sinusoidally decaying to-
ward zero in the center. Therefore, as one moves the feedpoint toward the center,
the ratio of voltage to current varies approximately quadratically, because voltage
decreases sinusoidally at the same rate that the current increases. The impedance is
thus multiplied by the following factor:

Z ≈ (Zedge)

(
cos π

�x

L

)2

, (31)

where Zedge is the driving-point impedance in the absence of an inset feed.
For our example of the ever-elusive lossless FR4 patch antenna, we need to trans-

form downward by the comparatively large factor of about 10.8, implying that

�x ≈ L

π
cos−1

(
1√
10.8

)
≈ 0.4L. (32)

Note that the calculated inset position is nearly all the way to the middle. Because
the change in voltage with distance is large near the center,27 the precise value of the
impedance is an extremely sensitive function of distance in the vicinity of this inset’s
location. That, plus the uncertainty inherent in our approximations, means again that
considerable empirical adjustment will probably be necessary to obtain the correct
impedance. Another consideration is that such a deep inset represents a first-order
perturbation, and one ought to expect degradation in polarization and other param-
eters of interest. For real FR4, the dielectric loss lowers the edge impedance of a
square patch, implying that a more moderate impedance transformation ratio will
suffice.

One convenient method for trimming such an inset patch for prototyping purposes
is first to use a deeper-than-nominal inset. Then, upward impedance adjustments
are easily effected by placing a shorting strip across some portion of the inset. See
Figure 21.15. This particular method avoids the need for precise cutting and also
facilitates multiple iterations. Soldering (and unsoldering) a piece of copper foil tape
is much easier than gouging out segments of copper cladding.

A disadvantage of the inset feed is that it perturbs the field distributions by an
amount that increases with the depth of the inset.28 The three impedance-matching
methods (controlling W/L, quarter-wave transformer, and inset feed) provide im-
portant degrees of freedom for trading off parameters of interest. For example, if a

27 The voltage is a minimum in the center, but its spatial derivative is a maximum there.
28 This sensitivity is frequently exploited. A properly positioned off-center feed excites longitudinal

and transverse modes simultaneously, whose superposition produces circular polarizations.
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21.6 THE MICROSTRIP PATCH ANTENNA 715

F IGURE 21.15. Adjustment method
for inset patch (top view)

F IGURE 21.16. Patch antenna with coaxial feed (side view)

rectangular patch possesses dimensions that produce a 200-( impedance, one could
use an inset feed to drop the impedance to 100 ( and then complete the match with a
71-( quarter-wave line to get to 50 (. Since the impedance transformations at each
step along the way involve relatively small ratios, a more practical and robust design
results.29 Again, the lossiness of FR4 somewhat reduces the need for dramatic im-
pedance transformations (and broadens the bandwidth, albeit at the cost of reduced
efficiency), but it remains true that the basic patch antenna is a narrowband structure.

An alternative to the inset feed is to leave the patch proper untouched and to feed
the patch at the appropriate tap point directly opposite a connector. This is shown in
Figure 21.16. Although this method requires a via (or, more commonly, a hole to ac-
commodate a short length of wire), the inconvenience is modest enough that many
commercial patch antennas are built in this manner. However, it’s important to be
aware of two potential problems with a coaxial feed. If one uses relatively thick sub-
strates in an effort to increase bandwidth, then the inductance of the feed may be
large enough to alter the tuning and impedance. At the same time, the feedline may
itself radiate to a certain extent, causing distortion in the overall radiation pattern.

One obvious solution to the matching problem produced by feedline inductance
is simply to use a conventional impedance-matching network. However, an interest-
ing alternative is to modify the geometry of the patch itself to provide the necessary
compensating capacitive reactance. For example, suppose that we cut slots around

29 Of course, one could also use a sequence of quarter-wave transformers or some other variations.
There are many ways to accomplish the needed transformation, and the reader is invited to explore
alternatives independently.
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716 CHAPTER 21 ANTENNAS

F IGURE 21.17. Patch antenna with
U-slot (top view)

the feedpoint to produce an approximation to a parallel-plate capacitor in the vicinity
of the feed; see Figure 21.17.

When the U-slot is properly positioned and dimensioned, something quite unex-
pected occurs: the 2 :1 VSWR bandwidth jumps to as much as 40%.30 This result is
completely contrary to the ordinary workings of Murphy and is due to the creation of
multiple resonant modes. Not only is there the basic resonance of the patch (we could
call that the common-mode resonance), there is a resonance associated with the feed-
line inductance interacting with the U-capacitance. There is also a differential-mode
resonance in which the parts of the patch on opposite sides of the U-boundary oper-
ate in antiphase. If these different modes are spaced apart by the right amounts (as
in a Chebyshev filter, for example), then the overall bandwidth can be considerably
larger than that of a basic patch.

From the qualitative description, you might get the impression that designing for
this miraculous condition is difficult, and you would be correct. There are currently
no simple analytical formulas to guide the design of these antennas, so many iter-
ations with a field solver are necessary to converge on an acceptable configuration.
And as with just about everything else in engineering, there are many variations on
this basic theme (e.g., as choice of feed, shape of boundary), further broadening the
search space. The variety of possible behaviors has stimulated active ongoing re-
search in this field. For example, instead of a relatively constant gain over a broad
frequency band, it is sometimes desirable to have multiple peaks centered about sev-
eral discrete frequencies that correspond to separate communications bands. This
principle underlies the patch antennas used in many multiband cellular phones, al-
though nonobvious (non-U) slot shapes are the norm.

BROADBAND PATCHES

The U-slot modification broadens the bandwidth of a patch antenna by an order of
magnitude. Impressive as that is, there remain applications for which even a 30–40%

30 T. Huynh and K. F. Lee, “Single-Layer Single-Patch Wideband Microstrip Antenna,” Electronics
Letters, v. 31, no. 16, 1995, pp. 1310–12.
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21.6 THE MICROSTRIP PATCH ANTENNA 717

bandwidth is insufficient. For example, recent interest in ultrawideband (UWB) com-
munications has created a demand for antennas capable of operation over a frequency
range exceeding 3 :1 (or even exceeding 10 :1). Obtaining such large bandwidths un-
fortunately requires exploitation of antenna concepts beyond simple modifications of
standard antennas.

Before presenting some ultrawideband antennas, it’s useful to make a few distinc-
tions. The word bandwidth is a little ambiguous, for example, because it could refer
to the impedance bandwidth, the bandwidth over which the directivity stays above a
certain value, the bandwidth over which the polarization remains within some error
band, or the bandwidth over which the main radiation lobe has a certain minimum
width. Depending on the context, one or more of these definitions may be relevant.
An ideal UWB antenna would possess a constant radiation pattern, gain, and im-
pedance over the entire bandwidth. At the same time, some UWB systems (e.g.,
pulse-modulated systems) additionally require low dispersion over that same wide
bandwidth. Simultaneous achievement of all goals is decidedly challenging, to say
the least.

A valuable guiding principle in the design of UWB antennas concerns the relation-
ship between the impedance of an antenna made with a particular conductor pattern
and that of an antenna whose conductor pattern is the precise complement of the first.
By applying Babinet’s principle31 to these complementary structures, we find that
the two impedances are related to each other through the impedance of free space in
the following manner:

Z1Z̄1 = η2/4, (33)

where the overbar identifies the impedance corresponding to the complementary con-
ductor pattern.32

Now suppose we are able to design an antenna whose conductor pattern is its own
complement. In that case Z1 = Z̄1. To the extent that we succeed, we expect such an
antenna to have an impedance (in free space) of approximately

Z =
√

Z1Z̄1 = η/2 ≈ 188.5 (. (34)

That is, the antenna will have a constant impedance over a theoretically infinite band-
width. Now, it is impractical to satisfy this condition exactly (because, taken liter-
ally, we’d have to permit conductors of infinite extent, if you think about it for a
moment), but seeking to approximate it leads to practically useful antennas. If the
antenna is built in or on a dielectric material, then the impedance will scale from

31 Articulated by the 19th-century French physicist Jacques Babinet.
32 Babinet’s principle might be more familiar to you from an optics lecture in physics class as a way

to simplify the analysis of certain classic diffraction problems, but its adaptation to the antenna
design problem is arguably more important. Briefly, if one generates an E ′ from ηH and an H ′
from E/η, the resulting transformed fields (identified as primed variables) still satisfy Maxwell’s
equations, thanks to the symmetry properties of the latter. As a consequence, replacement of a
conductor pattern with its complement results in the impedance relationship given.
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718 CHAPTER 21 ANTENNAS

F IGURE 21.18. Two-arm, 1.5-turn truncated
equiangular (logarithmic) spiral antenna

the free-space value by the square root of the effective relative dielectric constant.
Even accounting for this factor, many UWB antennas present an impedance below
the expected “magic” value (largely because practical implementations aren’t per-
fectly self-complementary). Typically, one may expect the impedance of practical
antennas to be 60–80% of the theoretical value calculated on the basis of perfect
self-complementarity.

Our focus on Babinet’s principle should not be taken to mean that self-comple-
mentary antennas are the only ultrawideband antennas. It’s just that the UWB impli-
cations of this principle allow us to focus design effort in a conceptually simple way
to generate a large number of broadband antennas. A specific example is a classic
broadband antenna known as the equiangular (or logarithmic) spiral, which is based
on the exponential relationship

r = r0e
φ/φ0, (35)

which may also be expressed as

φ = φ0 ln(r/r0), (36)

where r0 is the radius at zero-angle φ, and φ0 controls the rate at which the radius
grows with the phase angle.33 A typical value for φ0 is 4–5 radians, implying that the
radius increases by a factor of about 4 each turn. That factor in turn is called the ex-
pansion ratio, while φ0 is sometimes known as the flare angle (its reciprocal is the
flare rate).

The foregoing equations define the general shape but do not fully define the con-
ductor pattern. Each arm of the spiral possesses two boundaries, both of the general
form given by Eqn. 35 but offset from each other by some angle. Furthermore, prac-
tical considerations preclude extension of the arms to infinite radius, so one must
make a somewhat arbitrary decision about how and when to stop. Generally, the best
results (as measured by constancy of impedance over the passband) are obtained by
tapering the ends, but truncation is more easily implemented (as in Figure 21.18).

33 J. D. Dyson, “The Equiangular Spiral Antenna,” IRE Trans. Antennas and Propagation, v. 7, Oc-
tober 1959, pp. 329–34.
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21.6 THE MICROSTRIP PATCH ANTENNA 719

F IGURE 21.19. Example of two-branch, 1.75-turn
Archimedean spiral conductor pattern

The maximum radius determines the lower frequency limit. To a crude approxima-
tion, the low-frequency wavelength limit is approximately four times the maximum
radius. The high-frequency limit is determined by the radius (r0) of the spiral at the
feedpoint, with the upper frequency wavelength limit roughly equal to four times this
minimum radius.34

Experimentally, it has been found that 1.5 turns typically leads to a spiral antenna
whose characteristics are reasonably insensitive to fabrication tolerances. Hence the
layout in Figure 21.18 features this number of turns. A particular implementation of
this idea in FR4 exhibits a return loss of better than 10 dB from 400 MHz to 3.8 GHz,
as well as an 80-( impedance over that band.35 This decade frequency coverage, as
remarkable as it is, by no means represents an absolute limit. From our design guide-
lines, we see that one could reduce the lower limit (by extending the spiral to larger
radii) and increase the upper limit (by reducing the minimum radius). To ensure that
the full bandwidth potential is realized, one must exercise great care in connecting to
the driving terminals. Reactive discontinuities and other parasitic effects can easily
reduce the bandwidth to small fractions of the theoretical maxima.

Another type of self-complementary antenna is based on linear, rather than ex-
ponential, spirals. In these Archimedean spirals, each arm’s boundary is based on
equations of the basic form36

r = r0φ. (37)

See Figure 21.19. As with the logarithmic spiral antenna, design degrees of freedom
here include the number of arms, the minimum and maximum radii, and the flare rate.
The same general design criteria apply: The lower (upper) frequency limit is set by
the total (minimum) radius, both determined by the quarter-wavelength condition.

34 Stutzman and Thiele, op. cit. (footnote 3).
35 J. Thaysen et al., “A Logarithmic Spiral Antenna for 0.4 to 3.8 GHz,” Applied Microwave and

Wireless, February 2001, pp. 32–45.
36 Stutzman and Thiele, op. cit. (footnote 3).
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720 CHAPTER 21 ANTENNAS

F IGURE 21.20. Example of four-arm
square spiral conductor pattern

Yet another option dispenses with these curved geometries to allow even simpler
Manhattan layouts. One possible result is the square or rectangular spiral, as shown
in Figure 21.20. As the reader will appreciate, it is considerably easier to lay out a
square spiral than it is to generate layouts for the spirals. Degrees of freedom here
are the number of arms, as well as the minimum and maximum radii. One may also
select a linear or exponential flare. Finally, although a square is convenient, other
geometries are clearly options as well.

Self-similarity, in addition to self-complementarity, is a useful guiding princi-
ple in broadband antenna design. Qualitatively speaking, it seems reasonable that
self-similarity at different length scales should permit an antenna to have broadband
characteristics, for then the antenna will have the same normalized electrical length
at different frequencies. Because fractals are geometric objects with precisely this
property of self-similarity, fractal antennas have received a fair amount of attention
in recent years. In this context, however, it must be observed that the venerable log-
periodic dipole array is a self-similar structure, so fractal antennas are not quite as
novel as one might think. That is, the antenna type preceded its classification.37

21.7 MISCELL ANEOUS PL ANAR ANTENNAS

Not all antennas fall neatly into the types we’ve presented. Often, constraints on
packaging, cost, and frequency range preclude the use of textbook antennas, forcing
considerable improvisation. For example, the design of cell phones and other con-
sumer products must often make concessions to aesthetic considerations. More often
these days, antennas for such devices must conform to the packaging, not the other
way around.

One broadband antenna is based on the biconical antenna invented by Sir Oliver
Lodge in the 19th century to accommodate the broadband spectrum of the spark

37 For a discussion of many of these classic antennas, see J. D. Kraus as well as The ARRL Antenna
Handbook (both cited in footnote 3).
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21.8 SUM M ARY 721

F IGURE 21.21. Microstrip bow-tie
patch antenna (top view)

signals then in use (see Who Really Invented Radio? in Chapter 1). Translated into
planar form, it becomes the bow-tie antenna, popular for decades as a television an-
tenna for covering the octave-wide UHF band. It works equally well in microstrip
form, where it is popular for its simplicity; see Figure 21.21.

The triangular patches are fed at their apices – either through a pair of microstrip
lines on the surface or by lines originating on different conductor layers – just as with
any other patchlike structure. Some experimental UWB systems use the bow-tie an-
tenna, where it is sometimes called the bi-fin antenna, perhaps to impart a cachet that
bow-tie lacks.

We should also mention that any of the antenna configurations we’ve presented
may be used as elements within an array. Depending on how the individual antennas
are designed and driven, one may perform beamforming or broadbanding (or both).

As another example, consider a typical wireless LAN card. The first generation of
those products generally used short dipole antennas that jutted out vertically from the
plane of the card. The performance of such cards was excellent, but as the product
category evolved, engineers responded to a demand for more compact form factors
by moving to planar antennas. An example is shown in Figure 21.22.

As is evident, the two hook-shaped antennas are not readily categorized as patches
or dipoles, although they’re closer to the latter than the former. In fact, they’re just
lousy. The manufacturers quietly acknowledge this truth by providing for an external
antenna! As can be seen in the photo, the PC board has holes drilled to accommo-
date an SMA connector, to which a good antenna may be attached. The author has
disassembled a number of WLAN cards, and found that a majority of them have this
hidden provision. Addition of an SMA (plus one or two surface-mount components)
typically enables the use of an external antenna, with which one may extend the use-
ful communication range of these cards by 50–100%.

21.8 SUM M ARY

We’ve seen that radiation is fundamentally the result of the finite propagation speed
of light. The need for sufficient phase shift to produce a reasonably high radiation
resistance explains why real antennas are a reasonable fraction of a wavelength in
extent, at minimum.
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722 CHAPTER 21 ANTENNAS

F IGURE 21.22. Representative planar antennas for
a commercial 802.11b WLAN card

Not only are elementary dipole antennas (both balanced and grounded) quite com-
monly used, they serve as an important basis for understanding more complex an-
tennas. Short dipoles have low radiation resistances and are primarily capacitive.
Capacity hats can be used to increase radiation resistance, and inductances can be
used to tune out any capacitance. Such measures are effective up to a limit imposed
by the need for providing a given minimum bandwidth or efficiency, and for pro-
ducing an antenna whose characteristics are not overly sensitive to small changes in
dimensions or environmental conditions. The trade-offs are such that antennas much
shorter than about a tenth of a wavelength are frequently regarded as unsatisfactory.

The magnetic loop antenna may be viewed as the dual of the electric dipole. Un-
like the dipole, the radiation resistance depends on the number of turns, endowing it
with an additional degree of freedom to enable compact realizations.

The patch antenna can be viewed as a continuous parallel connection of an infinite
number of infinitesimally thin dipoles. Its excessive Q is a definite disadvantage in
many situations, however. The addition of a U-shaped slot potentially increases band-
width by an order of magnitude, permitting a relaxation in manufacturing tolerances.

Finally, we examined a number of ultrawideband antennas, whose design is guided
by the self-complementarity inspired by Babinet’s principle. Practical antennas with
bandwidths exceeding a decade are thus made possible.
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C H A P T E R T W E N T Y-T W O

LUMPED FILTERS

22.1 INTRODUC TION

The subject of filter design is so vast that we have to abandon all hope of doing justice
to it in any subset of a textbook. Indeed, even though we have chosen to distribute this
material over two chapters, the limited aim here is to focus on important qualitative
ideas and practical information about filters – rather than attempting a comprehen-
sive review of all possible filter types or supplying complete mathematical details of
their underlying theory. For those interested in the rigor that we will tragically ne-
glect, we will be sure to provide pointers to the relevant literature. And for those
who would rather ignore the modest amount of rigor that we do provide, the reader
is invited to skip directly to the end of this chapter for the tables that summarize the
design of several common filter types in “cookbook” form.

Although our planar focus would normally imply a discussion limited to microstrip
implementations, many such filters derive directly from lower-frequency lumped pro-
totypes. Because so many key concepts may be understood by studying those proto-
types, we will follow a roughly historical path and begin with a discussion of lumped
filter design. It is definitely the case that certain fundamental insights are universal,
and it is these that we will endeavor to emphasize in this chapter, despite differences
in implementation details between lumped and distributed realizations.

We consider only passive filters here, partly to limit the length of the chapter to
something manageable. Another reason is that, compared to passive filters, active
filters generally suffer from higher noise and nonlinearity, limited operational fre-
quency range, higher power consumption, and relatively high sensitivity to parame-
ter variations – particularly at the gigahertz frequencies with which we are primarily
concerned.

22.2 BACKGROUND – A QUICK HISTORY

The use of frequency-selective circuits certainly dates back at least to the earliest
research on electromagnetic waves. In his classic experiments Hertz himself used

723
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724 CHAPTER 22 LUMPED FILTERS

dipole and loop antennas (ring resonators) to clean up the spectrum generated by his
spark-gap apparatus and thereby impart a small measure of selectivity to his primi-
tive receivers. Wireless pioneer Sir Oliver Lodge coined the term syntony to describe
the action of tuned circuits, showing a conscious appreciation of the value of such
tuning despite the hopelessly broadband nature of the spark signals then in use.1 At
nearly the same time, Nikola Tesla and Guglielmo Marconi developed tuned circuits
of their own (Marconi’s British Patent #7777 was so valuable that it became the sub-
ject of bitter and protracted litigation2 ) for the specific purpose of rejecting unwanted
signals, anticipating the advent of sinusoidal carrier-based communications.

Despite that foundation, however, modern filter theory does not trace directly back
to those early efforts in wireless. Rather, the roots go back even further in time: it is
research into the properties of transmission lines for telegraphy (then telephony) that
primarily informs early filter theory. In 1854 William Thomson (later to become Lord
Kelvin) carried out the first analysis of a transmission line, considering only the line’s
distributed resistance and capacitance. His work, carried out as a consultant for what
was to be the 4000-kilometer Atlantic Cable Project, established a relationship be-
tween practical transmission rates and line parameters.3 A bit over twenty years later,
Oliver Heaviside and others augmented Kelvin’s analysis by including distributed in-
ductance, thereby extending greatly the frequency range over which transmission line
behavior could be described accurately.4 Following up on one particular implication
of Heaviside’s work, about 1900 both George Ashley Campbell of the American Bell
Company and Michael Idvorsky Pupin of Columbia University suggested inserting
lumped inductances at regularly spaced intervals along telephone transmission lines
to reduce dispersion (the smearing out of pulses).5 This suggestion is relevant to the
filter story because Heaviside recognized that a lumped line differs from a continu-
ous one in that the former possesses a definite cutoff frequency. Campbell and Pupin
provided design guidelines for guaranteeing a certain minimum bandwidth.6

1 See Hugh Aitken’s excellent book, Syntony and Spark (Princeton University Press, Princeton, NJ,
1985), for a technically detailed and fascinating account of early work in wireless.

2 As mentioned in Chapter 1, the U.S. Supreme Court cited prior work by Lodge, Tesla, and Stone in
invalidating the U.S. version of Marconi’s “four sevens” patent in 1943.

3 He was knighted for his key contributions to the success of this remarkable endeavor, which joined
the Old and New World for the first time. Only one ship, The Great Eastern, had been big enough
to carry and lay the eight million–kilogram cable. After four frustrating and costly failures starting
in 1857, a cable finally connected Valentia, Ireland, to Heart’s Content, Newfoundland, on 27 July
1866. The cable carried telegraph traffic continuously until 1965.

4 For additional background on this story, see Paul J. Nahin’s excellent book, Oliver Heaviside: Sage
in Solitude, IEEE Press, New York, 1987.

5 As with many key ideas of great commercial import, a legal battle erupted over this one. It is
a matter of record that the Bell System was already experimenting with loading coils developed
by Campbell well before publication of Pupin’s 1900 paper. Nahin (ibid.) observes that Pupin’s
self-promotional abilities were superior and so he was able to obtain a patent nonetheless. He even-
tually earned royalties of over $400,000 from Campbell’s employer (at a time when there was no
U.S. income tax) for his “invention.” To add to the insult, Pupin’s Pulitzer Prize–winning autobi-
ography of 1924 fails to acknowledge Campbell and Heaviside.

6 A. T. Starr, Electric Circuits and Wave Filters, 2nd ed., Pitman & Sons, London, 1948.
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22.2 BACKGROUND – A QUICK HISTORY 725

In true engineering fashion, the apparent liability of a lumped line’s limited band-
width was quickly turned into an asset, thus establishing the main evolutionary branch
of filter design. The first published formalism is Campbell’s, whose classic1922 paper
describes in fuller detail ideas he had developed and patented during WWI.7 Karl
Willy Wagner also developed these ideas at about the same time, but German military
authorities delayed publication, giving Campbell priority.8 It is now acknowledged
that these two pioneers should share credit for having independently and nearly si-
multaneously hit upon the same great idea.

Campbell’s colleague, Otto J. Zobel, published a much-referenced extension of
Campbell’s work, but one that still derives from transmission line ideas.9 In the de-
velopments of subsequent decades one sees an evolving understanding of how closely
one may approach in practice the theoretical ideal of a perfectly flat passband, constant
group delay, and an infinitely steep transition to an infinitely attenuating stopband.
Conscious acknowledgment that this theoretical ideal is unattainable leads to the im-
portant idea that one must settle for approximations. Some of the more important,
practical, and well-defined of these approximations are the Butterworth, Chebyshev,
and Cauer (elliptic) filter types we’ll study in this chapter. By the 1930s, methods
for the direct synthesis of filters to meet particular passband and stopband objectives
had been developed by folks like Sidney Darlington.

Throughout and after the Second World War, the subject of filter design advanced at
an accelerated pace. Investigation into methods for accommodating finite-Q elements
in the design lumped filters offered hope for improved predictability and accuracy. In
the microwave domain, filter topologies based directly on lumped prototypes came to
be supplemented by ones that exploit, rather than ignore, distributed effects. Many of
these are readily implemented in microstrip form and are the focus of the next chapter.

The advent of transistors assured that the size of active devices no longer dom-
inated that of a circuit. Numerous active filter topologies evolved to respond to a
growing demand for miniaturization, replacing bulky passive inductor–capacitor cir-
cuits in many instances. Aside from enabling dramatic size reductions, some active
filters are also electronically tunable. However, these attributes do come at a price:
active filters consume power, suffer from nonlinearity and noise, and possess dimin-
ished upper operational frequencies because of the need to realize gain elements with
well-controlled characteristics at high frequencies. These trade-offs become increas-
ingly serious as microwave frequencies are approached. This statement should not be
taken to mean that microwave active filters can never be made to work well enough
for some applications (because successful examples certainly abound), but it remains
true that the best performance at such frequencies continues to be obtained from pas-
sive implementations. It is for this reason that we consider passive filters exclusively.

7 G. A. Campbell, “Physical Theory of the Electric Wave-Filter,” Bell System Tech. J., v. 1, no. 2,
November 1922, pp. 1–32. See also his U.S. Patent #1,227,113, dated 22 May 1917.

8 “Spulen- und Kondensatorleitungen” [Inductor and Capacitor Lines], Archiv für Electrotechnik,
v. 8, July 1919.

9 O. J. Zobel, “Theory and Design of Uniform and Composite Electric Wave-Filters,” Bell System
Tech. J., v. 2, no. 1, January 1923, pp. 1–46.
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726 CHAPTER 22 LUMPED FILTERS

F IGURE 22.1. Infinite ladder network as artificial line

The arrival of transistors also coincided with (and helped drive) a rapidly decreas-
ing cost of computation.10 No longer limited to considering only straightforward ana-
lytical solutions, theorists became free to pose the filter approximation problem much
more generally; for example, “Place the poles and zeros of a network to minimize the
mean-square error (or maximum error, or some other performance metric) in a partic-
ular frequency interval, relative to an ideal response template, while accommodating
component tolerances, with less than a 1% yield fallout.” Direct accommodation of
so many factors is difficult or impossible with classical analytical approaches. Using
these modern synthesis methods, the resulting filters are optimum in the sense that
one cannot do better (as evaluated by whatever design criteria were imposed in the
first place) for a given filter order. The trade-off is that the design cannot be carried
out by hand and thus may be less understandable. The main purpose here is therefore
to provide an intuitive explanation for how these filters work, leaving detailed exe-
cution to machine computation. Because these intuitive explanations are limited in
complexity, the equations we will present are suitable mainly for providing a starting
point from which a satisfactory final design may emerge after iteration.

22.3 F ILTERS FROM TR ANSMISSION LINES

We start with the “electric wave filters” of Campbell, Wagner, and Zobel. As men-
tioned, these derive from lumped approximations to transmission lines, so we begin
by examining such “artificial” lines to see how a limited bandwidth arises.

CONSTANT-k ( ‘ ‘ IM AGE PAR A METER’ ’ ) F I LTERS

For convenience, we repeat here some of the calculations from Chapter 2. Recall
that we first consider the driving-point impedance, Zin, of the infinite ladder network
shown in Figure 22.1. Solving for Zin yields

Zin = Z ± √
Z2 + 4(Z/Y )

2
= Z

2

[
1 ±

√
1 + 4

ZY

]
, (1)

where passivity considerations lead us to choose only the solution with a nonnegative
real part.

10 Regrettably, space limitations force us to neglect the fascinating story of Teledeltos paper, elec-
trolytic tanks, and other analog computers used to design filters based on potential theory.
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22.3 F I LTERS FROM TR ANSMISSION LINES 727

As a specific (but typical) case, consider a low-pass filter in which Y = jωC and
Z = jωL. Then, the input impedance of the infinite artificial line is

Zin = jωL

2

[
1 −

√
1 − 4

ω2LC

]
. (2)

At very low frequencies, the factor under the radical is negative and large in magni-
tude, making the term within the brackets almost purely imaginary. The overall Zin
in that frequency range is therefore largely real, with

Zin ≈ √
Z/Y = √

L/C = k. (3)

Because the ratio Z/Y is constant, such filters are often known as constant-k fil-
ters;11 the literature also refers to them as image parameter filters. (For filters made
of iterated sections such as those we consider here, a quantity known as the image
impedance is the same as the characteristic impedance k.)

As long as the input impedance has a real component, nonzero average power will
couple into the line from the source. Above some particular frequency, however, the
input impedance becomes purely imaginary, as can be seen from inspection of Eqn. 2.
Under this condition, no real power can be delivered to the network, and the filter
thus attenuates heavily.12 For self-evident reasons, the frequency at which the input
impedance becomes purely imaginary is called the cutoff frequency, which for this
low-pass filter example is given by

ωh = 2/
√
LC. (4)

Any practical filter must employ a finite number of sections, of course, leading one
to question the relevance of any analysis that assumes an infinite number of sections.
Intuitively, it seems reasonable that a “sufficiently large” number of sections would
lead to acceptable agreement. Based on lumped network theory, we also expect the
filter order to control the ultimate rate of rolloff. Hence, the desired rolloff behavior
determines the number of sections to which the network is truncated (we’ll have more
to say on this subject later). The greater the number of sections, the greater the rate
of rolloff. As we’ll see, there is also some (but practically limited) flexibility in the
choice of Z and Y, permitting a certain level of trade-off among passband, transition
band, and stopband characteristics. However, it remains true that one limitation of
filters based on concepts of an artificial line is the difficulty of directly incorporating
specifications on those characteristics in the design process. Note, for example, the

11 Campbell used the symbol k in precisely this context, but it was Zobel (op. cit.; see footnote 9)
who apparently first used the actual term “constant-k” in print.

12 Attenuation without dissipative elements might initially seem intuitively unpalatable. However,
consider that a filter might also operate by reflecting energy, rather than dissipating it. That is, a
filter can function by producing a purposeful impedance mismatch over some band of frequencies.
Modern filter synthesis methods are based directly on manipulation of the reflection coefficient as
a function of frequency.
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728 CHAPTER 22 LUMPED FILTERS

F IGURE 22.2. Low-pass constant-k filter example
using two cascaded T-sections

conspicuous absence of any discussion about how the filter behaves near cutoff. We
don’t know if the transition from passband to stopband is gradual or abrupt, mono-
tonic or oscillatory. We also don’t know the precise shape of the passband. Finally,
we don’t have any guide for how to modify the transition shape should we find it un-
satisfactory. As we’ll see, these shortcomings lead us to consider other filter design
approaches.

Once the filter order is chosen (by whatever means), the next problem is one of
termination. Note that the infinite artificial line analysis assumes that the filter is ter-
minated in an impedance that behaves as described by Eqn. 2. That is, our putative
finite filter must be terminated in the impedance produced by the prototype infinite
ladder network: It must have a real impedance at low frequencies, then become purely
imaginary above the cutoff frequency. Stated another way, rigorous satisfaction of
the criteria implied by Eqn. 2 absurdly requires that we terminate the filter with an
element that is itself the filter we desire! We should therefore not be too surprised
to discover that a practical realization involves compromises, all intimately related
to the hopeless task of using a finite structure to mimic the impedance behavior of
an infinite one. For example, the near-universal choice is to terminate the circuit of
Figure 22.2 with a simple resistance R that is equal to k.

A source with a Thévenin resistance also of value k is assumed to drive the network.
Note that this example uses two complete T-sections (shown in the boundaries), with
a half-section placed on each end. (Alternatively, one may also regard this structure
as consisting of three complete cascaded π -sections.) Termination in half-sections is
the traditional way to construct such filters. The series-connected inductors, shown
individually to identify clearly the separate contributions of the unit T-sections, are
combined into a single inductance in practice. Alternatively, one may implement the
filter with π -sections (again, we may consider this filter to consist of three complete
cascaded T-sections); see Figure 22.3.

The choice of configuration is sometimes based on inductor count (three vs. four,
in these two examples), or on the basis of which topology most gracefully accom-
modates parasitics at the input and output interfaces. If these parasitics are primar-
ily capacitive in nature, then the T-section implementation is favored because such
capacitances may be absorbed into the capacitances at the ends of the filter. Simi-
larly, inductive parasitics are most readily accommodated by a filter using internal
π -sections.
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22.3 F I LTERS FROM TR ANSMISSION LINES 729

F IGURE 22.3. Low-pass constant-k filter example using
two cascaded π -sections

Table 22.1. Characteristics of ideal constant-k filters

Attenuation
at cutoff Normalized Normalized Normalized Normalized

frequency −3-dB −6-dB −60-dB −10-dB S11

ns (dB) bandwidth bandwidth bandwidth bandwidth

0 3.0 1.000 1.201 10.000 0.693
1 7.0 0.911 0.980 3.050 0.810
2 10.0 0.934 0.963 1.887 0.695
3 12.3 0.954 0.969 1.486 0.773
4 14.2 0.967 0.976 1.302 0.696
5 15.7 0.976 0.981 1.203 0.756

The design equations for both filter topologies are readily derived from combining
Eqn. 3 and Eqn. 4:

C =
(

2

ωh

)
1

R
; (5)

L =
(

2

ωh

)
R. (6)

Thus, once one specifiesR, the characteristic impedance, the desired cutoff frequency,
and the total number of sections, the filter design is complete.

Regrettably, deducing the number of sections required can be a bit of a cut-and-try
affair in practice. There are equations that can provide guidance, but they are either
cumbersome or inaccurate enough that one often simply increases the number of
sections until simulations reveal that the filter behaves as desired.13 Furthermore,
the unsophisticated termination of a simple resistance leads to degradation of im-
portant filter characteristics, often resulting in a hard-to-predict insertion loss and
passband flatness as well as in reduced stopband attenuation (relative to predictions
based on true, infinite-length lines). These difficulties are apparent from an inspec-
tion of Table 22.1, which shows the attenuation at the cutoff frequency – as well as

13 For example, one frequently cited formula is based on the attenuation characteristics of an infinite
ladder. Clearly, such a formula, simple as it is, cannot be expected to yield accurate predictions
of a finite, resistively terminated structure.
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730 CHAPTER 22 LUMPED FILTERS

F IGURE 22.4. Frequency response of 1-GHz low-pass constant-k filter (ns = 5)

the −3-dB and −6-dB bandwidths (expressed as a fraction of the cutoff frequency) –
of constant-k filters (both T- and π -implementations) as a function of order. In the
table, ns is the number of complete T- (or π -) sections in the central core of the filter.
The overall filter order n is therefore 2ns + 3.

Note that both the bandwidth and the attenuation at the nominal cutoff frequency
are dependent on the number of filter sections. Further note that the cutoff frequency
(as computed by Eqn. 4) equals the −3-dB bandwidth only for ns = 0 and is as
much as 10% beyond the −3-dB bandwidth in the worst case. In critical applica-
tions, the cutoff frequency target may have to be altered accordingly to achieve a
specified bandwidth.

Figure 22.4 is a frequency response plot (from Puff ) for a constant-k filter that
consists of five full sections and a terminating half-section on each end. Note that
the frequency axis is linear, not logarithmic. Aside from the large ripple evident in
the figure, it is also unfortunate that the bandwidth over which the return loss ex-
ceeds 10 dB turns out to be only ∼70–80% of the cutoff frequency. A considerable
improvement in the impedance match bandwidth is possible by using filter sections
whose impedance behavior better approximates a constant resistance over a broader
normalized frequency range. One example, developed by Zobel, uses “m-derived”
networks either as terminating structures or as filter sections (or both). In Figure 22.5,
one may regard the structure as three cascaded π -sections or two cascaded T-sections
(the latter with terminating half-sections).

As with the prototype constant-k filter, this structure is both driven and terminated
with a resistance of value k ohms. The m-derived filter, which itself is a constant-k
structure, is best understood by noting that the prototype constant-k filter previously
analyzed has a response that generally attenuates more strongly as the cutoff fre-
quency ω1 is approached. At small fractions of the cutoff frequency, the response is
fairly flat, so it should seem reasonable that increasing the cutoff frequency to some
value ω2 should produce a more constant response within the original bandwidth ω1.
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22.3 F I LTERS FROM TR ANSMISSION LINES 731

F IGURE 22.5. Low-pass m-derived filter using two cascaded T-sections

The first step in designing anm-derived filter, then, consists simply of increasing the
cutoff frequency of a prototype constant-k filter. In the absence of inductor L2, we
see that scaling the values ofL1 and C1 each by, say, a factorm (withm ranging from
0 to 1) increases the cutoff frequency by a factor of 1/m, from a value ω1 to ω2 =
ω1/m. The characteristic impedance remains unchanged at k because the ratio of L1

to C1 is unaffected by this scaling.
Now, to restore the original cutoff frequency, add an inductance L2 to produce a

series resonance with C. At the resonant frequency, this series arm presents a short
circuit, creating a notch in the filter’s transmission. If this notch is placed at the
correct frequency ( just a bit above the desired cutoff frequency), the filter’s cutoff
frequency can be brought back down toω1. However, be aware that the filter response
does pop back up above the notch frequency (where the resonant branch then looks
much like a simple inductance). This characteristic needs to be taken into account
when using the m-derived filter and its cousins, the inverse Chebyshev and elliptic
filters (which we’ll study shortly).

Following a procedure exactly analogous to that used in determining the cutoff
frequency of ordinary constant-k filters, we find that the cutoff frequency of an m-
derived filter may be expressed as

ω1 = 2(R/L1)√
4(L2/L1)+ 1

. (7)

To remove L1 from the equation, note that the cutoff frequency may also be ex-
pressed as

ω1 = 2m/
√
L1C1, (8)

while the characteristic impedance is given by

R = √
L1/C1. (9)

Combining these last three equations allows us to solve for L2:

L2 = (1 −m2)R

2mω1
. (10)
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732 CHAPTER 22 LUMPED FILTERS

F IGURE 22.6. Low-pass constant-k filter example using
two cascaded π -sections with parallel resonators

Solving Eqns. 8 and 9 for L1 and C1 yields

C1 =
(

2m

ω1

)
1

R
, (11)

L1 =
(

2m

ω1

)
R. (12)

An alternative to a series resonator in the shunt arm of each filter section is a par-
allel resonator in each series arm. This is shown in Figure 22.6. The equations for
L1 and C1 are as before:

C1 =
(

2m

ω1

)
1

R
; (13)

L1 =
(

2m

ω1

)
R. (14)

The equation for C2 is

C2 = 1 −m2

2mω1R
. (15)

Both types ofm-derived filters behave the same. As with the prototype constant-k fil-
ters, the choice of topology in practice is often determined by which implementation
uses more easily or conveniently realized components, or which better accommo-
dates the dominant parasitic elements.

Use of the foregoing equations requires that the designer have an idea of what
value of m is desirable. As m approaches unity, the circuit converges to an ordinary
constant-k filter (and therefore exhibits an increasing passband error), whereas pass-
band peaking increases as m approaches zero. A compromise resides somewhere
between these two behaviors, and practical values of m are typically within 25–30%
of 0.5 and are most commonly chosen equal to 0.6. This latter value yields a reason-
ably broad frequency range over which the transmission magnitude remains roughly
constant. Table 22.2 enumerates (to more digits than are practically significant) some
of the more relevant characteristics ofm-derived filters for the specific value ofm =
0.6. As in Table 22.1, the parameter ns is the number of complete T- (or π -) sections
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22.3 F I LTERS FROM TR ANSMISSION LINES 733

Table 22.2. Characteristics of ideal m-derived filters (m = 0.6)

Attenuation Minimum
at cutoff Normalized Normalized Normalized stopband

frequency −3-dB −6-dB −10-dB S11 attenuation
ns (dB) bandwidth bandwidth bandwidth (dB)

0 1.34 1.031 1.063 0.965 8.21
1 3.87 0.993 1.013 0.956 21.24
2 6.27 0.988 0.999 0.969 34.25
3 8.30 0.989 0.996 0.979 47.09
4 10.00 0.991 0.995 0.954 59.81
5 11.44 0.993 0.996 0.961 72.43

F IGURE 22.7. Frequency response of 1-GHz m-derived low-pass filter
(m = 0.6, ns = 5)

used in the filter. The column labeled “Minimum stopband attenuation” gives the
worst-case value of attenuation above the transmission notch frequency where the
filter response pops back up.

Note in the table that the cutoff frequency and −3-dB bandwidth are much more
nearly equal than for the prototype constant-k case (the worst-case difference here is
about 3%). The bandwidth over which the return loss exceeds 10 dB is also a much
greater fraction of the cutoff frequency (above 95%, in fact). Note also from the table
entries that the minimum stopband attenuation (in dB) for this range of values is ap-
proximately (8 +13ns), so one may readily estimate the number of sections required
to provide a specified stopband attenuation.

Figure 22.7 illustrates how the use ofm-derived sections improves the magnitude
response (note that the vertical axis now spans 80 dB, rather than 50 dB). Compared
with Figure 22.4, this response shows significantly less passband ripple as well as a
much steeper transition to stopband (owing to the stopband notch).
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734 CHAPTER 22 LUMPED FILTERS

F IGURE 22.8. Response of 1-GHz m-derived low-pass filter,
plotted over wider range (m = 0.6, ns = 5)

On the frequency scale of Figure 22.7, the characteristic notch is invisible, as is
the popping up of the response at higher frequencies. The plot in Figure 22.8 shows
these features more clearly. Aside from the potential for improved flatness over the
passband, the notches that are inherent in m-derived filters can be used to null out
interfering signals at a specific frequency (or frequencies, if sections with differing
values ofm are used). Later, we will see that judiciously distributed notches are used
by both the inverse Chebyshev and elliptic filters, providing dramatic transitions from
passband to stopband.

If the precise location of a notch is of importance, it is helpful to know that the
frequency of the null ω∞ is related to m as follows:

ω∞
ω1

= 1√
1 −m2

, (16)

so that the value of m needed to produce a notch at a specified frequency ω∞ is

m =
√

1 −
(
ω1

ω∞

)2

. (17)

A value of 0.6 for m corresponds to a notch frequency that is a factor of 1.25 times
the cutoff frequency.

Table 22.3 summarizes the design of constant-k and m-derived lowpass filters.
Component values (again, to more digits than you will ever need) are for the specific
case of a termination (and source) resistance of 50� and a cutoff frequency of 1 GHz.
The left two columns are for the simple constant-k case, and the last four columns
give values for the two m-derived configurations (for a specific m = 0.6). For fil-
ters with a cutoff frequency other than 1 GHz, simply multiply all component values
by the ratio of 1 GHz to the desired cutoff frequency. For a different characteristic
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22.3 F I LTERS FROM TR ANSMISSION LINES 735

Table 22.3. Component values for 1-GHz constant-k and
m-derived filters (Z = 50 �, m = 0.6)

constant-k m-derived

L C L1 C1 L2 C2

15.9155 nH 6.3662 pF 9.5493 nH 3.8197 pF 4.2441 nH 1.6976 pF

F IGURE 22.9. High-pass filter?

impedance, multiply all component impedances by the ratio of the desired imped-
ance to 50 �.

One may also combine ordinary constant-k and m-derived sections because the
individual sections for both are constant-k in nature. Such a composite filter may be
desirable, for example, to effect a compromise between flatness and the production
of notches at specific frequencies. Unfortunately, the design of such a filter is very
much an ad hoc affair. One simply mixes and matches sections as seems sensible,
then simulates to verify whether the design indeed functions satisfactorily.

High-Pass, Bandpass, and Bandstop Shapes

At least in principle, a high-pass constant-k filter is readily constructed from the
low-pass constant-k prototype simply by swapping the positions of the inductors and
capacitors; the values remain the same. Thus one may design (say) a 1-GHz constant-
k low-pass filter using the values of Table 22.3 and then interchange the Ls and Cs
to synthesize a 1-GHz high-pass filter.

The reason for the qualifier “at least in principle” is that high-pass filters often ex-
hibit serious deviations from desired behavior. These deviations often motivate mi-
crowave filter designers to avoid high-pass filters that are based on lower-frequency
prototypes. Although there are many ways – too numerous to mention, in fact – in
which a practical filter of any kind can fall short of expectations, perhaps the follow-
ing lumped high-pass filter example will suffice to illustrate the general nature of the
problem. Specifically, consider Figure 22.9.

Every practical inductor is shunted by some parasitic capacitance and thus ex-
hibits a resonance of its own. Above the resonant frequency, the “inductor” actually
appears as a capacitance. Similarly, every practical capacitance has in series with it
some parasitic inductance. Above the corresponding series resonance, the capacitor
actually appears inductive. Hence, at sufficiently high frequencies, a high-pass filter
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736 CHAPTER 22 LUMPED FILTERS

F IGURE 22.10. Bandpass constant-k filter example using
two cascaded T-sections

may actually act as a low-pass filter. A complementary effect may afflict low-pass
filters where, at high frequencies, it is possible for the response to pop back up.

In cases where a workaround is needed, it is sometimes useful to employ a band-
pass filter with a sufficiently wide passband to approximate the desired filter shape.
Of course, that solution presupposes knowledge of how to construct bandpass filters.
Fortunately, the constant-k structure works here, too (we’ll later examine alternative
bandpass implementations). As a general strategy for deriving a bandpass filter from
a low-pass prototype, replace the inductance of a low-pass prototype with a series
LC combination and the capacitance with a parallelLC combination. The added ele-
ments are chosen to resonate with their respective mates at the center frequency; see
Figure 22.10. Unlike our previous figures, the individual T-sections are not shown
(in order to simplify the schematic).

Note that this structure continues to exhibit the correct qualitative behavior even if
inductors ultimately become capacitors and vice versa. This property is fundamental
to the potentially reduced sensitivity of this topology to parasitic effects.

The formula for the inductance L1 of the series resonator is the same as that for
the inductance in the prototype low-pass filter, except that the bandwidth (defined
as the difference between the upper and lower cutoff frequencies) replaces the cut-
off frequency. The capacitance C1 is then chosen to produce a series resonance at
the center frequency (defined here as the geometric mean of the two cutoff frequen-
cies14 ). Hence:

L1 = 2

ω2 − ω1
R; (18)

C1 = ω2 − ω1

2ω2
0

1

R
. (19)

Similarly, the equation for the capacitance of the low-pass prototype is modified
for the bandpass case by replacing the cutoff frequency with the bandwidth. The res-
onating inductance is again chosen to produce a resonance at the center frequency:

14 In some of the literature, it is unfortunately left unclear as to what sort of mean should be used.
For the common case of small fractional bandwidths, this ambiguity is acceptable, for there is then
little difference between an arithmetic and geometric mean. Practical component tolerances make
insignificant such minor differences. However, the discrepancy grows with the fractional band-
width, and the error can become quite noticeable at large fractional bandwidths if the arithmetic
mean is used.
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Table 22.4. Component values for a 100-MHz–bandwidth,
constant-k, 1-GHz bandpass filter (Z = 50 �)

L1 C1 L2 C2

159.15 nH 0.15955 pF 0.39888 nH 63.662 pF

F IGURE 22.11. Frequency response for bandpass filter
derived from constant-k prototype (ns = 5)

C2 = 2

ω2 − ω1

1

R
; (20)

L2 = ω2 − ω1

2ω2
0

R. (21)

Values for a constant-k bandpass filter with cutoff frequencies of 950 MHz and
1.05 GHz (corresponding to a center frequency of approximately 998.75 MHz) are
given in Table 22.4. As is the case for its low-pass counterpart, half-sections termi-
nate the bandpass filter. Each half-section consists of components of value L1/2,
2C1, 2L2, and C2/2. The resulting filters have the same characteristics enumerated
in Table 22.1 if the comparisons are performed on the basis of bandwidth rather than
center frequency.

As a specific example, consider the frequency response of a bandpass filter derived
from a low-pass constant-k filter with ns = 5 (Figure 22.11). The design bandwidth
is 100 MHz, centered at 1 GHz. As expected, the behavior at the passband edges re-
sembles that of the low-pass prototype.

For a different bandwidth, multiply C1 and L2 by the ratio of the new bandwidth
to 100 MHz, and reduceL1 andC2 each by the same factor. For a different center fre-
quency, reduce C1 and L2 each by the square of the ratio of the new center frequency
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738 CHAPTER 22 LUMPED FILTERS

to 1 GHz. Finally, for a different characteristic impedance, increase the impedance
of all four components by the ratio of the new impedance to 50 �.

The bandpass filter can be converted into a bandstop (also known as a band-reject)
filter simply by swapping the positions of the series and parallel resonators. As in the
conversion from low pass to high pass, the values remain unchanged.

From the tables and examples given, it is clear that the constant-k and m-derived
filters are extremely simple to design because they consist of identical iterated sec-
tions. This simplicity is precisely their greatest attribute. However, as stated before,
this ease of design comes at the cost of not being permitted to specify certain de-
tails (such as passband ripple), because the design method does not incorporate any
specific constraints on response shape. It is clear from the tables, for example, that
the cutoff frequency doesn’t correspond to a certain fixed attenuation value (such as
−6 dB), and monotonicity is far from guaranteed. Stopband behavior is similarly
uncontrolled. Shortcomings such as these are what motivated the development of
modern filter design methods. Those methods allow one to manipulate the response
in far more detailed ways to meet a greater array of design specifications. In turn,
that power obligates us to spend a little time identifying and defining the key filter
performance metrics that we will now be able to specify. We therefore consider a
brief sidebar and introduce these parameters.

22.4 F ILTER CL ASSIF ICATIONS AND SPECIF ICATIONS

Filters may be classified broadly by their general response shapes – for example,
low-pass, bandpass, band-reject, and high-pass – and may be further subdivided ac-
cording to bandwidth, shape factor (or skirt selectivity), and amount of ripple (in
either the phase or magnitude response, and in either the passband or stopband, or
both). This subdivision is an acknowledgment that ideal, brickwall filter shapes are
simply unrealizable (not merely impractical). Different approaches to approximat-
ing ideal characteristics result in different trade-offs, and the consequences of these
compromises require characterization.

Bandwidth is perhaps the most basic descriptive parameter and is conventionally
defined using −3-dB points in the response. However, it is important to recognize
that 3 dB is quite an arbitrary choice (there is nothing fundamental about the half-
power point, after all), and we will occasionally use other bandwidth definitions that
may be more appropriate, depending on the situation. It is certainly an incomplete
specification, because there are infinitely many filter shapes that share a common
−3-dB bandwidth. Shape factor is an attempt to convey some information about
the filter’s response at frequencies well removed from the −3-dB point; it is defined
as the ratio of bandwidths measured at two different attenuation values (i.e., values
at two different points on the skirt). As an arbitrary example, a “6/60” shape fac-
tor specification is defined as the bandwidth at −60-dB attenuation divided by the
bandwidth at −6-dB attenuation; see Figure 22.12.

From the definition of shape factor, values approaching unity clearly imply re-
sponse shapes that approach infinitely steep transitions from passband to stopband.
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22.4 F I LTER CL ASSIF ICATIONS AND SPECIF ICATIONS 739

F IGURE 22.12. Illustration of 6/60 shape factor

F IGURE 22.13. General filter response template
(shown for the low-pass case)

A single-pole low-pass filter (or a standard single-LC bandpass resonator) has a 6/60
shape factor of roughly 600, a value generally regarded as pathetically large.15 This
trio of numbers is easily remembered because of the decimal progression. Because
the relevance of a given shape factor depends very much on context, there cannot be
a single, universally relevant definition. Thus, although 6/60 happens to be a com-
mon one, other specifications are often encountered.

As stated earlier, the inability of practical filters to provide perfectly flat pass-
bands and infinitely steep transitions to infinitely attenuating stopbands implies that
we must always accept approximations to the ideal. In the best case we have the op-
portunity to quantify and specify bounds on the approximation error. The traditional
way of doing so is to specify the parameters displayed in Figure 22.13. Note that
the square of the magnitude is plotted in the figure, rather than the magnitude itself,
because the former is proportional to power gain. This convention isn’t universally
followed, but it is quite common owing to the RF engineer’s typical preoccupation
with power gain.

15 The actual number is closer to 577, but it has less mnemonic value than 600.
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740 CHAPTER 22 LUMPED FILTERS

Note also the pervasiveness of reciprocal quantities on the vertical axis. This an-
noying feature is avoided by plotting attenuation (rather than gain) as a function of
frequency, explaining why many treatments present data in precisely that manner.

Observe further that the filter response template accommodates some amount of
variation within the passband (whose upper limit is denoted ωp), with a maximum
permitted deviation of 1/(1 + ε2). Additionally, a finite transition between the pass-
band and stopband (whose lower frequency limit is denoted ωs) is also permitted,
with a minimum allowed power attenuation of A2

s in the stopband. Specification of
these parameters thus allows the design of real filters. We now consider several im-
portant classes of approximations that make use of these parameters.

22.5 COM MON FILTER APPROXIM ATIONS

The constant-k filter’s limitations ultimately derive from a synthesis procedure that
isn’t a synthesis procedure. It ignores the control over filter response afforded by
direct manipulation of the pole (and zero) locations to meet specific performance
objectives. This limitation is a natural consequence of the transmission line theoreti-
cal basis for constant-k filters; because transmission lines are infinite-order systems,
consideration of pole locations there is unnatural and in any case leads to numerous
analytical difficulties.

However, if one no longer insists on treating filters from a transmission line view-
point, these difficulties disappear (but are replaced by new ones). Additional, and
powerful, techniques then may be brought to bear on the filter analysis and synthesis
problem. In this section, we underscore this point by following a procedure not pos-
sible with the constant-k filter: Starting from a specification of the desired frequency
response, compute a corresponding pole–zero constellation and then synthesize a
lumped network that possesses poles and zeros at those locations.

The class of filters we study in this section all have a magnitude characteristic that
is expressible in the following general way:

|H(jω)|2 = 1

1 + ε2F 2(jω)
. (22)

The various filter types are distinguished by the particular form of the function F. In
the simplest cases, F is a polynomial, implying that the overall filter transfer function
contains only poles. In more sophisticated filters, the function is a ratio of polynomi-
als (i.e., a rational function), allowing the filter transfer function to have finite zeros
as well. As we’ll see, a rational function provides additional degrees of freedom be-
yond the order n, allowing us to reduce the filter order needed to satisfy a given set
of specifications.

22.5.1 BUTTERWORTH FILTERS

Some applications are entirely intolerant of ripple, limiting the number of options
for response shape. As do all practical filters, the Butterworth seeks to approximate
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22.5 COM MON FILTER APPROXIM ATIONS 741

the ideal rectangular brickwall shape. The Butterworth filter’s monotonic magni-
tude response minimizes the approximation error in the vicinity of zero frequency by
maximizing the number of derivatives whose value is zero there. As the filter order
approaches infinity, the filter shape progressively better approximates the ideal brick-
wall shape.

A natural (but potentially undesirable) consequence of a design philosophy that
places greater importance on the approximation error at low frequencies is that the
error grows as the cutoff frequency is approached. If this characteristic is indeed un-
desirable, then one must seek shapes other than the Butterworth. Subsequent sections
will examine some of these alternatives.16

The Butterworth’s response magnitude (squared) as a function of frequency is
given for the low-pass case by the following expression:

|H(jω)|2 = 1

1 + ε2(ω/ωp)2n
(23)

where the passband edge ωp is the frequency at which the power attenuation is
(1+ ε2).17 The parameter n is the order (or degree) of the filter, and it is equal to the
number of independent energy storage elements as well as to the power of ω with
which the response magnitude ultimately rolls off. One may readily verify that the
number of derivatives of Eqn. 23 that we may set equal to zero at DC is 2n−1. From
the equation, it is straightforward to conclude that the response is indeed monotonic.

In designing a Butterworth filter, one often specifies the 3-dB attenuation frequency
ωc, which (depending on the allowable passband ripple) may or may not equal the
passband edge.18 To maintain consistency with the template of Figure 22.13, we first
express the power gain at the 3-dB frequency as

1

1 + ε2(ωc/ωp)2n
= 1

2
, (24)

from which we readily determine that

ωp = εωc. (25)

Next, we compute the required filter order, using the equation for the attenuation
at the stopband edge:

1

A2
s

= 1

1 + ε2(ωs/ωp)2n
. (26)

16 As will be discussed later, one of these alternatives – the inverse or Type II Chebyshev – actually
achieves better passband flatness than the Butterworth (making it flatter than maximally flat) by
permitting stopband ripple (while preserving passband monotonicity).

17 Although not rigorously correct (because of the possibility of unequal input and output imped-
ances), we will frequently use the term “power gain” interchangeably with the more cumbersome
“response magnitude squared.”

18 Many discussions of Butterworth filters consider only the particular case where ε = 1, correspond-
ing to ωc = ωp. We are considering the general case here, so do not get confused when comparing
our results with those published elsewhere.
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742 CHAPTER 22 LUMPED FILTERS

Solving for the required filter order, n, yields

n = ln
(√
A2
s − 1/ε

)
ln(ωs/ωp)

≈ ln(As/ε)

ln(ωs/ωp)
. (27)

The approximation holds well if the square of the stopband attenuation is large com-
pared to unity (as it usually is).

Once the maximum passband attenuation, minimum stopband attenuation, and
normalized stopband frequency are specified, the required filter order is immediately
determined. Because Eqn. 27 generally yields noninteger values, one chooses the
next higher integer as the filter order. In that case, the resulting filter will exhibit
characteristics that are superior to those originally sought. One way to use the “sur-
plus” performance is to retain the original ωp, in which case the filter will exhibit
greater attenuation atωs than required. Alternatively, one may instead retain the orig-
inal ωs , in which case the filter exhibits smaller attenuation (i.e. smaller error) at the
passband edge than originally targeted. Or, one may elect a balanced strategy that is
intermediate between these two choices.

Because its approximation error is very small near DC, the Butterworth shape is
also described as maximally flat.19 However, it is important to recognize that maxi-
mally flat does not imply perfectly flat.20 Rather, it implies the flattest passband that
can be achieved subject to the constraint of monotonicity (later, we will see that it is
possible to have an even flatter passband response if we are willing to permit ripple
in the stopband).

As a design example, let us continue the exercise that we began with the constant-k
topology. We now have the ability to specify more filter parameters than in that case,
so we will. Here, arbitrarily allow a 1-dB loss (gain of 0.794) at the passband edge
of 1 GHz, and require a 30-dB minimum attenuation at a 3-GHz stopband edge.

From the passband specification, we compute ε as

ε =
√

10(1dB)/10 − 1 ≈ 0.5088. (28)

From the stopband specification, we see that A2 is 1000. As a result, the minimum
filter order required to meet the specifications is

n = ln
(√

999/0.5088
)

ln(3)
≈ 3.76, (29)

19 This term was evidently introduced by V. D. Landon in “Cascade Amplifiers with Maximal Flat-
ness,” RCA Review, v. 5, January 1941, pp. 347–62. Coining of the term thus follows by more
than a decade Butterworth’s own exposition of the subject in “On the Theory of Filter Amplifiers,”
Wireless Engineer, v. 7, October 1930, pp. 536–41. Although others published similar results ear-
lier, Butterworth and maximal flatness are now seemingly linked forever.

20 In this way, “maximally flat” is a bit like “creme filling” in describing the ingredients of an Oreo™
cookie; it means something a little different from how it sounds.
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22.5 COM MON FILTER APPROXIM ATIONS 743

Table 22.5. Component values for
1-GHz, 1-dB, fourth-order low-pass

Butterworth filter (Z = 50 �)

L first C first

L1 = 5.1441 nH C1 = 2.0576 pF
C2 = 4.9675 pF L2 = 12.419 nH
L3 = 12.419 nH C3 = 4.9675 pF
C4 = 2.0576 pF L4 = 5.1441 nH

which we round upward to 4. In the computations that follow, we will assume this
value of n and select a passband edge of precisely 1 GHz. Again, the excess perfor-
mance could be distributed some other way, but in the absence of other constraint
information, we make this arbitrary choice in order to proceed.

The next step is to compute the element values. Using methods based on those out-
lined in Section 22.6, one may derive the following equation for the element values
of an nth-order Butterworth low-pass filter, normalized to a 1-� impedance level and
to a 1-rad /s passband edge:

bk = 2(ε1/n) sin

[
(2k − 1)π

2n

]
, (30)

where k ranges from 1 to n.
As in the constant-k examples, Butterworth filters can start with a shunt capacitor

or series inductor. The foregoing equation generates the normalized values for both
equivalent configurations. Elements with odd k are capacitors if the filter begins with
a shunt capacitor and are inductors if the filter begins with a series inductor.

The following equations denormalize those computed values to yield actual com-
ponent values:

Lk = R

ωp
bk; (31)

Ck = 1

ωpR
bk. (32)

Use of these equations yields the component values shown in Table 22.5, where values
for two equivalent realizations are shown side by side in separate columns. Notice
that the two designs are practically the same, with their only difference being the as-
signment of input and output ports. In general, even-order Butterworth filters share
this characteristic whereas odd-order filters are symmetrical, beginning and ending
with the same type of component (and of the same value).

It is always wise to simulate any design to make sure that no computational errors
have crept in. Beware even if you are using tabulated values – some published tables
have typographical (or worse) errors! In demanding applications, simulation is also
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744 CHAPTER 22 LUMPED FILTERS

F IGURE 22.14. Monte Carlo analysis of Butterworth filter magnitude response

valuable for assessing the sensitivities of the filter to practical variations in compo-
nent values or to other imperfections (such as finite element Q or the presence of
parasitics). The program RFSim99 is noteworthy for the ease with which one may
rapidly assess the effect of component tolerances on the filter response. Although
Monte Carlo analysis is offered by many other circuit simulators, RFSim99 invokes
it with the fewest keystrokes or mouse clicks. The plot of Figure 22.14 shows that
this Butterworth filter is not overly sensitive to component tolerance (in this case,
the capacitors and inductors both have 5% tolerances, considered tight for ordinary
components). Even so, the simulation still shows that a fairly large percentage of the
designs do not meet specifications. Either tighter component tolerances or a higher-
order filter design would be required to guarantee high yield with loose tolerances.

As a final note, Butterworth high-pass, bandpass, and bandstop filters are readily
realized with the same transformations used in the constant-k case.

22.5.2 CHEBYSHEV (EQUIR IPPLE OR MINIM A X) F I LTERS

Although passband and stopband monotonicity certainly have an esthetic appeal, in-
sisting on them constrains other valuable filter shape properties. These other proper-
ties include the steepness of transitions from passband to stopband as well as the stop-
band attenuation for a given filter order. Alternative filters, based on nonmonotonic
frequency response, are named after the folks who invented them or who developed
the underlying mathematics. The Chebyshev filter, an example of the latter, allows
a reduction in filter order precisely by relaxing the constraint of monotonicity.21 In

21 Contrary to common belief, Pafnuti L’vovich Chebyshev never worked on filters at all (he was
born in 1821 and died in 1894, certainly well before the establishment of filter theory). In fact, he
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22.5 COM MON FILTER APPROXIM ATIONS 745

contrast with the Butterworth approximation, which is preoccupied with minimiz-
ing error at low frequencies, the Chebyshev minimizes the maximum approximation
error (relative to the ideal brickwall shape) throughout the entire passband. The re-
sulting minimax response shape thus exhibits some ripple, the amount of which may
be specified by the designer. For a given order, the Chebyshev filter shape offers a
more dramatic transition from passband to stopband than a Butterworth offers. The
steepness of the transition is also a function of the passband ripple one allows; the
greater the permissible ripple, the steeper the transition.

A consequence of minimizing the maximum error is that the ripples of a Cheby-
shev response are all of equal amplitude. A rigorous proof of the minimax optimality
of an equiripple shape is surprisingly involved, so we won’t attempt one here. How-
ever, it should seem intuitively reasonable that equiripple behavior would be optimal
in the minimax sense, for if any one error peak were larger than any other then a
better approximation could probably be produced by reducing it – at the cost of in-
creasing the size of one or more of the others. Such tradings-off would proceed until
nothing would then be left to trade for anything else; all error peaks would be equal.

Similar advantages also accrue if the stopband, rather than the passband, is allowed
to exhibit ripple. The inverse Chebyshev filter (also known as a Type II Chebyshev
filter) is based on this idea; it actually combines a flatter-than-Butterworth passband
with an equiripple stopband.

To understand how the simple act of allowing either stopband or passband ripple
provides these advantages, we need to review the properties of a complex pole pair.
First recall that one standard (and perfectly general) form for the transfer function of
such a pair is:

H(s) =
[
s2

ω2
n

+ 2ζs

ωn
+ 1

]−1

, (33)

whereωn is the distance to the poles from the origin and ζ (zeta) is the damping ratio;
see Figure 22.15.

Damping ratio is a particularly significant parameter when examining time-domain
behavior. A zero damping ratio corresponds to purely imaginary poles, and a damp-
ing ratio of unity corresponds to a pair of poles coincident on the real axis. The former
condition applies to an oscillator, and the latter defines critical damping. Above a
damping ratio of unity the two poles split – with one moving toward the origin and
the other toward negative infinity – all the while remaining on the real axis. What-
ever the value of damping, the frequency ωn always equals the geometric mean of
the pole frequencies.

developed his equations during a study of mechanical linkages used in steam engines, as described
in “Théorie des mécanismes connus sous le nom de parallélogrammes” [Theory of Mechanisms
Known under the Name of Parallelograms], Oeuvres, vol. I, St. Petersburg,1899. “Parallelograms”
translate rotary motion into an approximation of rectilinear motion. By the way, the spelling of
his name here is just one of many possible transliterations of Пафнутий Львович Чебышев.
German-language journals generally render it as Tchebyscheff. We’ve selected the transliteration
most likely to lead an English speaker to a close approximation of the correct pronunciation. The
commonly encountered Chebychev lacks this property.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511812941.023
Downloaded from https://www.cambridge.org/core. The Librarian-Seeley Historical Library, on 18 Dec 2019 at 06:20:44, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511812941.023
https://www.cambridge.org/core


746 CHAPTER 22 LUMPED FILTERS

F IGURE 22.15. Two-pole constellation

In filter design, we are generally most concerned with frequency response, and it
is then helpful to relate damping ratio to more directly relevant parameters. Specifi-
cally, damping ratio is directly related toQ as follows:

Q = 1/2ζ. (34)

Although it is true that all two-pole systems with no finite zeros have a frequency re-
sponse that ultimately rolls off as ω−2, both the frequency response magnitude and
the slope in the vicinity of the peak are very much functions of Q, with each para-
meter increasing as Q increases (see the lower panel of Figure 22.16). For Q below
1/

√
2, the frequency response exhibits no peaking. Above that value of Q, peaking

increases without bound as Q approaches infinity. For large values of Q, the peak
gain is proportional to Q. Stated alternatively, higher Q-values lead to greater ulti-
mate attenuation, relative to the peak gain, and to slopes that are normally associated
with systems of higher (and perhaps much higher) order.

Now consider ways a filter might exploit thisQ-dependent behavior. Specifically,
suppose we use a second-order section to improve the magnitude characteristics of a
single-pole filter. If we arrange for the peak of the second-order response to compen-
sate (boost) the response of the first-order section beyond where the latter has begun
a significant rolloff, then the frequency range over which the magnitude of the cas-
cade remains roughly constant can be increased. At the same time, the rolloff beyond
the compensation point can exhibit a rather high initial slope, providing an improved
transition from passband to stopband. Clearly, additional sections may be used to
effect even larger improvements, with increases in the maximum Q. This latter re-
quirement stems from the need to provide larger boosts to compensate for ever larger
attenuations.

Having developed this understanding, we may revisit the Butterworth and Cheby-
shev approximations. The Butterworth condition results when the poles of the transfer
characteristic are arranged so that the modest amount of frequency response peaking
of a complex pole pair offsets, to a certain extent, the rolloff of any poles of lower fre-
quency. The resulting combination extends the frequency range over which there is
a roughly flat transmission magnitude. Formally, one may deduce from Eqn. 23 that
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22.5 COM MON FILTER APPROXIM ATIONS 747

F IGURE 22.16. Step and frequency response of second-order
low-pass section (ωn = 1 rps, ζ = 0.125)

all of the poles lie on a semicircle in the s-plane, distributed as if there were twice
as many poles disposed at equal angles along the circumference, the right half-plane
poles being ignored.22 For example, a third-order Butterworth (Figure 22.17) has a
single pole on the real axis as well as a complex conjugate pair at 60◦ angles with the
real axis. The distance from the origin to the poles is the 3-dB cutoff frequency.

The Chebyshev filter goes further by allowing passband (or stopband) ripple. Con-
tinuing with our third-order example, the response of the real pole is allowed to drop
below the low-frequency value by some specified amount (the permissible ripple)
before the complex pair’s peaking is permitted to bring the response back up. The
damping ratio of the complex pair must be lower than that in the Butterworth case to
produce enough additional peaking to compensate for greater amounts of attenuation.

22 Okay, perhaps it isn’t quite “intuitively obvious,” but finding the roots of Eqn. 23 to discover the
factoid about Butterworth poles lying on a circle isn’t all that bad.
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748 CHAPTER 22 LUMPED FILTERS

F IGURE 22.17. Pole constellation for third-order
Butterworth low-pass filter

F IGURE 22.18. Third-order Butterworth and Chebyshev
low-pass filter pole constellations

A side effect of this lower damping is that there is a more dramatic rolloff beyond the
cutoff frequency. In this manner the Chebyshev filter permits the designer to trade
passband flatness for better stopband attenuation.

Although it is even less intuitively obvious, the poles of a Chebyshev low-pass fil-
ter are located along a (semi)ellipse, remarkably with imaginary parts that are equal
to those of a corresponding Butterworth low-pass filter.23 Increasing the eccentricity
of the ellipse increases the ripple; see Figure 22.18. Mathematically, the Chebyshev
response is of the general form

|H(jω)|2 = 1

1 + ε2C2
n (ω/ωp)

, (35)

23 There are many references that provide excellent derivations of the Butterworth and Chebyshev
conditions. A particularly enlightening presentation may be found in chapters 12 and 13 of R. W.
Hamming’s Digital Filters (2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1983).
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22.5 COM MON FILTER APPROXIM ATIONS 749

where ωp once again is the frequency at which the response magnitude squared has
dropped to a value of

1

1 + ε2
. (36)

For self-evident reasons, ε is known as the ripple parameter, and it is specified by
the designer. The function Cn(x) is known as a Chebyshev polynomial of order n.
The most relevant property of such polynomials is that they oscillate between −1 and
+1 as the argument x varies over the same interval. This property fairly distributes
the approximation burden by allowing the filter’s (power) response to oscillate be-
tween 1 and 1/(1+ε2)within the passband. Recall that a Butterworth filter uses all of
its approximation power at DC, allowing the error to grow monotonically as the pass-
band edge is approached. The Chebyshev filter achieves its better performance by
spreading its approximation error over the entire passband. Outside of this interval,
a Chebyshev polynomial’s magnitude grows rapidly (as xn in fact), corresponding to
monotonically increasing filter attenuation.

There are a couple of ways of generating Chebyshev polynomials algorithmically.
One is through the recursion formula

Cn(x) = 2xCn−1(x)− Cn−2(x), (37)

where knowing that C0 = 1 and C1 = x will get you started. As can be seen from the
formula, the leading coefficient of Chebyshev polynomials is 2n−1, a fact we shall
use later in comparing Chebyshev and Butterworth polynomials.

Another method for generating the Chebyshev polynomials is in terms of some
trigonometric functions from which the oscillation between −1 and +1 (for |x| < 1)
is directly deduced:

Cn(x) = cos(n cos−1 x) for |x| < 1. (38)

For arguments larger than unity, the formula changes a little bit:

Cn(x) = cosh(n cosh−1 x) for |x| > 1. (39)

Although it is probably far from obvious at this point, these functions are likely fa-
miliar to you as Lissajous figures, formed and displayed when sine waves drive both
the vertical and horizontal deflection plates of an oscilloscope. That is, suppose that
the horizontal deflection plates are driven by a signal

x = cos t, (40)

so that
t = cos−1 x. (41)

Further suppose that the vertical plates are simultaneously driven by a signal

y = cos nt. (42)
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F IGURE 22.19. Rough sketches of some Chebyshev polynomials

Table 22.6. First ten Chebyshev polynomials

Order, n Polynomial

0 1
1 x

2 2x 2 − 1
3 4x3 − 3x
4 8x4 − 8x 2 + 1
5 16x 5 − 20x3 + 5x
6 32x6 − 48x4 + 18x 2 − 1
7 64x7 − 112x 5 + 56x3 − 7x
8 128x8 − 256x6 + 160x4 − 32x 2 + 1
9 256x9 − 576x7 + 432x 5 − 120x3 + 9x

Substituting Eqn. 41 into Eqn. 42 to remove the time parameter then yields

y = cos(n cos−1 x), (43)

which is seen to be the same as Eqn. 38. That is, what’s displayed on an oscillo-
scope driven in this fashion is actually the Chebyshev polynomial for that order n,
for values of |x| up to unity. Over that interval, the function displayed looks very
much like a sinusoid sketched on a piece of paper, wrapped around a cylinder, and
then viewed from a distance.

A few Chebyshev polynomials are sketched crudely in Figure 22.19, and expres-
sions for the first ten Chebyshev polynomials are listed in Table 22.6. From the
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22.5 COM MON FILTER APPROXIM ATIONS 751

foregoing equations, we may derive an expression for the filter order required to sat-
isfy the specified constraints:

n = cosh−1
(√
A2
s − 1/ε

)
cosh−1(ωs/ωp)

≈ cosh−1(As/ε)

cosh−1(ωs/ωp)
. (44)

This set of equations is similar in form to that for the Butterworth case, with the only
difference being the replacement of the natural logarithm by cosh−1. Again, the ap-
proximation holds well if the square of the stopband attenuation is much greater than
unity. And as with the Butterworth, the order as computed by Eqn. 44 should be
rounded upward to the next integer value. Again, the resulting “excess” performance
can be used to improve some combination of passband and stopband characteristics.

One way in which the Chebyshev is superior to a Butterworth is in the ultimate
stopband attenuation provided. At high frequencies, a Butterworth with ε = 1 pro-
vides an attenuation that is approximately∣∣∣∣A

(
j
ω

ωp

)∣∣∣∣
2

≈
(
ω

ωp

)2n

. (45)

Compare that asymptotic behavior with that of a Chebyshev (again with ε = 1):24

∣∣∣∣A
(
j
ω

ωp

)∣∣∣∣
2

≈ 22n−2

(
ω

ωp

)2n

. (46)

Clearly the Chebyshev filter offers higher ultimate attenuation by an amount that is
equal to 3(2n−2) dB for a given order. As a specific example, a seventh-order Cheby-
shev ultimately provides 36 dB more stopband attenuation than does a seventh-order
Butterworth.

As another comparison, the relationship between the poles of a Butterworth and
those of a Chebyshev of the same order can be put on a quantitative basis by nor-
malizing the two filters to have precisely the same −3-dB bandwidth. It also may be
shown (but not by us) that the −3-dB bandwidth of a Chebyshev may be reasonably
well approximated by25

cosh
[

1
n

sinh−1
(

1
ε

)]
. (47)

Since the diameter of a Butterworth’s circular pole constellation is the −3-dB band-
width, we normalize the Chebyshev’s ellipse to have a major axis defined by Eqn. 47.
The imaginary parts of the poles of a Chebyshev filter are the same as for the But-
terworth, while the real parts of the Butterworth prototype are merely scaled by the
factor

tanh
[

1
n

sinh−1
(

1
ε

)]
(48)

24 This comparison should not mislead you into thinking that such large ripple values are commonly
used. In fact, such filters are typically designed with ripple values below 1 dB.

25 See e.g. M. E. Van Valkenburg, Introduction to Modern Network Synthesis (Wiley, New York,
1960), pp. 380–1. The original method is due to E. A. Guillemin.
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752 CHAPTER 22 LUMPED FILTERS

to yield the real parts of the poles of a Chebyshev filter. Thus the design of a Cheby-
shev filter may be based on a prototype Butterworth, and it’s trivial to design the latter.

There is one subtlety that requires discussion, however, and this concerns the
source and termination impedances of a passive Chebyshev filter. From both the
sketches and equations, it’s clear that only odd-order Chebyshev polynomials have
a zero value for zero arguments. Hence, the DC value of the filter transfer function
will be unity for such polynomials (that is, the passband’s first dip below unity oc-
curs at some frequency above DC). For even-order Chebyshev filters, however, the
filter’s transfer function starts off at a dip, with a DC power transmission value of
1/(1 + ε2), implying a termination resistance that is less than the source resistance.
If – as is usually the case – such an impedance transformation is undesired, choose an
odd-order Chebyshev filter or add an impedance transformer to an even-order Cheby-
shev filter. As the former is less complex, odd-order Chebyshev realizations are the
near-universal choice in practice.

Finally, recognize that the elliptical pole distribution implies that the ratio of the
imaginary to real parts of the poles, and hence the Qs of the poles, are higher for
Chebyshevs than for Butterworths of the same order. As a result, Chebyshev filters
are more strongly affected by the finiteQ of practical components. The problem in-
creases rapidly in severity as the order of the filter increases. This important practical
issue must be kept in mind when choosing a filter type.

Given that the Chebyshev’s pole locations are closely related to those of the But-
terworth, it should not be surprising that the element values for the two filters are
related as well. In fact, element values for a Chebyshev filter may be derived from
those of a Butterworth with the aid of the following sequence of equations.26 First
we compute a parameter, β, to simplify the expressions that follow:

β = sinh

(
tanh−1

(
1/

√
1 + ε2

)
n

)
. (49)

The element values (again, normalized to 1 rps and 1�) are then

c1 = b1/β (50)

and
ck = bkbk−1

ck−1

(
β2 +

{
sin

[
(k − 1)π

n

]}2 ) , (51)

where the various bk are again the normalized Butterworth element values (for ε = 1):

bk = 2 sin

[
(2n− 1)π

2n

]
. (52)

26 One may derive these equations (or their equivalents) using the methods outlined in Section 22.6,
but the particular ones presented here (with minor changes in variables) are those found in David B.
Rutledge’s excellent text, The Electronics of Radio (Cambridge University Press, 1999).
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22.5 COM MON FILTER APPROXIM ATIONS 753

Table 22.7. Element values for
third-order 1-dB–1-GHz,

30-dB–3-GHz Chebyshev filter

L first C first

L1 = 16.104 nH C1 = 6.442 pF
C2 = 3.164 pF L2 = 7.911 nH
L3 = 16.104 nH C3 = 6.442 pF

It’s important to note that these equations apply only for odd values of n, because
they assume equal source and load terminations. As mentioned, even-order Cheby-
shev filters require unequal source and load terminations (unless transformers are
allowed) and are therefore used less frequently than those of odd order.27 The equa-
tion set presented here thus suffices for the vast majority of applications.

Carrying out the computations for our ongoing filter design example, we first de-
termine the minimum order required from

n = cosh−1
(√
A2
s − 1/ε

)
cosh−1(ωs/ωp)

≈ cosh−1(31.6/0.5088)

cosh−1([3 GHz]/[1 GHz])
≈ 4.8222

1.7267
= 2.73. (53)

So, for these specifications, a third-order Chebyshev suffices. As with the Butter-
worth example, we will arbitrarily choose to meet the specification exactly at the
passband, leaving the excess performance for the stopband. A more practical choice
would be to distribute the excess performance between the two, but we will continue
nonetheless. The resulting third-order filter has the nominal component values listed
in Table 22.7.

The frequency response for the nominal design appears as shown in Figure 22.20;
with 5% component tolerances, the spread in filter transfer characteristics appears as
shown in Figure 22.21.

22.5.3 TYPE I I ( INVERSE) CHEBYSHEV FILTERS

We have alluded several times to the possibility of realizing a flatter-than-maximally
flat transfer characteristic. The Type II (also known as an inverse or reciprocal)
Chebyshev filter achieves such flatness by permitting ripple in the stopband while
continuing to provide passband monotonicity.

The Type II filter derives from the Type I (ordinary) Chebyshev through a pair of
simple transformations. In the first step, the Type I Chebyshev response is simply
subtracted from unity, leading to the conversion of a low-pass filter into a high-pass

27 However, note that an impedance transformation is sometimes desired. In such cases, even-order
Chebyshev filters might be quite useful.
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F IGURE 22.20. Frequency response of nominal design

F IGURE 22.21. Monte Carlo simulation of 1-GHz,
1-dB, third-order Chebyshev filter (5% tolerance)

one. The resulting response is monotonic in the new passband, because the Type I
response is monotonic in its stopband. All we have to do next is figure out a way to
convert this high-pass filter back into a low-pass filter while preserving this mono-
tonicity. The key to this second step is to replace ω by 1/ω. Since high frequencies
are thus mapped into low ones and vice versa, this second transformation indeed con-
verts the filter shape back into a low-pass response, but in a way that exchanges the
ripple at low frequencies with ripple at high frequencies. This transformation thus
restores a monotonic passband, and it also happens to map the Type I passband edge
into the new stopband edge. The trade-offs are such that a flatter passband response
may be obtained at the expense of a lack of stopband monotonicity.
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22.5 COM MON FILTER APPROXIM ATIONS 755

F IGURE 22.22. Low-pass 1-GHz inverse
Chebyshev example

Mathematically, the transformations described result in the following power re-
sponse for a Type II filter:

|H(jω)|2 = 1 − 1

1 + ε2C2
n (ωp/ω)

= ε2C2
n (ωp/ω)

1 + ε2C2
n (ωp/ω)

. (54)

Normalized inverse Chebyshev filters thus have poles located at the reciprocals of
the “normal” (Type I) Chebyshev in addition to purely imaginary zeros distributed
in some complicated fashion. Just as a complex pole pair provides peaking, a com-
plex zero pair provides nulling. We’ve seen this behavior already, where the purely
imaginary zeros of m-derived filters provide notches of infinite depth. The inverse
Chebyshev filter exploits these nulls to provide a flat passband without degrading the
transition from passband to stopband. The resulting pole–zero constellation roughly
resembles the Greek letter � rotated counterclockwise by 90◦.

Although the Type II filter is not encountered as often as the Butterworth, its rel-
ative rarity should not be taken to imply a corresponding lack of utility. Despite the
superior passband flatness provided by the inverse Chebyshev, the lack of simple
equations for the component values has allowed the Butterworth filter to dominate in
those applications where passband monotonicity is allegedly prized. Fortunately, the
ready availability of filter design software is changing this situation. For example,
the program L ADDER synthesizes a wide variety of passive filters, among which is
the inverse Chebyshev. Using that program, we find the network of Figure 22.22 for
a low-pass filter (1-dB error at 1 GHz, at least 30-dB attenuation at 3 GHz).

We have omitted synthesis of the dual network with series inductances at the two
ports, as well as a series LC trap between their common point and ground. Fig-
ure 22.23 shows that the inverse Chebyshev does indeed provide a more rapid tran-
sition from passband to stopband than a comparable Butterworth, while maintaining
monotonic passband response. At the same time, the average return loss in the pass-
band is larger than for the ordinary Chebyshev.

22.5.4 ELL IPT IC (CAUER) F I LTERS

We have seen that allowing ripple in the passband or stopband confers desirable
attributes, so perhaps it is not surprising that further improvements in transition
steepness may be provided by allowing ripple in both the passband and stopband
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F IGURE 22.23. Monte Carlo simulation of inverse Chebyshev (5% tolerance)

simultaneously.28 As in the inverse Chebyshev and m-derived filters, Cauer (also
known as elliptic) filters exploit the nulls provided by finite zeros to create a dra-
matic transition from passband to stopband – at the expense of a stopband response
that later bounces back some amount beyond the null frequency (again, just as in
m-derived and inverse Chebyshev filters, and for the same reasons). As discussed
further in Section 22.7, the name elliptic comes from the appearance of elliptic func-
tions in the mathematics and should not be confused with the elliptic pole distribution
of a Chebyshev filter.

Wilhelm Cauer is the inventor whose deep physical insights (and intimate famil-
iarity both with the nulls of Zobel’s m-derived filters and with elliptic functions in
general) allowed him first to recognize that these additional degrees of freedom ex-
isted and then to exploit them, even though his first public disclosure of the elliptic
filter offered no formal mathematical proof of the correctness of his ideas.29 At a time
when minimizing component count was an obsession, Cauer was able to use fewer

28 These are also sometimes known as Darlington, Cauer–Chebyshev, generalized Chebyshev, or
Zolotarev filters. Igor Ivanovich Zolotarev (1847–1878), who had studied with Chebyshev, evi-
dently derived Chebyshev functions a decade or so before Chebyshev did. His significant contri-
butions include numerical approximations to elliptic functions and the use of rational functions to
generate minimax approximations. In 1878 he also demonstrated, by direct experiment, the tragic
results of train–human momentum transfer.

29 Cauer (1900–1945) became familiar with elliptic functions while studying at the University of
Göttingen with the brilliant and infamously absentminded David Hilbert. Once Hilbert suddenly
asked a close friend, physicist James Franck, “Is your wife as mean as mine?” Franck managed
to respond, “Why, what has she done?” Hilbert answered, “I discovered today that my wife does
not give me an egg for breakfast. Heaven only knows how long this has been going on.”

Regrettably, stories about Cauer are not as lighthearted. He was shot to death during the So-
viet occupation of Berlin in the closing days of WWII in a manner sadly reminiscent of the end of
Archimedes (see 〈http: //www-ft.ee.tu-berlin.de /geschichte /th nachr.htm〉).
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inductors than the best filters that were then in use. According to lore, publication of
his patent reportedly sent Bell Labs engineers and mathematicians scurrying off to
the New York City Public Library to bone up for weeks on the then- (and still-) ob-
scure literature on elliptic functions.30 Given that it took the brains at Bell Labs that
amount of time, we have no hope of doing much more than present an outline. So
that’s what we’ll do.

Elliptic filters have the following power transmission behavior:

|H(jω)|2 = 1

1 + ε2F 2
n (ω/ωp)

, (55)

where Fn(x) is a ratio of two polynomials rather than a simple polynomial alone (as
in the Butterworth or Chebyshev case, for example). A key observation is that, for
a given order, such a rational function has additional degrees of freedom (more co-
efficients we can manipulate to advantage) relative to a simple polynomial. These
additional degrees of freedom permit the satisfaction of specifications with a lower-
order filter. So the basic motivating idea isn’t at all hard to grasp, but the devil’s
definitely in the details.

Just as with Chebyshev polynomials, these rational functions Fn(x) (known as
Chebyshev rational functions) have a magnitude which oscillates between 0 and +1
for arguments |x| smaller than unity (corresponding to the passband) and which grows
rapidly for arguments outside of that range and as the order n increases.31 However,
unlike Chebyshev polynomials, whose magnitudes grow monotonically outside of
that range, Fn(x) oscillates in some fashion between infinity and a specified finite
value. Hence the filter response exhibits stopband ripples, with a finite number of fre-
quencies at which the filter transmission is zero. The attenuation poles correspond to
transmission zeros (notches) in whose proximity the filter response changes rapidly.
Thus, perhaps you can see how permitting such ripples in the stopband enables a much
more dramatic transition from passband to stopband, thus allowing one to combine
the passband attributes of ordinary Chebyshev filters with the stopband attributes of
inverse Chebyshev filters.

We can deduce some important facts if we perform the same operations on the
elliptic filter’s transfer function as those that convert a Chebyshev into an inverse
Chebyshev. First express the rational Chebyshev function explicitly as the ratio of
two polynomials:

|H(jω)|2 = 1

1 + ε2F 2
n (ω/ωp)

= 1

1 + ε2N(ω/ωp)

D(ω/ωp)

= D(ω/ωp)

D(ω/ωp)+ ε2N(ω/ωp)
, (56)

whereN andD are the numerator and denominator polynomials of F 2
n , respectively.

30 M. E. Van Valkenburg, Analog Filter Design, Harcourt Brace Jovanovich, NewYork, 1982, p. 379.
31 Strictly speaking, Chebyshev polynomials are a special case of Chebyshev rational functions in

which the denominator is unity.
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Continuing, we subtract the power transfer function from unity and then recipro-
cate arguments:

|H2(jω)|2 = 1 − |H(jω)|2 = ε2N(ω/ωp)

D(ω/ωp)+ ε2N(ω/ωp)
; (57)

|H3(jω)|2 = ε2N(ωp/ω)

D(ωp/ω)+ ε2N(ωp/ω)
. (58)

We see thatH3 is also an elliptic filter and of the same order as the original,H. Given
that an elliptic filter is minimax optimal in both passband and stopband, the unique-
ness of the optimality itself implies that H and H3 have the same poles and zeros.
From comparing the numerators, we deduce that the roots of N are just the recip-
rocals of the roots of D. Thus, computation of the roots of D (which are the zero
locations of the overall filter) directly allows computation of the roots ofN. Once we
combine that knowledge with the value of the specified passband ripple, we have all
of the information necessary to complete the transfer function.

As with nearly everything else related to elliptic filters, derivation of the equations
for the required filter order is difficult and would take us too deep into arcane areas
of mathematical trivia (the reader may feel that this has already occurred). As long
as you are willing to set aside your natural curiosity about where the equation comes
from, however, you can perform the necessary computations nonetheless:

n = F(m)F(1 −m′)
F(m′)F(1 −m) , (59)

where F(m) is the complete elliptic integral of the first kind (see Section 22.7 for
its definition and some numerical methods for computing it), m is a function of the
normalized stopband frequency,

m = 1/ω2
S , (60)

and m′ is a function of the stopband and passband ripple parameters,

m′ = (εs/εp)2. (61)

Although an exact closed-form expression for F(m) doesn’t exist, a highly accu-
rate approximation is32

F(m) ≈ (a0 + a1m+ a2m
2 + a3m

3 + a4m
4)

+ (b0 + b1m+ b2m
2 + b3m

3 + b4m
4) ln(1/m), (62)

where the various coefficients are as listed in Table 22.8. For 0<m< 1, the approx-
imation error is no greater than 2 × 10−8. Note that the parameter m is simply the
square of the elliptic modulus k described in Section 22.7:

m = k2. (63)

32 M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, Dover, New York, 1965.
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Table 22.8. Coefficients for approximation
to complete elliptic integral of the first kind

an bn

a0 = 1.38629436112 b0 = 0.5
a1 = 0.09666344259 b1 = 0.12498593597
a2 = 0.03590092383 b2 = 0.06880248576
a3 = 0.03742563713 b3 = 0.03328355346
a4 = 0.01451196212 b4 = 0.00441787012

Once the required order n is determined, the next task is to find the normalized
zero locations. Here again, as long as we don’t ask for a derivation first, the cal-
culations themselves are not too bad. There are numerous, highly accurate numer-
ical approximations for computing the elliptic functions that give the locations of
the zeros directly (and solely as functions of the ratio ωs/ωp). Formally, these are
given by

±j 1

k
{
cd

[
(2i − 1)K

n
, k

]} , i = 1, 2, . . . , Int

(
n

2

)
. (64)

Again, various methods abound for obtaining actual numerical values from that
expression, but a simple (yet highly accurate) closed-form equation for the zero lo-
cations is:

±j 1√
k

F4(i)

F3(i)
, i = 1, 2, . . . , Int

(
n

2

)
. (65)

The functions F3 and F4 are given by

F3(i) = F34e(i)− F34o(i), (66)

F4(i) = F34e(i)+ F34o(i), (67)

where

F34e(i) ≈ αi + α(8n−3i) + α(8n+5i) + α(32n−7i) + α(32n+9i), (68)

F34o(i) ≈ α(2n−i) + α(2n+3i) + α(18n−5i) + α(18n+7i)

+ α(50n−9i) + α(50n+11i). (69)

In turn,

α2n = λ+ 2λ5 + 15λ9 + 150λ13 + 1707λ17 + · · · , (70)

where

λ = 1

2

[
1 − √

k

1 + √
k

]
. (71)
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760 CHAPTER 22 LUMPED FILTERS

F IGURE 22.24. Low-pass 1-GHz elliptic filter example

The foregoing sequence of equations follows closely (but not uniformly) the nota-
tional conventions used by Orchard.33 The approximations are carried out to more
terms than you will ever need for any practical filter design but are still simple enough
to use in spreadsheets, for example.

Finding the zero locations enables the subsequent synthesis of an actual network,
using one of any number of methods that have been developed over the decades.34

As with the inverse Chebyshev filter, one may choose how to distribute the fre-
quencies of the resonant traps along the filter. When carrying out a synthesis, it is
not uncommon to discover that some choices produce difficulties, such as requiring
negative inductors. Experience shows that assigning the lowest frequency null to the
resonator in the central position – and then progressively working outward in alterna-
tion – greatly reduces (but does not eliminate) the probability of such difficulties. For
example, if there are five null frequencies numbered 1–5 in order of increasing fre-
quency, then the best implementation would likely involve resonator tunings ordered
as 4-2-1-3-5. The program L ADDER uses a synthesis method that avoids problems
with realizability.

Continuing with our low-pass example, L ADDER’s synthesis results are as shown
in Figure 22.24. Running a Monte Carlo simulation on this filter produces the plots
in Figure 22.25. We see that the elliptic filter has the most dramatic transition to stop-
band of all the implementations we’ve examined. In this particular case, the stopband
response pops back up to a maximum of about −46 dB (not visible on the plot).

33 H. J. Orchard, “Computation of Elliptic Functions of Rational Fractions of a Quarterperiod,” IRE
Trans. Circuit Theory, December 1958, pp. 352–5. Although in subsequent publications Orchard
renounces the use of these closed-form numerical techniques (based on theta functions) in favor of
iterative algorithms (in no small measure because they have the pedagogical advantage of explic-
itly showing the relationship between the poles of Chebyshev and elliptic filters), it’s still more
convenient to use the former in constructing spreadsheets, for example.

34 A particularly ingenious method is presented by Pierre Amstutz in “Algorithms for Elliptic Filter
Design on Small Computers,” IEEE Trans. Circuits and Systems, December 1978. Unfortunately,
Amstutz chooses an idiosyncratic normalization of elliptic functions. The unique notational con-
ventions he uses make it much harder than necessary for the uninitiated to follow the mathematical
details in the paper. He compensates for this transgression by providing complete source code (in
Fortran) for his filter design algorithm. His algorithm nonetheless occasionally produces designs
that are unrealizable.
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22.5 COM MON FILTER APPROXIM ATIONS 761

F IGURE 22.25. Monte Carlo simulation of elliptic filter of Figure 22.24 (5% tolerance)

22.5.5 BESSEL–THOMSON M A XIM ALLY
FL AT DEL AY FILTERS

The filters we’ve examined so far are designed to meet specifications on the mag-
nitude response. Because the design methods thus neglect phase behavior, many of
these filters can exhibit significant delay variation over their passband. That is, the
filter may not delay all Fourier components of an input signal by a uniform amount.
As these misaligned Fourier components superpose to form the output, there may be
serious distortion of the waveform’s shape. This dispersive behavior is a particularly
serious concern in digital systems, where pulse shapes need to be preserved to avoid
intersymbol interference.

Because a constant time delay implies a phase shift that is linearly proportional to
frequency, dispersion is minimized in a filter whose phase approximates this linear
behavior as closely as possible. Just as conventional filter design neglects phase be-
havior in its focus on magnitude response, so will we neglect magnitude behavior in
crafting the phase response of maximally flat time-delay filters.

The most elegant and efficient derivation of the filter transfer functions is due to
Storch.35 We begin by noting that the transfer function of a unit time delay is simply

H(s) = e−s , (72)

and then note that es may be expressed as the sum of two hyperbolic functions as
follows:

es = sinh s + cosh s. (73)

35 L. Storch, “Synthesis of Constant Time Delay Ladder Networks Using Bessel Polynomials,” Proc.
IRE, v. 42, 1954, pp. 1666–75.
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762 CHAPTER 22 LUMPED FILTERS

Next, express sinh s and cosh s each as a simple series, and divide one by the other
to yield a continued fraction expansion of coth s:

sinh s = s + s 3

3!
+ s 5

5!
+ · · · (74)

and

cosh s = 1 + s2

2!
+ s4

4!
+ · · · , (75)

so that

coth s = 1

s
+ 1

3

s
+ 1

5

s
+ 1

7

s
+ · · ·

. (76)

Continued fraction expansions are attractive for easily generating a sequence of
progressively better approximations. Simply truncate the expansion after the number
of terms corresponding to the desired filter order. Summing together the numera-
tor and denominator polynomials therefore provides an approximation to the sum of
sinh and cosh, and thus to es , according to Eqn. 73. Storch’s remarkable observation
(with accompanying proof ) is that the approximations formed this way have max-
imally flat time delay, whereas those formed directly from the conventional series
expansion for es do not. Important too is his identification of these polynomials with
a known class of polynomials previously studied by Bessel. Despite all of this mar-
velous work, however, the corresponding class of filters is nonetheless known as
Bessel, Thomson, or Bessel–Thomson, because one W. E. Thomson had published
a paper about them about five years earlier – although with less elegant methods and
without recognizing the relationship with Bessel polynomials.36 This last considera-
tion is significant because Bessel polynomials are readily generated by well-known
(to mathematicians, anyway) recurrence formulas. For the particular class of Bessel
polynomials relevant to the optimal delay case, one may use the following simple
recurrence relation to bypass the need for evaluating continued fractions:

Pn(s) = (2n− 1)Pn−1(s)+ s2Pn−2(s), (77)

where the first two polynomials are

P1(s) = s + 1 (78)
and

P2(s) = s2 + 3s + 3 (79)

to help get you started.
Coefficients for the first six Bessel polynomials are given in Table 22.9 (we omit

the leading coefficient, since it is unity in all cases).

36 W. E. Thompson, “Delay Networks Having Maximally Flat Frequency Characteristics,” Proc.
IRE, pt. 3, v. 96, 1949, pp. 487–90.
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Table 22.9. Bessel polynomial coefficients

n a5 a4 a3 a2 a1 a0

1 1
2 3 3
3 6 15 15
4 10 45 105 105
5 15 105 420 945 945
6 21 210 1260 4725 10395 10395

One subtlety is that the polynomials generated by either of these two methods do
not have unit DC value in general, so one must provide a suitable normalization con-
stant; thus,

H(s) = Pn(0)

Pn(s)
. (80)

A second subtlety is the need for a normalization in frequency: The various H(s)
generated by the polynomial recursion formula arise from approximating a unit time
delay, so bandwidth is not controlled to a uniform value. To normalize to a constant
bandwidth, compute the 3-dB corner frequency for each H(s) and then scale s (and
component values) accordingly to produce a 1-rps corner frequency. These normal-
izations presume that the goal is to produce a filter with a specified corner frequency
while providing a close approximation to a uniform time delay. If one is instead in-
terested in simply providing the best approximation to a time delay over the widest
possible bandwidth, there is no need to perform such normalizations.37

Note that the methods described directly yield the transfer function rather than the
magnitude squared, reducing the work expended in searching for a “Hurwitz poly-
nomial” in the network synthesis recipe described in Section 22.6. Regrettably, and
unlike the Butterworth and Chebyshev cases, there do not seem to be simple formu-
las for Bessel filters that give the component values directly. We therefore resort to
the use of our standard synthesis recipe to generate the entries in a table of normal-
ized component values (Table 22.10; more entries may be found in Section 22.8).

There also seem to be no simple design formulas for selecting the order based,
say, on a specification of the acceptable deviation from a prescribed nominal delay.
However, inspection of delay-frequency curves for Bessel filters of various orders
reveals that the product of the delay bandwidth BWD (where the delay has dropped

37 However, far better alternatives are available if all one desires is a time-delay approximation. The
Bessel–Thomson filter is a minimum phase filter (all zeros are in the left half-plane) and is thus
limited in its approximating power. By allowing the use of right half-plane zeros, one can dou-
ble the number of degrees of freedom for a given filter order. A class of approximations known as
Padé approximants exploits this observation by providing poles and zeros in mirror-image pairs.
The corresponding networks are all-pass in nature and thus provide no filtering action.
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764 CHAPTER 22 LUMPED FILTERS

Table 22.10. Normalized element values for 1-rps
Bessel–Thomson low-pass filters

C1 (L1) L2 (C2 ) C3 (L3) L4 (C4) C5 (L5) L6 (C6)

2.0000
2.1478 0.5755
2.2034 0.9705 0.3374
2.2404 1.0815 0.6725 0.2334
2.2582 1.1110 0.8040 0.5072 0.1743
2.2645 1.1126 0.8538 0.6392 0.4002 0.1365

Table 22.11. Denormalized element values for fifth-order,
3-dB, 1-GHz Bessel–Thomson low-pass filter

C1 L2 C3 L4 C5

7.1881 pF 8.8411 nH 2.5592 pF 4.0362 nH 0.5548 pF

Table 22.12. Final element values for fifth-order, 1-dB,
1-GHz Bessel–Thomson low-pass filter

C1 L2 C3 L4 C5

4.2194 pF 5.1897 nH 1.5022 pF 2.3692 nH 0.3256 pF

3 dB from its low-frequency value) and the nominal time delay is given by a simple
(and very crude) approximation:

(BWD)(TD) ≈ n− 0.4. (81)

A tighter specification on allowable delay deviation requires an increase in filter
order, and Eqn. 81 at least provides some guidance. In general, as the delay band-
width increases well beyond the ordinary (magnitude) bandwidth, nonlinear phase
becomes progressively less of a concern, simply because improperly delayed Fourier
components are not a significant problem as long as they are strongly attenuated. In
any event, filter design software such as L ADDER generates Bessel filters with ease.

Let’s work out an example, just to round out our collection of designs. Arbitrarily
choose a fifth-order, 1-GHz filter with shunt capacitances at the ends. Denormalizing
the values from Table 22.10 for a 50-� system and this frequency yields the values
listed in Table 22.11.

Simulation of this filter reveals that the −1-dB point occurs at about 587 MHz, so
we need to perform a second renormalization. In this case, we need to multiply all
element values by 0.587 to move the −1-dB frequency to 1 GHz; see Table 22.12.

The Monte Carlo simulations for this filter (Figure 22.26) reveal a fairly low sensi-
tivity to parameter variation. However, the filter does not provide a 30-dB attenuation
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22.5 COM MON FILTER APPROXIM ATIONS 765

F IGURE 22.26. Monte Carlo simulation of fifth-order, 1-dB,
1-GHz, Bessel–Thomson low-pass filter (5%)

until around 5 GHz, instead of the design target of 3 GHz. To meet stopband speci-
fications, we would need to increase the order.

In comparing the various filter types, we observe a general tendency: The more
ideal a filter’s magnitude characteristic, the worse its time-delay flatness. For ex-
ample, a Bessel filter has a relatively poor magnitude flatness but good time-delay
uniformity. An elliptic filter meeting similar magnitude characteristics will gener-
ally have worse (sometimes much worse) time-delay behavior. One intuitive reason
is that elliptic filters meet magnitude specifications with fewer poles. A lower order
therefore implies less overall potential phase shift. A smaller total possible phase
shift in turn implies a diminished ability to provide a linearly increasing phase shift
over a given frequency range.

Space constraints prevent us from doing more than simply alluding to other possi-
bilities for approximating linear phase behavior. The Bessel–Thomson filter provides
maximally flat delay and is therefore the delay counterpart of the Butterworth mag-
nitude filter. We may extend this idea of delay-magnitude counterparts and imagine
the delay counterpart of a Chebyshev filter, for example, which would provide an
equiripple approximation to constant delay. Such a filter would provide a larger de-
lay bandwidth for a given order.

Another option is to compensate for a filter’s poor phase response with another fil-
ter known as a phase equalizer. Such an equalizer would have a constant gain at all
frequencies (and therefore would be an all-pass network), just like a piece of wire, yet
possess a controllable nonzero phase shift (unlike a piece of wire). Such filters have
zeros in the right half-plane and mirror-image poles in the left half-plane. Zeros in
the right half-plane have the same magnitude behavior as those in the left half-plane
but the phase behavior of left half-plane poles. As such, these are nonminimum phase
networks.
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766 CHAPTER 22 LUMPED FILTERS

As a final comment, it’s important to note that the various transformations that gen-
erate other filter shapes from low-pass prototypes preserve only the magnitude char-
acteristics, without exercising any explicit control over the phase behavior. Thus the
low-pass–bandpass transformation regrettably does not preserve the uniform time-
delay characteristic of Bessel–Thomson filters. A direct synthesis of a linear-phase
bandpass filter is required to obtain a maximally flat bandpass delay characteristic.

In the next chapter we’ll examine how to transform these lumped filters into forms
that are amenable to realization with microstrip components.

22.6 APPENDIX A: NETWORK SYNTHESIS

The path from filter response specifications to a realizable network is perhaps not as
straightforward as one would like. Indeed, there are many possible paths in general,
each with its own particular trade-offs among intuitive appeal, computational com-
plexity, and robustness. Unfortunately, we can’t hope to provide a comprehensive
examination of so sophisticated a subject (an ongoing apology throughout this chap-
ter), but we offer this brief synopsis to make the overall process of synthesis perhaps
a little less mysterious and to orient the interested reader toward the relevant literature
for proceeding further. As an adjunct, we also provide some background material
on elliptic functions, because that subject in particular is ignored in most electrical
engineering curricula.

The birth of modern network synthesis is often dated to the publication of Otto
Brune’s doctoral thesis in 1931.38 Sidney Darlington (inventor of the Darlington pair,
among many other achievements) extended Brune’s work on one-ports to the syn-
thesis of two-ports, publishing his own much-referenced doctoral thesis in 1939.39

Additional important contributions by Foster, Cauer, and others helped place the sub-
ject on a firm footing. Emphasis gradually shifted away from a preoccupation with
proofs of realizability and toward the development of practical methods for synthesis.
As these methods evolved, so did their ability to accommodate imperfect components
and more sophisticated constraints on filter response. Thanks to these developments,
abetted by the increasing availability of machine computation, modern filter synthe-
sis finally began to dominate around the late 1950s.

We now consider an infinitesimal subset of that work, examining one possible way
to synthesize a filter that consists only of purely lossless elements.

A RECIPE FOR LOSSLESS L ADDER NETWORK SYNTHESIS

A classical method for synthesizing lossless ladder networks relies on the relationship
between the transfer function of a lossless two-port and its input impedance. This

38 “Synthesis of a Finite Two-Terminal Network whose Driving Point Impedance Is a Prescribed
Function of Frequency,” J. Math. Phys., v. 10, 1931, pp. 191–236.

39 “Synthesis of Reactance 4-Poles which Produce Prescribed Insertion Loss Characteristics,” J.
Math. Phys., v. 18, September 1939, pp. 257–353.
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22.6 APPENDIX A: NETWORK SYNTHESIS 767

F IGURE 22.27. Terminated LC ladder network

approach makes sense because methods for synthesizing one-port networks with a
prescribed impedance were developed first. Thus, we determine first the input imped-
ance function implied by the desired filter transfer function (which, in turn, is deter-
mined from the design constraints applied to the chosen filter type) and then expand
the input impedance function in continued fraction form. In many cases of practical
relevance, the component values are easily read off by inspection of the terms in the
expansion (this ease motivated Cauer’s enthusiastic advocacy of continued fraction
expansions). Fortunately, the Butterworth, Chebyshev, and Bessel–Thomson filters
are among those for which relatively simple synthesis using these methods is possi-
ble, provided we assume the use of ideal, lossless inductors and capacitors. Synthesis
of filters with lossy elements and/or with imaginary zeros (such as the inverse Cheby-
shev and Cauer types) regrettably requires the use of somewhat more sophisticated
procedures than we may describe here.40

To proceed, let’s first derive an expression for the input impedance of a ladder
network in terms of a continued fraction expansion in order to explain Cauer’s enthu-
siasm. Specifically, consider the ladder network of Figure 22.27, which is terminated
by a resistance R (an LC ladder is shown as a particular example, but the derivation
that follows applies more generally).41

The input impedance for such a network may be found a number of ways. The
natural choice for most people is to start at the input side and proceed toward the load
end, but there is an advantage to starting at the load and working backward to the
input, as we’ll see. So, we start with the impedance seen to the right of C2:

Z1 = sL1 + R. (82)

In turn, the parallel combination of Z1 and the impedance of C2 has an admittance

Y2 = sC2 + 1

Z1
= sC2 + 1

sL1 + R . (83)

Working back one more step to the impedance seen to the right of C4, we have

40 For details on more general network synthesis methods, see M. E. Van Valkenburg, Introduction to
Modern Network Synthesis, Wiley, New York, 1960. Also see the extensive design data presented
in A. Zverev, Handbook of Filter Synthesis, Wiley, New York, 1967.

41 The basic method outlined here certainly can be generalized to accommodate unequal source and
load terminations (particularly useful for synthesizing Chebyshev filters of even order), but for the
sake of simplicity we will consider only the case of equal resistances.
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F IGURE 22.28. Terminated lossless ladder

Z3 = sL3 + 1

Y2
= sL3 + 1

sC2 + 1

sL1 + R
. (84)

Clearly, we may continue working backward until we finally obtain an expression
for the input impedance. From inspection of the form of the expressions, you can see
why the term continued fraction expansion is appropriately descriptive. More impor-
tant, notice that the first new term of each successive step in the expansion magically
yields the individual ladder element values. If we are able to express an input im-
pedance in this form, we can readily read off the component values, essentially by
inspection.

To use this observation in network synthesis, we need to find a way to link input
impedance explicitly with the transfer function to be synthesized. Fortunately, it’s
conceptually straightforward to do so. The power transfer function tells us how much
input power makes it to the load; we can then easily compute how much is reflected
back to the source. Using the same relationship between load impedance and reflec-
tion coefficient used in developing the Smith chart permits the derivation of the filter
input impedance.

Darlington’s method for implementing this set of operations begins with a simple
application of energy conservation to the system depicted in Figure 22.28. Because
the ladder itself is lossless, the average power delivered to the load must equal that
supplied to the input of the ladder. Recognizing that power is transferred only to the
real part, Rin, of the input impedance Zin, the power balance criterion implies

|Iin|2Rin = |VL|2
R
. (85)

Noting in turn that the input current is simply

Iin = VS

R + Zin (86)

allows us to write(∣∣∣∣ VS

R + Zin
∣∣∣∣

2

Rin = |VL|2
R

)
�⇒

∣∣∣∣VLVS
∣∣∣∣

2

= RRin

|R + Zin|2 . (87)

Having expressed the desired filter’s transfer function in terms of the known ter-
mination and a network input impedance, we next determine that network impedance
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indirectly through an intermediate step (due to Darlington) employing an auxiliary
function defined as follows:42

|A(jω)|2 = 1 − 4

∣∣∣∣VLVS
∣∣∣∣

2

= 1 − 4
RRin

|R + Zin|2 = |R + Zin|2 − 4RRin
|R + Zin|2 . (88)

We next expand the numerator of the final equation by expressing the input impedance
explicitly in terms of its real and imaginary parts, leading to the following sequence
of equations:

|R + Zin|2 − 4RRin
|R + Zin|2 = (R + Rin)2 +X2

in − 4RRin

|R + Zin|2 = R2 + R2
in +X2

in − 2RRin

|R + Zin|2 ,

(89)
which simplifies to

|A(jω)|2 = |R − Zin|2
|R + Zin|2 . (90)

Letting s = jω and solving for Zin finally yields two expressions for the input
impedance in terms of the auxiliary function and the termination resistance:

Zin = R [1 − A(s)]
[1 + A(s)] ; (91)

Zin = R [1 + A(s)]
[1 − A(s)] . (92)

Note that these two solutions correspond to two distinct but equivalent networks.
Furthermore, observe that the two expressions for Zin are in fact reciprocals of each
other if the termination resistance is of unit value. Using normalized values through-
out the synthesis procedure thus simplifies the computation of the element values for
the two solutions. One need only denormalize values as a final step after the hard
part of the synthesis has been completed.

An illustrative example will help to elucidate details of the method and simulta-
neously expose some subtleties that require careful handling. Specifically, consider
the Butterworth filter example of Section 22.5.1. The normalized squared-magnitude
response of the desired filter is

|H(jω)|2 = 1

1 + ε2(ω/ωp)2n
. (93)

To maintain consistency with the development in this appendix, we note that

42 The auxiliary function may seem somewhat mysterious initially, but note from its form that it is
precisely the reflected power as a function of frequency. As stated in the main body of the text,
there is a bi-unique relationship between reflection and load impedance (where the latter is here
the input impedance of the terminated ladder), so knowing the reflection coefficient is equivalent
to knowing the input impedance of the ladder. You may also recall that this bi-unique relationship
between reflection coefficient and impedance is the basis for the Smith chart.
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4

∣∣∣∣VLVS
∣∣∣∣

2

= |H(jω)|2 = 1

1 + ε2(ω/ωp)2n
, (94)

where the factor of 4 accounts for the fact that |VL/VS | has a value of 0.5 at DC,
according to the block diagram description of our filter. Computing the auxiliary
function is then a straightforward exercise that, after normalizing to a unit passband
frequency, yields

|A(jω)|2 = 1 − 4

∣∣∣∣VLVS
∣∣∣∣

2

= 1 − |H(jω)|2 = ε2ω2n

1 + ε2ω2n
. (95)

We see that the factor of 4 inherent in the definition of Darlington’s auxiliary function
cancels out when a filter’s transfer function template, |H(jω)|, has been normalized
to unit DC gain, simplifying the math somewhat.

Now let s = jω (so that ω2 = −s2) and recognize that |A(jω)|2 = A(s)A(−s)
with this substitution. That is, the squared magnitude of the auxiliary function is
the product of two terms whose poles are algebraic inverses of each other. Here we
encounter the first subtlety: We seek the function A(s), but we are given only its
magnitude squared. We actually want only that part of |A(jω)|2 that has no poles
or zeros in the right half-plane; in the language of network theorists, we require a
Hurwitz (minimum phase) polynomial. We therefore need to find the roots of the nu-
merator and denominator polynomials of Eqn. 95, discard the right half-plane roots,
and then reconstruct a polynomial from the surviving roots in order to discover the
A(s) we’re looking for.43 If the polynomial cannot be factored readily by inspection
or other convenient means, one must use a numerical root finder. This step is surpris-
ingly fraught with peril for the unwary, because the numerical accuracy required in
computing the roots can sometimes be ludicrously greater than the accuracy required
of the final component values.44 The numerator in the example of Eqn. 95 requires
no special handling, so this root-finding business is limited to the denominator here.

In this particular example, we are fortunate because we can find the roots without
excessive agony. We start with:(

|A(jω)|2 = ε2ω2n

1 + ε2ω2n

)
�⇒ A(s)A(−s) = ε2s2n

1 + ε2s2n
, (96)

43 If, as in this example, there are multiple roots at the origin, preserve half of them (they will always
occur in pairs).

44 Of the great many root-finding algorithms in existence, filter designers overwhelmingly favor
Laguerre’s method. Despite the lack of any formal proof of its general convergence properties,
extensive experience has shown that this venerable method is surprisingly robust in practice. In
particular, it handles the especially challenging case of repeated roots with remarkable grace. For
detailed information on this algorithm, see W. H. Press et al., Numerical Recipes, Cambridge Uni-
versity Press (any edition). Also valuable is H. J. Orchard, “The Laguerre Method for Finding
the Zeros of Polynomials,” IEEE Trans. Circuits and Systems, v. 36, no. 11, November 1989, pp.
1377–81.
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from which we see that we wish to solve for the poles of A(s) by finding the values
of s for which

1 + ε2s2n = 0. (97)

Equivalently, we wish to solve

s2n = − 1

ε2
. (98)

We therefore seek values of s that produce a purely negative number. This ob-
servation is the key to the solution, for expressing the number −1 as an appropriate
imaginary power of e allows us to write

s2n = − 1

ε2
= 1

ε2
ej(2k+1)π , (99)

where the index k takes on values from 0 to 2n − 1 (actually, any sequence of 2n
consecutive integers will do).

The solutions to this equation are therefore

sk = 1

ε(1/n)
e [j(2k+1)π]/(2n). (100)

For our fourth-order example:

s0 = 1

ε(1/n)
ej(π/8); (101)

s1 = 1

ε(1/n)
ej(3π/8). (102)

Those first two roots are in the right half-plane and so are ignored.
Continuing, we have(
s2 = 1

ε(1/n)
ej(5π/8)

)

�⇒ τ2 = 1

s2
= ε(1/n)ej(−5π/8) ≈ ε(1/n)[−0.38268 − j0.92388]; (103)

τ3 = ε(1/n)ej(−7π/8) ≈ ε(1/n)[−0.92388 − j0.38268], (104)

τ4 = ε(1/n)ej(−9π/8) ≈ ε(1/n)[−0.92388 + j0.38268], (105)

τ5 = ε(1/n)ej(−11π/8) ≈ ε(1/n)[−0.38268 + j0.92388], (106)

which completes the discovery of the four left half-plane roots.
Note that we have chosen to express the roots as time constants. This maneuver

allows reconstruction of the auxiliary function by multiplying together terms of the
form

(τs + 1), (107)

making it easier to express A(s) with the correct coefficients to give it the required
unit magnitude at high frequencies (see Eqn. 96).
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We discard the remaining two roots,

s6 = 1

ε(1/n)
ej(13π/8), (108)

s7 = 1

ε(1/n)
ej(15π/8), (109)

because they have positive real parts.
Now that we have the four relevant roots, we can complete the derivation of the

auxiliary function:

A(s) = εs4

(τ2 s − 1)(τ3s − 1)(τ4 s − 1)(τ5s − 1)
. (110)

Normalizing the termination to unit resistance gives us the desired input impedance
functions:

Zin =
1 − εs4

(τ2 s − 1)(τ3s − 1)(τ4 s − 1)(τ5s − 1)

1 + εs4

(τ2 s − 1)(τ3s − 1)(τ4 s − 1)(τ5s − 1)

; (111)

Zin =
1 + εs4

(τ2 s − 1)(τ3s − 1)(τ4 s − 1)(τ5s − 1)

1 − εs4

(τ2 s − 1)(τ3s − 1)(τ4 s − 1)(τ5s − 1)

. (112)

These expressions simplify a little to

Zin = (τ2 s − 1)(τ3s − 1)(τ4 s − 1)(τ5s − 1)− εs4

(τ2 s − 1)(τ3s − 1)(τ4 s − 1)(τ5s − 1)+ εs4
, (113)

Zin = (τ2 s − 1)(τ3s − 1)(τ4 s − 1)(τ5s − 1)+ εs4

(τ2 s − 1)(τ3s − 1)(τ4 s − 1)(τ5s − 1)− εs4
. (114)

To save labor from this point on, we will ignore the synthesis option implicit in
Eqn. 114. It will be clear from what follows how one may base a network on that
equation, so neglect of this second option represents no conceptual loss.

Substituting the appropriate roots into Eqn. 113 yields, after some simplification,

Zin = [k2s2 + s(2ka)+ 1][k2s2 + s(2kb)+ 1] − εs4

[k2s2 + s(2ka)+ 1][k2s2 + s(2kb)+ 1] + εs4
, (115)

where
k = ε(1/4); a ≈ 0.38268, b ≈ 0.92388. (116)

Further simplifications yield

Zin = εs4 + s 3[2k3(a + b)] + s2[2k2(1 + 2ab)] + s[2k(a + b)] + 1 − εs4

εs4 + s 3[2k3(a + b)] + s2[2k2(1 + 2ab)] + s[2k(a + b)] + 1 + εs4

(117)
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Table 22.13. Component
values for 1-GHz, 1-dB,
fourth-order low-pass

Butterworth filter
(Z = 50 �)

L first

L1 = 5.1441 nH
C2 = 4.9675 pF
L3 = 12.419 nH
C4 = 2.0576 pF

and so, at last, we have

Zin = s 3[2k3(a + b)] + s2[2k2(1 + 2ab)] + s[2k(a + b)] + 1

2εs4 + s 3[2k3(a + b)] + s2[2k2(1 + 2ab)] + s[2k(a + b)] + 1
. (118)

Next, generate a continued fractions expression for Zin. At every step of the syn-
thetic division, divide the polynomial of higher order by the one of lower order,
reversing operands as needed all along the way (you will notice that terms drop out
in pairwise fashion as the division proceeds). For example, since the numerator of
Eqn. 118 is of lower order, we divide it into the denominator polynomial as the first
step of the expansion.

Executing the synthetic division yields the following sequence of terms, each
of which yields an inductive reactance and capacitive admittance in alternation (it
doesn’t matter which choice you begin with):

s
k

a + b = sL1; (119)

s
k(a + b)

2ab
= sC2; (120)

s
8k(ab)2

(a + b)(4ab − 1)
= sL3; (121)

and, finally,

s
k(a + b)(4ab − 1)

2ab
= sC4. (122)

Completing the design by denormalizing the component values, we obtain the
“L first” version of the filter presented in the section on Butterworth filters; see Ta-
ble 22.13. Thanks to reciprocity combined with equal terminations, you may reverse
the roles of input and output with no change in the filter transfer function. Doing so
would yield the “C first” filter option. This flexibility is sometimes of value in allow-
ing you to absorb parasitics that might be different (either in magnitude or character)
at the two ports.
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774 CHAPTER 22 LUMPED FILTERS

You can see from this example that manual synthesis can involve considerable
labor and also presents many opportunities for error (imagine carrying out these pro-
cedures for, say, an eleventh-order filter, and you’ll get the idea). The straightforward
nature of the process, however, lends itself nicely to automation. Numerous filter de-
sign tools are readily available to do the hard work for you. Particularly attractive
is the program L ADDER, in part because it is free but also because its education-
focused feature set includes options to display the results of each synthesis step as
the design proceeds.45

22.7 APPENDIX B: ELL IPT IC INTEGR ALS,
FUNC TIONS, AND FILTERS

As mentioned in the main body of this chapter, the design of Cauer filters depends on
the mathematics of elliptic functions. But if the word elliptic has nothing to do with
the Chebyshev filter’s distribution of poles along (half ) an ellipse, where does the
term come from? And how can it possibly relate to filter design? This appendix, a
brief tutorial on the subject of elliptic functions, is intended to bridge the gap between
the expositions of some elementary filter handbooks and more advanced treatments
of the subject. Readers who are uninterested in the mathematical details are invited
(indeed, urged) to skip over this material, and feed the pages to a goat.

22.7.1 WHY ARE THEY ‘ ‘ELL IPT IC’ ’?

The need to solve a physical problem often stimulates initial work on a particular
topic in mathematics, but it is also often the case that the field subsequently moves
far away from those origins. This process is frequently abetted by those mathemati-
cians who don’t want to taint their work with any obvious connection to physical
reality. And so it is with elliptic functions and integrals.

If the reader has taken a course in integral calculus, the following problem (and
the corresponding method of solution) may be familiar: Calculate the length of a
circular arc from, say, 15◦ to 38◦ for a circle of radius a. A calculus-based solu-
tion is to integrate the equation for differential arc length over the indicated interval.
It’s not considered a particularly difficult problem, and it shows up routinely as a
homework exercise or illustrative classroom example in introductory integral calcu-
lus courses (partly because the answer can be verified with a simple, non–calculus
based derivation).

If you attempt to answer the analogous question for the arc length or circumference
of an ellipse, however, the situation changes from almost trivial to nigh impossible.
You obtain an integral that stubbornly defies evaluation by methods taught in standard
calculus courses. In fact, it has been proven rigorously that the general evaluation

45 R. D. Koller and B. Wilamowski, “LADDER – A Microcomputer Tool for Passive Filter Design
and Simulation,” IEEE Trans. Education, v. 39, no. 4, November 1996, pp. 478–87.
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F IGURE 22.29. Ellipse inscribed within a circle

of these elliptical integrals requires the use of numerical methods. Prior to the ready
availability of computational tools, vast tables (perhaps computed with the use of se-
ries expansions) were the only way for most engineers to obtain actual answers in
other than symbolic form.

Computational impediments are hardly the only barriers to comprehension. For ex-
ample, the authors of Numerical Recipes note, with dry understatement, that “one of
the harder things about using elliptic integrals is the notational thicket that surrounds
the subject in the literature.”46 Differing notational conventions abound. Further-
more, what today are called elliptical integrals were once called elliptical functions.
The latter term now refers to a certain class of functions defined in reference to ellip-
tical integrals, as we’ll see. Just be aware of this semantic difference when reading
through the literature on the subject.

Here, we follow the notational conventions of E. Jahnke and F. Emde.47 The ra-
tionale for this choice can be understood with reference to Figure 22.29, where we
have inscribed an ellipse inside a circle of radius a. Additionally, we have drawn a
ray from the origin to point 3 on this circle and have also dropped a perpendicular
down to the x-axis from point 3. Finally, note that we define positive angles clock-
wise, relative to the vertical axis.

The equation for the ellipse is

x 2

a2
+ y2

b2
= 1, (123)

where a and b are the lengths of the semimajor and semiminor axes, respectively.

46 W. H. Press et al. (Cambridge University Press, 1986).
47 An excellent introduction to elliptic integrals may be found in H. W. Reddick and F. H. Miller,

Advanced Mathematics for Engineers, 3rd ed., Wiley, NewYork, 1955. That text follows the same
notational conventions as do Jahnke and Emde in their Tables of Functions with Formulae and
Curves (Dover, New York, 1945).
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776 CHAPTER 22 LUMPED FILTERS

The arc length along the ellipse from, say, point 1 to point 2 is readily found by first
computing the coordinates of the point 2. By inspection, the x-coordinate is simply

x = a · sinφ. (124)

Finding the y-coordinate of point 2 requires only a little more work. Substituting
Eqn. 124 into Eqn. 123 and solving for y yields

y = b

a

√
a2 − x 2 = b

a

√
a2 − (a · sinφ)2 = b cosφ. (125)

There’s probably an elegant geometric construction that would yield this result more
directly, but we’re happy to find any way at all.

Now, arc length in general is expressed as

s =
∫ √

dx 2 + dy2. (126)

Substituting appropriately for the quantities in the integrand yields

s =
∫ √

(a cosφ)2 + (b sinφ)2 dφ =
∫ √

a2[1 − (sinφ)2] + (b sinφ)2 dφ. (127)

After simplifying and cleaning up the notation a bit (using ψ to denote the dummy
variable of integration and reserving φ for the upper limit of integration), we obtain

s = a
∫ φ

0

√
1 − k2(sinψ)2 dψ , (128)

where k is the eccentricity of the ellipse:

k =
√

1 − b2

a2
=

√
a2 − b2

a
. (129)

From the figure it should be clear that k, which is zero in the special case of a circle,
cannot exceed unity.48

When the semimajor axis a is of unit length, the integral is known as the elliptic
integral of the second kind:

E(k,φ) =
∫ φ

0

√
1 − k2(sinψ)2 dψ. (130)

The choice of E may be construed mnemonically as directly representing elliptical
arc length in the ordinary geometric sense of the word.

Because the foregoing is relatively clear and certainly physically relevant, we must
now begin some artful obfuscation. In the language of the subject, the eccentricity k

48 Nonetheless, extensions of this branch of mathematics can accommodate values of k in excess of
unity (and complex values, as well), but it is difficult there to articulate a simple connection to the
original picture.
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is renamed the modulus and the upper limit φ the amplitude. Just to make a confus-
ing subject even more so, many texts and tables instead employ the modular angle
(simply the arcsine of the modulus k) rather than k itself:

k = sin θ. (131)

In addition to the modulus, one often encounters the complementary modulus:

k ′ = cos θ, (132)

so that
k ′ =

√
1 − k2. (133)

The reason that the integral under consideration is of the second kind is simply due
to the order in which mathematicians (principally Abel and Jacobi, after pioneering
work by Legendre) chose to classify them.

Returning now to our ellipse, it is evident that setting the amplitude equal to π/2
and evaluating the integral yields the arc length over one quadrant. Because of the
ellipse’s symmetry, knowing this arc length is sufficient to compute the entire circum-
ference. The corresponding integral is thus known as the complete elliptic integral
of the second kind. It is denoted by E(k), or often simply E:

E(k) =
∫ π/2

0

√
1 − k2(sinψ)2 dψ. (134)

The total circumference of an ellipse is thus 4aE(k).
Elliptic integrals of the first kind are similar, except that the integrand is the recip-

rocal of that for integrals of the second kind:

F(k,φ) =
∫ φ

0

1√
1 − k2(sinψ)2

dψ. (135)

The designation F reminds us that the corresponding integral is of the first kind.
These are the integrals we encounter in designing elliptic filters, and also in solving
rigorously for the oscillation period of a swinging pendulum.49

22.7.2 ELL IPT IC FUNC TIONS

Earlier, we mentioned that elliptic integrals were once called elliptic functions, and
that the latter term is now reserved for a collection of functions defined in terms of
elliptic integrals. We now define those elliptic functions, beginning by recalling that
the phase angle φ is also known as the amplitude of the elliptic integral of the first

49 Since you’re no doubt dying to know, the oscillation period of a pendulum in a vacuum is given
rigorously by 4(L/g)1/2[F(k, π/2)], where L is the length of the pendulum, g is the acceleration
due to gravity, and k is the sine of half the pendulum’s peak angular displacement with respect to
the vertical axis.
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kind. If the integral itself is regarded as a function of this angle, then the inverse of
this function is the amplitude. By convention, the integral in this context is usually
known not as F but rather by u (again, don’t ask why):

φ = am u. (136)

If one desires to remind the reader explicitly that u depends on the modulus k as well,
one may also write:

φ = am(u, mod k). (137)

Since the amplitude is itself a phase angle, one may use it as an argument of stan-
dard trigonometric functions, defining at last three elliptic functions:

sinφ ≡ sin am u ≡ sn u, (138)

cosφ ≡
√

1 − (sn u)2 ≡ cos am u ≡ cn u, (139)√
1 − k2(sinφ)2 ≡ <φ ≡ dn u. (140)

When k = 0, the first two elliptic functions converge to ordinary sinφ and cosφ,
respectively. When k = 1, the former function converges to the conventional hyper-
bolic tangent. In a real sense, then, elliptic functions may be viewed as generalized
trigonometric functions that continuously change from ordinary to hyperbolic func-
tions as the modulus varies from zero to unity. The continuity of this behavior is the
basis of many methods for accurately computing the values of elliptic functions.

Various ratios of these functions define still other elliptic functions. The first and
second letter of the function name come from the first letters of the numerator and
denominator functions comprising it. For example,

cd u = cn u

dn u
(141)

is one such function. It also just happens to arise directly in the computation of the
zero locations of elliptic filters.

22.7.3 NUMERICAL EVALUATION OF
ELL IPT IC FUNC TIONS

As stated earlier, elliptic integrals can’t be evaluated using elementary functions (i.e.,
algebraic, trigonometric, and exponential functions – and their inverses). A straight-
forward (but quite inefficient) numerical method is to expand the integrand in a power
series (using, e.g., the binomial theorem) and then integrate the result term by term.
For those in need of a refresher, here’s the binomial series:

(1 + x)n = 1 + nx + n(n− 1)x 2

2!
+ n(n− 1)(n− 2)x3

3!
+ · · · . (142)

It is with similar approaches that the first tables of elliptic integrals were originally
assembled. In this age of readily available computation, it is often easier to imple-
ment an algorithm than to locate such tables.
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It is easiest to provide series expansions for the complete elliptic integrals, so
that’s all we’ll present here. Even though several intermediate steps are not shown,
the reader should be able to fill in the blanks if determined to do so. The procedure
outlined in the development so far ultimately results in relatively compact expres-
sions, as seen in the following series:

F(k) = π

2

[
1 +

(
1

2

)2

k2 +
(

1 · 3

2 · 4

)2

k 4 +
(

1 · 3 · 5

2 · 4 · 6

)2

k6 + · · ·
]
; (143)

E(k) = π

2

[
1 −

(
1

2

)2

k2 −
(

1 · 3

2 · 4

)2
k 4

3
−

(
1 · 3 · 5

2 · 4 · 6

)2
k6

5
− · · ·

]
. (144)

We’ll present significantly more computationally efficient methods a little later
on, but the straightforward series converge fast enough for values of k not too close
to unity that using them is not out of the question. A perfectly respectable alterna-
tive is to use the approximating series presented in the main part of the chapter – if a
20-ppb worst-case error is acceptable (as it almost always is).

For amplitudes other than π/2, following our straightforward recipe generally re-
quires the repeated use of the following recursion formula for the integral of sinn ψ :∫

(sinψ)n dψ = −(sinψ)n−1 cosψ

n
+ n− 1

n

∫
(sinψ)n−2 dψ. (145)

Computation of incomplete elliptic integrals in this manner thus can be a somewhat
messy affair. Worse, the resulting series may converge rather slowly (particular for
moduli close to unity). Consequently it’s not surprising that clever folks have la-
bored hard to develop efficient, rapidly converging methods. However, explaining
their derivation is harder than describing their operation, so we’ll simply present the
following algorithms and point the reader to the relevant literature for the details.50

In order to compute the incomplete integral of the first kind, F(k,φ), first define
a sequence (Fn, kn,φn) of three numbers as follows:

Fn+1 = Fn

1 + √
1 − k2

n

, (146)

kn+1 = 2

1 + √
1 − k2

n

− 1; (147)

tan(φn+1 − φn) = (tanφn)
(√

1 − k2
n

)
, (148)

with initial values φ0 = φ, k0 = k, and F0 = 1.
Eqn. 148 is probably more intuitively appealing (but less computationally effi-

cient) when expressed as

φn+1 = φn + atan
[
(tanφn)

√
1 − k2

n

]
, (149)

where “atan” denotes arctangent.

50 The algorithms presented here are adapted from those in J. A. Ball’s Algorithms for RPN Cal-
culators (Wiley, New York, 1978). Ball, in turn, is implementing an extremely useful method
originally due to Landen.
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Iterate until kn = 0 within some tolerance (e.g., 10−10). Then,

F(k,φ) = FNφN , (150)

where N is the value of n during the final iteration. Convergence is usually so
rapid that fewer than a dozen iterations are normally required to achieve quite high
accuracies.

There are also analogous procedures for evaluating incomplete elliptic integrals
of the second kind, but since we don’t need them in filter design, we omit their
consideration.

Computation of the complete integrals (both of them) is also easily performed
with rapidly converging methods. Here, first define a pair of numbers (an, gn) and
then successively compute their arithmetic and geometric means:

an+1 = an + gn
2

; (151)

gn+1 = √
angn, (152)

with initial values a−1 = (1 + k) and g−1 = (1 − k).
Iterate, while keeping track of the intermediate number pairs. You will notice that

the arithmetic and geometric mean values converge. Continue iterating until an =
gn within the desired tolerance (e.g., 10−10). Then,

F(k) = π

2aN
, (153)

where N is again the value of n at the final iteration, and

E(k) = F(k)[2 − (a2
0 − g2

0)− 2(a2
1 − g2

1 )− 4(a2
2 − g2

2)− · · · ]

2
, (154)

where the coefficients of the difference-of-squares terms are simple powers of 2.
Finally, anyone wishing to understand elliptic functions from an electrical engi-

neer’s point of view is absolutely required to read Harry Orchard’s superbly written
papers on the subject. The most recent of these summarizes his wisdom accumu-
lated over a half-century of experience with elliptic filter design and is an invaluable
resource for the uninitiated in particular.51

22.7.4 CHEESY APPROXIM ATE FOR MUL AS

Although this chapter is allegedly about filter design, we introduced elliptic func-
tions by considering the problem of computing elliptical arc length. We now close
by presenting a supplement to the more formal methods already presented. Here is a
simple closed-form approximation for the circumference of an ellipse, one of several
from the remarkable Ramanujan:

51 H. J. Orchard and A. N. Willson, “Elliptic Functions for Filter Design,” IEEE Trans. Circuits and
Systems I, v. 44, no. 4, April 1997, pp. 273–87.
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circumference ≈ π[
3(a + b)− √

(3a + b)(3b + a) ]. (155)

His formula allows us to deduce that

E(k) ≈ π

4

[
3
(
1 +

√
1 − k2

) −
√(

3 +
√

1 − k2
)(

3
√

1 − k2 + 1
) ]
. (156)

This formula yields values that agree with those in published tables to the fourth dec-
imal place for values of k from zero up to a bit more than 0.93. The error grows as k
approaches unity from there, but it remains below 0.5%.

22.8 APPENDIX C: DESIGN TABLES FOR
COM MON LOW-PASS FILTERS

Here we provide tables of component values for several of the low-pass filter types dis-
cussed in the main part of this chapter. Normalized element values for the constant-k,
Butterworth, Chebyshev, and Bessel low-pass filters are given up to the ninth order.
In all the tables that follow, the normalizations are to1� and1-rps passband frequency
(or cutoff frequency in the case of constant-k and m-derived types). For a different
impedance level, scale the element impedances proportionately. For a 50-� system,
for example, multiply all inductances by 50 and divide all capacitances by 50. For a
different cutoff frequency, scale each element impedance inversely with frequency.
For a 10-Grps cutoff, for example, divide each inductance and capacitance by 1010.

As stated in the main part of the chapter, you may also derive high-pass, bandpass,
and bandstop filters from the low-pass prototypes. The relevant transformations are
summarized at the very end of this appendix. It’s important to emphasize that these
transformations preserve the shape of the magnitude response but do not necessarily
preserve phase response. This observation is particularly relevant for the Bessel–
Thomson filter. One cannot derive a linear-phase bandpass filter directly from the
low-pass prototype using the standard transformations, unfortunately. Those requir-
ing a linear phase bandpass filter must derive them using other means, such as direct
synthesis.

All of the tables are universal in the sense that one has a choice of starting with
either a shunt capacitor or series inductor. The latter choice is indicated in parenthe-
ses. You may also freely exchange the input and output ports of any of these filters,
with no change in transfer characteristics. This statement applies even to asym-
metrical filters (e.g., even-order Butterworths) because this attribute depends not on
symmetry but rather on the reciprocal nature of these networks, combined with equal
source and load terminations.

In Figure 22.30, the quantities L and C are those for a 1-rps prototype, which ex-
plains the initial frequency normalization shown in the first column of the figure. The
element values are also normalized to 1�, so perform a final denormalization to the
actual impedance level to complete the design:

L = RLn; (157)

C = (1/R)Cn. (158)
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782 CHAPTER 22 LUMPED FILTERS

Table 22.14. Normalized element values for constant-k low-pass filters

C1 (L1) L2 (C2 ) C3 (L3) L4 (C4) C5 (L5) L6 (C6) C7 (L7) L8 (C8) C9 (L9)

1.000 2.000 1.000
1.000 2.000 2.000 2.000 1.000
1.000 2.000 2.000 2.000 2.000 2.000 1.000
1.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 1.000

Table 22.15. Normalized element values for Butterworth low-pass filters (ε = 1)

C1 (L1) L2 (C2 ) C3 (L3) L4 (C4) C5 (L5) L6 (C6) C7 (L7) L8 (C8) C9 (L9)

2.000
1.414 1.414
1.000 2.000 1.000
0.7654 1.848 1.848 0.7654
0.6180 1.618 2.000 1.618 0.6180
0.518 1.414 1.932 1.932 1.414 0.518
0.445 1.247 1.802 2.000 1.802 1.247 0.445
0.390 1.111 1.663 1.962 1.962 1.663 1.111 0.390
0.347 1.000 1.532 1.879 2.000 1.879 1.532 1.000 0.347

Table 22.16. Normalized element values for 0.1-dB–ripple
Chebyshev low-pass filter

C1 (L1) L2 (C2 ) C3 (L3) L4 (C4) C5 (L5) L6 (C6) C7 (L7) L8 (C8) C9 (L9)

1.032 1.147 1.032
1.147 1.371 1.975 1.371 1.147
1.181 1.423 2.097 1.573 2.097 1.423 1.181
1.196 1.443 2.135 1.617 2.205 1.617 2.135 1.443 1.196

Table 22.17. Normalized element values for 0.5-dB–ripple
Chebyshev low-pass filter

C1 (L1) L2 (C2 ) C3 (L3) L4 (C4) C5 (L5) L6 (C6) C7 (L7) L8 (C8) C9 (L9)

1.596 1.097 1.596
1.706 1.230 2.541 1.230 1.706
1.737 1.258 2.638 1.344 2.638 1.258 1.737
1.750 1.269 2.668 1.367 2.724 1.367 2.668 1.269 1.750
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22.8 APPENDIX C: DESIGN TABLES FOR COM MON LOW-PASS FILTERS 783

Table 22.18. Normalized element values for 1.0-dB–ripple
Chebyshev low-pass filter

C1 (L1) L2 (C2 ) C3 (L3) L4 (C4) C5 (L5) L6 (C6) C7 (L7) L8 (C8) C9 (L9)

2.024 0.994 2.024
2.135 1.091 3.000 1.091 2.135
2.167 1.112 3.094 1.174 3.094 1.112 2.167
2.180 1.119 3.121 1.190 3.175 1.190 3.121 1.119 2.180

Table 22.19. Normalized element values for 1-rps Bessel–Thomson low-pass filters

C1 (L1) L2 (C2 ) C3 (L3) L4 (C4) C5 (L5) L6 (C6) C7 (L7) L8 (C8) C9 (L9)

2.0000
2.1478 0.5755
2.2034 0.9705 0.3374
2.2404 1.0815 0.6725 0.2334
2.2582 1.1110 0.8040 0.5072 0.1743
2.2645 1.1126 0.8538 0.6392 0.4002 0.1365
2.2659 1.1052 0.8690 0.7020 0.5249 0.3259 0.1106
2.2656 1.0956 0.8695 0.7303 0.5936 0.4409 0.2719 0.0919
2.2649 1.0863 0.8639 0.7407 0.6306 0.5108 0.3770 0.2313 0.0780

F IGURE 22.30. Summary of transformations from
low-pass prototype into other shapes
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C H A P T E R T W E N T Y-T H R E E

MICROSTRIP F I LTERS

23.1 BACKGROUND

In this chapter, we consider a collection of methods for designing distributed filters.
All derive from lumped prototypes to exploit as much as possible the considerable
body of literature on the subject of lumped filter design.1 In some cases, such trans-
lations into distributed form involve straightforward replacement of lumped compo-
nents by transmission line approximations. In other cases, the translation is based
on the recognition that certain principles originally developed in connection with
lumped circuits have a broader applicability. Overall, these translations generally
provide passband performance that closely matches that of their lumped progenitors.
However, distributed filters present a unique challenge: At some point beyond the
stopband frequency, their response will pop back up, even if the lumped counterpart’s
response decays monotonically. The periodic impedance behavior of transmission
lines necessarily produces these re-entrant modes.2 Identification and careful man-
agement of these modes are some of the preoccupations of the microwave filter engi-
neer. Experience teaches us that, even after a great deal of iterating, we must accept
the inevitable: our filters will always behave differently from their lumped prototypes.
With our expectations properly lowered, we can now proceed to some derivations.

23.2 DISTRIBUTED FILTERS FROM LUMPED PROTOTYPES

One straightforward method developed for some of the earliest microwave filters still
works well for many applications: Simply replace the discrete inductors and capac-
itors of a lumped prototype with equivalent elements made from transmission line

1 There are direct design methods that do not rely on approximating lumped prototypes. Better fil-
ters result, but at the expense of procedures that are difficult to understand or explain intuitively.
We focus on indirect methods because they work well enough for all but the most demanding ap-
plications and are readily explained with intuitively appealing concepts.

2 However, it should not be inferred that the overall response is then simply periodic. If the elements
are of equal length, then simple periodicity will result.

784
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23.2 DISTRIBUTED FILTERS FROM LUMPED PROTOTYPES 785

segments.3 As discussed in Chapter 7, transmission lines approximate well the be-
havior of lumped elements if the sections are a suitably small fraction of an electrical
wavelength in extent. A short section of open-circuited line functions well as a ca-
pacitor, while a short piece of shorted line behaves as an inductor.

However, one important consideration is that, as frequency increases, all lines ul-
timately cease to be very short relative to a wavelength. The attendant impedance
variation consequently alters the filter response. For example, a microstrip low-pass
filter may have a response that pops back up again within the nominal stopband. Be-
cause such spurious responses are hardly unique to low-pass filters, one must evaluate
carefully any proposed realization to assure that all spurious responses are benign in
magnitude or location.

To derive one simple method for converting lumped prototypes into distributed
filters, first recall that the input impedance of a short piece of open-circuited line is
approximately

Z ≈ Z0

jω(l/v)
, (1)

so that its equivalent capacitance is

C = l

vZ0
= l

√
εr,eff

cZ0
. (2)

One can expect about 1.3 pF/cm with 50-� lines on FR4, but we are also interested
in the maximum practical values we might be able to obtain. With relatively low im-
pedance lines, it might be practical to achieve roughly 4 pF/cm. At 1 GHz, the need to
maintain element dimensions well below a wavelength limits us to lengths well below
about 15 cm (again, in FR4) or total capacitances below approximately 5–10 pF. This
capacitance limit diminishes quadratically as frequency increases because capaci-
tance is proportional to area, which (in turn) is proportional to wavelength squared.

Similarly, for the inductance of a short line terminated in a short circuit, we have

L = lZ0

v
= lZ0

√
εr,eff

c
. (3)

As we’ve often cited, a typical value for inductance is roughly of the order of1nH/mm
for the narrowest (highest-impedance) practical lines in FR4. Again, at 1 GHz, we
find a maximum practical inductance value of ∼10–20 nH. This approximate induc-
tance limit is inversely proportional to frequency.

A key observation is that these relationships can be reasonable approximations
even when the line segments are not terminated in perfect open or short circuits. The

3 See e.g. G. L. Ragan (ed.), Microwave Transmission Circuits (MIT Rad. Lab. Ser., v. 9), chap. 10
(by Fano and Lawson), McGraw-Hill, New York, 1948. Also see the chapter by Seymour Cohn
in volume 2 of Very High Frequency Techniques, Radio Research Laboratory, McGraw-Hill, New
York, 1947. These early expositions are necessarily incomplete but historically important.
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786 CHAPTER 23 MICROSTRIP F I LTERS

foregoing equations remain reasonably accurate as long as the segments are termi-
nated in impedances that approximate opens or shorts relative to the characteristic
impedance of the lines:

Z(z)

Z0
=

ZL

Z0
+ j tanβz

1 + j
ZL

Z0
tanβz

, (4)

where we follow the conventions that the coordinate z is a positive value4 with the
load positioned at z = 0, and

β = ω/v. (5)

We therefore conclude that, as long as Z0 is very different from ZL, the imped-
ance converges to simple forms. For ZL � Z0, a short line of length l will have a
normalized impedance of

Z(z)

Z0
≈ j tanβl, (6)

which is inductive. For ZL � Z0,

Z(z)

Z0
≈ 1

j tanβl
, (7)

which is capacitive. To validate the approximations, we should therefore choose Z0

as low as possible (or practical) to make a capacitor and choose Z0 as high as possi-
ble to make an inductor.

One cannot specify arbitrarily high characteristic impedances, of course, because
there is always a lower bound on the width of lines that may be fabricated reliably.
Assuming a typical manufacturing tolerance of 2 mil (50µm) and supposing that this
variation is allowed to represent at most 20% of the total width, one may assume a
minimum practical linewidth of about 10 mil (250 µm).5 Hence, on 1.6-mm FR4,
practical line impedances rarely exceed about 200 �, with 150 � being a commonly
encountered maximum value.

There are also practical bounds on the maximum width of the lines because, again,
all linear dimensions of a microstrip element must be small compared to a wavelength
at all frequencies of interest in order to assure close approximation to lumped ele-
ment behavior. The associated implicit lower bound on impedance depends on the
operational frequency range; but as a general rule, characteristic impedances below
approximately 10 � are rarely used, with 15 � a common value. In realizing micro-
strip filters, then, it’s important to keep in mind that practical impedance levels in
FR4 are thus generally within about a factor of 3–4 of 50 �.

4 Sorry to switch conventions on you mid-book. Fortunately, it doesn’t matter as long as we don’t
switch conventions mid-derivation.

5 If cost is not a concern, you may induce some vendors to offer lines as narrow as 1 mil (25 µm) on
rigid substrates.
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23.2 DISTRIBUTED FILTERS FROM LUMPED PROTOTYPES 787

23.2.1 STEPPED- IMPEDANCE FILTERS

Perhaps the simplest method for transforming discrete prototypes into microstrip
form uses only the narrowest and widest lines that may be comfortably (or repeat-
ably) fabricated. As in the preceding discussion, the narrow lines implement series
inductors and the wide lines implement shunt capacitors. In the stepped-impedance
filter, lengths are adjusted as necessary to produce the desired component values.
There are thus lines of only three widths in such filters (the third is for input /output
lines of Z0 in impedance).

As one might expect, the fundamentally approximate nature of the transforma-
tions limits its utility. Stepped-impedance filters are thus best used in applications
where one may tolerate relatively large errors relative to the lumped filter proto-
type’s response, or where you don’t mind iterating endlessly in an effort to refine the
filter. These errors generally increase in significance as one moves above the cut-
off frequency, because the true transmission line nature of the segments becomes
more apparent as frequency increases. With careful design, the stepped-impedance
and lumped-parameter filters might behave similarly below and near the design cut-
off frequency. Beyond cutoff, however, the stepped-impedance filter typically fails
to roll off as quickly as the prototype and, indeed, the ultimate stopband attenua-
tion may fail to meet specifications. Furthermore, the filter’s response may exhibit
numerous spurious passbands. Because the individual segments are generally of un-
equal length, the filter response will not exhibit any simple periodicity.

That said, let’s examine how to make a low-pass filter using the stepped-impedance
architecture. As a specific example, assume that we desire a cutoff frequency of
1 GHz and that we use a constant-k prototype as the basis for the microstrip filter.
If the prototype has two complete T-sections (or three complete π -sections) then the
stepped-impedance filter will have seven segments, corresponding to the seven com-
ponents of the lumped prototype. Assume further that the minimum and maximum
realizable line impedances are 15 � and 200 �.6 To match the lumped element values
of the prototype we require an inductance of 15.915 nH, which we implement with
the narrowest available line, whose length is given by

l = vL

Z0,max

= fλL

Z0,max

, (8)

which works out to a normalized length for the inductor of about 28.647◦ at the cut-
off frequency.7 Similarly, the main 6.3662-pF capacitors should have a length

6 Such a high value may be difficult when substrates other than FR4 are used. Most (but thankfully
not all) microwave substrates have considerably higher dielectric constants, making it especially
challenging to realize high-impedance lines.

7 Matching the impedances at the cutoff frequency is somewhat arbitrary, but it’s a good choice
because the behavior in the vicinity of cutoff is often of greatest concern. Also, we provide compo-
nent values to a ridiculous number of digits to facilitate comparisons you might want to undertake
independently.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511812941.024
Downloaded from https://www.cambridge.org/core. The Librarian-Seeley Historical Library, on 18 Dec 2019 at 06:17:52, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511812941.024
https://www.cambridge.org/core


788 CHAPTER 23 MICROSTRIP F I LTERS

F IGURE 23.1. Stepped impedance filter example (not drawn exactly to scale)

F IGURE 23.2. Stepped-impedance filter behavior over
large range of frequency and attenuation (Puff )

l = vCZ0,min = fλCZ0,min, (9)

which corresponds to a normalized length of about 28.742◦. The half-section termi-
nating capacitors are exactly half that length.

The layout of the filter appears approximately as sketched in Figure 23.1, where
the lumped prototype is also shown for reference. Simulations of this filter with Puff
show about 3.9 dB of attenuation at the design cutoff frequency of 1 GHz, and a −3-
dB bandwidth of 989 MHz. Somewhat different answers would be obtained from
a field solver because Puff does not take into account the field distortions that ac-
company step changes in width. The particularly dramatic step changes here cause
definitely noticeable effects (such as those arising from an effective shortening of
the high-impedance sections, just as in the T-junction shortening we noted in Chap-
ter 7). Also, at frequencies high enough that the capacitive sections are not separated
by large distances (say, several dielectric thicknesses), the mutual coupling will alter
the response as well. Nevertheless, the basic features we care about here are well
captured by the Puff simulations.

The simulations (see Figure 23.2) show that the stepped-impedance filter’s per-
formance is similar to that of the constant-k prototype, whose attenuation is 10 dB
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23.2 DISTRIBUTED FILTERS FROM LUMPED PROTOTYPES 789

F IGURE 23.3. Stub low-pass filter example (not drawn to scale)

at the cutoff frequency and whose −3-dB bandwidth is 934 MHz. The maximum
stopband attenuation exceeds 60 dB but does not exhibit the monotonic increase with
frequency of its lumped cousin. Perhaps more important than those differences is
the existence of the 2–3-GHz–wide spurious passbands centered around 6.2 GHz for
this particular implementation. The lumped constant-k filter, of course, ideally ex-
hibits no such spurious passbands, and this difference in behavior must be taken into
account in any practical implementation of distributed filters, stepped-impedance or
otherwise.

23.2.2 STUB LOW-PASS FILTER

An alternative implementation continues to use narrow lines as series inductors but
realizes the capacitors as open-circuited stubs connected to this inductive backbone.
If these stubs can be made narrower than those used in a conventional stepped im-
pedance filter, the resulting structure can correspond more closely to the lumped
prototype it’s based on – at least at frequencies where the stub lengths remain short
relative to a wavelength.

In Figure 23.3, note that the stubs are placed on alternating sides of the main
line. This arrangement is not mandatory, but it does reduce the effects of unwanted
coupling between adjacent (or even more remote) lines. Such coupling can alter the
filter’s frequency response in undesired ways. As suggested earlier, line-to-line sep-
arations that are at least 4–5 times the dielectric thickness usually suffice to avoid
such problems.

The stub values (but not necessarily their shapes) are exactly the same as for the
stepped-impedance filter; they’re just arranged differently. Simulations of this de-
sign reveal a 6.5-dB attenuation at 1 GHz and a 3-dB attenuation at 965 MHz. Thus,
the passband characteristics are a little closer to those of the lumped prototype than
is the case for the stepped-impedance translation.

Zooming out to see the filter’s response over a wide dynamic range of frequency
and attenuation (Figure 23.4), we see that the stub filter also has spurious passbands
in the same general frequency range as the stepped-impedance implementation. The
peaks are smaller and narrower, however, and there is thus less overall transmission
by these re-entrant modes. Also, unlike the stepped-impedance filter, the stopband
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790 CHAPTER 23 MICROSTRIP F I LTERS

F IGURE 23.4. Stub filter behavior over large range
of attenuation and frequency (Puff )

attenuation exceeds 100 dB over some frequency interval. Such large attenuations are
never observed in practice, of course, for ever-present loss prevents infinitely deep
notches. Even if the lines were lossless, there is still essentially no such thing as
ten orders of magnitude of isolation in real systems. In any event, devising a clean
measurement to verify such an attenuation is itself a significant instrumentation and
fixturing challenge.

We’ve observed in this case that the stub filter seems to be better than the stepped-
impedance version. This superiority is observed generally, because the mapping
from the lumped prototype is less inexact for the stub implementation than for the
stepped-impedance realization. However, this generality does not free you from the
obligation to verify it in any case that matters.

If a needed stub is of uncomfortably low impedance then it is best realized as two
paralleled stubs, one on each side of the backbone. However, one must worry about
the total length of the stubs, because troublesome transverse resonances can occur at
higher frequencies where the total length is an odd multiple of a half-wavelength.

A question that is often asked concerns the precise position along the backbone
at which a stub is “really” connected. For electrically narrow stubs, it’s reasonable
to regard the point of attachment as halfway across the stub, widthwise. At higher
frequencies or for very low impedance (wide) stubs, it gets progressively more dif-
ficult to answer the question satisfactorily. A common solution is to use a radial
stub, whose narrow point of attachment reduces the uncertainty considerably; see
Figure 23.5.

Design degrees of freedom include the radius of the wedge, the angular displace-
ment, and the width (or radius) at the point of attachment (too small a width incurs
a penalty in excessive series resistance). Radial stubs may be used in pairs, in a but-
terfly arrangement, to provide stubs of very low impedance (values below 10 � are
readily achievable). As is apparent from Figure 23.6, it’s usually impractical to pack
more than a small number of such stubs along a line.
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23.2 DISTRIBUTED FILTERS FROM LUMPED PROTOTYPES 791

F IGURE 23.5. Filter with radial stub

F IGURE 23.6. Line with butterfly stub

The radial stub will behave as a good approximation of a capacitance as long as
its radius is very small relative to a wavelength. Its ability to produce a large, high-
quality capacitance makes the radial (or butterfly) stub an extremely popular element
for power supply bypassing, both in board-level modules and in integrated circuits.
In those applications accuracy is rarely important, so a parallel-plate approximation
frequently suffices:

C ≈ εαr 2
L/2H, (10)

where we have assumed that the outer radius is much greater than the radius at the
point of attachment. The dielectric constant in Eqn. 10 is the full (not relative) di-
electric constant, and the approximation assumes that fringing is negligible so that
the effective and bulk dielectric constants are essentially equal.

For the very fussy, one may consider the radial stub as itself part of a special kind
of transmission line, just as an ordinary stub is a part of an ordinary transmission
line. There’s very little published material that treats the general case, but the fol-
lowing intuitively obvious equations may be found in an HP applications note from
days gone by:8

X = HZ0

αri

cos(θi − ψL)

sin(ψi − ψL)
, (11)

8 Applications Note 976, “Broadband Microstrip Mixer Design – The Butterfly Mixer,” 1980. In
turn, the note cites J. R. Vinding, “Radial Line Stubs as Elements in Strip Line Circuits,” IEEE
NEREM Record, 1967, pp. 108–9. The equations we present in this chapter are slightly corrected
versions of those given in the applications note.
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792 CHAPTER 23 MICROSTRIP F I LTERS

where X is the stub reactance, H is the dielectric thickness, α is the angle (in radians)
swept out by the radial stub, ri is the radius at the point of attachment, and

Z0 = η0√
εr

√
J 2

0 (kri) + N 2
0 (kri)

J 2
1 (kri) + N 2

1 (kri)
, (12)

k = 2π
√
εr

λ0
; (13)

θi = tan−1

[
N0(kri)

J0(kri)

]
, (14)

ψi = tan−1

[
− J1(kri)

N1(kri)

]
, (15)

ψL = tan−1

[
− J1(krL)

N1(krL)

]
. (16)

Recall that η0 is the impedance of free space,

η0 = √
µ0/ε0. (17)

It might also help to know that rL is the total radius and that Jn and Nn are nth-order
Bessel functions of the first and second kind (respectively).

23.2.3 ELL IPT IC, m -DERIVED, AND
INVERSE CHEBYSHEV LOW-PASS

As we saw in the previous chapter, lumped filters with nulls (i.e., finite transmis-
sion zeros) in their frequency response (such as m-derived, inverse Chebyshev, and
elliptic filters) may be implemented either with shunt resonators in the series path
or with series resonators connected to ground. Microstrip filters based on the latter
configuration tend to be more conveniently realizable. The series resonators are im-
plemented, again, with inductors built out of short segments of narrow line and with
capacitors as short segments of wide line; see Figure 23.7.

As with lumped elliptic filters, the most practical microstrip implementations
place the lowest-frequency resonator in the center, progressively working toward
the input /output ports in alternation with each successive resonator. If you derive
the distributed version from a lumped prototype, the proper sequencing will already
have been taken care of during the prototype’s synthesis.

As an illustrative design, let us translate a simple lumped elliptic filter into distrib-
uted form using the approach just outlined. Basing an implementation directly on the
example in Section 22.5.4 presents some difficulties because of its use of a parallel-
resonant tank as a notch element. Implementing such a network in microstrip form
is not trivial. Fortunately, a notch may be produced just as well by a series-resonant
branch in shunt with the main filter path, and filter design tools such as L ADDER
synthesize this option as well. The results of that synthesis are shown in Figure 23.8.
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23.2 DISTRIBUTED FILTERS FROM LUMPED PROTOTYPES 793

F IGURE 23.7. Example layout for low-pass filters with
finite transmission zeros (not drawn to scale)

F IGURE 23.8. Lumped low-pass 1-GHz elliptic filter prototypes
(shunt trap on left; series trap on right)

In evaluating what follows, bear in mind that the lumped prototype produces a 1-
dB passband ripple, a passband edge of 1 GHz, and a stopband that begins at 3 GHz.
The minimum attenuation required in the stopband is 30 dB.

As seen in Figure 23.8, the implementation on the right is much more readily
translated into microstrip stub form. Following the same procedure as before, the
15.526-nH inductance is implemented by a 200-� line whose electrical length is
about 27.947◦ at the cutoff frequency, and the 0.718-nH inductor by a line with a
length of 1.292◦. Similarly, the 2.9825-pF capacitor is implemented by a 15-� line
having an electrical length of about 13.465◦. Simulations of the filter are shown in
the next two figures.

These simulations reveal that the passband error is below 1 dB out to 1.05 GHz,
very close to the 1-GHz value of the lumped prototype. The attenuation at the 3-GHz
stopband edge is a tiny bit under 40 dB, well in excess of the 30-dB specification.
Furthermore, the characteristic stopband notch of an elliptic filter is evident just a
little beyond the stopband edge.9 See Figure 23.9. We do expect the response to
pop back up somewhat in the stopband, but this distributed version fails to meet the

9 Again, finite line Q will prevent notches of infinite depth and will also cause insertion loss and
other impairments.
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794 CHAPTER 23 MICROSTRIP F I LTERS

F IGURE 23.9. Detail of passband–stopband transition for
stub version of elliptic filter

F IGURE 23.10. Stub elliptic filter over large range of frequency and attenuation

30-dB attenuation requirement for frequencies greater than about 4.3 GHz, unlike
the lumped prototype.10

Examination of the response over a larger range of frequency and attenuation
(Figure 23.10) highlights further the differences between a lumped elliptic filter and
this stub version. The high-frequency attenuation of this filter is disappointingly
small. Again, such differences between the lumped and distributed implementations
must be accounted for in any design. For example, if greater ultimate attenuation is
required, this elliptic filter could be cascaded with another filter whose passband–
stopband transition is lazier but whose stopband performance is superior. By thus

10 In all fairness, however, we should remind you that component parasitics can cause lumped filters
to misbehave just as badly, if not worse.
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23.2 DISTRIBUTED FILTERS FROM LUMPED PROTOTYPES 795

designing two filters, each of which is optimized with a different set of objectives in
mind, it may be possible to produce a combination that has all of the desired attributes.

Aside from that fundamental consideration, the layout of such filters can prove
troublesome at high frequencies, where the length of the high-impedance inductive
backbone shrinks to such an extent that the wide capacitive stubs bump into adja-
cent structures. Even before explicit collisions occur, coupling between the lines can
alter the transfer function in unexpected ways. In such cases, it may be necessary
to lengthen the backbone by using sections that are wider than the minimum value,
at the cost of somewhat worse backbone impedance behavior. Similarly, it may be
helpful to implement the capacitive stubs with lines of less than maximum width.
Because all of these strategies involve trade-offs of their own, you can expect painful,
iterative design of these types of filters, with no guarantee that your design objectives
will be met.

23.2.4 COM MENSUR ATE-L INE F ILTERS

From Eqns. 2 and 3, we see that both the line length and characteristic impedance
are degrees of freedom; you may vary either or both to produce a desired inductance
or capacitance. The stepped-impedance filter arbitrarily uses just two fixed, extreme
values of line impedance, varying the length as necessary. A complementary (but still
arbitrary) alternative method instead fixes the line length and varies the impedance as
necessary. Because all lines are of equal length, the resulting filter is said to use com-
mensurate lines.11 As with the stepped-impedance filter, short segments of shorted
line implement inductors, and short pieces of open-circuited line act as capacitors.
In Richard’s original description of the method, short is specifically taken to mean
an eighth of a wavelength at the cutoff frequency: Each inductor or capacitor of a
lumped prototype is thus replaced by a λ/8 length of transmission line, whose char-
acteristic impedance is varied to produce the desired component value. Because of
the equality of lengths, the resulting filter response is perfectly periodic in frequency
(unlike the response of a typical stepped-impedance or stub filter) and may be consid-
ered the result of aliasing the lumped prototype’s response. After a little thought, you
can deduce that the response repeats every 4fc, where fc is the frequency at which the
lines are of λ/8 length. These unavoidable re-entrant modes are usually regarded as
undesired, but they are also sometimes exploited (as in the half-wave filter described
in Section 23.2.5). It is also sometimes the case that, over some range of frequencies,
a steeper-than-expected transition between passband and stopband results from the
aliasing. The primary virtue of Richard’s transformation is the predictability of these

11 P. I. Richard, “Resistor-Transmission Line Circuits,” Proc. IRE, v. 36, February 1948, pp. 217–20.
This paper expands on the methods described in the Cohn reference of footnote 3, and it is the
first to offer a coherent theoretical framework for converting lumped filters into distributed ones.
Richard has the interesting distinction of having received a Ph.D. from Harvard for this work in
two years without first having obtained a bachelor’s degree.
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796 CHAPTER 23 MICROSTRIP F I LTERS

F IGURE 23.11. Circuits for deriving the most useful of Kuroda’s identities

re-entrant modes. No fancy simulations are needed to identify where they occur. Be-
yond that, there is nothing particularly magical about commensurate lines. Indeed,
fixing the lengths robs us of an important degree of freedom. Given the constraints
on practical widths, losing that degree of freedom may in fact prevent us from ever
meeting the design objectives. In such cases, it may be valuable to consider the stub
filter as an alternative.

Because of the importance of λ/8 lines in this method, it’s worthwhile examining
some of their properties:

Z

Z0
=

ZL

Z0
+ j tan π

4

1 + j
ZL

Z0
tan π

4

=
ZL

Z0
+ j

1 + j
ZL

Z0

= j + ZL

Z0

1 + j
ZL

Z0

. (18)

The wisdom of Richard’s choice of λ/8 is now clear, for the tangent terms become
unity and so leave rather simple expressions. When such a line is terminated in
a short circuit, the normalized impedance is simply j , or purely inductive. When
open-circuited, the impedance is −j (purely capacitive). Thus, implementation of
Richard’s method involves replacement of capacitors with open-circuited λ/8 lines
and of inductors with shorted ones. Regrettably, there’s no practical way to implement
the required shorted lines in microstrip. Fortunately, we may exploit transmission
line behavior to transform series inductors into shunt capacitors. Commonly known
as Kuroda’s identities, such transformations allow us to avoid having to synthesize
grounded elements, making the filter considerably more amenable to fabrication in
microstrip form.12 Formally, there are four Kuroda identities, but half are redundant
by reciprocity. Of the remaining two, the one Kuroda identity we will use performs
the transformations we seek. The characteristic impedances of the stubs are design
degrees of freedom that allow modification of scale factors to produce more practi-
cal designs. See Figure 23.11, where the impedances indicated next to the inductance
and capacitor are the characteristic impedances of the shorted and open-circuited λ/8
lines (respectively) that implement those elements.

12 Every standard microwave engineering textbook (and a great many papers) refer to these identities,
but almost universally without a specific citation. The first publication with these identities is evi-
dently H. Ozaki and J. Ishii, “Synthesis of a Class of Stripline Filters,” IRE Trans. Circuit Theory,
v. 5, June 1958, pp. 104–9. Ozaki and Ishii state that Kuroda submitted these identities as part of
his Ph.D. thesis in 1955. Kuroda himself apparently never published them in any English-language
paper.
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23.2 DISTRIBUTED FILTERS FROM LUMPED PROTOTYPES 797

We can derive the relevant identity by determining the input impedances and then
setting them equal to each other. For the line loaded by the series LR impedance,

Zin1 = Z1

R+jZ2
Z1

+ j

1 + j
R+jZ2

Z1

= Z1
R + j(Z1 + Z2)

(Z1 − Z2) + jR
= R + j(Z1 + Z2)(

1 − Z2
Z1

) + j R
Z1

. (19)

Similarly, for the other circuit,

Zin2 =
[
Z4

R
Z4

+ j

1 + j R
Z4

]
‖ Z3

j
=

[
Z4

R+jZ4
Z4+jR

]
Z3

j
[
Z4

R+jZ4
Z4+jR

] + Z3

= [Z4(R + jZ4)]Z3

j [Z4(R + jZ4)] + Z3(Z4 + jR)
, (20)

which simplifies to

Zin2 = [R + jZ4]Z3

j [R + jZ4] + Z3
(
1 + j R

Z4

) = R + jZ4(
1 − Z4

Z3

) + j R
Z3

[
1 + Z3

Z4

] . (21)

Setting the corresponding terms equal in the two input impedance expressions
yields:

Z4 = Z1 + Z2, (22)

Z4

Z3
= Z2

Z1
, (23)

1 + Z3
Z4

Z3
= 1

Z1
. (24)

We hope that this seemingly overconstrained equation set (we seek only Z3 and Z4,
but have three equations) contains no conflicts. Indeed, closer examination reveals
that Eqn. 24 contains no information not present in the previous two equations, so
there is no problem.

Solving Eqn. 23 for Z4, setting it equal to Eqn. 22, and then solving for Z3, we
obtain

Z3 = Z1

(
1 + Z1

Z2

)
. (25)

So, Eqn. 22 and Eqn. 25 describe one of the identities we will use.
We may also solve the foregoing system of equations for Z1 and Z2, yielding the

same identity in reverse (useful if we start with a shunt capacitance and wish to con-
vert it to a series inductance):

Z1 = Z3 ‖ Z4; (26)

Z2 = Z2
4

Z3 + Z4
. (27)

Taken together, Eqn. 22 and Eqns. 25–27 describe the equivalencies shown in Fig-
ure 23.12. Again, the indicated impedances are those of the transmission line seg-
ments that realize the elements.
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798 CHAPTER 23 MICROSTRIP F I LTERS

F IGURE 23.12. The relevant Kuroda identities

F IGURE 23.13. Filter prior to Kuroda transformation
(all stubs are λ/8 long at cutoff frequency)

Let’s now use this ability to convert between series inductances and shunt capac-
itances to implement the constant-k filter that we’ve already translated into various
distributed forms. The lumped prototype we’ve been using is a seventh-order fil-
ter with shunt capacitors on the ends. However, it turns out that substantially fewer
transformations are required if there are an even number of inductors (there’s a com-
plexity associated with a central inductor that requires additional transformations;
feel free to try the odd-number-of-inductors case and discover for yourself what hap-
pens). Thus, we will use the alternative (but completely equivalent) prototype form
with series inductors at the ends. The capacitors are 6.4662 pF and the main induc-
tors are 15.915 nH (half this value for the inductors at the ends).

It is customary to design with normalized element values, deferring denormaliza-
tion until the very end in order to simplify intermediate calculations. That, in turn,
reduces the likelihood of errors, so we’ll follow this custom in the sequel.

First let’s find the impedance of the line that would implement the main series
inductor:

Z2 = ωL = 100 �, (28)

or a normalized value of 2. The inductors on the ends would be implemented with
lines whose impedances are half this value. Let’s also find the impedance of the lines
that would implement the capacitors:

ZC = 1/ωC = 25 �, (29)

for a normalized value of 0.5.
Before transformation by Kuroda’s identities, the filter appears as in Figure 23.13.

Application of the identities requires that a λ/8 line segment be connected to each
element that is to be transformed, but no ordinary lumped prototype (including that
of Figure 23.13) will satisfy this fundamental requirement. The solution is to note

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511812941.024
Downloaded from https://www.cambridge.org/core. The Librarian-Seeley Historical Library, on 18 Dec 2019 at 06:17:52, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511812941.024
https://www.cambridge.org/core


23.2 DISTRIBUTED FILTERS FROM LUMPED PROTOTYPES 799

F IGURE 23.14. Application of Kuroda’s identities to end inductors of example filter

F IGURE 23.15. Sequence of filters generated by
repeated application of Kuroda identities

that we may freely add any length of line to the input and output ports of a filter, pro-
vided those added lines are of impedance Z0. The addition of redundant λ/8-long
segments, called unit elements in the literature, thus does not alter the filter response
at all, but it does enable us to apply the Kuroda relationships to transform the end
elements. Furthermore, each application of the Kuroda identity generates a new λ/8
line segment, which can be paired with still another element to be transformed, and
so on. Thus we can work our way toward the center from the ends, one transforma-
tion at a time, until the elements in the center of the filter have been transformed into
shunt form. Then, if necessary, we can work back toward the input and output ports
of the filter to (re-)transform any remaining series elements back into shunt stubs.

Thus, in our specific example, the first step is to convert the end inductors into shunt
capacitors after adding a unit element (UE ) to each end, as shown in Figure 23.14.
Proceeding in a like manner generates the sequence of equivalent filters displayed in
Figure 23.15.
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800 CHAPTER 23 MICROSTRIP F I LTERS

F IGURE 23.16. Final normalized seventh-order low-pass filter
after all transformations have been completed

F IGURE 23.17. One possible 1-GHz microstrip stub filter layout (not drawn to scale)

To finish the removal of all series inductances, we need to perform a last trans-
formation to convert the two outer pairs of series inductors into shunt capacitive
equivalents (these need not be transformed simultaneously, but it’s expedient to do
so). After taking care of the corresponding transformations, we obtain the final de-
sign at last. See Figure 23.16.

The very last steps are to denormalize the element values to obtain actual line im-
pedances, and then to simulate the design to verify that no errors have crept into
the process along the way (especially important given the relatively large number of
transformations). After computing the denormalized line impedances, a preliminary
filter layout follows as shown in Figure 23.17. The center-to-center spacing of the
stubs is the same as the stub length (even though the crude manual rendering of the
figure may not quite show this).

Notice that the illustrative layout varies only the top boundary to adjust backbone
impedances. While not necessarily the electrical optimum, its simplicity has made
this choice almost universal.

Simulating this design results in the transmission plotted in Figure 23.18, from
which it is seen that the filter performs as expected. The attenuation at 1 GHz is
−9.5 dB (compared to the −10-dB value of the constant-k lumped prototype), and
the −3-dB point occurs at about 917 MHz (versus the lumped prototype’s 934 MHz).
Plotting over a larger range of frequency and attenuation (Figure 23.19) clearly shows
the expected periodicity of this filter’s response.

23.2.5 HALF-WAVE (RE-ENTR ANT) ‘ ‘BANDPASS’ ’ F I LTERS

We’ve noted that the low-pass filter with commensurate λ/8 lines has a frequency re-
sponse that repeats every 4fc, wherefc is the low-pass cutoff frequency. It’s important
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23.2 DISTRIBUTED FILTERS FROM LUMPED PROTOTYPES 801

F IGURE 23.18. Simulated performance of final filter
after repeated application of Kuroda identities

F IGURE 23.19. Filter performance over larger frequency and attenuation range

to emphasize that these periodic re-entrant passbands are not necessarily useless or
undesirable. As a specific example to underscore this idea, consider using the first
spurious passband of Figure 23.19 to produce a bandpass filter. Its passband shape
is approximately that of the constant-k low-pass filter on which it is based. That ex-
ample is hardly unique: we have noted that any commensurate-line low-pass filter
using Richard’s λ/8 lines will produce responses with this periodicity, presenting
many opportunities for bandpass filtering. For example, at very high frequencies,
λ/8 lines might have impractically small dimensions and so one might use a higher-
order passband. This practice of deliberately employing a re-entrant mode is known
as overmoding. It is especially popular in millimeter- and submillimeter-wave work,
where principal-mode structures would be too small for practical fabrication.

In noncritical applications, there is a class of bandpass filters that may be designed
easily with pencil and paper. Just as stepped-impedance low-pass filters are trivially
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802 CHAPTER 23 MICROSTRIP F I LTERS

F IGURE 23.20. Half-wave “bandpass” filter
(commensurate stepped-impedance version)

designed, we might imagine basing a bandpass filter on a special case of the stepped-
impedance low-pass filter in which the element lengths are commensurate. Note that
if lines are λ/8 in length at a low-pass filter’s band edge, then the center of the first
bandpass response corresponds to a wavelength of λ/2. We thus select these com-
mensurate element lengths equal to λ/2 at the center of the intended passband; see
Figure 23.20. When using this structure as a bandpass filter, it’s important to keep in
mind the fact that it remains a low-pass filter as well and to accommodate this reality
in any design.

For an alternative view of how this filter works, recall that a transmission line
of length nλ/2 reproduces at its input the load impedance. For our particular im-
plementation, this condition implies a driving-point impedance that is equal to Z0,
allowing maximum power transfer into the filter and, ultimately, to the load. At fre-
quencies where the electrical length of the filter sections differs significantly from
the half-wavelength condition, power is coupled into (and out of ) the filter less effi-
ciently because of the gross impedance mismatches at the various interfaces. From
this description, we see that the filter indeed behaves as a bandpass filter, with pe-
riodically disposed passbands centered around frequencies at which the line lengths
are integer multiples of a half-wavelength.

The off-center rejection is maximized by ensuring as great a mismatch as possi-
ble between the impedances of the narrow and wide filter sections. This observation
implies that better stopband rejection is obtained when each wide half-wavelength
section is made as low in impedance (wide) as possible and each narrow section as
high in impedance as possible, just as in any stepped-impedance filter. The more
extreme the impedance ratio, the deeper the stopband. Furthermore, the stopband
rejection increases as the number of sections increases.

The simulation graphed in Figure 23.21 is of the layout in Figure 23.20, using
15-� and 200-� lines chosen λ/8 in length at 250 MHz to produce a first re-entrant
mode centered about 1 GHz. The responses centered at DC, 1 GHz, and 2 GHz are
evident from this simulation. To obtain a close approximation of this response in
practical filters, you must make due allowance for the T-junction shortening effect
by lengthening the high-impedance lines some small amount (roughly of the order
of the dielectric thickness; see Chapter 7 for more refined estimates).
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23.3 COUPLED RESONATOR BANDPASS FILTERS 803

F IGURE 23.21. Response of commensurate-line stepped impedance filter

F IGURE 23.22. Yet another simulation of yet another filter

As a final observation we should note that, although we introduced this filter with
commensurate lines, it is not an absolute requirement that all lines be of equal length.
Just as a crazy example, making the low-impedance sections λ/4 in length at 1 GHz –
and connecting them together with a high-impedance section that is λ/2 in length –
produces extremely narrow passbands centered at odd multiples of 1 GHz and broad
passbands centered at even multiples of 1 GHz. See Figure 23.22.

Simulators such as Puff are invaluable for rapidly evaluating the effects of vary-
ing the length, width, and number of segments. The reader is encouraged to use Puff
or another appropriate simulation tool to explore how the response shape changes as
the lengths are varied and to attempt explaining why the results are what they are.

23.3 COUPLED RESONATOR BANDPASS FILTERS

The half-wave “bandpass” filter exploits a parasitic effect to yield a bandpass re-
sponse that is more or less an accidental by-product of designing a low-pass filter.
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F IGURE 23.23. Classic lumped bandpass filter

We now consider how to design filters that provide the bandpass characteristic di-
rectly, rather than incidentally.

23.3.1 LUMPED BANDPASS FILTERS

As we’ve seen, the classical lumped bandpass filter consists of parallel resonators
coupled together with series resonant arms (Figure 23.23). Recall that this struc-
ture evolves from a low-pass prototype whose bandwidth and other characteristics
are those of the bandpass filter you ultimately want. In this particular example, the
low-pass prototype has two shunt capacitors and one series inductor. All three ele-
ments are paired with their duals to resonate at the desired center frequency. That is,
each of the shunt capacitors is shunted by an appropriate inductance, and a capaci-
tance is placed in series with each series inductance. It is the series resonant section
resulting from that last step that unfortunately prevents a straightforward translation
of this lumped prototype into microstrip form. Even in lumped implementations, it is
considered at least a nuisance to have to focus design attention on two different types
of resonators. For example, some parasitic capacitance in shunt with an inductor of
a parallel tank may be tolerated, for it may form part of the resonator. However, the
inductors in the series arms must have much lower parasitic capacitances, because
capacitances there cannot be so readily absorbed.

The first step in solving this problem for both lumped and distributed bandpass fil-
ters is to recognize that the series and parallel resonators are duals of each other. That
is, if we compute the reciprocal of one network’s impedance, we obtain the imped-
ance of the other network (within a scale factor of appropriate dimensions to make
the units work out). Specifically, consider the impedance of a series LC resonator,

ZS = sLs + 1

sCs

, (30)

and of a parallel LC tank,

ZP = sLp ‖ 1

sCp

= sLp

s2LpCp + 1
. (31)

If we compute the reciprocal of the series network’s impedance, say, we obtain

Zeq = K2

ZS

= K2

sLs + 1/sCs

= K2(sCs)

s2LsCs + 1
, (32)
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23.3 COUPLED RESONATOR BANDPASS FILTERS 805

F IGURE 23.24. All-parallel tank bandpass
filter using immittance inverters

where we have introduced the factor K (with dimensions of impedance) to fix the
units problem. We may also express the relationships in terms of admittances, of
course, as follows:

Yeq = J 2

YS

, (33)

where once again we have introduced an appropriate scaling factor, J. To keep the
units honest, J must have the dimensions of admittance.

Because the forms of Eqn. 31 and Eqn. 32 are the same, we see that we can indeed
convert series resonators into parallel ones (and vice versa) provided we have net-
works that reciprocate impedances. By equating corresponding terms, we can derive
the necessary design relationships:

K = √
Lp/Cs = √

Ls/Cp; (34)

LsCs = LpCp. (35)

Thus, we set the resonant frequencies equal and then choose the transformation
factor K (or J ) as necessary to satisfy Eqn. 34. As we’ll see, an additional degree of
freedom remains, facilitating the choice of element values within a practical range.
Of course, all of this presupposes that we have impedance inverters at our disposal.
Setting aside for the moment the question of how one realizes such impedance or ad-
mittance reciprocators (collectively called immittance inverters13), we see how neatly
they solve our practical problem with series resonators. If we replace each series res-
onator with a parallel resonator sandwiched in between two inverters, then circuits to
either side of the combination will see a series resonator. We can therefore realize a
bandpass filter using only parallel tanks.

For example, we may convert the circuit of Figure 23.23 into an all-parallel res-
onator equivalent, as shown in Figure 23.24. So, instead of two parallel tanks and
one series resonator, we now have three parallel tanks plus two impedance inverters.

In order to enable complete designs, we need to devise ways of realizing these
inverters. We’ve actually already met one form of impedance reciprocator: the λ/4
transmission line. Of course, it satisfies the λ/4 condition at only a single frequency,

13 The word immittance is a portmanteau that results from combining the words impedance and
admittance. It is frequently misspelled as immitance.
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806 CHAPTER 23 MICROSTRIP F I LTERS

F IGURE 23.25. Commonly used impedance (K )
and admittance (J ) inverters

F IGURE 23.26. Capacitive admittance inverter

so such an inverter is not a broadband element. More serious is that the relatively
small range of practically realizable characteristic impedances limits the utility of
this element as an inverter. That said, it does prove useful on occasion, even though
it is often overlooked as an option.

It’s possible to overcome some of the limitations of a λ/4 line by using any one
of many lumped networks that approximate its behavior. Examples of both imped-
ance and admittance inverters are shown in Figure 23.25. As can be seen from the
examples, J and K are admittance and impedance scaling factors, respectively. Of
course, a network that inverts impedances also necessarily inverts admittances, so
the distinction is somewhat artificial. The difference is simply the way in which you
choose to describe the network’s behavior. Thus, for impedance inverters,

Zeq = K2/Z (36)

while for admittance inverters we have

Yeq = J 2/Y. (37)

Selection of one viewpoint over the other is based on convenience.
We’ll see that theπ -network of capacitors is an especially interesting case for band-

pass filters, so let us verify its admittance-inverting properties. From Figure 23.26,
it’s straightforward to see that the input admittance is
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23.3 COUPLED RESONATOR BANDPASS FILTERS 807

F IGURE 23.27. All-parallel tank bandpass filter using
J -inverters, before combining capacitors

F IGURE 23.28. All-parallel tank bandpass filter using
J -inverters, after combining capacitors

YIN =
[

1

YL − sC
+ 1

sC

]−1

− sC = (YL − sC)sC

sC + (YL − sC)
− sC = −(sC)2

YL

. (38)

This network is thus indeed an immittance inverter, with a characteristic admittance
J equal to the capacitive admittance.

We leave it as an exercise for the reader to verify the other expressions for J and K

given in Figure 23.25. It’s clear from those expressions that the inversions vary with
frequency for these particular networks. Nevertheless, for many narrowband (e.g.,
10–20% bandwidth) bandpass filters, the inversions are sufficiently constant over the
passband to permit the realization of useful filters. Furthermore, because inductive
and capacitive inverters have opposing frequency dependence, alternating them can
increase the overall inversion bandwidth by a factor of 2 or more.

Inspection of the networks has undoubtedly left you wondering about the negative
inductors and capacitors. Because inverters are never used alone, there is no need to
devise a negative element. By choosing the right inverter for a given configuration,
the negative components can always be absorbed into the rest of the network, where
they simply serve to reduce the value of an existing positive capacitance or induc-
tance. This idea is perhaps best illustrated with a specific example, so let’s select a
capacitive impedance inverter for the circuit of Figure 23.24 to produce the circuit
shown in Figure 23.27.

In this first step, note that the parallel resonators indicated within the highlighted
boxes are all tuned to the same frequency as a direct consequence of the low-pass–
bandpass transformation. It is worth keeping this fact in mind, for it will prove valu-
able not only when we consider experimental methods for tuning real filters but also
when we explore translating this circuit into various distributed implementations.

The next step is to combine the tank capacitances with the (negative) capaci-
tances of the J -inverters. This is shown in Figure 23.28. After this absorption of the
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808 CHAPTER 23 MICROSTRIP F I LTERS

F IGURE 23.29. Low-pass, third-order, 1-dB ripple Chebyshev
prototype filter (100 MHz, Z = 50 �)

Table 23.1. Component
values for prototype

100-MHz, 1-dB
Chebyshev low-pass filter

(Z = 50 �)

L C

79.11 nH 64.42 pF

negative capacitances, all network capacitances are positive, as asserted previously.
Even though the resonators no longer have equal resonant frequencies, note that
short-circuiting the resonators surrounding any given one restores the “lost” capaci-
tance and thus restores the resonant frequency. This constancy suggests that a filter
alignment procedure might involve the successive shorting of resonators to permit
the tuning of individual resonators. Again, we will expand on this idea when we con-
sider practical methods for tuning filters.

A Detailed Example

To illustrate the design procedure in detail, let’s consider how to realize a capacitively
coupled bandpass filter. We’ll start with a low-pass prototype, apply the low-pass–
bandpass transformation, and then use immittance inverters to permit an all-shunt
resonator implementation.

Suppose our goal is to design a bandpass filter whose passband extends from
950 MHz to 1.05 GHz. We arbitrarily begin with a third-order 1-dB ripple Cheby-
shev low-pass prototype featuring a ripple bandwidth of100 MHz;14 see Figure 23.29.
The element values for this filter are listed in Table 23.1.

Next, we produce a bandpass version by resonating each element at the geomet-
ric mean of the upper and lower cutoff frequencies. We would not normally worry
about the slight difference between the arithmetic and geometric means because, for

14 We’ve deliberately chosen a somewhat large ripple in order to make a definite ripple readily visi-
ble on magnitude response plots. In practice it is more likely to encounter ripple values of a few
tenths of a dB or less, except in noncritical applications.
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23.3 COUPLED RESONATOR BANDPASS FILTERS 809

F IGURE 23.30. Prototype bandpass filter (100-MHz
bandwidth, 998.75 MHz, Z = 50 �)

Table 23.2. Component values for 100-MHz–bandwidth,
1-dB–ripple, 1-GHz bandpass filter (Z = 50 �)

Lp1, Lp2 Cp1, Cp2 Ls1 Cs1

394.242 pH 64.42 pF 79.11 nH 320.993 fF

F IGURE 23.31. Magnitude and reflectance of prototype
Chebyshev bandpass filter (RFSim99 )

this 10% bandwidth case, the difference between the two means is small enough to be
ignored. However, in the interest of illustrating the procedure precisely, we’ll make
the distinction and continue to retain more digits than are truly sensible. So here, we
produce resonances at about 998.75 MHz; see Figure 23.30. The element values for
this bandpass filter are given in Table 23.2.

Just for reference, the response of the prototype bandpass filter is shown in Fig-
ure 23.31. The 1-dB passband ripple is evident – as is the 100-MHz bandwidth, which
is centered about 0.99875 GHz to an excellent approximation. Close examination
of the magnitude response reveals that the lower and upper −1-dB band edges are
indeed 950 MHz and 1.05 GHz, as designed.

The next step is using immittance inverters to enable replacement of the series res-
onant arm with a parallel resonator. Of the many possible choices for the inverter,
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810 CHAPTER 23 MICROSTRIP F I LTERS

F IGURE 23.32. Bandpass filter before combining capacitors

F IGURE 23.33. Bandpass filter after combining capacitors

we choose the capacitive π -network, given the amount of time we’ve spent under-
standing it and also in anticipation of converting the lumped design into a microstrip
version.

In converting the series resonant branch into a parallel equivalent we have an under-
constrained problem, for we have the freedom to choose three variables (the parallel
LC network element values, as well as the value of J ) when creating an equivalent
of the original two-element series resonant network. We will arbitrarily make the
transformed tank’s inductance, Lp, equal to the other inductances (394.242 pH in this
case).15 This choice reduces the number of different components that one must stock
(in the case of discrete implementations), design, and characterize. Resonating that
capacitance at the center frequency yields the same tank capacitance, Cp, as that of
the other two tanks (64.42 pF).

With these element values, the characteristic admittance J of the inverter is then
set at

J =
√

Cs1

Lp

≈
√

320.993 fF

394.242 pH
≈ 28.534 mS, (39)

corresponding to a characteristic impedance of 35.05 �. The required inverter ca-
pacitance C is then readily computed as

C = J

ω0
= 28.534 mS

(2π · 0.99875 × 109) rps
≈ 4.547 pF. (40)

See Figure 23.32. After combining elements we obtain the final form of the filter, as
shown in Figure 23.33.

15 Because not all low-pass prototypes have equal inductances, not all bandpass filters derived from
them will have equal inductances. The particular example we have chosen just happens to be an
exception.
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23.3 COUPLED RESONATOR BANDPASS FILTERS 811

F IGURE 23.34. Magnitude and reflectance of capacitively
coupled lumped Chebyshev bandpass filter

As a verification step, consider the simulations (Figure 23.34) of the magnitude re-
sponse and reflectance of the capacitively coupled filter. As is apparent, the response
is quite similar to that of the prototype bandpass filter, but a close examination reveals
differences nonetheless. Because the inverter’s characteristic admittance increases
with frequency, the filter response is less symmetrical, favoring more transmission at
higher frequencies. This favoritism is barely noticeable within the passband, although
the lower and upper −1-dB band edges do shift upward a tiny bit (here, to 953 MHz
and 1.053 GHz) and the passband is no longer equiripple (the ripple is somewhat
higher at higher frequencies). For filters of larger fractional bandwidths, the errors
may become objectionable. In such cases, one option is to use slightly modified def-
initions of bandwidth (for the prototype) and center frequency (for the synthesized
bandpass filter) in order to reduce the error caused by frequency-dependent inverters.
In such cases the low-pass prototype should be designed for a bandwidth

(BW ) = f 2
0 (fu − fl)

flfu

; (41)

here fl and fu are the desired lower and upper band-edge frequencies of the final
bandpass filter, whose center frequency f0 is now given by16

f0 = fl + fu −
√
(fu − fl)2 + flfu. (42)

For small fractional bandwidths, these equations converge to the simpler ones we
have been using (i.e., geometric-mean center frequency, and equality of low-pass pro-
totype and bandpass bandwidths). For our particular example, these equations tell us
that the bandwidth of the low-pass prototype should be set to about 104.3 MHz and
that the bandpass filter should be designed for a center frequency of approximately
996.26 MHz.

16 Seymour B. Cohn, “Direct-Coupled-Resonator Filters,” Proc. IRE, February 1957, pp. 187–96.
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812 CHAPTER 23 MICROSTRIP F I LTERS

Also measurable is a slight increase in the ripple within the passband. Greater
differences are apparent further away from the center frequency. Compared with
the original bandpass filter, the capacitively-coupled version has better attenuation
within the lower stopband, but inferior upper stopband attenuation. These differ-
ences do not necessarily represent serious impairments, but their existence must be
accounted for. Had we attempted to design a filter with a significantly broader band-
width, the discrepancies caused by our use of a frequency-dependent immittance
inverter would have been considerably more noticeable. Again, these differences
must be anticipated and accommodated. If the prototype low-pass filter just barely
satisfies requirements, for example, the capacitively coupled version may fail to meet
one or more filter specifications.

Summary of Bandpass Filter Design with Immittance Inverters

Because the derivation of the design procedure we’ve just outlined is spread out over a
number of pages, it’s helpful for future reference to summarize the results succinctly,
in quasirecipe form. Aside from facilitating the design of lumped, capacitively cou-
pled bandpass filters, we’ll see that these equations are also directly useful in the
design of an important class of fully distributed filters.

The first step is to generate a lumped low-pass prototype whose passband and stop-
band characteristics (e.g., ripple and bandwidth) are those that the bandpass filter is to
possess. For the sake of uniformity in notation, we assume that the prototype filter is
normalized to 1-rps bandwidth and 1-� impedance, with both inductances and capac-
itances denoted by the catch-all variable gk (note: these g are not conductances). We
will additionally use subscripts p and s to denote elements that are in shunt (parallel)
sections and in series branches, respectively.

For a bandpass filter of normalized bandwidth (BW ), impedance level Z0, and
center frequency ω0, the shunt capacitances have a value

Cp = gkp

ω0Z0(BW )
(43)

and resonate with added inductors of value

Lp = Z0(BW )

gkpω0
. (44)

Similarly, series inductances are given by

Ls = gksZ0

ω0(BW )
(45)

and resonate with capacitors of value

Cs = (BW )

gksω0Z0
. (46)
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23.3 COUPLED RESONATOR BANDPASS FILTERS 813

Each series resonator may be replaced by a combination of a shunt resonator and
two immittance inverters to permit an all-parallel tank implementation. Arbitrarily
choosing to characterize the inverter with an admittance, we have

J = √
Cs/Lp = √

Cp/Ls. (47)

The characteristic impedance of the resonators, Z0res, need not be the same as the
external system’s impedance. Making them equal does simplify the design by elimi-
nating the need to add impedance matching sections at the input and output, which is
probably why most textbooks do not explicitly identify the additional degree of free-
dom. However, retaining this flexibility is potentially valuable, so for lumped tanks
we will write

Z0res = √
Lp/Cp. (48)

The product of the inverter admittance and the tank impedance then becomes

JZ0res = √
Cs/Lp

√
Lp/Cp = √

Cs/Cp

=
√

(BW )

gksω0Z0res

/
gkp

ω0Z0res(BW )
= (BW )√

gkpgks

, (49)

which may be readily solved for the inverter admittance given the other parameters.
Note that the right-most term in Eqn. 49 is expressed entirely in terms of normal-
ized quantities. Thus, the product JZ0res is readily computed given the normalized
bandwidth and low-pass prototype element values. This computation is repeated as
necessary to convert each series branch into a shunt one, using the appropriate gkpgks

product at each conversion step.
When the tank impedances are not equal to the system impedance, one may use

immittance inverters to provide the required impedance transformations. By analogy
with λ/4 transmission line impedance-matching sections, we see that the desired re-
sult is produced by setting the characteristic impedance of the inverter equal to the
geometric mean of the impedances that are to be matched. Thus, if the prototype
low-pass filter begins with a series inductor of normalized value g1, then matching to
an impedance Z0 requires

J = 1√
Z0ω0L1

= 1√
Z0

g1Z0res

(BW )

= 1

Z0

√
mg1

(BW )

= 1

Z0

√
(BW )

mg1
, (50)

where m = Z0res/Z0. When expressed in the same form as Eqn. 49, this expression
becomes

JZ0 =
√

(BW )

mg1
. (51)

If desired or otherwise appropriate, one may implement these inverters as λ/4 lines
rather than as lumped networks.
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814 CHAPTER 23 MICROSTRIP F I LTERS

F IGURE 23.35. Bandpass filter with lumped resonators
and transmission line inverters

Note that the presence of impedance transformers also allows the source and load
impedances to differ from each other, as well as from Z0. Thus, if gN is the normal-
ized value of the final prototype filter element, then

JZ0 =
√

(BW )

mgN
. (52)

Although it is common for the source and load impedances to be equal, this degree
of freedom occasionally proves valuable in those instances when they are not.

The next step is to select an inverter topology and determine the inverter-element
values needed to produce the required J for each inverter. Then absorb the inverter
elements into the rest of the network to eliminate negative element values. As men-
tioned previously, alternate use of capacitive and inductive inverters extends the band-
width of the inversion. This option is valuable when designing bandpass filters with
large fractional bandwidths (e.g., 30–40%).

Bandpass Filters with Combinations of Lumped and Distributed Elements

With such an emphasis on lumped-element inverters, it’s easy to overlook distrib-
uted inverters – which, after all, are what got us started on this inversion business
in the first place. It is therefore instructive to examine the response of a filter made
with three lumped resonators coupled together with a pair of 35.05-� λ/4 lines act-
ing as inverters (see Figure 23.35). Because this characteristic impedance is well
within the range of practical realization and also because the resonators are identical
in our particular example (instead of almost identical), such a filter might be worth
considering, especially in view of its reasonable performance.

The magnitude response of this filter is shown in Figure 23.36. As is evident,
the passband response indeed corresponds to that of a 1-dB–ripple Chebyshev. Fur-
thermore, the behavior at frequencies well removed from the center is somewhat
better than we observe with the lumped-element inverters. However, the 1-dB–ripple
passband extends from about 954 MHz to 1045 MHz, so there is some reduction
in bandwidth. At the same time, the passband ripple decreases somewhat, to about
0.9 dB. Using Cohn’s more sophisticated equations for center frequency and band-
width would largely correct these slight impairments.

We may produce a completely distributed bandpass filter by replacing the lumped
resonators with a transmission line equivalent. To do so is straightforward in principle,
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23.3 COUPLED RESONATOR BANDPASS FILTERS 815

F IGURE 23.36. Response of bandpass filter with
transmission line coupled lumped resonators

for we may replace the parallel LpCp tank with a shorted λ/4 line whose character-
istic impedance differs only a little from that of the tank:17

Z0stub = π
4

√
Lp/Cp. (53)

Just for reference, when replacing a series LC resonator with an open-circuited λ/4
stub, the corresponding relationship is

Z0stub = 4
π

√
Ls/Cs. (54)

These relationships derive from equating the reactance or admittance slope (i.e.,
dZ/df or dY/df ) near the resonant frequency, rather than at values far from reso-
nance (see Section 23.6).

In our example, the lumped tank’s characteristic impedance is an already low
2.474 �, so the equivalent shorted-line resonator would have an even lower charac-
teristic impedance of 1.943 �. Needless to say, implementing such a low line im-
pedance is practically out of the question, but this problem can be solved by simply
scaling all impedances upward by a common factor and then performing the neces-
sary downward impedance transformations at the input and output ports. The only
limitation is that we must then be mindful not to require excessive characteristic im-
pedances of the inverters. Here, we happen to be marginally fortunate, for scaling all
impedances upward by a factor of about 5–6 produces resonator and inverter imped-
ances that might just barely lie within the range of practically attainable values for
FR4. This case is unusual, for it is all too common for the range of line impedances
to exceed by a large factor what can be accommodated. This problem motivates

17 For very crude back-of-the-envelope calculations, you are usually free to neglect the π/4 factor (it
is certainly easier to remember that way) and the 4/π factor for series equivalents.
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816 CHAPTER 23 MICROSTRIP F I LTERS

F IGURE 23.37. Typical ceramic dielectric bandpass filter

consideration of alternative distributed resonator filters. One of these retains rela-
tively low-impedance distributed resonators but couples them together with lumped
capacitances; the wider range of available values for the latter enables a practical
implementation in many cases. In fact, perhaps the most common (in terms of man-
ufacturing volume) microwave bandpass filters use precisely this architecture. The
filter is made additionally attractive by employing high-dielectric constant materials
to shrink the required volume by large factors. Many cellphone handsets manufac-
tured since the mid-1980s contain at least one filter of this type. Although such filters
are not planar, their prominence justifies a brief description.

As seen in Figure 23.37, a typical filter of this type (sometimes called a monoblock
filter) has a particularly simple structure. A conductive rectangular cavity is filled
with a dielectric material, so that only the top surface is not covered with metal. Typ-
ical dielectric constants of the materials used in these filters range from about 10 to
well beyond 100. While enabling compact filters (e.g., order of 1-cm maximum linear
dimension for low-GHz frequencies), most of these dielectrics are also piezoelectric,
so one must be mindful of microphonics and even the possibility of generating de-
structively high voltages when struck.18 The good news is that the dielectric constants
typically exhibit temperature coefficients below 10 ppm/K, thanks to decades of re-
search effort by materials scientists. Additionally, the dielectrics have very low loss,
so that resonators possess typical Q–frequency products of several terahertz.

Each shorted λ/4 resonator is produced by forming a hole in the dielectric ma-
terial and then plating the walls and bottom of the cylindrical hole with metal. The
dielectric constant and the physical dimensions of the resonators together determine
the resonator characteristic impedance. The coupling between adjacent resonators
is controlled by their mutual proximity, and the capacitive coupling to the input and
output ports is provided by placing metallization an appropriate distance away from
the end resonators. This results in a structure that may be modeled as shown in Fig-
ure 23.38. The high performance of typical units used in handsets is underscored by
observing that their insertion loss generally lies between 1 and 2 dB.

18 Dielectric compositions vary, and are varied all the time, but they frequently involve combinations
of lead, zirconium, barium, strontium, and titanium.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511812941.024
Downloaded from https://www.cambridge.org/core. The Librarian-Seeley Historical Library, on 18 Dec 2019 at 06:17:52, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511812941.024
https://www.cambridge.org/core


23.3 COUPLED RESONATOR BANDPASS FILTERS 817

F IGURE 23.38. Approximate model of ceramic dielectric bandpass filter

F IGURE 23.39. Impractical all-distributed bandpass filter

The resonators have slightly different characteristic impedances, and they are
slightly less than λ/4 in length because of the action of the negative shunt capac-
itances of the admittance inverters that couple the resonators together. These effects
are readily seen in the all-lumped version of this filter; in fact, the lumped prototype
can be translated directly into the form of Figure 23.38 to yield the precise resonator
lengths and impedances.

We see that there are many possible variations on the basic coupled resonator
theme. Returning now to the relevant subset of those forms that is theoretically
amenable to planar implementation, let us simulate the impractical, all-distributed
filter (Figure 23.39) without performing any impedance scaling, just for the sake of
comparison. Doing so, we discover that both the passband ripple and the 1-dB ripple
bandwidth remain smaller than in the all-lumped capacitively coupled implementa-
tion. Replacement of the lumped tanks with the shorted lines causes a negligible
shift in the passband, as it now extends to roughly 1045 MHz from about 953 MHz
(see Figure 23.40). To correct for the ∼8% bandwidth error, one could repeat the
entire filter synthesis procedure by starting with a low-pass prototype whose band-
width is (say) 8–10% larger than the final target. Similarly, any required correction
of the center frequency may be effected through an appropriate modification of the
center frequency used to compute the initial bandpass prototype from the low-pass
prototype.19

We see that purely distributed bandpass filters are readily devised in principle,
but that highly impractical impedance levels frequently result when following the

19 The Cohn equations reduce, but generally do not eliminate, the relevant errors (typically, the resid-
ual error in the final filter’s bandwidth is quite a bit larger than the error in the center frequency).
Given that using those equations still leaves us with errors and given the availability of modern
simulation tools, it is justifiable to proceed as we have, implementing necessary adjustments in
subsequent passes.
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818 CHAPTER 23 MICROSTRIP F I LTERS

F IGURE 23.40. Magnitude response of impractical all-λ/4 segment bandpass filter

straightforward synthesis procedures presented. To develop an alternative architec-
ture that gives us the freedom to specify resonator impedances at the outset – and
thereby assure that they remain within practical limits – we need to broaden our un-
derstanding of coupling’s causes and effects. We’ll see that a welcome by-product
of this broadening is an experimental technique for aligning (tuning) filters so that
practical realizations will approximate more closely the theoretical prototypes that
inspire them.

23.3.2 ENERGY COUPL ING AND MODE SPL ITT ING

Viewed from a high-level perspective, the goal of lumped filter design is to place
the transfer function poles and zeros in whatever configuration provides the desired
response shape. This important idea is the basis of all modern lumped filters, band-
pass or otherwise. A useful description of how bandpass filters produce a variety of
response shapes is that they exploit the mode splitting that occurs whenever two or
more resonant systems interact.20 That is, when two identical resonators are con-
nected together in some fashion, the poles of the resulting coupled system do not
remain identical. As we’ll see momentarily, the stronger the interaction, the wider
the induced pole separation. The underlying idea is very similar to the splitting of

20 Actually, this mechanism may be invoked to explain why the poles of a lumped lowpass RC line,
for example, are similarly not coincident. We will focus on the bandpass case because of its direct
relevance to the problem at hand.
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23.3 COUPLED RESONATOR BANDPASS FILTERS 819

F IGURE 23.41. Magnetically coupled LC resonators

even and odd mode impedances that occurs in coupled lines, an analogy that is worth
keeping in mind.

Initially consider the case of two identical, simple LC resonators whose inductors
are magnetically coupled to each other. We choose the somewhat less familiar (to
contemporary students, anyway) magnetic coupling partly for pedagogical reasons
(precisely because it’s less familiar) and partly to help underscore that the result we
will shortly derive is quite general.

We represent the coupled inductors as a transformer and then model the trans-
former as a T-connection of three inductors; see Figure 23.41. The inductance L is
that of each resonator in isolation. The mutual inductance M is some fraction of L

and depends on the magnitude (and sign) of the coupling. The magnitude of the coup-
ling coefficient k ranges from zero to unity as the flux linkage of the magnetic fields
of the two inductors increases from zero to 100%.21 In this model, the total series in-
ductance in each of the left- and right-hand subloops is (L−M)+M = L when the
other subloop is open-circuited.

To find the resonant frequencies of the resulting fourth-order system22 one can al-
ways employ a brute-force approach: Find the transfer function (first, one needs to
define the input and output terminals), then solve for the roots of the denominator
polynomial. This method is quite general but also quite cumbersome, particularly
for networks of order higher than two or three. Worse, the expenditure of labor is
compensated poorly in terms of insights developed. Here, the network happens to be
symmetrical, a situation that almost always demands exploitation to simplify analy-
sis and increase the possibility of extracting useful insights.

First recall what poles are. Textbooks tell us that they are the roots of the denom-
inator of the transfer function, but a deeper significance is that they are the natural
frequencies of a network. What we mean by the term is this: If the system is given

21 We must emphasize that negative values of k violate no laws of nature for, depending on the relative
orientation of the inductors, the voltage induced in one coil by currents flowing in the other may be
positive or negative. Negative values of M are thus physically realizable, allowing the synthesis
of some networks requiring negative inductances. Indeed, generations of Tektronix oscilloscopes
depended on just such elements (within capacitively bridged “T-coils”) to provide large boosts in
vertical amplifier bandwidth, as discussed in Chapter 12.

22 Despite there being five energy storage elements in the network, the system is nonetheless of the
fourth order because not all of the elements are independent. Note, for example, that specifying
the initial currents in two of the inductors automatically determines that flowing in the third (by
Kirchhoff ’s current law). Thus, the three inductors actually contribute only two degrees of free-
dom, diminishing by one the order of the overall network.
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820 CHAPTER 23 MICROSTRIP F I LTERS

F IGURE 23.42. Equivalent network of coupled LC resonators
for common-mode initial conditions

some initial energy, then the evolution of the system state in the absence of any fur-
ther energy input takes place with characteristic frequencies whose values are those
of the poles. The system state can evolve in an oscillatory fashion, indicating nonzero
imaginary parts for at least some poles, or in a manner corresponding to a simple
sum of ordinary exponentials, indicating all purely real poles. Cleverly chosen ini-
tial conditions might excite only a small subset of all possible modes at a time, thus
converting a difficult high-order problem into a collection of more simply solved
low-order ones. Very clever (or lucky) choices can even result in the excitation of a
single mode at a time, making possible the identification of pole frequencies with a
minimum of root finding.

We may use this understanding to devise a simple method for finding the poles
of our coupled resonator system. First, provide a common-mode (even-mode) ex-
citation by depositing, say, an equal amount of initial charge on the two capacitors.
Regardless of what the network does subsequently, we know by symmetry that the
capacitor voltages must evolve the same way. Because their voltages are thus always
equal, we may short the capacitors together with impunity, resulting in the network
shown in Figure 23.42. The common-mode resonant frequency is thus that of a sim-
ple LC network:

ωcm = 1√
[(1 − k)L/2 + kL]2C

= 1√
(1 + k)LC

. (55)

There are two conjugate imaginary poles of this frequency, so we only need to find
the other two poles of this fourth-order network.23

Since a common-mode initial condition is so fruitful in discovering two of the
poles, it seems reasonable to try a differential initial condition next. Specifically, if
one capacitor voltage is initially made equal to some value V and the other to −V,
then (anti)symmetry allows us to assert that, however the system state evolves from
this initial condition, it must do so in a manner that guarantees zero voltage at node X

in Figure 23.41. Consequently, the mutual inductance has no current flowing through
it, and it may be removed (either by open- or short-circuiting it; both actions must,
and will, lead to the same answer). Removing that inductance yields the following
differential-mode resonant frequency (again, the corresponding poles are conjugate
and purely imaginary, with a magnitude of this value):

23 We know that they are purely imaginary because there is no loss. Thus, the energy of the system
remains constant for all time.
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23.3 COUPLED RESONATOR BANDPASS FILTERS 821

F IGURE 23.43. Capacitively coupled resonators

ωdm = 1√
[2(1 − k)L](C/2)

= 1√
(1 − k)LC

. (56)

Now that we’ve found the pole frequencies, let’s see what intuition may be ex-
tracted from the exercise. First consider values of k very near zero. In this loosely
coupled case the two mode frequencies are nearly the same, because we have two
nearly independent and identical tanks. As k increases, however, one resonant fre-
quency decreases while the other increases; mode splitting occurs. The stronger the
coupling, the wider the separation in resonant frequencies. This behavior should be
familiar, for in coupled transmission lines we’ve seen that tighter coupling produces
wider separation in mode impedances. It is the strong coupling enabled by interdig-
itation that allows the Lange coupler to exhibit a surprisingly wide bandwidth.

As an illustration that mode splitting is an extremely general consequence of coup-
ling, now consider the dual case of capacitive coupling (Figure 23.43). Here, we
choose to express the individual resonator capacitances as a function of the coup-
ling capacitance. One could just as well label each resonator capacitance simply as
some initial value C, but the choice shown makes the analogy with the inductive
coupling case exact and will also allow us to identify explicitly the presence of a
capacitive J inverter. Beyond those considerations, it certainly simplifies the analyt-
ical expressions somewhat. In this model, the total capacitance across each tank is
(C−Cc)+Cc = C when the other tank is short-circuited (this short-circuit condition
is the dual of the open-circuit condition used in analyzing the inductively coupled
case). Because of this precise duality, we obtain equations that are isomorphic, as
will be seen shortly.

Following an approach analogous to that used to analyze the magnetically coupled
case, we find that the two mode frequencies are given by:

ωcm = 1√
(C − Cc)L

= 1√
(1 − k)LC

; (57)

ωdm = 1√
(C + Cc)L

= 1√
(1 + k)LC

. (58)

For these equations, we see that an explicit expression for the coupling coefficient,
k, is

k = Cc/C. (59)

As with the magnetic case, the coupling coefficient cannot exceed unity (if nega-
tive element values are disallowed) when expressed in this manner. More important,
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822 CHAPTER 23 MICROSTRIP F I LTERS

we see that both magnetic and capacitive coupling give rise to precisely the same
splitting of modes. This mechanism is so general that it explains a host of seemingly
unrelated phenomena, such as the formation of energy bands in semiconductors (here,
the initially identical mode frequencies – energy levels – of free, isolated atoms split
as the atoms are brought closer together to form a crystalline solid) and the vibra-
tional modes of coupled spring–mass systems. We may, in fact, generalize and say
that mode splitting is due to the coupling of energy.

From Eqns. 57 and 58, it should be clear that one may use a measurement of the
two mode frequencies to determine k experimentally. For small values of coupling,
the difference in mode frequencies (normalized to their arithmetic mean) equals k

quite accurately (to the second order, in fact):24

8ω

ωam

= 2

[√
1 + k − √

1 − k√
1 + k + √

1 − k

]
= 2

[
1 −

√
1 − k2

k

]
≈ k. (60)

For filters (as with coupled-line couplers), a coupling coefficient of 0.5 is consid-
ered very high. Even for such a large value, however, the actual fractional bandwidth
of about 0.536 differs from the coupling coefficient by only 7% or so. For more
typical coupling coefficients, the errors will generally be smaller than those due to
component tolerances – and frequently smaller than your ability to determine them
experimentally to that degree of accuracy. For this reason, many applications notes
and textbooks simply assert that the normalized separation in frequencies is equal to
the coupling coefficient, even though it’s not strictly true.

If you are very fussy, you may use the foregoing equations to derive the following
exact expression for the coupling coefficient in terms of the lower and upper mode
frequencies ω1 and ω2:

k = ω2
2 − ω2

1

ω2
2 + ω2

1

. (61)

One may exploit this relationship to measure coupling directly. One possible exper-
imental procedure is to couple a signal generator very loosely to one resonator (the
loose coupling is required to avoid an error-inducing mode splitting of its own) and
then observe the response of the coupled resonator with a detector (again, loosely cou-
pled to avoid perturbing the system) while sweeping the signal generator frequency.
To a good approximation, the coupling coefficient is the normalized frequency sep-
aration between observed response peaks.

24 Many references state that “the” normalized bandwidth is exactly equal to k, but the reader is
invited to test that assertion by using either the geometric mean, arithmetic mean, or individual
(uncoupled) resonator frequency (Dishal’s original definition) as the normalizing factor (and there
are other possible choices, too). In all cases, the normalized bandwidth differs somewhat from k.

Fortunately, however, the error is small enough not to have any serious practical implications. The
filter design methods we will consider are accurate only for bandwidths less than about 20% any-
way, with corresponding values of k that are similar. For any coupled resonator pair within such
filters, the approximation given predicts the mode splitting accurately enough.
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23.3 COUPLED RESONATOR BANDPASS FILTERS 823

F IGURE 23.44. Redrawn capacitively coupled resonators

To relate all of the foregoing observations about coupling to the capacitively cou-
pled bandpass filter that we’ve already studied, let’s first redraw the two-resonator
system as Figure 23.44. This way of drawing the schematic explicitly reveals the trio
of capacitors that couple the two resonators to be simply the J inverter used to pro-
duce the capacitively coupled bandpass filter described in the previous section. Thus,
stronger coupling is associated with large inverter admittances. Similarly, inspection
of the magnetically coupled case reveals the presence of an inductive K inverter, as
in the first network of Figure 23.25. In both cases, the tanks connected to each end
of the inverter are, once again, resonant at the same frequency. That both capacitive
and inductive coupling are equally effective for splitting modes underscores that it
is fundamentally the coupling of energy that produces the effect. Although we first
observed an identity between immittance inversion and coupling in a lumped con-
text, the generality of energy coupling suggests that this identity is not limited to
those lumped examples. Following up on this intuition forms the basis for a class of
fully distributed bandpass filters, known as coupled-line filters, in which both mag-
netic and electric fields simultaneously provide immittance inversion and coupling
between transmission line resonators.

23.3.3 MICROSTRIP EDGE-COUPLED BANDPASS FILTERS

Distributed resonators can be coupled together in numerous ways, not only to pro-
duce bandpass responses but also to produce bandstop and other response shapes.
Research into such filters intensified in the period immediately following the Second
World War, and most of the theoretical concepts that form the basis for modern mi-
crowave filter design had been worked out by around 1960. Developments during that
fertile period are well summarized in a comprehensive volume by Matthaei, Young,
and Jones (MYJ, or simply “the black book” to microwave cognoscenti), which is a
must for anyone who is serious about the subject of microwave filters and the closely
related subject of impedance matching.25 Unfortunately, this tome exists in only one

25 G. L. Matthaei, L.Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks
and Coupling Structures, McGraw-Hill, New York, 1964 (reprinted in 1980 by Artech House). It
should be mentioned that this work also covers important contributions by Seymour Cohn, who
did extensive pioneering work on coupled line filters, among others. Cohn led the team at the
Stanford Research Institute whose work forms the bulk of the material presented in MYJ.
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824 CHAPTER 23 MICROSTRIP F I LTERS

F IGURE 23.45. End-coupled microstrip bandpass filter

F IGURE 23.46. Classic edge-coupled microstrip bandpass filter

edition, and thus does not cover advances made after about 1960 or so. In particular,
key design information relevant to microstrip implementation of filters is absent.

Inspired by a lumped prototype such as that shown in Figure 23.33, one might ini-
tially consider coupling resonators together capacitively, perhaps by using the fring-
ing capacitance at the ends to provide the required coupling (either in lieu of, or in
addition to, discrete coupling capacitors). Purely end-coupled transmission line fil-
ters (see Figure 23.45) are usually difficult to construct, however, as the amount of
coupling that one may practically obtain this way is limited by the minimum gaps
that may be reliably fabricated.26

As it happens, the required gap widths are not merely inconvenient; they’re gen-
erally impractically small. This problem can be readily solved by using discrete ca-
pacitors to supplement end fringing and thereby relax dimensional tolerances. Using
discrete capacitors also makes tuning a bit easier to implement. Nevertheless, min-
imizing the reliance on discrete elements is generally desirable, so it is worthwhile
considering methods that eliminate the need for end coupling altogether. We have
actually encountered this idea already in connection with coupler design. A powerful
solution, then, is to use lateral coupling instead.27

A simple (as well as simplified) but practical implementation of this idea is shown
in Figure 23.46. As with the end-coupled filter, the resonators remain nominally a
half wavelength in extent (with due compensation for end fringing) and overlap each

26 Versions of these filters coupled with discrete capacitors are easily simulated with tools such as
Puff, however, and thus retain a tutorial value.

27 Once again, see Seymour Cohn, this time for “Parallel-Coupled Transmission Line Resonator Fil-
ters,” IRE Trans. Microwave Theory and Tech., v. 6, April 1958, pp. 223–31. Also see H. Ozaki
and J. Ishii, “Synthesis of a Class of Stripline Filters,” IRE Trans. Circuit Theory, v. 5, June 1958,
pp. 104–9.
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23.3 COUPLED RESONATOR BANDPASS FILTERS 825

F IGURE 23.47. Symmetrical coupled lines (left) and proposed equivalent model

F IGURE 23.48. Infinite cascade of lines and inverters

other by a quarter-wavelength.28 The detailed response shape is controlled by prop-
erly choosing the amount of line-to-line coupling and the characteristic impedances
of the lines (for simplicity, all resonator linewidths are shown as equal in the figure).

To devise an explicit design procedure, we exploit directly the notion that coupling
and immittance inversion are in fact the same thing, even if the coupling isn’t due to
a single mechanism. Let us therefore propose that a pair of edge-coupled lines may
be modeled as two lines coupled by an immittance inverter, as seen in Figure 23.47.

If the two networks are to be equivalent, one requirement is that they present equal
input impedances when terminated in equal load impedances. In studying models
for transmission lines (either continuous or artificial), we’ve seen how the computa-
tion of an infinite ladder’s input impedance is particularly simple. Thus, although an
arbitrary load impedance would suffice in principle, the analysis simplifies immea-
surably if we compute the input impedance of an infinite cascade of iterated copies of
the network under consideration. We usually call this impedance the “characteristic”
impedance of the network, but to avoid confusion with the characteristic impedances
of the various transmission lines in the system, we will instead refer to the infinite
iterated network’s input impedance by another name, the image impedance.

Let us first consider the image impedance of the network in Figure 23.48. The im-
age impedance is a function of frequency, but let us evaluate it at the center frequency
(where θ is π/2, corresponding to λ/4 lines). The image impedance at the center
frequency (denoted by the subscript 0) is therefore readily computed in a couple of
short steps as

ZI0 = Z2
0

1/J 2(Z2
0/ZI )

= J 2
Z4

0

ZI

�⇒ ZI0 = JZ2
0. (62)

28 This value of overlap is not a requirement, but as it maximizes the amount of coupling, it maxi-
mizes the corresponding required spacing and thus relaxes dimensional tolerances. Hence, it is a
near-universal choice.
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826 CHAPTER 23 MICROSTRIP F I LTERS

F IGURE 23.49. Infinite cascade of coupled lines

F IGURE 23.50. General impedance two-port

Note that we’ve deliberately formatted the first equality to facilitate identification of
the individual impedance inversions, rather than to maximize compactness.

If we attempt a direct computation of the image impedance of cascaded coupled
lines, however, the result is not as readily derived. The reason is that such a struc-
ture lacks the symmetry that facilitates the use of even- and odd-mode analysis (see
Figure 23.49).

To solve this problem, we deduce the image impedance for this structure indirectly,
by first deriving a quite general expression for the image impedance in terms of two-
port parameters and then figuring out what those parameters are for this coupled-line
system. If we choose the right two-port representation, then finding the two-port pa-
rameters for our network may involve symmetrical boundary conditions that enable
even- and odd-mode decomposition. Specifically, let us consider using an impedance
representation,

V1 = I1Z11 + I2Z12, (63)

V2 = I1Z21 + I2Z22, (64)

where the quantities are as defined in Figure 23.50.
Now consider connecting an impedance of value ZI , the image impedance, across

the output port. For this symmetrical network, the input impedance will also equal
the image impedance. To discover the input impedance, we may (for example) ap-
ply a test voltage across the input port, compute the current that flows in response,
and then take the ratio of voltage to current. Carrying out these steps yields:

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511812941.024
Downloaded from https://www.cambridge.org/core. The Librarian-Seeley Historical Library, on 18 Dec 2019 at 06:17:52, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511812941.024
https://www.cambridge.org/core


23.3 COUPLED RESONATOR BANDPASS FILTERS 827

F IGURE 23.51. Coupled lines with
open-circuit terminations

I1 = Vtest − Z12I2

Z11
; (65)

−I2 = Z21I1

Z22 + ZI

. (66)

Solving these equalities for the ratio Vtest to I1, we obtain

Vtest

I1
= Z11 − Z12Z21

Z22 + ZI

= ZI , (67)

which leads to a quadratic equation in the image impedance,

Z2
I + ZI (Z22 − Z11) + Z12Z21 − Z11Z22 = 0. (68)

The symmetry of our original network means that the port parameters of its equiv-
alent representation are similarly symmetrical, so that Z11 = Z22 and Z12 = Z21.

Using these relationships simplifies our task considerably, allowing us to discover
readily that

Z2
I = Z2

11 − Z2
21. (69)

Let’s now interpret this result. From the defining equations for the two-port model,
we see that Z11 is the input impedance that we would measure with the output port
open-circuited. The transimpedance Z21 is the ratio of output voltage to input cur-
rent, also measured with the output port open-circuited. It is fortunate that the two
parameters needed to compute the image impedance are both defined under open-
circuit conditions, for even- and odd-mode decompositions may then enable rapid
discovery of the parameters for our coupled-line case, as we now demonstrate.

First, we find the input impedance of the coupled line pair under the open-circuit
condition. As usual, we decompose the calculation into even-mode and odd-mode
subcalculations, by first driving both lines with equal currents and then with equal
but opposite currents. See Figure 23.51.

Recall that, for an isolated line with an open-circuit termination, the input imped-
ance is

Z = −jZ0 cot θ. (70)

By analogy, then, we have
Z11e = −jZ0e cot θ (71)

for an even-mode excitation and
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828 CHAPTER 23 MICROSTRIP F I LTERS

Z11o = −jZ0o cot θ (72)

for an odd. The overall open-circuit input impedance is then the average of the two
impedances,

Z11 = −j

(
Z0e + Z0o

2

)
cot θ. (73)

It so happens that Z11 is zero at the center frequency, so we won’t use this equation
now (but we’ll need it later).

Now let’s consider the transimpedance. Again, we begin with the case of an iso-
lated line. It is straightforward to show that the transimpedance of an open-circuited
line is

Z21 = V2/I1 = −jZ0 csc θ. (74)

Note that, at the center frequency, the magnitude of the transimpedance is simply the
characteristic impedance of the line.

For an even-mode excitation, our coupled lines have a transimpedance

Z21e = −jZ0e csc θ; (75)

for an odd-mode excitation,

Z21o = −jZ0o csc θ. (76)

The overall open-circuit transimpedance of our coupled lines is therefore

Z21 = −j

(
Z0e − Z0o

2

)
csc θ. (77)

Evaluating the transimpedance at the center frequency (θ = π/2) yields

Z210 = −j

(
Z0e − Z0o

2

)
. (78)

Therefore, from Eqn. 69, we find that the midband image impedance for our coupled
lines is simply

ZI0 = 1
2 (Z0e − Z0o). (79)

Setting this image impedance equal to the corresponding midband value found ear-
lier for the inverter model,

ZI0 = JZ2
0 , (80)

gives us one equation. We need one more to enable solving for the even- and odd-
mode impedances separately. There are several possible choices, but one that makes
use of some results we’ve already derived is to equate Z11 for the two networks, again
evaluated at (or near) midband.29

29 Most treatments are based on the original derivation by Cohn, who matches the image impedance
and propagation constant. We’ve chosen instead to match the input impedances because doing so
simplifies the derivation.
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23.3 COUPLED RESONATOR BANDPASS FILTERS 829

F IGURE 23.52. Equivalent inverter model
with open-circuit termination

We’ve already derived the relevant expression for the coupled line, so all we need
to do is derive Z11 for the inverter model of Figure 23.52. Working backwards in
steps from output to input, we have

Zb = −jZ0 cot θ, (81)

Za = 1

J 2Zb

= j tan θ

J 2Z0
; (82)

then,

Z11 = Z0

Za

Z0
+ j tan θ

1 + j
Za

Z0
tan θ

= Z0

j tan θ

J 2Z2
0

+ j tan θ

1 + j

(
j tan θ

J 2Z2
0

)
tan θ

= jZ0 tan θ

1

J 2Z2
0

+ 1

1 + j

(
j tan θ

J 2Z2
0

)
tan θ

. (83)

Near midband, the tangent factors in the denominator are now very large (infinite
at the center frequency), so we may approximate the normalized input impedance
there as

Z11 ≈ jZ0 tan θ

1

J 2Z2
0

+ 1

j

(
j tan θ

J 2Z2
0

)
tan θ

= Z0

1

J 2Z2
0

+ 1

j tan θ

J 2Z2
0

= Z0
1 + J 2Z2

0

j tan θ
. (84)

Comparing this expression with the corresponding one derived for the coupled line,

Z11 = −j

(
Z0e + Z0o

2

)
cot θ, (85)

provides us with the second equation we need: setting them equal to each other yields

1

2
(Z0e + Z0o) ≈

Z0
1 + J 2Z2

0

j tan θ

−j cot θ
= Z0(1 + J 2Z2

0). (86)
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830 CHAPTER 23 MICROSTRIP F I LTERS

From equating midband image impedances, we have already deduced that

1
2 (Z0e − Z0o) = JZ2

0. (87)

Addition and subtraction of Eqns. 86 and 87 allow us to solve for the individual mode
impedances at last:

Z0e ≈ Z0[1 + JZ0 + (JZ0)
2]; (88)

Z0o ≈ Z0[1 − JZ0 + (JZ0)
2]. (89)

The fact that we are able to derive these equivalences tells us that the inverter-based
model is indeed an approximate representation of our original coupled-line system.
We only need to be mindful that the approximations hold near midband and become
progressively worse as we move away from the center frequency. Thus filters de-
signed with these approximations will exhibit passband performance that conforms
well to expectations based on lumped low-pass prototypes, but stopband performance
may deviate considerably.

Note that the geometric mean of the mode impedances is not quite equal to Z0.

However, both the geometric and arithmetic means of the mode impedances are equal
to each other to the second order.

Here’s how to use the equations we’ve derived. We may compute the J -inverter
constants for a lumped prototype bandpass filter. That knowledge, combined with the
characteristic impedance of the resonators, allows us to compute the even- and odd-
mode impedances for each pair of coupled lines. Finally, we use (say) the Akhtarzad
equations to figure out the linewidths and interline spacings to produce the speci-
fied even- and odd-mode impedances for microstrip implementations. For stripline,
the existence of closed-form analytical expressions for these dimensions simplifies
design.

Summary of Design Procedure for Edge-Coupled Bandpass Filters

As with the development of the inverter-coupled lumped bandpass filter, derivation of
the design equations for edge-coupled filters is spread out over several pages. To fa-
cilitate their actual use, we summarize the design procedure here. Fortunately, using
the equations is considerably easier than deriving them.

The design of these filters begins, again, with the parameters of a lumped proto-
type, and it then proceeds as in designing an ordinary lumped bandpass filter. One
minor difference is that the characteristic impedance of a transmission line used as a
resonator differs a little bit from that of the equivalent lumped tank, as we have seen
for λ/4 resonators. For an open-circuited λ/2 line, a π/2 factor arises from equating
the admittance slopes of the line and lumped resonator (see Section 23.6):

Z0 line = π
2

√
Lp/Cp = π

2 Z0res. (90)

Accommodating this small modification results in the following sequence of equa-
tions. The normalized inverter parameters for the other sections are given as before by
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23.3 COUPLED RESONATOR BANDPASS FILTERS 831

Jj,j+1Z0res = (BW )√
gjgj+1

�⇒ Jj,j+1Z0 line = π

2

(BW )√
gjgj+1

. (91)

The characteristic impedance Z0res of the individual resonators is a free variable,
just as in the lumped resonator case. For example, it may be chosen to maximize
the resonator Q (to reduce insertion loss and departures from the expected response
shape) or the impedance at resonance (to ease the fabrication of the gaps). These two
conditions do not necessarily coincide, so a compromise is typically involved. Lossy
dielectrics such as FR4 favor somewhat narrower lines than would be the norm for
filters built with higher-quality materials in which conductor loss dominates. Nev-
ertheless, since wide (low-impedance) lines require narrow line-to-line spacings in
order to produce a given coupling and since narrow (high-impedance) lines can have
excessive resistive loss, resonator characteristic impedances are rarely grossly differ-
ent from about 50–100 � in any technology, despite the alleged degree of freedom.

Just as with the lumped bandpass filter, we may use inverters at the input and out-
put ports to couple signals into and out of the filter while simultaneously providing
any necessary impedance transformations. The same equations apply (with proper
accounting for the difference between resonator and line impedances). Therefore, if
we continue to regard the immittance inverters as admittances, then for the input we
have

J1Z0 =
√

π

2

(BW )

mg1
, (92)

where g1 is the normalized value of the first element of the prototype low-pass filter
and m is Z0 line/Z0. Similarly, for the output,

Jn+1Z0 =
√

π

2

(BW )

mgngn+1
, (93)

where gn is the normalized value of the final prototype element and gn+1 is the nor-
malized value of the output termination.

A complication arises, however, if we wish to use coupled lines to implement these
impedance transformations, for we have derived an equivalent model only for the case
of symmetrical coupled lines (see Figure 23.47). In that model, the immittance in-
verter is not an isolated element but is instead surrounded by two line segments of
equal characteristic impedance. To provide all of the necessary impedance trans-
formations for the most general case (where the resonator impedances differ from
the system impedance), the lines surrounding the inverter need to be of differing
characteristic impedance, with the system impedance on one side and the resonator
impedance on the other. Although one may use an asymmetrical pair of coupled lines
for this purpose, there are no simple analytical formulas for their design. We there-
fore consider some alternatives.

First note that a symmetrical line pair suffices when m = 1, so that the design may
then proceed without worrying about this complexity. Thus, one simple method for
sidestepping the asymmetrical line problem is to choose the line impedances equal
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832 CHAPTER 23 MICROSTRIP F I LTERS

to Z0 throughout. By far, this choice is the most popular one (so much so that it
sometimes seems that there is no other option).

Another possibility is to carry out the design with an arbitrary resonator imped-
ance (again chosen, say, to maximize resonator Q) and then provide the necessary
matching with something other than an asymmetrical line pair. For example, one
may always use a λ/4 line on each end to provide the necessary match, or suitable
lumped immittance inverters.

Simpler than the preceding alternatives is to tap down on the first and last res-
onators to provide the input and output coupling because the impedance varies con-
tinuously from a very high value (near the open end of a λ/2 line) to almost zero
(near the center). Such direct connections obviate the need to design and produce
asymmetrical couplers at the input and output ports. At the same time, adjustment of
the tapping point to produce the best match is much easier than adjusting the charac-
teristics of asymmetrical coupled lines. The chief disadvantage is that tapping down
makes sense only if the resonator impedances exceed Z0. Fortunately, this require-
ment is well satisfied in virtually all practical cases (and can certainly be made so).

Next we use the computed inverter constants to deduce the required even- and
odd-mode impedances of the coupled resonator sections. From our derivations, we
see that these are given approximately by:

Z0e(j+1) ≈ Z0 line[1 + Jj,j+1Z0 line + (Jj,j+1Z0 line)
2]; (94)

Z0o(j+1) ≈ Z0 line[1 − Jj,j+1Z0 line + (Jj,j+1Z0 line)
2]. (95)

Once the mode impedances for each resonator have been found, the method of
Akhtarzad (for microstrip) can be used to determine actual layout dimensions of
the resonators. Selection and implementation of the input and output coupling struc-
tures complete the filter design. A few iterations guided by a field solver will permit
any necessary refinements.

A Detailed Design Example

Perhaps more than for the other filters in this book, walking step by step through a
complete example is essential for clarifying the design procedure. To facilitate com-
parisons with the many other examples in this chapter, we continue with the three-
resonator 1-dB Chebyshev bandpass filter with a ripple passband extending from
950 MHz to 1050 MHz. Using the geometric mean definition, our center frequency
is approximately 998.75 MHz, about which we compute a normalized bandwidth
(BW ) of about 0.1001. Again, we retain more digits than are practically justified be-
cause we wish to illustrate the procedure precisely.

First we find that the normalized element values for the lumped low-pass Cheby-
shev prototype are g1 = 2.013, g2 = 0.989, and g3 = 2.013. In this particular case,
we use the quick filter design tool within RFSim99 to save us the trouble of comput-
ing the values with the equations presented in the previous chapter or looking for a
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23.3 COUPLED RESONATOR BANDPASS FILTERS 833

published table with the desired values. In any case, many filter design tables don’t
have entries for Chebyshev filters with such a large value of ripple.

Next, we select the characteristic impedance of the lines we will use as resonators.
Here, assume that 75 � satisfactorily balances the desire for low loss with the need
for relaxed manufacturing tolerances. Then we may compute the central inverter ad-
mittances from

Jj,j+1Z0 line = π

2

(BW )√
gjgj+1

. (96)

For our numbers, we find that J12 = J23 = 0.1114/Z0 line, or about 1.4858 mS. The
inverter admittances are equal because of the symmetry of the filter, combined with
the low filter order we’ve chosen. Odd-order, constant-k Butterworth and Chebyshev
filters with equal terminations are symmetrical.

The even- and odd-mode impedances are readily computed from

Z0e(j+1) ≈ Z0 line[1 + Jj,j+1Z0 line + (Jj,j+1Z0 line)
2]; (97)

Z0o(j+1) ≈ Z0 line[1 − Jj,j+1Z0 line + (Jj,j+1Z0 line)
2]. (98)

Thus, Z0e2 = Z0e3 = 84.3 � and Z0o2 = Z0o3 = 67.6 �.

Next, we consider the input and output matching inverters. The source and load
impedances are Z0. Then,

J1Z0 = J4Z0 =
√

π

2

(BW )

mg1
=

√
π

2

(BW )

mgN
, (99)

which works out to about 0.2282 withm = 1.5. These impedance matches are perhaps
best provided by direct coupling through tapping, or with a λ/4 matching section.
We will consider both options later.

We now turn to the computation of actual layout dimensions for the resonator sec-
tions. The filter core consists of two coupled pairs, but symmetry allows us to cut the
work in half. We thus need to find only one linewidth, and one interline spacing, in
addition to the physical length of the lines.

To save you the trouble of flipping pages back and forth, we reprise here a sub-
set of the equations of Akhtarzad presented in Chapter 7. Recall in what follows that
the ratios We/H and Wo/H are those of single isolated microstrip lines whose char-
acteristic impedances are Z0e/2 and Z0o/2, respectively. In our example, Z0e/2 is
42.15 � and Z0o/2 is 33.8 �. Using one of many possible formulas relating mi-
crostrip dimensions to characteristic impedance, we find that We/H is about 2.38 (for
a bulk dielectric constant of 4.6) and Wo/H is approximately 3.31. Better accuracy is
possible with more elaborate equations (such as those referenced in Chapter 7), but
our aim here is to illustrate the overall design procedure rather than to minimize the
difference between theory and practice.

Having completed that step, now comes a somewhat more difficult one. We solve
Akhtarzad’s equations iteratively for the actual width and spacing for the coupled
lines. The equations are
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We

H
= 2

π
cosh−1

(
2d − g + 1

g + 1

)
, (100)

Wo

H
= 2

π
cosh−1

(
2d − g − 1

g − 1

)

+ 4

π(1 + εr/2)
cosh−1

(
1 + 2

W/H

S/H

)
if εr < 6, (101)

where

g = cosh

(
πS

2H

)
, (102)

d = cosh

[
π

(
W

H
+ S

2H

)]
. (103)

A reasonable initial value of S/H to start the iterations is given by

S

H
≈ 2

π
cosh−1




cosh

(
π

2

Wo

H

)
+ cosh

(
π

2

We

H

)
− 2

cosh

(
π

2

Wo

H

)
− cosh

(
π

2

We

H

)

. (104)

To deduce a reasonable initial value of W/H, note that the impedance of a line with
those dimensions should be roughly twice that of a line of dimensionsWe/H orWo/H.

To the extent that impedances are inversely proportional to the width-to-height ratio
to zeroth order, a credible initial value for W/H is, say, We/2H. Fortunately, conver-
gence does not seem to be overly sensitive to the initial value, so one generally need
not obsess over what particular initial value to use.

In iterating with Akhtarzad’s equations, it’s helpful to note that S/H primarily
controls the difference between the computed values of We/H and Wo/H and that
W/H mainly controls their sum. Thus, one may converge on the correct values more
or less orthogonally using this knowledge: compare the correct values of We/H and
Wo/H with those computed by the equations for given values of W/H and S/H, and
then respond accordingly.

After just a minute or two of manually iterating with a spreadsheet using these
guiding principles, we find that W/H = 0.865 and S/H = 1.066.30 Assuming that
the dielectric thickness is 1.6 mm, the lines should be of 1.38-mm width and spaced
apart from each other by 1.71 mm. Again, note that we are reporting more digits
than are practically significant (it is unlikely that our manufacturing dimensional re-
peatability is as good as 10µm, and Akhtarzad’s method doesn’t account for nonzero
conductor thickness in any event).

30 One could also use the solver feature (available as an option in some spreadsheets) to automate
the procedure.
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23.3 COUPLED RESONATOR BANDPASS FILTERS 835

F IGURE 23.53. Layout of resonator strips (tapped input
and output couplings shown)

Now that we have the width and spacing, we need to compute the physical length
of the lines. We start by computing the effective dielectric constant from31

εr,eff ≈ 1 + 0.63 · (εr − 1) · (W/H )0.1255 (W/H > 0.6). (105)

Continuing to assume a bulk relative dielectric constant of 4.6, we compute an effec-
tive dielectric constant of 3.227. At the filter’s center frequency of 998.75 MHz, λ/2
is therefore 83.6 mm. Because of fringing at the ends of the line, the physical layout
dimensions must be somewhat less. Our standard rule of thumb is to add H/2 per end
to the physical length to obtain an estimate of the electrical length. However, in this
case, the end fringing is reduced by the flux stolen by adjacent lines. As an ad hoc
correction, then, we use a length adjustment of H/4 (half the conventional correc-
tion) per end that has an adjacent line. Thus, we choose a physical length of 82.8 mm
for the center line, and 82.4 mm for the two outer ones. Because we are treating the
effect of fringing as equivalent to an extension of length, the layout should reflect
this extension consistently as well (see Figure 23.53).

To complete our first-pass design, we need to devise appropriate input and output
matching sections. As mentioned before, there is an advantage to directly tapping
an appropriate point within the input and output resonators. In lumped implemen-
tations, the tapping may be performed either at some point along the inductor or by
using a tapped capacitor in the resonator. The impedance is a maximum across the
parallel tank, with a value of QLZres0, where QL is the in-circuit (loaded) QL. The
minimum, zero, is found at ground. Thus, a continuum of values is available.

A range of impedance levels is similarly found along a distributed resonator. The
impedance is a maximum at the open-circuited ends (again with a value QLZres0)

and is a minimum (∼0) at the center of the λ/2 resonant sections. If we assume that
currents and voltages vary approximately (co)sinusoidally along the resonant strips,
then the impedance should vary in a manner reminiscent of that of a patch antenna’s
inset feedpoint impedance. Formally, but approximately,32

31 As with microstrip characteristic impedance, there are a great many formulas for the effective di-
electric constant.

32 See Reference Data for Radio Engineers, 5th ed., International Telephone and Telegraph Corp.,
1969. Also see Joseph S. Wong, “Microstrip Tapped-Line Filter Design,” IEEE Trans. Microwave
Theory and Tech., v. 27, January 1979, pp. 44–50.
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F IGURE 23.54. Simulated filter response (Sonnet Lite 9.51);
free-space upper boundary, tap at 11 mm

(sin θ)2 ≈ π

2

Z0

QLZres0
, (106)

where QL is the (doubly) loaded Q of the end resonator,

QL = g1

2(BW )
. (107)

We ultimately solve for the distance θ (expressed as a phase angle) from the cen-
ter of the resonator to the tapping point, at which the filter presents an impedance of
Z0 to the external world. For our numbers, QL is about 20.1, the resonator imped-
ance is 75 �, and the system Z0 we want to match is 50 �. Thus, θ should be about
0.33 radians, corresponding to a calculated tap position of about 8.5 mm (relative to
the resonator’s center). This position may be used as the starting point for iterations
to discover the best tapping point.

In our case, exploration with a field solver reveals that the optimum tapping point
is actually about 11 mm from the center of the resonator; see Figure 23.54. Simu-
lating the design with Sonnet Lite 9.51 reveals some insertion loss (of the order of
1.4 dB – presumably due to radiation, as the filter is surrounded by walls made of
lossless conductors, with only the top open to free space in this simulation). Renor-
malizing to that loss, the peak-to-peak ripple is about 1.2 dB, and the ripple passband
extends from 940 MHz to 1.04 GHz. Thus, the ripple exceeds the design target by a
small amount, the center frequency is similarly low by a little bit (about 1%), and the
100-MHz ripple bandwidth is as desired. As expected, the passband conforms closer
to expectations than does the transition band or stopband. Despite the deviations, the
overall level of performance is satisfactory for a first-pass design, especially in view
of the many approximations that we have made to get to this point.
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23.3 COUPLED RESONATOR BANDPASS FILTERS 837

F IGURE 23.55. Simulated response with perfectly conducting top lid; tap at 9 mm

As one final assessment of the design procedure, we re-run the simulation with a
slightly different boundary condition. We place a perfectly conducting lid on the box
that encloses the filter, with 100 mm of air as the dielectric above the filter conduc-
tors. In this case, peak insertion loss indeed drops close to zero, because radiation is
now precluded. However, the ripple increases to 2.5 dB. The 2.5-dB ripple passband
extends from 950 MHz to about 1054 MHz, while the 1-dB edges occur at 954 MHz
and 1051 MHz. So, depending on how you choose to interpret these numbers, the
bandwidth is either a little too high or a little too low. Either way, the center fre-
quency appears a little bit on the high side.

In addition to those changes, the best input and output match occurs when the tap
positions are moved a little bit closer to the center. In this particular instance, the
optimum tap point is approximately 9 mm from center. See Figure 23.55.

The ripple may be reduced by altering the spacing between the resonators. The
large value indicates that the coupling is too tight between adjacent resonators, pro-
ducing excessive mode splitting. Hence, further iterations would explore moving the
resonators apart a little bit and then relocating the tap position as necessary to main-
tain a good match in the process.

Variations on a Theme

The edge-coupled bandpass filter is widely used because it is relatively straightfor-
ward to design and it functions quite well. One criticism, however, is that the filter
occupies a relatively large area (or an irregularly shaped region), especially if the fil-
ter uses many sections. To fill a rectangular space more optimally, it is customary
to rotate the layout of the resonator array as shown in Figure 23.56. The input and
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838 CHAPTER 23 MICROSTRIP F I LTERS

F IGURE 23.56. More compact layout of edge-coupled bandpass filter

F IGURE 23.57. Hairpin bandpass filter
(input–output couplings not shown)

output coupling lines are frequently bent (as shown) so that the ports are horizon-
tally disposed. The design of such filters proceeds exactly as for the conventional
edge-coupled filter. The rotation affects the performance only to the second order,
so any necessary adjustments will be quite small.

To shrink the filters even further, one may fold each individual resonator into a
hairpin shape;33 this is shown in Figure 23.57. Note that, as in other bent transmis-
sion lines, the resonator sections use mitered bends to minimize discontinuities that
would alter the response.

Coupling between the parallel arms within a given hairpin occasionally proves
troublesome in these filters, especially if the slide angle (slide factor) α is small. The
voltages at opposite ends of the hairpin arms are in antiphase, and thus something
akin to the classic Miller effect causes the arm-to-arm capacitance to have a seem-
ingly disproportionate effect. The added capacitance lowers the resonant frequency,
requiring a shortening of the hairpins to compensate. To minimize this self-coupling
problem, one should separate the arms as much as possible by increasing the slide
factor. However, because one would then have to reduce the gap between resonators
in order to compensate for the smaller lateral overlap, there is a practical limit on the
arm separation. In general, arm separations that are about five dielectric thicknesses
represent a good compromise between these two conflicting requirements.

There are no simple analytical equations for the design of a hairpin filter, so most
engineers design them iteratively, guided by field solvers, or with a CAD tool that au-
tomates the procedure. However, it is possible to devise an approximate method that
can generate a credible starting point for such iterations. To do so, we first reprise
the equation for the coupling between two lines:

33 E. G. Cristal and S. Frankel, “Hairpin Line /Half-Wave Parallel-Coupled-Line Filters,” IEEE Trans.
Microwave Theory and Tech., v. 20, November 1972, pp. 719–28. For a refined design procedure,
see U. H. Geysel, “New Theory and Design for Hairpin-Line Filters,” IEEE Trans. Microwave
Theory and Tech., v. 22, May 1974, pp. 523–31.
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23.3 COUPLED RESONATOR BANDPASS FILTERS 839

Vcpld

Vin

=
j [tan θ ]

Z0e − Z0o

Z0e + Z0o

2Z0

Z0e + Z0o
+ j tan θ

= [j tan θ ]CF0√
1 − C2

F0 + j tan θ
. (108)

At midband, the ratio simplifies to

Vcpld

Vin

= CF0 = Z0e − Z0o

Z0e + Z0o
. (109)

Even though these equations strictly apply only to terminated coupled lines – rather
than to the lines as they are terminated in our filter – we will use them in a way that
makes the final result relatively insensitive to this difference. After determining the
collection of even- and odd-mode impedances for an ordinary edge-coupled filter,
compute the ratio Vcpld/Vin as given by Eqn. 109 for each coupled line pair. Note that
we have denoted with the subscript 0 the coupling factor that applies to the prototype
filter.

Next, compute the value of CF that yields the same magnitude of Vcpld/Vin when
the slide factor α is included:∣∣∣∣Vcpld

Vin

∣∣∣∣ =
∣∣∣∣ [j tan(θ − α)]CF√

1 − C2
F + j tan(θ − α)

∣∣∣∣. (110)

Setting the magnitude of ratio Vcpld/Vin equal for the two cases at midband yields

CF0 =
∣∣∣∣

[
j tan

(
π
2 − α

)]
CF√

1 − C2
F + j tan

(
π
2 − α

)
∣∣∣∣. (111)

Thus, one first computes CF0 as if designing an ordinary edge-coupled filter with
zero slide factor. Then one solves Eqn. 111 (e.g., iteratively) for the necessary value
of CF given a nonzero slide angle. That (higher) computed coupling factor is used
to deduce the new even- and odd-mode line impedances from

Z0en − Z0on

Z0en + Z0on
= CF , (112)

where the subscript n denotes new.
One additional equation is needed to permit computation of the individual mode

impedances. As a first approximation, one may assume that the product of the mode
impedances is independent of the slide factor. That additional fact is sufficient to al-
low a computation of the new mode impedances, after which one may determine the
required line and spacing dimensions for the system of hairpin resonators (e.g., again
using the method of Akhtarzad).

The computed dimensions are even more approximate than would otherwise be
the case because the procedure we’ve outlined does not account for coupling between
the arms of each hairpin. Nevertheless, experience shows that this approach usually
generates first-pass designs that are either satisfactory as they are or are readily made
so with trivial additional effort.
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840 CHAPTER 23 MICROSTRIP F I LTERS

F IGURE 23.58. Folded hairpin bandpass filter
(dimensions not to scale)

As with many other phenomena, what is troublesome in one context may often
be exploited in another. Here, the coupling between arms may be regarded as ad-
vantageous, for it affords the opportunity for additional size reductions. Once you
are philosophically aligned in that direction, your goal shifts toward consideration of
ways to enhance, rather than suppress, the effect. One result of that type of think-
ing is the folded hairpin filter, as seen in Figure 23.58 (input–output couplings not
shown).34

The inner folded sections within each resonator may be treated as forming a lat-
eral capacitor. They produce an increased capacitive coupling between the arms that
lowers the resonant frequency, permitting (actually, requiring) a reduction in the size
of the filter. The trade-off is that, as one might expect, there is no simple analyti-
cal formula to guide their design. One generally begins with a hairpin prototype and
then uses a field solver to evaluate the effect of folding on the resonant frequency.
Then, the inter-resonator spacings are continually reduced to maintain the desired
coupling. This process is continued until a satisfactory design results or until you tire
of trying. Note that one may also use lumped capacitors across the ends of the arms
in yet another possible variation on this same theme.

The folded hairpin design is just one of many variations that have evolved over
the decades. To underscore that creativity has hardly been exhausted, we present two
more configurations, without analysis.

One is the interdigital filter (which predates the folded hairpin design by decades).
One may think of this filter as resulting from folding on itself each λ/2 resonator of
a conventional edge-coupled design. This folding produces a series of coupled λ/4
resonators, as seen in Figure 23.59. The design equations are essentially the same
as those for the λ/2 edge-coupled filter. There is a small modification necessitated
by the factor-of-2 difference in reactance slopes, but other than that minor detail, the
design proceeds as before.

It is inconvenient that the interdigital filter requires ground connections, and on
alternate ends of the resonators at that, so this filter is not widely used in microstrip
form. Nonetheless, once you have broadened your thinking to consider grounded

34 M. Sagawa, K. Takahashi, and M. Makimoto, “Miniaturized Hairpin Resonator Filters and Their
Applications to Receiver Front-end MIC’s,” IEEE Trans. Microwave Theory and Tech., v. 37, no.
12, December 1989, pp. 667–70.
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23.4 PR AC TICAL CONSIDER ATIONS 841

F IGURE 23.59. Interdigital filter

F IGURE 23.60. Combline filter

connections, it is worthwhile considering an alternative arrangement of the resonators
in which all of the ground connections are on one side; see Figure 23.60.

The resonators of a combline filter are usually implemented as shown in the figure,
with line sections that are shorter than λ/4 (typically λ/8, in fact) acting in concert
with discrete capacitors. The use of such electrically short lines defers the appearance
of parasitic passbands while simultaneously shrinking the overall filter. In addition,
the use of discrete capacitors facilitates tuning. Finally, for lossy dielectrics (such
as FR4), the overall tank Q is increased by using good discrete capacitors as part of
the resonator, thus decreasing insertion loss (and otherwise reducing the difference
between actual performance and theoretical expectations). Performance normally
associated with substantially more exotic (and expensive) board dielectrics are possi-
ble with this architecture. Such advantages are sometimes sufficiently compelling to
make combline filters attractive, despite the inconvenient requirement for grounded
connections.

23.4 PR AC TICAL CONSIDER ATIONS

There are several serious practical difficulties that every filter designer encounters
when trying to build a real filter. One is the accommodation of manufacturing toler-
ances. The more critical a filter’s performance characteristics, the more care must be
exercised in designing, building, and tuning the circuit – as is evident from examin-
ing the many Monte Carlo simulations presented in the previous chapter. For critical
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842 CHAPTER 23 MICROSTRIP F I LTERS

applications, the relatively simple procedures we have presented will usually produce
designs that do not meet all specifications. Refinement of such designs is best guided
by intuition and subsequently verified by rigorous tools, such as field solvers.35

Another challenge is developing a sensible procedure for tuning a filter once you’ve
built it. For low-order filters, it costs little to add enough margin to the design to ac-
commodate manufacturing tolerances and thus obviate the need for tuning. For de-
manding applications, however, this option may be unacceptable for any number of
reasons, and you may still be obligated to devise and implement a tuning procedure.

A modified version of a clever alignment method described by Dishal in1949 works
(in principle) for any coupled-resonator filter, whether implemented in lumped or dis-
tributed form, and it also exploits a couple of observations we made earlier.36 One
is that the resonant frequencies of the tanks in isolation are all equal. Another is that
the coupling networks (J - and K- immittance inverters) act approximately as λ/4
lines. To see how far one can go with just these two facts, consider observing the
input impedance while adjusting the tank tuning. An inexpensive way to do so is to
set a signal generator to the desired center frequency and then place a slotted line
between it and the filter input. The slotted line does not have to be calibrated, so
a homemade version such as described in Chapter 8 is suitable. Then, grossly de-
tune all filter tanks (e.g., by approximating, as well as you can, a short across them).
Slide the probe of the slotted line until you find a minimum and lock it there for
the remainder of the tuning procedure. Tune the first resonator (i.e., the one closest
to the input) to provide a peak probe indication (caused by a corresponding peak in
the impedance). Then adjust the next resonator’s tuning to provide a minimum re-
sponse. A minimum results because, when the second resonator is tuned correctly,
its impedance is a maximum. When transformed through the λ/4 line–like action of
the immittance inverter, the input impedance becomes a minimum. A little thought
allows us to conclude that we will have achieved our tuning goals if we adjust for
a maximum probe indication when tuning odd-numbered tanks and for a minimum
when tuning even-numbered tanks. This method is appealing because it does not re-
quire a two-port characterization of the filter and demands only n adjustments for

35 Such tools were once priced well beyond the budgets of students and hobbyists. Fortunately, that
situation has changed dramatically in recent years, with several vendors offering free or inexpen-
sive student and demo versions of their field solvers. Representative is Sonnet Lite (included in
the CD-ROM collection accompanying this book), which is a free electromagnetic field solver
capable of quite advanced analysis. With this tool, it is straightforward to accommodate fring-
ing, coupling, and other effects quite accurately, making the design of microstrip filters a much
less painful affair than it used to be. The availability of these programs is revolutionizing the
engineering practice of student and hobbyist alike. Even the weekend experimenter can now
rapidly produce designs of a sophistication that would have been almost unthinkable only a few
years ago.

36 Milton Dishal, “Alignment and Adjustment of Synchronously Tuned Multiple-Resonant-Circuit
Filters,” Proc. IRE, November 1951, pp. 1448–55, and “Alignment and Adjustment of Synchron-
ously Tuned Multiple-Resonant-Circuit Filters,” Electrical Commun., June 1952, pp. 154–64.
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23.5 SUM M ARY 843

an n-resonator filter. The only calibrated equipment required is a (fixed-frequency)
signal generator.

The foregoing procedure assures that the resonators are tuned properly, but we
aren’t quite done aligning the filter because we must still adjust the inter-resonator
coupling coefficients. The procedure outlined in the earlier discussion on mode split-
ting may be used as the basis for such adjustments. After the couplings have been set
properly, it’s a good idea to recheck the resonator tunings. Because inter-resonator
couplings are generally small, their adjustment usually perturbs the tuning by neg-
ligible amounts. However, it’s always best to verify this expectation, especially if
gross adjustments in coupling were required in the previous step or if the filter speci-
fications are tight. Even if some resonator retuning is necessary, the coupling factors
rarely need a second adjustment iteration. In any event, convergence on the proper
alignment is extremely rapid with this technique, so very few iterations are required
in practice to complete the procedure.

Another important observation is that all of our design equations and procedures
have fancifully assumed infinite unloaded Q for all elements. For filters whose poles
have Q-values well below the unloaded Q of the elements, the discrepancies will
not be serious. As the order and sophistication of a filter increase, however, the need
for high-Q poles (and zeros) also increases, making the issue of parasitic dissipation
progressively more serious. Insertion loss will increase, passband accuracy will de-
grade, and what should have been transmission nulls will fail to attenuate by infinite
amounts. With more modern synthesis methods, it is possible to accommodate some
lossiness during the design process (e.g., by altering L/C ratios so that the com-
bination of circuit and self-loading ultimately results in the same in-circuit loaded
Q as in a design with lossless elements), but at the expense of increased insertion
loss.37 Nothing can be done about the transmission nulls, regrettably. In any case,
there exists for every filter some critical Q below which acceptable filter behavior
is impossible to attain. In such instances, the only alternatives are to implement the
filter in a better technology. In that context, one should not overlook the possibil-
ity of using a combination of lumped and distributed elements, such as the combline
architectures.

23.5 SUM M ARY

We’ve seen that insights developed in the lumped domain may be carried over to the
distributed domain, allowing us to comprehend the operational principles underlying

37 This method is known as predistortion in the literature. The extensive tabulated designs found in
Zverev (Handbook of Filter Synthesis, Wiley, New York, 1967) include filters that accommodate
finite-Q elements through predistortion. Once again, we have Dishal to thank for providing the
first explicit equations for predistortion, in “Design of Dissipative Band-pass Filters Producing
Desired Exact Amplitude–Frequency Characteristics,” Proc. IRE, September 1949, pp. 1050–69.
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844 CHAPTER 23 MICROSTRIP F I LTERS

many important microstrip filters. Often, we may even derive analytical design for-
mulas from those that apply to lumped prototypes.

We’ve also seen that the relatively high electric fields produced within the resonant
sections of many coupled line filters implies particular sensitivity to the moderately
high dielectric loss of FR4. Replacing some of the lossy line with a low-loss discrete
capacitor improves performance, as in the capacitively tuned combline filter. For this
reason, critical filters (and resonators) are perhaps best realized with this sort of hy-
brid microstrip–discrete combination if a relatively lossy material such as FR4 is to
be used.

23.6 APPENDIX: LUMPED EQUIVALENTS OF
DISTRIBUTED RESONATORS

In many of the design approaches, we match the characteristics of a resonant trans-
mission line with those of an equivalent lumped resonator. To do so, we match the
behavior of the two networks near resonance. Specifically, we match the slope of
the reactance (or admittance) at the resonant frequency. We start, as usual, with the
expression for the input impedance of a loaded transmission line:

Z(z)

Z0
=

ZL

Z0
+ j tanβz

1 + j
ZL

Z0
tanβz

. (113)

For an open-circuited line, we have

Z(z)

Z0
= 1

j tanβz
. (114)

To facilitate comparisons with lumped tanks, we will actually consider the admit-
tance,

Y(z)

Y0
= j tanβz. (115)

Now,
β = ω/v (116)

and
λ = 2πv/ω, (117)

so a line that is λ/2 long at the center frequency has a length expressed as

λ0/2 = l = πv/ω0. (118)

Thus,
Y(l) = jY0 tan

ωπ

ω0
. (119)

Now let us evaluate the derivative of the admittance at the center frequency:

dY

dω

∣∣∣∣
ω=ω0

= jY0
π

ω0
. (120)
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23.6 APPENDIX: LUMPED EQUIVALENTS OF DISTR IBUTED RESONATORS 845

Performing the same calculation for a parallel LC tank, we find that

dY

dω

∣∣∣∣
ω=ω0

= j2C. (121)

Equating the two admittance slopes yields the relationship we have used repeatedly:

Y0(π/ω0) = 2C �⇒ Z0 = π
2

√
L/C = π

2 Z0res. (122)

That is, a λ/2 transmission line of characteristic impedance Z0 acts as a parallel LC

tank whose impedance is (2/π)Z0.
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abbreviations, and prefixes, 70
absolute temperature, 70
accumulator (ACC), and direct digital synthesis, 559,

560
“Accurate and AutomaticNoise FigureMeasurements”

(Hewlett-Packard, 1980), 492
acoustic horn, 99n14
acoustics, and history of microwave engineering, 6n15
active bias, and amplifiers, 379–81
active double-balancedmixer, 321–6
adaptive bias, and power amplifiers, 666–7
adhesion promoters, 158n2
adjacent channel power ratio (ACPR), 674–6
admittance, and Smith chart, 64, 65–6
Advanced Mobile Phone Service (AMPS), 25
Agilent, 310n11, 467, 623; see also Hewlett-Packard
air-core solenoids, 140–4
air-dielectric transmission line, and slotted-line

system, 249–50
Airy, George B., 591
Akhtarzad, Sina, 216, 218, 225, 833–4
Alexanderson,Ernst F. W., 10
Alexanderson alternator, 11
Alexopoulos, N. G., 710n23
alumina, and PC boards, 161–2, 237
aluminum, and skin depth, 126
American Radio Relay League, 689n3
America’s Cup yacht race, 10
Ampère’s law, 42, 125n2
Amphenol Corporation, 109, 112
amplifiers

bandwidth extension techniques, 381–94
basic configurations, 369
bridged T-coil transfer function, 427–39
combiners and splitters, 183
couplers, 225
Gunn diodes, 294
impedance and stability, 420–7
low-noise amplifiers (LNAs), 440–71
microwave biasing, 370–81
neutralization and unilateralization, 417–20
on-board transformers, 152
parametric amplification, 282–4
regenerative amplifier/detector, 15–18

shunt-series amplifier, 395–413
superregenerative amplifier, 59n12
tuned amplifiers, 413–17
tunnel diodes, 287
see also power amplifiers

Ampliphase system, 660, 661, 662
amplitude-to-phase (AM–PM) conversion, 576
amplitude response, and phase noise, 597–9
AM radio

Christmas Eve broadcast in 1906, 11
coil design, 145
crystal radios, 299
dipole antenna, 697
frequency bands, 39
loop antennas, 706
neutralization, 418n19
outphasing modulation, 660
single-diode demodulator, 331
see also radio

Amstutz, Pierre, 760n34
analog multiplier, as phase detector, 537–8, 604–5
analog phase interpolation (API), 557
analog scopes, 614–17
ANSI (American National Standards Institute), 70
antenna gain, 696
antennas

biconical antenna, 720–1
characteristics of, 695–7
circuit theory, 688–90
dipole antenna, 697–707
length of, 40, 693, 698–9, 705, 720
microstrip patch antenna, 707–20
Poynting’s theorem, 690–1
radiation, 691–5

Antennas (Kraus, 1988), 689n3
Antenna Theory (Balanis, 1996), 689n3
Antenna Theory and Design (Stutzman & Thiele,

1998), 689n3
APC connectors, 112–13
APLAC (simulator), 215n43
AppCAD (simulator), 310n11, 371, 372, 377–8, 467
arbitrary noise signal, 585
arbitrary termination, of transmission line, 52–3
Archimedean spirals, 719
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arc technology, for industrial illumination, 10n21
area-coupled lines, 222
Armstrong, Edwin Howard, 15–18, 305
Army Signal Corps, 16, 23
arrays, of antennas, 721
ARRL Antenna Handbook, 689n3
artificial lines, 54–8
The Art of Electronics (Horowitz & Hill), 333
“The Art of Phase Noise Measurement”

(Hewlett-Packard, 1984), 612
Atalla, Martin, 343
Atlantic Cable Project, 724
AT&T, 14, 18, 25n61
attenuation

coaxial cable, 115, 120–1
connectors, 108–14
standardized impedances, 72–3
waveguide, 120

audions, 13–14,15–16
automatic gain control (AGC), and PIN diodes, 288
automobile anticollision radar systems, 40
autotransformer, 418
available power gain, 71
avalanche breakdown, and pulse generator, 272–4
avalanching

diodes, 290, 295–6
sampling scopes, 618–19

Avantek, 457
average power, and lumped circuit theory, 691
AWG (American wire gauge), 144

Babinet, Jacques, 717n31
Babinet’s principle, 717–18
backward diode, 287
backward-wave coupler, 215, 225, 226–7
Bahl, I., 169n15
Ball, J. A., 779n50
ballasting, and thermal runaway, 681
balun

broadband transmission line transformers, 152–3,
154, 155

combiners, splitters, and couplers, 191–201
narrowband transmission line transformers, 156

band edges, and broadband impedance matching,
104–5, 107

bandpass constant-k filter, 736–8
bandpass filters

coupled resonator bandpass filters, 803–41
half-wave (re-entrant) bandpass filters, 800–3
low-pass prototypes, 781
single-sided bandwidth, 512n11

bandstop filter, 738, 781
bandwidth

amplifiers and extension techniques, 381–94
antenna length, 705
constant-k filter, 736–8
shunt-peaked amplifiers and enhancement, 385,

388–94
see also ripple values; ultrawideband systems

Bardeen, John, 341
Barrett, Robert M., 162
Barrow,Wilmer L., 18, 118
basewidth modulation, of bipolar transistors, 354
beamwidth parameter, and antenna performance, 696

Becker, Joseph, 300
Bell, Alexander Graham, 23–4n56, 30–1, 36, 70n8
Bell Laboratories, 22, 24–5, 60–1, 276, 296, 724n5,

757
bends, and line-to-line discontinuities in transmission

lines for PC boards, 172–3
beryllia, and PC boards, 162, 237
Bessel-Thomson filters, 761–6, 767, 781, 782
BFL inductor, 632–3
Bhartia, P., 169n15
bias and biasing

amplifiers, 370–81, 456–7
Colpitts oscillator, 506

bias voltage, and Gunn diode, 295
biconical antenna, 720–1
bi-fin antenna, 721
binary arrays, and Wilkinson combiners, 188–9
binocular core, of broadband transformer coupler,

206
binomial transformers, 99n13
bipolar cascomp, 325
bipolar transistors

biasing, 370–6
Class E amplifier, 645–6
distributed amplifiers, 411
FETmodels, 361–8
history of, 341–51
low-noise amplifier, 445–51, 468
power amplifiers, 680–1
small-signal models, 352–61

Black, Harold, 655
BNC connector

microstrip slotted-line system, 268, 270
moding and attenuation, 111, 112
PCboards, 177–8

Bode, Hendrik W., 93
bolometer, 6, 7
Boot, Henry A. H., 21
bornite, and crystal radios, 298
Bose, Jagadish Chandra, 5–6, 279–80
bow-tie antenna, 721
Bragg cutoff, 408
branchline coupler, 196–9, 228–9
Branly, Edouard, 3–4
Brattain, Walter, 300, 341
Braun, Ferdinand, 6n12, 279, 297, 614–15
breakdown phenomena, and power amplifier, 680–1
breakdown voltages, and snap diodes, 292
bridged T-coil amplifiers

common-mode response, 429–30
complete transfer function, 431–2
differential-mode response, 428–9
maximally flat delay, 436–7
maximally flat magnitude response, 432–6
maximum bandwidth, 437–8
two-port bandwidth enhancement, 392–4, 395

broadband amplifiers, 411–13
broadband directional coupler, 203–4
broadband impedance-matching techniques, 93–107
“Broadband Microstrip Mixer Design – The Butterfly

Mixer” (Hewlett Packard, 1980), 791
broadband mixer, 333, 336
broadband patch antennas, 716–20
broadband transmission line transformers, 152–5
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broadside-coupled lines, 222n50
Brune, Otto, 766
buffer space, of N connector, 110
butterfly arrangement, of radial stubs, 790–1
Butterworth condition, 99
Butterworth filters

approximations, 740–4, 746–7
Chebyshev filter, 752
delay-magnitude counterparts, 765
design tables, 781, 782
lossless ladder network synthesis, 767, 769–70,

773

cable television, 118, 412; see also television
CAD tools, and loop filters for PLLs, 549–50
Cady, Walter G., 516, 522n22
cameras, and xenon flash circuitry, 272
Campbell, George Ashley, 724, 725, 726, 727n11
capacitance, of resistors, 129–33
capacitive coupling, and mode splitting, 821–3
capacitive degeneration, and mixers, 320n24
capacitive loading, of dipole antennas, 702–4
capacitors, and passive components, 133–8
capacity hats, 703, 704, 722
carborundum (SiC), and crystal detectors, 7, 10n19,

298
Cartesian feedback, and power amplifiers, 664–6,

669
cascading systems

Friis’s formula for noise figure, 479–80
image impedance of microstrip filters, 826
low-noise amplifier (LNA), 464–7
power boost for amplifiers, 670

cascode amplifier, 411n14, 417, 454
cascoding, and PLL charge pump, 547
“cascomp” circuit, and mixers, 325
CAT-5 computer networking cable, 115
catwhisker

crystal radios, 299–300, 301, 302, 303
development of semiconductor detectors, 7, 9, 18
Schottky diode, 281

Cauer, Wilhelm, 756–7, 766, 767
Cauer filters, 755–60
cavity magnetron, 20–2
cavity resonators, 183
C connector, 111n8
cell phones

bandpass filters, 816
connectors, 113
development of, 24–5, 26
frequency bands, 39
heterojunction bipolar transistor (HBT), 347–9

center pins, of connectors, 112, 114
ceramic capacitors, 134–6
Chain Home Low, 18
chalcopyrites, and crystal radios, 298
channel spacing counter, and integer-N synthesizer,

555
Chaplin, G. B. B., 618n6
characteristic impedance

distributed filters, 786
image impedance, 825–8
infinite transmission line, 45
lossy transmission line, 47

lumped bandpass filters, 815–16
lumped impedance matching, 78

charge pumps, and phase-locked loops, 544–51
Chebyshev, Pafnuti L’vovich, 744–5n21
Chebyshev approximation, 99,106
Chebyshev filters

approximations, 744–53
delay counterpart, 765
design tables, 781, 782
lossless ladder network synthesis, 767
ripple value, 749, 832–3

Chireix, Henri, 659
choke, and bipolar transistor biasing, 372–3
circles, and noise figures, 443, 444
circuits and circuit theory, 688–90; see also RF

circuits
Clapp, James K., 520n20
Clapp oscillator

Colpitts oscillator, 520
phase noise, 593–4
tapped resonators, 526, 527, 528

Clarke, Kenneth K., 510n9
Class A amplifiers

adaptive bias, 666
cascading, 670
defining characteristics, 632–5, 687
load-pull characterization, 683, 686
modulation of, 650–1

Class AB amplifiers, 640, 648, 651, 670
Class B amplifiers, 687

defining characteristics, 635–7, 687
Doherty amplifier, 668–9
modulation of, 650, 653

Class C amplifiers, 637–40, 651–2, 670, 687
Class D amplifiers, 640–2, 687
Class E amplifiers, 642–6, 687
Class F amplifiers, 646–50, 687
Class S amplifiers, 669
clocks, and escapement, 591; see also digital watches
close-in phase noise, 591–2
CMOS circuit, and PLLs, 547, 565–8
coaxial cables

attenuation,120–1
power-handling capability, 71–2
properties of, 121–2
reasons for use of,115–17
skin effect, 127
types of, 117–18
waveguides and moding, 118–20

coaxial feed, for patch antenna, 715
coaxial slotted line, 250
codirectional coupler, 220–2
C0G ceramic capacitor, 135
coherer, 3–5, 11
Cohn, Seymour B., 163n9, 823n25, 828n29
Cohn equations, 817n19
coil design, and formulas for inductance, 145
coinage, and crystal detectors, 9n17, 303
collector–base capacitance, and bipolar noise model,

447
collector load, and low-noise amplifier, 455–6
collector voltage, and power amplifiers, 633, 636,

637–9, 642, 644, 647, 649
color television, 530–1
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Colpitts, Edwin Henry, 501n5
Colpitts oscillator

describing functions, 501–15
Gunn diodes, 293
LC feedback oscillators, 520, 522, 528
phase noise, 576, 589–90, 592–4

combination synthesizers, 558–9
combiners, and PC boards,183–230
combline filter, 841
commensurate-line filters, 795–800
common-emitter amplifier, 413–14, 419
common-mode choke, 153
common-mode response, and bridged T-coil transfer

function, 429–30
commutating multiplier, 539–40
compensation, and time-domain reflectometer, 245–6
complementary modulus, and lumped filters, 777
complete elliptic function, and impedance of stripline,

164
complete transfer function, and bridged T-coil transfer

function, 431–2
complex mixers, 338
composite constant-k and m-derived filter, 735
composite second-order (CSO) distortion, 412
composite triple beat (CTB) distortion, 412–13
compression point, of RF signal in mixers, 308–9
computers, and CRTs, 614
see also Macintosh computers; simulation and

simulators
Concelman, Carl, 111
conductance balance and equalization, and broadband

impedance matching, 106–7
conductor, coplanar, 168–70
conductor loss, 115–16, 137
conformal mapping, CPW lines and CPS conductors,

169–70
connectors

moding and attenuation, 108–14
nonlinear effects, 114–15
transmission lines for PC boards, 176–8

connector savers, 113
constant current modulator, and power amplifiers, 652
constant-envelope amplifiers, 648
constant-k filters

design tables, 781, 782
lumped prototype, 798
stepped-impedance filters, 787–9
transmission lines, 726–38

consumer products, and history of microwave
technology, 24–7

see also cell phones; radio; television; toys
continued fraction expansion, and lumped filters, 768
control-line ripple, loop filters and charge pumps for

PLLs, 546–51
convergence, and broadband impedance matching,

106–7
conversion gain, and mixers, 307
coplanar waveguide (CPW) and coplanar strip (CPS),

168–70
copper

air-core solenoids, 143, 144
crystal detectors, 9n17
cuprous oxide as semiconductor, 300–1, 302
green patina, 114n9

PCboards, 158
skin depth, 126

copper foil tape, and microstrip, 165, 268
corporate arrays, andWilkinson combiners, 188–9
corporate combiner, 671–2
correction factors, and fringing capacitance, 233–7
correlation admittance, and two-port noise theory, 442
corrosion, and nonlinearity in connectors, 114
coupled resonator bandpass filters, 803–41, 843
coupled wires

interline spacing, 222–3
magnetically coupled conductors, 151–2

couplers, and PC boards, 183–230
coupling coefficient, for microstrip filters, 821–2
coupling factor, and directional coupler, 201–7, 215,

218
Cripps, S. L., 683
crossed-field device, and cavity magnetron, 20
crossover frequency, and loop filters for PLLs, 550
CRTs, and analog scope, 614–17
cryogenics, and pulse generators, 239n1
crystal detectors, 5–10, 275
crystal oscillator, 521–3
crystal radios, 9, 297–304, 331
crystal rectifier, 298n27, 522n22
Curie, Jacques and Pierre, 516n14
current-mode mixers, 328n29
cutoff frequency, of lumped lines, 55–6
CW oscillator, 294
cyclostationarity, and phase noise, 575–6, 590, 593,

595
cyclotron, 10n21
cylindrical conductors, 124, 127–8, 132–3
cylindrical shields, and inductors, 146

damping ratio, and Chebyshev filter, 745–6
Darlington, Sidney, 725, 766, 768, 770
data sheets

model parameters for bipolar transistors, 360–1
stability of amplifiers, 425

DC model, for bipolar transistors, 352–6
DC resistivity, of copper, 158
de Bellescize, H., 529, 530
De Forest, Lee,10, 12–14, 15–16
delay, and lumped versus distributed circuits, 44
delay line discriminator, and phase noise measure-

ment, 607–9, 612
De Loach,W. H., 297
delta-sigma techniques, for nonuniform distribution of

noise, 558
depletion-mode FET, and biasing, 376–9
The Design of CMOS Radio-Frequency Integrated

Circuits (Lee, 2004), 129n3, 133n6, 396n8,
444n3, 494n1, 530n2

The Design of Low-NoiseOscillators (Hajimiri & Lee,
1999), 584n5, 596n11, 602n1

design tables, for low-pass filters, 781–3
dielectric capacitors, 133–4
dielectric constants, of materials used in microwave

circuits, 237
dielectric loss

capacitors, 137
coaxial cable, 116, 121
PCboards, 159
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differential-mode response, and bridged T-coil transfer
function, 428–9

digital-to-analog converter (DAC), and direct digital
synthesis, 559, 560

digital oscillator, 523
digital watches, and resonance of crystals, 516n15
diode cutoff frequency, 277–8
diode detectors, and noise figure measurement, 490
diodes

backward diode, 287
Gunn diodes, 293–5, 297
IMPATT diodes, 295–7
impedance matching, 101
junction diodes, 276–9
MIM diodes, 295
noise diodes, 289–90
nonlinear junction capacitance, 331
“penny” diodes and crystal radios, 297–304
PIN diodes, 287–9
Schottky diodes, 279–81
snap diodes, 290–2
tunnel diodes, 284–7
use of term, 275
varactors, 281–4

diplexer, 335n37, 336
dipole antenna, 132–3, 689–90, 697–707
direct-conversion receivers, 465, 529–30
direct digital synthesis (DDS), 559–60
directional couplers, 201–25, 255, 259–60
directivity, of antennas, 695
discontinuities, and time-domain reflectometer,

238–43
Dishal, Milton, 842, 843n37
disk terminator, and codirectional coupler, 221–2
distributed active transformer (DAT), 673, 674
distributed amplifier, 406–11
distributed bandpass filters, 804–5
distributed circuits, 41–4
distributed combiners, 184–91
distributed filters, 784–803, 814–18; see also

microstrip filters
distributed resonators, 844–5
dithering moduli, and synthesizers, 556–8
divider “delay,” and PLL synthesizers, 551–3
Doherty amplifier, 667–9
Dolbear, Amos E., 31
doping

bipolar transistors, 346, 347
profiles of diodes, 281–2, 286

double-balanced diode mixer, 334–5
double-sideband (DSB) noise, 308, 491–2
double-stub tuner, 92, 93
Douglas, Alan, 280n7
downward impedance transformer, 81
drain modulation, and power amplifiers, 653–4, 667,

670
drive amplitude, and oscillators, 496, 500
driving-point impedance, and RF circuits, 44–6
dry ice, and ethanol, 484
dual-gate FET mixer, 317
Duddell, William, 10n21
Dunwoody, Henry Harrison Chase, 7, 298
duplexer, and diplexer, 335n37
dynamic elements, of FET circuits, 364–8

Early, James, 354
Early effect, and bipolar transistors, 354, 446n5
earphone, for crystal radio, 303–4
“E-band” spectrum, 26, 41
eddy current loss, and transformers, 150–1
edge-coupled bandpass filters, 823–41
Edison, Thomas, 11–12
“Edison effect,” 12
effective gain, and drive amplitude of oscillator, 496
effective series resistance (ESR)

dielectric loss in capacitors, 137
solenoids, 143

effective width, of microstrip, 166
efficiency-boosting techniques, for power amplifiers,

666–9
E-field, and waveguides, 119
Einstein, Albert, 3n4
EIRP (effective isotropically radiated power), 28
electrical reference plane, and slotted line, 249
electric wave filters, 726
electromagnetic energy, and nature of radiation, 691–5
electromagnetic interference (EMI), and ferrite beads,

139
electromagnetic waveguides, 6n15
electron, and history of vacuum tube, 11
Electronics Industry Association, 134
Electronics magazine, 61
electrostatically deflected CRTs, 614, 615
ELI, as mnemonic, 691n8
elliptical pole distribution, and Chebyshev filters, 752
elliptic filters, 755–60, 764–5, 774–81, 792–5
elliptic functions, CPW lines and CPS conductors,

169–70
Elwell, Cyril, 10
Emde, F., 775
emitter-coupled amplifier, 417–18
emitter degeneration inductance, and low-noise

amplifier, 455
energy

parametric amplifier, 283
transmission lines, 46
wires for antennas, 690–1
see also electromagnetic energy

energy coupling, and microstrip filters, 818–23
Engelmann, H. F., 163n8
Engen, G., 261n6
enhancement-mode MESFETs, 346
entertainment, and commercial potential of radio, 17
envelope detector, and crystal radio, 331
envelope elimination and restoration (EER), and

power amplifiers, 658–9, 663, 667
envelope feedback, and linearization of power

amplifiers, 654–5
envelope impedance, and Colpitts oscillator, 512
envelope loop transmission, 509–10
equiangular spiral antenna, 718
equipartition theorem, of thermodynamics, 580
equivalent isotropic power density (EIPD), 695
error sources

impedancemeasurement, 251–4, 256–63
noise figure measurement, 487–90
phase noise measurement, 611–12

error vector magnitude (EVM), 677–8
Esaki, Leo, 284–5, 349
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escapement, in mechanical clocks, 591
ethanol, and dry ice, 484
Europe, and color television, 531
even-mode excitations, for combiners and couplers,

186, 210–11, 212–15
Ewing, Gerald D., 643n12
excess amplitude, and phase noise, 597–8
excess noise ratio (ENR), and noise figure

measurement, 475–6, 489
exclusive-or gate, and phase-locked loops, 540–2
expansion ratio, and equiangular spiral antenna, 718
extended-range phase detector, 543–4
external noise, and noise figure measurement, 487–8
eyeball techniques, for noise figure measurement,

492–3
EZNEC (antenna analysis program), 704

Fairchild Semiconductor, 343
Fano, Robert M., 93
Faraday’s law, 42, 123
F connectors, 114
Federal Communications Commission (FCC)

allocation of spectrum, 26, 27–8
CTB ratio for cable TV equipment, 412
phased-locked loops (PLLs) and television, 530

Federal Telecommunications Laboratory (ITT), 162
Federal Telegraph (California), 10, 14
feedback

mixers, 324–5
oscillator design, 494–5
see also Cartesian feedback; envelope feedback;

polar feedback
feedforward, and linearity, 325, 655–6
ferrite beads, and inductors, 138–9
Fessenden, Reginald, 10,16, 17, 305n1
FET models, for bipolar transistors, 361–8, 468–70
Feynman, Richard, 1n2, 233, 234, 693n10
field-effect transistors, 342
“50 Years of RF and Microwave Sampling” ( IEEE

Trans. Microwave Theory and Tech., 2003), 629
figures of merit, and high-frequency transistors,

359–60
fill factor, for planar spirals, 232
filters

impedance matching, 75
spectrum analyzers, 626–7
transmission lines, 726–38
see also loop filters; low-pass filters; lumped filters;

microstrip filters
finite-length transmission lines, 51–3
first-order phased-locked loop, 533–4
Fitzgerald, George Francis, 2
fixed-source impedance, 75
fixturing loss, and noise figure measurement, 488
flare angle, and equiangular spiral antenna, 718
flat sheets, and formulas for inductance, 140, 230–1
Fleming, John Ambrose, 12
Fleming valve, 12–14
FM radio

frequency bands, 39
mixers, 311–12
PLL-like circuits, 532
tuned amplifiers, 414
see also radio

forward recovery, of junction diode, 277–8
forward-wave coupler, 220
Fourier series, 98–9, 585
four-resonator system, for radio, 34–5
4046 CMOS PLL, 565–8
fractal antennas, 720
fractional-N synthesizers, 557, 565
frame counter, and integer-N synthesizer, 555
France, and color television, 531
Frederick, Raymond E., 203
“free-energy” radio, 9
free-running pulse generator, 271–4
frequency aperture, of vector network analyzer, 257
frequency bands, for RF and microwave circuits,

38–41
frequency detectors, and phase-locked loops, 544
frequency-division duplexing (FDD), 23, 25
frequency-division multiple access (FDMA), 23, 25
frequency domain, of oscillators, 495
frequency-hopped spread-spectrum systems, 559
frequency-independent delay, and transmission lines,

50
frequency multiplier, and snap diode, 292
frequency pulling, and Colpitts oscillator, 514
frequency range, and shunt-series amplifier, 405–6
frequency response, and vector network analyzer,

260
frequency sensitivity, and impedance matching, 97
frequency synthesizers, 529, 551–60
Fresnel lenses, 38
FR4 (flame-retardant formulation number 4)

patch antenna, 712–15
PC boards, 159–60, 161, 165, 166, 179, 183, 237,

268, 270
Friis, Harald T., 441n1, 472
Friis formula, 27, 479–80, 485
fringing capacitance, and correction factors, 233–7
Fuller, Leonard, 10n21
“Fundamentals of RF andMicrowave Noise Figure

Measurements” (Hewlett-Packard, 1983), 492

gain boost, by injection locking for power amplifiers,
671

see alsomaximum available gain; power gain
galena balometer, 5–6, 7
galena crystal detectors, 9, 298, 299, 302–3
gallium arsenide (GaAs)

Gunn diodes, 293, 294
transistors, 24, 346, 348

gallium nitride (GaN), and transistors, 351
gamma (γ): see propagation constant
gated impedance, 265
Gauss’s law, 42
Geiger, P. H., 300
General-Admiral Apraskin (ship), 32n73
germanium, and transistors, 343, 346, 348
GGB Industries, 623
Ghinoe, G., 169n15
Gibbs, Willard, 1n1
“giga-,” pronunciation of, 70
Gilbert mixers, 318n22, 322–3
Ginzton, E. L., 406
Global Positioning System (GPS), 39, 113, 677
Goddard, Robert, 14
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golden ratio, 45
grading layers, and heterojunction bipolar transistors,

348
The Great Eastern (ship), 724n3
grid-dip oscillator (GDO), 266–7
Grieg, D. D., 163n8
Grondahl, L. O., 300
ground leads, for probes, 621
G10, and PC boards, 159
Guanella, G., 152–3, 155
Guillemin, E. A., 751n25
Gunn, J. B., 293
Gunn diodes, 293–5, 297
gyration, of base-emitter capacitance in amplifiers,

423

hairpin filter, 838–40
Hajimiri, A., 583n4, 597n12
half-section, and termination of lumped delay lines,

56–8
half-wave “bandpass” filters, 800–3
half-wave patch antenna, 711–13
half-wave transmission lines, 88–9
Hammerstad, E. O., 171
Hamming, R. W., 748n23
hams (radio amateurs), 17
Handbook of Filter Synthesis (Zverev, 1967), 843n37
Hansen, William, 19
hard substrates, and PC boards,161–2
harmonic energy, and snap diode, 292
harmonic telegraph, 23–4n56
Hartley, RalphVinton Lyon, 501n5
Hartley oscillator, 519, 528
Hawks, Ellison, 30n67
headphones, and crystal radio, 303–4
Heaviside, Oliver, 1n1, 18n38, 50–1, 690n5, 724
Hegazi, E., 596n11
Heising modulation, 653n19
Herrold, Charles, 17
Hertz, Heinrich, 2–3, 31, 36, 723–4
Hess, Donald T., 510n9
heterodyne principle, 16, 305n2
heterojunction bipolar transistor (HBT), 347–9
heterostructure FET (HFET), 349
Hewlett, W. R., 406
Hewlett-Packard, 101, 112, 291, 492, 612, 791n8
Hewlett-Packard Journal, 246
high electron mobility transistor (HEMT), 349
higher-order poles, loop filters and charge pumps for

phase-locked loops, 546–51
high-frequency models, of bipolar transistors, 356–

60
high-K (high dielectric constant) ceramics, and

capacitors, 135–6
high-pass constant-k filter, 735–6, 781
high-power systems, and impedance matching, 75
Hilbert, David, 756n29
Hilsum, C., 293
history, of microwave technology

consumer microwave products, 24–7
debate on invention of radio, 29–36
early years of, 1–18
lumped filters, 723–6
modern microwave diode, 275

phased-locked loops (PLLs), 529–32
Smith chart, 60–1
transistors, 341–51
World War II, 18–23

Hoer, C., 261n6
Hollmann, Hans E., 21
homodyne receiver, 529–30
homojunctions, and transistors, 347
Houck, Harry, 16
HP8970 noise figure meter, 486, 492
Hughes, David Edward, 30
Hull, Albert W., 20
Hülsmeyer, Christian, 18n40
humans

brains as coherers, 5
crystal radios and auditory system, 299
injection locking and circadian rhythms, 530n3

Hurwitz (minimum phase) polynomial, 770
hybrid combiners, splitters, and couplers, 191–201
hybrid parameters, 67
hyperabrupt junctions, 277, 357
hysteresis loss, and transformers, 150

ICE, as mnemonic, 691n8
ideality factor, and diodes, 276, 281
IEEE: see Institute of Electrical and Electronics

Engineers
image frequency, and mixers, 307–8
image impedance, and microstrip filters, 825–8
image parameter filters, 726–38
image termination, and mixers, 335–8
immittance inverters, and coupled resonator bandpass

filters, 805–7, 809–10, 812–14
IMPATT diodes, 295–7
impedance

amplifiers and strange impedance behaviors (SIBs),
420–7

grid-dip oscillator, 266–7
iterated structures and driving-point, 44–6
line-to-line discontinuities, 170–6
microstrip “slotted”-line project, 268–71
microstrip and transmission lines on PC boards,

165–6
reactive components of antenna, 701–2
sampling scopes and measurement of, 623
slotted line, 246–54
Smith chart, 60–6
standardized for RF instruments and coaxial cables,

71–3
stripline and PC boards, 163–4
sub-nanosecond pulse generators, 271–4
summary of calibration methods, 264–5
SWR meter, 265–6
time-domain reflectometer (TDR), 238–46
vector network analyzer (VNA), 254–64
see also characteristic impedance; impedance

matching
impedance matching

importance of in RF engineering, 74–5
large-signal power amplifiers, 682–3
maximum power transfer theorem, 75–7
methods of, 77–107

impulse sensitivity function (ISF), and phase noise,
584–8, 591, 595, 600
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indium phosphide (InP)
Gunn diodes, 293
heterojunction bipolar transistors, 348

inductance
formulas for, 139–47, 230–3
low-noise amplifier and emitter degeneration, 455
resistors, 129–33

inductive degeneration, and single-balanced mixer,
320

inductive loading, of dipole antennas, 704–6
inductors, and passive components, 138–47
infinite ladder network

constant-k filter, 728
transmission lines, 45–6

injection locking, and sawtooth generators, 530
input–output impedances, and shunt-series amplifier,

399–401
input–output resistances, and shunt-series amplifier,

397–9
input-referred third-order intercept (IIP3), and

low-noise amplifier, 459–60, 462, 463–4
insertion loss, of connectors, 112
insertion power gain, 71
instability, and power amplifiers, 679
Institute of Electrical and Electronics Engineers

(IEEE), 70
Institute of Radio Engineers (IRE), 343n5, 473;

see also Institute of Electrical and Electronics
Engineers

insulators, and FR4, 161
integer-N synthesizer, 555
interconnect, and lumped versus distributed circuits,

44
interdigital filter, 840–1
intermediate frequency (IF)

amplifiers, 484
mixers, 305–6

intermediate resistance, and π-match circuit, 84
intermodulation distortion, in broadband amplifiers,

411–13
intermodulation (IM) products, 313
inverse Chebyshev filters, 745, 753–5, 792
inverse Class F amplifier, 648–9
IP3: see third-order intercept
IRE National Conference on Airborne Electronics

(1954), 343n5
iron pyrites, and crystal radios, 298
Ishii, J., 796n12
ISM (industrial-scientific-medical) band, 27–8
isolation factor (IF)

directional coupler, 202
filters for spectrum analyzers, 626–7
mixers, 308–10

isotropic antenna, 695
iterated structures, and driving-point impedance,

44–6

Jackson, D. R., 710n29
Jahnke, E., 775
Jamieson, H.W., 162n7
Jansen, R. H., 215n43
Jasberg, J. H., 406
Jell-O™ transistors, 414
JFET-based “grid”-dip oscillator, 267

J-inverters, 807–8, 810
Jones, E. M. T., 227n57, 823–4
junction bipolar transistor, 342, 343
junction diodes, 276–9
junction FETs, 342, 343, 468

Kahn, Leonard, 658
Kahng, Dawon, 343
Kahrs, Mark, 629
Kelvin, Lord (William Thomson), 724
kelvins, and absolute temperature, 70
Kennedy, John F., 36, 305n2
Kirchhoff’s laws, 41–3, 124, 688
Kirschning, M., 215n43
Klopfenstein, R.W., 100
klystron, 19–20
Kroemer, Herbert, 347n9
Kuroda’s identities, 796, 799

LADDER (program), 755, 760, 764, 774, 792–3
Laguerre, E. N., 770n44
Landon, V. D., 742n19
Lange, Julius, 223
Lange coupler, 223–5, 226, 228
Langmuir, Irving, 14–15
L-antenna, 703–4
Laplace transforms, 50n8
large-signal impedance matching, and power

amplifiers, 682–3
large-signal operating regimes, for power amplifiers,

630–1
large-signal performance, and linearity of low-noise

amplifier, 457–62
large-signal transconductor, 498
lateral coupling, and microstrip filters, 823–4
Lawrence, Ernest O., 10n21
LC oscillators, 519–21, 528, 585, 592–7
L/C ratio, and artificial lines, 56, 57–8
LDMOS (laterally diffusedMOS), 344–5
leakage inductance, 150
Lectures on Physics (Feynman), 233
Leeson, D. B., 581
Leeson model, of phase noise, 581–2
Legendre, A.-M., 777
letter designations, for frequency bands, 39
Lévy, Lucien, 305n2
light bulb, 11, 301
limiting amplifier, 658
LINC (linear amplification with nonlinear

components), 659–62
linear, time-varying ( LTV ) system, and oscillators,

576, 584, 594, 597, 600
linear, time-invariant (LTI) theories, of phase noise,

575–6, 582–92
linearity

diode detectors and noise figure measurement, 490
low-noise amplifier (LNA), 457–62, 465–7
mixers, 305, 308–10, 312–17, 323–6
oscillators, 494–5
phased-locked loops (PLLs), 532–6
time variation in phase noise, 582–92
see also nonlinearity

linearization, and modulation of power amplifiers,
654–6
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line-to-line discontinuities, and transmission lines for
PC boards, 170–6

Linvill stability factor, 425
Lippman, Gabriel, 516n14
Lissajous figures, 749
lithium niobate, and surface acoustic wave devices,

518–19
L-match

Class E power amplifier, 645
lumped impedance matching, 80–4
shunt-series amplifiers, 400

LNA: see low-noise amplifier
load inductor design, and Colpitts oscillator, 505–6
load-pull characterization, of power amplifiers,

683–7
local oscillator (LO), 16, 305, 529–30
Lodge, Oliver, 2, 3, 4n8, 31–2, 36, 720–1, 724
lodgian waves, 2
logarithmic spiral antenna, 718
logarithmic warping, of IF filter, 627
log-periodic dipole array, 720
Logwood, Charles, 14
Loomis, Mahlon, 29
loop antenna, 706–7
loop filters, and phase-locked loops, 544–51, 568–73
LO phase noise, 574–5
Lorentzian spectrum, 592
lossless ladder network synthesis, and lumped filters,

766–74
lossless LC tank, and impulse responses, 583
loss tangent, and capacitors, 137
lossy transmission line, 46, 47
low-frequency gain, and shunt-series amplifier, 397–9
low-noise amplifier (LNA)

biasing, 456–7
bipolar noise model, 445–51, 468
collector load, 455–6
emitter degeneration inductance, 455
FET noise parameters, 468–70
linearity and large-signal performance, 457–62
minimum noise figure (NF), 440
model parameters for practice, 470–1
narrowband LNA, 451–4
noise temperatures, 478
phase noise measurement, 608
spurious-free dynamic range (SFDR), 462–4
two-port noise theory, 440–5

low-pass filters
Colpitts oscillator, 512n11
design tables for, 781–3
stepped-impedance architecture, 787

low-temperature co-fired ceramic (LTCC), 162
LRM (line-reflect-match) method, of impedance

measurement, 262–3, 264–5
LTSpice (simulation), 389, 395, 403, 404, 438
lumped bandpass filters, 804–18
lumped circuits, 41–4
lumped coupling capacitors, 209
lumped delay lines, 55–8
lumped filters

bandpass filters with combinations of lumped and
distributed elements, 814–18

classification and specifications, 738–40
common approximations, 740–66

distributed filters, 784–803, 814–18, 844–5
elliptic integrals, functions, and filters, 774–81
history of, 723–6
network synthesis, 766–74
transmission lines, 726–38

lumped impedance matching methods, 78–87
lumped model, for lossy transmission line, 46
lumped narrowband directional coupler, 207
lumped two-way Wilkinson splitter/combiner, 191

Maas, Stephen, 334n36
Macintosh computers, and shunt peaking, 382
magnetically coupled conductors, 147–56
magnetic cores, coils wound on, 145–6
magnetic loop antenna, 706–7, 722
magnetic materials, and nonlinearity in connectors,

114–15
magnetic resonance imaging, 27
magnetizing inductance, 150
magnetrons, 20–3
Maliarov, A., 21n46
Manhattan Project, 22
Marchand, Nathan, 156
Marchand balun, 156, 334, 336
Marconi, Guglielmo, 3–5, 32–3, 34–6, 699, 724
Marconi Wireless Telegraph Corporation ofAmerica,

34
Margarit, M. A., 594, 596
Marks, R. B., 262n7
Massachusetts Institute of Technology (MIT): see

Rad Lab
matched termination, and transmission line, 51
Matthaei, G. L., 227n57, 823–4
maximally flat delay, and bridged T-coil transfer

function, 436–7
maximally flat magnitude response, and bridged

T-coil transfer function, 432–6
maximum available gain (MAG), and amplifiers, 426
maximum bandwidth, and bridged T-coil transfer

function, 437–8
maximum collector efficiency, for Class B amplifier,

637
maximum power transfer theorem, and impedance

matching, 75–7
Maxwell, James Clerk, 1–4, 43n4
Maxwell’s equations, 37, 41–3, 50n8
McCandless, H.W., 13
McKinsey and Company, 25n61
MC12181 frequency synthesizer, 561–3
MCX connector, 113
m-derived filters, 730–5, 738, 792
m-derived half-section, for line termination, 57–8
Mead, Carver, 24, 346
mechanical clocks, and escapement, 591
Medhurst, R. G., 142n14–15, 143
megalodges, 2
MESFET (metal-semiconductor FET)

biasing, 378–9
bipolar transistors, 346–7, 348, 350, 363–4, 368
cell-phone amplifiers, 24
noise parameters, 468
traveling-wave amplifiers, 408–9

metamorphic HEMTs (mHEMTs), 349, 350
metric ruler, and microstrip “slotted”-line project, 269
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mica, and capacitors, 133, 237
microchannel plate CRTs, 616, 617
microhenries, and inductance, 141
microstrip

bow-tie antenna, 721
branchline coupler, 196–9
Colpitts oscillator, 504
coupled resonator bandpass filters, 803–41
directional couplers, 209, 218–20
impedance measurement, 263–4, 268–71
lumped analogue of, 200
PC boards, 163, 164–8
vector network analyzer, 263–4

microstrip filters
coupled resonator bandpass filters, 803–41
distributed filters from lumped prototypes,

784–803
practical considerations in design, 841–3

microstrip patch antenna, 707–20
microwave circuits: see circuits and circuit theory;

RF circuits
Microwave Filters, Impedance Matching Networks,

and Coupling Structures (Matthaei, Young, &
Jones, 1980), 227n57, 823–4

microwave ovens, 24, 39
microwave spectroscopy, 23n50
Miller, F. H., 775n47
Miller effect, 399–400, 415, 417, 423
MIM diodes, 295
minimum noise figure (NF), and low-noise amplifer,

440
minority-carrier device, junction diode as, 278
mitered bend

time-domain reflectometer, 245
transmission lines, 172–3

mixers
conversion gain, 307
linearity and isolation, 308–10
multiplier-based mixers, 317–40
noise figure, 307–8
noise figure measurement, 491–2
nonlinearity and time variation, 312–17
spurs, 310–12, 339–40
superheterodyne receiver, 305–6

MMCX connector, 113
mobile communications, andWorld War II, 23
Mobile Telephone Service (MTS), 23
modeling, of transistors, 351–68
mode splitting, and microstrip filters, 818–23
moding

coaxial cable, 115, 118–20
connectors, 108–14
microstrip, 166–8
see also overmoding

modular angle, and lumped filters, 777
modulation, of power amplifiers, 650–78
modulation-doped FET (MODFET), 349
monoblock filter, 816
monopole antenna, 699–700, 705–6
monotonicity condition, and impedance matching,

98–9
Monte Carlo analyses, 564, 744, 754, 761, 764–5
Moore’s law, 344
MOS devices, and breakdown phenomena, 680

MOSFETs
bipolar transistors, 343–7, 348, 363–4, 368
noise parameters, 468
stability problem, 679

Motorola, 23, 24, 561
Mstrip40 (program), 709, 711
multiple-stub tuners, 91–2
multiplier-based mixers, 317–40
multiplying DAC (MDAC), 560
multisection coupler, 226
multisection stepped-impedance transformer, 94–5,

97
mutual inductance, 148–9

Nagaoka, S., 141–2
Nahin, Paul J., 724n5
Naldi, C., 169n15
narrowband LNA, 451–4
narrowband transmission line transformers, 155–6
National Bureau of Standards (NBS), 476
National Institute for Standards and Technology

(NIST), 476
National Semiconductor, 563
National Television Systems Committee (NTSC), 531
N connector, 110–11, 112
negative feedback, and mixers, 324–5
negative impedance converter (NIC), 524
negative resistance

amplifiers, 422, 424, 453
oscillators, 524–8

negative voltages, and Colpitts oscillator, 504
Neill, Paul, 110, 111
neper (Np), and amplitude change,182n25
network analyzer, 178, 246; see also vector network

analyzer
network synthesis, and lumped filters, 766–74
neutralization, and amplifiers, 417–20
9913 coaxial cable, 121–2
NIST standards, for noise diodes, 290
Noe, J. D., 406
noise

delta-sigma techniques for nonuniform distribution,
558

FET parameters, 468–70
model of for bipolar transistor, 445–51, 468
phase-locked loops (PLLs), 536–7
see also noise factor; noise figure; phase noise;

thermal noise
noise diodes, 289–90, 476
noise factor

low-noise amplifier (LNA), 464–5
two-port noise theory, 441–3

noise figure (NF)
measurement of, 472–93
mixers, 307–8, 322–3
noise temperature, 444–5

noise measure, 480–1
noise modulation function (NMF), 589
nominal detectable signal (NDS), 490
nonlinearity

connectors, 114–15
mixers, 308–17, 339
oscillators, 495, 582
see also linearity
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nonplanar transformer, 152
nonquasistatic (NQS) effects, and FET circuits,

367–8
Nordic Mobile Telephone System (NMT-450), 25
normalized power efficiency, for power amplifiers,

641, 648
notched transmission line, 174, 175
NP0 (negative-positive-zero) designation, for

temperature coefficient, 135
nuclear magnetic resonance, 27
numerical evaluation, of elliptic functions, 778–80
N -wayWilkinson splitter/combiner, 189, 190

Occam’s razor, 43n4
odd-mode excitations, for combiners and couplers,

186–7, 210, 212–15
offset synthesizer, 558–9
Ohl, Russell, 18, 275, 276
Ohm’s law, 123–4
omnidirectional antenna, 696
1-dB compression point, 457
1N34A germanium diode, 300, 302
1 : n transformer, 148
op-amp, and active bias, 380
optimum source admittance, and two-port noise

theory, 443–4
optimum source resistance, and bipolar noise model,

449–51
Orchard, H. J., 760, 780
orthogonality, and Cartesian feedback, 665
oscillators

description of functions, 495–515
Gunn diodes, 293, 294
IMPATT diodes, 297
impedance measurement and grid-dip, 266–7
linear, time-varying ( LTV )systems, 576, 584, 594,

597, 600
linearity, 494–5
negative resistance oscillators, 524–8
nonlinearity, 582
phase noise, 574–600
PLLs and frequency synthesis, 551
resonators, 515–19
tuned oscillators, 501, 509, 519–24
tunnel diode, 286
voltage-controlled oscillators, 281
zero temperature coefficient, 134
see also voltage-controlled oscillator

oscilloscopes
analog scopes, 614–17
common-mode chokes, 153
distributed amplifiers, 411
noise figure measurement, 493
sampling scopes, 617–25
snap diodes, 291
time-domain reflectometer, 238, 239
two-port bandwidth enhancement, 392, 393n6

Osmani, R. M., 225
Ou, W. P., 224–5
outphasing modulation, and power amplifiers, 659–62
overmoding

half-wave “bandpass” filters, 801
waveguides, 119–20

Ozaki, H., 796n12

Padé approximants, 763n3
parameter extraction, and time-domain reflectometer,

243–5
parametric amplifiers, 282–4, 331n34
parametric converters, 307n6
Parseval’s theorem, 587–8
passive components

capacitors, 133–8
combiners, splitters, and couplers, 183–230
inductors, 138–47
magnetically coupled conductors, 147–56
resistors, 129–33
resonators, 181–3
skin effect, 123–9
transmission line segments, 178–81

passive double-balancedmixer, 326–30
passive filters, 723
passive probe, for sampling oscilloscope, 623–4
patch antennas, 707, 722
PC (printed circuit) boards

capacitors, 136
combiners, splitters, and couplers, 183–230
general characteristics of, 158–62
resonators, 181–3
transmission lines, 162–81

pencil lead, and crystal radio, 301, 302
“penny” diodes, 297–304
Penzias, Arno, 24
Percival, William S., 406
performance metrics, and power amplifiers, 673–8
phase-alternating line (PAL) system, 531
phase detector

phased-locked loops (PLLs), 532–3, 537–44, 565–7
phase noise measurement, 604–7
vector network analyzer, 257

phase distortion, and shunt-peaked amplifiers, 385
phase equalizer, 765
phase-frequency detectors, 544
phase-locked loop (PLL)

design example, 561–4
frequency synthesis, 551–60
history of, 529–32
inexpensive design as lab tutorial, 565–73
linearized model, 532–6
loop filters and charge pumps, 544–51
phase detectors, 537–44
phase noise measurement, 604–7
rejection of noise on input, 536–7

phase margin, and loop filters for PLLs, 550
phase noise

amplitude response, 597–9
detailed analysis of, 579–82
LC oscillators, 592–7
linear, time-invariant (LTI) theories, 575–6, 582–92
measurement of, 601–12
reciprocalmixing, 574–5
simulation, 600
tank resistance, 576–9

“Phase Noise Characterization of Microwave
Oscillators” (Hewlett-Packard, 1983), 612

phenolic, and PC boards, 160
phosphor-bronze wire, and crystal radio, 301, 303
photophone, 30–1, 36
Pickard, GreenleafWhittier, 7, 9, 280, 298, 300



858 INDEX

piecewise approximation, and mixers, 326, 327
Pierce, GeorgeWashington, 298n27, 522n22
Pierce, John R., 20
Pierce oscillator, 522–3, 528
piezoelectricity, 516n14
π-match circuit, 84–5
pinchoff voltage, and FETs, 362–3
PIN diodes, 287–9
planar spirals, and formulas for inductance, 231–3
PLL: see phase-locked loop
PLL LpFltr program, 563
PNP transistor, 380
point-contact bipolar transistor, 341
point-contact crystal detectors, 5–6
point-contact diodes, 276
polar feedback, and power amplifier, 657, 663–4
pole zero doublet, 389
police radar, and frequency bands, 39–40
polycrystalline wafers, and diodes, 280–1
polynomials, and lumped filters, 750–1, 757, 762–3,

770
polyphenylene oxide (PPO), and PC boards, 160–1
polystyrene capacitors, 134
Popov, Alexander, 32, 36
port assignments, and broadband directional couplers,

204
postdistorter, and power amplifier, 656
potentiometer, and PIN diode, 289
Poulsen, Valdemar, 10
power-added efficiency (PAE), and power amplifiers,

679
power amplifiers

breakdown phenomena, 680–1
classical topologies, 631–50
instability, 679
large-signal impedance matching, 682–3
load-pull characterization, 683–7
modulation, 650–78
power-added efficiency (PAE), 679
small- versus large-signal operating regimes, 630–1
thermal runaway, 681–2

power backoff, and modulation of power amplifiers,
651, 654

power factor, and capacitors, 137
power gain, 70–1, 74–5; see also gain boost
power spectral density (PSD), 608
power supply terminal, and modulation of power

amplifiers, 652
power transfer function, and elliptic filters, 758
Poynting, John Henry, 690n5
Poynting’s theorem, 690–1
predistorter

microstrip filters, 843n37
mixers, 324
power amplifiers, 656–8

prefixes, and abbreviations, 70
Principles of Wireless Telegraphy (Pierce, 1909),

522n22
printed circuit boards: see PC boards
probability density function (PDF), 668
probes

microstrip “slotted”-line project, 269
sampling oscilloscopes, 620–5

propagation constant, for transmission lines, 46–51

proximity effect, in conductors, 128
pseudomorphic HEMTs, 349–50
PTFE (polytetrafluoroethylene)

capacitors, 134
dielectric constant of, 237
PCboards, 160

Puff (simulator), 173, 216, 218, 219, 730, 788
pulse generators, and impedance measurement,

238–40, 271–4
pulse impedance, of lossy transmission line, 47
pulse response, of shunt-peaked amplifiers, 386–7
pulsewidth modulation (PWM), 669–70
Pupin, Michael Idvorsky, 51, 724
Pupin coils, 51

Quackenbush, E. Clark, 109
quadrature coupler, 201, 338
quadrature oscillators, 523–4
quadrature phase detector, 538
quarter-wave resonators, 515–16
quarter-wave transmission line transformer, 87–9
quartz, and PC boards, 162
quartz resonators, 9n17, 516–18
quasi-TEM propagation, and microstrip, 164
Quinn, Pat, 325
Q-value, of resonators, 181–3

radar
frequency classification system, 39–40
history of microwave technology and, 18–27, 275
single-diodemixers, 330
video detector, 627n13

radial stub, and stub low-pass filter, 790–2
radiation, and antennas, 691–5, 707–8
radiation resistance, of dipole antenna, 698–701
radio

America’s Cup yacht race in 1901, 10
broadcast, rapid rise of,17
invention of, debate on, 29–36
UHF connector, 109–10
World War II and development of, 23
see alsoAM radio; crystal radio; FM radio

radioastronomy, 24, 308n8, 331n34, 339
Radio Day (Russia), 32
radio-frequency interference (RFI), and ferrite beads,

139
Rad Lab (Massachusetts Institute of Technology), 22,

23, 61, 275, 282
Ramanujan, S., 780–1
Randall, John T., 21
rat-race hybrid, 193–4, 332, 333
Rayleigh, Lord (John William Strutt), 6, 18n39, 99n14,

118n15
razor blades, and crystal radio, 300
RCA, 16, 17, 660
Read, W. T., 295–6
read-only memory (ROM) lookup table, and direct

digital synthesis, 559, 560
reciprocal mixing, and phase noise, 574–5
rectangular spiral, and broadband antenna, 720
Reddick, H. W., 775n47
re-entrant modes, and distributed filters, 784
reflectance, and impedance matching, 95–6
reflection, and vector network analyzer, 258
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reflection coefficient, and termination impedance,
240

regenerative amplifier/detector, 15–18
relaxation oscillators, 501
repeller, 20
resistance

bipolar noise model and optimum source, 449–51
skin depth, 126–7
see also negative resistance

resistive combiners, 184
resistors

inductance and capacitance, 129–33
PIN diodes, 289
thermal noise, 446

resolution bandwidth, of spectrum analyzer, 626–7
resonant circuits, and lumped impedance matching,

78–80
resonator frequency discriminator, and phase noise

measurement, 609–11
resonators

coupled pairs in microstrip filters, 818–23
coupled resonator bandpass filters, 803–41
distributed resonators, 844–5
oscillators, 515–19
PC boards and passive elements, 181–3
tuning of, 843

response calibration, and impedance, 264
return loss (RL), 66, 76
reverse recovery

junction diode, 277–8
snap diode, 291–2

RF choke (RFC), 476, 643, 652
RF circuits

artificial lines, 54–8
definition of, 37–8
driving-point impedance of iterated structures,

44–6
frequency bands, 38–41
impedance transformations, 424
lumped versus distributed circuits, 41–4
transmission lines, 46–54
see also circuits and circuit theory

RF signal, and mixers, 307
RFSim99 (simulator), 217n45, 218, 310n11, 744
RG8 coaxial cable, 122
RG-n /U coaxial cable, 117
RG174 coaxial cable, 121
Richard, P. I., 795–6
Righi, Augusto, 3
rigid coaxial cables, 117, 122
ring hybrid, 193–4, 199, 201, 332–3
ring oscillator, 585
ripple values

Chebyshev filters, 749, 832–3
lumped bandpass filters, 808–9, 817

Rodwell, Mark, 619n9
RO4003, and PC boards, 160, 161, 270
Rogers Corporation, 160
rolloff behavior, and lumped filters, 727
root locus

oscillator, 494–5, 513
second-order PLL, 536

rotation, and broadband impedancematching, 106
Round, Henry J., 16

round wires, and formulas for inductance, 230–1
Rumsey, V. H., 162n7
Russia, and development of radio, 32
Ruthroff, C. L., 152,154–5
Rutledge, David B., 752n26

safety
beryllia, 162
ethanol and dry ice, 484

safety pin, and crystal radio, 301, 302
St. Louis (Missouri), and mobile telephone service,

23
sample-and-hold (S/H) operation, and phase-locked

loops, 552
sampling scopes, 617–25
Samuel, Arthur L., 20
sapphire, and PC boards, 162
Sarnoff, David, 16
satellite communications systems, 477, 532
sawtooth generators, 530
scattering parameters: see S-parameters
Schiffman “alligator clip” broadband coupler, 229
Schmitt trigger, 497
Schottky, Walter, 305n2
Schottky diodes

crystal detectors, 8
history and characteristics of, 279–81
MESFETs, 363
microstrip “slotted”-line project, 269–70

scientific instrumentation, and PLLs, 532
SCR-584 gun-laying radar, 22
second-order PLL, 535–6, 568–73
second stage contribution, and noise figure

measurement, 488–9
selenium, and television, 30–1n69
self-bias, and depletion-mode FETs, 376
semiconductor detector, 7–9
semiconductors, and surface phenomena, 341
semi-infinite conductive block, 125
semirigid coaxial cables, 117, 122
sequential phase detectors, 542–4
series inductor, 781
series-peaking amplifiers, 381–8, 391–3
75-± coaxial cables, 118
75-± connectors, 114
shape factor, and lumped filters, 738–9
sheet resistivity, of copper, 158
Shockley, William, 341–2, 343n5, 347
shockwave transmission line, 619–20
short/open/load/thru (SOLT) technique, for

impedancemeasurement, 261, 263, 264
shortwave radio, and hams, 17
shot noise, and bipolar transistor, 446
shunt capacitor, and design tables for low-pass filters,

781
shunt impedances, and Smith chart, 64–5
shunt inductance, and broadband impedance matching,

103–4
shunt-peaked amplifiers, 381–90
shunt resonator, and band edges, 107
shunt-series amplifier, 395–413
sidebands, and mixers, 307
sidelobe radiation, of antenna, 696
sidetone, and telephone, 192n31
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signal generator, and noise figure measurement,
482–3

signal-to-noise ratio (SNR)
mixers, 307
noise figure measurement, 472

silica, and PC boards, 162, 237
silicon

crystal radios, 298
semiconductor detectors, 7, 8
transistors, 343–4, 346, 348, 350, 351

silver, tarnish on, 114n9
simulation and simulators, and phase noise, 600
see also APLAC; AppCAD; LADDER; LTSpice;
Puff ; RFSim99; Sonnet Lite; Spectre; Spice

single-balanced mixer, 318–20
single-diode mixer, 330–1
single-layer solenoid, 140, 141
single loop, and formulas for inductance, 146–7, 231
single-pole low-pass filter, 739
single-sideband noise figure (SSB NF), 308, 491–2
single-stage quarter-wave transformer, 95
single-stub tuner, and impedance matching, 89–91,

103
size reduction, for couplers, 226–30
skin effect, and passive components, 123–9, 158n2
skin loss, and coaxial cables, 120, 121
slide angle, and microstrip filters, 838
slider assembly, and microstrip “slotted”-line project,

269–70
slotted line, and impedance measurement, 246–54,

268–71
SMA (sub-miniature, type A) connector, 111–12, 113,

177, 270
small-reflection approximation, 97, 98
small-signal models, for bipolar transistors, 352–61,

446
small-signal operating regimes, for power amplifiers,

630–1
SMC connector, 112
Smith, Phillip Hagar, 60–1, 66n5, 72n9
Smith chart

double-stub match, 93
introduction to, 60–6
L-match, 82–4
load-pull contours of power amplifiers, 685
multiple-stub tuners, 92
shunt-series amplifier, 405
single-stub match, 90
vector network analyzer, 258

snap diodes, 290–2
Sokal,A. D. and N. O., 643n12
Sonnet Lite (simulation), 217n45, 225, 836, 842n35
Sontheimer, Carl G., 203
Sony Corporation, 284
source mismatch, and vector network analyzer, 260
Southworth, George C., 18, 118, 275, 280
space communications systems, and noise

temperature, 477
S-parameters, 66–9
spark signal, ultraband spectrum of,10
specified load capacitance, of Pierce oscillator, 523
spectral regrowth, and adjacent channel power ratio,

676
Spectre (simulator), 596

spectrum allocation, RF circuits and upper limits
of, 40; see also Federal Communications
Commission

“Spectrum Analysis . . . Spectrum Analyzer Basics”
(Hewlett-Packard, 1974), 629

“Spectrum Analyzer Measurement Seminar”
(Hewlett-Packard, 1988), 629

spectrum analyzers
architectures for building, 625–9
noise figure measurement, 485, 492
performance limits, 628–9
phase noise measurement, 603, 604, 611–12

Spencer, Percy, 24
Spice simulations, 292, 460, 461, 564
splitters, and PC boards, 183–230
spot noise figure, 479
spurious-free dynamic range (SFDR), and low-noise

amplifier, 462–4
spurs, and mixers, 310–12, 339–40
Sputnik, 24
square-law mixer, 313–17
square spiral, and broadband antenna, 720
squegging, and oscillator design, 509
stability, and impedance transformations in amplifiers,

420–7
standing-wave ratio (SWR)

definition of, 76–7
dipole antenna, 699
slotted line, 248
Smith chart, 66

Stanford University, 159, 178
start-up, of Colpitts oscillator, 507–8
static moduli, and phase-locked loops (PLLs), 553–6
steady-state error, and first-order PLL, 534
step discontinuity, and transmission lines, 174
stepped-impedance filters, 787–9
step recovery diodes, 290
Stern stability factor, 425
Stoney, George Johnstone, 11
stopband attenuation, and m-derived filters, 733
Storch, L., 761, 762
strange impedance behaviors (SIBs), and amplifiers,

420–7
stripline, and transmission lines for PC boards, 163–4,

166–8
stub low-pass filter, 789–92
Stutzman, W. L., 689n3, 700n17
subcarrier frequency, and color television, 531
subharmonic mixers, 338–40
sub-nanosecond pulse generators, 271–4
superconductors, and pulse generators, 239n1
superheterodyne receiver, 16, 305–6, 530
superregenerative amplifier, 59n12
supply pushing, and Colpitts oscillator, 514–15
Supreme Court, 1943 decision on invention of radio,

34, 724n2
surface acoustic wave (SAW) devices, 518–19
surface-mount inductors, 138–9
surface-mount resistors, 130–3
surface roughness, and PCboards, 159, 162
“surface state” hypothesis, 341
surge impedance, of loss transmission line, 47
sweep generator, and CRT, 614
sweep oscillators, and television, 530
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switched-mode power converters, 633n2, 642
switching-type amplifiers, and instability, 679
SWR meter, and impedance measurement, 265–6
symmetry problems, in couplers, 223
synthesizers

combination synthesizers, 558–9
dithering moduli, 556–8
static moduli, 553–6
see also phase-locked loops

syntony, and tuned circuits, 724

tail noise, and phase noise, 595–6
tangential signal sensitivity (TSS), 490
tank inductor, and Colpitts oscillator, 506–7
tank resistance, and phase noise, 576–9
tapered acoustic horn, 99
tapered transmission line, 94–5, 174, 175
tapped capacitors, and impedance matching, 86–7
tapped inductor, 87
tapped resonators, 526, 528, 594–5
tapped transformers, and neutralization of amplifiers,

419
T-coil network, and bandwidth enhancement of

amplifiers, 392–4, 427–39
T-combiner, 184–5
Teal, Gordon, 343
Teflon: see PTFE
Teflon dielectric semirigid coaxial cable, 117
Tektronix, 392, 393n6, 411, 616, 819n21
telegraph, 10, 14, 31
telephone

hybrid couplers, 191–2
lumped inductances along transmission lines, 51
port isolation, 192n31
see also cell phones; Nordic Mobile Telephone

System
television

bow-tie antenna, 721
CRTs, 614
dipole antenna, 697
first proposals for broadcast, 18
frequency bands, 39
phased-locked loops (PLLs), 530–1
selenium and patents for, 30–1n69
series- and shunt-peaking amplifiers, 381, 382
see also cable television

temperature
Gunn diode, 295
noise factor, 441, 444–5, 477–9
noise figure measurement, 472–3, 475, 490
thermal runaway of power amplifiers, 681–2
see also absolute temperature; thermal noise

temperature coefficient (TC), and capacitors, 134–5
temperature-limited diodes, 483
10-dB coupler, 260
tennantite/tetrahedrite, and crystal radios, 298
Terman–Woodyard composite amplifiers, 667–9
Tesla, Nikola, 34, 36, 724
Tesla coil, 34
test voltage, of tuned amplifier, 415–16
Texas Instruments, 343
thermal noise

bipolar transistors, 446
FET circuits, 367

thermal runaway, and power amplifiers, 681–2
thermodynamics, and equipartition theorem, 580
Thévenin resistance, 728
Thiele, G. A., 689n3, 700n17
third-order intercept (IP3), 323–4, 457–62
Thompson, Elihu,10n21
Thomson, J. J., 11–12
Thomson, W. E., 762
3-dB coupler, 223
3-D radiation pattern, 697
thru-reflect-line (TRL) method, of impedance

measurement, 261–2, 263, 264
time-dependent dielectric breakdown (TDDB), 680
time-division multiple access (TDMA), 31
time-domain reflectometer (TDR), and impedance

measurement, 178, 238–46, 265
time-domain simulators, and mixers, 323–4
time variation

mixers, 312–17
phase noise, 575, 582–92
see also linear, time-varying ( LTV )system; linear,

time-invariant (LTI) theories
time-varying phase noise model, 575
TITO (tuned input–tuned output)oscillator, 520–1, 528
Tizard mission, 21–2
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