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The final equilibrium count per min. resulting 
from the solution present in the fiberglass layer 
was 370. The curve has a trend very similar to 
that of the calculated curve 1, Fig. 5; from the 
initial slopes 0.50 cm2/day is obtained for k. 
Curve 2 refers to a similar solution containing, 
in addition, 25-wt. percent glycerine, having a 
viscosity of 1.8 centipoise at 25°C; curve 3 
refers to 43-wt. percent glycerine solution with 
a viscosity 3.6 cpo From curve 2, k=0.24, and 
from curve 3, k=0.14. In first approximation, 
the product of k and the viscosity is expected 
to be constant; the products obtained from 
Fig. 6 are 0.45, 0.43, and 0.50. Definite deviation 
from this relation would indicate a change of 
size of the solute molecules or ions. 

Figure 7 shows data on 0.5-percent agar gel as 
the porous structure. In this case diffusion took 
place from an 0.02-molar uranyl nitrate solution 
into an O.OI-molar solution. Comparison of the 
slope with that of curve 2, Fig. 5, results in 
k =0.50, which is in good agreement with the 
previous value obtained from the considerably 
thinner fiberglass layer and entirely different 
boundary condition. 

TABLE I. 

Viscosity. k. 
Solvent cp (~) cm'/day k~ 

Dioxane 1.16 0.50 0.58 
Dioxane with 33-vol. 

percent castor oil 5.1 0.11 0.56 

Results of measurements with U02(N03h 
solutions in dioxane are given in Table I. 

Figure 8 presents k in dioxane plus 33-vol. 
percent castor oil as a function of age. It may 
be seen that k decreases with age. It is possible 
that larger aggregates are formed with time; the 
increase of the molecular radius was computed 
by using Stokes' relation 

r = (kT)/(67r1]k), (4) 

where k=Boltzmann constant and T=absolute 
temperature. The computed radii are also shown 
in Fig. 8. Even if the absolute validity of Eq. (4) 
may be questioned, comparative molecular sizes 
derived from it are certainly useful. 

The technique as described will next be used 
for the study of solutions in hydrocarbon oils, 
as mentioned in the introduction. 
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The physical limitations of omni-directional antennas are considered. With the use of the 
spherical wave functions to describe the field, the directivity gain G and the Q of an unspecified 
antenna are calculated under idealized conditions. To obtain the optimum performance, three 
criteria are used, (1) maximum gain for a given complexity of the antenna structure, (2) mini­
mum Q, (3) maximum ratio of G/Q. It is found that an antenna of which the maximum dimen­
sion is 2a has the potentiality of a broad band width provided that the gain is equal to or less 
than 4a/X. To obtain a gain higher than this value, the Q of the antenna increases at an astro­
nomical rate. The antenna which has potentially the broadest band width of all omni-direc­
tional antennas is one which has a radiation pattern corresponding to that of an infinitesimally 
small dipole. 

I. INTRODUCTION 

AN antenna system, functioning as a trans­
mitter, provides a practical means of trans­

mitting, to a distant point or points in space, a 

* This work has been supported in part by the Signal 
Corps, the Air Materiel Command, and D.N.R. 

signal which appears in the form of r-f energy 
at the input terminals of the transmitter. The 
performance of such an antenna system is judged 
by the quality of transmission, which is measured 
by both the efficiency of transmission and the 
signal distortion. At a single frequency, trans-
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mISSIon efficiency is determined by the power 
gain of the antenna system in a desired direction 
or directions. The distortion depends not only 
on the frequency characteristics of the antenna 
input impedance, but also on variations of phase 
and of power gain with frequency. It is common 
practice to describe the performance of an an­
tenna system in terms of its power gain and 
the band width of its input impedance. 

Designers of antennas at VLF range have 
always been faced with the problems of ex­
cessive conduction losses in the antenna struc­
ture and a narrow band width. At this frequency 
range, the physical size of the antenna is neces­
sarily small in terms of the operating wave­
length. For a broadcasting antenna, with a 
specified distribution of radiated power in space, 
it was found that the antenna towers must be 
spaced at a sufficient distance apart so as not 
to have excessive currents on the towers. At 
microwave frequencies, where a high gain has 
been made possible with a physically small 
antenna, there seems to be a close relationship 
between the maximum gain thus far obtainable 
and the size of the antenna expressed in terms 
of the operating wave-length. At optical fre­
quencies where a different language is used, the 
resolving power of a lens or a reflector is propor­
tional to the ratio of the linear dimension to 
wave-length. Thus, over the entire frequency 
range, there seems to be a practical limit to the 
gain or the directivity of a radiating or focussing 
system. 

From time to time, there arises the question 
of achieving a higher gain from an antenna of 
given size than has been obtained conventionally. 
Among published articles, Schelkunoffl has de­
rived a mathematical expression for the current 
distribution along an array which yields higher 
directivity gain than that which has been usually 
obtained. It is mentioned at the end of this 
article that an array carrying this current dis­
tribution would have a narrow band width as 
well as high conduction loss. In 1943, LaPaz 
and Miller2 obtained an optimum current dis­
tribution on a vertical antenna of given length 

1 S. A. Schelkunoff, Bell System Tech. J. 22, 80-107 
(1943). 

2 L. LaPaz and G. A. Miller, Proc. I.R.E. 31, 214-232 
(1943). 
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which gives the maximum possible field strength 
on the horizon for a given power output. The 
result was disputed in a later paper by Bouw­
kamp and deBruijn3 who developed a method of 
realizing an arbitrarily sharp vertical radiation 
pattern by a suitable choice of the current dis­
tribution. In a later report by Laemmel of the 
Polytechnic Institute of Brooklyn, a method was 
presented for finding a source distribution func­
tion which results in an arbitrarily large gain 
relative to an isotropic radiator and which at 
the same time is contained within an arbitrarily 
small region of space. 

In all the above articles, the authors invariably 
have computed the source distribution required 
to obtain a directivity gain higher than that ob­
tained in practice with an antenna of a given 
size. As a result, it can be said that there is no 
mathematical limit to the directivity gain of an 
antenna of given size. The possibility of arrang­
ing on paper the current distribution on an an­
tenna at r-f frequencies exists because of the 
absence of the severe restriction which must be 
observed, on account of the incoherent nature of 
the energy, in designing a system at optical 
frequencies. 

In 1941, Stratton demonstrated the impracti­
cality of supergain antennas. In his unpublished 
notes he derived the source distribution within a 
sphere of finite radius for any prescribed dis­
tribution of the radiation field in terms of a com­
plete set of orthogonal, spherical, vector wave 
functions. 4 Mathematically, the series repre­
senting the source distribution diverges as the 
directivity gain of the system increases indefi­
nitely. Physically, high current amplitude on 
the antenna, if it can be realized, implies high 
energy storage in the system, a large power 
dissipation, and a low transmission efficiency. 

This paper presents an attempt to determine 
the optimum performance of an antenna in free 
space and the corresponding relation between its 

3 C. J. Bouwkamp and N. G. deBruijn, Philips Research 
Reports 1, 135-158 (1946). This work was extended to 
the current distribution over an area by H. J. Riblet 
(Proc. I.R.E. 36, 620-623 (1948)). Raymond M. Wilmotte, 
commenting on Riblet's work in a letter to the Editor 
(Proc. I.R.E. 36, 878 (1948)), discussed the exceedingly 
low radiation resistance associated with discrete current 
distributions which have an abnormally high directivity. 

4 J. A. Stratton, Electromagnetic Theory (McGraw-Hill 
Book Company, Inc., New York, 1941). Chap. 7, p. 392. 
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gain and the band width of the input impedance 
under various criteria. Let the largest linear di­
mension of the antenna structure be 2a, such 
that the complete antenna structure including 
transmission lines and the oscillator can be en­
closed inside a geometrical spherical surface of 
radius a. The field outside the sphere as a result 
of an arbitrary current or source distribution 
inside the sphere can be expressed in terms of a 
complete set of spherical vector waves.4 Each 
of these waves represents a spherical wave propa­
gating radially outward. However, the current or 
source distribution inside the sphere is not 
uniquely determined by the field distribution 
outside the sphere. It is mathematically possible 
to create a given field distribution outside the 
sphere with an infinite number of different source 
distributions. We shall confine our interest to 
the most favorable source distribution and the 
corresponding antenna structure. To circumvent 
the difficult task of determining the latter, the 
most favorable conditions will be assumed to 
exist inside the sphere. The current or source 
distribution inside the sphere necessary to pro­
duce the desired field distribution outside will 
be assumed to require the minimum amount of 
energy stored inside the sphere so that one has 
a pure resistive input impedance at a single 
frequency. Also, to simplify the prohlem, the 
conduction loss will be neglected. 

Under these conditions it is not possible to 
calculate the behavior of this antenna over a 
finite frequency range since the exact nature of 
the antenna structure is not known. At one fre­
quency we can determine the radiation char­
acteristics of the system from the expressions for 
the field, including the directivity gain of the 
antenna in a given direction. The directivity 
gain is equal to the power gain in the absence of 
conduction loss in the antenna structure. We 
shall utilize the conventional concept of Q, com­
puted from the energy and power at a single 
frequency, to obtain the frequency characteris­
tics of the input impedance by extrapolation. It 
is understood that the physical interpretation 
of Q as so computed becomes rather vague when­
ever the value of Q is low. 

After obtaining the gain and Q of the antenna 
corresponding to an arbitrary field distribution 
outside the sphere, we then proceed to determine 
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the optimum distribution of the field outside the 
sphere under different criteria and the corre­
sponding gains and Q through the process of 
maximization and minimization. 

Antennas can be classified according to their 
radiation characteristics as follows: (1) omni­
directional antennas, (2) pencil-beam antennas, 
(3) fanned-beam antennas, and (4) shaped-beam 
antennas. The first type of antenna will be dis­
cussed in detail in this article. The physical limi­
tations of pencil-beam antennas wiIl be dealt 
with in an article to be publsihed later. 

The problem has been worked out independ­
ently by Ramo and Taylor** of Hughes Aircraft 
with a slightly different procedure. Their results 
are essentially in agreement with what follows. 

II. ANALYSIS 

A. Field of a Vertically Polarized 
Omni-Directional Antenna 

The type of antenna under consideration here 
gives rise to an omni-directional pattern. It is 
commonly used as a beacon or broadcasting 
antenna. The radiated power is distributed uni­
formly around a vertical axis, which we take as 
the axis of a spherical coordinate system (R, e, cp). 
We shall discuss first the case where the electric 
field lies in planes passing through the axis of 
symmetry. The antenna is schematically shown 
in Fig. 1 and lies totally within a spherical sur­
face of radius a. For an arbitrary current dis­
tribution and antenna structure, the field outside 
the sphere can be expressed in terms of a com­
plete set of orthogonal, spherical waves, pro­
pagating radially outward. For the type of an­
tenna under consideration only T M nO waves are 
required to describe the circularly symmetrical 
field with the specified polarization. By ignoring 

I / "-
j/ \\ 

r INPUT ANTENNA I 
\ IRUCTUREj 
\" / 

'-- ./ 

FIG. 1. Schematic diagram of a vertically polarized 
omni-directional antenna. 

** See Ramo and Taylor, Proc. I.R.E. 36, 1135 (1948). 
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all the other spherical waves we have the ex­
pressions of the three non-vanishing field com­
ponents: 

Hq,= L A "Pn1(cos8)h,,(kR) , 

" 

hn(kR) 
XPn(cos8)--, 

kR 

ES=j(:) t ~ AnP,,1(Cos8) 

1 d 
X- -[Rh,,(kR)J, (1) 

kRdR 

where P ,,( cos8) is the Legendre polynomial of 
order n, P n1(cos8) is the first associated Legendre 
polynomial, h,,(kR) is the spherical Hankel func­
tion of the second kind, k=W(EP.)!=27r/A, (P./E)! 
is the wave impedance of a plane wave in free 
space and l/(Ep.)! is the velocity of a plane wave 
in free space. The time factor eiwt is omitted 
throughout the paper and the rationalized m.k.s. 
unit system is used. The coefficients A ,,'s are, in 
general, complex quantities. In synthesis prob­
lems, the An's are specified by the desired radia­
tion characteristics. When the antenna structure 
is given, the A ,,'s are determined from the bound­
ary conditions on the surfaces of the antenna 
structure. For the time being, the A,,'s are a set 
of unspecified coefficients. 

B. Radiation Characteristics 

At a sufficiently large distance from the sphere, 
the transverse field components become asymp­
totically 

E,=(P./E)te-ikR/kR I 
~ ~ A n( _1)(n+1)/2p ,,1 (cos8) . 

Hq, = (E/P.) iE, 

(2) 

The angular distribution of the radiation field is 
given by the series of the associated Legendre 
polynomials. This series behaves somewhat like 
a Fourier series in the interval from 8 = 0 to 
8=7r. Using the conventional definition for the 
directivity gain, we have 
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G(8) 

[ r[2.- I Esl2 sin8d8dcp 
o 0 • I L A,,( _1)(n+1l/2p ,,1 (cos 8) 12 

" (3) 

The denominator is obtained from the or­
thogonality of the associated Legendre poly­
nomials: 

and 

[
" 2n(n+1) 

[Pn1(cos8)J2 sin8d8= , 
o 2n+1 

frp,,1(COS8)Pn/1(COS8)sin8d8=0 for n~n'. 
o 

We shall limit our attention to the gain in the 
eq ua torial plane 8 = 7r /2. I n this plane, 

P ,,1(0) = 0 for n even, and 

Thus the terms of even n do not contribute to 
the radiation field along the equator. In order 
to have a high directivity gain in the equatorial 
plane it is ne~essary to have 

A,,=O for n even 

while all the rest of the A n'S must have the same 
phase angle. From here on, we shall consider all 
A,,'sto be positive real quantities for odd nand 
zero for even n. Thus the directivity gain on the 
equatorial plane becomes 

[L' An( _1)(n+1)f2p ,,1(0) J2 

n(n+1) 
L' A,,2 , 

2n+l 

(4) 

where L' represents the sum over odd n only. 

C. Power and Energy Outside the Sphere 

With the field of the omni-directional antenna 
outside the sphere given by Eqs. (1), the total 
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complex power computed at the surface of the 
sphere is the integral of the complex Poynting 
vector over the same sphere: 

(5) 

where 

The average power radiated is the real part 
of (5) : 

(
J.I.)! {An}2n(n+l) 

PA;=27r - L' - ---. 
f k 2n+l 

(6) 

I t is possible to calculate the total electric 
energy and the magnetic energy stored outside 
the sphere. On the c-w basis the total stored 
energy is infinitely large provided anyone of the 
A ,,'s is finite, since the radiation field which is 
inversely proportional to the radial distance ex­
tends to infinity. As in the case of an infinite 
transmission line with no dissipation, most of 
the energy appears in the form of a traveling 
wave which propagates toward infinity and 
never returns to the source. The total energy 
calculated on this basis has no direct bearing 
upon the performance of the antenna. It is 
difficult to separate the energy associated with 
the local field in the neighborhood of the antenna 
from the remainder. The energy is not linear in 
the field components and hence the law of linear 
superposition cannot be applied directly to it. 
The imaginary part of the integral of the complex 
Poynting vector is proportional only to the dif­
ference of the electrical and magnetic energy 
stored outside the sphere. In order to separate 
the energy associated with radiation from that 
associated with the local field, we shall reduce 
the field problem to a circuit problem where the 
radiation loss is replaced by an equivalent con­
duction loss. 

D. Equivalent Circuits for Spherical Waves 

COUPLING NETWORK 

INPUT_+-__ _ 

FIG. 2. Equivalent circuit of a vertically polarized 
omni-directional antenna. 

and the complex power transmitted across a 
closed spherical surface is equal to the sum of the 
complex powers associated with each spherical 
wave. Insofar as the total energies and power 
are concerned, there is no coupling between any 
two of the spherical waves outside the sphere. 
Consequently, we can replace the space outside 
the sphere by a number of independent equiva­
lent circuits, each with a pair of terminals con­
nected to a box which represents the inside of 
the sphere. From this box, we can pull out a 
pair of terminals representing the input to the 
antenna as shown in Fig. 2. The total number of 
pairs of terminals is equal to the number of 
spherical waves used in describing the field 
outside the sphere, plus one. We have now man­
aged to transform a space problem to the prob­
lem of its equivalent circuit. 

When the field outside the sphere has been 
specified by Eqs. (1), the current, voltage, and 
impedance of the equivalent circuit for each 
spherical wave are uniquely determined except 
for an arbitrary real transformer ratio by equat­
ing the complex power associated with the 
spherical waves to that of the circuits. We shall 
define the voltage, current, and impedance of 
the equivalent circuit for the TMn wave as: 

Because of the orthogonal properties of the 
spherical wave functions employed, the total 
energy, electric or magnetic, stored outside the 
sphere is equal to the sum of the corresponding and 
energies associated with each spherical wave, 

= (~)l An(411'n(n+ l))i 
In phn' 

f k 2n+l 
(7) 
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a' RADIUS OF SPHERE 
c • VELOCITY OF LIGHT 

c=f 
I, ----11----t"--~ 

FIG. 3. Equivalent circuit of electric dipole. 

The voltage is proportional to the 8 component 
of electric field and the current is proportional 
to the magnetic field H", of the TMn wave on the 
surface of the sphere. The normalized impedance 
Zn is equal to the normalized radial wave im­
pedance on the surface. It can be shown that 
not only is the complex power which is fed into 
the equivalent circuit equal to the complex 
power associated with the T M n wave but the 
inst;:.mtaneous powers are also equal to each 
other. The impedance Zn of the equivalent cir­
cuit is a physically realizable impedance and 
Eqs. (7) are valid at all frequencies. . 

Using the recurrence formulas of the spherical 
Bessel functions, one can write the impedance 
Z" as a continued fraction: 

n 1 
Zn=-+ 

jp 2n-l 1 
--+--

jp 2n-3 

jp 

3 1 
-+-
jp 1 

-+1 
jp 

(8) 

This can be interpreted as a cascade of series 
capacitances and shunt inductances terminated 
with a unit resistance. For n= 1, the impedance 
consists of the three elements shown in Fig. 3. 
This is the equivalent circuit representing a wave 
which could be generated by an infinitesimally 
small dipole. At low frequencies, most of the 

TABLE 1. The maximum gain versus N. 

N 3 S •.••••....•. N 

Gain 1.5 3.81 4.10 2N/7r 
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~ :;1-f1-----------i 
...!!....c.~(2fI~.IC I 

-------------

FIG. 4. Equivalent circuit of TM" spherical wave. 

voltage applied to the terminal appears across 
the capacitance, and the unit resistance is prac­
tically short-circuited by the inductance. At high 
frequencies, the impedance Zl is practically a 
pure resistance of amplitude unity. At inter­
mediate frequencies, the reactance of Zl remains 
capacitive. The equivalent circuit of Zn is sche­
matically shown in Fig. 4. The circuit, for all 
values of n, acts as a high-pass filter. With the 
dissipative element hidden at the very end of the 
cascade, the difficulty of feeding average power 
into the dissipative element at a single frequency 
increases with the order of the wave. The dissipa­
tion in the resistance is equal to the radiation 
loss in the space problem. The capacitances and 
inductances are proportional to the ratio of the 
radius of the sphere to the velocity of light. The 
increase of the radius of the sphere has the 
same effect on the behavior of the equivalent 
circuit as the increase of frequency. 

Except for the equivalent circuit of the elec­
tric dipole, it would be tedious to calculate the 
total electric energy stored in all the capacitances 
of the equivalent circuit for Z". We shall there­
fore approximate the equivalent circuit for Z" 
by a simple series RLC circuit which has essen­
tially the same frequency behavior in the neigh­
borhood of the operating frequency. We compute 
Rn. L n, and Cn of the simplified equivalent cir­
cuit by equating the resistance, reactance, and 
the frequency derivative of the reactance of Z n 

to those of the series RLC circuit. The series 
resistance Rn is of course equal to the real part 
of Z" at the operating frequency. The results are 
the following: 

Rn = 1 ph" 1-2
, 

Cn=~[dXn _ X,,]-l, 
w2 dw w 

Ln=~[dXn+ Xn], 
2 dw w 
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where 

and jn and nn are the spherical Bessel functions 
of the first and second kind. Except for the fre­
quency variation of the resistance Rn in the 
original equivalent circuit, the simplified circuit 
is accurate enough to describe Z" in the im­
mediate neighborhood of the operating frequency. 

Based upon this simplified equivalent circuit, 
the average power dissipation in Z" is 

Pn= (~)! 21l"n(n+l)(An)2 (10) 
E 2n+ 1 k 

and the average electric energy stored in Z" is 

(11) 

which is larger than the average magnetic energy 
stored in Zn. We shall define Qn for the TM" 
wave as 

(12) 

The band width of the equivalent circuit of 
the T M" wave is equal to the reciprocal of Qn, 
when it is matched externally with a proper 
amount of stored magnetic energy. When Q" is 
low, the above interpretation is not precise, but 
it does indicate qualitatively the frequency sensi­
tivity of the circuit. 

In Fig. 5, Qn of the TM" waves is plotted 
against ha/X. We observe that Qn is of the 
order of unity or less whenever the abscissa 
21l"a/'A is greater than the order n of the wave. 
Here the stored electric energy in the equivalent 
circuit of the wave is insignificant and the cir­
cuit behaves essentially as a pure resistance. 
When 21l"a/X is less than n, the circuit behaves 
essentially as a pure capacitance. Qn increases 
at an astronomical rate as the abscissa decreases. 
In terms of wave propagation, the TM" wave 
will propagate from the surface of the sphere 
without an excessive amount of energy stored in 
the neighborhood of the sphere only when the 
radius of the sphere is greater than nA/21l". 

VOLUME 19, DECEMBER, 1948 

E. Equivalent Circuit of the Antenna 

The complete equivalent circuit of the antenna 
system is shown in Fig. 2. The circular box is a 
coupling network representing the space inside 
the geometrical sphere shown in Fig. 1. It couples 
the system feeding the input terminals to the 
various equivalent circuits of the T M waves 
connected externally to the box. The voltage 
V n and current In are those given by Eqs. (7). 

In Section B on radiation characteristics, it 
was pointed out that for each term to con­
tribute positively to the gain of the antenna in 
the equatorial plane, it is necessary for all An's 
to have the same phase angle. The spherical 
Hankel function h,,(p) is essentially a positive 
imaginary quantity when its argument is less 
than the order n. Thus, the currents of the equiv­
alent circuits Zn for n greater than the argument, 
are essentially in phase, and the instantaneous 
electric energies stored in all the equivalent cir­
cuits oscillate in phase. 

We have calculated the power dissipation as 
well as the average energy stored in Zn for the 
simplified circuit of the TMn wave. The total 
electric energy stored and the power dissipated 
in all the circuits connected to the coupling 
network is equal to the summation of W" and 

FIG. S. Qn of the equivalent circuit of T Mn or TEn wave. 
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P n, respectively. The total power dissipated 
L' P" is, of course, equal to the total power 
radiated into space, while the total electric 
energy stored L' W .. is that associated with the 
local field outside of the sphere. 

Theoretically, there is no unique antenna 
structure or source distribution inside the sphere 
which generates the field distribution given by 
Eqs. (1). Consequently, the coupling network 
representing the space inside the sphere is not 
unique. The process of determining the optimum 
antenna structure for a given field distribution 
outside or the optimum coupling network is by 
no means a simple matter. To simplify the prob­
lem and to give the best antenna structure the 
benefit of doubt, the following most favorable 

conditions for energy storage and power dissipa­
tion inside the sphere will be assumed: 

1. There will be no dissipation in the antenna structure 
in the form of conduction loss. 

2. There will be no electrical energy stored except in 
the form of a traveling wave. 

3. The magnetic energy stored will be such that the 
total average electric energy stored beyond the input 
terminals of the antenna is equal to the average magnetic 
energy stored beyond the terminals at the operating 
frequency. 

By Poynting's theorem it can be shown that the 
input impedance of the antenna is a pure re­
sistance at the operating frequency under these 
conditions. 

With this particular antenna structure, and 
its corresponding equivalent circuit, we can pro­
ceed to define a quantity Q at the input terminals: 

2", times the mean electric energy stored beyond the input terminals 
Q- .. . .. . 

power dISSIpated 10 radiatIOn 

If this Q is high, it can be interpreted as the re­
ciprocal of the fractional frequency band width 
of the antenna. If it is low, the input impedance 
of the antenna varies slowly with frequency and 
the antenna has potentially a broad band width. 
The ratio Q can therefore be used in the latter 
case as a crude indication for a broadband. 

Upon summing up the mean electric energy 
stored in all the simplified equivalent circuits 
representing the spherical waves outside the 
sphere, and the total power radiated, the Q of 
the idealized antenna is 

n(n+l) 
L' An2 Q,,(p) 

2n+l 
Q=-----­

n(n+l) 
L' An2

---

2n+l 

where Qn is given by Eq. (12). 

(13) 

We have defined and calculated two funda­
mental quantities G and Q for this somewhat 
idealized antenna. We have imposed a number 
of conditions on the coefficients A n as well as 
on the energy and power inside the sphere. 
Otherwise, the set of coefficients A n is yet un­
specified. Additional conditions must be imposed 
on G and Q to determine the ultimate limits 
of antenna performance under various criteria. 
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F. Criterion I: Maximum Gain 

Whenever the antenna structure must be con­
fined within a small volume, and high gain is 
required, the logical criterion would be to de­
mand maximum gain with an antenna structure 
of given complexity. The series of Legendre 
polynomials representing the field distribution 
behaves angularly in the same fashion as a 
Fourier series. The complexity of the source 
distribution required to generate the nth term 
increases with the order n. To specify the number 
of terms in Eqs. (1) to be used is therefore equiva­
lent to specifying the complexity of the antenna 
structure. We shall therefore exclude all the 
terms for n>N, where N is an odd integer, and 
proceed to calculate the maximum gain as a 
function of N. 

Differentiating the gain in the equatorial 
plane, [Eq. (4)J, with respect to the coefficient 
A n and setting the derivative to zero, we have 

n(n+l) 
L'An2,---

2n+l 
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There are as many equations of this form as the 
number of terms in the series. We can therefore Q 

solve for A n in terms of the first coefficient AI: 

2(2n+1) 
A n=(-1)n-1/2 Pnl(O)Al. (14) 

3n(n+1) 

The corresponding gain and Q of the antenna 
are 

N IN Q = L:' anQn L:' a,,, 
1 1 

where 

Except for the first few terms, 

a n"'4/7r. 

(15) 

(16) 

(17) 

(18) 

The formula (15) for the maximum gain was 
previously obtained by W. W. Hansen. 5 

The value of the maximum gain for different 
values of N is given in Table I. For N = 1, the 
gain is that of an electric dipole. For large values 
of N, the gain is proportional to N. Under the 
present criterion, the gain is independent of the 
size of the antenna. It indicates that an arbi­
trarily high gain can be obtained with an arbi­
trarily small antenna, provided the source dis­
tribution can be physically arranged. 

Figure 6 shows the Q of an antenna designed 
to obtain the maximum gain with a given number 
of terms, as a function of 27ra/X. While the terms 
in the denominator of Eq. (16) have approxi­
mately equal amplitudes, the numerator is an 
ascending series of (N+1)/2 terms. For any 
given value of 27ra/X, Q" increases with n at a 
rapid rate as shown in Fig. 5. The numerator is 
essentially determined by the last few terms of 
the ascending series. For 27ra/X greater than N, 
Q is of the order of unity or less, indicating the 
potentiality of a broad-band system. For 27ra/X 
less than N, the value of Q rises astronomically 
as 27ra/X decreases. The transition occurs for 

(19) 

10 

FIG. 6. Q of omn'i-directional antenna. Criterion: 
Max. gain with fixed number of terms. 

corresponding to a gain 

2 27ra 4a 
G"'_·_=-. 

7r X X 
(20) 

The gain of an omni-directional antenna as given 
by Eq. (20) will be called the normal gain. It 
is equal to the gain obtained from a current dis­
tribution of uniform amplitude and phase along 
a line of length 2a. In Fig. 7, curve I shows the 
Q of an antenna of normal gain. To increase the 
gain by a factor of two, we have to use twice as 
many terms, and pay dearly in Q as shown by 
Curve II. The slope of Curve II indicates the 
increasing difficulty of obtaining additional gain 
as the normal gain increases. 

Under the present criterion, no special con­
ditions have been imposed on Q. It can be 
shown that the Q obtained here is by no means 
the minimum for a given gain and antenna size. 
Since the gain is maximized [Eq. (15) ] with re­
spect to A n, a small variation of AN will not 
affect the gain. Instead, the Q will vary rapidly 
as indicated by Eq. (13) when N> 27ra/X. 

G. Criterion II: Minimum Q 

6 W. W. Hansen, "Notes on Microwaves," M.I.T. Rad. In this section, we shall proceed to find a 
Lab. Report T-2. combination of A ,,'s to give the minimum Q with 
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Q 

10 J-l---+----j 

1 O.';-""";:O'-+---~IO 

FIG. 7. Q for omni-directional antenna. Criterion: 
Max. G with fixed number of terms. I-normal gain. Il­
twice the normal gain. 

no separate conditions imposed on the gain of 
the antenna. Differentiating Q with respect to 
A n we have the following equation: 

n(n+ 1) n(n+ 1) 
Qn L' An2 = L' An2 Qn. 

2n+l 2n+1 

For any given value of 27ra/X, all the Qn's have 
different values. Hence, the above equation can 
be satisfied when there is only one term under the 
summation sign. The corresponding' Q of the 
antenna is equal to the Qn of the term used. 
Since Ql has the lowest amplitude, we conclude 
that the antenna which generates a field outside 
the sphere corresponding to that of an infinitesi­
mally small dipole has potentially the broadest 
band width of all antennas. The gain of this 
antenna is 1.5. 

H. Criterion In: Maximum G / Q 

As a compromise between the two criteria just 
mentioned, we shall now maximize the ratio of 
the gain to Q. The process can be interpreted 
as the condition for the minimum Q to achieve a 
certain gain or as the condition for the maximum 
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gain at a given Q. The problem is that of finding 
the proper combination of A ,,'s for maximum 
G/Q. From Eqs. (4) and (13), we have 

G 

Q 

[L' An( -1)(n+1l/2Pn1(O)J2 

n(n+ 1) 
L' An2 Qn 

2n+1 

(21) 

With the same method used before, we obtain 

The corresponding values of G, Q, and the ratio 
G/Q are 

[L' an/QnJ2 
G=----

L' an/Qn2 ' 

L' an/Qn 

Q= L' an/Q/ 

(23) 

(24) 

(25) 

where an is given in Eq. (17). The gain and G/Q 
are plotted against 27ra/X with N as a parameter 
in Figs. 8 and 9, respectively. In using the above 
formulas, Qn is arbitrarily considered to be unity 
whenever its actual value is equal to or less than 
unity. The Q for all the points on the curve is 
about unity. Since the two series involved in 
Eqs. (23) and (24) converge rapidly as N is 
increased indefinitely, the gain approaches 
asymptotically the approximate value of 4a/X 
which is the normal gain derived under criterion 
I. There is a definite limit to the gain if the Q of 
the antenna is required to be low. It is this 
physical limitation, among others, which limits 
the gain of all the practical antennas to the ap­
proximate value 4a/X. 

I. Horizontally Polarized Omni­
Directional Antenna 

By interchanging E and H in Eq. (1), and re­
placing (E/P.)t by -(p./E)i, we have the field 
outside the geometric sphere, for a horizontally 
polarized omni-directional antenna, expressed as 
a summation of circularly symmetrical TEft 
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waves: 

E<j> = (~) !L' BnPnl (cos 9) h,,(kR) , 

hn(kR) 
Hr=j L' Bnn(n+l)Pn(cos9)--, (26) 

kR 

1 d 
He= -.1 L' BnPnl(Cos9)- -[Rhn(kR)], 

kRdR 

where the Bn's are arbitrary constants. As be­
fore, each TEn wave at the surface of the sphere 
can be replaced by a two-terminal equivalent 
circuit defined on the same basis as that of the 
corresponding T M" wave. The voltage, current, 
and admittance at the input of the circuit are 
the following: 

_ (~) tB n(47rn(n+ 1») t V,,- ph", 
E k 2n+l 

(27) 

1,,= (~)iBn(47rn(n+ l»)~(phn)" 
f k 2n+l 

(28) 

Y n = j(ph,.)' / phno 

The admittance is equal to the normalized wave 
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FIG. 8. Gain of omni-directional antenna. Criterion: 
Max. GIQ. When Qn <1, it is considered to be unity. 
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admittance of the TEn wave on the surface of 
the sphere, and is also equal to the impedance 
Z" of the equivalent circuit for the Tjj;[n wave. 
This circuit is a cascade of shunt inductances 
and series capacitances terminated with a unit 
conductance as shown in Fig. 10. At' low fre­
quencies, the admittance is practically that of 
the first inductance. The admittance remains 
inductive at all frequencies and approaches a 
pure conductance of unit amplitude as the fre­
quency increases. 

The analysis of the horizontally polarized 
omni-directional antenna follows exactly that 
of the vertically polarized one. The formulas for 
G, P n, Wn, Qn, and Q remain unchanged if we 
replace all the An's by En's. The quantity W" 
is now to be interpreted as the mean magnetic 
energy stored in the simplified equivalent circuit 
of the TEn wave (a parallel RLC circuit). Re­
sults obtained previously apply to the present 
problem without further modification. 

J. Circularly Polarized Omni­
Directional Antenna 

The field of an elliptically polarized omni­
directional antenna can be expressed as a sum 
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FIG. 9. GIQ of omni-directional antenna. Criterion: 
Max. GIQ. When Qn <1, it is considered to be unity. 
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of TMn waves [Eqs. (l)J and TEn waves [Eqs. 
(26)]. To obtain circular polarization every­
where, we must have 

B"=±jA,,. (30) 

Under tliis condition, the gain of the circularly 
polarized antenna is again given by Eq. (3). 
• The equivalent circuit of the circularly polar­
ized omni-directional antenna consists of 2N + 1 
pairs of terminals where N is the highest order 
of the spherical waves used. If we are only in­
terested in the gain along the equator, the even 
terms of the series can be excluded. The number 
of pairs are reduced to N+2 including the input 
pair. It is interesting to observe that the in­
stantaneous total energy density at any point 
outside the sphere is independent of time when 
Eq. (30) is satisfied. The difference between the 
mean electric energy density and the mean mag­
netic energy density is zero at any point outside 
the sphere enclosing the antenna. Furthermore, 
the instantaneous Poynting vector is independent 
of time. This implies that the power flow from 
the surface of the sphere enclosing a truly circu­
larly polarized omni-directional antenna is a d.c. 
flow, and the instantaneous power is equal to 
the radiated power. These relation~hips are due 
to the dual nature of TE waves and TM waves 
as well as the 900 difference in time phase be­
tween the two sets of waves. 

To obtain the Q of the antenna, it is conveni­
ent to combine the energies and dissipation in 
Z" of the TMn wave with that in Y n of the TEn 
wave and define a new Qn as 2wW"/P,, where 
W" is the mean electric or magnetic energy 
stored in Z nand y", and P" is the total power 
dissipated in both. Then 

(31) 

where X" is the imaginary part of Z". For 
p=27ra/X>n, this Q" is approximately equal to 

_0_ 

:------ ----J 
(2n-I" I 

...l---J_-+-_________ _ 

FIG. 10. Equivalent circuit of TEn spherical wave. 
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one-half of the previous Q" defined for Z" or y" 
alone, [Eq. (12)]. If no conduction loss and no 
stored energy inside the sphere are assumed, the 
expression for Q of a circularly polarized omni­
directional antenna turns out to be identical 
with that given by Eq. (13), except that Q" is 
given by Eq: (31) instead of Eq. (12). 

With expressions for G and Q identical with 
what were obtained previously, we expect similar 
numerical results for the present case under the 
various criteria, and the same physical limitation 
applies. 

m. FURTHER CONSIDERATIONS 

A. Practical Limitations 

The above analysis does not take into con­
sideration many practical aspects of antenna de­
sign. In the following, a qualitative discussion 
will be given of some of the practical limitations. 

It is assumed in the analysis that the antenna 
under consideration is located in free space. The 
results, with a minor modification are applicable 
to the problem of a vertically polarized antenna 
above a perfectly conducting ground plane. In 
practice, this condition can seldom be fulfilled. 
The performance of an antenna designed on the 
free-space basis will be modified by the presence 
of physical objects in the neighborhood. Cur­
rents will be induced on the objects. They will 
give rise not only to an additional scattered 
radiation field but also to a modification of the 
original current distribution on the antenna 
structure. Both the gain and Q of the antenna 
will be changed from their unperturbed values. 
The currents set up on the objects vary as the 
unperturbed field intensity at the locations of the 
objects. For the same power radiated, the r.m.s. 
amplitude of the unperturbed field intensity in 
the neighborhood of the antenna is approxi­
mately proportional to the square root of Q. In 
view of the rapid increase of Q as the gain of an 
antenna is increased above the normal value 
shown in Fig. 6, the disturbance of the field dis­
tribution in space by physical objects in the 
neighborhood of the antenna becomes increas­
ingly serious. 

It is tacitly assumed in the analysis that 
physically it is possible to design an antenna to 
achieve an arbitrary current distribution which 
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satisfies the condition for minimum energy stor­
age as discussed in Section II, E. To obtain a 
gain above normal, additional higher-order 
spherical waves must be generated outside the 
sphere with a proper control of amplitudes and 
relative phases. The corresponding current dis­
tribution will have rapid amplitude and phase 
variation inside the sphere. The practical diffi­
culty of achieving this current distribution will 
increase with the gain. 

We have avoided the question of conduction 
losses on the antenna structure. In practice, 
the antenna structure wiIl have conductivities 
differing from zero or infinity. Neglecting the 
losses on the transmission line, it can be shown 
that the minimum conduction loss of the antenna 
under consideration varies approximately as the 
mean square of the electric or magnetic field on 
the surface of the sphere. For a high-Q antenna, 
the ratio of the minimum conduction loss to the 
power radiated is therefore approximately pro­
portional to the Q of the antenna computed in 
the absence of losses. Although this conduction 
loss is helpful in reducing the Q at the input 
terminals, it reduces the efficiency and the power 
gain of the antenna. 

The condition of minimum energy storage 
within the sphere is not always realizable. On 
account of the unavoidable frequency sensi­
tivities of the elements of the antenna structure 
or the matching networks, the Q of a practical 
antenna computed on the no conduction-loss 
basis will be usually higher than the one derived 
in this paper. 

B. Band Width and Ideal Matching Network 

We have computed the Q of an antenna from 
the energy stored in the equivalent circuit and 
the power radiated, and interpreted it freely as 
the reciprocal of the fractional band width. To 
be more accurate, one must define the band width 
in terms of allowable impedance variation or the 
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FIG. 11. Bandwidth of an ideal dipole with ideal 
matching network. 

tolerable reflection coefficient over the band. For 
a given antenna, the band width can be increased 
by choosing a proper matching network. The 
theoretical aspect of tbis problem has been dealt 
with by R. M. Fano. 6 Figure 11 given here 
through his courtesy illustrates the relations 
among the fractional band width, absolute ampli­
tude of the reflection coefficient, and the pa­
rameter 271"a/X of an antenna which has only the 
TMl wave outside the sphere. As shown in 
Section II, F this antenna has the lowest Q 
of all vertically polarized omni-directional an­
tennas and its equivalent circuit is shown in 
Fig. 3. The curve of Fig. 11 is computed on the 
assumption that the input impedance of the an­
tenna is equal to Zl, and an ideal matching net­
work is used to obtain a constant amplitude of 
the reflection coefficien t over the band. The 
phase of the reflection coefficient, however, 
varies rapidly near the ends of the band. 

6 R. M. Fano, "Theoretical Limitations on the Broad­
band Matching of Arbitrary Impedances," R.L.E. Tech­
nical Report No. 41, January 2, 1948. 
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