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Introduction
This is the second article of our three-part series on phased array antenna 
patterns. In Part 1, we introduced the phased array steering concept and looked 
at the influencers on array gain. In Part 2, we’ll discuss grating lobes and beam 
squint. Grating lobes can be hard to visualize, so we’ll draw on their similarity 
with signal aliasing in digital converters, then use that to think of a grating lobe 
as a spatial alias. Next, we explore the issue of beam squint. Beam squint is an 
unfocusing of the antenna across frequency when we use phase shift, instead 
of a true time delay, to steer the beam. We’ll also discuss the trade-off between 
these two steering methods and understand the impact of beam squint on 
typical systems.

An Introduction to Grating Lobes 
So far, we have only seen the case where the element spacing is d = λ/2. 
Figure 1 begins to illustrate why an element spacing of λ/2 is such a common 
metric in phased arrays. Two cases are shown. First, in blue, the same 30° plot 
from Figure 11 in Part 1 is repeated. Next, the d/λ spacing is increased to 0.7  
to show how the antenna pattern changes. With this increase in spacing, note 
how the beamwidth reduces, which is a positive result. The decreased spacing  
of nulls brings them closer together, which is also an acceptable result. But 
now there is a second angle, in this case at –70°, where there is full array gain. 
This is a most unfortunate result. This replica of antenna gain is defined as  
a grating lobe and can be considered spatial aliasing.
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Figure 1. Normalized array factor of a 32-element linear array at two different d/λ spacings.

Analogy to Sampled Systems
An analogy to visualize grating lobes is to think of aliasing in a sampled system. In 
an analog-to-digital converter (ADC), undersampling is often used when frequency 
planning a receiver architecture. Undersampling involves purposefully reducing 
the sample rate (fS) such that the sampling process translates frequencies above 
fS/2 (the higher Nyquist zones) to appear as aliases in the first Nyquist zone. This 
causes those higher frequencies to appear as if they were at a lower frequency at 
the output of the ADC.

A similar analogy can be considered in phased arrays, where the elements spa-
tially sample the wavefront. The Nyquist theorem can be extended to the spatial 
domain if we suggest that two samples—that is, elements—per wavelength are 
required to avoid aliasing. Therefore, if the element spacing is greater than λ/2, 
we can consider this spatial aliasing. 
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Calculating Where Grating Lobes Appear
But where will these spatial aliases (grating lobes) appear? In Part 1, we showed the 
phase shift applied to the elements across the array as a function of beam angle.

(1)∆Φ = 2�dsinθ
λ

Inversely, we can compute the beam angle as a function of phase shift.

(2)θ = arcsin × λ
d

∆Φ
2�

 

The arcsin function only produces real solutions for arguments between –1 and +1. 
Outside of these bounds, the solution is not real—the familiar “#NUM!” in spread-
sheet software. Also note that the phase in Equation 2 is periodic and repeats 
every 2π. So, we could replace ∆Φ with (m × 2π + ∆Φ) in the beam steering 
equation to give Equation 3.

(3)θ = arcsin × λ
d

m × 2� + ∆Φ
2�  

where m = 0, ±1, ±2, …

To avoid grating lobes, our goal is to obtain a single real solution. Mathematically, 
this is accomplished by keeping

> 1 for all m ≥ 1× λ
d

m × 2� + ∆Φ
2� (4)  

If we do so, then all the spatial images (that is, m = ±1, ±2, etc.) will produce non-
real arcsin results, and we can ignore them. But if we can’t do this, and therefore 
some values of m > 0 produce real arcsin results, then we end up with multiple 
solutions: grating lobes. 
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Figure 2. The arcsin function application to grating lobes. 

Grating Lobes for d > λ and λ = 0°
Let’s try some examples to better illustrate this. First, consider the case at 
mechanical boresight where θ = 0, and therefore ∆Φ = 0. Then Equation 3 
simplifies to Equation 5.

(5)θ = arcsin , for ∆Φ = 0×m λ
d  

From this simplification, it is evident that if λ/d is > 1, then only m = 0 could give 
an argument that is bounded between –1 and +1. And that argument will just be 
0, and the arcsin(0) = 0°, the mechanical boresight angle. So, this is all as we 
would expect. Furthermore, for any m ≥ 1, the arcsin argument will be too large 
(>1) and the resulting answer will not be real. We will see no grating lobes for  
θ = 0 and d < λ!

However, if d > λ (therefore λ/d is <1), then multiple solutions, grating lobes, could 
exist. For example, if λ/d = 0.66 (that is, d = 1.5λ), then real arcsin solutions 
would exist for m = 0 and for m = ±1. That m = ±1 is the second solution, which is 
the spatial aliasing of the desired signal. Therefore, we can expect to see three 
main lobes, each with approximately equal amplitude, located at arcsin(0 × 0.66), 
arcsin(1 × 0.66), and arcsin(–1 × 0.66). In degrees, these angles are 0° and ±41.3°. 
In fact, this is what our array factor plot shows in Figure 3.
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Figure 3. Array factor at boresight for d/λ = 1.5, N = 8. 

Grating Lobes for λ/2 < d < λ
In simplifying the grating lobe equation (Equation 5), we chose to only look at 
mechanical boresight (∆Φ = 0). And we saw that, at mechanical boresight, grating 
lobes would not appear for d < λ. But from our analogy of sampling theory, we 
know that we should also expect to see some kind of grating lobe for any spac-
ing greater than λ/2. So where are the grating lobes for λ/2 < d < λ? 
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First, recall how the phase changed with steering angle in Figure 4 from Part 1. 
We saw ∆Φ range from 0 to ±π as the main lobe deviated from mechanical 
boresight. Therefore,

× λ
d

m × 2� + ∆Φ
2� (6)  

will range

× for m = 0from 0 to  ±0.5 λ
d (7)  

And for |m| ≥ 1, it will always be something beyond

±0.5 × λ
d (8)  

This restricts the minimum permissible λ/d if we want to keep the entire arcsin 
argument > 1 for all |m| ≥ 1. Consider two cases:

 X If λ/d ≥ 2 (that is, d ≤ λ/2), then you could never have multiple solutions, 
regardless of the value of m. All m > 0 solutions will result in an arcsin  
argument > 1. This is the only way to avoid grating lobes to the horizon.

 X But if we purposefully restricted ∆Φ to something less than ±π, then we 
could tolerate a smaller λ/d and still not see grating lobes. Reducing the 
range of ∆Φ means reducing the maximum steering angle of our array.  
It is an interesting trade-off that will be explored in the next section. 

Element Spacing Considerations
Should the element spacing always be less than λ/2? Not necessarily! This 
becomes a trade-off for the antenna designer to consider. If the beam is 
steered completely to the horizon, then θ = ±90°, and an element spacing of 
λ/2 is required (if no grating lobes are allowed in the visible hemisphere). But in 
practice, the maximum achievable steering angle is always less than 90°. This  
is due to the element factor and other degradations at large steering angles. 

From the arcsin figure, Figure 2, we can see that if the y axis, θ, is restricted to 
a reduced limit, then grating lobes only occur at scan angles that are not used 
anyway. What would this reduced limit (θmax) be for a given element spacing 
(dmax)? We had said previously that our goal is to keep

> 1 for all |m| ≥ 1× λ
d

m × 2� + ∆Φ
2� (9)  

We can use this to calculate where our first grating lobe (m = ±1) would appear. 
Making this change, and using Equation 1 from Part 1 for ∆Φ, gives:

2�
λ

dmax

±1 × 2� +
× = 1

2�dmaxsinθmax
λ (10)

 

 
Which simplifies to

±λ+dmaxsinθmax = dmax (11)  

Then solving for dmax

(12)dmax = for θmax from 0 to ±π/2λ
1 + |sinθmax|

 

This dmax is the condition for no grating lobes in the reduced scan angle (θmax), 
where θmax is less than π/2 (90°). For example, if the signal frequency is 10 GHz 
and we need to steer ±50° without grating lobes, then the maximum element 
spacing is:

(13)dmax = = 17 mm
(3 × 108)/(10 × 109)

1 + sin(50°)
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Figure 4. Grating lobes starting to appear at the horizon for θ = 50°, N = 32, d = 17 mm,  
and Φ = 10 GHz. 

Restricting the maximum scan angle, then, brings a freedom to extend the ele-
ment spacing to increase the physical size per channel and to extend the aperture 
for a given number of elements. An example application that could exploit this 
phenomenon is for an antenna assigned to a fairly narrow predefined direction. 
The element gain can be increased for directivity in the predefined direction and 
the element spacing can also be increased for a larger aperture. Both result in 
larger overall antenna gain within the narrowed beam angle. 

Note that Equation 3 indicates a maximum spacing of one wavelength, even for 
zero steering angle. This is the case if grating lobes cannot be tolerated in the 
visible hemisphere. In the case of a GEO satellite, for example, the entire Earth 
is covered with a steering angle of 9° from mechanical boresight. It may be the 
case that grating lobes can be tolerated, as long as they don’t land on the Earth’s 
surface. In such a case, the element spacing can be several wavelengths, result-
ing in even more narrow beamwidths.

There are also antenna architectures worth noting that attempt to overcome 
the grating lobe problem by producing a nonuniform element spacing. These 
are categorized as aperiodic arrays, with spiral arrays as an example. For 
mechanical antenna construction reasons, it may be desirable to have a com-
mon building block that can be scaled to a larger array, but this would produce  
a uniform array that is subject to the grating lobe conditions described. 

Beam Squint
We opened Part 1 by describing how, when a wavefront approaches an array 
of elements, there is a time delay between elements based on the wavefront 
angle θ relative to boresight. For a single frequency, the beam steering can be 
accomplished by replacing the time delay with a phase shift. This works for 
narrow-band waveforms, but for wideband waveforms where the beam steer- 
ing is produced by a phase shift, the beam can shift direction as a function of 
frequency. This can be intuitively explained if we remember that a time delay is 
a linear phase shift vs. frequency. Thus, for a given beam direction, the phase shift 
required changes as a function of frequency. Or conversely for a given phase 
shift, the beam direction changes as a function of frequency. The concept of the 
beam angle changing as a function of frequency is called beam squint.

https://www.analog.com/en/index.html
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Also consider that at boresight, θ = 0, there is no phase shift across the elements 
and therefore no means to produce any beam squint. Therefore, the amount of 
beam squint must be a function of angle, θ, as well as the frequency variation. 
Figure 5 shows an X-band example. In this example, the center frequency is 10 GHz, 
the modulation bandwidth is 2 GHz, and it is apparent that the beam changes 
direction as a function of both frequency and the initial beam angle.

Beam squint can be calculated directly. Using Equation 1 and Equation 2, the 
beam direction deviation, beam squint, can be calculated as

sinθ0
f0
f (14)∆θ = arcsin – θ0  

This equation is shown graphically in Figure 6. In Figure 6, the f/f0 ratio shown is 
intentional. The reciprocal of (f0/f) from the previous equation provides an easier 
way to visualize the change relative to a center frequency.
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Figure 6. Beam squint vs. beam angle for several frequency deviations. 
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Figure 5. Beam squint example at X-band for a 32-element linear array with a λ/2 element spacing.
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A few observations on beam squint:

 X The deviation in beam angle vs. frequency increases as beam angle away 
from boresight increases.

 X A frequency below the center frequency causes a larger deviation than a 
frequency above the center frequency.

 X A frequency below the center frequency moves the beam further away  
from boresight.

Beam Squint Considerations
The beam squint, deviation in steering angle vs. frequency, is caused by approxi-
mating a time delay with a phase shift. Implementing beam steering with true 
time delay units does not have this problem. 

With the beam squint problem so clearly visible, why would anyone use a phase 
shifter over a time delay unit? Typically, this comes down to design simplicity 
and IC availability of phase shifters vs. time delays. Time delays are implemented 
in some form of transmission line and the total delay needed is a function of the 
aperture size. To date, most available analog beamforming ICs are phase shift 
based, but there are families of true time delay ICs emerging and these may 
become much more common for phased array implementations.

In digital beamforming, true time delay can be implemented in the DSP logic and 
digital beamforming algorithms. Therefore, a phased array architecture where 
every element is digitized would lend itself naturally to overcome the beam 
squint problem, while also providing the most programmable flexibility. However, 
the power, size, and cost of such a solution can be problematic. 

In hybrid beamforming, there is a combination of analog beamforming for 
subarrays followed by digital beamforming for the full array. This can offer some 
natural beam squint mitigation worth considering. Beam squint is only subject to 
the subarray, which is a much wider beamwidth, so it is more tolerant to a beam 
angle deviation. Thus, as long as the subarray beam squint is tolerable, then the 
hybrid beamforming architecture can be implemented with phase shifters in the 
subarrays followed by true time delay in the digital beamforming.

Summary
This concludes Part 2 of a three-part series on phased array antenna patterns. In 
Part 1, we introduced beam pointing and the array factor. In Part 2, we introduced 
imperfections of grating lobes and beam squint. In Part 3, we will discuss tapering 
as a method to reduce sidelobes, and also provide insight into the impact of phase 
shifter quantization errors.
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