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Abstract—A new class of wideband ring-type microstrip bandpass filter is 
proposed under smaller size of three quarters waveguide length section. 
One via hole is placed at perpendicular positions of a squared ring, whereas 
two short-circuited sections are formed in the ring-type microstrip 
bandpass filter similar to a dual-mode ring filter in shape, thereby making 
up a three quarters waveguide length ring-type microstrip bandpass filter. 
By adjusting the short-circuited sections, the bandwidth of the center 
frequency can be controlled easily. As a pair of open-circuited stubs is 
placed between the two ports, two extra resonances can be used to improve 
the out-of-band performance. Afterwards, a novel microwave microstrip 
filter has been successfully fabricated with the lower insertion loss S21 of 



0.48 dB, return loss S11 of 30 dB, 3dB bandwidth of 80 %, and central 
frequency of 2.4 GHz. Simulated and masured results show good wideband 
filtering performance with widened upper stopband outside the wide 
passband. 

 

1. INTRODUCTION 
 
  Recently, planar filters with the characteristics of low cost, compact size, 
and wide stopband play an important role in modern filter applications due 
to easy integration into the printed circuit board (PCB). Moreover, next 
generation wireless systems and high data-rate communication systems 
require wideband bandpass filters (BPFs). Broadside coupled structures 
[1]–[7] enable stronger coupling and filters with these structures exhibit 
inherently wideband characteristics. 
  Such filters are realized by parallel-coupled microstrip lines, but this 
requires smaller coupling gaps in order to enhance the coupling for wider 
bandwidths [8] and the gap size required to enhance the coupling is limited 
by the fabrication process. Moreover, many filter structures include 
coupling gaps between the feed lines and filter circuit. Such a filter suffers 
from high insertion loss due to the conductor, dielectric, and radiation 
losses [9]-[14]. To overcome this problem, a direct coupling structure can 
be used instead of the coupling gaps between the feed lines and filter 
circuit to reduce insertion losses and create wide passbands. In brief, there 
are no radiation losses between the feed lines and filter without coupling 
gaps between them [15]-[16]. 
  On the other hand, much effort has been made to maximize the return 
loss in the primary passband, e.g., enhanced side-coupling, line-to-ring 
coupling, and interdigital coupling schemes [17]-[21]. Other techniques 
such as three-line microstrips [22], multimode resonators [23], and the new 
coupling scheme in [24] are used to design wideband BPFs. However, the 
above-mentioned filters may still be large in size or have narrow upper 
stopband.  
  To the best of our knowledge, there is no reported work that has 
developed a wideband ring-type bandpass filter with good low-band 
rejection by adjusting impedance at two short-circuited sections. The 
objective of this paper is to present and implement a new class of wideband 
ring-type bandpass filters with excellent out-of-band rejection. In this paper, 
resonance behavior of a ring-type bandpass filter with loading of 



open-circuited stubs will be characterized in a comprehensive way and it 
will be utilized to constitute a new class of wideband ring-type bandpass 
filters with compact size, controllable bandwidth, good insertion loss in 
passband, and improved out-of-band performance. 
 

2. PROPOSED WINDBAND BANDPASS FILTER 
 

  Because of its compact size, low insertion loss, wide passband, wide 
stop band, and low cost are highly desirable, a ring-type microstrip 
bandpass filtr is proposed to achieve the above desired performances. In 
this study, miniaturized wideband ring-type bandpass filters are proposed 
using two λg / 4 short-circuitd sections (Z2, θ2) and one λg / 4 transmission 
line (Z1, θ1) between two sections inserted by input/output feed lines for 
50-Ω microstrip lines, as shown in Fig.1.  
 

 
Fig. 1. Schematic diagrams of proposed ring-type bandpass filter. 
   
  The electrical lengths are θ1 = θ2 = λg/4 and λg is the guided wavelength 
at the center frequency. The internal open-circuitd stubs are with LS1 = LS2 
= λS/4 and λS is the guided wavelength at the stopband frequency. The g 
values and fractional bandwidth (FBW) of the bandpass filter are selected 
as g0 = 1, g1 = 0.631, g2 =3.262, FBW = 80%. The characteristic 
impedances Z1 and Z2 are calculated as follows [25]： 

                                                      

1

2

1
001 g

2ggZZ
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=                                         (1) 



( )
1

2

1
0

2
10

2

12
002 g

2ggtanθgg
g
2ggZZ

−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=                 (2) 

                                                              

⎟
⎠
⎞

⎜
⎝
⎛ −=

2
1

2
FBWπθ                                           (3) 

 
  Simulated frequency response of the bandpass filter centered at 2.4 GHz 
with fractional bandwidth of 80% on a FR4 substrate (permittivity = 4.4, 
thickness = 0.8 mm) is shown in Fig. 2. 
 

 
Fig.2. Simulated frequency response of the proposed ring-type BPF. 
 

  The proposed ring-type bandpass filter is made by inserting a via hole to 
create two short-circuited sections, resulting in three quarters waveguide 
length section. Wideband ring-type microstrip filters of three quarters 
waveguide length are small in size compared to other filter technologies, 
such as multi-order filters, although limited in the degree of miniaturization 
possible due to physical wavelengths at lower operating frequencies and 
compromises in electrical performance for realizing wideband. Even 
though meandering the transmission lines of filters can miniaturize 
microstrip filters, nevertheless, for some meanderd transmission lines 
generally lead to increased dissipation losses for a given circuit substrate 
material and, hence, reduced performance. Additionally, we can get a fine 
tuning of the passband bandwidth by adopting the impedances of two 
short-circuited sections. In Fig. 3, the magnitude of S21 (dB) for the 
wideband bandpass filter are plotted as a function of the impedances of two 

short-circuited sections (Z2). According to formulas (2) and (3), as the 
width decreases, the equivalent characteristic mpedances of two 



short-circuited sections (Z2) increases to result in the fractional bandwidth 
increases. The proposed techniques are very simple and useful on 
designing good suppression broadband bandpass filters with compact 
dimensions and similar band performance. 
  Fig. 4(a) and (b) depicts layout configurations of the two ring-type 
bandpass filters with/without the internal open-circuited stubs between the 
two excited ports, respectively. It is obvious that wide stopband is achieved 
by using the internal open-circuited stub between the input/ output ports, as 
shown in Fig.5. 
 

 
Fig. 3. Frequency response of S21 under varied impedance of 
short-circuited stubs (Z2). 
 

 

Fig. 4. Schematic diagrams of the proposed ring-type bandpass filtrs (a) 
without the internal open-circuited stubs and (b) with the internal 
open-circuited stubs. 
 
  The proposed filter is ideally suited for use in communications systems 
such as satellites and mobile communications equipment due to good 
insertion loss, controllable bandwidth, good out-of-band performance and 
small size. 
 



 
Fig. 5. Simulated frequency response of the proposed ring-type bandpass 
filters with/without the internal open-circuited stubs. 
 

3. IMPLEMENTATION AND EXPERIMENTAL RESULTS 
 
  The proposed filter was designed and fabricated on an FR4 substrate 
with thickness h = 0.8 mm and relative dielectric constant εr = 4.4. The 
electrical lengths are θ1 = θ2 = λg/4, λg is the guided wavelength at the 
center frequency. The internal open-circuitd stubs are with LS1 = LS2 = λS/4 
and λS is the guided wavelength at the stopband frequency. Fig. 6 shows 
configuration of the proposed ring-type bandpass filter. After optimization, 
dimensions of the proposed ring-type bandpass filter are W1 = 0.5 mm, W2 
= 2.7 mm, La = 17.3 mm, Lb = 17.3 mm, WS1 = WS2 = 0.9 mm, LS1 = LS2 = 
7.1 mm, and W0 = 1.5 mm.  

 

 
Fig. 6. Configuration of the proposed ring-type bandpass filter. 
 
 The performance of the filter was measured by using an Agilent vector 



network analyzer (VNA). The simulation and measurement results of the 
proposed filter are shown in Fig. 7. Excellent agreement is obtained and the 
filter exhibited wideband bandpass performance with lower insertion loss 
S21 of 0.48 dB, return loss S11 of 30 dB, 3dB bandwidth of 80 %, 15dB 
bandwidth of 40%, and central frequency of 2.4 GHz. Some of the 
additional insertion loss within the passband is due to connector loss and 
radiation loss. The total size of the proposed filter is 17.3 mm × 17.3 mm, a 
very compact size only amounting to 0.1875 by 0.1875 guided wavelength 
at the center frequency, making it suitable for size- and weight- sensitive 
applications, such as in mobile communications devices and satellite 
communications systems. 
 

 
Fig.7. Simulated and measured frequency response of the proposed 
ring-type bandpass filter. 
 

4. CONCLUSION 
 
 A simple planar bandwidth controllable ring-type filter having smaller 
size of three quarters waveguide length is proposed in this study. Both 
simulated and measured results demonstrate the good performance as good 

out-of-band suppression. The fabricated filter exhibited insertion loss S21 
of 0.48 dB, return loss S11 of 30 dB, 3dB bandwidth of 80 %, 15dB 
bandwidth of 40%, and central frequency of 2.4 GHz. The proposed 
bandwidth controllable filter can be applied to wireless communication for 
ISM-band. 
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