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C h a p t e r 1 INTRODUCTION

The main topic of this book is Maxwell’s Equations. These are a set of
eight, scalar, first-order partial differential equations which constitute a
complete description of classical electric and magnetic phenomena. To
be more exact, Maxwell’s equations constitute a complete description of
the classical behavior of electric and magnetic fields.

Electric and magnetic fields were first introduced into electromag-
netic theory merely as mathematical constructs designed to facilitate the
calculation of the forces exerted between electric charges and between
current carrying wires. However, physicists soon came to realize that
the physical existence of these fields is key to making Classical Elec-
tromagnetism consistent with Einstein’s Special Theory of Relativity. In
fact, Classical Electromagnetism was the first example of a so-called
field theory to be discovered in Physics. Other, subsequently discovered,
field theories include General Relativity, Quantum Electrodynamics, and
Quantum Chromodynamics.

At any given point in space, an electric or magnetic field possesses
two properties—a magnitude and a direction. In general, these properties
vary (continuously) from point to point. It is conventional to represent
such a field in terms of its components measured with respect to some
conveniently chosen set of Cartesian axes (i.e., the standard x-, y-, and
z-axes). Of course, the orientation of these axes is arbitrary. In other
words, different observers may well choose differently aligned coordi-
nate axes to describe the same field. Consequently, the same electric
and magnetic fields may have different components according to dif-
ferent observers. It can be seen that any description of electric and
magnetic fields is going to depend on two seperate things. Firstly, the
nature of the fields themselves, and, secondly, the arbitrary choice of the
coordinate axes with respect to which these fields are measured. Like-
wise, Maxwell’s equations—the equations which describe the behavior
of electric and magnetic fields—depend on two separate things. Firstly,
the fundamental laws of Physics which govern the behavior of electric
and magnetic fields, and, secondly, the arbitrary choice of coordinate
axes. It would be helpful to be able to easily distinguish those elements

1
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of Maxwell’s equations which depend on Physics from those which only
depend on coordinates. In fact, this goal can be achieved by employing a
branch of mathematics called vector field theory. This formalism enables
Maxwell’s equations to be written in a manner which is completely inde-
pendent of the choice of coordinate axes. As an added bonus, Maxwell’s
equations look a lot simpler when written in a coordinate-free fashion.
Indeed, instead of eight first-order partial differential equations, there
are only four such equations within the context of vector field theory.

Electric and magnetic fields are useful and interesting because they
interact strongly with ordinary matter. Hence, the primary application
of Maxwell’s equations is the study of this interaction. In order to facili-
tate this study, materials are generally divided into three broad classes:
conductors, dielectrics, and magnetic materials. Conductors contain free
charges which drift in response to an applied electric field. Dielectrics are
made up of atoms and molecules which develop electric dipole moments
in the presence of an applied electric field. Finally, magnetic materials
are made up of atoms and molecules which develop magnetic dipole
moments in response to an applied magnetic field. Generally speaking,
the interaction of electric and magnetic fields with these three classes of
materials is usually investigated in two limits. Firstly, the low-frequency
limit, which is appropriate to the study of the electric and magnetic fields
found in conventional electrical circuits. Secondly, the high-frequency
limit, which is appropriate to the study of the electric and magnetic
fields which occur in electromagnetic waves. In the low-frequency limit,
the interaction of a conducting body with electric and magnetic fields
is conveniently parameterized in terms of its resistance, its capacitance,
and its inductance. Resistance measures the resistance of the body to the
passage of electric currents. Capacitance measures its capacity to store
charge. Finally, inductance measures the magnetic field generated by
the body when a current flows through it. Conventional electric circuits
are can be represented as networks of pure resistors, capacitors, and
inductors.

This book commences in Chapter 1 with a review of vector field the-
ory. In Chapters 2 and 3, vector field theory is employed to transform the
familiar laws of electromagnetism (i.e., Coulomb’s law, Ampère’s law,
Faraday’s law, etc.) into Maxwell’s equations. The general properties
of these equations and their solutions are then discussed. In particu-
lar, it is explained why it is necessary to use fields, rather than forces
alone, to fully describe electric and magnetic phenomena. It is also
demonstrated that Maxwell’s equations are soluble, and that their solu-
tions are unique. In Chapters 4 to 6, Maxwell’s equations are used to
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investigate the interaction of low-frequency electric and magnetic fields
with conducting, dielectric, and magnetic media. The related concepts
of resistance, capacitance, and inductance are also examined. The inter-
action of high-frequency radiation fields with various different types of
media is discussed in Chapter 8. In particular, the emission, absorption,
scattering, reflection, and refraction of electromagnetic waves is inves-
tigated in detail. Chapter 7 contains a demonstration that Maxwell’s
equations conserve both energy and momentum. Finally, in Chapter 9
it is shown that Maxwell’s equations are fully consistent with Einstein’s
Special Theory of Relativity, and can, moreover, be written in a manifestly
Lorentz invariant manner. The relativistic form of Maxwell’s equations
is then used to examine radiation by accelerating charges.

This book is primarily intended to accompany a single-semester
upper-division Classical Electromagnetism course for physics majors. It
assumes a knowledge of elementary physics, advanced calculus, par-
tial differential equations, vector algebra, vector calculus, and complex
analysis.

Much of the material appearing in this book was gleaned from the
excellent references listed in Appendix D. Furthermore, the contents of
Chapter 2 are partly based on my recollection of a series of lectures given
by Dr. Stephen Gull at the University of Cambridge.
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C h a p t e r 2 VECTORS AND
VECTOR FIELDS

2.1 INTRODUCTION

This chapter outlines those aspects of vector algebra, vector calculus,
and vector field theory which are required to derive and understand
Maxwell’s equations.

2.2 VECTOR ALGEBRA

Physical quantities are (predominately) represented in Mathematics by
two distinct classes of objects. Some quantities, denoted scalars, are rep-
resented by real numbers. Others, denoted vectors, are represented by

directed line elements in space: e.g.,
→
PQ—see Figure 2.1. Note that line

elements (and, therefore, vectors) are movable, and do not carry intrin-

sic position information (i.e., in Figure 2.2,
→
PS and

→
QR are considered

to be the same vector). In fact, vectors just possess a magnitude and
a direction, whereas scalars possess a magnitude but no direction. By
convention, vector quantities are denoted by boldfaced characters (e.g.,
a) in typeset documents. Vector addition can be represented using a

parallelogram:
→
PR=

→
PQ +

→
QR—see Figure 2.2. Suppose that a ≡

→
PQ≡→

SR, b ≡
→
QR≡

→
PS, and c ≡

→
PR. It is clear, from Figure 2.2, that vector

P

Q

Figure 2.1: A directed line element.

5
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c

P

S

R

Q

b

a

a

b

Figure 2.2: Vector addition.

addition is commutative: i.e., a + b = b + a. It can also be shown that
the associative law holds: i.e., a + (b + c) = (a + b) + c.

There are two approaches to vector analysis. The geometric approach
is based on line elements in space. The coordinate approach assumes
that space is defined in terms of Cartesian coordinates, and uses these to
characterize vectors. In Physics, we generally adopt the second approach,
because it is far more convenient than the first.

In the coordinate approach, a vector is denoted as the row matrix
of its components (i.e., perpendicular projections) along each of three
mutually perpendicular Cartesian axes (the x-, y-, and z-axes, say):

a ≡ (ax, ay, az). (2.1)

If a ≡ (ax, ay, az) and b ≡ (bx, by, bz) then vector addition is defined

a + b ≡ (ax + bx, ay + by, az + bz). (2.2)

If a is a vector and n is a scalar then the product of a scalar and a vector
is defined

n a ≡ (nax, nay, naz). (2.3)

Note that n a is interpreted as a vector which is parallel (or antipar-
allel if n < 0) to a, and of length |n| times that of a. It is clear that
vector algebra is distributive with respect to scalar multiplication: i.e.,
n (a + b) = n a + nb. It is also easily demonstrated that (n+m) a =
n a +m a, and n (m a) = (nm) a, where m is a second scalar.

Unit vectors can be defined in the x-, y-, and z-directions as ex ≡
(1, 0, 0), ey ≡ (0, 1, 0), and ez ≡ (0, 0, 1). Any vector can be written in
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� zy′
y

x′

xθ

Figure 2.3: Rotation of the basis about the z-axis.

terms of these unit vectors:

a = ax ex + ay ey + az ez. (2.4)

In mathematical terminology, three vectors used in this manner form a
basis of the vector space. If the three vectors are mutually perpendicular
then they are termed orthogonal basis vectors. However, any set of three
non-coplanar vectors can be used as basis vectors.

Examples of vectors in Physics are displacements from an origin,

r = (x, y, z), (2.5)

and velocities,

v =
dr
dt

= lim
δt→0

r(t+ δt) − r(t)
δt

. (2.6)

Suppose that we transform to a new orthogonal basis, the x ′-, y ′-,
and z ′-axes, which are related to the x-, y-, and z-axes via a rota-
tion through an angle θ around the z-axis—see Figure 2.3. In the new
basis, the coordinates of the general displacement r from the origin are
(x ′, y ′, z ′). These coordinates are related to the previous coordinates via
the transformation:

x ′ = x cos θ+ y sin θ, (2.7)

y ′ = − x sin θ+ y cos θ, (2.8)

z ′ = z. (2.9)

We do not need to change our notation for the displacement in the new
basis. It is still denoted r. The reason for this is that the magnitude
and direction of r are independent of the choice of basis vectors. The
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coordinates of r do depend on the choice of basis vectors. However,
they must depend in a very specific manner [i.e., Equations (2.7)–(2.9)]
which preserves the magnitude and direction of r.

Since any vector can be represented as a displacement from an origin
(this is just a special case of a directed line element), it follows that
the components of a general vector a must transform in an analogous
manner to Equations (2.7)–(2.9). Thus,

ax ′ = ax cos θ+ ay sin θ, (2.10)

ay ′ = − ax sin θ+ ay cos θ, (2.11)

az ′ = az, (2.12)

with analogous transformation rules for rotation about the y- and
z-axes. In the coordinate approach, Equations (2.10)–(2.12) constitute
the definition of a vector. The three quantities (ax, ay, az) are the com-
ponents of a vector provided that they transform under rotation like
Equations (2.10)–(2.12). Conversely, (ax, ay, az) cannot be the compo-
nents of a vector if they do not transform like Equations (2.10)–(2.12).
Scalar quantities are invariant under transformation. Thus, the indi-
vidual components of a vector (ax, say) are real numbers, but they
are not scalars. Displacement vectors, and all vectors derived from dis-
placements, automatically satisfy Equations (2.10)–(2.12). There are,
however, other physical quantities which have both magnitude and direc-
tion, but which are not obviously related to displacements. We need to
check carefully to see whether these quantities are vectors.

2.3 VECTOR AREAS

Suppose that we have planar surface of scalar area S. We can define a
vector area S whose magnitude is S, and whose direction is perpendic-
ular to the plane, in the sense determined by the right-hand grip rule
on the rim, assuming that a direction of circulation around the rim is
specified—see Figure 2.4. This quantity clearly possesses both magni-
tude and direction. But is it a true vector? We know that if the normal to
the surface makes an angle αx with the x-axis then the area seen looking
along the x-direction is S cosαx. This is the x-component of S. Similarly,
if the normal makes an angle αy with the y-axis then the area seen look-
ing along the y-direction is S cosαy. This is the y-component of S. If
we limit ourselves to a surface whose normal is perpendicular to the z-
direction then αx = π/2− αy = α. It follows that S = S (cosα, sinα, 0).
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S

Figure 2.4: A vector area.

If we rotate the basis about the z-axis by θ degrees, which is equivalent to
rotating the normal to the surface about the z-axis by −θ degrees, then

Sx ′ = S cos (α− θ) = S cosα cos θ+ S sinα sin θ = Sx cos θ+ Sy sin θ,
(2.13)

which is the correct transformation rule for the x-component of a vector.
The other components transform correctly as well. This proves that a
vector area is a true vector.

According to the vector addition theorem, the projected area of two
plane surfaces, joined together at a line, looking along the x-direction
(say) is the x-component of the resultant of the vector areas of the two
surfaces. Likewise, for many joined-up plane areas, the projected area in
the x-direction, which is the same as the projected area of the rim in the
x-direction, is the x-component of the resultant of all the vector areas:

S =
∑
i

Si. (2.14)

If we approach a limit, by letting the number of plane facets increase,
and their areas reduce, then we obtain a continuous surface denoted by
the resultant vector area

S =
∑
i

δSi. (2.15)

It is clear that the projected area of the rim in the x-direction is just
Sx. Note that the rim of the surface determines the vector area rather
than the nature of the surface. So, two different surfaces sharing the
same rim both possess the same vector area.

In conclusion, a loop (not all in one plane) has a vector area S which
is the resultant of the vector areas of any surface ending on the loop. The
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components of S are the projected areas of the loop in the directions of
the basis vectors. As a corollary, a closed surface has S = 0, since it does
not possess a rim.

2.4 THE SCALAR PRODUCT

A scalar quantity is invariant under all possible rotational transforma-
tions. The individual components of a vector are not scalars because
they change under transformation. Can we form a scalar out of some
combination of the components of one, or more, vectors? Suppose that
we were to define the “percent” product,

a % b = ax bz + ay bx + az by = scalar number, (2.16)

for general vectors a and b. Is a % b invariant under transformation, as
must be the case if it is a scalar number? Let us consider an example. Sup-
pose that a = (0, 1, 0) and b = (1, 0, 0). It is easily seen that a % b = 1.
Let us now rotate the basis through 45◦ about the z-axis. In the new basis,
a = (1/

√
2, 1/

√
2, 0) and b = (1/

√
2, −1/

√
2, 0), giving a % b = 1/2.

Clearly, a % b is not invariant under rotational transformation, so the
above definition is a bad one.

Consider, now, the dot product or scalar product:

a · b = ax bx + ay by + az bz = scalar number. (2.17)

Let us rotate the basis though θ degrees about the z-axis. According to
Equations (2.10)–(2.12), in the new basis a · b takes the form

a · b = (ax cos θ+ ay sin θ) (bx cos θ+ by sin θ)

+ (−ax sin θ+ ay cos θ) (−bx sin θ+ by cos θ) + az bz

= ax bx + ay by + az bz. (2.18)

Thus, a · b is invariant under rotation about the z-axis. It can eas-
ily be shown that it is also invariant under rotation about the x- and
y-axes. Clearly, a · b is a true scalar, so the above definition is a good
one. Incidentally, a · b is the only simple combination of the components
of two vectors which transforms like a scalar. It is easily shown that the
dot product is commutative and distributive: i.e.,

a · b = b · a,

a · (b + c) = a · b + a · c. (2.19)
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b − a

O
θ

A

B

.

b

a

Figure 2.5: A vector triangle.

The associative property is meaningless for the dot product, because we
cannot have (a · b) · c, since a · b is scalar.

We have shown that the dot product a · b is coordinate independent.
But what is the physical significance of this? Consider the special case
where a = b. Clearly,

a · b = a 2
x + a 2

y + a 2
z = Length (OP)2, (2.20)

if a is the position vector of P relative to the origin O. So, the invariance
of a · a is equivalent to the invariance of the length, or magnitude, of
vector a under transformation. The length of vector a is usually denoted
|a| (“the modulus of a”) or sometimes just a, so

a · a = |a|2 = a2. (2.21)

Let us now investigate the general case. The length squared of AB
in the vector triangle shown in Figure 2.5 is

(b − a) · (b − a) = |a|2 + |b|2 − 2 a · b. (2.22)

However, according to the “cosine rule” of trigonometry,

(AB)2 = (OA)2 + (OB)2 − 2 (OA) (OB) cos θ, (2.23)

where (AB) denotes the length of side AB. It follows that

a · b = |a| |b| cos θ. (2.24)

Clearly, the invariance of a · b under transformation is equivalent to the
invariance of the angle subtended between the two vectors. Note that if
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a · b = 0 then either |a| = 0, |b| = 0, or the vectors a and b are perpendic-
ular. The angle subtended between two vectors can easily be obtained
from the dot product:

cos θ =
a · b
|a| |b|

. (2.25)

The work W performed by a constant force F moving an object
through a displacement r is the product of the magnitude of F times
the displacement in the direction of F. If the angle subtended between
F and r is θ then

W = |F| (|r| cos θ) = F · r. (2.26)

The rate of flow of liquid of constant velocity v through a loop of
vector area S is the product of the magnitude of the area times the
component of the velocity perpendicular to the loop. Thus,

Rate of flow = v · S. (2.27)

2.5 THE VECTOR PRODUCT

We have discovered how to construct a scalar from the components of
two general vectors a and b. Can we also construct a vector which is not
just a linear combination of a and b? Consider the following definition:

a ∗ b = (ax bx, ay by, az bz). (2.28)

Is a ∗ b a proper vector? Suppose that a = (0, 1, 0), b = (1, 0, 0). Clearly,
a ∗ b = 0. However, if we rotate the basis through 45◦ about the
z-axis then a = (1/

√
2, 1/

√
2, 0), b = (1/

√
2, −1/

√
2, 0), and a ∗ b =

(1/2, −1/2, 0). Thus, a ∗ b does not transform like a vector, because
its magnitude depends on the choice of axes. So, the above definition is
a bad one.

Consider, now, the cross product or vector product:

a × b = (ay bz − az by, az bx − ax bz, ax by − ay bx) = c. (2.29)

Does this rather unlikely combination transform like a vector? Let
us try rotating the basis through θ degrees about the z-axis using
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Equations (2.10)–(2.12). In the new basis,

cx ′ = (−ax sin θ+ ay cos θ)bz − az (−bx sin θ+ by cos θ)

= (ay bz − az by) cos θ+ (az bx − ax bz) sin θ

= cx cos θ+ cy sin θ. (2.30)

Thus, the x-component of a × b transforms correctly. It can easily be
shown that the other components transform correctly as well, and that
all components also transform correctly under rotation about the y- and
z-axes. Thus, a × b is a proper vector. Incidentally, a × b is the only
simple combination of the components of two vectors that transforms
like a vector (which is non-coplanar with a and b). The cross product is
anticommutative,

a × b = −b × a, (2.31)

distributive,
a × (b + c) = a × b + a × c, (2.32)

but is not associative,

a × (b × c) �= (a × b) × c. (2.33)

Note that a × b can be written in the convenient, and easy-to-remember,
determinant form

a × b =

∣∣∣∣∣∣∣
ex ey ez
ax ay az

bx by bz

∣∣∣∣∣∣∣ . (2.34)

The cross product transforms like a vector, which means that it must
have a well-defined direction and magnitude. We can show that a × b is
perpendicular to both a and b. Consider a · a × b. If this is zero then the
cross product must be perpendicular to a. Now

a · a × b = ax (ay bz − az by) + ay (az bx − ax bz) + az (ax by − ay bx)

= 0. (2.35)

Therefore, a × b is perpendicular to a. Likewise, it can be demonstrated
that a × b is perpendicular to b. The vectors a, b, and a × b form a right-
handed set, like the unit vectors ex, ey, and ez. In fact, ex × ey = ez.
This defines a unique direction for a × b, which is obtained from the
right-hand rule—see Figure 2.6.



“chapter2” — 2007/11/29 — 13:42 — page 14 — #10

14 MAXWELL’S EQUATIONS AND THE PRINCIPLES OF ELECTROMAGNETISM

b

middle finger

index finger

thumb

θ

a × b

a

Figure 2.6: The right-hand rule for cross products. Here, θ is less that 180◦.

Let us now evaluate the magnitude of a × b. We have

(a × b)2 = (ay bz − az by)
2 + (az bx − ax bz)

2 + (ax by − ay bx)
2

= (a 2
x + a 2

y + a 2
z ) (b 2x + b 2y + b 2z ) − (ax bx + ay by + az bz)

2

= |a|2 |b|2 − (a · b)2

= |a|2 |b|2 − |a|2 |b|2 cos2 θ = |a|2 |b|2 sin2 θ. (2.36)

Thus,

|a × b| = |a| |b| sin θ, (2.37)

where θ is the angle subtended between a and b. Clearly, a × a = 0 for
any vector, since θ is always zero in this case. Also, if a × b = 0 then
either |a| = 0, |b| = 0, or b is parallel (or antiparallel) to a.

Consider the parallelogram defined by vectors a and b—see
Figure 2.7. The scalar area is ab sin θ. The vector area has the magni-
tude of the scalar area, and is normal to the plane of the parallelogram,
which means that it is perpendicular to both a and b. Clearly, the vector

b

a

b

θ
a

Figure 2.7: A vector parallelogram.
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r

O

θ

P

Q

F

r sin θ

Figure 2.8: A torque.

area is given by
S = a × b, (2.38)

with the sense obtained from the right-hand grip rule by rotating a
on to b.

Suppose that a force F is applied at position r—see Figure 2.8. The
torque about the origin O is the product of the magnitude of the force
and the length of the lever arm OQ. Thus, the magnitude of the torque
is |F| |r| sin θ. The direction of the torque is conventionally the direction
of the axis throughO about which the force tries to rotate objects, in the
sense determined by the right-hand grip rule. It follows that the vector
torque is given by

τ = r × F. (2.39)

2.6 ROTATION

Let us try to define a rotation vector θ whose magnitude is the angle
of the rotation, θ, and whose direction is the axis of the rotation, in
the sense determined by the right-hand grip rule. Unfortunately, this is
not a good vector. The problem is that the addition of rotations is not
commutative, whereas vector addition is commuative. Figure 2.9 shows
the effect of applying two successive 90◦ rotations, one about the x-axis,
and the other about the z-axis, to a standard six-sided die. In the left-
hand case, the z-rotation is applied before the x-rotation, and vice versa in
the right-hand case. It can be seen that the die ends up in two completely
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x

x-axisz-axis

x-axis z-axis

z

y

Figure 2.9: Effect of successive rotations about perpendicular axes on a
six-sided die.

different states. Clearly, the z-rotation plus the x-rotation does not equal
the x-rotation plus the z-rotation. This non-commuting algebra cannot
be represented by vectors. So, although rotations have a well-defined
magnitude and direction, they are not vector quantities.

But, this is not quite the end of the story. Suppose that we take a
general vector a and rotate it about the z-axis by a small angle δθz. This
is equivalent to rotating the basis about the z-axis by −δθz. According to
Equations (2.10)–(2.12), we have

a ′ � a + δθz ez × a, (2.40)

where use has been made of the small angle approximations sin θ � θ

and cos θ � 1. The above equation can easily be generalized to allow
small rotations about the x- and y-axes by δθx and δθy, respectively. We
find that

a ′ � a + δθ × a, (2.41)

where

δθ = δθx ex + δθy ey + δθz ez. (2.42)

Clearly, we can define a rotation vector δθ, but it only works for
small angle rotations (i.e., sufficiently small that the small angle
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approximations of sine and cosine are good). According to the above
equation, a small z-rotation plus a small x-rotation is (approximately)
equal to the two rotations applied in the opposite order. The fact that
infinitesimal rotation is a vector implies that angular velocity,

ω = lim
δt→0

δθ

δt
, (2.43)

must be a vector as well. Also, if a ′ is interpreted as a(t+ δt) in Equa-
tion (2.41) then it is clear that the equation of motion of a vector
precessing about the origin with angular velocity ω is

da
dt

= ω × a. (2.44)

2.7 THE SCALAR TRIPLE PRODUCT

Consider three vectors a, b, and c. The scalar triple product is defined
a · b × c. Now, b × c is the vector area of the parallelogram defined by
b and c. So, a · b × c is the scalar area of this parallelogram times the
component of a in the direction of its normal. It follows that a · b × c
is the volume of the parallelepiped defined by vectors a, b, and c—see
Figure 2.10. This volume is independent of how the triple product is
formed from a, b, and c, except that

a · b × c = −a · c × b. (2.45)

So, the “volume” is positive if a, b, and c form a right-handed set (i.e.,
if a lies above the plane of b and c, in the sense determined from the

c

b

a

Figure 2.10: A vector parallelepiped.
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right-hand grip rule by rotating b onto c) and negative if they form a
left-handed set. The triple product is unchanged if the dot and cross
product operators are interchanged,

a · b × c = a × b · c. (2.46)

The triple product is also invariant under any cyclic permutation of a, b,
and c,

a · b × c = b · c × a = c · a × b, (2.47)

but any anticyclic permutation causes it to change sign,

a · b × c = −b · a × c. (2.48)

The scalar triple product is zero if any two of a, b, and c are parallel, or
if a, b, and c are coplanar.

If a, b, and c are non-coplanar, then any vector r can be written in
terms of them:

r = α a + βb + γ c. (2.49)

Forming the dot product of this equation with b × c, we then obtain

r · b × c = α a · b × c, (2.50)

so

α =
r · b × c
a · b × c

. (2.51)

Analogous expressions can be written for β and γ. The parameters α,
β, and γ are uniquely determined provided a · b × c �= 0: i.e., provided
that the three basis vectors are not coplanar.

2.8 THE VECTOR TRIPLE PRODUCT

For three vectors a, b, and c, the vector triple product is defined a ×
(b × c). The brackets are important because a × (b × c) �= (a × b) × c.
In fact, it can be demonstrated that

a × (b × c) ≡ (a · c) b − (a · b) c (2.52)

and

(a × b) × c ≡ (a · c) b − (b · c) a. (2.53)
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Let us try to prove the first of the above theorems. The left-hand
side and the right-hand side are both proper vectors, so if we can prove
this result in one particular coordinate system then it must be true in
general. Let us take convenient axes such that the x-axis lies along b,
and c lies in the x-y plane. It follows that b = (bx, 0, 0), c = (cx, cy, 0),
and a = (ax, ay, az). The vector b × c is directed along the z-axis:
b × c = (0, 0, bx cy). It follows that a × (b × c) lies in the x-y plane:
a × (b × c) = (ay bx cy, −ax bx cy, 0). This is the left-hand side of Equa-
tion (2.52) in our convenient axes. To evaluate the right-hand side, we
need a · c = ax cx + ay cy and a · b = ax bx. It follows that the right-hand
side is

RHS = ( [ax cx + ay cy]bx, 0, 0) − (ax bx cx, ax bx cy, 0)

= (ay cy bx, −ax bx cy, 0) = LHS, (2.54)

which proves the theorem.

2.9 VECTOR CALCULUS

Suppose that vector a varies with time, so that a = a(t). The time
derivative of the vector is defined

da
dt

= lim
δt→0

[
a(t+ δt) − a(t)

δt

]
. (2.55)

When written out in component form this becomes

da
dt

=

(
dax

dt
,
day

dt
,
daz

dt

)
. (2.56)

Suppose that a is, in fact, the product of a scalar φ(t) and another
vector b(t). What now is the time derivative of a? We have

dax

dt
=
d

dt
(φbx) =

dφ

dt
bx + φ

dbx

dt
, (2.57)

which implies that

da
dt

=
dφ

dt
b + φ

db
dt
. (2.58)

Moreover, it is easily demonstrated that

d

dt
(a · b) =

da
dt

· b + a · db
dt
, (2.59)
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and

d

dt
(a × b) =

da
dt

× b + a × db
dt
. (2.60)

Hence, it can be seen that the laws of vector differentiation are analogous
to those in conventional calculus.

2.10 LINE INTEGRALS

Consider a two-dimensional function f(x, y) which is defined for all x
and y. What is meant by the integral of f along a given curve from P to
Q in the x-y plane? We first draw out f as a function of length l along
the path—see Figure 2.11. The integral is then simply given by

∫Q
P

f(x, y)dl = Area under the curve. (2.61)

As an example of this, consider the integral of f(x, y) = xy2 between
P andQ along the two routes indicated in Figure 2.12. Along route 1 we
have x = y, so dl =

√
2 dx. Thus,

∫Q
P

xy2 dl =

∫ 1
0

x3
√
2 dx =

√
2

4
. (2.62)

.

lx

y

P

Q

l

P

f

Q

Figure 2.11: A line integral.
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y

P = (0, 0)

Q = (1, 1)

1

2

2

x

Figure 2.12: An example line integral.

The integration along route 2 gives∫Q
P

xy2 dl =

∫ 1
0

x y2 dx

∣∣∣∣
y=0

+

∫ 1
0

x y2 dy

∣∣∣∣
x=1

= 0+

∫ 1
0

y2 dy =
1

3
. (2.63)

Note that the integral depends on the route taken between the initial
and final points.

The most common type of line integral is that in which the contribu-
tions from dx and dy are evaluated separately, rather that through the
path length dl: ∫Q

P

[f(x, y)dx+ g(x, y)dy] . (2.64)

As an example of this, consider the integral∫Q
P

[
ydx+ x3 dy

]
(2.65)

along the two routes indicated in Figure 2.13. Along route 1 we have
x = y+ 1 and dx = dy, so∫Q

P

=

∫ 1
0

[
ydy+ (y+ 1)3 dy

]
=
17

4
. (2.66)

Along route 2, ∫Q
P

=

∫ 1
0

x3 dy

∣∣∣∣
x=1

+

∫ 2
1

y dx

∣∣∣∣
y=1

=
7

4
. (2.67)

Again, the integral depends on the path of integration.
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2

P = (1, 0)

Q = (2, 1)

1

x

y
2

Figure 2.13: An example line integral.

Suppose that we have a line integral which does not depend on the
path of integration. It follows that∫Q

P

(f dx+ gdy) = F(Q) − F(P) (2.68)

for some function F. Given F(P) for one point P in the x-y plane, then

F(Q) = F(P) +

∫Q
P

(f dx+ gdy) (2.69)

defines F(Q) for all other points in the plane. We can then draw a contour
map of F(x, y). The line integral between points P and Q is simply the
change in height in the contour map between these two points:∫Q

P

(f dx+ gdy) =

∫Q
P

dF(x, y) = F(Q) − F(P). (2.70)

Thus,

dF(x, y) = f(x, y)dx+ g(x, y)dy. (2.71)

For instance, if F = x3 y then dF = 3 x2 ydx+ x3 dy and∫Q
P

(
3 x2 ydx+ x3 dy

)
=
[
x3 y

]Q
P

(2.72)

is independent of the path of integration.
It is clear that there are two distinct types of line integral. Those

which depend only on their endpoints and not on the path of integration,
and those which depend both on their endpoints and the integration
path. Later on, we shall learn how to distinguish between these two
types.
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2.11 VECTOR LINE INTEGRALS

A vector field is defined as a set of vectors associated with each point in
space. For instance, the velocity v(r) in a moving liquid (e.g., a whirlpool)
constitutes a vector field. By analogy, a scalar field is a set of scalars
associated with each point in space. An example of a scalar field is the
temperature distribution T(r) in a furnace.

Consider a general vector field A(r). Let dl = (dx, dy, dz) be the
vector element of line length. Vector line integrals often arise as

∫Q
P

A · dl =

∫Q
P

(Ax dx+Ay dy+Az dz). (2.73)

For instance, if A is a force field then the line integral is the work done
in going from P to Q.

As an example, consider the work done in a repulsive, inverse-
square, central field, F = −r/|r3|. The element of work done is dW =
F · dl. Take P = (∞, 0, 0) andQ = (a, 0, 0). Route 1 is along the x-axis, so

W =

∫a
∞

(
−
1

x2

)
dx =

[
1

x

]a
∞

=
1

a
. (2.74)

The second route is, firstly, around a large circle (r = constant) to the
point (a, ∞, 0), and then parallel to the y-axis—see Figure 2.14. In
the first part, no work is done, since F is perpendicular to dl. In the

x

2

1

2

Q P

y

a ∞

Figure 2.14: An example vector line integral.
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second part,

W =

∫ 0
∞

−ydy

(a2 + y2)3/2
=

[
1

(y2 + a2)1/2

]0
∞

=
1

a
. (2.75)

In this case, the integral is independent of the path. However, not all
vector line integrals are path independent.

2.12 SURFACE INTEGRALS

Let us take a surface S, which is not necessarily coplanar, and divide in
up into (scalar) elements δSi. Then∫∫

S

f(x, y, z)dS = lim
δSi→0

∑
i

f(x, y, z) δSi (2.76)

is a surface integral. For instance, the volume of water in a lake of depth
D(x, y) is

V =

∫∫
D(x, y)dS. (2.77)

To evaluate this integral we must split the calculation into two ordinary
integrals. The volume in the strip shown in Figure 2.15 is[∫x2

x1

D(x, y)dx

]
dy. (2.78)

dy

x2x1

y1

y2

y

x

Figure 2.15: Decomposition of a surface integral.
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Note that the limits x1 and x2 depend on y. The total volume is the sum
over all strips:

V =

∫y2

y1

dy

[∫x2(y)

x1(y)

D(x, y)dx

]
≡

∫∫
S

D(x, y)dxdy. (2.79)

Of course, the integral can be evaluated by taking the strips the other
way around:

V =

∫x2

x1

dx

∫y2(x)

y1(x)

D(x, y)dy. (2.80)

Interchanging the order of integration is a very powerful and useful trick.
But great care must be taken when evaluating the limits.

As an example, consider
∫∫
S

x y2 dxdy, (2.81)

where S is shown in Figure 2.16. Suppose that we evaluate the x integral
first:

dy

(∫ 1−y
0

x y2 dx

)
= y2 dy

[
x2

2

]1−y
0

=
y2

2
(1− y)2 dy. (2.82)

1 − y = x

x(1, 0)

(0, 1)

y

(0, 0)

Figure 2.16: An example surface integral.
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Let us now evaluate the y integral:

∫ 1
0

(
y2

2
− y3 +

y4

2

)
dy =

1

60
. (2.83)

We can also evaluate the integral by interchanging the order of
integration:

∫ 1
0

x dx

∫ 1−x
0

y2 dy =

∫ 1
0

x

3
(1− x)3 dx =

1

60
. (2.84)

In some cases, a surface integral is just the product of two separate
integrals. For instance, ∫ ∫

S

x2 y dxdy (2.85)

where S is a unit square. This integral can be written

∫ 1
0

dx

∫ 1
0

x2 y dy =

(∫ 1
0

x2 dx

)(∫ 1
0

y dy

)
=
1

3

1

2
=
1

6
, (2.86)

since the limits are both independent of the other variable.

2.13 VECTOR SURFACE INTEGRALS

Surface integrals often occur during vector analysis. For instance, the
rate of flow of a liquid of velocity v through an infinitesimal surface of
vector area dS is v · dS. The net rate of flow through a surface S made
up of lots of infinitesimal surfaces is∫∫

S

v · dS = lim
dS→0

[∑
v cos θdS

]
, (2.87)

where θ is the angle subtended between the normal to the surface and
the flow velocity.

Analogously to line integrals, most surface integrals depend both on
the surface and the rim. But some (very important) integrals depend
only on the rim, and not on the nature of the surface which spans it.
As an example of this, consider incompressible fluid flow between two
surfaces S1 and S2 which end on the same rim—see Figure 2.21. The
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volume between the surfaces is constant, so what goes in must come
out, and ∫∫

S1

v · dS =

∫ ∫
S2

v · dS. (2.88)

It follows that ∫∫
v · dS (2.89)

depends only on the rim, and not on the form of surfaces S1 and S2.

2.14 VOLUME INTEGRALS

A volume integral takes the form∫∫∫
V

f(x, y, z)dV, (2.90)

where V is some volume, and dV = dxdydz is a small volume element.
The volume element is sometimes written d3r, or even dτ. As an example
of a volume integral, let us evaluate the center of gravity of a solid
hemisphere of radius a (centered on the origin). The height of the center
of gravity is given by

z =

∫∫∫
z dV

/ ∫∫∫
dV. (2.91)

The bottom integral is simply the volume of the hemisphere, which
is 2πa3/3. The top integral is most easily evaluated in spherical
polar coordinates, for which z = r cos θ and dV = r2 sin θdr dθdφ—see
Section 2.19. Thus,∫ ∫ ∫

z dV =

∫a
0

dr

∫π/2
0

dθ

∫ 2π
0

dφ r cos θ r2 sin θ

=

∫a
0

r3 dr

∫π/2
0

sin θ cos θdθ
∫ 2π
0

dφ =
πa4

4
, (2.92)

giving

z =
πa4

4

3

2πa3
=
3 a

8
. (2.93)
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2.15 GRADIENT

A one-dimensional function f(x) has a gradient df/dx which is defined
as the slope of the tangent to the curve at x. We wish to extend this idea
to cover scalar fields in two and three dimensions.

Consider a two-dimensional scalar field h(x, y), which is (say) the
height of a hill. Let dl = (dx, dy) be an element of horizontal dis-
tance. Consider dh/dl, where dh is the change in height after moving
an infinitesimal distance dl. This quantity is somewhat like the one-
dimensional gradient, except that dh depends on the direction of dl, as
well as its magnitude. In the immediate vicinity of some point P, the
slope reduces to an inclined plane—see Figure 2.17. The largest value
of dh/dl is straight up the slope. For any other direction

dh

dl
=

(
dh

dl

)
max

cos θ. (2.94)

Let us define a two-dimensional vector, gradh, called the gradient of
h, whose magnitude is (dh/dl)max, and whose direction is the direction
up the steepest slope. Because of the cos θ property, the component of
gradh in any direction equals dh/dl for that direction. [The argument,
here, is analogous to that used for vector areas in Section 2.3. See, in
particular, Equation (2.13).]

The component of dh/dl in the x-direction can be obtained by plot-
ting out the profile of h at constant y, and then finding the slope of the

direction of steepest ascent

y contours of h(x, y)

θ

x

P

high

low

Figure 2.17: A two-dimensional gradient.
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tangent to the curve at given x. This quantity is known as the partial
derivative of h with respect to x at constant y, and is denoted (∂h/∂x)y.
Likewise, the gradient of the profile at constant x is written (∂h/∂y)x.
Note that the subscripts denoting constant-x and constant-y are usually
omitted, unless there is any ambiguity. If follows that in component form

gradh =

(
∂h

∂x
,
∂h

∂y

)
. (2.95)

Now, the equation of the tangent plane at P = (x0, y0) is

hT (x, y) = h(x0, y0) + α (x− x0) + β (y− y0). (2.96)

This has the same local gradients as h(x, y), so

α =
∂h

∂x
, β =

∂h

∂y
, (2.97)

by differentiation of the above. For small dx = x− x0 and dy = y− y0,
the function h is coincident with the tangent plane. We have

dh =
∂h

∂x
dx+

∂h

∂y
dy. (2.98)

But, gradh = (∂h/∂x, ∂h/∂y) and dl = (dx, dy), so

dh = gradh · dl. (2.99)

Incidentally, the above equation demonstrates that gradh is a proper
vector, since the left-hand side is a scalar, and, according to the properties
of the dot product, the right-hand side is also a scalar, provided that dl
and gradh are both proper vectors (dl is an obvious vector, because it
is directly derived from displacements).

Consider, now, a three-dimensional temperature distribution
T(x, y, z) in (say) a reaction vessel. Let us define grad T , as before,
as a vector whose magnitude is (dT/dl)max, and whose direction is the
direction of the maximum gradient. This vector is written in component
form

grad T =

(
∂T

∂x
,
∂T

∂y
,
∂T

∂z

)
. (2.100)

Here, ∂T/∂x ≡ (∂T/∂x)y,z is the gradient of the one-dimensional temper-
ature profile at constant y and z. The change in T in going from point
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P to a neighboring point offset by dl = (dx, dy, dz) is

dT =
∂T

∂x
dx+

∂T

∂y
dy+

∂T

∂z
dz. (2.101)

In vector form, this becomes

dT = grad T · dl. (2.102)

Suppose that dT = 0 for some dl. It follows that

dT = grad T · dl = 0. (2.103)

So, dl is perpendicular to grad T . Since dT = 0 along so-called
“isotherms” (i.e., contours of the temperature), we conclude that
the isotherms (contours) are everywhere perpendicular to grad T—see
Figure 2.18. It is, of course, possible to integrate dT . The line integral
from point P to point Q is written

∫Q
P

dT =

∫Q
P

grad T · dl = T(Q) − T(P). (2.104)

This integral is clearly independent of the path taken between P and Q,
so

∫Q
P

grad T · dl must be path independent.
Consider a vector field A(r). In general,

∫Q
P

A · dl depends on path,
but for some special vector fields the integral is path independent. Such

dl

isotherms

T = constant gradT

Figure 2.18: Isotherms.
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fields are called conservative fields. It can be shown that if A is a conser-
vative field then A = gradV for some scalar field V. The proof of this is
straightforward. Keeping P fixed, we have∫Q

P

A · dl = V(Q), (2.105)

where V(Q) is a well-defined function, due to the path-independent
nature of the line integral. Consider moving the position of the endpoint
by an infinitesimal amount dx in the x-direction. We have

V(Q+ dx) = V(Q) +

∫Q+dx

Q

A · dl = V(Q) +Ax dx. (2.106)

Hence,

∂V

∂x
= Ax, (2.107)

with analogous relations for the other components of A. It follows that

A = gradV. (2.108)

In Physics, the force due to gravity is a good example of a conserva-
tive field. If A(r) is a force field then

∫
A · dl is the work done in traversing

some path. If A is conservative then∮
A · dl = 0, (2.109)

where
∮

corresponds to the line integral around some closed loop. The
fact that zero net work is done in going around a closed loop is equivalent
to the conservation of energy (this is why conservative fields are called
“conservative”). A good example of a non-conservative field is the force
due to friction. Clearly, a frictional system loses energy in going around
a closed cycle, so

∮
A · dl �= 0.

It is useful to define the vector operator

∇ ≡
(
∂

∂x
,
∂

∂y
,
∂

∂z

)
, (2.110)

which is usually called the grad or del operator. This operator acts on
everything to its right in an expression, until the end of the expression
or a closing bracket is reached. For instance,

grad f = ∇f =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
. (2.111)
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For two scalar fields φ and ψ,

grad (φψ) = φ gradψ+ψ gradφ (2.112)

can be written more succinctly as

∇(φψ) = φ∇ψ+ψ∇φ. (2.113)

Suppose that we rotate the basis about the z-axis by θ degrees. By
analogy with Equations (2.7)–(2.9), the old coordinates (x, y, z) are
related to the new ones (x ′, y ′, z ′) via

x = x ′ cos θ− y ′ sin θ, (2.114)

y = x ′ sin θ+ y ′ cos θ, (2.115)

z = z ′. (2.116)

Now,

∂

∂x ′ =

(
∂x

∂x ′

)
y ′,z ′

∂

∂x
+

(
∂y

∂x ′

)
y ′,z ′

∂

∂y
+

(
∂z

∂x ′

)
y ′,z ′

∂

∂z
, (2.117)

giving

∂

∂x ′ = cos θ
∂

∂x
+ sin θ

∂

∂y
, (2.118)

and

∇x ′ = cos θ∇x + sin θ∇y. (2.119)

It can be seen that the differential operator ∇ transforms like a proper
vector, according to Equations (2.10)–(2.12). This is another proof that
∇f is a good vector.

2.16 DIVERGENCE

Let us start with a vector field A(r). Consider
∮
S

A · dS over some closed
surface S, where dS denotes an outward-pointing surface element. This
surface integral is usually called the flux of A out of S. If A is the velocity
of some fluid then

∮
S

A · dS is the rate of fluid flow out of S.
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y + dy

z

z
x + dx

x

z + dz
y

x

y

Figure 2.19: Flux of a vector field out of a small box.

If A is constant in space then it is easily demonstrated that the net
flux out of S is zero, ∮

A · dS = A ·
∮
dS = A · S = 0, (2.120)

since the vector area S of a closed surface is zero.
Suppose, now, that A is not uniform in space. Consider a very small

rectangular volume over which A hardly varies. The contribution to
∮

A ·
dS from the two faces normal to the x-axis is

Ax(x+ dx)dydz−Ax(x)dydz =
∂Ax

∂x
dxdydz =

∂Ax

∂x
dV, (2.121)

where dV = dxdydz is the volume element—see Figure 2.19. There are
analogous contributions from the sides normal to the y- and z-axes, so
the total of all the contributions is∮

A · dS =

(
∂Ax

∂x
+
∂Ay

∂y
+
∂Az

∂z

)
dV. (2.122)

The divergence of a vector field is defined

divA = ∇ · A =
∂Ax

∂x
+
∂Ay

∂y
+
∂Az

∂z
. (2.123)

Divergence is a good scalar (i.e., it is coordinate independent), since it
is the dot product of the vector operator ∇ with A. The formal definition
of ∇ · A is

∇ · A = lim
dV→0

∮
A · dS
dV

. (2.124)

This definition is independent of the shape of the infinitesimal volume
element.
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.

exterior contributions survive

S

interior contributions cancel

Figure 2.20: The divergence theorem.

One of the most important results in vector field theory is the so-
called divergence theorem or Gauss’ theorem. This states that for any
volume V surrounded by a closed surface S,∮

S

A · dS =

∫
V

∇ · A dV, (2.125)

where dS is an outward-pointing volume element. The proof is very
straightforward. We divide up the volume into lots of very small cubes,
and sum

∫
A · dS over all of the surfaces. The contributions from the

interior surfaces cancel out, leaving just the contribution from the outer
surface—see Figure 2.20. We can use Equation (2.122) for each cube
individually. This tells us that the summation is equivalent to

∫ ∇ · A dV

over the whole volume. Thus, the integral of A · dS over the outer surface
is equal to the integral of ∇ · A over the whole volume, which proves the
divergence theorem.

Now, for a vector field with ∇ · A = 0,∮
S

A · dS = 0 (2.126)

for any closed surface S. So, for two surfaces, S1 and S2, on the same rim,∫
S1

A · dS =

∫
S2

A · dS (2.127)

—see Figure 2.21. (Note that the direction of the surface elements on
S1 has been reversed relative to those on the closed surface. Hence, the
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S

rim

S2

S1

Figure 2.21: Two surfaces spanning the same rim (right), and the
equivalent closed surface (left).

sign of the associated surface integral is also reversed.) Thus, if ∇ · A = 0

then the surface integral depends on the rim but not the nature of the
surface which spans it. On the other hand, if ∇ · A �= 0 then the integral
depends on both the rim and the surface.

Consider an incompressible fluid whose velocity field is v. It is clear
that

∮
v · dS = 0 for any closed surface, since what flows into the surface

must flow out again. Thus, according to the divergence theorem,
∫ ∇ ·

v dV = 0 for any volume. The only way in which this is possible is if ∇ · v
is everywhere zero. Thus, the velocity components of an incompressible
fluid satisfy the following differential relation:

∂vx

∂x
+
∂vy

∂y
+
∂vz

∂z
= 0. (2.128)

Consider, now, a compressible fluid of density ρ and velocity v. The
surface integral

∮
S
ρ v · dS is the net rate of mass flow out of the closed

surface S. This must be equal to the rate of decrease of mass inside the
volume V enclosed by S, which is written −(∂/∂t)(

∫
V
ρdV). Thus,

∮
S

ρ v · dS = −
∂

∂t

(∫
V

ρ dV

)
(2.129)

for any volume. It follows from the divergence theorem that

∇·(ρ v) = −
∂ρ

∂t
. (2.130)
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21

Figure 2.22: Divergent lines of force.

This is called the equation of continuity of the fluid, since it ensures that
fluid is neither created nor destroyed as it flows from place to place.
If ρ is constant then the equation of continuity reduces to the previous
incompressible result, ∇ · v = 0.

It is sometimes helpful to represent a vector field A by lines of force
or field lines. The direction of a line of force at any point is the same as
the local direction of A. The density of lines (i.e., the number of lines
crossing a unit surface perpendicular to A) is equal to |A|. For instance,
in Figure 2.22, |A| is larger at point 1 than at point 2. The number of
lines crossing a surface element dS is A · dS. So, the net number of lines
leaving a closed surface is∮

S

A · dS =

∫
V

∇ · A dV. (2.131)

If ∇ · A = 0 then there is no net flux of lines out of any surface. Such
a field is called a solenoidal vector field. The simplest example of a
solenoidal vector field is one in which the lines of force all form closed
loops.

2.17 THE LAPLACIAN

So far we have encountered

∇φ =

(
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)
, (2.132)

which is a vector field formed from a scalar field, and

∇ · A =
∂Ax

∂x
+
∂Ay

∂y
+
∂Az

∂z
, (2.133)
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which is a scalar field formed from a vector field. There are two ways
in which we can combine gradient and divergence. We can either form
the vector field ∇(∇ · A) or the scalar field ∇ · (∇φ). The former is not
particularly interesting, but the scalar field ∇ · (∇φ) turns up in a great
many problems in Physics, and is, therefore, worthy of discussion.

Let us introduce the heat-flow vector h, which is the rate of flow of
heat energy per unit area across a surface perpendicular to the direction
of h. In many substances, heat flows directly down the temperature
gradient, so that we can write

h = −κ ∇T, (2.134)

where κ is the thermal conductivity. The net rate of heat flow
∮
S

h · dS
out of some closed surface S must be equal to the rate of decrease of
heat energy in the volume V enclosed by S. Thus, we have∮

S

h · dS = −
∂

∂t

(∫
c T dV

)
, (2.135)

where c is the specific heat. It follows from the divergence theorem that

∇ · h = −c
∂T

∂t
. (2.136)

Taking the divergence of both sides of Equation (2.134), and making
use of Equation (2.136), we obtain

∇ · (κ∇T) = c
∂T

∂t
. (2.137)

If κ is constant then the above equation can be written

∇ · (∇T) =
c

κ

∂T

∂t
. (2.138)

The scalar field ∇ · (∇T) takes the form

∇ · (∇T) =
∂

∂x

(
∂T

∂x

)
+
∂

∂y

(
∂T

∂y

)
+
∂

∂z

(
∂T

∂z

)

=
∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2
≡ ∇2T. (2.139)

Here, the scalar differential operator

∇2 ≡ ∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2
(2.140)
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is called the Laplacian. The Laplacian is a good scalar operator (i.e., it
is coordinate independent) because it is formed from a combination of
divergence (another good scalar operator) and gradient (a good vector
operator).

What is the physical significance of the Laplacian? In one dimension,
∇2T reduces to ∂2T/∂x2. Now, ∂2T/∂x2 is positive if T(x) is concave (from
above) and negative if it is convex. So, if T is less than the average of T
in its surroundings then ∇2T is positive, and vice versa.

In two dimensions,

∇2T =
∂2T

∂x2
+
∂2T

∂y2
. (2.141)

Consider a local minimum of the temperature. At the minimum, the
slope of T increases in all directions, so ∇2T is positive. Likewise, ∇2T is
negative at a local maximum. Consider, now, a steep-sided valley in T .
Suppose that the bottom of the valley runs parallel to the x-axis. At
the bottom of the valley ∂2T/∂y2 is large and positive, whereas ∂2T/∂x2

is small and may even be negative. Thus, ∇2T is positive, and this is
associated with T being less than the average local value.

Let us now return to the heat conduction problem:

∇2T =
c

κ

∂T

∂t
. (2.142)

It is clear that if ∇2T is positive then T is locally less than the average
value, so ∂T/∂t > 0: i.e., the region heats up. Likewise, if ∇2T is negative
then T is locally greater than the average value, and heat flows out of
the region: i.e., ∂T/∂t < 0. Thus, the above heat conduction equation
makes physical sense.

2.18 CURL

Consider a vector field A(r), and a loop which lies in one plane. The
integral of A around this loop is written

∮
A · dl, wheredl is a line element

of the loop. If A is a conservative field then A = ∇φ and
∮

A · dl = 0 for
all loops. In general, for a non-conservative field,

∮
A · dl �= 0.

For a small loop we expect
∮

A · dl to be proportional to the area of
the loop. Moreover, for a fixed-area loop we expect

∮
A · dl to depend

on the orientation of the loop. One particular orientation will give the
maximum value:

∮
A · dl = Imax. If the loop subtends an angle θ with
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Figure 2.23: A vector line integral around a small rectangular loop in the
y-z plane.

this optimum orientation then we expect I = Imax cos θ. Let us introduce
the vector field curl A whose magnitude is

|curl A| = lim
dS→0

∮
A · dl
dS

(2.143)

for the orientation giving Imax. Here, dS is the area of the loop. The
direction of curl A is perpendicular to the plane of the loop, when it is in
the orientation giving Imax, with the sense given by the right-hand grip
rule.

Let us now express curl A in terms of the components of A. First,
we shall evaluate

∮
A · dl around a small rectangle in the y-z plane—see

Figure 2.23. The contribution from sides 1 and 3 is

Az(y+ dy)dz−Az(y)dz =
∂Az

∂y
dydz. (2.144)

The contribution from sides 2 and 4 is

−Ay(z+ dz)dy+Ay(z)dy = −
∂Ay

∂y
dydz. (2.145)

So, the total of all contributions gives∮
A · dl =

(
∂Az

∂y
−
∂Ay

∂z

)
dS, (2.146)

where dS = dydz is the area of the loop.
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Consider a non-rectangular (but still small) loop in the y-z plane.
We can divide it into rectangular elements, and form

∮
A · dl over all the

resultant loops. The interior contributions cancel, so we are just left with
the contribution from the outer loop. Also, the area of the outer loop is
the sum of all the areas of the inner loops. We conclude that

∮
A · dl =

(
∂Az

∂y
−
∂Ay

∂z

)
dSx (2.147)

is valid for a small loop dS = (dSx, 0, 0) of any shape in the y-z plane.
Likewise, we can show that if the loop is in the x-z plane then dS =
(0, dSy, 0) and

∮
A · dl =

(
∂Ax

∂z
−
∂Az

∂x

)
dSy. (2.148)

Finally, if the loop is in the x-y plane then dS = (0, 0, dSz) and

∮
A · dl =

(
∂Ay

∂x
−
∂Ax

∂y

)
dSz. (2.149)

Imagine an arbitrary loop of vector area dS = (dSx, dSy, dSz). We
can construct this out of three vector areas, 1, 2, and 3, directed in the x-,
y-, and z-directions, respectively, as indicated in Figure 2.24. If we form
the line integral around all three loops then the interior contributions

dS

yx

3

2 1

z

Figure 2.24: Decomposition of a vector area into its Cartesian components.
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cancel, and we are left with the line integral around the original loop.
Thus, ∮

A · dl =

∮
A · dl1 +

∮
A · dl2 +

∮
A · dl3, (2.150)

giving ∮
A · dl = curl A · dS = |curl A| |dS| cos θ, (2.151)

where

curl A =

(
∂Az

∂y
−
∂Ay

∂z
,
∂Ax

∂z
−
∂Az

∂x
,
∂Ay

∂x
−
∂Ax

∂y

)
, (2.152)

and θ is the angle subtended between the directions of curl A and dS.
Note that

curl A = ∇ × A =

∣∣∣∣∣∣∣
ex ey ez
∂/∂x ∂/∂y ∂/∂z

Ax Ay Az

∣∣∣∣∣∣∣ . (2.153)

This demonstrates that ∇ × A is a good vector field, since it is the cross
product of the ∇ operator (a good vector operator) and the vector field A.

Consider a solid body rotating about the z-axis. The angular velocity
is given by ω = (0, 0, ω), so the rotation velocity at position r is

v = ω × r (2.154)

[see Equation (2.44)]. Let us evaluate ∇ × v on the axis of rotation.
The x-component is proportional to the integral

∮
v · dl around a loop

in the y-z plane. This is plainly zero. Likewise, the y-component is also
zero. The z-component is

∮
v · dl/dS around some loop in the x-y plane.

Consider a circular loop. We have
∮

v · dl = 2π rω rwithdS = π r2. Here,
r is the perpendicular distance from the rotation axis. It follows that
(∇ × v)z = 2ω, which is independent of r. So, on the axis, ∇ × v =
(0 , 0 , 2ω). Off the axis, at position r0, we can write

v = ω × (r − r0) + ω × r0. (2.155)

The first part has the same curl as the velocity field on the axis, and the
second part has zero curl, since it is constant. Thus, ∇ × v = (0, 0, 2ω)
everywhere in the body. This allows us to form a physical picture of
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∇ × A. If we imagine A(r) as the velocity field of some fluid, then ∇ × A
at any given point is equal to twice the local angular rotation velocity:
i.e., 2 ω. Hence, a vector field with ∇ × A = 0 everywhere is said to be
irrotational.

Another important result of vector field theory is the curl theorem or
Stokes’ theorem: ∮

C

A · dl =

∫
S

∇ × A · dS, (2.156)

for some (non-planar) surface S bounded by a rim C. This theorem can
easily be proved by splitting the loop up into many small rectangular
loops, and forming the integral around all of the resultant loops. All of the
contributions from the interior loops cancel, leaving just the contribution
from the outer rim. Making use of Equation (2.151) for each of the small
loops, we can see that the contribution from all of the loops is also equal
to the integral of ∇ × A · dS across the whole surface. This proves the
theorem.

One immediate consequence of Stokes’ theorem is that ∇ × A is
“incompressible.” Consider any two surfaces, S1 and S2, which share the
same rim—see Figure 2.21. It is clear from Stokes’ theorem that

∫ ∇ ×
A · dS is the same for both surfaces. Thus, it follows that

∮ ∇ × A · dS = 0

for any closed surface. However, we have from the divergence theorem
that

∮ ∇ × A · dS =
∫ ∇ · (∇ × A)dV = 0 for any volume. Hence,

∇ · (∇ × A) ≡ 0. (2.157)

So, ∇ × A is a solenoidal field.
We have seen that for a conservative field

∮
A · dl = 0 for any loop.

This is entirely equivalent to A = ∇φ. However, the magnitude of ∇ × A
is lim dS→0

∮
A · dl/dS for some particular loop. It is clear then that ∇ ×

A = 0 for a conservative field. In other words,

∇ × (∇φ) ≡ 0. (2.158)

Thus, a conservative field is also an irrotational one.
Finally, it can be shown that

∇ × (∇ × A) = ∇(∇ · A) − ∇2A, (2.159)

where

∇2A = (∇2Ax, ∇2Ay, ∇2Az). (2.160)

It should be emphasized, however, that the above result is only valid in
Cartesian coordinates.
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Figure 2.25: Cylindrical polar coordinates.

2.19 POLAR COORDINATES

In the cylindrical polar coordinate system the Cartesian coordinates x
and y are replaced by r =

√
x2 + y2 and θ = tan−1(y/x). Here, r is

the perpendicular distance from the z-axis, and θ the angle subtended
between the perpendicular radius vector and the x-axis—see Figure 2.25.
A general vector A is thus written

A = Ar er +Aθ eθ +Az ez, (2.161)

where er = ∇r/|∇r| and eθ = ∇θ/|∇θ|—see Figure 2.25. Note that the
unit vectors er, eθ, and ez are mutually orthogonal. Hence, Ar = A · er,
etc. The volume element in this coordinate system is d3r = r dr dθdz.
Moreover, gradient, divergence, and curl take the form

∇V =
∂V

∂r
er +

1

r

∂V

∂θ
eθ +

∂V

∂z
ez, (2.162)

∇ · A =
1

r

∂

∂r
(rAr) +

1

r

∂Aθ

∂θ
+
∂Az

∂z
, (2.163)
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∇ × A =

(
1

r

∂Az

∂θ
−
∂Aθ

∂z

)
er +

(
∂Ar

∂z
−
∂Az

∂r

)
eθ

+

(
1

r

∂

∂r
(rAθ) −

1

r

∂Ar

∂θ

)
ez, (2.164)

respectively. Here, V(r) is a general vector field, and A(r) a general scalar
field. Finally, the Laplacian is written

∇2V =
1

r

∂

∂r

(
r
∂V

∂r

)
+
1

r2
∂2V

∂θ2
+
∂2V

∂z2
. (2.165)

In the spherical polar coordinate system the Cartesian coordinates
x, y, and z are replaced by r =

√
x2 + y2 + z2, θ = cos−1(z/r), and φ =

tan−1(y/x). Here, r is the distance from the origin, θ the angle subtended
between the radius vector and the z-axis, and φ the angle subtended
between the projection of the radius vector onto the x-y plane and the x-
axis—see Figure 2.26. Note that r and θ in the spherical polar system are
not the same as their counterparts in the cylindrical system. A general
vector A is written

A = Ar er +Aθ eθ +Aφ eφ, (2.166)

where er = ∇r/|∇r|, eθ = ∇θ/|∇θ|, and eφ = ∇φ/|∇φ|. The unit vec-
tors er, eθ, and eφ are mutually orthogonal. Hence, Ar = A · er, etc.
The volume element in this coordinate system is d3r = r2 sin θdr dθdφ.
Moreover, gradient, divergence, and curl take the form

∇V =
∂V

∂r
er +

1

r

∂V

∂θ
eθ +

1

r sin θ
∂V

∂φ
eφ, (2.167)

∇ · A =
1

r2
∂

∂r
(r2 Ar) +

1

r sin θ
∂

∂θ
(sin θAθ)

+
1

r sin θ
∂Aφ

∂φ
, (2.168)

∇ × A =

(
1

r sin θ
∂

∂θ
(sin θAφ) −

1

r sin θ
∂Aθ

∂φ

)
er

+

(
1

r sin θ
∂Ar

∂φ
−
1

r

∂

∂r
(rAφ)

)
eθ

+

(
1

r

∂

∂r
(rAθ) −

1

r

∂Ar

∂θ

)
eφ, (2.169)
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Figure 2.26: Spherical polar coordinates.

respectively. Here, V(r) is a general vector field, and A(r) a general scalar
field. Finally, the Laplacian is written

∇2V =
1

r2
∂

∂r

(
r2
∂V

∂r

)
+

1

r2 sin θ
∂

∂θ

(
sin θ

∂V

∂θ

)
+

1

r2 sin2 θ
∂2V

∂φ2
.

(2.170)

2.20 EXERCISES

2.1. Prove the trigonometric law of sines

sin a
A

=
sin b
B

=
sin c
C

using vector methods. Here, a, b, and c are the three angles of a plane triangle,

and A, B, and C the lengths of the corresponding opposite sides.

2.2. Demonstrate using vectors that the diagonals of a parallelogram bisect one

another. In addition, show that if the diagonals of a quadrilateral bisect one

another then it is a parallelogram.

2.3. From the inequality

a · b = |a| |b| cos θ ≤ |a| |b|

deduce the triangle inequality

|a + b| ≤ |a| + |b|.
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2.4. Identify the following surfaces:

(a) |r| = a,

(b) r · n = b,

(c) r · n = c |r|,

(d) |r − (r · n) n| = d.

Here, r is the position vector, a, b, c, and d are positive constants, and n is a

fixed unit vector.

2.5. Let a, b, and c be coplanar vectors related via

α a + βb + γ c = 0,

where α, β, and γ are not all zero. Show that the condition for the points with

position vectors u a, vb, and w c to be colinear is

α

u
+
β

v
+
γ

w
= 0.

2.6. If p, q, and r are any vectors, demonstrate that a = q + λ r, b = r + µp, and

c = p + νq are coplanar provided that λµν = −1, where λ, µ, and ν are scalars.

Show that this condition is satisfied when a is perpendicular to p, b to q, and c

to r.

2.7. The vectors a, b, and c are not coplanar, and form a non-orthogonal vector base.

The vectors A, B, and C, defined by

A =
b × c

a · b × c
,

plus cyclic permutations, are said to be reciprocal vectors. Show that

a = (B × C)/(A · B × C),

plus cyclic permutations.

2.8. In the notation of the previous question, demonstrate that the plane passing

through points a/α, b/β, and c/γ is normal to the direction of the vector

h = αA + βB + γC.

In addition, show that the perpendicular distance of the plane from the origin

is |h|−1.

2.9. A ray of light moving in the direction k impinges on a surface at a point where

its normal is n. If k ′ is the direction of the refracted ray, then Snell’s law (in

vector form) gives

µ k × n = µ
′ k ′ × n,

where µ and µ ′ are the refractive indices of the media on either side of the

surface. Note that k, k ′, and n are unit vectors: i.e., they all have unit length.
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Show that k ′ is in the plane of k and n, and that

k ′ =
µ

µ ′ [k − (k · n) n + θn] ,

where

θ
2 = (k · n)2 +

(
µ ′

µ

)2

− 1.

Which sign of the square-root must be taken? Under what circumstances is θ

imaginary, and what does this imply physically?

2.10. Consider the following vector field:

A(r) = (8 x3 + 3 x2 y2, 2 x3 y + 6 y, 6).

Is this field conservative? Is it solenoidal? Is it irrotational? Justify your answers.

Calculate
∮
C

A · dr, where the curve C is a unit circle in the x-y plane, centered

on the origin, and the direction of integration is clockwise looking down the

z-axis.

2.11. Consider the following vector field:

A(r) = (3 x y2 z2 − y2, −y3 z2 + x2 y, 3 x2 − x2 z).

Is this field conservative? Is it solenoidal? Is it irrotational? Justify your answers.

Calculate the flux of A out of a unit sphere centered on the origin.

2.12. Find the gradients of the following scalar functions of the position vector r =

(x, y, z):

(a) k · r,

(b) |r|n,

(c) |r − k|−n,

(d) cos(k · r).

Here, k is a fixed vector.

2.13. Find the divergences and curls of the following vector fields:

(a) k × r,

(b) |r|n r,

(c) |r − k|n (r − k),

(d) a cos(k · r).

Here, k and a are fixed vectors.

2.14. Calculate ∇2φ when φ = f(|r|). Find f if ∇2φ = 0.

2.15. Find the Cartesian components of the basis vectors er, eθ, and ez of the cylindrical

polar coordinate system. Verify that the vectors are mutually orthogonal. Do the

same for the basis vectors er, eθ, and eφ of the spherical polar coordinate system.
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C h a p t e r 3 TIME-INDEPENDENT
MAXWELL EQUATIONS

3.1 INTRODUCTION

In this chapter, we shall recast the familiar force laws of electrostatics
and magnetostatics as vector field equations.

3.2 COULOMB’S LAW

Between 1785 and 1787, the French physicist Charles Augustine de
Coulomb performed a series of experiments involving electric charges,
and eventually established what is nowadays known as Coulomb’s law.
According to this law, the force acting between two static electric charges
is central, inverse-square, and proportional to the product of the charges.
Two like charges repel one another, whereas two unlike charges attract.
Suppose that two charges, q1 and q2, are located at position vectors r1
and r2, respectively. The electrical force acting on the second charge is
written

f2 =
q1 q2

4πε0

r2 − r1
|r2 − r1|3

(3.1)

in vector notation—see Figure 3.1. An equal and opposite force acts on
the first charge, in accordance with Newton’s third law of motion. The SI
unit of electric charge is the coulomb (C). The magnitude of the charge
on an electron is 1.6022× 10−19 C. Finally, the universal constant ε0 is
called the permittivity of free space, and takes the value

ε0 = 8.8542× 10−12 C 2 N−1m−2. (3.2)

Suppose that two masses, m1 and m2, are located at position vec-
tors r1 and r2, respectively. According to Newton’s law of gravity, the
gravitational force acting on the second mass is written

f2 = −Gm1m2
r2 − r1

|r2 − r1|3
(3.3)

49
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r1

r2 − r1
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q1f1
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O

Figure 3.1: Coulomb’s law.

in vector notation. The gravitational constant G takes the value

G = 6.6726× 10−11 N m2 kg−2. (3.4)

Note that Coulomb’s law has the same mathematical form as Newton’s
law of gravity. In particular, they are both inverse-square force laws: i.e.,

|f2| ∝ 1

|r2 − r1|2
. (3.5)

However, these laws differ in two crucial respects. Firstly, the force due
to gravity is always attractive (there is no such thing as a negative mass).
Secondly, the magnitudes of the two forces are vastly different. Consider
the ratio of the electrical and gravitational forces acting on two parti-
cles. This ratio is a constant, independent of the relative positions of the
particles, and is given by

|felectrical|

|fgravitational|
=

|q1|

m1

|q2|

m2

1

4πε0 G
. (3.6)

For electrons, the charge-to-mass ratio is |q|/m = 1.759× 1011 C kg−1, so

|felectrical|

|fgravitational|
= 4.17× 1042. (3.7)

This is a colossal number! Suppose we were studying a physics problem
involving the motion of particles under the action of two forces with the
same range, but differing in magnitude by a factor 1042. It would seem
a plausible approximation (to say the least) to start the investgation by
neglecting the weaker force altogether. Applying this reasoning to the
motion of particles in the Universe, we would expect the Universe to
be governed entirely by electrical forces. However, this is not the case.
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The force which holds us to the surface of the Earth, and prevents us
from floating off into space, is gravity. The force which causes the Earth
to orbit the Sun is also gravity. In fact, on astronomical length-scales
gravity is the dominant force, and electrical forces are largely irrelevant.
The key to understanding this paradox is that there are both positive and
negative electric charges, whereas there are only positive gravitational
“charges.” This means that gravitational forces are always cumulative,
whereas electrical forces can cancel one another out. Suppose, for the
sake of argument, that the Universe starts out with randomly distributed
electric charges. Initially, we expect electrical forces to completely dom-
inate gravity. These forces try to make every positive charge get as far
away as possible from the other positive charges in the Universe, and as
close as possible to the other negative charges. After a while, we expect
the positive and negative charges to form close pairs. Just how close is
determined by Quantum Mechanics, but, in general, it is fairly close:
i.e., about 10−10 m. The electrical forces due to the charges in each pair
effectively cancel one another out on length-scales much larger than the
mutual spacing of the pair. However, it is only possible for gravity to be
the dominant long-range force in the Universe if the number of positive
charges is almost equal to the number of negative charges. In this situ-
ation, every positive charge can find a negative charge to team up with,
and there are virtually no charges left over. In order for the cancellation
of long-range electrical forces to be effective, the relative difference in
the number of positive and negative charges in the Universe must be
incredibly small. In fact, positive and negative charges have to cancel
one another to such accuracy that most physicists believe that the net
electrical charge of the Universe is exactly zero. But, it is not sufficient
for the Universe to start out with zero charge. Suppose there were some
elementary particle process which did not conserve electric charge. Even
if this were to go on at a very low rate, it would not take long before the
fine balance between positive and negative charges in the Universe was
wrecked. So, it is important that electric charge is a conserved quantity
(i.e., the net charge of the Universe can neither increase or decrease). As
far as we know, this is the case. To date, no elementary particle reactions
have been discovered which create or destroy net electric charge.

In summary, there are two long-range forces in the Universe, elec-
tricity and gravity. The former is enormously stronger than the latter, but
is usually “hidden” away inside neutral atoms. The fine balance of forces
due to negative and positive electric charges starts to break down on
atomic scales. In fact, interatomic and intermolecular forces are all elec-
trical in nature. So, electrical forces are basically what prevent us from
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falling though the floor. But, this is electromagnetism on the microscopic
or atomic scale—what is usually termed Quantum Electromagnetism. This
book is about Classical Electromagnetism. That is, electromagnetism on
length-scales much larger than the atomic scale. Classical Electromag-
netism generally describes phenomena in which some sort of “violence”
is done to matter, so that the close pairing of negative and positive
charges is disrupted. This allows electrical forces to manifest themselves
on macroscopic length-scales. Of course, very little disruption is neces-
sary before gigantic forces are generated. Hence, it is no coincidence
that the vast majority of useful machines which humankind has devised
during the last century or so are electrical in nature.

Coulomb’s law and Newton’s law are both examples of what are usu-
ally referred to as action-at-a-distance laws. According to Equations (3.1)
and (3.3), if the first charge or mass is moved then the force acting on
the second charge or mass responds immediately. In particular, equal and
opposite forces act on the two charges or masses at all times. However,
this cannot be correct according to Einstein’s Special Theory of Relativ-
ity, which implies that the maximum speed with which information can
propagate through the Universe is the speed of light in vacuum. So, if the
first charge or mass is moved then there must always be a time delay (i.e.,
at least the time needed for a light signal to propagate between the two
charges or masses) before the second charge or mass responds. Consider
a rather extreme example. Suppose the first charge or mass is suddenly
annihilated. The second charge or mass only finds out about this some
time later. During this time interval, the second charge or mass experi-
ences an electrical or gravitational force which is as if the first charge
or mass were still there. So, during this period, there is an action but
no reaction, which violates Newton’s third law of motion. It is clear that
action at a distance is not compatible with Relativity, and, consequently,
that Newton’s third law of motion is not strictly true. Of course, Newton’s
third law is intimately tied up with the conservation of linear momen-
tum in the Universe. This is a concept which most physicists are loath to
abandon. It turns out that we can “rescue” momentum conservation by
abandoning action-at-a-distance theories, and instead adopting so-called
field theories in which there is a medium, called a field, which transmits
the force from one particle to another. Of course, in electromagnetism
there are two fields—the electric field, and the magnetic field. Electro-
magnetic forces are transmitted via these fields at the speed of light,
which implies that the laws of Relativity are never violated. Moreover,
the fields can soak up energy and momentum. This means that even
when the actions and reactions acting on charged particles are not quite
equal and opposite, momentum is still conserved. We can bypass some
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of the problematic aspects of action at a distance by only considering
steady-state situations. For the moment, this is how we shall proceed.

Consider N charges, q1 though qN, which are located at position
vectors r1 through rN, respectively. Electrical forces obey what is known
as the principle of superposition: i.e., the electrical force acting on a test
chargeq at position vector r is simply the vector sum of all of the Coulomb
law forces exerted on it by each of the N charges taken in isolation. In
other words, the electrical force exerted by the ith charge (say) on the
test charge is the same as if all of the other charges were not there. Thus,
the force acting on the test charge is given by

f(r) = q

N∑
i=1

qi

4πε0

r − ri
|r − ri|3

. (3.8)

It is helpful to define a vector field E(r), called the electric field, which is
the force exerted on a unit test charge located at position vector r. So,
the force on a test charge is written

f = qE, (3.9)

and the electric field is given by

E(r) =

N∑
i=1

qi

4πε0

r − ri
|r − ri|3

. (3.10)

At this point, we have no reason to believe that the electric field has any
real physical existence. It is just a useful device for calculating the force
which acts on test charges placed at various locations.

The electric field from a single charge q located at the origin is purely
radial, points outward if the charge is positive, inward if it is negative,
and has magnitude

Er(r) =
q

4πε0 r2
, (3.11)

where r = |r|. We can represent an electric field by field-lines. The direc-
tion of the lines indicates the direction of the local electric field, and the
density of the lines perpendicular to this direction is proportional to the
magnitude of the local electric field. It follows from Equation (3.11) that
the number of field-lines crossing the surface of a sphere centered on a
point charge (which is equal to Er times the area, 4π r2, of the surface) is
independent of the radius of the sphere. Thus, the field of a point positive
charge is represented by a group of equally spaced, unbroken, straight



“chapter3” — 2007/12/14 — 12:02 — page 54 — #6

54 MAXWELL’S EQUATIONS AND THE PRINCIPLES OF ELECTROMAGNETISM

E

q

Figure 3.2: Electric field-lines generated by a positive charge.

lines radiating from the charge—see Figure 3.2. Likewise, field of a point
negative charge is represented by a group of equally spaced, unbroken,
straight-lines converging on the charge.

The electric field from a collection of charges is simply the vector
sum of the fields from each of the charges taken in isolation. In other
words, electric fields are completely superposable. Suppose that, instead
of having discrete charges, we have a continuous distribution of charge
represented by a charge density ρ(r). Thus, the charge at position vector
r ′ is ρ(r ′)d3r ′, where d3r ′ is the volume element at r ′. It follows from a
simple extension of Equation (3.10) that the electric field generated by
this charge distribution is

E(r) =
1

4πε0

∫
ρ(r ′)

r − r ′

|r − r ′|3
d3r ′, (3.12)

where the volume integral is over all space, or, at least, over all space
for which ρ(r ′) is non-zero. We shall sometimes refer to the above result
as Coulomb’s law, since it is essentially equivalent to Equation (3.1).

3.3 THE ELECTRIC SCALAR POTENTIAL

Suppose that r = (x, y, z) and r ′ = (x ′, y ′, z ′) in Cartesian coordinates.
The x component of (r − r ′)/|r − r ′|3 is written

x− x ′

[(x− x ′)2 + (y− y ′)2 + (z− z ′)2] 3/2
. (3.13)
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However, it is easily demonstrated that

x− x ′

[(x− x ′)2 + (y− y ′)2 + (z− z ′)2] 3/2
(3.14)

= −
∂

∂x

(
1

[(x− x ′)2 + (y− y ′)2 + (z− z ′)2] 1/2

)
.

Since there is nothing special about the x-axis, we can write

r − r ′

|r − r ′|3
= −∇

(
1

|r − r ′|

)
, (3.15)

where ∇ ≡ (∂/∂x, ∂/∂y, ∂/∂z) is a differential operator which involves
the components of r but not those of r ′. It follows from Equation (3.12)
that

E = −∇φ, (3.16)

where

φ(r) =
1

4πε0

∫
ρ(r ′)

|r − r ′|
d3r ′. (3.17)

Thus, the electric field generated by a collection of fixed charges can
be written as the gradient of a scalar field—known as the electric scalar
potential—and this field can be expressed as a simple volume integral
involving the charge distribution.

The scalar potential generated by a charge q located at the origin is

φ(r) =
q

4πε0 r
. (3.18)

According to Equation (3.10), the scalar potential generated by a set of
N discrete charges qi, located at ri, is

φ(r) =

N∑
i=1

φi(r), (3.19)

where

φi(r) =
qi

4πε0 |r − ri|
. (3.20)

Thus, the scalar potential is just the sum of the potentials generated by
each of the charges taken in isolation.
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Suppose that a particle of charge q is taken along some path from
point P to point Q. The net work done on the particle by electrical
forces is

W =

∫Q
P

f · dl, (3.21)

where f is the electrical force, and dl is a line element along the path.
Making use of Equations (3.9) and (3.16), we obtain

W = q

∫Q
P

E · dl = −q

∫Q
P

∇φ · dl = −q [φ(Q) − φ(P) ] . (3.22)

Thus, the work done on the particle is simply minus its charge times the
difference in electric potential between the end point and the beginning
point. This quantity is clearly independent of the path taken between P
andQ. So, an electric field generated by stationary charges is an example
of a conservative field. In fact, this result follows immediately from vector
field theory once we are told, in Equation (3.16), that the electric field
is the gradient of a scalar potential. The work done on the particle when
it is taken around a closed loop is zero, so∮

C

E · dl = 0 (3.23)

for any closed loop C. This implies from Stokes’ theorem that

∇ × E = 0 (3.24)

for any electric field generated by stationary charges. Equation (3.24)
also follows directly from Equation (3.16), since ∇ × ∇φ ≡ 0 for any
scalar potential φ.

The SI unit of electric potential is the volt, which is equivalent to
a joule per coulomb. Thus, according to Equation (3.22), the electri-
cal work done on a particle when it is taken between two points is
the product of minus its charge and the voltage difference between the
points.

We are familiar with the idea that a particle moving in a gravitational
field possesses potential energy as well as kinetic energy. If the particle
moves from point P to a lower point Q then the gravitational field does
work on the particle causing its kinetic energy to increase. The increase
in kinetic energy of the particle is balanced by an equal decrease in its
potential energy, so that the overall energy of the particle is a conserved
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quantity. Therefore, the work done on the particle as it moves from P to
Q is minus the difference in its gravitational potential energy between
pointsQ and P. Of course, it only makes sense to talk about gravitational
potential energy because the gravitational field is conservative. Thus, the
work done in taking a particle between two points is path independent,
and, therefore, well-defined. This means that the difference in poten-
tial energy of the particle between the beginning and end points is also
well-defined. We have already seen that an electric field generated by
stationary charges is a conservative field. In follows that we can define an
electrical potential energy of a particle moving in such a field. By anal-
ogy with gravitational fields, the work done in taking a particle from
point P to point Q is equal to minus the difference in potential energy
of the particle between points Q and P. It follows from Equation (3.22)
that the potential energy of the particle at a general point Q, relative
to some reference point P (where the potential energy is set to zero), is
given by

W(Q) = qφ(Q). (3.25)

Free particles try to move down gradients of potential energy, in order
to attain a minimum potential energy state. Thus, free particles in the
Earth’s gravitational field tend to fall downward. Likewise, positive
charges moving in an electric field tend to migrate toward regions with
the most negative voltage, and vice versa for negative charges.

The scalar electric potential is undefined to an additive constant. So,
the transformation

φ(r) → φ(r) + c (3.26)

leaves the electric field unchanged according to Equation (3.16). The
potential can be fixed unambiguously by specifying its value at a single
point. The usual convention is to say that the potential is zero at infinity.
This convention is implicit in Equation (3.17), where it can be seen that
φ → 0 as |r| → ∞, provided that the total charge

∫
ρ(r ′)d3r ′ is finite.

3.4 GAUSS’ LAW

Consider a single charge q located at the origin. The electric field gen-
erated by such a charge is given by Equation (3.11). Suppose that we
surround the charge by a concentric spherical surface S of radius r—see
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V

Figure 3.3: Gauss’ law.

Figure 3.3. The flux of the electric field through this surface is given by∮
S

E · dS =

∮
S

Er dSr = Er(r) 4π r
2 =

q

4πε0 r2
4π r2 =

q

ε0
, (3.27)

since the normal to the surface is always parallel to the local electric
field. However, we also know from Gauss’ theorem that∮

S

E · dS =

∫
V

∇ · E d3r, (3.28)

where V is the volume enclosed by surface S. Let us evaluate ∇ · E
directly. In Cartesian coordinates, the field is written

E =
q

4πε0

( x
r3
,
y

r3
,
z

r3

)
, (3.29)

where r2 = x2 + y2 + z2. So,

∂Ex

∂x
=

q

4πε0

(
1

r3
−
3 x

r4
x

r

)
=

q

4πε0

r2 − 3 x2

r5
. (3.30)

Here, use has been made of

∂r

∂x
=
x

r
. (3.31)

Formulae analogous to Equation (3.30) can be obtained for ∂Ey/∂y and
∂Ez/∂z. The divergence of the field is thus given by

∇ · E =
∂Ex

∂x
+
∂Ey

∂y
+
∂Ez

∂z
=

q

4πε0

3 r2 − 3 x2 − 3 y2 − 3 z2

r5
= 0. (3.32)
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Figure 3.4: A box-car function.

This is a puzzling result! We have from Equations (3.27) and (3.28) that
∫
V

∇ · E d3r =
q

ε0
, (3.33)

and yet we have just proved that ∇ · E = 0. This paradox can be resolved
after a close examination of Equation (3.32). At the origin (r = 0) we find
that ∇ · E = 0/0, which means that ∇ · E can take any value at this point.
Thus, Equations (3.32) and (3.33) can be reconciled if ∇ · E is some sort
of “spike” function: i.e., it is zero everywhere except arbitrarily close
to the origin, where it becomes very large. This must occur in such a
manner that the volume integral over the spike is finite.

Let us examine how we might construct a one-dimensional spike
function. Consider the “box-car” function

g(x, ε) =

{
1/ε for |x| < ε/2

0 otherwise (3.34)

—see Figure 3.4. It is clear that
∫

∞

−∞

g(x, ε)dx = 1. (3.35)

Now consider the function

δ(x) = lim
ε→0

g(x, ε). (3.36)
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This is zero everywhere except arbitrarily close to x = 0. According to
Equation (3.35), it also possess a finite integral;∫

∞

−∞

δ(x)dx = 1. (3.37)

Thus, δ(x) has all of the required properties of a spike function. The
one-dimensional spike function δ(x) is called the Dirac delta-function,
after the Cambridge physicist Paul Dirac who invented it in 1927 whilst
investigating Quantum Mechanics. The delta-function is an example of
what mathematicians call a generalized function: it is not well-defined at
x = 0, but its integral is nevertheless well-defined. Consider the integral∫

∞

−∞

f(x) δ(x)dx, (3.38)

where f(x) is a function which is well-behaved in the vicinity of x = 0.
Since the delta-function is zero everywhere apart from very close to
x = 0, it is clear that∫

∞

−∞

f(x) δ(x)dx = f(0)

∫
∞

−∞

δ(x)dx = f(0), (3.39)

where use has been made of Equation (3.37). The above equation, which
is valid for any well-behaved function, f(x), is effectively the definition of
a delta-function. A simple change of variables allows us to define δ(x−
x0), which is a spike function centered on x = x0. Equation (3.39) gives∫

∞

−∞

f(x) δ(x− x0)dx = f(x0). (3.40)

We actually want a three-dimensional spike function: i.e., a function
which is zero everywhere apart from arbitrarily close to the origin, and
whose volume integral is unity. If we denote this function by δ(r) then
it is easily seen that the three-dimensional delta-function is the product
of three one-dimensional delta-functions:

δ(r) = δ(x) δ(y) δ(z). (3.41)

This function is clearly zero everywhere except the origin. But is its
volume integral unity? Let us integrate over a cube of dimension 2 a
which is centered on the origin, and aligned along the Cartesian axes.
This volume integral is obviously separable, so that∫

δ(r)d3r =

∫a
−a

δ(x)dx

∫a
−a

δ(y)dy

∫a
−a

δ(z)dz. (3.42)
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The integral can be turned into an integral over all space by taking
the limit a → ∞. However, we know that for one-dimensional delta-
functions

∫
∞

−∞
δ(x)dx = 1, so it follows from the above equation that∫

δ(r)d3r = 1, (3.43)

which is the desired result. A simple generalization of previous argu-
ments yields ∫

f(r) δ(r)d3r = f(0), (3.44)

where f(r) is any well-behaved scalar field. Finally, we can change
variables and write

δ(r − r ′) = δ(x− x ′) δ(y− y ′) δ(z− z ′), (3.45)

which is a three-dimensional spike function centered on r = r ′. It is easily
demonstrated that ∫

f(r) δ(r − r ′)d3r = f(r ′). (3.46)

Up to now, we have only considered volume integrals taken over all
space. However, it should be obvious that the above result also holds
for integrals over any finite volume V which contains the point r = r ′.
Likewise, the integral is zero if V does not contain r = r ′.

Let us now return to the problem in hand. The electric field generated
by a charge q located at the origin has ∇ · E = 0 everywhere apart from
the origin, and also satisfies∫

V

∇ · E d3r =
q

ε0
(3.47)

for a spherical volume V centered on the origin. These two facts imply
that

∇ · E =
q

ε0
δ(r), (3.48)

where use has been made of Equation (3.43).
At this stage, vector field theory has yet to show its worth. After all,

we have just spent an inordinately long time proving something using
vector field theory which we previously proved in one line [see Equa-
tion (3.27)] using conventional analysis. It is time to demonstrate the
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power of vector field theory. Consider, again, a charge q at the origin sur-
rounded by a spherical surface Swhich is centered on the origin. Suppose
that we now displace the surface S, so that it is no longer centered on the
origin. What is the flux of the electric field out of S? This is no longer a
simple problem for conventional analysis, because the normal to the sur-
face is not parallel to the local electric field. However, using vector field
theory this problem is no more difficult than the previous one. We have∮

S

E · dS =

∫
V

∇ · E d3r (3.49)

from Gauss’ theorem, plus Equation (3.48). From these equations, it is
clear that the flux of E out of S is q/ε0 for a spherical surface displaced
from the origin. However, the flux becomes zero when the displacement
is sufficiently large that the origin is no longer enclosed by the sphere.
It is possible to prove this via conventional analysis, but it is certainly
not easy. Suppose that the surface S is not spherical but is instead highly
distorted. What now is the flux of E out of S? This is a virtually impossi-
ble problem in conventional analysis, but it is still easy using vector field
theory. Gauss’ theorem and Equation (3.48) tell us that the flux is q/ε0
provided that the surface contains the origin, and that the flux is zero
otherwise. This result is completely independent of the shape of S.

Consider N charges qi located at ri. A simple generalization of
Equation (3.48) gives

∇ · E =

N∑
i=1

qi

ε0
δ(r − ri). (3.50)

Thus, Gauss’ theorem (3.49) implies that∮
S

E · dS =

∫
V

∇ · E d3r =
Q

ε0
, (3.51)

whereQ is the total charge enclosed by the surface S. This result is called
Gauss’ law, and does not depend on the shape of the surface.

Suppose, finally, that instead of having a set of discrete charges, we
have a continuous charge distribution described by a charge density ρ(r).
The charge contained in a small rectangular volume of dimensions dx,
dy, and dz located at position r is Q = ρ(r)dxdydz. However, if we
integrate ∇ · E over this volume element we obtain

∇ · E dxdydz =
Q

ε0
=
ρdxdydz

ε0
, (3.52)
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where use has been made of Equation (3.51). Here, the volume element
is assumed to be sufficiently small that ∇ · E does not vary significantly
across it. Thus, we get

∇ · E =
ρ

ε0
. (3.53)

This is the first of four field equations, called Maxwell’s equations, which
together form a complete description of electromagnetism. Of course,
our derivation of Equation (3.53) is only valid for electric fields generated
by stationary charge distributions. In principle, additional terms might
be required to describe fields generated by moving charge distributions.
However, it turns out that this is not the case, and that Equation (3.53)
is universally valid.

Equation (3.53) is a differential equation describing the electric field
generated by a set of charges. We already know the solution to this
equation when the charges are stationary: it is given by Equation (3.12),

E(r) =
1

4πε0

∫
ρ(r ′)

r − r ′

|r − r ′|3
d3r ′. (3.54)

Equations (3.53) and (3.54) can be reconciled provided

∇ ·
(

r − r ′

|r − r ′|3

)
= −∇2

(
1

|r − r ′|

)
= 4π δ(r − r ′), (3.55)

where use has been made of Equation (3.15). It follows that

∇ · E(r) =
1

4πε0

∫
ρ(r ′)∇ ·

(
r − r ′

|r − r ′|3

)
d3r ′

=

∫
ρ(r ′)
ε0

δ(r − r ′)d3r ′ =
ρ(r)
ε0
, (3.56)

which is the desired result. The most general form of Gauss’ law, Equa-
tion (3.51), is obtained by integrating Equation (3.53) over a volume V
surrounded by a surface S, and making use of Gauss’ theorem:∮

S

E · dS =
1

ε0

∫
V

ρ(r)d3r. (3.57)

One particularly interesting application of Gauss’ law is Earnshaw’s
theorem, which states that it is impossible for a collection of charged
particles to remain in static equilibrium solely under the influence of
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(classical) electrostatic forces. For instance, consider the motion of the
ith particle in the electric field, E(r), generated by all of the other static
particles. The equilibrium position of the ith particle corresponds to some
point ri, where E(ri) = 0. By implication, ri does not correspond to the
equilibrium position of any other particle. However, in order for ri to be
a stable equilibrium point, the particle must experience a restoring force
when it moves a small distance away from ri in any direction. Assuming
that the ith particle is positively charged, this means that the electric
field must point radially toward ri at all neighboring points. Hence, if
we apply Gauss’ law to a small sphere centered on ri then there must
be a negative flux of E through the surface of the sphere, implying the
presence of a negative charge at ri. However, there is no such charge
at ri. Hence, we conclude that E cannot point radially toward ri at all
neighboring points. In other words, there must be some neighboring
points at which E is directed away from ri. Hence, a positively charged
particle placed at ri can always escape by moving to such points. One
corollary of Earnshaw’s theorem is that classical electrostatics cannot
account for the stability of atoms and molecules.

As an example of the use of Gauss’ law, let us calculate the elec-
tric field generated by a spherically symmetric charge annulus of inner
radius a, and outer radius b, centered on the origin, and carrying a
uniformly distributed chargeQ. Now, from symmetry, we expect a spher-
ically symmetric charge distribution to generate a spherically symmetric
potential, φ(r). It therefore follows that the electric field is both spheri-
cally symmetric and radial: i.e., E = Er(r) er. Let us apply Gauss’ law to
an imaginary spherical surface, of radius r, centered on the origin—see
Figure 3.5. Such a surface is generally known as a Gaussian surface. Now,
according to Gauss’ law, the flux of the electric field out of the surface
is equal to the enclosed charge, divided by ε0. The flux is easy to calcu-
late since the electric field is everywhere perpendicular to the surface.
We obtain

4π r2 Er(r) =
Q(r)

ε0
,

where Q(r) is the charge enclosed by a Gaussian surface of radius r.
Now, it is evident that

Q(r) =



0 r < a

[(r3 − a3)/(b3 − a3)]Q a ≤ r ≤ b

Q b < r

. (3.58)
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Figure 3.5: An example use of Gauss’ law.

Hence,

Er(r) =



0 r < a

[Q/(4πε0 r
2)] [(r3 − a3)/(b3 − a3)] a ≤ r ≤ b

Q/(4πε0 r
2) b < r

. (3.59)

The above electric field distribution illustrates two important points.
Firstly, the electric field generated outside a spherically symmetric charge
distribution is the same that which would be generated if all of the charge
in the distribution were concentrated at its center. Secondly, zero elec-
tric field is generated inside an empty cavity surrounded by a spherically
symmetric charge distribution.

We can easily determine the electric potential associated with the
above electric field using

∂φ(r)

∂r
= −Er(r). (3.60)

The boundary conditions are that φ(∞) = 0, and that φ is continuous at
r = a and r = b. (Of course, a discontinuous potential would lead to an
infinite electric field, which is unphysical.) It follows that

φ(r) =




[Q/(4πε0)] (3/2) [(b2 − a2)/(b3 − a3)] r < a

[Q/(4πε0 r)] [(3b
3 r− r3 − 2 a3)/2 (b3 − a3)] a ≤ r ≤ b

Q/(4πε0 r) b < r

.

(3.61)
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Hence, the work done in slowly moving a charge from infinity to the
center of the distribution (which is minus the work done by the electric
field) is

W = q [φ(0) − φ(∞)] =
qQ

4πε0

3

2

(
b2 − a2

b3 − a3

)
. (3.62)

3.5 POISSON’S EQUATION

We have seen that the electric field generated by a set of stationary
charges can be written as the gradient of a scalar potential, so that

E = −∇φ. (3.63)

This equation can be combined with the field equation (3.53) to give a
partial differential equation for the scalar potential:

∇2φ = −
ρ

ε0
. (3.64)

This is an example of a very famous type of partial differential equation
known as Poisson’s equation.

In its most general form, Poisson’s equation is written

∇2u = v, (3.65)

where u(r) is some scalar potential which is to be determined, and v(r)
is a known “source function.” The most common boundary condition
applied to this equation is that the potential u is zero at infinity. The
solutions to Poisson’s equation are completely superposable. Thus, if
u1 is the potential generated by the source function v1, and u2 is the
potential generated by the source function v2, so that

∇2u1 = v1, ∇2u2 = v2, (3.66)

then the potential generated by v1 + v2 is u1 + u2, since

∇2(u1 + u2) = ∇2u1 + ∇2u2 = v1 + v2. (3.67)

Poisson’s equation has this property because it is linear in both the
potential and the source term.

The fact that the solutions to Poisson’s equation are superposable
suggests a general method for solving this equation. Suppose that we
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could construct all of the solutions generated by point sources. Of course,
these solutions must satisfy the appropriate boundary conditions. Any
general source function can be built up out of a set of suitably weighted
point sources, so the general solution of Poisson’s equation must be
expressible as a similarly weighted sum over the point source solutions.
Thus, once we know all of the point source solutions we can construct any
other solution. In mathematical terminology, we require the solution to

∇2G(r, r ′) = δ(r − r ′) (3.68)

which goes to zero as |r| → ∞. The function G(r, r ′) is the solution gen-
erated by a unit point source located at position r ′. This function is
known to mathematicians as a Green’s function. The solution generated
by a general source function v(r) is simply the appropriately weighted
sum of all of the Green’s function solutions:

u(r) =

∫
G(r, r ′) v(r ′)d3r ′. (3.69)

We can easily demonstrate that this is the correct solution:

∇2u(r) =

∫ [
∇2G(r, r ′)

]
v(r ′)d3r ′ =

∫
δ(r − r ′) v(r ′)d3r ′ = v(r).

(3.70)

Let us return to Equation (3.64):

∇2φ = −
ρ

ε0
. (3.71)

The Green’s function for this equation satisfies Equation (3.68) with
|G| → ∞ as |r| → 0. It follows from Equation (3.55) that

G(r, r ′) = −
1

4π

1

|r − r ′|
. (3.72)

Note, from Equation (3.20), that the Green’s function has the same form
as the potential generated by a point charge. This is hardly surprising,
given the definition of a Green’s function. It follows from Equation (3.69)
and (3.72) that the general solution to Poisson’s equation, (3.71), is
written

φ(r) =
1

4πε0

∫
ρ(r ′)

|r − r ′|
d3r ′. (3.73)

In fact, we have already obtained this solution by another method [see
Equation (3.17)].
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3.6 AMPÈRE’S EXPERIMENTS

As legend has it, in 1820 the Danish physicist Hans Christian Ørsted
was giving a lecture demonstration of various electrical and magnetic
effects. Suddenly, much to his surprise, he noticed that the needle of
a compass he was holding was deflected when he moved it close to a
current-carrying wire. Up until then, magnetism has been thought of as
solely a property of some rather unusual rocks called loadstones. Word
of this discovery spread quickly along the scientific grapevine, and the
French physicist Andre Marie Ampère immediately decided to investigate
further. Ampère’s apparatus consisted (essentially) of a long straight wire
carrying an electric current I. Ampère quickly discovered that the needle
of a small compass maps out a series of concentric circular loops in
the plane perpendicular to a current-carrying wire—see Figure 3.6. The
direction of circulation around these magnetic loops is conventionally
taken to be the direction in which the North pole of the compass needle
points. Using this convention, the circulation of the loops is given by a
right-hand rule: if the thumb of the right-hand points along the direction
of the current then the fingers of the right-hand circulate in the same
sense as the magnetic loops.

Ampère’s next series of experiments involved bringing a short test
wire, carrying a current I ′, close to the original wire, and investigating
the force exerted on the test wire—see Figure 3.7. This experiment is

magnetic field-linewire

I
current-carrying

Figure 3.6: Magnetic loops around a current-carrying wire.
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wire

I ′

I

current-carrying test wire

magnetic field-line

current-carrying

Figure 3.7: Ampère’s experiment.

not quite as clear cut as Coulomb’s experiment because, unlike electric
charges, electric currents cannot exist as point entities—they have to flow
in complete circuits. We must imagine that the circuit which connects
with the central wire is sufficiently far away that it has no appreciable
influence on the outcome of the experiment. The circuit which connects
with the test wire is more problematic. Fortunately, if the feed wires
are twisted around each other, as indicated in Figure 3.7, then they
effectively cancel one another out, and also do not influence the outcome
of the experiment.

Ampère discovered that the force exerted on the test wire is directly
proportional to its length. He also made the following observations. If the
current in the test wire (i.e., the test current) flows parallel to the current
in the central wire then the two wires attract one another. If the current
in the test wire is reversed then the two wires repel one another. If the test
current points radially toward the central wire (and the current in the
central wire flows upward) then the test wire is subject to a downward
force. If the test current is reversed then the force is upward. If the test
current is rotated in a single plane, so that it starts parallel to the central
current and ends up pointing radially toward it, then the force on the
test wire is of constant magnitude, and is always at right-angles to the
test current. If the test current is parallel to a magnetic loop then there
is no force exerted on the test wire. If the test current is rotated in a
single plane, so that it starts parallel to the central current and ends
up pointing along a magnetic loop, then the magnitude of the force on
the test wire attenuates like cos θ (where θ is the angle the current is
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turned through—θ = 0 corresponds to the case where the test current
is parallel to the central current), and its direction is again always at
right-angles to the test current. Finally, Ampère was able to establish
that the attractive force between two parallel current-carrying wires is
proportional to the product of the two currents, and falls off like the
inverse of the perpendicular distance between the wires.

This rather complicated force law can be summed up succinctly in
vector notation provided that we define a vector field B(r), called the
magnetic field, whose direction is always parallel to the loops mapped
out by a small compass. The dependence of the force per unit length, F,
acting on a test wire with the different possible orientations of the test
current is described by

F = I ′ × B, (3.74)

where I ′ is a vector whose direction and magnitude are the same as
those of the test current. Incidentally, the SI unit of electric current is the
ampere (A), which is the same as a coulomb per second. The SI unit of
magnetic field-strength is the tesla (T), which is the same as a newton
per ampere per meter. The variation of the force per unit length acting on
a test wire with the strength of the central current and the perpendicular
distance r to the central wire is summed up by saying that the magnetic
field-strength is proportional to I and inversely proportional to r. Thus,
defining cylindrical polar coordinates aligned along the axis of the central
current, we have

Bθ =
µ0 I

2π r
, (3.75)

with Br = Bz = 0. The constant of proportionality µ0 is called the
permeability of free space, and takes the value

µ0 = 4π× 10−7 N A−2. (3.76)

The concept of a magnetic field allows the calculation of the force
on a test wire to be conveniently split into two parts. In the first part,
we calculate the magnetic field generated by the current flowing in the
central wire. This field circulates in the plane normal to the wire: its
magnitude is proportional to the central current, and inversely propor-
tional to the perpendicular distance from the wire. In the second part,
we use Equation (3.74) to calculate the force per unit length acting on
a short current-carrying wire located in the magnetic field generated by
the central current. This force is perpendicular to both the magnetic field
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and the direction of the test current. Note that, at this stage, we have no
reason to suppose that the magnetic field has any real physical existence.
It is introduced merely to facilitate the calculation of the force exerted
on the test wire by the central wire.

3.7 THE LORENTZ FORCE

The flow of an electric current down a conducting wire is ultimately due
to the motion of electrically charged particles (in most cases, electrons)
through the conducting medium. It seems reasonable, therefore, that
the force exerted on the wire when it is placed in a magnetic field is
really the resultant of the forces exerted on these moving charges. Let
us suppose that this is the case.

Let A be the (uniform) cross-sectional area of the (cylindrical) wire,
and let n be the number density of mobile charges in the conductor.
Suppose that the mobile charges each have charge q and velocity v.
We must assume that the conductor also contains stationary charges, of
charge −q and number density n (say), so that the net charge density in
the wire is zero. In most conductors, the mobile charges are electrons,
and the stationary charges are ions. The magnitude of the electric current
flowing through the wire is simply the number of coulombs per second
which flow past a given point. In one second, a mobile charge moves a
distance v, so all of the charges contained in a cylinder of cross-sectional
area A and length v flow past a given point. Thus, the magnitude of the
current is qnAv. The direction of the current is the same as the direction
of motion of the charges, so the vector current is I ′ = qnA v. According
to Equation (3.74), the force per unit length acting on the wire is

F = qnA v × B. (3.77)

However, a unit length of the wire contains nA moving charges. So,
assuming that each charge is subject to an equal force from the mag-
netic field (we have no reason to suppose otherwise), the force acting
on an individual charge is

f = q v × B. (3.78)

We can combine this with Equation (3.9) to give the force acting on a
charge q moving with velocity v in an electric field E and a magnetic
field B:

f = qE + q v × B. (3.79)
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This is called the Lorentz force law, after the Dutch physicist Hendrik
Antoon Lorentz who first formulated it. The electric force on a charged
particle is parallel to the local electric field. The magnetic force, how-
ever, is perpendicular to both the local magnetic field and the particle’s
direction of motion. No magnetic force is exerted on a stationary charged
particle.

The equation of motion of a free particle of charge q and mass m
moving in electric and magnetic fields is

m
dv
dt

= qE + q v × B, (3.80)

according to the Lorentz force law. This equation of motion was first
verified in a famous experiment carried out by the Cambridge physicist
J.J. Thompson in 1897. Thompson was investigating cathode rays, a then
mysterious form of radiation emitted by a heated metal element held at
a large negative voltage (i.e., a cathode) with respect to another metal
element (i.e., an anode) in an evacuated tube. German physicists held
that cathode rays were a form of electromagnetic radiation, whilst British
and French physicists suspected that they were, in reality, a stream of
charged particles. Thompson was able to demonstrate that the latter view
was correct. In Thompson’s experiment, the cathode rays passed though
a region of “crossed” electric and magnetic fields (still in vacuum). The
fields were perpendicular to the original trajectory of the rays, and were
also mutually perpendicular.

Let us analyze Thompson’s experiment. Suppose that the rays are
originally traveling in the x-direction, and are subject to a uniform elec-
tric field E in the z-direction and a uniform magnetic field B in the
−y-direction—see Figure 3.8. Let us assume, as Thompson did, that
cathode rays are a stream of particles of mass m and charge q. The
equation of motion of the particles in the z-direction is

m
d2z

dt2
= q (E− vB) , (3.81)

where v is the velocity of the particles in the x-direction. Thompson
started off his experiment by only turning on the electric field in his
apparatus, and measuring the deflection d of the ray in the z-direction
after it had traveled a distance l through the electric field. It is clear from
the equation of motion that

d =
q

m

E t2

2
=
q

m

E l2

2 v2
, (3.82)
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Figure 3.8: Thompson’s experiment.

where the “time of flight” t is replaced by l/v. This formula is only valid
if d � l, which is assumed to be the case. Next, Thompson turned on the
magnetic field in his apparatus, and adjusted it so that the cathode ray
was no longer deflected. The lack of deflection implies that the net force
on the particles in the z-direction was zero. In other words, the electric
and magnetic forces balanced exactly. It follows from Equation (3.81)
that with a properly adjusted magnetic field-strength

v =
E

B
. (3.83)

Equations (3.82) and (3.83) can be combined and rearranged to give the
charge-to-mass ratio of the particles in terms of measured quantities:

q

m
=
2 dE

l2 B2
. (3.84)

Using this method, Thompson inferred that cathode rays were made up
of negatively charged particles (the sign of the charge is obvious from the
direction of the deflection in the electric field) with a charge-to-mass ratio
of −1.7× 1011 C/kg. A decade later, in 1908, the American Robert Mil-
likan performed his famous “oil drop” experiment, and discovered that
mobile electric charges are quantized in units of −1.6× 10−19 C. Assum-
ing that mobile electric charges and the particles which make up cathode
rays are one and the same thing, Thompson’s and Millikan’s experiments
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imply that the mass of these particles is 9.4× 10−31 kg. Of course, this
is the mass of an electron (the modern value is 9.1× 10−31 kg), and
−1.6× 10−19 C is the charge of an electron. Thus, cathode rays are, in
fact, streams of electrons which are emitted from a heated cathode, and
then accelerated because of the large voltage difference between the
cathode and anode.

Consider, now, a particle of massm and chargeqmoving in a uniform
magnetic field, B = B ez. According to Equation (3.80), the particle’s
equation of motion can be written:

m
dv
dt

= q v × B. (3.85)

This reduces to

dvx

dt
= Ωvy, (3.86)

dvy

dt
= −Ωvx, (3.87)

dvz

dt
= 0. (3.88)

Here, Ω = qB/m is called the cyclotron frequency. The above equations
can easily be solved to give

vx = v⊥ cos(Ωt), (3.89)

vy = − v⊥ sin(Ωt), (3.90)

vz = v‖, (3.91)

and

x =
v⊥
Ω

sin(Ωt), (3.92)

y =
v⊥
Ω

cos(Ωt), (3.93)

z = v‖ t. (3.94)

According to these equations, the particle trajectory is a spiral whose
axis is parallel to the magnetic field—see Figure 3.9. The radius of the
spiral is ρ = v⊥/Ω, where v⊥ is the particle’s constant speed in the plane
perpendicular to the magnetic field. Here, ρ is termed the Larmor radius.
The particle drifts parallel to the magnetic field at a constant velocity, v‖.
Finally, the particle gyrates in the plane perpendicular to the magnetic
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ρ
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Figure 3.9: Trajectory of a charged particle in a uniform magnetic field.

field at the cyclotron frequency. Oppositely charged particles gyrate in
opposite directions.

Finally, if a particle is subject to a force f , and moves a distance δr
in a time interval δt, then the work done on the particle by the force is

δW = f · δr. (3.95)

Thus, the power input to the particle from the force field is

P = lim
δt→0

δW

δt
= f · v, (3.96)

where v is the particle’s velocity. It follows from the Lorentz force law,
Equation (3.79), that the power input to a particle moving in electric
and magnetic fields is

P = q v · E. (3.97)

Note that a charged particle can gain (or lose) energy from an electric
field, but not from a magnetic field. This is because the magnetic force is
always perpendicular to the particle’s direction of motion, and, therefore,
does no work on the particle [see Equation (3.95)]. Thus, in particle
accelerators, magnetic fields are often used to guide particle motion
(e.g., in a circle), but the actual acceleration is always performed by
electric fields.

3.8 AMPÈRE’S LAW

Magnetic fields, like electric fields, are completely superposable. So, if a
field B1 is generated by a current I1 flowing through some circuit, and a
field B2 is generated by a current I2 flowing through another circuit, then
when the currents I1 and I2 flow through both circuits simultaneously
the generated magnetic field is B1 + B2.

Consider two parallel wires separated by a perpendicular distance r
and carrying electric currents I1 and I2, respectively—see Figure 3.10.
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FF

I1 I2

B1 B2

r

Figure 3.10: Two parallel current-carrying wires.

The magnetic field strength at the second wire due to the current flowing
in the first wire is B = µ0 I1/2π r. This field is orientated at right-angles
to the second wire, so the force per unit length exerted on the second
wire is

F =
µ0 I1 I2

2π r
. (3.98)

This follows from Equation (3.74), which is valid for continuous wires as
well as short test wires. The force acting on the second wire is directed
radially inward toward the first wire (assuming that I1 I2 > 0). The mag-
netic field strength at the first wire due to the current flowing in the
second wire is B = µ0 I2/2π r. This field is orientated at right-angles to
the first wire, so the force per unit length acting on the first wire is
equal and opposite to that acting on the second wire, according to Equa-
tion (3.74). Equation (3.98) is sometimes called Ampère’s law, and is
clearly another example of an action-at-a-distance law: i.e., if the cur-
rent in the first wire is suddenly changed then the force on the second
wire immediately adjusts. In reality, there should be a short time delay,
at least as long as the propagation time for a light signal between the two
wires. Clearly, Ampère’s law is not strictly correct. However, as long as
we restrict our investigations to steady currents it is perfectly adequate.

3.9 MAGNETIC MONOPOLES?

Suppose that we have an infinite straight wire carrying an electric current
I. Let the wire be aligned along the z-axis. The magnetic field generated
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by such a wire is written

B =
µ0 I

2π

(
−y

r2
,
x

r2
, 0

)
(3.99)

in Cartesian coordinates, where r =
√
x2 + y2. The divergence of this

field is

∇ · B =
µ0 I

2π

(
2 y x

r4
−
2 x y

r4

)
= 0, (3.100)

where use has been made of ∂r/∂x = x/r, etc. We saw in Section 3.4 that
the divergence of the electric field appeared, at first sight, to be zero,
but, was, in reality, a delta-function, because the volume integral of ∇ · E
was non-zero. Does the same sort of thing happen for the divergence of
the magnetic field? Well, if we could find a closed surface S for which∮
S

B·dS �= 0 then, according to Gauss’ theorem,
∫
V

∇ · BdV �= 0, whereV
is the volume enclosed by S. This would certainly imply that ∇ · B is some
sort of delta-function. So, can we find such a surface? Consider a cylin-
drical surface aligned with the wire. The magnetic field is everywhere
tangential to the outward surface element, so this surface certainly has
zero magnetic flux coming out of it. In fact, it is impossible to invent any
closed surface for which

∮
S

B · dS �= 0 with B given by Equation (3.99)
(if you do not believe this, just try and find one!). This suggests that
the divergence of a magnetic field generated by steady electric currents
really is zero. Admittedly, we have only proved this for infinite straight
currents, but, as will be demonstrated presently, it is true in general.

If ∇ · B = 0 then B is a solenoidal vector field. In other words, field-
lines of B never begin or end. This is certainly the case in Equation (3.99)
where the field-lines are a set of concentric circles centered on the z-
axis. What about magnetic fields generated by permanent magnets (the
modern equivalent of loadstones)? Do they also never begin or end?
Well, we know that a conventional bar magnet has both a North and
South magnetic pole (like the Earth). If we track the magnetic field-
lines with a small compass they all emanate from the North pole, spread
out, and eventually reconverge on the South pole—see Figure 3.11. It
appears likely (but we cannot prove it with a compass) that the field-
lines inside the magnet connect from the South to the North pole so as
to form closed loops which never begin or end.

Can we produce an isolated North or South magnetic pole: for
instance, by snapping a bar magnet in two? A compass needle would
always point away from an isolated North pole, so this would act like a
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S

N

Figure 3.11: Magnetic field-lines generated by a bar magnet.

S N

Figure 3.12: Magnetic field-lines generated by magnetic monopoles.

positive “magnetic charge.” Likewise, a compass needle would always
point towards an isolated South pole, so this would act like a nega-
tive “magnetic charge.” It is clear, from Figure 3.12, that if we take a
closed surface S containing an isolated magnetic pole, which is usually
termed a magnetic monopole, then

∮
S

B · dS �= 0: the flux will be positive
for an isolated North pole, and negative for an isolated South pole. It
follows from Gauss’ theorem that if

∮
S

B · dS �= 0 then ∇ · B �= 0. Thus,
the statement that magnetic fields are solenoidal, or that ∇ · B = 0, is
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equivalent to the statement that there are no magnetic monopoles. It is
not clear, a priori, that this is a true statement. In fact, it is quite possible
to formulate electromagnetism so as to allow for magnetic monopoles.
However, as far as we are aware, there are no magnetic monopoles in
the Universe. At least, if there are any then they are all hiding from us!
We know that if we try to make a magnetic monopole by snapping a bar
magnet in two then we just end up with two smaller bar magnets. If we
snap one of these smaller magnets in two then we end up with two even
smaller bar magnets. We can continue this process down to the atomic
level without ever producing a magnetic monopole. In fact, permanent
magnetism is generated by electric currents circulating on the atomic
scale, and so this type of magnetism is not fundamentally different to
the magnetism generated by macroscopic currents.

In conclusion, all steady magnetic fields in the Universe are gener-
ated by circulating electric currents of some description. Such fields are
solenoidal: that is, they never begin or end, and satisfy the field equation

∇ · B = 0. (3.101)

This, incidentally, is the second of Maxwell’s equations. Essentially, it
says that there is no such thing as a magnetic monopole. We have only
proved that ∇ · B = 0 for steady magnetic fields, but, in fact, this is also
the case for time-dependent fields (see later).

3.10 AMPÈRE’S CIRCUITAL LAW

Consider, again, an infinite straight wire aligned along the z-axis and
carrying a current I. The field generated by such a wire is written

Bθ =
µ0 I

2π r
(3.102)

in cylindrical polar coordinates. Consider a circular loop C in the x-
y plane which is centered on the wire. Suppose that the radius of this
loop is r. Let us evaluate the line integral

∮
C

B · dl. This integral is easy to
perform because the magnetic field is always parallel to the line element.
We have ∮

C

B · dl =

∮
Bθ r dθ = µ0 I. (3.103)
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However, we know from Stokes’ theorem that∮
C

B · dl =

∫
S

∇ × B · dS, (3.104)

where S is any surface attached to the loop C.
Let us evaluate ∇ × B directly. According to Equation (3.99),

(∇ × B)x =
∂Bz

∂y
−
∂By

∂z
= 0, (3.105)

(∇ × B)y =
∂Bx

∂z
−
∂Bz

∂x
= 0, (3.106)

(∇ × B)z =
∂By

∂x
−
∂Bx

∂y

=
µ0 I

2π

(
1

r2
−
2 x2

r4
+
1

r2
−
2 y2

r4

)
= 0, (3.107)

where use has been made of ∂r/∂x = x/r, etc. We now have a problem.
Equations (3.103) and (3.104) imply that∫

S

∇ × B · dS = µ0 I. (3.108)

But, we have just demonstrated that ∇ × B = 0. This problem is very
reminiscent of the difficulty we had earlier with ∇ · E. Recall that∫
V

∇ · EdV = q/ε0 for a volume V containing a discrete charge q, but
that ∇ · E = 0 at a general point. We got around this problem by saying
that ∇ · E is a three-dimensional delta-function whose spike is coincident
with the location of the charge. Likewise, we can get around our present
difficulty by saying that ∇ × B is a two-dimensional delta-function. A
three-dimensional delta-function is a singular (but integrable) point in
space, whereas a two-dimensional delta-function is a singular line in
space. It is clear from an examination of Equations (3.105)–(3.107) that
the only component of ∇ × B which can be singular is the z-component,
and that this can only be singular on the z-axis (i.e., r = 0). Thus,
the singularity coincides with the location of the current, and we can
write

∇ × B = µ0 I δ(x) δ(y) ez. (3.109)

The above equation certainly gives (∇ × B)x = (∇ × B)y = 0, and (∇ ×
B)z = 0 everywhere apart from the z-axis, in accordance with Equa-
tions (3.105)–(3.107). Suppose that we integrate over a plane surface S
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connected to the loop C. The surface element is dS = dxdy ez, so∫
S

∇ × B · dS = µ0 I

∫ ∫
δ(x) δ(y)dxdy (3.110)

where the integration is performed over the region
√
x2 + y2 ≤ r. How-

ever, since the only part of S which actually contributes to the surface
integral is the bit which lies infinitesimally close to the z-axis, we can
integrate over all x and y without changing the result. Thus, we obtain∫

S

∇ × B · dS = µ0 I

∫
∞

−∞

δ(x)dx

∫
∞

−∞

δ(y)dy = µ0 I, (3.111)

which is in agreement with Equation (3.108).
But, why have we gone to so much trouble to prove something using

vector field theory which can be demonstrated in one line via conven-
tional analysis [see Equation (3.103)]? The answer, of course, is that the
vector field result is easily generalized, whereas the conventional result
is just a special case. For instance, it is clear that Equation (3.111) is true
for any surface attached to the loop C, not just a plane surface. More-
over, suppose that we distort our simple circular loop C so that it is no
longer circular or even lies in one plane. What now is the line integral of
B around the loop? This is no longer a simple problem for conventional
analysis, because the magnetic field is not parallel to a line element of
the loop. However, according to Stokes’ theorem,∮

C

B · dl =

∫
S

∇ × B · dS, (3.112)

with ∇ × B given by Equation (3.109). Note that the only part of Swhich
contributes to the surface integral is an infinitesimal region centered on
the z-axis. So, as long as S actually intersects the z-axis, it does not
matter what shape the rest of the surface is, and we always get the same
answer for the surface integral: namely,∮

C

B · dl =

∫
S

∇ × B · dS = µ0 I. (3.113)

Thus, provided the curve C circulates the z-axis, and, therefore,
any surface S attached to C intersects the z-axis (an odd number of
times), the line integral

∮
C

B · dl is equal to µ0 I. Of course, if C does
not circulate the z-axis then an attached surface S does not intersect the
z-axis (an odd number of times) and

∮
C

B · dl is zero. There is one more
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proviso. The line integral
∮
C

B · dl is µ0 I for a loop which circulates the
z-axis in a clockwise direction (looking up the z-axis). However, if the
loop circulates in a counterclockwise direction then the integral is −µ0 I.
This follows because in the latter case the z-component of the surface
element dS is oppositely directed to the current flow at the point where
the surface intersects the wire.

Let us now considerNwires directed parallel to the z-axis, with coor-
dinates (xi, yi) in the x-y plane, each carrying a current Ii in the positive
z-direction. It is fairly obvious that Equation (3.109) generalizes to

∇ × B = µ0

N∑
i=1

Ii δ(x− xi) δ(y− yi) ez. (3.114)

If we integrate the magnetic field around some closed curveC, which can
have any shape and does not necessarily lie in one plane, then Stokes’
theorem and the above equation imply that∮

C

B · dl =

∫
S

∇ × B · dS = µ0 I, (3.115)

where I is the total current enclosed by the curve. Again, if the curve cir-
culates the ith wire in a clockwise direction (looking down the direction
of current flow) then the wire contributes Ii to the aggregate current I.
On the other hand, if the curve circulates in a counterclockwise direction
then the wire contributes −Ii. Finally, if the curve does not circulate the
wire at all then the wire contributes nothing to I.

Equation (3.114) is a field equation describing how a set of z-directed
current-carrying wires generate a magnetic field. These wires have zero-
thickness, which implies that we are trying to squeeze a finite amount of
current into an infinitesimal region. This accounts for the delta-functions
on the right-hand side of the equation. Likewise, we obtained delta-
functions in Section 3.4 because we were dealing with point charges.
Let us now generalize to the more realistic case of diffuse currents. Sup-
pose that the z-current flowing through a small rectangle in the x-y
plane, centered on coordinates (x, y) and of dimensions dx and dy, is
jz(x, y)dxdy. Here, jz is termed the current density in the z-direction.
Let us integrate (∇ × B)z over this rectangle. The rectangle is assumed
to be sufficiently small that (∇ × B)z does not vary appreciably across
it. According to Equation (3.115), this integral is equal to µ0 times the
total z-current flowing through the rectangle. Thus,

(∇ × B)z dx dy = µ0 jz dxdy, (3.116)
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which implies that
(∇ × B)z = µ0 jz. (3.117)

Of course, there is nothing special about the z-axis. Hence, we can
obtain analogous equations for diffuse currents flowing in the y- and z-
directions. We can combine all of these equations to form a single vector
field equation which describes how electric currents generate magnetic
fields: i.e.,

∇ × B = µ0 j, (3.118)

where j = (jx, jy, jz) is the vector current density. This is the third Maxwell
equation. The electric current flowing through a small area dS located
at position r is j(r) · dS. Suppose that space is filled with particles of
charge q, number density n(r), and velocity v(r). The charge density is
given by ρ(r) = qn. The current density is given by j(r) = qn v, and is
obviously a proper vector field (velocities are proper vectors since they
are ultimately derived from displacements).

If we form the line integral of B around some general closed curve
C, making use of Stokes’ theorem and the field equation (3.118), then
we obtain ∮

C

B · dl = µ0

∫
S

j · dS. (3.119)

In other words, the line integral of the magnetic field around any closed
loop C is equal to µ0 times the flux of the current density through C.
This result is called Ampère’s circuital law. If the currents flow in zero-
thickness wires then Ampère’s circuital law reduces to Equation (3.115).

The flux of the current density through C is evaluated by integrating
j · dS over any surface S attached to C. Suppose that we take two differ-
ent surfaces S1 and S2. It is clear that if Ampère’s circuital law is to make
any sense then the surface integral

∫
S1

j · dS had better equal the inte-
gral

∫
S2

j · dS. That is, when we work out the flux of the current density
thoughC using two different attached surfaces then we had better get the
same answer, otherwise Equation (3.119) is wrong (since the left-hand
side is clearly independent of the surface spanning C). We saw in Chap-
ter 2 that if the integral of a vector field A over some surface attached to
a loop depends only on the loop, and is independent of the surface which
spans it, then this implies that ∇ · A = 0. Hence, we require that ∇ · j = 0

in order to make the flux of the current density through C a well-defined
quantity. We can also see this directly from the field equation (3.118).
We know that the divergence of a curl is automatically zero, so taking
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the divergence of Equation (3.118), we obtain

∇ · j = 0. (3.120)

We have shown that if Ampère’s circuital law is to make any sense
then we need ∇ · j = 0. Physically, this implies that the net current flow-
ing through any closed surface S is zero. Up to now, we have only
considered stationary charges and steady currents. It is clear that if all
charges are stationary and all currents are steady then there can be no
net current flowing through a closed surface S, since this would imply
a build up of charge in the volume V enclosed by S. In other words, as
long as we restrict our investigation to stationary charges, and steady cur-
rents, then we expect ∇ · j = 0, and Ampère’s circuital law makes sense.
However, suppose that we now relax this restriction. Suppose that some
of the charges in a volume V decide to move outside V. Clearly, there
will be a non-zero net flux of electric current through the bounding sur-
face S whilst this is happening. This implies from Gauss’ theorem that
∇ · j �= 0. Under these circumstances Ampère’s circuital law collapses in
a heap. We shall see later that we can rescue Ampère’s circuital law by
adding an extra term involving a time derivative to the right-hand side
of the field equation (3.118). For steady-state situations (i.e., ∂/∂t = 0),
this extra term can be neglected. Thus, the field equation ∇ × B = µ0 j
is, in fact, only two-thirds of Maxwell’s third equation: there is a term
missing from the right-hand side.

We have now derived two field equations involving magnetic fields
(strictly speaking, we have only derived one and two-thirds equations):

∇ · B = 0, (3.121)

∇ × B = µ0 j. (3.122)

We obtained these equations by looking at the fields generated by
infinitely long, straight, steady currents. This, of course, is a rather
special class of currents. We should now go back and repeat the pro-
cess for general currents. In fact, if we did this we would find that the
above field equations still hold (provided that the currents are steady).
Unfortunately, this demonstration is rather messy and extremely tedious.
There is a better approach. Let us assume that the above field equations
are valid for any set of steady currents. We can then, with relatively little
effort, use these equations to generate the correct formula for the mag-
netic field induced by a general set of steady currents, thus proving that
our assumption is correct. More of this later.

As an example of the use of Ampère’s circuital law, let us calculate
the magnetic field generated by a cylindrical current annulus of inner
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Figure 3.13: An example use of Ampère’s circuital law.

radius a, and outer radius b, co-axial with the z-axis, and carrying a
uniformly distributed z-directed current I. Now, from symmetry, and
by analogy with the magnetic field generated by a straight wire, we
expect the current distribution to generate a magnetic field of the form
B = Bθ(r) eθ. Let us apply Ampère’s circuital law to an imaginary circular
loop in the x-y plane, of radius r, centered on the z-axis—see Figure 3.13.
Such a loop is generally known as an Ampèrian loop. Now, according to
Ampère’s circuital law, the line integral of the magnetic field around the
loop is equal to the current enclosed by the loop, multiplied by µ0. The
line integral is easy to calculate since the magnetic field is everywhere
tangential to the loop. We obtain

2π rBθ(r) = µ0 I(r),

where I(r) is the current enclosed by an Ampèrian loop of radius r. Now,
it is evident that

I(r) =



0 r < a

[(r2 − a2)/(b2 − a2)] I a ≤ r ≤ b

I b < r

. (3.123)

Hence,

Bθ(r) =



0 r < a

[µ0 I/(2π r)] [(r
2 − a2)/(b2 − a2)] a ≤ r ≤ b

µ0 I/(2π r) b < r

.

(3.124)
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3.11 HELMHOLTZ’S THEOREM

Up to now, we have only studied the electric and magnetic fields gen-
erated by stationary charges and steady currents. We have found that
these fields are describable in terms of four field equations: i.e.,

∇ · E =
ρ

ε0
, (3.125)

∇ × E = 0 (3.126)

for electric fields, and

∇ · B = 0, (3.127)

∇ × B = µ0 j (3.128)

for magnetic fields. There are no other field equations. This strongly
suggests that if we know the divergence and the curl of a vector field
then we know everything there is to know about the field. In fact, this
is the case. There is a mathematical theorem which sums this up. It is
called Helmholtz’s theorem, after the German polymath Hermann Ludwig
Ferdinand von Helmholtz.

Let us start with scalar fields. Field equations are a type of differential
equation: i.e., they deal with the infinitesimal differences in quantities
between neighbouring points. So what kind of differential equation com-
pletely specifies a scalar field? This is easy. Suppose that we have a scalar
field φ(r) and a field equation which tells us the gradient of this field at
all points: something like

∇φ = A, (3.129)

where A(r) is a vector field. Note that we need ∇ × A = 0 for self-
consistency, since the curl of a gradient is automatically zero. The above
equation completely specifies φ(r) once we are given the value of the
field at a single point, P (say). Thus,

φ(Q) = φ(P) +

∫Q
P

∇φ · dl = φ(P) +

∫Q
P

A · dl, (3.130)

where Q is a general point. The fact that ∇ × A = 0 means that A is
a conservative field, which guarantees that the above equation gives a
unique value for φ at a general point in space.

Suppose that we have a vector field F(r). How many differential
equations do we need to completely specify this field? Hopefully, we only
need two: one giving the divergence of the field, and one giving its curl.
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Let us test this hypothesis. Suppose that we have two field equations:

∇ · F = D, (3.131)

∇ × F = C, (3.132)

whereD(r) is a scalar field and C(r) is a vector field. For self-consistency,
we need

∇ · C = 0, (3.133)

since the divergence of a curl is automatically zero. So, do these two field
equations, plus some suitable boundary conditions, completely specify
F? Suppose that we write

F = −∇U+ ∇ × W. (3.134)

In other words, we are saying that a general vector field F is the sum of a
conservative field, ∇U, and a solenoidal field, ∇ × W. This sounds plau-
sible, but it remains to be proved. Let us start by taking the divergence
of the above equation, and making use of Equation (3.131). We get

∇2U = −D. (3.135)

Note that the vector field W does not figure in this equation, because
the divergence of a curl is automatically zero. Let us now take the curl
of Equation (3.134):

∇ × F = ∇ × ∇ × W = ∇(∇ · W) − ∇2W = −∇2W. (3.136)

Here, we assume that the divergence of W is zero. This is another thing
which remains to be proved. Note that the scalar field U does not figure
in this equation, because the curl of a divergence is automatically zero.
Using Equation (3.132), we get

∇2Wx = −Cx, (3.137)

∇2Wy = −Cy, (3.138)

∇2Wz = −Cz, (3.139)

So, we have transformed our problem into four differential equations,
Equation (3.135) and Equations (3.137)–(3.139), which we need to
solve. Let us look at these equations. We immediately notice that they
all have exactly the same form. In fact, they are all versions of Poisson’s
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equation. We can now make use of a principle made famous by Richard
P. Feynman: “the same equations have the same solutions.” Recall that
earlier on we came across the following equation:

∇2φ = −
ρ

ε0
, (3.140)

where φ is the electrostatic potential and ρ is the charge density. We
proved that the solution to this equation, with the boundary condition
that φ goes to zero at infinity, is

φ(r) =
1

4πε0

∫
ρ(r ′)

|r − r ′|
d3r ′. (3.141)

Well, if the same equations have the same solutions, and Equa-
tion (3.141) is the solution to Equation (3.140), then we can immediately
write down the solutions to Equation (3.135) and Equations (3.137)–
(3.139). We get

U(r) =
1

4π

∫
D(r ′)
|r − r ′|

d3r ′, (3.142)

and

Wx(r) =
1

4π

∫
Cx(r ′)
|r − r ′|

d3r ′, (3.143)

Wy(r) =
1

4π

∫
Cy(r ′)
|r − r ′|

d3r ′, (3.144)

Wz(r) =
1

4π

∫
Cz(r ′)
|r − r ′|

d3r ′. (3.145)

The last three equations can be combined to form a single vector
equation:

W(r) =
1

4π

∫
C(r ′)
|r − r ′|

d3r ′. (3.146)

We assumed earlier that ∇ · W = 0. Let us check to see if this is true.
Note that

∂

∂x

(
1

|r − r ′|

)
= −

x− x ′

|r − r ′|3
=
x ′ − x

|r − r ′|3
= −

∂

∂x ′

(
1

|r − r ′|

)
, (3.147)

which implies that

∇
(

1

|r − r ′|

)
= −∇ ′

(
1

|r − r ′|

)
, (3.148)
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where ∇ ′ is the operator (∂/∂x ′, ∂/∂y ′, ∂/∂z ′). Taking the divergence of
Equation (3.146), and making use of the above relation, we obtain

∇ · W =
1

4π

∫
C(r ′) · ∇

(
1

|r − r ′|

)
d3r ′

= −
1

4π

∫
C(r ′) · ∇ ′

(
1

|r − r ′|

)
d3r ′. (3.149)

Now ∫
∞

−∞

g
∂f

∂x
dx = [g f]∞−∞

−

∫
∞

−∞

f
∂g

∂x
dx. (3.150)

However, if g f → 0 as x → ±∞ then we can neglect the first term on the
right-hand side of the above equation and write∫

∞

−∞

g
∂f

∂x
dx = −

∫
∞

−∞

f
∂g

∂x
dx. (3.151)

A simple generalization of this result yields∫
g · ∇f d3r = −

∫
f∇ · g d3r, (3.152)

provided that gx f → 0 as |r| → ∞, etc. Thus, we can deduce that

∇ · W =
1

4π

∫ ∇ ′ ·C(r ′)
|r − r ′|

d3r ′ (3.153)

from Equation (3.149), provided |C(r)|, is bounded as |r| → ∞. However,
we have already shown that ∇ · C = 0 from self-consistency arguments,
so the above equation implies that ∇ · W = 0, which is the desired result.

We have constructed a vector field F(r) which satisfies Equa-
tions (3.131) and (3.132) and behaves sensibly at infinity: i.e., |F| → 0

as |r| → ∞. But, is our solution the only possible solution of Equa-
tions (3.131) and (3.132) with sensible boundary conditions at infinity?
Another way of posing this question is to ask whether there are any
solutions of

∇2U = 0, ∇2Wi = 0, (3.154)

where i denotes x, y, or z, which are bounded at infinity. If there are
then we are in trouble, because we can take our solution and add to
it an arbitrary amount of a vector field with zero divergence and zero
curl, and thereby obtain another solution which also satisfies physical
boundary conditions. This would imply that our solution is not unique.
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In other words, it is not possible to unambiguously reconstruct a vector
field given its divergence, its curl, and physical boundary conditions.
Fortunately, the equation

∇2φ = 0, (3.155)

which is called Laplace’s equation, has a very interesting property: its
solutions are unique. That is, if we can find a solution to Laplace’s equa-
tion which satisfies the boundary conditions then we are guaranteed that
this is the only solution. We shall prove this later on in Section 5.8. Well,
let us invent some solutions to Equations (3.154) which are bounded at
infinity. How about

U = Wi = 0 ? (3.156)

These solutions certainly satisfy Laplace’s equation, and are well-
behaved at infinity. Because the solutions to Laplace’s equations are
unique, we know that Equations (3.156) are the only solutions to Equa-
tions (3.154). This means that there is no vector field which satisfies
physical boundary equations at infinity and has zero divergence and zero
curl. In other words, our solution to Equations (3.131) and (3.132) is
the only solution. Thus, we have unambiguously reconstructed the vec-
tor field F given its divergence, its curl, and sensible boundary conditions
at infinity. This is Helmholtz’s theorem.

We have just demonstrated a number of very useful, and also very
important, points. First, according to Equation (3.134), a general vector
field can be written as the sum of a conservative field and a solenoidal
field. Thus, we ought to be able to write electric and magnetic fields
in this form. Second, a general vector field which is zero at infinity is
completely specified once its divergence and its curl are given. Thus, we
can guess that the laws of electromagnetism can be written as four field
equations,

∇ · E = something, (3.157)

∇ × E = something, (3.158)

∇ · B = something, (3.159)

∇ × B = something, (3.160)

without knowing the first thing about electromagnetism (other than the
fact that it deals with two vector fields). Of course, Equations (3.125)–
(3.128) are of exactly this form. We also know that there are only four
field equations, since the above equations are sufficient to completely
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reconstruct both E and B. Furthermore, we know that we can solve the
field equations without even knowing what the right-hand sides look
like. After all, we solved Equations (3.131)–(3.132) for completely gen-
eral right-hand sides. [Actually, the right-hand sides have to go to zero
at infinity, otherwise integrals like Equation (3.142) blow up.] We also
know that any solutions we find are unique. In other words, there is
only one possible steady electric and magnetic field which can be gener-
ated by a given set of stationary charges and steady currents. The third
thing which we proved was that if the right-hand sides of the above field
equations are all zero then the only physical solution is E(r) = B(r) = 0.
This implies that steady electric and magnetic fields cannot generate
themselves. Instead, they have to be generated by stationary charges
and steady currents. So, if we come across a steady electric field then
we know that if we trace the field-lines back we shall eventually find a
charge. Likewise, a steady magnetic field implies that there is a steady
current flowing somewhere. All of these results follow from vector field
theory (i.e., from the mathematical properties of vector fields in three-
dimensional space), prior to any investigation of electromagnetism.

3.12 THE MAGNETIC VECTOR POTENTIAL

Electric fields generated by stationary charges obey

∇ × E = 0. (3.161)

This immediately allows us to write

E = −∇φ, (3.162)

since the curl of a gradient is automatically zero. In fact, whenever we
come across an irrotational vector field in Physics we can always write
it as the gradient of some scalar field. This is clearly a useful thing to
do, since it enables us to replace a vector field by a much simpler scalar
field. The quantity φ in the above equation is known as the electric scalar
potential.

Magnetic fields generated by steady currents (and unsteady currents,
for that matter) satisfy

∇ · B = 0. (3.163)

This immediately allows us to write

B = ∇ × A, (3.164)
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since the divergence of a curl is automatically zero. In fact, whenever
we come across a solenoidal vector field in Physics we can always write
it as the curl of some other vector field. This is not an obviously useful
thing to do, however, since it only allows us to replace one vector field
by another. Nevertheless, Equation (3.164) is one of the most useful
equations we shall come across in this book. The quantity A is known as
the magnetic vector potential.

We know from Helmholtz’s theorem that a vector field is fully spec-
ified by its divergence and its curl. The curl of the vector potential gives
us the magnetic field via Equation (3.164). However, the divergence of
A has no physical significance. In fact, we are completely free to choose
∇ · A to be whatever we like. Note that, according to Equation (3.164),
the magnetic field is invariant under the transformation

A → A − ∇ψ. (3.165)

In other words, the vector potential is undetermined to the gradient
of a scalar field. This is just another way of saying that we are free to
choose ∇ · A. Recall that the electric scalar potential is undetermined to
an arbitrary additive constant, since the transformation

φ → φ+ c (3.166)

leaves the electric field invariant in Equation (3.162). The transforma-
tions (3.165) and (3.166) are examples of what mathematicians call
gauge transformations. The choice of a particular function ψ or a partic-
ular constant c is referred to as a choice of the gauge. We are free to fix
the gauge to be whatever we like. The most sensible choice is the one
which makes our equations as simple as possible. The usual gauge for
the scalar potential φ is such that φ → 0 at infinity. The usual gauge for
A (in steady-state situations) is such that

∇ · A = 0. (3.167)

This particular choice is known as the Coulomb gauge.
It is obvious that we can always add a constant to φ so as to make

it zero at infinity. But it is not at all obvious that we can always perform
a gauge transformation such as to make ∇ · A zero. Suppose that we
have found some vector field A(r) whose curl gives the magnetic field
but whose divergence in non-zero. Let

∇ · A = v(r). (3.168)

So, can we find a scalar field ψ such that after we perform the gauge
transformation (3.165) we are left with ∇ · A = 0? Taking the divergence
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of Equation (3.165) it is clear that we need to find a function ψ which
satisfies

∇2ψ = v. (3.169)

But this is just Poisson’s equation. We know that we can always find a
unique solution of this equation (see Section 3.11). This proves that, in
practice, we can always set the divergence of A equal to zero.

Let us again consider an infinite straight wire directed along the z-
axis and carrying a current I. The magnetic field generated by such a
wire is written

B =
µ0 I

2π

(
−y

r2
,
x

r2
, 0

)
. (3.170)

We wish to find a vector potential A whose curl is equal to the above
magnetic field, and whose divergence is zero. It is not difficult to see
that

A = −
µ0 I

4π

(
0, 0, ln[x2 + y2]

)
(3.171)

fits the bill. Note that the vector potential is parallel to the direction
of the current. This would seem to suggest that there is a more direct
relationship between the vector potential and the current than there is
between the magnetic field and the current. The potential is not very
well-behaved on the z-axis, but this is just because we are dealing with
an infinitely thin current.

Let us take the curl of Equation (3.164). We find that

∇ × B = ∇ × ∇ × A = ∇(∇ · A) − ∇2A = −∇2A, (3.172)

where use has been made of the Coulomb gauge condition (3.167). We
can combine the above relation with the field equation (3.118) to give

∇2A = −µ0 j. (3.173)

Writing this in component form, we obtain

∇2Ax = − µ0 jx, (3.174)

∇2Ay = − µ0 jy, (3.175)

∇2Az = − µ0 jz. (3.176)



“chapter3” — 2007/12/14 — 12:02 — page 94 — #46

94 MAXWELL’S EQUATIONS AND THE PRINCIPLES OF ELECTROMAGNETISM

But, this is just Poisson’s equation three times over. We can immediately
write the unique solutions to the above equations:

Ax(r) =
µ0

4π

∫
jx(r ′)
|r − r ′|

d3r ′, (3.177)

Ay(r) =
µ0

4π

∫
jy(r ′)
|r − r ′|

d3r ′, (3.178)

Az(r) =
µ0

4π

∫
jz(r ′)
|r − r ′|

d3r ′. (3.179)

These solutions can be recombined to form a single vector solution

A(r) =
µ0

4π

∫
j(r ′)

|r − r ′|
d3r ′. (3.180)

Of course, we have seen a equation like this before:

φ(r) =
1

4πε0

∫
ρ(r ′)

|r − r ′|
d3r ′. (3.181)

Equations (3.180) and (3.181) are the unique solutions (given the arbi-
trary choice of gauge) to the field equations (3.125)–(3.128): they
specify the magnetic vector and electric scalar potentials generated by
a set of stationary charges, of charge density ρ(r), and a set of steady
currents, of current density j(r). Incidentally, we can prove that Equa-
tion (3.180) satisfies the gauge condition ∇ · A = 0 by repeating the
analysis of Equations (3.146)–(3.153) (with W → A and C → µ0 j), and
using the fact that ∇ · j = 0 for steady currents.

As an example, let us find the vector potential associated with the
magnetic field distribution (3.124). By symmetry, and by analogy with
the vector potential generated by a straight wire, we expect that A =
Az(r) ez. Note that this form for A satisfies the Coulomb gauge. Hence,
using ∇ × A = B, we get

∂Az

∂r
= −Bθ(r). (3.182)

The boundary conditions are that Az be continuous at r = a and r =
b, since a discontinuous Az would generate an infinite magnetic field,
which is unphysical. Thus, we obtain

Az(r) =




(µ0 I/2π) [1/2− a2 ln(b/a)/(b2 − a2)] r < a

(µ0 I/2π) ([b2/2− r2/2− a2 ln(b/r)]/[b2 − a2]) a ≤ r ≤ b

−(µ0 I/2π) ln(r/b) b < r

.

(3.183)
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3.13 THE BIOT-SAVART LAW

According to Equation (3.162), we can obtain an expression for the elec-
tric field generated by stationary charges by taking minus the gradient
of Equation (3.181). This yields

E(r) =
1

4πε0

∫
ρ(r ′)

r − r ′

|r − r ′|3
d3r ′, (3.184)

which we recognize as Coulomb’s law written for a continuous charge
distribution. According to Equation (3.164), we can obtain an equivalent
expression for the magnetic field generated by steady currents by taking
the curl of Equation (3.180). This gives

B(r) =
µ0

4π

∫
j(r ′) × (r − r ′)

|r − r ′|3
d3r ′, (3.185)

where use has been made of the vector identity ∇ × (φA) = φ∇ ×
A + ∇φ× A. Equation (3.185) is known as the Biot-Savart law after
the French physicists Jean Baptiste Biot and Felix Savart: it completely
specifies the magnetic field generated by a steady (but otherwise quite
general) distributed current.

Let us reduce our distributed current to an idealized zero-thickness
wire. We can do this by writing

j(r)d3r = I(r)dl, (3.186)

where I is the vector current (i.e., its direction and magnitude specify the
direction and magnitude of the current) and dl is an element of length
along the wire. Equations (3.185) and (3.186) can be combined to give

B(r) =
µ0

4π

∫
I(r ′) × (r − r ′)

|r − r ′|3
dl, (3.187)

which is the form in which the Biot-Savart law is most usually written.
This law is to magnetostatics (i.e., the study of magnetic fields generated
by steady currents) what Coulomb’s law is to electrostatics (i.e., the study
of electric fields generated by stationary charges). Furthermore, it can
be experimentally verified given a set of currents, a compass, a test
wire, and a great deal of skill and patience. This justifies our earlier
assumption that the field equations (3.121) and (3.122) are valid for
general current distributions (recall that we derived them by studying
the fields generated by infinite straight wires). Note that both Coulomb’s
law and the Biot-Savart law are gauge independent: i.e., they do not
depend on the particular choice of gauge.
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z

dl

I

l
r − r′

φ
ρ P

Figure 3.14: A Biot-Savart law calculation.

Consider an infinite straight wire, directed along the z-axis, and
carrying a current I—see Figure 3.14. Let us reconstruct the magnetic
field generated by the wire at point P using the Biot-Savart law. Suppose
that the perpendicular distance to the wire is ρ. It is easily seen that

I × (r − r ′) = I ρ eθ, (3.188)

l = ρ tanφ, (3.189)

dl =
ρ

cos2 φ
dφ, (3.190)

|r − r ′| =
ρ

cosφ
, (3.191)

where θ is a cylindrical polar coordinate. Thus, according to Equa-
tion (3.187), we have

Bθ =
µ0

4π

∫π/2
−π/2

I ρ

ρ3 (cosφ)−3

ρ

cos2 φ
dφ

=
µ0 I

4π ρ

∫π/2
−π/2

cosφdφ =
µ0 I

4π ρ
[sinφ]

π/2

−π/2
, (3.192)

which gives the familiar result

Bθ =
µ0 I

2π ρ
. (3.193)
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So, we have come full circle in our investigation of magnetic fields. Note
that the simple result (3.193) can only be obtained from the Biot-Savart
law after some non-trivial algebra. Examination of more complicated
current distributions using this law invariably leads to lengthy, involved,
and extremely unpleasant calculations.

3.14 ELECTROSTATICS AND MAGNETOSTATICS

We have now completed our theoretical investigation of electrostatics
and magnetostatics. Our next task is to incorporate time variation into
our analysis. However, before we start this, let us briefly review our
progress so far. We have found that the electric fields generated by sta-
tionary charges, and the magnetic fields generated by steady currents,
are describable in terms of four field equations:

∇ · E =
ρ

ε0
, (3.194)

∇ × E = 0, (3.195)

∇ · B = 0, (3.196)

∇ × B = µ0 j. (3.197)

The boundary conditions are that the fields are zero at infinity, assuming
that the generating charges and currents are localized to some region in
space. According to Helmholtz’s theorem, the above field equations, plus
the boundary conditions, are sufficient to uniquely specify the electric
and magnetic fields. The physical significance of this is that divergence
and curl are the only rotationally invariant first-order differential proper-
ties of a general vector field: i.e., the only quantities which do not change
their physical characteristics when the coordinate axes are rotated. Since
Physics does not depend on the orientation of the coordinate axes (which
is, after all, quite arbitrary), it follows that divergence and curl are the
only quantities which can appear in first-order differential field equations
which claim to describe physical phenomena.

The field equations can be integrated to give:

∮
S

E · dS =
1

ε0

∫
V

ρdV, (3.198)

∮
C

E · dl = 0, (3.199)
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∮
S

B · dS = 0, (3.200)

∮
C

B · dl = µ0

∫
S ′

j · dS. (3.201)

Here, S is a closed surface enclosing a volume V. Also, C is a closed
loop, and S ′ is some surface attached to this loop. The field equations
(3.194)–(3.197) can be deduced from Equations (3.198)–(3.201) using
Gauss’ theorem and Stokes’ theorem. Equation (3.198) is called Gauss’
law, and says that the flux of the electric field out of a closed surface
is proportional to the enclosed electric charge. Equation (3.200) has no
particular name, and says that there is no such things as a magnetic
monopole. Equation (3.201) is called Ampère’s circuital law, and says
that the line integral of the magnetic field around any closed loop is
proportional to the flux of the current density through the loop.

The field equation (3.195) is automatically satisfied if we write

E = −∇φ. (3.202)

Likewise, the field equation (3.196) is automatically satisfied if we write

B = ∇ × A. (3.203)

Here, φ is the electric scalar potential, and A is the magnetic vector
potential. The electric field is clearly unchanged if we add a constant to
the scalar potential:

E → E as φ → φ+ c. (3.204)

The magnetic field is similarly unchanged if we subtract the gradient of
a scalar field from the vector potential:

B → B as A → A − ∇ψ. (3.205)

The above transformations, which leave the E and B fields invariant,
are called gauge transformations. We are free to choose c and ψ to be
whatever we like: i.e., we are free to choose the gauge. The most sensible
gauge is the one which makes our equations as simple and symmetric as
possible. This corresponds to the choice

φ(r) → 0 as |r| → ∞, (3.206)

and

∇ · A = 0. (3.207)

The latter convention is known as the Coulomb gauge.
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Taking the divergence of Equation (3.202) and the curl of Equa-
tion (3.203), and making use of the Coulomb gauge, we find that the four
field equations (3.194)–(3.197) can be reduced to Poisson’s equation
written four times over:

∇2φ = −
ρ

ε0
, (3.208)

∇2A = − µ0 j. (3.209)

Poisson’s equation is just about the simplest rotationally invariant
second-order partial differential equation it is possible to write. Note that
∇2 is clearly rotationally invariant, since it is the divergence of a gradi-
ent, and both divergence and gradient are rotationally invariant. We can
always construct the solution to Poisson’s equation, given the boundary
conditions. Furthermore, we have a uniqueness theorem which tells us
that our solution is the only possible solution. Physically, this means
that there is only one electric and magnetic field which is consistent
with a given set of stationary charges and steady currents. This sounds
like an obvious, almost trivial, statement. But there are many areas of
Physics (for instance, Fluid Mechanics and Plasma Physics) where we
also believe, for physical reasons, that for a given set of boundary condi-
tions the solution should be unique. The difficulty is that in most cases
when we reduce a given problem to a partial differential equation we
end up with something far nastier than Poisson’s equation. In general,
we cannot solve this equation. In fact, we usually cannot even prove
that it possess a solution for general boundary conditions, let alone that
the solution is unique. So, we are very fortunate indeed that in Elec-
trostatics and Magnetostatics a general problem always boils down to
solving a tractable partial differential equation. When physicists make
statements to the effect that “Electromagnetism is the best understood
theory in Physics,” which they often do, what they are really saying is
that the partial differential equations which crop up in this theory are
soluble and have unique solutions.

Poisson’s equation

∇2u = v (3.210)

is linear, which means that its solutions are superposable. We can exploit
this fact to construct a general solution to this equation. Suppose that
we can find the solution to

∇2G(r, r ′) = δ(r − r ′) (3.211)



“chapter3” — 2007/12/14 — 12:02 — page 100 — #52

100 MAXWELL’S EQUATIONS AND THE PRINCIPLES OF ELECTROMAGNETISM

which satisfies the boundary conditions. This is the solution driven by
a unit amplitude point source located at position vector r ′. Since any
general source can be built up out of a weighted sum of point sources,
it follows that a general solution to Poisson’s equation can be built
up out of a similarly weighted superposition of point source solutions.
Mathematically, we can write

u(r) =

∫
G(r, r ′) v(r ′)d3r ′. (3.212)

The function G(r, r ′) is called the Green’s function. The Green’s function
for Poisson’s equation is

G(r, r ′) = −
1

4π

1

|r − r ′|
. (3.213)

Note that this Green’s function is proportional to the scalar potential of a
point charge located at r ′: this is hardly surprising, given the definition
of a Green’s function.

According to Equations (3.208), (3.209), (3.210), (3.212), and
(3.213), the scalar and vector potentials generated by a set of stationary
charges and steady currents take the form

φ(r) =
1

4πε0

∫
ρ(r ′)

|r − r ′|
d3r ′, (3.214)

A(r) =
µ0

4π

∫
j(r ′)

|r − r ′|
d3r ′. (3.215)

Making use of Equations (3.202), (3.203), (3.214), and (3.215), we
obtain Coulomb’s law,

E(r) =
1

4πε0

∫
ρ(r ′)

r − r ′

|r − r ′|3
d3r ′, (3.216)

and the Biot-Savart law,

B(r) =
µ0

4π

∫
j(r ′) × (r − r ′)

|r − r ′|3
d3r ′. (3.217)

Of course, both of these laws are examples of action-at-a-distance laws
(in that the electric and magnetic fields at a given point respond instanta-
neously to changes in the charge and current densities at distant points),
and, therefore, violate the Special Theory of Relativity. However, this is
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not a problem as long as we restrict ourselves to fields generated by
time-independent charge and current distributions.

The next question is by how much is this scheme which we have
just worked out going to be disrupted when we take time variation into
account. The answer, somewhat surprisingly, is by very little indeed. So,
in Equations (3.194)–(3.217) we can already discern the basic outline
of Classical Electromagnetism. Let us continue our investigation.

3.15 EXERCISES

3.1. A charge Q is uniformly distributed in a sphere of radius a centered on the

origin. Use symmetry and Gauss’ law to find the electric field generated inside

and outside the sphere. What is the corresponding electric potential inside and

outside the sphere?

3.2. A charge per unit lengthQ is uniformly distributed in an infinitely long cylinder

of radius a whose axis corresponds to the z-axis. Use symmetry and Gauss’ law

to find the electric field generated inside and outside the cylinder. What is the

corresponding electric potential inside and outside the cylinder.

3.3. Find the electric charge distribution which generates the Yukawa potential

φ(r) =
q

4πε0

e−r/a

r
,

where r is a spherical polar coordinate, and a a positive constant. Why must the

total charge in the distribution be zero?

3.4. An electric dipole consists of two equal and opposite charges, q and −q, sep-

arated by a small distance d. The strength and orientation of the dipole is

measured by its vector moment p, which is of magnitude qd, and points in the

direction of the displacement of the positive charge from the negative. Use the

principle of superposition to demonstrate that the electric potential generated

by an electric dipole of moment p situated at the origin is

φ(r) =
p · r
4πε0 r3

.

Show that the corresponding electric field distribution is

E(r) =
3 (p · r) r − r2 p

4πε0 r5
.

3.5. An electric dipole of fixed moment p is situated at position r in a non-uniform

external electric field E(r). Demonstrate that the net force on the dipole can be
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written f = −∇W, where

W = −p · E.

Hence, show that the potential energy of an electric dipole of moment p1 in the

electric field generated by a second dipole of moment p2 is

W =
r2 (p1 · p2) − 3 (p1 · r) (p2 · r)

4πε0 r5
,

where r is the displacement of one dipole from another.

3.6. Show that the torque on an electric dipole of moment p in a uniform external

electric field E is

τ = p × E.

Hence, deduce that the potential energy of the dipole is

W = −p · E.

3.7. A charge distribution ρ(r) is localized in the vicinity of the origin in a region of

radius a. Consider the electric potential generated at position r, where |r| � a.

Demonstrate via a suitable expansion in a/r that

φ(r) =
Q

4πε0 r
+

p · r
4πε0 r3

+ · · · ,

where Q =
∫
ρ(r)d3r is the total charge contained in the distribution, and p =

∫
ρ(r) r d3r its electric dipole moment.

3.8. Consider a scalar potential field φ(r) generated by a set of stationary charges.

Demonstrate that the mean potential over any spherical surface which does not

contain a charge is equal to the potential at the center. Hence, deduce that there

can be no maxima or minima of the scalar potential in a charge-free region. Hint:

The solution to this problem is more intuitive than mathematical, and depends

on the fact that the potential generated outside a uniform spherical charge shell

is the same as that generated when all of the charge is collected at its center.

3.9. Demonstrate that the Green’s function for Poisson’s equation in two dimensions

(i.e., ∂/∂z ≡ 0) is

G(r, r ′) = −
ln |r − r ′|
2π

,

where r = (x, y), etc. Hence, deduce that the scalar potential field generated by

the two-dimensional charge distribution ρ(r) is

φ(r) = −
1

2πε0

∫
ρ(r ′) ln |r − r ′

|d
3r ′
.

3.10. A particle of mass m and charge q starts at rest from the origin at t = 0 in a

uniform electric field E directed along the y-axis, and a uniform magnetic field
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B directed along the z-axis. Find the particle’s subsequent motion in the x-y

plane. Sketch the particle’s trajectory.

3.11. In a parallel-plate magnetron the cathode and the anode are flat parallel plates,

and a uniform magnetic field B is applied in a direction parallel to the plates.

Electrons are emitted from the cathode with essentially zero velocity. If the

separation between the anode and cathode is d, and if the anode is held at a

constant positive potential V with respect to the cathode, show that no current

will flow between the plates when

V ≤ eB2 d2

2me

.

Here, e is the magnitude of the electron charge, and me the electron mass.

3.12. An infinite, straight, circular cross-section wire of radius a runs along the z-

axis and carries a uniformly distributed z-directed current I. Use symmetry and

Ampère’s circuital law to find the magnetic field distribution inside and out-

side the wire. What is the corresponding magnetic vector potential inside and

outside the wire? Use the Coulomb gauge.

3.13. An infinite cylindrical current annulus of inner radius a, outer radius b, and axis

running along the z-axis carries a uniformly distributed current per unit length

I in the θ direction: i.e., j ∝ eθ. Use symmetry and Ampère’s circuital law to

find the magnetic field distribution inside and outside the annulus. What is the

corresponding magnetic vector potential inside and outside the annulus? Use

the Coulomb gauge.

3.14. A thick slab extends from z = −a to z = a, and is infinite in the x-y plane.

The slab carries a uniform current density j = J ex. Find the magnetic field

and magnetic vector potential inside and outside the slab. Use the Coulomb

gauge.

3.15. Show that the magnetic vector potential due to two long, straight, z-directed

wires, the first carrying a current I, and the second a current −I, is

A =
µ0 I

2π
ln

(
r1

r2

)
ez,

where r1 and r2 are the perpendicular distances to the two wires.

3.16. Use the Biot-Savart law to:

(a) Find the magnetic field at the center of a circular loop of radius r carrying

a current I.

(b) Find the magnetic field at the center of a square loop carrying a current

I. Let r be the perpendicular distance from the center to one of the sides

of the loop.
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(c) Find the magnetic field at the center of a regular n-sided polygon car-

rying a current I. Let r be the perpendicular distance from the center

to one of the sides of the loop. Check that your answer reduces to the

answer from part (a) in the limit n → ∞.

3.17. Use the Biot-Savart law to show that the magnetic field generated along the axis

of a circular current loop of radius a lying in the x-y plane and centered on the

origin is

Bz =
µ0 I

2

a2

(a2 + z2)3/2
.

Here, I is the current circulating counterclockwise (looking down the z-axis)

around the loop. Demonstrate that
∫

∞

−∞

Bz(z)dz = µ0 I.

Derive this result from Ampère’s circuital law.

3.18. A Helmholtz coil consists of two identical, single turn, circular coils, of radius

a, carrying the same current, I, in the same sense, which are coaxial with one

another, and are separated by a distance d. Show that the variation of the mag-

netic field-strength in the vicinity of the axial midpoint is minimized when d = a.

Demonstrate that, in this optimal case, the magnetic field-strength at the axial

midpoint is

B =
8 µ0 I

5
√
5 a
.

3.19. A force-free magnetic field is such that j × B = 0. Demonstrate that such a field

satisfies

∇2B = −α2 B,

where α is some constant. Find the force-free field with the lowest value of α

(excludingα = 0) in a cubic volume of dimensiona bounded by superconducting

walls (in which B = 0).

3.20. Consider a small circular current loop of radius a lying in the x-y plane and

centered on the origin. Such a loop constitutes a magnetic dipole of moment

m, where m = πa2 I, and I is the circulating current. The direction of m is

conventionally taken to be normal to the plane of the loop, in the sense given

by the right-hand grip rule. Demonstrate that the magnetic vector potential

generated at position r, where |r| � a, is

A(r) =
µ0

4π

m × r
r3

.
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Show that the corresponding magnetic field is

B(r) =
µ0

4π

(
3 (r · m) r − r2 m

r5

)
.

3.21. Demonstrate that the torque on a magnetic dipole of moment m placed in a

uniform external magnetic field B is

τ = m × B.

Hence, deduce that the potential energy of the magnetic dipole is

W = −m · B.

3.22. Consider two magnetic dipoles, m1 and m2. Suppose that m1 is fixed, whereas

m2 can rotate freely in any direction. Demonstrate that the equilibrium

configuration of the second dipole is such that

tan θ1 = −2 tan θ2,

where θ1 and θ2 are the angles subtended by m1 and m2, respectively, with the

radius vector joining them.
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C h a p t e r 4 TIME-DEPENDENT
MAXWELL EQUATIONS

4.1 INTRODUCTION

In this chapter, we shall generalize the time-independent Maxwell equa-
tions, derived in the previous chapter, to obtain the full set of time-
dependent Maxwell equations.

4.2 FARADAY’S LAW

The history of humankind’s development of Physics can be thought of as
the history of the synthesis of ideas. Physicists keep finding that appar-
ently disparate phenomena can be understood as different aspects of
some more fundamental phenomenon. This process has continued until,
today, all physical phenomena can be described in terms of three funda-
mental forces: Gravity, the Electroweak Force, and the Strong Force. One
of the main goals of modern physics is to find some way of combining
these three forces so that all of physics can be described in terms of a
single unified force.

The first great synthesis of ideas in Physics took place in 1666 when
Issac Newton realised that the force which causes apples to fall down-
ward is the same as that which maintains the Planets in elliptical orbits
around the Sun. The second great synthesis, which we are about to study
in more detail, took place in 1830 when Michael Faraday discovered that
Electricity and Magnetism are two aspects of the same phenomenon, usu-
ally referred to as Electromagnetism. The third great synthesis, which we
shall discuss presently, took place in 1873 when James Clerk Maxwell
demonstrated that light and electromagnetism are intimately related.
The last (but, hopefully, not the final) great synthesis took place in 1967
when Steve Weinberg and Abdus Salam showed that the electromagnetic
force and the weak nuclear force (i.e., the one which is responsible for
β decays) can be combined to give the electroweak force.

Let us now consider Faraday’s experiments, having put them in
their proper historical context. Prior to 1830, the only known way in

107



“chapter4” — 2007/11/29 — 13:54 — page 108 — #2

108 MAXWELL’S EQUATIONS AND THE PRINCIPLES OF ELECTROMAGNETISM

which to make an electric current flow through a conducting wire was
to connect the ends of the wire to the positive and negative terminals
of a battery. We measure a battery’s ability to push current down a
wire in terms of its voltage, by which we mean the voltage difference
between its positive and negative terminals. What does voltage corre-
spond to in Physics? Well, volts are the units used to measure electric
scalar potential, so when we talk about a 6 V battery, what we are
really saying is that the difference in electric scalar potential between
its positive and negative terminals is six volts. This insight allows us to
write

V = φ(⊕) − φ(�) = −

∫�

⊕
∇φ · dl =

∫�

⊕
E · dl, (4.1)

where V is the battery voltage, ⊕ denotes the positive terminal, � the
negative terminal, and dl is an element of length along the wire. Of
course, the above equation is a direct consequence of E = −∇φ. Clearly,
a voltage difference between two ends of a wire attached to a battery
implies the presence of a longitudinal electric field which pushes charges
through the wire. This field is directed from the positive terminal of
the battery to the negative terminal, and is, therefore, such as to force
electrons (which are negatively charged) to flow through the wire from
the negative to the positive terminal. As expected, this means that a net
positive current flows from the positive to the negative terminal. The
fact that E is a conservative field ensures that the voltage difference V
is independent of the path of the wire between the terminals. In other
words, two different wires attached to the same battery develop identical
voltage differences.

Let us now consider a closed loop of wire (with no battery). The
voltage around such a loop, which is sometimes called the electromotive
force or emf, is

V =

∮
E · dl = 0. (4.2)

The fact that the right-hand side of the above equation is zero is a direct
consequence of the field equation ∇ × E = 0. We conclude that, because
E is a conservative field, the electromotive force around a closed loop of
wire is automatically zero, and so there is no current flow around such
a loop. This all seems to make sense. However, in 1830 Michael Faraday
discovered that a changing magnetic field can cause a current to flow
around a closed loop of wire (in the absence of a battery). Well, if current
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flows around the loop then there must be an electromotive force. So,

V =

∮
E · dl �= 0, (4.3)

which immediately implies that E is not a conservative field, and that
∇ × E �= 0. Clearly, we are going to have to modify some of our ideas
regarding electric fields.

Faraday continued his experiments, and found that another way of
generating an electromotive force around a loop of wire is to keep the
magnetic field constant and move the loop. Eventually, Faraday was able
to formulate a law which accounted for all of his experiments—the emf
generated around a loop of wire in a magnetic field is proportional to
the rate of change of the flux of the magnetic field through the loop. So,
if the loop is denoted C, and S is some surface attached to the loop, then
Faraday’s experiments can be summed up by writing

V =

∮
C

E · dl = A
∂

∂t

∫
S

B · dS, (4.4)

where A is a constant of proportionality. Thus, the changing flux of
the magnetic field through the loop generates an electric field directed
around the loop. This process is know as magnetic induction.

SI units have been carefully chosen so as to make |A| = 1 in the above
equation. The only thing we now have to decide is whether A = +1 or
A = −1. In other words, we need to decide which way around the loop
the induced emf wants to drive the current. We possess a general princi-
ple which allows us to decide questions like this. It is called Le Chatelier’s
principle. According to Le Chatelier’s principle, every change generates
a reaction which tries to minimize the change. Essentially, this means
that the Universe is stable to small perturbations. When this principle
is applied to the special case of magnetic induction, it is usually called
Lenz’s law. According to Lenz’s law, the current induced around a closed
loop is always such that the magnetic field it produces tries to counter-
act the change in magnetic flux which generates the electromotive force.
From Figure 4.1, it is clear that if the magnetic field B is increasing and
the current I circulates clockwise (as seen from above) then it gener-
ates a field B ′ which opposes the increase in magnetic flux through the
loop, in accordance with Lenz’s law. The direction of the current is oppo-
site to the sense of the current loop C, as determined by the right-hand
grip rule (assuming that the flux of B through the loop is positive), so
this implies that A = −1 in Equation (4.4). Thus, Faraday’s law takes
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B

I

B′

C

Figure 4.1: Lenz’s law.

the form ∮
C

E · dl = −
∂

∂t

∫
S

B · dS. (4.5)

Experimentally, Faraday’s law is found to correctly predict the emf
(i.e.,

∮
E · dl) generated around any wire loop, irrespective of the position

or shape of the loop. It is reasonable to assume that the same emf would
be generated in the absence of the wire (of course, no current would flow
in this case). We conclude that Equation (4.5) is valid for any closed loop
C. Now, if Faraday’s law is to make any sense then it must also be true for
all surfaces S attached to the loop C. Clearly, if the flux of the magnetic
field through the loop depends on the surface upon which it is evalu-
ated then Faraday’s law is going to predict different emfs for different
surfaces. Since there is no preferred surface for a general non-coplanar
loop, this would not make very much sense. The condition for the flux
of the magnetic field,

∫
S

B · dS, to depend only on the loop C to which
the surface S is attached, and not on the nature of the surface itself, is∮

S ′
B · dS ′ = 0, (4.6)

for any closed surface S ′.
Faraday’s law, Equation (4.5), can be converted into a field equation

using Stokes’ theorem. We obtain

∇ × E = −
∂B
∂t
. (4.7)
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This is the final Maxwell equation. It describes how a changing magnetic
field can generate, or induce, an electric field. Gauss’ theorem applied
to Equation (4.6) gives the familiar field equation

∇ · B = 0. (4.8)

This ensures that the magnetic flux through a loop is a well-defined
quantity.

The divergence of Equation (4.7) yields

∂∇ · B
∂t

= 0. (4.9)

Thus, the field equation (4.7) actually demands that the divergence of
the magnetic field be constant in time for self-consistency (this means
that the flux of the magnetic field through a loop need not be a well-
defined quantity, as long as its time derivative is well-defined). However,
a constant non-solenoidal magnetic field can only be generated by mag-
netic monopoles, and magnetic monopoles do not exist (as far as we are
aware). Hence, ∇ · B = 0. Note that the absence of magnetic monopoles
is an observational fact—it cannot be predicted by any theory. If magnetic
monopoles were discovered tomorrow then this would not cause physi-
cists any great difficulties, since they know how to generalize Maxwell’s
equations to include both magnetic monopoles and currents of mag-
netic monopoles. In this generalized formalism, Maxwell’s equations are
completely symmetric with respect to electric and magnetic fields, and
∇ · B �= 0. However, an extra term (involving the current of magnetic
monopoles) must be added to the right-hand side of Equation (4.7) in
order to make it mathematically self-consistent.

As an example of the use of Faraday’s law, let us calculate the electric
field generated by a decaying magnetic field of the form B = Bz(r, t) ez,
where

Bz(r, t) =

{
B0 exp(−t/τ) r ≤ a

0 r > a
. (4.10)

Here, B0 and τ are positive constants. By symmetry, we expect an induced
electric field of the form E(r, t). We also expect ∇ · E = 0, since there
are no electric charges in the problem. This rules out a radial electric
field. We can also rule out a z-directed electric field, since ∇ × Ez(r) ez =
−(∂Ez/∂r) eθ, and we require ∇ × E ∝ B ∝ ez. Hence, the induced elec-
tric field must be of the form E(r, t) = Eθ(r, t) eθ. Now, according to
Faraday’s law, the line integral of the electric field around some closed
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loop is equal to minus the rate of change of the magnetic flux through
the loop. If we choose a loop which is a circle of radius r in the x-y plane,
then we have

2π r Eθ(r, t) = −
dΦ

dt
, (4.11)

where Φ is the magnetic flux (in the +z direction) through a circular
loop of radius r. It is evident that

Φ(r, t) =

{
π r2 B0 exp(−t/τ) r ≤ a

πa2 B0 exp(−t/τ) r > a
. (4.12)

Hence,

Eθ(r, t) =

{
(B0/2 τ) r exp(−t/τ) r ≤ a

(B0/2 τ) (a2/r) exp(−t/τ) r > a
. (4.13)

4.3 ELECTRIC SCALAR POTENTIAL?

We now have a problem. We can only write the electric field in terms of a
scalar potential (i.e., E = −∇φ) provided that ∇ × E = 0. However, we
have just found that the curl of the electric field is non-zero in the pres-
ence of a changing magnetic field. In other words, E is not, in general, a
conservative field. Does this mean that we have to abandon the concept
of electric scalar potential? Fortunately, it does not. It is still possible to
define a scalar potential which is physically meaningful.

Let us start from the equation

∇ · B = 0, (4.14)

which is valid for both time-varying and non-time-varying magnetic
fields. Since the magnetic field is solenoidal, we can write it as the curl
of a vector potential:

B = ∇ × A. (4.15)

So, there is no problem with the vector potential in the presence of time-
varying fields. Let us substitute Equation (4.15) into the field equation
(4.7). We obtain

∇ × E = −
∂∇ × A
∂t

, (4.16)
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which can be written

∇ ×
(

E +
∂A
∂t

)
= 0. (4.17)

Now, we know that a curl-free vector field can always be expressed as
the gradient of a scalar potential, so let us write

E +
∂A
∂t

= −∇φ, (4.18)

or

E = −∇φ−
∂A
∂t
. (4.19)

This equation tells us that the scalar potential φ only describes the
conservative electric field generated by electric charges. The electric
field induced by time-varying magnetic fields is non-conservative, and is
described by the magnetic vector potential A.

4.4 GAUGE TRANSFORMATIONS

Electric and magnetic fields can be written in terms of scalar and vector
potentials, as follows:

E = − ∇φ−
∂A
∂t
, (4.20)

B = ∇ × A. (4.21)

However, this prescription is not unique. There are many different poten-
tials which can generate the same fields. We have come across this
problem before. It is called gauge invariance. The most general transfor-
mation which leaves the E and B fields unchanged in Equations (4.20)
and (4.21) is

φ → φ+
∂ψ

∂t
, (4.22)

A → A − ∇ψ. (4.23)

This is clearly a generalization of the gauge transformation which we
found earlier for static fields:

φ → φ+ c, (4.24)

A → A − ∇ψ, (4.25)
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where c is a constant. In fact, if ψ(r, t) → ψ(r) + c t then Equa-
tions (4.22) and (4.23) reduce to Equations (4.24) and (4.25).

We are free to choose the gauge so as to make our equations as simple
as possible. As before, the most sensible gauge for the scalar potential is
to make it go to zero at infinity:

φ(r, t) → 0 as |r| → ∞. (4.26)

For steady fields, we found that the optimum gauge for the vector
potential was the so-called Coulomb gauge:

∇ · A = 0. (4.27)

We can still use this gauge for non-steady fields. The argument, which
we gave earlier (see Section 3.12), that it is always possible to transform
away the divergence of a vector potential remains valid. One of the nice
features of the Coulomb gauge is that when we write the electric field,

E = −∇φ−
∂A
∂t
, (4.28)

we find that the part which is generated by charges (i.e., the first term on
the right-hand side) is conservative, and the part induced by magnetic
fields (i.e., the second term on the right-hand side) is purely solenoidal.
Earlier on, we proved mathematically that a general vector field can be
written as the sum of a conservative field and a solenoidal field (see
Section 3.11). Now we are finding that when we split up the electric
field in this manner the two fields have different physical origins—the
conservative part of the field emanates from electric charges, whereas
the solenoidal part is induced by magnetic fields.

Equation (4.28) can be combined with the field equation

∇ · E =
ρ

ε0
(4.29)

(which remains valid for non-steady fields) to give

−∇2φ−
∂∇ · A
∂t

=
ρ

ε0
. (4.30)

With the Coulomb gauge condition, ∇ · A = 0, the above expression
reduces to

∇2φ = −
ρ

ε0
, (4.31)

which is just Poisson’s equation. Thus, we can immediately write down
an expression for the scalar potential generated by non-steady fields. It
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is exactly analogous to our previous expression for the scalar potential
generated by steady fields: i.e.,

φ(r, t) =
1

4πε0

∫
ρ(r ′, t)
|r − r ′|

d3r ′. (4.32)

However, this apparently simple result is extremely deceptive. Equation
(4.32) is a typical action at a distance law. If the charge density changes
suddenly at r ′ then the potential at r responds immediately. However,
we shall see later that the full time-dependent Maxwell’s equations only
allow information to propagate at the speed of light (i.e., they do not
violate Relativity). How can these two statements be reconciled? The
crucial point is that the scalar potential cannot be measured directly, it
can only be inferred from the electric field. In the time-dependent case,
there are two parts to the electric field: that part which comes from the
scalar potential, and that part which comes from the vector potential
[see Equation (4.28)]. So, if the scalar potential responds immediately
to some distance rearrangement of charge density then it does not neces-
sarily follow that the electric field also has an immediate response. What
actually happens is that the change in the part of the electric field which
comes from the scalar potential is balanced by an equal and opposite
change in the part which comes from the vector potential, so that the
overall electric field remains unchanged. This state of affairs persists at
least until sufficient time has elapsed for a light signal to travel from the
distant charges to the region in question. Thus, Relativity is not violated,
since it is the electric field, and not the scalar potential, which carries
physically accessible information.

It is clear that the apparent action at a distance nature of Equa-
tion (4.32) is highly misleading. This suggests, very strongly, that the
Coulomb gauge is not the optimum gauge in the time-dependent case.
A more sensible choice is the so-called Lorenz gauge:

∇ · A = −ε0µ0
∂φ

∂t
. (4.33)

It can be shown, by analogy with earlier arguments (see Section 3.12),
that it is always possible to make a gauge transformation such that the
above equation is satisfied at a given instance in time. Substituting the
Lorenz gauge condition into Equation (4.30), we obtain

ε0µ0
∂2φ

∂t2
− ∇2φ =

ρ

ε0
. (4.34)
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It turns out that this is a three-dimensional wave equation in which
information propagates at the speed of light. But, more of this later. Note
that the magnetically induced part of the electric field (i.e., −∂A/∂t) is
not purely solenoidal in the Lorenz gauge. This is a slight disadvantage
of the Lorenz gauge with respect to the Coulomb gauge. However, this
disadvantage is more than offset by other advantages which will become
apparent presently. Incidentally, the fact that the part of the electric
field which we ascribe to magnetic induction changes when we change
the gauge suggests that the separation of the field into magnetically
induced and charge induced components is not unique in the general
time-varying case (i.e., it is a convention).

4.5 THE DISPLACEMENT CURRENT

Michael Faraday revolutionized Physics in 1830 by showing that elec-
tricity and magnetism were interrelated phenomena. He achieved this
breakthrough by careful experimentation. Between 1864 and 1873,
James Clerk Maxwell achieved a similar breakthrough by pure thought.
Of course, this was only possible because he was able to take the exper-
imental results of Coulomb, Ampère, Faraday, etc., as his starting point.
Prior to 1864, the laws of electromagnetism were written in integral
form. Thus, Gauss’s law was (in SI units) the flux of the electric field
through a closed surface equals the total enclosed charge, divided by ε0. The
no-magnetic-monopole law was the flux of the magnetic field through any
closed surface is zero. Faraday’s law was the electromotive force generated
around a closed loop equals minus the rate of change of the magnetic flux
through the loop. Finally, Ampère’s circuital law was the line integral of the
magnetic field around a closed loop equals the total current flowing through
the loop, multiplied byµ0. Maxwell’s first great achievement was to realize
that these laws could be expressed as a set of first-order partial differen-
tial equations. Of course, he wrote his equations out in component form,
because modern vector notation did not come into vogue until about the
time of the First World War. In modern notation, Maxwell first wrote:

∇ · E =
ρ

ε0
, (4.35)

∇ · B = 0, (4.36)

∇ × E = −
∂B
∂t
, (4.37)

∇ × B = µ0 j. (4.38)
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Maxwell’s second great achievement was to realize that these equations
are wrong.

We can see that there is something slightly unusual about Equa-
tions (4.35)–(4.38): i.e., they are very asymmetric with respect to electric
and magnetic fields. After all, time-varying magnetic fields can induce
electric fields, but electric fields apparently cannot affect magnetic fields
in any way. However, there is a far more serious problem associated with
the above equations, which we alluded to earlier. Consider the integral
form of the last Maxwell equation (i.e., Ampère’s circuital law)∮

C

B · dl = µ0

∫
S

j · dS. (4.39)

This says that the line integral of the magnetic field around a closed
loop C is equal to µ0 times the flux of the current density through the
loop. The problem is that the flux of the current density through a loop
is not, in general, a well-defined quantity. In order for the flux to be
well-defined, the integral of j · dS over some surface S attached to a loop
C must depend on C, but not on the details of S. This is only the case if

∇ · j = 0. (4.40)

Unfortunately, the above condition is only satisfied for non-time-varying
fields.

Why do we say that, in general, ∇ · j �= 0? Well, consider the flux
of j out of some closed surface S enclosing a volume V. This is clearly
equivalent to the rate at which charge flows out of S. However, if charge
is a conserved quantity (and we certainly believe that it is) then the rate
at which charge flows out of S must equal the rate of decrease of the
charge contained in volume V. Thus,∮

S

j · dS = −
∂

∂t

∫
V

ρdV. (4.41)

Making use of Gauss’ theorem, this yields

∇ · j = −
∂ρ

∂t
. (4.42)

Thus, ∇ · j = 0 is only true in a steady-state (i.e., when ∂/∂t ≡ 0).
The problem with Ampère’s circuital law is well illustrated by the fol-

lowing very famous example. Consider a long straight wire interrupted
by a parallel plate capacitor. Suppose that C is some loop which cir-
cles the wire. In the time-independent situation, the capacitor acts like a
break in the wire, so no current flows, and no magnetic field is generated.
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I(t)

dS2

dS1

S1

S2

	
⊗

C

parallel-plate capacitor

wire

surfaces

loop

Figure 4.2: Application of Ampère’s circuital law to a charging, or
discharging, capacitor.

There is clearly no problem with Ampère’s law in this case. However, in
the time-dependent situation, a transient current flows in the wire as
the capacitor charges up, or charges down, and so a transient magnetic
field is generated. Thus, the line integral of the magnetic field around
C is (transiently) non-zero. According to Ampère’s circuital law, the flux
of the current density through any surface attached to C should also
be (transiently) non-zero. Let us consider two such surfaces. The first
surface, S1, intersects the wire—see Figure 4.2. This surface causes us
no problem, since the flux of j though the surface is clearly non-zero
(because it intersects a current-carrying wire). The second surface, S2,
passes between the plates of the capacitor, and, therefore, does not inter-
sect the wire at all. Clearly, the flux of the current density through this
surface is zero. The current density fluxes through surfaces S1 and S2 are
obviously different. However, both surfaces are attached to the same loop
C, so the fluxes should be the same, according to Ampère’s law (4.39). It
would appear that Ampère’s circuital law is about to disintegrate. Note,
however, that although the surface S2 does not intersect any electric cur-
rent, it does pass through a region of strong changing electric field as
it threads between the plates of the charging (or discharging) capacitor.
Perhaps, if we add a term involving ∂E/∂t to the right-hand side of Equa-
tion (4.38) then we can somehow fix up Ampère’s circuital law? This is,
essentially, how Maxwell reasoned more than one hundred years ago.

Let us try out this scheme. Suppose that we write

∇ × B = µ0 j + λ
∂E
∂t
, (4.43)

instead of Equation (4.38). Here, λ is some constant. Does this resolve
our problem? We want the flux of the right-hand side of the above
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equation through some loop C to be well-defined; i.e., it should only
depend on C, and not the particular surface S (which spans C) upon
which it is evaluated. This is another way of saying that we want the
divergence of the right-hand side to be zero. In fact, we can see that this
is necessary for self-consistency, since the divergence of the left-hand
side is automatically zero. So, taking the divergence of Equation (4.43),
we obtain

0 = µ0∇ · j + λ
∂∇ · E
∂t

. (4.44)

But, we know that

∇ · E =
ρ

ε0
, (4.45)

so combining the previous two equations we arrive at

µ0∇ · j +
λ

ε0

∂ρ

∂t
= 0. (4.46)

Now, our charge conservation law (4.42) can be written

∇ · j +
∂ρ

∂t
= 0. (4.47)

The previous two equations are in agreement provided λ = ε0µ0. So, if
we modify the final Maxwell equation such that it reads

∇ × B = µ0 (j + jd), (4.48)

where

jd = ε0
∂E
∂t
, (4.49)

then we find that the divergence of the right-hand side is zero as a
consequence of charge conservation. The extra term, jd, is called the
displacement current density (this name was invented by Maxwell). In
summary, we have shown that although the flux of the real current den-
sity through a loop is not well-defined, if we form the sum of the real
current density and the displacement current density then the flux of this
new quantity through a loop is well-defined.

Of course, the displacement current is not a current at all. It is, in
fact, associated with the induction of magnetic fields by time-varying
electric fields. Maxwell came up with this rather curious name because
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many of his ideas regarding electric and magnetic fields were completely
wrong. For instance, Maxwell believed in the ether (a tenuous invisible
medium permeating all space), and he thought that electric and mag-
netic fields were some sort of stresses in this medium. He also thought
that the displacement current was associated with displacements of the
ether (hence, the name). The reason that these misconceptions did not
invalidate his equations is quite simple. Maxwell based his equations on
the results of experiments, and he added in his extra term so as to make
these equations mathematically self-consistent. Both of these steps are
valid irrespective of the existence or non-existence of the ether.

Now, the field equations (4.35)–(4.38) are derived directly from the
results of famous nineteenth-century experiments. So, if a new term
involving the time derivative of the electric field needs to be added to
one of these equations, for the sake of mathematical consistency, why is
there is no corresponding nineteenth-century experimental result which
demonstrates this fact? Well, it turns out that the new term describes
an effect which is far too small to have been observed in the nineteenth
century. Let us demonstrate this.

First, we shall show that it is comparatively easy to detect the
induction of an electric field by a changing magnetic field in a desk-
top laboratory experiment. The Earth’s magnetic field is about 1 gauss
(that is, 10−4 tesla). Magnetic fields generated by electromagnets (which
will fit on a laboratory desktop) are typically about one hundred times
bigger than this. Let us, therefore, consider a hypothetical experiment in
which a 100 gauss magnetic field is switched on suddenly. Suppose that
the field ramps up in one tenth of a second. What electromotive force is
generated in a 10 centimeter square loop of wire located in this field?
Faraday’s law is written

V = −
∂

∂t

∮
B · dS ∼

BA

t
, (4.50)

where B = 0.01 tesla is the field-strength, A = 0.01 m2 is the area of
the loop, and t = 0.1 seconds is the ramp time. It follows that V ∼ 1

millivolt. Well, one millivolt is easily detectable. In fact, most hand-held
laboratory voltmeters are calibrated in millivolts. It is, thus, clear that we
would have no difficulty whatsoever detecting the magnetic induction
of electric fields in a nineteenth-century-style laboratory experiment.

Let us now consider the electric induction of magnetic fields. Sup-
pose that our electric field is generated by a parallel plate capacitor of
spacing one centimeter which is charged up to 100 volts. This gives a field
of 104 volts per meter. Suppose, further, that the capacitor is discharged
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in one tenth of a second. The law of electric induction is obtained by inte-
grating Equation (4.48), and neglecting the first term on the right-hand
side. Thus, ∮

B · dl = ε0µ0
∂

∂t

∫
E · dS. (4.51)

Let us consider a loop 10 centimeters square. What is the magnetic field
generated around this loop (which we could try to measure with a Hall
probe)? Very approximately, we find that

l B ∼ ε0µ0
E l2

t
, (4.52)

where l = 0.1 meters is the dimensions of the loop, B is the magnetic
field-strength, E = 104 volts per meter is the electric field, and t = 0.1

seconds is the decay time of the field. We obtain B ∼ 10−9 gauss. Modern
technology is unable to detect such a small magnetic field, so we cannot
really blame nineteenth-century physicists for not discovering electric
induction experimentally.

Note, however, that the displacement current is detectable in some
modern experiments. Suppose that we take an FM radio signal, amplify
it so that its peak voltage is one hundred volts, and then apply it to the
parallel plate capacitor in the previous hypothetical experiment. What
size of magnetic field would this generate? Well, a typical FM signal oscil-
lates at 109 Hz, so t in the previous example changes from 0.1 seconds to
10−9 seconds. Thus, the induced magnetic field is about 10−1 gauss. This
is certainly detectable by modern technology. Hence, we conclude that
if the electric field is oscillating sufficiently rapidly then electric induc-
tion of magnetic fields is an observable effect. In fact, there is a virtually
infallible rule for deciding whether or not the displacement current can
be neglected in Equation (4.48). If electromagnetic radiation is important
then the displacement current must be included. On the other hand, if
electromagnetic radiation is unimportant then the displacement current
can be safely neglected. Clearly, Maxwell’s inclusion of the displacement
current in Equation (4.48) was a vital step in his later realization that
his equations allowed propagating wave-like solutions. These solutions
are, of course, electromagnetic waves. But, more of this later.

We are now in a position to write out the full set of Maxwell
equations:

∇ · E =
ρ

ε0
, (4.53)

∇ · B = 0, (4.54)
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∇ × E = −
∂B
∂t
, (4.55)

∇ × B = µ0 j + ε0µ0
∂E
∂t
. (4.56)

These four partial differential equations constitute a complete descrip-
tion of the behavior of electric and magnetic fields. The first equation
describes how electric fields are induced by electric charges. The sec-
ond equation says that there is no such thing as a magnetic monopole.
The third equation describes the induction of electric fields by chang-
ing magnetic fields, and the fourth equation describes the generation
of magnetic fields by electric currents, and the induction of magnetic
fields by changing electric fields. Note that, with the inclusion of the
displacement current, these equations treat electric and magnetic fields
on an equal footing: i.e., electric fields can induce magnetic fields, and
vice versa. Equations (4.53)–(4.56) succinctly sum up the experimen-
tal results of Coulomb, Ampère, and Faraday. They are called Maxwell’s
equations because James Clerk Maxwell was the first to write them down
(in component form). Maxwell also modified them so as to make them
mathematically self-consistent.

As an example of a calculation involving the displacement current,
let us find the current and displacement current densities associated with
the decaying charge distribution

ρ(r, t) =
ρ0 exp(−t/τ)

r2 + a2
, (4.57)

where r is a spherical polar coordinate, ρ0 is a constant, and τ and a are
positive constants. Now, according to charge conservation,

∇ · j = −
∂ρ

∂t
. (4.58)

By symmetry, we expect j = j(r, t). Hence, it follows that j = jr(r, t) er
[since only a radial current has a non-zero divergence when j = j(r)].
Hence, the above equation yields

1

r2
∂(r2 jr)

∂r
= −

∂ρ

∂t
=
ρ0 exp(−t/τ)

τ (r2 + a2)
. (4.59)

This expression can be integrated, subject to the sensible boundary
condition jr(0) = 0, to give

jr(r) =
ρ0

τ
e−t/τ

[
r− a tan−1(r/a)

r2

]
. (4.60)



“chapter4” — 2007/11/29 — 13:54 — page 123 — #17

CHAPTER 4 TIME-DEPENDENT MAXWELL EQUATIONS 123

Now, the electric field generated by the decaying charge distribution
satisfies

∇ · E =
ρ

ε0
. (4.61)

Since ∂ρ/∂t = −ρ/τ, it can be seen, from a comparison of Equa-
tions (4.58) and (4.61), that

E =
τ

ε0
j. (4.62)

However, the displacement current density is given by

jd = ε0
∂E
∂t

= −j, (4.63)

since ∂j/∂t = −j/τ. Hence, we conclude that the displacement current
density cancels out the true current density, so that j + jd = 0. This is
just as well, since ∇ × B = µ0 (j + jd). But, if B = B(r, t), by symmetry,
then ∇ × B has no radial component—see Equation (2.169). Thus, if the
current and displacement current are constrained, by symmetry, to be
radial, then they must sum to zero, else the fourth Maxwell equation can-
not be satisfied. In fact, no magnetic field is generated in this particular
example, which also implies that there is no induced electric field.

4.6 POTENTIAL FORMULATION

We have seen that Equations (4.54) and (4.55) are automatically satis-
fied if we write the electric and magnetic fields in terms of potentials: i.e.,

E = − ∇φ−
∂A
∂t
, (4.64)

B = ∇ × A. (4.65)

This prescription is not unique, but we can make it unique by adopting
the following conventions:

φ(r) → 0 as |r| → ∞, (4.66)

∇ · A = − ε0µ0
∂φ

∂t
. (4.67)

The above equations can be combined with Equation (4.53) to give

ε0µ0
∂2φ

∂t2
− ∇2φ =

ρ

ε0
. (4.68)
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Let us now consider Equation (4.56). Substitution of Equations
(4.64) and (4.65) into this formula yields

∇ × ∇ × A ≡ ∇(∇ · A) − ∇2A = µ0 j − ε0µ0
∂∇φ
∂t

− ε0µ0
∂2A
∂t2

, (4.69)

or

ε0µ0
∂2A
∂t2

− ∇2A = µ0 j − ∇
(

∇ · A + ε0µ0
∂φ

∂t

)
. (4.70)

We can now see quite clearly where the Lorenz gauge condition (4.33)
comes from. The above equation is, in general, very complicated, since
it involves both the vector and scalar potentials. But, if we adopt the
Lorenz gauge then the last term on the right-hand side becomes zero,
and the equation simplifies considerably, and ends up only involving the
vector potential. Thus, we find that Maxwell’s equations reduce to the
following equations:

ε0µ0
∂2φ

∂t2
− ∇2φ =

ρ

ε0
, (4.71)

ε0µ0
∂2A
∂t2

− ∇2A = µ0 j. (4.72)

Of course, this is the same (scalar) equation written four times over. In
steady-state (i.e., ∂/∂t = 0), the equation in question reduces to Poisson’s
equation, which we know how to solve. With the ∂2/∂t2 terms included,
it becomes a slightly more complicated equation (in fact, a driven three-
dimensional wave equation).

4.7 ELECTROMAGNETIC WAVES

This is an appropriate point at which to demonstrate that Maxwell’s
equations possess wave-like solutions which can propagate through a
vacuum. Let us start from Maxwell’s equations in free space (i.e., with
no charges and no currents):

∇ · E = 0, (4.73)

∇ · B = 0, (4.74)

∇ × E = −
∂B
∂t
, (4.75)

∇ × B = ε0µ0
∂E
∂t
. (4.76)



“chapter4” — 2007/11/29 — 13:54 — page 125 — #19

CHAPTER 4 TIME-DEPENDENT MAXWELL EQUATIONS 125

Note that these equations exhibit a nice symmetry between the electric
and magnetic fields.

There is an easy way to show that the above equations possess wave-
like solutions, and a hard way. The easy way is to assume that the
solutions are going to be wave-like beforehand. Specifically, let us search
for plane-wave solutions of the form:

E(r, t) = E0 cos (k · r −ωt), (4.77)

B(r, t) = B0 cos (k · r −ωt− φ). (4.78)

Here, E0 and B0 are constant vectors, k is called the wave-vector, and
ω is the angular frequency. The frequency in hertz, f, is related to the
angular frequency viaω = 2π f. This frequency is conventionally defined
to be positive. The quantity φ is a phase difference between the electric
and magnetic fields. Actually, it is more convenient to write

E = E0 e i (k·r−ωt), (4.79)

B = B0 e i (k·r−ωt), (4.80)

where, by convention, the physical solution is the real part of the above
equations. The phase difference φ is absorbed into the constant vector
B0 by allowing it to become complex. Thus, B0 → B0 e−iφ. In general,
the vector E0 is also complex.

Now, a wave maximum of the electric field satisfies

k · r = ωt+ n2π, (4.81)

where n is an integer. The solution to this equation is a set of equally
spaced parallel planes (one plane for each possible value of n), whose
normals are parallel to the wave-vector k, and which propagate in the
direction of k with phase-velocity

v =
ω

k
. (4.82)

The spacing between adjacent planes (i.e., the wavelength) is given by

λ =
2π

k
(4.83)

—see Figure 4.3.
Consider a general plane-wave vector field

A = A0 e i (k·r−ωt). (4.84)
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k v

λ

wavefront

Figure 4.3: Wavefronts associated with a plane-wave.

What is the divergence of A? This is easy to evaluate. We have

∇ · A =
∂Ax

∂x
+
∂Ay

∂y
+
∂Az

∂z
= (A0x i kx +A0y i ky +A0z i kz) e i (k·r−ωt)

= i k · A. (4.85)

How about the curl of A? This is slightly more difficult. We have

(∇ × A)x =
∂Az

∂y
−
∂Ay

∂z
= (i kyAz − i kzAy)

= i (k × A)x, (4.86)

which easily generalizes to

∇ × A = i k × A. (4.87)

Hence, we can see that vector field operations on a plane-wave simplify
to replacing the ∇ operator with i k.

The first Maxwell equation (4.73) reduces to

i k · E0 = 0, (4.88)

using the assumed electric and magnetic fields, (4.79) and (4.80), and
Equation (4.85). Thus, the electric field is perpendicular to the direction
of propagation of the wave. Likewise, the second Maxwell equation gives

i k · B0 = 0, (4.89)

implying that the magnetic field is also perpendicular to the direction of
propagation. Clearly, the wave-like solutions of Maxwell’s equation are
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a type of transverse wave. The third Maxwell equation yields

i k × E0 = iωB0, (4.90)

where use has been made of Equation (4.87). Dotting this equation with
E0 gives

E0 · B0 =
E0 · k × E0

ω
= 0. (4.91)

Thus, the electric and magnetic fields are mutually perpendicular.
Dotting equation (4.90) with B0 yields

B0 · k × E0 = ωB 2
0 > 0. (4.92)

Thus, the vectors E0, B0, and k are mutually perpendicular, and form a
right-handed set. The final Maxwell equation gives

i k × B0 = −i ε0µ0 ωE0. (4.93)

Combining this with Equation (4.90) yields

k × (k × E0) = (k · E0) k − k2 E0 = −k2 E0 = −ε0µ0 ω
2 E0, (4.94)

or

k2 = ε0µ0 ω
2, (4.95)

where use has been made of Equation (4.88). However, we know, from
Equation (4.82), that the phase-velocity c is related to the magnitude of
the wave-vector and the angular wave frequency via c = ω/k. Thus, we
obtain

c =
1√
ε0µ0

. (4.96)

So, we have found transverse plane-wave solutions of the free-space
Maxwell equations propagating at some phase-velocity c, which is given
by a combination of ε0 and µ0, and is thus the same for all frequencies
and wavelengths. The constants ε0 and µ0 are easily measurable. The
former is related to the force acting between stationary electric charges,
and the latter to the force acting between steady electric currents. Both
of these constants were fairly well-known in Maxwell’s time. Maxwell,
incidentally, was the first person to look for wave-like solutions of his
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equations, and, thus, to derive Equation (4.96). The modern values of
ε0 and µ0 are

ε0 = 8.8542× 10−12 C2 N−1 m−2, (4.97)

µ0 = 4π× 10−7 N A−2. (4.98)

Let us use these values to find the phase-velocity of “electromagnetic
waves.” We obtain

c =
1√
ε0µ0

= 2.998× 108 m s−1. (4.99)

Of course, we immediately recognize this as the velocity of light. Maxwell
also made this connection back in the 1870s. He conjectured that light,
whose nature had previously been unknown, was a form of electromag-
netic radiation. This was a remarkable prediction. After all, Maxwell’s
equations were derived from the results of benchtop laboratory experi-
ments involving charges, batteries, coils, and currents, which apparently
had nothing whatsoever to do with light.

Maxwell was able to make another remarkable prediction. The wave-
length of light was well-known in the late nineteenth century from
studies of diffraction through slits, etc. Visible light actually occupies
a surprisingly narrow wavelength range. The shortest wavelength blue
light which is visible has λ = 0.4 microns (one micron is 10−6 meters).
The longest wavelength red light which is visible has λ = 0.76 microns.
However, there is nothing in our analysis which suggests that this par-
ticular range of wavelengths is special. Electromagnetic waves can have
any wavelength. Maxwell concluded that visible light was a small part
of a vast spectrum of previously undiscovered types of electromagnetic
radiation. Since Maxwell’s time, virtually all of the non-visible parts of
the electromagnetic spectrum have been observed.

Table 4.1 gives a brief guide to the electromagnetic spectrum. Elec-
tromagnetic waves are of particular importance to us because they are
our main source of information regarding the Universe around us. Radio
waves and microwaves (which are comparatively hard to scatter) have
provided much of our knowledge about the center of our own galaxy.
This is completely unobservable in visible light, which is strongly scat-
tered by interstellar gas and dust lying in the galactic plane. For the same
reason, the spiral arms of our galaxy can only be mapped out using radio
waves. Infrared radiation is useful for detecting protostars, which are not
yet hot enough to emit visible radiation. Of course, visible radiation is
still the mainstay of Astronomy. Satellite-based ultraviolet observations
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Radiation type Wavelength range (m)

Gamma Rays < 10−11

X-Rays 10−11–10−9

Ultraviolet 10−9–10−7

Visible 10−7–10−6

Infrared 10−6–10−4

Microwave 10−4–10−1

TV-FM 10−1–101

Radio > 101

Table 4.1 The electromagnetic spectrum.

have yielded invaluable insights into the structure and distribution of dis-
tant galaxies. Finally, X-ray and γ-ray Astronomy usually concentrates
on exotic objects, such as pulsars and supernova remnants.

Equations (4.88), (4.90), and the relation c = ω/k, imply that

B0 =
E0

c
. (4.100)

Thus, the magnetic field associated with an electromagnetic wave is
smaller in magnitude than the electric field by a factor c. Consider a free
charge interacting with an electromagnetic wave. The force exerted on
the charge is given by the Lorentz formula

f = q (E + v × B). (4.101)

The ratio of the electric and magnetic forces is

fmagnetic

felectric
∼
vB0

E0
∼
v

c
. (4.102)

So, unless the charge is moving close to the velocity of light (i.e., unless
the charge is relativistic), the electric force greatly exceeds the magnetic
force. Clearly, in most terrestrial situations, electromagnetic waves are an
essentially electrical phenomenon (as far as their interaction with matter
goes). For this reason, electromagnetic waves are usually characterized
by their wave-vector k (which specifies the direction of propagation and
the wavelength) and the plane of polarization (i.e., the plane of oscil-
lation) of the associated electric field. For a given wave-vector k, the
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electric field can have any direction in the plane normal to k. How-
ever, there are only two independent directions in a plane (i.e., we can
only define two linearly independent vectors in a plane). This implies
that there are only two independent polarizations of an electromagnetic
wave, once its direction of propagation is specified.

But, how do electromagnetic waves propagate through a vacuum?
After all, most types of wave require a medium before they can propagate
(e.g., sound waves require air). The answer to this question is evident
from Equations (4.75) and (4.76). According to these equations, the time
variation of the electric component of the wave induces the magnetic
component, and the time variation of the magnetic component induces
the electric. In other words, electromagnetic waves are self-sustaining,
and therefore require no medium through which to propagate.

Let us now search for the wave-like solutions of Maxwell’s equations
in free-space the hard way. Suppose that we take the curl of the fourth
Maxwell equation, (4.76). We obtain

∇ × ∇ × B = ∇(∇ · B) − ∇2B = −∇2B = ε0µ0
∂∇ × E
∂t

. (4.103)

Here, we have made use of the fact that ∇ · B = 0. The third Maxwell
equation, (4.75), yields (

∇2 −
1

c2
∂2

∂t2

)
B = 0, (4.104)

where use has been made of Equation (4.99). A similar equation can be
obtained for the electric field by taking the curl of Equation (4.75):(

∇2 −
1

c2
∂2

∂t2

)
E = 0. (4.105)

We have found that electric and magnetic fields both satisfy equa-
tions of the form (

∇2 −
1

c2
∂2

∂t2

)
A = 0 (4.106)

in free space. As is easily verified, the most general solution to this
equation is

Ax = Fx(n · r − c t), (4.107)

Ay = Fy(n · r − c t), (4.108)

Az = Fz(n · r − c t), (4.109)
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c t

Fx(r, t = 0) Fx(r, t = t)

r

Figure 4.4: An arbitrary wave-pulse.

where n is a unit vector, and Fx(φ), Fy(φ), and Fz(φ) are arbitrary one-
dimensional scalar functions. Looking along the direction of n, so that
n · r = r, we find that

Ax = Fx(r− c t), (4.110)

Ay = Fy(r− c t), (4.111)

Az = Fz(r− c t). (4.112)

The x-component of this solution is shown schematically in Figure 4.4.
It clearly propagates in r with velocity c. If we look along a direction
which is perpendicular to n then n · r = 0, and there is no propagation.
Thus, the components of A are arbitrarily shaped pulses which propagate,
without changing shape, along the direction of n with velocity c. These
pulses can be related to the sinusoidal plane-wave solutions which we
found earlier by Fourier transformation: e.g.,

Fx(r− c t) =
1√
2π

∫
∞

−∞

F̄x(k) e i k (r−c t) dk, (4.113)

where

F̄x(k) =
1√
2π

∫
∞

−∞

Fx(x) e−i k x dx. (4.114)

Thus, any arbitrary shaped pulse propagating in the direction of n with
velocity c can be broken down into a superposition of sinusoidal oscil-
lations of different wavevectors, kn, propagating in the same direction
with the same velocity.
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4.8 GREEN’S FUNCTIONS

The solution of the steady-state Maxwell equations essentially boils down
to solving Poisson’s equation

∇2u = v, (4.115)

where v(r) is denoted the source function. The potential u(r) satisfies
the boundary condition

u(r, t) → 0 as |r| → ∞, (4.116)

provided that the source function is reasonably localized. The solutions
to Poisson’s equation are superposable (because the equation is linear).
This property is exploited in the Green’s function method of solving this
equation. The Green’s function G(r, r ′) is the potential generated by a
unit amplitude point source, located at r ′, which satisfies the appropriate
boundary conditions. Thus,

∇2G(r, r ′) = δ(r − r ′). (4.117)

Any source function v(r) can be represented as a weighted sum of point
sources

v(r) =

∫
δ(r − r ′) v(r ′)d3r ′. (4.118)

It follows from superposability that the potential generated by the source
v(r) can be written as the similarly weighted sum of point source driven
potentials (i.e., Green’s functions)

u(r) =

∫
G(r, r ′) v(r ′)d3r ′. (4.119)

We found earlier that the Green’s function for Poisson’s equation is

G(r, r ′) = −
1

4π

1

|r − r ′|
. (4.120)

It follows that the general solution to Equation (4.115) is written

u(r) = −
1

4π

∫
v(r ′)

|r − r ′|
d3r ′. (4.121)

Note that the point source driven potential (4.120) is perfectly sensible.
It is spherically symmetric about the source, and falls off smoothly with
increasing distance from the source.
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The solution of the time-dependent Maxwell equations essentially
boils down to solving the three-dimensional wave equation

(
∇2 −

1

c2
∂2

∂t2

)
u = v, (4.122)

where v(r, t) is a time-varying source function. The potential u(r, t)
satisfies the boundary conditions

u(r, t) → 0 as |r| → ∞ and |t| → ∞. (4.123)

The solutions to Equation (4.122) are superposable (since the equation
is linear), so a Green’s function method of solution is again appropriate.
The Green’s function G(r, r ′; t, t ′) is the potential generated by a point
impulse located at position r ′ and applied at time t ′. Thus,

(
∇2 −

1

c2
∂2

∂t2

)
G(r, r ′; t, t ′) = δ(r − r ′) δ(t− t ′). (4.124)

Of course, the Green’s function must satisfy the correct boundary con-
ditions. A general source v(r, t) can be built up from a weighted sum of
point impulses

v(r, t) =

∫∫
δ(r − r ′) δ(t− t ′) v(r ′, t ′)d3r ′ dt ′. (4.125)

It follows that the potential generated by v(r, t) can be written as the
similarly weighted sum of point impulse driven potentials

u(r, t) =

∫∫
G(r, r ′; t, t ′) v(r ′, t ′)d3r ′ dt ′. (4.126)

So, how do we find the Green’s function?
Consider

G(r, r ′; t, t ′) =
F(t− t ′ − |r − r ′|/c)

|r − r ′|
, (4.127)

where F(φ) is a general scalar function. Let us try to prove the following
theorem: (

∇2 −
1

c2
∂2

∂t2

)
G = −4π F(t− t ′) δ(r − r ′). (4.128)
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At a general point, r �= r ′, the above expression reduces to(
∇2 −

1

c2
∂2

∂t2

)
G = 0. (4.129)

Hence, we basically have to show that G is a valid solution of the free-
space wave equation. Now, we can easily demonstrate that

∂|r − r ′|
∂x

=
x− x ′

|r − r ′|
. (4.130)

It follows by simple differentiation that

∂2G

∂x2
=

(
3(x− x ′)2 − |r − r ′|2

|r − r ′|5

)
F

+

(
3(x− x ′)2 − |r − r ′|2

|r − r ′|4

)
F ′

c
+

(x− x ′)2

|r − r ′|3
F ′′

c2
, (4.131)

where F ′(φ) = dF(φ)/dφ, etc. We can derive analogous equations for
∂2G/∂y2 and ∂2G/∂z2. Thus,

∇2G =
∂2G

∂x2
+
∂2G

∂y2
+
∂2G

∂z2
=

F ′′

|r − r ′| c2
=
1

c2
∂2G

∂t2
, (4.132)

giving (
∇2 −

1

c2
∂2

∂t2

)
G = 0, (4.133)

which is the desired result. Consider, now, the region around r = r ′. It is
clear that the dominant term on the right-hand side of Equation (4.131)
as |r − r ′| → 0 is the first one, which is essentially F ∂2(|r − r ′|−1)/∂x2.
It is also clear that (1/c2)(∂2G/∂t2) is negligible compared to this term.
Thus, as |r − r ′| → 0 we find that(

∇2 −
1

c2
∂2

∂t2

)
G → F(t− t ′)∇2

(
1

|r − r ′|

)
. (4.134)

However, according to Equations (4.117) and (4.120),

∇2

(
1

|r − r ′|

)
= −4π δ(r − r ′). (4.135)
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We conclude that(
∇2 −

1

c2
∂2

∂t2

)
G = −4π F(t− t ′) δ(r − r ′), (4.136)

which is the desired result.
Let us now make the special choice

F(φ) = −
δ(φ)

4π
. (4.137)

It follows from Equation (4.136) that(
∇2 −

1

c2
∂2

∂t2

)
G = δ(r − r ′) δ(t− t ′). (4.138)

Thus,

G(r, r ′; t, t ′) = −
1

4π

δ(t− t ′ − |r − r ′|/c)
|r − r ′|

(4.139)

is the Green’s function for the driven wave equation (4.122).
The time-dependent Green’s function (4.139) is the same as the

steady-state Green’s function (4.120), apart from the delta-function
appearing in the former. What does this delta-function do? Well, con-
sider an observer at point r. Because of the delta-function, our observer
only measures a non-zero potential at one particular time

t = t ′ +
|r − r ′|
c

. (4.140)

It is clear that this is the time the impulse was applied at position r ′
(i.e., t ′) plus the time taken for a light signal to travel between points r ′
and r. At time t > t ′, the locus of all the points at which the potential is
non-zero is

|r − r ′| = c (t− t ′). (4.141)

In other words, it is a sphere centered on r ′ whose radius is the dis-
tance traveled by light in the time interval since the impulse was applied
at position r ′. Thus, the Green’s function (4.139) describes a spherical
wave which emanates from position r ′ at time t ′, and propagates at the
speed of light. The amplitude of the wave is inversely proportional to
the distance from the source.
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4.9 RETARDED POTENTIALS

We are now in a position to solve Maxwell’s equations. Recall that the
steady-state Maxwell equations reduce to

∇2φ = −
ρ

ε0
, (4.142)

∇2A = − µ0 j. (4.143)

The solutions to these equations are easily found using the Green’s
function for Poisson’s equation, (4.120):

φ(r) =
1

4πε0

∫
ρ(r ′)

|r − r ′|
d3r ′ (4.144)

A(r) =
µ0

4π

∫
j(r ′)

|r − r ′|
d3r ′. (4.145)

The time-dependent Maxwell equations reduce to(
∇2 −

1

c2
∂2

∂t2

)
φ = −

ρ

ε0
, (4.146)

(
∇2 −

1

c2
∂2

∂t2

)
A = − µ0 j. (4.147)

We can solve these equations using the time-dependent Green’s function,
(4.139). From Equation (4.126), we find that

φ(r, t) =
1

4πε0

∫∫
δ(t− t ′ − |r − r ′|/c) ρ(r ′, t ′)

|r − r ′|
d3r ′ dt ′, (4.148)

with a similar equation for A. Using the well-known property of delta-
functions, these equations yield

φ(r, t) =
1

4πε0

∫
ρ(r ′, t− |r − r ′|/c)

|r − r ′|
d3r ′ (4.149)

A(r, t) =
µ0

4π

∫
j(r ′, t− |r − r ′|/c)

|r − r ′|
d3r ′. (4.150)

These are the general solutions to Maxwell’s equations. Note that the
time-dependent solutions, (4.149) and (4.150), are the same as the
steady-state solutions, (4.144) and (4.145), apart from the weird way in
which time appears in the former. According to Equations (4.149) and
(4.150), if we want to work out the potentials at position r and time t
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then we have to perform integrals of the charge density and current den-
sity over all space (just like in the steady-state situation). However, when
we calculate the contribution of charges and currents at position r ′ to
these integrals we do not use the values at time t, instead we use the
values at some earlier time t− |r − r ′|/c. What is this earlier time? It is
simply the latest time at which a light signal emitted from position r ′
would be received at position r before time t. This is called the retarded
time. Likewise, the potentials (4.149) and (4.150) are called retarded
potentials. It is often useful to adopt the following notation

A(r ′, t− |r − r ′|/c) ≡ [A(r ′, t)
]
. (4.151)

The square brackets denote retardation (i.e., using the retarded time
instead of the real time). Using this notation Equations (4.149) and
(4.150), become

φ(r) =
1

4πε0

∫
[ρ(r ′)]
|r − r ′|

d3r ′, (4.152)

A(r) =
µ0

4π

∫
[j(r ′)]
|r − r ′|

d3r ′. (4.153)

The time dependence in the above equations is taken as read.
We are now in a position to understand electromagnetism at its most

fundamental level. A charge distribution ρ(r, t) can be thought of theo-
retically as being built up out of a collection, or series, of charges which
instantaneously come into existence, at some point r ′ and some time t ′,
and then disappear again. Mathematically, this is written

ρ(r, t) =

∫∫
δ(r − r ′)δ(t− t ′) ρ(r ′, t ′)d3r ′dt ′. (4.154)

Likewise, we can think of a current distribution j(r, t) as built up out of a
collection, or series, of currents which instantaneously appear and then
disappear:

j(r, t) =

∫∫
δ(r − r ′)δ(t− t ′) j(r ′, t ′)d3r ′dt ′. (4.155)

Each of these ephemeral charges and currents excites a spherical wave
in the appropriate potential. Thus, the charge density at r ′ and t ′ sends
out a wave in the scalar potential:

φ(r, t) =
ρ(r ′, t ′)
4πε0

δ(t− t ′ − |r − r ′|/c)
|r − r ′|

. (4.156)
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Likewise, the current density at r ′ and t ′ sends out a wave in the vector
potential:

A(r, t) =
µ0 j(r ′, t ′)

4π

δ(t− t ′ − |r − r ′|/c)
|r − r ′|

. (4.157)

These waves can be thought of as messengers which inform other charges
and currents about the charges and currents present at position r ′ and
time t ′. However, these messengers travel at a finite speed: i.e., the
speed of light. So, by the time they reach other charges and currents
their message is a little out of date. Every charge and every current
in the Universe emits these spherical waves. The resultant scalar and
vector potential fields are given by Equations (4.152) and (4.153). Of
course, we can turn these fields into electric and magnetic fields using
Equations (4.64) and (4.65). We can then evaluate the force exerted on
charges using the Lorentz formula. We can see that we have now escaped
from the apparent action at a distance nature of Coulomb’s law and
the Biot-Savart law. Electromagnetic information is carried by spherical
waves in the vector and scalar potentials, and, therefore, travels at the
velocity of light. Thus, if we change the position of a charge then a distant
charge can only respond after a time delay sufficient for a spherical wave
to propagate from the former to the latter charge.

Consider a thought experiment in which a charge q appears at
position r0 at time t1, persists for a while, and then disappears at
time t2. What is the electric field generated by such a charge? Using
Equation (4.150), we find that

φ(r, t) =
q

4πε0

1

|r − r0|
for t1 ≤ t− |r − r0|/c ≤ t2

= 0 otherwise. (4.158)

Now, E = −∇φ (since there are no currents, and therefore no vector
potential is generated), so

E(r, t) =
q

4πε0

r − r0
|r − r0|3

for t1 ≤ t− |r − r0|/c ≤ t2

= 0 otherwise. (4.159)

This solution is shown pictorially in Figure 4.5. We can see that the charge
effectively emits a Coulomb electric field which propagates radially away
from the charge at the speed of light. Likewise, it is easy to show that
a current-carrying wire effectively emits an Ampèrian magnetic field at
the speed of light.
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t2 < tt < t1 t1 < t < t2

Figure 4.5: Electric field due to a charge which appears at t = t1 and
disappears at t = t2.

We can now appreciate the essential difference between time-
dependent electromagnetism and the action-at-a-distance laws of
Coulomb and Biot-Savart. In the latter theories, the field-lines act rather
like rigid wires attached to charges (or circulating around currents).
If the charges (or currents) move then so do the field-lines, leading
inevitably to unphysical action at a distance-type behavior. In the time-
dependent theory, charges act rather like water sprinklers: i.e., they spray
out the Coulomb field in all directions at the speed of light. Similarly,
current-carrying wires throw out magnetic field loops at the speed of
light. If we move a charge (or current) then field-lines emitted before-
hand are not affected, so the field at a distant charge (or current) only
responds to the change in position after a time delay sufficient for the
field to propagate between the two charges (or currents) at the speed
of light.

As we mentioned previously, it is not entirely obvious that electric
and magnetic fields have a real existence in Coulomb’s law and the Biot-
Savart law. After all, the only measurable quantities are the forces acting
between charges and currents. We can certainly describe the force on
a given charge or current, due to the other charges and currents in the
Universe, in terms of the local electric and magnetic fields, but we have
no way of knowing whether these fields persist when the charge or cur-
rent is not present (i.e., we could argue that electric and magnetic fields
are just a convenient way of calculating forces, but, in reality, the forces
are transmitted directly between charges and currents by some form
of magic). On the other hand, it is patently obvious that electric and
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wavefront

moving charge

Figure 4.6: Spherical wavefronts emitted by a moving charge.

magnetic fields have a real existence in the time-dependent theory of
electromagnetism. For instance, consider the following thought exper-
iment. Suppose that a charge q1 comes into existence for a period of
time, emits a Coulomb field, and then disappears. Suppose that a dis-
tant charge q2 interacts with this field, but is sufficiently far from the
first charge that by the time the field arrives the first charge has already
disappeared. The force exerted on the second charge is only ascribable to
the electric field—it cannot be ascribed to the first charge, because this
charge no longer exists by the time the force is exerted. In this example,
the electric field clearly transmits energy and momentum between the
two charges. Anything which possesses energy and momentum is “real”
in a physical sense. Later on in this book, we shall demonstrate that
electric and magnetic fields conserve energy and momentum.

Let us now consider a moving charge. Such a charge is continually
emitting spherical waves in the scalar potential, and the resulting wave-
front pattern is sketched in Figure 4.6. Clearly, the wavefronts are more
closely spaced in front of the charge than they are behind it, suggest-
ing that the electric field in front is stronger than the field behind. In
a medium, such as water or air, where waves travel at a finite speed,
c (say), it is possible to get a very interesting effect if the wave source
travels at some velocity v which exceeds the wave speed. This is illus-
trated in Figure 4.7. The locus of the outermost wavefront is now a cone
instead of a sphere. The wave intensity on the cone is extremely large. In
fact, this is a shockwave The half-angle θ of the shockwave cone is simply
sin−1(c/v). In water, shockwaves are produced by fast-moving boats. We
call these bow waves. In air, shockwaves are produced by speeding bullets
and supersonic jets. In the latter case, they are called sonic booms. Is there
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shockfront

c t

v t

θ

moving source

Figure 4.7: A shockwave.

any such thing as an electromagnetic shockwave? At first sight, it would
appear not. After all, electromagnetic waves travel at the speed of light,
and no wave source (i.e., electrically charged particle) can travel faster
than this velocity. This is a rather disappointing conclusion. However,
when an electromagnetic wave travels through a transparent dielectric
medium a remarkable thing happens. The oscillating electric field of the
wave induces a slight separation of the positive and negative charges
in the atoms which make up the medium. We call separated positive
and negative charges an electric dipole. Of course, the atomic dipoles
oscillate in sympathy with the field which induces them. However, an
oscillating electric dipole radiates electromagnetic waves. Amazingly,
when we add the original wave to these induced waves, it is exactly as if
the original wave propagates through the medium in question at a veloc-
ity which is slower than the velocity of light in vacuum. Suppose, now,
that we shoot a charged particle through the medium faster than the
slowed down velocity of electromagnetic waves. This is possible since
the waves are traveling slower than the velocity of light in vacuum. In
practice, the particle has to be traveling pretty close to the velocity of light
in vacuum (i.e., it has to be relativistic), but modern particle accelerators
produce copious amounts of such particles. We can now get an electro-
magnetic shockwave. We expect such a wave to generate an intense cone
of radiation, similar to the bow wave produced by a fast ship. In fact,
this type of radiation has been observed. It is called Cherenkov radiation,
and it is very useful in High-Energy Physics. Cherenkov radiation is typi-
cally produced by surrounding a particle accelerator with perspex blocks.
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Relativistic charged particles emanating from the accelerator pass
through the perspex traveling faster than the local velocity of light, and
therefore emit Cherenkov radiation. We know the velocity of light (c∗,
say) in perspex (this can be worked out from the refractive index), so if
we can measure the half angle θ of the Cherenkov radiation cone emit-
ted by each particle then we can evaluate the particle speed v via the
geometric relation sin θ = c∗/v.

4.10 ADVANCED POTENTIALS?

We have defined the retarded time

tr = t− |r − r ′|/c (4.160)

as the latest time at which a light signal emitted from position r ′ would
reach position r before time t. We have also shown that the solution to
Maxwell’s equations can be written in terms of retarded potentials:

φ(r, t) =
1

4πε0

∫
ρ(r ′, tr)
|r − r ′|

d3r ′, (4.161)

etc. But, is this the most general solution? Suppose that we define the
advanced time.

ta = t+ |r − r ′|/c. (4.162)

This is the time a light signal emitted at time t from position r would
reach position r ′. It turns out that we can also write a solution to
Maxwell’s equations in terms of advanced potentials:

φ(r, t) =
1

4πε0

∫
ρ(r ′, ta)
|r − r ′|

d3r ′, (4.163)

etc. In fact, mathematically speaking, this is just as good a solution to
Maxwell’s equation as the one involving retarded potentials. Consider
the Green’s function corresponding to our retarded potential solution:

φ(r, t) =
ρ(r ′, t ′)
4πε0

δ(t− t ′ − |r − r ′|/c)
|r − r ′|

, (4.164)

with a similar equation for the vector potential. This says that the charge
density present at position r ′ and time t ′ emits a spherical wave in the
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scalar potential which propagates forward in time. The Green’s function
corresponding to our advanced potential solution is

φ(r, t) =
ρ(r ′, t ′)
4πε0

δ(t− t ′ + |r − r ′|/c)
|r − r ′|

. (4.165)

This says that the charge density present at position r ′ and time t ′ emits
a spherical wave in the scalar potential which propagates backward in
time. Obviously, the advanced solution is usually rejected, on physical
grounds, because it violates causality (i.e., it allows effects to exist prior
to causes).

Now, the wave equation for the scalar potential,(
∇2 −

1

c2
∂2

∂t2

)
φ = −

ρ

ε0
, (4.166)

is manifestly symmetric in time (i.e., it is invariant under the trans-
formation t → −t). Thus, mathematically speaking, backward-traveling
waves are just as good a solution to this equation as forward-traveling
waves. The equation is also symmetric in space (i.e., it is invariant under
the transformation r → −r). So, why do we adopt the Green’s function
(4.164) which is symmetric in space (i.e., invariant under r → −r) but
asymmetric in time (i.e., not invariant under t → −t)? Would it not be
more consistent to adopt the completely symmetric Green’s function

φ(r, t) =
ρ(r ′, t ′)
4πε0

1

2

(
δ(t− t ′ − |r − r ′|/c)

|r − r ′|
+
δ(t− t ′ + |r − r ′|/c)

|r − r ′|

)
?

(4.167)

According to this Green’s function, a given charge emits half of its waves
running forward in time (i.e., retarded waves), and the other half run-
ning backward in time (i.e., advanced waves). This sounds completely
crazy! However, in the 1940s Richard P. Feynman and John A. Wheeler
pointed out that under certain circumstances this prescription gives the
right answer. Consider a charge interacting with “the rest of the Uni-
verse,” where the “rest of the Universe” denotes all of the distant charges
in the Universe, and is, by implication, a very long way from our original
charge. Suppose that the “rest of the Universe” is a perfect reflector of
advanced waves and a perfect absorber of retarded waves. The waves
emitted by the charge can be written schematically as

F =
1

2
(retarded) +

1

2
(advanced). (4.168)



“chapter4” — 2007/11/29 — 13:54 — page 144 — #38

144 MAXWELL’S EQUATIONS AND THE PRINCIPLES OF ELECTROMAGNETISM

space

R

time

charge rest of universe

A

a

aa

Figure 4.8: A space-time diagram illustrating the Feynman-Wheeler
solution.

Likewise, the response of the rest of the universe is written

R =
1

2
(retarded) −

1

2
(advanced). (4.169)

This is illustrated in the space-time diagram shown in Figure 4.8. Here,
A and R denote the advanced and retarded waves emitted by the charge,
respectively. The advanced wave travels to “the rest of the Universe” and
is reflected: i.e., the distant charges oscillate in response to the advanced
wave and emit a retarded wave a, as shown. The retarded wave a is a
spherical wave which converges on the original charge, passes through
the charge, and then diverges again. The divergent wave is denoted aa.
Note that a looks like a negative advanced wave emitted by the charge,
whereas aa looks like a positive retarded wave. This is essentially what
Equation (4.169) says. The retarded waves R and aa are absorbed by
“the rest of the Universe.”

If we add the waves emitted by the charge to the response of “the
rest of the Universe” we obtain

F ′ = F+ R = (retarded). (4.170)

Thus, charges appear to emit only retarded waves, which agrees with
our everyday experience. Clearly, we have side-stepped the problem
of adopting a time-asymmetric Green’s function by adopting time-
asymmetric boundary conditions to the Universe: i.e., the distant charges
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in the Universe absorb retarded waves and reflect advanced waves. This
is possible because the absorption takes place at the end of the Universe,
and the reflection takes place at the beginning of the Universe. It is quite
plausible that the state of the Universe (and, hence, its interaction with
electromagnetic waves) is completely different at these two epochs. It
should be pointed out that the Feynman-Wheeler model runs into trouble
when an attempt is made to combine Electromagnetism with Quantum
Mechanics. These difficulties have yet to be resolved, so the present sta-
tus of this model is that it is “an interesting idea,” but it is still not fully
accepted into the canon of Physics.

4.11 RETARDED FIELDS

We have found the solution to Maxwell’s equations in terms of retarded
potentials. Let us now construct the associated retarded electric and
magnetic fields using

E = − ∇φ−
∂A
∂t
, (4.171)

B = ∇ × A. (4.172)

It is helpful to write

R = r − r ′, (4.173)

where R = |r − r ′|. The retarded time becomes tr = t− R/c, and a gen-
eral retarded quantity is written [F(r ′, t)] ≡ F(r ′, tr). Thus, we can write
the retarded potential solutions of Maxwell’s equations in the especially
compact form:

φ(r, t) =
1

4πε0

∫
[ρ]

R
d3r ′, (4.174)

A(r, t) =
µ0

4π

∫
[j]
R
d3r ′. (4.175)

It is easily seen that

∇φ =
1

4πε0

∫ (
[ρ]∇(R−1) +

[∂ρ/∂t]

R
∇tr

)
d3r ′

= −
1

4πε0

∫ (
[ρ]

R3
R +

[∂ρ/∂t]

c R2
R
)
d3r ′, (4.176)
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where use has been made of

∇R =
R
R
, ∇(R−1) = −

R
R3
, ∇tr = −

R
c R
. (4.177)

Likewise,

∇ × A =
µ0

4π

∫ (
∇(R−1) × [j] +

∇tr × [∂j/∂t]
R

)
d3r ′

= −
µ0

4π

∫ (
R × [j]
R3

+
R × [∂j/∂t]

c R2

)
d3r ′. (4.178)

Equations (4.171), (4.172), (4.176), and (4.178) can be combined to
give

E =
1

4πε0

∫ (
[ρ]

R
R3

+

[
∂ρ

∂t

]
R
c R2

−
[∂j/∂t]
c2 R

)
d3r ′, (4.179)

which is the time-dependent generalization of Coulomb’s law, and

B =
µ0

4π

∫ (
[j] × R
R3

+
[∂j/∂t] × R

c R2

)
d3r ′, (4.180)

which is the time-dependent generalization of the Biot-Savart law.
Suppose that the typical variation time-scale of our charges and cur-

rents is t0. Let us define R0 = c t0, which is the distance a light ray travels
in time t0. We can evaluate Equations (4.179) and (4.180) in two asymp-
totic limits: the near field region R � R0, and the far field region R 
 R0.
In the near field region,

|t− tr|

t0
=
R

R0
� 1, (4.181)

so the difference between retarded time and standard time is relatively
small. This allows us to expand retarded quantities in a Taylor series.
Thus,

[ρ] � ρ+
∂ρ

∂t
(tr − t) +

1

2

∂2ρ

∂t2
(tr − t)2 + · · · , (4.182)

giving

[ρ] � ρ−
∂ρ

∂t

R

c
+
1

2

∂2ρ

∂t2
R2

c2
+ · · · . (4.183)
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Expansion of the retarded quantities in the near field region yields

E(r, t) � 1

4πε0

∫ (
ρR
R3

−
1

2

∂2ρ

∂t2
R
c2 R

−
∂j/∂t
c2 R

+ · · ·
)
d3r ′, (4.184)

B(r, t) � µ0

4π

∫ (
j × R
R3

−
1

2

(∂2j/∂t2) × R
c2 R

+ · · ·
)
d3r ′. (4.185)

In Equation (4.184), the first term on the right-hand side corresponds
to Coulomb’s law, the second term is the lowest order correction to
Coulomb’s law due to retardation effects, and the third term corresponds
to Faraday induction. In Equation (4.185), the first term on the right-
hand side is the Biot-Savart law, and the second term is the lowest order
correction to the Biot-Savart law due to retardation effects. Note that
the retardation corrections are only of order (R/R0)

2. We might sup-
pose, from looking at Equations (4.179) and (4.180), that the corrections
should be of order R/R0. However, all of the order R/R0 terms canceled
out in the previous expansion. Suppose, then, that we have an electric
circuit sitting on a laboratory benchtop. Let the currents in the circuit
change on a typical time-scale of one tenth of a second. In this time,
light can travel about 3× 107 meters, so R0 ∼ 30, 000 kilometers. The
length-scale of the experiment is about one meter, so R = 1meter. Thus,
the retardation corrections are of relative order (3× 107)−2 ∼ 10−15. It is
clear that we are fairly safe just using Coulomb’s law, Faraday’s law, and
the Biot-Savart law to analyze the fields generated by this type of circuit.

In the far field region, R 
 R0, Equations (4.179) and (4.180) are
dominated by the terms which vary like R−1, so that

E(r, t) � −
1

4πε0

∫
[∂j⊥/∂t]
c2 R

d3r ′, (4.186)

B(r, t) � µ0

4π

∫
[∂j⊥/∂t] × R

c R2
d3r ′, (4.187)

where

j⊥ = j −
(j · R)

R2
R. (4.188)

Here, use has been made of [∂ρ/∂t] = −[∇ · j] and [∇ · j] � −[∂j/∂t] ·
R/cR. Suppose that our charges and currents are localized to some finite
region of space in the vicinity of the origin, and that the extent of the
current-and-charge-containing region is much less than |r|. It follows that
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retarded quantities can be written

[ρ(r ′, t)] � ρ(r ′, t− r/c), (4.189)

etc. Thus, the electric field reduces to

E(r, t) � −
1

4πε0

[∫
∂j⊥/∂t d3r ′]
c2 r

, (4.190)

whereas the magnetic field is given by

B(r, t) � 1

4πε0

[∫
∂j⊥/∂t d3r ′]× r

c3 r2
. (4.191)

Here, [· · · ] merely denotes evaluation at the retarded time t− r/c. Note
that

E

B
= c, (4.192)

and

E · B = 0. (4.193)

This configuration of electric and magnetic fields is characteristic of an
electromagnetic wave (see Section 4.7). Thus, Equations (4.190) and
(4.191) describe an electromagnetic wave propagating radially away
from the charge-and-current-containing region. Note that the wave is
driven by time-varying electric currents. Now, charges moving with a
constant velocity constitute a steady current, so a non-steady current is
associated with accelerating charges. We conclude that accelerating elec-
tric charges emit electromagnetic waves. The wave fields, (4.190) and
(4.191), fall off like the inverse of the distance from the wave source.
This behavior should be contrasted with that of Coulomb or Biot-Savart
fields, which fall off like the inverse square of the distance from the
source. It is the fact that wave fields attenuate fairly gently with increas-
ing distance from the source which makes Astronomy possible. If wave
fields obeyed an inverse square law then no appreciable radiation would
reach us from the rest of the Universe.

In conclusion, electric and magnetic fields look simple in the near
field region (they are just Coulomb fields, etc.) and also in the far field
region (they are just electromagnetic waves). Only in the intermediate
region, R ∼ R0, do things start to get really complicated (so we generally
avoid looking in this region!).
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4.12 MAXWELL’S EQUATIONS

This marks the end of our theoretical investigation of Maxwell’s equa-
tions. Let us now summarize what we have learned so far. The field
equations which govern electric and magnetic fields are written:

∇ · E =
ρ

ε0
, (4.194)

∇ · B = 0, (4.195)

∇ × E = −
∂B
∂t
, (4.196)

∇ × B = µ0 j +
1

c2
∂E
∂t
. (4.197)

These equations can be integrated to give∮
S

E · dS =
1

ε0

∫
V

ρdV, (4.198)

∮
S

B · dS = 0, (4.199)

∮
C

E · dl = −
∂

∂t

∫
S

B · dS, (4.200)

∮
C

B · dl = µ0

∫
S ′

j · dS +
1

c2
∂

∂t

∫
S ′

E · dS. (4.201)

Here, S is a surface enclosing a volume V, and S ′ a surface attached to
a closed curve C.

Equations (4.195) and (4.196) are automatically satisfied by writing

E = − ∇φ−
∂A
∂t
, (4.202)

B = ∇ × A. (4.203)

This prescription is not unique (there are many choices ofφ and A which
generate the same fields), but we can make it unique by adopting the
following conventions:

φ(r, t) → 0 as |r| → ∞, (4.204)

and

1

c2
∂φ

∂t
+ ∇ · A = 0. (4.205)
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The latter convention is known as the Lorenz gauge condition. Equations
(4.194) and (4.197) reduce to(

∇2 −
1

c2
∂2

∂t2

)
φ = −

ρ

ε0
, (4.206)

(
∇2 −

1

c2
∂2

∂t2

)
A = −µ0 j. (4.207)

These are driven wave equations of the general form(
∇2 −

1

c2
∂2

∂t2

)
u = v. (4.208)

The Green’s function for this equation which satisfies sensible boundary
conditions, and is consistent with causality, is

G(r, r ′; t, t ′) = −
1

4π

δ(t− t ′ − |r − r ′|/c)
|r − r ′|

. (4.209)

Thus, the solutions to Equations (4.206) and (4.207) are

φ(r, t) =
1

4πε0

∫
[ρ]

R
d3r ′, (4.210)

A(r, t) =
µ0

4π

∫
[j]
R
d3r ′, (4.211)

where R = |r − r ′|, and [A] ≡ A(r ′, t− R/c). These solutions can be
combined with Equations (4.202) and (4.203) to give

E(r, t) =
1

4πε0

∫ (
[ρ]

R
R3

+

[
∂ρ

∂t

]
R
c R2

−
[∂j/∂t]
c2 R

)
d3r ′, (4.212)

B(r, t) =
µ0

4π

∫ (
[j] × R
R3

+
[∂j/∂t] × R

c R2

)
d3r ′. (4.213)

Equations (4.194)–(4.213) constitute the complete theory of clas-
sical electromagnetism. We can express the same information in terms
of field equations [Equations (4.194)–(4.197)], integrated field equa-
tions [Equations (4.198)–(4.201)], retarded electromagnetic potentials
[Equations (4.210) and (4.211)], and retarded electromagnetic fields
[Equations (4.212) and (4.213)]. Let us now consider the applications
of this theory.
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4.13 EXERCISES

4.1. Consider a particle accelerator in which charged particles are constrained to

move in a circle in the x-y plane by a z-directed magnetic field. If the magnetic

field-strength is gradually increased then the particles are accelerated by the

induced electric field. This type of accelerator is called a betatron. It is preferable

to keep the radius of the particle orbit constant during the acceleration. Show

that this is possible provided that the magnetic field distribution is such that the

average field over the area of the orbit is twice the field at the circumference.

Assume that the field is symmetric about the center of the orbit, and that the

particles are subrelativistic.

4.2. A charged particle executes a circular orbit in the plane perpendicular to a uni-

form magnetic field of strength B. If the magnitude of the field is very gradually

increased then the induced electric field accelerates the charge. Demonstrate

that in a single rotation

∆K

K
� ∆B

B
,

where K is the particle’s kinetic energy. Hence, deduce that the ratio K/B is

approximately constant during the field ramp. By considering the circulating

charge as a circular current loop, show that the charge’s effective magnetic

moment is

m =
K

B
,

and is, thus, approximately conserved during the field ramp. Does the radius of

the orbit increase or decrease as the magnetic field-strength increases?

4.3. Demonstrate that
∫

V

jd3r =

∫

S

r j · dS −

∫

V

r ∇ · jd3r,

where S is a surface enclosing some volume V . Hence, deduce that for a

distribution of charges and currents localized to some finite region of space
∫

jd3r =
dp
dt
,

where the integral is over the whole volume of the distribution, and

p =

∫
r ρd3r

is the distribution’s electric dipole moment.
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4.4. Given that Ampère’s circuital law implies the Biot-Savart law, show that Faraday’s

law implies that

E(r, t) = −
1

4π

∫
[∂B(r ′, t)/∂t] × (r − r ′)

|r − r ′|3
d
3r ′
.

Consider a thin iron ring of major radius a and minor cross-sectional area A. A

uniform circulating magnetic field B(t) is produced inside the iron by current

flowing in a wire wound toroidally onto the ring. Show that the electric field

induced on the major axis of the ring is

E(z, t) = −
a2 A

2 (a2 + z2)3/2

(
dB

dt

)
ez,

where z is measured from the plane of the ring, in a right-handed sense with

respect to the circulating magnetic field. Demonstrate that
∫

∞

−∞

Ez(z, t)dz = −A
dB

dt
.

Derive this result directly from Faraday’s law.

4.5. A Rogowski coil consists of a thin wire wound uniformly onto a non-magnetic

ring-shaped former of major radius a and constant cross-sectional area A. Sup-

pose that there are N turns around the ring. If a time-dependent current I(t)

passes anywhere through the ring show that the voltage induced in the wire is

V =
µ0

2π

NA

a

dI

dt
.

4.6. In a certain region of space the charge density takes the form

ρ = ρ0 e−λ r
,

where r is a spherical polar coordinate, ρ0 a spatial constant, and λ a positive

constant. Find the electric field generated by this charge distribution. Suppose

that

ρ0 = ρ00 e−γ t
,

where ρ00 is a spatial and temporal constant, and γ a positive constant. What

is the current density associated with the time-varying charge density? What

is the displacement current generated by the changing electric field? Find the

magnetic field generated by these current distributions.

4.7. An alternating current I = I0 cos(ωt) flows down a long straight wire of neg-

ligible thickness, and back along a thin co-axial conducting cylindrical shell of

radius R.

(a) In which direction does the induced electric field E point (radial, circum-

ferential, or longitudinal)?
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(b) Find E as a function of r (perpendicular distance from the wire).

(c) Find the displacement current density jd.

(d) Integrate jd to obtain the total displacement current

Id =

∫
jd · dS.

(e) What is the ratio of Id to I? If the outer cylinder were 2 mm in diameter,

how high would the frequency ω have to be (in Hz) for Id to be 1% of I?

4.8. Consider the one-dimensional free-space electromagnetic wave equation

∂2E

∂z2
= ε0µ0

∂2E

∂t2
,

where E is the electric field-strength in the x-direction. Show that a change of

variables,

α = t +
√
ε0µ0 z,

β = t −
√
ε0 µ0 z,

causes the equation to assume a form which can easily be integrated. Hence,

deduce that

E(z, t) = F(α) +G(β),

where F and G are arbitrary functions. Interpret this solution.

4.9. Given the free-space electromagnetic wave electric field

E = E0 cos[k (z − c t)] ex + E0 sin[k (z + c t)] ey,

where k is real, find the corresponding magnetic field B.

4.10. Given a plane electromagnetic wave propagating in free-space along the positive

z-direction, and polarized such that

E = E0 sin [k (z − c t)] ,

where k is real, and E0 is a constant vector, show that it is possible to set the

scalar potential φ to zero. Find a possible vector potential A which satisfies the

Lorenz gauge.

4.11. The electric field of a plane electromagnetic wave propagating in the z-direction

is written

E = A e i (k z−ω t) ex + B e i (k z−ω t) ey,

where A and B are complex numbers, and k and ω are positive real numbers.

Of course, the physical electric field is the real part of the above expression.

Suppose that

A = |E|/
√
2, B = A e i φ

,
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where |E| is the maximum magnitude of the electric field vector, and φ is real.

Demonstrate that, in general, the tip of the electric field vector traces out an

ellipse in the x-y plane whose major axis is tilted at 45◦ with respect to the x-axis.

Show that the major/minor radii of the ellipse are |E| |cosφ/2| and |E| |sinφ/2|,

and that the electric field vector rotates clockwise (looking down the z-axis)

when 0◦ ≤ φ ≤ 180◦, and counterclockwise otherwise. Demonstrate that for the

special cases when φ = 0◦, 180◦, the electric field vector traces out a straight-

line, passing through the origin, in the x-y plane. These cases correspond to

so-called linearly polarized waves. Show that for the special cases when φ =

90◦, 270◦ the electric field vector traces out a circle in the x-y plane, rotating

clockwise and counterclockwise, respectively. These cases correspond to left-

hand and right-hand circularly polarized waves, respectively. (The handedness

is determined with respect to the direction of wave propagation and the sense

of rotation of the electric field in the plane perpendicular to this direction.)

Note that in the general case the electric field vector traces out an ellipse in the

x-y plane, rotating clockwise and counterclockwise, respectively, depending on

whether or not 0◦ ≤ φ ≤ 180◦. These cases correspond to left-hand and right-

hand elliptically polarized waves, respectively.

4.12. A magnetic monopole of monopole charge qm placed at the origin generates a

radial magnetic field of the form

Br(r) =
µ0 c qm

4π r2
.

Using this result, and assuming that the number of magnetic monopoles in the

Universe is a conserved quantity (like the number of electric charges), show

that when Maxwell’s equations are generalized to take magnetic monopoles

into account they take the form

∇ · E =
ρ

ε0
,

∇ · H =
ρm

ε0
,

∇ × E = − µ0c jm −
∂H
∂τ
,

∇ × H = µ0c j +
∂E
∂τ
,

where H = cB and τ = c t. Here, ρm is the number density of monopoles, and

jm is the monopole current density.

4.13. Consider a distribution of charges and currents which is localized in a region of

linear extent a in the vicinity of the origin. Demonstrate that the lowest order
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electric and magnetic field generated by such a distribution in the far field region,

|r| � a, is

E(r, t) � −
1

4πε0 c2
ee × ([p̈] × er)

r
,

B(r, t) � 1

4πε0 c3
[p̈] × er
r

,

where er = r/r, p =
∫

r ρd3r is the electric dipole moment of the distribution,

and _ denotes a time derivative. Here, [· · · ] implies evaluation at the retarded

time t − r/c. Suppose that p = p0 cos(ωt) ez. Show that the far field electric

and magnetic fields take the form

E(r, t) = −
ω2 p0

4πε0 c2
cos[ω (t − r/c)]

sin θ
r

eθ,

B(r, t) = −
ω2 p0

4πε0 c3
cos[ω (t − r/c)]

sin θ
r

eφ.

Here, θ and φ are spherical polar coordinates.
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C h a p t e r 5 ELECTROSTATIC
CALCULATIONS

5.1 INTRODUCTION

In this chapter, we shall make a detailed investigation of the electric fields
generated by stationary charge distributions using Maxwell’s equations.
In particular, we shall examine the interaction of electrostatic fields with
ohmic conductors.

5.2 ELECTROSTATIC ENERGY

Consider a collection ofN static point charges qi located at position vec-
tors ri, respectively (where i runs from 1 toN). What is the electrostatic
energy stored in such a collection? In other words, how much work
would we have to do in order to assemble the charges, starting from an
initial state in which they are all at rest and very widely separated?

Well, we know that a static electric field is conservative, and can
consequently be written in terms of a scalar potential:

E = −∇φ. (5.1)

We also know that the electric force on a charge q located at position r
is written

f = qE(r). (5.2)

The work we would have to do against electrical forces in order to slowly
move the charge from point P to point Q is simply

W = −

∫Q
P

f · dl = −q

∫Q
P

E · dl = q

∫Q
P

∇φ · dl = q [φ(Q) − φ(P)] .

(5.3)
The negative sign in the above expression comes about because we would
have to exert a force −f on the charge, in order to counteract the force
exerted by the electric field. Recall, finally, that the scalar potential field

157
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generated by a point charge q located at position r ′ is

φ(r) =
1

4πε0

q

|r − r ′|
. (5.4)

Let us build up our collection of charges one by one. It takes no work
to bring the first charge from infinity, since there is no electric field to
fight against. Let us clamp this charge in position at r1. In order to bring
the second charge into position at r2, we have to do work against the
electric field generated by the first charge. According to Equations (5.3)
and Equations (5.4), this work is given by

W2 =
1

4πε0

q2 q1

|r2 − r1|
. (5.5)

Let us now bring the third charge into position. Since electric fields and
scalar potentials are superposable, the work done whilst moving the third
charge from infinity to r3 is simply the sum of the works done against
the electric fields generated by charges 1 and 2 taken in isolation:

W3 =
1

4πε0

(
q3 q1

|r3 − r1|
+

q3 q2

|r3 − r2|

)
. (5.6)

Thus, the total work done in assembling the three charges is given by

W =
1

4πε0

(
q2 q1

|r2 − r1|
+

q3 q1

|r3 − r1|
+

q3 q2

|r3 − r2|

)
. (5.7)

This result can easily be generalized to N charges:

W =
1

4πε0

N∑
i=1

N∑
j<i

qi qj

|ri − rj|
. (5.8)

The restriction that j must be less than i makes the above summation
rather messy. If we were to sum without restriction (other than j �= i)
then each pair of charges would be counted twice. It is convenient to do
just this, and then to divide the result by two. Thus, we obtain

W =
1

2

1

4πε0

N∑
i=1

N∑
j=1
j�=i

qi qj

|ri − rj|
. (5.9)

This is the potential energy (i.e., the difference between the total energy
and the kinetic energy) of a collection of charges. We can think of this
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quantity as the work required to bring stationary charges from infinity
and assemble them in the required formation. Alternatively, it is the
kinetic energy which would be released if the collection were dissolved,
and the charges returned to infinity. But where is this potential energy
stored? Let us investigate further.

Equation (5.9) can be written

W =
1

2

N∑
i=1

qi φi, (5.10)

where

φi =
1

4πε0

N∑
j=1
j�=i

qj

|ri − rj|
(5.11)

is the scalar potential experienced by the ith charge due to the other
charges in the distribution.

Let us now consider the potential energy of a continuous charge
distribution. It is tempting to write

W =
1

2

∫
ρφd3r, (5.12)

by analogy with Equations (5.10) and (5.11), where

φ(r) =
1

4πε0

∫
ρ(r ′)

|r − r ′|
d3r ′ (5.13)

is the familiar scalar potential generated by a continuous charge distribu-
tion of charge density ρ(r). Let us try this out. We know from Maxwell’s
equations that

ρ = ε0∇·E, (5.14)

so Equation (5.12) can be written

W =
ε0

2

∫
φ∇·Ed3r. (5.15)

Now, vector field theory yields the standard result

∇ · (Eφ) = φ∇·E + E·∇φ. (5.16)
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However, ∇φ = −E, so we obtain

W =
ε0

2

[∫
∇·(Eφ)d3r +

∫
E2 d3r

]
. (5.17)

Application of Gauss’ theorem gives

W =
ε0

2

(∮
S

φE · dS +

∫
V

E2 dV

)
, (5.18)

where V is some volume which encloses all of the charges, and S is its
bounding surface. Let us assume that V is a sphere, centered on the
origin, and let us take the limit in which the radius r of this sphere goes
to infinity. We know that, in general, the electric field at large distances
from a bounded charge distribution looks like the field of a point charge,
and, therefore, falls off like 1/r2. Likewise, the potential falls off like
1/r—see Exercise 3.7. However, the surface area of the sphere increases
like r2. Hence, it is clear that, in the limit as r → ∞, the surface integral
in Equation (5.18) falls off like 1/r, and is consequently zero. Thus,
Equation (5.18) reduces to

W =
ε0

2

∫
E2 d3r, (5.19)

where the integral is over all space. This is a very interesting result. It
tells us that the potential energy of a continuous charge distribution is
stored in the electric field generated by the distribution. Of course, we
now have to assume that an electric field possesses an energy density

U =
ε0

2
E2. (5.20)

We can easily check that Equation (5.19) is correct. Suppose that we
have a chargeQwhich is uniformly distributed within a sphere of radius
a centered on the origin. Let us imagine building up this charge distribu-
tion from a succession of thin spherical layers of infinitesimal thickness.
At each stage, we gather a small amount of charge dq from infinity, and
spread it over the surface of the sphere in a thin layer extending from
r to r+ dr. We continue this process until the final radius of the sphere
is a. If q(r) is the sphere’s charge when it has attained radius r, then the
work done in bringing a charge dq to its surface is

dW =
1

4πε0

q(r)dq

r
. (5.21)

This follows from Equation (5.5), since the electric field generated out-
side a spherical charge distribution is the same as that of a point charge
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q(r) located at its geometric center (r = 0)—see Section 3.4. If the
constant charge density of the sphere is ρ then

q(r) =
4π

3
r3 ρ, (5.22)

and

dq = 4π r2 ρ dr. (5.23)

Thus, Equation (5.21) becomes

dW =
4π

3ε0
ρ2 r4 dr. (5.24)

The total work needed to build up the sphere from nothing to radius a
is plainly

W =
4π

3ε0
ρ2

∫a
0

r4 dr =
4π

15ε0
ρ2 a5. (5.25)

This can also be written in terms of the total charge Q = (4π/3)a3 ρ as

W =
3

5

Q2

4πε0 a
. (5.26)

Now that we have evaluated the potential energy of a spherical
charge distribution by the direct method, let us work it out using Equa-
tion (5.19). We shall assume that the electric field is both radial and
spherically symmetric, so that E = Er(r) er. Application of Gauss’ law,∮

S

E · dS =
1

ε0

∫
V

ρdV, (5.27)

where V is a sphere of radius r, centered on the origin, gives

Er(r) =
Q

4πε0

r

a3
(5.28)

for r < a, and

Er(r) =
Q

4πε0 r2
(5.29)

for r ≥ a. Equations (5.19), (5.28), and (5.29) yield

W =
Q2

8πε0

(
1

a6

∫a
0

r4 dr+

∫
∞

a

dr

r2

)
, (5.30)
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which reduces to

W =
Q2

8πε0 a

(
1

5
+ 1

)
=
3

5

Q2

4πε0 a
. (5.31)

Thus, Equation (5.19) gives the correct answer.
The reason that we have checked Equation (5.19) so carefully is that,

on close inspection, it is found to be inconsistent with Equation (5.10),
from which it was supposedly derived! For instance, the energy given
by Equation (5.19) is manifestly positive definite, whereas the energy
given by Equation (5.10) can be negative (it is certainly negative for a
collection of two point charges of opposite sign). The inconsistency was
introduced into our analysis when we replaced Equation (5.11) with
Equation (5.13). In Equation (5.11), the self-interaction of the ith charge
with its own electric field is specifically excluded, whereas it is included
in Equation (5.13). Thus, the potential energies (5.10) and (5.19) are
different because in the former we start from ready-made point charges,
whereas in the latter we build up the whole charge distribution from
scratch. Hence, if we were to work out the potential energy of a point
charge distribution using Equation (5.19) then we would obtain the
energy (5.10) plus the energy required to assemble the point charges.
What is the energy required to assemble a point charge? In fact, it is
infinite. To see this, let us suppose, for the sake of argument, that our
point charges actually consist of charge uniformly distributed in small
spheres of radius b. According to Equation (5.26), the energy required
to assemble the ith point charge is

Wi =
3

5

q2i
4πε0 b

. (5.32)

We can think of this as the self-energy of the ith charge. Thus, we can
write

W =
ε0

2

∫
E2 d3r =

1

2

N∑
i=1

qi φi +

N∑
i=1

Wi (5.33)

which enables us to reconcile Equations (5.10) and (5.19). Unfortu-
nately, if our point charges really are point charges then b → 0, and the
self-energy of each charge becomes infinite. Thus, the potential energies
predicted by Equations (5.10) and (5.19) differ by an infinite amount.
What does this all mean? We have to conclude that the idea of locating
electrostatic potential energy in the electric field is inconsistent with the
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existence of point charges. One way out of this difficulty would be to say
that elementary charges, such as electrons, are not points objects, but
instead have finite spatial extents. Regrettably, there is no experimental
evidence to back up this assertion. Alternatively, we could say that our
classical theory of electromagnetism breaks down on very small length-
scales due to quantum effects. Unfortunately, the quantum mechanical
version of electromagnetism (which is called Quantum Electrodynamics)
suffers from the same infinities in the self-energies of charged particles as
the classical version. There is a prescription, called renormalization, for
steering round these infinities, and getting finite answers which agree
with experimental data to extraordinary accuracy. However, nobody
really understands why this prescription works. Indeed, the problem
of the infinite self-energies of elementary charged particles is still an
unresolved issue in Physics.

5.3 OHM’S LAW

A conductor is a medium which contains free electric charges (usually
electrons) which drift in the presence of an applied electric field, giving
rise to an electric current flowing in the same direction as the field. The
well-known relationship between the current and the voltage in a typical
conductor is given by Ohm’s law: i.e.,

V = I R, (5.34)

where V is the voltage drop across a conductor of electrical resis-
tance R through which a current I flows. Incidentally, the unit of
electrical resistance is the ohm (Ω), which is equivalent to a volt per
ampere.

Let us generalize Ohm’s law so that it is expressed in terms of E and
j, rather than V and I. Consider a length l of a conductor of uniform
cross-sectional area A through which a current I flows. In general, we
expect the electrical resistance of the conductor to be proportional to
its length, l, and inversely proportional to its cross-sectional area, A
(i.e., we expect that it is harder to push an electrical current down a
long rather than a short wire, and easier to push a current down a wide
rather than a narrow conducting channel). Thus, we can write

R = η
l

A
. (5.35)
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Here, the constant η is called the resistivity of the conducting medium,
and is measured in units of ohm-meters. Hence, Ohm’s law becomes

V = η
l

A
I. (5.36)

However, I/A = jz (supposing that the conductor is aligned along the
z-axis) and V/l = Ez, so the above equation reduces to

Ez = η jz. (5.37)

There is nothing special about the z-axis (in an isotropic conducting
medium), so the previous formula immediately generalizes to

E = η j. (5.38)

This is the vector form of Ohm’s law.
It is fairly easy to account for the above equation physically. Con-

sider a metal which has n free electrons per unit volume. Of course,
the metal also has a fixed lattice of metal ions whose charge per unit
volume is equal and opposite to that of the free electrons, rendering
the medium electrically neutral. In the presence of an electric field E,
a given free electron accelerates (from rest at t = 0) such that its drift
velocity is written v = −(e/me) tE, where −e is the electron charge, and
me the electron mass. Suppose that, on average, a drifting electron col-
lides with a metal ion once every τ seconds. Given that a metal ion is
much more massive than an electron, we expect a free electron to lose
all of the momentum it had previously acquired from the electric field
during such a collision. It follows that the mean drift velocity of the
free electrons is v̄ = −(e τ/2me) E. Hence, the mean current density is
j = (ne2 τ/2me) E. Thus, the resistivity can be written

η =
ne2 τ

2me
. (5.39)

We conclude that the resistivity of a typical conducting medium is
determined by the number density of free electrons, as well as the
mean collision rate of these electrons with the fixed ions. The fact that
j ∝ E leads immediately to the relation (5.35) between resistivity and
resistance.

A free charge q which moves through a voltage drop V acquires an
energy qV from the electric field. In a conducting medium, this energy
is dissipated as heat (the conversion to heat takes place each time a free
charge collides with a fixed ion). This type of heating is called ohmic



“chapter5” — 2007/11/29 — 15:40 — page 165 — #9

CHAPTER 5 ELECTROSTATIC CALCULATIONS 165

heating. Suppose thatN charges per unit time pass through a conductor.
The current flowing is obviously I = Nq. The total energy gained by the
charges, which appears as heat inside the conductor, is

P = NqV = I V (5.40)

per unit time. Thus, the heating power is

P = I V = I2 R =
V2

R
. (5.41)

Equations (5.40) and (5.41) generalize to

P = j · E = η j2, (5.42)

where P is now the power dissipated per unit volume inside the
conducting medium.

5.4 CONDUCTORS

Most (but not all) electrical conductors obey Ohm’s law. Such conductors
are termed ohmic. Suppose that we apply an electric field to an ohmic
conductor. What is going to happen? According to Equation (5.38),
the electric field drives currents. These currents redistribute the charge
inside the conductor until the original electric field is canceled out. At
this point, the currents stop flowing. It might be objected that the cur-
rents could keep flowing in closed loops. According to Ohm’s law, this
would require a non-zero emf,

∮
E · dl, acting around each loop (unless

the conductor is a superconductor, with η = 0). However, we know that
in a steady-state ∮

C

E · dl = 0 (5.43)

around any closed loop C. This proves that a steady-state emf acting
around a closed loop inside a conductor is impossible. The only other
alternative is

j = E = 0 (5.44)

everywhere inside the conductor. It immediately follows from the
Maxwell equation ∇ · E = ρ/ε0 that

ρ = 0. (5.45)
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So, there are no electric charges in the interior of a conductor. But,
how can a conductor cancel out an applied electric field if it contains no
charges? The answer is that all of the charges reside on the surface of
the conductor. In reality, the charges lie within one or two atomic layers
of the surface (see any textbook on solid-state physics). The difference
in scalar potential between two points P and Q is simply

φ(Q) − φ(P) =

∫Q
P

∇φ · dl = −

∫Q
P

E · dl. (5.46)

However, if P and Q both lie inside the same conductor then it is clear
from Equations (5.44) and (5.46) that the potential difference between
P andQ is zero. This is true no matter where P andQ are situated inside
the conductor, so we conclude that the scalar potential must be uniform
inside a conductor. A corollary of this is that the surface of a conductor
is an equipotential (i.e., φ = constant) surface.

So, the electric field inside a conductor is zero. We can demonstrate
that the field within an empty cavity lying inside a conductor is zero as
well, provided that there are no charges within the cavity. Let us, first
of all, apply Gauss’ law to a surface S which surrounds the cavity, but
lies wholly within the conducting medium—see Figure 5.1. Since the
electric field is zero inside a conductor, it follows that zero net charge
is enclosed by S. This does not preclude the possibility that there are
equal amounts of positive and negative charges distributed on the inner
surface of the conductor. However, we can easily rule out this possibility
using the steady-state relation∮

C

E · dl = 0, (5.47)

for any closed loop C. If there are any electric field-lines inside the
cavity then they must run from the positive to the negative surface
charges. Consider a closed loop C which straddles the cavity and the
conductor, such as the one shown in Figure 5.1. In the presence of
field-lines, it is clear that the line integral of E along that portion of the
loop which lies inside the cavity is non-zero. However, the line integral
of E along that portion of the loop which runs through the conducting
medium is obviously zero (since E = 0 inside a conductor). Thus, the
line integral of the field around the closed loop C is non-zero, which
clearly contradicts Equation (5.47). In fact, this equation implies that
the line integral of the electric field along any path which runs through
the cavity, from one point on the interior surface of the conductor to
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Figure 5.1: An empty cavity inside a conductor.

another, is zero. This can only be the case if the electric field itself is
zero everywhere inside the cavity. (The above argument is not entirely
rigorous. In particular, it is not clear that it fails if there are charges
inside the cavity. We shall discuss an improved argument later on in this
chapter.)

We have shown that if a charge-free cavity is completely enclosed
by a conductor then no stationary distribution of charges outside the
conductor can ever produce any electric fields inside the cavity. It follows
that we can shield a sensitive piece of electrical equipment from stray
external electric fields by placing it inside a metal can. In fact, a wire
mesh cage will do, as long as the mesh spacing is not too wide. Such a
cage is known as a Faraday cage.

Let us consider some small region on the surface of a conductor.
Suppose that the local surface charge density is σ, and that the electric
field just outside the conductor is E. Note that this field must be directed
normal to the surface of the conductor. Any parallel component would
be shorted out by surface currents. Another way of saying this is that
the surface of a conductor is an equipotential. We know that ∇φ is
always perpendicular to an equipotential, so E = −∇φ must be locally
perpendicular to a conducting surface. Let us use Gauss’ law,

∮
S

E · dS =
1

ε0

∫
V

ρdV, (5.48)
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Gaussian

conductor

vacuum

pill-box

E

Figure 5.2: The surface of a conductor.

where V is a so-called Gaussian pill-box—see Figure 5.2. This is a pill-
box-shaped volume whose two ends are aligned parallel to the surface
of the conductor, with the surface running between them, and whose
sides are perpendicular to the surface. It is clear that E is parallel to
the sides of the box, so the sides make no contribution to the surface
integral. The end of the box which lies inside the conductor also makes
no contribution, since E = 0 inside a conductor. Thus, the only non-zero
contribution to the surface integral comes from the end lying in free
space. This contribution is simply E⊥A, where E⊥ denotes an outward
pointing (from the conductor) normal electric field, and A is the cross-
sectional area of the box. The charge enclosed by the box is simply σA,
from the definition of a surface charge density. Thus, Gauss’ law yields

E⊥ =
σ

ε0
(5.49)

as the relationship between the normal electric field immediately outside
a conductor and the surface charge density.

Let us look at the electric field generated by a sheet charge distri-
bution a little more carefully. Suppose that the charge per unit area is
σ. By symmetry, we expect the field generated below the sheet to be
the mirror image of that above the sheet (at least, locally). Thus, if we
integrate Gauss’ law over a pill-box of cross-sectional area A, as shown
in Figure 5.3, then the two ends both contribute EsheetA to the surface
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Figure 5.3: The electric field of a sheet charge.

integral, where Esheet is the normal electric field generated above and
below the sheet. The charge enclosed by the pill-box is just σA. Thus,
Gauss’ law yields a symmetric electric field

Esheet =

{
+σ/(2 ε0) above
−σ/(2 ε0) below

. (5.50)

So, how do we get the asymmetric electric field of a conducting surface,
which is zero immediately below the surface (i.e., inside the conductor)
and non-zero immediately above it? Clearly, we have to add in an exter-
nal field (i.e., a field which is not generated locally by the sheet charge).
The requisite field is

Eext =
σ

2 ε0
(5.51)

both above and below the charge sheet. The total field is the sum of the
field generated locally by the charge sheet and the external field. Thus,
we obtain

Etotal =

{
+σ/ε0 above
0 below

, (5.52)

which is in agreement with Equation (5.49).
Now, the external field exerts a force on the charge sheet. Of course,

the field generated locally by the sheet itself cannot exert a local force
(i.e., the charge sheet cannot exert a force on itself). Thus, the force per
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unit area acting on the surface of a conductor always acts outward, and
is given by

p = σEext =
σ2

2 ε0
. (5.53)

We conclude that there is an electrostatic pressure acting on any charged
conductor. This effect can be observed by charging up soap bubbles: the
additional electrostatic pressure eventually causes them to burst. The
electrostatic pressure can also be written

p =
ε0

2
E2⊥, (5.54)

where E⊥ is the field-strength immediately above the surface of the
conductor. Note that, according to the above formula, the electrostatic
pressure is equivalent to the energy density of the electric field imme-
diately outside the conductor. This is not a coincidence. Suppose that
the conductor expands normally by an average distance dx, due to the
electrostatic pressure. The electric field is excluded from the region into
which the conductor expands. The volume of this region is dV = Adx,
where A is the surface area of the conductor. Thus, the energy of the
electric field decreases by an amount dE = UdV = (ε0/2)E

2
⊥ dV, where

U is the energy density of the field. This decrease in energy can be
ascribed to the work which the field does on the conductor in order to
make it expand. This work is dW = pAdx, where p is the force per unit
area that the field exerts on the conductor. Thus, dE = dW, from energy
conservation, giving

p =
ε0

2
E2⊥. (5.55)

Incidentally, this technique for calculating a force, given an expression
for the energy of a system as a function of some adjustable parameter, is
called the principle of virtual work.

We have seen that an electric field is excluded from the inside of a
conductor, but not from the outside, giving rise to a net outward force.
We can account for this fact by saying that the field exerts a negative
pressure (ε0/2)E

2
⊥ on the conductor. Now, we know that if we evacuate

a closed metal can then the pressure difference between the inside and
the outside eventually causes it to implode. Likewise, if we place the
can in a strong electric field then the pressure difference between the
inside and the outside will eventually cause it to explode. How big a
field do we need before the electrostatic pressure difference is the same
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as that obtained by evacuating the can? In other words, what electric
field exerts a negative pressure of one atmosphere (i.e., 105 newtons per
meter squared) on the can? The answer is a field of strength E ∼ 108 volts
per meter. Fortunately, this is a rather large electric field, so there is no
danger of your car exploding when you turn on the radio!

5.5 BOUNDARY CONDITIONS ON THE ELECTRIC FIELD

What are the general boundary conditions satisfied by the electric field
at the interface between two different media: e.g., the interface between
a vacuum and a conductor? Consider an interface P between two media
1 and 2. Let us, first of all, apply Gauss’ law,∮

S

E · dS =
1

ε0

∫
V

ρdV, (5.56)

to a Gaussian pill-box S of cross-sectional area A whose two ends are
locally parallel to the interface—see Figure 5.4. The ends of the box can
be made arbitrarily close together. In this limit, the flux of the electric
field out of the sides of the box is obviously negligible, and the only
contribution to the flux comes from the two ends. In fact,∮

S

E · dS = (E⊥ 1 − E⊥ 2)A, (5.57)

where E⊥ 1 is the perpendicular (to the interface) electric field in medium
1 at the interface, etc. The charge enclosed by the pill-box is simply
σA, where σ is the sheet charge density on the interface. Note that any
volume distribution of charge gives rise to a negligible contribution to
the right-hand side of Equation (5.56), in the limit where the two ends
of the pill-box are very closely spaced. Thus, Gauss’ law yields

E⊥ 1 − E⊥ 2 =
σ

ε0
(5.58)

at the interface: i.e., the presence of a charge sheet on an interface
causes a discontinuity in the perpendicular component of the electric
field. What about the parallel electric field? Let us apply Faraday’s law
to a rectangular loop C whose long sides, length l, run parallel to the
interface, ∮

C

E · dl = −
∂

∂t

∫
S

B · dS (5.59)
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loop Gaussian pill-box
.
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P

S
C

E‖ 1

E‖ 2

E⊥ 1

E⊥ 2

1

Figure 5.4: Boundary conditions on the electric field.

—see Figure 5.4. The length of the short sides is assumed to be arbitrarily
small. Hence, the dominant contribution to the loop integral comes from
the long sides: ∮

C

E · dl = (E‖ 1 − E‖ 2) l, (5.60)

where E‖ 1 is the parallel (to the interface) electric field in medium 1

at the interface, etc. The flux of the magnetic field through the loop is
approximately B⊥A, where B⊥ is the component of the magnetic field
which is normal to the loop, and A the area of the loop. But, A → 0 as
the short sides of the loop are shrunk to zero. So, unless the magnetic
field becomes infinite at the interface (and we shall assume that it does
not), the flux also tends to zero. Thus,

E‖ 1 − E‖ 2 = 0 : (5.61)

i.e., there can be no discontinuity in the parallel component of the electric
field across an interface.

5.6 CAPACITORS

It is clear that we can store electrical charge on the surface of a conduc-
tor. However, electric fields will be generated immediately above this
surface. Now, the conductor can only successfully store charge if it is
electrically insulated from its surroundings. Of course, air is a very good
insulator. Unfortunately, air ceases to be an insulator when the elec-
tric field-strength through it exceeds some critical value which is about
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Ecrit ∼ 106 volts per meter. This phenomenon, which is called breakdown,
is associated with the formation of sparks. The most well-known exam-
ple of the breakdown of air is during a lightning strike. Thus, a good
charge storing device is one which holds a relatively large amount of
charge, but only generates relatively small external electric fields (so as
to avoid breakdown). Such a device is called a capacitor.

Consider two thin, parallel, conducting plates of cross-sectional area
A which are separated by a small distance d (i.e., d 	 √

A). Suppose
that each plate carries an equal and opposite charge ±Q (whereQ > 0).
We expect this charge to spread evenly over the plates to give an effec-
tive sheet charge density ±σ = Q/A on each plate. Suppose that the
upper plate carries a positive charge and that the lower carries a neg-
ative charge. According to Equation (5.50), the field generated by the
upper plate is normal to the plate and of magnitude

Eupper =

{
+σ/(2ε0) above
−σ/(2ε0) below

. (5.62)

Likewise, the field generated by the lower plate is

Elower =

{
−σ/(2ε0) above
+σ/(2ε0) below

. (5.63)

Note that we are neglecting any “leakage” of the field at the edges of the
plates. This is reasonable provided that the plates are relatively closely
spaced. The total field is the sum of the two fields generated by the
upper and lower plates. Thus, the net field is normal to the plates, and
of magnitude

E⊥ =

{
σ/ε0 between
0 otherwise

(5.64)

—see Figure 5.5. Since the electric field is uniform, the potential
difference between the plates is simply

V = E⊥ d =
σd

ε0
. (5.65)

Now, it is conventional to measure the capacity of a conductor, or
set of conductors, to store charge, but generate small external electric
fields, in terms of a parameter called the capacitance. This parameter is
usually denoted C. The capacitance of a charge-storing device is simply
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conducting plates

A

d E⊥

�σ

σ

Figure 5.5: The electric field of a parallel plate capacitor.

the ratio of the charge stored to the potential difference generated by
this charge: i.e.,

C =
Q

V
. (5.66)

Clearly, a good charge-storing device has a high capacitance. Incidentally,
capacitance is measured in farads (F), which are equivalent to coulombs
per volt. This is a rather unwieldy unit, since capacitors in electrical
circuits typically have capacitances which are only about one millionth
of a farad. For a parallel plate capacitor, we have

C =
σA

V
=
ε0 A

d
. (5.67)

Note that the capacitance only depends on geometric quantities, such as
the area and spacing of the plates. This is a consequence of the superpos-
ability of electric fields. If we double the charge on a set of conductors
then we double the electric fields generated around them, and we, there-
fore, double the potential difference between the conductors. Thus, the
potential difference between the conductors is always directly propor-
tional to the charge on the conductors: the constant of proportionality
(the inverse of the capacitance) can only depend on geometry.

Suppose that the charge ±Q on each plate of a parallel plate capac-
itor is built up gradually by transferring small amounts of charge from
one plate to another. If the instantaneous charge on the plates is ±q,
and an infinitesimal amount of positive charge dq is transferred from
the negatively charged to the positively charge plate, then the work
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done is dW = V dq = qdq/C, where V is the instantaneous voltage
difference between the plates. Note that the voltage difference is such
that it opposes any increase in the charge on either plate. The total work
done in charging the capacitor is

W =
1

C

∫Q
0

qdq =
Q2

2C
=
1

2
CV2, (5.68)

where use has been made of Equation (5.66). The energy stored in the
capacitor is the same as the work required to charge up the capacitor.
Thus, the stored energy is

W =
1

2
CV2. (5.69)

This is a general result which holds for all types of capacitor.
The energy of a charged parallel plate capacitor is actually stored

in the electric field between the plates. This field is of approximately
constant magnitude E⊥ = V/d, and occupies a region of volume Ad.
Thus, given the energy density of an electric field, U = (ε0/2)E

2, the
energy stored in the electric field is

W =
ε0

2

V2

d2
Ad =

1

2
CV2, (5.70)

where use has been made of Equation (5.67). Note that Equations (5.68)
and (5.70) agree with one another. The fact that the energy of a capacitor
is stored in its electric field is also a general result.

The idea, which we discussed earlier, that an electric field exerts a
negative pressure (ε0/2)E

2
⊥ on conductors immediately suggests that the

two plates in a parallel plate capacitor attract one another with a mutual
force

F =
ε0

2
E 2

⊥ A =
1

2

CV2

d
. (5.71)

It is not actually necessary to have two oppositely charged conduc-
tors in order to make a capacitor. Consider an isolated conducting sphere
of radius awhich carries an electric chargeQ. The spherically symmetric
radial electric field generated outside the sphere is given by

Er(r > a) =
Q

4πε0 r2
. (5.72)

It follows that the potential difference between the sphere and infinity—
or, more realistically, some large, relatively distant reservoir of charge
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a

conducting spheres

wire

b

Figure 5.6: Two conducting spheres connected by a wire.

such as the Earth—is

V =
Q

4πε0 a
. (5.73)

Thus, the capacitance of the sphere is

C =
Q

V
= 4πε0 a. (5.74)

The energy of a spherical capacitor when it carries a charge Q is again
given by (1/2)CV2. It can easily be demonstrated that this is really the
energy contained in the electric field surrounding the capacitor.

Suppose that we have two spheres of radii a and b, respectively,
which are connected by a long electric wire—see Figure 5.6. The wire
allows charge to move back and forth between the spheres until they
reach the same potential (with respect to infinity). Let Qa be the charge
on the first sphere, and Qb the charge on the second sphere. Of course,
the total chargeQ0 = Qa +Qb carried by the two spheres is a conserved
quantity. It follows from Equation (5.73) that

Qa

Q0
=

a

a+ b
, (5.75)

Qb

Q0
=

b

a+ b
. (5.76)

Note that if one sphere is much smaller than the other one, e.g., b 	 a,
then the large sphere grabs most of the charge: i.e.,

Qa

Qb
� a

b
� 1. (5.77)
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The ratio of the electric fields generated just above the surfaces of the
two spheres follows from Equations (5.72) and (5.77):

Eb

Ea
� a

b
. (5.78)

Note that if b 	 a then the field just above the smaller sphere is far larger
than that above the larger sphere. Equation (5.78) is a simple example
of a far more general rule: i.e., the electric field above some point on
the surface of a conductor is inversely proportional to the local radius of
curvature of the surface.

It is clear that if we wish to store significant amounts of charge on
a conductor then the surface of the conductor must be made as smooth
as possible. Any sharp spikes on the surface will inevitably have com-
paratively small radii of curvature. Intense local electric fields are thus
generated around such spikes. These fields can easily exceed the criti-
cal field for the breakdown of air, leading to sparking and the eventual
loss of the charge on the conductor. Sparking can also be very destruc-
tive, because the associated electric currents flow through very localized
regions, giving rise to intense ohmic heating.

As a final example, consider two coaxial conducting cylinders of radii
a and b, where a < b. Suppose that the charge per unit length carried by
the outer and inner cylinders is +λ and −λ, respectively. We can safely
assume that E = Er(r) er, by symmetry (adopting standard cylindrical
polar coordinates). Let us apply Gauss’ law to a cylindrical surface of
radius r, coaxial with the conductors, and of length l. For a < r < b, we
find that

2π r l Er(r) =
λ l

ε0
, (5.79)

so that

Er =
λ

2πε0 r
(5.80)

for a < r < b. It is fairly obvious that Er = 0 if r is not in the range a to
b. The potential difference between the inner and outer cylinders is

V = −

∫ inner

outer
E · dl =

∫outer

inner
E · dl

=

∫b
a

Er dr =
λ

2πε0

∫b
a

dr

r
, (5.81)
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so

V =
λ

2πε0
ln
b

a
. (5.82)

Thus, the capacitance per unit length of the two cylinders is

C =
λ

V
=
2πε0

ln b/a
. (5.83)

5.7 POISSON’S EQUATION

Now, we know that in a steady-state we can write

E = −∇φ, (5.84)

with the scalar potential satisfying Poisson’s equation:

∇2φ = −
ρ

ε0
. (5.85)

We even know the general solution to this equation:

φ(r) =
1

4πε0

∫
ρ(r ′)

|r − r ′|
d3r ′. (5.86)

So, what else is there to say about Poisson’s equation? Well, consider
a positive (say) point charge in the vicinity of an uncharged, insulated,
conducting sphere. The charge attracts negative charges to the near side
of the sphere, and repels positive charges to the far side. The surface
charge distribution induced on the sphere is such that the surface is
maintained at a constant electrical potential. We now have a problem.
We cannot use formula (5.86) to work out the potential φ(r) around the
sphere, since we do not know beforehand how the charges induced on
its conducting surface are distributed. The only things which we know
about the surface are that it is an equipotential, and carries zero net
charge. Clearly, the solution (5.86) to Poisson’s equation is completely
useless in the presence of conducting surfaces. Let us now try to develop
some techniques for solving Poisson’s equation which allow us to solve
real problems (which invariably involve conductors).
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5.8 THE UNIQUENESS THEOREM

We have already seen the great value of the uniqueness theorem for Pois-
son’s equation (or Laplace’s equation) in our discussion of the Helmholtz
theorem (see Section 3.11). Let us now examine the uniqueness theorem
in detail.

Consider a volume V bounded by some surface S—see Figure 5.7.
Suppose that we are given the charge density ρ throughout V, and the
value of the scalar potential φS on S. Is this sufficient information to
uniquely specify the scalar potential throughoutV? Suppose, for the sake
of argument, that the solution is not unique. Let there be two different
potentials φ1 and φ2 which satisfy

∇2φ1 = −
ρ

ε0
, (5.87)

∇2φ2 = −
ρ

ε0
(5.88)

throughout V, and

φ1 = φS, (5.89)

φ2 = φS (5.90)

on S. We can form the difference between these two potentials:

φ3 = φ1 − φ2. (5.91)

V

S

bounding surface

volume

Figure 5.7: The first uniqueness theorem.
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The potential φ3 clearly satisfies

∇2φ3 = 0 (5.92)

throughout V, and

φ3 = 0 (5.93)

on S.
Now, according to vector field theory,

∇ · (φ3∇φ3) ≡ (∇φ3)2 + φ3∇2φ3. (5.94)

Thus, using Gauss’ theorem,∫
V

[
(∇φ3)2 + φ3∇2φ3

]
dV =

∮
S

φ3∇φ3 · dS. (5.95)

But, ∇2φ3 = 0 throughout V, and φ3 = 0 on S, so the above equation
reduces to ∫

V

(∇φ3)2 dV = 0. (5.96)

Note that (∇φ3)2 is a positive definite quantity. The only way in which
the volume integral of a positive definite quantity can be zero is if that
quantity itself is zero throughout the volume. This is not necessarily the
case for a non-positive definite quantity: we could have positive and neg-
ative contributions from various regions inside the volume which cancel
one another out. Thus, since (∇φ3)2 is positive definite, it follows that

φ3 = constant (5.97)

throughout V. However, we know that φ3 = 0 on S, so we get

φ3 = 0 (5.98)

throughout V. In other words,

φ1 = φ2 (5.99)

throughout V and on S. Our initial assumption that φ1 and φ2 are two
different solutions of Poisson’s equation, satisfying the same boundary
conditions, turns out to be incorrect. Hence, the solution is unique.

The fact that the solutions to Poisson’s equation are unique is very
useful. It means that if we find a solution to this equation—no matter
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conductors

Figure 5.8: The second uniqueness theorem.

how contrived the derivation—then this is the only possible solution.
One immediate use of the uniqueness theorem is to prove that the electric
field inside an empty cavity situated within a conductor is zero. Recall
that our previous proof of this was rather involved, and was also not
particularly rigorous (see Section 5.4). Now, we know that the interior
surface of the conductor is at some constant potential φ0, say. So, we
have φ = φ0 on the boundary of the cavity, and ∇2φ = 0 inside the
cavity (since it contains no charges). One rather obvious solution to this
problem is φ = φ0 throughout the cavity. Since the solutions to Poisson’s
equation are unique, this is the only solution. Thus,

E = −∇φ = −∇φ0 = 0 (5.100)

inside the cavity.
Suppose that some volume V contains a number of conductors—see

Figure 5.8. We know that the surface of each conductor is an equipoten-
tial, but, in general, we do not know the potential of a given conductor
(unless we are specifically told that the conductor is earthed, etc.). How-
ever, if the conductors are insulated then it is plausible that we might
know the charge on each conductor. Suppose that there are N conduc-
tors, each carrying a known charge Qi (i = 1 to N), and suppose that
the region V containing these conductors is filled by a known charge
density ρ, and bounded by some surface S which is either infinity or an
enclosing conductor. Is this sufficient information to uniquely specify the
electric field throughout V?
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Well, suppose that it is not sufficient information, so that there are
two different fields E1 and E2 which satisfy

∇ · E1 =
ρ

ε0
, (5.101)

∇ · E2 =
ρ

ε0
(5.102)

throughout V, with ∮
Si

E1 · dSi =
Qi

ε0
, (5.103)

∮
Si

E2 · dSi =
Qi

ε0
(5.104)

on the surface of the ith conductor, and, finally,∮
S

E1 · dS =
Qtotal

ε0
, (5.105)

∮
S

E2 · dS =
Qtotal

ε0
(5.106)

over the bounding surface, where

Qtotal =

N∑
i=1

Qi +

∫
V

ρdV (5.107)

is the total charge contained in volume V.
Let us form the difference field

E3 = E1 − E2. (5.108)

It is clear that

∇ · E3 = 0 (5.109)

throughout V, and ∮
Si

E3 · dSi = 0 (5.110)

for all i, with ∮
S

E3 · dS = 0. (5.111)
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Now, we know that each conductor is at a constant potential, so if

E3 = −∇φ3, (5.112)

then φ3 is a constant on the surface of each conductor. Furthermore,
if the outer surface S is infinity then φ1 = φ2 = φ3 = 0 on this surface.
On the other hand, if the outer surface is an enclosing conductor then
φ3 is a constant on it. Either way, φ3 is constant on S.

Consider the vector identity

∇ · (φ3 E3) ≡ φ3∇ · E3 + E3 · ∇φ3. (5.113)

We have ∇ · E3 = 0 throughout V, and ∇φ3 = −E3, so the above identity
reduces to

∇ · (φ3 E3) = −E 2
3 (5.114)

throughout V. Integrating over V, and making use of Gauss’ theorem,
yields

∫
V

E 2
3 dV =

N∑
i=1

∮
Si

φ3 E3 · dSi −
∮
S

φ3 E3 · dS. (5.115)

However, φ3 is a constant on the surfaces Si and S. So, making use of
Equations (5.110) and (5.111), we obtain∫

V

E 2
3 dV = 0. (5.116)

Of course, E 2
3 is a positive definite quantity, so the above relation implies

that

E3 = 0 (5.117)

throughoutV: i.e., the fields E1 and E2 are identical throughoutV. Hence,
the solution is unique.

For a general electrostatic problem involving charges and conduc-
tors, it is clear that if we are given either the potential at the surface of
each conductor or the charge carried by each conductor (plus the charge
density throughout the volume, etc.) then we can uniquely determine
the electric field. There are many other uniqueness theorems which gen-
eralize this result still further: e.g., we could be given the potentials on
the surfaces of some of the conductors, and the charges on the surfaces
of the others, and the solution would still be unique.
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At this point, it is worth noting that there are also uniqueness theo-
rems associated with magnetostatics. For instance, if the current density,
j, is specified throughout some volume V, and either the magnetic field,
B, or the vector potential, A, is specified on the bounding surface S, then
the magnetic field is uniquely determined throughout V and on S. The
proof of this proposition proceeds along the usual lines. Suppose that
the magnetic field is not uniquely determined. In other words, suppose
there are two different magnetic fields, B1 and B2, satisfying

∇ × B1 = µ0 j, (5.118)

∇ × B2 = µ0 j, (5.119)

throughout V. Suppose, further, that either B1 = B2 = BS or A1 = A2 =
AS on S. Forming the difference field, B3 = B1 − B2, we have

∇ × B3 = 0 (5.120)

throughoutV, and either B3 = 0 or A3 = 0 on S. Now, according to vector
field theory,∫

V

[
(∇ × U)2 − U · ∇ × ∇ × U

]
dV ≡

∮
S

U × (∇ × U) · dS. (5.121)

Setting U = A3, and using B3 = ∇ × A3 and Equation (5.120), we obtain∫
V

B23 dV =

∮
S

A3 × B3 · dS. (5.122)

However, we know that either B3 or A3 is zero on S. Hence, we get∫
V

B23 dV = 0. (5.123)

Since B23 is positive definite, the only way in which the above equation
can be satisfied is if B3 is zero throughout V. Hence, B1 = B2 throughout
V, and the solution is unique.

5.9 ONE-DIMENSIONAL SOLUTIONS OF POISSON’S EQUATION

So, how do we actually solve Poisson’s equation,

∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= −

ρ(x, y, z)

ε0
, (5.124)
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in practice? In general, the answer is that we use a computer. However,
there are a few situations, possessing a high degree of symmetry, where
it is possible to find analytic solutions. Let us discuss some of these
situations.

Suppose, first of all, that there is no variation of quantities in (say)
the y- and z-directions. In this case, Poisson’s equation reduces to an
ordinary differential equation in x, the solution of which is relatively
straightforward. Consider, for instance, a vacuum diode, in which elec-
trons are emitted from a hot cathode and accelerated toward an anode,
which is held at a large positive potential V with respect to the cathode.
We can think of this as an essentially one-dimensional problem. Suppose
that the cathode is at x = 0 and the anode at x = d. Poisson’s equation
takes the form

d2φ

dx2
= −

ρ(x)

ε0
, (5.125)

whereφ(x) satisfies the boundary conditionsφ(0) = 0 andφ(d) = V. By
energy conservation, an electron emitted from rest at the cathode has
an x-velocity v(x) which satisfies

1

2
me v

2(x) − eφ(x) = 0. (5.126)

Here, me and −e are the mass and charge of an electron, respectively.
Finally, in a steady-state, the electric current I (between the anode and
cathode) is independent of x (otherwise, charge will continually build
up at some points). In fact,

I = −ρ(x) v(x)A, (5.127)

where A is the cross-sectional area of the diode. The previous three
equations can be combined to give

d2φ

dx2
=

I

ε0 A

(me

2 e

)1/2
φ−1/2. (5.128)

The solution of the above equation which satisfies the boundary condi-
tions is

φ(x) = V
(x
d

)4/3
, (5.129)

with

I =
4

9

ε0 A

d2

(
2 e

me

)1/2
V3/2. (5.130)
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This relationship between the current and the voltage in a vacuum diode
is called the Child-Langmuir law.

Let us now consider the solution of Poisson’s equation in more than
one dimension.

5.10 THE METHOD OF IMAGES

Suppose that we have a point charge q held a distance d from an infi-
nite, grounded, conducting plate—see Figure 5.9. Let the plate lie in the
x-y plane, and suppose that the point charge is located at coordinates
(0, 0, d). What is the scalar potential generated in the region above the
plate? This is not a simple question, because the point charge induces
surface charges on the plate, and we do not know beforehand how these
charges are distributed.

Well, what do we know in this problem? We know that the conduct-
ing plate is an equipotential surface. In fact, the potential of the plate is
zero, since it is grounded. We also know that the potential at infinity is
zero (this is our usual boundary condition for the scalar potential). Thus,
we need to solve Poisson’s equation in the region z > 0, with a single
point charge q at position (0, 0, d), subject to the boundary conditions

φ(x, y, 0) = 0, (5.131)

and

φ(x, y, z) → 0 as x2 + y2 + z2 → ∞. (5.132)

Let us forget about the real problem, for a moment, and concentrate
on a slightly different one. We refer to this as the analog problem—see
Figure 5.9. In the analog problem, we have a charge q located at (0, 0, d)
and a charge −q located at (0, 0, -d), with no conductors present. We
can easily find the scalar potential for this problem, since we know where
all the charges are located. We get

φanalog(x, y, z) =
1

4πε0

{
q√

x2 + y2 + (z− d)2
−

q√
x2 + y2 + (z+ d)2

}
.

(5.133)

Note, however, that
φanalog(x, y, 0) = 0, (5.134)



“chapter5” — 2007/11/29 — 15:40 — page 187 — #31

CHAPTER 5 ELECTROSTATIC CALCULATIONS 187

analog problem

d

d

d

z = 0

−q

qq

image charge

real problem

real charge

grounded conducting plate

z > 0

z < 0

Figure 5.9: The method of images for a charge and a grounded conducting
plane.

and

φanalog(x, y, z) → 0 as x2 + y2 + z2 → ∞. (5.135)

Moreover, in the region z > 0, φanalog satisfies Poisson’s equation for a
point charge q located at (0, 0, d). Thus, in this region, φanalog is a
solution to the problem posed earlier. Now, the uniqueness theorem tells
us that there is only one solution to Poisson’s equation which satisfies a
given well-posed set of boundary conditions. So, φanalog must be the cor-
rect potential in the region z > 0. Of course, φanalog is completely wrong
in the region z < 0. We know this because the grounded plate shields
the region z < 0 from the point charge, so that φ = 0 in this region. Note
that we are leaning pretty heavily on the uniqueness theorem here! With-
out this theorem, it would be hard to convince a skeptical person that
φ = φanalog is the correct solution in the region z > 0.

Now that we have found the potential in the region z > 0, we can eas-
ily work out the distribution of charges induced on the conducting plate.
We already know that the relation between the electric field immediately
above a conducting surface and the density of charge on the surface is

E⊥ =
σ

ε0
. (5.136)
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In this case,

E⊥(x, y) = Ez(x, y, 0+) = −
∂φ(x, y, 0+)

∂z
= −

∂φanalog(x, y, 0+)

∂z
,

(5.137)
so

σ(x, y) = −ε0
∂φanalog(x, y, 0+)

∂z
. (5.138)

Now, it follows from Equation (5.133) that

∂φanalog

∂z
=

q

4πε0

{
−(z− d)

[x2 + y2 + (z− d)2]3/2
+

(z+ d)

[x2 + y2 + (z+ d)2]3/2

}
,

(5.139)

so

σ(x, y) = −
qd

2π (x2 + y2 + d2)3/2
. (5.140)

Clearly, the charge induced on the plate has the opposite sign to the
point charge. The charge density on the plate is also symmetric about
the z-axis, and is largest where the plate is closest to the point charge.
The total charge induced on the plate is

Q =

∫
x−y plane

σdS, (5.141)

which yields

Q = −
qd

2π

∫
∞

0

2π r dr

(r2 + d2)3/2
, (5.142)

where r2 = x2 + y2. Thus,

Q = −
qd

2

∫
∞

0

dk

(k+ d2)3/2
= qd

[
1

(k+ d2)1/2

]
∞

0

= −q. (5.143)

So, the total charge induced on the plate is equal and opposite to the
point charge which induces it.

As we have just seen, our point charge induces charges of the oppo-
site sign on the conducting plate. This, presumably, gives rise to a force
of attraction between the charge and the plate. What is this force? Well,
since the potentials, and, hence, the electric fields, in the vicinity of the
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point charge are the same in the real and analog problems, the forces
on this charge must be the same as well. In the analog problem, there
are two charges ±q a net distance 2 d apart. The force on the charge at
position (0, 0, d) (i.e., the real charge) is

f = −
q2

16πε0 d2
ez. (5.144)

Hence, this is also the force on the charge in the real problem.
What, finally, is the potential energy of the system. For the analog

problem this is simply

Wanalog = −
q2

8πε0 d
. (5.145)

Note that in the analog problem the fields on opposite sides of the con-
ducting plate are mirror images of one another. So are the charges (apart
from the change in sign). This is why the technique of replacing con-
ducting surfaces by imaginary charges is called the method of images.
We know that the potential energy of a set of charges is equivalent to
the energy stored in the electric field. Thus,

W =
ε0

2

∫
all space

E2 dV. (5.146)

Moreover, as we just mentioned, in the analog problem, the fields on
either side of the x-y plane are mirror images of one another, so that
E2(x, y,−z) = E2(x, y, z). It follows that

Wanalog = 2
ε0

2

∫
z>0

E2analog dV. (5.147)

Now, in the real problem

E =

{
Eanalog for z > 0
0 for z < 0

. (5.148)

So,

W =
ε0

2

∫
z>0

E2 dV =
ε0

2

∫
z>0

E2analog dV =
1

2
Wanalog, (5.149)

giving

W = −
q2

16πε0 d
. (5.150)
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There is another method by which we can obtain the above result.
Suppose that the charge is gradually moved toward the plate along the
z-axis, starting from infinity, until it reaches position (0, 0, d). How much
work is required to achieve this? We know that the force of attraction
acting on the charge is

fz = −
q2

16πε0 z2
. (5.151)

Thus, the work required to move this charge by dz is

dW = −fz dz =
q2

16πε0 z2
dz. (5.152)

So, the total work needed to move the charge from z = ∞ to z = d is

W =
1

4πε0

∫d
∞

q2

4 z2
dz =

1

4πε0

[
−
q2

4 z

]d
∞

= −
q2

16πε0 d
. (5.153)

Of course, this work is equivalent to the potential energy (5.150), and
is, in turn, the same as the energy contained in the electric field.

As a second example of the method of images, consider a grounded
conducting sphere of radius a centered on the origin. Suppose that a
charge q is placed outside the sphere at (b, 0, 0), where b > a—see
Figure 5.10. What is the force of attraction between the sphere and

analog problem

conducting
sphere

real problem

a

b b

x x

y y

q q−q′

c
real charge

image charge

a

grounded

Figure 5.10: The method of images for a charge and a grounded conducting
sphere.
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the charge? In this case, we proceed by considering an analog problem
in which the sphere is replaced by an image charge −q ′ placed some-
where on the x-axis at (c, 0, 0)—see Figure 5.10. The electric potential
throughout space in the analog problem is simply

φ(x, y, z) =
q

4πε0

1

[(x− b)2 + y2 + z2]1/2
−

q ′

4πε0

1

[(x− c)2 + y2 + z2]1/2
.

(5.154)

Now, the image charge must be chosen so as to make the surface φ = 0

correspond to the surface of the sphere. Setting the above expression
to zero, and performing a little algebra, we find that the φ = 0 surface
corresponds to

x2 +
2 (c− λb)

λ− 1
x+ y2 + z2 =

c2 − λb2

λ− 1
, (5.155)

where λ = q ′ 2/q2. Of course, the surface of the sphere satisfies

x2 + y2 + z2 = a2. (5.156)

The above two equations can be made identical by setting λ = c/b and
a2 = λb2, or

q ′ =
a

b
q, (5.157)

and

c =
a2

b
. (5.158)

According to the uniqueness theorem, the potential in the analog prob-
lem is now identical with that in the real problem in the region outside the
sphere. (Of course, in the real problem, the potential inside the sphere is
zero.) Hence, the force of attraction between the sphere and the original
charge in the real problem is the same as the force of attraction between
the image charge and the real charge in the analog problem. It follows
that

f =
qq ′

4πε0 (b− c)2
=

q2

4πε0

ab

(b2 − a2)2
. (5.159)

What is the total charge induced on the grounded conducting
sphere? Well, according to Gauss’ law, the flux of the electric field out
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of a spherical Gaussian surface lying just outside the surface of the con-
ducting sphere is equal to the enclosed charge divided by ε0. In the real
problem, the enclosed charge is the net charge induced on the surface
of the sphere. In the analog problem, the enclosed charge is simply −q ′.
However, the electric fields outside the conducting sphere are identical
in the real and analog problems. Hence, from Gauss’ law, the charge
enclosed by the Gaussian surface must also be the same in both prob-
lems. We thus conclude that the net charge induced on the surface of
the conducting sphere is

−q ′ = −
a

b
q. (5.160)

As another example of the method of images, consider an insulated
uncharged conducting sphere of radius a, centered on the origin, in the
presence of a charge q placed outside the sphere at (b, 0, 0), where
b > a—see Figure 5.11. What is the force of attraction between the
sphere and the charge? Clearly, this new problem is very similar to the
one which we just discussed. The only difference is that the surface of
the sphere is now at some unknown fixed potential V, and also carries
zero net charge. Note that if we add a second image charge q ′′, located
at the origin, to the analog problem pictured in Figure 5.10 then the sur-
face r = a remains an equipotential surface. In fact, the potential of this
surface becomes V = q ′′/(4πε0 a). Moreover, the total charge enclosed
by the surface is −q ′ + q ′′. This, of course, is the net charge induced on

−q′

conducting
sphere

real problem

a

b b

x x

y y

q q

c
real charge

a

analog problem

uncharged

image charges

+q′

Figure 5.11: The method of images for a charge and an uncharged
conducting sphere.
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the surface of the sphere in the real problem. Hence, we can see that if
q ′′ = q ′ = (a/b)q then zero net charge is induced on the surface of the
sphere. Thus, our modified analog problem is now a solution to the prob-
lem under discussion, in the region outside the sphere—see Figure 5.11.
It follows that the surface of the sphere is at potential

V =
q ′

4πε0 a
=

q

4πε0 b
. (5.161)

Moreover, the force of attraction between the sphere and the original
charge in the real problem is the same as the force of attraction between
the image charges and the real charge in the analog problem. Hence, the
force is given by

f =
qq ′

4πε0 (b− c)2
−

qq ′

4πε0 b2
=

q2

4πε0

(a
b

)3 (2 b2 − a2)

(b2 − a2)2
. (5.162)

As a final example of the method of images, consider two identical,
infinitely long, conducting cylinders of radius awhich run parallel to the
z-axis, and lie a distance 2 d apart. Suppose that one of the conductors
is held at potential +V, whilst the other is held at potential −V—see
Figure 5.12. What is the capacitance per unit length of the cylinders?

Consider an analog problem in which the conducting cylinders are
replaced by two infinitely long charge lines, of charge per unit length
±λ, which run parallel to the z-axis, and lie a distance 2 p apart. Now,
the potential in the x-y plane generated by a charge line λ running along
the z-axis is

φ(x, y) = −
λ

2πε0
ln r, (5.163)

y

x x

insulated
conducting
cylinders

image
line chargesd d

a a
p p

−V

−λ +λ

+V

real problem analog problem

y

Figure 5.12: The method of images for two parallel cylindrical conductors.



“chapter5” — 2007/11/29 — 15:40 — page 194 — #38

194 MAXWELL’S EQUATIONS AND THE PRINCIPLES OF ELECTROMAGNETISM

where r =
√
x2 + y2 is the radial cylindrical polar coordinate. The

corresponding electric field is radial, and satisfies

Er(r) = −
∂φ

∂r
=

λ

2πε0 r
. (5.164)

Incidentally, it is easily demonstrated from Gauss’ law that this is the cor-
rect electric field. Hence, the potential generated by two charge lines ±λ
located in the x-y plane at (±p, 0), respectively, is

φ(x, y) =
λ

4πε0
ln
[
(x+ p)2 + y2

(x− p)2 + y2

]
. (5.165)

Suppose that

(x+ p)2 + y2

(x− p)2 + y2
= α, (5.166)

where α is a constant. It follows that

x2 − 2 p
(α+ 1)

(α− 1)
x+ p2 + y2 = 0. (5.167)

Completing the square, we obtain

(x− d)2 + y2 = a2, (5.168)

where

d =
(α+ 1)

(α− 1)
p, (5.169)

and

a2 = d2 − p2. (5.170)

Of course, Equation (5.168) is the equation of a cylindrical surface of
radius a centered on (d, 0). Moreover, it follows from Equations (5.165)
and (5.166) that this surface lies at the constant potential

V =
λ

4πε0
lnα. (5.171)

Finally, it is easily demonstrated that the equipotential φ = −V corre-
sponds to a cylindrical surface of radius a centered on (−d, 0). Hence,
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we can make the analog problem match the real problem in the region
outside the cylinders by choosing

α =
d+ p

d− p
=
d+

√
d2 − a2

d−
√
d2 − a2

. (5.172)

Thus, we obtain

V =
λ

4πε0
ln

(
d+

√
d2 − a2

d−
√
d2 − a2

)
. (5.173)

Now, it follows from Gauss’ law, and the fact that the electric fields in
the real and analog problems are identical outside the cylinders, that the
charge per unit length stored on the surfaces of the two cylinders is ±λ.
Moreover, the voltage difference between the cylinders is 2V. Hence,
the capacitance per unit length of the cylinders is C = λ/(2V), yielding

C = 2πε0

/
ln

(
d+

√
d2 − a2

d−
√
d2 − a2

)
. (5.174)

This expression simplifies to give

C = πε0

/
ln

(
d

a
+

√
d2

a2
− 1

)
, (5.175)

which can also be written

C =
πε0

cosh−1(d/a)
, (5.176)

since cosh−1 x ≡ ln(x+
√
x2 − 1).

5.11 COMPLEX ANALYSIS

Let us now investigate another trick for solving Poisson’s equation (actu-
ally it only solves Laplace’s equation). Unfortunately, this method only
works in two dimensions.

The complex variable is conventionally written

z = x+ iy, (5.177)

where x and y are both real, and are identified with the corresponding
Cartesian coordinates. (Incidentally, z should not be confused with a
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z-coordinate: this is a strictly two-dimensional discussion.) We can write
functions F(z) of the complex variable just like we would write functions
of a real variable. For instance,

F(z) = z2, (5.178)

F(z) =
1

z
. (5.179)

For a given function, F(z), we can substitute z = x+ iy and write

F(z) = U(x, y) + iV(x, y), (5.180)

where U and V are two real two-dimensional functions. Thus, if

F(z) = z2, (5.181)

then

F(x+ iy) = (x+ iy)2 = (x2 − y2) + 2 i xy, (5.182)

giving

U(x, y) = x2 − y2, (5.183)

V(x, y) = 2 x y. (5.184)

We can define the derivative of a complex function in just the same
manner as we would define the derivative of a real function: i.e.,

dF

dz
= lim |δz|→∞

F(z+ δz) − F(z)

δz
. (5.185)

However, we now have a slight problem. If F(z) is a “well-defined”
function (we shall leave it to the mathematicians to specify exactly what
being well-defined entails: suffice to say that most functions we can
think of are well-defined) then it should not matter from which direction
in the complex plane we approach z when taking the limit in Equa-
tion (5.185). There are, of course, many different directions we could
approach z from, but if we look at a regular complex function, F(z) = z2

(say), then

dF

dz
= 2 z (5.186)

is perfectly well-defined, and is, therefore, completely independent of
the details of how the limit is taken in Equation (5.185).
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The fact that Equation (5.185) has to give the same result, no matter
from which direction we approach z, means that there are some restric-
tions on the forms of the functionsU and V in Equation (5.180). Suppose
that we approach z along the real axis, so that δz = δx. We obtain

dF

dz
= lim |δx|→0

U(x+ δx, y) + iV(x+ δx, y) −U(x, y) − iV(x, y)

δx

=
∂U

∂x
+ i

∂V

∂x
. (5.187)

Suppose that we now approach z along the imaginary axis, so that δz =
i δy. We get

dF

dz
= lim |δy|→0

U(x, y+ δy) + iV(x, y+ δy) −U(x, y) − iV(x, y)

i δy

= − i
∂U

∂y
+
∂V

∂y
. (5.188)

But, if F(z) is a well-defined function then its derivative must also be well-
defined, which implies that the above two expressions are equivalent.
This requires that

∂U

∂x
=
∂V

∂y
, (5.189)

∂V

∂x
= −

∂U

∂y
. (5.190)

These are called the Cauchy-Riemann relations, and are, in fact, sufficient
to ensure that all possible ways of taking the limit (5.185) give the same
answer.

So far, we have found that a general complex function F(z) can be
written

F(z) = U(x, y) + iV(x, y), (5.191)

where z = x+ iy. If F(z) is well-defined then U and V automatically
satisfy the Cauchy-Riemann relations. But, what has all of this got to
do with electrostatics? Well, we can combine the two Cauchy-Riemann
relations to give

∂2U

∂x2
=
∂

∂x

∂V

∂y
=
∂

∂y

∂V

∂x
= −

∂

∂y

∂U

∂y
, (5.192)
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and

∂2V

∂x2
= −

∂

∂x

∂U

∂y
= −

∂

∂y

∂U

∂x
= −

∂

∂y

∂V

∂y
, (5.193)

which reduce to

∂2U

∂x2
+
∂2U

∂y2
= 0, (5.194)

∂2V

∂x2
+
∂2V

∂y2
= 0. (5.195)

Thus, both U and V automatically satisfy Laplace’s equation in two
dimensions: i.e., both U and V are possible two-dimensional scalar
potentials in free space.

Consider the two-dimensional gradients of U and V:

∇U =

(
∂U

∂x
,
∂U

∂y

)
, (5.196)

∇V =

(
∂V

∂x
,
∂V

∂y

)
. (5.197)

Now

∇U · ∇V =
∂U

∂x

∂V

∂x
+
∂U

∂y

∂V

∂y
. (5.198)

However, it follows from the Cauchy-Riemann relations that

∇U · ∇V =
∂V

∂y

∂V

∂x
−
∂V

∂x

∂V

∂y
= 0. (5.199)

Thus, the contours of U are everywhere perpendicular to the contours of
V. It follows that if U maps out the contours of some free-space scalar
potential then the contours of V indicate the directions of the associated
electric field-lines, and vice versa.

For every well-defined complex function, we get two sets of free-
space potentials, and the associated electric field-lines. For example,
consider the function F(z) = z2, for which

U(x, y) = x2 − y2, (5.200)

V(x, y) = 2 x y. (5.201)

These are, in fact, the equations of two sets of orthogonal hyperboloids—
see Figure 5.13. So, U(x, y) (the solid lines in Figure 5.13) might
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x

y

Figure 5.13: Equally spaced contours of the real (solid lines) and imagi-
nary (dashed lines) parts of F(z) = z2 plotted in the complex plane.

represent the contours of some scalar potential, and V(x, y) (the dashed
lines in Figure 5.13) the associated electric field-lines, or vice versa.
But, how could we actually generate a hyperboloidal potential? This is
easy. Consider the contours of U at level ±1. These could represent the
surfaces of four hyperboloid conductors maintained at potentials ±V,
respectively. The scalar potential in the region between these conduc-
tors is given by V U(x, y), and the associated electric field-lines follow
the contours of V(x, y). Note that

Ex = −
∂φ

∂x
= −V ∂U

∂x
= −2V x. (5.202)

Thus, the x-component of the electric field is directly proportional to
the distance from the x-axis. Likewise, the y-component of the field is
directly proportional to the distance from the y-axis. This property can
be exploited to make devices (called quadrupole electrostatic lenses)
which are useful for focusing charged particle beams.

As a second example, consider the complex function

F(z) = z−
c2

z
, (5.203)
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where c is real and positive. Writing F(z) = U(x, y) + iV(x, y), we find
that

U(x, y) = x−
c2 x

x2 + y2
, (5.204)

V(x, y) = y+
c2 y

x2 + y2
. (5.205)

Far from the origin, U → x, which is the potential of a uniform electric
field, of unit amplitude, pointing in the −x-direction. Moreover, the locus
of U = 0 is x = 0, and

x2 + y2 = c2, (5.206)

which corresponds to a circle of radius c centered on the origin. Hence,
we conclude that the potential

φ(x, y) = −E0 U(x, y) = −E0 x+ E0 c
2 x

x2 + y2
(5.207)

corresponds to that outside a grounded, infinitely long, conducting cylin-
der of radius c, co-axial with the z-axis, which is placed in a uniform
x-directed electric field of magnitude E0. The corresponding electric
field-lines run along contours of V—see Figure 5.14. Of course, the
potential inside the cylinder (i.e., x2 + y2 < c2) is zero. Defining stan-
dard cylindrical polar coordinates, r =

√
x2 + y2 and θ = tan−1(y/x),

the potential becomes

φ(r, θ) = −E0

(
r cos θ−

c2 cos θ
r

)
. (5.208)

Hence, the induced charge density on the surface of the cylinder is simply

σ(θ) = ε0 Er(c, θ) = −ε0
∂φ(c, θ)

∂r
= 2 ε0 E0 cos θ. (5.209)

Note that zero net charge is induced on the surface. This implies that if
the cylinder were insulated and uncharged, rather than being grounded,
then the solution would not change.

As a final example, consider the complex function

F(z) = z1/2. (5.210)

Note that we need a branch-cut in the complex plane in order to make
this function single-valued. Suppose that the cut is at arg(z) = π, so that



“chapter5” — 2007/11/29 — 15:40 — page 201 — #45

CHAPTER 5 ELECTROSTATIC CALCULATIONS 201

x

y

Figure 5.14: Equally spaced contours of the real (solid lines) and imag-
inary (dashed lines) parts of F(z) = z− 1/z plotted in the complex plane
for |z| > 1.

−π ≤ arg(z) ≤ π. Adopting standard cylindrical polar coordinates, it is
easily seen that

U(r, θ) = r1/2 cos(θ/2), (5.211)

V(r, θ) = r1/2 sin(θ/2), (5.212)

where −π ≤ θ ≤ π. Now, the locus of U = 0 corresponds to θ = ±π.
Hence, U(r, θ) represents the electric potential in the immediate vicin-
ity of an earthed semi-infinite conducting plate occupying the negative
x-axis. The corresponding electric field-lines run along contours of
V(r, θ)—see Figure 5.15. The surface charge density on the plate is easily
obtained from

σ(r) = ε0 [Eθ(r,−π) − Eθ(r, π)]

= −
ε0

r

[
∂U(r,−π)

∂θ
−
∂U(r, π)

∂θ

]

= −ε0 r
−1/2. (5.213)
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x

y

Figure 5.15: Equally spaced contours of the real (solid lines) and imag-
inary (dashed lines) parts of F(z) = z1/2 plotted in the complex plane for
−π ≤ arg(z) ≤ π.

5.12 SEPARATION OF VARIABLES

The method of images and complex analysis are two rather elegant tech-
niques for solving Poisson’s equation. Unfortunately, they both have an
extremely limited range of application. The next technique which we
shall discuss—namely, the separation of variables—is somewhat messy,
but possess a far wider range of application. Let us start by examining a
well-known example.

Consider two semi-infinite, grounded, conducting plates lying paral-
lel to the x-z plane, one at y = 0, and the other at y = π—see Figure 5.16.
Suppose that the left boundary of the region between the plates, located
at x = 0, is closed off by an infinite strip which is insulated from the
two plates, and maintained at a specified potential φ0(y). What is the
potential in the region between the plates?

First of all, let us assume that the potential is z-independent, since
everything else in the problem possesses this symmetry. This reduces the
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grounded conducting plates
y = π

x 
=

0

y = 0

y

x

Figure 5.16: Two semi-infinite grounded conducting plates.

problem to two dimensions. Poisson’s equation is written

∂2φ

∂x2
+
∂2φ

∂y2
= 0 (5.214)

in the vacuum region between the conductors. The boundary condi-
tions are

φ(x, 0) = 0, (5.215)

φ(x, π) = 0 (5.216)

for x > 0, since the two plates are earthed, plus

φ(0, y) = φ0(y) (5.217)

for 0 ≤ y ≤ π, and

φ(x, y) → 0 as x → ∞. (5.218)

The latter boundary condition is our usual one for the scalar potential at
infinity.

The central assumption in the separation-of-variables method is
that a multidimensional potential can be written as the product of
one-dimensional potentials. Hence, in the present case, we would write

φ(x, y) = X(x)Y(y). (5.219)

The above solution is obviously a very special one, and is, therefore,
only likely to satisfy a very small subset of possible boundary conditions.
However, it turns out that by adding together lots of different solutions
of this form we can match to general boundary conditions.
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Substituting (5.219) into (5.214), we obtain

Y
d2X

dx2
+ X

d2Y

dy2
= 0. (5.220)

Let us now separate the variables: i.e., let us collect all of the x-dependent
terms on one side of the equation, and all of the y-dependent terms on
the other side. Hence,

1

X

d2X

dx2
= −

1

Y

d2Y

dy2
. (5.221)

This equation has the form

f(x) = g(y), (5.222)

where f and g are general functions. The only way in which the above
equation can be satisfied, for general x and y, is if both sides are equal
to the same constant. Thus,

1

X

d2X

dx2
= k2 = −

1

Y

d2Y

dy2
. (5.223)

The reason why we write k2, rather than −k2, will become apparent later
on. Equation (5.223) separates into two ordinary differential equations:

d2X

dx2
= k2 X, (5.224)

d2Y

dy2
= −k2 Y. (5.225)

We know the general solution to these equations:

X = A exp(k x) + B exp(−k x), (5.226)

Y = C sin(ky) +D cos(ky), (5.227)

giving

φ(x, y) = [A exp(k x) + B exp(−k x) ] [C sin(ky) +D cos(ky)].
(5.228)

Here, A, B, C, and D are arbitrary constants. The boundary condition
(5.218) is automatically satisfied ifA = 0 and k > 0. Note that the choice
k2, instead of −k2, in Equation (5.223) facilitates this by makingφ either
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grow or decay monotonically in the x-direction instead of oscillating.
The boundary condition (5.215) is automatically satisfied if D = 0. The
boundary condition (5.216) is satisfied provided that

sin(kπ) = 0, (5.229)

which implies that k is a positive integer, n (say). So, our solution
reduces to

φ(x, y) = C exp(−nx) sin(ny), (5.230)

where B has been absorbed into C. Note that this solution is only able
to satisfy the final boundary condition (5.217) provided that φ0(y) is
proportional to sin(ny). Thus, at first sight, it would appear that the
method of separation of variables only works for a very special subset of
boundary conditions. However, this is not the case.

Now comes the clever bit! Since Poisson’s equation is linear, any
linear combination of solutions is also a solution. We can therefore form
a more general solution than (5.230) by adding together lots of solutions
involving different values of n. Thus,

φ(x, y) =

∞∑
n=1

Cn exp(−nx) sin(ny), (5.231)

where the Cn are constants. This solution automatically satisfies the
boundary conditions (5.215), (5.216), and (5.218). The final boundary
condition (5.217) reduces to

φ(0, y) =

∞∑
n=1

Cn sin(ny) = φ0(y). (5.232)

But, what choice of theCn fits an arbitrary functionφ0(y)? To answer
this question, we can make use of two very useful properties of the
functions sin(ny). Namely, that they are mutually orthogonal, and form
a complete set. The orthogonality property of these functions manifests
itself through the relation∫π

0

sin(ny) sin(n ′ y) dy =
π

2
δnn ′ , (5.233)

where δnn ′—which is equal to 1 if n = n ′, and 0, otherwise—is called
a Kroenecker delta function. The completeness property of sine func-
tions means that any general function φ0(y) can always be adequately
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represented as a weighted sum of sine functions with various different
n values. Multiplying both sides of Equation (5.232) by sin(n ′ y), and
integrating over y, we obtain

∞∑
n=1

Cn

∫π
0

sin(ny) sin(n ′ y) dy =

∫π
0

φ0(y) sin(n ′ y) dy. (5.234)

The orthogonality relation yields

π

2

∞∑
n=1

Cn δnn ′ =
π

2
Cn ′ =

∫π
0

φ0(y) sin(n ′ y) dy, (5.235)

so

Cn =
2

π

∫π
0

φ0(y) sin(ny)dy. (5.236)

Thus, we now have a general solution to the problem for any driving
potential φ0(y).

If the potential φ0(y) is constant then

Cn =
2φ0

π

∫π
0

sin(ny) dy =
2φ0

nπ
[1− cos(nπ)], (5.237)

giving

Cn = 0 (5.238)

for even n, and

Cn =
4φ0

nπ
(5.239)

for odd n. Thus,

φ(x, y) =
4φ0

π

∑
n=1,3,5,···

exp(−nx) sin(ny)

n
. (5.240)

This potential is plotted in Figure 5.17.
In the above problem, we wrote the potential as the product of

one-dimensional functions. Some of these functions grew and decayed
monotonically (i.e., the exponential functions), and the others oscillated
(i.e., the sinusoidal functions). The success of the separation-of-variables
method depends crucially on the orthogonality and completeness of the
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Figure 5.17: Equally spaced contours of the potential specified in Equa-
tion (5.240). Only the first 50 terms in the series are retained.

oscillatory functions. A set of functions fn(x) is orthogonal if the integral
of the product of two different members of the set over some range is
always zero: i.e.,

∫b
a

fn(x) fm(x)dx = 0, (5.241)

for n �= m. A set of functions is complete if any other function can be
expanded as a weighted sum of them. It turns out that the scheme set out
above can be generalized to more complicated geometries. For instance,
in axisymmetric spherical geometry, the monotonic functions are power
law functions of the radial variable, and the oscillatory functions are so-
called Legendre polynomials involving the cosine of the polar angle θ.
The latter functions are both mutually orthogonal and form a complete
set. There are also cylindrical, ellipsoidal, hyperbolic, toroidal, etc., coor-
dinates. In all cases, the associated oscillating functions are mutually
orthogonal and form a complete set. This implies that the separation-of-
variables method is of quite general applicability.

Finally, as a very simple example of the solution of Poisson’s equation
in spherical geometry, let us consider the case of a grounded conducting
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sphere of radius a, centered on the origin, and placed in a uniform
z-directed electric field of magnitude E0. The scalar potential φ satisfies
∇2φ = 0 for r ≥ a, with the boundary conditions φ → −E0 r cos θ (giv-
ing E → E0 ez) as r → ∞, and φ = 0 at r = a. Here, r and θ are spherical
polar coordinates. Let us, first of all, assume that φ is independent of the
azimuthal angle, since the boundary conditions possess this symmetry.
Hence, φ = φ(r, θ). Next, let us try the simplified separable solution

φ(r, θ) = rm cos θ. (5.242)

It is easily demonstrated that the above solution only satisfies ∇2φ = 0

provided m = 1 or m = −2. Thus, the most general solution of ∇2φ

which satisfies the boundary condition at r → ∞ is

φ(r, θ) = −E0 r cos θ+ α r−2 cos θ. (5.243)

The boundary condition at r = a is satisfied provided

α = E0 a
3. (5.244)

Hence, the potential takes the form

φ(r, θ) = −E0

(
r−

a3

r2

)
cos θ. (5.245)

Of course,φ = 0 inside the sphere (i.e., r < a). This potential is plotted in
Figure 5.18 (for a = 1). The charge sheet density induced on the surface
of the sphere is given by

σ(θ) = ε0 Er(a, θ) = −ε0
∂φ(a, θ)

∂r
= 3 ε0 E0 cos θ. (5.246)

Note that zero net charge is induced on the surface of the sphere. This
implies that the solution would be unchanged were the sphere insulated
and uncharged, rather than grounded. Finally, it follows from Equa-
tions (5.243), (5.244), and Exercise 2.4 that the electric field outside the
sphere consists of the original uniform field plus the field of an electric
dipole of moment

p = 4πa3 ε0 E0 ez. (5.247)

This is, of course, the dipole moment due to the charge separation
induced on the surface of the sphere by the external field.
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Figure 5.18: Equally spaced contours of the axisymmetric potential
φ(r, θ) = (r− 1/r2) cos θ plotted in the x-z plane for r > 1.

5.13 EXERCISES

5.1. Eight identical point charges of magnitude q are placed at the vertices of a cube

of dimension a. What is the electrostatic potential energy of this configuration

of charges (excluding the self-energies of the charges)? Suppose that four of the

charges are replaced by charges of magnitude −q in such a manner that all of

the nearest neighbors of a given charge are charges of the opposite sign. What

now is the electrostatic potential energy of the configuration?

5.2. Find the electric field generated by a thin, uniform spherical shell of chargeQ and

radius a. Calculate the electrostatic potential energy of this charge distribution

by integrating the energy density of the electric field over all space. Verify that

the electrostatic energy is also given by

W =
1

2

∫

S

σφdS,

where φ is the scalar potential, σ the surface charge density, and the integral is

taken over all surface charge distributions.

5.3. Suppose that a stationary charge distribution ρ1(r) generates the scalar poten-

tial field φ1(r), and that an alternative charge distribution ρ2(r) generates the
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potential φ2(r). Here, both charge distributions are assumed to be sufficiently

localized that the potential fields they generate go to zero at large distances.

Prove Green’s reciprocity theorem:
∫
φ1 ρ2 dV =

∫
φ2 ρ1 dV,

where the volume integral is over all space. Hint: Use Maxwell’s equations and

the divergence theorem.

5.4. Two grounded, infinite, parallel conducting plates are separated by a perpendic-

ular distance d. A point charge q is placed between the plates. Demonstrate that

the total charge induced on one of the plates is (−q) times the fractional per-

pendicular distance of the point charge from the other plate. Hint: Use Green’s

reciprocity theorem.

5.5. Two grounded, concentric, thin spherical conducting shells have radii a and b,

where b > a. A point chargeq is placed between the shells at radius r (wherea <

r < b). Find the total charge induced on each shell. Hint: Use Green’s reciprocity

theorem.

5.6. Consider two insulated conductors, labeled 1 and 2. Let φ1 be the potential

of the first conductor when it is uncharged and the second conductor holds a

charge Q. Likewise, let φ2 be the potential of the second conductor when it

is uncharged and the first conductor holds a charge Q. Use Green’s reciprocity

theorem to demonstrate that

φ1 = φ2.

5.7. Consider two insulated spherical conductors. Let the first have radius a. Let the

second be sufficiently small that it can effectively be treated as a point charge,

and let it also be located a distance b > a from the center of the first. Suppose

that the first conductor is uncharged, and that the second carries a charge q.

What is the potential of the first conductor? Hint: Consider the result proved in

the previous exercise.

5.8. Consider a set of N conductors distributed in a vacuum. Suppose that the ith

conductor carries the charge Qi and is at the scalar potential φi. It follows from

the linearity of Maxwell’s equations and Ohm’s law that a linear relationship

exists between the potentials and the charges: i.e.,

φi =
∑

j=1,N

pij Qj.

Here, the pij are termed the coefficients of potential. Demonstrate that pij = pji

for all i, j. Hint: Consider the result proved in Exercise 5.6. Show that the total
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electrostatic potential energy of the charged conductors is

W =
1

2

∑

i,j=1,N

pij Qi Qj.

5.9. Find the coefficients of potential for two thin, concentric, spherical conducting

shells of radius r1 and r2, where r2 > r1. Suppose thatQ1 andQ2 are the charges

on the inner and outer conductors, respectively. Calculate the electrostatic

potential energy of the system.

5.10. Returning to the problem discussed in Exercise 5.7, suppose that the first con-

ductor is now earthed, rather than being insulated and uncharged. What charge

is induced on the first conductor by the charge on the second? Hint: Consider

the concept of coefficient of potential.

5.11. Consider two separate conductors, the first of which is insulated and uncharged,

and the second of which is earthed. Prove that the first conductor is also at zero

(i.e., earth) potential. Hint: Consider the previous hint.

5.12. Consider a flat annular plate (e.g., a washer) of uniform thickness δ, inner radius

a, and outer radius b. Let the plate be fabricated from metal of uniform resistivity

η. Suppose that an electrical current I is fed into the plate symmetrically at

its inner radius, and extracted symmetrically at its outer radius. What is the

resistance of the plate? What is the rate of ohmic heating of the plate?

5.13. Consider an infinite uniform network of identical resistors of resistance R. Let

four resistors come together at each junction of the network (i.e., let the network

have a square lattice). Suppose that current is fed into a given junction and

extracted from a nearest neighbor junction. What is the effective resistance of

the network?

5.14. According to the uniqueness theorem, Poisson’s equation ∇2φ = −ρ/ε0 can only

have one solution if ρ is given in some volume V , and φ is specified on the

bounding surface S. Demonstrate that two solutions can differ by, at most, a

constant if the normal derivative of the potential, rather than the potential itself,

is specified on the bounding surface.

5.15. Consider a point charge q which is placed inside a thin, grounded, spherical

conducting shell of radius a a distance r from its center. Use the method of

images to find the surface charge density induced on the inside of the shell. What

is the net charge induced on the inside of the shell? What is the magnitude and

direction of the force of attraction between the the charge and the shell? What

electric field is induced outside the shell. How would these results be modified if

the sphere were (a) uncharged and insulated, or (b) maintained at the constant

potential V?
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5.16. Using the method of images, show that the force of attraction, or repulsion,

between a point chargeq and an insulated conducting sphere of radiusa carrying

a charge Q is

f =
q

4πε0

[
Q + (a/d)q

d2
−

aq

d (d − a2/d2)

]
,

where d > a is the distance of the charge from the center of the sphere. Demon-

strate that whenQ and q are of the same sign then the force is attractive provided

that

Q

d
<

ad2

(d2 − a2)2
−
a

d
.

5.17. An infinitely long conducting cylinder carries a charge per unit length λ and

runs parallel to an infinite grounded conducting plane. Let the radius of the

cylinder be a, and let the perpendicular distance between the cylinder’s axis and

the plane be d (where d > a). What is the force of attraction per unit length

between the cylinder and the plane? What is the charge per unit length induced

on the plane? Use the method of images.

5.18. A point charge q is located between two parallel, grounded, infinite conducting

planes separated by a perpendicular distance d. Suppose that the perpendicular

distance of the charge from one of the planes is x. Find the locations of the

infinite number of image charges, and, hence, express the force exerted on the

charge as an infinite series. Plot the magnitude of this force as a function of

x/d. Find expressions for the net charges induced on the two planes. Plot these

expressions as functions of x/d.

5.19. Two semi-infinite grounded conducting planes meet at right angles. A charge

q is located a perpendicular distance a from one, and b from another. Use the

method of images to find the magnitude and direction of the force of attraction

between the planes and the charge. What is the net charge induced on the

planes?

5.20. Two semi-infinite grounded conducting planes meet at sixty degrees. A charge

q is located the same perpendicular distance a from both. Use the method of

images to find the magnitude and direction of the force of attraction between

the planes and the charge. What is the net charge induced on the planes?

5.21. Find the function F(z), where z is the complex variable, whose real part can be

interpreted as the scalar potential associated with (a) a uniform electric field of

magnitude E0 directed along the x-axis, (b) a uniform electric field of magnitude

E0 directed along the y-axis, and (c) a line charge of charge per unit length λ

located at the origin.
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5.22. Two semi-infinite conducting plates meet at 90◦, and are both held at the con-

stant potential V . Use complex analysis to find the variation of the surface charge

density with perpendicular distance from the vertex on both sides of the plates.

5.23. Two semi-infinite conducting plates meet at 60◦, and are both held at the con-

stant potential V . Use complex analysis to find the variation of the surface charge

density with perpendicular distance from the vertex on both sides of the plates.

5.24. Consider the complex function F(z) defined implicitly by the equation

i z = i F(z) + e i F(z)
.

Suppose that the real part of this function is interpreted as an electric poten-

tial. Plot the contours of this potential. What problem in electrostatics does this

potential best describe?

5.25. Consider an empty cubic box of dimensionawith conducting walls. Two opposite

walls are held at the constant potential V , whilst the other walls are earthed.

Find an expression for the electric potential inside the box. (Assume that the box

is centered on the origin, that the walls are all normal to one of the Cartesian

axes, and that the non-grounded walls are normal to the x-axis.) Suppose that

the two walls normal to the x-axis are held at potentials ±V . What now is the

potential inside the box? Use separation of variables.
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C h a p t e r 6 DIELECTRIC AND
MAGNETIC MEDIA

6.1 INTRODUCTION

In this chapter, we shall use Maxwell’s equations to investigate the inter-
action of dielectric and magnetic media with quasi-static electric and
magnetic fields.

6.2 POLARIZATION

The terrestrial environment is characterized by dielectric media (e.g., air,
water) which are, for the most part, electrically neutral, since they are
made up of neutral atoms and molecules. However, if these atoms and
molecules are placed in an external electric field then they tend to polar-
ize: i.e., their positively and negatively charged components displace
with respect to one another. Suppose that if a given neutral molecule
is placed in an external electric field E then the center of charge of its
constituent electrons, whose total charge is (say) q, displaces by d with
respect to the center of charge of its constituent atomic nuclii. The dipole
moment of the molecule is defined as p = qd. If a dielectric medium is
made up of N such molecules per unit volume then the electric polariza-
tion, P, of the medium (i.e., the dipole moment per unit volume) is given
by P = Np. More generally,

P(r) =
∑
i

Ni 〈pi〉, (6.1)

where 〈pi〉 is the average dipole moment of the ith type of molecule
making up the medium, and Ni the average number of such molecules
per unit volume, in the vicinity of point r.

Now, we saw previously, in Exercise 3.4, that the scalar electric
potential field generated by an electric dipole of moment p situated at
the origin is

φ(r) =
p · r
4πε0 r3

. (6.2)

215
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Hence, from the principle of superposition, the scalar potential field
generated by a dielectric medium of dipole moment per unit volume
P(r) is

φ(r) =
1

4πε0

∫
P(r ′) · (r − r ′)

|r − r ′|3
d3r ′, (6.3)

where the volume integral is over all space. However, it follows from
Equations (3.15) and (3.148) that

φ(r) =
1

4πε0

∫
P(r ′) · ∇ ′

(
1

|r − r ′|

)
d3r ′. (6.4)

Finally, making use of Equation (3.152), we obtain

φ(r) =
1

4πε0

∫
ρb(r ′)
|r − r ′|

d3r ′, (6.5)

assuming that |P|/r → 0 as r → ∞, where ρb = −∇·P. Thus, by compar-
ison with Equation (3.17), we can see that minus the divergence of the
polarization field is equivalent to a charge density.

As explained above, any divergence of the polarization field P(r) of
a dielectric medium gives rise to an effective charge density ρb(r), where

ρb = −∇·P. (6.6)

This charge density is attributable to bound charges (i.e., charges which
arise from the polarization of neutral atoms), and is usually distinguished
from the charge density ρf(r) due to free charges, which typically repre-
sents a net surplus or deficit of electrons in the medium. Thus, the total
charge density ρ in the medium is

ρ = ρf + ρb. (6.7)

It must be emphasized that both terms in this equation represent
real physical charge. Nevertheless, it is useful to make the distinction
between bound and free charges, especially when it comes to working
out the energy associated with electric fields in dielectric media.

Gauss’ law takes the differential form

∇·E =
ρ

ε0
=
ρf + ρb
ε0

. (6.8)

This expression can be rearranged to give

∇·D = ρf, (6.9)
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where

D = ε0 E + P (6.10)

is termed the electric displacement, and has the same dimensions as P
(i.e., dipole moment per unit volume). Gauss’ theorem tells us that∮

S

D·dS =

∫
V

ρf dV. (6.11)

In other words, the flux of D out of some closed surface S is equal to the
total free charge enclosed within that surface. Unlike the electric field E
(which is the electric force acting on a unit charge), or the polarization P
(which is the dipole moment per unit volume), the electric displacement
D has no clear physical interpretation. In fact, the only reason for intro-
ducing this quantity is that it enables us to calculate electric fields in the
presence of dielectric media without having to know the distribution of
bound charges beforehand. However, this is only possible if we have a
constitutive relation connecting E and D.

6.3 ELECTRIC SUSCEPTIBILITY AND PERMITTIVITY

In a large class of dielectric materials, there exits an approximately linear
relationship between P and E. If the material is isotropic then

P = ε0 χe E, (6.12)

where χe is termed the electric susceptibility. It follows that

D = ε0 εE, (6.13)

where

ε = 1+ χe (6.14)

is termed the relative dielectric constant or relative permittivity of the
medium. (Likewise, ε0 is termed the permittivity of free space.) Note that
ε is dimensionless. Values of ε for some common dielectric materials are
given in Table 6.1. It can be seen that dielectric constants are generally
greater than unity, and can be significantly greater than unity for liquids
and solids.

It follows from Equations (6.9) and (6.13) that

∇·E =
ρf

ε0 ε
. (6.15)
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Material Dielectric constant

Air (1 atm) 1.00059

Paper 3.5

Concrete 4.5

Glass 5–10

Silicon 11.68

Water 80.4

Table 6.1 Low-frequency dielectric constants of some common materials.

Thus, the electric fields produced by free charges in a uniform dielec-
tric medium are analogous to those produced by the same charges in a
vacuum, except that they are all reduced by a factor ε. This reduction
can be understood in terms of a polarization of the atoms or molecules
in the dielectric medium which produces electric fields which oppose
those generated by the free charges. One immediate consequence of
this effect is that the capacitance of a capacitor is increased by a fac-
tor ε if the empty space between its electrodes is filled with a dielectric
medium of dielectric constant ε (assuming that fringing fields can be
neglected).

It must be understood that Equations (6.12)–(6.15) merely repre-
sent an approximation which is generally found to hold under terrestrial
conditions in isotropic media (provided that the electric field intensity
is not too large). For anisotropic media (e.g., crystals), Equation (6.13)
generalizes to

D = ε0 ε·E, (6.16)

where ε is a second-rank tensor known as the dielectric tensor. For strong
electric fields, D ceases to vary linearly with E.

6.4 BOUNDARY CONDITIONS FOR E AND D

When the space surrounding a set of charges contains dielectric material
of non-uniform dielectric constant then the electric field no longer has the
same functional form as in a vacuum. Suppose, for example, that space
is occupied by two dielectric media, labeled 1 and 2, whose uniform
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loop Gaussian pill-box
.

2

S
C

E‖ 1

E‖ 2

1
D⊥ 1

D⊥ 2

ε1

ε2

Figure 6.1: The boundary between two different dielectric media.

dielectric constants are ε1 and ε2, respectively. What are the boundary
conditions on E and D at the interface between the two media?

Let us apply Equation 6.11 to a Gaussian pill-box S enclosing part
of the interface—see Figure 6.1. The thickness of the pill-box is allowed
to tend toward zero, so that the only contribution to the outward flux
of D comes from the flat faces of the box, which are parallel to the
interface. Assuming that there is no free charge inside the pill-box (which
is reasonable in the limit in which the volume of the box tends to zero),
then Equation (6.11) yields

D⊥ 1 −D⊥ 2 = 0, (6.17)

where D⊥ 1 is the component of the electric displacement in medium 1
which is normal to the interface, etc. According to Equation (6.13), the
boundary condition on the normal component of the electric field is

ε1 E⊥ 1 − ε2 E⊥ 2 = 0. (6.18)

Integrating Faraday’s law,

∇ × E = −
∂B
∂t
, (6.19)

around a narrow rectangular loop C which straddles the interface—see
Figure 6.1—yields

(E‖ 1 − E‖ 2) l = −A
∂B⊥
∂t

, (6.20)

where l is the length of the long side of the loop, A the area of the loop,
and B⊥ the magnetic field normal to the loop. In the limit in which the
length of the short side of the loop tends to zero, A also goes to zero,
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and we obtain the familiar boundary condition

E‖ 1 − E‖ 2 = 0. (6.21)

Generally speaking, there is a bound charge sheet on the interface
between two dielectric media. The charge density of this sheet follows
from Gauss’ law:

σb = ε0 (E⊥ 1 − E⊥ 2) = (1/ε1 − 1/ε2)D⊥. (6.22)

This can also be written

σb = (P1 − P2) · n, (6.23)

where n is the unit normal at the interface (pointing from medium 1 to
medium 2), and P1,2 are the electric polarizations in the two media.

6.5 BOUNDARY VALUE PROBLEMS WITH DIELECTRICS

Consider a point charge q embedded in a semi-infinite dielectric medium
of uniform dielectric constant ε1, and located a distance d away from a
plane interface which separates this medium from another semi-infinite
dielectric medium of dielectric constant ε2. Let the interface coincide
with the plane z = 0, and let the point charge lie on the positive z-axis.
In order to solve this problem, we need to find solutions to the equations

ε1∇·E =
q δ(r − r0)

ε0
, (6.24)

where r0 = (0, 0, d), for z > 0,

ε2∇·E = 0 (6.25)

for z < 0, and

∇ × E = 0 (6.26)

everywhere, subject to the boundary conditions

ε1 Ez(x, y, 0+) = ε2 Ez(x, y, 0−), (6.27)

Ex(x, y, 0+) = Ex(x, y, 0−), (6.28)

Ey(z, y, 0+) = Ey(x, y, 0−). (6.29)

We can solve this problem by employing a slightly modified form of
the method of images—see Section 5.10. Since ∇ × E = 0 everywhere,
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ε2d

interface

z > 0

z = 0

z < 0
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ε1 ε1

image charge

ε2 ε1 ε2

Figure 6.2: The method of images for a charge near the plane interface
between two dielectric media.

the electric field can be written in terms of a scalar potential: i.e.,
E = −∇φ. Consider the region z > 0. We shall assume that the scalar
potential in this region is the same as that in an analog problem in which
the whole of space is filled with a dielectric medium of dielectric con-
stant ε1, and, in addition to the real charge q at position (0, 0, d), there
is a second charge q ′ at the image position (0, 0, −d)—see Figure 6.2.
If this is the case, then the potential at some general point in the region
z > 0 is given by

φ(r, z) =
1

4πε0 ε1

(
q

R1
+
q ′

R2

)
, (6.30)

where R1 =
√
r2 + (d− z)2, R2 =

√
r2 + (d+ z)2, and r =

√
x2 + y2.

Note that the potential (6.30) is clearly a solution of Equation (6.24) in
the region z > 0: i.e., it gives ∇ · E = 0, with the appropriate singularity
at the position of the point charge q.

Consider the region z < 0. Let us assume that the scalar potential in
this region is the same as that in an analog problem in which the whole
of space is filled with a dielectric medium of dielectric constant ε2, and a
charge q ′′ is located at (0, 0, d)—see Figure 6.2. If this is the case, then
the potential in the region z < 0 is given by

φ(r, z) =
1

4πε0 ε2

q ′′

R1
. (6.31)
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The above potential is clearly a solution of Equation (6.25) in the region
z < 0: i.e., it gives ∇·E = 0, with no singularities.

It now remains to choose q ′ and q ′′ in such a manner that the
boundary conditions (6.27)–(6.29) are satisfied. The boundary condi-
tions (6.28) and (6.29) are obviously satisfied if the scalar potential is
continuous at the interface between the two dielectric media: i.e., if

φ(r, 0+) = φ(r, 0−). (6.32)

The boundary condition (6.27) implies a jump in the normal derivative
of the scalar potential across the interface: i.e.,

ε1
∂φ(r, 0+)

∂z
= ε2

∂φ(r, 0−)

∂z
. (6.33)

The first matching condition yields

q+ q ′

ε1
=
q ′′

ε2
, (6.34)

whereas the second gives

q− q ′ = q ′′. (6.35)

Here, use has been made of

∂

∂z

(
1

R1

)
z=0

= −
∂

∂z

(
1

R2

)
z=0

=
d

(r2 + d2)3/2
. (6.36)

Equations (6.34) and (6.35) imply that

q ′ = −

(
ε2 − ε1
ε2 + ε1

)
q, (6.37)

q ′′ =

(
2 ε2

ε2 + ε1

)
q. (6.38)

Now, the bound charge density is given by ρb = −∇·P, however, we
have P = ε0 χe E inside both dielectric media. Hence, ∇ · P = ε0 χe∇·E =
0, except at the location of the original point charge. We conclude that
there is zero bound charge density in either dielectric medium. However,
there is a bound charge sheet on the interface between the two media.
In fact, the density of this sheet is given by

σb(r) = ε0 (Ez 1 − Ez 2)z=0. (6.39)
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Hence,

σb(r) = ε0
∂φ(r, 0−)

∂z
− ε0

∂φ(r, 0+)

∂z
= −

q

2π

(ε2 − ε1)

ε1(ε2 + ε1)

d

(r2 + d2)3/2
.

(6.40)

Incidentally, it is easily demonstrated that the net charge on the interface
is q ′/ε1. In the limit ε2 � ε1, the dielectric with dielectric constant ε2
behaves like a conductor (i.e., E → 0 in the region z < 0), and the bound
surface charge density on the interface approaches that obtained in the
case where the plane z = 0 coincides with a conducting surface—see
Section 5.10.

As a second example, consider a dielectric sphere of radius a, and
uniform dielectric constant ε, placed in a uniform z-directed electric
field of magnitude E0. Suppose that the sphere is centered on the origin.
Now, we can always write E = −∇φ for an electrostatic problem. In the
present case, ∇ · E = 0 both inside and outside the sphere, since there
are no free charges, and the bound charge density is zero in a uniform
dielectric medium (or a vacuum). Hence, the scalar potential satisfies
Laplace’s equation, ∇2φ = 0, throughout space. Adopting spherical polar
coordinates, (r, θ,ϕ), aligned along the z-axis, the boundary conditions
are that φ → −E0 r cos θ as r → ∞, and that φ is well-behaved at r = 0.
At the surface of the sphere, r = a, the continuity of E‖ implies that φ
is continuous. Furthermore, the continuity of D⊥ = ε0 ε E⊥ leads to the
matching condition

∂φ

∂r

∣∣∣∣
r=a+

= ε
∂φ

∂r

∣∣∣∣
r=a−

. (6.41)

Let us try axisymmetric separable solutions of the form rm cos θ.
It is easily demonstrated that such solutions satisfy Laplace’s equation
provided that m = 1 or m = −2. Hence, the most general solution to
Laplace’s equation outside the sphere, which satisfies the boundary
condition at r → ∞, is

φ(r, θ) = −E0 r cos θ+ E0 α
a3 cos θ
r2

. (6.42)

Likewise, the most general solution inside the sphere, which satisfies the
boundary condition at r = 0, is

φ(r, θ) = −E1 r cos θ. (6.43)
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The continuity of φ at r = a yields

E0 − E0 α = E1. (6.44)

Likewise, the matching condition (6.41) gives

E0 + 2 E0 α = εE1. (6.45)

Hence, we obtain

α =
ε− 1

ε+ 2
, (6.46)

E1 =
3 E0

ε+ 2
. (6.47)

Note that the electric field inside the sphere is uniform, parallel to the
external electric field outside the sphere, and of magnitude E1. Moreover,
E1 < E0 , provided that ε > 1—see Figure 6.3. The density of the bound
charge sheet on the surface of the sphere is

σb(θ) = −ε0

(
∂φ

∂r

∣∣∣∣
r=a+

−
∂φ

∂r

∣∣∣∣
r=a−

)
= 3 ε0

(
ε− 1

ε+ 2

)
E0 cos θ. (6.48)

Finally, the electric field outside the sphere consists of the original
uniform field, plus the field of an electric dipole of moment

p = 4πa3 ε0

(
ε− 1

ε+ 2

)
E0 ez. (6.49)

This is simply the net induced dipole moment, p = (4/3)πa3 P, of the
sphere, where P = ε0 (ε− 1)E1 ez.

As a final example, consider a spherical cavity, of radius a, inside a
uniform dielectric medium of dielectric constant ε, in the presence of a
z-directed electric field of magnitude E0. This problem is analogous to
the previous one, except that the matching condition (6.41) becomes

ε
∂φ

∂r

∣∣∣∣
r=a+

=
∂φ

∂r

∣∣∣∣
r=a−

. (6.50)

Hence, ε → 1/ε, and we obtain

α = −
ε− 1

1+ 2 ε
, (6.51)

E1 =
3 εE0

1+ 2 ε
. (6.52)

Note that the field inside the cavity is uniform, parallel to the external
electric field outside the sphere, and of magnitudeE1. Moreover, E1 > E0,
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x

z

Figure 6.3: Equally spaced coutours of the axisymmetric potential φ(r, θ)
generated by a dielectric sphere of unit radius and dielectric constant ε = 3

placed in a uniform z-directed electric field.

provided that ε > 1—see Figure 6.4. The density of the bound charge
sheet on the inside surface of the cavity is

σb(θ) = −ε0

(
∂φ

∂r

∣∣∣∣
r=a+

−
∂φ

∂r

∣∣∣∣
r=a−

)
= −3 ε0

(
ε− 1

1+ 2 ε

)
E0 cos θ.

(6.53)
Hence, it follows from Equation (6.23) that the polarization immediately
outside the cavity is

P = 3 ε0

(
ε− 1

1+ 2 ε

)
E0 ez. (6.54)

This is less than the polarization field a long way from the cavity by a
factor 3/(1+ 2 ε). In other words, the cavity induces a slight depolariza-
tion of the dielectric medium in its immediate vicinity. The electric field
inside the cavity can be written

E1 = E0 +
P
3ε0

, (6.55)
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x

z

Figure 6.4: Equally spaced coutours of the axisymmetric potential φ(r, θ)
generated by a cavity of unit radius inside a dielectric medium of dielectric
constant ε = 3 placed in a uniform z-directed electric field.

where E0 is the external field, and P the polarization field immediately
outside the cavity.

6.6 ENERGY DENSITY WITHIN A DIELECTRIC MEDIUM

Consider a system of free charges embedded in a dielectric medium. The
increase in the total energy when a small amount of free charge δρf is
added to the system is given by

δW =

∫
φδρf d

3r, (6.56)

where the integral is taken over all space, and φ(r) is the electro-
static potential. Here, it is assumed that both the original charges and
the dielectric medium are held fixed, so that no mechanical work is
performed. It follows from Equation (6.9) that

δW =

∫
φ∇·δDd3r, (6.57)
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where δD is the change in the electric displacement associated with the
charge increment. Now the above equation can also be written

δW =

∫
∇·(φδD)d3r −

∫
∇φ·δDd3r, (6.58)

giving

δW =

∮
S

φ δD·dS −

∫
V

∇φ·δDd3r, (6.59)

where use has been made of Gauss’ theorem. Here, V is some volume
bounded by the closed surface S. If the dielectric medium is of finite
spatial extent then the surface term is eliminated by integrating over all
space. We thus obtain

δW = −

∫
∇φ·δDd3r =

∫
E·δDd3r. (6.60)

Now, this energy increment cannot be integrated unless E is a known
function of D. Let us adopt the conventional approach, and assume that
D = ε0 εE, where the dielectric constant ε is independent of the electric
field. The change in energy associated with taking the displacement field
from zero to D(r) at all points in space is given by

W =

∫D

0
δW =

∫D

0

∫
E·δDd3r, (6.61)

or

W =

∫ ∫E
0

ε0 ε δ(E
2)

2
d3r =

1

2

∫
ε0 ε E

2 d3r, (6.62)

which reduces to

W =
1

2

∫
E·Dd3r. (6.63)

Thus, the electrostatic energy density inside a dielectric medium is
given by

U =
1

2
E·D. (6.64)

This is a standard result, and is often quoted in textbooks. Nevertheless,
it is important to realize that the above formula is only valid for dielec-
tric media in which the electric displacement D varies linearly with the
electric field E. Note, finally, that Equation (6.64) is consistent with the
previously obtained expression (5.20).
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6.7 FORCE DENSITY WITHIN A DIELECTRIC MEDIUM

Equation (6.63) was derived by considering a virtual process in which
true charges are added to a system of charges and dielectrics which are
held fixed, so that no mechanical work is done against physical dis-
placements. Let us now consider a different virtual process in which
the physical coordinates of the charges and dielectric are given a vir-
tual displacement δr at each point in space, but no free charges are
added to the system. Since we are dealing with a conservative system,
the energy expression (6.63) can still be employed, despite the fact that
it was derived in terms of another virtual process. The variation in the
total electrostatic energy δW when the system undergoes a virtual dis-
placement δr is related to the electrostatic force density f acting within
the dielectric medium via

δW = −

∫
f ·δr d3r. (6.65)

So, if the medium is moving, and has a velocity field u, then the rate at
which electrostatic energy is drained from the E and D fields is given by

dW

dt
= −

∫
f ·ud3r. (6.66)

Let us now consider the electrostatic energy increment due to a
change δρf in the free charge distribution, and a change δε in the dielec-
tric constant, both of which are caused by the virtual displacement. From
Equation (6.63),

δW =
1

2ε0

∫ [
D2 δ(1/ε) + 2D·δD/ε

]
d3r, (6.67)

or

δW = −
ε0

2

∫
E2 δεd3r +

∫
E·δDd3r. (6.68)

Here, the first term on the right-hand side represents the energy incre-
ment due to the change in dielectric constant associated with the virtual
displacement, whereas the second term corresponds to the energy incre-
ment caused by the displacement of free charges. The second term can
be written∫

E·δDd3r = −

∫
∇φ·δDd3r =

∫
φ∇·δDd3r =

∫
φδρf d

3r, (6.69)



“chapter6” — 2007/12/14 — 12:05 — page 229 — #15

CHAPTER 6 DIELECTRIC AND MAGNETIC MEDIA 229

where surface terms have been neglected. Thus, Equation (6.68) implies
that

dW

dt
=

∫ (
φ
∂ρf

∂t
−
ε0

2
E2
∂ε

∂t

)
d3r. (6.70)

In order to arrive at an expression for the force density f , we need
to express the time derivatives ∂ρ/∂t and ∂ε/∂t in terms of the velocity
field u. This can be achieved by adopting a dielectric equation of state:
i.e., a relation which gives the dependence of the dielectric constant ε
on the mass density ρm. Let us assume that ε(ρm) is a known function.
It follows that

Dε

Dt
=
dε

dρm

Dρm

Dt
, (6.71)

where

D

Dt
≡ ∂

∂t
+ u·∇ (6.72)

is the total time derivative (i.e., the time derivative in a frame of refer-
ence which is locally co-moving with the dielectric). The hydrodynamic
equation of continuity of the dielectric is [see Equation (2.130)]

∂ρm

∂t
+ ∇·(ρm u) = 0, (6.73)

which implies that

Dρm

Dt
= −ρm∇·u. (6.74)

Hence, it follows that

∂ε

∂t
= −

dε

dρm
ρm∇·u − u·∇ε. (6.75)

The conservation equation for the free charges is written

∂ρf

∂t
+ ∇·(ρf u) = 0. (6.76)

Thus, we can express Equation (6.70) in the form

dW

dt
=

∫ [
−φ∇·(ρf u) +

ε0

2
E2

dε

dρm
ρm∇·u +

(ε0
2
E2∇ε

)
·u
]
d3r.

(6.77)
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Integrating the first term on the right-hand side by parts, and neglecting
any surface contributions, we obtain

−

∫
φ∇·(ρf u)d3r =

∫
ρf∇φ·ud3r. (6.78)

Likewise,∫
ε0

2
E2

dε

dρm
ρm∇·ud3r = −

∫
ε0

2
∇
(
E2
dε

dρm
ρm

)
·ud3r. (6.79)

Hence, Equation (6.77) becomes

dW

dt
=

∫ [
−ρf E +

ε0

2
E2∇ε−

ε0

2
∇
(
E2

dε

dρm
ρm

)]
·ud3r. (6.80)

Comparing with Equation (6.66), we can see that the force density inside
the dielectric medium is given by

f = ρf E −
ε0

2
E2∇ε+

ε0

2
∇
(
E2
dε

dρm
ρm

)
. (6.81)

The first term on the right-hand side of the above expression is the stan-
dard electrostatic force density. The second term represents a force which
appears whenever an inhomogeneous dielectric is placed in an electric
field. The last term, which is known as the electrostriction term, corre-
sponds to a force acting on a dielectric placed in an inhomogeneous elec-
tric field. Note that the magnitude of the electrostriction force depends
explicitly on the dielectric equation of state of the material, through
dε/dρm. The electrostriction term gives zero net force acting on any
finite region of dielectric, if we can integrate over a large enough portion
of the dielectric that its extremities lie in a field-free region. For this rea-
son, the term is frequently neglected, since it usually does not contribute
to the total force acting on a dielectric body. Note, however, that if the
electrostriction term is omitted then we obtain an incorrect pressure vari-
ation within the dielectric, despite the fact that the total force is correct.

6.8 THE CLAUSIUS-MOSSOTTI RELATION

Let us now investigate what a dielectric equation of state actually looks
like. Suppose that a dielectric medium is made up of identical molecules



“chapter6” — 2007/12/14 — 12:05 — page 231 — #17

CHAPTER 6 DIELECTRIC AND MAGNETIC MEDIA 231

which develop a dipole moment

p = αε0 E (6.82)

when placed in an electric field E. The constant α (which has units of
volume) is called the molecular polarizability. Note thatα, which is solely
a property of the molecule, is typically of order the molecular volume.
If N is the number density of molecules then the polarization of the
medium is

P = Np = Nαε0 E, (6.83)

or

P =
NA ρm α

M
ε0 E, (6.84)

where ρm is the mass density, NA is Avogadro’s number, and M is the
molecular weight. But, how does the electric field experienced by an
individual molecule relate to the average electric field in the medium?
This is not a trivial question, since we expect the electric field to vary
strongly (on atomic length-scales) inside the medium.

Suppose that the dielectric is polarized with a uniform mean elec-
tric field E0 = E0 ez. Consider one of the molecules which constitute the
dielectric. Let us draw a sphere of radiusa about this particular molecule.
This is intended to represent the boundary between the microscopic and
the macroscopic range of phenomena affecting the molecule. We shall
treat the dielectric outside the sphere as a continuous medium, and the
dielectric inside the sphere as a collection of polarized molecules. Note
that, unlike the case of a spherical cavity in a dielectric medium, there is
no depolarization of the dielectric immediately outside the sphere, since
there is dielectric material inside the sphere. Thus, from Equation (6.55),
the total field inside the sphere is

E = E0 +
P
3ε0

, (6.85)

where P is given by Equation (6.84). The second term on the right-hand
side of the above equation is the field at the molecule due to the surface
charge on the inside of the sphere.

The field due to the individual molecules within the sphere is
obtained by summing over the dipole fields of these molecules. The elec-
tric field at a distance r from a dipole of moment p is (see Exercise 3.4)

E = −
1

4πε0

[
p
r3

−
3 (p·r) r
r5

]
. (6.86)



“chapter6” — 2007/12/14 — 12:05 — page 232 — #18

232 MAXWELL’S EQUATIONS AND THE PRINCIPLES OF ELECTROMAGNETISM

It is assumed that the dipole moment of each molecule within the sphere
is the same, and also that the molecules are evenly distributed through-
out the sphere. This being the case, the value of Ez at the molecule due
to all of the other molecules within in the sphere,

Ez = −
1

4πε0

∑ [
pz r

2 − 3 (px x z+ py y z+ pz z
2)

r5

]
, (6.87)

is zero, since

∑
z2 =

1

3

∑
r2 (6.88)

and ∑
x z =

∑
y z = 0. (6.89)

Here, the sum is over all of the molecules in the sphere. Furthermore,
it is easily demonstrated that Eθ = Eϕ = 0 (where θ and ϕ are spherical
polar coordinates). Hence, the electric field at the molecule due to the
other molecules within the sphere vanishes.

It is clear that the net electric field seen by an individual molecule is

E = E0 +
P
3ε0

. (6.90)

This is larger than the average electric field E0 in the dielectric. The
above analysis indicates that this effect is ascribable to the long range
(rather than the short range) interactions of the molecule with the
other molecules in the medium. Making use of Equation (6.84), and
the definition P = ε0 (ε− 1) E0, we obtain

ε− 1

ε+ 2
=
NA ρm α

3M
. (6.91)

This formula is called the Clausius-Mossotti relation, and is found to work
fairly well for relatively dilute dielectric media whose dielectric constants
are close to unity. Incidentally, the right-hand side of this expression is
approximately the volume fraction of space occupied by the molecules
making up the medium in question (and, should, therefore, be less than
unity). Finally, the Clausius-Mossotti relation yields

dε

dρm
=

(ε− 1) (ε+ 2)

3 ρm
. (6.92)
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6.9 DIELECTRIC LIQUIDS IN ELECTROSTATIC FIELDS

Consider the behaviour of an uncharged dielectric liquid placed in an
electrostatic field. If p(r) is the pressure in the liquid when it is in equilib-
rium with the electrostatic force density f(r), then force balance requires
that

∇p = f . (6.93)

It follows from Equation (6.81) that

∇p = −
ε0

2
E2∇ε+

ε0

2
∇
(
E2
dε

dρm
ρm

)
=
ε0 ρm

2
∇
(
E2
dε

dρm

)
, (6.94)

since ∇ε = (dε/dρm)∇ρm. We can integrate this equation to give∫p2

p1

dp

ρm
=
ε0

2

([
E2
dε

dρm

]
2

−

[
E2
dε

dρm

]
1

)
, (6.95)

where 1 and 2 refer to two general points within the liquid. Here, it is
assumed that the liquid possesses an equation of state, so that p = p(ρm).
If the liquid is essentially incompressible (i.e., ρm 	 constant) then

p2 − p1 =
ε0 ρm

2

[
E2

dε

dρm

]2
1

. (6.96)

Moreover, if the liquid obeys the Clausius-Mossotti relation then

p2 − p1 =

[
ε0 E

2

2

(ε− 1) (ε+ 2)

3

]2
1

. (6.97)

According to Equations (6.47) and (6.97), if a sphere of dielectric
liquid is placed in a uniform electric field E0 then the pressure inside the
liquid takes the constant value

p =
3

2
ε0

(
ε− 1

ε+ 2

)
E20 . (6.98)

Now, it is fairly clear that the electrostatic forces acting on the dielectric
are all concentrated at the edge of the sphere, and are directed radially
inward: i.e., the dielectric is compressed by the external electric field.
This is a somewhat surprising result, since the electrostatic forces acting
on a rigid conducting sphere are also concentrated at the edge of the
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sphere, but are directed radially outward. We might expect these two
cases to give the same result in the limit ε → ∞. The reason that this
does not occur is because a dielectric liquid is slightly compressible, and is,
therefore, subject to an electrostriction force. There is no electrostriction
force for the case of a completely rigid body. In fact, the force density
inside a rigid dielectric (for which ∇ · u = 0) is given by Equation (6.81)
with the third term on the right-hand side (the electrostriction term)
missing. It is easily seen that the force exerted by an electric field on a
rigid dielectric is directed outward, and approaches that exerted on a
rigid conductor in the limit ε → 0.

As is well-known, when a pair of charged (parallel plane) capacitor
plates are dipped into a dielectric liquid, the liquid is drawn up between
the plates to some extent. Let us examine this effect. We can, without
loss of generality, assume that the transition from dielectric to vacuum
takes place in a continuous manner. Consider the electrostatic pressure
difference between a point A lying just above the surface of the liquid in
the region between the plates, and a point B lying just above the surface
of the liquid some region well away from the capacitor where E 	 0—see
Figure 6.5. The pressure difference is given by

pA − pB = −

∫B
A

f ·dl, (6.99)

where dl is an element of some path linking points A and B. Note, how-
ever, that the Clausius-Mossotti relation yields dε/dρm = 0 at bothA and
B, since ε = 1 in a vacuum [see Equation (6.92)]. Thus, it is clear from
Equation (6.81) that the electrostriction term makes no contribution to

capacitor plates

A

B

dielectric liquid

h

C D

Figure 6.5: Two capacitor plates dipped in a dielectric liquid.
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the line integral (6.99). It follows that

pA − pB =
ε0

2

∫B
A

E2∇ε·dl. (6.100)

The only contribution to this integral comes from the vacuum/dielectric
interface in the vicinity of point A (since ε is constant inside the liquid,
and E 	 0 in the vicinity of point B). Suppose that the electric field at
point A has normal and tangential (to the surface) components E⊥ and
E‖, respectively. Making use of the boundary conditions that D⊥ and E‖
are constant across a vacuum/dielectric interface, we obtain

pA − pB =
ε0

2

[
E2‖ (ε− 1) +

D2
⊥
ε20

∫ε
1

dε

ε2

]
, (6.101)

giving

pA − pB =
ε0 (ε− 1)

2

[
E2‖ +

D2
⊥

ε20 ε

]
. (6.102)

This electrostatic pressure difference can be equated to the hydrostatic
pressure difference ρm gh to determine the height h that the liquid rises
between the plates. At first sight, the above analysis appears to suggest
that the dielectric liquid is drawn upward by a surface force acting on the
vacuum/dielectric interface in the region between the plates. In fact,
this is far from being the case. A brief examination of Equations (6.93)
and (6.97) shows that this surface force is actually directed downward.
Indeed, according to Equation (6.81), the force which causes the liquid
to rise between the plates is a volume force which develops in the region
of non-uniform electric field at the base of the capacitor, where the field
splays out between the plates. Thus, although we can determine the
height to which the fluid rises between the plates without reference to
the electrostriction force, it is, somewhat paradoxically, this force which
is actually responsible for supporting the liquid against gravity.

Let us consider another paradox concerning the electrostatic forces
exerted in a dielectric medium. Suppose that we have two charges
embedded in a uniform dielectric medium of dielectric constant ε. The
electric field generated by each charge is the same as that in vacuum,
except that it is reduced by a factor ε. Therefore, we would expect that
the force exerted by one charge on another is the same as that in vac-
uum, except that it is also reduced by a factor ε. Let us examine how this
reduction in force comes about. Consider a simple example. Suppose
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that we take a parallel plate capacitor, and insert a block of solid dielec-
tric between the plates. Suppose, further, that there is a small vacuum
gap between the faces of the block and each of the capacitor plates.
Let ±σ be the surface charge densities on each of the capacitor plates,
and let ±σb be the bound surface charge densities which develop on the
outer faces of the intervening dielectric block. The two layers of polar-
ization charge produce equal and opposite electric fields on each plate,
and their effects therefore cancel each other. Thus, from the point of
view of electrical interaction alone, there would appear to be no change
in the force exerted by one capacitor plate on the other when a dielectric
slab is placed between them (assuming that σ remains constant dur-
ing this process). That is, the force per unit area (which is attractive)
remains

f =
σ2

2ε0
(6.103)

—see Equation (5.71). However, in experiments in which a capacitor is
submerged in a dielectric liquid, the force per unit area exerted by one
plate on another is observed to decrease to

f =
σ2

2ε0 ε
. (6.104)

This apparent paradox can be explained by taking into account the
difference in liquid pressure in the field-filled space between the plates,
and the field-free region outside the capacitor. This pressure difference
is balanced by internal elastic forces in the case of a solid dielectric, but
is transmitted to the plates in the case of the liquid. We can compute
the pressure difference between a point C on the inside surface of one
of the capacitor plates, and a point D on the outside surface of the same
plate using Equation (6.100)—see Figure 6.5. If we neglect end effects,
then the electric field is normal to the plates in the region between the
plates, and is zero everywhere else. Thus, the only contribution to the
line integral (6.100) comes from the plate/dielectric interface in the
vicinity of point C. Adopting Equation (6.102), we find that

pC − pD =
ε0

2

(
1−

1

ε

)
E2⊥ =

σ2

2ε0

(
1−

1

ε

)
, (6.105)

where E⊥ = σ/ε0 is the normal field strength between the plates in the
absence of the dielectric. The sum of this pressure force (which is repul-
sive) and the attractive electrostatic force per unit area (6.103) yields a
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net attractive force per unit area of

f =
σ2

2ε0 ε
(6.106)

acting between the plates. Thus, any decrease in the forces exerted by
charges on one another when they are immersed, or embedded, in a
dielectric medium can only be understood in terms of mechanical forces
transmitted between the charges by the medium itself.

6.10 POLARIZATION CURRENT

We have seen that the bound charge density is related to the polarization
field via

ρb = −∇ · P. (6.107)

Now, it is clear, from this equation, that if the polarization field inside
some dielectric material changes in time then the distribution of bound
charges will also change. Hence, in order to conserve charge, a net
current must flow. This current is known as the polarization current.
Charge conservation implies that

∇ · jp +
∂ρb

∂t
= 0, (6.108)

where jp is the polarization current density. It follows from the previous
two equations that

jp =
∂P
∂t
. (6.109)

Note that the polarization current is a real current, despite the fact that
it is generated by the rearrangement of bound charges. There is, how-
ever, no drifting of real charges over length-scales longer than atomic or
molecular length-scales associated with this current.

6.11 MAGNETIZATION

All matter is built up out of molecules, and each molecule consists of
electrons in motion around stationary nuclii. The currents associated
with this type of electron motion are termed molecular currents. Each
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molecular current is a tiny closed circuit of atomic dimensions, and
may therefore be appropriately described as a magnetic dipole. Sup-
pose that a given molecule has a magnetic dipole moment m. If there
areN such molecules per unit volume then the magnetization M (i.e., the
magnetic dipole moment per unit volume) is given by M = Nm. More
generally,

M(r) =
∑
i

Ni 〈mi〉, (6.110)

where 〈mi〉 is the average magnetic dipole moment of the ith type of
molecule, and Ni is the average number of such molecules per unit
volume, in the vicinity of point r.

Now, we saw earlier, in Exercise 3.20, that the vector potential field
generated by a magnetic dipole of moment m situated at the origin is

A(r) =
µ0

4π

m × r
r3

. (6.111)

Hence, from the principle of superposition, the vector potential field
generated by a magnetic medium of magnetic moment per unit volume
M(r) is

A(r) =
µ0

4π

∫
M(r ′) × (r − r ′)

|r − r ′|3
d3r ′, (6.112)

where the volume integral is taken over all space. However, it follows
from Equations (3.15) and (3.148) that

A(r) =
µ0

4π

∫
M(r ′) × ∇ ′

(
1

|r − r ′|

)
d3r ′. (6.113)

Now, it is easily demonstrated that∫
f × ∇gd3r =

∫
g∇ × f d3r, (6.114)

provided that the integral is over all space, and g |f | → 0 as |r| → ∞.
Hence, for a magnetization field of finite extent, we can write

A(r) =
µ0

2π

∫
jm(r ′)
|r − r ′|

d3r ′, (6.115)

where

jm = ∇ × M. (6.116)
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It follows, by comparison with Equation (3.215), that the curl of the
magnetization field constitutes a current density. The associated current
is known as the magnetization current.

The total current density, j, in a general medium takes the form

j = jt + ∇ × M +
∂P
∂t
, (6.117)

where the three terms on the right-hand side represent the true current
density (i.e., that part of the current density which is due to the movement
of free charges), the magnetization current density, and the polarization
current density, respectively. It must be emphasized that all three terms
represent real physical currents, although only the first term is due to
the motion of real charges (over more than molecular dimensions).

Now, the differential form of Ampère’s law is

∇ × B = µ0 j + µ0ε0
∂E
∂t
, (6.118)

which can also be written

∇ × B = µ0 jt + µ0∇ × M + µ0
∂D
∂t
, (6.119)

where use has been made of Equation (6.117) and the definition D =
ε0 E + P. The above expression can be rearranged to give

∇ × H = jt +
∂D
∂t
, (6.120)

where

H =
B
µ0

− M (6.121)

is termed the magnetic intensity, and has the same dimensions as M (i.e.,
magnetic dipole moment per unit volume). In a steady-state situation,
Stokes’ theorem tell us that∮

C

H·dl =

∫
S

jt ·dS. (6.122)

In other words, the line integral of H around some closed loop is equal
to the flux of the true current through any surface attached to that loop.
Unlike the magnetic field B (which specifies the magnetic force q v × B
acting on a charge q moving with velocity v), or the magnetization M
(which is the magnetic dipole moment per unit volume), the magnetic
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intensity H has no clear physical interpretation. The only reason for
introducing this quantity is that it enables us to calculate magnetic fields
in the presence of magnetic materials without having to know the dis-
tribution of magnetization currents beforehand. However, this is only
possible if we possess a constitutive relation connecting B and H.

6.12 MAGNETIC SUSCEPTIBILITY AND PERMEABILITY

In a large class of magnetic materials, there exists an approximately
linear relationship between M and H. If the material is isotropic then

M = χm H, (6.123)

where χm is called the magnetic susceptibility. If χm is positive then the
material is called paramagnetic, and the magnetic field is strengthened
by the presence of the material. On the other hand, if χm is negative then
the material is diamagnetic, and the magnetic field is weakened in the
presence of the material. The magnetic susceptibilities of paramagnetic
and diamagnetic materials are generally extremely small. A few example
values of χm are given in Table 6.2.

A linear relationship between M and H also implies a linear
relationship between B and H. In fact, we can write

B = µ0 µH, (6.124)

Material Magnetic susceptibility

Aluminum +2.3× 10−5

Copper −9.8× 10−6

Diamond −2.2× 10−5

Tungsten +6.8× 10−5

Hydrogen (1 atm) −2.1× 10−9

Oxygen (1 atm) +2.1× 10−6

Nitrogen (1 atm) −5.0× 10−9

Table 6.2 Low-frequency magnetic susceptibilities of some common materials.
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where

µ = 1+ χm (6.125)

is termed the relative magnetic permeability of the material in question.
(Likewise, µ0 is termed the permeability of free space.) Note that µ is
dimensionless. It is clear from Table 6.2 that the relative permeabilities
of common diamagnetic and paramagnetic materials do not differ sub-
stantially from unity. In fact, to all intents and purposes, the magnetic
properties of such materials can be safely neglected.

6.13 FERROMAGNETISM

There exists, however, a third class of magnetic materials called fer-
romagnetic materials. Such materials are characterized by a possible
permanent magnetization, and generally have a profound effect on mag-
netic fields (i.e., µ � 1). Unfortunately, ferromagnetic materials do not
generally exhibit a linear dependence between M and H, or between B
and H, so that we cannot employ Equations (6.123) and (6.124) with
constant values of χm and µ. It is still expedient to use Equation (6.124)
as the definition of µ, with µ = µ(H). However, this practice can lead
to difficulties under certain circumstances. The permeability of a ferro-
magnetic material, as defined by Equation (6.124), can vary through the
entire range of possible values from zero to infinity, and may be either
positive or negative. The most sensible approach is to consider each
problem involving ferromagnetic materials separately, try to determine
which region of the B-H diagram is important for the particular case in
hand, and then make approximations appropriate to this region.

First, let us consider an unmagnetized sample of ferromagnetic
material. If the magnetic intensity, which is initially zero, is increased
monotonically, then the B-H relationship traces out a curve such as that
shown schematially in Figure 6.6. This is called a magnetization curve.
It is evident that the permeabilities µ derived from the curve (according
to the rule µ = µ−1

0 B/H) are always positive, and show a wide range of
values. The maximum permeability occurs at the “knee” of the curve. In
some materials, this maximum permeability is as large as 105. The rea-
son for the knee is that the magnetization M reaches a maximum value
in the material, so that

B = µ0 (H + M) (6.126)
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1

H

B/µ0

µ

Figure 6.6: A typical magnetization curve for a ferromagnet.

continues to increase at large H only because of the µ0 H term. The max-
imum value of M is called the saturation magnetization of the material.
Incidentally, it is clear from the above equation that µ = 1 for a fully
saturated magnetic material in which |H| � |M|.

Next, consider a ferromagnetic sample magnetized by the above pro-
cedure. If the magnetic intensity H is decreased then the B-H relation
does not return along the curve shown in Figure 6.6, but instead moves
along a new curve, which is sketched in Figure 6.7, to the point R.
Thus, the magnetization, once established, does not disappear with the
removal of H. In fact, it takes a reversed magnetic intensity to reduce the
magnetization to zero. If H continues to build up in the reversed direc-
tion, then M (and, hence, B) becomes increasingly negative. Finally,
when H increases again the operating point follows the lower curve in
Figure 6.7. Thus, the B-H curve for increasing H is quite different to that
for decreasing H. This phenomenon is known as hysteresis.

The curve sketched in Figure 6.7 called the hysteresis loop of the
ferromagnetic material in question. The value of B at the point R is
called the retentivity or remanence. The magnitude of H at the point C
is called the coercivity. It is evident that µ is negative in the second and
fourth quadrants of the loop, and positive in the first and third quadrants.
The shape of the hysteresis loop depends not only on the nature of the
ferromagnetic material, but also on the maximum value of |H| to which
the material has been subjected. However, once this maximum value,
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H

R

C

B/µ0

Figure 6.7: A typical hysteresis loop for a ferromagnet.

|H|max, becomes sufficiently large to produce saturation in the material,
the hysteresis loop does not change shape with any further increase
in |H|max.

Ferromagnetic materials are used either to channel magnetic flux
(e.g., around transformer circuits) or as sources of magnetic field (e.g.,
permanent magnets). For use as a permanent magnet, the material is first
magnetized by placing it in a strong magnetic field. However, once the
magnet is removed from the external field it is subject to a demagnetizing
H. Thus, it is vitally important that a permanent magnet should possess
both a large remanence and a large coercivity. As will become clear
later on, it is generally a good idea for the ferromagnetic materials used
to channel magnetic flux around transformer circuits to possess small
remanences and small coercivities.

6.14 BOUNDARY CONDITIONS FOR B AND H

What are the boundary conditions for B and H at the interface between
two magnetic media? Well, the governing equations for a steady-state
situation are

∇·B = 0, (6.127)

and

∇ × H = jt. (6.128)
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loop Gaussian pill-box
.

H‖ 2

S
C

1

2 B⊥ 2

B⊥ 1

µ1

µ2

H‖ 1

Figure 6.8: The boundary between two different magnetic media.

Integrating Equation (6.127) over a thin Gaussian pill-box S enclosing
part of the interface between the two media gives

B⊥ 1 − B⊥ 2 = 0, (6.129)

where B⊥ 1 denotes the component of B perpendicular to the interface
in medium 1, etc.—see Figure 6.8. Integrating Equation (6.128) around
a narrow loop C which straddles the interface yields

H‖ 1 −H‖ 2 = 0, (6.130)

assuming that there is no true current sheet flowing at the interface—
see Figure 6.8. Here, H‖ 1 denotes the component of H parallel to the
interface in medium 1, etc. In general, there is a magnetization current
sheet flowing at the interface between two magnetic materials whose
density is

Jm = (M1 − M2) × n, (6.131)

where n is the unit normal to the interface (pointing from medium 1 to
medium 2), and M1,2 are the magnetizations in the two media.

6.15 BOUNDARY VALUE PROBLEMS WITH FERROMAGNETS

Consider a ferromagnetic sphere of permanent magnetization M = M ez,
where M is a constant. What is the magnetic field generated by such a
sphere? Suppose that the sphere is of radius a, and is centered on the
origin. From Equation (6.120), we have

∇ × H = 0, (6.132)
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since this is a time-independent problem with no true currents. It follows
that

H = −∇φm, (6.133)

where φm is termed the magnetic scalar potential. Now,

H =
B
µ0

− M, (6.134)

which implies that

∇ · H = 0 (6.135)

everywhere (apart from on the surface of the sphere), since ∇ · B = 0,
and M is constant inside the sphere, and zero outside. It follows that the
magnetic scalar potential satisfies Laplace’s equation,

∇2φm = 0, (6.136)

both inside and outside the sphere.
Adopting spherical polar coordinates, (r, θ,ϕ), aligned along the z-

axis, the boundary conditions are that φm is well-behaved at r = 0, and
φm → 0 as r → ∞. Moreover, Equation (6.130) implies that φm must be
continuous at r = a, whereas Equations (6.126) and (6.129) yield

−

[
∂φm

∂r

]a+

a−

= M · er, (6.137)

or
∂φm

∂r

∣∣∣∣
r=a+

−
∂φm

∂r

∣∣∣∣
r=a−

= −M cos θ. (6.138)

Let us try separable solutions of the form rm cos θ. It is easily demon-
strated that such solutions satisfy Laplace’s equation provided thatm = 1

or m = −2. Hence, the most general solution to Laplace’s equation
outside the sphere, which satisfies the boundary condition at r → ∞, is

φm(r, θ) = C
a3 cos θ
r2

. (6.139)

Likewise, the most general solution inside the sphere, which satisfies the
boundary condition at r = 0, is

φm(r, θ) = Dr cos θ. (6.140)

The continuity of φm at r = a gives C = D, whereas the boundary
condition (6.138) yields C = M/3. Hence, the magnetic scalar potential
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takes the form

φm =
M

3

a3

r2
cos θ (6.141)

outside the sphere, and

φm =
M

3
r cos θ (6.142)

inside the sphere. It follows that

H = − M/3, (6.143)

B/µ0 = 2M/3 (6.144)

inside the sphere. Hence, both the magnetic field and the magnetic
intensity are uniform and parallel or anti-parallel to the permanent mag-
netization within the sphere—see Figure 6.9. Note, however, that the
sphere is subject to a demagnetizing magnetic intensity (i.e., H ∝ −M).

x

z

Figure 6.9: Equally spaced coutours of the axisymmetric potentialφm(r, θ)
generated by a ferromagnetic sphere of unit radius uniformly magnetized
in the z-direction.



“chapter6” — 2007/12/14 — 12:05 — page 247 — #33

CHAPTER 6 DIELECTRIC AND MAGNETIC MEDIA 247

It is easily demonstrated that the scalar magnetic potential due to a
magnetic dipole of moment m at the origin is

φm(r) =
1

4π

m · r
r3

. (6.145)

Thus, it is clear that the magnetic field outside the sphere is the same as
that of a magnetic dipole of moment

m =
4

3
πa3 M (6.146)

at the origin. This, of course, is the permanent magnetic dipole moment
of the sphere. Finally, the magnetization sheet current density at the
surface of the sphere is given by

Jm = M × er = M sin θ eϕ. (6.147)

Consider a ferromagnetic sphere, of uniform permeability µ, placed
in a uniform z-directed magnetic field of magnitude B0. Suppose that the
sphere is centered on the origin. In the absence of any true currents, we
have ∇ × H = 0. Hence, we can again write H = −∇φm. Given that
∇ · B = 0, and B = µ0 µH, it follows that ∇2φm = 0 in any uniform
magnetic medium (or a vacuum). Thus, ∇2φm = 0 throughout space.
Adopting spherical polar coordinates, (r, θ,ϕ), aligned along the z-axis,
the boundary conditions are that φm → −(B0/µ0) r cos θ as r → ∞, and
that φm is well-behaved at r = 0. At the surface of the sphere, r = a,
the continuity of H‖ implies that φm is continuous. Furthermore, the
continuity of B⊥ = µ0 µH⊥ leads to the matching condition

∂φm

∂r

∣∣∣∣
r=a+

= µ
∂φm

∂r

∣∣∣∣
r=a−

. (6.148)

Let us again try separable solutions of the form rm cos θ. The most
general solution to Laplace’s equation outside the sphere, which satisfies
the boundary condition at r → ∞, is

φm(r, θ) = −(B0/µ0) r cos θ+ (B0/µ0)α
a3 cos θ
r2

. (6.149)

Likewise, the most general solution inside the sphere, which satisfies the
boundary condition at r = 0, is

φm(r, θ) = −(B1/µ0 µ) r cos θ. (6.150)



“chapter6” — 2007/12/14 — 12:05 — page 248 — #34

248 MAXWELL’S EQUATIONS AND THE PRINCIPLES OF ELECTROMAGNETISM

The continuity of φm at r = a yields

B0 − B0 α = B1/µ. (6.151)

Likewise, the matching condition (6.148) gives

B0 + 2B0 α = B1. (6.152)

Hence,

α =
µ− 1

µ+ 2
, (6.153)

B1 =
3µB0

µ+ 2
. (6.154)

Note that the magnetic field inside the sphere is uniform, parallel to
the external magnetic field outside the sphere, and of magnitude B1.
Moreover, B1 > B0, provided that µ > 1. The magnetization inside the
sphere is also uniform and parallel to the external magnetic field. In fact,

M =
3 (µ− 1)

µ+ 2

B0

µ0
ez. (6.155)

The magnetic field outside the sphere is that due to the external field
plus the field of a magnetic dipole of moment m = (4/3)πa3 M. This is,
of course, the induced magnetic dipole moment of the sphere. Finally,
the magnetization sheet current density at the surface of the sphere is
Jm = M × er = M sin θ eϕ.

As a final example, consider an electromagnet of the form sketched
in Figure 6.10. A wire, carrying a current I, is wrapped N times around
a thin toroidal iron core of radius a and permeability µ � 1. The core
contains a thin gap of width d. What is the magnetic field induced in the
gap? Let us neglect any leakage of magnetic flux from the core, which is
reasonable if µ � 1. We expect the magnetic field, Bc, and the magnetic
intensity, Hc, in the core to both be toroidal and essentially uniform. It is
also reasonable to suppose that the magnetic field, Bg, and the magnetic
intensity, Hg, in the gap are toroidal and uniform, since d � a. We
have Bc = µ0 µHc and Bg = µ0 Hg. Moreover, since the magnetic field is
normal to the interface between the core and the gap, the continuity of
B⊥ implies that

Bc = Bg. (6.156)

Thus, the magnetic field-strength in the core is the same as that in the
gap. However, the magnetic intensities in the core and the gap are quite
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iron core

wire
gap d

I
a

Figure 6.10: An electromagnet.

different: Hc = Bc/µ0 µ = Bg/µ0 µ = Hg/µ. Integration of Equation
(6.128) around the torus yields∮

H · dl =

∫
jt · dS = NI. (6.157)

Hence,

(2πa− d)Hc + dHg = NI. (6.158)

It follows that

Bg =
Nµ0 I

(2πa− d)/µ+ d
. (6.159)

Note that if µ � 1 and d � 2πa then the magnetic field in the gap is
considerably larger than that which would be obtained if the core of the
electromagnet were not ferromagnetic.

6.16 MAGNETIC ENERGY

Consider an electrical conductor. Suppose that a battery with an elec-
tromotive field E ′ is feeding energy into this conductor. The energy is
either dissipated as heat, or is used to generate a magnetic field. Ohm’s
law inside the conductor gives

jt = σ (E + E ′), (6.160)
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where jt is the true current density, σ is the conductivity, and E is the
inductive electric field. Taking the scalar product with jt, we obtain

E ′ ·jt =
j 2t
σ

− E · jt. (6.161)

The left-hand side of this equation represents the rate at which the bat-
tery does work on the conductor. The first term on the right-hand side is
the rate of ohmic heating inside the conductor. Thus, the remaining term
must represent the rate at which energy is fed into the magnetic field. If
all fields are quasi-static (i.e., slowly varying) then the displacement cur-
rent can be neglected, and the differential form of Ampère’s law reduces
to ∇ × H = jt. Substituting this expression into Equation (6.161), and
integrating over all space, we get

∫
E ′ ·(∇ × H)d3r =

∫
(∇ × H)2

σ
d3r −

∫
E·(∇ × H)d3r. (6.162)

The last term can be integrated by parts using the vector identity

∇·(E × H) ≡ H·(∇ × E) − E·(∇ × H). (6.163)

Gauss’ theorem plus the differential form of Faraday’s law yield
∫

E·(∇ × H)d3r = −

∫
H·∂B
∂t
d3r −

∫
(E × H)·dS. (6.164)

Since E × H falls off at least as fast as 1/r5 in quasi-static electric and
magnetic fields (1/r2 comes from electric monopole fields, and 1/r3 from
magnetic dipole fields), the surface integral in the above expression can
be neglected. Of course, this is not the case for radiation fields, for
which E and H both fall off like 1/r. Thus, the “quasi-static” constraint
effectively means that the fields vary sufficiently slowly that any radiation
fields can be neglected.

The total power expended by the battery can now be written

∫
E ′ ·(∇ × H)d3r =

∫
(∇ × H)2

σ
d3r +

∫
H·∂B
∂t
d3r. (6.165)

The first term on the right-hand side has already been identified as the
energy loss rate due to ohmic heating, and the second as the rate at
which energy is fed into the magnetic field. The variation δW in the
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magnetic field energy can therefore be written

δW =

∫
H·δBd3r. (6.166)

This result is analogous to the result (6.60) for the variation in the energy
of an electrostatic field.

In order to make Equation (6.166) integrable, we must assume a
functional relationship between H and B. For a medium which magne-
tizes linearly, the integration can be carried out in an analogous manner
to that used to derive Equation (6.63), to give

W =
1

2

∫
H·Bd3r. (6.167)

Thus, the magnetostatic energy density inside a linear magnetic material
is given by

U =
1

2
H· B. (6.168)

Unfortunately, most interesting magnetic materials, such as ferromag-
nets, exhibit a nonlinear relationship between H and B. For such
materials, Equation (6.166) can only be integrated between definite
states, and the result, in general, depends on the past history of the
sample. For ferromagnets, the integral of Equation (6.166) has a finite,
non-zero value when B is integrated around a complete magnetization
cycle. This cyclic energy loss is given by

∆W =

∫ ∮
H· dBd3r. (6.169)

In other words, the energy expended per unit volume when a magnetic
material is carried around a magnetization cycle is equal to the area
of its hysteresis loop, as plotted in a graph of B against H. Thus, it
is particularly important to ensure that the magnetic materials used to
form transformer cores possess hysteresis loops with comparatively small
areas, otherwise the transformers are likely to be extremely lossy.

6.17 EXERCISES

6.1. An infinite slab of dielectric of uniform dielectric constant ε lies between the

planes z = −a and z = a. Suppose that the slab contains free charge of uniform
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charge density ρf. Find E, D, and P as functions of z. What is the bound charge

sheet density on the two faces of the slab?

6.2. An infinite slab of uncharged dielectric of uniform dielectric constant ε lies

between the planes z = −a and z = a, and is placed in a uniform electric field

E whose field-lines make an angle θ with the z-axis. What is the bound charge

sheet density on the two faces of the slab?

6.3. An uncharged dielectric sphere of radius a, centered on the origin, possesses a

polarization field P = p r, where p is a constant. Find the bound charge density

inside the sphere, and the bound charge sheet density on the surface of the

sphere. Find E and D both inside and outside the sphere.

6.4. An infinite dielectric of dielectric constant ε contains a uniform electric field E0.

Find the electric field inside a needle-shaped cavity running parallel to E0. Find

the field inside a wafer-shaped cavity aligned perpendicular to E0. Neglect end

effects.

6.5. Consider a plane interface between two uniform dielectrics of dielectric constants

ε1 and ε2. A straight electric field-line which passes across the interface is bent

at an angle. Demonstrate that

ε1 tan θ2 = ε2 tan θ1,

where θ1 is the angle the field-line makes with the normal to the interface in

medium 1, etc.

6.6. A charge q lies at the center of an otherwise uncharged dielectric sphere of radius

a and uniform dielectric constant ε. Find D and E throughout space. Find the

bound charge sheet density on the surface of the sphere.

6.7. A cylindrical coaxial cable consists of an inner conductor of radius a, surrounded

by a dielectric sheath of dielectric constant ε1 and outer radius b, surrounded by

a second dielectric sheath of dielectric constant ε2 and outer radius c, surrounded

by an outer conductor. All components of the cable are touching. What is the

capacitance per unit length of the cable?

6.8. A long dielectric cylinder of radius a and uniform dielectric constant ε is placed

in a uniform electric field E0 which runs perpendicular to the axis of the cylinder.

Find the electric field both inside and outside the cylinder. Find the bound charge

sheet density on the surface of the cylinder. Hint: Use separation of variables.

6.9. An electric dipole of moment p = p ez lies at the center of an uncharged dielectric

sphere of radius a and uniform dielectric constant ε. Find D and E throughout

space. Find the bound charge sheet density on the surface of the sphere. Hint:

Use the separation of variables.

6.10. A parallel plate capacitor has plates of area A and spacing d. Half of the region

between the plates is filled with a dielectric of uniform dielectric constant ε1,
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and the other half is filled with a dielectric of uniform dielectric constant ε2.

If the interface between the two dielectric media is a plane parallel to the two

plates, lying half-way between them, what is the capacitance of the capacitor?

If the interface is perpendicular to the two plates, and bisects them, what is the

capacitance of the capacitor?

6.11. Consider a parallel plate capacitor whose plates are of area A and spacing d.

Find the force of attraction per unit area between the plates when:

(a) The region between the plates is empty and the capacitor is connected to a

battery of voltage V .

(b) The capacitor is disconnected from the battery (but remains charged), and

then fully immersed in a dielectric liquid of uniform dielectric constant ε.

(c) The dielectric liquid is replaced by a slab of solid dielectric of uniform dielec-

tric constant ε which fills the region between the plates, but does not touch

the plates.

(d) The uncharged capacitor is fully immersed in a dielectric liquid of uniform

dielectric constant ε, and then charged to a voltage V .

(e) The region between the plates of the uncharged capacitor is filled by a solid

dielectric of uniform dielectric constant ε, which does not touch the plates,

and the capacitor is then charged to a voltage V .

6.12. A parallel plate capacitor has the region between its electrodes completely filled

with a dielectric slab of uniform dielectric constant ε. The plates are of length l,

width w, and spacing d. The capacitor is charged until its plates are at a poten-

tial difference V , and then disconnected. The dielectric slab is then partially

withdrawn in the l dimension until only a length x remains between the plates.

What is the potential difference between the plates? What is the force acting to

pull the slab back toward its initial position? Neglect end effects. Hint: Use an

energy argument to calculate the force.

6.13. A parallel plate capacitor with electrodes of area A, spacing d, which carry

the fixed charges ±Q, is dipped vertically into a large vat of dielectric liquid

of uniform dielectric constant ε and mass density ρm. What height h does the

liquid rise between the plates (relative to the liquid level outside the plates)?

Neglect end effects.

6.14. A solenoid consists of a wire wrapped uniformly around a long, solid, cylindrical

ferromagnetic core of radius a and uniform permeability µ. Suppose that there

are N turns of the wire per unit length. What is the magnetic field-strength

inside the core when a current I flows through the wire? Suppose that the core

is replaced by a cylindrical annulus of the same material. What is the magnetic

field-strength in the cylindrical cavity inside the annulus when a current I flows

through the wire?
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6.15. A long straight wire carries a current I and is surrounded by a ferromagnetic

co-axial cylindrical annulus of uniform permeability µ, inner radius a, and outer

radius b. Find the magnetic field everywhere. Find the magnetization current

density both within the annulus and on the surfaces of the annulus.

6.16. An infinitely long cylinder of radius a, which is coaxial with the z-axis, has a

uniform magnetization M = M ez. Find the induced magnetic field both inside

and outside the cylinder. Find the magnetization current density on the surface

of the cylinder.

6.17. A very large piece of magnetic material of constant permeability µ contains

a uniform magnetic field B0. Find the magnetic field inside a needle-shaped

cavity running parallel to B0. Find the field inside a wafer-shaped cavity aligned

perpendicular to B0. Neglect end effects.

6.18. A spherical annulus of magnetic material of inner radius a, outer radius b, and

uniform permeability µ is placed in the uniform magnetic field B = B0 ez. Find

the magnetic scalar potential everywhere. What is the magnetic field inside the

shell? Hint: Use the separation of variables.

6.19. A long ferromagnetic cylinder of radius a and uniform permeability µ is placed

in a uniform magnetic field B0 which runs perpendicular to the axis of the

cylinder. Find the magnetic field both inside and outside the cylinder. Find the

magnetization current on the surface of the cylinder. Hint: Use separation of

variables.

6.20. A magnetic dipole of moment m = m ez lies at the center of a ferromagnetic

sphere of radius a and uniform permeability µ. Find H and B throughout space.

Find the magnetization current density on the surface of the sphere. Hint: Use

the separation of variables.

6.21. A magnet consists of a thin ring of magnetic material of radius a containing a

narrow gap of width d, where d � a (i.e., the magnet has the same shape as the

core of the electromagnet shown in Figure 6.10). The magnetic material pos-

sesses a uniform permanent magnetization M = M eϕ, where eϕ is a unit vector

which runs toroidally around the ring. What is the strength of the magnetic field

in the gap? If A is the cross-sectional area of the ring, how much magnetostatic

energy does the magnet possess? Neglect field leakage.

6.22. Suppose that half of the permanently magnetized material making up the ring

in the previous question is replaced by material of uniform permeability µ. What

is the magnetic field-strength in the gap? How much magnetostatic energy does

the magnet possess? Neglect field leakage.
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C h a p t e r 7 MAGNETIC
INDUCTION

7.1 INTRODUCTION

In this chapter, we shall use Maxwell’s equations to investigate magnetic
induction and related phenomena.

7.2 INDUCTANCE

We have already learned about the concepts of voltage, resistance, and
capacitance. Let us now investigate the concept of inductance. Electrical
engineers like to reduce all pieces of electrical circuitary to an equivalent
circuit consisting of pure voltage sources, pure inductors, pure capaci-
tors, and pure resistors. Hence, once we understand inductors, we shall
be ready to apply the laws of electromagnetism to general electrical
circuits.

Consider two stationary loops of wire, labeled 1 and 2—see Fig-
ure 7.1. Let us run a steady current I1 around the first loop to produce
a magnetic field B1. Some of the field-lines of B1 will pass through the
second loop. Let Φ2 be the flux of B1 through loop 2,

Φ2 =

∫
loop 2

B1 · dS2, (7.1)

where dS2 is a surface element of loop 2. This flux is generally quite
difficult to calculate exactly (unless the two loops have a particularly
simple geometry). However, we can infer from the Biot-Savart law,

B1(r) =
µ0 I1

4π

∮
loop 1

dl1 × (r − r1)
|r − r1|3

, (7.2)

that the magnitude of B1 is proportional to the current I1. This is ulti-
mately a consequence of the linearity of Maxwell’s equations. Here, dl1
is a line element of loop 1 located at position vector r1. It follows that

255
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loop 2

dl2

loop 1

dl1

r2�r1
I1

I2

Figure 7.1: Two current-carrying loops.

the flux Φ2 must also be proportional to I1. Thus, we can write

Φ2 = M21 I1, (7.3)

where M21 is a constant of proportionality. This constant is called the
mutual inductance of the two loops.

Let us write the magnetic field B1 in terms of a vector potential A1,
so that

B1 = ∇ × A1. (7.4)

It follows from Stokes’ theorem that

Φ2 =

∫
loop 2

B1 · dS2 =

∫
loop 2

∇ × A1 · dS2 =

∮
loop 2

A1 · dl2, (7.5)

where dl2 is a line element of loop 2. However, we know that

A1(r) =
µ0 I1

4π

∮
loop 1

dl1
|r − r1|

. (7.6)

The above equation is just a special case of the more general law,

A1(r) =
µ0

4π

∫
all space

j(r ′)
|r − r ′|

d3r ′, (7.7)

for j(r1) = dl1 I1/dl1 dA and d3r ′ = dl1 dA, where dA is the cross-
sectional area of loop 1. Thus,

Φ2 =
µ0 I1

4π

∮
loop 1

∮
loop 2

dl1 · dl2
|r2 − r1|

, (7.8)
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where r2 is the position vector of the line element dl2 of loop 2, which
implies that

M21 =
µ0

4π

∮
loop 1

∮
loop 2

dl1 · dl2
|r2 − r1|

. (7.9)

In fact, mutual inductances are rarely worked out using the above for-
mula, because it is usually much too difficult. However, this expression—
which is known as the Neumann formula—tells us two important things.
Firstly, the mutual inductance of two current loops is a purely geometric
quantity, having to do with the sizes, shapes, and relative orientations
of the loops. Secondly, the integral is unchanged if we switch the roles
of loops 1 and 2. In other words,

M21 = M12. (7.10)

Hence, we can drop the subscripts, and just call both these quantitiesM.
This is a rather surprising result. It implies that no matter what the shapes
and relative positions of the two loops, the magnetic flux through loop 2
when we run a current I around loop 1 is exactly the same as the flux
through loop 1 when we run the same current around loop 2.

We have seen that a current I flowing around some wire loop, 1,
generates a magnetic flux linking some other loop, 2. However, flux is
also generated through the first loop. As before, the magnetic field, and,
therefore, the flux, Φ, is proportional to the current, so we can write

Φ = L I. (7.11)

The constant of proportionality L is called the self-inductance. Like M it
only depends on the geometry of the loop.

Inductance is measured in SI units called henries (H): 1 henry is 1
volt-second per ampere. The henry, like the farad, is a rather unwieldy
unit, since inductors in electrical circuits typically have inductances of
order one micro-henry.

7.3 SELF-INDUCTANCE

Consider a long, uniformly wound, cylindrical solenoid of length l, and
radius r, which has N turns per unit length, and carries a current I. The
longitudinal (i.e., directed along the axis of the solenoid) magnetic field
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within the solenoid is approximately uniform, and is given by

B = µ0 N I. (7.12)

(This result is easily obtained by integrating Ampère’s law over a rectan-
gular loop whose long sides run parallel to the axis of the solenoid, one
inside the solenoid, and the other outside, and whose short sides run
perpendicular to the axis.) The magnetic flux though each turn of the
solenoid wire is Bπ r2 = µ0 N Iπ r

2. The total flux through the solenoid
wire, which has Nl turns, is

Φ = Nlµ0 N Iπ r
2. (7.13)

Thus, the self-inductance of the solenoid is

L =
Φ

I
= µ0 N

2 π r2 l. (7.14)

Note that the self-inductance only depends on geometric quantities, such
as the number of turns per unit length of the solenoid, and the cross-
sectional area of the turns.

Suppose that the current I flowing through the solenoid changes. Let
us assume that the change is sufficiently slow that we can neglect the
displacement current, and retardation effects, in our calculations. This
implies that the typical time-scale of the change must be much longer
than the time for a light-ray to traverse the circuit. If this is the case then
the above formulae remain valid.

A change in the current implies a change in the magnetic flux linking
the solenoid wire, sinceΦ = L I. According to Faraday’s law, this change
generates an emf in the wire. By Lenz’s law, the emf is such as to oppose
the change in the current—i.e., it is a back-emf. Thus, we can write

V = −
dΦ

dt
= −L

dI

dt
, (7.15)

where V is the generated back-emf.
Suppose that our solenoid has an electrical resistance R. Let us con-

nect the ends of the solenoid across the terminals of a battery of constant
voltage V. What is going to happen? The equivalent circuit is shown in
Figure 7.2. The inductance and resistance of the solenoid are represented
by a perfect inductor, L, and a perfect resistor, R, connected in series. The
voltage drop across the inductor and resistor is equal to the voltage of
the battery, V. The voltage drop across the resistor is simply I R, whereas
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R

V

I

L

Figure 7.2: The equivalent circuit of a solenoid connected to a battery.

the voltage drop across the inductor (i.e., the back-emf) is LdI/dt. Here,
I is the current flowing through the solenoid. It follows that

V = I R+ L
dI

dt
. (7.16)

This is a differential equation for the current I. We can rearrange it to
give

dI

dt
+
R

L
I =

V

L
. (7.17)

The general solution is

I(t) =
V

R
+ k exp(−R t/L). (7.18)

The constant k is fixed by the boundary conditions. Suppose that the
battery is connected at time t = 0, when I = 0. It follows that k = −V/R,
so that

I(t) =
V

R
[1− exp(−R t/L) ] . (7.19)

This curve is shown in Figure 7.3. It can be seen that, after the battery is
connected, the current ramps up, and attains its steady-state value V/R
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Figure 7.3: Typical current rise profile in a circuit of the type shown in
Figure 7.2. Here, I0 = V/R and τ = L/R.

(which comes from Ohm’s law), on the characteristic time-scale

τ =
L

R
. (7.20)

This time-scale is sometimes called the time constant of the circuit, or
(somewhat unimaginatively) the L over R time of the circuit.

We can now appreciate the significance of self-inductance. The back-
emf generated in an inductor, as the current flowing through it tries to
change, prevents the current from rising (or falling) much faster than the
L/R time. This effect is sometimes advantageous, but is often a great nui-
sance. All circuit elements possess some self-inductance, as well as some
resistance, and thus have a finite L/R time. This means that when we
power up a DC circuit, the current does not jump up instantaneously to
its steady-state value. Instead, the rise is spread out over the L/R time of
the circuit. This is a good thing. If the current were to rise instantaneously
then extremely large electric fields would be generated by the sudden
jump in the induced magnetic field, leading, inevitably, to breakdown
and electric arcing. So, if there were no such thing as self-inductance
then every time we switched an electric circuit on or off there would
be a blue flash due to arcing between conductors. Self-inductance can
also be a bad thing. Suppose that we possess an expensive power supply
which can generate a wide variety of complicated voltage waveforms,
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Figure 7.4: Difference between the input waveform (left panel) and the
output waveform (right panel) when a square-wave is sent down a wire
whose L/R time is 1/20th of the square-wave period, T .

and we wish to use it to send such a waveform down a wire (or trans-
mission line). Of course, the wire or transmission line will possess both
resistance and inductance, and will, therefore, have some characteristic
L/R time. Suppose that we try to send a square-wave signal down the
wire. Since the current in the wire cannot rise or fall faster than the L/R
time, the leading and trailing edges of the signal will get smoothed out
over an L/R time. The typical difference between the signal fed into the
wire, and that which comes out of the other end, is illustrated in Fig-
ure 7.4. Clearly, there is little point in having an expensive power supply
unless we also possess a low-inductance wire, or transmission line, so
that the signal from the power supply can be transmitted to some load
device without serious distortion.

7.4 MUTUAL INDUCTANCE

Consider, now, two long thin cylindrical solenoids, one wound on top of
the other. The length of each solenoid is l, and the common radius is r.
Suppose that the bottom coil has N1 turns per unit length, and carries
a current I1. The magnetic flux passing through each turn of the top
coil is µ0 N1 I1 π r2, and the total flux linking the top coil is therefore
Φ2 = N2 l µ0N1 I1 π r

2, where N2 is the number of turns per unit length
in the top coil. It follows that the mutual inductance of the two coils,
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defined Φ2 = MI1, is given by

M = µ0 N1 N2 π r
2 l. (7.21)

Recall that the self-inductance of the bottom coil is

L1 = µ0 N
2
1 π r

2 l, (7.22)

and that of the top coil is

L2 = µ0 N
2
2 π r

2 l. (7.23)

Hence, the mutual inductance can be written

M =
√
L1 L2. (7.24)

Note that this result depends on the assumption that all of the magnetic
flux produced by one coil passes through the other coil. In reality, some
of the flux leaks out, so that the mutual inductance is somewhat less
than that given in the above formula. We can write

M = k
√
L1 L2, (7.25)

where the dimensionless constant k is called the coefficient of coupling,
and lies in the range 0 ≤ k ≤ 1.

Suppose that the two coils have resistances R1 and R2. If the bot-
tom coil has an instantaneous current I1 flowing through it, and a total
voltage drop V1, then the voltage drop due to its resistance is I1 R1. The
voltage drop due to the back-emf generated by the self-inductance of the
coil is L1 dI1/dt. There is also a back-emf due to inductive coupling with
the top coil. We know that the flux through the bottom coil due to the
instantaneous current I2 flowing in the top coil is

Φ1 = MI2. (7.26)

Thus, by Faraday’s law and Lenz’s law, the back-emf induced in the
bottom coil is

V = −M
dI2

dt
. (7.27)

The voltage drop across the bottom coil due to its mutual inductance
with the top coil is minus this expression. Thus, the circuit equation for
the bottom coil is

V1 = R1 I1 + L1
dI1

dt
+M

dI2

dt
. (7.28)
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Likewise, the circuit equation for the top coil is

V2 = R2 I2 + L2
dI2

dt
+M

dI1

dt
. (7.29)

Here, V2 is the total voltage drop across the top coil.
Suppose that we suddenly connect a battery of constant voltage V1

to the bottom coil, at time t = 0. The top coil is assumed to be open-
circuited, or connected to a voltmeter of very high internal resistance, so
that I2 = 0. What is the voltage generated in the top coil? Since I2 = 0,
the circuit equation for the bottom coil is

V1 = R1 I1 + L1
dI1

dt
, (7.30)

where V1 is constant, and I1(t = 0) = 0. We have already seen the
solution to this equation:

I1 =
V1

R1
[1− exp(−R1 t/L1)] . (7.31)

The circuit equation for the top coil is

V2 = M
dI1

dt
, (7.32)

giving

V2 = V1
M

L1
exp(−R1 t/L1). (7.33)

It follows from Equation (7.25) that

V2 = V1 k

√
L2

L1
exp(−R1 t/L1). (7.34)

Since L1/L2 = N2
1 /N

2
2 , we obtain

V2 = V1 k
N2

N1
exp(−R1 t/L1). (7.35)

Note that V2(t) is discontinuous at t = 0. This is not a problem, since
the resistance of the top circuit is infinite, so there is no discontinuity
in the current (and, hence, in the magnetic field). But, what about the
displacement current, which is proportional to ∂E/∂t? Surely, this is
discontinuous at t = 0 (which is clearly unphysical)? The crucial point,
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here, is that we have specifically neglected the displacement current in
all of our previous analysis, so it does not make much sense to start
worrying about it now. If we had retained the displacement current in
our calculations then we would have found that the voltage in the top
circuit jumps up, at t = 0, on a time-scale similar to the light traverse
time across the circuit (i.e., the jump is instantaneous, to all intents and
purposes, but the displacement current remains finite).

Now,

V2(t = 0)

V1
= k

N2

N1
, (7.36)

so if N2 � N1 then the voltage in the bottom circuit is considerably
amplified in the top circuit. This effect is the basis for old-fashioned car
ignition systems. A large voltage spike is induced in a secondary circuit
(connected to a coil with very many turns) whenever the current in a
primary circuit (connected to a coil with not so many turns) is either
switched on or off. The primary circuit is connected to the car battery
(whose voltage is typically 12 volts). The switching is done by a set of
points, which are mechanically opened and closed as the engine turns.
The large voltage spike induced in the secondary circuit, as the points
are either opened or closed, causes a spark to jump across a gap in this
circuit. This spark ignites a petrol/air mixture in one of the cylinders. We
might think that the optimum configuration is to have only one turn in
the primary circuit, and lots of turns in the secondary circuit, so that the
ratio N2/N1 is made as large as possible. However, this is not the case.
Most of the magnetic flux generated by a single turn primary coil is likely
to miss the secondary coil altogether. This means that the coefficient of
coupling k is small, which reduces the voltage induced in the secondary
circuit. Thus, we need a reasonable number of turns in the primary coil
in order to localize the induced magnetic flux, so that it links effectively
with the secondary coil.

7.5 MAGNETIC ENERGY

Suppose that, at t = 0, a coil of inductance, L, and resistance R, is
connected across the terminals of a battery of voltage V. The circuit
equation is

V = L
dI

dt
+ R I. (7.37)
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Now, the power output of the battery is V I. [Every charge q that goes
around the circuit falls through a potential difference qV. In order to
raise it back to the starting potential, so that it can perform another
circuit, the battery must do work qV. The work done per unit time (i.e.,
the power) is nqV, where n is the number of charges per unit time
passing a given point on the circuit. But, I = nq, so the power output is
V I.] Thus, the net work done by the battery in raising the current in the
circuit from zero at time t = 0 to IT at time t = T is

W =

∫ T
0

V I dt. (7.38)

Using the circuit equation (7.37), we obtain

W = L

∫ T
0

I
dI

dt
dt+ R

∫ T
0

I2 dt, (7.39)

giving

W =
1

2
L I 2T + R

∫ T
0

I2 dt. (7.40)

The second term on the right-hand side of the above equation represents
the irreversible conversion of electrical energy into heat energy by the
resistor. The first term is the amount of energy stored in the inductor at
time T . This energy can be recovered after the inductor is disconnected
from the battery. Suppose that the battery is disconnected at time T . The
circuit equation is now

0 = L
dI

dt
+ RI, (7.41)

giving

I = IT exp
[
−
R

L
(t− T)

]
, (7.42)

where we have made use of the boundary condition I(T) = IT . Thus, the
current decays away exponentially. The energy stored in the inductor is
dissipated as heat in the resistor. The total heat energy appearing in the
resistor after the battery is disconnected is∫

∞

T

I2 R dt =
1

2
L I 2T , (7.43)

where use has been made of Equation (7.42). Thus, the heat energy
appearing in the resistor is equal to the energy stored in the inductor.



“chapter7” — 2007/12/14 — 12:08 — page 266 — #12

266 MAXWELL’S EQUATIONS AND THE PRINCIPLES OF ELECTROMAGNETISM

This energy is actually stored in the magnetic field generated around
the inductor.

Consider, again, our circuit with two coils wound on top of one
another. Suppose that each coil is connected to its own battery. The
circuit equations are thus

V1 = R1 I1 + L1
dI1

dt
+M

dI2

dt
,

V2 = R2 I2 + L2
dI2

dt
+M

dI1

dt
, (7.44)

where V1 is the voltage of the battery in the first circuit, etc. The net work
done by the two batteries in increasing the currents in the two circuits,
from zero at time 0, to I1 and I2 at time T , respectively, is

W =

∫ T
0

(V1 I1 + V2 I2)dt

=

∫ T
0

(R1 I
2
1 + R2 I

2
2 )dt+

1

2
L1 I

2
1 +

1

2
L2 I

2
2

+M

∫ T
0

(
I1
dI2

dt
+ I2

dI1

dt

)
dt. (7.45)

Thus,

W =

∫ T
0

(R1 I
2
1 + R2 I

2
2 )dt

+
1

2
L1 I

2
1 +

1

2
L2 I

2
2 +MI1 I2. (7.46)

Clearly, the total magnetic energy stored in the two coils is

WB =
1

2
L1 I

2
1 +

1

2
L2 I

2
2 +MI1 I2. (7.47)

Note that the mutual inductance term increases the stored magnetic
energy if I1 and I2 are of the same sign—i.e., if the currents in the two
coils flow in the same direction, so that they generate magnetic fields
which reinforce one another. Conversely, the mutual inductance term
decreases the stored magnetic energy if I1 and I2 are of the opposite
sign. However, the total stored energy can never be negative, otherwise
the coils would constitute a power source (a negative stored energy is
equivalent to a positive generated energy). Thus,

1

2
L1 I

2
1 +

1

2
L2 I

2
2 +MI1 I2 ≥ 0, (7.48)
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which can be written

1

2

(√
L1 I1 +

√
L2 I2

)2
− I1 I2(

√
L1 L2 −M) ≥ 0, (7.49)

assuming that I1 I2 < 0. It follows that

M ≤
√
L1 L2. (7.50)

The equality sign corresponds to the situation in which all of the magnetic
flux generated by one coil passes through the other. If some of the flux
misses then the inequality sign is appropriate. In fact, the above formula
is valid for any two inductively coupled circuits, and effectively sets an
upper limit on their mutual inductance.

We intimated previously that the energy stored in an inductor is
actually stored in the surrounding magnetic field. Let us now obtain
an explicit formula for the energy stored in a magnetic field. Consider
an ideal cylindrical solenoid. The energy stored in the solenoid when a
current I flows through it is

W =
1

2
L I2, (7.51)

where L is the self-inductance. We know that

L = µ0 N
2 π r2 l, (7.52)

where N is the number of turns per unit length of the solenoid, r
the radius, and l the length. The magnetic field inside the solenoid is
approximately uniform, with magnitude

B = µ0 N I, (7.53)

and is approximately zero outside the solenoid. Equation (7.51) can be
rewritten

W =
B2

2µ0
V, (7.54)

where V = π r2 l is the volume of the solenoid. The above formula
strongly suggests that a magnetic field possesses an energy density

U =
B2

2µ0
. (7.55)

Let us now examine a more general proof of the above formula.
Consider a system of N circuits (labeled i = 1 to N), each carrying
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a current Ii. The magnetic flux through the ith circuit is written [cf.,
Equation (7.5)]

Φi =

∫
B · dSi =

∮
A · dli, (7.56)

where B = ∇ × A, and dSi and dli denote a surface element and a line
element of this circuit, respectively. The back-emf induced in the ith
circuit follows from Faraday’s law:

Vi = −
dΦi

dt
. (7.57)

The rate of work of the battery which maintains the current Ii in the ith
circuit against this back-emf is

Pi = Ii
dΦi

dt
. (7.58)

Thus, the total work required to raise the currents in theN circuits from
zero at time 0, to I0 i at time T , is

W =

N∑
i=1

∫ T
0

Ii
dΦi

dt
dt. (7.59)

The above expression for the work done is, of course, equivalent to the
total energy stored in the magnetic field surrounding the various circuits.
This energy is independent of the manner in which the currents are set
up. Suppose, for the sake of simplicity, that the currents are ramped up
linearly, so that

Ii = I0 i
t

T
. (7.60)

The fluxes are proportional to the currents, so they must also ramp up
linearly: i.e.,

Φi = Φ0 i
t

T
. (7.61)

It follows that

W =

N∑
i=1

∫ T
0

I0 i Φ0 i
t

T2
dt, (7.62)
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giving

W =
1

2

N∑
i=1

I0 i Φ0 i. (7.63)

So, if instantaneous currents Ii flow in the the N circuits, which link
instantaneous fluxes Φi, then the instantaneous stored energy is

W =
1

2

N∑
i=1

Ii Φi. (7.64)

Equations (7.56) and (7.64) imply that

W =
1

2

N∑
i=1

Ii

∮
A · dli. (7.65)

It is convenient, at this stage, to replace ourN line currents byN current
distributions of small, but finite, cross-sectional area. Equation (7.65)
transforms to

W =
1

2

∫
V

A · jdV, (7.66)

where V is a volume which contains all of the circuits. Note that for
an element of the ith circuit, j = Ii dli/dli Ai and dV = dli Ai, where
Ai is the cross-sectional area of the circuit. Now, µ0 j = ∇ × B (we are
neglecting the displacement current in this calculation), so

W =
1

2µ0

∫
V

A · ∇ × BdV. (7.67)

According to vector field theory,

∇ · (A × B) ≡ B · ∇ × A − A · ∇ × B, (7.68)

which implies that

W =
1

2µ0

∫
V

[−∇ · (A × B) + B · ∇ × A] dV. (7.69)

Using Gauss’ theorem, and B = ∇ × A, we obtain

W = −
1

2µ0

∮
S

A × B · dS +
1

2µ0

∫
V

B2 dV, (7.70)

where S is the bounding surface of some volume V. Let us take this sur-
face to infinity. It is easily demonstrated that the magnetic field generated
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by a current loop falls of like r−3 at large distances. The vector potential
falls off like r−2. However, the area of surface S only increases like r2. It
follows that the surface integral is negligible in the limit r → ∞. Thus,
the above expression reduces to

W =

∫
B2

2µ0
dV, (7.71)

where the integral is over all space. Since this expression is valid for
any magnetic field whatsoever, we can safely conclude that the energy
density of a general magnetic field generated by a system of electrical
circuits is given by

U =
B2

2µ0
. (7.72)

Note, that the above expression is consistent with Equation (6.168)
which we previously obtained during our investigation of magnetic
media.

7.6 ALTERNATING CURRENT CIRCUITS

Alternating current (AC) circuits are made up of voltage sources and
three different types of passive elements: i.e., resistors, inductors, and
capacitors. Resistors satisfy Ohm’s law,

V = I R, (7.73)

where R is the resistance, I the current flowing through the resistor,
and V the voltage drop across the resistor (in the direction in which the
current flows). Inductors satisfy

V = L
dI

dt
, (7.74)

where L is the inductance. Finally, capacitors obey

V =
q

C
=

∫ t
0

I dt

/
C, (7.75)

where C is the capacitance, q is the charge stored on the plate with
the most positive potential, and I = 0 for t < 0. Note that any passive
component of a real electrical circuit can always be represented as a
combination of ideal resistors, inductors, and capacitors.
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Figure 7.5: An LCR circuit.

Let us consider the classic LCR circuit, which consists of an inductor,
L, a capacitor, C, and a resistor, R, all connected in series with a voltage
source, V—see Figure 7.5. The circuit equation is obtained by setting the
input voltage V equal to the sum of the voltage drops across the three
passive elements in the circuit. Thus,

V = I R+ L
dI

dt
+

∫ t
0

I dt

/
C. (7.76)

This is an integro-differential equation which, in general, is quite diffi-
cult to solve. Suppose, however, that both the voltage and the current
oscillate at some fixed angular frequency ω, so that

V(t) = V0 exp(iωt), (7.77)

I(t) = I0 exp(iωt), (7.78)

where the physical solution is understood to be the real part of the
above expressions. The assumed behaviour of the voltage and current
is clearly relevant to electrical circuits powered by the mains voltage
(which oscillates at 60 hertz).

Equations (7.76)–(7.78) yield

V0 exp(iωt) = I0 exp(iωt)R+ L iωI0 exp(iωt) +
I0 exp(iωt)

iωC
,

(7.79)
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giving

V0 = I0

(
iωL+

1

iωC
+ R

)
. (7.80)

It is helpful to define the impedance of the circuit:

Z =
V

I
= iωL+

1

iωC
+ R. (7.81)

Impedance is a generalization of the concept of resistance. In general,
the impedance of an AC circuit is a complex quantity.

The average power output of the voltage source is

P = 〈V(t) I(t)〉, (7.82)

where the average is taken over one period of the oscillation. Let us, first
of all, calculate the power using real (rather than complex) voltages and
currents. We can write

V(t) = |V0| cos(ωt), (7.83)

I(t) = |I0| cos(ωt− θ), (7.84)

where θ is the phase-lag of the current with respect to the voltage. It
follows that

P = |V0| |I0|

∫ωt=2π
ωt=0

cos(ωt) cos(ωt− θ)
d(ωt)

2π
(7.85)

= |V0| |I0|

∫ωt=2π
ωt=0

cos(ωt) [cos(ωt) cos θ+ sin(ωt) sin θ]
d(ωt)

2π
,

giving

P =
1

2
|V0| |I0| cos θ, (7.86)

since 〈cos(ωt) sin(ωt)〉 = 0 and 〈cos(ωt) cos(ωt)〉 = 1/2. In complex
representation, the voltage and the current are written

V(t) = |V0| exp(iωt), (7.87)

I(t) = |I0| exp[i (ωt− θ)]. (7.88)

Now,

1

2
(V I∗ + V∗ I) = |V0| |I0| cos θ. (7.89)



“chapter7” — 2007/12/14 — 12:08 — page 273 — #19

CHAPTER 7 MAGNETIC INDUCTION 273

It follows that

P =
1

4
(V I∗ + V∗ I) =

1

2
Re(V I∗). (7.90)

Making use of Equation (7.81), we find that

P =
1

2
Re(Z) |I|2 =

1

2

Re(Z) |V |2

|Z|2
. (7.91)

Note that power dissipation is associated with the real part of the
impedance. For the special case of an LCR circuit,

P =
1

2
R |I0|

2. (7.92)

We conclude that only the resistor dissipates energy in this circuit. The
inductor and the capacitor both store energy, but they eventually return
it to the circuit without dissipation.

According to Equation (7.81), the amplitude of the current which
flows in an LCR circuit for a given amplitude of the input voltage is
given by

|I0| =
|V0|

|Z|
=

|V0|√
(ωL− 1/ωC)2 + R2

. (7.93)

As can be seen from Figure 7.6, the response of the circuit is reso-
nant, peaking at ω = 1/

√
LC, and reaching 1/

√
2 of the peak value

at ω = 1/
√
LC± R/(2 L) (assuming that R 	√

L/C). For this reason,
LCR circuits are used in analog radio tuners to filter out signals whose
frequencies fall outside a given band.

The phase-lag of the current with respect to the voltage is given by

θ = arg(Z) = tan−1

(
ωL− 1/ωC

R

)
. (7.94)

As can be seen from Figure 7.6, the phase-lag varies from −π/2 for
frequencies significantly below the resonant frequency, to zero at the
resonant frequency (ω = 1/

√
LC), to π/2 for frequencies significantly

above the resonant frequency.
It is clear that in conventional AC circuits the circuit equation reduces

to a simple algebraic equation, and that the behavior of the circuit is
summed up by the complex impedance, Z. The real part of Z tells us
the power dissipated in the circuit, the magnitude of Z gives the ratio of
the peak current to the peak voltage, and the argument of Z gives the
phase-lag of the current with respect to the voltage.
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Figure 7.6: The characteristics of an LCR circuit. The left-hand and
right-hand panes show the amplitude and phase-lag of the current versus
frequency, respectively. Here, ωc = 1/

√
LC and Z0 =

√
L/C. The solid,

short-dashed, long-dashed, and dot-dashed curves correspond to R/Z0 = 1,
1/2, 1/4, and 1/8, respectively.

7.7 TRANSMISSION LINES

The central assumption made in the analysis of conventional AC circuits
is that the voltage (and, hence, the current) has the same phase through-
out the circuit. Unfortunately, if the circuit is sufficiently large, or the
frequency of oscillation, ω, is sufficiently high, then this assumption
becomes invalid. The assumption of a constant phase throughout the
circuit is reasonable if the wavelength of the oscillation, λ = 2π c/ω, is
much larger than the dimensions of the circuit. (Here, we assume that
signals propagate around electrical circuits at about the velocity of light.
This assumption will be justified later on.) This is generally not the case
in electrical circuits which are associated with communication. The fre-
quencies in such circuits tend to be very high, and the dimensions are,
almost by definition, large. For instance, leased telephone lines (the type
to which computers are connected) run at 56 kHz. The corresponding
wavelength is about 5 km, so the constant-phase approximation clearly
breaks down for long-distance calls. Computer networks generally run
at about 100 MHz, corresponding to λ ∼ 3 m. Thus, the constant-phase
approximation also breaks down for most computer networks, since such
networks are generally significantly larger than 3 m. It turns out that we
need a special sort of wire, called a transmission line, to propagate signals
around circuits whose dimensions greatly exceed the wavelength, λ. Let
us investigate transmission lines.
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Figure 7.7: A segment of a transmission line.

An idealized transmission line consists of two parallel conductors of
uniform cross-sectional area. The conductors possess a capacitance per
unit length, C, and an inductance per unit length, L. Suppose that x
measures the position along the line.

Consider the voltage difference between two neighboring points on
the line, located at positions x and x+ δx, respectively—see Figure 7.7.
The self-inductance of the portion of the line lying between these two
points is L δx. This small section of the line can be thought of as a
conventional inductor, and, therefore, obeys the well-known equation

V(x, t) − V(x+ δx, t) = L δx
∂I(x, t)

∂t
, (7.95)

where V(x, t) is the voltage difference between the two conductors at
position x and time t, and I(x, t) is the current flowing in one of the
conductors at position x and time t [the current flowing in the other
conductor is −I(x, t)]. In the limit δx → 0, the above equation reduces to

∂V

∂x
= −L

∂I

∂t
. (7.96)

Consider the difference in current between two neighboring points
on the line, located at positions x and x+ δx, respectively—see Fig-
ure 7.7. The capacitance of the portion of the line lying between these
two points is Cδx. This small section of the line can be thought of as a
conventional capacitor, and, therefore, obeys the well-known equation∫ t

0

I(x, t)dt−

∫ t
0

I(x+ δx, t)dt = CδxV(x, t), (7.97)

where t = 0 denotes a time at which the charge stored in either of the
conductors in the region x to x+ δx is zero. In the limit δx → 0, the
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above equation yields

∂I

∂x
= −C

∂V

∂t
. (7.98)

Equations (7.96) and (7.98) are generally known as the Telegrapher’s
equations, since an old-fashioned telegraph line can be thought of as a
primitive transmission line (telegraph lines consist of a single wire—the
other conductor is the Earth.)

Differentiating Equation (7.96) with respect to x, we obtain

∂2V

∂x2
= −L

∂2I

∂x ∂t
. (7.99)

Differentiating Equation (7.98) with respect to t yields

∂2I

∂x ∂t
= −C

∂2V

∂t2
. (7.100)

The above two equations can be combined to give

LC
∂2V

∂t2
=
∂2V

∂x2
. (7.101)

This is clearly a wave equation, with wave velocity v = 1/
√
LC. An

analogous equation can be written for the current, I.
Consider a transmission line which is connected to a generator at

one end (x = 0), and a resistor, R, at the other (x = l). Suppose that the
generator outputs a voltage V0 cos(ωt). If follows that

V(0, t) = V0 cos(ωt). (7.102)

The solution to the wave equation (7.101), subject to the above boundary
condition, is

V(x, t) = V0 cos(ωt− k x), (7.103)

where k = ω/v. This clearly corresponds to a wave which propagates
from the generator toward the resistor. Equations (7.96) and (7.103)
yield

I(x, t) =
V0√
L/C

cos(ωt− k x). (7.104)
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For self-consistency, the resistor at the end of the line must have a
particular value:

R =
V(l, t)

I(l, t)
=

√
L

C
. (7.105)

The so-called input impedance of the line is defined

Zin =
V(0, t)

I(0, t)
=

√
L

C
. (7.106)

Thus, a transmission line terminated by a resistor R =
√
L/C acts very

much like a conventional resistor R = Zin in the circuit containing the
generator. In fact, the transmission line could be replaced by an effec-
tive resistor R = Zin in the circuit diagram for the generator circuit. The
power loss due to this effective resistor corresponds to power which is
extracted from the circuit, transmitted down the line, and absorbed by
the terminating resistor.

The most commonly occurring type of transmission line is a coaxial
cable, which consists of two coaxial cylindrical conductors of radii a and
b (with b > a). We have already shown that the capacitance per unit
length of such a cable is (see Section 5.6)

C =
2π ε0

ln(b/a)
. (7.107)

Let us now calculate the inductance per unit length. Suppose that the
inner conductor carries a current I. According to Ampère’s law, the
magnetic field in the region between the conductors is given by

Bθ =
µ0 I

2π r
. (7.108)

The flux linking unit length of the cable is

Φ =

∫b
a

Bθ dr =
µ0 I

2π
ln(b/a). (7.109)

Thus, the self-inductance per unit length is

L =
Φ

I
=
µ0

2π
ln(b/a). (7.110)

So, the speed of propagation of a wave down a coaxial cable is

v =
1√
LC

=
1√
ε0 µ0

= c. (7.111)
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Not surprisingly, the wave (which is a type of electromagnetic wave)
propagates at the speed of light. The impedance of the cable is given by

Z0 =

√
L

C
=

(
µ0

4π2 ε0

)1/2
ln (b/a) = 60 ln (b/a) ohms. (7.112)

If we fill the region between the two cylindrical conductors with
a dielectric of dielectric constant ε, then, according to the discussion
in Section 6.2, the capacitance per unit length of the transmission line
goes up by a factor ε. However, the dielectric has no effect on magnetic
fields, so the inductance per unit length of the line remains unchanged.
It follows that the propagation speed of signals down a dielectric-filled
coaxial cable is

v =
1√
LC

=
c√
ε
. (7.113)

As we shall discover later, this is simply the propagation velocity of elec-
tromagnetic waves through a dielectric medium of dielectric constant ε.
The impedance of the cable becomes

Z0 = 60
ln(b/a)√

ε
ohms. (7.114)

We have seen that if a transmission line is terminated by a resistor
whose resistance R matches the impedance Z0 of the line then all of the
power sent down the line is absorbed by the resistor. What happens if
R 
= Z0? The answer is that some of the power is reflected back down
the line. Suppose that the beginning of the line lies at x = −l, and the
end of the line is at x = 0. Let us consider a solution

V(x, t) = V0 exp[i (ωt− k x)] + KV0 exp[i (ωt+ k x)]. (7.115)

This corresponds to a voltage wave of amplitude V0 which travels down
the line, and is reflected at the end of the line, with reflection coefficient
K. It is easily demonstrated from the Telegrapher’s equations that the
corresponding current waveform is

I(x, t) =
V0

Z0
exp[i (ωt− k x)] −

KV0

Z0
exp[i (ωt+ k x)]. (7.116)

Since the line is terminated by a resistance R at x = 0, we have, from
Ohm’s law,

V(0, t)

I(0, t)
= R. (7.117)
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This yields an expression for the coefficient of reflection,

K =
R− Z0
R+ Z0

. (7.118)

The input impedance of the line is given by

Zin =
V(−l, t)

I(−l, t)
= Z0

R cos(k l) + iZ0 sin(k l)

Z0 cos(k l) + iR sin(k l)
. (7.119)

Clearly, if the resistor at the end of the line is properly matched,
so that R = Z0, then there is no reflection (i.e., K = 0), and the input
impedance of the line is Z0. If the line is short-circuited, so that R = 0,
then there is total reflection at the end of the line (i.e., K = −1), and the
input impedance becomes

Zin = iZ0 tan(k l). (7.120)

This impedance is purely imaginary, implying that the transmission line
absorbs no net power from the generator circuit. In fact, the line acts
rather like a pure inductor or capacitor in the generator circuit (i.e., it
can store, but cannot absorb, energy). If the line is open-circuited, so
that R → ∞, then there is again total reflection at the end of the line
(i.e., K = 1), and the input impedance becomes

Zin = iZ0 tan(k l− π/2). (7.121)

Thus, the open-circuited line acts like a closed-circuited line which is
shorter by one quarter of a wavelength. For the special case where the
length of the line is exactly one quarter of a wavelength (i.e., k l = π/2),
we find that

Zin =
Z20
R
. (7.122)

Thus, a quarter-wave line looks like a pure resistor in the generator
circuit. Finally, if the length of the line is much less than the wavelength
(i.e., k l 	 1) then we enter the constant-phase regime, and Zin � R (i.e.,
we can forget about the transmission line connecting the terminating
resistor to the generator circuit).

Suppose that we wish to build a radio transmitter. We can use a
standard half-wave antenna (i.e., an antenna whose length is half the
wavelength of the transmitted radio waves) to emit the radiation. In
electrical circuits, such an antenna acts like a resistor of resistance
73 ohms (it is more usual to say that the antenna has an impedance of
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73 ohms—see Section 9.2). Suppose that we buy a 500 kW generator to
supply the power to the antenna. How do we transmit the power from
the generator to the antenna? We use a transmission line, of course. (It
is clear that if the distance between the generator and the antenna is of
order the dimensions of the antenna (i.e., λ/2) then the constant-phase
approximation breaks down, and so we have to use a transmission line.)
Since the impedance of the antenna is fixed at 73 ohms, we need to use
a 73 ohm transmission line (i.e., Z0 = 73 ohms) to connect the generator
to the antenna, otherwise some of the power we send down the line is
reflected (i.e., not all of the power output of the generator is converted
into radio waves). If we wish to use a coaxial cable to connect the gener-
ator to the antenna then it is clear from Equation (7.114) that the radii of
the inner and outer conductors need to be such that b/a = 3.38 exp(

√
ε).

Suppose, finally, that we upgrade our transmitter to use a full-wave
antenna (i.e., an antenna whose length equals the wavelength of the
emitted radiation). A full-wave antenna has a different impedance than
a half-wave antenna. Does this mean that we have to rip out our original
coaxial cable, and replace it by one whose impedance matches that of
the new antenna? Not necessarily. Let Z0 be the impedance of the coaxial
cable, and Z1 the impedance of the antenna. Suppose that we place a
quarter-wave transmission line (i.e., one whose length is one quarter of
a wavelength) of characteristic impedance Z1/4 =

√
Z0 Z1 between the

end of the cable and the antenna. According to Equation (7.122) (with
Z0 → √

Z0 Z1 and R → Z1), the input impedance of the quarter-wave
line is Zin = Z0, which matches that of the cable. The output impedance
matches that of the antenna. Consequently, there is no reflection of the
power sent down the cable to the antenna. A quarter-wave line of the
appropriate impedance can easily be fabricated from a short length of
coaxial cable of the appropriate b/a.

7.8 EXERCISES

7.1. A planar wire loop of resistance R and cross-sectional area A is placed in a

uniform magnetic field of strength B. Let the normal to the loop subtend an

angle θ with the direction of the magnetic field. Suppose that the loop is made

to rotate steadily, such that θ = ωt. Use Faraday’s law to find the emf induced

around the loop. What is the current circulating around the loop. Find the torque

exerted on the loop by the magnetic field. Demonstrate that the mean rate of

work required to maintain the rotation of the loop against this torque is equal
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to the mean ohmic power loss in the loop. Hint: It may be helpful to treat the

loop as a magnetic dipole. Neglect the self-inductance of the loop.

7.2. Consider a long, uniformly wound, cylindrical solenoid of length l, radius r,

and turns per unit length N. Suppose that the solenoid is wound around

a ferromagnetic core of permeability µ. What is the self-inductance of the

solenoid?

7.3. A cable consists of a long cylindrical conductor of radius a which carries current

uniformly distributed over its cross-section. The current returns in a thin insu-

lated sheath on the surface of the cable. Find the self-inductance per unit length

of the cable.

7.4. Consider two coplanar and concentric circular wire loops of radii a and b, where

a � b. What is the mutual inductance of the loops? Suppose that the smaller

loop is shifted a distance z out of the plane of the larger loop (whilst remaining

coaxial with the larger loop). What now is the mutual inductance of the two

loops?

7.5. Two small current loops are sufficiently far apart that they interact like two

magnetic dipoles. Suppose that the loops have position vectors r1 and r2, cross-

sectional areas A1 and A2, and unit normals n1 and n2, respectively. What is the

mutual inductance of the loops?

7.6. A circular loop of wire of radius a lies in the plane of a long straight wire, with its

center a perpendicular distance b > a from the wire. Find the mutual inductance

of the two wires.

7.7. An electric circuit consists of a resistor, R, a capacitor, C, and an inductor, L,

connected in series with a switch, and a battery of constant voltage V . Suppose

that the switch is turned on at t = 0. What current subsequently flows in the

circuit? Consider the three casesω0 > ν, ω0 = ν, andω0 < ν separately, where

ω0 = 1/
√
LC, and ν = R/(2 L).

7.8. A coil of self-inductance L and resistance R is connected in series with a switch,

and a battery of constant voltage V . The switch is closed, and the steady current

I = V/R is established in the circuit. The switch is then opened at t = 0. Find the

current as a function of time, for t > 0.

7.9. A steady voltage is suddenly applied to a coil of self-inductance L1 in the presence

of a nearby closed second coil of self-inductance L2. Suppose that the mutual

inductance of the two coils is M. Demonstrate that the presence of the second

coil effectively decreases the initial self-inducatance of the first coil from L1 to

L1 −M2/L2.

7.10. An alternating circuit consists of a resistor, R1, and an inductor, L1, in series

with an alternating voltage source of peak voltage V1 and angular frequency ω.
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This circuit is inductively coupled to a closed wire loop of self-inductance L2
and resistance R2. Let M be the mutual inductance of the two circuits. Find

the impedance of the first circuit. Demonstrate that the presence of the second

circuit causes the effective resistance of the first circuit to increase to

R1 +
ω2M2 R2

(R 22 +ω2 L2)
,

and its effective inductance to decrease to

L1 −
ω2M2 L2

(R 22 +ω2 L2)
.

7.11. An alternating circuit consists of a coil and a capacitor connected in parallel

across an alternating voltage source of angular frequency ω. Suppose that the

coil has self-inductance L, and resistance R. Find the impedance of the circuit.

Demonstrate that if L � CR2 then the amplitude of the current drawn from the

voltage source goes through a minimum at ω = 1/
√
LC.

7.12. Repeat the calculation of Exercise 7.1, taking into account the self-inductance, L,

of the loop.

7.13. Find the characteristic impedance of a transmission line consisting of two

identical parallel cylindrical wires of radius a and spacing d.

7.14. Suppose that a transmission line has an inductance per unit length, L, a capaci-

tance per unit length, C, and a resistance per unit length, R. Demonstrate that a

signal sent down the line decays exponentially on the characteristic length-scale

l = 2 L/(R v), where v is the propagation velocity. You may assume that l is much

longer than the wavelength of the signal.

7.15. Three coaxial cables of impedance Z0 have their central conductors connected

via three identical resistors of resistance R, as shown in the diagram. The outer

conductors are all earthed. What must the value R be in order to ensure that

there is no reflection of signals coming into the junction from any cable?

R
R

R
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C h a p t e r 8
ELECTROMAGNETIC
ENERGY AND
MOMENTUM

8.1 INTRODUCTION

In this chapter, we shall demonstrate that Maxwell’s equations conserve
both energy and momentum.

8.2 ENERGY CONSERVATION

We have seen that the energy density of an electric field is given by [see
Equation (5.20)]

UE =
ε0 E

2

2
, (8.1)

whereas the energy density of a magnetic field satisfies [see Equa-
tion (7.55)]

UB =
B2

2µ0
. (8.2)

This suggests that the energy density of a general electromagnetic
field is

U =
ε0 E

2

2
+
B2

2µ0
. (8.3)

We are now in a position to demonstrate that the classical theory of
electromagnetism conserves energy. We have already come across one
conservation law in electromagnetism: i.e.,

∂ρ

∂t
+ ∇ · j = 0. (8.4)

This is the equation of charge conservation. Integrating over some vol-
ume V, bounded by a surface S, and making use of Gauss’ theorem,

283
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we obtain

−
∂

∂t

∫
V

ρdV =

∮
S

j · dS. (8.5)

In other words, the rate of decrease of the charge contained in volume
V equals the net flux of charge across surface S. This suggests that an
energy conservation law for electromagnetism should have the form

−
∂

∂t

∫
V

UdV =

∮
S

u · dS. (8.6)

Here, U is the energy density of the electromagnetic field, and u is the
flux of electromagnetic energy (i.e., energy |u| per unit time, per unit
cross-sectional area, passes a given point in the direction of u). Accord-
ing to the above equation, the rate of decrease of the electromagnetic
energy in volume V equals the net flux of electromagnetic energy across
surface S.

However, Equation (8.6) is incomplete, because electromagnetic
fields can gain or lose energy by interacting with matter. We need to
factor this into our analysis. We saw earlier (see Section 5.3) that the
rate of heat dissipation per unit volume in a conductor (the so-called
ohmic heating rate) is E · j. This energy is extracted from electromag-
netic fields, so the rate of energy loss of the fields in volume V due to
interaction with matter is

∫
V

E · jdV. Thus, Equation (8.6) generalizes to

−
∂

∂t

∫
V

UdV =

∮
S

u · dS +

∫
V

E · jdV. (8.7)

From Gauss’ theorem, the above equation is equivalent to

∂U

∂t
+ ∇ · u = −E · j. (8.8)

Let us now see if we can derive an expression of this form from Maxwell’s
equations.

We start from the differential form of Ampère’s law (including the
displacement current):

∇ × B = µ0 j + ε0µ0
∂E
∂t
. (8.9)

Dotting this equation with the electric field yields

−E · j = −
E · ∇ × B
µ0

+ ε0 E · ∂E
∂t
. (8.10)



“chapter8” — 2007/12/14 — 12:12 — page 285 — #3

CHAPTER 8 ELECTROMAGNETIC ENERGY AND MOMENTUM 285

This can be rewritten

−E · j = −
E · ∇ × B
µ0

+
∂

∂t

(
ε0 E

2

2

)
. (8.11)

Now, from vector field theory,

∇ · (E × B) ≡ B · ∇ × E − E · ∇ × B, (8.12)

so

−E · j = ∇·
(

E × B
µ0

)
−

B · ∇ × E
µ0

+
∂

∂t

(
ε0 E

2

2

)
. (8.13)

The differential form of Faraday’s law yields

∇ × E = −
∂B
∂t
, (8.14)

so

−E · j = ∇·
(

E × B
µ0

)
+ µ−1

0 B · ∂B
∂t

+
∂

∂t

(
ε0 E

2

2

)
. (8.15)

This can be rewritten

−E · j = ∇·
(

E × B
µ0

)
+
∂

∂t

(
ε0 E

2

2
+
B2

2µ0

)
. (8.16)

Thus, we obtain the desired conservation law,

∂U

∂t
+ ∇ · u = −E · j, (8.17)

where

U =
ε0 E

2

2
+
B2

2µ0
(8.18)

is the electromagnetic energy density, and

u =
E × B
µ0

(8.19)

is the electromagnetic energy flux. The latter quantity is usually called
the Poynting flux, after its discoverer.

Let us see whether our expression for the electromagnetic energy flux
makes sense. We all know that if we stand in the sun we get hot. This
occurs because we absorb electromagnetic radiation emitted by the Sun.
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So, radiation must transport energy. The electric and magnetic fields
in electromagnetic radiation are mutually perpendicular, and are also
perpendicular to the direction of propagation k̂ (this is a unit vector).
Furthermore, B = E/c. Equation (4.90) can easily be transformed into
the following relation between the electric and magnetic fields of an
electromagnetic wave:

E × B =
E2

c
k̂. (8.20)

Thus, the Poynting flux for electromagnetic radiation is

u =
E2

µ0 c
k̂ = ε0 c E

2 k̂. (8.21)

This expression tells us that electromagnetic waves transport energy
along their direction of propagation, which seems to make sense.

The energy density of electromagnetic radiation is

U =
ε0 E

2

2
+
B2

2µ0
=
ε0 E

2

2
+

E2

2µ0 c2
= ε0 E

2, (8.22)

using B = E/c. Note that the electric and magnetic fields in an electro-
magnetic wave have equal energy densities. Since electromagnetic waves
travel at the speed of light, we would expect the energy flux through one
square meter in one second to equal the energy contained in a volume
of length c and unit cross-sectional area: i.e., c times the energy density.
Thus,

|u| = cU = ε0 c E
2, (8.23)

which is in accordance with Equation (8.21).
As another example, consider a straight cylindrical wire of radius a,

and uniform resistivity η. Suppose that the wire is coaxial with the z-axis.
Let us adopt standard cylindrical polar coordinates (r, θ, z). If a current
of uniform density j = j ez flows down the wire then Ohm’s law tells
us that there is a uniform longitudinal electric field E = E ez within the
wire, where E = η j. According to Ampère’s circuital law, the current also
generates a circulating magnetic field, inside the wire, of the form B =
(µ0 r j/2) eθ. Hence, the Poynting flux, u = E × B/µ0, within the wire
points radially inward, and is of magnitude u = η j2 r/2. The net energy
flux into a cylindrical surface, coaxial with the wire, of radius r and length
l is U = u2π r l = η j2 V(r), where V(r) = π r2 l is the volume enclosed
by the surface. However, η j2 is the rate of electromagnetic energy loss
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per unit volume, due to ohmic heating. Hence, η j2 V(r) represents the
net rate of electromagnetic energy loss due to ohmic heating in the region
lying within the cylindrical surface. Thus, we can see that this energy
loss is balanced by the inward flux of electromagnetic energy across the
surface. This flux represents energy which is ultimately derived from the
battery which drives the current through the wire.

In the presence of diamagnetic and magnetic media, starting from
Equation (6.117), we can derive an energy conservation law of the form

∂U

∂t
+ ∇ · u = −E · jt, (8.24)

via analogous steps to those used to derive Equation (8.17). Here, the
electromagnetic energy density is written

U =
1

2
E · D +

1

2
B · H, (8.25)

which is consistent with Equation (8.18). The Poynting flux takes the
form

u = E × H, (8.26)

which is consistent with Equation (8.19). Of course, the above expres-
sions are only valid for linear dielectric and magnetic media.

8.3 ELECTROMAGNETIC MOMENTUM

We have seen that electromagnetic waves carry energy. It turns out that
they also carry momentum. Consider the following argument, due to
Einstein. Suppose that we have a railroad car of mass M and length L
which is free to move in one dimension—see Figure 8.1. Suppose that
electromagnetic radiation of total energy E is emitted from one end of
the car, propagates along the length of the car, and is then absorbed at
the other end. The effective mass of this radiation is m = E/c2 (from
Einstein’s famous relation E = mc2). At first sight, the process described
above appears to cause the center of mass of the system to spontaneously
shift. This violates the law of momentum conservation (assuming the
railway car is subject to no horizontal external forces). The only way in
which the center of mass of the system can remain stationary is if the
railway car moves in the opposite direction to the direction of propagation
of the radiation. In fact, if the car moves by a distance x then the center
of mass of the system is the same before and after the radiation pulse
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E

E

L

x

railroad car
Before

During

After

Figure 8.1: Einstein’s thought experiment regarding electromagnetic
momentum.

provided that

Mx = mL =
E

c2
L. (8.27)

Incidentally, it is assumed that m � M in this derivation.
But, what actually causes the car to move? If the radiation possesses

momentum p then the car will recoil with the same momentum when
the radiation is emitted. When the radiation hits the other end of the car
then the car acquires momentum p in the opposite direction, which stops
the motion. The time of flight of the radiation is L/c. So, the distance
traveled by a mass M with momentum p in this time is

x = v t =
p

M

L

c
, (8.28)

giving

p = Mx
c

L
=
E

c
. (8.29)

Thus, the momentum carried by electromagnetic radiation equals its
energy divided by the speed of light. The same result can be obtained
from the well-known relativistic formula

E2 = p2c2 +m2c4 (8.30)
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relating the energy E, momentum p, and massm of a particle. According
to quantum theory, electromagnetic radiation is made up of massless
particles called photons. Thus,

p =
E

c
(8.31)

for individual photons, so the same must be true of electromagnetic
radiation as a whole. It follows from Equation (8.29) that the momen-
tum density g of electromagnetic radiation equals its energy density
over c, so

g =
U

c
=

|u|

c2
=
ε0 E

2

c
. (8.32)

It is reasonable to suppose that the momentum points along the direction
of the energy flow (this is obviously the case for photons), so the vector
momentum density (which gives the direction, as well as the magnitude,
of the momentum per unit volume) of electromagnetic radiation is

g =
u
c2
. (8.33)

Thus, the momentum density equals the energy flux over c2.
Of course, the electric field associated with an electromagnetic wave

oscillates rapidly, which implies that the previous expressions for the
energy density, energy flux, and momentum density of electromagnetic
radiation are also rapidly oscillating. It is convenient to average over
many periods of the oscillation (this average is denoted 〈 〉). Thus,

〈U〉 =
ε0 E

2
0

2
, (8.34)

〈u〉 =
c ε0 E

2
0

2
k̂ = c 〈U〉 k̂, (8.35)

〈g〉 =
ε0 E

2
0

2 c
k̂ =

〈U〉
c

k̂, (8.36)

where the factor 1/2 comes from averaging cos2(ωt). Here, E0 is the
peak amplitude of the electric field associated with the wave.

If electromagnetic radiation possesses momentum then it must exert
a force on bodies which absorb (or emit) radiation. Suppose that a body
is placed in a beam of perfectly collimated radiation, which it absorbs
completely. The amount of momentum absorbed per unit time, per unit
cross-sectional area, is simply the amount of momentum contained in a
volume of length c and unit cross-sectional area: i.e., c times the momen-
tum density, g. An absorbed momentum per unit time, per unit area, is
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equivalent to a pressure. In other words, the radiation exerts a pressure
c g on the body. Thus, the radiation pressure is given by

p =
ε0 E

2

2
= 〈U〉. (8.37)

So, the pressure exerted by collimated electromagnetic radiation is equal
to its average energy density.

Consider a cavity filled with electromagnetic radiation. What is the
radiation pressure exerted on the walls? In this situation, the radiation
propagates in all directions with equal probability. Consider radiation
propagating at an angle θ to the local normal to the wall. The amount
of such radiation hitting the wall per unit time, per unit area, is propor-
tional to cos θ. Moreover, the component of momentum normal to the
wall which the radiation carries is also proportional to cos θ. Thus, the
pressure exerted on the wall is the same as in Equation (8.37), except
that it is weighted by the average of cos2 θ over all solid angles, in order
to take into account the fact that obliquely propagating radiation exerts
a pressure which is cos2 θ times that of normal radiation. The average of
cos2 θ over all solid angles is 1/3, so for isotropic radiation

p =
〈U〉
3
. (8.38)

Clearly, the pressure exerted by isotropic radiation is one third of its
average energy density.

The power incident on the surface of the Earth due to radiation emit-
ted by the Sun is about 1300 W m−2. So, what is the radiation pressure?
Since,

〈|u|〉 = c 〈U〉 = 1300W m−2, (8.39)

then

p = 〈U〉 � 4× 10−6 N m−2. (8.40)

Here, the radiation is assumed to be perfectly collimated. Thus, the
radiation pressure exerted on the Earth is minuscule (for comparison,
the pressure of the atmosphere is about 105 N m−2). Nevertheless, this
small pressure due to radiation is important in outer space, since it is
responsible for continuously sweeping dust particles out of the Solar
System. It is quite common for comets to exhibit two separate tails. One
(called the gas tail) consists of ionized gas, and is swept along by the Solar
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Wind (a stream of charged particles and magnetic field-lines emitted by
the Sun). The other (called the dust tail) consists of uncharged dust
particles, and is swept radially outward (since light travels in straight-
lines) from the Sun by radiation pressure. Two separate tails are observed
if the local direction of the Solar Wind is not radially outward from the
Sun (which is quite often the case).

The radiation pressure from sunlight is very weak. However, that
produced by laser beams can be enormous (far higher than any con-
ventional pressure which has ever been produced in a laboratory). For
instance, the lasers used in Inertial Confinement Fusion (e.g., the NOVA
experiment in Lawrence Livermore National Laboratory) typically have
energy fluxes of 1018 W m−2. This translates to a radiation pressure of
about 104 atmospheres!

8.4 MOMENTUM CONSERVATION

It follows from Equations (8.19) and (8.33) that the momentum density
of electromagnetic fields can be written

g = ε0 E × B. (8.41)

Now, a momentum conservation equation for electromagnetic fields
should take the integral form

−
∂

∂t

∫
V

gi dV =

∫
S

Gij dSj +

∫
V

[ρE + j × B]i dV. (8.42)

Here, i and j run from 1 to 3 (1 corresponds to the x-direction, 2 to
the y-direction, and 3 to the z-direction). Moreover, the Einstein sum-
mation convention is employed for repeated indices (e.g., aj aj ≡ a · a).
Furthermore, the tensor Gij represents the flux of the ith component
of electromagnetic momentum in the j-direction. This tensor (a tensor
is a direct generalization of a vector with two indices instead of one)
is called the momentum flux density tensor. Hence, the above equation
states that the rate of loss of electromagnetic momentum in some vol-
ume V is equal to the flux of electromagnetic momentum across the
bounding surface S plus the rate at which momentum is transferred to
matter inside V. The latter rate is, of course, just the net electromagnetic
force acting on matter inside V: i.e., the volume integral of the electro-
magnetic force density, ρE + j × B. Now, a direct generalization of the
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divergence theorem states that∫
S

Gij dSj ≡
∫
V

∂Gij

∂xj
dV, (8.43)

where x1 ≡ x, x2 ≡ y, etc. Hence, in differential form, our momentum
conservation equation for electromagnetic fields is written

−
∂

∂t
[ε0 E × B]i =

∂Gij

∂xj
+ [ρE + j × B]i. (8.44)

Let us now attempt to derive an equation of this form from Maxwell’s
equations.

Maxwell’s equations are as follows:

∇ · E =
ρ

ε0
, (8.45)

∇ · B = 0, (8.46)

∇ × E = −
∂B
∂t
, (8.47)

∇ × B = µ0 j + ε0µ0
∂E
∂t
. (8.48)

We can cross Equation (8.48) divided by µ0 with B, and rearrange, to
give

−ε0
∂E
∂t

× B =
B × (∇ × B)

µ0
+ j × B. (8.49)

Next, let us cross E with Equation (8.47) times ε0, rearrange, and add
the result to the above equation. We obtain

−ε0
∂E
∂t

× B − ε0 E × ∂B
∂t

= ε0 E × (∇ × E) +
B × (∇ × B)

µ0
+ j × B.

(8.50)

Next, making use of Equations (8.45) and (8.46), we get

−
∂

∂t
[ε0 E × B] = ε0 E × (∇ × E) +

B × (∇ × B)

µ0

− ε0 (∇ · E) E −
1

µ0
(∇ · B) B + ρE + j × B. (8.51)

Now, from vector field theory,

∇(E2/2) ≡ E × (∇ × E) + (E · ∇)E, (8.52)
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with a similar equation for B. Hence, Equation (8.51) takes the form

−
∂

∂t
[ε0 E × B] = ε0

[
∇(E2/2) − (∇ · E) E − (E · ∇)E

]

+
1

µ0

[
∇(B2/2) − (∇ · B) B − (B · ∇)B

]
+ ρE + j × B. (8.53)

Finally, when written in terms of components, the above equation
becomes

−
∂

∂t
[ε0 E × B]i =

∂

∂xj

[
ε0 E

2 δij/2− ε0 Ei Ej + B
2 δij/2 µ0 − Bi Bj/µ0

]
+ [ρE + j × B]i , (8.54)

since [(∇ · E) E]i ≡ (∂Ej/∂xj)Ei, and [(E · ∇)E]i ≡ Ej (∂Ei/∂xj). Here, δij
is a Kronecker delta symbol (i.e., δij = 1 if i = j, and δij = 0 otherwise).
Comparing the above equation with Equation (8.44), we conclude that
the momentum flux density tensor of electromagnetic fields takes the
form

Gij = ε0 (E2 δij/2− Ei Ej) + (B2 δij/2− Bi Bj)/µ0. (8.55)

The momentum conservation equation (8.44) is sometimes written

[ρE + j × B]i =
∂Tij

∂xj
−
∂

∂t
[ε0 E × B]i , (8.56)

where

Tij = −Gij = ε0 (Ei Ej − E
2 δij/2) + (Bi Bj − B

2 δij/2)/µ0 (8.57)

is called the Maxwell stress tensor.
Consider a uniform electric field, E = E ez. According to Equa-

tion (8.55), the momentum flux density tensor of such a field is

G =



ε0 E

2/2 0 0

0 ε0 E
2/2 0

0 0 −ε0 E
2/2


 . (8.58)

As is well-known, the momentum flux density tensor of a conventional
gas of pressure p is written

G =



p 0 0

0 p 0

0 0 p


 . (8.59)
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In other words, from any small volume element there is an equal out-
ward momentum flux density p in all three Cartesian directions, which
simply corresponds to an isotropic gas pressure, p. This suggests that a
positive diagonal element in a momentum stress tensor corresponds to
a pressure exerted in the direction of the corresponding Cartesian axis.
Furthermore, a negative diagonal element corresponds to negative pres-
sure, or tension, exerted in the direction of the corresponding Cartesian
axis. Thus, we conclude, from Equation (8.58), that electric field-lines
act rather like mutually repulsive elastic bands: i.e., there is a pressure
force acting perpendicular to the field-lines which tries to push them
apart, whilst a tension force acting along the field-lines simultaneously
tries to shorten them. As an example, we have seen that the normal elec-
tric field E⊥ above the surface of a charged conductor exerts an outward
pressure ε0 E2⊥/2 on the surface. One way of interpreting this pressure
is to say that it is due to the tension in the electric field-lines anchored
in the surface. Likewise, the force of attraction between the two plates
of a charged parallel plate capacitor can be attributed to the tension in
the electric field-lines running between them.

It is easily demonstrated that the momentum flux density tensor of
a uniform magnetic field, B = B ez, is

G =




B2/2µ0 0 0

0 B2/2µ0 0

0 0 −B2/2µ0


 . (8.60)

Hence, magnetic field-lines also act like mutually repulsive elastic bands.
For instance, the uniform field B inside a conventional solenoid exerts an
outward pressure B2/2µ0 on the windings which generate and confine it.

8.5 ANGULAR MOMENTUM CONSERVATION

An electromagnetic field which possesses a momentum density g must
also possess an angular momentum density

h = r × g. (8.61)

It follows that electromagnetic fields can exchange angular momentum,
as well as linear momentum, with ordinary matter. As an illustration of
this, consider the following famous example.



“chapter8” — 2007/12/14 — 12:12 — page 295 — #13

CHAPTER 8 ELECTROMAGNETIC ENERGY AND MOMENTUM 295

Suppose that we have two thin coaxial cylindrical conducting shells
of radii a and c, where a < c. Let the length of both cylinders be l. Sup-
pose, further, that the cylinders are free to rotate independently about
their common axis. Finally, let the inner cylinder carry charge −Q, and
the outer cylinder charge +Q (where Q > 0). Now, suppose that a uni-
form coaxial cylindrical solenoid winding of radius b (where a < b < c),
and number of turns per unit length N, is placed between the two cylin-
ders, and energized with a current I. Note that the total angular momen-
tum of this system is a conserved quantity, since the system is isolated.

Consider an initial state in which both cylinders are stationary. Ramp-
ing the solenoid current down to zero is observed to cause the two cylin-
ders to start to rotate—the inner cylinder in the opposite sense to the
sense of current circulation, and the outer cylinder in the same sense.
In other words, the two cylinders acquire angular momentum when the
current in the solenoid coil is ramped down. Where does this angular
momentum come from? Clearly, it can only have come from the elec-
tric and magnetic fields in the region between the cylinders. Let us
investigate further.

It is convenient to define cylindrical polar coordinates (r, θ, z) which
are coaxial with the common axis of the two cylinders and the solenoid
coil. As is easily demonstrated from Gauss’ law, the electric field takes
the form E = Er er, where

Er =

{
−Q/(2πε0 r l) for a ≤ r ≤ c

0 otherwise
. (8.62)

Likewise, it is easily shown from Ampère’s circuital law that the initial
magnetic field is written B = Bz ez, where

Bz =

{
µ0 N I for r ≤ b

0 otherwise
. (8.63)

It follows from Equation (8.41) that the initial momentum density of the
electromagnetic field is g = gθ eθ, where

gθ =

{
µ0 N IQ/(2π r l) for a ≤ r ≤ b

0 otherwise
. (8.64)

Hence, from Equation (8.61), the initial angular momentum density of
the electromagnetic field is h = hz ez, where

hz =

{
µ0 N IQ/(2π l) for a ≤ r ≤ b

0 otherwise
. (8.65)
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In other words, the electromagnetic field possesses a uniform z-directed
angular momentum density h in the region between the inner cylinder
and the solenoid winding. It follows that the initial angular momentum
content of the electromagnetic field, L, is equal to h multiplied by the
volume of this region. Hence, we obtain L = Lz ez, where

Lz =
(b2 − a2)µ0 N IQ

2
. (8.66)

Of course, as the current in the solenoid winding is ramped down this
electromagnetic angular momentum is lost, and, presumably, transferred
to the two cylinders. Let us examine how this transfer is effected.

Any change in the current flowing in the solenoid winding generates
an inductive electric field. From Faraday’s law, this field takes the form
E = Eθ eθ, where

Eθ =

{
−µ0 N I r/2 for r ≤ b

−µ0 N Ib
2/(2 r) otherwise

. (8.67)

This electric field exerts a torque Ta = Ta ez, where

Ta = −QEθ(a)a =
µ0 N IQa

2

2
, (8.68)

on the inner cylinder, and a torque Tb = Tb ez, where

Tb = QEθ(b)b = −
µ0 N IQb

2

2
, (8.69)

on the outer cylinder. Thus, the net angular momentum acquired by the
inner cylinder, as the current in the solenoid coil is ramped down, is
La = La ez, where

La =

∫
Ta dt = −

µ0 N IQa
2

2
. (8.70)

Likewise, the net angular momentum acquired by the outer cylinder is
Lb = Lb ez, where

Lb =

∫
Tb dt =

µ0 N IQb
2

2
. (8.71)

Hence, the net angular momentum acquired by the two cylinders, as a
whole, is L = Lz ez, where

Lz =
(b2 − a2)µ0 N IQ

2
. (8.72)
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This, of course, is equal to the z-directed angular momentum lost by the
electromagnetic field.

8.6 EXERCISES

8.1. A solenoid consists of a wire wound uniformly around a solid cylindrical core of

radius a, length l, and permeability µ. Suppose that the wire has N turns per

unit length, and carries a current I. What is the energy stored within the core?

Suppose that the current in the wire is gradually ramped down. Calculate the

integral of the Poynting flux (due to the induced electric field) over the surface

of the core. Hence, demonstrate that the instantaneous rate of decrease of the

energy within the core is always equal to the integral of the Poynting flux over

its surface.

8.2. A coaxial cable consists of two thin coaxial cylindrical conducting shells of radii a

and b (where a < b). Suppose that the inner conductor carries the longitudinal

current I and the charge per unit length λ. Let the outer conductor carry equal

and opposite current and charge per unit length. What is the flux of electro-

magnetic energy and momentum down the cable (in the direction of the inner

current)? What is the electromagnetic pressure acting on the inner and outer

conductors?

8.3. Consider a coaxial cable consisting of two thin coaxial cylindrical conducting

shells of radii a and b (where a < b). Suppose that the inner conductor carries

current per unit length I, circulating in the plane perpendicular to its axis, and

charge per unit length λ. Let the outer conductor carry equal and opposite current

per unit length and charge per unit length. What is the flux of electromagnetic

angular momentum down the cable? What is the electromagnetic pressure acting

on the inner and outer conductors?

8.4. Calculate the electrostatic force acting between two identical point electrical

charges by finding the net electromagnetic momentum flux across a plane surface

located half-way between the charges. Verify that the result is consistent with

Coulomb’s law.

8.5. Calculate the magnetic force per unit length acting between two long paral-

lel straight wires carrying identical currents by finding the net electromagnetic

momentum flux across a plane surface located half-way between the wires. Verify

that the result is consistent with Ampère’s law.

8.6. Calculate the mean force acting on a perfect mirror of area A which reflects

normally incident electromagnetic radiation of peak electric field E0. Suppose
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that the mirror only reflects a fraction f of the incident electromagnetic energy,

and absorbs the remainder. What now is the force acting on the mirror?

8.7. A thin spherical conducting shell of radius a carries a chargeQ. Use the concept

of electric field-line tension to find the force of repulsion between any two halves

of the shell.

8.8. A solid sphere of radius a carries a net charge Q which is uniformly distributed

over its volume. What is the force of repulsion between any two halves of the

sphere?

8.9. A U-shaped electromagnet of permeability µ � 1, length l, pole separation d,

and uniform cross-sectional area A is energized by a current I flowing in a

winding withN turns. Find the force with which the magnet attracts a bar of the

same material which is placed over both poles (and completely covers them).

8.10. An iron sphere of radius a and uniform magnetization M = M ez carries an

electric charge Q. Find the net angular momentum of the electromagnetic field

surrounding the sphere. Suppose that the magnetization of the sphere decays to

zero. Demonstrate that the induced electric field exerts a torque on the sphere

which is such as to impart to it a mechanical angular momentum equal to that

lost by the electromagnetic field.
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C h a p t e r 9 ELECTROMAGNETIC
RADIATION

9.1 INTRODUCTION

In this chapter, we shall employ Maxwell’s equations to investigate the
emission, scattering, propagation, absorption, reflection, and refraction
of electromagnetic radiation.

9.2 THE HERTZIAN DIPOLE

Consider two small spherical conductors connected by a wire. Sup-
pose that electric charge flows periodically back and forth between the
spheres. Let q(t) be the instantaneous charge on one of the conductors.
The system is assumed to have zero net charge, so that the charge on
the other conductor is −q(t). Finally, let

q(t) = q0 sin (ωt). (9.1)

Now, we expect the oscillating current flowing in the wire connecting
the two spheres to generate electromagnetic radiation (see Section 4.11).
Let us consider the simple case in which the length of the wire is small
compared to the wavelength of the emitted radiation. If this is the case
then the current I flowing between the conductors has the same phase
along the whole length of the wire. It follows that

I(t) =
dq

dt
= I0 cos(ωt), (9.2)

where I0 = ωq0. This type of antenna is called a Hertzian dipole, after
the German physicist Heinrich Hertz.

The magnetic vector potential generated by a current distribution
j(r) is given by the well-known formula (see Section 4.12)

A(r, t) =
µ0

4π

∫
[j]

|r − r ′|
d3r ′, (9.3)

299
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where

[f] ≡ f(r ′, t− |r − r ′|/c). (9.4)

Suppose that the wire is aligned along the z-axis, and extends
from z = −l/2 to z = l/2. For a wire of negligible thickness, we
can replace j(r ′, t− |r − r ′|/c)d3r ′ by I(r ′, t− |r − r ′|/c)dz ′ ez. Thus,
A(r, t) = Az(r, t) ez, and

Az(r, t) =
µ0

4π

∫ l/2
−l/2

I(z ′, t− |r − z ′ ez|/c)
|r − z ′ ez|

dz ′. (9.5)

In the region r � l,

|r − z ′ ez| � r, (9.6)

and

t− |r − z ′ ez|/c � t− r/c. (9.7)

The maximum error involved in the latter approximation is∆t ∼ l/c. This
error (which is a time) must be much less than a period of oscillation
of the emitted radiation, otherwise the phase of the radiation will be
wrong. So we require that

l

c
� 2π

ω
, (9.8)

which implies that l � λ, where λ = 2π c/ω is the wavelength of the
emitted radiation. However, we have already assumed that the length of
the wire l is much less than the wavelength of the radiation, and so the
above inequality is automatically satisfied. Thus, in the far field region,
r � λ, we can write

Az(r, t) � µ0

4π

∫ l/2
−l/2

I(z ′, t− r/c)

r
dz ′. (9.9)

This integral is easy to perform, since the current is uniform along the
length of the wire. So, we get

Az(r, t) � µ0 l

4π

I(t− r/c)

r
. (9.10)

The scalar potential is most conveniently evaluated using the Lorenz
gauge condition (see Section 4.12)

∇ · A = −ε0µ0
∂φ

∂t
. (9.11)
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Now,

∇ · A =
∂Az

∂z
� µ0 l

4π

∂I(t− r/c)

∂t

(
−
z

r2 c

)
+O

(
1

r2

)
(9.12)

to leading order in r−1. Thus, we obtain

φ(r, t) � l

4πε0 c

z

r

I(t− r/c)

r
. (9.13)

Given the vector and scalar potentials, Equations (9.10) and (9.13),
respectively, we can evaluate the associated electric and magnetic fields
using (see Section 4.12)

E = −
∂A
∂t

− ∇φ, (9.14)

B = ∇ × A. (9.15)

Note that we are only interested in radiation fields, which fall off like r−1

with increasing distance from the source. It is easily demonstrated that

E � −
ωl I0

4πε0 c2
sin θ

sin[ω (t− r/c)]

r
eθ, (9.16)

and

B � −
ωl I0

4πε0 c3
sin θ

sin[ω (t− r/c)]

r
eϕ. (9.17)

Here, (r, θ,ϕ) are standard spherical polar coordinates aligned along the
z-axis. The above expressions for the far-field (i.e., r � λ) electromag-
netic fields generated by a localized oscillating current are also easily
derived from Equations (4.190) and (4.191). Note that the fields are
symmetric in the azimuthal angle ϕ. Moreover, there is no radiation
along the axis of the oscillating dipole (i.e., θ = 0), and the maximum
emission is in the plane perpendicular to this axis (i.e., θ = π/2)—see
Figure 9.1.

The average power crossing a spherical surface S (whose radius is
much greater than λ), centered on the dipole, is

Prad =

∮
S

〈u〉 · dS, (9.18)

where the average is over a single period of oscillation of the wave, and
the Poynting flux is given by (see Section 8.2)

u =
E × B
µ0

=
ω2 l2 I 20
16π2ε0 c3

sin2[ω (t− r/c)]
sin2 θ
r2

er. (9.19)
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x/λ

z/λ

Figure 9.1: Equally spaced contours of the normalized poloidal electric field
Eθ/E0 generated by a Hertzian dipole in the x-z plane at a fixed instant in
time. Here, E0 = ωl I0/4πε0 c

2.

It follows that

〈u〉 =
ω2 l2 I 20
32π2ε0 c3

sin2 θ
r2

er. (9.20)

Note that the energy flux is radially outward from the source. The total
power flux across S is given by

Prad =
ω2 l2 I 20
32π2ε0 c3

∫ 2π
0

dφ

∫π
0

sin2 θ
r2

r2 sin θ dθ, (9.21)

yielding

Prad =
ω2 l2 I 20
12πε0 c3

. (9.22)

This total flux is independent of the radius of S, as is to be expected if
energy is conserved.
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Recall that for a resistor of resistance R the average ohmic heating
power is

Pheat = 〈I2 R〉 =
1

2
I 20 R, (9.23)

assuming that I = I0 cos(ωt). It is convenient to define the radiation
resistance of a Hertzian dipole antenna:

Rrad =
Prad

I 20 /2
, (9.24)

so that

Rrad =
2π

3ε0 c

(
l

λ

)2
, (9.25)

where λ = 2π c/ω is the wavelength of the radiation. In fact,

Rrad = 789

(
l

λ

)2
ohms. (9.26)

Now, in the theory of electrical circuits, an antenna is conventionally
represented as a resistor whose resistance is equal to the characteristic
radiation resistance of the antenna plus its real resistance. The power loss
I 20 Rrad/2 associated with the radiation resistance is due to the emission
of electromagnetic radiation, whereas the power loss I 20 R/2 associated
with the real resistance is due to ohmic heating of the antenna.

Note that the formula (9.26) is only valid for l � λ. This suggests
that Rrad � R for most Hertzian dipole antennas: i.e., the radiated power
is swamped by the ohmic losses. Thus, antennas whose lengths are much
less than that of the emitted radiation tend to be extremely inefficient. In
fact, it is necessary to have l ∼ λ in order to obtain an efficient antenna.
The simplest practical antenna is the half-wave antenna, for which l =
λ/2. This can be analyzed as a series of Hertzian dipole antennas stacked
on top of one another, each slightly out of phase with its neighbors. The
characteristic radiation resistance of a half-wave antenna is

Rrad =
2.44

4πε0 c
= 73 ohms. (9.27)

Antennas can also be used to receive electromagnetic radiation. The
incoming wave induces a voltage in the antenna, which can be detected
in an electrical circuit connected to the antenna. In fact, this process
is equivalent to the emission of electromagnetic waves by the antenna
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viewed in reverse. It is easily demonstrated that antennas most readily
detect electromagnetic radiation incident from those directions in which
they preferentially emit radiation. Thus, a Hertzian dipole antenna is
unable to detect radiation incident along its axis, and most efficiently
detects radiation incident in the plane perpendicular to this axis. In the
theory of electrical circuits, a receiving antenna is represented as a volt-
age source in series with a resistor. The voltage source, V0 cos(ωt),
represents the voltage induced in the antenna by the incoming wave.
The resistor, Rrad, represents the power re-radiated by the antenna
(here, the real resistance of the antenna is neglected). Let us repre-
sent the detector circuit as a single load resistor, Rload, connected in
series with the antenna. So, what value of Rload ensures that the maxi-
mum power is extracted from the wave and transmitted to the detector
circuit?

According to Ohm’s law,

V = V0 cos(ωt) = I0 cos(ωt) (Rrad + Rload), (9.28)

where I = I0 cos(ωt) is the current induced in the circuit. The power
input to the circuit is

Pin = 〈V I〉 =
V 20

2 (Rrad + Rload)
. (9.29)

The power transferred to the load is

Pload = 〈I2 Rload〉 =
Rload V

2
0

2 (Rrad + Rload)2
. (9.30)

Finally, the power re-radiated by the antenna is

Prad = 〈I2 Rrad〉 =
Rrad V

2
0

2 (Rrad + Rload)2
. (9.31)

Note that Pin = Pload + Prad. The maximum power transfer to the load
occurs when

∂Pload

∂Rload
=
V 20
2

[
Rrad − Rload

(Rrad + Rload)3

]
= 0. (9.32)

Thus, the maximum transfer rate corresponds to

Rload = Rrad. (9.33)
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In other words, the resistance of the load circuit must match the radiation
resistance of the antenna. For this optimum case,

Pload = Prad =
V 20
8 Rrad

=
Pin

2
. (9.34)

So, in the optimum case half of the power absorbed by the antenna is
immediately re-radiated. Clearly, an antenna which is receiving electro-
magnetic radiation is also emitting it. This (allegedly) is how the BBC
catch people who do not pay their television license fee in the United
Kingdom. They have vans which can detect the radiation emitted by a
TV aerial whilst it is in use (they can even tell which channel you are
watching!).

For a Hertzian dipole antenna interacting with an incoming wave
whose electric field has an amplitude E0, we expect

V0 = E0 l. (9.35)

Here, we have used the fact that the wavelength of the radiation is much
longer than the length of the antenna. We have also assumed that the
antenna is properly aligned (i.e., the radiation is incident perpendicular
to the axis of the antenna). The Poynting flux of the incoming wave is
[see Equation (8.35)]

〈uin〉 =
ε0 c E

2
0

2
, (9.36)

whereas the power transferred to a properly matched detector circuit is

Pload =
E20 l

2

8 Rrad
. (9.37)

Consider an idealized antenna in which all incoming radiation incident
on some area Aeff is absorbed, and then magically transferred to the
detector circuit, with no re-radiation. Suppose that the power absorbed
from the idealized antenna matches that absorbed from the real antenna.
This implies that

Pload = 〈uin〉Aeff . (9.38)

The quantity Aeff is called the effective area of the antenna: it is the area
of the idealized antenna which absorbs as much net power from the
incoming wave as the actual antenna. Thus,

Pload =
E20 l

2

8 Rrad
=
ε0 c E

2
0

2
Aeff , (9.39)
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giving

Aeff =
l2

4ε0 c Rrad
=
3

8π
λ2. (9.40)

So, it is clear that the effective area of a Hertzian dipole antenna is of
order the wavelength squared of the incoming radiation.

For a properly aligned half-wave antenna,

Aeff = 0.13 λ2. (9.41)

Thus, the antenna, which is essentially one-dimensional with length λ/2,
acts as if it is two-dimensional, with width 0.26 λ, as far as its absorption
of incoming electromagnetic radiation is concerned.

9.3 ELECTRIC DIPOLE RADIATION

In the previous section, we examined the radiation emitted by a short
electric dipole of oscillating dipole moment

p(t) = p0 sin(ωt) ez, (9.42)

where p0 = q0 l = I0 l/ω. We found that, in the far field region, the mean
electromagnetic energy flux takes the form [see Equation (9.20)]

〈u〉 =
ω4 p20
32π2ε0 c3

sin2 θ
r2

er, (9.43)

assuming that the dipole is centered on the origin of our spherical polar
coordinate system. The mean power radiated into the element of solid
angle dΩ = sin θdθdϕ, centered on the angular coordinates (θ, ϕ), is

dP = 〈u(r, θ,ϕ)〉·er r2 dΩ. (9.44)

Hence, the differential power radiated into this element of solid angle is
simply

dP

dΩ
=

ω4 p20
32π2ε0 c3

sin2 θ. (9.45)

This formula completely specifies the radiation pattern of an oscillating
electric dipole (provided that the dipole is much shorter in length than
the wavelength of the emitted radiation). Of course, the power radiated
into a given element of solid angle is independent of r, otherwise energy
would not be conserved. Finally, the total radiated power is the integral
of dP/dΩ over all solid angles.
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9.4 THOMPSON SCATTERING

Consider a plane electromagnetic wave of angular frequency ω inter-
acting with a free electron of mass me and charge −e. Suppose that the
wave is polarized such that its associated electric field is parallel to the
z-axis: i.e.,

E = E0 sin(ωt) ez. (9.46)

Recall, from Section 4.7, that as long as the electron remains non-
relativistic, the force exerted on it by the electromagnetic wave comes
predominantly from the associated electric field. Hence, the electron’s
equation of motion can be written

me
d2z

dt2
= −e E0 sin(ωt), (9.47)

which can be solved to give

z =
e E0

me ω2
sin(ωt). (9.48)

So, in response to the wave, the electron oscillates backward and forward
in the direction of the wave electric field. It follows that the electron
can be thought of as a sort of oscillating electric dipole, with dipole
moment

p = −e z ez = −p0 sin(ωt) ez, (9.49)

where p0 = e2 E0/(meω
2). (For the moment, let us not worry about

the positively charged component of the dipole.) Now, we know that
an oscillating electric dipole emits electromagnetic radiation. Hence, it
follows that a free electron placed in the path of a plane electromagnetic
wave will radiate. To be more exact, the electron scatters electromagnetic
radiation from the wave, since the radiation emitted by the electron is not
necessarily in the same direction as the wave, and any energy radiated by
the electron is ultimately extracted from the wave. This type of scattering
is called Thompson scattering.

It follows from Equation (9.45) that the differential power scattered
from a plane electromagnetic wave by a free electron into solid angle
dΩ takes the form

dP

dΩ
=

e4 E20
32π2ε0 c3 m2

e

sin2 θ. (9.50)
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Now, the mean energy flux of the incident electromagnetic wave is
written

|〈u〉| = c ε0 E
2
0

2
. (9.51)

It is helpful to introduce a quantity called the differential scattering cross-
section. This is defined

dσ

dΩ
=
dP/dΩ

|〈u〉| , (9.52)

and has units of area over solid angle. Somewhat figuratively, we can
think of the electron as offering a target of area dσ/dΩ to the incident
wave. Any wave energy which falls on this target is scattered into the
solid angle dΩ. Likewise, we can also define the total scattering cross-
section,

σ =

∮
dσ

dΩ
dΩ, (9.53)

which has units of area. Again, the electron effectively offers a target of
area σ to the incident wave. Any wave energy which falls on this target
is scattered in some direction or other. It follows from Equations (9.50)
and (9.51) that the differential scattering cross-section for Thompson
scattering is

dσ

dΩ
= r 2e sin2 θ, (9.54)

where the characteristic length

re =
e2

4πε0 me c2
= 2.82× 10−15 m (9.55)

is called the classical electron radius. An electron effectively acts like it has
a spatial extent re as far as its iteration with electromagnetic radiation
is concerned. As is easily demonstrated, the total Thompson scattering
cross-section is

σT =
8 π

3
r 2e = 6.65× 10−29 m2. (9.56)

Note that both the differential and the total Thompson scattering cross-
sections are completely independent of the frequency (or wavelength) of
the incident radiation.

A scattering cross-section of 10−28 m2 does not sound like much.
Nevertheless, Thompson scattering is one of the most important types
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of scattering in the Universe. Consider the Sun. It turns out that the
mean mass density of the Sun is similar to that of water: i.e., about
103 kg m−3. Hence, assuming that the Sun is predominantly made up
of ionized Hydrogen, the mean number density of electrons in the Sun
(which, of course, is the same as the number density of protons) is
approximately ne ∼ 103/mp ∼ 1030 m−3, wheremp ∼ 10−27 kg is the mass
of a proton. Let us consider how far, on average, a photon in the Sun
travels before being scattered by a free electron. If we think of an indi-
vidual photon as sweeping out a cylinder of cross-sectional area σT , then
the photon will travel an average length l, such that a cylinder of area
σT and length l contains about one free electron, before being scattered.
Hence, σT l ne ∼ 1, or

l ∼
1

ne σT
∼ 1 cm. (9.57)

Given that the radius of the Sun is approximately 109 m, it is clear that
solar photons are very strongly scattered by free electrons. In fact, it
can easily be demonstrated that it takes a photon emitted in the solar
core many thousands of years to fight its way to the surface because of
Thompson scattering.

After the “Big Bang,” when the Universe was very hot, it con-
sisted predominately of ionized Hydrogen (and dark matter), and was
consequently opaque to electromagnetic radiation, due to Thompson
scattering. However, as the Universe expanded, it also cooled, and even-
tually became sufficiently cold (when the mean temperature was about
1000◦C) for any free protons and electrons to combine to form molec-
ular Hydrogen. It turns out that molecular Hydrogen does not scatter
radiation anything like as effectively as free electrons (see the next
section). Hence, as soon as the Universe became filled with molecu-
lar Hydrogen, it effectively became transparent to radiation. Indeed, the
so-called cosmic microwave background is the remnant of radiation which
was last scattered when the Universe was filled with ionized Hydrogen
(i.e., when it was about 1000◦C). Astronomers can gain a great deal of
information about the conditions in the early Universe by studying this
radiation.

Incidentally, it is clear from Equations (9.55) and (9.56) that the
scattering cross-section of a free particle of charge q and mass m is
proportional to q4/m2. It follows that the scattering of electromagnetic
radiation by free electrons is generally very much stronger than the
scattering by free protons (assuming that the number densities of both
species are similar).
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9.5 RAYLEIGH SCATTERING

Let us now consider the scattering of electromagnetic radiation by neu-
tral atoms. For instance, consider a Hydrogen atom. The atom consists
of a light electron and a massive proton. As we have seen, the elec-
tron scatters radiation much more strongly than the proton, so let us
concentrate on the response of the electron to an incident electromag-
netic wave. Suppose that the wave electric field is again polarized in the
z-direction, and is given by Equation (9.46). We can approximate the
electron’s equation of motion as

me
d2z

dt2
= −meω

2
0 z− e E0 sin(ωt). (9.58)

Here, the second term on the right-hand side represents the perturbing
force due to the electromagnetic wave, whereas the first term represents
the (linearized) force of electrostatic attraction between the electron
and the proton. Here, we are very crudely modeling our Hydrogen atom
as a simple harmonic oscillator of natural frequency ω0. We can think
of ω0 as the typical frequency of electromagnetic radiation emitted by
the atom after it is transiently disturbed. In other words, in our model,
ω0 should match the frequency of one of the spectral lines of Hydro-
gen. More generally, we can extend the above model to deal with just
about any type of atom, provided that we set ω0 to the frequency of a
spectral line.

We can easily solve Equation (9.58) to give

z =
e E0

me (ω2 −ω2
0 )

sin(ωt). (9.59)

Hence, the dipole moment of the electron takes the form p =
−p0 sin(ωt) ez, where

p0 =
e2 E0

me (ω2 −ω2
0 )
. (9.60)

It follows, by analogy with the analysis in the previous section, that the
differential and total scattering cross-sections of our model atom take
the form

dσ

dΩ
=

ω4

(ω2 −ω2
0 )
2
r 2e sin2 θ, (9.61)



“chapter9” — 2007/11/30 — 11:11 — page 311 — #13

CHAPTER 9 ELECTROMAGNETIC RADIATION 311

and

σ =
ω4

(ω2 −ω2
0 )
2
σT , (9.62)

respectively.
In the limit in which the frequency of the incident radiation is much

greater than the natural frequency of the atom, Equations (9.61) and
(9.62) reduce to the previously obtained expressions for scattering by a
free electron. In other words, an electron in an atom acts very much like a
free electron as far as high-frequency radiation is concerned. In the oppo-
site limit, in which the frequency of the incident radiation is much less
than the natural frequency of the atom, Equations (9.61) and (9.62) yield

dσ

dΩ
=

(
ω

ω0

)4
r 2e sin2 θ, (9.63)

and

σ =

(
ω

ω0

)4
σT , (9.64)

respectively. This type of scattering is called Rayleigh scattering. There are
two features of Rayleigh scattering which are worth noting. First of all,
it is much weaker than Thompson scattering (since ω � ω0). Secondly,
unlike Thompson scattering, it is highly frequency dependent. Indeed,
it is clear, from the above formulae, that high-frequency (short wave-
length) radiation is scattered far more effectively than low-frequency
(long wavelength) radiation.

The most common example of Rayleigh scattering is the scattering
of visible radiation from the Sun by neutral atoms (mostly Nitrogen and
Oxygen) in the upper atmosphere. The frequency of visible radiation is
much less than the typical emission frequencies of a Nitrogen or Oxygen
atom (which lie in the ultraviolet band), so it is certainly the case that
ω � ω0. When the Sun is low in the sky, radiation from it has to traverse
a comparatively long path through the atmosphere before reaching us.
Under these circumstances, the scattering of direct solar light by neutral
atoms in the atmosphere becomes noticeable (it is not noticeable when
the Sun is high is the sky, and radiation from it consequently only has to
traverse a relatively short path through the atmosphere before reaching
us). According to Equation (9.64), blue light is scattered slightly more
strongly than red light (since blue light has a slightly higher frequency
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than red light). Hence, when the Sun is low in the sky, it appears less
bright, due to atmospheric scattering. However, it also appears redder
than normal, because more blue light than red light is scattered out of
the solar light-rays, leaving an excess of red light. Likewise, when we
look up at the daytime sky, it does not appear black (like the sky on the
Moon) because of light from solar radiation which grazes the atmosphere
being scattered downward toward the surface of the Earth. Again, since
blue light is scattered more effectively than red light, there is an excess
of blue light scattered downward, and so the daytime sky appears blue.

Light from the Sun is unpolarized. However, when it is scattered
it becomes polarized, because light is scattered preferentially in some
directions rather than others. Consider a light-ray from the Sun which
grazes the Earth’s atmosphere. The light-ray contains light which is polar-
ized such that the electric field is vertical to the ground, and light which
is polarized such that the electric field is horizontal to the ground (and
perpendicular to the path of the light-ray), in equal amounts. However,
due to the sin2 θ factor in the dipole emission formula (9.45) (where, in
this case, θ is the angle between the direction of the wave electric field
and the direction of scattering), very little light is scattered downward
from the vertically polarized light compared to the horizontally polarized
light. Moreover, the light scattered from the horizontally polarization is
such that its electric field is preferentially perpendicular, rather than
parallel, to the direction of propagation of the solar light-ray (i.e., the
direction to the Sun). Consequently, the blue light from the daytime sky
is preferentially polarized in a direction perpendicular to the direction to
the Sun.

9.6 PROPAGATION IN A DIELECTRIC MEDIUM

Consider the propagation of an electromagnetic wave through a uniform
dielectric medium of dielectric constant ε. According to Equations (6.12)
and (6.14), the dipole moment per unit volume induced in the medium
by the wave electric field E is

P = ε0 (ε− 1) E. (9.65)

There are no free charges or free currents in the medium. There is also
no bound charge density (since the medium is uniform), and no magne-
tization current density (since the medium is non-magnetic). However,
there is a polarization current due to the time-variation of the induced
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dipole moment per unit volume. According to Equation (6.109), this
current is given by

jp =
∂P
∂t
. (9.66)

Hence, Maxwell’s equations take the form

∇·E = 0, (9.67)

∇·B = 0, (9.68)

∇ × E = −
∂B
∂t
, (9.69)

∇ × B = µ0 jp + ε0 µ0
∂E
∂t
. (9.70)

According to Equations (9.65) and (9.66), the last of the above equations
can be rewritten

∇ × B = ε0 µ0 (ε− 1)
∂E
∂t

+ ε0 µ0
∂E
∂t

=
ε

c2
∂E
∂t
, (9.71)

since c = (ε0 µ0)
−1/2. Thus, Maxwell’s equations for the propagation of

electromagnetic waves through a dielectric medium are the same as
Maxwell’s equations for the propagation of waves through a vacuum
(see Section 4.7), except that c → c/n, where

n =
√
ε (9.72)

is called the refractive index of the medium in question. Hence, we con-
clude that electromagnetic waves propagate through a dielectric medium
slower than through a vacuum by a factor n (assuming, of course,
that n > 1). This conclusion (which was reached long before Maxwell’s
equations were invented) is the basis of all geometric optics involving
refraction.

9.7 DIELECTRIC CONSTANT OF A GASEOUS MEDIUM

In Section 9.5, we discussed a rather crude model of an atom interact-
ing with an electromagnetic wave. According to this model, the dipole
moment p of the atom induced by the wave electric field E is given by

p =
e2

me (ω2
0 −ω2)

E, (9.73)
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where ω0 is the natural frequency of the atom (i.e., the frequency of
one of the atom’s spectral lines), and ω the frequency of the incident
radiation. Suppose that there are n atoms per unit volume. It follows
that the induced dipole moment per unit volume of the assemblage of
atoms takes the form

P =
ne2

me (ω2
0 −ω2)

E. (9.74)

Finally, a comparison with Equation (9.65) yields the following expres-
sion for the dielectric constant of the collection of atoms,

ε = 1+
ne2

ε0 me (ω2
0 −ω2)

. (9.75)

The above formula works fairly well for dilute gases, although it is, of
course, necessary to sum over all species and all important spectral lines.

Note that, in general, the dielectric “constant” of a gaseous medium
(as far as electromagnetic radiation is concerned) is a function of the
wave frequency, ω. Since the effective wave propagation speed through
the medium is c/

√
ε, it follows that waves of different frequencies travel

through a gaesous medium at different speeds. This phenomenon is
called dispersion, since it can be shown to cause short wave-pulses to
spread out as they propagate through the medium. At low frequencies
(ω � ω0), however, our expression for ε becomes frequency indepen-
dent, and so there is no dispersion of low-frequency waves by a gaseous
medium.

9.8 DISPERSION RELATION OF A PLASMA

A plasma is very similar to a gaseous medium, expect that the electrons
are free: i.e., there is no restoring force due to nearby atomic nuclii.
Hence, we can obtain an expression for the dielectric constant of a plasma
from Equation (9.75) by settingω0 to zero, and n to the number density
of electrons, ne. We obtain

ε = 1−
ω2
p

ω2
, (9.76)

where the characteristic frequency

ωp =

√
ne e2

ε0 me
(9.77)
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is called the plasma frequency. We can immediately see that formula
(9.76) is problematic. For frequencies above the plasma frequency, the
dielectric constant of a plasma is less than unity. Hence, the refractive
index n =

√
ε is also less than unity. This would seem to imply that high-

frequency electromagnetic waves can propagate through a plasma with
a velocity c/n which is greater than the velocity of light in a vacuum.
This appears to violate one of the principles of Relativity. On the other
hand, for frequencies below the plasma frequency, the dielectric constant
is negative, which would seem to imply that the refractive index n =

√
ε

is imaginary. How should we interpret this?
Consider an infinite plane-wave of frequency ω, which is greater

than the plasma frequency, propagating through a plasma. Suppose that
the wave electric field takes the form

E = E0 e i (k x−ωt) ez, (9.78)

where it is understood that the physical electric field is the real part of
the above expression. A peak or trough of the above wave travels at the
so-called phase-velocity, which is given by

vp =
ω

k
. (9.79)

Now, we have also seen that the phase-velocity of electromagnetic waves
in a dielectric medium is vp = c/n = c/

√
ε, so

ω2 =
k2 c2

ε
. (9.80)

It follows from Equation (9.76) that

ω2 = k2 c2 +ω2
p (9.81)

in a plasma. The above type of expression, which effectively determines
the wave frequency, ω, as a function of the wave-number, k, for the
medium in question, is called a dispersion relation (since, amongst other
things, it determines how fast wave-pulses disperse in the medium).
According to the above dispersion relation, the phase-velocity of high-
frequency waves propagating through a plasma is given by

vp =
c√

1−ω2
p/ω

2
, (9.82)

which is indeed greater than c. However, the Theory of Relativity does
not forbid this. What the Theory of Relativity says is that information
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cannot travel at a velocity greater than c. However, the peaks and troughs
of an infinite plane-wave, such as (9.78), do not carry any information.

We now need to consider how we could transmit information
through a plasma (or any other dielectric medium) by means of elec-
tromagnetic waves. The easiest way would be to send a series of short
discrete wave-pulses through the plasma, so that we could transmit infor-
mation in a sort of Morse code. We can build up a wave-pulse from a
suitable superposition of infinite plane-waves of different frequencies
and wavelengths: e.g.,

Ez(x, t) =

∫
F(k) e iφ(k) dk, (9.83)

where φ(k) = k x−ω(k) t, and ω(k) is determined from the dispersion
relation (9.81). Now, it turns out that a relatively short wave-pulse can
only be built up from a superposition of plane-waves with a relatively
wide range of different k values. Hence, for a short wave-pulse, the
integrand in the above formula consists of the product of a fairly slowly
varying function, F(k), and a rapidly oscillating function, exp[iφ(k)]. The
latter function is rapidly oscillating because the phase φ(k) varies very
rapidly with k, relative to F(k). We expect the net result of integrating the
product of a slowly varying function and rapidly oscillating function to be
small, since the oscillations will generally average to zero. It follows that
the integral (9.83) is dominated by those regions of k-space for which
φ(k) varies least rapidly with k. Hence, the peak of the wave-pulse most
likely corresponds to a maximum or minimum of φ(k): i.e.,

dφ

dk
= x−

dω

dk
t = 0. (9.84)

Thus, we infer that the velocity of the wave-pulse (which corresponds to
the velocity of the peak) is given by

vg =
dω

dk
. (9.85)

This velocity is called the group-velocity, and is different to the phase-
velocity in dispersive media: i.e., media for which ω is not directly
proportional to k. (Of course, in a vacuum, ω = k c, so the phase
and group velocities are both equal to c.) The upshot of the above
discussion is that information (i.e., an individual wave-pulse) travels
through a dispersive media at the group-velocity, rather than the phase-
velocity. Hence, Relativity demands that the group-velocity, rather than
the phase-velocity, must always be less than c.
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What is the group-velocity for high-frequency waves propagating
through a plasma? Well, differentiation of the dispersion relation (9.81)
yields

ω

k

dω

dk
= vp vg = c2. (9.86)

Hence, it follows from Equation (9.82) that

vg = c

√
1−

ω2
p

ω2
, (9.87)

which is less than c. We thus conclude that the dispersion relation (9.81)
is indeed consistent with Relativity.

Let us now consider the propagation of low-frequency electromag-
netic waves through a plasma. We can see, from Equations (9.82) and
(9.87), that when the wave frequency, ω, falls below the plasma fre-
quency, ωp, both the phase and group velocities become imaginary.
This indicates that the wave attenuates as it propagates. Consider, for
instance, a plane-wave of frequencyω < ωp. According to the dispersion
relation (9.81), the associated wave-number is given by

k = i
√
ω2
p −ω2

/
c = i |k|. (9.88)

Hence, the wave electric field takes the form

Ez = E0 e i (i |k| x−ωt) = E0 e−|k| x e−iωt. (9.89)

So, it can be seen that for ω < ωp electromagnetic waves in a plasma
take the form of decaying standing waves, rather than traveling waves.
We conclude that an electromagnetic wave, of frequency less than the
plasma frequency, which is incident on a plasma will not propagate
through the plasma. Instead, it will be totally reflected.

We can be sure that the incident wave is reflected by the plasma,
rather than absorbed, by considering the energy flux of the wave in the
plasma. It is easily demonstrated that the energy flux of an electromag-
netic wave can be written

u =
E × B
µ0

=
E2

µ0 ω
k. (9.90)

For a wave with a real frequency and a complex k-vector, the above
formula generalizes to

u =
|E|2

µ0 ω
Re(k). (9.91)
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However, according to Equation (9.88), the k-vector for a low-frequency
electromagnetic wave in a plasma is purely imaginary. It follows that the
associated energy flux is zero. Hence, any low-frequency wave which is
incident on the plasma must be totally reflected, since if there were any
absorption of the wave energy then there would be a net energy flux into
the plasma.

The outermost layer of the Earth’s atmosphere consists of a partially
ionized zone known as the ionosphere. The plasma frequency in the iono-
sphere is about 1 MHz, which lies at the upper end of the medium-wave
band of radio frequencies. It follows that low-frequency radio signals
(i.e., all signals in the long-wave band, and most in the medium-wave
band) are reflected off the ionosphere. For this reason, such signals can
be detected over the horizon. Indeed, long-wave radio signals reflect
multiple times off the ionosphere with very little loss (they also reflect
multiple times off the Earth, which is enough of a conductor to act as
a mirror for radio waves), and can consequently be detected all over
the world. On the other hand, high-frequency radio signals (i.e., all
signals in the FM band) pass straight through the ionosphere. For this
reason, such signals cannot be detected over the horizon, which accounts
for the relatively local coverage of FM radio stations. Note, from Equa-
tion (9.77), that the plasma frequency is proportional to the square root
of the number density of free electrons. Now, the level of ionization in
the ionosphere is maintained by ultraviolet light from the Sun (which
effectively knocks electrons out of neutral atoms). Of course, there is
no such light at night, and the number density of free electrons in the
ionosphere consequently drops as electrons and ions gradually recom-
bine. It follows that the plasma frequency in the ionosphere also drops
at night, giving rise to a marked deterioration in the reception of distant
medium-wave radio stations.

9.9 FARADAY ROTATION

Consider a high-frequency electromagnetic wave propagating, along the
z-axis, through a plasma with a longitudinal equilibrium magnetic field,
B = B0 ez. The equation of motion of an individual electron making up
the plasma takes the form

me
dv
dt

= −e (E + B0 v × ez), (9.92)
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where the first term on the right-hand side is due to the wave electric
field, and the second to the equilibrium magnetic field. (As usual, we
can neglect the wave magnetic field, provided that the electron motion
remains non-relativistic.) Of course, v = dr/dt, where r is the electron
displacement from its equilibrium position. Suppose that all perturbed
quantities vary with time like exp(−iωt), whereω is the wave frequency.
It follows that

meω
2 x = e (Ex − iωB0 y), (9.93)

meω
2 y = e (Ey + iωB0 x). (9.94)

It is helpful to define

s± = x± iy, (9.95)

E± = Ex ± iEy. (9.96)

Using these new variables, Equations (9.93) and (9.94) can be rewritten

meω
2 s± = e (E± ∓ωB0 s±), (9.97)

which can be solved to give

s± =
e E±

meω (ω±Ω)
, (9.98)

where Ω = eB0/me is the so-called cyclotron frequency (i.e., the charac-
teristic gyration frequency of free electrons in the equilibrium magnetic
field—see Section 3.7).

In terms of s±, the electron displacement can be written

r = s+ e i (k+ z−ωt) e+ + s− e i (k− z−ωt) e−, (9.99)

where

e± =
1

2
(ex ∓ i ey) . (9.100)

Likewise, in terms of E±, the wave electric field takes the form

E = E+ e i (k+ z−ωt) e+ + E− e i (k− z−ωt) e−. (9.101)

Obviously, the actual displacement and electric field are the real parts of
the above expressions. It follows from Equation (9.101) that E+ corre-
sponds to a constant amplitude electric field which rotates clockwise in
the x-y plane (looking down the z-axis) as the wave propagates in the
+z-direction, whereas E− corresponds to a constant amplitude electric
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field which rotates counter clockwise. The former type of wave is termed
left-hand circularly polarized, whereas the latter is termed right-hand
circularly polarized. Note also that s+ and s− correspond to circular elec-
tron motion in opposite senses. With these insights, we conclude that
Equation (9.98) indicates that individual electrons in the plasma have
a slightly different response to left- and right-hand circularly polarized
waves in the presence of a longitudinal magnetic field.

Following the analysis of Section 9.7, we can deduce from Equa-
tion (9.98) that the dielectric constant of the plasma for left- and
right-hand circularly polarized waves is

ε± = 1−
ω2
p

ω (ω±Ω)
, (9.102)

respectively. Hence, according to Equation (9.80), the dispersion relation
for left- and right-hand circularly polarized waves becomes

k2± c
2 = ω2

[
1−

ω2
p

ω (ω±Ω)

]
, (9.103)

respectively. In the limit ω � ωp,Ω, we obtain

k± � k± ∆k, (9.104)

where k = ω [1− (1/2)ω2
p/ω

2]/c and ∆k = (1/2) (ω2
p/ω

2)Ω/c. In
other words, in a magnetized plasma, left- and right-hand circu-
larly polarized waves of the same frequency have slightly different
wave-numbers.

Let us now consider the propagation of a linearly polarized electro-
magnetic wave through the plasma. Such a wave can be constructed
via a superposition of left- and right-hand circularly polarized waves of
equal amplitudes. So, the wave electric field can be written

E = E0

[
e i (k+ z−ωt) e+ + e i (k− z−ωt) e−

]
. (9.105)

It can easily be seen that at z = 0 the wave electric field is aligned along
the x-axis. If left- and right-hand circularly polarized waves of the same
frequency have the same wave-number (i.e., if k+ = k−) then the wave
electric field will continue to be aligned along the x-axis as the wave prop-
agates in the +z-direction: i.e., we will obtain a standard linearly polar-
ized wave. However, we have just demonstrated that, in the presence of
a longitudinal magnetic field, the wave-numbers k+ and k− are slightly
different. What effect does this have on the polarization of the wave?
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Taking the real part of Equation (9.105), and making use of Equation
(9.104), and some standard trigonometrical identities, we obtain

E = E0 [cos(k z−ωt) cos(∆k z), cos(k z−ωt) sin(∆k z), 0] . (9.106)

The polarization angle of the wave (which is a convenient measure of
its plane of polarization) is given by

ϕ = tan−1(Ey/Ex) = ∆k z. (9.107)

Thus, we conclude that in the presence of a longitudinal magnetic
field the polarization angle rotates as the wave propagates through the
plasma. This effect is known as Faraday rotation. It is clear, from the
above expression, that the rate of advance of the polarization angle with
distance travelled by the wave is given by

dϕ

dz
= ∆k =

ω2
p Ω

2ω2 c
=

e3

2ε0 m2
e c

ne B0

ω2
. (9.108)

Hence, a linearly polarized electromagnetic wave which propagates
through a plasma with a (slowly) varying electron number density, ne(z),
and longitudinal magnetic field, B0(z), has its plane of polarization
rotated through a total angle

∆ϕ = ϕ−ϕ0 =
e3

2ε0 m2
e c

1

ω2

∫
ne(z)B0(z)dz. (9.109)

Note the very strong inverse variation of ∆ϕ with ω.
Pulsars are rapidly rotating neutron stars which emit regular blips

of highly polarized radio waves. Hundreds of such objects have been
found in our galaxy since the first was discovered in 1967. By measuring
the variation of the angle of polarization, ϕ, of radio emission from a
pulsar with frequency,ω, astronomers can effectively determine the line
integral of ne B0 along the straight-line joining the pulsar to the Earth
using formula (9.109). Here, ne is the number density of free electrons
in the interstellar medium, whereas B0 is the parallel component of the
galactic magnetic field. Obviously, in order to achieve this, astronomers
must make the reasonable assumption that the radiation was emitted by
the pulsar with a common angle of polarization, ϕ0, over a wide range
of different frequencies. By fitting Equation (9.109) to the data, and
then extrapolating to large ω, it is then possible to determine ϕ0, and,
hence, the amount, ∆ϕ(ω), through which the polarization angle of the
radiation has rotated, at a given frequency, during its passage to Earth.
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9.10 PROPAGATION IN A CONDUCTOR

Consider the propagation of an electromagnetic wave through a con-
ducting medium which obeys Ohm’s law:

j = σE. (9.110)

Here, σ is the conductivity of the medium in question. Maxwell’s
equations for the wave take the form:

∇ · E = 0, (9.111)

∇ · B = 0, (9.112)

∇ × E = −
∂B
∂t
, (9.113)

∇ × B = µ0 j + ε ε0µ0
∂E
∂t
, (9.114)

where ε is the dielectric constant of the medium. It follows, from the
above equations, that

∇ × ∇ × E = −∇2E = −
∂∇ × B
∂t

= −
∂

∂t

[
µ0 σE + ε ε0µ0

∂E
∂t

]
.

(9.115)

Looking for a wave-like solution of the form

E = E0 e i (k z−ωt), (9.116)

we obtain the dispersion relation

k2 = µ0 ω (ε ε0 ω+ iσ). (9.117)

Consider a “poor” conductor for which σ � ε ε0 ω. In this limit, the
dispersion relation (9.117) yields

k � n
ω

c
+ i

σ

2

√
µ0

ε ε0
, (9.118)

where n =
√
ε is the refractive index. Substitution into Equation (9.116)

gives

E = E0 e−z/d e i (kr z−ωt), (9.119)

where

d =
2

σ

√
ε ε0

µ0
, (9.120)
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and kr = nω/c. Thus, we conclude that the amplitude of an electro-
magnetic wave propagating through a conductor decays exponentially
on some length-scale, d, which is termed the skin-depth. Note, from
Equation (9.120), that the skin-depth for a poor conductor is indepen-
dent of the frequency of the wave. Note, also, that kr d � 1 for a poor
conductor, indicating that the wave penetrates many wavelengths into
the conductor before decaying away.

Consider a “good” conductor for which σ � ε ε0 ω. In this limit, the
dispersion relation (9.117) yields

k �
√

iµ0 σω. (9.121)

Substitution into Equation (9.116) again gives Equation (9.119), with

d =
1

kr
=

√
2

µ0 σω
. (9.122)

It can be seen that the skin-depth for a good conductor decreases with
increasing wave frequency. The fact that kr d = 1 indicates that the wave
only penetrates a few wavelengths into the conductor before decaying
away.

Now the power per unit volume dissipated via ohmic heating in a
conducting medium is

P = j · E = σE2. (9.123)

Consider an electromagnetic wave of the form (9.119). The mean power
dissipated per unit area in the region z > 0 is written

〈P〉 =
1

2

∫
∞

0

σ E20 e
−2 z/d dz =

dσ

4
E20 =

√
σ

8µ0 ω
E20 , (9.124)

for a good conductor. Now, according to Equation (9.91), the mean
electromagnetic power flux into the region z > 0 takes the form

〈u〉 =

〈
E × B · ez

µ0

〉
z=0

=
1

2

E20 kr

µ0 ω
=

√
σ

8µ0 ω
E20 . (9.125)

It is clear, from a comparison of the previous two equations, that all of the
wave energy which flows into the region z > 0 is dissipated via ohmic
heating. We thus conclude that the attenuation of an electromagnetic
wave propagating through a conductor is a direct consequence of ohmic
power losses.

Consider a typical metallic conductor such as Copper, whose electri-
cal conductivity at room temperature is about 6× 107 (Ωm)−1. Copper,
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therefore, acts as a good conductor for all electromagnetic waves of fre-
quency below about 1018 Hz. The skin-depth in Copper for such waves is
thus

d =

√
2

µ0 σω
� 6√

f(Hz)
cm. (9.126)

It follows that the skin-depth is about 6 cm at 1 Hz, but only about
2 mm at 1 kHz. This gives rise to the so-called skin-effect in copper wires,
by which an oscillating electromagnetic signal of increasing frequency,
transmitted along such a wire, is confined to an increasingly narrow layer
(whose thickness is of order the skin-depth) on the surface of the wire.

The conductivity of seawater is only about σ � 5 (Ωm)−1. However,
this is still sufficiently high for seawater to act as a good conductor for all
radio frequency electromagnetic waves (i.e., f = ω/2π < 109 Hz). The
skin-depth at 1 MHz (λ ∼ 2 km) is about 0.2m, whereas that at 1 kHz
(λ ∼ 2000 km) is still only about 7 m. This obviously poses quite severe
restrictions for radio communication with submerged submarines. Either
the submarines have to come quite close to the surface to communicate
(which is dangerous), or the communication must be performed with
extremely low-frequency (ELF) waves (i.e., f < 100Hz). Unfortunately,
such waves have very large wavelengths (λ > 20, 000 km), which means
that they can only be efficiently generated by gigantic antennas.

9.11 DISPERSION RELATION OF A COLLISIONAL PLASMA

We have now investigated electromagnetic wave propagation through
two different media possessing free electrons: i.e., plasmas (see Sec-
tion 9.8), and ohmic conductors (see Section 9.10). In the first case,
we obtained the dispersion relation (9.81), whereas in the second we
obtained the quite different dispersion relation (9.117). This leads us,
quite naturally, to ask what the essential distinction is between the
response of free electrons in a plasma to an electromagnetic wave, and
that of free electrons in an ohmic conductor. It turns out that the main
distinction is the relative strength of electron-ion collisions.

In the presence of electron-ion collisions, we can model the equation
of motion of an individual electron in a plasma or a conductor as

me
dv
dt

+me ν v = −eE, (9.127)
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where E is the wave electric field. The collision term (i.e., the second term
on the left-hand side) takes the form of a drag force proportional to −v.
In the absence of the wave electric field, this force damps out any electron
motion on the typical time-scale ν−1. Since, in reality, an electron loses
virtually all of its directed momentum during a collision with a much
more massive ion, we can regard ν as the effective electron-ion collision
frequency.

Assuming the usual exp(−iωt) time-dependence of perturbed quan-
tities, we can solve Equation (9.127) to give

v = −iω r = −
iωeE

meω (ω+ iν)
. (9.128)

Hence, the perturbed current density can be written

j = −ene v =
ine e2 E

me (ω+ iν)
, (9.129)

where ne is the number density of free electrons. It follows that the
effective conductivity of the medium takes the form

σ =
j
E

=
ine e2

me (ω+ iν)
. (9.130)

Now, the mean rate of ohmic heating per unit volume in the medium
is written

〈P〉 =
1

2
Re(σ)E20 , (9.131)

where E0 is the amplitude of the wave electric field. Note that only the
real part ofσ contributes to ohmic heating, because the perturbed current
must be in phase with the wave electric field in order for there to be a
net heating effect. An imaginary σ gives a perturbed current which is in
phase quadrature with the wave electric field. In this case, there is zero
net transfer of power between the wave and the plasma over a wave
period. We can see from Equation (9.130) that in the limit in which the
wave frequency is much larger than the collision frequency (i.e.,ω � ν),
the effective conductivity of the medium becomes purely imaginary:

σ � ine e2

me ω
. (9.132)

In this limit, there is no loss of wave energy due to ohmic heating, and
the medium acts like a conventional plasma. In the opposite limit, in
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which the wave frequency is much less than the collision frequency (i.e.,
ω � ν), the effective conductivity becomes purely real:

σ � ne e
2

me ν
. (9.133)

In this limit, ohmic heating losses are significant, and the medium acts
like a conventional ohmic conductor.

Repeating the analysis of Section 9.7, we can derive the following
dispersion relation from Equation (9.128):

k2 c2 = ω2 −
ω2
p ω

ω+ iν
. (9.134)

It can be seen that, in the limit ω � ν, the above dispersion relation
reduces to the dispersion relation (9.81) for a conventional (i.e., colli-
sionless) plasma. In the opposite limit, we obtain

k2 =
ω2

c2
+ i

ω2
p ω

νc2
= µ0 ω (ε0 ω+ iσ). (9.135)

where use has been made of Eq (9.133). Of course, the above dispersion
relation is identical to the dispersion relation (9.117) (with ε = 1) which
we previously derived for an ohmic conductor.

Our main conclusion from this section is that the dispersion rela-
tion (9.134) can be used to describe electromagnetic wave propagation
through both a collisional plasma and an ohmic conductor. We can also
deduce that in the low-frequency limit, ω � ν, a collisional plasma acts
very much like an ohmic conductor, whereas in the high-frequency limit,
ω � ν, an ohmic conductor acts very much like a collisionless plasma.

9.12 NORMAL REFLECTION AT A DIELECTRIC BOUNDARY

An electromagnetic wave of real (positive) frequency ω can be written

E(r, t) = E0 e i (k·r−ωt), (9.136)

B(r, t) = B0 e i (k·r−ωt). (9.137)

The wave-vector, k, indicates the direction of propagation of the wave,
and also its phase-velocity, v, via

v =
ω

k
. (9.138)
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Since the wave is transverse in nature, we must have E0 · k = B0 · k = 0.
Finally, the familiar Maxwell equation

∇ × E = −
∂B
∂t

(9.139)

leads us to the following relation between the constant vectors E0 and B0:

B0 =
k̂ × E0
v

. (9.140)

Here, k̂ = k/k is a unit vector pointing in the direction of wave
propagation.

Suppose that the plane z = 0 forms the boundary between two dif-
ferent dielectric media. Let medium 1, of refractive index n1, occupy
the region z < 0, whilst medium 2, of refractive index n2, occupies the
region z > 0. Let us investigate what happens when an electromagnetic
wave is incident on this boundary from medium 1.

Consider, first of all, the simple case of incidence normal to the
boundary—see Figure 9.2. In this case, k̂ = +ez for the incident and
transmitted waves, and k̂ = −ez for the reflected wave. Without loss
of generality, we can assume that the incident wave is polarized in
the x-direction. Hence, using Equation (9.140), the incident wave can

z
z = 0

medium 1

reflected wave

incident wave

x

transmitted wave

medium 2

Figure 9.2: Reflection at a dielectric boundary for the case of normal
incidence.
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be written

E(z, t) = Ei e i (k1 z−ωt) ex, (9.141)

B(z, t) =
Ei

v1
e i (k1 z−ωt) ey, (9.142)

where v1 = c/n1 is the phase-velocity in medium 1, and k1 = ω/v1.
Likewise, the reflected wave takes the form

E(z, t) = Er e i (−k1 z−ωt) ex, (9.143)

B(z, t) = −
Er

v1
e i (−k1 z−ωt) ey. (9.144)

Finally, the transmitted wave can be written

E(z, t) = Et e i (k2 z−ωt) ex, (9.145)

B(z, t) =
Et

v2
e i (k2 z−ωt) ey, (9.146)

where v2 = c/n2 is the phase-velocity in medium 2, and k2 = ω/v2.
For the case of normal incidence, the electric and magnetic compo-

nents of all three waves are parallel to the boundary between the two
dielectric media. Hence, the appropriate boundary conditions to apply
at z = 0 are

E‖ 1 = E‖ 2, (9.147)

B‖ 1 = B‖ 2. (9.148)

The latter condition derives from the general boundary condition H‖ 1 =
H‖ 2, and the fact that B = µ0 H in both media (which are assumed to be
non-magnetic).

Application of the boundary condition (9.147) yields

Ei + Er = Et. (9.149)

Likewise, application of the boundary condition (9.148) gives

Ei − Er

v1
=
Et

v2
, (9.150)

or

Ei − Er =
v1

v2
Et =

n2

n1
Et, (9.151)
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since v1/v2 = n2/n1. Equations (9.149) and (9.151) can be solved to
give

Er =

(
n1 − n2
n1 + n2

)
Ei, (9.152)

Et =

(
2n1

n1 + n2

)
Et. (9.153)

Thus, we have determined the amplitudes of the reflected and transmit-
ted waves in terms of the amplitude of the incident wave.

It can be seen, first of all, that if n1 = n2 then Er = 0 and Et = Ei. In
other words, if the two media have the same indices of refraction then
there is no reflection at the boundary between them, and the transmit-
ted wave is consequently equal in amplitude to the incident wave. On
the other hand, if n1 
= n2 then there is some reflection at the boundary.
Indeed, the amplitude of the reflected wave is roughly proportional to
the difference between n1 and n2. This has important practical conse-
quences. We can only see a clean pane of glass in a window because
some of the light incident on an air/glass boundary is reflected, due
to the different refractive indicies of air and glass. As is well-known, it
is a lot more difficult to see glass when it is submerged in water. This
is because the refractive indices of glass and water are quite similar,
and so there is very little reflection of light incident on a water/glass
boundary.

According to Equation (9.152), Er/Ei < 0 when n2 > n1. The nega-
tive sign indicates a 180◦ phase-shift of the reflected wave, with respect
to the incident wave. We conclude that there is a 180◦ phase-shift of
the reflected wave, relative to the incident wave, on reflection from a
boundary with a medium of greater refractive index. Conversely, there
is no phase-shift on reflection from a boundary with a medium of lesser
refractive index.

The mean electromagnetic energy flux, or intensity, in the z-direction
is simply

I =
〈E × B · ez〉

µ0
=
E0 B0

2 µ0
=

E20
2 µ0 v

. (9.154)

The coefficient of reflection, R, is defined as the ratio of the intensities of
the reflected and incident waves:

R =
Ir

Ii
=

(
Er

Ei

)2
. (9.155)
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Likewise, the coefficient of transmission, T , is the ratio of the intensities
of the transmitted and incident waves:

T =
It

Ii
=
v1

v2

(
Et

Ei

)2
=
n2

n1

(
Et

Ei

)2
. (9.156)

Equations (9.152), (9.153), (9.155), and (9.156) yield

R =

(
n1 − n2
n1 + n2

)2
, (9.157)

T =
n2

n1

(
2n1

n1 + n2

)2
. (9.158)

Note that R+ T = 1. In other words, any wave energy which is not
reflected at the boundary is transmitted, and vice versa.

9.13 OBLIQUE REFLECTION AT A DIELECTRIC BOUNDARY

Let us now consider the case of incidence oblique to the boundary—see
Figure 9.3. Suppose that the incident wave subtends an angle θi with
the normal to the boundary, whereas the reflected and transmitted waves
subtend angles θr and θt, respectively.

z

x

transmitted wave

medium 2

incident wave

medium 1

reflected wave

z = 0

θr θt

θi

Figure 9.3: Reflection at a dielectric boundary for the case of oblique
incidence.
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The incident wave can be written

E(r, t) = Ei e i (ki·r−ωt), (9.159)

B(r, t) = Bi e i (ki·r−ωt), (9.160)

with analogous expressions for the reflected and transmitted waves.
Since, in the case of oblique incidence, the electric and magnetic com-
ponents of the wave fields are no longer necessarily parallel to the
boundary, the boundary conditions (9.147) and (9.148) at z = 0 must
be supplemented by the additional boundary conditions

ε1 E⊥ 1 = ε2 E⊥ 2, (9.161)

B⊥ 1 = B⊥ 2. (9.162)

Equation (9.161) derives from the general boundary condition
D⊥ 1 = D⊥ 2.

It follows from Equations (9.148) and (9.162) that both components
of the magnetic field are continuous at the boundary. Hence, we can write

Bi e i (ki·r−ωt) + Br e i (kr·r−ωt) = Bt e i (kt·r−ωt) (9.163)

at z = 0. Given that Bi, Br, and Bt are constant vectors, the only way in
which the above equation can be satisfied for all values of x and y is if

ki · r = kr · r = kt · r (9.164)

throughout the z = 0 plane. This, in turn, implies that

ki x = kr x = kt x (9.165)

and

ki y = kry = kty. (9.166)

It immediately follows that if ki y = 0 then kry = kty = 0. In other words,
if the incident wave lies in the x-z plane then the reflected and transmit-
ted waves also lie in the x-z plane. Another way of putting this is that
the incident, reflected, and transmitted waves all lie in the same plane,
known as the plane of incidence. This, of course, is one of the laws of geo-
metric optics. From now on, we shall assume that the plane of incidence
is the x-z plane.

Now, ki = kr = ω/v1 and kt = ω/v2. Moreover,

sin θi =
kx i

ki
, (9.167)
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with similar expressions for θr and θt. Hence, according to Equation
(9.165),

sin θr = sin θi, (9.168)

which implies that θr = θi. Moreover,

sin θt
sin θi

=
v2

v1
=
n1

n2
. (9.169)

Of course, the above expressions correspond to the law of reflection and
Snell’s law of refraction, respectively.

For the case of oblique incidence, we need to consider two inde-
pendent wave polarizations separately. The first polarization has all the
wave electric fields parallel to the boundary whilst the second has all the
wave magnetic fields parallel to the boundary.

Let us consider the first wave polarization. We can write unit vec-
tors in the directions of propagation of the incident, reflected, and
transmitted waves like so:

k̂i = (sin θi, 0, cos θi) , (9.170)

k̂r = (sin θi, 0, − cos θi) , (9.171)

k̂t = (sin θt, 0, cos θt) . (9.172)

The constant vectors associated with the incident wave are written

Ei = Ei ey, (9.173)

Bi =
Ei

v1
(− cos θi, 0, sin θi) , (9.174)

where use has been made of Equation (9.140). Likewise, the constant
vectors associated with the reflected and transmitted waves are

Er = Er ey, (9.175)

Br =
Er

v1
(cos θi, 0, sin θi) , (9.176)

and

Et = Et ey, (9.177)

Bt =
Et

v2
(− cos θt, 0, sin θt) , (9.178)

respectively.
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Now, the boundary condition (9.147) yields Ey1 = Ey2, or

Ei + Er = Et. (9.179)

Likewise, the boundary condition (9.162) gives Bz1 = Bz2, or

(Ei + Er)
sin θi
v1

= Et
sin θt
v2

. (9.180)

However, using Snell’s law, (9.169), the above expression reduces to
Equation (9.179). Finally, the boundary condition (9.148) yields Bx1 =
Bx2, or

(Ei − Er)
cos θi
v1

= Et
cos θt
v2

. (9.181)

It is convenient to define the parameters

α =
cos θt
cos θi

, (9.182)

and

β =
v1

v2
=
n2

n1
. (9.183)

Equations (9.179) and (9.181) can be solved in terms of these parame-
ters to give

Er =

(
1− αβ

1+ αβ

)
Ei, (9.184)

Et =

(
2

1+ αβ

)
Ei. (9.185)

These relations are known as Fresnel equations.
The wave intensity in the z-direction is given by

Iz =
〈E × B · ez〉

µ0
=
E0 B0 cos θ
2µ0

=
E20 cos θ
2µ0 v

. (9.186)

Hence, the coefficient of reflection is written

R =

(
Er

Ei

)2
=

(
1− αβ

1+ αβ

)2
, (9.187)

whereas the coefficient of transmission takes the form

T =
cos θt
cos θi

v1

v2

(
Et

Ei

)2
= αβ

(
2

1+ αβ

)2
. (9.188)

Note that it is again the case that R+ T = 1.
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Let us now consider the second wave polarization. In this case, the
constant vectors associated with the incident, reflected, and transmitted
waves are written

Ei = Ei (cos θi, 0, − sin θi), (9.189)

Bi =
Ei

v1
ey, (9.190)

and

Er = Er (cos θi, 0, sin θi), (9.191)

Br = −
Er

v1
ey, (9.192)

and

Et = Et (cos θt, 0, − sin θt), (9.193)

Bt =
Et

v2
ey, (9.194)

respectively. The boundary condition (9.148) yields By1 = By2, or

Ei − Er

v1
=
Et

v2
. (9.195)

Likewise, the boundary condition (9.147) gives Ex 1 = Ex 2, or

(Ei + Er) cos θi = Et cos θt. (9.196)

Finally, the boundary condition (9.161) yields ε1 Ez 1 = ε2 Ez 2, or

ε1 (Ei − Er) sin θi = ε2 Ei sin θt. (9.197)

Making use of Snell’s law, and the fact that ε = n2, the above expression
reduces to Equation (9.195).

Solving Equations (9.165) and (9.196), we obtain

Er =

(
α− β

α+ β

)
Ei, (9.198)

Et =

(
2

α+ β

)
Ei. (9.199)

The associated coefficients of reflection and transmission take the form

R =

(
α− β

α+ β

)2
, (9.200)
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T = αβ

(
2

α+ β

)2
, (9.201)

respectively. As usual, R+ T = 1.
Note that at oblique incidence the Fresnel equations, (9.184) and

(9.185), for the wave polarization in which the electric field is parallel to
the boundary are different to the Fresnel equations, (9.198) and (9.199),
for the wave polarization in which the magnetic field is parallel to the
boundary. This implies that the coefficients of reflection and transmission
for these two wave polarizations are, in general, different.

Figure 9.4 shows the coefficients of reflection and transmission for
oblique incidence from air (n1 = 1.0) to glass (n2 = 1.5). In general, it
can be seen that the coefficient of reflection rises, and the coefficient of
transmission falls, as the angle of incidence increases. Note, however,
that for the wave polarization in which the magnetic field is parallel
to the boundary there is a particular angle of incidence, known as the
Brewster angle, at which the reflected intensity is zero. There is no similar
behavior for the wave polarization in which the electric field is parallel
to the boundary.

It follows from Equation (9.198) that the Brewster angle corresponds
to the condition

α = β, (9.202)

Figure 9.4: Coefficients of reflection (solid curves) and transmission
(dashed curves) for oblique incidence from air (n = 1.0) to glass (n = 1.5).
The left-hand panel shows the wave polarization for which the electric field
is parallel to the boundary, whereas the right-hand panel shows the wave
polarization for which the magnetic field is parallel to the boundary.
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or

β2 =
cos2 θt
cos2 θi

=
1− sin2 θt
1− sin2 θi

=
1− sin2 θi/β2

1− sin2 θi
, (9.203)

where use has been made of Snell’s law. The above expression reduces to

sin θi =
β√
1+ β2

, (9.204)

or tan θi = β = n2/n1. Hence, the Brewster angle satisfies

θB = tan−1

(
n2

n1

)
. (9.205)

If unpolarized light is incident on an air/glass (say) boundary at the
Brewster angle then the reflected light is 100% plane polarized.

9.14 TOTAL INTERNAL REFLECTION

Let us again consider an electromagnetic wave obliquely incident on
a dielectric boundary. According to Equation (9.169), the angle of
refraction θt is related to the angle of incidence θi via

sin θt =
n1

n2
sin θi. (9.206)

This formula presents no problems when n1 < n2. However, if n1 > n2
then the formula predicts that sin θt is greater than unity when the angle
of incidence exceeds some critical angle given by

θc = sin−1(n2/n1). (9.207)

Obviously, in this situation, we can no longer interpret sin θt as the sine of
an angle. Moreover, cos θt ≡ (1− sin2 θt)1/2 can no longer be interpreted
as the cosine of an angle. However, these quantities still specify the
wave-vector of the transmitted wave. In fact, from Equation (9.172),

kt = kt (sin θ̂t, 0, i cos θ̂t), (9.208)

where kt = n2 ω/c, cos θ̂t = (sin2 θ̂t − 1)1/2, and

sin θ̂t =
sin θi
sin θc

. (9.209)
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Here, the hat on θ̂t is to remind us that this quantity is not a real angle.
Now, the transmitted wave varies as

e i (kt·r−ωt) = e−kt cos θ̂t e i (kt sin θ̂t−ωt). (9.210)

Hence, we conclude that when θi > θc the transmitted wave is evanes-
cent: i.e., it decays exponentially, rather than propagating, in medium 2.

When θi > θc the parameter α, defined in Equation (9.182),
becomes complex. In fact, α → i α̂, where

α̂ =
cos θ̂t
cos θi

. (9.211)

Note that the parameter β, defined in Eq. (9.183), remains real. Hence,
from Equations (9.184) and (9.198), the relationship between Er and Ei
for the two previously discussed wave polarizations, in which either the
electric field or the magnetic field is parallel to the boundary, are

Er =

(
1− i α̂ β
1+ i α̂ β

)
Ei, (9.212)

Er =

(
i α̂− β

i α̂+ β

)
Ei, (9.213)

respectively. In both cases, the associated coefficients of reflection are
unity: i.e.,

R =

∣∣∣∣ErEi
∣∣∣∣
2

= 1. (9.214)

In other words, the incident wave undergoes complete reflection at the
boundary. This phenomenon is called total internal reflection, and occurs
whenever a wave is incident on a boundary separating a medium of high
refractive index from a medium of low refractive index, and the angle
of incidence exceeds the critical angle, θc.

Figure 9.5 shows the coefficients of reflection and transmission for
oblique incidence from water (n1 = 1.33) to air (n2 = 1.0). In this case,
the critical angle is θc = 48.8◦.

Note that when total internal reflection takes place the evanescent
transmitted wave penetrates a few wavelengths into the lower refractive
index medium, since (as is easily demonstrated) the amplitude of this
wave is non-zero. The existence of the evanescent wave can be demon-
strated using the apparatus pictured in Figure 9.6. Here, we have two
right-angled glass prisms separated by a small air gap of width d. Light
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Figure 9.5: Coefficients of reflection (solid curves) and transmission
(dashed curves) for oblique incidence from water (n = 1.33) to air
(n = 1.0). The left-hand panel shows the wave polarization for which
the electric field is parallel to the boundary, whereas the right-hand panel
shows the wave polarization for which the magnetic field is parallel to the
boundary.

transmitted

d

air

incident

glass prisms

reflected

Figure 9.6: Frustrated total internal reflection.

incident on the internal surface of the first prism is internally reflected
(assuming that θc < 45◦). However, if the spacing d is not too much
larger than the wavelength of the light (in air) then the evanescent wave
in the air gap still has a finite amplitude when it reaches the second prism.
In this case, a detectable transmitted wave is excited in the second prism.
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Obviously, the amplitude of this wave has an inverse exponential depen-
dance on the width of the gap. This effect is called frustrated total internal
reflection and is analogous to the tunneling of wave-functions through
potential barriers in Quantum Mechanics.

9.15 OPTICAL COATINGS

Consider an optical instrument, such as a refracting telescope, which
makes use of multiple glass lenses. Let us examine the light-ray running
along the optical axis of the instrument. This ray is normally incident
on all of the lenses. However, according to the analysis of Section 9.12,
whenever the ray enters or leaves a lens it is partly reflected. In fact,
for glass of refractive index 1.5 the transmission coefficient across an
air/glass or a glass/air boundary is about 96%. Hence, approximately
8% of the light is lost each time the ray passes completely through a
lens. Clearly, this level of attenuation is unacceptable in an instrument
which contains many lens, especially if it is being used to view faint
objects.

It turns out that the above-mentioned problem can be alleviated by
coating all the lenses of the instrument in question with a thin layer
of dielectric whose refractive index is intermediate between that of air
and glass. Consider the situation shown in Figure 9.7. Here, a light-ray
is normally incident on a boundary between medium 1, of refractive

b

zz = dz = 0

medium 1

incident

reflected

medium 2 medium 3

transmitted
a

Figure 9.7: An optical coating.
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index n1, and medium 3, of refractive index n3. Here, medium 1 repre-
sents air, and medium 3 represents glass, or vice versa. Suppose that the
glass is covered with a thin optical coating, referred to as medium 2, of
thickness d, and refractive index n2.

In the notation of Section 9.12, the incident wave is written

E(z, t) = Ei e i (k1 z−ωt) ex, (9.215)

B(z, t) =
Ei

v1
e i (k1 z−ωt) ey, (9.216)

where v1 = c/n1 is the phase-velocity in medium 1, and k1 = ω/v1.
Likewise, the reflected wave takes the form

E(z, t) = Er e i (−k1 z−ωt) ex, (9.217)

B(z, t) = −
Er

v1
e i (−k1 z−ωt) ey. (9.218)

The wave traveling to the right in medium 2 is written

E(z, t) = Ea e i (k2 z−ωt) ex, (9.219)

B(z, t) =
Ea

v2
e i (k2 z−ωt) ey, (9.220)

where v2 = c/n2 is the phase-velocity in medium 2, and k2 = ω/v2.
Likewise, the wave traveling to the left takes the form

E(z, t) = Eb e i (−k2 z−ωt) ex, (9.221)

B(z, t) = −
Eb

v2
e i (−k2 z−ωt) ey. (9.222)

Finally, the transmitted wave is written

E(z, t) = Et e i [k3 (z−d)−ωt] ex, (9.223)

B(z, t) =
Et

v3
e i [k2 (z−d)−ωt] ey, (9.224)

where v3 = c/n3 is the phase-velocity in medium 3, and k3 = ω/v3.
Continuity of Ex and By at z = 0 yield

Ei + Er = Ea + Eb, (9.225)
Ei − Er

v1
= =

Ea − Eb
v2

, (9.226)
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respectively, whereas continuity of Ex and By at z = d give

Ea e i k2 d + Eb e−i k2 d = Et, (9.227)

Ea e i k2 d − Eb e−i k2 d

v2
=
Et

v3
, (9.228)

respectively. At this point, it is convenient to make the special choice
k2 d = π/2. This corresponds to the optical coating being exactly one-
quarter of a wavelength thick. It follows that

Ea − Eb = − iEt, (9.229)

Ea + Eb = − i
n3

n2
Et. (9.230)

The above equations can be solved to give

Er = −

(
1− α

1+ α

)
Ei, (9.231)

Et =
n1

n2

2 i
1+ α

Ei, (9.232)

where

α =
n1 n3

n22
. (9.233)

Thus, the overall coefficient of reflection is

R =

∣∣∣∣ErEi
∣∣∣∣
2

=

(
1− α

1+ α

)2
, (9.234)

whereas the overall coefficient of transmission is

T =
n3

n1

∣∣∣∣EtEi
∣∣∣∣
2

=
4α

(1+ α)2
. (9.235)

Suppose finally that

n2 =
√
n1 n3 : (9.236)

i.e., the refractive index of the coating is the geometric mean of that of
air and glass. In this case, α = 1, and it follows from Equations (9.234)
and (9.235) that there is zero reflection, and 100% transmission, at
the boundary. Hence, by coating lenses with a one-quarter wavelength
thickness of a substance whose refractive index is (approximately) the
geometric mean between those of air and glass (e.g., Magnesium flu-
oride, whose refractive index is 1.38), we can completely eliminate



“chapter9” — 2007/11/30 — 11:11 — page 342 — #44

342 MAXWELL’S EQUATIONS AND THE PRINCIPLES OF ELECTROMAGNETISM

unwanted reflections. This technique is widely used in high-quality opti-
cal instruments. Note that the physics of quarter-wavelength optical coat-
ings is analogous to that of quarter-wave transformers in transmission
lines—see Section 7.7.

9.16 REFLECTION AT A METALLIC BOUNDARY

Let us now consider the reflection of electromagnetic radiation by a
metallic surface. This investigation is obviously relevant to optical instru-
ments, such as reflecting telescopes, which make use of mirrors. For the
sake of simplicity, we shall restrict our investigation to the case of normal
incidence.

A metal is, by definition, a good electrical conductor. According to
Equation (9.121), the wave-number of an electromagnetic wave of fre-
quency ω in a good conductor of conductivity σ (and true dielectric
constant unity) is

k �
√

iµ0 σω. (9.237)

Hence, it follows that the effective refractive index of the conductor is

n =
k c

ω
�
√

iσ
ε0 ω

. (9.238)

Note that the good conductor ordering σ � ε0 ω ensures that |n| � 1.
For the case of a light-ray in air reflecting at normal incidence off

a metal mirror, we can employ the previously derived formula (9.152)
with n1 = 1 and n2 = n, where n is specified above. We obtain

Er

Ei
=
1− n

1+ n
� −1+

2

n
, (9.239)

where we have made use of the fact that |n| � 1. Hence, the coefficient
of reflection of the mirror takes the form

R =

∣∣∣∣ErEi
∣∣∣∣
2

� 1− Re
(
4

n

)
, (9.240)

or

R � 1−

√
8 ε0 ω

σ
. (9.241)

High-quality metallic mirrors are generally coated in Silver, whose
conductivity is 6.3× 107 (Ωm)−1. It follows, from the above formula,
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that at optical frequencies (ω = 4× 1015 rad./s) the coefficient of reflec-
tion of a silvered mirror is R � 93.3%. This implies that about 7% of
the light incident on a silvered mirror is absorbed, rather than being
reflected. This rather severe light loss can be problematic in instruments,
such as astronomical telescopes, which are used to view faint objects.

9.17 WAVE-GUIDES

A wave-guide is a hollow conducting pipe, of uniform cross-section,
used to transport high-frequency electromagnetic waves (generally, in
the microwave band) from one point to another. The main advantage
of wave-guides is their relatively low level of radiation losses (since the
electric and magnetic fields are completely enclosed by a conducting
wall) compared to transmission lines.

Consider a vacuum-filled wave-guide which runs parallel to the z-
axis. An electromagnetic wave trapped inside the wave-guide satisfies
Maxwell’s equations for free space:

∇ · E = 0, (9.242)

∇ · B = 0, (9.243)

∇ × E = −
∂B
∂t
, (9.244)

∇ × B =
1

c2
∂E
∂t
. (9.245)

Let ∂/∂t ≡ −iω, and ∂/∂z ≡ i k, where ω is the wave frequency, and k
the wave-number parallel to the axis of the wave-guide. It follows that

∂Ex

∂x
+
∂Ey

∂y
+ i kEz = 0, (9.246)

∂Bx

∂x
+
∂By

∂y
+ i kBz = 0, (9.247)

iωBx =
∂Ez

∂y
− i kEy, (9.248)

iωBy = −
∂Ez

∂x
+ i kEx, (9.249)

iωBz =
∂Ey

∂x
−
∂Ex

∂y
, (9.250)
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i
ω

c2
Ex = −

∂Bz

∂y
+ i kBy, (9.251)

i
ω

c2
Ey =

∂Bz

∂x
− i kBx, (9.252)

i
ω

c2
Ez = −

∂By

∂x
+
∂Bx

∂y
. (9.253)

Equations (9.249) and (9.251) yield

Ex = i
(
ω
∂Bz

∂y
+ k

∂Ez

∂x

)(
ω2

c2
− k2

)−1

, (9.254)

and

By = i
(
ω

c2
∂Ez

∂x
+ k

∂Bz

∂y

)(
ω2

c2
− k2

)−1

. (9.255)

Likewise, Equations (9.248) and (9.252) yield

Ey = i
(

−ω
∂Bz

∂x
+ k

∂Ez

∂y

)(
ω2

c2
− k2

)−1

, (9.256)

and

Bx = i
(

−
ω

c2
∂Ez

∂y
+ k

∂Bz

∂x

)(
ω2

c2
− k2

)−1

. (9.257)

These equations can be combined to give

Et = i (ω∇Bz × ez + k∇Ez)
(
ω2

c2
− k2

)−1

, (9.258)

Bt = i
(
−
ω

c2
∇Ez × ez + k∇Bz

)(ω2
c2

− k2
)−1

. (9.259)

Here, Et and Bt are the transverse electric and magnetic fields: i.e., the
electric and magnetic fields in the x-y plane. It is clear, from Equa-
tions (9.258) and (9.259), that the transverse fields are fully determined
once the longitudinal fields, Ez and Bz, are known.

Substitution of Equations (9.258) and (9.259) into Equations
(9.250) and (9.253) yields the equations satisfied by the longitudinal
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fields: (
∂2

∂x2
+
∂2

∂y2

)
Ez +

(
ω2

c2
− k2

)
Ez = 0, (9.260)

(
∂2

∂x2
+
∂2

∂y2

)
Bz +

(
ω2

c2
− k2

)
Bz = 0. (9.261)

The remaining equations, (9.246) and (9.247), are automatically
satisfied provided Equations (9.258)–(9.261) are satisfied.

We expect E = B = 0 inside the walls of the wave-guide, assuming
that they are perfectly conducting. Hence, the appropriate boundary
conditions at the walls are

E‖ = 0, (9.262)

B⊥ = 0. (9.263)

It follows, by inspection of Equations (9.258) and (9.259), that these
boundary conditions are satisfied provided

Ez = 0, (9.264)

n̂ · ∇Bz = 0, (9.265)

at the walls. Here, n̂ is a unit vector normal to the walls. Hence, the
electromagnetic fields inside the wave-guide are fully specified by solv-
ing Equations (9.260) and (9.261), subject to the boundary conditions
(9.264) and (9.265), respectively.

Equations (9.260) and (9.261) support two independent types of
solution. The first type has Ez = 0, and is consequently called a transverse
electric, or TE, mode. Conversely, the second type has Bz = 0, and is
called a transverse magnetic, or TM, mode.

Consider the specific example of a rectangular wave-guide, with con-
ducting walls at x = 0, a, and y = 0, b. For a TE mode, the longitudinal
magnetic field can be written

Bz(x, y) = B0 cos(kx x) cos(ky y). (9.266)

The boundary condition (9.265) requires that ∂Bz/∂x = 0 at x = 0, a,
and ∂Bz/∂y = 0 at y = 0, b. It follows that

kx =
mπ

a
, (9.267)

ky =
nπ

b
, (9.268)
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where m = 0, 1, 2, · · · , and n = 0, 1, 2, · · · . Clearly, there are many dif-
ferent kinds of TE mode, corresponding to the many different choices
of m and n. Let us refer to a mode corresponding to a particular choice
of m,n as a TEmn mode. Note, however, that there is no TE00 mode,
since Bz(x, y) is uniform in this case. According to Equation (9.261), the
dispersion relation for the TEmn mode is given by

k2 c2 = ω2 −ω2
mn, (9.269)

where

ωmn = c π

√
m2

a2
+
n2

b2
. (9.270)

According to the dispersion relation (9.269), k is imaginary for
ω < ωmn. In other words, for wave frequencies below ωmn, the TEmn
mode fails to propagate down the wave-guide, and is instead attenuated.
Hence,ωmn is termed the cut-off frequency for the TEmn mode. Assuming
that a > b, the TE mode with the lowest cut-off frequency is the TE10
mode, where

ω10 =
c π

a
. (9.271)

For frequencies above the cut-off frequency, the phase-velocity of the
TEmn mode is given by

vp =
ω

k
=

c√
1−ω2

mn/ω
2
, (9.272)

which is greater than c. However, the group-velocity takes the form

vg =
dω

dk
= c

√
1−ω2

mn/ω
2, (9.273)

which is always less than c. Of course, energy is transmitted down the
wave-guide at the group-velocity, rather than the phase-velocity. Note
that the group-velocity goes to zero as the wave frequency approaches
the cut-off frequency.

For a TM mode, the longitudinal electric field can be written

Ez(x, y) = E0 sin(kx x) sin(ky y). (9.274)

The boundary condition (9.264) requires that Ez = 0 at x = 0, a, and
y = 0, b. It follows that

kx =
mπ

a
, (9.275)

ky =
nπ

b
, (9.276)
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where m = 1, 2, · · · , and n = 1, 2, · · · . The dispersion relation for the
TMmn mode is also given by Equation (9.269). Hence, Equations (9.272)
and (9.273) also apply to TM modes. However, the TM mode with the
lowest cut-off frequency is the TM11 mode, where

ω11 = c π

√
1

a2
+
1

b2
> ω10. (9.277)

It follows that the mode with the lowest cut-off frequency is always a TE
mode.

There is, in principle, a third type of mode which can propagate down
a wave-guide. This third mode type is characterized by Ez = Bz = 0, and
is consequently called a transverse electromagnetic, or TEM, mode. It is
easily seen, from an inspection of Equations (9.248)–(9.253), that a TEM
mode satisfies

ω2 = k2 c2, (9.278)

and

Et = − ∇φ, (9.279)

Bt = c−1∇φ× ez, (9.280)

where φ(x, y) satisfies

∇2φ = 0. (9.281)

The boundary conditions (9.264) and (9.265) imply that

φ = constant (9.282)

at the walls. However, there is no non-trivial solution of Equa-
tions (9.281) and (9.282) for a conventional wave-guide. In other words,
conventional wave-guides do not support TEM modes. It turns out that
only wave-guides with central conductors support TEM modes. Consider,
for instance, a coaxial wave-guide in which the electric and magnetic
fields are trapped between two coaxial cylindrical conductors of radius
a and b (with b > a). In this case, φ = φ(r), and Equation (9.281)
reduces to

1

r

∂

∂r

(
r
∂φ

∂r

)
= 0, (9.283)

where r is a standard cylindrical polar coordinate. The boundary con-
dition (9.282) is automatically satisfied at r = a and r = b. The above
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equation has the following non-trivial solution:

φ(r) = φb ln(r/b). (9.284)

Note, however, that the inner conductor must be present, otherwiseφ →∞ as r → 0, which is unphysical. According to the dispersion relation
(9.278), TEM modes have no cut-off frequency, and have the phase-
velocity (and group-velocity) c. Indeed, this type of mode is the same as
that supported by a transmission line (see Section 7.7).

9.18 EXERCISES

9.1. Consider an electromagnetic wave propagating through a non-dielectric, non-

magnetic medium containing free charge density ρ and free current density j.

Demonstrate from Maxwell’s equations that the associated wave equations take

the form

∇2E −
1

c2
∂2E
∂t2

=
∇ρ
ε0

+ µ0
∂j
∂t
,

∇2B −
1

c2
∂2B
∂t2

= −µ0 ∇ × j.

9.2. A spherically symmetric charge distribution undergoes purely radial oscillations.

Show that no electromagnetic waves are emitted. [Hint: Show that there is no

magnetic field.]

9.3. A general electromagnetic wave-pulse propagating in the z-direction at velocity

u is written

E = P(z − u t) ex +Q(z − u t) ey + R(z − u t) ez,

B =
S(z − u t)

u
ex +

T(z − u t)

u
ey +

U(z − u t)

u
ez,

where P, Q, R, S, T , and U are arbitrary functions. In order to exclude electro-

static and magnetostatic fields, these functions are subject to the constraint that

〈P〉 = 〈Q〉 = 〈R〉 = 〈S〉 = 〈T〉 = 〈U〉 = 0, where

〈P〉 =

∫
∞

−∞

P(x)dx.

Suppose that the pulse propagates through a uniform dielectric medium of

dielectric constant ε. Demonstrate from Maxwell’s equation that u = c/
√
ε,

R = U = 0, S = −Q, and T = P. Incidentally, this result implies that a general

wave-pulse is characterized by two arbitrary functions, corresponding to the two

possible independent polarizations of the pulse.
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9.4. A medium is such that the product of the phase and group velocities of elec-

tromagnetic waves is equal to c2 at all wave frequencies. Demonstrate that the

dispersion relation for electromagnetic waves takes the form

ω
2 = k

2
c
2 +ω2

0 ,

where ω0 is a constant.

9.5. Consider a uniform plasma of plasma frequency ωp containing a uniform

magnetic field B0 ez. Show that left-hand circularly polarized electromagnetic

waves can only propagate parallel to the magnetic field provided that ω >

−Ω/2 +
√
Ω2/4 +ω2

p, where Ω = eB0/me is the electron cyclotron frequency.

Demonstrate that right-hand circularly polarized electromagnetic waves can only

propagate parallel to the magnetic field provided that their frequencies do not

lie in the range Ω ≤ ω ≤ Ω/2 +
√
Ω2/4 +ω2

p. You may neglect the finite mass

of the ions.

9.6. Consider an electromagnetic wave propagating through a non-uniform dielectric

medium whose dielectric constant ε is a function of r. Demonstrate that the

associated wave equations take the form

∇2E −
ε

c2
∂2E
∂t2

= −∇
(∇ε · E

ε

)
,

∇2B −
ε

c2
∂2B
∂t2

= −
∇ε× (∇ × B)

ε
.

9.7. Consider a light-wave normally incident on a uniform pane of glass of thickness

d and refractive index n. Show that the coefficient of transmission though the

pane takes the form

T
−1 = 1 +

[
n2 − 1

2n
sin(kd)

]2
,

where k is the wave-number within the glass.

9.8. Consider an electromagnetic wave obliquely incident on a plane boundary

between two transparent magnetic media of relative permeabilities µ1 and µ2.

Find the coefficients of reflection and transmission as functions of the angle of

incidence for the wave polarizations in which all electric fields are parallel to the

boundary and all magnetic fields are parallel to the boundary. Is there a Brewster

angle? If so, what is it? Is it possible to obtain total reflection? If so, what is the

critical angle of incidence required to obtain total reflection?

9.9. Suppose that a light-ray is incident on the front (air/glass) interface of a uniform

pane of glass of refractive index n at the Brewster angle. Demonstrate that the

refracted ray is also incident on the rear (glass/air) interface of the pane at the

Brewster angle.
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9.10. Consider an electromagnetic wave propagating through a good conductor.

Demonstrate that the energy density of the wave’s magnetic component dom-

inates that of its electric component. In addition, show that the phase of the

wave’s magnetic component lags that of its electric component by 45◦.

9.11. Demonstrate that the electric and magnetic fields inside a wave-guide are

mutually orthogonal.

9.12. Consider a TEmn mode in a rectangular wave-guide of dimensions a and b.

Calculate the mean electromagnetic energy per unit length, as well as the mean

electromagnetic energy flux down the wave-guide. Demonstrate that the ratio

of the mean energy flux to the mean energy per unit length is equal to the

group-velocity of the mode.
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C h a p t e r 10 RELATIVITY AND
ELECTROMAGNETISM

10.1 INTRODUCTION

In this chapter, we shall discuss Maxwell’s equations in the light of
Einstein’s Special Theory of Relativity.

10.2 THE RELATIVITY PRINCIPLE

Physical phenomena are conventionally described relative to some frame
of reference which allows us to define fundamental quantities such as
position and time. Of course, there are very many different ways of
choosing a reference frame, but it is generally convenient to restrict our
choice to the set of rigid inertial frames. A classical rigid reference frame
is the imagined extension of a rigid body. For instance, the Earth deter-
mines a rigid frame throughout all space, consisting of all those points
which remain rigidly at rest relative to the Earth, and to one another.
We can associate an orthogonal Cartesian coordinate system Swith such
a frame, by choosing three mutually orthogonal planes within it, and
measuring x, y, and z as perpendicular distances from these planes. A
time coordinate must also be defined, in order that the system can be
used to specify events. A rigid frame, endowed with such properties, is
called a Cartesian frame. The description given above presupposes that
the underlying geometry of space is Euclidian, which is reasonable pro-
vided that gravitational effects are negligible (we shall assume that this
is the case). An inertial frame is a Cartesian frame in which free parti-
cles move without acceleration, in accordance with Newton’s first law of
motion. There are an infinite number of different inertial frames, moving
with some constant velocity with respect to one another.

The key to understanding Special Relativity is Einstein’s Relativity
Principle, which states that:

All inertial frames are totally equivalent for the performance of all physical experiments.

In other words, it is impossible to perform a physical experiment
which differentiates in any fundamental sense between different inertial

351
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frames. By definition, Newton’s laws of motion take the same form in all
inertial frames. Einstein generalized this result in his Special Theory of
Relativity by asserting that all laws of Physics take the same form in all
inertial frames.

Consider a wave-like disturbance. In general, such a disturbance
propagates at a fixed velocity with respect to the medium in which the
disturbance takes place. For instance, sound waves (at STP) propagate
at 343 meters per second with respect to air. So, in the inertial frame in
which air is stationary, sound waves appear to propagate at 343 meters
per second. Sound waves appear to propagate at a different velocity in
any inertial frame which is moving with respect to the air. However, this
does not violate the Relativity Principle, since if the air were stationary
in the second frame then sound waves would appear to propagate at
343 meters per second in that frame as well. In other words, exactly the
same experiment (e.g., the determination of the speed of sound relative
to stationary air) performed in two different inertial frames of reference
yields exactly the same result, in accordance with the relativity principle.

Consider, now, a wave-like disturbance which is self-regenerating,
and does not require a medium through which to propagate. The most
well-known example of such a disturbance is a light wave. Another exam-
ple is a gravity wave. According to electromagnetic theory, the speed of
propagation of a light wave through a vacuum is

c =
1√
ε0 µ0

= 2.99729× 108 meters per second, (10.1)

where ε0 and µ0 are physical constants which can be evaluated by per-
forming two simple experiments which involve measuring the force of
attraction between two fixed changes and two fixed, parallel current-
carrying wires. According to the Relativity Principle, these experiments
must yield the same values for ε0 and µ0 in all inertial frames. Thus, the
speed of light must be the same in all inertial frames. In fact, any dis-
turbance which does not require a medium to propagate through must
appear to travel at the same velocity in all inertial frames, otherwise we
could differentiate inertial frames using the apparent propagation speed
of the disturbance, which would violate the Relativity Principle.

10.3 THE LORENTZ TRANSFORMATION

Consider two Cartesian frames S(x, y, z, t) and S ′(x ′, y ′, z ′, t ′) in the
standard configuration, in which S ′ moves in the x-direction of S with
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uniform velocity v, and the corresponding axes of S and S ′ remain paral-
lel throughout the motion, having coincided at t = t ′ = 0. It is assumed
that the same units of distance and time are adopted in both frames.
Suppose that an event (e.g., the flashing of a lightbulb, or the collision
of two point particles) has coordinates (x, y, z, t) relative to S, and (x ′,
y ′, z ′, t ′) relative to S ′. The “common sense” relationship between these
two sets of coordinates is given by the Galilean transformation:

x ′ = x− v t, (10.2)

y ′ = y, (10.3)

z ′ = z, (10.4)

t ′ = t. (10.5)

This transformation is tried and tested, and provides a very accurate
description of our everyday experience. Nevertheless, it must be wrong!
Consider a light wave which propagates along the x-axis in S with veloc-
ity c. According to the Galilean transformation, the apparent speed of
propagation in S ′ is c− v, which violates the Relativity Principle. Can we
construct a new transformation which makes the velocity of light invari-
ant between different inertial frames, in accordance with the Relativity
Principle, but reduces to the Galilean transformation at low velocities,
in accordance with our everyday experience?

Consider an event P, and a neighboring eventQ, whose coordinates
differ by dx, dy, dz, dt in S, and by dx ′, dy ′, dz ′, dt ′ in S ′. Suppose
that at the event P a flash of light is emitted, and that Q is an event in
which some particle in space is illuminated by the flash. In accordance
with the laws of light propagation, and the invariance of the velocity of
light between different inertial frames, an observer in S will find that

dx2 + dy2 + dz2 − c2 dt2 = 0 (10.6)

for dt > 0, and an observer in S ′ will find that

dx ′ 2 + dy ′ 2 + dz ′ 2 − c2 dt ′ 2 = 0 (10.7)

for dt ′ > 0. Any event near P whose coordinates satisfy either (10.6)
or (10.7) is illuminated by the flash from P, and, therefore, its coordi-
nates must satisfy both (10.6) and (10.7). Now, no matter what form the
transformation between coordinates in the two inertial frames takes, the
transformation between differentials at any fixed event P is linear and
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homogeneous. In other words, if

x ′ = F(x, y, z, t), (10.8)

where F is a general function, then

dx ′ =
∂F

∂x
dx+

∂F

∂y
dy+

∂F

∂z
dz+

∂F

∂t
dt. (10.9)

It follows that

dx ′ 2 + dy ′ 2 + dz ′ 2 − c2 dt ′ 2 = adx2 + bdy2 + c dz2 + ddt2

+ gdxdt+ hdydt+ kdzdt

+ l dydz+mdxdz+ ndxdy,

(10.10)

where a, b, c, etc., are functions of x, y, z, and t. We know that the
right-hand side of the above expression vanishes for all real values of the
differentials which satisfy Equation (10.6). It follows that the right-hand
side is a multiple of the quadratic in Equation (10.6): i.e.,

dx ′ 2 + dy ′ 2 + dz ′ 2 − c2 dt ′ 2 = K (dx2 + dy2 + dz2 − c2 dt2), (10.11)

where K is a function of x, y, z, and t. [We can prove this by
substituting into Equation (10.10) the following obvious zeros of the
quadratic in Equation (10.6): (±1, 0, 0, 1), (0,±1, 0, 1), (0, 0,±1, 1),
(0, 1/

√
2, 1/

√
2, 1), (1/

√
2, 0, 1/

√
2, 1), (1/

√
2, 1/

√
2, 0, 1): and solving

the resulting conditions on the coefficients.] Note that K at P is also
independent of the choice of standard coordinates in S and S ′. Since the
frames are Euclidian, the values of dx2 + dy2 + dz2 and dx ′ 2 + dy ′ 2 +
dz ′ 2 relevant to P andQ are independent of the choice of axes. Further-
more, the values of dt2 and dt ′ 2 are independent of the choice of the
origins of time. Thus, without affecting the value ofK at P, we can choose
coordinates such that P = (0, 0, 0, 0) in both S and S ′. Since the orienta-
tions of the axes in S and S ′ are, at present, arbitrary, and since inertial
frames are isotropic, the relation of S and S ′ relative to each other, to
the event P, and to the locus of possible events Q, is now completely
symmetric. Thus, we can write

dx2 + dy2 + dz2 − c2 dt2 = K (dx ′ 2 + dy ′ 2 + dz ′ 2 − c2 dt ′ 2), (10.12)

in addition to Equation (10.11). It follows that K = ±1. K = −1 can
be dismissed immediately, since the intervals dx2 + dy2 + dz2 − c2 dt2
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and dx ′ 2 + dy ′ 2 + dz ′ 2 − c2 dt ′ 2 must coincide exactly when there is no
motion of S ′ relative to S. Thus,

dx ′ 2 + dy ′ 2 + dz ′ 2 − c2 dt ′ 2 = dx2 + dy2 + dz2 − c2 dt2. (10.13)

Equation (10.13) implies that the transformation equations between
primed and unprimed coordinates must be linear. The proof of this
statement is postponed until Section 10.7.

The linearity of the transformation allows the coordinate axes in the
two frames to be orientated so as to give the standard configuration men-
tioned earlier. Consider a fixed plane in S with the equation l x+my+
nz+ p = 0. In S ′, this becomes (say) l (a1 x ′ + b1 y

′ + c1 z
′ + d1 t

′ +
e1) +m (a2 x

′ + · · · ) + n (a3 x
′ + · · · ) + p = 0, which represents a mov-

ing plane unless l d1 +md2 + nd3 = 0. That is, unless the normal vector
to the plane in S, (l,m,n), is perpendicular to the vector (d1, d2, d3). All
such planes intersect in lines which are fixed in both S and S ′, and which
are parallel to the vector (d1, d2, d3) in S. These lines must correspond
to the direction of relative motion of the frames. By symmetry, two such
planes which are orthogonal in S must also be orthogonal in S ′. This
allows the choice of two common coordinate planes.

Under a linear transformation, the finite coordinate differences sat-
isfy the same transformation equations as the differentials. It follows
from Equation (10.13), assuming that the events (0, 0, 0, 0) coincide in
both frames, that for any event with coordinates (x, y, z, t) in S and
(x ′, y ′, z ′, t ′) in S ′, the following relation holds:

x2 + y2 + z2 − c2 t2 = x ′ 2 + y ′ 2 + z ′ 2 − c2 t ′ 2. (10.14)

By hypothesis, the coordinate planes y = 0 and y ′ = 0 coincide perma-
nently. Thus, y = 0 must imply y ′ = 0, which suggests that

y ′ = Ay, (10.15)

where A is a constant. We can reverse the directions of the x- and z-
axes in S and S ′, which has the effect of interchanging the roles of
these frames. This procedure does not affect Equation (10.15), but by
symmetry we also have

y = Ay ′. (10.16)

It is clear that A = ±1. The negative sign can again be dismissed, since
y = y ′ when there is no motion between S and S ′. The argument for z
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is similar. Thus, we have

y ′ = y, (10.17)

z ′ = z, (10.18)

as in the Galilean transformation.
Equations (10.14), (10.17), and (10.18) yield

x2 − c2 t2 = x ′ 2 − c2 t ′ 2. (10.19)

Since, x ′ = 0 must imply x = v t, we can write

x ′ = B (x− v t), (10.20)

where B is a constant (possibly depending on v). It follows from the
previous two equations that

t ′ = Cx+Dt, (10.21)

where C and D are constants (possibly depending on v). Substituting
Equations (10.20) and (10.21) into Equation (10.19), and comparing
the coefficients of x2, x t, and t2, we obtain

B = D =
1

±(1− v2/c2)1/2
, (10.22)

C =
−v/c2

±(1− v2/c2)1/2
. (10.23)

We must choose the positive sign in order to ensure that x ′ → x as v/c →
0. Thus, collecting our results, the transformation between coordinates
in S and S ′ is given by

x ′ =
x− v t

(1− v2/c2)1/2
, (10.24)

y ′ = y, (10.25)

z ′ = z, (10.26)

t ′ =
t− v x/c2

(1− v2/c2)1/2
. (10.27)

This is the famous Lorentz transformation. It ensures that the velocity
of light is invariant between different inertial frames, and also reduces
to the more familiar Galilean transform in the limit v � c. We can solve
Equations (10.24)–(10.27) for x, y, z, and t, to obtain the inverse Lorentz
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transformation:

x =
x ′ + v t ′

(1− v2/c2)1/2
, (10.28)

y = y ′, (10.29)

z = z ′, (10.30)

t =
t ′ + v x ′/c2

(1− v2/c2)1/2
. (10.31)

Not surprizingly, the inverse transformation is equivalent to a Lorentz
transformation in which the velocity of the moving frame is −v along
the x-axis, instead of +v.

10.4 TRANSFORMATION OF VELOCITIES

Consider two frames, S and S ′, in the standard configuration. Let u be
the velocity of a particle in S. What is the particle’s velocity in S ′? The
components of u are

u1 =
dx

dt
, (10.32)

u2 =
dy

dt
, (10.33)

u3 =
dz

dt
. (10.34)

Similarly, the components of u ′ are

u ′
1 =

dx ′

dt ′ , (10.35)

u ′
2 =

dy ′

dt ′ , (10.36)

u ′
3 =

dz ′

dt ′ . (10.37)

Now we can write Equations (10.24)–(10.27) in the form dx ′ = γ (dx−
v dt), dy ′ = dy, dz ′ = dz, and dt ′ = γ (dt− v dx/c2), where

γ = (1− v2/c2)−1/2 (10.38)

is the well-known Lorentz factor. If we substitute these differentials into
Equations (10.32)–(10.34), and make use of Equations (10.35)–(10.37),
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we obtain the transformation rules

u ′
1 =

u1 − v

1− u1 v/c2
, (10.39)

u ′
2 =

u2

γ (1− u1 v/c2)
, (10.40)

u ′
3 =

u3

γ (1− u1 v/c2)
. (10.41)

As in the transformation of coordinates, we can obtain the inverse trans-
form by interchanging primed and unprimed symbols, and replacing +v
with −v. Thus,

u1 =
u ′
1 + v

1+ u ′
1 v/c

2
, (10.42)

u2 =
u ′
2

γ (1+ u ′
1 v/c

2)
, (10.43)

u3 =
u ′
3

γ (1+ u ′
1 v/c

2)
. (10.44)

Equations (10.42)–(10.44) can be regarded as giving the resultant,
u = (u1, u2, u3), of two velocities, v = (v, 0, 0) and u ′ = (u ′

1, u
′
2, u

′
3),

and are therefore usually referred to as the relativistic velocity addi-
tion formulae. The following relation between the magnitudes u =

(u 2
1 + u 2

2 + u 2
3 )1/2 and u ′ = (u ′

1
2 + u ′

2
2 + u ′

3
2)1/2 of the velocities is

easily demonstrated:

c2 − u2 =
c2 (c2 − u ′2) (c2 − v2)

(c2 + u ′
1 v)

2
. (10.45)

If u ′ < c and v < c then the right-hand side is positive, implying that u <
c. In other words, the resultant of two subluminal velocities is another
subluminal velocity. It is evident that a particle can never attain the
velocity of light relative to a given inertial frame, no matter how many
subluminal velocity increments it is given. It follows that no inertial
frame can ever appear to propagate with a superluminal velocity with
respect to any other inertial frame (since we can track a given inertial
frame using a particle which remains at rest at the origin of that frame).

According to Equation (10.45), if u ′ = c then u = c, no matter
what value v takes: i.e., the velocity of light is invariant between dif-
ferent inertial frames. Note that the Lorentz transform only allows
one such invariant velocity [i.e., the velocity c which appears in Equa-
tions (10.24)–(10.27)]. Einstein’s relativity principle tells us that any
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disturbance which propagates through a vacuum must appear to propa-
gate at the same velocity in all inertial frames. It is now evident that all
such disturbances must propagate at the velocity c. It follows immedi-
ately that all electromagnetic waves must propagate through the vacuum
with this velocity, irrespective of their wavelength. In other words, it
is impossible for there to be any dispersion of electromagnetic waves
propagating through a vacuum. Furthermore, gravity waves must also
propagate with the velocity c.

The Lorentz transformation implies that the velocities of propagation
of all physical effects are limited by c in deterministic physics. Consider
a general process by which an event P causes an event Q at a velocity
U > c in some frame S. In other words, information about the event P
appears to propagate to the eventQ with a superluminal velocity. Let us
choose coordinates such that these two events occur on the x-axis with
(finite) time and distance separations ∆t > 0 and ∆x > 0, respectively.
The time separation in some other inertial frame S ′ is given by [see
Equation (10.27)]

∆t ′ = γ (∆t− v∆x/c2) = γ∆t (1− vU/c2). (10.46)

Thus, for sufficiently large v < c we obtain ∆t ′ < 0: i.e., there exist iner-
tial frames in which cause and effect appear to be reversed. Of course,
this is impossible in deterministic physics. It follows, therefore, that
information can never appear to propagate with a superluminal velocity
in any inertial frame, otherwise causality would be violated.

10.5 TENSORS

It is now convenient to briefly review the mathematics of tensors. Ten-
sors are of primary importance in connection with coordinate transforms.
They serve to isolate intrinsic geometric and physical properties from
those that merely depend on coordinates.

A tensor of rank r in an n-dimensional space possesses nr compo-
nents which are, in general, functions of position in that space. A tensor
of rank zero has one component,A, and is called a scalar. A tensor of rank
one has n components, (A1,A2, · · · , An), and is called a vector. A ten-
sor of rank two has n2 components, which can be exhibited in matrix
format. Unfortunately, there is no convenient way of exhibiting a higher
rank tensor. Consequently, tensors are usually represented by a typical
component: e.g., the tensor Aijk (rank 3), or the tensor Aijkl (rank 4),
etc. The suffixes i, j, k, · · · are always understood to range from 1 to n.
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For reasons which will become apparent later on, we shall repre-
sent tensor components using both superscripts and subscripts. Thus,
a typical tensor might look like Aij (rank 2), or Bij (rank 2), etc. It is
convenient to adopt the Einstein summation convention. Namely, if any
suffix appears twice in a given term, once as a subscript and once as a
superscript, a summation over that suffix (from 1 to n) is implied.

To distinguish between various different coordinate systems, we
shall use primed and multiply primed suffixes. A first system of coor-
dinates (x1, x2, · · · , xn) can then be denoted by xi, a second system
(x1

′
, x2

′
, · · · , xn ′

) by xi
′
, etc. Similarly, the general components of a

tensor in various coordinate systems are distinguished by their suffixes.
Thus, the components of some third-rank tensor are denoted Aijk in the
xi system, by Ai ′j ′k ′ in the xi

′
system, etc.

When making a coordinate transformation from one set of coor-
dinates, xi, to another, xi

′
, it is assumed that the transformation in

non-singular. In other words, the equations which express the xi
′

in
terms of the xi can be inverted to express the xi in terms of the xi

′
.

It is also assumed that the functions specifying a transformation are
differentiable. It is convenient to write

∂xi
′

∂xi
= pi

′
i , (10.47)

∂xi

∂xi
′ = pii ′ . (10.48)

Note that

pii ′ pi
′
j = δij, (10.49)

by the chain rule, where δij (the Kronecker delta) equals 1 or 0 when i = j

or i �= j, respectively.
The formal definition of a tensor is as follows:

1. An entity having components Aij···k in the xi system and Ai ′j ′···k ′

in the xi
′

system is said to behave as a covariant tensor under the
transformation xi → xi

′
if

Ai ′j ′···k ′ = Aij···k pii ′ p
j
j ′ · · ·pkk ′ . (10.50)

2. Similarly, Aij···k is said to behave as a contravariant tensor under
xi → xi

′
if

Ai
′j ′···k ′

= Aij···kpi
′
i p

j ′

j · · ·pk ′
k . (10.51)
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3. Finally, Ai···jk···l is said to behave as a mixed tensor (contravariant in
i · · · j and covariant in k · · · l) under xi → xi

′
if

A
i ′···j ′
k ′···l ′ = A

i···j
k···l p

i ′
i · · ·pj ′j pkk ′ · · ·pll ′ . (10.52)

When an entity is described as a tensor it is generally understood
that it behaves as a tensor under all non-singular differentiable trans-
formations of the relevant coordinates. An entity which only behaves as
a tensor under a certain subgroup of non-singular differentiable coor-
dinate transformations is called a qualified tensor, because its name is
conventionally qualified by an adjective recalling the subgroup in ques-
tion. For instance, an entity which only exhibits tensor behavior under
Lorentz transformations is called a Lorentz tensor, or, more commonly, a
4-tensor.

When applied to a tensor of rank zero (a scalar), the above definitions
imply that A ′ = A. Thus, a scalar is a function of position only, and
is independent of the coordinate system. A scalar is often termed an
invariant.

The main theorem of tensor calculus is as follows:

If two tensors of the same type are equal in one coordinate system, then they are equal
in all coordinate systems.

The simplest example of a contravariant vector (tensor of rank one)
is provided by the differentials of the coordinates, dxi, since

dxi
′
=
∂xi

′

∂xi
dxi = dxi pi

′
i . (10.53)

The coordinates themselves do not behave as tensors under all coordi-
nate transformations. However, since they transform like their differ-
entials under linear homogeneous coordinate transformations, they do
behave as tensors under such transformations.

The simplest example of a covariant vector is provided by the
gradient of a function of position φ = φ(x1, · · · , xn), since if we write

φi =
∂φ

∂xi
, (10.54)

then we have

φi ′ =
∂φ

∂xi
′ =

∂φ

∂xi
∂xi

∂xi
′ = φi p

i
i ′ . (10.55)
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An important example of a mixed second-rank tensor is provided by
the Kronecker delta introduced previously, since

δij p
i ′
i p

j
j ′ = pi

′
j p

j
j ′ = δi

′
j ′ . (10.56)

Tensors of the same type can be added or subtracted to form new
tensors. Thus, if Aij and Bij are tensors, then Cij = Aij ± Bij is a tensor
of the same type. Note that the sum of tensors at different points in
space is not a tensor if the p’s are position dependent. However, under
linear coordinate transformations the p’s are constant, so the sum of
tensors at different points behaves as a tensor under this particular type
of coordinate transformation.

If Aij and Bijk are tensors, then Cijklm = Aij Bklm is a tensor of the
type indicated by the suffixes. The process illustrated by this example is
called outer multiplication of tensors.

Tensors can also be combined by inner multiplication, which implies
at least one dummy suffix link. Thus, Cjkl = Aij Bikl and Ck = Aij Bijk are
tensors of the type indicated by the suffixes.

Finally, tensors can be formed by contraction from tensors of higher
rank. Thus, if Aijklm is a tensor then Cjkl = A

ij
ikl and Ck = A

ij
kij are tensors

of the type indicated by the suffixes. The most important type of con-
traction occurs when no free suffixes remain: the result is a scalar. Thus,
Aii is a scalar provided that Aji is a tensor.

Although we cannot usefully divide tensors, one by another, an entity
like Cij in the equation Aj = Cij Bi, where Ai and Bi are tensors, can be
formally regarded as the quotient of Ai and Bi. This gives the name to
a particularly useful rule for recognizing tensors, the quotient rule. This
rule states that if a set of components, when combined by a given type of
multiplication with all tensors of a given type yields a tensor, then the set is
itself a tensor. In other words, if the product Ai = Cij Bj transforms like
a tensor for all tensors Bi then it follows that Cij is a tensor.

Let

∂A
i···j
k···l

∂xm
= A

i···j
k···l,m. (10.57)

Then if Ai···jk···l is a tensor, differentiation of the general tensor transfor-
mation (10.52) yields

A
i ′···j ′
k ′···l ′,m ′ = A

i···j
k···l,m p

i ′
i · · ·pj ′j pkk ′ · · ·pll ′ pmm ′ + P1 + P2 + · · · , (10.58)

where P1, P2, etc., are terms involving derivatives of the p’s. Clearly,
A
i···j
k···l is not a tensor under a general coordinate transformation. How-

ever, under a linear coordinate transformation (p’s constant) Ai
′···j ′
k ′···l ′,m ′
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behaves as a tensor of the type indicated by the suffixes, since the P1, P2,
etc., all vanish. Similarly, all higher partial derivatives,

A
i···j
k···l,mn =

∂A
i···j
k···l

∂xm∂xn
(10.59)

etc., also behave as tensors under linear transformations. Each partial
differentiation has the effect of adding a new covariant suffix.

So far, the space to which the coordinates xi refer has been with-
out structure. We can impose a structure on it by defining the distance
between all pairs of neighboring points by means of a metric,

ds2 = gij dx
i dxj, (10.60)

where the gij are functions of position. We can assume that gij = gji
without loss of generality. The above metric is analogous to, but more
general than, the metric of Euclidian n-space, ds2 = (dx1)2 + (dx2)2 +
· · · + (dxn)2. A space whose structure is determined by a metric of the
type (10.60) is called Riemannian. Since ds2 is invariant, it follows from
a simple extension of the quotient rule that gij must be a tensor. It is
called the metric tensor.

The elements of the inverse of the matrix gij are denoted by gij.
These elements are uniquely defined by the equations

gijgjk = δik. (10.61)

It is easily seen that the gij constitute the elements of a contravariant
tensor. This tensor is said to be conjugate to gij. The conjugate metric
tensor is symmetric (i.e., gij = gji) just like the metric tensor itself.

The tensors gij and gij allow us to introduce the important opera-
tions of raising and lowering suffixes. These operations consist of forming
inner products of a given tensor with gij or gij. For example, given a
contravariant vector Ai, we define its covariant components Ai by the
equation

Ai = gij A
j. (10.62)

Conversely, given a covariant vector Bi, we can define its contravariant
components Bi by the equation

Bi = gij Bj. (10.63)

More generally, we can raise or lower any or all of the free suffixes of
any given tensor. Thus, if Aij is a tensor we define Aij by the equation

Aij = gipApj. (10.64)
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Note that once the operations of raising and lowering suffixes has been
defined, the order of raised suffixes relative to lowered suffixes becomes
significant.

By analogy with Euclidian space, we define the squared magnitude
(A)2 of a vector Ai with respect to the metric gij dxi dxj by the equation

(A)2 = gij A
i Aj = Ai A

i. (10.65)

A vector Ai is termed a null vector if (A)2 = 0. Two vectors Ai and Bi are
said to be orthogonal if their inner product vanishes: i.e., if

gij A
i Bj = Ai B

i = Ai Bi = 0. (10.66)

Finally, let us consider differentiation with respect to an invariant
distance, s. The vector dxi/ds is a contravariant tensor, since

dxi
′

ds
=
∂xi

′

∂xi
dxi

ds
=
dxi

ds
pi

′
i . (10.67)

The derivative d(Ai···jk···l)/ds of some tensor with respect to s is not, in
general, a tensor, since

d(Ai···jk···l)
ds

= Ai···jk···l,m
dxm

ds
, (10.68)

and, as we have seen, the first factor on the right-hand side is not gen-
erally a tensor. However, under linear transformations it behaves as a
tensor, so under linear transformations the derivative of a tensor with
respect to an invariant distance behaves as a tensor of the same type.

10.6 PHYSICAL SIGNIFICANCE OF TENSORS

In this chapter, we shall only concern ourselves with coordinate transfor-
mations which transform an inertial frame into another inertial frame.
This limits us to four classes of transformations: displacements of the
coordinate axes, rotations of the coordinate axes, parity reversals (i.e.,
x, y, z → −x,−y,−z), and Lorentz transformations.

One of the central tenets of Physics is that experiments should be
reproducible. In other words, if somebody performs a physical experi-
ment today, and obtains a certain result, then somebody else performing
the same experiment next week ought to obtain the same result, within
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the experimental errors. Presumably, in performing these hypothetical
experiments, both experimentalists find it necessary to set up a coor-
dinate frame. Usually, these two frames do not coincide. After all, the
experiments are, in general, performed in different places and at differ-
ent times. Also, the two experimentalists are likely to orientate their
coordinate axes differently. Nevertheless, we still expect both exper-
iments to yield the same result. What exactly do we mean by this
statement? We do not mean that both experimentalists will obtain the
same numbers when they measure something. For instance, the num-
bers used to denote the position of a point (i.e., the coordinates of the
point) are, in general, different in different coordinate frames. What we
do expect is that any physically significant interrelation between physi-
cal quantities (i.e., position, velocity, etc.) which appears to hold in the
coordinate system of the first experimentalist will also appear to hold in
the coordinate system of the second experimentalist. We usually refer to
such interrelationships as laws of Physics. So, what we are really saying
is that the laws of Physics do not depend on our choice of coordinate
system. In particular, if a law of Physics is true in one coordinate system
then it is automatically true in every other coordinate system, subject to
the proviso that both coordinate systems are inertial.

Recall that tensors are geometric objects which possess the property
that if a certain interrelationship holds between various tensors in one
particular coordinate system, then the same interrelationship holds in
any other coordinate system which is related to the first system by a
certain class of transformations. It follows that the laws of Physics are
expressible as interrelationships between tensors. In Special Relativity, the
laws of Physics are only required to exhibit tensor behavior under trans-
formations between different inertial frames: i.e., translations, rotations,
and Lorentz transformations. Parity inversion is a special type of trans-
formation, and will be dealt with later on. In General Relativity, the laws
of Physics are required to exhibit tensor behavior under all non-singular
coordinate transformations.

10.7 SPACE-TIME

In Special Relativity, we are only allowed to use inertial frames to assign
coordinates to events. There are many different types of inertial frames.
However, it is convenient to adhere to those with standard coordinates.
That is, spatial coordinates which are right-handed rectilinear Cartesians
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based on a standard unit of length, and time-scales based on a stan-
dard unit of time. We shall continue to assume that we are employing
standard coordinates. However, from now on, we shall make no assump-
tions about the relative configuration of the two sets of spatial axes, and
the origins of time, when dealing with two inertial frames. Thus, the
most general transformation between two inertial frames consists of a
Lorentz transformation in the standard configuration plus a translation
(this includes a translation in time) and a rotation of the coordinate axes.
The resulting transformation is called a general Lorentz transformation,
as opposed to a Lorentz transformation in the standard configuration,
which will henceforth be termed a standard Lorentz transformation.

In Section 10.3, we proved quite generally that corresponding
differentials in two inertial frames S and S ′ satisfy the relation

dx2 + dy2 + dz2 − c2 dt2 = dx ′ 2 + dy ′ 2 + dz ′ 2 − c2 dt ′ 2. (10.69)

Thus, we expect this relation to remain invariant under a general Lorentz
transformation. Since such a transformation is linear, it follows that

(x2 − x1)
2 + (y2 − y1)

2 + (z2 − z1)
2 − c2 (t2 − t1)

2 =

(x ′
2 − x ′

1)
2 + (y ′

2 − y ′
1)
2 + (z ′

2 − z ′
1)
2 − c2 (t ′

2 − t ′
1)
2, (10.70)

where (x1, y1, z1, t1) and (x2, y2, z2, t2) are the coordinates of any
two events in S, and the primed symbols denote the corresponding
coordinates in S ′. It is convenient to write

−dx2 − dy2 − dz2 + c2 dt2 = ds2, (10.71)

and

−(x2 − x1)
2 − (y2 − y1)

2 − (z2 − z1)
2 + c2(t2 − t1)

2 = s2. (10.72)

The differential ds, or the finite number s, defined by these equations is
called the interval between the corresponding events. Equations (10.71)
and (10.72) express the fact that the interval between two events is invari-
ant, in the sense that it has the same value in all inertial frames. In other
words, the interval between two events is invariant under a general
Lorentz transformation.

Let us consider entities defined in terms of four variables,

x1 = x, x2 = y, x3 = z, x4 = c t, (10.73)

and which transform as tensors under a general Lorentz transformation.
From now on, such entities will be referred to as 4-tensors.
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Tensor analysis cannot proceed very far without the introduction of a
non-singular tensor gij, the so-called fundamental tensor, which is used to
define the operations of raising and lowering suffixes. The fundamental
tensor is usually introduced using a metric ds2 = gij dx

i dxj, where ds2 is
a differential invariant. We have already come across such an invariant,
namely

ds2 = − dx2 − dy2 − dz2 + c2 dt2

= − (dx1)2 − (dx2)2 − (dx3)2 + (dx4)2

= gµν dx
µ dxν, (10.74)

where µ, ν run from 1 to 4. Note that the use of Greek suffixes is con-
ventional in 4-tensor theory. Roman suffixes are reserved for tensors in
three-dimensional Euclidian space, so-called 3-tensors. The 4-tensor gµν
has the components g11 = g22 = g33 = −1, g44 = 1, and gµν = 0 when
µ �= ν, in all permissible coordinate frames. From now on, gµν, as defined
above, is adopted as the fundamental tensor for 4-tensors. gµν can be
thought of as the metric tensor of the space whose points are the events
(x1, x2, x3, x4). This space is usually referred to as space-time, for obvious
reasons. Note that space-time cannot be regarded as a straightforward
generalization of Euclidian 3-space to four dimensions, with time as the
fourth dimension. The distribution of signs in the metric ensures that the
time coordinate x4 is not on the same footing as the three space coordi-
nates. Thus, space-time has a non-isotropic nature which is quite unlike
Euclidian space, with its positive definite metric. According to the Rel-
ativity Principle, all physical laws are expressible as interrelationships
between 4-tensors in space-time.

A tensor of rank one is called a 4-vector. We shall also have occasion
to use ordinary vectors in three-dimensional Euclidian space. Such vec-
tors are called 3-vectors, and are conventionally represented by boldface
symbols. We shall use the Latin suffixes i, j, k, etc., to denote the compo-
nents of a 3-vector: these suffixes are understood to range from 1 to 3.
Thus, u = ui = dxi/dt denotes a velocity vector. For 3-vectors, we shall
use the notation ui = ui interchangeably: i.e., the level of the suffix has
no physical significance.

When tensor transformations from one frame to another actually
have to be computed, we shall usually find it possible to choose coor-
dinates in the standard configuration, so that the standard Lorentz
transform applies. Under such a transformation, any contravariant 4-
vector, Tµ, transforms according to the same scheme as the difference in
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coordinates xµ2 − x
µ
1 between two points in space-time. It follows that

T1
′
= γ (T1 − βT4), (10.75)

T2
′
= T2, (10.76)

T3
′
= T3, (10.77)

T4
′
= γ (T4 − βT1), (10.78)

where β = v/c. Higher rank 4-tensors transform according to the rules
(10.50)–(10.52). The transformation coefficients take the form

pµ
′
µ =


+γ 0 0 −γβ
0 1 0 0

0 0 1 0

−γβ 0 0 +γ

 , (10.79)

p
µ
µ ′ =


+γ 0 0 +γβ
0 1 0 0

0 0 1 0

+γβ 0 0 +γ

 . (10.80)

Often the first three components of a 4-vector coincide with the com-
ponents of a 3-vector. For example, the x1, x2, x3 in Rµ = (x1, x2, x3, x4)
are the components of r, the position 3-vector of the point at which
the event occurs. In such cases, we adopt the notation exemplified by
Rµ = (r, c t). The covariant form of such a vector is simply Rµ = (−r, c t).
The squared magnitude of the vector is (R)2 = RµR

µ = −r2 + c2 t2. The
inner product gµν Rµ Qν = Rµ Q

µ of Rµ with a similar vectorQµ = (q, k)
is given by Rµ Qµ = −r ·q + c t k. The vectors Rµ and Qµ are said to be
orthogonal if Rµ Qµ = 0.

Since a general Lorentz transformation is a linear transformation,
the partial derivative of a 4-tensor is also a 4-tensor:

∂Aνσ

∂xµ
= Aνσ,µ. (10.81)

Clearly, a general 4-tensor acquires an extra covariant index after par-
tial differentiation with respect to the contravariant coordinate xµ. It is
helpful to define a covariant derivative operator

∂µ ≡ ∂

∂xµ
=

(
∇, 1
c

∂

∂t

)
, (10.82)

where

∂µA
νσ ≡ Aνσ,µ. (10.83)
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There is a corresponding contravariant derivative operator

∂µ ≡ ∂

∂xµ
=

(
−∇, 1

c

∂

∂t

)
, (10.84)

where

∂µAνσ ≡ gµτAνσ,τ. (10.85)

The 4-divergence of a 4-vector, Aµ = (A, A0), is the invariant

∂µAµ = ∂µA
µ = ∇·A +

1

c

∂A0

∂t
. (10.86)

The four-dimensional Laplacian operator, or d’Alembertian, is equivalent
to the invariant contraction

� ≡ ∂µ∂
µ = −∇2 +

1

c2
∂2

∂t2
. (10.87)

Recall that we still need to prove (from Section 10.3) that the
invariance of the differential metric,

ds2 = dx ′ 2 + dy ′ 2 + dz ′ 2 − c2 dt ′ 2 = dx2 + dy2 + dz2 − c2 dt2,

(10.88)

between two general inertial frames implies that the coordinate transfor-
mation between such frames is necessarily linear. To put it another way,
we need to demonstrate that a transformation which transforms a metric
gµν dx

µ dxν with constant coefficients into a metric gµ ′ν ′ dxµ
′
dxν

′
with

constant coefficients must be linear. Now

gµν = gµ ′ν ′ pµ
′
µ p

ν ′
ν . (10.89)

Differentiating with respect to xσ, we get

gµ ′ν ′ pµ
′
µσ p

ν ′
ν + gµ ′ν ′ pµ

′
µ p

ν ′
νσ = 0, (10.90)

where

pµ
′
µσ =

∂p
µ ′
µ

∂xσ
=

∂2xµ
′

∂xµ∂xσ
= pµ

′
σµ, (10.91)

etc. Interchanging the indices µ and σ yields

gµ ′ν ′ pµ
′
µσ p

ν ′
ν + gµ ′ν ′ pµ

′
σ p

ν ′
νµ = 0. (10.92)
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Interchanging the indices ν and σ gives

gµ ′ν ′ pµ
′
σ p

ν ′
νµ + gµ ′ν ′ pµ

′
µ p

ν ′
νσ = 0, (10.93)

where the indices µ ′ and ν ′ have been interchanged in the first term. It
follows from Equations (10.90), (10.92), and (10.93) that

gµ ′ν ′ pµ
′
µσ p

ν ′
ν = 0. (10.94)

Multiplication by pνσ ′ yields

gµ ′ν ′ pµ
′
µσ p

ν ′
ν p

ν
σ ′ = gµ ′σ ′ pµ

′
µσ = 0. (10.95)

Finally, multiplication by gν
′σ ′

gives

gµ ′σ ′ gν
′σ ′
pµ

′
µσ = pν

′
µσ = 0. (10.96)

This proves that the coefficients pν
′
µ are constants, and, hence, that the

transformation is linear.

10.8 PROPER TIME

It is often helpful to write the invariant differential interval ds2 in
the form

ds2 = c2 dτ2. (10.97)

The quantity dτ is called the proper time. It follows that

dτ2 = −
dx2 + dy2 + dz2

c2
+ dt2. (10.98)

Consider a series of events on the world-line of some material
particle. If the particle has speed u then

dτ2 = dt2
[
−
dx2 + dy2 + dz2

c2 dt2
+ 1

]
= dt2

(
1−

u2

c2

)
, (10.99)

implying that

dt

dτ
= γ(u). (10.100)

It is clear that dt = dτ in the particle’s rest frame. Thus, dτ corresponds
to the time difference between two neighboring events on the particle’s
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world-line, as measured by a clock attached to the particle (hence, the
name proper time). According to Equation (10.100), the particle’s clock
appears to run slow, by a factor γ(u), in an inertial frame in which the
particle is moving with velocity u. This is the celebrated time dilation
effect.

Let us consider how a small 4-dimensional volume element in space-
time transforms under a general Lorentz transformation. We have

d4x ′ = J d4x, (10.101)

where

J =
∂(x1

′
, x2

′
, x3

′
, x4

′
)

∂(x1, x2, x3, x4)
(10.102)

is the Jacobian of the transformation: i.e., the determinant of the trans-
formation matrix pµ

′
µ . A general Lorentz transformation is made up of

a standard Lorentz transformation plus a displacement and a rotation.
Thus, the transformation matrix is the product of that for a standard
Lorentz transformation, a translation, and a rotation. It follows that the
Jacobian of a general Lorentz transformation is the product of that for a
standard Lorentz transformation, a translation, and a rotation. It is well-
known that the Jacobian of the latter two transformations is unity, since
they are both volume preserving transformations which do not affect
time. Likewise, it is easily seen [e.g., by taking the determinant of the
transformation matrix (10.79)] that the Jacobian of a standard Lorentz
transformation is also unity. It follows that

d4x ′ = d4x (10.103)

for a general Lorentz transformation. In other words, a general Lorentz
transformation preserves the volume of space-time. Since time is dilated
by a factor γ in a moving frame, the volume of space-time can only
be preserved if the volume of ordinary 3-space is reduced by the same
factor. As is well-known, this is achieved by length contraction along the
direction of motion by a factor γ.

10.9 4-VELOCITY AND 4-ACCELERATION

We have seen that the quantity dxµ/ds transforms as a 4-vector under
a general Lorentz transformation [see Equation (10.67)]. Since ds ∝ dτ
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it follows that

Uµ =
dxµ

dτ
(10.104)

also transforms as a 4-vector. This quantity is known as the 4-velocity.
Likewise, the quantity

Aµ =
d2xµ

dτ2
=
dUµ

dτ
(10.105)

is a 4-vector, and is called the 4-acceleration.
For events along the world-line of a particle traveling with 3-

velocity u, we have

Uµ =
dxµ

dτ
=
dxµ

dt

dt

dτ
= γ(u) (u, c), (10.106)

where use has been made of Equation (10.100). This gives the relation-
ship between a particle’s 3-velocity and its 4-velocity. The relationship
between the 3-acceleration and the 4-acceleration is less straightforward.
We have

Aµ =
dUµ

dτ
= γ

dUµ

dt
= γ

d

dt
(γu, γ c) = γ

(
dγ

dt
u + γ a, c

dγ

dt

)
,

(10.107)

where a = du/dt is the 3-acceleration. In the rest frame of the particle,
Uµ = (0, c) and Aµ = (a, 0). It follows that

Uµ A
µ = 0 (10.108)

(note that Uµ Aµ is an invariant quantity). In other words, the 4-
acceleration of a particle is always orthogonal to its 4-velocity.

10.10 THE CURRENT DENSITY 4-VECTOR

Let us now consider the laws of Electromagnetism. We wish to demon-
strate that these laws are compatible with the Relativity Principle. In
order to achieve this, it is necessary for us to make an assumption about
the transformation properties of electric charge. The assumption we shall
make, which is well substantiated experimentally, is that charge, unlike
mass, is invariant. That is, the charge carried by a given particle has the
same measure in all inertial frames. In particular, the charge carried by
a particle does not vary with the particle’s velocity.
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Let us suppose, following Lorentz, that all charge is made up of
elementary particles, each carrying the invariant amount e. Suppose
that n is the number density of such charges at some given point and
time, moving with velocity u, as observed in a frame S. Let n0 be the
number density of charges in the frame S0 in which the charges are
momentarily at rest. As is well-known, a volume of measure V in S has
measure γ(u)V in S0 (because of length contraction). Since observers
in both frames must agree on how many particles are contained in the
volume, and, hence, on how much charge it contains, it follows that
n = γ(u)n0. If ρ = en and ρ0 = en0 are the charge densities in S and
S0, respectively, then

ρ = γ(u) ρ0. (10.109)

The quantity ρ0 is called the proper density, and is obviously Lorentz
invariant.

Suppose that xµ are the coordinates of the moving charge in S. The
current density 4-vector is constructed as follows:

Jµ = ρ0
dxµ

dτ
= ρ0 U

µ. (10.110)

Thus,

Jµ = ρ0 γ(u) (u, c) = (j, ρ c), (10.111)

where j = ρu is the current density 3-vector. Clearly, charge density and
current density transform as the time-like and space-like components of
the same 4-vector.

Consider the invariant 4-divergence of Jµ:

∂µJ
µ = ∇·j +

∂ρ

∂t
. (10.112)

We know that one of the caveats of Maxwell’s equations is the charge
conservation law

∂ρ

∂t
+ ∇·j = 0. (10.113)

It is clear that this expression can be rewritten in the manifestly Lorentz
invariant form

∂µJ
µ = 0. (10.114)

This equation tells us that there are no net sources or sinks of electric
charge in nature: i.e., electric charge is neither created nor destroyed.
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10.11 THE POTENTIAL 4-VECTOR

There are many ways of writing the laws of electromagnetism. However,
the most obviously Lorentz invariant way is to write them in terms of
the vector and scalar potentials (see Section 4.6). When written in this
fashion, Maxwell’s equations reduce to(

−∇2 +
1

c2
∂2

∂t2

)
φ =

ρ

ε0
, (10.115)

(
−∇2 +

1

c2
∂2

∂t2

)
A = µ0 j, (10.116)

where φ is the scalar potential, and A the vector potential. Note that the
differential operator appearing in these equations is the Lorentz invariant
d’Alembertian, defined in Equation (10.87). Thus, the above pair of
equations can be rewritten in the form

�φ =
ρ c

c ε0
, (10.117)

�(cA) =
j
c ε0

. (10.118)

Maxwell’s equations can be written in Lorentz invariant form provided
that the entity

Φµ = (cA, φ) (10.119)

transforms as a contravariant 4-vector. This entity is known as the poten-
tial 4-vector. It follows from Equations (10.111), (10.115), and (10.116)
that

�Φµ =
Jµ

c ε0
. (10.120)

Thus, the field equations which govern classical electromagnetism can
all be summed up in a single 4-vector equation.

10.12 GAUGE INVARIANCE

The electric and magnetic fields are obtained from the vector and scalar
potentials according to the prescription (see Section 4.3)

E = − ∇φ−
∂A
∂t
, (10.121)

B = ∇ × A. (10.122)
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These fields are important, because they determine the electromagnetic
forces exerted on charged particles. Note that the above prescription
does not uniquely determine the two potentials. It is possible to make
the following transformation, known as a gauge transformation, which
leaves the fields unaltered (see Section 4.4):

φ → φ+
∂ψ

∂t
, (10.123)

A → A − ∇ψ, (10.124)

where ψ(r, t) is a general scalar field. It is necessary to adopt some form
of convention, generally known as a gauge condition, to fully specify
the two potentials. In fact, there is only one gauge condition which is
consistent with Equations (10.114). This is the Lorenz gauge condition,

1

c2
∂φ

∂t
+ ∇·A = 0. (10.125)

Note that this condition can be written in the Lorentz invariant form

∂µΦ
µ = 0. (10.126)

This implies that if the Lorenz gauge holds in one particular inertial
frame then it automatically holds in all other inertial frames. A general
gauge transformation can be written

Φµ → Φµ + c ∂µψ. (10.127)

Note that, even after the Lorentz gauge has been adopted, the poten-
tials are undetermined to a gauge transformation using a scalar field, ψ,
which satisfies the sourceless wave equation

�ψ = 0. (10.128)

However, if we adopt sensible boundary conditions in both space and
time then the only solution to the above equation is ψ = 0.

10.13 RETARDED POTENTIALS

We already know the solutions to Equations (10.117) and (10.118). They
take the form (see Section 4.9)

φ(r, t) =
1

4πε0

∫
[ρ(r ′)]
|r − r ′|

dV ′, (10.129)

A(r, t) =
µ0

4π

∫
[j(r ′)]
|r − r ′|

dV ′. (10.130)
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The above equations can be combined to form the solution of the 4-vector
wave Equation (10.120),

Φµ =
1

4πε0 c

∫
[Jµ]

r
dV. (10.131)

Here, the components of the 4-potential are evaluated at some event P
in space-time, r is the distance of the volume element dV from P, and
the square brackets indicate that the 4-current is to be evaluated at the
retarded time: i.e., at a time r/c before P.

But, does the right-hand side of Equation (10.131) really transform
as a contravariant 4-vector? This is not a trivial question, since volume
integrals in 3-space are not, in general, Lorentz invariant due to the
length contraction effect. However, the integral in Equation (10.131) is
not a straightforward volume integral, because the integrand is evalu-
ated at the retarded time. In fact, the integral is best regarded as an
integral over events in space-time. The events which enter the integral
are those which intersect a spherical light wave launched from the event
P and evolved backward in time. In other words, the events occur before
the event P, and have zero interval with respect to P. It is clear that
observers in all inertial frames will, at least, agree on which events are
to be included in the integral, since both the interval between events, and
the absolute order in which events occur, are invariant under a general
Lorentz transformation.

We shall now demonstrate that all observers obtain the same value of
dV/r for each elementary contribution to the integral. Suppose that S and
S ′ are two inertial frames in the standard configuration. Let unprimed
and primed symbols denote corresponding quantities in S and S ′, respec-
tively. Let us assign coordinates (0, 0, 0, 0) to P, and (x, y, z, c t) to the
retarded event Q for which r and dV are evaluated. Using the stan-
dard Lorentz transformation, (10.24)–(10.27), the fact that the interval
between events P and Q is zero, and the fact that both t and t ′ are
negative, we obtain

r ′ = −c t ′ = −c γ
(
t−

v x

c2

)
, (10.132)

where v is the relative velocity between frames S ′ and S, γ is the Lorentz
factor, and r =

√
x2 + y2 + z2, etc. It follows that

r ′ = r γ

(
−
c t

r
+
v x

c r

)
= r γ

(
1+

v

c
cos θ

)
, (10.133)
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where θ is the angle (in 3-space) subtended between the line PQ and
the x-axis.

We now know the transformation for r. What about the transforma-
tion for dV? We might be tempted to set dV ′ = γdV, according to the
usual length contraction rule. However, this is incorrect. The contrac-
tion by a factor γ only applies if the whole of the volume is measured at
the same time, which is not the case in the present problem. Now, the
dimensions of dV along the y- and z-axes are the same in both S and
S ′, according to Equations (10.24)–(10.27). For the x-dimension these
equations give dx ′ = γ (dx− v dt). The extremities of dx are measured
at times differing by dt, where

dt = −
dr

c
= −

dx

c
cos θ. (10.134)

Thus,

dx ′ = γ
(
1+

v

c
cos θ

)
dx, (10.135)

giving

dV ′ = γ
(
1+

v

c
cos θ

)
dV. (10.136)

It follows from Equations (10.133) and (10.136) that dV ′/r ′ = dV/r.
This result will clearly remain valid even when S and S ′ are not in the
standard configuration.

Thus, dV/r is an invariant and, therefore, [Jµ]dV/r is a contravariant
4-vector. For linear transformations, such as a general Lorentz transfor-
mation, the result of adding 4-tensors evaluated at different 4-points is
itself a 4-tensor. It follows that the right-hand side of Equation (10.131) is
indeed a contravariant 4-vector. Thus, this 4-vector equation can be prop-
erly regarded as the solution to the 4-vector wave equation (10.120).

10.14 TENSORS AND PSEUDO-TENSORS

The totally antisymmetric fourth-rank tensor is defined

εαβγδ =




+1 for α,β, γ, δ any even permutation of 1, 2, 3, 4
−1 for α,β, γ, δ any odd permutation of 1, 2, 3, 4
0 otherwise

.

(10.137)
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The components of this tensor are invariant under a general Lorentz
transformation, since

εαβγδ pα
′

α p
β ′

β p
γ ′
γ p

δ ′
δ = εα

′β ′γ ′δ ′
|pµ

′
µ | = εα

′β ′γ ′δ ′
, (10.138)

where |p
µ ′
µ | denotes the determinant of the transformation matrix, or

the Jacobian of the transformation, which we have already established
is unity for a general Lorentz transformation. We can also define a totally
antisymmetric third-rank tensor εijk which stands in the same relation
to 3-space as εαβγδ does to space-time. It is easily demonstrated that the
elements of εijk are invariant under a general translation or rotation of
the coordinate axes. The totally antisymmetric third-rank tensor is used
to define the cross product of two 3-vectors,

(a × b)i = εijk aj bk, (10.139)

and the curl of a 3-vector field,

(∇ × A)i = εijk
∂Ak

∂xj
. (10.140)

The following two rules are often useful in deriving vector identities

εijk εiab = δja δ
k
b − δ

j
b δ

k
a, (10.141)

εijk εijb = 2 δkb. (10.142)

Up to now, we have restricted ourselves to three basic types of
coordinate transformation: namely, translations, rotations, and stan-
dard Lorentz transformations. An arbitrary combination of these three
transformations constitutes a general Lorentz transformation. Let us
now extend our investigations to include a fourth type of transforma-
tion known as a parity inversion: i.e., x, y, z,→ −x,−y,−z. A reflection
is a combination of a parity inversion and a rotation. As is easily
demonstrated, the Jacobian of a parity inversion is −1, unlike a trans-
lation, rotation, or standard Lorentz transformation, which all possess
Jacobians of +1.

The prototype of all 3-vectors is the difference in coordinates
between two points in space, r. Likewise, the prototype of all 4-vectors
is the difference in coordinates between two events in space-time,
Rµ = (r, c t). It is not difficult to appreciate that both of these objects
are invariant under a parity transformation (in the sense that they corre-
spond to the same geometric object before and after the transformation).
It follows that any 3- or 4-tensor which is directly related to r and Rµ,
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respectively, is also invariant under a parity inversion. Such tensors
include the distance between two points in 3-space, the interval
between two points in space-time, 3-velocity, 3-acceleration, 4-velocity,
4-acceleration, and the metric tensor. Tensors which exhibit tensor
behavior under translations, rotations, special Lorentz transformations,
and are invariant under parity inversions, are termed proper tensors, or
sometimes polar tensors. Since electric charge is clearly invariant under
such transformations (i.e., it is a proper scalar), it follows that 3-current
and 4-current are proper vectors. It is also clear from Equation (10.120)
that the scalar potential, the vector potential, and the potential 4-vector,
are proper tensors.

It follows from Equation (10.137) that εαβγδ → −εαβγδ under a par-
ity inversion. Tensors such as this, which exhibit tensor behavior under
translations, rotations, and special Lorentz transformations, but are not
invariant under parity inversions (in the sense that they correspond to
different geometric objects before and after the transformation), are
called pseudo-tensors, or sometimes axial tensors. Equations (10.139)
and (10.140) imply that the cross product of two proper vectors is a
pseudo-vector, and the curl of a proper vector field is a pseudo-vector
field.

One particularly simple way of performing a parity transformation
is to exchange positive and negative numbers on the three Cartesian
axes. A proper vector is unaffected by such a procedure (i.e., its magni-
tude and direction are the same before and after). On the other hand, a
pseudo-vector ends up pointing in the opposite direction after the axes
are renumbered.

What is the fundamental difference between proper tensors and
pseudo-tensors? The answer is that all pseudo-tensors are defined accord-
ing to a handedness convention. For instance, the cross product between
two vectors is conventionally defined according to a right-hand rule.
The only reason for this is that the majority of human beings are right-
handed. Presumably, if the opposite were true then cross products, etc.,
would be defined according to a left-hand rule, and would, therefore,
take minus their conventional values. The totally antisymmetric tensor
is the prototype pseudo-tensor, and is, of course, conventionally defined
with respect to a right-handed spatial coordinate system. A parity inver-
sion converts left into right, and vice versa, and, thereby, effectively swaps
left- and right-handed conventions.

The use of conventions in Physics is perfectly acceptable provided
that we recognize that they are conventions, and are consistent in our
use of them. It follows that laws of Physics cannot contain mixtures of
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tensors and pseudo-tensors, otherwise they would depend on our choice
of handedness convention.1

Let us now consider electric and magnetic fields. We know that

E = − ∇φ−
∂A
∂t
, (10.143)

B = ∇ × A. (10.144)

We have already seen that the scalar and the vector potential are proper
scalars and vectors, respectively. It follows that E is a proper vector, but
that B is a pseudo-vector (since it is the curl of a proper vector). In order
to fully appreciate the difference between electric and magnetic fields,
let us consider a thought experiment first proposed by Richard Feynman.
Suppose that we are in radio contact with a race of aliens, and are trying
to explain to them our system of Physics. Suppose, further, that the aliens
live sufficiently far away from us that there are no common objects which
we can both see. The question is this: could we unambiguously explain
to these aliens our concepts of electric and magnetic fields? We could
certainly explain electric and magnetic lines of force. The former are
the paths of charged particles (assuming that the particles are subject
only to electric fields), and the latter can be mapped out using small
test magnets. We could also explain how we put arrows on electric lines
of force to convert them into electric field-lines: the arrows run from
positive charges (i.e., charges with the same sign as atomic nuclei) to
negative charges. This explanation is unambiguous provided that our
aliens live in a matter- (rather than an antimatter) dominated part of the
Universe. But, could we explain how we put arrows on magnetic lines
of force in order to convert them into magnetic field-lines? The answer
is, no. By definition, magnetic field-lines emerge from the North poles
of permanent magnets and converge on the corresponding South poles.
The definition of the North pole of a magnet is simply that it possesses
the same magnetic polarity as the South (geographic) pole of the Earth.
This is obviously a convention. In fact, we could redefine magnetic field-
lines to run from the South poles to the North poles of magnets without
significantly altering our laws of Physics (we would just have to replace
B by −B in all our equations). In a parity-inverted Universe, a North

1Here, we are assuming that the laws of Physics do not possess an intrinsic hand-
edness. This is certainly the case for Mechanics and Electromagnetism. However,
the weak interaction does possess an intrinsic handedness: i.e., it is fundamen-
tally different in a parity-inverted Universe. So, the equations governing the
weak interaction do actually contain mixtures of tensors and pseudo-tensors.
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pole becomes a South pole, and vice versa, so it is hardly surprising that
B → −B.

10.15 THE ELECTROMAGNETIC FIELD TENSOR

Let us now investigate whether we can write the components of the
electric and magnetic fields as the components of some proper 4-tensor.
There is an obvious problem here. How can we identify the compo-
nents of the magnetic field, which is a pseudo-vector, with any of the
components of a proper 4-tensor? The former components transform dif-
ferently under parity inversion than the latter components. Consider a
proper 3-tensor whose covariant components are written Bik, and which
is antisymmetric:

Bij = −Bji. (10.145)

This immediately implies that all of the diagonal components of the
tensor are zero. In fact, there are only three independent non-zero com-
ponents of such a tensor. Could we, perhaps, use these components to
represent the components of a pseudo-3-vector? Let us write

Bi =
1

2
εijk Bjk. (10.146)

It is clear that Bi transforms as a contravariant pseudo-3-vector. It is
easily seen that

Bij = Bij =




0 Bz −By

−Bz 0 Bx

By −Bx 0


 , (10.147)

where B1 = B1 ≡ Bx, etc. In this manner, we can actually write the com-
ponents of a pseudo-3-vector as the components of an antisymmetric
proper 3-tensor. In particular, we can write the components of the mag-
netic field B in terms of an antisymmetric proper magnetic field 3-tensor
which we shall denote Bij.

Let us now examine Equations (10.143) and (10.144) more carefully.
Recall thatΦµ = (−cA, φ) and ∂µ = (∇, c−1∂/∂t). It follows that we can
write Equation (10.143) in the form

Ei = −∂iΦ4 + ∂4Φi. (10.148)
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Likewise, Equation (10.144) can be written

cBi =
1

2
εijk c Bjk = −εijk ∂jΦk. (10.149)

Let us multiply this expression by εiab, making use of the identity

εiab ε
ijk = δja δ

k
b − δ

j
b δ

k
a. (10.150)

We obtain
c

2
(Bab − Bba) = −∂aΦb + ∂bΦa, (10.151)

or

cBij = −∂iΦj + ∂jΦi, (10.152)

since Bij = −Bji.
Let us define a proper 4-tensor whose covariant components are

given by

Fµν = ∂µΦν − ∂νΦµ. (10.153)

It is clear that this tensor is antisymmetric:

Fµν = −Fνµ. (10.154)

This implies that the tensor only possesses six independent non-zero
components. Maybe it can be used to specify the components of E and B?

Equations (10.148) and (10.153) yield

F4i = ∂4Φi − ∂iΦ4 = Ei. (10.155)

Likewise, Equations (10.152) and (10.153) imply that

Fij = ∂iΦj − ∂jΦi = −cBij. (10.156)

Thus,

Fi4 = −F4i = −Ei, (10.157)

Fij = −Fji = −cBij. (10.158)

In other words, the completely space-like components of the tensor spec-
ify the components of the magnetic field, whereas the hybrid space and
time-like components specify the components of the electric field. The
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covariant components of the tensor can be written

Fµν =


0 −cBz +cBy −Ex

+cBz 0 −cBx −Ey

−cBy +cBx 0 −Ez

+Ex +Ey +Ez 0

 . (10.159)

Not surprisingly, Fµν is usually called the electromagnetic field tensor.
The above expression, which appears in all standard textbooks, is very
misleading. Taken at face value, it is simply wrong! We cannot form a
proper 4-tensor from the components of a proper 3-vector and a pseudo-
3-vector. The expression only makes sense if we interpret Bx (say) as
representing the component B23 of the proper magnetic field 3-tensor Bij

The contravariant components of the electromagnetic field tensor
are given by

Fi4 = − F4i = +Ei, (10.160)

Fij = − Fji = −cBij, (10.161)

or

Fµν =


0 −cBz +cBy +Ex

+cBz 0 −cBx +Ey

−cBy +cBx 0 +Ez

−Ex −Ey −Ez 0

 . (10.162)

Let us now consider two of Maxwell’s equations:

∇·E =
ρ

ε0
, (10.163)

∇ × B = µ0

(
j + ε0

∂E
∂t

)
. (10.164)

Recall that the 4-current is defined Jµ = (j, ρ c). The first of these
equations can be written

∂iE
i = ∂iF

i4 + ∂4F
44 =

J4

c ε0
. (10.165)

since F44 = 0. The second of these equations takes the form

εijk ∂j(cBk) − ∂4E
i = εijk ∂j(1/2 εkab cB

ab) + ∂4F
4i =

Ji

c ε0
. (10.166)
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Making use of Equation (10.150), the above expression reduces to

1

2
∂j(cB

ij − cBji) + ∂4F
4i = ∂jF

ji + ∂4F
4i =

Ji

c ε0
. (10.167)

Equations (10.165) and (10.167) can be combined to give

∂µF
µν =

Jν

c ε0
. (10.168)

This equation is consistent with the equation of charge continuity,
∂µJ

µ = 0, because of the antisymmetry of the electromagnetic field
tensor.

10.16 THE DUAL ELECTROMAGNETIC FIELD TENSOR

We have seen that it is possible to write the components of the electric
and magnetic fields as the components of a proper 4-tensor. Is it also pos-
sible to write the components of these fields as the components of some
pseudo-4-tensor? It is obvious that we cannot identify the components
of the proper 3-vector E with any of the components of a pseudo-tensor.
However, we can represent the components of E in terms of those of an
antisymmetric pseudo-3-tensor Eij by writing

Ei =
1

2
εijk Ejk. (10.169)

It is easily demonstrated that

Eij = Eij =




0 Ez −Ey

−Ez 0 Ex

Ey −Ex 0


 , (10.170)

in a right-handed coordinate system.
Consider the dual electromagnetic field tensor, Gµν, which is defined

Gµν =
1

2
εµναβ Fαβ. (10.171)

This tensor is clearly an antisymmetric pseudo-4-tensor. We have

G4i =
1

2
ε4ijk Fjk = −

1

2
εijk4 Fjk =

1

2
εijk c Bjk = cBi, (10.172)



“chapter10” — 2007/12/14 — 13:59 — page 385 — #35

CHAPTER 10 RELATIVITY AND ELECTROMAGNETISM 385

plus

Gij =
1

2
(εijk4 Fk4 + εij4k F4k) = εijk Fk4, (10.173)

where use has been made of Fµν = −Fνµ. The above expression yields

Gij = −εijk Ek = −
1

2
εijkεkab E

ab = −Eij. (10.174)

It follows that

Gi4 = −G4i = −cBi, (10.175)

Gij = −Gji = −Eij, (10.176)

or

Gµν =


0 −Ez +Ey −cBx

+Ez 0 −Ex −cBy

−Ey +Ex 0 −cBz

+cBx +cBy +cBz 0

 . (10.177)

The above expression is, again, slightly misleading, since Ex stands for
the component E23 of the pseudo-3-tensor Eij, and not for an element
of the proper 3-vector E. Of course, in this case, Bx really does represent
the first element of the pseudo-3-vector B. Note that the elements ofGµν

are obtained from those of Fµν by making the transformation cBij → Eij

and Ei → −cBi.
The covariant elements of the dual electromagnetic field tensor are

given by

Gi4 = −G4i = +cBi, (10.178)

Gij = −Gji = −Eij, (10.179)

or

Gµν =


0 −Ez +Ey +cBx

+Ez 0 −Ex +cBy

−Ey +Ex 0 +cBz

−cBx −cBy −cBz 0

 . (10.180)

The elements of Gµν are obtained from those of Fµν by making the
transformation cBij → Eij and Ei → −cBi.
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Let us now consider the two Maxwell equations

∇·B = 0, (10.181)

∇ × E = −
∂B
∂t
. (10.182)

The first of these equations can be written

−∂i (cB
i) = ∂iG

i4 + ∂4G
44 = 0, (10.183)

since G44 = 0. The second equation takes the form

εijk∂jEk = εijk∂j(1/2 εkabE
ab) = ∂jE

ij = −∂4 (cBi), (10.184)

or

∂jG
ji + ∂4G

4i = 0. (10.185)

Equations (10.183) and (10.185) can be combined to give

∂µG
µν = 0. (10.186)

Thus, we conclude that Maxwell’s equations for the electromagnetic
fields are equivalent to the following pair of 4-tensor equations:

∂µF
µν =

Jν

c ε0
, (10.187)

∂µG
µν = 0. (10.188)

It is obvious from the form of these equations that the laws of
electromagnetism are invariant under translations, rotations, special
Lorentz transformations, parity inversions, or any combination of these
transformations.

10.17 TRANSFORMATION OF FIELDS

The electromagnetic field tensor transforms according to the standard
rule

Fµ
′ν ′

= Fµν pµ
′
µ p

ν ′
ν . (10.189)
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This easily yields the celebrated rules for transforming electromagnetic
fields:

E ′
‖ = E‖, (10.190)

B ′
‖ = B‖, (10.191)

E ′
⊥ = γ (E⊥ + v × B), (10.192)

B ′
⊥ = γ (B⊥ − v × E/c2), (10.193)

where v is the relative velocity between the primed and unprimed
frames, and the perpendicular and parallel directions are, respectively,
perpendicular and parallel to v.

At this stage, we may conveniently note two important invariants of
the electromagnetic field. They are

1

2
Fµν F

µν = c2 B2 − E2, (10.194)

and
1

4
Gµν F

µν = cE·B. (10.195)

The first of these quantities is a proper-scalar, and the second a pseudo-
scalar.

10.18 POTENTIAL DUE TO A MOVING CHARGE

Suppose that a particle carrying a charge e moves with uniform velocity
u through a frame S. Let us evaluate the vector potential, A, and the
scalar potential, φ, due to this charge at a given event P in S.

Let us choose coordinates in S so that P = (0, 0, 0, 0) and u = (u, 0, 0).
Let S ′ be that frame in the standard configuration with respect to S in
which the charge is (permanently) at rest at (say) the point (x ′, y ′, z ′).
In S ′, the potential at P is the usual potential due to a stationary charge,

A ′ = 0, (10.196)

φ ′ =
e

4πε0 r ′ , (10.197)

where r ′ =
√
x

′2 + y
′2 + z

′2. Let us now transform these equations
directly into the frame S. Since Aµ = (cA, φ) is a contravariant 4-
vector, its components transform according to the standard rules
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(10.75)–(10.78). Thus,

cA1 = γ
(
cA ′

1 +
u

c
φ ′
)

=
γue

4πε0 c r ′ , (10.198)

cA2 = cA ′
2 = 0, (10.199)

cA3 = cA ′
3 = 0, (10.200)

φ = γ
(
φ ′ +

u

c
cA ′

1

)
=

γ e

4πε0 r ′ , (10.201)

since β = −u/c in this case. It remains to express the quantity r ′ in
terms of quantities measured in S. The most physically meaningful way
of doing this is to express r ′ in terms of retarded values in S. Consider
the retarded event at the charge for which, by definition, r ′ = −c t ′ and
r = −c t. Using the standard Lorentz transformation, (10.24)–(10.27),
we find that

r ′ = −c t ′ = −c γ (t− ux/c2) = r γ (1+ ur/c), (10.202)

where ur = ux/r = r ·u/r denotes the radial velocity of the change in S.
We can now rewrite Equations (10.198)–(10.201) in the form

A =
µ0 e

4π

[u]

[r+ r ·u/c] , (10.203)

φ =
e

4πε0

1

[r+ r ·u/c] , (10.204)

where the square brackets, as usual, indicate that the enclosed quantities
must be retarded. For a uniformly moving charge, the retardation of u
is, of course, superfluous. However, since

Φµ =
1

4πε0 c

∫
[Jµ]

r
dV, (10.205)

it is clear that the potentials depend only on the (retarded) velocity
of the charge, and not on its acceleration. Consequently, the expres-
sions (10.203) and (10.204) give the correct potentials for an arbitrarily
moving charge. They are known as the Liénard-Wiechert potentials.

10.19 FIELD DUE TO A MOVING CHARGE

Although the fields generated by a uniformly moving charge can be cal-
culated from the expressions (10.203) and (10.204) for the potentials,
it is simpler to calculate them from first principles.
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Let a charge e, whose position vector at time t = 0 is r, move with
uniform velocity u in a frame S whose x-axis has been chosen in the
direction of u. We require to find the field strengths E and B at the event
P = (0, 0, 0, 0). Let S ′ be that frame in standard configuration with S in
which the charge is permanently at rest. In S ′, the field is given by

B ′ = 0, (10.206)

E ′ = −
e

4πε0

r ′

r ′ 3 . (10.207)

This field must now be transformed into the frame S. The direct method,
using Equations (10.190)–(10.193), is somewhat simpler here, but we
shall use a somewhat indirect method because of its intrinsic interest.

In order to express Equations (10.206) and (10.207) in tensor form,
we need the electromagnetic field tensor Fµν on the left-hand side, and
the position 4-vector Rµ = (r, c t) and the scalar e/(4πε0 r ′3) on the right-
hand side. (We regard r ′ as an invariant for all observers.) To get a
vanishing magnetic field in S ′, we multiply on the right by the 4-velocity
Uµ = γ(u) (u, c), thus tentatively arriving at the equation

Fµν =
e

4πε0 c r ′ 3 U
µ Rν. (10.208)

Recall that F4i = −Ei and Fij = −cBij. However, this equation cannot be
correct, because the antisymmetric tensor Fµν can only be equated to
another antisymmetric tensor. Consequently, let us try

Fµν =
e

4πε0 c r ′ 3 (Uµ Rν −Uν Rµ). (10.209)

This is found to give the correct field at P in S ′, as long as Rµ refers to any
event whatsoever at the charge. It only remains to interpret (10.209) in
S. It is convenient to choose for Rµ that event at the charge at which
t = 0 (not the retarded event). Thus,

Fjk = −cBjk =
e

4πε0 c r ′ 3 γ(u) (uj rk − uk rj), (10.210)

giving

Bi =
1

2
εijkB

jk = −
µ0 e

4π r ′ 3 γ(u) εijk u
j rk, (10.211)

or

B = −
µ0 e γ

4π r ′ 3 u × r. (10.212)
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Likewise,

F4i = −Ei =
e γ

4πε0 r ′ 3 r
i, (10.213)

or

E = −
e γ

4πε0 r ′ 3 r. (10.214)

Lastly, we must find an expression for r ′ 3 in terms of quantities measured
in S at time t = 0. If t ′ is the corresponding time in S ′ at the charge, we
have

r ′ 2 = r2 + c2 t ′ 2 = r2 +
γ2 u2 x2

c2
= r2

(
1+

γ2 u 2
r

c2

)
. (10.215)

Thus,

E = −
e

4πε0

γ

r3 (1+ u 2
r γ

2/c2)3/2
r, (10.216)

B = −
µ0 e

4π

γ

r3 (1+ u 2
r γ

2/c2)3/2
u × r =

1

c2
u × E. (10.217)

Note that E acts in line with the point which the charge occupies at
the instant of measurement, despite the fact that, owing to the finite
speed of propagation of all physical effects, the behavior of the charge
during a finite period before that instant can no longer affect the mea-
surement. Note also that, unlike Equations (10.203) and (10.204), the
above expressions for the fields are not valid for an arbitrarily moving
charge, nor can they be made valid by merely using retarded values.
For whereas acceleration does not affect the potentials, it does affect the
fields, which involve the derivatives of the potential.

For low velocities, u/c → 0, Equations (10.216) and (10.217) reduce
to the well-known Coulomb and Biot-Savart fields. However, at high
velocities, γ(u) � 1, the fields exhibit some interesting behavior. The
peak electric field, which occurs at the point of closest approach of
the charge to the observation point, becomes equal to γ times its non-
relativistic value. However, the duration of appreciable field strength at
the point P is decreased. A measure of the time interval over which the
field is appreciable is

∆t ∼
b

γ c
, (10.218)
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where b is the distance of closest approach (assuming γ � 1). As γ
increases, the peak field increases in proportion, but its duration goes in
the inverse proportion. The time integral of the field is independent of γ.
As γ → ∞, the observer at P sees electric and magnetic fields which are
indistinguishable from the fields of a pulse of plane polarized radiation
propagating in the x-direction. The direction of polarization is along the
radius vector pointing toward the particle’s actual position at the time
of observation.

10.20 RELATIVISTIC PARTICLE DYNAMICS

Consider a particle which, in its instantaneous rest frame S0, has mass
m0 and constant acceleration in the x-direction a0. Let us transform to
a frame S, in the standard configuration with respect to S0, in which the
particle’s instantaneous velocity is u. What is the value of a, the particle’s
instantaneous x-acceleration, in S?

The easiest way in which to answer this question is to consider the
acceleration 4-vector [see Equation (10.107)]

Aµ = γ

(
dγ

dt
u + γ a, c

dγ

dt

)
. (10.219)

Using the standard transformation, (10.75)–(10.78), for 4-vectors, we
obtain

a0 = γ3 a, (10.220)
dγ

dt
=
ua0

c2
. (10.221)

Equation (10.220) can be written

f = m0 γ
3 du

dt
, (10.222)

where f = m0 a0 is the constant force (in the x-direction) acting on the
particle in S0.

Equation (10.222) is equivalent to

f =
d(mu)

dt
, (10.223)

where

m = γm0. (10.224)
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Thus, we can account for the ever-decreasing acceleration of a particle
subject to a constant force [see Equation (10.220)] by supposing that
the inertial mass of the particle increases with its velocity according to
the rule (10.224). Henceforth, m0 is termed the rest mass, and m the
inertial mass.

The rate of increase of the particle’s energy E satisfies

dE

dt
= f u = m0 γ

3 u
du

dt
. (10.225)

This equation can be written

dE

dt
=
d(mc2)

dt
, (10.226)

which can be integrated to yield Einstein’s famous formula

E = mc2. (10.227)

The 3-momentum of a particle is defined

p = mu, (10.228)

where u is its 3-velocity. Thus, by analogy with Equation (10.223),
Newton’s law of motion can be written

f =
dp
dt
, (10.229)

where f is the 3-force acting on the particle.
The 4-momentum of a particle is defined

Pµ = m0U
µ = γm0 (u, c) = (p, E/c), (10.230)

where Uµ is its 4-velocity. The 4-force acting on the particle obeys

Fµ =
dPµ

dτ
= m0 A

µ, (10.231)

where Aµ is its 4-acceleration. It is easily demonstrated that

Fµ = γ

(
f , c

dm

dt

)
= γ

(
f ,

f ·u
c

)
, (10.232)

since

dE

dt
= f ·u. (10.233)
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10.21 FORCE ON A MOVING CHARGE

The electromagnetic 3-force acting on a charge emoving with 3-velocity
u is given by the well-known formula

f = e (E + u × B). (10.234)

When written in component form this expression becomes

fi = e (Ei + εijk u
j Bk), (10.235)

or

fi = e (Ei + Bij u
j), (10.236)

where use has been made of Equation (10.147).
Recall that the components of the E and B fields can be written in

terms of an antisymmetric electromagnetic field tensor Fµν via

Fi4 = − F4i = −Ei, (10.237)

Fij = − Fji = −cBij. (10.238)

Equation (10.236) can be written

fi = −
e

γ c
(Fi4 U

4 + Fij U
j), (10.239)

where Uµ = γ (u, c) is the particle’s 4-velocity. It is easily demonstrated
that

f ·u
c

=
e

c
E·u =

e

c
Ei u

i =
e

γ c
(F4i U

i + F44 U
4). (10.240)

Thus, the 4-force acting on the particle,

Fµ = γ

(
−f ,

f ·u
c

)
, (10.241)

can be written in the form

Fµ =
e

c
Fµν U

ν. (10.242)

The skew symmetry of the electromagnetic field tensor ensures that

Fµ Uµ =
e

c
Fµν U

µ Uν = 0. (10.243)

This is an important result, since it ensures that electromagnetic fields
do not change the rest mass of charged particles. In order to appreciate
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this, let us assume that the rest mass m0 is not a constant. Since

Fµ =
d(m0Uµ)

dτ
= m0 Aµ +

dm0

dτ
Uµ, (10.244)

we can use the standard results Uµ Uµ = c2 and Aµ Uµ = 0 to give

Fµ Uµ = c2
dm0

dτ
. (10.245)

Thus, if rest mass is to remain an invariant, it is imperative that all laws
of Physics predict 4-forces acting on particles which are orthogonal to
the particles’ 4-velocities. The laws of electromagnetism pass this test.

10.22 THE ELECTROMAGNETIC ENERGY TENSOR

Consider a continuous volume distribution of charged matter in the pres-
ence of an electromagnetic field. Let there be n0 particles per unit proper
volume (unit volume determined in the local rest frame), each carrying
a charge e. Consider an inertial frame in which the 3-velocity field of
the particles is u. The number density of the particles in this frame is
n = γ(u)n0. The charge density and the 3-current due to the particles
are ρ = en and j = enu, respectively. Multiplying Equation (10.242) by
the proper number density of particles, n0, we obtain an expression

fµ = c−1 Fµν J
ν (10.246)

for the 4-force fµ acting on unit proper volume of the distribution due to
the ambient electromagnetic fields. Here, we have made use of the def-
inition Jµ = en0 U

µ. It is easily demonstrated, using some of the results
obtained in the previous section, that

fµ =

(
ρE + j × B,

E·j
c

)
. (10.247)

The above expression remains valid when there are many charge species
(e.g., electrons and ions) possessing different number density and 3-
velocity fields. The 4-vector fµ is usually called the Lorentz force density.

We know that Maxwell’s equations reduce to

∂µF
µν =

Jν

c ε0
, (10.248)

∂µG
µν = 0, (10.249)
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where Fµν is the electromagnetic field tensor, and Gµν is its dual. As is
easily verified, Equation (10.249) can also be written in the form

∂µFνσ + ∂νFσµ + ∂σFµν = 0. (10.250)

Equations (10.246) and (10.248) can be combined to give

fν = ε0 Fνσ ∂µF
µσ. (10.251)

This expression can also be written

fν = ε0 [∂µ(F
µσ Fνσ) − Fµσ ∂µFνσ] . (10.252)

Now,

Fµσ ∂µFνσ =
1

2
Fµσ(∂µFνσ + ∂σFµν), (10.253)

where use has been made of the antisymmetry of the electromagnetic
field tensor. It follows from Equation (10.250) that

Fµσ ∂µFνσ = −
1

2
Fµσ ∂νFσµ =

1

4
∂ν(F

µσ Fµσ). (10.254)

Thus,

fν = ε0

[
∂µ(F

µσ Fνσ) −
1

4
∂ν(F

µσ Fµσ)

]
. (10.255)

The above expression can also be written

fν = −∂µT
µ
ν, (10.256)

where

Tµν = ε0

[
Fµσ Fσν +

1

4
δµν (Fρσ Fρσ)

]
(10.257)

is called the electromagnetic energy tensor. Note that Tµν is a proper
4-tensor. It follows from Equations (10.159), (10.162), and (10.194)
that

Tij = ε0 E
i Ej +

Bi Bj

µ0
− δij

1

2

(
ε0 E

k Ek +
Bk Bk

µ0

)
, (10.258)
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Ti4 = −T4i =
εijk Ej Bk

µ0 c
, (10.259)

T44 =
1

2

(
ε0 E

k Ek +
Bk Bk

µ0

)
. (10.260)

Equation (10.256) can also be written

fν = −∂µT
µν, (10.261)

where Tµν is a symmetric tensor whose elements are

Tij = − ε0 E
i Ej −

Bi Bj

µ0
+ δij

1

2

(
ε0 E

2 +
B2

µ0

)
, (10.262)

Ti4 = T4i =
(E × B)i

µ0 c
, (10.263)

T44 =
1

2

(
ε0 E

2 +
B2

µ0

)
. (10.264)

Consider the time-like component of Equation (10.261). It follows
from Equation (10.247) that

E·j
c

= −∂iT
i4 − ∂4T

44. (10.265)

This equation can be rearranged to give

∂U

∂t
+ ∇·u = −E·j, (10.266)

where U = T44 and ui = cTi4, so that

U =
ε0 E

2

2
+
B2

2µ0
, (10.267)

and

u =
E × B
µ0

. (10.268)

The right-hand side of Equation (10.266) represents the rate per unit
volume at which energy is transferred from the electromagnetic field
to charged particles. It is clear, therefore, that Equation (10.266) is
an energy conservation equation for the electromagnetic field (see Sec-
tion 8.2). The proper 3-scalar U can be identified as the energy density
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of the electromagnetic field, whereas the proper 3-vector u is the energy
flux due to the electromagnetic field: i.e., the Poynting flux.

Consider the space-like components of Equation (10.261). It is easily
demonstrated that these reduce to

∂g
∂t

+ ∇ ·G = −ρE − j × B, (10.269)

where Gij = Tij and gi = T4i/c, or

Gij = −ε0 E
i Ej −

Bi Bj

µ0
+ δij

1

2

(
ε0 E

2 +
B2

µ0

)
, (10.270)

and

g =
u
c2

= ε0 E × B. (10.271)

Equation (10.269) is basically a momentum conservation equation for
the electromagnetic field (see Section 8.4). The right-hand side repre-
sents the rate per unit volume at which momentum is transferred from
the electromagnetic field to charged particles. The symmetric proper 3-
tensorGij specifies the flux of electromagnetic momentum parallel to the
ith axis crossing a surface normal to the jth axis. The proper 3-vector g
represents the momentum density of the electromagnetic field. It is clear
that the energy conservation law (10.266) and the momentum conser-
vation law (10.269) can be combined together to give the relativistically
invariant energy-momentum conservation law (10.261).

10.23 ACCELERATED CHARGES

Let us calculate the electric and magnetic fields observed at position xi

and time t due to a charge ewhose retarded position and time are xi ′ and
t ′, respectively. From now on (xi, t) is termed the field point and (xi

′
, t ′)

is termed the source point. It is assumed that we are given the retarded
position of the charge as a function of its retarded time: i.e., xi ′(t ′). The
retarded velocity and acceleration of the charge are

ui =
dxi

′

dt ′ , (10.272)

and

.
u
i
=
dui

dt ′ , (10.273)
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respectively. The radius vector r is defined to extend from the retarded
position of the charge to the field point, so that ri = xi − xi

′. (Note that
this is the opposite convention to that adopted in Sections 10.18 and
10.19). It follows that

dr
dt ′ = −u. (10.274)

The field and the source point variables are connected by the retardation
condition

r(xi, xi
′
) =

[
(xi − xi

′
) (xi − xi

′)
]1/2

= c (t− t ′). (10.275)

The potentials generated by the charge are given by the Liénard-
Wiechert formulae,

A(xi, t) =
µ0 e

4π

u
s
, (10.276)

φ(xi, t) =
e

4πε0

1

s
, (10.277)

where s = r− r ·u/c is a function both of the field point and the source
point variables. Recall that the Liénard-Wiechert potentials are valid for
accelerating, as well as uniformly moving, charges.

The fields E and B are derived from the potentials in the usual
manner:

E = −∇φ−
∂A
∂t
, (10.278)

B = ∇ × A. (10.279)

However, the components of the gradient operator ∇ are partial deriva-
tives at constant time, t, and not at constant time, t ′. Partial differentia-
tion with respect to the xi compares the potentials at neighboring points
at the same time, but these potential signals originate from the charge at
different retarded times. Similarly, the partial derivative with respect to
t implies constant xi, and, hence, refers to the comparison of the poten-
tials at a given field point over an interval of time during which the
retarded coordinates of the source have changed. Since we only know
the time variation of the particle’s retarded position with respect to t ′
we must transform ∂/∂t|xi and ∂/∂xi|t to expressions involving ∂/∂t ′|xi

and ∂/∂xi|t ′ .
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Now, since xi ′ is assumed to be given as a function of t ′, we have

r(xi, xi
′
(t ′) ) ≡ r(xi, t ′) = c (t− t ′), (10.280)

which is a functional relationship between xi, t, and t ′. Note that(
∂r

∂t ′

)
xi

= −
r ·u
r
. (10.281)

It follows that

∂r

∂t
= c

(
1−

∂t ′

∂t

)
=
∂r

∂t ′
∂t ′

∂t
= −

r ·u
r

∂t ′

∂t
, (10.282)

where all differentiation is at constant xi. Thus,

∂t ′

∂t
=

1

1− r ·u/r c =
r

s
, (10.283)

giving

∂

∂t
=
r

s

∂

∂t ′ . (10.284)

Similarly,

∇r = −c∇t ′ = ∇ ′r+
∂r

∂t ′ ∇t ′ =
r
r

−
r ·u
r

∇t ′, (10.285)

where ∇ ′ denotes differentiation with respect to xi at constant t ′. It
follows that

∇t ′ = −
r
s c
, (10.286)

so that

∇ = ∇ ′ −
r
s c

∂

∂t ′ . (10.287)

Equation (10.278) yields

4πε0

e
E =

∇s
s2

−
∂

∂t

u
s c2

, (10.288)

or

4πε0

e
E =

∇ ′s
s2

−
r
s3 c

∂s

∂t ′ −
r

s2 c2
.
u +

ru
s3 c2

∂s

∂t ′ . (10.289)
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However,

∇ ′s =
r
r

−
u
c
, (10.290)

and

∂s

∂t ′ =
∂r

∂t ′ −
r· .u
c

+
u·u
c

= −
r·u
r

−
r· .u
c

+
u2

c
. (10.291)

Thus,

4πε0

e
E =

1

s2 r

(
r −

ru
c

)
+

1

s3 c

(
r −

ru
c

)(r ·u
r

−
u2

c
+

r· .u
c

)
−

r

s2 c2
.
u,

(10.292)

which reduces to

4πε0

e
E =

1

s3

(
r −

ru
c

)(
1−

u2

c2

)
+

1

s3 c2

(
r ×

[(
r −

ru
c

)
× .

u
])
.

(10.293)

Similarly,

4π

µ0 e
B = ∇ × u

s
= −

∇ ′s× u
s2

−
r
s c

×
( .

u
s

−
u
s2
∂s

∂t ′

)
, (10.294)

or

4π

µ0 e
B = −

r × u
s2 r

−
r
s c

×
[ .

u
s

+
u
s2

(
r ·u
r

+
r· .u
c

−
u2

c

)]
, (10.295)

which reduces to

4π

µ0 e
B =

u × r
s3

(
1−

u2

c2

)
+

1

s3 c

r
r

×
(

r ×
[(

r −
ru
c

)
× .

u
])
.

(10.296)

A comparison of Equations (10.293) and (10.296) yields

B =
r × E
r c

. (10.297)

Thus, the magnetic field is always perpendicular to E and the retarded
radius vector r. Note that all terms appearing in the above formulae are
retarded.
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The electric field is composed of two separate parts. The first term in
Equation (10.293) varies as 1/r2 for large distances from the charge. We
can think of ru = r − ru/c as the virtual present radius vector: i.e., the
radius vector directed from the position the charge would occupy at time
t if it had continued with uniform velocity from its retarded position to
the field point. In terms of ru, the 1/r2 field is simply

Einduction =
e

4πε0

1− u2/c2

s3
ru. (10.298)

We can rewrite the expression (10.216) for the electric field generated
by a uniformly moving charge in the form

E =
e

4πε0

1− u2/c2

r 30 (1− u2/c2 + u 2
r /c

2)3/2
r0, (10.299)

where r0 is the radius vector directed from the present position of the
charge at time t to the field point, and ur = u · r0/r0. For the case of
uniform motion, the relationship between the retarded radius vector r
and the actual radius vector r0 is simply

r0 = r −
r

c
u. (10.300)

It is straightforward to demonstrate that

s = r0

√
1− u2/c2 + u 2

r /c
2 (10.301)

in this case. Thus, the electric field generated by a uniformly moving
charge can be written

E =
e

4πε0

1− u2/c2

s3
r0. (10.302)

Since ru = r0 for the case of a uniformly moving charge, it is clear that
Equation (10.298) is equivalent to the electric field generated by a uni-
formly moving charge located at the position the charge would occupy
if it had continued with uniform velocity from its retarded position.

The second term in Equation (10.293),

Eradiation =
e

4πε0 c2
r × (ru× .

u)

s3
, (10.303)

is of order 1/r, and, therefore, represents a radiation field. Similar
considerations hold for the two terms of Equation (10.296).
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10.24 THE LARMOR FORMULA

Let us transform to the inertial frame in which the charge is instanta-
neously at rest at the origin at time t = 0. In this frame, u � c, so that
ru � r and s � r for events which are sufficiently close to the origin at
t = 0 that the retarded charge still appears to travel with a velocity which
is small compared to that of light. It follows from the previous section
that

Erad � e

4πε0 c2
r × (r× .

u)

r3
, (10.304)

Brad � e

4πε0 c3

.
u ×r
r2

. (10.305)

Let us define spherical polar coordinates whose axis points along
the direction of instantaneous acceleration of the charge. It is easily
demonstrated that

Eθ � e

4πε0 c2
sin θ
r

.
u, (10.306)

Bφ � e

4πε0 c3
sin θ
r

.
u . (10.307)

These fields are identical to those of a radiating dipole whose axis
is aligned along the direction of instantaneous acceleration (see Sec-
tion 9.2). The radial Poynting flux is given by

Eθ Bφ

µ0
=

e2

16π2ε0 c3
sin2 θ
r2

.
u
2
. (10.308)

We can integrate this expression to obtain the instantaneous power
radiated by the charge

P =
e2

6πε0 c3
.
u
2
. (10.309)

This is known as Larmor’s formula. Note that zero net momentum is
carried off by the fields (10.306) and (10.307).

In order to proceed further, it is necessary to prove two useful
theorems. The first theorem states that if a 4-vector field Tµ satisfies

∂µT
µ = 0, (10.310)
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and if the components of Tµ are non-zero only in a finite spatial region,
then the integral over 3-space,

I =

∫
T4 d3x, (10.311)

is an invariant. In order to prove this theorem, we need to use the 4-
dimensional analog of Gauss’s theorem, which states that∫

V

∂µT
µ d4x =

∮
S

Tµ dSµ, (10.312)

where dSµ is an element of the 3-dimensional surface S bounding the 4-
dimensional volumeV. The particular volume over which the integration
is performed is indicated in Figure 10.1. The surfacesA andC are chosen
so that the spatial components of Tµ vanish on A and C. This is always
possible because it is assumed that the region over which the components
of Tµ are non-zero is of finite extent. The surfaceB is chosen normal to the
x4-axis, whereas the surfaceD is chosen normal to the x4

′
-axis. Here, the

xµ and the xµ
′

are coordinates in two arbitrarily chosen inertial frames.
It follows from Equation (10.312) that∫

T4 dS4 +

∫
T4

′
dS4 ′ = 0. (10.313)

Here, we have made use of the fact that Tµ dSµ is a scalar and, there-
fore, has the same value in all inertial frames. Since dS4 = −d3x and

A

x1′

C

D

B

dS ′x4 x4′

x1

Figure 10.1: An application of Gauss’ theorem.



“chapter10” — 2007/12/14 — 13:59 — page 404 — #54

404 MAXWELL’S EQUATIONS AND THE PRINCIPLES OF ELECTROMAGNETISM

dS4 ′ = d3x ′ it follows that I =
∫
T4 d3x is an invariant under a Lorentz

transformation. Incidentally, the above argument also demonstrates that
I is constant in time (just take the limit in which the two inertial frames
are identical).

The second theorem is an extension of the first. Suppose that a 4-
tensor field Qµν satisfies

∂µQ
µν = 0, (10.314)

and has components which are only non-zero in a finite spatial region.
LetAµ be a 4-vector whose coefficients do not vary with position in space-
time. It follows that Tµ = AνQ

µν satisfies Equation (10.310). Therefore,

I =

∫
AνQ

4ν d3x (10.315)

is an invariant. However, we can write

I = Aµ B
µ, (10.316)

where

Bµ =

∫
Q4µ d3x. (10.317)

It follows from the quotient rule that ifAµ Bµ is an invariant for arbitrary
Aµ then Bµ must transform as a constant (in time) 4-vector.

These two theorems enable us to convert differential conservation
laws into integral conservation laws. For instance, in differential form,
the conservation of electrical charge is written

∂µJ
µ = 0. (10.318)

However, from Equation (10.313) this immediately implies that

Q =
1

c

∫
J4 d3x =

∫
ρd3x (10.319)

is an invariant. In other words, the total electrical charge contained in
space is both constant in time, and the same in all inertial frames.

Suppose that S is the instantaneous rest frame of the charge. Let
us consider the electromagnetic energy tensor Tµν associated with all
of the radiation emitted by the charge between times t = 0 and t = dt.
According to Equation (10.261), this tensor field satisfies

∂µT
µν = 0, (10.320)
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apart from a region of space of measure zero in the vicinity of the charge.
Furthermore, the region of space over which Tµν is non-zero is clearly
finite, since we are only considering the fields emitted by the charge in a
small time interval, and these fields propagate at a finite velocity. Thus,
according to the second theorem,

Pµ =
1

c

∫
T4µ d3x (10.321)

is a 4-vector. It follows from Section 10.22 that we can write Pµ =
(dp, dE/c), where dp and dE are the total momentum and energy carried
off by the radiation emitted between times t = 0 and t = dt, respectively.
As we have already mentioned, dp = 0 in the instantaneous rest frame S.
Transforming to an arbitrary inertial frame S ′, in which the instantaneous
velocity of the charge is u, we obtain

dE
′
= γ(u)

(
dE+ udp1

)
= γdE. (10.322)

However, the time interval over which the radiation is emitted in S ′ is
dt ′ = γdt. Thus, the instantaneous power radiated by the charge,

P ′ =
dE ′

dt ′ =
dE

dt
= P, (10.323)

is the same in all inertial frames.
We can make use of the fact that the power radiated by an acceler-

ating charge is Lorentz invariant to find a relativistic generalization of
the Larmor formula, (10.309), which is valid in all inertial frames. We
expect the power emitted by the charge to depend only on its 4-velocity
and 4-acceleration. It follows that the Larmor formula can be written in
Lorentz invariant form as

P = −
e2

6πε0 c3
AµA

µ, (10.324)

since the 4-acceleration takes the form Aµ = (
.
u, 0) in the instantaneous

rest frame. In a general inertial frame,

−AµA
µ = γ2

(
dγ

dt
u + γ

.
u
)2

− γ2 c2
(
dγ

dt

)2
, (10.325)

where use has been made of Equation (10.107). Furthermore, it is easily
demonstrated that

dγ

dt
= γ3

u· .u
c2
. (10.326)
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It follows, after a little algebra, that the relativistic generalization of
Larmor’s formula takes the form

P =
e2

6πε0 c3
γ6
[
.
u2 −

(u× .
u)2

c2

]
. (10.327)

10.25 RADIATION LOSSES

Radiation losses often determine the maximum achievable energy in a
charged particle accelerator. Let us investigate radiation losses in var-
ious different types of accelerator device using the relativistic Larmor
formula.

For a linear accelerator, the motion is one-dimensional. In this case,
it is easily demonstrated that

dp

dt
= m0 γ

3 .u, (10.328)

where use has been made of Equation (10.326), and p = γm0 u is the
particle momentum in the direction of acceleration (the x-direction, say).
Here, m0 is the particle rest mass. Thus, Equation (10.327) yields

P =
e2

6πε0 m
2
0 c

3

(
dp

dt

)2
. (10.329)

The rate of change of momentum is equal to the force exerted on the par-
ticle in the x-direction, which, in turn, equals the change in the energy,
E, of the particle per unit distance. Consequently,

P =
e2

6πε0 m
2
0 c

3

(
dE

dx

)2
. (10.330)

Thus, in a linear accelerator, the radiated power depends on the external
force acting on the particle, and not on the actual energy or momentum
of the particle. It is obvious, from the above formula, that light particles,
such as electrons, are going to radiate a lot more than heavier particles,
such as protons. The ratio of the power radiated to the power supplied
by the external sources is

P

dE/dt
=

e2

6πε0 m
2
0 c

3

1

u

dE

dx
� e2

6πε0 m0 c2
1

m0 c2
dE

dx
, (10.331)

since u � c for a highly relativistic particle. It is clear, from the above
expression, that the radiation losses in an electron linear accelerator
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are negligible unless the gain in energy is of order me c
2 = 0.511 MeV

in a distance of e2/(6πε0 me c
2) = 1.28× 10−15 meters. That is 3× 1014

MeV/meter. Typical energy gains are less than 10 MeV/meter. It fol-
lows, therefore, that radiation losses are completely negligible in linear
accelerators, whether for electrons, or for other heavier particles.

The situation is quite different in circular accelerator devices, such as
the synchrotron and the betatron. In such machines, the momentum p
changes rapidly in direction as the particle rotates, but the change in
energy per revolution is small. Furthermore, the direction of accelera-
tion is always perpendicular to the direction of motion. It follows from
Equation (10.327) that

P =
e2

6πε0 c3
γ4

.
u
2
=

e2

6πε0 c3
γ4 u4

ρ2
, (10.332)

where ρ is the orbit radius. Here, use has been made of the stan-
dard result

.
u= u2/ρ for circular motion. The radiative energy loss per

revolution is given by

δE =
2π ρ

u
P =

e2

3ε0 c3
γ4 u3

ρ
. (10.333)

For highly relativistic (u � c) electrons, this expression yields

δE(MeV) = 8.85× 10−2 [E(GeV)]4

ρ(meters)
. (10.334)

In the first electron synchrotrons, ρ ∼ 1 meter, Emax ∼ 0.3 GeV. Hence,
δEmax ∼ 1 keV per revolution. This was less than, but not negligible
compared to, the energy gain of a few keV per turn. For modern elec-
tron synchrotrons, the limitation on the available radio-frequency power
needed to overcome radiation losses becomes a major consideration, as
is clear from the E4 dependence of the radiated power per turn.

10.26 ANGULAR DISTRIBUTION OF RADIATION

In order to calculate the angular distribution of the energy radiated by
an accelerated charge, we must think carefully about what is meant by
the rate of radiation of the charge. This quantity is actually the amount
of energy lost by the charge in a retarded time interval dt ′ during the
emission of the signal. Thus,

P(t ′) = −
dE

dt ′ , (10.335)
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where E is the energy of the charge. The Poynting vector

Erad × Brad

µ0
= ε0 c E

2
rad

r
r
, (10.336)

where use has been made of Brad = (r × Erad)/r c [see Equation
(10.297)], represents the energy flux per unit actual time, t. Thus, the
energy loss rate of the charge into a given element of solid angle dΩ is

dP(t ′)
dΩ

dΩ = −
dE(θ,ϕ)

dt ′ dΩ =
dE(θ,ϕ)

dt

dt

dt ′ r
2 dΩ = ε0 c E

2
rad
s

r
r2 dΩ,

(10.337)

where use has been made of Equation (10.283). Here, θ and ϕ are
angular coordinates used to locate the element of solid angle. It follows
from Equation (10.303) that

dP(t ′)
dΩ

=
e2 r

16π2 ε0 c3
[r × (ru× .

u)]2

s5
. (10.338)

Consider the special case in which the direction of acceleration
coincides with the direction of motion. Let us define spherical polar
coordinates whose axis points along this common direction. It is easily
demonstrated that, in this case, the above expression reduces to

dP(t ′)
dΩ

=
e2

.
u
2

16π2 ε0 c3
sin2 θ

[1− (u/c) cos θ]5
. (10.339)

In the non-relativistic limit, u/c → 0, the radiation pattern has the famil-
iar sin2 θ dependence of dipole radiation. In particular, the pattern is
symmetric in the forward (θ < π/2) and backward (θ > π/2) directions.
However, asu/c → 1, the radiation pattern becomes more and more con-
centrated in the forward direction. The angle θmax for which the intensity
is a maximum is

θmax = cos−1

[
1

3u/c
(

√
1+ 15u2/c2 − 1)

]
. (10.340)

This expression yields θmax → π/2 as u/c → 0, and θmax → 1/(2 γ) as
u/c → 1. Thus, for a highly relativistic charge, the radiation is emitted
in a narrow cone whose axis is aligned along the direction of motion. In
this case, the angular distribution (10.339) reduces to

dP(t ′)
dΩ

� 2 e2
.
u
2

π2 ε0 c3
γ8

(γθ)2

[1+ (γθ)2]5
. (10.341)
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The total power radiated by the charge is obtained by integrating
Equation (10.339) over all solid angles. We obtain

P(t ′) =
e2

.
u
2

8π ε0 c3

∫π
0

sin3 θ dθ
[1− (u/c) cos θ]5

=
e2

.
u
2

8π ε0 c3

∫+1

−1

(1− µ2)dµ

[1− (u/c)µ]5
.

(10.342)

It is easily verified that∫+1

−1

(1− µ2)dµ

[1− (u/c)µ]5
=
4

3
γ6. (10.343)

Hence,

P(t ′) =
e2

6π ε0 c3
γ6

.
u
2
, (10.344)

which agrees with Equation (10.327), provided that u× .
u= 0.

10.27 SYNCHROTRON RADIATION

Synchrotron radiation (i.e., radiation emitted by a charged particle con-
strained to follow a circular orbit by a magnetic field) is of particular
importance in Astrophysics, since much of the observed radio frequency
emission from supernova remnants and active galactic nuclei is thought
to be of this type.

Consider a charged particle moving in a circle of radius a with con-
stant angular velocity ω0. Suppose that the orbit lies in the x-y plane.
The radius vector pointing from the center of the orbit to the retarded
position of the charge is defined

ρ = a (cosφ, sinφ, 0), (10.345)

where φ = ω0 t
′ is the angle subtended between this vector and the

x-axis. The retarded velocity and acceleration of the charge take the
form

u =
dρ

dt ′ = u (− sinφ, cosφ, 0), (10.346)

.
u =

du
dt ′ = −

.
u (cosφ, sinφ, 0), (10.347)

where u = aω0 and
.
u= aω 2

0 . The observation point is chosen such that
the radius vector r, pointing from the retarded position of the charge to
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the observation point, is parallel to the y-z plane. Thus, we can write

r = r (0, sinα, cosα), (10.348)

where α is the angle subtended between this vector and the z-axis.
As usual, we define θ as the angle subtended between the retarded
radius vector r and the retarded direction of motion of the charge u.
It follows that

cos θ =
u·r
u r

= sinα cosφ. (10.349)

It is easily seen that
.
u ·r = −

.
ur sinα sinφ. (10.350)

A little vector algebra shows that

[r × (ru× .
u)]2 = −(r· .u)2 r2 (1− u2/c2)+

.
u
2
r4 (1− r ·u/r c)2,

(10.351)

giving

[r × (ru× .
u)]2 =

.
u
2
r4
[(
1−

u

c
cos θ

)2
−

(
1−

u2

c2

)
tan2 φ cos2 θ

]
.

(10.352)

Making use of Equation (10.337), we obtain

dP(t ′)
dΩ

=
e2

.
u
2

16π2ε0 c3
[1− (u/c) cos θ)]2 − (1− u2/c2) tan2 φ cos2 θ

[1− (u/c) cos θ]5
.

(10.353)

It is convenient to write this result in terms of the angles α andφ, instead
of θ and φ. After a little algebra we obtain

dP(t ′)
dΩ

=
e2

.
u
2

16π2ε0 c3
[1− (u2/c2)] cos2 α+ [(u/c) − sinα cosφ]2

[1− (u/c) sinα cosφ]5
.

(10.354)

Let us consider the radiation pattern emitted in the plane of the orbit:
i.e., α = π/2, with cosφ = cos θ. It is easily seen that

dP(t ′)
dΩ

=
e2

.
u
2

16π2ε0 c3
[(u/c) − cos θ]2

[1− (u/c) cos θ]5
. (10.355)
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In the non-relativistic limit, the radiation pattern has a cos2 θ depen-
dence. Thus, the pattern is like that of dipole radiation where the axis is
aligned along the instantaneous direction of acceleration. As the charge
becomes more relativistic, the radiation lobe in the forward direction
(i.e., 0 < θ < π/2) becomes more focused and more intense. Likewise,
the radiation lobe in the backward direction (i.e., π/2 < θ < π) becomes
more diffuse. The radiation pattern has zero intensity at the angles

θ0 = cos−1(u/c). (10.356)

These angles demark the boundaries between the two radiation lobes. In
the non-relativistic limit, θ0 = ±π/2, so the two lobes are of equal angu-
lar extents. In the highly relativistic limit, θ0 → ±1/γ, so the forward
lobe becomes highly concentrated about the forward direction (θ = 0).
In the latter limit, Equation (10.355) reduces to

dP(t ′)
dΩ

� e2
.
u
2

2π2ε0 c3
γ6

[1− (γθ)2]2

[1+ (γθ)2]5
. (10.357)

Thus, the radiation emitted by a highly relativistic charge is focused into
an intense beam, of angular extent 1/γ, pointing in the instantaneous
direction of motion. The maximum intensity of the beam scales like γ6.

Integration of Equation (10.354) over all solid angle (making use of
dΩ = sinαdαdφ) yields

P(t ′) =
e2

6πε0 c3
γ4

.
u
2
, (10.358)

which agrees with Equation (10.327), provided that u· .u= 0. This
expression can also be written

P

m0 c2
=
2

3

ω2
0 r0

c
β2 γ4, (10.359)

where r0 = e2/(4πε0 m0 c
2) = 2.82× 10−15 meters is the classical electron

radius, m0 is the rest mass of the charge, and β = u/c. If the circular
motion takes place in an orbit of radius a, perpendicular to a magnetic
field B, then ω0 satisfies ω0 = eB/m0 γ. Thus, the radiated power is

P

m0 c2
=
2

3

(
eB

m0

)2
r0

c
(βγ)2, (10.360)

and the radiated energy ∆E per revolution is

∆E

m0 c2
=
4π

3

r0

a
β3 γ4. (10.361)
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Let us consider the frequency distribution of the emitted radiation in
the highly relativistic limit. Suppose, for the sake of simplicity, that the
observation point lies in the plane of the orbit (i.e., α = π/2). Since the
radiation emitted by the charge is beamed very strongly in the charge’s
instantaneous direction of motion, a fixed observer is only going to see
radiation (at some later time) when this direction points almost directly
toward the point of observation. This occurs once every rotation period,
when φ � 0, assuming that ω0 > 0. Note that the point of observation
is located many orbit radii away from the center of the orbit along the
positive y-axis. Thus, our observer sees short periodic pulses of radia-
tion from the charge. The repetition frequency of the pulses (in radians
per second) is ω0. Let us calculate the duration of each pulse. Since the
radiation emitted by the charge is focused into a narrow beam of angu-
lar extent ∆θ ∼ 1/γ, our observer only sees radiation from the charge
when φ <

∼ ∆θ. Thus, the observed pulse is emitted during a time interval
∆t ′ = ∆θ/ω0. However, the pulse is received in a somewhat shorter time
interval

∆t =
∆θ

ω0

(
1−

u

c

)
, (10.362)

because the charge is slightly closer to the point of observation at the
end of the pulse than at the beginning. The above equation reduces to

∆t � ∆θ

2ω0 γ2
∼

1

ω0 γ3
, (10.363)

since γ � 1 and∆θ ∼ 1/γ. The width∆ω of the pulse in frequency space
obeys ∆ω∆t ∼ 1. Hence,

∆ω = γ3 ω0. (10.364)

In other words, the emitted frequency spectrum contains harmonics up
to γ3 times that of the cyclotron frequency, ω0.

10.28 EXERCISES

10.1. Consider two Cartesian reference frames, S and S ′, in the standard configura-

tion. Suppose that S ′ moves with constant velocity v < c with respect to S along

their common x-axis. Demonstrate that the Lorentz transformation between
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coordinates in the two frames can be written

x
′ = x coshϕ − ct sinhϕ,

y
′ = y,

z
′ = z,

ct
′ = ct coshϕ − x sinhϕ,

where tanhϕ = v/c. Show that the above transformation is equivalent to a

rotation through an angle iϕ, in the x–i ct plane, in (x, y, z, i ct) space.

10.2. Show that, in the standard configuration, two successive Lorentz transforma-

tions with velocities v1 and v2 are equivalent to a single Lorentz transformation

with velocity

v =
v1 + v2

1 + v1 v2/c2
.

10.3. Let r and r ′ be the displacement vectors of some particle in the Cartesian refer-

ence frames S and S ′, respectively. Suppose that frame S ′ moves with velocity

v with respect to frame S. Demonstrate that a general Lorentz transformation

takes the form

r ′ = r +

[
(γ − 1) r · v

v2
− γ t

]
v,

t
′ = γ

[
t −

r · v
c2

]
, (10.365)

where γ = (1 − v2/c2)−1/2. If u = dr/dt and u ′ = dr ′/dt ′ are the particle’s

velocities in the two reference frames, respectively, demonstrate that a general

velocity transformation is written

u ′ =
u +

[
(γ − 1) u · v/c2 − γ

]
v

γ (1 − u · v/c2)
.

10.4. Let v be the Earth’s approximately constant orbital speed. Demonstrate that

the direction of starlight incident at right-angles to the Earth’s instantaneous

direction of motion appears slightly shifted in the Earth’s instantaneous rest

frame by an angle θ = sin−1(v/c). This effect is known as the abberation of

starlight. Estimate the magnitude of θ (in arc seconds).

10.5. Let E and B be the electric and magnetic field, respectively, in some Cartesian

reference frame S. Likewise, let E ′ and B ′ be the electric and magnetic field,

respectively, in some other Cartesian frame S ′, which moves with velocity v

with respect to S. Demonstrate that the general transformation of fields takes
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the form

E ′ = γE +
1 − γ

v2
(v · E) v + γ (v × B),

B ′ = γB +
1 − γ

v2
(v · B) v −

γ

c2
(v × E),

where γ = (1 − v2/c2)−1/2.

10.6. A particle of rest mass m and charge e moves relativistically in a uniform mag-

netic field of strength B. Show that the particle’s trajectory is a helix aligned

along the direction of the field, and that the particle drifts parallel to the field

at a uniform velocity, and gyrates in the plane perpendicular to the field with

constant angular velocity

Ω =
eB

γm
.

Here, γ = (1 − v2/c2)−1/2, and v is the particle’s (constant) speed.

10.7. Let P = E · B andQ = c2B2 − E2. Prove the following statements, assuming that

E and B are not both zero.

(a) At any given event, E is perpendicular to B either in all frames of refer-

ence, or in none. Moreover, each of the three relations E > cB, E = cB,

and E < cB holds in all frames or in none.

(b) If P = Q = 0 then the field is said to be null. For a null field, E is

perpendicular to B, and E = cB, in all frames.

(c) IfP = 0 andQ �= 0 then there are infinitely many frames (with a common

relative direction of motion) in whichE = 0 orB = 0, according asQ > 0

or Q < 0, and none other. Precisely one of these frames moves in the

direction E × B, its velocity being E/B or c2B/E, respectively.

(d) If P �= 0 then there are infinitely many frames (with a common direction

of motion) in which E is parallel to B, and none other. Precisely one of

these moves in the direction E × B, its velocity being given by the smaller

root of the quadratic equation β2 − Rβ + 1 = 0, where β = v/c, and

R = (E2 + c2B2)/|E × cB|. In order for β to be real we require R > 2.

Demonstrate that this is always the case.

10.8. In the rest frame of a conducting medium, the current density satisfies Ohm’s

law j ′ = σE ′, where σ is the conductivity, and primes denote quantities in the

rest frame.

(a) Taking into account the possibility of convection currents, as well as

conduction currents, show that the covariant generalization of Ohm’s
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law is

J
µ −

1

c2
(UνJ

ν)Uµ =
σ

c
F
µν
Uν,

where Uµ is the 4-velocity of the medium, Jµ the 4-current, and Fµν the

electromagnetic field tensor.

(b) Show that if the medium has a velocity v = cβ with respect to some

inertial frame then the 3-vector current in that frame is

j = γσ [E + β × cB − (β · E) β] + ρ v

where ρ is the charge density observed in the inertial frame.

10.9. Consider the relativistically covariant form of Maxwell’s equations in the pres-

ence of magnetic monopoles. Demonstrate that it is possible to define a

proper-4-current

J
µ = (j, ρ c),

and a pseudo-4-current

Jm = (jm, ρm c),

where j and ρ are the flux and density of electric charges, respectively, whereas

jm and ρm are the flux and density of magnetic monopoles, respectively. Show

that the conservation laws for electric charges and magnetic monopoles take the

form

∂µJ
µ = 0,

∂µJ
µ
m = 0,

respectively. Finally, if Fµν is the electromagnetic field tensor, and Gµν its dual,

show that Maxwell’s equations are equivalent to

∂µF
µν =

Jν

ε0 c
,

∂µG
µν =

Jνm
ε0 c

.

10.10. Prove that the electromagnetic energy tensor satisfies the following two

identities:

T
µ
µ = 0,

and

T
µ
σT

σ
ν =

I2

4
δ
µ
ν,
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where

I
2 =

(
B2

µ0
− ε0E

2

)2

+
4ε0

µ0
(E · B)2.

10.11. A charge e moves in simple harmonic motion along the z-axis, such that its

retarded position is z(t ′) = a cos(ω0 t
′).

(a) Show that the instantaneous power radiated per unit solid angle is

dP(t ′)
dΩ

=
e2 c β4

16π2ε0 a2
sin2 θ cos2(ω0 t

′)
[1 + β cos θ sin(ω0 t ′)]5

,

where β = aω0/c, and θ is a standard spherical polar coordinate.

(b) By time averaging, show that the average power radiated per unit solid

angle is
dP

dΩ
=

e2 c β4

128π2ε0 a2

[
4 + β2 cos2 θ

(1 − β2 cos2 θ)7/2

]
sin2 θ.

(c) Sketch the angular distribution of the radiation for non-relativistic and

ultra-relativistic motion.

10.12. The trajectory of a relativistic particle of charge e and rest mass m in a uniform

magnetic field B is a helix aligned with the field. Let the pitch angle of the helix

be α (so, α = 0 corresponds to circular motion). By arguments similar to those

used for synchrotron radiation, show that an observer far from the charge would

detect radiation with a fundamental frequency

ω0 =
Ω

cos2 α
,

where Ω = eB/γm, and that the spectrum would extend up to frequencies of

order

ωc = γ
3
Ω cosα.
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A p p e n d i x A PHYSICAL
CONSTANTS

Constant Symbol Value Units

Electron Charge e −1.6022× 10−19 C
Electron Mass me 9.1094× 10−31 kg
Proton Mass mp 1.6726× 10−27 kg
Speed of Light in Vacuum c 2.9979× 108 m s−1

Permittivity of Free Space ε0 8.8542× 10−12 F m−1

Permeability of Free Space µ0 4π× 10−7 H m−1

Gravitational Constant G 6.6726× 10−11 m3 s−1 kg−1

417



“appendixa” — 2007/11/29 — 16:42 — page 418 — #2



“appendixb” — 2007/11/29 — 16:43 — page 419 — #1

A p p e n d i x B
USEFUL
VECTOR
IDENTITIES

Notation: a, b, c, d are general vectors; φ, ψ are general scalar fields;
A, B are general vector fields.

a × (b × c) = (a · c) b − (a · b) c

(a × b) × c = (c · a) b − (c · b) a

(a × b) · (c × d) = (a · c) (b · d) − (a · d) (b · c)

(a × b) × (c × d) = (a × b · d) c − (a × b · c) d

∇ · ∇ × A = 0

∇ × ∇φ = 0

∇2A = ∇ (∇ · A) − ∇ × ∇ × A

∇(φψ) = φ∇ψ+ψ∇φ
∇(A · B) = A × (∇ × B) + B × (∇ × A) + (A · ∇)B + (B · ∇)A

∇ · (φA) = φ∇ · A + A · ∇φ
∇ · (A × B) = B · ∇ × A − A · ∇ × B

∇ × (φA) = φ∇ × A + ∇φ× A

∇ × (A × B) = A (∇ · B) − B (∇ · A) + (B · ∇)A − (A · ∇)B
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A p p e n d i x C GAUSSIAN
UNITS

In 1960 physicists throughout the world adopted the so-called SI (short
for the Système International) system of units , whose standard measures
of length, mass, time, and electric charge are the meter, kilogram, sec-
ond, and coloumb, respectively. Nowadays, the SI system is employed,
almost exclusively, in most areas of Physics. In fact, only one area of
Physics has proved at all resistant to the adoption of SI units, and
that, unfortunately, is Electromagnetism, where the previous system
of units, the so-called Gaussian system, is still widely used. Inciden-
tally, the standard units of length, mass, time, and electric charge in
the Gaussian system are the centimeter, gram, second, and statcoloumb,
respectively.

Why would anyone wish to adopt a different set units in Electro-
magnetism to that used in most other branches of Physics? The answer
is that the laws of Electromagnetism look a lot prettier in the Gaussian
system than in the SI system. In particular, there are no ε0 s and µ0 s
in any of the formulae. In fact, within the Gaussian system, the only
normalizing constant appearing in Maxwell’s equations is the velocity
of light in vacuum, c. However, there is a severe price to pay for the
aesthetic advantages of the Gaussian system.

Electromagnetic formulae can be converted from the SI to the
Gaussian system via the following transformations

ε0 → 1

4π
, (C.1)

µ0 → 4π

c2
, (C.2)

B → B

c
. (C.3)
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Transformation (C.3) also applies to quantities which are directly
related to magnetic field-strength, such as vector potential. Converting
electromagnetic formulae from the Gaussian to the SI system (or any
other system) is far less straightforward. As an example of this, consider
Coulomb’s law in SI units:

f2 =
q1 q2

4πε0

r2 − r1
|r2 − r1|3

. (C.4)

Employing the above transformation, this formula converts to

f2 = q1 q2
r2 − r1

|r2 − r1|3
(C.5)

in Gaussian units. However, applying the inverse transformation is prob-
lematic. In Equation (C.5), the geometric 4π in the SI formula has
canceled with the 1/4π obtained from transforming ε0 to give unity.
Unfortunately, it is not at all obvious that the inverse transformation
should generate a factor 4πε0 in the denominator. In order to understand
the origin of this difficulty, it is necessary to consider dimensionality.

There are four fundamental quantities in Electrodynamics: mass,
length, time, and charge, denoted M, L, T , and Q, respectively. Each
of these quantities has its own particular units, since mass, length,
time, and charge are fundamentally different (in a physical sense) from
one another. The units of a general physical quantity, such as force or
capacitance, can always be expressed as some appropriate power law
combination of the four fundamental units, M, L, T , and Q. Now, all
laws of Physics, and all equations derived from such laws, must be dimen-
sionally consistent (i.e., all terms on the left-hand and right-hand sides
must possess the same power law combination of the four fundamental
units) in order to ensure that the laws of Physics are independent of the
choice of units (which is, after all, completely arbitrary). Equation (C.4)
makes dimensional sense because the constant ε0 possesses the units
M−1 L−3 T2 Q2. Likewise, the Biot-Savart law only makes dimensional
sense because the constant µ0 possesses the unitsMLQ−2. On the other
hand, Eq. (C.5) does not make dimensional sense: i.e., the right-hand
side and the left-hand side appear to possess different units. In fact, we
can only reconcile Eqs. (C.4) and (C.5) if we divide the right-hand side
of (C.5) by some constant, 4πε0, say, with dimensions M−1 L−3 T2 Q2,
which happens to have the numerical value unity for the particular choice
of units in the Gaussian scheme. Likewise, the Gaussian version of the
Biot-Savart law contains a hidden constant with the numerical value
unity which nevertheless possesses dimensions. So, it can be seen that the
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apparent simplicity of the equations of Electrodynamics in the Gaussian
scheme is only achieved at the expense of wrecking their dimensionality.
It is difficult to transform out of the Gaussian scheme because the afore-
mentioned hidden constants, which lurk in virtually all of the equations
of Electromagnetism, do not necessarily have the value unity in other
schemes.
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A p p e n d i x D FURTHER
READING

Foundations of Electromagnetic Theory, 3rd Edition, J.R. Reitz,
F.J. Milford, R.W. Christy (Addison-Wesley, Reading MA, 1960).

Classical Electricity and Magnetism, 2nd Edition, W.K.H. Panofsky,
M. Philips (Addison-Wesley, Reading MA, 1962).

Special Relativity, 2nd Edition, W. Rindler (Interscience, New York NY,
1966).

Electromagnetic Fields and Waves, 2nd Edition, P. Lorrain, D.R. Corson
(W.H. Freeman & Co., San Francisco CA, 1970).

Classical Electrodynamics, 2nd Edition, J.D. Jackson (John Wiley & Sons,
New York NY, 1975).

Electromagnetism, I.S. Grant, W.R. Phillips (John Wiley & Sons, Chich-
ester UK, 1975).

Essential Relativity: Special, General, and Cosmological, 2nd Rev. Edition,
W. Rindler (Springer-Verlag, New York NY, 1980).

Introduction to Electrodynamics, 2nd Edition, D.J. Griffiths (Prentice-
Hall, Englewood Cliffs NJ, 1989).

Classical Electromagnetic Radiation, 3rd Edition, M.A. Heald, J.B. Marion
(Saunders College Publishing, Fort Worth TX, 1995).

Classical Electrodynamics, W. Greiner (Springer-Verlag, New York NY,
1998).
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INDEX

3-acceleration, 379
3-force, 393–394
3-momentum, 392–393
3-space, 379
3-tensor, 367, 381–382
3-vector field, 378
3-vectors, 378
4-acceleration, 379, 392–393
4-force, 393–394
4-momentum, 392–393
4-tensor theory, 367
4-tensor, 367–369
4-vector, 367–369, 403
4-velocity and 4-acceleration,

371–372
4-velocity, 371–372, 379, 389,

392–394

A
Acceleration 4-vector, 391
Accelerated charges, 397–401

Field point, 397–398
Virtual present radius vector,

401
Source point, 397–398

Action-at-a-distance laws, 52
Advanced potentials, 142–148

Green’s function, 142
Feynman-Wheeler model,

143–145

Alternating current circuits,
270–274

Resistors, 270
Inductors, 270
Capacitors, 270

Ampère, Marie Andre, 68
Ampère’s law, 75–76, 118, 239,

250, 258, 277, 284–285
Ampère’s circuital law, 79–85, 98,

116–117
Ampère’s experiments, 68–71
Angular distribution of radiation,

407–409
Rate of radiation, 407–408

Angular momentum
conservation, 294–297

Angular momentum density,
294–295

Gauss’ law, 295
Faraday’s law, 296

Ampèrian loop, 85
Ampèrian magnetic field, 138
Angular velocity, 17
Anticommutative, 13
Anticyclic permutation, 18
Antisymmetric tensor, 389
Arbitrarily shaped pulses, 131
Arbitrary wave pulses, 131
Arbitrary, 1
Associative, 13
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Associative, 6
Astronomy, 128–129, 148
Astrophysics, 409
Axial tensors, 379

B
BBC, 305
Big Bang, 309
Bio-Savart law, 95–97, 147,

138–139, 255–256,
422–423

Biot, Jean Baptiste, 95
Bound charge sheet, 220
Bound charges, 216
Boundary conditions on electric

field, 171–172
Boundary value problems with

dielectrics, 220–226
Laplace’s equation, 223

Bow waves, 140
Box-car function, 59
Breakdown, 173, 177
Boundary value problems with

ferromagnets, 244–249
Ferromagnetic sphere,

244–245
Magnetic scalar potential,

245
Laplace’s equation, 245–247
Demagnetizing, 246
Electromagnet, 249

C
Capacitance, 2, 173–174
Capacitors, 172–178, 270

Breakdown, 173, 177
Capacitance, 173–174
Conducting plates, 174
Gauss’ law, 177

Cartesian frame, 351
Cathode rays, 72, 74

Cauchy-Riemann relations,
197–198

Central conductors, 347
Charge density, 54
Cherenkov radiation, 141–142
Child-Langmuir law, 186
Classic electromagnetism, 1, 52,

374
Classical electron radius, 308,

411
Classical electrostatics, 64
Clausius-Mossotti relation,

230–234, 232
Molecular polarizability, 231

Coefficient of transmission, 330
Complex analysis, 195–202

Poisson’s equation, 195–196
Laplace’s equation, 195
Cauchy-Riemann relations,

197–198
Conductors, 163, 165–172

Surface of, 166
Uniform, 166
Cavity, 166–167
Faraday cage, 167
Gaussian pill-box, 168–169,

171–172
Gauss’ law, 166–169, 171

Coefficient of coupling, 262
Coefficient of reflection, 329–330
Coercivity, 242
Collisions, 324–325
Commutative, 6
Computer networks, 274
Conducting plates, 174
Conductors, 2
Conjugate, 363
Conservative field, 31, 56
Constitutive relation, 217
Contraction from tensors, 362
Contravariant tensor, 360–361
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Coordinate approach, 6
Coordinate-free fashion, 2
Copper, 323–324
Cosine rule of trigonometry, 11
Cosmic microwave background,

309
Coulomb gauge, 92–94, 99,

114–116
Coulomb, Charles Augustine

de, 49
Coulomb’s law, 49–54, 95, 100,

138–139, 147
Covariant tensor, 360
Curl, 38–43
Curl theorem, 42
Current density, 82
Current density 4-vector,

372–373
Current-carrying wire, 68, 76
Cut-off frequency, 346
Cyclotron frequency, 74, 319
Cylindrical polar coordinates, 43

D
D’Alembertian, 369, 374
Decomposition of surface

integral, 24
Decomposition of vector area, 40
Del operator, 31
Delta-function, 82, 135
Demagnetizing, 246
Diamagnetic, 240
Dielectric constant of a gaseous

medium, 313–314
Dielectric liquids in electrostatic

fields, 233–237
Dielectric media, 215
Dielectric tensor, 218
Dielectrics, 2
Differential scattering

cross-section, 308

Dirac delta-function, 60
Dirac, Paul, 60
Directed line element, 5
Direction, 1
Dispersion relation, 315
Dispersion relation of a

collisional plasma, 324–326
Collisions, 324–325

Dispersion relation of a plasma,
314–318

Plasma frequency, 315
Dispersion relation, 315
Theory of Relativity, 315
Group-velocity, 316
Ionosphere, 318

Displacement current, 116–123
Divergence, 32–36

Outward-pointing surface
element, 32

Flux of a vector field out of a
small box, 33

Divergence theorem, 34
Divergence theorem, 34, 37,

292
Dual electromagnetic field

tensor, 384–386
Pseudo-4-tensor, 384–385
Pseudo-3-tensor, 384–385
Proper 3-vector, 385

Dust tail, 291

E
Earnshaw’s theorem, 63–64
Einstein summation convention,

291, 360
Einstein’s Special Theory of

Relativity, 52
Electric circuits, 2
Electric dipole radiation, 306
Electric displacement, 217
Electric field, 53, 160
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Electric scalar potential, 55, 91,
112–113

Electric susceptibility and
permittivity, 217–218

Relative dielectric constant,
217

Permittivity of free space, 217
Electromagnetic energy tensor,

394–397
Lorentz force density, 394–395
Energy conservation equation,

396–397
Momentum conservation

equation, 397
Electromagnetic field tensor,

381–386, 395
Proper 4-tensor, 381–382
Pseudo-3-vector, 381–382
3-tensor, 381–382
Proper 3-tensor, 381–382

Electromagnetic momentum,
287–291

Einstein’s thought experiment,
287

Quantum theory, 289
Radiation pressure, 290

Electromagnetic radiation, 121
Electromagnetic spectrum, 129
Electromagnetic waves, 124–131,

141, 148
Electromagnetism, 63, 99, 107,

137, 145, 163, 255
Electromotive force, 108
Electrostatic energy, 157–165,

227
Gauss’ theorem, 160
Gauss’ law, 161

Electrostatic pressure, 170
Electrostatics and magnetostatics,

97–101
Electrostriction, 230

Electroweak force, 107
Energy conservation, 283–287

Energy density, 283
General electromagnetic field,

283
Electromagnetic energy, 284
Gauss’ theorem, 283–284
Ampère’s law, 284–285
Vector field theory, 285
Faraday’s law, 285
Poynting flux, 285–286

Energy conservation equation,
396–397

Energy density, 160, 287
Energy density within a dielectric

medium, 226–227
Gauss’ theorem, 227

Equation of continuity, 36
Equivalent circuit, 255
Exponential functions, 206

F
Far field region, 300
Faraday cage, 167
Faraday, Michael, 107, 116
Faraday’s law, 107–112, 116,

147, 219, 262, 268, 285,
296

Faraday rotation, 318–321
Cyclotron frequency, 319
Left-hand circularly polarized,

320
Right-hand circularly

polarized, 320
Linearly polarized

electromagnetic wave, 320
Pulsars, 321

Ferromagnetism, 241–243
Saturation magnetization, 242
Hysteresis, 242
Hysteresis loop, 242
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Retentivity, 242
Remanence, 242
Coercivity, 242

Ferromagnetic sphere, 244–245
Feynman, Richard P., 88, 143
Feynman-Wheeler model,

143–145
Field due to a moving charge,

388–391
Instant of measurement, 390

Field point, 397–398
Field theory, 1, 52, 61
Field-lines, 53
Force density within a dielectric

medium, 228–230
Force of gravity, 31
Force on a moving charge,

393–394
Fourth-rank tensor, 377–378
Fresnel’s equations, 333–335
Frustrated total internal

reflection, 338–339
Full-wave antenna, 280
Fundamental tensor, 367

G
Galilean transformation,

353–356
Gauge condition, 375
Gauge independent, 95
Gauge invariance, 113, 374–375

Gauge condition, 375
Lorentz gauge condition, 375

Gauge transformations, 92,
113–116

Gauge invariance, 113
Gauss theorem, 34
Gauss’ law, 57–66, 98, 116, 161,

166–169, 171, 177,
191–192, 195, 216–217,
220, 295

Box-car function, 59
One-dimensional spike

function, 59
Generalized function, 60
Dirac delta-function, 60
Three-dimensional spike

function, 61
One-dimensional

delta-function, 61
Stationary charge

distributions, 63
Earnshaw’s theorem, 63–64
Gaussian surface, 64

Gauss’ theorem, 78, 84, 98, 111,
117, 160, 180–183, 227,
269, 283–284, 403

Gaussian pill-box, 168–169,
171–172, 219, 244

Gaussian surface, 64
Gaussian units, 421–423
General electromagnetic field,

283
General Lorentz transformation,

366
Generalized function, 60
Gradient, 28–32

Two-dimensional gradient, 28
Gravity, 10, 49–50
Green’s function, 67, 100,

132–135, 142
Group-velocity, 316

H
Half-wave antenna, 279–280,

303
Handedness convention, 379
Heat, 164
Helmholtz, Ferdinand von, 86
Helmholtz’s theorem, 86–92, 97
Hertzian dipole, 299–306

Electromagnetic energy, 299
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Far field region, 300
Radiation fields, 301
Radiation resistance, 303
Hertizian dipole antennas,

303–306
Ohm’s law, 304
Poynting flux, 305

Hertizian dipole antennas,
303–306

High-energy physics, 141
Hydrogen, 309–310
Hysteresis, 242
Hysteresis loop, 242

I
Impedance, 272
Inductance, 2, 255–261

Electromagnetism, 255
Equivalent circuit, 255
Inductance, 255
Biot-Savart law, 255–256
Mutual reluctance, 256
Neumann formula, 257
Self-inductance, 257
Inductances of order one

micro-henry, 257–258
Ampere’s law, 258
Lenz’s law, 258–259
Ohm’s law, 260

Inductances of order one
micro-henry, 257–258

Inductors, 270
Inner multiplication of tensors,

362
Input impedance, 277
Instant of measurement,

390
Interial confinement fusion,

291
Interial mass, 392
Intertial frame, 351

Inverse Lorentz transformation,
356–357

Inverse-square force, 50
Ionosphere, 318
Isotherms, 30
Isotropic gas pressure, 294

J
Joined-up plan areas, 9

K
Kinetic energy, 56
Kronecker delta symbol, 293,

360–362

L
Laplace’s equation, 195
Laplace’s equation, 90–91, 223,

245–247
Laplacian, 36–38
Larmor formula, 402–406

Gauss’ theorem, 403
Larmor radius, 74–75
Law of physics, 422–423
Law of reflection, 332
Le Chatelier’s principle, 109
Left-hand circularly polarized,

320
Lenz’s law, 109–110, 258–259,

262
Lenzor tensor, 361
Lienard-Wiechert potentials, 388
Line integrals, 20–22
Linearly polarized

electromagnetic wave, 320
Lines of force, 36
Lorentz factor, 357–359
Lorentz force, 71–75

Lorentz force law, 72
Lorentz force density, 394–395
Lorentz formula, 129, 138
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Lorentz gauge condition,
115–116, 375

Lorentz transformation, 352–357,
371, 378

Galilean transformation,
353–356

Inverse Lorentz
transformation, 356–357

Lorentz, Hendrik Antoon, 72
Ludwig, Hermann, 86

M
Magnetic energy, 249–251,

264–270
Ohm’s law, 249–250
Ampere’s law, 250
Faraday’s law, 250
Magnetostatic energy, 251
Faraday’s law, 268
Vector field theory, 269
Gauss’ theorem, 269

Magnetic field lines, 70, 78
Magnetic induction, 109
Magnetic intensity, 239
Magnetic materials, 2
Magnetic monopoles, 76–79
Magnetic permeability, 241
Magnetic scalar potential, 245
Magnetic susceptibility and

permeability, 240–241
Paramagnetic, 240
Diamagnetic, 240
Magnetic permeability, 241
Permeability of free space, 241

Magnetic vector potential, 91–94
Gauge transformations, 92
Coulomb gauge, 92–94

Magnetization, 237–240
Magnetization current, 239
Ampere’s law, 239
Magnetic intensity, 239

Magnetization current, 239
Magnetostatic energy, 251
Magnetostatics, 99
Maxwell stress tensor, 293
Maxwell, James Clerk, 107, 116
Method of images, 186–195

Poisson’s equation, 187
Gauss’ law, 191–192, 195

Metric tensor, 367
Microwaves, 128
Milikan, robert, 73–74
Mixed tensor, 361
Molecular polarizability, 231
Momentum conservation,

291–294
Einstein summation

convention, 291
Momentum flux density tensor,

291
Divergence theorem, 292
Vector field theory, 292
Maxwell stress tensor, 293

Momentum conservation
equation, 397

Momentum flux density tensor,
291

Mutual inductance, 261–264
Coefficient of coupling, 262
Faraday’s law, 262
Lenz’s law, 262

Mutual reluctance, 256
Mutually repulsive elastic bands,

294

N
Net rate of heat flow, 37
Neumann formula, 257
Newton, Isaac, 107
Newton’s law of gravity, 49–50,

52
Nitrogen, 311
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Non-uniform dielectric constant,
218–219

Normal reflection at a dielectric
boundary, 326–330

Coefficient of reflection,
329–330

Coefficient of transmission,
330

NOVA experiment, 291

O
Oblique reflection at a dielectric

boundary, 330–336
Plane of incidence, 331
Law of reflection, 332
Snell’s law of refraction,

332–336
Fresnel’s equations, 333–335

Ohm’s law, 163–165, 249–250,
260, 270, 304, 322

Ohm-meters, 164
Oil drop experiment, 73–74
One-dimensional delta-function,

61
One-dimensional solutions of

Poisson’s equation,
184–186

Child-Langmuir law, 186
One-dimensional spike function,

59
Optical coatings, 339–342
Orested, Hans Christian, 68
Orientation of loop, 38
Orthogonal basis vectors, 7–8
Outer multiplication of tensors,

362
Oxygen, 311

P
Parallelogram, 5
Paramagnetic, 240

Parity inversion, 378
Permeability of free space, 70,

241
Permittivity of free space, 217
Perspex blocks, 141
Phase-lag, 273
Photons, 289
Physics, 31
Physical significance of tensors,

364–365
Laws of physics, 365

Plane of incidence, 331
Plasma frequency, 315
Poisson’s equation, 66–67, 93–94,

99–100, 178, 187, 195–196,
202–207

Green’s function, 67
Polar coordinates, 43–48
Polar sensors, 379
Polarization, 215–217

Gauss’ law, 216–217
Electric displacement, 217
Constitutive relation, 217

Polarization, 225
Polarization current, 237, 312
Positive definite, 180
Potential 4-vector, 374

Classical electromagnetism,
374

Potential due to a moving charge,
387–388

Lienard-Wiechert potentials,
388

Potential formulation, 123–124
Poynting flux, 285–286, 305,

397, 402
Principal of virtue work, 170
Principle of superposition, 53
Propagation in dielectric

medium, 312–313
Polarization current, 312
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Propagation in a conductor,
322–324

Ohm’s law, 322
Propagation in a dielectric

medium, 312–313
Proper 3-tensor, 381–382
Proper 3-vector, 385
Proper 4-tensor, 381–382
Proper tensors, 379
Proper time, 370–371

Time dilation effect, 371
Lorentz transformation,

371
Pseudo-3-tensor, 384–385
Pseudo-3-vector, 381–382
Pseudo-4-tensor, 384–385
Pseudo-tensors, 379
Pulsars, 321

Q
Quadruple electrostatic lenses,

199
Qualified tensor, 361
Quantum electrodynamics, 163
Quantum electromagnetism, 52
Quantum mechanics, 145
Quantum Mechanics, 51, 60
Quantum theory, 289
Quotient rule, 362

R
Radiation fields, 301
Radiation losses, 406–407
Radiation pressure, 290
Radiation resistance, 303
Radio waves, 128, 279–280
Raising and lowering suffixes,

363
Rayleigh scattering, 310–312

Simple harmonic oscillator,
310

Rate of radiation, 407–408
Real numbers, 5
Rectangular wave-guide, 345
Reflection at a metallic boundary,

342–343
Relative dielectric constant, 217
Relativistic particle dynamics,

391–392
Relativity, 115
Remanence, 242
Renormalization, 163
Resistivity, 164
Resistors, 270
Rest mass, 392
Retarded fields, 145–148
Retarded potentials, 136–142,

375–377
Retarded time, 137
Poisson’s equation, 136

Retarded time, 137
Retentivity, 242
Riemannian, 363
Right-hand circularly

polarized, 320
Right-handed rule for cross

products, 14
Right-handed set, 13
Rigid interial frames, 351
Rotation, 15–17
Rotation vector, 15–17
Rotationally invariant, 97

S
Salam, Abdus, 107
Saturation magnetization, 242
Savart, Felix, 95
Scalar differential operator, 37
Scalar potential, 115
Scalar triple product, 17–18

Volume of vector
parallelepiped, 17
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Second uniqueness theorem, 181
Self-inductance, 257
Separation of variables, 202–209

Poisson’s equation, 202–207
Shockwaves, 140–141
SI system, 422
Silver, 342
Sinusoidal oscillations, 131
Skin-effect, 324
Small angle rotations, 16
Snell’s law of refraction,

332–336
Solar System, 290
Solar Wind, 291
Solenoidal vector field, 36, 77
Sonic booms, 140
Source point, 397–398
Space-time, 365–370

Standard coordinates,
365–366

General Lorentz
transformation, 366

Standard Lorentz
transformation, 366

Fundamental tensor, 367
Metric tensor, 367
3-tensor, 367
4-tensor, 367–369
4-vector, 367–369

Special theory of relativity, 100
Spherical polar coordinate

system, 44
Spherical wavefronts, 140
Standard coordinates, 365–366
Standard Lorentz transformation,

366
Standing waves, 317
Stationary charge

distributions, 63
Stokes’ theorem, 42, 56, 80–81,

83, 98

Strong force, 107
Sun, 285, 309–311
Supernova remnants, 129
Superposable, 54
Surface integrals, 24–26

Decomposition of surface
integral, 24

Synchrotron radiation, 409–412
Classical electron radius, 411

T
Taylor series, 146
Telegrapher’s equations,

276–278
Tensors, 359–364

Einstein summation
convention, 360

Covariant tensor, 360
Contravariant tensor, 360–361
Mixed tensor, 361
Qualified tensor, 361
Lenzor tensor, 361
Theorem of tensor calculus,

361
Tensors of the same type, 362
Outer multiplication of tensors,

362
Inner multiplication of tensors,

362
Contraction from tensors, 362
Quotient rule, 362

Tensors and pseudo-tensors,
377–381

Fourth-rank tensor, 377–378
Lorentz transformation, 378
Parity inversion, 378
Polar sensors, 379
Pseudo-tensors, 379
Axial tensors, 379
Proper tensors, 379
Handedness convention, 379
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Tensors of the same type, 362
Theorem of tensor calculus, 361
Theory of Relativity, 315
Thompson, J.J., 72
Thompson scattering, 307–309

Differential scattering
cross-section, 308

Total scattering cross-section,
308

Classical electron radius, 308
Cosmic microwave

background, 309
Thompson’s experiment, 72–73
Three-dimensional

delta-function, 80
Three-dimensional spike

function, 61
Time constant, 260
Time dilation effect, 371
Total scattering cross-section, 308
Transformation of velocities,

357–359
Lorentz factor, 357–359
Velocity addition formulae,

358
Transformation of fields, 386–387
Transmission lines, 274–280

Telegrapher’s equations,
276–278

Computer networks, 274
Input impedance, 277
Ampere’s law, 277
Half-wave antenna, 279–280
Full-wave antenna, 280

Transverse electric, 345
Tranverse electric and magnetic

fields, 344–345
Cut-off frequency, 346
Transverse electric, 345
Tranverse electromagnetic, 347
Central conductors, 347

Tranverse electromagnetic, 347
Transverse magnetic, 345
Transverse wave, 127
Two-dimensional

delta-function, 80
Two-dimensional gradient, 28

U
Uniform magnetic field, 75
Uniqueness theorem, 99,

179–184
Positive definite, 180
Gauss’ theorem, 180–182
Second uniqueness

theorem, 181

V
Vacuum diode, 185
Vector addition theorem, 9
Vector algebra, 5–8

Vectors, 5
Movable, 5
Parallelogram, 5
Directed line element, 5
Vector addition, 6–8
Definition of a vector, 8

Vector calculus, 19–20
Time derivative of vector, 19

Vector field theory, 2, 269, 285,
292

Vector line integrals, 23–24
Vector field, 23
Scalar field, 23

Vector operator, 31
Vector parallelogram, 14
Vector product, 12–17
Vector surface integrals, 26–27
Vector triangle, 11
Vector triple product, 18–19
Velocity addition formulae,

358
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Virtual present radius vector,
401

Voltage, 108
Volume, 17
Volume integrals, 27

W
Wave fields, 148

Wave-guides, 343–348
Tranverse electric and

magnetic fields, 344–345
Rectangular wave-guide,

345
Transverse magnetic, 345

Weinberg, Steve, 107
Wheeler, John A., 143
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