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Modeling and experimental studies of magnetron injection locking
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A phase-locking model has been developed from circuit theory to qualitatively explain the various
regimes observed in magnetron injection-locking experiments. The experiments utilize two
continuous-wave oven magnetrons: one functions as an oscillator and the other as a driver. The
model includes both magnetron-specific electronic conductance and frequency-pulling parameter.
Both time and frequency domain solutions are developed from the model, allowing investigations
into the growth and saturation as well as the frequency response of the output signal. This simplified
model recovers qualitatively many of the phase-locking frequency characteristics observed in the
experiments. © 2005 American Institute of Physics. �DOI: 10.1063/1.2132513�
I. INTRODUCTION

Phase locking is utilized today in many important appli-
cations, ranging from small-scale devices such as cardiac
pacemakers1 to large-scale devices such as radar.2 In the de-
velopment of high-power microwave sources, phase locking
of relativistic magnetrons has been extensively studied.3–13

Some of these experiments were designed to combine the
power of several relativistic magnetrons in a phase-locked
array.3,4 A more recent experiment used a lower power but
more stable magnetron to control a high-power relativistic
magnetron that exhibits mode competition.5 Performance of
the pulsed relativistic magnetrons could improve if priming
by an external signal exclusively excites the desired mode,
usually the pi mode. Recently, interest in phase locking of
nonrelativistic magnetrons was renewed due to its possible
application in the solar power satellite �SPS�.14 The availabil-
ity, efficiency, low cost, size, ruggedness, and reliability of
the oven magnetrons make them very attractive as a fre-
quency injection-locked amplifier for the SPS.15

In this paper, we present the theory and experiments on
frequency locking using two continuous-wave �cw� oven
magnetrons. The analytical model closely follows Chen6

who made use of the Adler condition16 and the van der Pol
equation17 but included magnetron-specific growth-
saturation characteristic18 and nonlinear frequency-pulling
effect.19 The latter is believed to be especially important for
relativistic magnetrons. While Chen constructed the model
for relativistic magnetrons, we adopt it for the cw kilowatt
oven magnetron experiments.20

In Sec. II, a general phase-locking theory for magnetron
is presented. Both magnetron-specific effects mentioned
above are included in the derivation. Numerical results with
discussions on a low-power injection-locking application are
presented toward the end of Sec. II. Experimental injection
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locking with cw oven magnetrons20 is presented in Secs. III
and IV. In Sec. V, we compare the numerical and experimen-
tal results.

II. PHASE-LOCKING THEORY AND NUMERICAL
SIMULATIONS FOR MAGNETRON

What sets the magnetron apart from other types of oscil-
lators is that the electrons are born and interact with both dc
and rf electric fields inside a common resonant cavity. The
single-mode equivalent-circuit model for the magnetron
shown in Fig. 1 consists of �a� the RLC circuit which repre-
sents the resonance cavity itself, �b� the electronic conduc-
tance g and electronic susceptance b which account for the
dc-electron and rf-electron interactions inside the cavity, and
�c� the load conductance G and load susceptance B which
represent the admittance looking into an external load.6

Current conservation of the circuit in Fig. 1 can be writ-
ten as

− �g + jb�Ṽrf =
Ṽrf

R
+

Ṽrf

j�L
+ j�CṼrf + C�0

�G + jB�
Qext

Ṽrf,

�1�

where �0= �LC�−1/2 is the resonance frequency of the un-
loaded cavity, Qext is the quality factor of the external load,

and Ṽrf is the output rf voltage containing fast and slow tem-

poral components. The fast temporal component of Ṽrf has

ej�t dependence so that Ṽrf=Vrf�t�cos��t�, where Vrf�t� is
slowly varying with a time rate much smaller than �. For
magnetrons, g and b have been suggested6 to obey the rela-
tions g=−�1/R��Vdc/Vrf−1� and b=b0+g tan �, where Vdc is
the dc voltage across the A-K gap, b0 is a constant, and � is
known as the frequency-pushing parameter which is typi-
cally on the order of unity. Figure 2 qualitatively shows −g
and −b as functions of Vrf. In this model, the negative slope
of −g is responsible for the magnetron growth and saturation

6,18
characteristics.

© 2005 American Institute of Physics3-1

http://dx.doi.org/10.1063/1.2132513
http://dx.doi.org/10.1063/1.2132513


114903-2 Pengvanich et al. J. Appl. Phys. 98, 114903 �2005�
Steady-state analytic solutions of �1� can be obtained by
assuming that Vrf is constant, separating the equation into
real and imaginary parts, and solving for Vrf and �, which is
real. The normalized results then are6

Vrf,sat =
QL

QL + Q0
, �2a�

�sat � �� =�1 −
b0

Q0
−

B

Qext
−

tan �

QL
, �2b�

where 1/QL=1/Q0+G /Qext and Q0=�0RC. In deriving �2a�
and �2b�, the voltage is normalized by Vdc, time by 1/�0,
frequency by �0, and admittance by 1/R. These normaliza-
tions will be used hereafter unless otherwise specified. For
simplicity, � /�0 is also assumed to be roughly unity. The
details of the derivation along with the approximate temporal
solution of Vrf can be found in the work of Chen.6

When an external source of current ĩ1 and voltage Ṽ1 is
applied to drive the magnetron, the load admittance Y load is
modified accordingly:18

Y load =
ĩrf + ĩ1

Ṽrf + Ṽ1

, �3�

where ĩrf and Ṽrf are, respectively, the complex current and
voltage delivered to the magnetron at its plane of reference.
For convenience of notation, we will assume that the mag-

netron is driven by an external current source and let Ṽ1=0.
�The last expression on the right side of Eq. �4a� below will

still be valid even when Ṽ1 has a nonzero value. Equation
�4b� needs to be modified accordingly,18 in which case � still
represents the relative amplitudes of the external and the rf
signals.� Equation �3� then reads

Y load =
ĩrf

Ṽrf

+
ĩ1

Ṽrf

= �G + iB� + �ej�, �4a�

where

� = i1/Vrf, �4b�

and � is the relative phase difference between the phase of
the external driving signal and the phase of the rf output.
Hence, assuming that the phase of the external driving signal
is �1=�1t, the phase of the output signal would be �0

FIG. 1. The circuit model.
=�1t−�. Current conservation yields
− �g + jb�Ṽrf =
Ṽrf

R
+

Ṽrf

j�L
+ j�CṼrf

+ C�0
�G + jB� + �ej�

Qext
Ṽrf, �5�

where Ṽrf is now of the form Ṽrf=Vrf�t�cos��1t−��t��.
By allowing both Vrf and � to slowly vary in time, Eq.

�5� can be decoupled into two normalized first-order slowly
time-varying equations:6

d�

dt
+ 1 − �1 =

�

2Qext
sin � , �6a�

1

Vrf

dVrf

dt
+

1

Q0
�1 −

1

Vrf
� = −

�

2Qext
cos � . �6b�

Consequently, the free-running magnetron oscillates at its
cold resonance frequency of ��=1. The rf voltage Vrf in Eqs.
�6a� and �6b� has been rescaled so that its undriven, satura-
tion value is unity. Since � has Vrf dependence, these coupled
equations govern the amplitude and phase evolution during
the lock-in process. The locking condition can be analyti-
cally solved from �6a� by setting d� /dt=0. This gives

1 − �1 =
�

2Qext
sin � �7�

or

2Qext	1 − �1	 � � , �8�

which is the well-known Adler condition.16,18 The phase shift
near locking can be obtained by pretending �=constant and
rewriting �6a� as

d�

dt
=

�

2Qext
sin � + ��1 − 1� , �9�

whose explicit solution is18

tan��

2
� =

A

B
− F��A

B
�2

− 1, �10�

FIG. 2. g and b as functions of Vrf.
where
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A =
�

2Qext
, �11a�

B = 1 − �1, �11b�

D = �A2 − B2, �11c�

and

F =
1 + eD�t−t0�

1 − eD�t−t0� . �11d�

There are three regions of interest.

�i� D is real. In this case, �8� is satisfied and the magne-
tron is phase locked to the external source. As time
increases, F approaches −1, and � has a constant
value which can be easily determined by solving �10�.
It can be shown that when �8� is marginally satisfied,
the phase shift between the magnetron and the exter-
nal source is � /2.

�ii� D is small and imaginary. In this case, the magnetron
is not phase locked to the external source. We can
write F= i cot�	D 	 �t− t0� /2� such that the right-hand
side of �10� becomes periodic with a period of
2� / 	D	. � is no longer a constant but is a superposi-
tion between a linear function of time and a function
with periodicity 2� / 	D	. Therefore, sideband frequen-
cies at integral multiples of 	D 	 /2� can be expected
in this case. As � increases, the periodicity becomes
smaller, and the sidebands are expected to move
closer to �1.

�iii� D is large and imaginary. In this case, B�A, and the
right-hand side of �10� becomes cot�	D 	 �t− t0� /2�.
Thus, � becomes a linear function of time. The oscil-
lating frequency of the magnetron is therefore unaf-
fected by the source frequency.

Equations �6a� and �6b� can be numerically solved for
Vrf and � using the Runge-Kutta method.21,22 A MATLAB® �Ref.
23� algorithm was written to numerically solve �6a� and �6b�
for Vrf and �. The external driving signal � is applied after a
specific time, e.g., after the free-running signal saturates, to

FIG. 3. Free-running oscillator and external driving signals.
mimic the cw “injection-locking” experiment. The output
signal Ṽrf including both amplitude and phase dependence
can then be reconstructed. Its power spectrum is analyzed
using fast Fourier transform.

Figure 3 shows the power spectra of the free-running
signal constructed from �6a� and �6b� using the initial condi-
tions Vrf�0�=0.001 and ��0�=0. Also shown in Fig. 3 is the
spectrum of the drive signal that is to be applied after the
free-running signal reaches its steady state. The center fre-
quency of the free-running signal is at �0=1, and it is to be
locked to the external driving signal at �1=0.999. According
to Eqs. �8� and �4b�, with the free-running Vrf normalized to
unity, locking with these frequencies occurs when i1 /Qext

	0.002. Figures 4 and 5 show the power spectra of Ṽrf at
various i1 /Qext. When i1 /Qext is much lower than 0.002, the
magnetron frequency is unaffected by the driving frequency,
and the power spectrum has a dominant peak at �0=1 as in
the free-running case and some sidebands at multiple inte-
gers of 0.001, which is equivalent to the difference between
�0 and �1, away from the �0=1 peak. This is similar to the
aforementioned case �ii� when D is small and imaginary. As
i1 /Qext approaches the locking criterion, the sidebands be-
come stronger while the dominant peak becomes smaller.
The frequency separation between adjacent sidebands also
becomes smaller. When locking occurs, the sidebands disap-

FIG. 4. Locking signal at i1 /Qext=0.0008 and 0.0012.
FIG. 5. Locking signal at i1 /Qext=0.0019 and 0.0026.
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pear and the oscillator oscillates at the frequency centered
around �1 as predicted by case �i� when D becomes real.

We have observed that phase locking may occur even
when the Adler condition, Eq. �8�, is not met. In such cases,
a closer examination of Vrf in time domain shows that Vrf

violently fluctuates when the external driving signal is ini-
tially applied, before it settles into a new saturation level
which is lower than the saturation level in the free-running
case. We suspect that the initial fluctuation allows phase
locking to occur at a drive level below the Adler criterion.
This interesting topic is beyond the scope of this paper.

III. EXPERIMENTAL SETUP

Two cw 2.45-GHz 800-W magnetrons are used by the
microwave research group at the University of Michigan20 to
demonstrate phase locking in reflection amplifier experi-
ments. One magnetron functions as a driver and the other as
an oscillator. The experimental configuration is shown in Fig.
6. The driver magnetron is manufactured by National Elec-
tronics, model SXRH �with ASTEX power supply, model
S-1000i�. The oscillator magnetron is manufactured by Na-
tional Electronics, model HS �with ASTEX power supply,
model S-1000�. These ASTEX power supplies are very
stable and can deliver a well-filtered dc voltage. Three wave-
guide circulators are used to separate the direct and reflected
powers so that the two magnetrons are not mutually coupled.
The majority of the microwave power produced by the driver
magnetron is dissipated into a water load, while a controlled
fraction is injected into the oscillator magnetron. A three-stub
tuner is employed for the purpose of varying the amount of
power injected into the oscillator without changing the in-
jected frequency. Several 30 dB directional couplers are
implemented in order to sample microwave signals for

FIG. 6. The reflection amplifier setup.
power measurement �with Agilent E4418B digital power
meters� and spectrum measurements �with an Agilent 8564
EC spectrum analyzer�. WR-284 waveguides �2.84 in. wide�
have been used in experiments.

It should be mentioned that the ASTEX power supplies
yield stable �in time� oven magnetron microwave spectra.
The central peak in the microwave spectra �corresponding to
the 2.45-GHz pi-mode oscillation� does not exhibit time jitter
or amplitude modulation. This stability allows relatively ac-
curate frequency and phase noise measurements. A 100-kHz
resolution bandwidth was utilized in spectrum analyzer mea-
surements.

Magnetron filament power is controlled automatically
within the power supply for optimum operation at every
power level. The only control offered by the ASTEX power
supplies is the microwave power level. Peak frequency is
directly proportional to the output power for both magne-
trons. Previously, Brown15 used a frequency-pulling section
to change the driver frequency; in our experiments the driver
frequency change has been achieved by varying the output
power of the driver magnetron.

IV. EXPERIMENTAL RESULTS

Initial experiments show that the oscillator magnetron
peak frequency increases when the output power �current�
increases as illustrated in Fig. 7. It is found that this magne-
tron behavior can be altered by injecting an external signal to
force the output frequency to remain relatively constant. At
zero drive, as the free-running oscillator output power in-
creases from 200 to 350 W, its peak frequency changes by
0.07%. When 16-W power from the driver is injected into
the oscillator, the peak frequency remains comparatively
constant and locked to the driver frequency at 2.4478 GHz.

Further detailed experiments are performed20 to under-
stand the physics of injection locking. By fixing the driver
output power, the driver frequency is maintained constant at
2.4482 GHz. The free-running oscillator produces 825 W of
the microwave power �P0� with the frequency centered

FIG. 7. Peak frequency dependence on the output power of the free-running
oscillator �zero drive power�. With an external injected power at 16 W, the
oscillator frequency remains constant �locked�.
around �0 /2�=2.4511 GHz. Power spectra of the oscillator
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and the driver in free-running state are shown in Fig. 8. For
Qext
250, Adler’s condition gives the required injected
power Pinject for phase locking:16

Pinject 	 P0Qext
2 � f0 − f1

f0
�2

= �825��250�2�2.4511 − 2.4482

2.4511
�2


 58 W. �12�

The injected power can be varied without changing the
driver frequency by adjusting the �reflecting� three-stub
tuner. Figures 9 and 10 present various stages of injection
locking as the injected power is increased. For the injected
power of 5 W, the spectrum already shows dramatic changes
from the free-running state. While the main peak of the re-
flection amplifier spectrum has roughly the same frequency
as the free-running oscillator magnetron, there are sidebands
situated at multiples of 3 MHz �6 MHz, 9 MHz, etc.� away
from the carrier. These numbers correspond to the integer
multiple of the frequency difference between the driver and
the free-running oscillator. Therefore, even with 5-W in-
jected power, the reflection amplifier shows the potential for
injection locking.

FIG. 8. The oscillator and the driver in free-running mode for the experi-
ments performed to study the mechanism of injection locking �varied Pdrive�.
P0=825 W.
FIG. 9. Reflection amplifier microwave spectra when Pdrive are 5 and 15 W.
As the injected power is increased to 15 W, the height of
the main peak decreases while the secondary peaks, each
3 MHz from the carrier, gain strength. This effect is signifi-
cant, and from Fig. 9 one could predict that the more power
injected in the oscillator, the stronger the peak at
2.4482 GHz. One can observe that at 55-W injected power in
Fig. 10 �slightly lower than the required locking power pre-
dicted in Eq. �12��, the highest peak in the reflection ampli-
fier microwave spectrum is emitted near 2.4482 GHz, i.e.,
the frequency of the driver. The oscillator frequency is there-
fore partially locked to the driver frequency. Despite the fact
that the emitted frequency has the desired value in this case,
there exist some secondary peaks. There is also a large
“bump,” at roughly 17 dB below the carrier, at frequencies
above the carrier. These secondary peaks have been de-
scribed and predicted by the aforementioned analytical
model, specifically in case �ii� when D is small and imagi-
nary. At 100-W injected power, however, all secondary peaks
disappear and the reflection amplifier frequency is com-
pletely locked at the driver frequency �Fig. 10� as predicted
in case �i� when D is real. Nevertheless, small plateaus on
both sides of the main peak are still visible.

V. COMPARISON BETWEEN NUMERICAL
CALCULATIONS AND EXPERIMENTAL RESULTS

In both numerical calculations �Figs. 3, 4, and 5� and in
experiments �Figs. 8, 9, and 10�, the externally injected sig-
nal is below the oscillator frequency by 0.1%. That is, the
fractional frequency change was maintained as a constant,

� f0 − f1

f0
� = 0.1 % .

Frequency analyses of the oscillator output signals allow
qualitative comparisons between the experimental data and
the theoretical model in three regimes of phase locking: no
locking, partial locking, and full locking. No locking indi-
cates that the oscillator frequency is slightly affected or un-
affected by the driver frequency, and therefore continues to
oscillate mainly at its free-running frequency. Partial locking
indicates that the oscillator tends to oscillate at the driver

FIG. 10. Reflection amplifier microwave spectra when Pdrive are 55 and
100 W.
frequency while still also oscillating at its free-running fre-
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quency. Full locking indicates that the oscillator fully oscil-
lates at the driver frequency. In subsequent discussions, it is
important to note that the locking frequency of the driver is
lower than the free-running frequency of the oscillator, both
in the experiment and the simulation. The predicted locking
criterion is Pdrive	58 W for the experiment, and i1 /Qext

	0.002 for the simulation.
The following phase-locking characteristics have been

observed both in the injection-locking experiment �Figs. 9
and 10� and in the simulation �Figs. 4 and 5� based upon the
presented theoretical model.

�1� When Pdrive and i1 /Qext are substantially below the lock-
ing criterion �Figs. 4 and 9�, �a� the dominant peaks on
all the frequency spectra are emitted near the free-
running oscillator frequency. No locking occurs and the
oscillator mainly oscillates at its free-running frequency.
In all cases, the strength of the dominant peaks is also
lower than the strength of the free-running peaks in Fig.
3 and 8. �b� Sidebands are observed above and below the
dominant frequency peak. These sidebands are emitted
at the frequencies which differ from the frequency of the
dominant peak roughly by multiple integers of the fre-
quency difference between the free-running oscillator
and the driver frequencies. Consequently, the first side-
band below the main peak is emitted exactly at the
driver frequency. The strength of the sidebands substan-
tially reduces further away from the dominant peak. The
reduction appears to be more prominent on the side-
bands below the driver frequency, which is hardly sur-
prising considering the free-running spectra in Figs. 3
and 8.

�2� As Pdrive and i1 /Qext are closer to Adler’s locking crite-
rion �Figs. 4 and 9�, �a� the dominant peak and all side-
bands above the driver frequency move toward the
driver frequency, while the sidebands below the driver
frequency stay at the same values. �b� The strength of
the dominant frequency peak continuously subsides
while the sidebands become stronger.

�3� When Pdrive and i1 /Qext are very close to the locking
criterion �Figs. 5 and 10�, the sideband emitted at the
driver frequency becomes the dominant peak. The oscil-
lator frequency is partially locked to the driver fre-
quency. The frequencies of the previous dominant peak
and the other sidebands shift accordingly and cluster
around the new dominant peak.

�4� Full phase locking is confirmed in both experiment and
simulation when Pdrive and i1 /Qext are above the Adler
criterion �Figs. 5 and 10�. All sidebands disappear leav-
ing only the dominant peak emitted at the driver fre-
quency. The strength of the peaks is comparable to that
of the free-running oscillator peaks in Figs. 3 and 8.

Another characteristic which the injection-locking ex-
periment manifests, but has not been captured in the theoret-
ical model, is the spectral plateaus around the phase-locked
signal shown in Fig. 10 when Pdrive=100 W. It has been
confirmed that the spectral plateaus continue to exist even at

higher drive power.
On the other hand, the numerical simulation based on the
theoretical model suggests that phase locking can occur even
when the Adler locking criterion is not met. For a given drive
power, this translates to some additional locking bandwidth.

It should be mentioned that although the discrepancies in
the quantitative behaviors between the experimental and the
simulation results may be attributed to the oversimplification
of the model employed, some of them could be explained by
the limitations of the spectrum analyzer used in the experi-
ment. Such limitations include the finite sweep time and the
limited frequency resolution, which could possibly explain
the difference between the bump on the spectrum in Fig. 10
when Pdrive=55 W and the finite peaks on the spectrum in
Fig. 5 when i1 /Qext=0.0019.

In summary, although there exists no analytical theory
that is capable of accurately predicting magnetron behavior,
the circuit model introduced in this paper is shown to be able
to qualitatively recover the injection-locking characteristics
observed in the experiment performed with the cw oven
magnetron reflection amplifier.
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