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Nickel ferrite (NiFe2O4) nanoparticles were synthesized using co-precipitation method. The X-ray 
diffraction (XRD) pattern was used to determine the structure of NiFe2O4 nanoparticles. The presence 
of NiFe2O4 nanoparticles was confirmed by the FT-IR spectrum. The details of the surface morphology 
of NiFe2O4 nanoparticles were obtained by Scanning Electron Microscopic analysis. The particle size 
of the NiFe2O4 nanoparticles could be determined by means of Transmission Electron Microscopy. 
This work aimed at the investigation of the dielectric properties such as the dielectric loss and the 
dielectric constant of NiFe2O4 nanoparticles at varied frequencies and temperatures. In addition, the 
magnetic properties of the NiFe2O4 nanoparticles were studied. 
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1. Introduction

The last few decades saw substantial development in the 
field of nano technology, particularly in physical sciences. 
The synthesis of nano crystalline spinel ferrites plays an 
important role in determining their physical properties at nano 
and sub nano levels. Ferrites have established their potential 
in several applications due to their remarkable electrical and 
magnetic properties, and also in magnetic resonance imaging 
(MRI) enhancement, magnetic high-density information 
storage etc. Nickel ferrite is one of the multifaceted and 
technologically important soft ferrite materials because of its 
typical ferrimagnetic properties, lower eddy current losses, 
low conductivity and high electrochemical stability1,2. Nickel 
ferrite (NiFe2O4) has a counter spinel structure. The location 
of the divalent cations (Ni2+) in the crystal structure is almost 
homologous to the magnetic properties of the nickel ferrite. 
However, nickel ferrite shows super-paramagnetic nature 
and it has diverse applications such as gas-sensor, magnetic 
fluids, catalysts, magnetic storage systems, photomagnetic 
materials, site-specific drug delivery, magnetic resonance 
imaging and microwave devices3-7. Various methods such 
as hydrothermal method8, co-precipitation method9, gel-
assistant hydrothermal route10, thermolysis11, wet chemical 
co-precipitation technique12, self-propagating13, have been 
developed to prepare nanocrystallite nickel ferrite. This paper 
focuses on the synthesis of NiFe2O4 nanoparticles using the 
co-precipitation method, their characterization by means of 
powder X-ray diffraction, Scanning Electron Microscopy 
(SEM), FTIR, Transmission Electron Microscope (TEM), 

and the determination of the dielectric properties and the 
magnetic behaviour of NiFe2O4 nanoparticles. 

2. Experimental procedure

Nickel ferrite (NiFe2O4) nanoparticles were synthesized 
via co-precipitation method. Typical synthetic procedures 
required analytical grade 3M solution of sodium hydroxide 
(NaOH) which was slowly added to salt solutions of 0.4M 
ferric chloride (FeCl3) and 0.2 M nickel chloride (NiCl2). 
The pH of the solution was constantly observed as the NaOH 
solution was added drop wise. The reactants were consistently 
stirred using a magnetic stirrer until a pH level of ˃12 was 
achieved. A specified amount of oleic acid was added to the 
solution as the surfactant. The liquid precipitate was then 
brought to a reaction temperature of 80°C and stirred for 30 
min. The product was cooled to room temperature and then 
washed twice with distilled water and ethanol to eliminate 
unwanted impurities and the residual surfactant from the 
prepared sample. Finally, the sample was centrifuged and 
then dried overnight at about 80°C. The acquired substance 
was then ground into a fine powder. 

3. Results and Discussion

3.1 XRD analysis

The XRD pattern of the NiFe2O4 nanoparticles was 
recorded by using a powder X-ray diffractometer {Schimadzu 
model: XRD 6000 using CuKα (λ=0.154 nm) radiation}, 
with a diffraction angle between 30º and 60º. Figure 1 shows 
the XRD patterns of the as-prepared NiFe2O4 nanoparticles. 
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The patterns show the formation of single phase cubic spinal 
crystal structure. The NiFe2O4 nanoparticles contained no 
impurity peaks within the limit of X-ray detection. The broad 
peaks of X-ray diffraction patterns stipulate that the particles 
of the synthesized samples are in nanometer range. The 
average crystallite size of the samples could be calculated 
using Scherrer's formula

            (1)

where λ is the X-ray wavelength (CuKα radiation and 
equals to 0.154 nm), θ is the Bragg diffraction angle, and β 
is the FWHM of the XRD peak appearing at the diffraction 
angle θ. The average crystalline size was calculated from 
the X-ray line broadening using Scherrer equation and it 
was found to be about 18 nm which is almost similar to the 
reported value 16 nm14.

particles are shown in Figure 3. SEM micrograph depicts 
that the samples contain micrometrical aggregation of tiny 
particles. The existence of high dense agglomeration indicates 
that pore free crystallites are present on the surface. The SEM 
images show the agglomerated form of NiFe2O4 nanoparticles. 
As the nanoparticles possess high surface energies, they tend 
to agglomerate and grow into larger assemblies.
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Figure 1. XRD pattern of NiFe2O4 nanoparticles.

3.2 FTIR analysis

The FTIR spectrum of the NiFe2O4 nanoparticles was 
taken using an FTIR model Bruker IFS 66W Spectrometer. 
In order to determine the chemical structure of the sample, 
the FTIR spectrum was observed above the frequency range 
of 4000-500 cm-1 as shown in Figure 2. The decomposition 
of hydroxide to oxide phase for the formation of spinel 
ferrites was well reflected in the FTIR spectrum. It has been 
reported that the IR bands of solids are usually attributed to 
the vibration of ions in the crystal lattice. The bands at 552 
cm-1 and 464 cm-1 represented tetrahedral and octahedral 
modes of NiFe2O4, respectively15. The band located at 3389 
cm-1 could be attributed to the symmetric vibration of -OH 
groups. The bands with peaks observed at 1038 cm-1 could 
be assigned to O-H bending vibration16. The peak at 2333 
cm-1 was ascribed to H-O-H bending vibration of the free 
or absorbed water17.

3.3 SEM analysis

SEM studies were carried out using JEOL, JSM- 67001. 
The samples needed a coating of gold for SEM analysis for 
the avoidance of charging effect. The morphology and the size 
distribution of the NiFe2O4 nanoparticles were determined 
using SEM. Typical SEM images of NiFe2O4 synthesized 

Figure 2. FTIR spectrum of NiFe2O4 nanoparticles.

Figure 3. SEM image of NiFe2O4 nanoparticles.

3.4 TEM analysis

Transmission Electron Microscopic (TEM) image was 
taken using an H-800 Transmission Electron Microscopy 
(Hitachi, Japan) with an accelerating voltage of 100kV. 
The colloidal nanoparticles solution had to be dried on the 
copper grid before analysis. Figure 4 shows the TEM image 
of the NiFe2O4 nanoparticles. In the TEM image most of the 
particles appear to be spherical; however, some elongated 
particles are also present in the image. Some moderately 
agglomerated particles as well as segregated particles are 
also present in the sample. The estimated average size of the 
nanoparticles by TEM was about 28 nm which was almost 
similar to that of the reported values18.
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over the frequency range 50Hz-5MHz. The NiFe2O4 
nanoparticles pellets in disk form were studied at different 
temperatures. For measurements, the samples were obtained 
with the diameter of ~10 mm and thickness ~1 mm and 
a sample was placed between the electrodes having a 
conventional four terminal sample holder for investigations 
involving temperature variations along with a conventional 
two terminal sample holder for ambient conditions alone. 
The sample was mounted between copper platforms and 
electrodes. To ensure good electrical contact, the faces were 
coated with silver paint. The capacitance and the dissipation 
factor of the parallel plate capacitor which was formed by 
the copper plate and the electrode having the sample as a 
dielectric medium were measured. Analysis on the dielectric 
behaviour of NiFe2O4 nanoparticles provided much useful 
information about the electric field distribution within the as 
grown NiFe2O4 nanoparticles. At various temperatures and at 
a frequency ranging from 50Hz to 5MHz the measurements 
were performed. The dielectric constant and dielectric loss 
were determined from the equations 2 and 3 respectively.

            (2)

            (3)

where A is the area of the sample and d is the thickness 
of the sample. The relative permittivity (εr) is usually known 
as dielectric constant. A study of the dielectric nature of 
NiFe2O4 nanoparticles could furnish useful information about 
the electric field allocation within the NiFe2O4 nanoparticles. 
The frequency dependence of the dielectric constant and the 
dielectric loss at various temperatures is shown in Figures 6 
and 7 respectively. It could be learned that both the dielectric 
constant and the dielectric loss exhibited homologous nature. 
The dielectric constant of materials is influenced by the totality 
of electronic, ionic, bipolar and space charge polarizations 
of the frequencies21. All the four polarization mechanisms 
seem to be active at low frequencies. Lower frequencies 
and high temperatures normally aid the progress of space 
charge polarization. The low value of the dielectric constant 
with increasing frequency could be ascribed to the loose 
or weak bond of ions at the lower frequency range22. Still 
greater values of the dielectric constant at lower frequency 
values are possible due to the charge accumulation at the 
grain boundaries. Another possibility to gain higher values 
is due to heterogeneous dielectric structure which possesses 
the interfacial/space charge polarization. Due to the fact 
that beyond a certain frequency of the external field, the 
polarization decreased with the increase in frequency and 
then reached a constant value, the hopping between various 
metal ions could not follow the alternating field. It was 
noticed that the value of the dielectric constant decreased 
with increase in the frequency23.The dielectric loss is a broad 
indication of the energy dissipation in the dielectric system.

Figure 4. TEM image of NiFe2O4 nanoparticles.

3.5 Magnetic measurements

The magnetic behavior of NiFe2O4 nanoparticles was 
investigated using VSM (Lakeshore VSM 7410). The high 
coercivity values account for the slower rate of growth of 
crystallite size that takes place during the heating process. 
It is not only the temperature but also the morphology that 
seems to significantly influence the magnetic properties. 
The increased value of the coercivity could be attributed 
to the magnetic spin orientation along the axis that eases 
magnetization19. On account of the grain boundaries and free 
surface, the magnetic properties improved20. Figure 5 shows 
the magnetic hysteresis loops of the NiFe2O4 nanoparticles 
at room temperature. The magnetic parameters, namely 
retentivity, coercivity, and saturation magnetization of the 
sample were measured to be 3875 G, 0.142emu/g, and 
0.343emu/g respectively.

Figure 5. Magnetic properties of NiFe2O4 nanoparticles.

3.6 Dielectric Properties

The dielectric properties of the NiFe2O4 nanoparticles 
were analyzed using an HIOKI 3532-50 LCR HITESTER 

/C A dr 0f f=

/ .tan f R C1 2 3 14 P P# # #d =



Sagadevan et al.4 Materials Research

Figure 7 shows the curve explaining how the dielectric 
loss factor varies with the frequency at various temperatures. It 
becomes clear from the graph that the dielectric loss decreases 
with the increase in frequency and attains a low value in the 
high frequency region. The study clearly showed that the 
dielectric loss suddenly dropped at lower frequencies and 
attained constancy at higher frequencies. Further, it could 
be observed that owing to the space charge polarization the 
dielectric loss decreased with the increase in the frequency 
for all temperatures24,25.

temperature on the dielectric loss and the dielectric constant 
for NiFe2O4 nanoparticles was studied. From the dielectric 
studies it became evident that the frequency negatively 
impacted both the dielectric constant and the dielectric 
loss as decreased with increase in the frequency. A study 
of the magnetic properties was also carried out using VSM 
measurements.
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