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Abstract—Nonreciprocal components are ubiquitous in elec-
tronic and optical systems. To date, the use of magneto-optical
materials has been the prevailing method to achieve nonre-
ciprocity. However, magnetic-based devices are accompanied
by several drawbacks, such as the requirement of bulky biasing
devices and their incompatibility with semiconductor technology,
which make their integration challenging. Recently, strong mag-
netless nonreciprocity was demonstrated in spatiotemporally
modulated coupled-resonator networks as a result of an effective
spin imparted to the structure by an RF signal. These struc-
tures can be easily integrated, and they potentially exhibit good
power and noise performance, as any parametric device. Here,
we develop an analytical theory for such devices, which allows
determining the conditions for designing them with optimum
characteristics, and present two designs based on lumped- and
distributed-element circuits for applications at the very high-fre-
quency and wireless-communications bands, respectively. The
circulators exhibit large isolation and low insertion loss within
reasonable modulation requirements. Furthermore, they can
be realized with a modulation frequency substantially lower
than the input frequency, significantly simplifying the design.
Measurements for the lumped-element design are provided and
show good agreement with theory and full-wave simulations. The
nonlinear characteristics of the presented designs are also studied,
and possible ways to reduce nonlinear distortion by increasing the
static bias of the varactors or using advanced varactor topologies
are explored.
Index Terms—Circulator, nonreciprocity, temporal modulation.

I. INTRODUCTION

I N ORDER to realize nonreciprocity, a crucial task in
electronic and optical applications, one must break time-re-

versal symmetry. Nonreciprocal devices play a pivotal role
in communication systems, from protecting coherent source
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Fig. 1. Nonreciprocity through biasing with magnetic and angular-momentum
vectors. (a) Magnetic nonreciprocity. When a ferromagnetic medium is biased
with static magnetic field, the electrons of the medium precess preferably in a
particular direction. As a result, circularly polarized waves with opposite rota-
tion directions interact differently with the medium (their effective refractive
indices are different) and nonreciprocity is produced. (b) Angular-momentum
nonreciprocity with a resonant ring. By imparting angular momentum to the
ring, either mechanically or electrically, we can lift the degeneracy between
counter-rotating modes of the ring and produce nonreciprocity. (c) Angular-mo-
mentum nonreciprocity with a loop of identical resonators symmetrically cou-
pled to each other. Angular momentum is effectively applied to the loop by
modulating the resonators with low-frequency signals with equal amplitudes
and phase difference of 120 . Modulation lifts the degeneracy of the counter-ro-
tating modes of the loop, as opposed to the counter-rotating states of a single
ring in (b).

generators from reflected signals, to cancelling crosstalk be-
tween transmit and receive signal paths in antenna feeding
networks [1]. Onsager-Casimir’s principle on reciprocity states
that, in order to break the reciprocity of a linear system, it is
necessary to bias it with a quantity that is odd-symmetric under
time reversal [2]–[4]. Four quantities are known to satisfy this
requirement, i.e., the magnetic field, the electric current, the
linear momentum, and the angular momentum.
For decades, the most common approach for breaking

reciprocity consisted in applying external magnetic fields to
ferromagnetic media [1], [5]. In the absence of a magnetic
field, the microscopic magnetic domains in such materials are
oriented in random directions and the net magnetic activity
is negligible. However, when biased with a static magnetic
field [see Fig. 1(a)], these microscopic domains are aligned in
the same direction (along the magnetic bias) and a preferred
rotation direction is imparted to the corresponding magnetic
moments. As a result, circularly polarized electromagnetic
waves with opposite rotation directions interact differently with
such media, and time-reversal symmetry (reciprocity) is broken.
Magnetic biasing may provide a well-established means to
break reciprocity, but contains innate limitations. Integration
of magnetic materials into complementary metal–oxide–semi-
conductor (CMOS) processing is a challenging task, due to
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the incompatibility between magnetic materials and semicon-
ductors in terms of their crystal structure [6], and the typical
requirement of external biasing devices, which increase size and
weight. External biasing may be avoided through ferromagnetic
materials with spontaneous magnetization, such as hexaferrites
[7] and ferromagnetic nanowire membranes [8], [9], but such
approaches are currently limited by fabrication challenges and
the nonoptimal performance of the corresponding devices.
On the other hand, the integration of nonreciprocal devices is
of tremendous importance since it may eventually allow the
realization of full-duplex communication systems and enhance
the speed of wireless communications networks.
Several alternatives to magnetic biasing were proposed in

the past decades, the first one involving circuits with field-ef-
fect transistors [10], [11]. Such approaches are fully compat-
ible with integrated circuit (IC) technology, but they generally
suffer from poor noise performance and strong nonlinearity.
More recently, [12]–[14] proposed a class of magnetless nonre-
ciprocal metamaterials based on transistor-loaded rings. Tran-
sistors force waves in the rings to travel in only one direction,
thereby mimicking the electron spin precession in magnetized
ferrites. These works were successful in realizing effective fer-
rite media, which, like real ferrites, can produce Faraday ro-
tation or be used as substrates in microwave devices. How-
ever, they are also bound to the limitations related to power
handling, nonlinearities, and noise sensitivity of previous tran-
sistor-based approaches. Transistor-based metamaterials were
also presented in [15] and [16], with similar limitations. Nonlin-
earity was also studied as a potential path to magnetless nonre-
ciprocity, especially at optical frequencies [17]–[20]. However,
such approaches usually require strong input intensities and lead
to significant signal distortion, in addition to being inherently
dependent on the signal amplitude.
Following an approach similar to distributed parametric

amplification and frequency conversion [21]–[24], it was re-
cently shown that linear low-noise strong nonreciprocity can
be achieved by spatiotemporal modulation of waveguides via
appropriate electrical or acoustical signals [25]–[34]. However,
the weak nature of the electro-optical and acousto-optical ef-
fects, through which modulation is typically achieved, leads to
bulky devices, especially at optical frequencies. Furthermore,
many of these works rely on nonuniform modulation across
the waveguide cross section, significantly complicating the
fabrication process.
Inspired by Onsager-Casimir’s principle and the phys-

ical mechanism that creates nonreciprocity in ferrites, [35]
presented a new class of metamaterials that provide strong,
low-noise, and linear nonreciprocity at the sub-wavelength
scale through biasing with the angular-momentum vector. The
main element of these metamaterials is a ring resonator, which,
like the atoms of real materials, supports pairs of degenerate
states with opposite angular momentum. Biasing the ring
with the angular momentum vector lifts the degeneracy and
produces nonreciprocity, much like a magnetic bias produces
nonreciprocity in ferromagnetic materials [see Fig. 1(b)]. This
concept was experimentally proven in acoustics by circulating
air in a ring resonator, thereby demonstrating the first-ever
acoustic circulator [36].

Since physical rotation is obviously impractical for electro-
magnetic devices, [35] proposed to realize effective electric
rotation through appropriate spatiotemporal modulation. In
particular, it was shown that the degeneracy of the th order
modes of a ring (modes with azimuthal variation )
can be lifted by modulating the permittivity of the ring as

, where , , and
represent the perturbation of the ring permittivity, the

modulation frequency, and the modulation azimuthal order,
respectively. Such permittivity modulation leads to an effective
rotation with angular velocity . Contrary to the
approaches of [25], [28], and [29], the modulation in [35]
is continuous across the transverse surface area of the ring,
significantly relaxing manufacturing requirements. In addition,
the use of a ring resonator significantly boosts the otherwise
weak modulation effect, resulting in strong nonreciprocity at
the sub-wavelength scale.
In practice, the modulation of the ring needs to be imple-

mented in a discrete fashion via a number of different regions
with uniform modulation [37]. Such a discretization results in a
reduction of the modulation efficiency by a factor of
for modulation regions, where , revealing
a tradeoff between performance and fabrication complexity. To
avoid this problem, [38] introduced a new design based on three
identical resonators symmetrically coupled to each other and
modulated by signals with the same amplitude and phase dif-
ference of 120 [see Fig. 1(c)]. In this particular design, nonre-
ciprocity is the result of lifting the degeneracy of the counter-ro-
tating modes of the composite loop, as opposed to lifting the
degeneracy of the modes of a single ring, as in [35]. Since the
modulation of each resonator in the loop is uniform, the modu-
lation efficiency of this structure can reach 100%.
The design in [38] was based on a heuristic empirical ap-

proach and, although it provided large isolation, it exhibited
poor performance in terms of insertion loss and intermodulation
products. Similar designs were also presented in [39] with the
same limitations. Here, by using coupled-mode theory (CMT),
we develop an analytical theory for circulators based on loops
of modulated resonators, which allows designing such devices
with optimum performance in terms of isolation, insertion loss,
and intermodulation products, for given quality factors of their
constituent elements and specified modulation parameters. This
theory is used to design two circulators, for the very high-fre-
quency (VHF) and wireless-communications bands, with sig-
nificantly improved characteristics with respect to the prelimi-
nary designs in [38] and [39]. The designs are based on the wye
resonator topology, which was first introduced in [40] for over-
coming the performance issues and implementation challenges
of the designs in [38] and [39]. The design in [40] was based on
a heuristic nonrigorous approach and, as a result, it was nonop-
timal. Furthermore, no experimental proof was included in [40].
Here, we apply the results of CMT to the wye topology in [40]
in order to design an optimal lumped-element circulator for the
VHF band with commercially available components. Measure-
ments are provided and shown to be in very good agreement
with CMT and full-wave simulations. A new distributed-ele-
ment design is also introduced, for applications at the wireless-
communications band. Finally, we study the nonlinear proper-
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Fig. 2. Circulator based on a spatiotemporally modulated loop of coupled res-
onators, where the resonators are additionally coupled to external transmission
lines.

ties of both designs and discuss possible approaches for im-
proving them.
This paper is organized as follows. Section II presents the

coupled-mode analysis for the most general form of the pro-
posed devices. Section III presents the lumped- and distributed-
element designs, including experimental results for the lumped-
element design. Finally, conclusions are provided in Section IV.
The analysis in this paper follows the harmonic conven-
tion and simulations are performed with CSTMicrowave Studio
and Advanced Design Studio.

II. THEORY

A. Coupled-Mode Equations

Fig. 2 illustrates the most general form of a circulator based
on a loop of modulated resonators: it consists of three identical
modulated resonators, as described previously, symmetrically
coupled to three transmission lines. Networks of coupled res-
onators can be efficiently studied via CMT [41], which, when
applied to the network in Fig. 2, yields

(1)

In the above equation, is the state
vector, with the field amplitude at the th resonator,

is the incident-signal vector with
being the incident signal at the th transmission line, and

being the reflected-signal vector, with
being the reflected signal at the th transmission line. The

state vector is normalized so that represents the stored
energy in the system. Furthermore, is the system frequency
matrix, which incorporates the resonance frequencies and
cross-coupling between the resonators, is the system decay
matrix, which incorporates the decay mechanisms of the
system, is a matrix describing coupling between the lines
and the resonators, and is a matrix describing immediate
coupling between the lines. Explicit expressions for these
matrices will be provided in the following.

Since the network in Fig. 2 consists of identical resonators
with symmetrical coupling between them, , , and need to
be symmetrical as well,

(2)

The diagonal elements of these matrices refer to isolated res-
onators, while the off-diagonal elements describe the effect of
coupling. In general, consists of two parts, and , cor-
responding to the intrinsic loss of the resonators and leakage to
the external lines, respectively. The matrices , , and
should satisfy the general CMT conditions

(3)

resulting from power conservation and time-reversal symmetry.
The matrix is essentially the scattering matrix of the system
for frequencies far from the system resonances, when .
If the coupling between ports is only achieved through the res-
onators, as for all the structures presented here, coupling be-
tween different ports is negligible for frequencies far from the
system resonances and is a diagonal matrix. Based on this
fact and selecting the reference planes of the external lines so
that the diagonal elements of are real, (3) lead to ,
where is the 3 3 identity matrix.
Modulation is applied to the resonators so that their res-

onance frequencies vary in time according to
, ,

and , where is the
resonance frequency of the nonmodulated resonators, is
the magnitude of the resonance-frequency perturbation, and
is the modulation frequency. This form of modulation imparts
an effective electric rotation to the loop of coupled resonators,
as discussed in Section I. Then, , where is
the static part of the modulation matrix, as given in (2) (the part
corresponding to the system without modulation) and

(4)

Since the applied weak modulation is simply a perturba-
tion of the static (nonmodulated) loop, it is convenient to
express (1) in the eigenbasis of the static loop (eigenbasis
of ), which consists of a common state, with frequency

and state vector , a
right-handed state with frequency and state vector
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, and a left-handed state with the
same resonance frequency , and state vector

. The transformation from the
eigenbasis of the separate resonators to the eigenbasis of the
static loop reads , where is the state vector in the
eigenbasis of the static loop and . Equation
(1) then becomes

(5)

where

(6)

(7)

(8)

In these equations, and
are the decay rates of the common and rotating modes, re-

spectively, while and are
the coupling coefficients between these modes and the lines.
Equation is form-invariant under the eigen-
basis transformation, yielding and

, where , , and are the
parts of , , and referring to leakage to the external
lines. In the eigenbasis of the static loop, the state vectors of
the common, right-handed, and left-handed eigenstates become

, , and , respec-
tively.

B. Eigenstates of the Source-Free System
Before solving the source-driven problem (5), it is important

to study the eigenstates of the modulated loop. For simplicity
of analysis, we assume , i.e., no loss and no coupling to
the external lines. The eigenstates of the modulated-system are
perturbations of the static ones, and each of them consists of two
parts: a dominant one, which is the same as in the static system,
apart from a small frequency detuning, and a secondary one,
which is a superposition of the static eigenstates at frequencies

, where is the frequency of the dominant one
and is an integer. Notice that are the harmonics of
the modulated system. For example, consider the right-handed
eigenstate of the modulated system, i.e., the eigenstate that is the
perturbation of the static-system right-handed eigenstate. The
dominant part of this eigenstate reads

(9)

while the secondary part is given by

(10)

where , , and are the complex amplitudes of
the modulated-system harmonics. Substituting (9) and (10) into
(5) results in an ordinary eigenvalue problem, the solution of
which determines and the coefficients in (10). Keeping
only terms up to first order with respect to , it can be shown
(see Appendix A for details) that

(11)

If the eigenfrequencies of the common and rotating states are
far from each other, so that , the common-
mode terms in (11) can be neglected and becomes

(12)

The condition implies negligible cou-
pling between common and rotating modes: coupling between
eigenstates with different eigenfrequencies, such as the common
and rotating states, is strong either if themodulation frequency is
close to the difference of the eigenfrequencies or if the modula-
tion amplitude is very large. This is consistent with the fact that
(12) can also be derived by neglecting the first row and column
of in (5), which describe the coupling between common
and rotating states. The condition also
ensures operation far from the parametric-oscillation conditions

and , where instabilities are ex-
pected and CMT breaks down. The eigenfrequency and
state vector of the modulated-system left-handed eigen-
state can be found through a similar analysis as

(13)

Fig. 3 shows a frequency diagram of the modulated-system
right- and left-handed eigenstates. Observe that these states are
separated from each other by , an effect that resembles fre-
quency-splitting of counter-polarized waves in magnetized fer-
rites, thereby providing a direct evidence for the nonreciprocal
properties of the modulated system.
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Fig. 3. Frequency diagram for the spatiotemporally modulated loop of coupled
resonators. Without modulation, the loop supports degenerate counter-rotating
states (left- and right-hand sides). Modulation mixes these states, producing
the hybrid states (center), which consist of the rotating states at frequency
levels separated by . Each of the hybrid states is dominated by one of the
rotating states, making the hybrid states quasi-rotating. The quasi-rotating states
exist at different frequency levels , which is a direct evidence that the
modulated loop is nonreciprocal.

C. S-Parameters and Optimal Isolation Conditions for the
Source-Driven System

Neglecting the common mode, which for
is minimally affected by the modulation, we rewrite (5),

including the source and decay terms, as

(14)

where and are the complex amplitudes of the right- and
left-handed states of the loop,
and . Equation (14) can be solved by
assuming

(15)

where is the frequency of the incoming signal, are the
amplitudes of the dominant sub-states, and are the ampli-
tudes of the secondary ones. For excitation from port 1, these
amplitudes are found by substituting (15) into (14) as

(16)

Transmission to ports 2 and 3 can be calculated by substi-
tuting (15) into the second equation of (5) as

(17)

Due to the rotational symmetry of the structure, the rest of
the -parameters can be directly calculated from (17) by ro-
tating the port indices as . For
example, and can be calculated from (17) as
and . Note that, apart from signals at the input fre-
quency [ -parameters given in (17)], there are also signals at
frequencies . For excitation from port 1, the -parame-
ters for these signals can be found by substituting (15) into the
second of (5),

(18)

The rest of the -parameters at can be found again via
rotation of the port indices.
Due to its threefold symmetry, the modulated loop operates

as a circulator, if the signal at one of the output ports is equal to
zero. For the modulation phase used here (0 , 120 , and 240
for resonators 1–3, respectively), this condition is satisfied at
port 3, if the frequency of the incident wave is and

(19)

Observe that, in order for to be real, the modulation fre-
quency should be larger than . When (19) is satisfied, it
is easy to show from (16) that the right- and left-handed states
are, respectively, excited with phases and at port 1.
Their phases become and

at port 3, leading to mutual cancellation by destructive
interference at this port. Since no power is transferred to port 3,
one may think that, in the absence of loss, transmission to port 2
is ideal. However, this is not correct since, as already hinted, the
modulation results in allocating part of the energy to frequencies
outside the main band in the form of intermodulation products.
Under the ideal modulation condition (19), it can be found from
(16) and (17) that the transmission at the output port (port 2) and
reflection at the input port (port 1) are, respectively, given by

(20)

(21)

Observe that, since , , as expected
from the conversion of part of the power to intermodulation
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Fig. 4. Design charts for magnetic-free circulators based on loops of modulated resonators. (a) Insertion loss, , (b) return loss, , (c) inter-
modulation products, , and (d) BW versus the normalized modulation frequency, , and the normalized modulation amplitude,

. All the results were derived under condition (19) to obtain maximum isolation. Point A corresponds to the design in [38], point B to the
lumped-element design in Section III, and point C to the distributed-element design in Section III. Inside the white regions, infinite isolation is impossible.

products. The intermodulation products at any port are found
from (16) and (18) as

(22)
The transmission bandwidth (BW), another important param-
eter of the structure, is given by and it satisfies

(23)

Considering that , where the equality holds in the
absence of loss, (22) and (23) lead to the following expressions,
involving only :

(24)

(25)

Equation (24) shows that the intermodulation products tend
to zero, as the transmission approaches unity, as expected from

power conservation. On the other hand, (25) reveals a funda-
mental tradeoff between BW and transmission. For a speci-
fied modulation frequency, BW decreases, as transmission in-
creases. In order to increase transmission without affecting the
BW, it is necessary to increase the modulation frequency.
Fig. 4 presents , , and

BW versus and under
the infinite-isolation condition (19). In these plots we use the
normalized modulation parameters, and , instead of the
absolute ones, and , in order to keep the plots valid
for any , which is generally a structure-dependent param-
eter over which we have little control. By using the normalized
parameters and we essentially consider as a
reference for all frequency quantities. It should be noted that

is the BW of the intrinsic resonance of the system, i.e.,
the resonance under negligible coupling to the external lines,
and, as such, it also represents a lower bound for the BW of
the loaded system. Considering that the intrinsic -factor of
the system is given by , the normal-
ized modulation parameters in Fig. 4 can also be expressed as

and . The
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white region in Fig. 4 corresponds to values of the modulation
parameters for which infinite isolation is impossible. Further-
more, the charts in Fig. 4 are valid, provided that the conditions

, under which (14) have been derived,
hold. Assuming that , as it happens for the structures
presented in Section III, these conditions become

. In terms of normalized parameters, these conditions can
be written as , showing that the plots in
Fig. 4 are valid for a particular range of values for and .
Through numerical calculations, we have found that
and are good upper bounds for and , respec-
tively. Fig. 4 allows designing structures with a specified re-
sponse, in terms of , , and
BW, for given or .
The charts in Fig. 4 allow reaching interesting conclusions

about the effect of the modulation parameters on the character-
istics of the structure. First of all, insertion and return losses
generally decrease when both and increase. On the
other hand, intermodulation products tend to decrease as in-
creases. This behavior is consistent with (13), where the term

, providing the amplitude of the undesired secondary
sub-states of the modulated loop decreases as increases.
Apart from leading to smaller reflection, larger transmission and
smaller intermodulation products, increasing is also advan-
tageous from an implementation point of view: a large , and
therefore a large separation between the wanted frequency re-
sponse and the unwanted intermodulation products, results in
less steep filters for the rejection of these products, and there-
fore easier fabrication. The charts in Fig. 4 and the above general
conclusions will be used in the next section in order to design
two magnetic-free microwave circulators based on lumped and
distributed elements for low- and high-frequency applications,
respectively.

III. CIRCULATOR DESIGNS

A. Lumped-Element Design
The concept of angular-momentum-induced nonreciprocity

was experimentally demonstrated in [38] through a ring of ca-
pacitively modulated resonators, as in Fig. 5(a). The most
straightforward way to realize a modulated capacitor is through
a varactor and a diplexer, as in Fig. 5(b). If the transmission
phase between the high-frequency and common ports of the
diplexer is zero, the input impedance at the high-frequency port
is equal to the impedance of the modulated varactor. Further-
more, the diplexer makes sure that the modulation and input sig-
nals do not mix with each other outside the varactor. Although
functional, the circuit in Fig. 5(b) has a major drawback: the
diplexer is part of the resonant network—the input signal needs
to go through the diplexer in order to reach the varactor—po-
tentially complicating the design and detrimentally affecting
the overall performance. For this reason, [38] followed an al-
ternative approach to move the diplexers outside the resonant
circuit. By combining the circuit in Fig. 5(a) with a dual one
consisting of shunt inductors and series capacitors, the ring in
[38] was designed to resonate at both the input and modulation
frequencies, thus eliminating the need of separate modulation
lines and diplexers. Such an approach led to very large isolation

Fig. 5. Circulator based on a ring resonator, as in [38]. (a) Ring of capacitively
modulated resonators. (b) Implementation of a variable capacitor through
a varactor and a diplexer.

Fig. 6. Circulator based on a wye resonator. (a) Capacitively modulated
lumped-element wye resonator. The parallel bandstop filters ( and

) are used to prevent the modulation signal from leaking to the external
lines. (b) Implementation of the variable capacitors through varactors and
filters that create a low-impedance path for bias and modulation signals, while
they block the input signal.

(more than 50 dB), but also quite large insertion loss (22 dB).
The reason is that, in order to avoid interference between the
main and modulation sub-circuits of the ring, the modulation
frequency had to be selected quite far from the input frequency,
forcing the circulator to operate in the sub-optimal bottom-left
area in Fig. 4. Indeed, from the data provided in [38], it can be
found that the corresponding circuit operates at point A in Fig. 4.
The aforementioned problems related to the ring topology

may be overcome using thewye topology in Fig. 6(a) [40].Mod-
ulation can be achieved by connecting varactors between filters,
as in Fig. 6(b), which provide a low-impedance path for the dc
andmodulation signals, while they exhibit very large impedance
for the input signal. A simple implementation of such a filter in-
volves a parallel combination of a choke inductor , which
provides a low-impedance path for the dc signal, and a series

bandpass filter ( and ), which, if designed to res-
onate at the modulation frequency, provides a low-impedance
path for the modulation signal. Furthermore, the filter is de-
signed to have large impedance at the resonance frequency of
the circuit, in order to block the input signal. For the filters con-
necting the circuit ports and the inductors , such as the filter
on the left-hand side of the varactor in Fig. 6(b), this condition
is satisfied if , where is the filter
impedance at the circuit resonance frequency , considering
that, at , the impedance at the position of the filters looking
towards the ports and the varactors is and , respectively.
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Through a similar analysis, it is possible to show that the condi-
tion is also sufficient to minimize the flow
of the input signal through the filter connected at the center
node of the circuit [filter at the right-hand side of the varactor
in Fig. 6(b)]. Filters can also be connected between the external
lines and the inductors of the wye circuit in order to prevent the
modulation signals from leaking to the external lines. These fil-
ters can be simple parallel bandstop filters ( and ),
which, although exhibiting a narrow BW, they can effectively
block the monochromatic modulation signal. Interestingly, none
of the filters in the wye-circuit design intercepts the path of the
input signal inside the resonant circuit formed by the varactors
and the inductors , and as a result their effect on the operation
of the device at the input frequency is expected to be minimal.
The resonant states of the wye resonator can be calculated

by terminating the transmission lines with matched loads, and
assuming no external excitation. Conservation of charge at the
center node of the circuit demands that the total charge of the
three capacitors is zero. This fact excludes the presence of a
common state, whichwould require all the capacitors to have the
same charge and, as a result, the total charge to be nonzero. On
the other hand, charge conservation is satisfied by the rotating
states since for such states the total charge is by definition zero,
as a result of their threefold symmetry, with 120 phase differ-
ence between different resonators. The threefold symmetry of
the rotating states also requires that the voltage at the center
node of the circuit is zero. Considering that at resonance the
current flow is nonzero, the total impedance of each branch is
then zero, yielding

(26)

where is the characteristic impedance of the transmission
lines. For , i.e., for a circuit with a large -factor,

. A capacitance perturbation then produces
a frequency perturbation . Loss in the in-
ductors and varactors can be represented by a series resistance
, and in such a case, in (26) should be replaced by . It

is obvious that and correspond to the leakage
and loss decay rates, and , respectively. The cor-
responding -factors then read
and . The fact that the wye res-
onator does not have a common state indicates that the cou-
pled-mode analysis in Section II is only restricted by the para-
metric oscillation condition . A full circuit analysis
for the wye resonator, including modulation and excitation from
the external lines, is presented in Appendix B.
Based on the above analysis, we designed a circulator for op-

eration at 200 MHz , with a target resonance
BW of 10% . Considering that can be much smaller
than for good-quality inductors, we find that the values of
and that satisfy these specifications are 400 nH and 1.6 pF,
respectively. Based on these values and commercially available
components, we choose the lumped elements listed in Table I.
Furthermore, the modulation frequency is chosen as 40 MHz,
resulting in operation at point B in Fig. 4, where the insertion

TABLE I
LUMPED ELEMENT VALUES FOR THE CIRCUIT IN FIG. 6

Fig. 7. Scattering parameters for the lumped-element wye resonator without
modulation and under the optimum modulation condition. (a) Full-wave simu-
lations. (b) Coupled-mode analysis.

loss and intermodulation products are 3.1 and 16 dB, respec-
tively. Note that at 200MHz the inductors and operate
above self-resonance, and as a result, their effective response
at this frequency is capacitive and very lossy. However, since
their impedance is very large, they can still efficiently prevent
the input signal from leaking to the modulation lines. This fact
shows that for the wye topology, contrary to the ring topology, it
is not necessary for the filter components to operate optimally at
both the modulation and input frequencies, thereby significantly
relaxing the design constraints. Note that, for simplicity pur-
poses, in the proof-of-concept design presented here, the band-
stop filters used to prevent the modulation signals from leaking
to the external lines [filters in Fig. 6(a)] are omitted.
The effect of these filters on the input signal is minimal since the
capacitors , through which the input signal primarily flows,
have a self-resonance frequency much larger than the operation
frequency.
Fig. 7 presents the -paramaters with and without mod-

ulation as obtained through full-wave simulations and the
coupled-mode (17). Simulations were performed by con-
sidering full SPICE models for the varactors and the filter
inductors, while inductors were modeled through a se-
ries combination of inductances and resistances, as listed in
Table I, considering that these inductors operate well below
their self-resonances. Without modulation, the input power is
equally split to the output ports. When modulation is applied,
the signal is transmitted to port 3 with insertion loss of about
3.4 dB, a little larger than at point B in Fig. 4, due to additional
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loss introduced by the filters, while the power transmitted to
port 2 is negligible (isolation is larger than 50 dB), showing a
remarkable improvement in the performance compared to the
ring topology. The numerical results are in excellent agreement
with the theoretical ones, apart from a slight shift in the reso-
nance frequency in simulations when the modulation is applied.
As shown in Appendix B, this is a second-order effect with
respect to that cannot be captured by first-order CMT.
Fig. 7 shows that the circuit exhibits a return loss of
10 dB, which, although not ideal, can be considered accept-

able for practical applications. An interesting question that now
arises is whether the return loss may be reduced by impedance
matching. Matching the proposed circulator is equivalent to
matching a lossy device, considering that intermodulation con-
version in the proposed circulator is by all means a loss channel
at the fundamental frequency, given the overall passivity of
the device. Ideal matching of a lossy three-port circulator
is possible only if the common mode of the circulator can
absorb power [42]. This can be proven by considering that the
-matrix of a lossy circulator with infinite isolation reads

(27)

It is then not difficult to show that the eigenvalue associated
with the common mode of the system, i.e., the reflection co-
efficient of the common mode, is given by and, as
a result, the power absorbed by the common mode is equal to

. It is clear that zero reflection, , is
only possible if the common mode can absorb power, as men-
tioned before. For the simple wye resonators considered here
such an effect is impossible, because these resonators do not
support a common mode at all. Nevertheless, according to (21),
it is possible to achieve very small values of if the modula-
tion parameters are appropriately selected so that is close to
unity. Total reflection cancellation may be possible by adding
networks between the ports and the branches of the circulator
that allow the excitation of a common mode. However, this is
not a trivial problem and falls beyond the scope of this work.
Intermodulation frequencies are unavoidable by-products of

the proposed concept and, therefore, it is important to know
how strong they are. Fig. 8 plots the -parameters at the center
frequency and the inter-modulation frequencies ,
for the modulation parameters in Fig. 7. Both in simulations
and theory, the first-order intermodulation products are
about 14 dB lower than the output power, a bit higher than at
point B in Fig. 4(c), due to additional loss in the filters. Nu-
merical simulations reveal the existence of additional higher
order intermodulation products with , which
result from higher order modulation terms at frequencies ,
due to the nonlinear response of the varactors. These products
are much weaker than the first-order intermodulation products
and they are completely absent for perfectly linear varactors, as
shown in Appendix B.
Varactors are nonlinear elements and, as such, they are ex-

pected to affect the maximum power that can be handled by
the device. Fig. 9 presents the output power and third-order in-
termodulation distortion versus input power for an input signal

Fig. 8. S-parameters at input and intermodulation frequencies in the case of the
lumped-element resonator for the modulation condition in Fig. 7. (a) Full-wave
simulations. (b) Coupled-mode analysis.

Fig. 9. Nonlinear distortion in the case of the lumped-element wye resonator
of Fig. 6 for excitation with a dual-tone signal, with frequencies centered at
200 MHz and separated by 1.5 kHz. The results correspond to full-wave simu-
lations.

consisting of two tones centered at 200 MHz, for which isola-
tion is maximum. As in any nonlinear circuit, power saturation
and intermodulation distortion are second-order nonlinear ef-
fects, related to the third power of the excitation signal or, in
the case of varactors, to the coefficient in the polynomial
expansion of the varactor ca-
pacitance around the dc biasing point . depends on ,
but not on the modulation signal, showing that modulation does
not affect the nonlinear properties of the structure. Ideally, we
would like to completely cancel , which is, however, impos-
sible with simple varactors, like the ones used here. Neverthe-
less, decreases as increases, making possible to reduce
nonlinear distortion by increasing . In order to understand
this property better, we consider a particular example of a silicon
hyperabrupt varactor, like the ones used in our design, with

relation , where is the junction
capacitance and is the built-in voltage. In such a scenario,

, implying that, if is increased
by a factor of 4 and by a factor of 2 (the area of the varactor
junction is increased by the same factor), so that remains
the same, is reduced by a factor of 16, implying an improve-
ment of 12 dB for the maximum power handled by the device. A
drawback of this approach is that , which determines the ca-
pacitance modulation, also decreases as increases, making
necessary the use of a larger modulation voltage. In the previous
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Fig. 10. Alternative implementation of the modulation network for the circuit
in Fig. 6(a).

example, , implying that for an in-
crease of by a factor of 4 the modulation voltage is
also required to increase by the same factor. This tradeoff be-
tween modulation voltage and maximum input power may be
overcome through more advanced varactor topologies, such as
the ones recently proposed in [43], where nonlinear distortion
and capacitance modulation can be independently controlled.
The circuit in Fig. 6(a) was realized on a printed circuit

board, as shown in Fig. 11(c). A photograph and a schematic
of the experimental setup is shown in Fig. 11(a) and (b), re-
spectively. The modulation signals were generated through two
phase-locked RF signal generators. Modulation of the varactors
was achieved through the circuit in Fig. 10, which is different
from the one in Fig. 6(b) with respect to the position of the
filters . In particular, in Fig. 10, these filters
are connected at the varactors’ anodes, while in Fig. 6(b) they
are connected between the external lines and the inductors .
At a first glance, this difference may look not important for the
circulator operation. However, a closer inspection reveals that
the impedance at the position of the filters towards the circuit
ports in the circuit of Fig. 10 is , instead of ,
as in Fig. 6(b) and, as a result, the condition
may not be sufficient. Indeed, for the lumped-element values in
Table I, the modulation circuit in Fig. 10 leads to a resonance
at 150 MHz, instead of 200 MHz as for the modulation circuit
in Fig. 6(b). Furthermore, insertion loss with the circuit in
Fig. 10 is larger than with the circuit in Fig. 6(b), due to the
significant loss of and at the input frequency, and the
fact that the input signal can now flow through these inductors.
Loss can be reduced by reducing the resonance frequency since
inductor loss typically decreases as frequency decreases. For
the fabricated circuit, loss becomes minimum for a dc bias
voltage of 1.1 V and a resonance frequency of 130 MHz.
Measured and simulated -parameters for this geometry are

presented in Fig. 12. These results provide a clear experimental
demonstration of the nonreciprocal properties of the lumped-el-
ement wye circulator in Fig. 6(a) with isolation exceeding 50
dB. Furthermore, although insertion loss is larger than in Fig. 7,
due to the sub-optimal connection of the filters

, as explained before, it is significantly smaller than in the
preliminary design [38], which was based on the ring topology
in Fig. 5(a). It is also worth noticing the good agreement be-
tween experimental and numerical results, even in terms of fine

Fig. 11. Experimental demonstration of the circuit in Fig. 6(a) with the modula-
tion network in Fig. 10. The lumped-element values are the same as in Table I.
(a) Photograph of the experimental setup. The power supply provided the dc
biasing of the varactors, while the signal generation the modulation signals.
(b) Schematic of the experimental setup. (c) Photograph of the device-under-test
(DUT).

features, such as the small bump at 140MHz, which is related to
the dispersive characteristics of and . This small bump
disappears if and are modeled as a series combination
of dispersionless inductances and resistances. The good agree-
ment between experimental and numerical results is a strong
indication that the numerical results in Fig. 7, corresponding to
optimal connection of the filters , are prac-
tically achievable.
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Fig. 12. Experimental and numerical results for the circuit in Fig. 6(a) with the
modulation network in Fig. 10.

Fig. 13. Circulator based on a distributed wye resonator for high-frequency op-
eration. The varactors and adjacent transmission line sections provide the res-
onance of the circuit, while the capacitors couple the resonator to the ex-
ternal transmission lines.

B. Distributed-Element Design
The circulator presented in Section III-A is based on lumped

elements and, as such, it is ideal for low-frequency applications.
However, as the frequency increases, lumped components
exhibit poorer performance, or they are totally unavailable. For
this reason, in this section we present a distributed design for
wireless-communications band ( 2.2 GHz), which, like the
lumped-element design, is based on the wye topology, but with
inductors now replaced by transmission-line sections, as in
Fig. 13. The wye resonator is coupled to external lines through
the capacitors . The modulation network is identical to the
lumped-element case, with the only variation in the position
of the bandstop filters, which are now connected between
the external lines and the coupling capacitors. Since the dis-
tributed-element design does not present any significantly dif-
ferent fabrication challenges than the lumped-element design,
and considering the excellent agreement between experimental
and full-wave simulation results for the lumped-element design,
here we present only full-wave simulation results for a realistic
layout of the distributed element system. The parameters of this
layout are provided in Table II.
Neglecting the coupling to external lines , the

input impedance of the transmission-line section from the side
of the varactors reads , where , , and
are the characteristic impedance, wavenumber, and length of

the transmission line segments. Similar to the lumped-element
case, the input impedance of each branch as seen from the center
node of the circuit should be zero at resonance, resulting in

TABLE II
GEOMETRICAL PARAMETERS AND LUMPED ELEMENT

VALUES FOR THE CIRCUIT IN FIG. 10

(28)

which is satisfied if the length of the transmission-line sections
is between a quarter-and-half wavelength. In reality, the reso-
nance frequency is slightly lower than what predicted by (28),
due to the coupling capacitors. The frequency perturbation due
to a change in the varactor capacitance can be calculated from
(28). In particular, by taking the derivative of (28) with respect
to it can be shown that

(29)

where is the resonance frequency and is the corre-
sponding transmission-line wavenumber. Considering that

and , we find that
, which shows that, in the case of the

distributed element design, the frequency perturbation is
smaller than in the case of the lumped-element design, where

, by at least a factor of 2.
Based on (28), we designed a circulator for operation at

2.2 GHz. The geometrical parameters of the structure and the
values of the lumped elements are provided in Table II. The
structure is selected to operate at point C in Fig. 4, where
insertion loss is less than 2.5 dB and intermodulation products
are 20 dB. The intrinsic -factor of the structure, associated
with the loss of the lumped elements, the substrate, and the
metallic traces, was calculated as , by fitting
CMT to simulations in the case without modulation. In partic-
ular, substituting (16) into (17) with yields

. By fitting this expression to
numerical results, we can calculate and . Then

and . Note, that the value of the
coupling capacitor is not important for the calculation of ,
because is an inherent property of the resonator. From the
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Fig. 14. Scattering parameters for the distributed wye resonator without modu-
lation and under the optimum modulation condition. (a) Full-wave simulations.
(b) Coupled-mode analysis.

Fig. 15. -parameters at input and intermodulation frequencies in the case of
the distributed wye resonator for the modulation condition in Fig. 11. (a) Full-
wave simulations. (b) Coupled-mode analysis.

value of , we found that the modulation frequency should
be 400 MHz.
Fig. 14 shows the -parameters of the structure for the op-

timum modulation condition. Results are similar to the lumped
element case, apart from a slight asymmetry in the simulated
resonance curves, resulting from a higher order resonance above
3 GHz, which does not exist in the lumped-element design.
This asymmetry is not visible in the theoretical results because
this higher order mode is neglected in coupled-mode analysis.
Fig. 15 shows the -parameters at the center and intermodula-
tion frequencies for the modulation condition in Fig. 14. The
intermodulation product at is 20 dB below the main
signal at , in perfect agreement with Fig. 4(c), while the inter-
modulation product at is slightly larger than ,
due to the asymmetry created by the higher order resonance. Fi-
nally, Fig. 16 shows the nonlinear distortion for excitation by a
pair of tones centered at 2.2 GHz. The maximum input power is
slightly larger than in the lumped-element case.

IV. CONCLUSIONS
The concept of spatiotemporally modulated coupled res-

onator networks was investigated for the realization of magnet-
less microwave circulators. A rigorous analytical model was
developed, through which the exact condition for obtaining
infinite isolation was derived. The derived model, validated
with numerical simulations, allows determining in closed form
the required modulation parameters for given lossy -factor,
desired insertion loss, and intermodulation products. Achieving
low insertion loss generally requires large modulation param-
eters, while low intermodulation products can be achieved by
increasing only the modulation frequency, irrespective of the

Fig. 16. Nonlinear distortion in the case of the distributed wye resonator for
excitation with a dual-tone signal with frequencies centered at 2.2 GHz and
separated by 15 kHz. The results correspond to full-wave simulations.

modulation amplitude. Based on the analytical model, two cir-
culators were designed for VHF and wireless communications
bands. Both designs were based on wye resonators, which were
shown to be easier to realize and lead to better performance than
ring resonators. Lumped and distributed elements were used
for the low- and high-frequency designs, respectively. Both
designs exhibit remarkable performance in terms of insertion
loss and isolation, close to commercial standards for magnetic
circulators.
In addition to obvious advantages in terms of cost, weight,

and size reduction, an important advantage of the proposed
magnetless circulators is their tunability and noise perfor-
mance. Power handling is limited by the varactors through
which modulation is achieved, but it can be improved by
either increasing the dc bias of the varactors or using more
advanced varactor configurations. The proposed designs offer
a large degree of flexibility in the selection of the modulation
frequency, which can be made substantially lower than the
signal frequency, significantly simplifying the design of the
modulation networks. However, the modulation frequency
should not be very low, in order to achieve enough distance
between the input and intermodulation frequencies, which is
important for the efficient rejection of intermodulation products
using suitable filters. The results presented in this paper con-
stitute an important step towards the realization of integrated
circulators, which may allow achieving full-duplex operation
in wireless communications systems. We also point out that the
proposed designs are well suited to push these concepts to very
low and very high frequencies, up to ranges in which magnetic
circulators are not practical, respectively, for the lumped- and
distributed-element designs.

APPENDIX

A. Eigenstates of the Modulated Loop
Here, we calculate the eigenstates of the modulated loop in

the case of zero intrinsic loss and no coupling to external lines.
To this end, we need to solve (5) with and . As
a first step, we solve these equations in the case of negligible
coupling between the common and rotating states, which is a
valid assumption if . In such a case, the
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first column and the first row of can be neglected and (5)
becomes

(30)

where the “tilde” is used to distinguish the approximate solution
under the assumption of zero coupling between the common
and rotating states from the exact one. The solution of the first
of these equations is obviously , where is a
complex number. The solution of the other two equations can be
found by assuming and .
Equation (30) then becomes

(31)

which is a typical eigenvalue problem with eigenvalues
and , where

, and corresponding eigenvectors
and . The corresponding

solutions of (30) read

(32)

where .
Next, we solve the full (5), including coupling between the

common and rotating states, by transforming it to the basis de-
fined by (32) via , where

(33)

In particular,

(34)

where . After straightforward, but lengthy
manipulations, we find

(35)

where and

(36)

The matrix is time periodic with periodicity .
Therefore, according to the Floquet theorem, the solution of (34)
can be expressed as

(37)

where is the fundamental frequency of the mode and is the
state vector of the th Floquet harmonic. Note from (37) that
’s that are different by an integer multiple of give the same

solution and for this reason we choose
, which is consistent with the fact that the solution of (34)

is a perturbation of the solution of (30). In the Floquet space,
(34) is transformed to the regular infinite eigenvalue problem

(38)

where and is the matrix
whose block relating with reads

(39)

where

(40)
A pictorial representation of is provided in Fig. 17.
The matrix does not have degenerate terms in the main di-

agonal and, as a result, conventional perturbation theory can be
applied to (38) [44]. According to this theory, assuming a Her-
mitian matrix with nondegenerate eigenvalues and
corresponding eigenvectors , the eigenvalues and eigenvec-
tors of the matrix , where is also a Her-
mitian matrix and can be calculated from

(41)

where

(42)

and

(43)

Applying these formulas to and keeping terms up to first
order with respect to , we find that the eigenfrequencies of
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Fig. 17. Matrix in (39). All the blank locations correspond to zero elements.

the common, right-handed, and left-handed states of the modu-
lated system are the same as in the case of negligible coupling
between the common and rotating states

(44)

It is interesting to note that, to the first order with respect to
, modulation affects the frequencies of the rotating states

( are shifted from by ), but not the frequency
of the common state. The eigenvectors of the rotating modes
read

(45)

The corresponding expressions for the common mode are sim-
ilar, but longer and, for this reason, they are omitted here.

Fig. 18. Circuit schematic of the lumped-element wye resonator.

B. Full-Circuit Analysis of the Lumped-Element Circulator
Here, we provide a full-circuit analysis of the lumped-ele-

ment circulator in Section III and derive exact closed-form ex-
pressions for the -parameters of the circuit, even in the case
of modulation. Furthermore, we show that modulation creates a
shift in the resonance frequency of second order with respect to

. Such an effect cannot be predicted by the first-order CMT
and it requires full solution of circuit equations.
By defining the inductor currents and capacitor charges as in

Fig. 18, Kirchhoff’s laws read

(46)

(47)
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The sources stand for the incident waves from the three
ports of the circuit. Summing the two first equations of (47) and
replacing the term in the resulting equation with
from (46) yields

(48)
By performing the same operation to the other pairs of (47) we
get

(49)

Equation (49) can be compactly written as

(50)

where , ,
, and

(51)

For the derivation of (50) we have also used . In the
presence of modulation,
and, if , (50) becomes

(52)

where
.

Similarly to (1), (52) can be transformed to the eigenbasis of
the common and rotating states of the ring as

(53)

where , , , and

(54)

Transforming the matrix equation (53) to its constituent alge-
braic equations yields

(55)

where are the amplitudes of the rotating states,
, , and . For the

derivation of (55) we have assumed that the structure is excited

from port 1 with a signal of unitary amplitude and frequency
. The first equation in (55) shows that the common mode is

not excited at all , as deduced in the main text through
first-principle arguments. Equation (55) then becomes

(56)

Similarly to (14), (56) can be solved by making the assumption

(57)

which leads to

(58)

where

(59)

and .
The -parameters at the input frequency can be calculated as

(60)

assuming . Considering that and
, (60) becomes

(61)

Comparing (61) with (17) and considering that for the wye
resonator , we can find that

(62)

If , , and , it is possible to
show that (62) simplifies to (16). Similar conclusions also hold
for the modal amplitude at the intermodulation frequencies

.
The resonances associated with the dominant sub-states of

the circuit can be found from the roots of the denominator in
the first equation of (58). For sufficiently high -factor, can
be taken equal to 0 and

(63)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

16 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

These frequencies are shifted from by different amounts,
implying that their center of mass, , is
also shifted from . In particular, it is not difficult to show that

(64)

Therefore, , where isolation becomes maximum, is red
shifted from by the amount , or, for

, . This shifting is the result of the second-
order nature of (50) and it is related to the weak coupling be-
tween positive and negative frequencies, which are completely
neglected in coupled-mode analysis.
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