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Magnetic-free non-reciprocity and isolation
based on parametrically modulated
coupled-resonator loops
Nicholas A. Estep†, Dimitrios L. Sounas†, Jason Soric and Andrea Alù*
Non-reciprocal components, which are essential to many
modern communication systems, are almost exclusively
based on magneto-optical materials, severely limiting their
applicability. A practical and inexpensive route to magnetic-
free non-reciprocity could revolutionize radio-frequency and
nanophotonic communication networks. Angular-momentum
biasingwas recently proposed as ameans of realizing isolation
for soundwaves travelling ina rotatingmedium1, andenvisaged
as a path towards compact, linear integrated non-reciprocal
electromagnetic components2,3. Inspired by this concept, here
we demonstrate a subwavelength, linear radio-frequency
non-reciprocal circulator free from magnetic materials and
bias. The scheme is based on the parametric modulation
of three identical, strongly and symmetrically coupled
resonators. Their resonant frequencies are modulated by
external signals with the same amplitude and a relative phase
di�erence of 120◦, imparting an e�ective electronic angular
momentum to the system. We observe giant non-reciprocity,
with up to six orders of magnitude di�erence in transmission
for opposite directions. Furthermore, the device topology
is tunable in real time, and can be directly embedded in a
conventional integrated circuit.

Early attempts to realize magnetic-free non-reciprocity were
based on the non-reciprocal properties of transistors at microwave
frequencies4, and on networks of electro-optical modulators at
optical frequencies5–8. However, such approaches traded the absence
of magnetic bias with other significant drawbacks, such as the
strong nonlinearities and poor noise-performance of transistors,
or the large size and complexity of the required electro-optical
networks. More recently, non-reciprocity has been achieved in
transistor-loaded metamaterials9,10 and nonlinear devices11–14. Also
these solutions impose severe restrictions on the input power
levels, generally degrading the signal quality because of noise
or signal distortion. Another interesting approach to magnetic-
free non-reciprocity has been introduced15, using asymmetric
mode conversion in spatiotemporally modulated waveguides. This
concept is especially attractive for integrated optical networks,
as it may be fully realized in silicon photonics16. However, this
technique and its variants17–22 lead to structuresmuch larger than the
wavelength, owing to the weak electro-optic or acousto-optic effects
on which they rely, and require complex modulation schemes. In
a similar context, the concept of a non-reciprocal device based on
parametrically coupled resonators has been theoretically explored23.

An approach that can lead to compact, magnetic-free non-
reciprocal devices with relaxed implementation complexity was

recently introduced1–3, based on angular-momentum biasing of
a resonant ring. Angular momentum can be applied either by
mechanically spinning a fluid, as proved for acoustic waves1, or,
more conveniently for electromagnetic waves, by spatiotemporal
modulation with a travelling wave, realizing an effective electronic
spin2,3, as illustrated in Fig. 1a. The resonant nature of the
modulated ring can substantially boost the otherwise weak electro-
optic effects through which spatiotemporal modulation is typically
achieved24,25, allowing the design of largely non-reciprocal devices
with dimensions of the order of, or even smaller than the
wavelength. Furthermore, in contrast to other approaches based
on spatiotemporal modulation15,19, angular-momentum biasing is
based on uniform modulation across the ring cross-section, thus
significantly simplifying the fabrication process.

Inspired by these ideas, here we propose a device that provides
strong magnetic-free non-reciprocity at the subwavelength scale
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Figure 1 | Magnetic-free non-reciprocity with angular-momentum biasing.
a, An azimuthally symmetric ring with spatiotemporal permittivity
modulation1ε(ϕ, t)=1εm cos(ωmt− lmϕ). The modulation imparts an
e�ective electronic spin to the ring, with angular velocityΩm=ωm/lm,
which lifts the degeneracy of counter-propagating resonant states and
induces non-reciprocity. Its practical realization typically involves
discretizing1ε into N di�erent regions (three in the figure). b, A loop
consisting of three strongly coupled identical resonators, whose
frequencies are modulated according to ω1(t)=ω0+δωm cos(ωmt),
ω2(t)=ω0+δωm cos(ωmt+2π/3) and ω3(t)=ω0+δωm cos(ωmt+4π/3).
Modulation of the resonance frequencies lifts the degeneracy of the
counter-rotating states |±〉=[1 e±i2π/3 e±i4π/3

]
T, producing non-reciprocity

with 100% modulation e�ciency. κ is the coupling coe�cient.

Department of Electrical & Computer Engineering, The University of Texas at Austin, 1 University Station C0803, Austin, Texas 78712, USA. †These authors
contributed equally to this work. *e-mail: alu@mail.utexas.edu

NATURE PHYSICS | ADVANCE ONLINE PUBLICATION | www.nature.com/naturephysics 1
© 2014 Macmillan Publishers Limited. All rights reserved. 

 

http://www.nature.com/doifinder/10.1038/nphys3134
mailto:alu@mail.utexas.edu
www.nature.com/naturephysics


LETTERS NATURE PHYSICS DOI: 10.1038/NPHYS3134

2C(t)

a b c

2C(t)

L

1 2

3

1

23

∼2 cm

Cc Cc

Cc

Vd.c. + vm(t)

Figure 2 | Circuit implementation of the non-reciprocal coupled-resonator loop at radio frequencies. a, A single resonant circuit of the proposed device:
an L–C tank with modulated capacitance. The capacitance is equally distributed at both sides of the inductance to maintain symmetry. Capacitance
modulation is achieved with varactor diodes, controlled by a static signal Vd.c. and the modulation signal vm(t). b, A loop formed by three identical
resonators coupled through three identical capacitances Cc. The loop is further coupled to three external microstrip lines carrying the external signal.
c, Fabricated prototype. The maximum dimension of the structure is 2 cm, corresponding to an electrical size of λ/75 at 200 MHz.

by dynamically modulating three identical resonant circuit tanks
arranged in a loop and strongly coupled to each other, as
in Fig. 1b. The resonant frequencies of the individual tanks
are temporally modulated in a circularly rotating fashion as
ω1(t)=ω0+δωm cos(ωmt), ω2(t)=ω0+ δωm cos(ωmt +2π/3) and
ω3(t)= ω0 + δωm cos(ωmt + 4π/3), where ω0 is the static value
of the resonant frequency, δωm is the modulation amplitude and
ωm is the modulation frequency, so that an effective electronic
spin is imparted to the system. Without modulation, the loop
supports two degenerate counter-rotating modes, similar to the
uniform ring of Fig. 1a. However, when the modulation is switched
on, this degeneracy is lifted and non-reciprocity is induced. As
we show in the following, this solution markedly boosts the
modulation efficiency of the device compared to the case of a
single modulated resonant ring, as considered in refs 2,3, largely
relaxing the requirements in terms of the modulation intensity and
subsequently improving the overall efficiency of the structure.

In the absence of modulation (δωm = 0), the loop of Fig. 1b
supports three resonant states: a common state with state vector
|c〉=[1 1 1]T and frequencyωc=ω0+2κ , and two degenerate right-
and left-handed states with state vectors |±〉=[1 e±i2π/3 e±i4π/3]T and
frequencies ω±=ω0− κ , where κ is the coupling coefficient. The
applied modulation mixes right- and left-handed states, producing
two new hybrid states

|R〉=|+〉e−iωRt−
1ω

δωm
|−〉e−i(ωR−ωm)t

|L〉=|−〉e−iωLt+
1ω

δωm
|+〉e−i(ωL+ωm)t

(1)

where 1ω =
√
ω2

m+δω
2
m − ωm, ωR = ω± − 1ω/2 and

ωL=ω±+1ω/2, as analytically derived in the Methods for
ωm�ωc−ω±.

It is interesting to observe that both |R〉 and |L〉 consist of a
dominant state at ωR,L and a secondary state, red- or blueshifted
by ωm, as in the case of the uniformly modulated ring of refs 2,3.
However, despite this apparent resemblance in the form of |R〉
and |L〉, the mechanism that creates the frequency separation
1ω between resonant states in the geometry analysed here
is significantly different from the uniformly modulated ring of

refs 2,3. For a uniform resonant ring (Fig. 1a),1ω is the result of an
azimuthally travelling wave modulation1εm cos(ωmt− lmϕ), where
1εm and lm are the modulation amplitude and azimuthal order,
respectively. If lm = 2l , where l is the resonant order of the ring,
δωm=ωl1εm/(2ε) (refs 2,3), whereωl is the resonant frequency and
ε the static permittivity. The ideal continuous modulation assumed
in Fig. 1a (top) is difficult, if not impossible, to realize, and an
angular discretization is typically required. A discrete modulation
profile with N different modulation regions, as sketched in Fig. 1a
(bottom), is equivalent to a continuous effective modulation
with reduced effective amplitude 1εm,eff=1εmsinc(2l/N ) (ref. 3),
revealing a fundamental trade-off between fabrication complexity,
proportional to N , and non-reciprocal response. As an example,
for N =3—that is, the minimum value for which 1εm,eff 6=0—and
l = 50—a typical value in realistic high-Q micro-ring resonators
at 1.55 µm—1εm,eff = 0.0081εm, implying that only 0.8% of the
modulation signal is effectively used to generate non-reciprocity.

In contrast, in the composite resonant loop of Fig. 1b the
frequency splitting is achieved by modulating the frequency of each
resonator, which can be obtained by applying a uniform permittivity
modulation with amplitude1εm all across each resonator24, leading
to δωm=ω01εm/(2ε), as shown in the Methods. Remarkably, in
this topology the entire modulation signal is used to produce
the frequency separation 1ω, indicating that maximum (unitary)
modulation efficiency is achieved in a simple fabrication scheme
requiring only three independent modulation regions.

We realized the structure of Fig. 1b at RF using three
basic L–C circuit tanks, as in Fig. 2a, where the capacitance
C is equally distributed on both sides of the inductance L to
maintain a symmetric structure (see Supplementary Methods for
a full schematic of the realized circuit). The resonance frequency
modulation is achieved by means of capacitance modulation,
commonly obtained in RF with varactor diodes. These diodes
are biased by two signals, a static signal Vd.c., which provides the
required reverse bias and controls the static capacitance, and a
RF signal νm with frequency ωm and amplitude Vm, providing the
time modulation. Assuming that the resonators are coupled to
each other through capacitances Cc, as in Fig. 2b, the frequencies
of the common and rotating states are ωc =ω0/

√
1+2Cc/C and

ω±=ω0
√
(C+3Cc/2)/(C+2Cc), respectively, where ω0= 1/

√
LC

is the static resonance frequency of each tank. Then, if the amplitude
of the capacitance modulation is 1Cm, the frequency modulation
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Figure 3 | Response versus frequency. a, Measured transmission from port 1 to ports 2 and 3 without modulation (Vm=0 V). The power is equally split to
the output ports. b, Measured scattering parameters when Vm=0.6 V. Incident power to ports 1, 2 and 3 is transmitted to ports 2, 3 and 1, respectively,
thus realizing a three-port circulator. c, Simulated response of the loop for the case of b: excellent agreement between theory and experiment is observed.
All results correspond to Vd.c.= 1.99 V.

amplitude is found as δωm = ω±1Cm/(2C). The frequency ωc
should be designed to be as far as possible from ω± in order for
the common mode not to affect the operation of the structure
at ω±, at which non-reciprocity occurs. In the lumped-element
circuit of Fig. 2b this condition is satisfied by taking Cc→∞, or
equivalently by coupling the tanks through short circuits, yielding
ωc=0 and ω±=ω0

√
3/2.

The non-reciprocal response of the circuit of Fig. 2b is
demonstrated by capacitively coupling it to three microstrip
transmission lines, realizing a three-port device. Exciting the
structure from, for example, port 1 at frequency ω± results in the
excitation of |R〉 and |L〉 with the same amplitude and opposite
phase φR =−φL, owing to the symmetrical distribution of these
states aroundω±. Then, the signals at ports 2 and 3 are proportional
to ei2π/3eiφR+ei4π/3eiφL and e−i2π/3eiφR+e−i4π/3eiφL , respectively, as the
superposition of |R〉 and |L〉 at these ports. If δωm andωm are selected
so that φR=−φL=π/6, the signal at port 3 is identically zero, while
the signal at port 2 is non-zero, routing the incident power fromport
1 to port 2. Owing to the symmetry of the structure with respect to
its ports, incident power from ports 2 and 3 is similarly routed to
ports 3 and 1, thus realizing the functionality of a non-reciprocal
circulator with infinite isolation. Notice that the above description
assumes a weak excitation of the common state, which makes clear
the importance of choosing its resonance frequency as far as possible
from the resonance frequency of the rotating states.

The realized device was designed to resonate at 170MHz with a
Q-factor of about 10 for Vd.c.=1.99V and Vm=0. The modulation
frequency was set to 15MHz, in order for the intermodulation
by-products at frequencies ω ± ωm, created by the secondary
substates of |R〉 and |L〉, to fall outside the resonance band, whose
bandwidth is here around 10MHz. The exact values of the circuit
components and its full topology are provided in the Methods
and Supplementary Methods. Figure 2c shows a photograph of the
fabricated prototype. We underline here the deeply subwavelength
size of the realized device (∼λ/75), simply based on three lumped
resonant circuit tanks.

Without modulation, the signal is equally split at the two
output ports, as expected from symmetry, and the system is fully
reciprocal (Fig. 3a). When the modulation signal is switched on, the
symmetry is broken and power is unequally split. By varying the
modulation amplitude it is possible to find a value for which the
signal entering port 1 is routed exclusively to port 2, corresponding
to φR=−φL=π/6. This condition is satisfied for Vm=0.6V, as can
be seen in Fig. 3b: at the resonance frequency of 170MHz, power
incident to ports 1, 2 and 3 is routed to ports 2, 3 and 1, respectively,
demonstrating the operation of an ideal, magnetic-free, deeply
subwavelength linear circulator. For comparison, Fig. 3c shows the

S-parameters obtained using full-wave and circuit simulations: the
agreement with the measurement is excellent.

To get a deeper insight into the effect of Vm on the device
operation, Fig. 4a shows the transmission between ports 1 and 2 at
resonance versus Vm. For Vm=0, S21=S12, as expected. Increasing
Vm results in an increase of S21 and a decrease of S12 untilVm=0.6V,
where S12 = 0. Past this point, S21 and S12 get closer, as expected
when we depart from the destructive interference condition. For
very large values of Vm, S21 and S12 both tend to zero, because
the counter-rotating states move far from ω± and, therefore, are
weakly excited at ω±. The magnitude of the asymmetry between
S21 and S12 is measured by the isolation |S21/S12|, plotted in Fig. 4b
on a logarithmic scale versus Vm. At the optimum modulation
voltage Vm=0.6V, S21 is over four orders of magnitude larger than
S12, indicating giant non-reciprocity, well above the levels of any
commercial magnetic-based device.

Another unique property of the proposed device consists in
its real-time tunability features. The biasing voltage Vd.c., which
provides the reverse biasing condition for the varactor diodes,
determines their static capacitance. Therefore, Vd.c. can be used to
actively control the static resonance frequency of the L–C tanks,
and consequently the frequency band over which non-reciprocity
occurs. Figure 4c shows the measured isolation versus frequency for
Vd.c. varied between 1.73V and 4.5V. The non-reciprocal response of
our device can be efficiently tuned between 150MHz and 210MHz,
corresponding to a relative bandwidth of over 30%. Across all
this range, our measured isolation is above 40 dB. This strong
tuning capability is an additional advantage of the proposed device
compared to conventional magnetic-based microwave circulators,
and it may be exploited in scenarios requiring dynamic tuning
to balance changes in temperature or in the environment. The
electronic spin applied to the proposed coupled-resonator loop
realizes the equivalent of a dynamically tunable, strongly biased
ferromagnetic metamaterial substrate.

In addition to being an ideal replacement for microwave non-
reciprocal components, with significant advantages in terms of size,
integration, cost, linearity, tunability and noise reduction, our find-
ings may become even more important when applied to different
frequencies or other types of waves, such as light or sound. For
instance, this concept may be disruptive for integrated nanopho-
tonic technology, for which optical non-reciprocal components are
critical for laser protection and signal routing. At visible frequencies,
electro-optic modulation in silicon-based components is typically
achieved by means of carrier injection/depletion24,25, which can
provide relatively strong permittivity modulation, but is typically
accompanied by significant loss and lowmodulation frequencies for
large modulation amplitudes. These side effects impose limitations
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Figure 4 | Response versus modulation and static voltages. a, Measured and simulated transmission between ports 1 and 2. Transmission is di�erent for
opposite propagation directions, indicating non-reciprocity. Maximum contrast is observed for Vm=0.6 V. The results correspond to Vd.c.= 1.99 V. The
di�erences between the measured and simulated results are not due to experimental uncertainties, which are negligible here, but due to the tolerances in
the values of the lumped elements which make the measured and simulated layouts slightly di�erent. b, Isolation (S21/S12) in logarithmic scale for the
same biasing conditions as in a. For Vm=0.6 V, the di�erence between S12 and S21 is over four orders of magnitude. c, Measured isolation on a logarithmic
scale versus frequency for di�erent values of Vd.c.. In all cases, Vm is selected, based on our theory, so that isolation at resonance is maximum.

on the applicability of the principle of angular-momentum bias-
ing in uniform micro-ring resonators2,3, as discussed before. In
contrast, the concept presented here ensures maximummodulation
efficiency, significantly relaxing the requirements in terms of mod-
ulation amplitude. This in turn allows large quality factors and large
modulation frequencies, which translate into strong non-reciprocal
response in deeply subwavelength devices. We also envisage the re-
alization of the proposed rotating modulation of coupled-resonator
loops in photonic crystal technology, for which high-Q-factor cou-
pled cavities may be implemented and efficiently modulated26. Our
study also represents a new demonstration of the exciting possibili-
ties offered by dynamic modulation of coupled-resonator networks,
with unique control over the flow of light, in the context of recently
presented concepts of photonic topological edge states and effective
magnetic fields for photons27–29.

Methods
Modes of the coupled-resonators loop. The coupled-mode equations of the
system of Fig. 1 read

ȧ1=−iω1a1− iκa2− iκa3

ȧ2=−iω2a2− iκa1− iκa3 (2)

ȧ3=−iω3a3− iκa1− iκa2

where a1, a2 and a3 are the complex amplitudes of the three resonators.
Equation (2) can be written in the more compact form

d
dt
|ψ〉=−iΩ |ψ〉 (3)

where |ψ〉=
[
a1 a2 a3

]T is the state vector of the system and

Ω=

ω1 κ κ

κ ω2 κ

κ κ ω3


In the absence of modulation, ω1, ω2 and ω3 are equal to ω0. Then, the
eigenfrequencies and the corresponding state vectors of the system are found by
the eigenvalues and eigenvectors of Ω , respectively. In particular, it can be shown
that there are three states, a common state with resonant frequency
ωc=ω0+2κ and state vector |c〉=(1/

√
3)
[
1 1 1

]T, a right-handed
rotating state with resonant frequency ω+=ω0−κ and state vector
|+〉=(1/

√
3)
[
1 ei2π/3 ei4π/3

]T, and a left-handed rotating state with resonant
frequency ω−=ω+ and state vector |−〉=(1/

√
3)
[
1 ei4π/3 ei2π/3

]T. Note that
because the eigenvalues ω+ and ω− are degenerate, the eigenvectors |+〉 and |−〉
are not the only ones corresponding to these eigenvalues. As a matter of fact, any

linear combination of |+〉 and |−〉, such as the vectors
[
1 −1 0

]T and[
1 0 −1

]T, are also valid eigenvectors of ω+ and ω−. However, hereafter, we
will use |+〉 and |−〉, because they bear an immediate physical meaning as
counter-rotating states of the coupled-resonators loop, and they significantly
simplify the mathematical analysis.

In the presence of modulation ω1(t)=ω0+δωm cos(ωmt),
ω2(t)=ω0+δωm cos(ωmt+2π/3) and ω3(t)=ω0+δωm cos(ωmt+4π/3) result in
a time-dependent Ω . In this case, the eigenstates of the system cannot be found
by the eigenvalues and eigenvectors of Ω , and a full solution of equation (3) is
necessary. Because modulation constitutes a perturbation of the coupled system,
it is convenient to express the eigenstates of the modulated system in terms of the
eigenstates of the coupled non-modulated system. To this end, equation (3) is
expressed in the basis of |c〉, |+〉 and |−〉, by multiplying |ψ〉 with the conjugate
transpose of the matrix

U =
1
√
3

1 1 1
1 ei2π/3 ei4π/3
1 ei4π/3 ei2π/3


with columns the state vectors |c〉, |+〉 and |−〉. In the new basis,
|ψ〉=

[
ac a+ a−

]T, where ac, a+ and a− are the complex amplitudes of the
common, right- and left-handed states, respectively, and

Ω=Ω0+δΩ

where

Ω0=

ωc 0 0
0 ω+ 0
0 0 ω−

 δΩ=
δωm

2

 0 e−iωm t eiωm t

eiωm t 0 e−iωm t

e−iωm t eiωm t 0


If ωm�|ωc−ω±|, coupling between the common and rotating states,
corresponding to the first row and column of δΩ , can be neglected and
equation (3) simplifies to

iȧ+=ω+a++
δωm

2
e−iωm ta−

iȧ−=ω−a−+
δωm

2
eiωm ta+

(4)

It can be seen that equation (4) is satisfied if

a+=A+e−iωt

a−=A−e−i(ω−ωm)t

where A+, A− and ω are constants. Then, equation (4) becomes

[
ω+ δωm/2

δωm/2 ω−+ωm

][
A+
A−

]
=ω

[
A+
A−

]
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which is an eigenvalue problem with respect to ω. The eigensolutions of this
problem yield the eigenstates of the modulated system, as given by
equation (1).

Modulation amplitude of the coupled-resonators system. We assume a
resonator whose modal distribution fully resides in materials with permittivity ε,
permeability µ, and resonant frequency ω0. It can be shown from perturbation
theory that a small change 1ε of the permittivity results in the following change
of the resonance frequency30

ω−ω0≈−ω0

∫
1ε |E0|

2 dV∫ (
ε |E0|

2
+µ |H0|

2)dV
where E0 and H0 are the resonant electric and magnetic field, respectively, and
integration is performed all over the volume of the resonator. Furthermore, it is
known that at resonance the electric and magnetic energies are equal, hence∫
ε |E0|

2 dV =
∫
µ |H0|

2 dV and

ω−ω0≈−ω0

∫
1ε |E0|

2 dV
2
∫
ε |E0|

2 dV

If, in addition, ε and 1ε are uniform over the volume where most of the
resonator’s energy is concentrated,

∫
1ε |E0|

2 dV ≈1ε
∫
|E0|

2 dV and∫
ε |E0|

2 dV ≈ε
∫
|E0|

2 dV , showing that the frequency modulation, δωm, for a
permittivity modulation amplitude 1εm is equal to δωm=ω01ε/(2ε).

Description of the experimental set-up. The complete experimental set-up is
shown in Supplementary Fig. 2 and a list of the associated equipment is provided
in Supplementary Table 2. A waveform generator provides the modulation signal,
which is split into three equal parts by means of a power divider. The output
signals are then led to three phase shifters, which provide the required phase
difference of 120◦ for the modulation signals of the three coupled resonators. The
phase shifters are powered by a d.c. source and their phase shift is controlled by
potentiometers. The outputs of the phase shifters are connected to the low-pass
ports of three diplexers, whose outputs are connected to the RF/modulation ports
of the ring. The high-pass ports of two of the diplexers are connected to the VNA
ports while the high-pass port of the third diplexer is terminated to a matched
load. The diplexers combine the modulation and RF signals and at the same time
provide infinite isolation between the RF and modulation paths. By rotating the
diplexers, which are connected to the VNA ports, it is possible to measure all the
S-parameters of the circuit. The d.c. signal for biasing of the varactors is provided
by a d.c. source connected to ports 4, 5 and 6 of the ring.
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