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MIMO Wireless Communications

Multiple-input multiple-output (MIMO) technology constitutes a breakthrough in the
design of wireless communication systems, and is already at the core of several
wireless standards. Exploiting multi-path scattering, MIMO techniques deliver significant
performance enhancements in terms of data transmission rate and interference reduction.
This book is a detailed introduction to the analysis and design of MIMO wireless
systems. Beginning with an overview of MIMO technology, the authors then examine the
fundamental capacity limits of MIMO systems. Transmitter design, including precoding
and space–time coding, is then treated in depth, and the book closes with two chapters
devoted to receiver design. Written by a team of leading experts, the book blends
theoretical analysis with physical insights, and highlights a range of key design challenges.
It can be used as a textbook for advanced courses on wireless communications, and will
also appeal to researchers and practitioners working on MIMO wireless systems.
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Preface

Facies non omnibus una,
Nec diversa tamen
(Ovid, Metamorphoses)

Wireless is one of the most rapidly developing technologies in our time, with dazzling
new products and services emerging on an almost daily basis. These developments present
enormous challenges for communications engineers, as the demand for increased wireless
capacity grows explosively. Indeed, the discipline of wireless communications presents
many challenges to designers that arise as a result of the demanding nature of the physical
medium and the complexities in the dynamics of the underlying network. The dominant
technical issue in wireless communications is that of multipath-induced fading, namely the
random fluctuations in the channel gain that arise due to scattering of transmitted signals
from intervening objects between the transmitter and the receiver. Multipath scattering is
therefore commonly seen as an impairment to wireless communication. However, it can
now also be seen as providing an opportunity to significantly improve the capacity and
reliability of such systems. By using multiple antennas at the transmitter and receiver in
a wireless system, the rich scattering channel can be exploited to create a multiplicity of
parallel links over the same radio band, and thereby to either increase the rate of data
transmission through multiplexing or to improve system reliability through the increased
antenna diversity. Moreover, we need not choose between multiplexing and diversity, but
rather we can have both subject to a fundamental tradeoff between the two.

This book addresses multiple-input/multiple-output (MIMO) wireless systems in which
transmitters and receivers may have multiple antennas. Since the emergence of several
key ideas in this field in the mid-1990s, MIMO systems have been one of the most
active areas of research and development in the broad field of wireless communications.
An enormous body of work has been created in this area, leading to many immediate
applications and to future opportunities. This book provides an entrée into this very active
field, aiming at covering the main aspects of analysis and design of MIMO wireless. It is
intended for graduate students as well as practicing engineers and researchers with a basic
knowledge of digital communications and wireless systems, roughly at the level of [1–4].

The present book gives a unified and comprehensive view of MIMO wireless. After
a general overview in Chapter 1, it covers the basic elements of the field in depth,
including the fundamental capacity limits of MIMO systems in Chapter 2, transmitter
design (including precoding and space–time coding) in Chapters 3 and 4, and receiver
design in Chapters 5 and 6. Although the book is designed to be accessible to individual

xi



xii Preface

readers, it can also be used as an advanced graduate textbook, either in its entirety, or
perhaps in one of two ways: for a course on MIMO Wireless Communication Systems
(Chapters 1, 3, 5 and 6) or for a course on Information Theory and Coding in MIMO
Wireless (Chapters 1–4).

Barcelona, Spain
London, UK

Princeton, NJ, USA
Stanford, CA, USA
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Notation

General notation

X Matrix X (boldface capital letter)
x Vector x (boldface lowercase letter)
�X�i�j The element on row i and column j of matrix X
XT Transpose of X
X∗ Conjugate transpose of X
det(X) Determinant of X
tr(X) Trace of X
��X��F Frobenius norm of X
��X� Eigenvalues of X
�X The diagonal matrix of the eigenvalues of the Hermitian matrix X
	X The diagonal matrix of the singular values of X
UX The eigen- or singular-vector matrix of X
X � 0 X is positive semi-definite
vec�X� Vectorize X into a vector by concatenating the columns of X
⊗ Kronecker product
I An identity matrix
E�·� Expected value

�x�+ =
{

x if x ≥ 0� x ∈ �
0 if x < 0� x ∈ �

Symbols

MT The number of transmit antennas
MR The number of receive antennas
H A MIMO flat-fading channel
Hw A random channel with i.i.d. zero-mean complex Gaussian elements
Hm The channel mean
R A covariance of the channel
Rt Transmit covariance, also called the transmit antenna correlation
Rr Receive covariance, also called the receive antenna correlation
K The Ricean K factor
Tc The channel coherence time
Bc The channel coherence bandwidth
Dc The channel coherence distance
�t� At time or delay t

xiv



Notation xv


 Channel temporal correlation function
F The precoding matrix
pi Power loading on beam i

C A codeword
Q The codeword covariance matrix
A The codeword difference product matrix
� The signal-to-noise ratio

Abbreviations

APP A posteriori probability
ARQ Automatic repeat request
AWGN Additive white Gaussian noise
BC Broadcast channel
BCJR Bahl–Cocke–Jelinek–Raviv
BER Bit-error rate
BLAST Bell Laboratories space–time
bps Bits per second
BPSK Binary phase-shift keying
CCI Channel covariance information
CDF Cumulative distribution function
CDI Channel distribution information
CDIR Receiver channel distribution information
CDIT Transmitter channel distribution information
CDMA Code-division multiple access
CDMA 2000 A CDMA standard
CIR Channel impulse response
CMI Channel mean information
CP Cyclic prefix
CSI Channel state information
CSIR Receiver channel state information
CSIT Transmitter channel state information
dB Decibels
DDF Decorrelating decision feedback
DFT Discrete Fourier transform
DPC Dirty paper coding
DS Direct-sequence
DSL Digital subscriber line
EDGE Enhanced data rate for GSM evolution
EM Expectation-maximization
EXIT Extrinsic information transfer
FDD Frequency-division duplex
FDE Frequency domain equalizer
FDMA Frequency-division multiple access



xvi Notation

FER Frame-error rate
FFT Fast Fourier transform
FIR Finite impulse response
GSM Global system for mobile communications, a second-generation mobile

communications standard
IBI Inter-block interference
IC Interference cancellation
IEEE Institute of Electrical and Electronic Engineers
IFC Interference channel
IFFT Inverse FFT
iid Independent, identically distributed
IO Individually optimal
ISI Intersymbol interference
JO Jointly optimal
KKT Karush–Kuhn–Tucker
LDC Linear dispersion code
LDPC Low-density parity check
LLR Logarithmic likelihood ratio
LMMSE Linear minimum mean-square error
LMS Least mean-squares
LOS Line-of-sight
MAC Multiple-access channel
MAI Multiple-access interference
MAP Maximum a posteriori probability
MBWA Mobile broadband wireless access
MIMO Multiple-input multiple-output
MISO Multiple-input single-output
ML Maximum likelihood
MMSE Minimum mean-square error
MRC Maximum ratio combining
MSE Mean-square error
MU Multi-user
MUD Multi-user detection
NAHJ-FST Noise-averaged Hamilton–Jacobi fast subspace tracking
NUM Network utility maximization
OFDM Orthogonal frequency-division multiplexing
OFDMA Orthogonal frequency-division multiple access
PEP Pairwise error probability
PRUS Perfect root of unity sequences
PSD Positive semi-definite
PSK Phase shift keying
QAM Quadrature amplitude modulation
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QCI Quantized channel information
QPSK Quadrature phase-shift keying
QSTBC Quasi-orthogonal STBC
RF Radio frequency
RLS Recursive least squares
RSC Recursive systematic convolutional
RV Random variable
SAGE Space-alternating generalized EM
SC Single carrier
SIMO Single-input, multiple-output
SINR Signal-to-interference-plus-noise ratio
SISO Single-input, single-output
SI/SO Soft-input/soft-output
SNR Signal-to-noise ratio
SPA Sum–product algorithm
ST Space–time
STBC Space–time block code
STC Space–time coding/space–time code
STTC Space–time trellis code
SU Single user
SVD Singular-value decomposition
TCP Transport control protocol
TDD Time-division duplex
TDMA Time-division multiple access
36PP 36 Partnership project
TWLK Tanner–Wieberg–Loeliger–Koetter
UEP Unequal error protection
V-BLAST Vertical BLAST
WCDMA Wideband code-division multiple access
WiMAX IEEE 802.16 standard
WLAN Wireless local area network
WMAN Wireless metropolitan area network
ZF Zero-forcing
ZMSW Zero mean spatially white





1 Introduction

1.1 MIMO wireless communication

The use of multiple antennas at the transmitter and receiver in wireless systems, popularly
known as MIMO (multiple-input multiple-output) technology, has rapidly gained in
popularity over the past decade due to its powerful performance-enhancing capabilities.
Communication in wireless channels is impaired predominantly by multi-path fading.
Multi-path is the arrival of the transmitted signal at an intended receiver through differing
angles and/or differing time delays and/or differing frequency (i.e., Doppler) shifts
due to the scattering of electromagnetic waves in the environment. Consequently, the
received signal power fluctuates in space (due to angle spread) and/or frequency (due
to delay spread) and/or time (due to Doppler spread) through the random superposition
of the impinging multi-path components. This random fluctuation in signal level, known
as fading, can severely affect the quality and reliability of wireless communication.
Additionally, the constraints posed by limited power and scarce frequency bandwidth
make the task of designing high data rate, high reliability wireless communication systems
extremely challenging.

MIMO technology constitutes a breakthrough in wireless communication system
design. The technology offers a number of benefits that help meet the challenges posed by
both the impairments in the wireless channel as well as resource constraints. In addition
to the time and frequency dimensions that are exploited in conventional single-antenna
(single-input single-output) wireless systems, the leverages of MIMO are realized by
exploiting the spatial dimension (provided by the multiple antennas at the transmitter and
the receiver).

We indicate the kind of performance gains that are expected from the use of MIMO
technology by plotting in Figure 1.1 the data rate versus the receive signal-to-noise ratio
(SNR) in a 100 kHz channel for an M ×M (i.e., M receive and M transmit antennas)
fading link with M = 1� 2� 4. The channel response is assumed constant over the bandwidth
of interest for this simple example. Assuming a target receive SNR of 25 decibels (dB),
a conventional single-input single-output (i.e., M = 1) system can deliver a data rate of
0.7 Mbps (where Mbps denotes Mbits per second). With M = 2 and 4 we can realize
data rates of 1.4 and 2.8 Mbps respectively. This increase in data rate is realized for no
additional power or bandwidth expenditure compared to the single-input single-output
system. In principle, the single-input single-output system can achieve the data rate of
2.8 Mbps with a receive SNR of 25 dB if the bandwidth is increased to 400 kHz, or

1
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Fig. 1.1. Average data rate versus SNR for different antenna configurations. The channel bandwidth
is 100 kHz.

alternatively, with a bandwidth of 100 kHz if the receive SNR is increased to 88 dB! The
result presented in this example is based on optimal transceiver design. In practice, the
modulation and impairments-constrained data rate delivered will be less but the general
trend will still hold.

1.1.1 Benefits of MIMO technology

The benefits of MIMO technology that help achieve such significant performance gains
are array gain, spatial diversity gain, spatial multiplexing gain and interference reduction.
These gains are described in brief below.

Array gain

Array gain is the increase in receive SNR that results from a coherent combining effect
of the wireless signals at a receiver. The coherent combining may be realized through
spatial processing at the receive antenna array and/or spatial pre-processing at the transmit
antenna array. Array gain improves resistance to noise, thereby improving the coverage
and the range of a wireless network.

Spatial diversity gain

As mentioned earlier, the signal level at a receiver in a wireless system fluctuates or
fades. Spatial diversity gain mitigates fading and is realized by providing the receiver with
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multiple (ideally independent) copies of the transmitted signal in space, frequency or time.
With an increasing number of independent copies (the number of copies is often referred
to as the diversity order), the probability that at least one of the copies is not experiencing
a deep fade increases, thereby improving the quality and reliability of reception. A MIMO
channel with MT transmit antennas and MR receive antennas potentially offers MT MR

independently fading links, and hence a spatial diversity order of MT MR.

Spatial multiplexing gain

MIMO systems offer a linear increase in data rate through spatial multiplexing
[5, 9, 22, 35], i.e., transmitting multiple, independent data streams within the bandwidth of
operation. Under suitable channel conditions, such as rich scattering in the environment,
the receiver can separate the data streams. Furthermore, each data stream experiences at
least the same channel quality that would be experienced by a single-input single-output
system, effectively enhancing the capacity by a multiplicative factor equal to the number
of streams. In general, the number of data streams that can be reliably supported by a
MIMO channel equals the minimum of the number of transmit antennas and the number of
receive antennas, i.e., min�MT �MR�. The spatial multiplexing gain increases the capacity
of a wireless network.

Interference reduction and avoidance

Interference in wireless networks results from multiple users sharing time and frequency
resources. Interference may be mitigated in MIMO systems by exploiting the spatial
dimension to increase the separation between users. For instance, in the presence of
interference, array gain increases the tolerance to noise as well as the interference power,
hence improving the signal-to-noise-plus-interference ratio (SINR). Additionally, the spatial
dimension may be leveraged for the purposes of interference avoidance, i.e., directing
signal energy towards the intended user and minimizing interference to other users.
Interference reduction and avoidance improve the coverage and range of a wireless network.

In general, it may not be possible to exploit simultaneously all the benefits described
above due to conflicting demands on the spatial degrees of freedom. However, using some
combination of the benefits across a wireless network will result in improved capacity,
coverage and reliability.

1.1.2 Basic building blocks

Figure 1.2 shows the basic building blocks that comprise a MIMO communication system.
The information bits to be transmitted are encoded (using, for instance, a convolutional
encoder) and interleaved. The interleaved codeword is mapped to data symbols (such
as quadrature amplitude modulation or QAM symbols) by the symbol mapper. These
data symbols are input to a space–time encoder that outputs one or more spatial data
streams. The spatial data streams are mapped to the transmit antennas by the space–time
precoding block. The signals launched from the transmit antennas propagate through the
channel and arrive at the receive antenna array. The receiver collects the signals at the
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Fig. 1.2. Diagram of a complex equivalent baseband MIMO communication system. x and y stand
for the transmitted and received signal vectors respectively.

output of each receive antenna element and reverses the transmitter operations in order
to decode the data: receive space–time processing, followed by space–time decoding,
symbol demapping, deinterleaving and decoding. Each of the building blocks offers
the opportunity for significant design challenges and complexity–performance trade-offs.
Furthermore, a number of variations can exist in the relative placement of the blocks, the
functionality and the interactions between the blocks.

This book addresses key concepts and challenges in designing and understanding the
performance limits of a MIMO communication system.

1.2 MIMO channel and signal model

In order to design efficient communication algorithms for MIMO systems and to
understand the performance limits, it is important to understand the nature of the MIMO
channel. For a system with MT transmit antennas and MR receive antennas, assuming
frequency-flat fading1 over the bandwidth of interest, the MIMO channel at a given time
instant may be represented as an MR ×MT matrix

H =

⎡
⎢⎢⎢⎣

H1�1 H1�2 · · · H1�MT

H2�1 H2�2 · · · H2�MT

���
���

� � �
���

HMR�1 HMR�2 · · · HMR�MT

⎤
⎥⎥⎥⎦ � (1.1)

1 The delay spread in the channel is negligible compared to the inverse bandwidth.
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where Hm�n is the (single-input single-output) channel gain between the mth receive and
nth transmit antenna pair. The nth column of H is often referred to as the spatial signature
of the nth transmit antenna across the receive antenna array. The relative geometry of
the MT spatial signatures determines the distinguishability of the signals launched from
the transmit antennas at a receiver. This is particularly important when independent
data streams are launched from the transmit antennas, as is done in the case of spatial
multiplexing.

As for the case of single-input single-output channels, the individual channel gains
comprising the MIMO channel are commonly modeled as zero-mean circularly symmetric
complex Gaussian random variables. Consequently, the amplitudes �Hm�n� are Rayleigh-
distributed random variables and the corresponding powers �Hm�n�2 are exponentially
distributed.

1.2.1 Classical independent, identically distributed (i.i.d.) Rayleigh fading
channel model

The degree of correlation between the individual MT MR channel gains comprising the
MIMO channel is a complicated function of the scattering in the environment and antenna
spacing at the transmitter and the receiver. Consider an extreme condition were all antenna
elements at the transmitter are collocated and likewise at the receiver. In this case, all the
elements of H will be fully correlated (in fact identical) and the spatial diversity order of
the channel is one.

Decorrelation between the channel elements will increase with antenna spacing.
However, antenna spacing alone is not sufficient to ensure decorrelation. Rich (i.e.,
omni-directional and isotropic) scattering in the environment in combination with
adequate antenna spacing ensures decorrelation of the MIMO channel elements. With
rich scattering, the typical antenna spacing required for decorrelation is approximately
�/2, where � is the wavelength corresponding to the frequency of operation. Under ideal
conditions, when the channel elements are perfectly decorrelated, we have2 Hm�n�m =
1� 2� � � � �MR�n = 1� 2� � � � �MT 	 ∼ i.i.d. �� �0� 1	. Summarizing, we get H = Hw, the
classical i.i.d. frequency-flat Rayleigh fading MIMO channel. The spatial diversity order
of Hw is MT MR.

1.2.2 Frequency-selective and time-selective fading

The channel model above assumes that the product of the bandwidth and the delay spread
is very small. With increasing bandwidth and/or delay spread, this product is no longer
negligible (0.1 is often considered the threshold for voice communication [11]), resulting
in channel realizations that are frequency-dependent, i.e., H�f	. While fading at a given
frequency may be decorrelated in the spatial domain (resulting in Hw�f	), correlation may
exist across channel elements in the frequency domain. The correlation properties in the
frequency domain are a function of the power delay profile. The coherence bandwidth Bc

2 A complex-valued random variable Z = X + jY is �� �0� 1	 if X and Y are independent and normally
distributed with zero mean and variance 1

2 .
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is defined as the minimum separation in bandwidth required to achieve decorrelation. For
two frequencies f1 and f2 with �f1 −f2� > Bc, we have E
vec�H�f1		vecH�H�f2		� = 0.
The coherence bandwidth is inversely proportional to the delay spread of the channel.

Furthermore, due to the motion of scatterers in the environment or of the transmitter
or receiver, the channel realizations will vary with time. As with the case of frequency-
selective fading, we can define a coherence time Tc, defined as the minimum separation
in time required for decorrelation of the time-varying channel realizations. For two time
instances t1 and t2 with �t1 − t2� > Tc, we have E
vec�H�t1		vecH�H�t2		� = 0. The
coherence time is inversely proportional to the Doppler spread of the channel.

1.2.3 Real-world MIMO channels

In practice, the behavior of H can significantly deviate from Hw due to a combination
of inadequate antenna spacing and/or inadequate scattering leading to spatial fading
correlation. Furthermore, the presence of a fixed (possibly line-of-sight or LOS)
component in the channel will result in Ricean fading. Extensive measurements of
real-world MIMO channels [3, 8, 15, 17, 30, 32] have been carried out by researchers
across the world to develop accurate models [5, 10, 24]. Figure 1.3 shows the measured
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Fig. 1.3. Measured real-world MIMO channel. Hi�j denotes the channel gain between the jth
transmit antenna and ith receive antenna.
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time–frequency response for an MT = MR = 2 MIMO channel in a fixed broadband
wireless access system at 2�5 GHz. It is clear from the figure that real-world MIMO
channels are triply selective, i.e., they exhibit fading across space, time and frequency.

In the presence of an LOS component between the transmitter and the receiver, the
MIMO channel may be modeled as the sum of a fixed component and a fading component

H =
√

K

1+K
H +

√
1

1+K
Hw� (1.2)

where
√

K
1+K

H = E
H� is the LOS component of the channel and
√

1
1+K

Hw is the fading
component, assuming uncorrelated fading. K ≥ 0 in (1.2) is the Ricean K-factor of the
channel and is defined as the ratio of the power in the LOS component of the channel to
the power in the fading component. When K = 0 we have pure Rayleigh fading. At the
other extreme K = � corresponds to a non-fading channel.

In general, real-world MIMO channels will exhibit some combination of Ricean fading
and spatial fading correlation. Spatial correlation models will be discussed in Chapter 2.
Furthermore, the use of polarized antennas will necessitate additional modifications
to the channel model. These factors collectively will impact (probably adversely) the
performance of a given MIMO signaling scheme. With appropriate knowledge of the
MIMO channel at the transmitter, the signaling strategy can be appropriately adapted to
meet performance requirements. The channel state information could be complete (i.e., the
precise channel realization) or partial (i.e., knowledge of the spatial correlation, K-factor,
etc.). Space–time precoding techniques to exploit channel knowledge at the transmitter
are detailed in Chapter 3.

1.2.4 Discrete-time signal model

For a frequency-flat fading MIMO channel, the commonly used discrete-time input–output
relation over a symbol period is given by

y =
√

Ex

MT

Hx +n� (1.3)

where y is the MR ×1 received signal vector, x is the MT ×1 transmitted signal vector, n
is additive temporally white complex Gaussian noise with E
nnH� = NoIMR

and Ex is the
total average energy available at the transmitter over a symbol period having removed
losses due to propagation and shadowing. We constrain the total average transmitted
power over a symbol period by assuming that the covariance matrix of x, Rxx = E
xxH�,
satisfies Tr�Rxx	 = MT . The ratio � = Ex/No equals the SNR per receive antenna (simply
referred to as SNR henceforth). Furthermore, it is commonly assumed that the channel is
block fading [4], i.e., the channel remains constant over N consecutive symbol periods
(determined by the coherence time) and then changes in an independent fashion to a new
realization. Frequency-selective fading can be incorporated into the channel model by
using a matrix tapped-delay line. The appropriate changes to the channel model will be
described when required in subsequent chapters.
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1.3 A fundamental trade-off

Two key performance metrics associated with any communication system are the
transmission rate and the frame-error rate (FER). In the following, the transmission rate,
R, is defined as the data rate transmitted per unit bandwidth. The FER, Pe���R	, is
defined as the probability with which the transmitted frame (i.e., packet) is incorrectly
decoded at the receiver, and is a function of the SNR and transmission rate.

Intuitively, for a fixed transmission rate an increase in SNR will result in reduced FER.
Similarly, at a fixed target FER, an increase in SNR may be leveraged to increase the
transmission rate. Hence, a fundamental trade-off exists in any communication system
between the transmission rate and FER. In the context of MIMO systems, this trade-off is
often referred to as the diversity–multiplexing trade-off [41] with diversity signifying the
FER reduction and multiplexing signifying an increase in transmission rate. The diversity–
multiplexing trade-off is central to MIMO communication theory and is described in brief
in this section.

1.3.1 Outage capacity

The capacity of a communication channel is the maximum, asymptotic (in block length)
error-free transmission rate that can be achieved. The capacity of a MIMO channel is a
complicated function of the channel conditions and transmit/receive processing constraints
[4, 9, 13, 19, 21, 35, 40]. A detailed discussion on the capacity of MIMO channels is
provided in Chapter 2. The development below focuses on the outage capacity of MIMO
channels, which gains operational significance when the fading channel holds constant
over the entire duration of the transmitted frame.

The p percentage outage capacity at SNR �, Cout�p��	, is defined as the transmission
rate that can be supported by �100 −p	% of the fading realizations of the channel [35].
Hence at SNR �, if a frame is transmitted with rate Cout�p��	, the probability that the
frame will be decoded correctly is �100 − p	%. Equivalently the FER associated with
transmission rate Cout�p��	 is p%, i.e.,

Pe���Cout�p��		 = p%� (1.4)

1.3.2 Multiplexing gain

The maximum multiplexing gain rmax that can be achieved over a MIMO channel is given
by the asymptotic (in SNR) slope of the outage capacity (for fixed FER) plotted as a
function of the SNR on a linear–log scale, i.e.,

rmax = lim
�→�

Cout�p��	

log2 �
� (1.5)

For the Hw MIMO channel with optimal transceiver design (i.e., Gaussian
code books, asymptotically large frame length, maximum-likelihood detection, etc.)
rmax = min�MR�MT � indicating that for a fixed FER, the transmission rate may be
increased by min�MR�MT �bps/Hz for every 3 dB increase in SNR.
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Fig. 1.4. 10% outage capacity for an M ×M Hw channel plotted as a function of SNR.

Figure 1.4 shows a comparison of the 10% outage capacity of a 2 × 2 Hw MIMO
channel to the 10% outage capacity of a single-input single-output channel, plotted as a
function of SNR. At high SNR, the outage capacity for the MIMO channel grows with
2 bps/Hz/3 dB slope compared to 1 bps/Hz/3 dB slope for the single-input single-output
channel.

1.3.3 Diversity gain

The maximum diversity gain dmax that can be achieved over a MIMO channel is given
by the negative of the asymptotic (in SNR) slope of FER for a fixed transmission rate,
plotted as a function of SNR on a log–log scale, i.e.,

dmax = − lim
�→�

log2 Pe���R	

log2 �
� (1.6)

For the Hw MIMO channel with optimal transceiver design (i.e., Gaussian code books,
asymptotically large frame length, maximum-likelihood detection, etc.) d = MRMT ,
indicating that for a fixed transmission rate, with every 3 dB increase in SNR, the FER
decreases by a factor of 2−MRMT .

For R = 2 bps/Hz, Figure 1.5 compares the FER in a 2×2 Hw MIMO channel to the
FER in a single-input single-output channel, plotted as a function of SNR. The fourth-
order diversity provided by the MIMO channel is clearly reflected by the slope of the
FER curve – at high SNR, the FER decreases by a factor of 2−4 in the MIMO channel
(compared to 2−1 in the single-input single-output channel) for a 3 dB increase in SNR.
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Fig. 1.5. FER at R = 2 bps/Hz for an M ×M Hw channel plotted as a function of SNR.

1.3.4 Flexible trade-off

Individually, (1.5) and (1.6) represent the extremities of the diversity–multiplexing trade-
off for MIMO channels. In (1.5) an increase in SNR is completely utilized to linearly
(in min�MR�MT �) increase the transmission rate, keeping the FER fixed. At the other
extreme, in (1.6), an increase in SNR yields an exponential (the exponent is −MRMT )
reduction in FER at a fixed transmission rate. Furthermore, (1.5) and (1.6) represent the
gains of MIMO communication over single-input single-output systems as demonstrated
in Figures 1.5 and 1.4.

In certain scenarios, we may desire to utilize an increase in SNR for some combination
of transmission rate increase and FER reduction. It has been shown that a flexible
trade-off between diversity and multiplexing can be achieved – the optimal trade-off
curve for the Hw MIMO channel, d�r	, is piecewise linear (see Figure 1.6) connecting
�r�d�r		� r = 0� 1� � � � � rmax, where

d�r	 = �MR − r	�MT − r	� (1.7)

The trade-off curve implies that if the transmission rate is increased by r bps/Hz over
a 3 dB increase in SNR, the corresponding reduction in FER will equal 2−d�r	. Hence it
is not possible to increase the transmission rate and decrease the FER simultaneously to
the fullest extent (represented by rmax and dmax respectively) possible.
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1.4 MIMO transceiver design

Transceiver algorithms for MIMO systems may be broadly classified into two categories,
i.e., those designed to increase the transmission rate and those designed to increase
reliability. The former are often collectively referred to as spatial multiplexing and the
latter as transmit diversity. Spatial multiplexing and transmit diversity techniques achieve
either one of the two extremities in the diversity–multiplexing trade-off curve. Spatial
multiplexing provides maximum multiplexing gain at fixed FER, while transmit diversity
techniques provide maximum diversity gain for fixed transmission rate. Two representative
transceiver algorithms, one from each of these classifications, are described below.

1.4.1 Alamouti scheme

The Alamouti scheme [2] is a simple transmit diversity technique that may be applied in
systems with MT = 2 and any number of receive antennas. The transmission strategy for
the Alamouti scheme is shown in the schematic in Figure 1.7. Assuming two data symbols
x0 and x1 to be transmitted, the transmitter launches x0 and x1 from the first and second
transmit antenna, respectively, during the first symbol period, followed by x∗

1 and −x∗
0

from the first and second transmit antenna, respectively, during the second symbol period.
Hence, effectively, only one data symbol is transmitted per symbol period. Furthermore,
through appropriate processing at the receiver, the matrix channel is collapsed into a
scalar channel for either data symbol with the effective input–output relation

ỹi =
√

Ex

2
�H�F xi + ñi� i = 0� 1� (1.8)

where ỹi is the processed (scalar) received signal and ñi ∼ �� �0�No	 is temporally white
processed noise.

The Alamouti scheme realizes a diversity gain of 2MR at a fixed transmission rate. For
transmission rate R = 2 bps/Hz, Figure 1.8 compares the FER for the Alamouti scheme
in a 2×2 Hw MIMO channel with the FER in a single-input single-output channel. The
Alamouti scheme clearly achieves fourth-order diversity.
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Fig. 1.7. Schematic of the Alamouti scheme.
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Fig. 1.8. FER at R = 2 bps/Hz for a 2×2 Hw MIMO channel with the Alamouti scheme.

Figure 1.9 compares the 10% outage capacity of the Alamouti scheme in a 2 ×2 Hw

MIMO channel to the 10% outage capacity of a single-input single-output channel. The
figure shows that the multiplexing gain provided by the Alamouti scheme at fixed FER
is one, equal to the multiplexing gain in the single-input single-output channel.

Hence, while transmit diversity techniques are capable of realizing full diversity gain,
they fall considerably short when a sharp increase in data rate is desired. Transmit
diversity techniques are of value for lower data rate, high reliability communication. The
Alamouti scheme may be extended to channels with more than two transmit antennas.
The techniques governing signal construction for transmit diversity fall within the realm
of space–time coding [2, 12, 16, 27, 29, 33, 34], which is described in Chapter 4.
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Fig. 1.9. 10% outage capacity for a 2×2 Hw MIMO channel with the Alamouti scheme.

1.4.2 Spatial multiplexing

Spatial multiplexing gain can be realized by transmitting independent data streams from
each of the transmit antennas. Figure 1.10 is the schematic of spatial multiplexing for a
transmitter with MT = 2.

Unlike the Alamouti scheme, the multiple transmitted data streams interfere with
one another at the receiver. In order to reliably separate the received data streams we
require MR ≥ MT . For this simple example, assuming MR = MT = 2, a zero-forcing (ZF)
receiver [38] may be applied that completely eliminates the multi-stream interference.
More complex receiver architectures and the associated trade-offs are the subject of

Symbol stream
xi

Spatial
multiplexer

x2i

x2i+1

Fig. 1.10. Schematic of spatial multiplexing for a transmitter with two antennas.
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Chapter 5. With a zero-forcing receiver the effective input–output relation for the spatially
multiplexed MIMO channel is

ỹ = x + ñ�

where ỹ is the processed (zero-forced) received MT × 1 signal vector, x is the MT × 1
transmitted signal vector and ñ is the temporally white zero-mean processed noise
vector with covariance matrix Rñ ñ = MT

�
�HHH	−1. Hence, with a ZF receiver, the

spatially multiplexed MIMO channel is decomposed into parallel, scalar sub-channels
with correlated noise across the sub-channels. Furthermore, it can be shown that for
the Hw MIMO channel with MR = MT , the average receive SNR in a sub-channel is
equal to �/MT , with Rayleigh fading across the sub-channels. Ignoring correlation across
the sub-channels allows independent encoding/decoding of the multiplexed streams. The
composite transmitted frame is then in error if any one of the (sub-)frames transmitted
over the sub-streams is in error.

Clearly, with a 3 dB increase in SNR, the transmission rate in each of the parallel
sub-channels may be increased by 1 bps/Hz at fixed FER, giving an overall increase in
transmission rate of MT bps/Hz, equal to the maximum multiplexing gain of the MIMO
channel. However, since each of the scalar sub-channels is single-input single-output
Rayleigh fading, we can only expect a maximum diversity gain of one.

Figure 1.11 shows the 10% outage capacity of a spatially multiplexed 2×2 Hw MIMO
channel with a ZF receiver. The figure clearly shows the superiority of spatial multiplexing
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Fig. 1.11. 10% outage capacity of a spatially multiplexed (SM) 2 × 2 Hw MIMO channel with a
ZF receiver.
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Fig. 1.12. FER at R = 2 bps/Hz for a spatially multiplexed 2 × 2 Hw MIMO channel with a ZF
receiver.

in providing high data rate. Figure 1.12 shows the FER for the same MIMO channel with
spatial multiplexing and ZF reception at a transmission rate of R = 2 bps/Hz. Spatial
multiplexing with ZF reception does not offer a diversity advantage over the single-input
single-output channel. Spatial multiplexing is therefore advantageous when we require a
dramatic increase in spectral efficiency, but not in reliability.

Each of the MIMO transceiver techniques described above achieves one of the two
extremities in the diversity–multiplexing trade-off curve, and is clearly suboptimal at the
other extremity. Techniques that achieve a flexible diversity–multiplexing trade-off form
an important topic of current research.

1.5 MIMO in wireless networks

Wireless networks may be broadly classified as cellular or ad hoc networks. A cellular
network is characterized by centralized communication – multiple users within a cell
communicate with a base-station that controls all transmission/reception and forwards
data to the users. On the contrary, in an ad hoc network, all terminals are on an equal
footing – any terminal can act as a sender or receiver of data or as a relay for other
transmissions. This section briefly reviews the use of MIMO technology in each of
these networks and also discusses a new form of the technology, known as distributed
MIMO.
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1.5.1 MIMO in cellular networks

In a cellular wireless communication network, multiple users may communicate at the
same time and/or frequency. The more aggressive the reuse of time and frequency
resources, the higher the network capacity will be, provided that transmitted signals can
be detected reliably. Multiple users may be separated in time (time-division) or frequency
(frequency-division) or code (code-division). The spatial dimension in MIMO channels,
provides an extra dimension to separate users, allowing more aggressive reuse of time
and frequency resources, thereby increasing the network capacity.

Figure 1.13 is the schematic of a cell in a MIMO cellular network. A base-station
equipped with L antennas communicates with P users, each equipped with M antennas.
The channel from the base-station to the users (the downlink) is a broadcast channel
(BC) while the channel from the users to the base-station (the uplink) is a multiple-access
channel (MAC). The set of rate-tuples (R1�R2� � � � �RP) that can be reliably supported
on the downlink or uplink constitutes the capacity rate region for that link. Recently,
an important duality has been discovered between the rate regions for the downlink and
uplink channels [7, 31, 37, 39]. This result along with other capacity results for multi-user
MIMO systems will be discussed in Chapter 2.

In order to understand the possible gains from MIMO technology in a multi-user
environment, consider the uplink of a cellular MIMO system where all the users
simultaneously transmit independent data streams from each of their transmit antennas,
i.e., each user signals with spatial multiplexing. To the base-station, the users combined,
appear as a multi-antenna transmitter with PM antennas. Thus the effective uplink
channel has a dimension of L × PM . This effective channel will have a considerably
different structure from the Hw MIMO single user channel due to path-loss and shadowing

User 2

User 4

User 3

User 1

User P

Base-station

Fig. 1.13. MIMO cellular system. A base-station with L antennas communicates with P users, each
equipped with M antennas.
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differences between users. However, with rich scattering and L ≥ PM , we can expect
that the spatial signatures of the users are well separated to allow reliable detection.
Using a multi-user ZF receiver will allow perfect separation of all the data streams at the
base-station, yielding a multi-user multiplexing gain of PM . The use of more complex
receivers for multi-user detection and the associated performance trade-offs are the subject
of Chapter 6. A similar thought experiment can be applied for the downlink, where the
base-station exploits the spatial dimension to beam information intended for a particular
user towards that user and steers nulls in the directions of the other users, thus completely
eliminating interference.

1.5.2 MIMO in ad hoc networks

Figure 1.14 shows a wireless ad hoc network. At a given instant of time, a subset of
terminals will be sources of data and another subset the intended destinations. The terminals
in the network that are neither sources nor destinations may act as relays to assist data
transmission in the network. Thus the number of operating modes in an ad hoc network
is very large and will, in general, comprise of combinations of multiple-access, broadcast,
relay and interference channels. While the ultimate performance limit of an ad hoc network
is unknown, it is clear that leveraging the spatial dimension through the use of MIMO
technology in each of the building blocks (i.e., the constituent multiple-access, broadcast,
relay and interference channels) will increase the overall network capacity. A discussion on
the capacity benefits of MIMO in ad hoc networks is provided in Chapter 2.

Distributed MIMO

While MIMO technology provides substantial performance gains, the cost of deploying
multiple antennas at terminals in a network can be prohibitive, at least for the immediate
future. Distributed MIMO is a means of realizing the gains of MIMO with single-antenna
terminals in a network, allowing a gradual migration to a true MIMO network. The
approach requires some level of cooperation between network terminals. This can be

Source

Inactive

Destination

Fig. 1.14. An ad hoc wireless network.
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Cooperation to form a
virtual antenna array

User 2

User 3

User 1

User P

Base-station

Fig. 1.15. Distributed MIMO: multiple users cooperate to form a virtual antenna array that realizes
the gains of MIMO in a distributed fashion.

accomplished through suitably designed protocols [14, 18, 25, 26, 28]. The cooperating
terminals form a virtual antenna array (see Figure 1.15) that leverages the gains of
MIMO in a distributed fashion. Substantial performance gains can be realized through
this approach. The concept may be applied to both cellular as well as ad hoc wireless
networks.

1.6 MIMO in wireless standards

With the advent of the Internet and rapid proliferation of computational and
communication devices, the demand for higher data rates is ever growing. In many
circumstances, the wireless medium is an effective means of delivering a high data rate
at a cost lower than that of wireline techniques (such as DSL or cable modem). Limited
bandwidth and power makes MIMO technology indispensable in meeting the increasing
demand for data.

MIMO technology is now at the core of many existing and emerging wireless standards
such as IEEE 802.11 (for wireless local area networks or WLAN), IEEE 802.16 (for
wireless metropolitan area networks or WMAN) and IEEE 802.20 (for mobile broadband
wireless access or MBWA). While MIMO is compatible with any modulation scheme,
the preferred choice for next-generation networks, to tackle the increased bandwidth
delay spread product, is orthogonal frequency-division multiplexing (OFDM). OFDM
significantly reduces the computational complexity of equalization at the receiver by
dividing an otherwise frequency-selective channel into narrower frequency-flat fading
sub-channels called tones. The associated multi-user format is orthogonal frequency-
division multiple access (OFDMA). In OFDMA multiple users are allocated tones
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Fig. 1.16. Experimental throughput achieved in a WLAN system based on the IEEE 802.11n
specification at Marvell Semiconductor, Inc.

depending on individual throughput and delay constraints. As an example of the data rates
that will be realized, the IEEE 802.11n specification promises a throughput in excess
of 200 Mbps. Figure 1.16 shows the experimental throughput for the IEEE 802.11n
specification with a 2×2 MIMO configuration in 20 and 40 MHz channels.

1.7 Organization of the book and future challenges

This book addresses some of the key challenges in designing MIMO communication
systems and understanding the ultimate performance limits. Chapter 2 provides a detailed
discussion of the capacity limits of single- and multi-user MIMO systems. Chapter 3
discusses how knowledge of the MIMO channel at the transmitter may be leveraged
to improve performance through space–time precoding. Space–time code construction
is discussed in Chapter 4. Chapter 5 describes a unified framework for designing
MIMO receivers. The final chapter, Chapter 6, details multi-user detection techniques for
MIMO systems.

MIMO communication systems have been attracting considerable research attention
from both academia and industry. Topics of research include channel modeling, capacity
limits, coding, modulation, receiver design and multi-user communication. From an
implementation viewpoint practical MIMO systems present a plethora of challenges
in such areas as synchronization, channel estimation, training, power consumption,
complexity reduction and efficiency. A few select topics have been chosen for inclusion
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in this book. The area of MIMO communication presents a variety of other challenging
research problems.

1.8 Bibliographical notes

The interested reader is directed to [3, 8, 15, 17, 30, 32] and [5, 10, 24] for details on MIMO
channel measurements and modeling, respectively. Discussions on the capacity of MIMO
channels and related development can be found in [4, 9, 13, 19–21, 35, 40]. The works
[2, 12, 16, 27, 29, 33, 34] serve as an excellent guide to the early developments in the area
of space–time coding. Further details on the technique of spatial multiplexing can be found
in [5, 9, 22, 35]. The ZF receiver and its performance limits in Rayleigh fading channels is
discussed in [38]. The diversity–multiplexing trade-off, central to MIMO communication
theory, has been developed in [41]. The results in [7, 31, 36, 37, 39] pertain to multi-user
MIMO systems while [14, 18, 25, 26, 28] discuss the recent field of distributed MIMO.
Early results on MIMO-OFDM may be found in [1, 6, 23].
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2 Capacity limits of MIMO
systems

2.1 Introduction

Chapter 1 introduced the basic concepts behind multiple-input multiple-output (MIMO)
communications along with their performance advantages. In particular, we saw that
MIMO systems provide tremendous capacity gains, which has spurred significant activity
to develop transmitter and receiver techniques that realize these capacity benefits and
exploit diversity–multiplexing trade-offs. In this chapter we will explore in more detail
the Shannon capacity limits of single- and multi-user MIMO systems. These fundamental
limits dictate the maximum data rates that can be transmitted over the MIMO channel to
one or more users (not in outage) with asymptotically small error probability, assuming
no constraints on the delay or the complexity of the encoder and decoder. Much of the
initial excitement about MIMO systems was due to pioneering work by Foschini [32] and
Telatar [121] predicting remarkable capacity growth for wireless systems with multiple
antennas when the channel exhibits rich scattering and its variations can be accurately
tracked. This promise of exceptional spectral efficiency almost “for free,” also studied
in earlier work by Winters [142], resulted in an explosion of research and commercial
activity to characterize the theoretical and practical issues associated with MIMO systems.
However, these predictions are based on somewhat unrealistic assumptions about the
underlying time-varying channel model and how well it can be tracked at the receiver as
well as at the transmitter. More realistic assumptions can dramatically impact the potential
capacity gains of MIMO techniques. This chapter provides a comprehensive summary of
MIMO Shannon capacity for both single- and multi-user systems with and without fading
under different assumptions about what is known at the transmitter(s) and receiver(s).

We first provide some background on Shannon capacity and mutual information,
and then apply these ideas to the single-user additive white Gaussian noise (AWGN)
MIMO channel. We next consider MIMO fading channels, describe the different capacity
definitions that arise when the channel is time-varying, and present the MIMO capacity
under these different definitions. These results indicate that the capacity gain obtained
from multiple antennas heavily depends on the available channel information at either the
receiver or the transmitter, the channel signal-to-noise ratio (SNR), and the correlation
between the channel gains on each antenna element. We then focus attention on the
capacity region of multi-user channels: in particular, the multiple access (many-to-one,
or uplink) and broadcast (one-to-many, or downlink) channels. In contrast to single-
user MIMO channels, capacity results for these multi-user MIMO channels can be
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quite difficult to obtain, especially when the channel is not known perfectly at all
transmitters and receivers. We will show that with perfect channel knowledge, the
capacity region of the MIMO multiple access and broadcast channels are intimately
related via a duality transformation, which can greatly simplify capacity analysis. This
transformation facilitates finding the transmission strategies that achieve a point on the
boundary of the MIMO multiple access channel (MAC) capacity region in terms of
the transmission strategies of the MIMO broadcast channel (BC) capacity region, and
vice versa. We then consider MIMO cellular systems with frequency reuse, where the
base-stations cooperate. With cooperation the base-stations act as a spatially distributed
antenna array, and transmission strategies that exploit this structure exhibit significant
capacity gains. The chapter concludes with a discussion of fundamental capacity results
of wireless ad hoc networks where nodes either have multiple antennas or cooperate to
form multiple antenna transmitters and/or receivers. Open problems in this field abound
and are discussed throughout the chapter.

2.2 Mutual information and Shannon capacity

Channel capacity was pioneered by Claude Shannon in the late 1940s, using a
mathematical theory of communication [111–113]. The capacity of a channel, denoted
by C, is the maximum rate at which reliable communication can be performed, without
any constraints on transmitter and receiver complexity. Shannon showed that for any rate
R < C, there exist rate R channel codes with arbitrarily small block (or symbol) error
probabilities. Thus, for any rate R < C and any desired non-zero probability of error Pe,
there exists a rate R code that achieves Pe. However, such a code may have a very long
block length, and the encoding and decoding complexity may also be extremely large.
In fact, the required block length may increase as the desired Pe is decreased and/or
the rate R is increased towards C. In addition, Shannon showed that codes operating at
rates R > C cannot achieve an arbitrarily small error rate, and thus the error probability
of a code operating at a rate above capacity is bounded away from zero. Therefore, the
channel capacity is truly the fundamental limit to communication.

Although it is theoretically possible to communicate at any rate below capacity, it
is actually a very difficult problem to design practical channel codes (or codes with
reasonable block length and encoding/decoding complexity) at rates close to capacity.
Tremendous progress has been made in code design over the past few decades, and
practical codes at rates very close to capacity do exist for certain channels, such as single-
antenna Gaussian channels. However, these codes generally cannot be directly used for
MIMO channels, as codes for MIMO channels must also utilize the spatial dimension.
Practical space–time coding and decoding techniques for MIMO channels are described in
Chapter 4, and are shown to achieve near-capacity limits in some scenarios. The capacity
limits of MIMO channels provide a benchmark against which performance of space–time
codes and general MIMO transmission and reception strategies can be compared. In
addition, the study of MIMO channel capacity often yields insights into near-capacity
achieving transmission strategies, receiver structures, and codes.
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The following sections give the precise mathematical definition of channel capacity
as well as discuss the capacity of time-varying and multi-user channels.

2.2.1 Mathematical definition of capacity

Shannon’s pioneering work showed that the capacity of a channel, defined to be the
maximum rate at which reliable communication is possible, can be simply characterized
in terms of the mutual information between the input and the output of the channel.
The basic channel model consists of a random input X, a random output Y , and a
probabilistic relationship between X and Y which is generally characterized by the
conditional distribution of Y given X, or f�y�x�. The mutual information of a single-user
channel with random input X and random output Y is defined as

I�X�Y� =
∫

Sx�Sy

f�x� y� log
(

f�x� y�

f�x�f�y�

)
dx dy� (2.1)

where the integral is taken over the supports Sx� Sy of the random variables X and Y ,
respectively, and f�x�, f�y�, and f�x� y� denote the probability distribution functions of
the random variables. The log function is typically with respect to base 2, in which
case the units of mutual information are bits per channel use. Mutual information can
also be written in terms of the differential entropy of the channel output and conditional
output as I�X�Y� = h�Y� − h�Y �X�, where h�Y� = − ∫

Sy
f�y� log f�y�dy and h�Y �X� =

− ∫
Sx�Sy

f�x� y� log f�y�x�dx dy.
Shannon proved that the channel capacity of most channels is equal to the mutual

information of the channel maximized over all possible input distributions:

C = max
f�x�

I�X�Y� = max
f�x�

∫
Sx�Sy

f�x� y� log
(

f�x� y�

f�x�f�y�

)
� (2.2)

For a time-invariant AWGN channel with bandwidth B and received SNR �, the
maximizing input distribution is Gaussian, which results in the channel capacity

C = B log2�1+�� bps� (2.3)

The definition of entropy and mutual information is the same when the channel input
and output are vectors instead of scalars, as in the MIMO channel. Referring back to
Figure 1.2, the channel input is the vector x sent from the transmit antennas and the
channel output is the vector y obtained at the receive antennas. Thus, the Shannon capacity
of the MIMO AWGN channel is based on the maximum mutual information between its
input and output vectors, as described in Section 2.3.2.

2.2.2 Time-varying channels

When the channel is time-varying the channel capacity has multiple definitions, depending
on what is known about the channel state or its distribution at the transmitter and/or
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receiver, as well as the time scale of the underlying channel fading process. These
definitions have different operational meanings. Specifically, when the instantaneous
channel gains, also called the channel state information (CSI), are known perfectly at
both the transmitter and the receiver, the transmitter can adapt its transmission strategy
(rate and/or power) relative to the instantaneous channel state. In this case the Shannon
(ergodic) capacity is the maximum mutual information averaged over all channel states.
Recall that ergodic essentially means that a reasonably long time sample of channel
(fading) realizations has a distribution similar to the statistical distribution of the channel.
The opposite of an ergodic channel is, for example, a quasi-static channel in which
the channel realization is chosen at random initially but does not subsequently change
(or changes extremely slowly). Ergodic capacity is an appropriate capacity metric for
channels that vary quickly, or where the channel is ergodic over the time period of
interest. With CSI at the transmitter (CSIT), ergodic capacity can be achieved using an
adaptive transmission policy where the power and data rate vary relative to the channel
state variations [40]. If an adaptive rate and power policy are used, the rate varies as a
function of the instantaneous channel state and the ergodic capacity refers to the maximum
possible long-term average of the instantaneous rates. Thus it is not necessary for the
channel to change rapidly during a single codeword, as ergodic capacity is meaningful
even in relatively slow fading environments where the long-term average rates are of
interest. Ergodic capacity can also be achieved using a fixed rate code with varying power
[12]. If such a code is used, it is necessary for the channel to change rapidly over the
duration of a single codeword. Therefore, these codes must either be very long or the
fading must change on a very fast time scale.

An alternate capacity definition for time-varying channels with perfect transmitter and
receiver CSI is outage capacity. Outage capacity requires a fixed data rate in all non-outage
channel states, which is needed for applications with delay-constrained data where the
data rate cannot depend on channel variations (except in outage states, where no data are
transmitted). The average rate associated with outage capacity is typically smaller than the
ergodic capacity due to the additional constraint associated with this definition. Outage
capacity is the appropriate capacity metric in slowly varying channels, where the channel
coherence time exceeds the duration of a codeword. In this case each codeword experiences
only one channel state: if the channel state is not good enough to support the desired rate
then an outage is declared and no data are transmitted, since the transmitter knows that the
channel is in outage. Note that ergodic capacity is not a relevant metric for slowly varying
channels since each codeword is affected by a single channel realization. Similarly, outage
capacity isnot anappropriatecapacitymetric for channels thatvaryquickly: since thechannel
experiences all possible channel states over the duration of a codeword, there is no notion
of poor states where an outage must be declared. Outage capacity under perfect CSI at the
transmitter and the receiver (CSIR) has been studied for single-antenna channels [14, 46, 83],
but this work has yet to be extended to MIMO channels. A more common assumption
for studying capacity of time-varying MIMO channels is perfect CSIR but no CSIT.
This assumption leads to a different notion of outage capacity, as described next.

When only the channel distribution is known at the transmitter (receiver), the
transmission (reception) strategy is based on the channel distribution instead of the
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instantaneous channel state. The channel coefficients are typically assumed to be jointly
Gaussian, so the channel distribution is specified by the channel mean and covariance
matrices. We will refer to knowledge of the channel distribution as channel distribution
information (CDI): CDI at the transmitter is abbreviated as CDIT and CDI at the receiver
is denoted by CDIR. We assume throughout the chapter that CDI is always perfect,
so there is no mismatch between the CDI at the transmitter or receiver and the true
channel distribution. When only the receiver has perfect CSI the transmitter must maintain
a fixed-rate transmission strategy optimized with respect to its CDI. In this case the
ergodic capacity defines the rate that can be achieved based on averaging over all channel
states [121], and this metric is relevant for channels that vary quickly so that codeword
transmissions are affected by all possible channel states. Note that this is similar to the
situation where ergodic capacity is achieved using constant rate transmission in channels
with perfect CSI. Alternatively, the transmitter can send at a rate that cannot be supported
by all channel states: in these poor channel states the receiver declares an outage and
the transmitted data are lost. For this scenario, as described earlier in Section 1.3.1,
we define the percentage outage capacity p to be the transmission rate that can be
supported �100−p�% of the time. The outage probability, defined as the probability that
the transmission rate cannot be supported and hence the transmitted data are received in
error, is p/100. Intuitively, an outage occurs whenever the channels enter a deep fade that
makes it impossible to communicate reliably. In this outage scenario each transmission
rate has an outage probability associated with it so capacity is parameterized by the
outage probability1 (capacity versus outage or capacity CDF) [32]. An excellent tutorial
on fading channel capacity for single-antenna channels can be found in [4]. This chapter
extends these results to MIMO systems.

2.2.3 Multi-user channels

In multi-user channels, the capacity is a K-dimensional region instead of a single number.
The capacity region is defined to be the set of all rate vectors �R1� � � � �RK� simultaneously
achievable (with arbitrarily small probability of error) by all K users. The multiple
capacity definitions for time-varying channels under different transmitter and receiver CSI
and CDI assumptions extend to the capacity region of the MAC and BC in the obvious
way, as we will describe in Section 2.4. However, these MIMO multi-user capacity
regions are very difficult to find even for time-invariant channels. Few capacity results
exist for time-varying multi-user MIMO channels under the realistic assumption that the
transmitter(s) and/or receiver(s) have CDI only. The results become even more sparse
for more complex systems such as cellular and ad hoc wireless networks, as will be seen
in Sections 2.5 and 2.6. Thus, there are many open problems in these areas, as will be
highlighted in the related sections.

1 Note that an outage under perfect CSI at the receiver is only different from an outage when both the transmitter
and the receiver have perfect CSI. Under receiver CSI, an outage occurs when the transmitted data cannot be
reliably decoded at the receiver, so that data are lost. When both the transmitter and the receiver have perfect
CSI the channel is not used during outage (no service), so no data are lost.
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2.3 Single-user MIMO

In this section we focus on the capacity of single-user MIMO channels. While most
wireless systems today support multiple users, single-user results are still of much interest
for the insight they provide and their application to channelized systems where users are
allocated orthogonal resources (time, frequency bands, etc.). MIMO channel capacity is
also much easier to derive for single-users than for multiple users. Indeed, single-user
MIMO capacity results are known for many cases where the corresponding multi-user
problems remain unsolved. In particular, very little is known about multi-user capacity
without the assumption of perfect channel state information at the transmitter (CSIT) and
at the receiver (CSIR). While there remain many open problems in obtaining the single-
user capacity under general assumptions of CSI and CDI, for several interesting cases the
solution is known. This section will discuss fundamental capacity limits for single-user
MIMO channels with a particular focus on special cases of CDI at the transmitter as well
as the receiver. We begin with a description of the channel model and the different CSI
and CDI models we consider, along with their motivation.

2.3.1 Channel and side information model

Consider a transmitter with MT transmit antennas and a receiver with MR receive antennas.
The channel can be represented by the MR ×MT matrix H of channel gains hij representing
the gain from transmit antenna j to receive antenna i. The MR × 1 received signal y is
equal to

y = Hx +n� (2.4)

where x is the MT × 1 transmitted vector and n is the MR × 1 additive white circularly
symmetric complex Gaussian noise vector,2 normalized so that its covariance matrix is
the identity matrix. The normalization of any non-singular noise covariance matrix Kw

to fit the above model is as straightforward as multiplying the received vector y by
K−1/2

w to yield the effective channel K−1/2
w H and a white noise vector. The channel state

information is the channel matrix H and/or its distribution.
The transmitter is assumed to be subject to an average power constraint of P across

all transmit antennas, i.e. E	x
x� ≤ P. Since the noise power is normalized to unity, we
commonly refer to the power constraint P as the SNR.

Perfect CSIR and/or CSIT

With perfect CSIT or CSIR, the channel matrix H is assumed to be known perfectly
and instantaneously at the transmitter or receiver, respectively. When the transmitter or
receiver knows the channel state perfectly, we also assume that it knows the distribution
of this state perfectly, since the distribution can be obtained from the state observations.

2 A complex Gaussian vector x is circularly symmetric if for any � ∈ 	0� 2�, the distribution of x is the same
as the distribution of ej�x.
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Perfect CSIR and CDIT

The perfect CSIR and CDIT model is motivated by the scenario where the channel state
can be accurately tracked at the receiver and the statistical channel model at the transmitter
is based on channel distribution information fed back from the receiver. This distribution
model is typically based on receiver estimates of the channel state and the uncertainty and
delay associated with these estimates. Figure 2.1 illustrates the underlying communication
model in this scenario, where �̃ denotes the complex Gaussian distribution.

The salient features of the model are as follows. The channel distribution is defined
by the parameter � and, conditioned on this parameter, the channel realizations H at
different time instants are independently and identically distributed (i.i.d.). Since the
channel statistics will change over time due to mobility of the transmitter, receiver, and
the scattering environment, we assume that � is time-varying. Note that the statistical
model depends on the time scale of interest. For example, in the short-term the
channel coefficients may have a non-zero-mean and one set of correlations reflecting
the geometry of the particular propagation environment. However, over a long-term
the channel coefficients may be described as being zero-mean and uncorrelated due
to the averaging over several propagation environments. For this reason, uncorrelated,
zero-mean channel coefficients are commonly assumed for the channel distribution
in the absence of distribution feedback or when it is not possible to adapt to the
short-term channel statistics. However, if the transmitter receives frequent updates of
� and it can adapt to these time-varying short-term channel statistics then capacity
is increased relative to the transmission strategy associated with just the long-term
channel statistics. In other words, adapting the transmission strategy to the short-term
channel statistics increases capacity. In the literature adaptation to the short-term channel
statistics (the feedback model of Figure 2.1) is referred to by many names including
mean and covariance feedback, quantized feedback, imperfect feedback, and partial CSI
[57, 61, 63, 72, 73, 93, 117, 134]. The feedback channel is assumed to be free from noise.
This makes the CDIT a deterministic function of the CDIR and allows optimal codes to
be constructed directly over the input alphabet [12]. We assume a power constraint such
that for each realization of �, the conditional average transmit power is constrained as
E
[��x��2�� = �

] ≤ P�

yx

θ

y = Hx + n
n � �(0, σ 

2I )
H � pθ(·)

H, θ
Channel

ReceiverTransmitter ...
... ˜

Fig. 2.1. MIMO channel with perfect CSIR and distribution feedback.
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p (  y, H�x) = pθ (H)p(  y�H, x)x y, H

Fig. 2.2. MIMO channel with perfect CSIR and CDIT (� fixed).

The ergodic capacity C of the system in Figure 2.1 is the capacity C��� averaged over
the different � realizations:

C = E�	C�����

where C��� is the ergodic capacity of the channel shown in Figure 2.2. This figure
represents a MIMO channel with perfect CSI at the receiver and only CDI about
the constant distribution � at the transmitter. Channel capacity calculations generally
implicitly assume CDI at both the transmitter and the receiver except for special channel
classes, such as the compound channel or an arbitrarily varying channel [5, 26, 27]. This
implicit knowledge of � is justified by the fact that the channel coefficients are typically
modeled based on their long-term average distribution. Alternatively, � can be obtained
by the feedback model of Figure 2.1. The distribution feedback model of Figure 2.1
along with the system model of Figure 2.2 lead to various capacity results under different
distribution ��� models. The availability of CDI at either the transmitter or the receiver
is explicitly indicated to contrast with the case where CSI is also available.

Computation of C��� for general p��·� is a hard problem. With the exception of a
quantized channel information model, almost all research in this area has focused on
three special cases for this distribution: zero-mean spatially white channels, spatially
white channels with a non-zero-mean, and zero-mean channels with non-white channel
covariance. In all three cases the channel coefficients are modeled as complex jointly
Gaussian random variables. Under the zero-mean spatially white (ZMSW) model, the
channel mean is zero and the channel covariance is modeled as being white, i.e. the
channel elements are assumed to be i.i.d. random variables. This model typically captures
the long-term average distribution of the channel coefficients averaged over multiple
propagation environments. Under the channel mean information (CMI) model, the mean
of the channel distribution is non-zero while the covariance is modeled as being white
with a constant scale factor. This model is motivated by a system where the delay in
the feedback leads to an imperfect estimate at the transmitter, so the CMI reflects the
outdated channel measurement and the constant factor reflects the estimation error. Under
the channel covariance information (CCI) model, the channel is assumed to be varying
too rapidly to track its mean, so the mean is set to zero and the information regarding the
relative geometry of the propagation paths is captured by a non-white covariance matrix.
Based on the underlying system model shown in Figure 2.1, in the literature the CMI
model is also called mean feedback and the CCI model is also called covariance feedback.
Mathematically, the three distribution models for H can be described as follows:

ZMSW � E	H� = 0� H = Hw

CMI � E	H� = Hm� H = Hm +√
�Hw

CCI � E	H� = 0� H = �Rr �
1/2Hw�Rt�

1/2�
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Here Hw is an MR × MT matrix of i.i.d. zero-mean, unit variance complex circularly
symmetric Gaussian random variables. In the CMI model, the channel mean Hm and
� are constants that may be interpreted as the channel estimate based on the feedback,
and the variance of the estimation error, respectively. In the CCI model, Rr and Rt are
referred to as the receive and transmit antenna correlation matrices, respectively. Although
not completely general, this simple correlation model has been validated through field
measurements as a sufficiently accurate representation of the fade correlations seen in
actual cellular systems [19]. Under CMI the channel mean Hm and the variance of the
estimation error � are assumed to be known when there is CDI, and under CCI the transmit
and receive covariance matrices Rr and Rt are assumed to be known when there is CDI.

In addition to the CMI, CCI, and ZMSW models of CDIT, research has explored the
effects of quantized channel state information (QCI) at the transmitter based on a finite bit
rate feedback channel. In this model, the receiver is assumed to have perfect CSI and feeds
back a B-bit quantization of the channel instantiation to the transmitter. This model is most
applicable to relatively slow fading scenarios, where the receiver feeds back quantized
CSI at the beginning of each block, thereby allowing the transmitter to adapt. Note that
this is a very practical model, as many wireless systems have a low-rate feedback link
from the receiver to the transmitter. With B bits of QCI, a predetermined set of N = 2B

quantization vectors is used to represent the channel at the transmitter. Finding the best
quantization vectors is equivalent to the Grassmannian packing of subspaces within a
vector space to maximize the minimum-distance between them [85, 94]. Conditioned on
the QCI, the channel distribution assumed at the transmitter is constrained within the
Voronoi region of the quantization vector used to represent the channel.

CDIT and CDIR

In highly mobile channels the assumption of perfect CSI at the receiver can be unrealistic.
This motivates system models where both the transmitter and the receiver only have
information about the channel distribution. Even for a rapidly fluctuating channel where
reliable channel estimation is not possible, it might be possible for the receiver to track
the short-term distribution of the channel fades, as the channel distribution changes much
more slowly than the channel itself. The estimated distribution can be made available
to the transmitter through a feedback channel. Figure 2.3 illustrates the underlying
communication model.

θ

yx

θ

Channel

ReceiverTransmitter ...
...

y = Hx + n
n � �(0, σ 

2I )
H � pθ 

(·)
˜

Fig. 2.3. MIMO channel with CDIR and distribution feedback.
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p( y, H�x) = pθ(H)p( y�H, x)x y

Fig. 2.4. MIMO channel with CDIT and CDIR (� fixed).

Note that the estimation of the channel statistics at the receiver is captured in the
model as a genie that provides the receiver with the correct channel distribution. The
feedback channel represents the same information being made available to the transmitter
simultaneously. This model is slightly optimistic because in practice the receiver estimates
� only from the received signal v and therefore will not have a perfect estimate.

As in the previous subsection the ergodic capacity turns out to be the expected value
(expectation over �) of the ergodic capacity C���, where C��� is the ergodic capacity of
the channel in Figure 2.4. In this figure � is constant and known at both the transmitter
and receiver (CDIT and CDIR). As in the previous section, the computation of C���

is difficult for general � and the capacity investigations are limited mainly to the same
channel distribution models described in the previous subsection: the ZMSW, CMI, CCI
and QCI models.

Next, we summarize single-user MIMO capacity results under various assumptions on
CSI and CDI.

2.3.2 Constant MIMO channel capacity

When the channel is constant and known perfectly at the transmitter and the receiver, the
capacity (maximum mutual information) is

C = max
Q � tr�Q�=P

log det �IN +HQH
� (2.5)

where the optimization is over the input covariance matrix Q, which is M ×M and must
be positive semi-definite by definition. Using the singular value decomposition (SVD) of
the MR ×MT matrix H, this channel can be converted into min�MT �MR� parallel, non-
interfering single-input/single-output channels [41, 121]. The SVD allows us to rewrite
H as H = U�V
, where U is MR ×MR and unitary, V is MT ×MT and unitary, and �

is MT ×MR and diagonal with non-negative entries. The diagonal elements of the matrix
�, denoted by �i, are the singular values of H and are assumed to be in descending order
(i.e. �1 ≥ �2 · · · ≥ �min�MT �MR�). The matrix H has exactly RH positive singular values,
where RH is the rank of H, which by basic principles satisfies RH ≤ min�M�N�.

The MIMO channel is converted into parallel, non-interfering channels by pre-
multiplying the input by the matrix V (i.e. transmit precoding) and post-multiplying the
output by the matrix U
. This conversion is illustrated in Figure 2.5. Note that transmit
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precoding is widely used in practical systems and provides significant performance
benefits, as discussed in Chapter 3. The optimal MIMO receiver requires joint maximum-
likelihood detection across all receive antennas, but practical techniques of lower
complexity can achieve very good performance, as described in Chapter 5. The input
x to the channel is generated by multiplying the data stream x̃ by the matrix V, i.e.
x = Vx̃. Since V is a unitary matrix, this is a power-preserving linear transformation, i.e.
E	��x��2� = E	��x̃��2�. The vector x is fed into the channel and the output y is multiplied
by the matrix U
, resulting in ỹ = U
y, which can be expanded as

ỹ = U
�Hx +n�

= U
�U�V
�Vx̃�+n�

= �x̃ +U
n

= �x̃ + ñ�

where ñ = U
n. Since U is unitary and n is a spatially white complex Gaussian, ñ and
n have the same distribution. Using the fact that � is diagonal, we have ỹi = �ix̃i + ñi

for i = 1� � � � � min�MT �MR�. Since RH of the singular values �i are strictly positive,
the result is RH parallel, non-interfering channels. The parallel channels are commonly
referred to as the eigenmodes of the channel, because the singular values of H are equal
to the square root of the eigenvalues of the matrix HH
.

Because the parallel channels are of different quality, the water-filling algorithm can
be used to optimally allocate power over the parallel channels, leading to the following
allocation:

Pi =
(

�− 1

�2
i

)+
� 1 ≤ i ≤ RH� (2.6)

where Pi is the power of x̃i, x+ is defined as max�x� 0�, and the waterfill level � is chosen
such that

∑RH

i=1 Pi = P. Capacity is therefore achieved by choosing each component x̃i

according to an independent Gaussian distribution with power Pi. The covariance which
achieves the maximum in (2.5) (i.e. the covariance of the capacity-achieving input) is
Q = VPV
, where the MT ×MT matrix P is defined as P = diag�P1� � � � �PRH

� 0� � � � � 0�.
The resulting capacity is given by

C =
RH∑
i

�log���2
i ��+� (2.7)

At low SNRs, the water-filling algorithm allocates all power to the strongest of the
RH parallel channels (i.e. P1 = P and Pi = 0 for i �= 1). At high SNR, the water-filling
algorithm allocates approximately equal power to each of the RH , and a first-order
approximation of the capacity at high SNR is C ≈ RH log2�P�+O�1�, where the constant
term depends on the singular values of H. From this approximation, one can see that every
increase of 3 dB in transmission power leads to an increase of approximately RH bps/Hz
in spectral efficiency; this contrasts with single-antenna systems, where every 3 dB of
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power only leads to an additional bit of spectral efficiency. The pre-log term RH is often
referred to as the MIMO spatial multiplexing gain, described in Section 1.1.1, as it dictates
the multiplicative capacity increase of MIMO relative to single-input single-output (SISO)
systems.

There are a number of intuitive observations that can be made regarding the capacity-
achieving transmission scheme. First, note that transmit precoding by the matrix V
“aligns” the inputs with the eigenmodes of the channel. By aligning the inputs with
the eigenmodes, simple post-multiplication of the output signal results in independent
(noisy) observations of each of the inputs, i.e. a complete decoupling of the different
data streams. If the transmitter did not perform this alignment process, e.g. transmitted
independent inputs on each of the MT transmit antennas, then the receiver would not be
able to completely decouple the multiple data streams, which leads to an effective loss in
SNR of each of the streams and thus is not capacity achieving. In addition, the transmitter
performs water-filling across the different eigenmodes of the channel in order to take
advantage of channels of different quality. As expected, the channels with the highest
SNR are loaded with the most power and highest rate.

A key advantage of the decomposition of the MIMO channel into parallel non-
interfering channels is that the decoding complexity is only linear in RH , the rank of
the channel. When it is not possible to perform such a decomposition (e.g. when the
transmitter does not have perfect knowledge of the matrix H), the maximum-likelihood
decoding complexity is typically exponential in RH . Chapter 5 discusses practical receiver
structures that reduce this complexity in exchange for some performance penalty.

Although the constant channel model is relatively easy to analyze, wireless channels in
practice are not fixed or constant. Instead, due to the changing propagation environment
wireless channels vary over time, assuming values over a continuum. The capacity of
fading channels is investigated next.

2.3.3 Fading MIMO channel capacity

With slow fading, the channel may remain approximately constant long enough to allow
reliable estimation of the channel state at the receiver (perfect CSIR) and timely feedback
of this state information to the transmitter (perfect CSIT). However, in systems with
moderate to high user mobility, the system designer is inevitably faced with channels
that change rapidly. Fading models where only the channel distribution is available to the
receiver (CDIR) and/or transmitter (CDIT) are more applicable to such systems. Capacity
results under various assumptions regarding CSI and CDI are summarized in this section.

Capacity with perfect CSIT and perfect CSIR

Perfect CSIT and perfect CSIR model a fading channel that changes slowly enough to be
reliably measured by the receiver and fed back to the transmitter without significant delay.
The ergodic capacity of a flat-fading channel with perfect CSIT and CSIR is simply the
average of the capacities achieved with each channel realization. The capacity for each
channel realization is given by the constant channel capacity expression in the previous
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section. Thus the fading MIMO channel capacity assuming perfect channel knowledge at
both the transmitter and the receiver is

C = EH

[
max

Q�H� � tr�Q�H��=P
log det

(
IMR

+HQ�H�H

)]

� (2.8)

The covariance of the input is written as Q�H� to emphasize the fact that the covariance
can be changed as a function of the channel realization. In fact, the covariance for each
channel realization is chosen using the water-filling procedure described in Section 2.3.2.
Thus, each MIMO channel realization is decomposed into parallel channels, and water-
filling is performed over both space and time, i.e. over the min�MT �MR� eigenmodes
in each state and across the fading distribution. Some results on the computation of the
water-filling level and the corresponding capacity are given in [64]. Note that the capacity
expression in (2.8) is valid for any fading distribution.3

Obtaining CSIT can be rather difficult in time-varying channels, as it generally requires
either high-rate feedback from the receiver, or time-division duplex (TDD) operation on
a sufficiently fast scale. A detailed discussion of obtaining CSIT in practical systems
is given in Section 3.1. However, there are both capacity and implementation benefits
relative to having CDIT. In the next section we study the capacity with CSIR and CDIT,
and briefly compare this scenario to CSIT/CSIR for the ZMSW model.

Capacity with perfect CSIR and CDIT: ZMSW model

For the case of perfect CSIR and a ZMSW channel distribution at the transmitter, the
channel matrix H is assumed to have i.i.d. complex Gaussian entries (i.e. H ∼ Hw). As
described in Section 2.2, the two relevant capacity definitions in this case are capacity
versus outage (capacity cumulative distribution function, CDF) and ergodic capacity.
For any given input covariance matrix the input distribution that achieves the ergodic
capacity is shown in [33] and [121] to be a complex vector Gaussian, mainly because the
vector Gaussian distribution maximizes the entropy for any given covariance matrix. This
leads to the transmitter optimization problem, i.e. finding the optimum input covariance
matrix to maximize ergodic capacity subject to a transmission power (the trace of the
input covariance matrix) constraint. Mathematically, the problem is to characterize the
optimum Q to maximize

C = max
Q � tr�Q�=P

C�Q�� (2.9)

where

C�Q� � EH

[
log det

(
IMR

+HQH

)]

(2.10)

3 Additionally, this capacity only depends on the stationary distribution of the fading process and is thus
independent of any memory in the fading process. We investigate only memoryless fading processes in this
chapter, but this assumption does not affect the capacity if perfect CSI is available at both the transmitter and
the receiver.
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is the maximum achievable rate when using the input covariance matrix E	xx
� = Q and
the expectation is with respect to the channel matrix H. The rate C�Q� is achieved by
transmitting independent complex circular Gaussian symbols along the eigenvectors of Q.
The powers allocated to the eigenvectors are given by the eigenvalues of Q.

When there is CSIR and CSIT, as discussed in the previous section, the transmitter can
use its instantaneous knowledge of H to align its transmission (i.e. the input covariance
matrix) with the eigenmodes of the channel H. When the transmitter does not know the
instantaneous channel realization and only has knowledge of the fading distribution, it
is not possible to align the input (the covariance of which is fixed for all time) with
every possible realization of the channel. In addition to not being able to identify the
eigenmodes of the channel, the transmitter is also not able to identify the directions in
which the channel is stronger in the sense of delivering more power. Therefore, one
might intuitively expect the optimal strategy to involve transmitting power in all spatial
directions, without any form of power control. In fact, it is shown in [121] and [33] that
the optimum transmit strategy is to indeed transmit power in all spatial directions with
equal power allocated to each direction. More specifically, the optimum input covariance
matrix that maximizes ergodic capacity is the scaled identity matrix, i.e. Q = P

MT
IMT

, and
thus the transmit power is divided equally among all the transmit antennas. Thus the
ergodic capacity is given by

C = EH

[
log det

(
IMR

+ P

MT

HH


)]
� (2.11)

An integral form of this expectation involving Laguerre polynomials is derived in [121].
Explicit capacity expressions are also obtained in [115].

Results on the asymptotic behavior of ergodic capacity as either the SNR or the number
of antennas are taken to infinity are useful for gaining intuition. Though these results are
asymptotic, they illustrate many features that are applicable for moderate SNR values
and relatively small antenna arrays. If MT and MR are fixed and the SNR (P) is taken to
infinity, the capacity grows approximately as C ≈ min�MT �MR� log2 P +O�1�. Thus the
ergodic capacity has a multiplexing gain of min�MT �MR�, i.e. each 3 dB of SNR leads to
an increase of min�MT �MR� bps/Hz in spectral efficiency.4 Plots of ergodic capacity for
1×1, 4×4, and 4×10 systems are shown in Figure 2.6. Notice that the linear growth of
capacity with respect to SNR begins around 10 dB, which is quite reasonable. The 1×1
system has a slope of 1 bit/3 dB, whereas the 4×4 and 4×10 systems both have a slope of
4 bits/3 dB. Notice also that the 4×4 and 4×10 systems have the same slope but different
constant terms, i.e. the 4 × 10 system has a power gain relative to the 4 × 4 system.
Expressions for the constant term (for the ZMSW model as well as the CCI and CMI
model) are available in the literature on the high SNR behavior of MIMO channels [89].

It is also possible to study the asymptotic behavior as the number of transmit and/or
receive antennas is taken to infinity while the transmit power is kept fixed. If the number
of transmit antennas (MT ) is taken to infinity while keeping MR fixed, the capacity is

4 This is related to the fact that the rank of H is min�MT �MR� with probability one for the ZMSW model.
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Fig. 2.6. Ergodic capacity with CSIR/CDIT versus SNR.

bounded in MT and converges to MR log�1+P� [121]. This is due to the fact that a fixed
amount of transmitted power is equally divided between more and more antennas. If the
number of receiving antennas MR is taken to infinity while keeping MT fixed, the capacity
does indeed go to infinity approximately as log�MR�. The key difference is that adding
receive antennas increases the amount of received power, while adding transmit antennas
does not do so because the power is split between all transmit antennas. If MT and MR are
simultaneously taken to infinity, the capacity is seen to grow linearly with min�MT �MR�,
i.e. C ≈ min�MT �MR� · c, where c is a constant depending on the ratio of MT and MR,
and on the SNR. Expressions for the growth rate constant can be found in [50, 121]. In
summary, increasing the number of receive antennas leads to a logarithmic growth in
capacity, while simultaneously increasing the number of receive and transmit antennas
leads to linear growth. Increasing the number of transmit antennas, on the other hand,
provides only a bounded increase in capacity. These points are illustrated in Figure 2.7,
where capacity is plotted versus the number of antennas. In the linear curve, the number
of transmit and receive antennas are set equal to the x-axis parameter r . In the second
curve, only the number of receive antennas is increased (i.e. MR = r) while MT is kept
at one, leading to logarithmic growth. In the final curve, only the number of transmit
antennas is increased (i.e. MT = r) while MR is kept at one, leading to only bounded
growth. One crucial point to take away from this section is that the capacity of an r × r

MIMO system supports approximately r times the capacity of a SISO system at any SNR.
This approximation has a maximum error of around 10%, and thus is extremely accurate.

In general, vector codebooks are needed to achieve capacity on a channel with multiple
inputs. The decoding complexity for vector codebooks can increase exponentially with
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the number of inputs. Therefore capacity-achieving schemes that use scalar codes are
of much practical interest. For the two transmit, one receive antenna ZMSW case, the
Alamouti coding scheme (described in Chapters 1 and 4) is an extremely simple method to
achieve capacity. Such a scheme, however, cannot be generalized to an arbitrary number
of transmit and receive antennas. BLAST (Bell labs layered space–time) is a well-known
layered architecture which can be used to achieve (or come close to) capacity for an
arbitrary number of transmit and receive antennas, and practical implementations have
even been shown to provide enormous capacity gains over single-antenna systems. For
example, at 1% outage, 12 dB SNR, and with 12 antennas, the spectral efficiency is shown
to be 32 bps/Hz as opposed to the spectral efficiencies of around 1 bps/Hz achieved in
present-day single-antenna systems. While initial results on BLAST assumed uncorrelated
and frequency-flat fading, practical channels exhibit both correlated fading as well as
frequency selectivity. The need to estimate the capacity gains of BLAST for practical
systems in the presence of channel-fade correlations and frequency-selective fading
sparked off the measurement campaigns reported in [37, 92]. The measured capacities
are found to be about 30% smaller than would be anticipated from an idealized model.
However, the capacity gains over single-antenna systems are still overwhelming. Different
low complexity receiver structures are analyzed in detail in Chapter 5.

In the previous section an expression for the capacity with perfect CSIR and CSIT
is given. Of course, capacity with CSIR/CSIT must be larger than with CSIR/CDIT for
the ZMSW model. Note that the multiplexing gain is min�MT �MR� with either CSIT or
CDIT; thus, transmitter CSI can only provide a power or rate gain relative to CDIT. In
general, CSIT provides the most benefit relative to CDIT at low SNRs (for any number
of antennas), and at all SNRs when the number of transmit antennas is strictly larger
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than the number of receive antennas. This comparison is discussed in more detail in
Section 3.2.1.

It is conjectured in [121] that the optimal input covariance matrix that maximizes
capacity versus outage is a diagonal matrix with the power equally distributed among
a subset of the transmit antennas. The principal observation is that as the capacity
CDF becomes steeper, capacity versus outage increases for low outage probabilities and
decreases for high outage probabilities. This is reflected in the fact that the higher the
outage probability, the smaller the number of transmit antennas that should be used. As the
transmit power is shared equally between more antennas the expectation of C increases
(so the ergodic capacity increases) but the tails of its distribution decay faster. While this
improves capacity versus outage for low outage probabilities, the capacity versus outage
for high outages is decreased. Usually we are interested in low outage probabilities5 and
therefore the usual intuition for outage capacity is that it increases as the diversity order
of the channel increases, i.e. as the capacity CDF becomes steeper. Telatar’s conjecture
is proven to hold for the MISO case in [6].

Capacity with perfect CSIR and CDIT: CMI, CCI and QCI models

For MIMO channels the capacity improvement resulting from some knowledge of
the short-term channel statistics at the transmitter has been shown to be substantial,
igniting much interest in the capacity of MIMO channels with perfect CSIR and
CDIT under general distribution models. In this section we focus on the cases of
CMI, CCI, and QCI channel distributions, corresponding to distribution feedback of
the channel mean, covariance matrix, or quantized information of the instantaneous
channel state, respectively. Key results on the capacity of such channels can be found in
[57, 61, 63, 72, 73, 85, 93, 94, 96, 97, 117, 120, 124, 134].

Mathematically the problem is defined by (2.9) and (2.10), with the distribution on H
being determined by the CMI, CCI, or QCI. The optimum input covariance matrix, in
general, can be a full-rank matrix which implies either vector coding across the antenna
array or transmission of several scalar codes in parallel with successive interference
cancellation at the receiver. Limiting the rank of the input covariance matrix to unity,
called beamforming, essentially leads to a scalar coded system which has a significantly
lower complexity for typical array sizes.

The complexity versus capacity trade-off is an interesting aspect of capacity results
under CDIT. The ability to use scalar codes to achieve capacity under CDIT for different
channel distribution models, also called optimality of beamforming, captures this trade-
off and has been the topic of much research in itself. Note that vector coding refers to
fully unconstrained signaling schemes for the memoryless MIMO Gaussian channel. Every
symbol period, a channel use corresponds to the transmission of a vector symbol comprised
of the inputs to each transmit antenna. Ideally, while decoding vector codewords the

5 The capacity for high outage probabilities becomes relevant for schemes that transmit only to the best user.
For such schemes, it is shown in [10] that increasing the number of transmit antennas reduces the average sum
capacity.
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receiver needs to take into account the dependences in both space and time dimensions,
and therefore the complexity of vector decoding grows exponentially in the number of
transmit antennas. A lower complexity implementation of the vector coding strategy is
also possible in the form of several scalar codewords being transmitted in parallel. It
is shown in [57] that without loss of capacity, any input covariance matrix, regardless
of its rank, can be treated as several scalar codewords encoded independently at the
transmitter and decoded successively at the receiver by subtracting out the contribution from
previously decoded codewords at each stage. However, well-known problems associated
with successive decoding and interference subtraction, e.g. error propagation, render this
approach unsuitable for use in practical systems. It is in this context that the question
of optimality of beamforming becomes important. Beamforming transforms the MIMO
channel into a SISO channel. Thus, well-established scalar codec technology can be used to
approach capacity and since there is only one beam, interference cancellation is not needed.
In the summary given below we include the results on both the transmitter optimization
problem as well as the optimality of beamforming. We first discuss multiple-input single-
output channels, followed by MIMO channels. Notice that if there is perfect CSIR, a
single-input multiple-output channel can be converted into a SISO channel by use of
maximal-ratio combining at the receiver, and therefore we need not consider such channels.

Multiple-input single-output channels

We first consider systems that use a single receive antenna and multiple transmit antennas.
The channel matrix is rank one. With perfect CSIT and CSIR, for every channel matrix
realization it is possible to identify the only non-zero eigenmode of the channel accurately
and beamform along that mode. On the other hand, with perfect CSIR and CDIT under
the ZMSW model, the optimal input covariance matrix is a multiple of the identity matrix.
Thus, the inability of the transmitter to identify the non-zero channel eigenmodes forces
a strategy where the power is equally distributed in all directions.

For a system using a single receive antenna and multiple transmit antennas, the
transmitter optimization problem under CSIR and CDIT is solved for the distribution
models of CMI and CCI. For the CMI model (H ∼ �̃ �Hm��I�) the principal eigenvector
of the optimal input covariance matrix Qo is along the channel mean vector and
the eigenvalues corresponding to the remaining eigenvectors are equal [134]. When
beamforming is optimal, all power is allocated to the principal eigenvector. For the
CCI model (H ∼ �̃ �0� Rt�) the eigenvectors of the optimal input covariance matrix Qo

are along the eigenvectors of the transmit fade covariance matrix and the eigenvalues
are of the same order as the corresponding eigenvalues of the transmit fade covariance
matrix [134]. A general condition that is both necessary and sufficient for optimality of
beamforming can be obtained for both the CMI and CCI models by simply taking the
derivative of the capacity expression [61].6

The optimality conditions are plotted in Figure 2.8. For the CCI model the optimality
of beamforming depends on the two largest eigenvalues �1��2 of the transmit fade

6 For special considerations at low SNR see [87].
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Fig. 2.8. Conditions for optimality of beamforming.

covariance matrix and the transmit power P. Beamforming is found to be optimal when the
two largest eigenvalues of the transmit covariance matrix are sufficiently disparate or the
transmit power P is sufficiently low. Since beamforming corresponds to using the principal
eigenmode alone, this is reminiscent of water-pouring solutions where only the deepest level
gets all the water when it is sufficiently deeper than the next deepest level and when the
quantity of water is small enough. For the CMI model the optimality of beamforming is
found to depend on the transmit power P and the quality of feedback associated with the
mean information, which is defined mathematically as the ratio �����2/�. Here, � = ��Hm�� is
the norm of the channel mean vector. As the transmit power P is decreased or the quality of
feedback improves beamforming becomes optimal. As mentioned earlier, for perfect CSIT
(the uncertainty � goes to zero so the quality of feedback goes to infinity) the optimal input
strategy is beamforming, while in the absence of mean feedback (quality of feedback goes
to zero so the CMI model becomes the ZMSW model), the optimal input covariance matrix
has full rank, i.e. beamforming is necessarily sub-optimal.

Most research on quantized channel state information has assumed a beamforming
transmit strategy where the transmitter forms a beam along the quantized channel vector.
Beamforming is known to achieve ergodic capacity when the number of transmit antennas
is equal to the number of quantization vectors. This is also known as the antenna selection
scenario. In general, for symmetric quantization regions, e.g. if the quantization region
consists of all channel vectors that make a maximum angle of �max or less with the
quantization vector then for �max ≤ 45�, beamforming is optimal not only for ergodic
capacity but for outage capacity as well, regardless of the number of quantization vectors,
and the number of transmit antennas. The outage capacity with quantized beamforming
approaches the perfect CSIT case as �t −1�2−B/�t−1�, where B is the number of feedback
bits and t is the number of transmit antennas. In general, the optimality of beamforming
for both ergodic capacity as well as outage capacity depends on the number of quantization
vectors as well as the symmetry of the Voronoi regions [120].

Next, we summarize the analogous capacity results for MIMO channels.
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Multiple-input multiple-output channels

With multiple transmit and receive antennas, capacity with CSIR and CDIT under the
CCI model with spatially white fading at the receiver (Rr = I) shows similar behavior
to the single receive antenna case. The capacity-achieving input covariance matrix has
the same eigenvectors as the transmit fade covariance matrix and the eigenvalues are
in the same order as the corresponding eigenvalues of the transmit fade covariance
matrix [57, 73]. A direct differentiation of the capacity expression yields a necessary
and sufficient condition for optimality of beamforming in this case as well. While the
receive fade correlation matrix does not affect the eigenvectors of the optimal input
covariance matrix, it does affect the eigenvalues as well as the corresponding capacity. The
general condition for optimality of beamforming depends upon the two largest eigenvalues
of the transmit covariance matrix and all the eigenvalues of the receive covariance
matrix.

Transmitter optimization under the CMI model with multiple transmit and receive
antennas is also similar to the single receive antenna case. The eigenvectors of the capacity
achieving input covariance matrix coincide with the eigenvectors of Hm


Hm, where Hm

is the mean value of the random channel matrix [52, 57, 128]. The capacity for the CMI
model has been shown to be monotonic in the singular values of Hm [52].

These results summarize our discussion of channel capacity with CDIT and perfect
CSIR under different channel distribution models. From these results we notice that the
benefits of adapting to distribution information regarding CMI or CCI fed back from the
receiver to the transmitter are two fold. Not only does the capacity increase with more
information about the channel distribution, but this feedback also allows the transmitter
to identify the stronger channel modes and achieve this higher capacity with simple scalar
codewords.

We conclude this subsection with a discussion on the growth of capacity with the
number of antennas. With perfect CSIR and CDIT under the ZMSW channel distribution,
it was shown in [33, 121] that the channel capacity grows linearly with min�MT �MR�.
This linear increase occurs whether the transmitter knows the channel perfectly (perfect
CSIT) or only knows its distribution (CDIT). The proportionality constant of this linear
increase, called the rate of growth, has also been characterized in [20, 49, 118, 121]. With
perfect CSIR and CSIT, the rate of growth of capacity with min �MT �MR� is reduced
by channel fading correlations at high SNR but is increased at low SNR. The mutual
information under CSIR increases linearly with min (MT �MR) even when a spatially
white transmission strategy is used on a correlated fading channel, although the slope is
reduced relative to the uncorrelated fading channel. As we will see in the next section, the
assumption of perfect CSIR is crucial for the linear growth behavior of capacity with the
number of antennas. Interestingly, it has been shown in [18] that the effect of correlation
is not significant when the maximum correlation between pairs of antenna elements is
less than 0.5.

In the next subsection we explore the capacity when only CDI is available at the
transmitter and the receiver.
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Capacity with CDIT and CDIR: ZMSW model

We saw in the last subsection that with perfect CSIR, channel capacity grows linearly with
the minimum of the number of transmit and receive antennas. However, reliable channel
estimation may not be possible for a mobile receiver that experiences rapid fluctuations
of the channel coefficients. Since user mobility is the principal driving force for wireless
communication systems, the capacity behavior with CDIT and CDIR under the ZMSW
distribution model (i.e. H is distributed as Hw with no knowledge of H at either the
receiver or the transmitter) is of particular interest. In this section we summarize some
MIMO capacity results in this area.

With CDIR and CDIT, and the ZMSW model, in a block fading scenario the channel
matrix components are modeled as i.i.d. complex Gaussian random variables that remain
constant for a coherence interval of Tc symbol periods after which they change to another
independent realization. In the block fading model, the effective input to the channel is
the inputs over the duration of the length Tc block. Capacity is achieved when the Tc ×MT

transmitted signal matrix is equal to the product of two statistically independent matrices: a
Tc ×Tc isotropically distributed unitary matrix times a certain Tc ×MT random matrix that
is diagonal, real, and non-negative [90]. This result enables the computation of capacity for
many interesting cases. Not unexpectedly, for a fixed number of antennas, as the length of
the coherence interval Tc increases, the capacity approaches the capacity obtained as if the
receiver knew the propagation coefficients. However, there is a surprising result obtained
for this channel model: in contrast to the linear growth of capacity with min�MT �MR�

under the perfect CSIR assumption, in the absence of CSIT and CSIR, capacity does
not increase at all as the number of transmit antennas is increased beyond the length
of the coherence interval Tc. At high SNRs, capacity is achieved using no more than
M
 = min�MT �MR� �Tc/2� transmit antennas [155]. In particular, having more transmit
antennas than receive antennas does not provide any capacity increase at high SNR. For
each 3 dB SNR increase, the capacity gain is M
�1−1/Tc�.

Crucial to these results is the assumption of a block fading model, i.e. the channel
fade coefficients are assumed to be constant for a block of Tc symbol durations.
With a continuous fading model, within each independent Tc-symbol block, the fading
coefficients have an arbitrary time correlation. If the correlation vanishes beyond some
lag �, called the correlation time of the fading, then it is shown in [91] that increasing the
number of transmit antennas beyond min���Tc� antennas does not increase the capacity.
However, the results obtained without the block fading assumption can be quite different.
It is shown in [80] that without the block fading distribution for the CDIT/CDIR model
with the ZMSW distribution, the capacity at high SNR grows only double-logarithmically
in SNR. This result is shown to hold under very general conditions, even allowing for
memory and partial receiver side information.

Capacity with CDIT and CDIR: CCI model

The results described in the previous section assume a somewhat pessimistic model for the
channel distribution. That is because most channels when averaged over a relatively small
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area have either a non-zero mean or a non-white covariance. Thus, if these distribution
parameters can be tracked, the channel distribution corresponds to either the CMI or the
CCI model.

With CDIT and CDIR under the CCI distribution model, the channel matrix
components are modeled as spatially correlated complex Gaussian random variables that
remain constant for a coherence interval of Tc symbol-periods after which they change
to another independent realization based on the spatial correlation model. The channel
correlations are assumed to be known at the transmitter and the receiver. As in the
case of spatially white fading (ZMSW model), with the CCI model the capacity is
achieved when the Tc ×MT transmitted signal matrix is equal to the product of a Tc ×Tc

isotropically distributed unitary matrix, a statistically independent Tc ×MT random matrix
that is diagonal, real, and non-negative, and the matrix of the eigenvectors of the transmit
fade covariance matrix Rt [59]. The channel capacity is independent of the smallest
�MT −Tc�

+ eigenvalues of the transmit fade covariance matrix as well as the eigenvectors
of the transmit and receive fade covariance matrices Rt and Rr . Also, in contrast to the
results for the spatially white fading model where adding more transmit antennas beyond
the coherence interval length (MT > Tc) does not increase capacity, additional transmit
antennas always increase capacity as long as their channel fading coefficients are spatially
correlated. Thus, in contrast to the results in favor of independent fades with perfect
CSIR, these results indicate that with CCI at the transmitter and the receiver, transmit
fade correlations can be beneficial, making the case for minimizing the spacing between
transmit antennas when dealing with highly mobile, fast fading channels that cannot
be accurately measured. Mathematically, for fast fading channels (Tc = 1), capacity is
a Schur-concave function of the vector of eigenvalues of the transmit fade correlation
matrix. The maximum possible capacity gain due to transmitter fade correlations is shown
to be 10 log10 MT dB in terms of power.

Capacity with correlated fading

The impact of channel correlations on the capacity of a MIMO channel is of interest
because the channels encountered in practice invariably exhibit non-zero correlations in
time and space. Temporal correlations are those that exist between the channel matrix
realizations at different time instants. Spatial correlations are those that exist between the
elements of the channel matrix for each realization.

First, we discuss the impact of temporal correlations. In general, if perfect CSIR is
not assumed, a single letter capacity characterization for a temporally correlated channel
is hard to obtain because the correlations introduce memory in the channel. Typically if
channel memory is limited to a block of length � then we need to consider the � symbol
extension of the channel. Because the � symbol extension of the channel has an input
alphabet size that is exponentially larger (exponential in the memory �), the complexity
of the input optimization problem for channels with memory can increase exponentially
with �. While a complete characterization of the impact of temporal correlations is not
known, it is easy to see that temporal correlations will increase the capacity when no
CSIR is available. This is because the channel correlations allow some amount of channel
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estimation that is not possible in a memoryless channel. Another intuitive argument to
show that the capacity with temporally correlated channels cannot be smaller than the
capacity with temporally uncorrelated channels is that by interleaving codewords it is
often possible to transform the correlated channel into an uncorrelated one.

Capacity characterization with temporal correlations is significantly simpler when the
channel realizations are assumed to be known perfectly to the receiver (perfect CSIR). In
this case, temporal channel correlations do not affect ergodic capacity. This is because,
conditioned on the channel knowledge available at the receiver, the channel randomness
is only due to the additive noise which is memoryless from one symbol to the next.
Therefore, with perfect CSIR, a single letter characterization of the capacity is possible
and the ergodic capacity depends only on the marginal distribution of a single realization
of the channel matrix. Note that while the capacity with perfect CSIR is independent
of the temporal correlations, the performance of practical coding schemes is affected by
the temporal correlations. On the one hand, strong temporal correlations signify a slowly
varying channel that would require longer codewords to realize the ergodic capacity. On
the other hand, many low complexity coding schemes (such as the orthogonal space–time
codes discussed in Section 3.4.1) rely on the channel remaining constant over several
symbols, and therefore may perform better for slowly varying (high temporal correlation)
channels.

Next, we discuss the impact of spatial correlations. Spatial correlations are a function
of the scattering environment and the antenna spacing. Roughly speaking, the correlation
between fades experienced by different antennas decreases as the density of scatterers
in the vicinity increases or as the spacing between the antennas increases. For example,
elevated base-stations located in relatively unobstructed surroundings have a larger
decorrelating distance between antennas than an indoor mobile device surrounded by
scatterers. Since a mobile unit is more size constrained than a base-station the two factors
offset each other.

Completely general models for spatial correlations are often analytically intractable
and remain an active area of research. The most commonly used model is the Kronecker
product form

H = R1/2
r HwR1/2

t (2.12)

where Hw is an i.i.d. Rayleigh fading channel, and Rt, Rr are the transmit and receive
correlation matrices, respectively. This model is attractive for its analytical tractability
and also has been shown to be reasonably accurate through field measurements. The
impact of transmitter correlations has been explored in some detail while the impact of
receiver correlations is not as easily characterized. Here, using the Kronecker product
model as our reference, we discuss the intuition behind the impact of transmitter side
spatial correlations on the capacity followed by the references that theoretically validate
this intuition. First, let us consider the case of perfect CSIR. In particular, to develop
some intuition, let us consider the cases of a perfectly correlated channel (rank�Rt� = 1)
and a perfectly uncorrelated channel (Rt = IMT

), and the two extremes of high and low
SNR. Notice that the perfectly correlated channel has unit rank. Therefore, correlation
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can make the channel matrix rank-deficient. This is an important limitation at high SNR
where the rank of the channel matrix determines the capacity (multiplexing gain). On
the other hand, consider a MIMO system at low SNR. At low SNR, if the transmitter
can identify the strongest eigenmode of the channel, the optimal transmit strategy is to
beamform to the strongest channel mode. Clearly at low SNR the channel capacity is
limited by the strength of the strongest channel mode and the ability of the transmitter to
beamform in that direction. The rank of the channel matrix does not play an important part
at low SNR. Correlation enhances the principal eigenmode of the channel at the cost of
the remaining eigenmodes. In other words, correlation reduces the multiplexing gain but
supports single beamforming. In light of these observations, one would expect that if both
the transmitter and the receiver know the channel state (perfect CSIT, perfect CSIR) then
transmitter side correlation will increase the capacity at low SNR where beamforming is
the optimal policy and will reduce the capacity at high SNR where the multiplexing gain
is the limiting factor. Now suppose the transmitter does not have any CSIT and is forced
to split its power uniformly among all transmit antennas. In this case, correlation does
not help at low SNR either because the transmitter is not able to identify the strongest
channel mode along which to direct its transmit power. At high SNR however, uniform
power allocation is nearly optimal (for exceptions to this rule see [87]) and the impact of
correlation would be the same as with perfect CSIT. Thus, with uniform power allocation,
transmitter side correlation would reduce the capacity both at high SNR as well as at
low SNR. Finally, consider the case where the transmitter possesses no CSIT but knows
the correlation structure through CDIT. This allows the transmitter to identify the strong
channel modes and beamform to them at low SNR. Thus, correlation would be helpful
at low SNR. The high SNR case is more complicated. On the one hand, knowledge
of the channel correlation structure allows the transmitter to identify the strong channel
modes. In fact, for a perfectly correlated channel, knowledge of the channel correlations
is as good as perfect CSIT, since there is only one non-zero eigenmode (the principal
eigenvector of Rt). However, this is offset by the loss in the multiplexing gain of the
channel. Because these two factors work in opposition, the impact of transmitter side
correlations is not as easily characterized for a MIMO channel. However, suppose there
is only one receive antenna. In that case, the spatial multiplexing gain is unity whether
the channel is correlated or uncorrelated. And indeed in this case, correlation increases
the capacity because the transmitter is able to identify the strong channel eigenmodes.
Analytical results verifying these intuitive explanations are provided in [20, 74, 125].

Frequency-selective fading channels

While flat-fading is a realistic assumption for narrowband systems where the signal
bandwidth is smaller than the channel coherence bandwidth, broadband communications
involve channels that experience frequency-selective fading. Research on the capacity of
MIMO systems with frequency-selective fading typically takes the approach of dividing
the channel bandwidth into parallel flat-fading channels, and constructing an overall block-
diagonal channel matrix with the diagonal blocks being given by the channel matrices
corresponding to each of these subchannels. Under perfect CSIR and CSIT, the total



48 Capacity limits of MIMO systems

power constraint then leads to the usual closed-form water-filling solution. Note that the
water-fill is done simultaneously over both space and frequency. Even SISO frequency-
selective fading channels can be represented by the MIMO system model (2.4) in this
manner [102]. For MIMO systems, the matrix channel model is derived in [8] based on an
analysis of the capacity behavior of OFDM-based MIMO channels in broadband fading
environments. Under the assumption of perfect CSIR and CDIT for the ZMSW model, it is
shown that in the MIMO case, unlike the SISO case, frequency-selective fading channels
may provide advantages over flat-fading channels not only in terms of ergodic capacity
but also in terms of capacity versus outage. In other words, MIMO frequency-selective
fading channels are shown to provide both higher diversity gain and higher multiplexing
gain than MIMO flat-fading channels. The measurements in [92] show that frequency
selectivity makes the CDF of the capacity steeper and, thus, increases the capacity for a
given outage as compared with the flat-frequency case, but the influence on the ergodic
capacity is small.

Training for multiple antenna systems

The results summarized in the previous sections indicate that CSI plays a crucial role
in the capacity of MIMO systems. In particular, the capacity results in the absence of
CSIR are strikingly different and often quite pessimistic compared to those that assume
perfect CSIR. To recapitulate, with perfect CSIR and CDIT the MIMO channel capacity
is known to increase linearly with min(MT �MR) when the CDIT assumes the ZMSW or
CCI distribution models. However, in fast fading when the channel changes so rapidly
that it cannot be estimated reliably at the receiver (CDIR only), the capacity does not
increase with the number of transmit antennas at all for MT > Tc, where Tc is the channel
decorrelation time. Also at high SNR under the ZMSW distribution model, capacity with
perfect CSIR and CDIT increases logarithmically with SNR, while the capacity with
CDIR and CDIT increases only double-logarithmically with SNR. Thus, CSIR is critical
to obtain the high capacity benefits of multiple-antenna wireless links. CSIR is often
obtained by sending known training symbols to the receiver. However, with too little
training the channel estimates are poor, whereas with too much training there is no time
for data transmission before the channel changes. So the key question to ask is how
much training is needed in multiple-antenna wireless links [48]. It turns out that when
the training and data powers are allowed to vary, the optimal number of training symbols
is equal to the number of transmit antennas, which is also the smallest training interval
length that guarantees meaningful estimates of the channel matrix. When the training and
data powers are instead required to be equal, the optimal training duration may be longer
than the number of antennas. Interestingly, while training-based schemes can be optimal
at high SNR, they are sub-optimal at low SNR.

Application to matrix channels

Note that the MIMO capacity results described in the prior subsections are applicable
to any channel described by a matrix. Matrix channels describe not only multi-antenna
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systems but also channels with crosstalk [150] and wideband channels [130]. Code-
division multiple-access (CDMA) systems are another prime example of matrix channels
[129]. While the focus of this chapter is on flat and frequency-selective fading channels
with multiple antennas, the same capacity analysis can be applied to obtain the capacity
of these matrix channels as well.

2.3.4 Open problems in single-user MIMO

The results summarized in this section form the basis of our understanding of single-user
MIMO channel capacity under different CSI and CDI assumptions. These results serve
as useful indicators for the benefits of incorporating training and feedback schemes in a
MIMO wireless link to obtain CSIR/CDIT and CSIT/CDIT respectively. However, our
knowledge of MIMO capacity with CDI only is still far from complete, even for single-
user systems. We conclude this section by pointing out some of the many open problems.

1. Combined CCI and CMI: capacity under CDIT and perfect CSIR is unsolved
under a combined CCI and CMI distribution model even with a single receive
antenna.

2. CCI: with perfect CSIR and CDIT capacity is not known under the CCI model for
completely general (i.e. non-separable) spatial correlations.

3. CDIR: capacity for almost all cases with only CDIR are open problems.
4. Outage capacity: most results for CDI only at either the transmitter or receiver are for

ergodic capacity. Capacity versus outage has proven to be less analytically tractable
than ergodic capacity and contains an abundance of open problems.

2.4 Multi-user MIMO

In this section we give capacity results for the two basic multi-user MIMO channel models:
the MIMO multiple-access channel (MAC or uplink) and the MIMO broadcast channel
(BC or downlink). The MIMO MAC consists of many multiple-antenna transmitters
sending to a single multiple-antenna receiver and the MIMO BC consists of one
multiple-antenna transmitter sending to many multiple-antenna receivers. In cellular-type
architectures (e.g. cellular networks or wireless local-area networks), the MAC models
the channel from mobile devices to the base-station, and the BC models the channel
from the base-station to mobile devices. The uplink and downlink channels are illustrated
in Figure 2.9. As discussed in Section 1.4 multiple antennas are becoming increasingly
common in such systems (e.g. in IEEE 802.11n or IEEE 802.16), and thus it is important
to understand the fundamental limits of such channels. Multi-user MIMO receivers are
significantly more complex than single-user MIMO systems, since the signals from
all users must be detected simultaneously. Practical techniques for multi-user MIMO
detection are described in Chapter 6.

The channel capacity of a point-to-point MIMO channel is a real number which is the
fundamental limit on reliable communication: any rate strictly smaller than the capacity
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Fig. 2.9. Uplink/downlink channels in cellular systems.

is achievable, while all rates strictly larger than the capacity are not achievable. For
multi-user channels, the channel capacity has a similar definition, but the capacity is a
region (i.e. a set in K-dimensional space) instead of a single number because different
rates are associated with the multiple users. In the MAC, each transmitter is assumed to
have an independent message for the base-station, and thus a different rate is associated
with each transmitter. In the BC, the transmitter is assumed to have a different (and
independent) message for each of the receivers,7 and similarly a different rate is associated
with each transmission. The capacity region is therefore defined as the set of rates that can
simultaneously be achieved with an arbitrarily small probability of error. It is important
to note that multiple messages are sent simultaneously; the rates achieved with schemes
such as time-division multiple access (TDMA), where only a single mobile communicates
with the base-station or access point on either the uplink or the downlink, are contained
in the capacity region, but are generally strictly sub-optimal. In fact, contrary to the
method in which most systems are currently designed, tremendous capacity benefits can
be achieved by simultaneously transmitting to multiple users (on the downlink) or having
multiple users simultaneously transmit (on the uplink) without any separation in the time,
frequency, or code domain.

The capacity benefits of multi-user MIMO can be even greater than in the single-user
setting discussed in Section 2.3. In single-user systems, multiple antennas are required
at both the transmitter and the receiver in order to realize linear capacity gains (i.e. the
capacity scales as min�MT �MR�, where MT and MR are the number of transmit and receive
antennas, respectively). In the uplink and downlink channels, however, it is sufficient
to deploy multiple antennas at only the access point in order to achieve a similar linear
increase in capacity. In this scenario, if we let MT denote the number of access point
antennas, MR the number of antennas at each mobile, and K the number of mobiles, then
the sum rate capacity (the maximum throughput or the point in the capacity region that
maximizes the sum of all rates) increases linearly with min�MT �MRK� as the number
of antennas and users is increased. Thus, having a large number of mobiles can make
up for deploying a small number of antennas at each mobile. This is a key point for
space-limited mobile devices.

7 In networking terms, this is referred to as unicast. In the multicast scenario, which is not discussed here, there
is a single common message which all receivers wish to receive [66, 74, 76, 97, 116].
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Similar to Section 2.3, we give results on the capacity of the MIMO MAC and MIMO
BC for different assumptions on the amount of channel state information available at
transmitters and receivers. Multi-user detection or successive interference cancellation
can be used to achieve the capacity of the MIMO MAC. This channel is well understood
from an information-theoretic point of view, and thus many results are available for the
MIMO MAC. In addition, the coding complexity required to achieve the MIMO MAC
capacity is essentially the same as the complexity of point-to-point MIMO systems. The
broadcast channel, on the other hand, remains one of the key open problems in information
theory. However, there has been a great deal of progress on the MIMO BC, and the
capacity region is known in some scenarios. A clever pre-processing technique called
dirty paper coding achieves the capacity of the MIMO BC when the channel is fixed.
Though these results have shed a great deal of light on the capacity of the MIMO BC,
the problem of finding practical coding schemes for this channel is even more difficult
than designing codes for single-user MIMO channels, and thus remains an open research
area. Interestingly, the MIMO MAC and MIMO BC have been shown to be duals, as we
will discuss in Section 2.4.3.

2.4.1 System model

To describe the MAC and BC models, we consider a cellular-type system in which the
base-station has MT antennas and each of the K mobiles has MR antennas. The downlink
(or forward channel) of this system is a MIMO BC and the uplink (or reverse channel)
is a MIMO MAC. We will use Hi to denote the downlink channel matrix from the base-
station to user i. Assuming that the same channel is used on the uplink and downlink (i.e.
a TDD system), the uplink matrix of user i is H∗

i . Note that we assume the base-station
has MT antennas in both the downlink channel (in which case they are transmit antennas)
as well as the uplink channel (in which case they are receive antennas). The same is true
for MR, which is the number of antennas per mobile on the downlink (receive antennas)
and uplink (transmit antennas). A picture of the system model is shown in Figure 2.10.8

In the MAC, let xk ∈ C
MR×1 be the transmitted signal of user (i.e. mobile) k. Let

yMAC ∈ C
MT ×1 denote the received signal and n ∈ C

MT ×1 the noise vector, where n ∼
�̃ �0� IMT

� is a circularly symmetric complex Gaussian with an identity covariance matrix.
The received signal at the base-station is then equal to

yMAC = H∗
1x1 +· · ·+H∗

KxK +n

= H∗

⎡
⎢⎣

x1
���

xK

⎤
⎥⎦+n where H∗ = 	H∗

1� � � H∗
K� �

8 The system is assumed to be time-division duplex (TDD) for mathematical simplicity, and in order to introduce
the concept of MAC–BC duality. However, this assumption need not be true in order for the results of this
section to hold true. In addition, we consider the dual uplink channel to be the conjugate transpose of the
downlink channel. The true channels should only be related through the transpose operation, but we add the
conjugate (which does not affect capacity) for mathematical simplicity.
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Fig. 2.10. System models of the MIMO BC (left) and the MIMO MAC (right) channels.

In the MAC, each user (i.e. mobile) is subject to an individual power constraint of Pk. The
transmit covariance matrix of user k is defined to be Qk � E	xkx∗

k�. The power constraint
implies tr�Qk� ≤ Pk for k = 1� � � � �K.

In the BC, let x ∈ C
MT ×1 denote the transmitted vector signal (from the base-station)

and let yk ∈ C
MR×1 be the received signal at receiver (i.e. mobile) k. The noise at receiver k

is represented by nk ∈ C
MR×1 and is assumed to be circularly symmetric complex Gaussian

noise (nk ∼ Ñ �0� IMR
�). The received signal of user k is equal to

yk = Hkx +nk� (2.13)

The transmit covariance matrix of the input signal is �x � E	xx∗�. The base-station is
subject to an average power constraint P, which implies tr��x� ≤ P.

In the MAC, each transmitter is assumed to have an independent data stream (i.e. a
sequence of messages) for the receiver. Thus, a different data rate is associated with each
transmitter and the capacity region is a K-dimensional region. Similarly, in the BC the
transmitter has an independent message for each of the receivers and the capacity region
is therefore also a K-dimensional region.

Though we consider only multiple-antenna channels here, it is important to note that
the multiple-antenna MAC with MT > 1 and MR = 1 can be used to model single-antenna
CDMA systems. The channel vectors (on either the downlink or uplink) represent the
spreading codes of the users, with MT being the length of each code. A number of papers
focusing on the uplink study this connection further (cf. [137]).

2.4.2 MIMO multiple-access channel

In this section we summarize capacity results on the multiple-antenna MAC. We first
provide general results on the capacity region of multiple-access channels to provide
some background. We then analyze the constant-channel MIMO MAC, followed by the
fading channel. Since the capacity region of a general MAC is known, the expressions
for the capacity of a constant MAC are quite straightforward. For the fading case, one
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must consider different assumptions about the CSI and CDI available at the transmitter
and receiver.

Multiple-access channel capacity

The capacity region of the general multiple-access channel was first derived in the 1970s
[2, 84]. The capacity region of the two-transmitter single-antenna AWGN MAC (i.e.
MT = MR = 1) is given by [25]

R1 ≤ log�1+�h1�2P1�

R2 ≤ log�1+�h2�2P2�

R1 +R2 ≤ log�1+�h1�2P1 +�h2�2P2��

We provide the two-user capacity region for simplicity; this formula can easily be extended
to a MAC with an arbitrary number of transmitters.

In order to achieve the capacity region, each transmitter uses a Gaussian codebook (as
in a point-to-point AWGN channel) and the receiver employs either multi-user detection or
successive interference cancellation to decode the codes of every transmitter. The capacity
region clearly corresponds to a pentagonal region. Consider the corner point �R1 =
log�1+�h1�2P1��R2 = log�1+ �h2�2P2

�h1�2P1+1 ��. In order to achieve this point using interference
cancellation, the receiver first decodes the message from transmitter 2 while treating the
codeword from transmitter 1 (which is normally distributed with power �h1�2P1) as an
extra source of additive Gaussian noise. The receiver subtracts the decoded message from
the received signal, and then decodes the message from transmitter 1. During this second
decoding operation, note that there is no interference, i.e. transmitter 1 communicates
over a “clean” channel to the receiver. The other corner point of the capacity region
�R1 = log�1+ �h1�2P1

�h2�2P2+1 ��R2 = log�1+�h2�2P2�� can similarly be achieved by first decoding
transmitter 1’s signal, followed by the codeword of transmitter 2. The same strategy is
also optimal for the MIMO channel, which we discuss next.

Constant channel

For any set of power constraints P = �P1� � � � �PK�, the capacity of the MIMO MAC
(denoted by �MAC�P� H∗�) is given by

�MAC�P� H∗� �
⋃

�Qi≥0�tr�Qi�≤Pi∀i�

{
�R1� � � � �RK� �∑

i∈S Ri ≤ log det�IMT
+∑

i∈S H∗
i QiHi�∀S ⊆ �1� � � � �K�

}
�

(2.14)

The variable S refers to a subset of �1� � � � �K�. The ith user transmits a zero-mean
Gaussian with spatial covariance matrix Qi. Each set of covariance matrices �Q1� � � � � QK�

corresponds to a K-dimensional polyhedron of achievable rates, i.e.

��R1� � � � �RK� �
∑

i∈S
Ri ≤ log det�IMT

+∑
i∈S

H∗
i QiHi�∀S ⊆ �1� � � � �K���
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and the capacity region is equal to the union over all covariance matrices satisfying the
trace constraints of all such polyhedrons. The corner points of each polyhedron can be
achieved by successive decoding, in which users’ signals are successively decoded and
subtracted out of the received signal. For the two-user case, each set of covariance matrices
corresponds to a pentagon, similar in form to the capacity region of the scalar Gaussian
MAC. The corner point where R1 = log det�IMT

+ H∗
1Q1H1� and R2 = log det�IMT

+
H∗

1Q1H1 + H∗
2Q2H2� − R1 = log det�IMT

+ �IMT
+ H∗

1Q1H1�
−1H∗

2Q2H2� corresponds to
decoding x2 first while treating x1 as noise, then subtracting x2 from yMAC , and then
decoding user 1. Successive decoding can reduce a complex multi-user detection problem
into a series of single-user detection steps [44]. Note that capacity-achieving successive
decoding is, in fact, identical to some forms of BLAST, which is a well-studied technique
for single-user MIMO systems. Thus, we say that the MIMO MAC capacity can be
achieved with a complexity similar to that of a single-user MIMO system.

The capacity region of a MIMO MAC for the single transmit antenna case (MR = 1)
is shown in Figure 2.11. When MR = 1, the covariance matrix of each transmitter is a
scalar equal to the transmitted power. Clearly, each user should transmit at full power.
Thus, the capacity region for a K-user MAC for MR = 1 is the set of all rate vectors
�R1� � � � �RK� satisfying

∑
i∈S

Ri ≤ log det

(
IMT

+∑
i∈S

H∗
i PiHi

)
∀S ⊆ �1� � � � �K�� (2.15)

For the two-user case, this reduces to the simple pentagon seen in Figure 2.11.
When MR > 1, a union must be taken over all covariance matrices. Intuitively, the set

of covariance matrices that maximize R1 is different from the set of covariance matrices
that maximize the sum rate. Furthermore, the capacity-achieving covariances cannot be
simply characterized by water-filling. In Figure 2.12, a MAC capacity region for MR > 1
is shown. Notice that the region is equal to the union of pentagons (with each pentagon
corresponding to a different set of transmit covariance matrices), a few of which are
shown with dashed lines in the figure. The boundary of the capacity region is in general
curved, except at the sum rate point, where the boundary is a straight-line, and along
the planes where the single-user capacities are achieved [151]. Each point on the curved

R2

R1

R1 ≤ log|I + HHP1H1|

R2 ≤ log|I + HHP2H2|2

R1 + R2 ≤ log|I + HHP1H1 + HHP2H2|1

1

2

Fig. 2.11. Capacity region of the MIMO MAC for MR = 1.
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Fig. 2.12. Capacity region of the MIMO MAC for MR > 1.

portion of the boundary is achieved by a different set of covariance matrices. At point A,
user 1 is decoded last and achieves its single-user capacity by choosing Q1 as a water-fill
of the channel H1 (i.e. the input that achieves the capacity of the constant MIMO channel
from X1 to Y , as described in Section 2.3.2). User 2 is decoded first, in the presence
of interference from user 1, so Q2 is chosen as a water-fill of the channel H2 and the
interference from user 1. The sum-rate corner points B and C are the two corner points of
the pentagon corresponding to the sum-rate optimal covariance matrices Qsum

1 and Qsum
2 .

Note that these covariances are not individually optimal for either user, but instead are
optimal in terms of the total amount of rate that the receiver can decode. At point B
user 1 is decoded last whereas at point C user 2 is decoded last. Successive decoding can
be used to achieve the corner points of the sum capacity plane, and time division between
different decoding orders or multi-user detection can be used to achieve interior points.

Next, we focus on characterizing the optimal covariance matrices �Q1� � � � � QK� that
achieve different points on the boundary of the MIMO MAC capacity region. Since
the MAC capacity region is convex, it is well known from convex theory that the
boundary of the capacity region can be fully characterized by maximizing the function
�1R1 +· · ·+�KRK over all rate vectors in the capacity region and for all non-negative
priorities ��1� � � � ��K� such that

∑K
i=1 �i = 1. For a fixed set of priorities ��1� � � � ��K�,

this is equivalent to finding the point on the capacity region boundary that is tangential
to a line whose slope is defined by the priorities. See the tangent line in Figure 2.12 for
an example. The structure of the MAC capacity region implies that all boundary points
of the capacity region (except for the plane defining the sum capacity) are corner points
of polyhedrons corresponding to different sets of covariance matrices. Furthermore, the
corner point should correspond to successive decoding in order of increasing priority,
i.e. the user with the highest priority should be decoded last and therefore sees no
interference [122, 132]. Thus, the problem of finding the boundary point on the capacity
region associated with priorities �1� � � � ��K assumed to be in descending order (users
can be arbitrarily renumbered to satisfy this condition) can be written as

max
Q1� � � � �QK

�K log det

(
IMT

+
K∑

l=1

H∗
l QlHl

)
+

K−1∑
i=1

��i −�i+1� log det

(
IMT

+
i∑

l=1

H∗
l QlHl

)

(2.16)
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subject to power constraints on the trace of each of the covariance matrices. Note that
the covariances that maximize the function above are the optimal covariances. The
optimization problem is convex, and thus efficient numerical tools can be employed to
solve it [11]. Iterative water-filling is an extremely efficient algorithm that finds the
sum-rate maximizing (i.e. �1 = · · · = �K) covariance matrices [151]. This algorithm
is a coordinate-descent method, where each user greedily optimizes his own transmit
covariance while treating interference from all the other users as additional noise.

A key point regarding the sum-rate capacity of the MIMO MAC is its first-order
growth term. It is, in fact, easy to see that a MIMO MAC with K transmitters with
MR antennas each, and a single MT antenna receiver, is closely related to an MRK

transmit antenna, MT receive antenna point-to-point MIMO channel. Furthermore, these
two channels have the same multiplexing gain, i.e. the sum capacity of the MIMO MAC
can be approximated as min�MT �MRK� log(SNR) [68]. Thus, for systems with a large
number of users, the capacity can be increased almost linearly by increasing the number
of base-station antennas. This is a key benefit of MIMO in multi-user systems.

Fading channels

As in the single-user case, the capacity of the fading MIMO MAC depends on the
definition of capacity and the availability of CSI and CDI at the transmitters and the
receiver. The capacity with perfect CSIT and CSIR has been very well studied, as has the
capacity with perfect CSIR and CDIT under the ZMSW model. However, little is known
about the capacity of the MIMO MAC with CDIT under the CMI or CCI distribution
models. Some results on the optimum distribution for the single-antenna case with CDIT
and CDIR under the ZMSW distribution can be found in [108].

With perfect CSIR and CSIT the system can be viewed as a set of parallel non-
interfering MIMO MACs (one for each fading state) sharing a common power constraint.
Thus, the ergodic capacity region can be obtained as an average of these parallel MIMO
MAC capacity regions [152], where the averaging is done with respect to the channel
statistics. The iterative water-filling algorithm of [151] extends to this case, with joint
space and time water-filling.

The capacity region of a single-antenna MAC with perfect CSIR and CDIT was found
in [34, 109]. These results can easily be extended to MIMO channels. In this scenario,
Gaussian inputs are optimal, and the ergodic capacity region is equal to the time average
of the capacity obtained at each fading instant with a constant transmit policy (i.e. the
input covariance matrix for each transmitter is fixed for all time). Thus, the ergodic
capacity region is given by

⋃
�Qi≥0�tr�Qi�≤Pi∀i�

{
�R1� � � � �RK� �

∑
i∈S

Ri ≤ EH

[
log det

(
IMT

+∑
i∈S

H∗
i QiHi

)]

∀S ⊆ �1� � � � �K�

}
�
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Note that this is identical to the expression for the capacity of the constant MIMO MAC
with the addition of the expected value over the distribution of the channels. The boundary
of the capacity region can be characterized by the maximization in (2.16), but taking the
expectation over the fading distribution can make this problem computationally difficult.

If the channel matrices Hi are ZMSW and each user has the same power constraint
(and there is perfect CSIR and CDIT), then the optimal covariances are scaled versions
of the identity matrix, i.e. Qi = Pi

MR
I [121]. In this scenario a single choice of covariance

matrices achieves the entire capacity region. This is not true, in general, for other fading
distributions, i.e. different covariances may be required to achieve different points on the
capacity region boundary, as is the case for the MIMO MAC with no fading. The sum-rate
capacity of the MAC (achieved using scaled identity covariance matrices) is equal to

� sum
MAC�P� H∗� = EH

[
log det

(
IMT

+
K∑

i=1

H∗
i

(
Pi

MR

IMR

)
Hi

)]
(2.17)

= EH

[
log det

(
IMT

+ Pi

MR

H∗H
)]

� (2.18)

where Pi is the ith transmitter’s power constraint and we have assumed Pi = P for all
i. Note that this expression is exactly the ergodic capacity of the single-user MIMO
channel with MRK transmit antennas, MT receive antennas, the ZMSW distribution
model, and perfect CSIR and CDIT, as given in (2.10). Therefore, the lack of cooperation
between the K transmitters does not reduce the capacity under this fading model, and
the MAC achieves the same capacity as the fully cooperative model. This implies
that the MAC sum capacity scales as min�MT �MRK� with perfect CSIR and CDIT. The
MIMO MAC with perfect CSIR and CDIT under the CCI and CMI models has also
been investigated, but only limited results are known [51, 62].

For MIMO multiple-access channels, it is generally sufficient to have perfect CSI at
the receiver and CSIT is not crucial to obtain capacity benefits from MIMO. This is
because for fading multiple-access channels, independent Gaussian codewords can be
transmitted from each antenna (for each user). The subsequent sum rate is given by the
right-hand side of (2.18). This technique is optimal when all users have the same power
constraint and each channel is ZMSW, but is generally sub-optimal in other scenarios.
However, this simple transmission scheme clearly achieves a sum capacity similar to the
capacity of the point-to-point MIMO channel from the MRK aggregate transmit antennas
to a MT antenna receiver, i.e. the sum capacity grows as min�MT �MRK� log�SNR�. Thus
for systems with a large number of users, increasing the number of receive antennas at
the base-station (MT ) while keeping the number of mobile antennas (MR) constant can
lead to linear growth.

Though CSIR and CDIT are sufficient to achieve the linear capacity growth described
above, the availability of CSIT increases capacity further, though not in the first-order
growth of min�MT �MRK�. As seen for point-to-point MIMO channels, CSIT gives the
largest performance increases at low SNRs, and the value of CSIT disappears at high SNR.
Furthermore, if the number of base-station antennas (MT ) and the number of users (K)
are taken to infinity at a fixed ratio, the gain due to CSIT relative to CDIT vanishes [137].
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2.4.3 MIMO broadcast channel

In this section we summarize capacity results on the multiple-antenna BC. We first
discuss the general broadcast channel and the single-antenna broadcast channel, followed
by an explanation of dirty paper coding for the MIMO BC. We then establish a duality
relationship between the MAC and the BC, which leads into sections on the capacity of
the MIMO BC.

Broadcast channel capacity

Unlike the multiple-access channel, a general expression for the capacity region of the
broadcast channel is unknown. In fact, this is one of the most fundamental unanswered
questions in multi-user information theory. However, the capacity region for certain
classes of broadcast channels is known. Amongst those is the class of degraded broadcast
channels, which are channels where receivers can be absolutely ranked in terms of their
channel strength [25]. The single-antenna AWGN BC falls into this class (users are
ranked in terms of the absolute value of their channel strength), and the capacity region
of a two-user channel (assuming, without loss of generality, �h1� > �h2�) is given by all
rate pairs satisfying

R1 ≤ log�1+��h1�2P�

R2 ≤ log
(

1+ �h2�2�1−��P

��h2�2P +1

)

for some � ∈ 	0� 1�. In order to achieve the capacity region, the codewords for the different
receivers are superimposed on one another, and successive interference cancellation is
used at one of the receivers. For the AWGN channel, the transmitter generates independent
Gaussian codewords for each receiver (with power �P for receiver 1 and power �1−��P

for receiver 2) and transmits the sum of these codewords. Receiver 1, which has the larger
channel gain, first decodes the codeword intended for receiver 2, subtracts this from the
received signal, and then decodes its intended codewords. Receiver 2 is not able to first
decode the codeword for receiver 1 because �h1� > �h2� by assumption. Thus receiver 2
treats the codeword for receiver 1 as additional noise (with power �P) while decoding
its intended codeword.

However, when the transmitter has more than one antenna, the Gaussian broadcast
channel is generally non-degraded. This is because matrix channels can only be partially
ordered, i.e. there is no absolute ordering of channels. As a result, the successive decoding
technique which is capacity-achieving for the single-antenna broadcast channel is not
effective in the MIMO setting and an alternative technique must be used, as we describe next.

Dirty paper coding achievable rate region

As noted earlier, successive cancellation cannot effectively be performed by receivers in
a MIMO BC to reduce multi-user interference. However, dirty paper coding (DPC) can
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be used at the transmitter to essentially pre-subtract multi-user interference [13, 21, 148].
The resulting rates mimic what one would expect from successive cancellation. The
basic premise of dirty paper coding can be illustrated by considering a point-to-point
AWGN channel with additive interference: y = x + s + n, where x is the transmitted
signal (subject to power constraint P), y is the received signal, n is the Gaussian noise,
and s is additive interference. If the transmitter but not the receiver has perfect, non-
causal knowledge of the interference s, then the capacity of the channel is the same as
if there was no additive interference (i.e. log�1+P��. Dirty paper coding is a technique
that allows non-causally known interference to be “pre-subtracted” at the transmitter, but
in such a way that the transmit power is not increased. A more practical and general
technique to perform interference pre-subtraction based on nested lattice codes is provided
in [30].

In the MIMO BC, dirty paper coding can be applied at the transmitter when choosing
codewords for different receivers. The transmitter first picks a codeword (i.e. x1) for
receiver 1. The transmitter then chooses a codeword for receiver 2 (i.e. x2) with full
(non-causal) knowledge of the codeword intended for receiver 1. Therefore the codeword
of user 1 can be pre-subtracted such that receiver 2 does not see the codeword intended
for receiver 1 as interference. Similarly, the codeword for receiver 3 is chosen such
that receiver 3 does not see the signals intended for receivers 1 and 2 (i.e. x1 + x2) as
interference. This process continues for all K receivers. If xi is chosen according to
N�0��i� and user �1� is encoded first, followed by user �2�, etc. the following is an
achievable rate vector:

R�i� = log
det

(
IMR

+H�i��
∑

j≥i ��j��H∗
�i�

)

det
(

IMR
+H�i��

∑
j>i ��j��H∗

�i�

) i = 1� � � � �K� (2.19)

Different rates can be achieved by varying the input covariance matrices and the encoding
order. Notice that the same rates would be achieved if receiver �i� knew the transmitted
signals x�1�� � � � � x�i−1�. The dirty paper region �DPC�P� H� is defined as the convex
hull of the union of all such rate vectors over all positive-semi-definite covariance
matrices �1� � � � ��K such that tr��1 +· · ·+�K� = tr��x� ≤ P and over all permutations
��1�� � � � ��K��:

�DPC�P� H� � Co

(⋃
��i

R���i�

)
(2.20)

where R���i� are the set of rates given by (2.19). The transmitted signal is x = x1 +
· · ·+ xK and the input covariance matrices are of the form �i = E	xix

∗
i �. From the dirty

paper result we find that x1� � � � � xK are uncorrelated, which implies �x = �1 +· · ·+�K .
One important feature to notice about the dirty paper rate equations in (2.19) is that

the rate equations are neither a concave nor a convex function of the covariance matrices,
which makes finding the dirty paper region a difficult numerical problem.
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MAC–BC duality

A key component in establishing capacity results for the MIMO BC is the duality
relationship between the MIMO BC and the MIMO MAC. The duality relationship refers
to the fact that the dirty paper rate region of the multi-antenna BC with power constraint
P is equal to the union of the capacity regions of the dual MAC, where the union is taken
over all individual power constraints that sum to P [133]:

�DPC�P� H� = ⋃
P�
∑K

i=1 Pi=P

�MAC�P1� � � � �PK� H∗�� (2.21)

This is the multiple-antenna extension of the previously established duality between the
scalar Gaussian broadcast and multiple-access channels [71]. In addition to the relationship
between the two rate regions, for any set of covariance matrices in the MAC/BC, [133]
provides an explicit set of transformations to find covariance matrices in the BC/MAC
that achieve the same rates. The union of MAC capacity regions in (2.21) is easily seen
to be the same expression as in (2.14) but with the constraint

∑K
i=1 tr�Qi� ≤ P instead

of tr�Qi� ≤ Pi∀i (i.e. a sum constraint instead of individual constraints). In establishing
this duality, it is shown that every rate vector in the dual MAC capacity region can be
achieved in the MIMO BC. Each set of MAC covariance matrices corresponds to the
polyhedron of rates described in (2.15). Each corner point of the polyhedron is achievable
in the MAC using successive decoding with a specific order, and is also achievable in
the MIMO BC using DPC with the opposite encoding order.

The MAC–BC duality is very useful from a numerical standpoint because the dirty
paper region cannot be characterized in terms of a convex optimization problem, whereas
the boundary of the dual MAC capacity region can be cast as a convex optimization
problem. As a result, the optimal MAC covariances can be found using standard
convex optimization techniques and then transformed to the corresponding optimal BC
covariances using the MAC–BC transformations given in [133].

The dirty paper rate region is shown in Figure 2.13 for a channel with two users,
MT = 2 and MR = 1. Notice that the dirty paper rate region shown in Figure 2.13 is
actually a union of MAC regions, where each MAC region corresponds to a different set
of individual power constraints. Since MR = 1, each of the MAC regions is a pentagon,
as discussed in Section 2.4.2. Similar to the MAC capacity region, the boundary of the
dirty paper coding region is curved, except at the sum-rate maximizing portion of the
boundary.

Duality also allows the MIMO MAC capacity region to be expressed as an intersection
of the dual dirty paper BC rate regions [133, Corollary 1]:

�MAC�P1� � � � �PK� H∗� = ⋂
�>0

�DPC

(
K∑

i=1

Pi

�i

� 	
√

�1HT
1 · · ·√�KHT

K�T

)
� (2.22)

Constant channel capacity

In the previous section we described how the technique of dirty paper coding can be
applied to the MIMO BC to pre-subtract interference at the transmitter. This strategy has,
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Fig. 2.13. Dirty paper rate region, H1 = 	1 0�5�, H2 = 	0�5 1�, P = 10.

in fact, been shown to achieve the capacity region of the MIMO BC [141]. The optimality
of dirty paper coding was first shown for sum-rate capacity in [13, 133, 136, 149],
and later extended to the full capacity region [141]. Since DPC achieves the capacity
region (denoted as �BC�P� H�), the capacity region can be given in terms of (2.20),
i.e. �BC�P� H� = �DPC�P� H�. However, this form of the capacity region is difficult
to find numerically because the rate equations are not concave functions of the input
covariance matrices. By the MAC–BC duality explained in the previous subsection, a
simpler expression of the capacity region of the MIMO BC can be given in terms of the
sum power MIMO MAC:

�BC�P� H� = �MAC�P� H∗�

= ⋃
�Qi≥0�

∑K
i=1 tr�Qi�≤P�

{
�R1� � � � �RK� �∑

i∈S Ri ≤ log det
(
IMT

+∑
i∈S H∗

i QiHi

)∀S ⊆ �1� � � � �K�

}
�

(2.23)

where the Qi are the dual MAC covariance matrices. As stated earlier, a key property
of this characterization is that the rate equations are concave functions of the input
covariance matrices. Thus, power convex optimization algorithms can be used to compute
the MIMO BC capacity region numerically.

The capacity region of the MIMO BC is a convex region, and thus its boundary can be
found by maximizing the function �1R1 +· · ·+�KRK over all rate vectors in the capacity
region and for all non-negative priorities ��1� � � � ��K� such that

∑K
i=1 �i = 1. Since the

MIMO BC capacity region is best described in terms of the MIMO MAC (with sum power
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constraint) capacity region, the same intuition holds regarding finding the boundary of the
capacity region. In fact, the boundary of the MIMO BC capacity region can be found by
solving the maximization in (2.16) subject to a sum power constraint on the covariance
matrices. Standard convex optimization techniques can be used to solve this optimization,
and a specific instance of such an algorithm is provided in [139]. As mentioned earlier,
the encoding order with DPC is the opposite of the decoding order in the MAC. Thus,
on the boundary of the capacity region, encoding should be done in order of decreasing
priority, i.e. the user with the lowest priority should be encoded last and benefit from the
most interference cancellation. For sum-rate capacity (i.e. �1 = · · · = �K), more efficient
algorithms based on the Karush–Kuhn–Tucker (KKT) conditions exist [70, 77, 146]. Of
particular interest is the sum power iterative water-filling algorithm in [70] which is
related to the iterative water-filling technique for the MAC, with the difference that all
the users simultaneously water-fill with respect to one power constraint.

Similar to the MIMO MAC, the sum-rate capacity of the MIMO BC grows
approximately as min�MT �MRK� log�SNR� as SNR is taken to infinity. In other words,
a MIMO BC with perfect CSIR and CSIT has a multiplexing gain of min�MT �MRK�,
i.e. the same as a point-to-point MT ×MRK MIMO system. Additionally, if SNR is fixed
but the number of transmit antennas and the number of receivers (with MR = 1) are
taken to infinity with MT ≥ K, then the sum capacity under the ZMSW model has the
same growth constant as a K ×MT point-to-point MIMO channel (notice that there are
K transmit antennas in the equivalent point-to-point channel, whereas K represents the
receivers in the MIMO BC) with perfect CSIR and CDIT [50].

Fading channels

For fading MIMO BCs, the capacity region depends crucially on the CSI available at the
transmitter and receivers. As we discuss below, the degree of channel knowledge at the
transmitter is particularly important.

With perfect CSIR and CSIT, the MIMO BC can be split into parallel channels with
an overall power constraint [147] (see [82] for a treatment of the single-antenna channel).
Clearly, the full multiplexing gain of min�MT �MRK� is achievable in this scenario.

The scenario where there is perfect CSIR but only CDIT is perhaps the most practical
as well as interesting situation. However, the capacity and even the multiplexing gain in
this scenario is, in general, unknown. Furthermore, the technique of dirty paper coding
requires perfect CSIT in order for multi-user interference to be cancelled perfectly. Thus,
it is still not clear what transmission strategy should be used for such fading channels.

One special case of CSIR and CDIT for which capacity is known is when all receivers
have the same channel distribution (e.g. all ZMSW) and the same number of antennas. In
this situation the K channels are statistically identical, i.e. p�Y1 = y�x� = · · · = p�YK = y�x�

for all x� y.9 This implies that if any of the K receivers can decode a codeword, then

9 Notice that the statistical equivalence of the K receivers depends crucially on the CDIT, and the lack of CSIT.
If there is CSIT, one must consider p�yi�x�H� instead of p�yi�x�, and the statistical equivalence is lost, even
if each of the channels follows the same model. Also note that with CDIT the statistical equivalence does not
depend on the ZMSW model; the distributions of H1� � � � � HK need only be identical.
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receiver 1 can also decode the same codeword. This, in turn, implies that receiver 1
can decode every message sent by the transmitter. Therefore, the sum-rate capacity of
the MIMO BC is bounded by the capacity of the channel from the transmitter to any
single receiver. The capacity region is therefore given by CBC�P� = ��R1� � � � �RK� �∑K

i=1 Ri ≤ C1�P��, where C1�P� is the point-to-point capacity from the transmitter to any
receiver. If each of the channels follows the ZMSW model, the capacity is given by
(2.11): C1�P� = EH

[
log det

(
IMR

+ P
MT

H1H

1

)]
. The rates achievable in the MIMO BC

are therefore limited by the point-to-point capacity from the transmitter to any of the
receivers. In other words, there is no multi-user MIMO benefit in this scenario. Since
C1�P� has a multiplexing gain of only min�MT �MR�, the sum rate capacity also has a
multiplexing gain of only min�MT �MR�, as opposed to the min�MT �MRK� possible with
perfect CSIT. Note that this is in contrast to the MIMO MAC, where CSIR and CDIT are
sufficient in order to achieve the full multiplexing gain of min�MT �MRK�. This idea is
further investigated in [58], where it is shown that the multiplexing gain in the MIMO BC
is lost whenever the channel fading distributions are spatially isotropic, i.e. the transmitter
has no information regarding the spatial direction of each of the K channels.

If there is perfect CSIR and CDIT and the users do not have statistically identical
channels, then very little is known about the capacity region. For example, consider a
system under the CMI model with K = 2, MT = 2, and MR = 1. If E	H1� �= E	H2� (i.e.
non-identical means), then the channels of the two users are not statistically identical.
Therefore, the argument given above does not apply and it is not clear what the capacity
region or sum-rate capacity of this channel is. However, the multiplexing gain of this
channel has been shown to be strictly smaller than that with perfect CSIR and CSIT [81].

The addition of limited feedback from receivers to transmitters can significantly
increase the MIMO BC capacity. In this setting, perfect CSIR and partial CSIT (achieved
via a feedback channel) are considered. In [114], MT random and orthogonal beamforming
vectors are transmitted. The receivers measure the signal-to-interference-plus-noise ratio
(SINR) on each of the beams and feed back the measurement values to the transmitter.
The transmitter then transmits to the users with the highest SINR values. It is shown
that this scheme achieves the full multiplexing gain when there are a large number of
receivers experiencing fading according to the ZMSW model. Thus, this limited feedback
is sufficient to overcome the barriers of the CSIR/CDIT model. The MIMO BC has also
been considered in the finite-rate feedback model, whereby each receiver feeds back a
quantized version of its channel instantiation to the transmitter (see the quantized channel
information model in Section 2.3.1 for a discussion of this model in the point-to-point
setting). In this setting, if the number of feedback bits per user is increased in proportion
to the system SNR, then the full multiplexing gain is achievable for any number of
receivers [66].

Sub-optimal methods

Though DPC is capacity-achieving for the constant MIMO BC, its complexity is rather
high because implementing DPC requires the use of near-optimal vector quantizers at
both the transmitter and receivers [31]. Therefore, it is also of great interest to study
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the behavior of less complex, perhaps sub-optimal transmission schemes. In this section
we examine the performance of two classes of schemes: orthogonal transmission (i.e.
TDMA), and multi-user beamforming without interference cancellation.

TDMA (time-division multiple-access) has the inherent advantage of low complexity,
because the transmitter transmits to only a single-user at a time and the MIMO BC is
essentially reduced to a point-to-point MIMO channel. The TDMA rate region is given by:

�TDMA�H�P� �
{

�R1� � � � �RK� �
K∑

i=1

Ri

C�Hi� P�
≤ 1

}
� (2.24)

where C�Hi� P� denotes the single-user capacity of the ith user subject to power
constraint P.

Note that other orthogonal allocations of resources such as frequency-division multiple
access (FDMA) are equivalent to TDMA from a capacity standpoint. The main drawback
of TDMA is that the multiplexing gain is only min�MT �MR�, as opposed to the
min�MT �MRK� possible using DPC. As a result of this, TDMA can yield rates up to
a factor of min�MT �K� times smaller than DPC [68]. In fact, this gap is particularly
pronounced in large systems with a small number of receive antennas operating at high
SNRs.

One advantage of TDMA is that it can be easily used in fading channels with CSIR and
CDIT. Point-to-point MIMO capacity is well known in this scenario, and as stated earlier,
TDMA is in fact optimal in this scenario if the fading distributions of each of the users
are identical. In general, TDMA is expected to perform well (i.e. close to capacity) even
when channels are not statistically identical but when the CDIT is not very informative
(e.g. CMI with very weak line-of-sight components).

Multi-user (or linear) beamforming is another sub-optimal transmission technique for
the MIMO BC. With this scheme, a different beamforming direction(s) is chosen for
each receiver and the sum of independent codewords is transmitted using the different
beamforming directions. Since no interference cancellation is performed, multi-user
interference is treated as noise. Note that this scheme differs from capacity-achieving
DPC only in that no interference pre-subtraction is performed at the transmitter; the
beamforming structure with DPC is in fact optimal when MR = 1. Since beamforming
is typically implemented through linear transmit and receive filters, beamforming is also
referred to as linear processing.

For the single-receive antenna channel (MR = 1), a duality between the MAC and BC
also exists for beamforming [7, 136], and the rates achievable using beamforming are
most easily expressed in terms of the dual MAC as

CBF �H1� � � � � HK�P� = max
�Pi�

∑K
i=1 Pi≤P�

K∑
j=1

log
det

(
IMT

+∑K
i=1 H∗

i PiHi

)
det

(
IMT

+∑
i �=j H∗

i PiHi

) � (2.25)

This maximization, however, cannot be rephrased as a convex optimization problem, and
as a result is extremely difficult to compute numerically. Though it is difficult to find the
optimal beamforming strategy, it is possible to compute sub-optimal strategies, and it is
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easy to see that beamforming does provide the full multiplexing gain of min�MT �MRK�.
Zero-forcing beamforming, in which the transmitter multiplies the vector of data symbols
by the inverse of the channel to eliminate all multi-user interference, is one example of
sub-optimal multi-user beamforming. Some asymptotic results regarding beamforming are
given in [68, 138, 145]. A number of works have also studied the selection of beamforming
vectors when receivers have multiple antennas (cf. [119]). A novel technique combining
beamforming and turbo coding has also been proposed [99, 100].

Beamforming can be used in fading channels with CSIR/CDIT, but it is difficult to
choose good beamforming directions for each user unless the transmitter has a very good
estimate of the channels. Thus, beamforming is not expected to perform well unless the
CDIT contains a high degree of information regarding the current channel (e.g. CMI with
strong line-of-sight components).

In Figure 2.14 the sum rate is plotted versus the SNR for a 10-transmit antenna,
10-receiver (each with single antennas) system with perfect CSIR and CSIT. The sum-
rate capacity (achieved using DPC), zero-forcing beamforming, and TDMA rates are
plotted. Notice that both the sum-rate capacity and zero-forcing curves achieve the full
multiplexing gain, i.e. have a slope of min�MT �K� = 10 bits/3 dB. Though zero-forcing
achieves the correct slope, there is a substantial power penalty (approximately 8.3 dB)
to using this sub-optimal method [65]. TDMA, on the other hand, only achieves a
multiplexing gain of unity, corresponding to a slope of only 1 bit/3 dB. Both DPC and
zero-forcing provide a substantial increase over TDMA, even at moderate SNR values.

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

SNR (dB)

C
ap

ac
ity

 (
bp

s/
H

z)

Sum rate vs. SNR

Capacity (DPC)

Zero forcing

TDMA

Fig. 2.14. Sum rate versus SNR for an MT = 10, MR = 1, and K = 10 system.



66 Capacity limits of MIMO systems

2.4.4 Open problems in multi-user MIMO

Multi-user MIMO has been a primary focus of research in recent years, mainly due to
the large number of open problems in this area. Some of these are as follows.

1. MIMO BC with perfect CSIR and CDIT: capacity is only known when the channels
of all users have the same distribution. When this condition is not met, however,
little is known regarding the capacity.

2. CDIT and CDIR: since perfect CSI is rarely possible, a study of capacity with CDI
at both the transmitter(s) and receiver(s) for both MACs and BCs is of great practical
relevance.

3. Non-DPC techniques for BC: dirty paper coding is a very powerful capacity-achieving
scheme, but it appears quite difficult to implement in practice. Thus, non-DPC multi-
user transmission schemes for the downlink (such as downlink beamforming [103])
are also of practical relevance. In addition, performing DPC (or some variant) with
imperfect CSIT or CDIT is still challenging.

2.5 Multi-cell MIMO

The MAC and the BC are information-theoretic abstractions of the uplink and the
downlink of a single cell in a cellular system. However a cellular system consists of
many cells with channels (timeslots, bandwidth, or codes) reused at spatially separated
locations. Due to the fundamental nature of wireless propagation, transmissions in a
cell are not limited to within that cell, and thus there is intercell interference between
users and base-stations that use the same channels. The majority of current systems are
interference limited rather than noise limited. As a result, it is not sufficient to exclusively
study single-cell models and thus multi-cell environments must be explicitly considered
in order to accurately assess the benefit of MIMO technology.

In this section we provide an overview of information-theoretic results for multi-cell
environments. Analysis of the capacity of the cellular network explicitly taking into
account the presence of multiple cells, multiple users, and multiple antennas, and the
possibilities of cooperation between base-stations is inevitably a hard problem and runs
into several long-standing unsolved problems in network information theory. However,
such an analysis is also of utmost importance because it defines a common benchmark
that can be used to gauge the efficiency of any practical scheme, in the same way that
the capacity of a single-user link serves as a measure of the performance of practical
schemes. Work on multi-cell environments can be grouped into two broad categories, with
one group assuming that base-stations cannot cooperate (as is done in current systems),
and with other work considering multi-cellular environments where base-stations are
allowed some level of cooperation (i.e. cooperative transmission and/or reception). We
also discuss some general system-level issues.



2.5 Multi-cell MIMO 67

2.5.1 Multi-cell MIMO without base-station cooperation

The traditional analysis of capacity of cellular systems has assumed that neither base-
stations nor users can cooperate. Note that current cellular systems do cooperate in some
sense (e.g. handoff), but more so at the networking layer than at the physical layer. In
this chapter we use “cooperation” to imply cooperative transmission and reception, i.e.
cooperation at the physical layer. If no cooperation is allowed, the channel becomes
an interference channel, in which there are multiple transmitters and multiple receivers
communicating over a common medium, but each transmitter only wishes to communicate
with a single receiver. Unfortunately, the Shannon capacity of channels with interference
is a long-standing open problem in information theory [25, 127]; in fact, even the
capacity region of a two-transmitter, two-receiver interference channel with no fading and
single-antenna elements is not fully known [22]. Some results for the multiple-antenna
interference channel are given in Section 2.6 on MIMO ad hoc networks.

A more promising and well-studied approach is to treat all out-of-cell interference
as an additional source of Gaussian noise. The Gaussian assumption can be viewed
as a worst-case assumption about the interference, since exploiting known structure
of the interference can presumably help in decoding the desired signals and therefore
increase capacity. By treating the interference as Gaussian noise, the capacity of both
the uplink and the downlink can be determined using the single-cell analysis of Section
2.4. The capacity of a single-antenna cellular system uplink with fading based on treating
interference as Gaussian noise was obtained in [109] for both one- and two-dimensional
cellular grids. These capacity results show that with or without fading, when intercell
interference is non-negligible, an orthogonal multiple-access method (e.g. TDMA) within
a cell is optimal. This is also the case when channel-inversion power control is used within
a cell. Moreover, in some cases partial or full orthogonalization of channels assigned
to different cells can increase capacity. There has also been a body of work that has
studied multiple transmit and receive antenna arrays in cellular systems [16, 17, 86, 143].
In this work, the spatial structure of out-of-cell interference is considered. Note that
AWGN is normally considered to be spatially white. However, out-of-cell interference
generally has some statistical structure, i.e. a spatial covariance, which significantly affects
capacity results. One interesting conclusion that can be drawn from this work is that it
is sometimes beneficial to limit the number of transmit antennas, because the receiver
must simultaneously use its antennas to cancel out-of-cell interference and decode the
desired signal. When performing these operations, it is beneficial to have the number of
receive antennas be as large as the aggregate number of transmit antennas, i.e. including
the transmit antennas of strong interfering users.

2.5.2 Multi-cell MIMO with base-station cooperation

A relatively new area of research has studied cellular systems where cooperation
between base-stations is allowed. Since base-stations are wired and fixed in location,
it may be practical to allow base-stations to cooperatively transmit and receive.
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If perfect cooperation is assumed, this allows the entire network to be viewed as a single
cell with a distributed antenna array at the base-station. As a result, capacity results about
the single-cell uplink and downlink channel, discussed in Section 2.4, can be applied. Note,
however, that the fact that the base-stations and terminals are geographically separated
directly impacts the channel gains in the composite network.

The uplink capacity of cellular systems (where mobiles and base-stations are assumed
to each have single antennas) under the assumption of full base-station cooperation, where
signals received by all base-stations are jointly decoded, was first investigated in [47]
followed by a more comprehensive treatment in [144]. In both cases propagation between
the mobiles and the base-stations is characterized using an AWGN channel model (i.e. no
fading is considered) with a channel gain of unity within a cell, and a gain of �, 0 ≤ � ≤ 1,
between cells. The Wyner model of [144] considers both one- and two-dimensional arrays
of cells, and derives the per-user capacity in both cases. It is also shown in both [144] and
[47] that uplink capacity is achieved by using orthogonal multiple access techniques (e.g.
TDMA) within each cell, and reusing these orthogonal channels in other cells, although
this is not necessarily uniquely optimal.

The downlink channel can be modeled as a MIMO broadcast channel if perfect base-
station cooperation is assumed. On the downlink, since the base-stations can cooperate
perfectly, dirty paper coding can be used over the entire transmitted signal (i.e. across
base-stations) in a straightforward manner. The application of dirty paper coding to a
multiple-cell environment with cooperation between base-stations was pioneered in work
by Shamai and Zaidel [110]. For one antenna at each user and each base-station, they show
that a relatively simple application of dirty paper coding can enhance the capacity of the
cellular downlink. While capacity computations are not the focus of [110], they do show
that their scheme is asymptotically optimal at high SNRs. A number of other works have
also studied the capacity of multi-cell downlink channels, in both the finite and asymptotic
regimes [1, 55, 60]. The duality of the MAC and BC (discussed in Section 2.4.3) can
also be applied to the multi-cell composite channels to relate uplink and downlink
results.

One weakness of treating the multi-cell downlink channel as a standard MIMO
broadcast channel is that the average transmit power across all antennas (and thus across
all base-stations) is bounded. In practice, the power from each base-station may in fact
be bounded. If these stricter constraints are enforced, it has been shown that dirty paper
coding still achieves the sum capacity [77, 149]. A modified duality between the MAC
and BC has also been established when such power constraints are imposed [77]. For
large networks, the effect of imposing per-base power constraints is still unclear [60].

In general, results show that base-station cooperation can yield significant capacity
increases relative to systems without cooperation. From a research perspective, the size
of large networks makes generating numerical results difficult and as a result asymptotic
results must be relied upon [1, 55]. From a practical perspective, actually achieving perfect
cooperation between physically remote base-stations is still very challenging. In addition,
it seems that very large-scale cooperation would require tremendous complexity. Because
of these issues, it is not clear what methods of base-station cooperation are practically
feasible.
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2.5.3 System level issues

The capacity results described in this section address just a few out of many interesting
questions in the design of a cellular system with multiple antennas. Multiple antennas
can be used not only to enhance the capacity of the system but also to drive down the
probability of error through diversity combining. As discussed in Chapter 1.3.4, work
by Zheng and Tse [154] unravels a fundamental diversity versus multiplexing trade-off
in MIMO systems. Also, instead of using isotropic transmit antennas on the downlink
and transmitting to many users, it may be simpler to use directional antennas to divide
the cell into sectors and transmit to one user within each sector. The relative impact of
CDIT and/or CDIR on each of these schemes is not fully understood. Although in this
paper we focus on the physical layer, smart schemes to handle CDIT can also be found at
higher layers. An interesting example is the idea of opportunistic beamforming [135]. In
the absence of CSIT, the transmitter randomly chooses the beamforming weights. With
enough users in the system, it becomes very likely that these weights will be nearly
optimal for one of the users. In other words, a random beam selected by the transmitter is
very likely to be pointed towards a user if there are enough users in the system. Instead
of feeding back the channel coefficients to the transmitter the users simply feed back
the SNRs they see with the current choice of beamforming weights. This significantly
reduces the amount of feedback required. By randomly changing the weights frequently,
the scheme also treats all users fairly.

2.6 MIMO for ad hoc networks

An ad hoc wireless network is a collection of wireless mobile nodes that self-configure
to form a network without the aid of any established infrastructure, as shown in
Figure 2.15. Without an inherent infrastructure, the mobiles handle the necessary control
and networking tasks by themselves, generally through the use of distributed control
algorithms. Multi-hop routing, whereby intermediate nodes relay packets towards their
final destination, is often used since it can improve the throughput and power efficiency of
the network. Note that with sufficient transmit power any node in the network can transmit
a signal directly to any other node. However, such transmissions over long distances will
result in a low received power, and will also cause interference to other links. Thus, links
with low signal-to-interference-plus-noise (SINR) power ratios are typically not used.
The SINR on different links is illustrated by the different line widths in Figure 2.15.

The fundamental capacity limits of an ad hoc wireless network – the set of maximum
data rates possible between all nodes – is a highly challenging problem in information
theory even when the nodes only have a single antenna. For a network of K nodes, each
node can communicate with K − 1 other nodes, so the capacity region has dimension
K�K − 1�. While rate sums across any cut-set of the network are bounded by the
corresponding mutual information expressions [25, Theorem 14.10.1], simplifying this
formula into a tractable expression for the ad hoc network capacity region is an immensely
complex problem. Given the lack of capacity results for ad hoc networks with just one
antenna per node, it seems that considering multiple antennas per node will only make
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Fig. 2.15. Ad hoc network.

the problem more intractable. Moreover, as with cellular systems, multiple antennas in an
ad hoc network can be used for diversity or sectorization in addition to capacity gain, and
the fundamental trade-offs between these different uses are very difficult to characterize.

One approach to get around this difficulty is to study the asymptotic behavior of the
net throughput as the number of nodes increases to infinity. Such an approach has been
pioneered by Gupta and Kumar [45]. Various decentralized transmitter–receiver models
have been considered in this context, including static, mobile, and fading channel with
or without successive interference cancellation at the receiver. It has been found in most
static channel cases that the capacity per node decays as O�1/

√
n�, thus going down to

zero as n grows to infinity. However, mobility and/or fading is found to enhance this
performance by means of exploiting opportunism, and an O�1� rate per node can now be
obtained [29, 36, 43]. The advantage of this analysis technique is the intuition it provides
about capacity trends, with the inter-user trade-offs being lost at this level of abstraction.

Another approach taken by researchers has been to start with networks with a few
nodes that form the basic building blocks of larger ad hoc networks where the capacity
analysis may be more tractable. The primary few-node components of ad hoc networks
are the MAC, BC, relay, and interference channels. The MAC and BC have already been
analyzed in detail earlier in this chapter, and so this section devotes itself to the discussion
of the relay and interference channels.

2.6.1 The relay channel

The relay channel, where one node aids in the communication of another node’s message,
is a natural and important building block of ad hoc networks. The most elementary relay
channel is modeled as a three-node system, where the transmitter communicates with the
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Source Destination
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Fig. 2.16. The relay channel.

relay and the destination nodes and the relay with the destination node. The AWGN relay
channel is defined to be (Figure 2.16)

y = hsdx+hrdx1 +n1 (2.26)

y1 = hsrx+n2� (2.27)

where x is the signal transmitted by the source, x1 is the signal transmitted by the relay (which
is a function of the relay’s previous inputs), y is the received signal at the destination, and
y1 is the received signal at the relay. The capacity of this channel is still an open problem,
with the capacity known for some special cases. One such special case is the physically
degraded relay channel [24], i.e. where the destination signal is a physically degraded version
of the received signal at the relay. In general, only upper and lower bounds to capacity are
known. The best upper bound known is the well-known cut-set upper bound, while the lower
bounds are obtained using a node-cooperation strategy known as block-Markov coding [24].
In block-Markov coding, the relay uses the information received by it in the past to correlate
its transmit signal to the transmitter’s current signal, and the net coherent combining provides
capacity enhancements over that of the point-to-point channel. This lower bound makes the
assumption, however, that the relay completely decodes its received signal, and is thus called
the decode-and-forward policy. In general, a relay channel’s transmission schemes can be
grouped into three primary categories [76].

1. Decode-and-forward. In the decode-and-forward approach, the relay decodes part or
all of the codeword transmitted by the source during a block. Clearly, this transmission
should be at a rate higher than the capacity of the direct link from source to destination.
During the next block, the relay then transmits to the destination a re-encoded version
of the message decoded during the previous block to assist the destination’s decoding
process. Since the source is aware of the relay’s strategy and of the codeword it sent
the previous block, the source and relay can cooperate, e.g. the source can transmit
a signal identical to the relay’s transmission (coherent combination). Note that if the
relay and source cooperate, the source’s transmission in each block consists of two
parts: information regarding the previous block’s message (to facilitate cooperation)
and a new codeword. This class of strategies was first proposed in [24].

2. Compress-and-forward. In compress and forward, the relay transmits a compressed,
or quantized version of its received signal, instead of decoding the received signal
and re-encoding. This technique is related to source coding with side information.
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3. Amplify-and-forward. In this strategy, the relay acts as a simple linear repeater, and
simply amplifies its received signal instantaneously or during the next symbol or
block. This clearly leads to some noise amplification, but even this simple strategy
can yield significant performance improvements.

One of the best lower bounds known for relays using a mix of these strategies is given
by [24, Theorem 7]. Unfortunately, none of the lower bounds proves to be tight even for
the AWGN single-antenna relay channel, which is thus an open problem. However, the
analysis techniques used for this simple relay channel have been extended to study more
complex ad hoc networks using cooperative schemes, as explained in a later section.

2.6.2 The interference channel

In this section, we summarize what is known about the next building block: the
interference channel (IFC). This is a system with two independent transmitters sending
information to two receivers (Figure 2.17), where each transmitter has a message for a
distinct receiver. The signals from the two transmitters interfere with one another and
the resulting mixture is received at each receiver. For example, in the Gaussian IFC
case, a weighted sum of the two transmit signals is assumed to arrive at each receiver
in the presence of additive Gaussian noise. In the general discrete memoryless case, the
interaction between the two signals is expressed in terms of the conditional probability
density function p�y1� y2�x1� x2�. Although the capacity region of both the general case
and the particular case of the Gaussian interference channel are still open problems,
significant progress has been made in finding the capacity region of certain classes of
these channels [23, 126].

A category of interference channels where the interference is “much stronger” than
the signal, called the very-strong IFC case, was amongst the first for which capacity was
determined [15]. In this case, the interference signal at each receiver is assumed to be so
strong that it can be decoded out first before decoding the intended signal. The broadest
class of IFCs for which the capacity is known is the strong interference channel case
[23, 104], which includes the very-strong case as a sub-class. In the strong IFC case, the
interference is assumed to be strong enough so that it can be decoded (not necessarily
first) at each receiver. More formally, if �i is the channel gain from transmitter i to
receiver i, and �i is the channel gain from transmitter i to the other receiver, then the
strong interference condition for this single-antenna case is equivalent to �i ≥ �i for all i.

RX1

TX2

TX1

RX2

Fig. 2.17. The interference channel.
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Research on the capacity limits of MIMO IFCs is still in its early stages. Interestingly,
the simple strong interference result given by �i ≥ �i for the SISO case does not generalize
to the MIMO case, and a straightforward characterization of what strong interference
means for MIMO IFCs is yet to be obtained. In [131] strong interference conditions
for SIMO interference channels were obtained, where the transmitters possess single
antennas. Finding explicit strong interference conditions for the MISO and more general
MIMO IFCs is still an open problem.

A special feature of MIMO IFCs is the spatial degree of freedom that is absent in the
SISO case, making the channel capacity problem much more difficult and challenging.
Known results from SISO IFC analysis such as achievable regions and outer bounds
require considerable reworking before they can be replicated in the MIMO domain, and
in many cases do not generalize to the MIMO case at all. Summarizing, the capacity of
MIMO IFCs is one of the areas in MIMO multi-user capacity analysis where very few
results are known.

2.6.3 Cooperative communication

In this section we summarize the work on cooperative communication, i.e. using MIMO
techniques in ad hoc networks. In addition to using such techniques when a node in the
network possesses multiple antennas, clusters of nodes that are located close together can
exchange information to create a virtual antenna array, leading to a distributed MIMO system
[95]. In other words, nodes close together on the transmit side can exchange information
to form a multiple-antenna transmitter, and nodes near each other on the receiver side can
exchange information to form a multiple-antenna receiver, as shown in Figure 2.18. Since
each node has a different channel to each receiver, this cooperative MIMO system has
performance advantages in terms of multiplexing and diversity. In addition, the multiple
antennas can be used on the transmit or receiver side to steer the beam in the direction of the
intended receiver, thereby reducing interference and multi-path.

In this section we describe extensions of the basic relay channel to the case of
cooperative (i.e. MIMO) communication over ad hoc networks. We consider two different
settings: perfect CSIR and CSIT, and perfect CSIR and CDIT under the ZMSW model.

Fig. 2.18. Cooperative MIMO.
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Perfect CSIR and CSIT

When the channels between the sources, relays, and destinations are fading, but are
perfectly known, the different fading realizations can be treated as constant channels, thus
reducing the problem to the analysis of non-fading relay channels. The capacity of MIMO
relays with no fading is still an open problem. Early work in this area can be found in
[140]. In this paper, the authors derive upper and lower bounds on the capacity of these
channels. The upper bounds are derived based on cut-set bounds [25], while the lower
bounds are based on path-diversity. The authors use convex optimization techniques to
generate specialized algorithms to compute the lower and upper bounds.

Relaying has also been considered in a multiple-transmitter, multiple-receiver scenario
(i.e. similar to an interference channel), where transmitting nodes help other nodes by
sending their own messages as well as cooperating with other nodes. In addition, the
receiving nodes have the ability to cooperate with each other as well through techniques
such as amplify-and-forward. Such scenarios are beginning to be analyzed in greater
detail [53, 69, 98].

Perfect CSIR and CDIT

Most work on cooperative MIMO has concentrated on the perfect CSIR and CDIT setting
under the ZMSW model. This is perhaps the most practical setting for cooperation in ad
hoc or cellular networks, as obtaining full CSI at each of the transmitters would require
feedback from every receiver to every transmitter. Cooperation of this nature has been
studied in both cellular [105–107] and ad hoc [78, 79] settings.

In a cellular uplink setting, multiple transmitting nodes (i.e. mobiles) wish to
communicate to a single base-station. In traditional networks, mobiles communicate
directly to the base-station over a common channel, perhaps separated by a multi-
user technique such as CDMA. Notice, however, that each of the mobiles can hear
the transmission of other mobiles. Therefore, a mobile can relay the messages of all
other mobiles, in addition to transmitting its own message, to the base-station. The key
advantage of doing so is the extra form of diversity obtained, termed user cooperation
diversity, via the channels of other mobile devices. Even if a mobile is severely faded,
with high probability one of its neighboring mobiles will not be faded and will be able to
relay its message to the base-station. Thus, a cooperation scheme, such as block-Markov
coding [106] increases rates relative to no cooperation. In practice, CDMA can now be
combined with cooperative coding to decrease the probability of error.

Using a somewhat different problem formulation based on outage capacity, [78, 79]
find cooperative communication schemes for half-duplex relays, i.e. for relays that cannot
transmit and receive at the same time. These cooperative schemes achieve full-diversity,
i.e. diversity order equal to the total number of transmitting nodes, but at some rate
penalty. Similar to the point-to-point MIMO setting, there has been work on formalizing
the connection between the diversity and multiplexing (i.e. rate) gain that cooperative
MIMO can provide [3, 101].

Though most work on cooperative communication has concentrated on the outage
formulation, there has also been some work on ergodic capacity of cooperative channels.
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In particular, [76] has established the ergodic capacity of a class of cooperative MIMO
channels. Their results prove that the decode-and-forward strategy is capacity-achieving
under the ZMSW model with perfect CSIR and CDIT when the relay is sufficiently close
to the source, i.e. the average SNR from the source to relay is much higher than the SNR
from the source to the destination or the relay to the destination. In fact, the capacity is
equal to the capacity of the channel when the source and relay nodes are assumed to fully
cooperate, i.e. to act as a transmit antenna array. Note that this result is surprising because
the source and relay are in fact not co-located, and can only cooperate over a noisy channel.

In this situation, the lack of CSIT, and more specifically the lack of phase information,
makes it optimal for the relay to decode the entire message from the source, and then
re-encode it and transmit it independently of the source transmission. In other words, the
source transmits Gaussian codewords at rate R, which is equal to the rate assuming full
cooperation between the source and relay. The relay decodes the codeword transmitted
by the source (the condition on the relay being close to the source implies that the relay–
source capacity is large enough to allow this). In the next block, the relay re-encodes
the message decoded in the previous block, while the source transmits an entirely new
message. The destination uses the information from the current and previous block to
then decode the message sent by the source in the previous block, and so forth. This
result can also be generalized to a channel where there are multiple relays.

Diversity–multiplexing trade-offs

Researchers have investigated the diversity and multiplexing gains in distributed MIMO
(also known as virtual MIMO) systems in [54, 56, 153]. Specifically, these works studied
whether distributed MIMO obtained by wireless relaying can mimic a multi-antenna
system in terms of its diversity–multiplexing trade-off. It can be easily seen by applying
the min-cut max-flow bound that the spatial multiplexing gain of a distributed MIMO
system is limited by the number of antennas at the initial source and the final destination
regardless of the number of intermediate relays [56, 153]. Thus, for example, if the source
or the destination has only one antenna, the multiplexing gain is limited to one. This is
in contrast with the fact that full-diversity gain can be obtained through relays in such
systems [78]. Note that with multiple sources, relays and destinations, and half-duplex
operation it has been shown that the full multiplexing gain (subject to a factor of one-
half due to the half-duplex operation) can be obtained in a distributed MIMO system
with single antennas at all nodes [9]. Thus, the nature of the diversity and multiplexing
trade-off is quite different from that in true MIMO systems [54].

2.7 Summary

We have summarized results on the capacity of MIMO channels for both single- and
multi-user systems. The great capacity gains predicted for such systems can be realized
in some cases, but realistic assumptions about channel knowledge and the underlying
channel model can significantly mitigate these gains. For single-user systems the capacity
under perfect CSI at the transmitter and receiver is relatively straightforward and predicts
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that capacity grows linearly with the number of antennas. Backing off from the perfect CSI
assumption makes the capacity calculation much more difficult, and the capacity gains are
highly dependent on the nature of the CSI/CDI, the channel SNR, and the antenna element
correlations. Specifically, assuming perfect CSIR, CSIT provides significant capacity gain
at low SNRs but not much at high SNRs. The insight here is that at low SNRs it is
important to put power into the appropriate eigenmodes of the system. Interestingly, with
perfect CSIR and CSIT, antenna correlations are found to increase capacity at low SNRs
and decrease capacity at high SNRs. Finally, under CDIT and CDIR for a zero-mean
spatially white channel, at high SNRs the capacity grows relative to only the double-log
of the SNR with the number of antennas as a constant additive term. This rather poor
capacity gain would not typically justify adding more antennas. However, at moderate
SNRs the growth relative to the number of antennas is less pessimistic.

We also examined the capacity of MIMO broadcast and multiple-access channels.
The capacity region of the MIMO MAC is well known and can be characterized as a
convex optimization problem. The MAC–BC duality greatly simplifies the capacity region
calculations for the MIMO BC that could otherwise lead to non-convex optimization
problems. These capacity and achievable regions are only known for ergodic capacity
under perfect CSIT and CSIR. Relatively little is known about the MIMO MAC and
BC regions under more realistic CSI assumptions. A multi-cell system with base-station
cooperation can be modeled as a MIMO BC (downlink) or MIMO MAC (uplink) where
the antennas associated with each base-station are pooled by the system. Exploiting this
antenna structure leads to significant capacity gains over HDR transmission strategies. We
also describe the rather limited results on the capacity of ad hoc networks with multiple
antennas, as well as the capacity gain associated with node cooperation to form virtual
MIMO channels from single-antenna nodes.

There are many open problems in this area. For single-user systems the problems
are mainly associated with CDI only at either the transmitter or the receiver. Most
capacity regions associated with multi-user MIMO channels remain unsolved, especially
the ergodic capacity and the capacity versus outage for the MIMO BC under perfect
receiver CSI only. There are very few existing results for CDI at either the transmitter
or the receiver for any multi-user MIMO channel. The capacity of cellular systems with
multiple antennas remains a relatively open area, in part because the single-cell problem
is mostly unsolved, and in part because the Shannon capacity of a cellular system is not
well defined and depends heavily on frequency assumptions and propagation models.
Other fundamental trade-offs in MIMO cellular designs such as whether antennas should
be used for sectorization, capacity gain, or diversity are not well understood. Similar
trade-offs exist in ad hoc networks, where the capacity associated with multiple antennas
is a wide open problem. In short, we have only scratched the surface in understanding the
fundamental capacity limits of systems with multiple transmitter and receiver antennas as
well as the implications of these limits for practical system designs. This area of research
is likely to remain timely, important, and fruitful for many years to come.

This chapter has provided the fundamental capacity limits of MIMO channels as well
as design insights into how these limits may be approached in practice. The remainder of
the book is devoted to exploring practical techniques that exploit the benefits of MIMO
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to achieve large capacity gains as well as robustness through diversity. In particular,
Chapter 3 describes how transmitter precoding improves both the capacity and the error
rate performance, and also describes practical techniques for obtaining the transmitter
CSI necessary for precoding. Chapter 4 provides an overview of practical space–time
coding and decoding techniques that can approach the Shannon theoretic capacity bounds
of MIMO channels. Optimal detection of MIMO transmission is typically prohibitively
complex, as it requires joint maximum-likelihood detection across all receive antennas.
Chapter 5 addresses this issue by outlining practical receiver techniques that approach the
performance of maximum-likelihood detection with much lower complexity. Chapter 6
extends these ideas to multi-user receivers, where signals of all users in the system must
be detected simultaneously.

2.8 Bibliographical notes

Research on the capacity limits of MIMO channel was sparked by the initial works of
Foschini and Gans [33] and Telatar [121] in the mid 1990’s. Since then, there has been
a tremendous amount of research on MIMO capacity, both for single-user and multi-user
channels. For additional results on MIMO capacity, readers may wish to consult MIMO
tutorial articles [28, 38, 39]. The well known information theory books by Gallager [34]
and Cover and Thomas [25] are excellent references for additional material on channel
capacity. In addition, [4] provides an excellent survey of channel capacity results for
general single antenna channels. The monograph by Tulino and V́erdu on applications of
random matrix theory to wireless communication [123] provides an excellent summary
of general concepts of random matrix theory and their use in the study of the capacity
of MIMO systems with an asymptotically large number of antennas. Readers interested
in the capacity of MIMO channels in either the wideband (i.e. low SNR) regime or at
high SNR should consider papers by Tulino, Lozano, and Verdú [88, 89]. For readers
interested in multi-user capacity, Ch. 14 of [25] serves as an excellent starting point, as
does the survey paper of El Gamal and Cover [35].
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3 Precoding design

Armed with the theoretical limits of MIMO wireless performance from Chapter 2,
we now embark on the design of specific system blocks. At the transmitter, two
major MIMO processing components at the symbol level are precoding and space–time
coding. Precoding, the last digital processing block at the transmitter (see Figure 1.2),
is a technique that exploits the channel information available at the transmitter. Such
information is generally referred to as transmit channel side information, or CSIT (this
definition is more general than that in Chapter 2). In MIMO wireless, spatial CSIT is
particularly useful in enhancing system performance [39]. Space–time coding, on the
other hand, assumes no CSIT and focuses on enhancing reliability through diversity [49].
In addition to these two components, regular channel coding is required for bit-level
protection. This chapter focuses on precoding design, and space–time coding is discussed
in Chapter 4.

CSIT helps to increase the transmission rate, to enhance coverage, and to reduce
receiver complexity in MIMO wireless systems. Many forms of CSIT exist. Exact channel
knowledge at each time instance, or perfect CSIT, is ideal; but it is often difficult to
acquire in a time-selective fading channel. CSIT is more likely to be available as a channel
estimate with an associated error covariance, which reduce in the limit to the channel
statistics, such as the channel mean and covariance [60]. Such CSIT encompasses several
models discussed in Chapter 2, including perfect CSIT and CDIT. Other partial CSIT
forms can involve only parametric channel information, such as the channel condition
number or the Ricean K factor. In this chapter, we focus on the CSIT given by a channel
estimate with a known error covariance. Most analyses assume that the channel is known
perfectly at the receiver; however, the impact of receive channel side information (CSIR)
will also be briefly discussed.

Precoding design for MIMO wireless has been an active research area in recent
years [18, 21, 25, 28–30, 38, 41, 53, 54, 57, 61, 67, 68] and is now finding applications in
emerging wireless standards [24]. This chapter provides an overview of precoding design,
combining both theoretical foundations and practical issues. We focus on linear precoding,
known to be capacity-optimal when causal CSIT is available in the form of channel
estimates [8, 44, 46]. Functionally, a linear precoder is a transmit operation matching to
the input signal covariance on one side and to the channel on the other. The structure
is essentially a beamformer with single or multiple beams, each with a defined direction
and power loading.

The chapter starts with a discussion of the principles for acquiring CSIT in a
wireless channel and the derivation of a CSIT model as a channel estimate and its

88



3.1 Transmit channel side information 89

error covariance. Information-theoretic results for optimal signaling given the CSIT are
then analyzed, leading to the linear precoding solution. Next, a transmitter structure is
established, comprising a precoder and different encoding architectures, such as space–
time coding and spatial multiplexing. The chapter then examines several linear precoder
design criteria. Corresponding precoder designs follow for various CSIT scenarios: perfect
CSI, correlation CSI, mean CSI, and general CSI – both mean (or channel estimate) and
covariance. Extensive performance simulation results are provided with discussion on
the precoding gain. The chapter continues with an overview of precoding applications in
practical wireless systems, covering open- and closed-loop channel acquisition methods
in TDD and FDD systems, the codebook design in closed-loop systems, impacts of CSIR,
and a survey of the current status of precoding in emerging wireless standards. Finally,
the conclusion includes discussions of other types of CSIT, open problems, and alternate
methods for exploiting CSIT.

3.1 Transmit channel side information

This section discusses the MIMO wireless channel model and the principles for obtaining
channel information at the transmitter. A CSIT model is then established for use
throughout this chapter.

3.1.1 The MIMO channel

A wireless channel exhibits time, frequency, and space selective variations, known as
fading. This fading arises due to Doppler, delay, and angle spreads in the scattering
environment [27, 39, 40]. We focus on a time-varying frequency flat channel in this
chapter. A frequency-flat solution can be applied per sub-carrier in a frequency-selective
channel with orthogonal frequency-division multiplexing (OFDM).

The wireless channel in a multi-path environment can be modeled as a complex
Gaussian random variable. In the presence of a direct line-of-sight, the channel may exhibit
a non-zero mean. The MIMO channel between MT transmit and MR receive antennas is
an MR ×MT complex Gaussian random matrix H, which can be decomposed as

H = Hm + H̃� (3.1)

where Hm is the complex channel mean and H̃ is a zero-mean complex Gaussian random
matrix. The elements of H̃ are complex random variables, of which the real and the
imaginary parts are independent and identically distributed as a zero-mean Gaussian with
the same variance. The channel covariance is an MRMT ×MRMT matrix defined as

Rh = E
[
h̃h̃∗]� (3.2)

where h̃ = vec�H̃�, and �·�∗ denotes a conjugate transpose. Rh is the covariance of the
MRMT scalar channels between the MT transmit and MR receive antennas, and is a
complex Hermitian positive semi-definite matrix. The ratio of the power in the channel
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mean and the average power in the channel variable component is the channel K factor,
or the Ricean factor, defined as

K = ��Hm��2F
tr�Rh�

� (3.3)

where �����F is the matrix Frobenius norm and tr�·� is the trace of a matrix.
The channel covariance Rh is often assumed to have a simpler separable Kronecker

structure [45]. The Kronecker model assumes that the covariance of the scalar channels
seen from all MT transmit antennas to a single receive antenna (corresponding to a row
of H) is the same for any receive antenna (any row) and is equal to Rt (MT × MT ).
Similarly, the covariance of the scalar channels seen from a single transmit antenna to
all MR receive antennas (corresponding to a column of H) is the same for any transmit
antenna (any column) and is equal to Rr (MR ×MR). The channel covariance can then be
decomposed as

Rh = RT
t ⊗Rr � (3.4)

where ⊗ denotes the Kronecker product [17]. Both covariance matrices Rt and Rr are
complex Hermitian positive semi-definite. The channel can then be written as

H = Hm +R1/2
r HwR1/2

t � (3.5)

where Hw is an MR ×MT matrix with zero-mean unit-variance i.i.d. complex Gaussian
entries. Here R1/2

t is the unique square-root of Rt, such that R1/2
t R1/2

t = Rt, and similarly
for R1/2

r .
Other more general channel covariance structures have been proposed in the literature

[42, 62], where the transmit covariances Rt corresponding to different reference receive
antennas are assumed to have the same eigenvectors, but not necessarily the same
eigenvalues; similarly for Rr . In this chapter, we will use only the simpler Kronecker
correlation structure. Furthermore, since precoding is primarily affected by transmit
correlation, we assume that Rr = I in most cases, unless otherwise specified. The
Kronecker correlation model has been experimentally verified in indoor environments for
up to 3 × 3 antenna configurations [32, 64] and in outdoor environments for up to 8× 8
configurations [5].

3.1.2 Methods of obtaining CSIT

We use the term CSIT here loosely to mean any channel information available to the
transmitter. In the next section, we will define a specific CSIT model. The transmitter can
only acquire CSIT indirectly, since the signal enters the channel only after leaving the
transmitter. The receiver, however, can estimate the channel directly from the channel-
modified received signal. Pilots are usually inserted in the transmitted signal to facilitate
channel estimation by the receiver. The transmitter can then indirectly acquire CSIT by
either invoking the reciprocity principle or using feedback from the receiver.
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Figure 3.1. Obtaining CSIT using reciprocity.

The reciprocity principle in wireless communication states that the channel from an
antenna A to another antenna B is identical to the transpose of the channel from B to
A. Reciprocity holds, provided that both forward and reverse links occur at the same
frequency, the same time, and the same antenna locations. Since communication systems
are often full-duplex, the reciprocity principle suggests that the transmitter can obtain the
forward (A to B) channel from the reverse (B to A) channel measurements, which the
receiver (at A) can measure, as illustrated in Figure 3.1.

In practical full-duplex communications, however, the forward and reverse links cannot
use all identical frequency, time, and spatial instances. The reciprocity principle may
still hold approximately if the difference in any of these dimensions is relatively small,
compared to the channel variation across the referenced dimension. In the temporal
dimension, this condition implies that any time lag �t between the forward and reverse
transmissions must be much smaller than the channel coherence time Tc:

�t � Tc� (3.6)

Similarly, any frequency offset �f must be much smaller than the channel coherence
bandwidth Bc:

�f � Bc� (3.7)

and the antenna location differences on the two links must be much smaller than the
channel coherence distance Dc [39].

Practical channel acquisition based on reciprocity is referred to as the open-loop method
and may be applicable in time-division-duplex (TDD) systems. While TDD systems often
have identical forward and reverse frequency bands and antennas, there is a time lag
between the forward and reverse links (e.g. the ping-pong period in voice systems). In
asynchronous data systems, the time lag is between the reception of a signal from a
reference user and the next transmission to that user. Such time lags must be negligible
compared to the channel coherence time. In a frequency-division-duplex (FDD) system,
the temporal and spatial dimensions may be identical, but the frequency offset between the
forward and reverse links is usually much larger than the channel coherence bandwidth.
Therefore, reciprocity is usually not applicable in FDD systems.

One complication in using reciprocity methods is that the principle only applies to
the radio channel between the antennas, while in practice, the “channel” is measured
and used at the baseband processor. This fact means that different transmit and receive
radio-frequency (RF) hardware chains become part of the forward and reverse channels.
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Figure 3.2. Obtaining CSIT using feedback.

Since these chains have different frequency transfer characteristics, reciprocity requires
transmit–receive chain calibration, discussed in Section 3.7.

Another method of obtaining CSIT is using feedback from the receiver of the forward
link, depicted in Figure 3.2. The channel is measured at the receiver at B during the
forward link (A to B) transmission, and the information is sent to the transmitter at A
on the reverse-link. Feedback is not limited by the reciprocity requirements. However,
the time lag �lag between the channel measurement at B and its use by the transmitter at
A can be a source of error, unless it is much smaller than the channel coherence time:

�lag � Tc�

Feedback can also be used to send channel statistics that change much slower in time
compared to the channel itself. In such cases, the time lag requirement for valid feedback
can be relaxed significantly.

Channel acquisition using feedback is referred to as the closed-loop method and is
more common in FDD systems. Although not subjected to transmit–receive calibration,
feedback imposes another system overhead by using up transmission resources. Therefore,
methods of reducing feedback overhead, such as quantizing feedback information, are
both important and necessary. In Section 3.7, we will discuss practical issues for both
open- and closed-loop methods in more detail. Further references can be found in [4].

3.1.3 A dynamic CSIT model

We assume that the channel is a stationary Gaussian stochastic process. We consider
CSIT at the transmit time s in the form of a channel estimate and its error covariance.
This estimate and its error covariance are derived from a channel measurement at time
0 and relevant channel statistics. This model is applicable to both open- and closed-loop
methods.

The main source of irreducible error in channel estimation is the random channel time-
variation, or equivalently, the Doppler spread. We assume that the channel measurement
at time 0 is error-free; the error in channel estimates depends only on the time lag s

between this initial measurement and its use by the transmitter. A CSIT model can then
be written as

H�s� = Ĥ�s�+E�s��

Re�s� = E
[
e�s�e�s�∗]� (3.8)
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where the notation �s� denotes the time dependence. Here, H�s� is the channel, Ĥ�s� is a
channel estimate, and E�s� is the estimation error at time s. Re�s� is the error correlation
matrix, where e�s� = vec

(
E�s�

)
. Assuming unbiased estimates, we can model E�s� as a

zero-mean complex Gaussian random matrix, and Re�s� now becomes an error covariance
matrix, which depends on s and the Doppler spread. CSIT consists of the estimate Ĥ�s�

and its error covariance Re�s�. By our assumption, at time zero, E�0� = 0 and Re�0� = 0,
i.e., we have perfect CSIT.

The correlation between the channel at time 0 and the channel at time s is characterized
by the channel auto-covariance, defined as

Rh�s� = E
[
h�s�h�0�∗]−hmh∗

m� (3.9)

where hm = vec
(
Hm

)
and h = vec

(
H
)
. This auto-covariance measures how rapidly H�s�

decorrelates with time; it eventually decays to zero as s becomes large. At a zero time
lag (s = 0), Rh�0� = Rh as in (3.2).

When the time lag s is large compared to the channel coherence time, channel estimates
based on H�0� are no longer meaningful; therefore, short-term statistics, such as the
channel mean Hm (3.1) and the covariance Rh (3.2) (or Rt and Rr in (3.4)), are relevant.
Physical models of wireless channels indicate that short-term channel statistics are stable
over periods much longer than the channel coherence time. These statistics, including
Rh�s�, obtained by time averaging over a short window (about 10 times the coherence
time) are valid for 10s to 100s of coherence time periods. Thus, the receiver can make
Hm, Rh, and Rh�s� available to the transmitter with negligible lag-induced errors.

A framework to dynamically estimate the CSIT – Ĥ�s� and Re�s� – can be developed.
Assume that the initial channel measurement H�0� with the channel statistics Hm, Rh,
and Rh�s� are available to the transmitter. Then the CSIT at time s follows directly from
the standard minimum mean-square error (MMSE) estimation theory [31]

ĥ�s� = E
[
h�s��h�0�

] = hm +RhRh�s�
−1
[
h�0�−hm

]
Re�s� = cov

[
h�s��h�0�

]= Rh −Rh�s�R−1
h Rh�s��

(3.10)

where ĥ�s� = vec
(
Ĥ�s�

)
. A similar model was proposed in [15] for estimating a scalar

time-varying channel from a vector of outdated estimates. CSIT formulations conditioned
on noisy channel estimates were also studied in [28, 38].

The channel covariance Rh captures the spatial correlation between all the transmit
and receive antennas, while the auto-covariance at a non-zero delay Rh�s� captures both
the spatial and temporal correlations of the channel. If we assume that the temporal
correlation is homogeneous and identical for any channel element, then we can separate
these two correlation effects and write

Rh�s� = ��s�Rh� (3.11)

where ��s� is the temporal correlation of a scalar channel. In other words, all the MRMT

scalar channels between the MT transmit and MR receive antennas have the same temporal
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correlation function. This assumption is based on the premise that the channel temporal
statistics can be expected to be the same for all antenna pairs. Similar assumptions for
MIMO Doppler decorrelation have also been used in [32, 62]. Using Jakes’ model [27]
for a time-varying scalar channel for example, ��s� = J0�2�fds�, where fd is the channel
Doppler spread and J0�·� is the zeroth-order Bessel function of the first kind.

The estimated channel and its error covariance at time s (3.10) can now be simplified to

Ĥ�s� = ��s�H�0�+ �1−��s�� Hm�

Re�s� = (1−��s�2
)

Rh�
(3.12)

For the Kronecker covariance model (3.4), the estimated channel has the effective antenna
covariance of

Rt�s� = (1−��s�2
)1/2

Rt�

Rr �s� = (1−��s�2
)1/2

Rr �
(3.13)

In these expressions, � functions as an estimate quality. The estimated channel Ĥ�s�

ranges from perfect channel measurement, when � = 1, to pure statistics, when � = 0. As
� approaches zero, the influence of the initial channel measurement H�0� diminishes, and
the estimate moves toward the channel mean Hm. In parallel, the error covariance is zero
when � = 1, and grows to Rh as � approaches zero. Figure 3.3 illustrates this estimate
evolution as a function of the time lag s.

In the subsequent development, we divide CSIT into two categories: perfect CSIT
when � = 1, and channel estimate CSIT when 0 ≤ � < 1. The latter consists of a channel
estimate Ĥ�s�, or an effective mean, and a non-zero error covariance Re�s�, or an effective
covariance. Since the precoder design algorithms for channel estimate CSIT are the same
for all values of �, we derive all precoding results using a representative � = 0, where
Ĥ = Hm and Re = Rh. This case is referred to as statistical CSIT. Special cases of
statistical CSIT include correlation CSIT when Rh is arbitrary but Hm = 0, and mean
CSIT when Hm is arbitrary but Rh = I. The results for 0 < � < 1 can be established by
using the estimate Ĥ�s� and the covariance Re�s� as the channel statistics. Finally, we

t = 0 t = Δ t          Tc

Rh

Re(Δ)
hm

h0

ĥ(Δ)

Figure 3.3. Time-lag-dependent channel estimate (bold vector) and its error covariance (shaded
ellipse).
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define no CSIT as the condition when � = 0, Hm = 0, and Rh = I, corresponding to an
i.i.d. Rayleigh fading channel with no channel information at the transmitter.

3.2 Information-theoretic foundation for exploiting CSIT

This section highlights the capacity gain due to CSIT and examines the information-
theoretic foundation for optimal signaling with CSIT.

3.2.1 Value of CSIT in MIMO systems

In a frequency-flat MIMO channel, CSIT can be exploited in the temporal and spatial
dimensions; but in a frequency-flat SISO channel, only the temporal CSIT is relevant.
It is well-known that the temporal CSIT – channel information across multiple time
instances – provides negligible channel capacity gain at medium-to-high SNRs, and this
gain disappears at SNRs approximately above 15 dB [16]. On the other hand, spatial CSIT
in a MIMO channel can offer a potentially significant improvement in channel capacity
at all SNRs. In this chapter, we focus on exploiting spatial CSIT in the form of a channel
estimate and its error covariance at a time instance s (3.12).

Consider the perfect and no CSIT cases. The optimal signal for achieving the channel
capacity is zero-mean complex Gaussian distributed with the covariance determined by the
CSIT, as established in Chapter 2. With perfect CSIT, the optimal signal covariance has
its eigenvectors matched to the channel eigen-directions and its eigenvalues determined
by a water-filling solution [9]. With no CSIT, the optimal signal covariance is a scaled
identity matrix, equivalent to transmitting with equi-power in all directions [50]. At low
SNRs, the capacity with perfect CSIT is always higher than that without CSIT for all
antenna configurations, since the water-filling power allocation drops weak modes. CSIT
increases the capacity multiplicatively at low SNRs. As the SNR decreases, eventually
only the strongest channel eigen-mode is used, resulting in a capacity ratio gain as [55]

r1 = Cperfect CSIT

Cno CSIT

= MT E	
max�H∗H��

E	tr�H∗H��
� (3.14)

where tr�·� is the trace of a matrix. For an i.i.d. Rayleigh fading channel, the low-SNR
asymptotic capacity ratio gain from perfect CSIT, in the limit of a large number of
antennas, approaches

r1

MT �MR→�−→
(

1+
√

MT

MR

)2

� (3.15)

This quantity is always larger than 1 and can be significant in systems with more transmit
than receive antennas �MT > MR�. Examples of the capacity ratio gain versus the SNR
are given in Figure 3.4. Note that this ratio increases with a lower SNR and with a larger
number of antennas.
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Figure 3.4. Capacity ratio gain from perfect CSIT at low SNRs.

At high SNRs, systems with equal or fewer transmit than receive antennas have a
diminishing capacity gain due to CSIT, as the water-filling solution approaches equi-
power. In systems with more transmit than receive antennas, however, CSIT increases
the capacity even at high SNRs, since the channel rank is smaller than the number of
transmit antennas. The incremental capacity gain with perfect CSIT at high SNRs is [56]

��H = max
{

MR log
(

MT

MR

)
� 0
}

� (3.16)

The gain scales linearly with the number of receive antennas if MT > MR. This expression
is accurate at high SNRs, but is somewhat optimistic at low SNRs. Figure 3.5 shows
examples of the capacity with and without CSIT for several antenna configurations, with
the incremental gain (3.16) superimposed for comparison.

Statistical CSIT can also increase the capacity. Consider the correlation CSIT with a
known transmit antenna correlation Rt, assuming uncorrelated receive antennas (Rr = I).
This CSIT suggests transmission along the eigenvectors of Rt, with a water-filling type
power allocation [25, 54]. At low SNRs, such an allocation may lead to null-power in
certain directions; whereas the optimal strategy without knowing Rt is to always transmit
with equal power in every direction. Thus, the correlation CSIT always helps to increase
the capacity at low SNRs. As the SNR decreases, the ratio between the capacity with
correlation CSIT and that without CSIT becomes

r2 = Ccorr� CSIT

Cno CSIT

= MT 
max�Rt�

tr�Rt�
� (3.17)
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Figure 3.5. Ergodic capacity of i.i.d. Rayleigh fading channels with perfect and no CSIT.

For a rank-one correlated Rayleigh channel for example, this ratio equals the number of
transmit antennas MT .

At high SNRs, the capacity advantage depends on the rank of Rt and the relative
number of transmit and receive antennas. In systems with equal or fewer transmit than
receive antennas, if Rt is full-rank, the capacity gain by the correlation CSIT diminishes
at high SNRs, similar to the symmetric antenna configuration in the perfect CSIT case.
In systems with more transmit than receive antennas, however, full-rank correlation
CSIT can still increase the capacity. On the other hand, if Rt is rank-deficient, then the
correlation CSIT helps to increase the capacity at all SNRs for all antenna configurations.
The incremental capacity gain by the correlation CSIT at high SNRs in systems with
equal or fewer transmit than receive antennas is [56]

��Rt
= max

{
Kt log

MT

Kt

� 0
}

� (3.18)

where Kt is the rank of Rt. In Figure 3.6, we plot the capacity with and without correlation
CSIT for rank-one correlated channels for various antenna configurations at 10 dB SNR.
Note that for rank-one correlation, having more transmit antennas helps to increase the
capacity with correlation CSIT, but does not without CSIT.

3.2.2 Optimal signaling with CSIT

We now review the information theory background for a fading channel with causal
side information. The theory can be established by first examining a scalar channel.
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Figure 3.6. Capacity of channels with a rank-one transmit correlation at SNR = 10 dB.

The scalar fading channel is studied in [8] as a particular case of a time-varying channel
with channel-state information at both the transmitter and the receiver. Let h�s� be the
state of a fading channel, and Uq and Vq be the side information available to the transmitter
and the receiver at time s, respectively, as shown in Figure 3.7(a). The channel state and
the CSI at time s are assumed to be independent of past channel inputs; therefore, the
model applies to a frequency-flat channel without inter-symbol interference. Given the
current CSIT Us, the channel state h�s� is assumed to be independent of the past CSIT
Us−1

1 = �U1� U2�    � Us−1�:

Pr �h�s��Us
1� = Pr �h�s��Us� � (3.19)

This condition enables the capacity to be a stationary function of the CSIT, not depending
on the entire history of CSIT; it covers the perfect CSIT, noisy or delayed channel
estimates, channel prediction, or the statistical CSIT. The receiver is assumed to know
how the CSIT is used. This assumption is reasonable, since the receiver can obtain channel
information more readily than the transmitter, and they can both agree on a precoding
algorithm. Furthermore, in practical systems, it is the receiver that usually decides the
transmit precoding function. The receiver CSI is in the form of a perfectly known received
SNR, which encompasses perfect receive channel knowledge (Vs = h�s�) as a special
case. Under these conditions, the channel capacity with an average input power constraint
E	�Xs�2� ≤ P is

C = max
f

E

[
1
2

log
(

1+hf�U�
)]

� (3.20)
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Figure 3.7. (a) A system with a time-varying channel state, CSIT, and CSIR. The optimal
configuration for exploiting CSIT in (b) a scalar fading channel and (c) a MIMO fading channel.

where the expectation is over the joint distribution of h and U ; and f�U� is a power
allocation function satisfying the constraint E	f�U�� ≤ P.

This is a significant result. It implies that the capacity of a channel with CSIT can be
achieved by a single Gaussian codebook designed for a channel without CSIT, provided
that the code symbols are dynamically scaled by an appropriate power-allocation function
f�U� determined by the CSIT. Therefore, in exploiting the CSIT, it is optimal to separate
channel coding and the CSIT-dependent function f�U�, as shown in Figure 3.7(b). This
CSIT-dependent function, combined with the channel, creates an effective channel, outside
of which coding can be applied as if the transmitter had no channel side information.
This insight, in fact, can be traced back to Shannon in [44]. For a scalar channel, f�U �

is simply dynamic power-allocation.
Subsequently, this result has been extended to the MIMO fading channel [46]. The

channel state H�s� is now a matrix. A similar condition on CSIT as (3.19) applies;
i.e. previous side information at the transmitter is independent of the current channel
state, given the current transmitter knowledge. Therefore, for a memoryless channel, the
CSIT function depends only on the current CSIT Us, instead of the complete previous
information Us

1 . The receiver again is assumed to know the channel perfectly: Vs = H�s�.
Under these conditions, the capacity-optimal input signal can be decomposed as

X�Us
1 �W� = F�Us�T�W�� (3.21)
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Here, T�W� is a codeword optimal for an i.i.d. Rayleigh fading MIMO channel without
CSIT, generated from a complex Gaussian distribution with zero-mean and an appropriate
covariance P̃I. The CSIT dependent function F�Us� is now a weighting matrix – a linear
precoder. In other words, the capacity-achieving signal is zero-mean Gaussian-distributed
with covariance FF∗. This optimal configuration is shown in Figure 3.7(c).

These results establish important properties of capacity-optimal signaling for a fading
channel with CSIT. First, it is optimal to separate the CSIT dependent function F�U� and
channel coding, in which the coding is designed for a channel without CSIT. Second, a
linear F�U� is optimal. The separation and linearity properties are the guiding principles
for precoder designs exploiting CSIT throughout this chapter.

3.3 A transmitter structure

We focus on a communication system with precoding as depicted in Figure 3.8. The
transmitter encompasses an encoder and a linear precoder F. The encoder can include
channel coding or space–time coding, or both. These structures are discussed below.

3.3.1 Encoding structure

An encoder contains a channel coding and a symbol-mapping block, which delivers vector
symbols to the precoder. The encoder influences the precoder design. We classify two
broad structures for the encoder block.

The first is a spatial multiplexing structure, in which independent bit streams are
generated by demultiplexing the output of the channel encoder and the bit interleaver.
These streams are then mapped into vector symbols, which are fed into the precoder, as
shown in Figure 3.9(a). Since each stream has its own SNR, per-stream rate adaptation
can be used.

Another structure is space–time (ST) coding, in which the bit stream, after channel
coding and interleaving, is mapped into symbols. These symbols are then processed by
an ST coder, which outputs vector symbols to the precoder, as shown in Figure 3.9 (b).
From Section 3.2, if the space–time code is capacity lossless for a channel with no CSIT,
then this structure is capacity-optimal for the channel with a CSIT. This structure has a
single data stream; hence, only a single rate-adaptation is necessary. The rate is controlled
by the outer-code rate and the constellation design.

In the precoding analysis followed, however, we will refer to both of these structures
by a single code-block C. The multiplexing structure is represented by a special single

YX

N

Channel
H

Precoder
F Decoder

C
Encoder

ˆ
Input

bk
bk

Figure 3.8. A general precoding system.
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vector-symbol block. Assuming a Gaussian-distributed codeword C of size MT ×T with
a zero-mean, we define the codeword covariance matrix as

Q = 1
T

E
[
CC∗]� (3.22)

where the expectation is over the codeword distribution. When C is spatial multiplexing,
Q = I. C can also be an ST block code (STBC), which we discuss below.

Space–time block codes

STBCs are usually designed to capture the diversity in the spatial channel, assuming
no CSIT (Chapter 4). Diversity determines the slope of the error probability versus the
SNR and is related to the number of spatial links that are not fully correlated [27, 52].
A full-diversity code achieves the maximum diversity order of MT MR available in the
channel. Not all STBCs offer full-diversity, however. High diversity is useful in a fading
link since it reduces the so-called fade margin, which is needed to meet a required link
reliability.

An STBC can also be characterized by its spatial rate, which is the average number of
distinct symbols sent per symbol time-period. Rate-one STBCs average one symbol per
symbol-period, independent of the number of transmit antennas. Orthogonal STBCs [48]
have a rate of 1 or less. An STBC with a rate greater than 1 is called a high-rate code;
the highest rate can be min�MT �MR�. Spatial multiplexing can be viewed as a special
STBC with a full spatial rate but no transmit diversity. A higher STBC rate does not
imply reduced diversity; many new codes have high rates and full-diversity [11, 43].

There is, however, a fundamental trade-off between diversity and multiplexing in ST
coding [66]. The multiplexing order is defined by the scale at which the transmission
rate increases asymptotically with the SNR. A fixed-rate system has a zero multiplexing-
order. The STBC design achieving the optimal diversity–multiplexing trade-off is an
active research area [3, 10, 63]. Our framework, focusing on extracting the gain from the
CSIT by precoding, is independent of, and complementary to, the diversity–multiplexing
trade-offs for ST codes.
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The combination of an STBC and a precoder makes the system robust against fading,
while exploiting the CSIT. Certain STBCs (e.g. the Alamouti code [1]) can achieve the
ergodic capacity of a channel with no CSIT. The combination of such optimal STBCs
and a linear precoder can achieve the channel capacity with CSIT.

3.3.2 Linear precoding structure

A linear precoder functions as an input shaper and a beamformer with one or multiple
beams with per-beam power allocation. Consider the singular value decomposition of the
precoder matrix F

F = UF DV∗
F � (3.23)

The orthogonal beam directions (patterns) are the left singular vectors UF ; the beam
power loadings are the squared singular values D2. The right singular vectors VF , termed
the input shaping matrix, combine the input symbols from the encoder to feed into each
beam, as shown in Figure 3.10. The beam directions and power loadings are influenced
by the CSIT, the design criterion, and in many cases the SNR.

To ensure a constant average sum transmit power from all the antennas, the precoder
must satisfy the power constraint

tr�FF∗� = 1� (3.24)

We presume that the input codeword C is orthogonal and power-normalized. The
covariance of the precoder output signal becomes

� = FQF∗� (3.25)

This is the covariance of the transmitted signal.
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Figure 3.10. A linear precoder as a beamformer.
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A precoder therefore has two effects: decoupling the input signal into orthogonal spatial
modes in the form of eigen-beams, and allocating power over these beams, based on the
CSIT. If the precoded orthogonal spatial modes match the channel eigen-directions, there
will be no interference among signals sent on these modes, creating parallel channels
and allowing transmission of independent signal streams. This effect, however, requires
perfect CSIT. With partial CSIT, the precoder performs its best to approximately match
its eigen-beams to the channel eigen-directions, reducing the interference among signals
sent on these beams. This is the decoupling effect. Moreover, the precoder allocates
power on these beams. For orthogonal eigen-beams, if the beams all have equal power,
the radiation pattern of the transmit antenna array is isotropic, as shown on the left in
Figure 3.11 for example. If the beam powers are different, however, the overall transmit
radiation pattern will have a specific shape, as on the right in Figure 3.11. By allocating
power, the precoder effectively creates a radiation shape matching to the channel based
on the CSIT, so that more power is sent in the directions where the channel is strong and
less or no power where it is weak. More transmit antennas will increase the ability to
finely shape the radiation pattern and therefore are likely to deliver more precoding gain.

The received signal of the system in Figure 3.8 is

Y = √
�HFC+N� (3.26)

where � is the transmit signal power and N is the additive white Gaussian noise. This
expression is the system model used throughout this chapter, which encompasses both
precoding with ST block coding and with spatial multiplexing.

3.4 Precoding design criteria

We now examine alternate precoding design criteria, including both fundamental
performance measures, such as the ergodic capacity and the error exponent, and practical
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measures, such as the pairwise error probability (PEP) and detection mean-square error
(MSE). The capacity formulation generally assumes ideal channel coding. Ergodic
capacity implies that the channel evolves through all possible realizations over arbitrarily
long codewords. The error exponent, on the other hand, is applicable for finite codeword
lengths. For the practical criteria, we perform uncoded analysis without channel coding,
assuming a quasi-static block fading channel. The choice of the precoder design criterion
depends on the system setup, operating parameters, and the channel (fast or slow fading).
For examples, systems with strong channel coding, like turbo or low-density parity check
codes with long codeword lengths, may operate at close to the capacity limit and, therefore,
are qualified to use a capacity-based performance criterion; while systems with weaker
channel codes, such as convolutional codes with small free distances, are more suitable
for uncoded analysis. The operating SNR is also important in deciding the criterion.
A lower SNR usually favors uncoded analysis, while at high SNRs, coded criteria can
yield better performance.

3.4.1 Information and system capacity

The ergodic capacity criterion aims at maximizing the transmission rate with a vanishing
error, assuming asymptotically long codewords. From Section 3.2, we know that for both
perfect and statistical CSIT, the system-capacity-optimal signal is zero-mean Gaussian-
distributed with the covariance FQF∗. With Gaussian signaling and Gaussian additive
noise, the mutual information between the channel input and output can be obtained
explicitly as [9]

� �X�Y � = log det�I +�HFQF∗H∗��

where � is the ratio of the transmit signal power to the receiver noise power. The ergodic
capacity and optimal signaling are established by maximizing this mutual information
subject to the transmit power constraint, using the following formulation:

max EH

[
log det�I +�HFQF∗H∗�

]
(3.27)

subject totr�FF∗� = 1�

When the encoder in Figure 3.8 is spatial multiplexing (hence, Q = I), the above
formulation coincides with the channel information capacity used in Chapter 2. When C is
an STBC, it provides the system capacity. Subsequently, we will refer to this formulation
as the capacity criterion.

Achieving the capacity, however, requires asymptotically long codewords and an ideal
receiver, both of which are difficult to meet in practice. Therefore, a precoder design
needs to be evaluated for more practical system configurations.

3.4.2 Error exponent

The error exponent characterizes the error probability with a finite code-block length
for a given transmission rate and is derived from a random code upper-bound error
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analysis [13]. At an information rate of R (nats/sec/Hz) using block codes of length
L, there exists a code, such that the error performance with maximum-likelihood (ML)
decoding is upper-bounded by

P̄e ≤ exp
(−LEr�R�

)
� (3.28)

where Er�R� is the random coding exponent defined as

Er�R� = max
0≤�≤1

max
Q

[
E0���Q�−�R

]
� (3.29)

Here, Q is the channel input distribution; E0���Q� is a function of Q, � ∈ 	0� 1�, and the
channel transition probabilities.

For a MIMO fading channel, using a Gaussian input signal with the covariance FQF∗

leads to a relatively simple expression for E0��� FQF∗� [50],

E0��� FQF∗� = − ln EH

[
det
(
I +��1+��−1HFQF∗H∗)−�]

�

The objective then is to find the covariance matrix FQF∗ that maximizes the coding
exponent, leading to the following optimization problem:

min
�

min
F

ln EH

[
det
(

I + �

1+�
HFQF∗H∗

)−�]
+�R (3.30)

subject to tr�FF∗� = 1

0 ≤ � ≤ 1�

where the two constraints correspond to power conservation of the precoder and the
defined range of �. The error exponent criterion includes the transmission rate and code
length and, hence, is closer to practice than the capacity criterion. However, the bound is
derived from a random coding analysis; thus, the actual code used in a system may not
satisfy this performance bound.

3.4.3 Pairwise error probability

The error probability, averaged over channel fading, is a common system performance
measure. For the system in Figure 3.8, the average system error probability is

P̄e = EH

[∑
i

piPr
(⋃

j �=i

(
Ci → Cj

))]
�

where pi is the probability of the codeword Ci, and �Ci → Cj� is the event that Ci is
misdetected as Cj . Since this error expression involves the union of all misdetection
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events, the probability of which can only be obtained empirically in most cases, especially
for a large code space, it offers little useful insight for constructing a precoder analytically.
A simpler approach is to use the pairwise codeword error probability (PEP), an error
measure that is related loosely to system error performance via the union bound. The PEP
is the probability of a codeword C having a better metric than the codeword Ĉ, leading
to a potential decoding error. The PEP analysis can be applied to systems with or without
channel coding.

Assuming a quasi-static block fading channel and ML detection at the receiver:

Ĉ = arg min
C∈�

��Y −√�sHFC��2F �

the PEP can then be upper-bounded by the well-known Chernoff bound [49]

P�C → Ĉ� ≤ exp
(
−�

4
��HF�C− Ĉ���2F

)
� (3.31)

where �� · ��F denotes the Frobenius norm. The Chernoff bound is fairly tight and simplifies
the derivation of an optimal precoder. Note that the bound (3.31) depends on the distance
between the specific codeword pair �C� Ĉ�. We define the following expression as the
codeword distance product matrix:

A = �C− Ĉ��C− Ĉ�∗� (3.32)

We can choose to minimize the PEP, either for a chosen codeword distance, or averaged
over the codeword distribution, referred to as the PEP per-distance and the average PEP,
respectively. In both cases we are interested in the performance averaged over channel
fading.

PEP per-distance criterion

The PEP per-distance relates to the system performance through the choice of the
codeword distance and the SNR. A common choice is the minimum codeword distance.
At high SNRs, minimum-distance codeword pairs dominate the errors, and the PEP for
such pairs has the same slope versus the SNR as that of the system error probability.
At lower SNRs, however, the minimum-distance effect may not be dominant, and other
choices of a codeword distance for the PEP can lead to a comparable system performance,
while simplifying the precoder design process. For example, another choice is the average
codeword distance, defined as Ā = E	A�/T , where the expectation is over the codeword
distribution. From (3.32), assuming that C and Ĉ are independent, we have

Ā = 2

T
E	CC∗� = 2Q� (3.33)

where Q is the codeword covariance defined in (3.22).
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With a chosen distance matrix A and assuming that only transmit antenna correlation
exists, averaging the Chernoff bound over the channel fading statistics (3.5), we obtain
an upper bound on the averaged PEP [28],

EH

[
PEP�A�

]≤ exp
[
tr
(
Hm�Rt�Rt�

−1H∗
m

)]
det���MR det�Rt�

MR
exp
[−tr�HmR−1

t H∗
m�
]
� (3.34)

with

� = �

4
FAF∗ +R−1

t �

Ignoring the constant terms, the PEP per-distance precoder design problem can be
formulated as

min
F

J = tr
(
Hm�Rt�Rt�

−1H∗
m

)−MR log det��� (3.35)

subject to � = �

4
FAF∗ +R−1

t

tr�FF∗� = 1�

This formulation aims to find the precoder F to minimize the averaged PEP at the
codeword distance A, using the Chernoff bound approximation, subject to the transmit
power constraint and involves only deterministic functions.

Average PEP criterion

Another formulation is obtained by averaging the PEP over both the codeword distribution
and the fading statistics. The average PEP calculated in this way is independent of the
codeword distance matrix A. Assuming a Gaussian codeword distribution and noting
(3.33), the Chernoff bound on the average PEP depends only on the codeword covariance
matrix Q [65],

EC

[
PEP

]≤ det
(�

2
HFQF∗H∗ + I

)−MR

�

The precoder optimization problem in this case becomes

min
F

EH

[
det
(�

2
HFQF∗H∗ + I

)−MR

]
(3.36)

subject to tr�FF∗� = 1�

This formulation aims to find the precoder F to minimize the PEP, averaged over all
codeword distances and the channel statistics, subject to transmit power constraint. Note
the similarity between this formulation and the capacity and error exponent criteria, where
all the objective functions are expectations of a convex (or concave) function of the
Hermitian positive semi-definite (PSD) matrix variable HFQF∗H∗.
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3.4.4 Detection mean-squared error

In many systems, ML detection can be too computationally demanding; therefore, a linear
minimum mean-squared error receiver is preferred, as shown in Figure 3.12. The input
signal C can be an ST code block, or a vector-symbol in the spatial multiplexing case. We
examine an uncoded criterion with the MMSE receiver, which treats the combination of
the precoder F and the channel H as an effective channel. Assuming a quasi-static block
fading channel, the receiver detects Ĉ by minimizing the mean-squared error (MSE)

min
W

E��Ĉ−C��2 = E���WHF− I�C+WN��2F �

where the expectation is over the input signal and noise distributions. Assume that the
signal has a zero mean with the covariance given in (3.22). The optimum MMSE receiver
is then

W = �QF∗H∗ ��HFQF∗H∗ + I�−1 �

Note that this MMSE receiver depends only on the first and second moments of the input
codeword distribution. The covariance matrix of the detection error is

R� = Q−�QF∗H∗ ��HFQF∗H∗ + I�−1 HFQ�

For a MIMO system, the normalized MSE provides a norm-measure of the MSE. This
quantity is defined as the trace of the error covariance normalized by the input signal
covariance, Q−1/2R�Q

−1/2 [30]. Averaging the normalized MSE over the channel statistics,
we obtain

MSE = MT −MR +EH

[
tr
(
	�HFQF∗H∗ + I�−1)] � (3.37)

The precoder that minimizes the average MSE subject to the transmit power constraint is
given by the optimization problem

min
F

EH

[
tr
(
	�HFQF∗H∗ + I�−1)] (3.38)

subject to tr�FF∗� = 1�

Unlike the PEP criterion, which can be applied to both coded and uncoded formulations,
the MSE criterion is used only in uncoded performance analysis. MSE minimization is
a common criterion, although linking the MSE to the actual error performance is not
straightforward. Interested readers are referred to [2], where an error bound using the
MSE is established.
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3.4.5 Criteria grouping

We divide the above criteria into two groups, based on the objective function being
stochastic or deterministic. The first group, which has stochastic objective functions,
consists of the capacity, the error exponent, the average PEP, and the MSE criteria. The
optimization problems in this group can be written in a general form as

min E
[
f�I +a�HFQF∗H∗�

]
(3.39)

subject to tr�FF∗� = 1�

where f�·� is a convex function of PSD matrix variables, and a is a criterion dependent
constant. For example, f can be log det�·�−1, det�·�−�, det�·�−MR , or tr�·�−1, corresponding
to the capacity, error exponent, average PEP, or MMSE criterion, respectively.

The second group has a deterministic objective function and contains the PEP per-
distance criterion (3.35). These two groups have different solvability properties, as shown
in the next section.

There are other precoding design criteria studied in the literature; for example,
maximizing the received SNR [38], or minimizing the uncoded symbol error probability
[67]. We will, however, focus on the above criteria in this chapter.

3.5 Linear precoder designs

In this section, we discuss precoding solutions for all the outlined criteria. We first
examine the impact of the encoder, the STBC if used, on the precoder optimal input-
shaping matrix. We then discuss the designs of the optimal beam directions and power
allocation for different CSIT scenarios: perfect CSI, correlation CSI, mean CSI, and
general statistical CSI – both mean and correlation.

3.5.1 Optimal precoder input-shaping matrix

The encoder shapes the covariance of the signal input to the precoder; in response, the
precoder chooses its right singular vectors to match this covariance. It can be shown that,
for all criteria in group one (3.39), the optimal input-shaping matrix – the precoder right
singular vectors – is given by the eigenvectors of the codeword covariance matrix Q
(3.22) [55]

VF = UQ� (3.40)

where Q = UQ�QU∗
Q is the eigenvalue decomposition. For the PEP per-distance criterion

(3.35), the relevant eigenvectors are those of the codeword difference product matrix A
(3.32); that is, VF = UA, where A = UA�AU∗

A is the eigenvalue decomposition of A [61].
By matching the input signal covariance, the precoder optimally collects the input signal
energy. When the STBC produces an identity signal covariance (Q = I), which also applies
to spatial multiplexing, VF is an arbitrary unitary matrix and can usually be omitted.
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Unlike the optimal input-shaping matrix (the precoder right singular vectors), which
is independent of the CSIT, the optimal beam directions (the left singular vectors) and
the power allocation (the squared singular values) depend on the CSIT, and are discussed
for each CSIT scenario next.

3.5.2 Precoding on perfect CSIT

Given perfect CSIT, the MIMO channel can be decomposed into r independent
parallel additive white noise channels [9], where r = rank�H� ≤ min�MR�MT �. This
decomposition was also discussed in Chapter 2 in terms of capacity; here, we analyze
this from a signal processing viewpoint. To demonstrate this, let the singular value
decomposition (SVD) of the channel be

H = UH�V∗
H� (3.41)

Then, multiplying the signal at the transmitter with VH and at the receiver with U∗
H

results in the parallel channels, corresponding to the original channel eigen-modes, as
shown in Figure 3.13. The r parallel channels can be processed independently, each with
independent modulation and coding; thus, allowing per-mode rate control. The parallel
channel decomposition helps to significantly simplify the receiver signal processing, as
the receiver now needs to perform only scalar rather than complex joint detection and
decoding.

Optimal beam directions

The parallel channel decomposition implies that the precoder left singular vectors (3.23),
or the beam directions, are matched to the channel right singular vectors:

UF = VH� (3.42)
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Figure 3.13. Singular value channel decomposition with perfect CSIT.
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These beam directions are optimal for all criteria, including the capacity, the error
exponent, the average PEP, the PEP per-distance, and the MSE. The optimality can be
established using matrix inequalities that show function extrema obtained when the matrix
variables have the same eigenvectors [36]. Therefore, the optimal beam directions are
given by the eigenvectors of H∗H, or the channel eigen-directions. For multiple-input
single-output (MISO) systems, the solution reduces to the well-known scheme: channel
matched single-mode beamforming [27]. In all systems, the optimal beam directions with
perfect CSIT are independent of the SNR.

Note that, independent of the criteria and the SNR, the left and right singular vectors
of the precoder matrix are determined separately by the eigenvectors of the channel gain
H∗H and the input codeword covariance Q, respectively. Therefore, the precoder matches
both sides. It effectively re-maps the spatial signal directions from the input code into
those optimally matched to the channel given the CSIT, as shown in Figure 3.14.

Optimal power allocation

In contrast to the beam directions, the optimal power allocation across the beams varies
for each design criterion and is a function of the SNR. The power pi on the beams are
the eigenvalues of FF∗, normalized for unit sum. The precoder singular values (3.23) can
be established from the beam power as di = √

pi.
For the first criterion group (3.39), the optimization problem for the power allocation

becomes

min f�I +a��H�F�Q� (3.43)

subject to tr��F� = 1 � �F ≥ 0�

where �H, �F, and �Q are diagonal matrices of the eigenvalues of H∗H, FF∗, and Q,
respectively. The expectation operator in (3.39) is removed in this formulation due to
the perfect CSIT. Thus, the power allocation is a function of the channel and codeword-
covariance eigenvalues. For convenience, we define


i = 
i�H∗H�
i�Q�� (3.44)

where 
i�H∗H� = �2
i in Figure 3.13, and 
i�Q� is the ith eigenvalue of Q, sorted in the

same order.

Channel
C

Encoder

Cov Q

X

VF = UQ UF = VH

Ỹ
d1

d2

bk
UH∑VH

*

Figure 3.14. The precoder matches both the channel and the input code structure.
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For the capacity criterion (3.27), power is allocated among the MT beams via the
standard water-filling solution [9]. The power allocated to channel i is

pi =
(

�− N0


i

)
+

� (3.45)

where � is chosen such that
∑

i pi = P, the total transmit power, and N0 is the noise
power per spatial dimension. The notation �·�+ means that the expression takes the value
inside the parentheses if this value is positive; otherwise, it is zero.

For the error exponent criterion (3.30), the optimal power allocation becomes

pi =
(

�− N0�1+��


i

)
+

� (3.46)

where � satisfies
∑

i pi = P. The error exponent solution is similar to water-filling for
capacity, but with the noise scaled by 1+�. For a particular rate R, the optimal � can be
found numerically. Since 0 ≤ � ≤ 1, the effective noise is larger; hence, power will be
allocated more selectively using this criterion. At low SNRs, more modes are dropped;
as the SNR increases, this solution approaches equi-power more slowly than does the
solution for the capacity criterion.

Similarly, for the average PEP criterion (3.36), the optimal power allocation is
equivalent to capacity-based water-filling (3.45) with the noise scaled-up by a factor of 2.
Again, this solution exhibits a more selective power allocation scheme. At low SNRs,
weak modes tend to have a high error rate; therefore, dropping these modes and allocating
power to stronger modes leads to better overall system error performance. As the SNR
increases, power is allocated across more modes, but again, at a slower rate than is the
case for the capacity solution.

The solution for the MMSE criterion (3.38) also resembles water-filling, but with a
slight modification. The power allocated to mode i is [18]

pi =
(

�√

i

− N0


i

)
+

� (3.47)

where � satisfies
∑

i pi = P. Water-filling effectively applies to pi

√

i, which has the

water-level �.
For the PEP per-distance criterion (3.35) in the second group, the solution is to

allocate all the power to the strongest eigen-mode of the channel, effectively reducing to
single-mode beamforming. This scheme is an extreme case of selective power allocation.
The precoder becomes a rank-one matrix with the left singular vector matched to
the dominant eigen-direction of the channel, and the right singular vector matched to the
dominant eigenvector of the codeword distance product matrix (3.32). Although single-
mode beamforming is optimal here for any number of receive antennas, the power gain of
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this mode (the largest eigenvalue of the channel gain H∗H) increases with more receive
antennas. This solution also maximizes the received SNR.

3.5.3 Precoding on correlation CSIT

We now consider correlation CSIT in the form of transmit antenna correlation. The
channel is assumed to be Rayleigh fading with zero-mean (Hm = 0) and has the Kronecker
correlation structure (3.4). For most of this section, the receive antennas are assumed to
be uncorrelated: Rr = I; although we will briefly mention the effect of receive correlation
on the precoder design under the capacity criterion.

The channel model (3.5) can now be written as

H = HwR1/2
t � (3.48)

The transmit antenna correlation Rt, a complex Hermitian positive semi-definite matrix,
is known at the transmitter.

Optimal beam directions

For all criteria in both groups, we can show that the optimal beam directions of the
precoder (3.23) are now the eigenvectors of Rt

UF = Ut� (3.49)

where Rt = Ut�tU
∗
t is the eigenvalue decomposition. This result was established for

the channel capacity criterion (with Q = I) in [54] for MISO systems, and in [25] for
MIMO systems. It can be shown, however, that the result also applies to all other criteria
under study and holds for arbitrary input codeword covariance Q [55]. Comparing to
the solution for perfect CSIT (3.42), the eigenvectors of Rt have replaced the channel
eigen-directions. The precoder now relies on the statistically preferred directions (the
eigenvectors of Rt) to direct its power into the channel.

Several remarks follow. First, when Rt = I (uncorrelated transmit antennas), the
eigenvectors of Rt can be any set of MT orthogonal vectors, and no precoding is necessary.
Second, in the presence of receive correlation (Rr �= I), assuming the separable Kronecker
antenna correlation structure (3.4), the precoder optimal beam directions are still given
by the eigenvectors of Rt (3.49). This result was established for the channel capacity
criterion in [29]. The receive correlation, however, does affect the beam power allocation.
Finally, we note that both receive and transmit antenna correlations generally reduce
the channel ergodic capacity at high SNR, compared to an i.i.d. channel. At low SNR
however, transmit correlation can help to increase the capacity [58].

Optimal power allocation

Unlike the beam directions that remain invariant with the criterion, the optimal beam
power allocation is different for each criterion. We will examine group one and group
two criteria separately.
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Group one

For group one criteria (3.39), the optimal power allocation is the solution of the following
optimization problem:

min EHw

[
f�I +a��Q�F�tH

∗
wHw�

]
(3.50)

tr��F� = 1� �F ≥ 0�

formulated based on the unitary invariant property of Hw. Here, �Q, �F, and �t are
diagonal matrices of the eigenvalues of Q, FF∗, and Rt, respectively.

The optimal power solutions are more complicated than those for perfect CSIT,
due to the expectation operator. The power allocation, however, follows the water-
filling principle: stronger eigenmodes of Rt are given more power, and weak modes are
dropped, depending on the SNR. Numerical techniques are usually required to compute
the optimal power allocation. Fortunately, the problem formulation is convex in all
group one criteria, allowing efficient numerical algorithms to be implemented (see [7],
chapter 11).

When the transmit correlation is strong, the solution can reduce to single-mode
beamforming, in which all the transmit power is allocated to the strongest eigenmode
of Rt. The condition for the optimality of single-mode beamforming at a given SNR,
under the channel capacity criterion (Q = I), was studied in [25] and [29]. They showed
that single-mode beamforming is optimal when the two largest eigenvalues of Rt satisfy
an inequality related to the dominance of the largest eigenvalue. If this largest mode
is sufficiently dominant, then water-filling will drop all other modes. At higher SNRs,
the required eigenvalue dominance must increase, implying a more correlated channel.
A similar trend is observed for an increasing number of receive antennas. However, note
that if Rt is full-rank, then for systems with equal or fewer transmit than receive antennas,
the capacity-optimal power allocation asymptotically approaches equi-power as the SNR
increases.

A sub-optimal power solution for group one criteria is to perform the allocation on the
averaged channel gain. This scheme is a special case of the general group one solution
(3.60) discussed in Section 3.5.5.

Group two

For the PEP per-distance criterion (3.35), the power allocation has a closed-form analytical
solution. Using the optimal left and right precoder singular vectors, the problem becomes

max
F

log det
(
�−1

t + �

4
�A�F

)

subject to tr��F� = 1� �F ≥ 0�
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The solution follows from standard water-filling (see [41]) as

pi =
(

�− 4
�


−1
i �A�
−1

i �Rt�

)
+

� (3.51)

where � satisfies
∑

i pi = 1, and pi are the diagonal values of �F.
In general, the stronger the channel correlation (measured by, for example, the

condition number of the correlation matrix), the larger the precoding gain (the SNR
advantage) from correlation CSIT. In contrast, note that strong correlation usually reduces
the channel capacity.

3.5.4 Precoding on mean CSIT

We proceed to examine an uncorrelated channel (Rh = I, or Rt = I and Rr = I) with
a non-zero mean Hm (the Ricean component). The channel model (3.5) can now be
written as

H = Hm +Hw� (3.52)

The channel mean Hm is an arbitrary complex matrix known to the transmitter. This
mean CSIT also covers the channel estimate Ĥ�s� in the framework (3.12), assuming
uncorrelated errors (Re�s� = I). We will discuss precoding solutions using model (3.52)
as the representative case.

Optimal beam directions

For all criteria, the optimal beam directions for mean CSIT are given by the eigenvectors
of H∗

mHm, i.e., the right singular vectors of the channel mean:

UF = Vm� (3.53)

where Hm = Um�mV∗
m is the channel mean singular value decomposition. This result was

established for the channel capacity criterion (with Q = I) in [54] for MISO, in [21, 53]
for MIMO fading channels, and for the MSE criterion in [30]. The analysis can easily
be extended to cover the average PEP criterion. The solution for the PEP per-distance
criterion was established in [28].

For mean CSIT, since the channel is uncorrelated, the eigenvectors of the averaged
channel gain E	H∗H� are the same as those of H∗

mHm. Thus, the channel mean eigen-
directions are the average channel eigen-directions. Beamforming along these average
directions is optimal for the mean CSIT.

Optimal power allocation

The optimal power allocation varies according to the criterion. Again, we consider group
one and group two criteria separately.
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Group one

The optimal power allocation for group one criteria usually requires numerical search
and can be formulated from (3.39) as

min EHw

[
f
(
I +a���m +Hw��Q�F��m +Hw�∗)] (3.54)

subject to tr��F� = 1 � �F ≥ 0�

Although no closed-form power allocation solution exists for these criteria, general
properties can be established. The power allocation follows the water-filling principle
by allocating more power to the stronger modes of the channel mean. Only the singular
values, but not the singular vectors, of the channel mean affect the power allocation.
The influence of the channel mean on the power allocation can be characterized by the
channel K factor (3.3). A larger K factor causes the power allocation to depend strongly
on the channel mean. For example, an ill-conditioned or rank-one mean then is likely to
result in single-mode beamforming. As K goes to infinity, the mean CSIT is equivalent
to a perfect CSIT. The role of the channel mean, however, diminishes as the K factor
decreases. If K goes to zero, the precoder becomes an arbitrary unitary matrix, implying
equal power allocation, and can be omitted.

The effect of the channel mean on the channel ergodic capacity is analyzed in [21].
They show that the capacity is a monotonically increasing function of the singular values
of the channel mean. If all but one of the singular values of the channel means are equal
for two channels, then the channel with the larger non-dual singular value has higher
capacity.

Similar to correlation CSIT, a sub-optimal power allocation with mean CSIT can be
developed, based on the averaged channel gain. This group one criteria solution (3.60) is
discussed in Section 3.5.5.

Group two

On the other hand, the PEP per-distance criterion has an analytical power allocation
solution. The problem formulation can be deduced from (3.35) as

min

i

∑
i

(
1+ �

4

i

)−1

m�i −MR

∑
i

log
(

1+ �

4

i

)

subject to
∑

i

�i
i = 1 � 
i ≥ 0�

where 
i = 
i�FF∗�
i�A�, �i = 1/
i�A� (for non-zero eigenvalues), and 
m�i are the
eigenvalues of H∗

mHm, where all the eigenvalues are sorted in the same order. This
problem is convex and can be solved using the standard Lagrange multiplier technique
to arrive at


i =
[


i�A�

2�

(
MR +

√
M2 +16�


m�i

�
i�A�

)
− 4

�

]
+

� (3.55)
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where � is the Lagrange multiplier satisfying the constraint
∑

i �i
i = 1. Depending on
the number of dropped modes k (where 0 ≤ k ≤ MT −1), this � value can be found using
a one-dimensional binary numerical search between the following two bounds:

�upper = 4
̃M

��k

+ MR

�k

� �lower = 4
̃1

��k

+ MR

�k

� (3.56)

where 
̃M and 
̃1 are the largest and smallest values, respectively, of the set
�
m�i/
i�A�� 
i�A� �= 0� i = 1�    �MT �, and

�k = 1
MT −k

(
1+ 4

�

MT∑
i=k+1

1

i�A�

)
�

The beam powers are then

pi = 
i


i�A�
�

This result was first derived for the case A = �I, where � is a scalar constant, in [28],
and later obtained for an arbitrary positive semi-definite A in [61].

3.5.5 Precoding on both mean and correlation CSIT

Finally, we study a general statistical CSIT model with both a non-zero channel mean Hm

and a transmit antenna correlation Rt. This CSIT also covers the channel estimate model
(3.12) with an estimate Ĥ�s� and an effective transmit covariance Rt�s� (3.13). However,
we will discuss precoding solutions for the statistical CSIT as the representative case.
The channel can be written as

H = Hm +HwR1/2
t � (3.57)

From the statistical parameters, the channel K factor can be established as in (3.3).

Group one precoder

For group one criteria (3.39), the precoder design problem now becomes

max EHw

[
f
(
I +a�

(
Hm +HwR1/2

t

)
FQF∗ (Hm +HwR1/2

t

)∗)]
(3.58)

subject to tr �FF∗� = 1�

The optimal precoders for these criteria remain an open problem, in which both
the optimal beam directions and the optimal power allocations are unknown. The
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optimal beam directions depend on both the channel mean and covariance, and are
complicated functions of the channel K factor and the SNR. At high K, the channel
mean tends to dominate the beam directions. As K drops, the influence of the channel
covariance becomes more pronounced. On the other hand, as the SNR increases, the
precoder for systems with equal or fewer transmit than receive antennas asymptotically
approaches an arbitrary unitary matrix with equal power in all directions and can be
omitted, provided that the transmit correlation is full-rank. The interplay between the
channel mean and the covariance at different SNRs, therefore, complicates the precoder
solution.

A sub-optimal precoder solution can be established by precoding on the averaged
channel gain E	H∗H� = H∗

mHm + MRRt. This solution is obtained by replacing the
objective function in (3.58) with its Jensen upper bound [9]. The solution is equivalent to
a perfect CSIT solution with H∗H being replaced by H∗

mHm +MRRt in the formulation.
For this solution, the precoder beam directions are independent of the SNR and are the
eigenvectors of H∗

mHm +MRRt:

UF = UR� (3.59)

where H∗
mHm +MRRt = UR�RU∗

R is the eigenvalue decomposition. Note that when there
is only a correlation or mean CSIT, these beam directions coincide with the optimal beam
directions in each respective case.

The sub-optimal power allocation depends on the SNR and follows the analysis for
perfect CSIT in Section 3.5.2, where the 
i in (3.44) now becomes


i = 
i�H∗
mHm +MRRt�
i�Q�� (3.60)

This solution provides a closed-form power allocation for all group one criteria; it covers
both the correlation and mean CSIT cases.

This sub-optimal precoder can be evaluated in terms of capacity [59]. For a system
with equal or fewer transmit than receive antennas, the proposed solution results in little
or no capacity penalty, which occurs primarily at mid-range SNRs. Systems with more
transmit than receive antennas and with strongly correlated transmit antennas (an ill-
conditioned correlation matrix, for example) or strong mean (a high K factor), however,
may suffer a capacity loss at high SNR. Figure 3.15 shows examples of the system
capacity with optimal precoding and with the proposed precoder solution, together with
the corresponding power allocations, for two different antenna configurations: 4×4 and
4 × 2. The system capacity without precoding, equivalent to equal power allocation, is
also included for comparison.

Group two precoder

Consider the PEP per-distance criterion (3.35). We distinguish between two cases: when
A is a scaled-identity matrix and when it is not.
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Figure 3.15. Capacity and mutual information of (a) a 4 × 2 system, (b) a 4 × 4 system; with the
corresponding power allocations (c) and (d). The channel mean and transmit correlation parameters
are specified in Appendix 3.1.

For a scaled-identity A = �0I, the optimal precoder solution can be established by
solving the following convex problem:

min
F

tr
(
Hm�Rt�Rt�

−1H∗
m

)−MR log det���

subject to tr
(
�−R−1

t

)= ��0

4

�−R−1
t ≥ 0�

where the precoder F can be deduced from the solution for � as

FF∗ = 4
��0

(
�−R−1

t

)
� (3.61)
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The � solution is given by

� = 1
2�

[
MRI + (M2

RI +4�R−1
t H∗

mHmR−1
t

)1/2
]
� (3.62)

where � is the Lagrange multiplier associated with the power equality constraint.
Solving for � is carried out using a dynamic water-filling process. This process involves

mode-dropping due to the PSD constraint � − R−1
t ≥ 0, and consists of two steps. In

the first step, the precoder is assumed to have full-mode, and � is found by solving the
equation tr

(
�−R−1

t

)= 1
4 ��0. If the � solution does not produce � −R−1

t ≥ 0, then we
proceed to the second step. In this step, we drop the weakest mode of � − R−1

t , and
re-solve for � using the equation

MT∑
i=2


i

(
�−R−1

t

)= ��0

4
� (3.63)

where 
i are the eigenvalues sorted in increasing order. By dropping the weakest
eigenmode, we distribute power over only the MT − 1 stronger modes; hence, the
eigenvalue sum in (3.63) starts at 2. We keep repeating this second step, dropping the
weakest non-zero mode of �−R−1

t , until the � solution produces �−R−1
t ≥ 0.

Solving for �, in the general case of the k mode being dropped (0 ≤ k ≤ MT − 1),
can be performed using a simple one-dimensional binary search between the following
bounds:

�upper = 
M

�2
k

+ MR

�k

� �lower = 
1

�2
k

+ MR

�k

� (3.64)

where 
M and 
1 are the maximum and minimum eigenvalues of R−1
t H∗

mHmR−1
t ,

respectively, and

�k = 1
MT −k

(
�0�

4
+

MT∑
i=k+1

1

i�Rt�

)
�

The mode-dropping process above is similar to the standard water-filling, in that at
each iteration, the weakest mode may be dropped, and the total transmit power is re-
allocated among the remaining modes. However, there is a significant difference in that
the mode directions here also evolve at each iteration. This difference arises due to the
interaction between the channel mean and transmit correlation. To illustrate, re-write the
expression for FF∗ in the following form:

FF∗ =
[

MR

2�
IN +

(
1

2�
����1/2 −R−1

t

)]
4

�0�
�

where ���� = M2
RIN + 4�R−1

t H∗
mHmR−1

t is dependent on �. The “water-level” is
2MR/��0�; the mode directions are determined by the eigenvectors of 1

2�
����1/2 −R−1

t .
Thus, when � changes at each iteration, both the water-level (hence, the power allocation)
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and the mode directions change. For this reason, we refer to this process as a dynamic
water-filling process. Note that since � depends on the SNR, both the mode (beam)
directions and the power allocation are dependent on the SNR in this precoding solution.

When A is not a scaled-identity matrix, the problem formulation (3.35) cannot be
transformed into a convex problem in terms of FF∗; hence, finding an optimal analytical
solution is challenging. Several relaxation methods are proposed in [61]. One method is
to replace A with an identity matrix scaled by the smallest non-zero eigenvalue of A.
This solution is equivalent to optimizing the PEP for a smaller codeword distance; hence,
the precoding gain is likely to be pessimistic.

The asymptotic behavior of this precoder is worth noting. Consider the asymptotic
cases when the channel K factor and the SNR approach infinity. When K → �, the
precoder converges to a solution that depends on the channel mean alone; furthermore, it
becomes a single-mode beamformer aligned to the dominant right singular vector of Hm.
However, at high SNRs, the precoder approaches the solution for correlation CSIT (3.51),
and the channel mean impact vanishes. As SNR → �, the power allocation approaches
equi-power. These effects require that either the SNR is kept constant as K approaches
infinity, or K is constant as the SNR approaches infinity. If both the K factor and the
SNR increase, then there exists a K factor threshold for single-mode beamforming, which
increases with the SNR. An example of this threshold is given in Section 3.6.

3.5.6 Discussion

Several observations can be drawn from the precoding solutions presented. First, the
precoding matrix for all criteria in all CSIT scenarios has the same right eigenvectors.
These vectors form the input-shaping matrix, matched to the covariance of the precoder
input signal, independent of the CSIT and the SNR. Except for the PEP per-distance
criterion with general statistical CSIT, the precoders also have the same left eigenvectors.
These vectors are the beam directions, matched to the channel according to the CSIT.
In most cases, the beam directions are also independent of the SNR. Second, the main
difference among the precoding solutions for different criteria is the power allocation. This
allocation follows the water-filling principle for all criteria, where more power is allocated
to stronger modes, and weak modes are dropped, depending on the SNR. The selectivity in
the power allocation, however, varies according to the criterion; more selective schemes
tend to drop more modes at low SNRs. The capacity criterion produces the least selective
power allocation. As the SNR increases, all the power allocation schemes, except for
the PEP per-distance with perfect CSIT, approach equi-power, but at different rates.
A more selective scheme approaches equi-power more slowly. In summary, the precoder
optimally collects the input signal power and spatially re-distributes this power into the
channel according to the criterion and the CSIT.

The water-filling type power allocation leads to mode-dropping at low SNRs.
Therefore, care should be taken in the system design to ensure that the employed STBC
functions in such situations, especially for high-rate codes. In most cases, the input-
shaping matrix, i.e., the precoder right singular vectors, combines the STBC output, such
that all symbols are transmitted even with mode-dropping. When the codeword covariance



122 Precoding design

is white, Q = I, even though this precoder input shaping matrix can theoretically
be omitted, some rotation matrix may still be necessary for practical constellations,
to ensure the transmission of all distinct symbols. A similar rotation matrix may be
necessary with spatial multiplexing to mix the spatial symbol streams before transmitting
on each beam (mode), so that all streams are still transmitted in the event of mode-
dropping. An initial study of the mixing effect can be found in [33]. The precoder input
shaping matrix thus helps to prevent the adverse effects of mode-dropping on the system
performance.

3.6 Precoder performance results and discussion

Using the system structure in Figure 3.16, the precoder designs are evaluated for system
error performance in different CSIT scenarios via simulations. We generate i.i.d. random
bit streams, encode these data with a convolutional code, interleave and map the coded
bits into symbols, before encoding with an STBC and precoding for transmission. The
signal is then sent through a randomly generated channel and white Gaussian noise is
added. At the receiver, we detect and decode the signal, and measure both the uncoded
and the coded error rate performance, respectively.

Specific simulation parameters

The simulation system has four transmit and two receive antennas. We employ the
following STBC:

C =

⎛
⎜⎜⎝

c1 c2 c3 c4

−c∗
2 c∗

1 −c∗
4 c∗

3

c3 c4 c1 c2

−c∗
4 c∗

3 −c∗
2 c∗

1

⎞
⎟⎟⎠ �

This is a quasi-orthogonal code [26, 51] with second-order diversity, a spatial rate of
1, and allowing simple joint two-symbol detection. Note that although a 4 × 2 system
can support up to a spatial rate of 2, we only simulate the spatial rate 1 case. For this
STBC, the precoder input shaping matrix is the identity matrix and it is omitted. We
implement the 	133� 171� convolutional code with rate 1

2 , used in the IEEE 802.11a
wireless LAN standard [23]; a block interleaver; and the quadrature phase-shift keying
(QPSK) modulation. At the receiver, we use maximum-likelihood (ML) detection and a
soft-input soft-output Viterbi decoder.

Bit
generator STBC Precoder Channel

Symbol
mapping

Inter−
leaver Detection

Bit
estimate

Conv.
encoder

Conv.
decoder

Figure 3.16. Simulation system configuration.
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3.6.1 Performance results

We present the system performance for several CSIT scenarios: the perfect CSIT,
the correlation CSIT, and the channel estimate CSIT (3.12) involving both mean and
correlation CSI. We assume quasi-static block-fading channels. The data block-length
used for the perfect and correlation CSIT is 96 bits, and for the channel estimate CSIT is
48 bits. We consider the performance without precoding and with precoding, using four
criteria: capacity, error exponent (with � = 0�5 in (3.30)), average PEP, and minimum-
distance PEP. The MSE precoder design is not included due to ML detection.

Perfect CSIT

For perfect CSIT, the channel is assumed to be i.i.d. Rayleigh fading (i.e., Hm = 0
and Rh = I). The error performance is shown in Figure 3.17. All four precoder designs
achieve substantial gains, measured in both uncoded and coded error rates, with a
larger gain in the latter case (up to 6 dB at 10−4 coded bit error rate). Such a gain is
consistent with the predicted capacity gain in (3.16). Since the quasi-orthogonal STBC
(QSTBC) provides only partial diversity, some additional diversity gain is obtained
by the precoder in the uncoded systems, evident through the higher slopes of the
precoded error curves. In both uncoded and coded systems, however, most of the
precoding gain is array gain. The array gain is attributed to the optimal beam directions
and the water-filling type power allocation. To differentiate the gains due to each of
these effects, a two-beam precoder with optimal directions (3.42) but with equal power
allocation is also studied. Results show that optimal beam directions alone achieve a
significant portion of the precoding gain with perfect CSIT. A water-filling type power
allocation further improves the precoding gain, especially at low SNRs. Thus, both
the precoder beam directions and the power allocation contribute to the performance
gain.
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Figure 3.17. System performance with perfect CSIT: (a) uncoded; (b) coded.
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These results also reveal only minor performance differences among precoder designs
according to the four criteria. The minimum-distance PEP precoder for perfect CSIT is
a single-mode beamformer; it achieves the best gain, attributed to the small number of
receive antennas. The three precoders based on the capacity, the error exponent, and
the average PEP criteria perform similarly. Note that this relative performance order is
dependent on the CSIT, the number of antennas, the channel coding, and the STBC; thus,
the order may change for a different system configuration.

Correlation CSIT

For correlation CSIT (3.48), we use the transmit correlation matrix (3.66) listed in the
Appendix 3.1. This matrix has the eigenvalues [2.717, 0.997, 0.237, 0.049] and a condition
number of 55�5. Thus, the transmit antennas are quite strongly correlated; we chose this
correlation to emphasize the correlation CSIT gain.

The performance results are shown in Figure 3.18. Again, all four precoders achieve
significant gains in both uncoded and coded domains (approximately 3 dB at 10−4 coded
bit error rate). Note that the minimum-distance PEP precoder for correlation CSIT has
moved away from the single-beam solution. A single-beam precoder matched to the
dominant eigenvector of the correlation matrix is also included for comparison. In contrast
to the perfect CSIT case, this single-beam scheme performs poorly; it has a diversity order
of 1 and performs worse than no precoding at high SNRs. Several other observations
can be made. First, the precoding gains depend strongly on the CSIT. A more complete
CSIT will improve the precoding gain – the perfect CSIT provides the best gain. Second,
for statistical CSIT, no precoding diversity gain is present. Both the coded and uncoded
precoding error rate curves have the same diversity order of 2 as that of the QSTBC.
Third, we again observe similar performance among the precoders for all four criteria.
Note that the precoding gain also depends on the transmit correlation. A more correlated
channel will result in a higher precoding gain.
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Figure 3.18. System performance with correlation CSIT: (a) uncoded; (b) coded.
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Mean and correlation CSIT

We now examine the general CSIT framework (both mean and covariance CSIT) that
involves channel estimates (3.12). For this CSIT scenario, we choose a representative
precoder design based on the minimum-distance PEP criterion, for which an optimal
precoder is known. Simulation results in the last two sections suggest that precoders
based on the capacity, the error exponent, and the average PEP criteria have a similar
performance.

For the channel statistics, we use the same transmit correlation (3.66), the channel
mean (3.67), and set K = 0�1. We simulate the system performance with different values
of the estimate quality �, using initial channel measurements H�0� randomly drawn from
the channel distribution. The error rates are averaged over multiple initial measurements
and multiple channel estimates, given each initial measurement.

The performances with and without precoding for � = 	0� 0�7� 0�8� 0�9� 0�96� 0�99�

are given in Figure 3.19. Several observations follow. First, the precoding gain increases
with a higher estimate quality. Depending on �, the gain ranges between statistical
CSIT gain and perfect CSIT gain. Second, the initial channel measurement H�0� helps
to increase the precoding gain over the statistical CSIT gain only when its correlation
with the current channel is sufficiently strong, � ≥ 0�6. When � < 0�6, precoding on the
channel statistics can extract most of the available gain. Third, the simulations exhibit
some differences in the slopes of the bit error rate curves at low-to-medium SNRs for
large � values (� ≥ 0�9). However, analyses show that the asymptotic bit error rate slope
at high SNRs is independent of � for � < 1 [60], for which the system transmit diversity
is determined by the code – the STBC for the uncoded system, and the combination of the
STBC and the convolutional code for the coded one. Only when � = 1, corresponding to
perfect CSIT, does the precoder deliver the maximum transmit diversity gain of order MT .
Thus, the precoder primarily offers an array gain; when the CSIT is perfect, it delivers
additional diversity gain.

−2 0 2 4 6 8 10 12
SNR in dB

4 × 2 Corr. Ricean fading, QSTBC, 4QAM, CC 1/2

−2 0 2 4 6 8 10 12 14 16
SNR in dB

B
E

R

4 × 2 Corr. Ricean fading, QSTBC, 4QAM, uncoded

10–1

100

10–2

10–3

10–4

10–5

10–7

10–6

B
E

R

10–1

100

10–2

10–3

10–4

10–5

10–7

10–6

(a) (b)

No prec
ρ = 0
ρ = 0.7
ρ = 0.8
ρ = 0.9
ρ = 0.96
ρ = 0.99

No prec
ρ = 0
ρ = 0.7
ρ = 0.8
ρ = 0.9
ρ = 0.96
ρ = 0.99

Figure 3.19. System performance with the channel estimate CSIT (3.12) using the minimum-
distance PEP precoder: (a) uncoded; (b) coded.
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Figure 3.20. Comparison between the minimum-distance PEP precoder (solid lines) and a single-
beam scheme (dashed lines) performance.

For comparison, we study a single-beam scheme that relies only on the initial channel
measurement, shown in Figure 3.20. This scheme coincides with the optimal minimum-
distance PEP precoder for a perfect CSIT (� = 1). For other � values, however, this
scheme performs poorly. It loses all transmit diversity regardless of the STBC and only
achieves second-order receive diversity due to ML detection with two receive antennas;
this scheme performs worse than no precoding at high SNRs. The precoder exploiting
the channel estimate CSIT (3.12), on the other hand, provides gains at all SNRs for all �.
This result demonstrates the robustness of this CSIT framework.

Finally, we plot the number of beams of the minimum-distance PEP precoder as a
function of the channel K factor and the SNR in Figure 3.21. A higher K factor leads to
fewer beams; whereas a higher SNR leads to more beams. Note that other design criteria
may lead to different precoding beam regions.

3.6.2 Discussion

We have presented numerical results on the precoding performance for different CSIT
scenarios. The precoding gains are significant in both uncoded and coded domains, with
higher gains in the latter. The gain depends on the CSIT, the number of antennas,
the system configuration, and the SNR. The channel estimate CSIT model (3.12) is a
robust framework ranging from statistical CSIT to perfect CSIT. The precoding gain
usually increases with more antennas. For the simulated system configuration, we observe
similar performance among precoders based on different criteria: capacity, error exponent,



3.7 Applications in practical systems 127

−5 0 5 10 15 20 25
−20

−15

−10

−5

0

5

10

15

SNR in dB

K
 f

ac
to

r 
in

 d
B

Single beam

2 beams

3 beams

4 beams

Figure 3.21. Numbers of beams used in the minimum-distance PEP precoder.

average PEP, and minimum-distance PEP. The precoding gain is composed of two parts:
an array gain obtained by the optimal beam directions and a water-filling gain obtained
by the power allocation; both result in an SNR advantage. When the CSIT is perfect, the
precoders also deliver an additional diversity gain.

3.7 Applications in practical systems

This section focuses on practical issues in precoding. We first discuss how channel
information is acquired by the transmitter using open- and closed-loop acquisition
techniques. We then discuss codebook design in closed-loop systems to compress channel
information efficiently. Finally, we give an overview of the precoding status in emerging
wireless standards.

3.7.1 Channel acquisition methods

From Section 3.1, we know that the two principles for obtaining CSIT are reciprocity
and feedback. Practical channel acquisition techniques based on these principles are
categorized accordingly as open- and closed-loop methods. Open-loop methods are
applicable to TDD systems that support duplex communications, where the time lag
between the reverse and forward transmissions is relatively small compared to the channel
coherence time (3.6). In FDD systems, however, due to the large frequency offset between
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the forward and reverse link (normally 5% of the carrier frequency), channel reciprocity
generally does not hold; thus, open-loop channel acquisition cannot be used. On the other
hand, closed-loop methods are applicable to both TDD and FDD systems. We discuss
each method in more detail below, assuming CSIT is needed at a base node in a multi-user
communication network. Thus, we refer to the transmission from the base node to a user
as the forward-link, and from the user to the base as the reverse-link. Similar methods
can be used for obtaining CSIT at a user node.

Open-loop methods

Open-loop acquisition methods obtain CSIT based on the channel reciprocity principle.
Consider a base node that is a transmitter for the forward link and is a receiver for
the reverse link. The node measures the reverse channel during receive and uses this
measurement as the forward channel CSIT. In voice applications, the forward and reverse
links to all the users operate in back-to-back time slots. Therefore, the reverse channel
measurements can be made regularly using the embedded pilots in these transmissions.
These measurements periodically refresh the CSIT. In data communications, the forward
and reverse links may not operate back-to-back; hence, specially scheduled reverse link
transmissions for channel measurements, known as channel sounding, are used. The subset
of the users, for whom CSIT are required, are scheduled to send a sounding transmission.
The sounding signals are orthogonal among simultaneously scheduled users. In OFDM
systems, for example, different users may be assigned non-overlapping, interlaced tones
that span the channel bandwidth; or they are assigned orthogonal pilot code sequences
that overlap on the entire frequency band, similar to CDMA. Channel sounding is efficient
for systems with many antennas at the base node.

The reciprocity principle is applicable for the “over the air” (i.e. antenna to antenna)
segment of the forward and reverse links. In practical systems, however, signal processing
is performed at the baseband, i.e., the channel is estimated at the receiver baseband section
after the signal has passed through the receive RF chain. The transmit signal uses a
different RF chain, which has a different transfer function from that of the receive chain,
as depicted in Figure 3.22. Therefore, the reciprocity principle can only be applied after
the transmit (or receive) RF chain is equalized to make the two chains identical. This
equalization requires a calibration process, wherein the difference between the two chains
is identified. Calibration is expensive and has made open-loop methods less attractive in
practice.

Transmit–receive chain calibration and equalization have been widely studied. Let
H1�f� and H2�f� be the transmit- and receive-chain transfer functions, respectively.
One technique involves first finding H1�f�H2�f� using the transmit and receive chains
in a loop-back mode. Then, H2�f� is determined by injecting a calibration signal at
the antenna. In both steps, thermal-noise-induced errors can be averaged out by taking
multiple measurements [6]. When both H1�f� and H2�f� are available, it is easy to
compute a digital equalizer incorporated into the baseband section to make the two
chains effectively identical. This equalizer usually requires high numerical precision and
accuracy. For a flat channel, e.g. per OFDM tone, the equalizer reduces to a complex
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scalar coefficient per antenna branch. Calibration must be performed periodically to track
the slow time variations of the RF chains.

Closed-loop methods

Closed-loop acquisition methods use feedback from the receiver to send the channel
information to the transmitter. The forward-link transmission from a base node, received
by all the active users, includes pilot signals. Thus, these users can measure their respective
receive channels. The required users then send these channel measurements on a reverse
link back to the base node for use as the CSIT. The feedback communication can either
be scheduled or piggybacked on on-going transmissions. Again, in data communications,
the CSIT may be needed for only a subset of users; these users are scheduled to transmit
their channel measurements. Closed-loop methods do not require the transmit–receive
calibration that is necessary in open-loop techniques.

Nevertheless, feedback information is susceptible to errors, due to delay in the feedback
loop. The usefulness of feedback depends on this time lag and the channel Doppler spread.
For a time-varying channel in mobile communications, feedback techniques are usually
effective up to a certain mobile speed, depending on the carrier frequency, the transmission
frame length, and the feedback turn-around time. The effects of feedback delays and
errors have been analyzed for various techniques in 3GPP [22, 34], revealing potentially
severe performance degradation. Therefore, the optimal use of feedback information must
account for the feedback quality, as in the framework (3.12).

Overhead in MIMO CSIT acquisition

In a closed-loop method, if multiple antennas are used for transmit, then additional pilot
resources, proportional to the number of antennas, are needed. This training overhead on
the forward link from a base node is independent of the number of users. The overhead for
the feedback, however, is proportional to the number of designated users on the reverse
link, multiplied with the size of the channel matrix, which is a product of the number of
transmit antennas at the base node and the number of receive antennas at each user.
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The overhead in an open-loop system is the product of the number of training pilots
on the reverse link, which is proportional to the number of antennas at each user, and the
number of users participating in the reverse channel sounding.

The overhead related to CSIT acquisition remains a major concern in multiple antenna
systems. The overhead comparison in open- versus closed-loop systems typically favors
open-loop systems. However, when the number of receive antennas on the forward link
is much larger than the number of transmit antennas, closed-loop systems may have an
advantage.

3.7.2 Codebook design in closed-loop systems

In closed-loop methods, the feedback requires precious transmission (bandwidth, time)
resources. Thus, compressing, or quantizing, the feedback data is of great interest. Quantized
channel feedback information can be modeled as the mean CSIT with a known error
covariance [28, 38], similarly to (3.12). The precoder can then be designed at the transmitter
using a suitable algorithm. Another approach is to design the precoder at the receiver and
to send back the quantized precoding matrix, rather than the CSI. For example, a unitary
precoder is designed based on the instantaneous channel measurement at the receiver,
assuming that the CSI remains valid over the feedback duration [34, 35]. The choice
between these two approaches depends on the system setup, the feedback overhead in
each method, and the complexity requirement of the transmitter and the receiver. The ease
of adapting the feedback information to channel variation is another factor to consider.
In some systems, scheduling delays may not be known to the receiver; hence, having
the CSI at the transmitter can make it easier to estimate the channel for precoding use.

The quantization method in closed-loop systems is a rich research topic. Several
techniques have been explored. One technique is incremental encoding, in which only
the relevant change in the channel is transmitted. Another technique is to design
codebooks that efficiently encode important channel information. Since the channel eigen-
directions are particularly important, several authors have studied sphere packing on the
Grassmannian manifold as a way of designing compact codebooks [20, 34]. Codebook
design depends on the channel statistics. For example, the design for an i.i.d. Rayleigh
fading MIMO channel corresponds to finding subspaces in a Grassmannian manifold
that are uniformly spaced, such that the distances between them, suitably defined, are
approximately equal. There are still open questions regarding codebook designs for non-
i.i.d. channels, particularly structures that are invariant to channel variations, and regarding
the complexity in mapping the matrix channel or the precoder to a codeword.

3.7.3 The role of channel information at the receiver

In this chapter, we have assumed perfect channel knowledge at the receiver and focused
on variable quality of CSIT alone. We now briefly discuss the role of receive channel
side information (CSIR).

Early wireless systems did, in fact, assume very little or no CSIR and there has been
a rich body of techniques for dealing with this problem. The typical solution was to
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assume that the channel is constant over two or more symbol periods and to encode
the information in the difference of transmit symbols. The channel invariance between
adjacent symbols can then be exploited to extract the desired information. No knowledge
of the actual CSIR is needed. This technique of course comes with a capacity penalty,
typically a 3 dB loss in SNR compared to coherent detection. Later, wireless systems
were designed to guarantee good CSIR, alleviating the penalty.

In emerging mobile networks, however, good CSIR is increasingly difficult to obtain
due to low SINR at the receiver and the frequency selectivity of the channel. We first
discuss the extreme case of no CSIR and then comment on partial CSIR. Information-
theoretic results for MIMO systems have shown that without either CSIR or CSIT, the
channel coherence time T plays an important role. The high-SNR capacity then grows as
M��1−M�/T� bps/Hz for every 3 dB increase in SNR, where M� = min�MT �MR� �T/2��
and T is measured in symbol periods; whereas with perfect CSIR, it grows as
min�MT �MR� [65]. Notice that the loss in capacity vanishes as T increases. Without
CSIR, having more transmit than receive antennas provides no capacity gain at high
SNR. Increasing the number of transmit antennas beyond T also provides no increase in
capacity [37]. Furthermore, the optimal signal consists of mutually orthogonal vectors,
of which the directions are isotropically distributed and statistically independent of the
magnitudes. Thus any transmit precoding should be restricted to power loading alone.
When T ≥ min�MT �MR� + MR, these optimal vectors at high SNR have equi-power,
implying that there is no need for precoding. Practical schemes for MIMO systems
include differential space–time modulation techniques and non-coherent matrix designs.
The differential techniques have received greater attention.

With partial CSIR, the channel estimate at the receiver is often modeled as the actual
channel plus a zero-mean Gaussian noise. Recent results suggest designing a space–time
constellation based on a metric combining between coherent and non-coherent criteria,
depending on the CSIR quality [14]. Note also that such imperfect CSIR results in no
diversity loss in space–time decoding [47].

3.7.4 Precoding in emerging wireless standards

Precoding has been successfully incorporated in the IEEE 802.16e standard for broadband
wireless metropolitan networks. In the closed-loop approach, the precoder is based on
either an initial channel measurement or the channel statistics. The users measure the
channel using the forward-link preambles or pilots. A codebook technique is then used
to feed back the best unitary fit of the channel measurement, along with a time-to-live
parameter. The precoder uses the unitary fit until the time-to-live expires. Thereafter, the
precoder relies on the channel statistics information, which is updated at a much slower
rate and, therefore, is always valid. In an open-loop technique, a subset of users are
scheduled to transmit a sounding signal. The base-station then estimates the channels for
these users and determines the CSIT after the transmit–receive RF calibration.

MIMO is included in the IEEE 802.11n standard for wireless local area networks
(WLANs). Space–time coding and spatial multiplexing are both supported. The current
precoding proposals use an open-loop method. The reciprocity principle implies that the
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best beam on receive must be the best beam for transmit. The access point uses pre-formed
beams for receive and transmit and records the beam(s) with the best signal strength on
receive for each user, then uses the same beam(s) during transmit.

The 3GPP standard uses a closed-loop beamforming technique, based on feedback
of the channel phase and amplitude information. Precoding is under discussion in high-
speed downlink packet access (HSDPA) for mobile communication. Channel-sounding
techniques appear to be the preferred approach.

3.8 Conclusion

Before summarizing this chapter, we briefly discuss other CSIT types and open problems
in the rich area of exploiting CSIT.

3.8.1 Other types of CSIT

This chapter has mainly focused on the CSIT in the form of an estimate of the entire
channel with its error covariance. However, there are other types of less complete
CSIT. One example is the knowledge of the channel K factor and the channel phase
distribution [57], where the solution requires beamforming on the average channel phase
with variable antenna power allocation. Another CSIT example is a known channel
condition number [19], where the solution suggests adapting the transmission spatial rate.
Nonlinear precoding for MIMO channels with inter-symbol interference (ISI), using the
Tomlinson–Harashima precoder, has also been studied [12].

3.8.2 Open problems in exploiting CSIT

Exploiting CSIT is a current research area that still has many open problems. For
example, an analytical solution for the optimal precoder with statistical CSIT (both mean
and covariance) for the capacity criterion remains unsolved. Precoding with a more
general channel covariance structure (for example, a non-Kronecker model) has hardly
been studied. Codebook design and its application in compressing channel information
efficiently for closed-loop systems is also a rich research area. Finally, exploiting
variable CSIT in multi-user systems is an important open area with promising practical
applications.

3.8.3 Summary

This chapter has provided an overview of CSIT acquisition and linear precoding
techniques exploiting CSIT in MIMO wireless systems. Principles and methods for
acquiring transmit channel information are discussed, including open- and closed-loop
techniques, and related issues, such as the sources of error, system overhead, and
complexity. The definition of a CSIT form is given as an estimate of the channel at the
transmit time with an associated error covariance. Such CSIT can be obtained using a



Appendix 3.1 133

possibly outdated channel measurement, along with the first- and second-order channel
statistics, and the channel temporal correlation factor. Information-theoretic foundation
confirms the optimality of a linear precoder in exploiting the CSIT. A linear precoder,
in essence, is an input shaper together with a multi-mode beamformer with defined
per-beam power.

The chapter provides linear precoder solutions for several CSIT scenarios, involving
a channel mean (or channel estimate) and a channel covariance (or error covariance),
according to different performance criteria: the ergodic capacity, the error exponent, the
pairwise error probability, and the detection mean-squared error. Simulation examples,
using a spatial rate 1 STBC transmission, demonstrate that precoding improves the
error performance at all SNRs. For higher spatial rate transmissions (such as spatial
multiplexing), although not illustrated, precoding also improves the capacity and error
performance at all SNRs for systems with more transmit than receive antennas, and at
low SNRs for equal or more receive antennas than transmit antennas.

The essential value of precoding is that it exploits the CSIT to add an array gain,
resulting in increased SNR. This gain is achieved by the optimal eigen-beam directions
(patterns) and the spatial water-filling type power allocation across these beams. Both of
these features can be used to increase the transmission rate (the system capacity) or reduce
the error rate, or both. If the CSIT is perfect, precoding can also deliver a diversity gain;
in addition, it helps to reduce receiver complexity for higher spatial-rates by allowing
parallel channel transmissions.

Having discussed precoding, the last block in the transmit processing chain, the
next chapter will discuss space–time coding, which appears immediately prior to the
precoding block.

3.9 Bibliographical notes

An overview of transmit precoding can be found in ‘Introduction to Space–Time Wireless
Communications’ by Paulraj, Nabar, and Gore [39]. A key reference for the information-
theoretic foundations for channels with causal CSIT is the paper by Caire and Shamai
(Shitz) [8], with extension to MIMO systems by Skoglund and Jöngren [46]. References
for discussion on beamforming and its use in the presence of partial CSIT from a capacity
viewpoint include Narula, Lopez, Trott, and Wornell [38], Visotsky and Madhow [54],
Jafar and Goldsmith [25], and Jorswieck and Boche [29]. Discussions of statistical CSIT-
related precoding to enhance error performance can be found in papers by Jöngren,
Skoglund, and Ottersten [28], Sampath and Paulraj [41], Zhou and Giannakis [67, 68],
and Vu and Paulraj [61].

Appendix 3.1

For simulations, all channels are normalized for a constant average power gain of MT MR

(the product of the numbers of transmit and receive antennas). The normalization ensures
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the same average power gain in all channels for fair performance comparison. The channel
parameters, mean (3.1) and covariance (3.2), can be written as

Hm =
√

K

K +1
H0 (3.65)

Rh = 1
K +1

R0�

where H0 and R0 are the normalized channel mean and covariance, such that

��H0��2F = MT MR

tr�R0� = MT MR�

For the Kronecker antenna correlation model (3.4), the normalized channel covariance
can be written as

R0 = RT
t�0 ⊗Rr�0�

where

tr�Rt�0� = MT

tr�Rr�0� = MR�

When only transmit correlation exists, this correlation becomes

Rt = 1
K +1

Rt�0�

Most simulations in this chapter are performed for four transmit antenna channels,
with two receive antennas for the error performance in Section 3.6, and two or four
receive antennas for the capacity in Figure 3.15. These simulations use K = 0�1, except
for Figure 3.21. Other channel parameters are listed below.

The transmit correlation matrix is

Rt�0 =

⎡
⎢⎢⎢⎣

0�8758 −0�0993−0�0877i −0�6648−0�0087i 0�5256−0�4355i

−0�0993+0�0877i 0�9318 0�0926+0�3776i −0�5061−0�3478i

−0�6648+0�0087i 0�0926−0�3776i 1�0544 −0�6219+0�5966i

0�5256+0�4355i −0�5061+0�3478i −0�6219−0�5966i 1�1379

⎤
⎥⎥⎥⎦ �

(3.66)
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The mean for the 4×2 channel is

H0 =
[

0�0749−0�1438i 0�0208+0�3040i −0�3356+0�0489i 0�2573−0�0792i

0�0173−0�2796i −0�2336−0�2586i 0�3157+0�4079i 0�1183+0�1158i

]
�

(3.67)

The mean for the 4×4 channel is

H0 =

⎡
⎢⎢⎢⎣

0�2976+0�1177i 0�1423+0�4518i −0�0190+0�1650i −0�0029+0�0634i

−0�1688−0�0012i −0�0609−0�1267i 0�2156−0�5733i 0�2214+0�2942i

0�0018−0�0670i 0�1164+0�0251i 0�5599+0�2400i 0�0136−0�0666i

−0�1898+0�3095i 0�1620−0�1958i 0�1272+0�0531i −0�2684−0�0323i

⎤
⎥⎥⎥⎦ �

(3.68)
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4 Space–time coding for wireless
communications: principles and
applications

4.1 Introduction

The essential feature of wireless transmission is the randomness of the communication
channel which leads to random fluctuations in the received signal commonly known
as fading. This randomness can be exploited to enhance performance through diversity.
We broadly define diversity as the method of conveying information through multiple
independent instantiations of these random fades. There are several forms of diversity;
our focus in this chapter will be on spatial diversity through multiple independent
transmit/receive antennas. Information theory has been used to show that multiple
antennas have the potential to dramatically increase achievable bit rates [76], thus
converting wireless channels from narrow to wide data pipes.

The earliest form of spatial transmit diversity is the delay diversity scheme proposed
in [81, 84] where a signal is transmitted from one antenna, then delayed one time slot,
and transmitted from the other antenna. Signal processing is used at the receiver to
decode the superposition of the original and time-delayed signals. By viewing multiple-
antenna diversity as independent information streams, more sophisticated transmission
(coding) schemes can be designed to get closer to theoretical performance limits. Using
this approach, we focus on space–time coding (STC) schemes defined by Tarokh et al.
[74] and Alamouti [5], which introduce temporal and spatial correlation into the signals
transmitted from different antennas without increasing the total transmitted power or the
transmission bandwidth. There is, in fact, a diversity gain that results from multiple paths
between the base-station and the user terminal, and a coding gain that results from how
symbols are correlated across transmit antennas. Significant performance improvements
are possible with only two antennas at the base-station and one or two antennas at the user
terminal, and with simple receiver structures. The second antenna at the user terminal
can be used to further increase system capacity through interference suppression.

In only a few years, space–time codes have progressed from invention to adoption
in the major wireless standards. For wideband code-division multiple access (WCDMA)
where short spreading sequences are used, transmit diversity provided by space–time
codes represents the difference between data rates of 100 and 384 kb/s. Our emphasis is
on solutions that include channel estimation, joint decoding and equalization, and where
the complexity of signal processing is practical. The new world of multiple transmit and
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receive antennas requires significant modification of techniques developed for single-
transmit single-receive communication. Since receiver cost and complexity is an important
consideration, our treatment of innovation in signal processing is grounded in systems
with one, two or four transmit antennas and one or two receive antennas. For example,
the interference cancellation techniques presented in Section 4 enable transmission of
1 Mb/s over a 200 kHz GSM/EDGE channel using four transmit and two receive
antennas. Hence, our limitation on numbers of antennas does not significantly dampen user
expectations.

Initial STC research efforts focused on narrowband flat-fading channels [5, 62, 74].
Successful implementation of STC over multi-user broadband frequency-selective
channels requires the development of novel, practical, and high-performance signal
processing algorithms for channel estimation, joint equalization/decoding, and interference
suppression. This task is quite challenging due to the long delay spread of broadband
channels which increases the number of channel parameters to be estimated and the
number of trellis states in joint equalization/decoding, especially with multiple transmit
antennas. This, in turn, places significant additional computational and power consumption
loads on user terminals. On the other hand, development and implementation of such
advanced algorithms for broadband wireless channels promises even more significant
performance gains than those reported for narrowband channels [5, 62, 74] due to
availability of multi-path (in addition to spatial) diversity gains that can be realized. By
virtue of their design, space–time-coded signals enjoy rich algebraic structure that can
(and should!) be exploited to develop near-optimum reduced-complexity modem signal
processing algorithms.

The organization of this chapter is as follows. We start in Section 4.2 with background
material where we set up the broadband wireless channel model assumed, followed by a
discussion of transmit diversity and the concept of diversity order. Section 4.3 describes
STC design criteria and discusses representative examples with both the trellis and block
structure. We also give some recent developments in space–time codes. Section 4.4 shows
through concrete examples from signal processing, coding theory, and networking, how
the STC algebraic structure can be exploited to enhance system performance and reduce
implementation complexity. The chapter concludes in Section 4.5 with a summary and a
discussion of several future challenges.

4.2 Background

4.2.1 Broadband wireless channel model

A typical outdoor wireless propagation environment is represented in Figure 4.1 where
the mobile wireless terminal is communicating with a wireless access point (base-station).
The signal transmitted from the mobile may reach the access point directly (line-of-sight)
or through multiple reflections on local scatterers (buildings, mountains, etc.). As a result,
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Figure 4.1. Radio propagation environment.

the received signal is affected by multiple random attenuations and delays. Moreover,
the mobility of either the nodes or the scattering environment may cause these random
fluctuations to vary with time. Furthermore, a shared wireless environment may cause
undesirable interference to the transmitted signal. This combination of factors makes
wireless a challenging communication environment. For a transmitted signal s�t�, the
continuous-time received signal yc�t� can be expressed as

yc�t� =
∫

hc�t� �� s�t − ��d� + z�t� � (4.1)

where hc�t� �� is the response of the time-varying channel1 if an impulse is sent at time
t−�, and z�t� is the additive Gaussian noise. To collect discrete-time sufficient statistics
we need to sample (4.1) faster than the Nyquist rate. That is, we sample (4.1) at a rate
larger than 2�WI +Ws�, where WI is the input bandwidth and Ws is the bandwidth of the
channel time-variation. In this chapter, we assume that this criterion is met and therefore
we focus on the following discrete-time model:

y�k� = yc�kTs� =
�∑

l=0

h�k� l�x�k− l�+ z�k� � (4.2)

where y�k�, x�k�, and z�k� are the output, input, and noise samples at sampling instant k,
respectively, and h�k� l� represents the sampled time-varying channel impulse response

1 Including the effects of transmit/receive filters.
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(CIR) of finite memory �. Any loss in modeling the channel as having a finite-duration
impulse response can be made small by appropriately selecting �.

Three key characteristics of broadband mobile wireless channels are time-selectivity,
frequency-selectivity, and space-selectivity. Time-selectivity arises from mobility,
frequency-selectivity arises from broadband transmission, and space-selectivity arises
from the spatial interference patterns of the radio waves. The corresponding key
parameters in the characterization of mobile broadband wireless channels are coherence
time, coherence bandwidth, and coherence distance. The coherence time is the time
duration over which each CIR tap can be assumed constant. It is approximately equal
to the inverse of the Doppler frequency.2 The channel is said to be time-selective if
the symbol period is longer than the channel coherence time. The coherence bandwidth
is the frequency duration over which the channel frequency response can be assumed
flat. It is approximately equal to the inverse of the channel delay spread.3 The channel
is said to be frequency-selective if the symbol period is smaller than the delay spread
of the channel. Likewise, the coherence distance is the maximum spatial separation
over which the channel response can be assumed constant. This can be related to
the behavior of arrival directions of the reflected radio waves and is characterized
by the angular spread of the multiple paths [50, 65]. The channel is said to be
space-selective between two antennas if their separation is larger than the coherence
distance.

The channel memory causes interference among successive transmitted symbols that
results in significant performance degradation unless corrective measures (known as
equalization) are implemented. In this chapter, we shall use the terms frequency-selective
channel, broadband channel, and intersymbol interference (ISI) channel interchangeably.
The introduction of Mt transmit and Mr receive antennas leads to the following
generalization of the basic channel model:

y�k� =
�∑

l=0

H�k� l� x�k− l�+ z�k� � (4.3)

where the Mr ×Mt complex matrix H�k� l� represents the lth tap of the channel matrix
response with x ∈ �Mt as the input and y ∈ �Mr as the output. The input vector may
have independent entries to achieve high throughput (e.g. through spatial multiplexing)
or correlated entries through coding or filtering to achieve high reliability (better distance
properties, higher diversity, spectral shaping, or desirable spatial profile). Throughout this
chapter, the input is assumed to be zero mean and to satisfy an average power constraint,
i.e. E���x�k���2	 ≤ P. The vector z ∈�Mr models the effects of noise and interference.4 It is
assumed to be independent of the input and is modeled as a complex additive circularly-
symmetric Gaussian vector with z ∼ �� �0� Rzz�, i.e. a complex Gaussian vector with

2 The Doppler frequency is a measure of the frequency spread experienced by a pure sinusoid transmitted over
the channel. It is equal to the ratio of the mobile speed to the carrier wavelength.
3 The channel delay spread is a measure of the time spread experienced by a pure impulse transmitted over the
channel.
4 Including co-channel interference, adjacent channel interference, and multi-user interference.
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mean 0 and covariance Rzz. Finally, we modify the basic channel model to accommodate
a block or frame of N consecutive symbols. Now, (4.3) can be expressed in matrix
notation as follows:

y = Hx + z � (4.4)

where y� z ∈ �N
Mr , x ∈ �Mt�N+��, and H ∈ �N
Mr×Mt�N+��. In each input block, we insert
a guard sequence of length equal to the channel memory � to eliminate inter-block
interference (IBI). In practice, the most common choices for the guard sequence are the
all-zeros sequence (also known as zero stuffing) and the cyclic prefix (CP). When the
channel is known at the transmitter, it is possible to increase throughput by optimizing
the choice of the guard sequence.

The channel model in (4.4) includes several popular special cases. First, the quasi-
static channel model follows by assuming the channel to be time-invariant within the
transmission block. In this case, using the cyclic prefix makes the channel matrix H
block-circulant, hence diagonalizable using the fast Fourier transform (FFT). Second, the
flat-fading channel model follows by setting � = 0 which renders the channel matrix
H a block diagonal matrix. Third, the channel model for single-antenna transmission,
reception, or both follows directly by setting Mt, Mr , or both equal to 1, respectively.

4.2.2 Transmit diversity

Transmit diversity is more challenging to provision and realize than receive diversity
because it involves the design of multiple correlated signals from a single information
signal without utilizing CSI (typically not available accurately at the transmitter).
Furthermore, transmit diversity must be coupled with effective receiver signal processing
techniques that can extract the desired information signal from the distorted and noisy
received signal. Transmit diversity is more practical than receive diversity for enhancing
the downlink (which is the bottleneck in broadband asymmetric applications such as
Internet browsing and downloading) to preserve the small size and low power consumption
features of the user terminal. A common attribute of transmit and receive diversity is
that both experience “diminishing returns” (i.e. diminishing SNR gains at a given error
probability) as the number of antennas increases [50]. This makes them effective, from a
performance–complexity trade-off point of view, for small numbers of antennas (typically
less than four). This is in contrast with spatial multiplexing gains where the rate continues
to increase linearly with the number of antennas (assumed equal at both ends).

There are two main classes of multiple-antenna transmitter techniques: closed-loop
and open-loop. The former uses a feedback channel to send CSI acquired at the receiver
back to the transmitter to be used in signal design while the latter does not require CSI.
Assuming availability of ideal (i.e. error-free and instantaneous) CSI at the transmitter,
closed-loop techniques have an SNR advantage of 10 log10�Mt� dB over open-loop
techniques due to the “array gain” factor [5]. However, several practical factors degrade
the performance of closed-loop techniques including channel estimation errors at the
receiver, errors in the feedback link (due to noise, interference, and quantization effects),
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and feedback delay which causes a mismatch between the available and the actual CSI.
All of these factors combined with the extra bandwidth and system complexity resources
needed for the feedback link make open-loop techniques more attractive as a robust
means for improving downlink performance for high-mobility applications while closed-
loop techniques (such as beamforming) become attractive under low-mobility conditions.
Our focus in this chapter will be exclusively on open-loop spatial transmit diversity
techniques due to their applicability to both scenarios5. Beamforming techniques are
discussed extensively in several tutorial papers such as [38, 39].

The simplest example of open-loop spatial transmit diversity techniques is delay
diversity [81, 84], where the signal transmitted at sampling instant k from the ith antenna
is xi�k� = x�k − li� for 2 ≤ i ≤ Mt and x1�k� = x�k�, where li denotes the time delay
(in symbol periods) on the ith transmit antenna. Assuming a single receive antenna, the
D-transform6 of the received signal is given by

y�D� = x�D�

(
h1�D�+

Mt∑
i=2

Dlihi�D�

)
+ z�D� 
 (4.5)

It is clear from (4.5) that delay diversity transforms spatial diversity into multi-path
diversity that can be realized through equalization [67]. For flat-fading channels, we
can set li = �i − 1� and achieve full (i.e. order-Mt) spatial diversity using a maximum-
likelihood (ML) equalizer with �2b�Mt−1 states, where 2b is the input alphabet size.
However, for frequency-selective channels, a delay of at least li = �i − 1��� + 1� is
needed to ensure that coefficients from the various spatial FIR channels do not interfere
with each other causing a diversity loss. This, in turn, increases equalizer complexity to
�2b��Mt−1���+1� states, which is prohibitive even for moderate b, Mt, and �. In Section 4.3,
we describe another family of open-loop spatial transmit diversity techniques known as
space–time block codes that achieve full spatial diversity with practical complexity even
for frequency-selective channels with a long delay spread.

4.2.3 Diversity order

Error probability is particularly important as a performance criterion when we are coding
over a small number of blocks (low-delay) where the Shannon capacity is zero [63]
and, therefore, we need to design for low error probability. By characterizing the error
probability, we can also formulate design criteria for space–time codes in Section 4.3.

Since we are allowed to transmit a coded sequence, we are interested in the probability
that an erroneous codeword e is mistaken for the transmitted codeword x. This is called
the pairwise error probability (PEP) and is then used to bound the error probability. This
is analyzed under the condition that the receiver has perfect channel state information.
However, a similar analysis can be performed when the receiver does not know the
channel state information but has statistical knowledge of the channel.

5 It is also possible to combine closed-loop and open-loop techniques as shown recently in Soni et al. (2002).
6 The D-transform of a discrete-time sequence �x�k��N−1

k=0 is defined as x�D� = ∑N−1
k=0 x�k�Dk. It is derived from

the Z-transform by replacing the unit delay Z−1 by D.
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For simplicity, we shall first present the result for a flat-fading Rayleigh channel
(where � = 0). In the case when the receiver has perfect channel state information, we
can bound the PEP between x and e (denoted by P�x → e�) as follows [41, 74]:

P�x → e� ≤
[

1∏Mt

n=1�1+ Es

4N0
n�

]Mr

� (4.6)

where n are the eigenvalues of the matrix A�x� e� = B∗�x� e�B�x� e� and

B�x� e� =
⎛
⎜⎝

x1�1�− e1�1� � � � xMt
�0�− eMt

�0�














x1�N −1�− e1�N −1� � � � xMt
�N −1�− eMt

�N −1�

⎞
⎟⎠ 
 (4.7)

If q denotes the rank of A�x� e� (i.e. the number of non-zero eigenvalues) then we can
rewrite (4.6) as

P�x → e� ≤
(

q∏
n=1

n

)−Mr (
Es

4N0

)−qMr


 (4.8)

Thus, we define the notion of diversity order as follows.

Definition 4.1 A scheme which has an average error probability P̄e�SNR� as a function
of SNR that behaves as

lim
SNR→�

log�P̄e�SNR��

log�SNR�
= −d (4.9)

is said to have a diversity order of d.

In words, a scheme with diversity order d has an error probability at high SNR behaving
as P̄e�SNR� ≈ SNR−d. Given this definition, we can see that the diversity order in (4.8)
is at most qMr . Moreover, in (4.8) we obtain an additional coding gain of �

∏q
n=1 n�

1/q.
Note that in order to obtain the average error probability, one can calculate a naive

union bound using the pairwise error probability given in (4.8). However, this bound
may not be tight and a more careful upper bound for the error probability can be derived
[68, 89]. However, if we ensure that every pair of codewords satisfies the diversity order
in (4.8), then clearly the average error probability satisfies it as well. This is true when
the transmission rate is held constant with respect to SNR. Therefore, code design for the
diversity order through the pairwise error probability is a sufficient condition, although
more detailed criteria can be derived based on a more accurate expression for the average
error probability.
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The error probability analysis can easily be extended to the case where we have
quasi-static ISI channels with channel taps modeled as i.i.d. zero mean complex Gaussian
random variables (see, for example [90] and references therein). In this case, the PEP can
be written as

P�x → e� ≤
[

1∏Mt�
n=1�1+ Es

4N0
̃n�

]Mr

� (4.10)

where the eigenvalues ̃n are those of Ã�x� e� = B̃
∗
�x� e�B̃�x� e�,

B̃�x� e� =
⎛
⎜⎝

x̃T �0�− ẽT �0�





x̃T �N −1�− ẽT �N −1�

⎞
⎟⎠ � (4.11)

and

x̃�k� = �xT �k�� � � � � xT �k−��	T 
 (4.12)

Since Ã�x� e� is a square matrix of size Mt�, clearly the maximal diversity order achievable
for quasi-static ISI channels is MrMt�.

Finally, if we have a time-varying ISI channel, we can generalize (4.10) to

P�x → e� ≤
[

1

�IMr NMt�
+ Es

4N0
F�Rh ⊗ IMr Mt�

��

]
� (4.13)

where ⊗ denotes a Kronecker product, Rh is the N ×N correlation matrix of the channel
tap process, and F = diag�C�0�� � � � � C�N −1�� with

C�k� = [
x̃T �k�− ẽT �k�

]⊗ IMr

 (4.14)

Again, it is clear that the maximal diversity attainable is MrMt�N , but for a given channel
tap process, N is replaced by the number of dominant eigenvalues Ndom of the fading
correlation matrix. This parameter is related to the Doppler spread of the channel and the
block duration.

4.2.4 Rate–diversity trade-off

A natural question that arises is how many codewords can we have which allow us to
attain a certain diversity order. For a flat Rayleigh fading channel, this has been examined
in [58, 74] and the following result was obtained.7

7 A constellation size refers to the alphabet size of each transmitted symbol. For example, a quadrature
phase-shift keying (QPSK) modulated transmission has a constellation size of 4.
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Theorem 4.2 If we use a constellation of size 2b and the diversity order of the system is
qMr , then the rate R that can be achieved is bounded as

R ≤ �Mt −q +1� log2 ��� (4.15)

in bits per transmission.

One consequence of this result is that for maximum (MtMr) diversity order we can
transmit at most b bits/s/Hz.

An alternate viewpoint in terms of the rate–diversity trade-off has been explored in
[89] from a Shannon-theoretic point of view. Here the authors are interested in the
multiplexing rate of a transmission scheme.

Definition 4.3 A coding scheme which has a transmission rate of R�SNR� as a function
of SNR is said to have a multiplexing rate r if

lim
SNR→�

R�SNR�

log�SNR�
= r
 (4.16)

Therefore, the system has a rate of r log�SNR� at high SNR. One way to contrast it
with the statement in Theorem 4.2, is that the constellation size is also allowed to
become larger with SNR. However, note that the naive union bound of the pairwise
error probability (4.6) has to be used with care if the constellation size is also increasing
with SNR. There is a trade-off between the achievable diversity and the multiplexing
rate, and dopt�r� is defined as the supremum of the diversity gain achievable by any
scheme with multiplexing rate r . The main result in [89] is given as the following
theorem.

Theorem 4.4 For N > Mt +Mr −1, and K = min�Mt�Mr�, the optimal trade-off curve
dopt�r� is given by the piecewise linear function connecting points in �k�dopt�k��� k =
0� � � � �K, where

dopt�k� = �Mr −k��Mt −k�
 (4.17)

The interesting interpretation of this result is that one can get large rates which
grow with SNR if we reduce the diversity order from the maximum achievable. This
diversity–multiplexing trade-off implies that a high multiplexing rate comes at the price
of decreased diversity gain and is a manifestation of a corresponding trade-off between
the error probability and the rate.

A different question was proposed in [22, 23], where it was asked whether there exists a
strategy that combines high-rate communications with high reliability (diversity). Clearly
the overall code will still be governed by the rate–diversity trade-off, but the idea is to
ensure the reliability (diversity) of at least part of the total information. This allows a form
of communication where the high-rate code opportunistically takes advantage of good
channel realizations whereas the embedded high-diversity code ensures that at least part
of the information is received reliably. In this case, the interest was not in a single pair
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of multiplexing rate and diversity order �r�d�, but in a tuple �ra�da� rb�db� where rate
ra and diversity order da were ensured for part of the information with the rate–diversity
pair �rb�db� guaranteed for the other part. A class of space–time codes with such desired
characteristics will be discussed in Section 4.3.5.

From an information-theoretic point of view Diggavi and Tse [26, 27] focused on
the case when there is one degree of freedom (i.e. min�Mt�Mr� = 1). In that case if
we consider da ≥ db without loss of generality, the following result was established
in [26, 27].

Theorem 4.5 When min�Mt�Mr� = 1, then the diversity–multiplexing trade-off curve is
successively refinable, i.e. for any multiplexing rates ra and rb such that ra + rb ≤ 1, the
diversity orders da ≥ db,

da = dopt�ra�� db = dopt�ra + rb� (4.18)

are achievable, where dopt�r� is the optimal diversity order given in Theorem 4.4.

Since the overall code has to still be governed by the rate–diversity trade-off given in
Theorem 4.4, it is clear that the trivial outer bound to the problem is that da ≤ dopt�ra�

and db ≤ dopt�ra + rb�. Hence Theorem 4.5 shows that the best possible performance can
be achieved. This means that for min�Mt�Mr� = 1, we can design ideal opportunistic
codes. This new direction of enquiry is being currently explored (see [25, 27]).

4.3 Space–time coding principles

Space–time coding has received considerable attention in academic and industrial circles
[3, 4] due to its many advantages. First, it improves the downlink performance without
the need for multiple receive antennas at the terminals. For example, for wideband code-
division multiple access (WCDMA), STC techniques were shown in [64] to result in
substantial capacity gains due to the resulting “smoother” fading which, in turn, makes
power control more effective and reduces the transmitted power. Second, it can be
elegantly combined with channel coding, as shown in [74], realizing a coding gain in
addition to the spatial diversity gain. Third, it does not require channel state information
(CSI) at the transmitter, i.e. it operates in open-loop mode, thus eliminating the need
for an expensive and, in the case of rapid channel fading, unreliable reverse link.
Finally, they have been shown to be robust against non-ideal operating conditions such
as antenna correlation, channel estimation errors, and Doppler effects [62, 73]. There
has been extensive work on the design of space–time codes since their introduction
in [74]. The combination of the turbo principle [8, 9] with space–time codes has been
explored (see, for example, [7] and [55] among several other references). In addition, the
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application of linear low-density parity check (LDPC) codes [36] to space–time coding
has been explored (see, for example [57] and references therein). We focus our discussion
on the basic principles of space–time codes and next describe the two main flavors: trellis
and block codes.

4.3.1 Space–time code design criteria

In order to design practical codes that achieve a performance target we need to glean
insights from the analysis to arrive at design criteria. For example, in the flat-fading case
of (4.8) we can state the following rank and determinant design criteria [41, 74].

• Rank criterion. In order to achieve maximum diversity MtMr , the matrix B�x� e�

from (4.7) has to be full rank for any codewords x� e. If the minimum rank of B�x� e�

over all pairs of distinct codewords is q, then a diversity order of qMr is achieved.
• Determinant criterion. For a given diversity order target of q, maximize �

∏q
n=1 n�

1/q

over all pairs of distinct codewords.

A similar set of design criteria can be stated for the quasi-static ISI fading channel using
the PEP given in (4.10) and the corresponding error matrix given in (4.11). Therefore, if
we need to construct codes satisfying these design criteria, we can guarantee performance
in terms of diversity order. The main problem in practice is to construct such codes that
do not have a large decoding complexity. This sets up a familiar tension on the design in
terms of satisfying the performance requirements and having low-complexity decoding.

If coherent detection is difficult or too costly, one can employ non-coherent detection
for the multiple-antenna channel [46, 88]. Though it is demonstrated in [88] that a training-
based technique achieves the same capacity–SNR slope as the optimal, there might be a
situation where inexpensive receivers are needed because channel estimation cannot be
accommodated. In such a case, differential techniques which satisfy the diversity order
might be desirable. There has been significant work on differential transmission with
non-coherent detection (see, for example [45, 47] and references therein) and this is a
topic we discuss briefly in Section 4.4.1.

The rank and determinant design criteria given above are suitable for transmission
when we have a fixed input alphabet. As mentioned in Section 4.2.4, the rate–diversity
trade-off can also be explored in the context of the multiplexing rate (see Definition
4.3). Therefore, it is natural to ask for the code-design criteria in this context. For
the diversity–multiplexing guarantees, it is not clear that the rank and determinant
criterion is the correct one to use. In fact, in [29], it is shown that when designing
codes with the multiplexing rate in mind, the determinant criterion is not necessary
for specific fading distributions. However, it has been shown that the determinant
criterion again arises as a sufficient condition when designing codes for the diversity–
multiplexing rate trade-off for specific constructions (see [32, 86] and references
therein). For these constructions, it is shown that the determinant of the codeword
difference matrix plays a crucial role in the diversity–multiplexing optimality of the
codes.
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Another multiplexing rate context in which the codeword difference matrix plays a
crucial role in the space–time code design is in the design of approximately universal
codes [75]. Traditionally space–time codes are designed for a particular distribution of
the channel. Universal codes are designed to give an error probability which decays
exponentially in SNR for all channels that are not in outage. Therefore, this provides
a robust design rule which gives performance guarantees over the worst-case channel,
rather than averaging over the channel statistics. For the multiple-transmit single-receive
(MISO) channel, the code design is related to maximizing the smallest singular value of
the codeword difference matrix. This corresponds to a worst-case channel that aligns itself
with the weakest direction of the codeword difference matrix. This is in contrast to the
average case, where we are interested in maximizing the product of the singular values
(i.e. the determinant). In fact for MIMO channels, in certain cases, the maximizing the
determinant of the codeword difference matrix again arises as the universal code design
criterion [75].

4.3.2 Space–time trellis codes (STTC)

The space–time trellis encoder maps the information bit stream into Mt streams of symbols
(each belonging in a size-2b signal constellation) that are transmitted simultaneously.8

STTC design criteria are based on minimizing the PEP bound in Section 4.2.3.
As an example, we consider the eight-state 8-PSK STTC for two transmit antennas

introduced in [74]; the trellis description is given in Figure 4.2, where the edge label c1c2

means that symbol c1 is transmitted from the first antenna and symbol c2 from the second
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Figure 4.2. Eight-state 8-PSK space–time trellis code with two transmit antennas and a spectral
efficiency of 3 bits/sec/Hz.

8 The total transmitted power is divided equally among the Mt transmit antennas.
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Figure 4.3. Equivalent encoder model for an eight-state 8-PSK space–time trellis code with two
transmit antennas.

antenna. The different symbol pairs in a given row label the transitions out of a given
state, in order, from top to bottom. An equivalent and convenient (for reasons to become
clear shortly) implementation of the eight-state 8-PSK STTC encoder is depicted in Figure
4.3. This equivalent implementation clearly shows that the eight-state 8-PSK STTC is
identical to classical delay diversity transmission [67] except that the delayed symbol
from the second antenna is multiplied by −1 if it is an odd symbol, i.e. ∈ �1� 3� 5� 7�.
This slight modification results in an additional coding gain over a flat-fading channel.
We emphasize that this STTC does not achieve the maximum possible diversity gains
(spatial and multi-path) on frequency-selective channels; however, its performance is
near optimum for practical ranges of SNR on wireless links [34].9 Furthermore, when
implementing the eight-state 8-PSK STTC described above on a frequency-selective
channel, its structure can be exploited to reduce the complexity of joint equalization and
decoding. This is achieved by embedding the space–time encoder in Figure 4.3 in the two
channels h1�D� and h2�D�, resulting in an equivalent single-input single-output (SISO)
data-dependent CIR with memory �� +1� whose D-transform is given by

hSTTC
eqv �k�D� = h1�D�+pkDh2�D� � (4.19)

where pk = ±1 is data-dependent. Therefore, trellis-based joint space–time equalization
and decoding with 8�+1 states can be performed on this equivalent channel. Without
exploiting the STTC structure, trellis equalization requires 82� states and STTC decoding
requires eight states.

The discussion in this section just illustrates one STTC example. Several other full-rate
full-diversity STTCs for different signal constellations and different numbers of antennas
were presented in [74].

9 For examples of STTC designs for frequency-selective channels see, for example [54].
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4.3.3 Space–time block codes (STBC)

The decoding complexity of STTC (measured by the number of trellis states at the
decoder) increases exponentially as a function of the diversity level and the transmission
rate [74]. In addressing the issue of decoding complexity, Alamouti [5] discovered an
ingenious space–time block coding scheme for transmission with two antennas. According
to this scheme (see also Appendix 4.1), input symbols are grouped in pairs where symbols
xk and xk+1 are transmitted at time k from the first and second antennas, respectively.
Then, at time k + 1, symbol −x∗

k+1 is transmitted from the first antenna and symbol
x∗

k is transmitted from the second antenna, where ∗ denotes the complex conjugate
transpose (cf. Figure 4.4). This imposes an orthogonal spatio-temporal structure on the
transmitted symbols. Alamouti’s STBC has been adopted in several wireless standards
such as WCDMA [77] and CDMA2000 [78] due to the following attractive features.
First, it achieves full-diversity at full transmission rate for any (real or complex) signal
constellation. Second, it does not require CSI at the transmitter (i.e. open-loop). Third,
maximum-likelihood decoding involves only linear processing at the receiver (due to the
orthogonal code structure).

The Alamouti STBC has been extended to the case of more than two transmit antennas
[72] using the theory of orthogonal designs. There it was shown that, in general, full-
rate orthogonal designs exist for all real constellations for two, four, and eight transmit
antennas only, while for all complex constellations they exist only for two transmit
antennas (the Alamouti scheme). However, for particular constellations, it might be
possible to construct full-rate orthogonal designs for larger numbers of transmit antennas.
Moreover, if a rate loss is acceptable, then orthogonal designs exist for an arbitrary
number of transmit antennas [72].

The advantage of orthogonal design is the simplicity of the decoder. However, using
a sphere decoder, space–time codes that are not orthogonal, but are linear over the
complex field can also be decoded efficiently. A class of space–time codes known as
linear dispersion codes (LDC) was introduced in [43] where the orthogonality constraint
is relaxed to achieve a higher rate while still enjoying (expected) polynomial decoding
complexity for a wide SNR range by using the sphere decoder. This comes at the expense
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mapperInformation
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ST block code

c1 –c2

c2 c1

*

*
c1    c2

Figure 4.4. Spatial transmit diversity with Alamouti’s space–time block code.



154 Space–time coding for wireless communications

of signal constellation expansion and not guaranteeing maximum diversity gains (as in
orthogonal designs). With Mt transmit antennas and a channel coherence time of T , the
T ×Mt transmitted signal space–time matrix X in LDC schemes has the form

X =
Q∑

q=1

�qAq + j�qBq � (4.20)

where the real scalars �q and �q are related to the Q information symbols xq (that belong
to a size-2b complex signal constellation) by xq = �q + j�q for q = 1� 2� � � � �Q. This
LDC has a rate of �Q/T� log2 M . Several LDC designs were presented in [43] based on a
judicious choice of the parameters T ,Q and the so-called dispersion matrices Aq and Bq

to maximize the mutual information between the transmitted and received signals.
An alternate way to attain diversity is to build the diversity into the modulation through

constellation rotations. This basic idea was proposed by Boulle and Belfiore [10] and
Kerpez [51], and developed for higher-dimensional lattices by Boutros and Viterbo ([11]
and references therein). Therefore, one can construct modulation schemes with built-in
diversity, with the caveat that the constellation size is actually increasing. The point to note
here is that Theorem 4.2 refers to a rate versus diversity trade-off for a given constellation
size. Therefore, in order to consider the efficiency of coding schemes based on the rotated
constellations, one needs to take into account the expansion in the constellation size. As
an alternative to alphabet constraints, other constellation constraints have been studied in
order to produce codes with maximal rate as well as maximal diversity order (see [30]
and references therein). Therefore, constellation rotations without alphabet constraints can
yield the maximal performance of both rate (in terms of information constellation size)
and diversity order. Note that in these cases there is a difference between the information
constellation size and the constellation size of the transmitted codeword, which could be
much larger.

Therefore, in this sense, the rotated codes are actually more suitable in the context
of the diversity–multiplexing trade-off discussed in Section 4.2.4, where there are no
transmit alphabet constraints. In fact, using such rotation-based codes, several diversity–
multiplexing rate optimal codes have been constructed (see [32, 75, 86] and references
therein).

Recently, STBCs have been extended to the frequency-selective channel case by
implementing the Alamouti orthogonal signaling scheme at the block level instead of
the symbol level. Depending on whether the implementation is done in the time or the
frequency domain, three STBC structures for frequency-selective channels have been
proposed: time-reversal (TR)-STBC [53], OFDM-STBC [56], and frequency-domain-
equalized (FDE)-STBC [1]. As an illustration, next we present the space–time encoding
scheme for FDE-STBC. Denote the nth symbol of the kth transmitted block from antenna
i by x

�k�
i . At times k = 0� 2� 4� 
 
 
 pairs of length-N blocks x�k�

1 �n� and x�k�
2 �n� (for 0 ≤
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n ≤ N −1) are generated by the mobile user. Inspired by Alamouti’s STBC, we encode
the information symbols as follows [1]:

x�k+1�
1 �n� = −x∗�k�

2 ��−n�N � and x�k+1�
x �n� = x∗�k�

1 ��−n�N �

for n = 0� 1� 
 
 
 �N −1 and k = 0� 2� 4� 
 
 

(4.21)

where �·�N denotes the modulo-N operation. In addition, a cyclic prefix of length �

(the maximum order of the FIR wireless channel) is added to each transmitted block to
eliminate IBI and make all channel matrices circulant. We refer the reader to [2] for a
detailed description and comparison of these schemes. The main point we would like
to stress here is that these three STBC schemes can realize both spatial and multi-path
diversity gains at practical complexity levels. For channels with a long delay spread,
the frequency-domain implementation using a fast Fourier transform (FFT) either in a
single-carrier or multi-carrier fashion becomes more advantageous from a complexity
point of view.

4.3.4 A new non-linear maximum-diversity quaternionic code

In this section, we show how the STC algebraic structure inspires new code designs with
desirable rate–diversity characteristics and low decoding complexity.

The only full-rate complex orthogonal design is the 2 × 2 Alamouti code [5], and
as the number of transmit antennas increases, the available rate becomes unattractive.
For example, for four transmit antennas, orthogonal STBC designs with rates of 1

2 and
3
4 were presented in [72]. This rate limitation of orthogonal designs caused a recent
shift of research focus to non-orthogonal code design. These include a quasi-orthogonal
design [48] for four transmit antennas that has rate 1 but achieves only second-order
diversity. Full-diversity can be achieved by including signal rotations which expand the
constellation. Another approach is the design of non-orthogonal but linear codes [18]
for which decoding is efficient albeit not linear in complexity. In this project, we revisit
the problem of designing orthogonal STBC for 4 TX. Another reason for our interest
in orthogonal designs is that they limit the SNR loss incurred by differential decoding
to its minimum of 3 dB from coherent decoding. The proposed code in this proposal
is constructed by means of 2 × 2 arrays over the quaternions, thus resulting in a 4 × 4
array over the complex field. The proposed code is rate-1, full-diversity (for any M-
PSK constellation), orthogonal over the complex field, but is not linear. For QPSK, the
code does not suffer constellation expansion and enjoys a simple maximum-likelihood
decoding algorithm. Consider the 4×4 space–time block code

X =
[

p q

−q∗ q∗p∗q

�q�2

]
(4.22)



156 Space–time coding for wireless communications

where each block entry is a quaternion. There is an isomorphism between quaternions
q = q0 + iq1 + jq2 +kq3 and 2×2 complex matrices as follows:

q ↔
[

qc�0� qc�1�

−q∗c�1� q∗c�0�

]
= Q� (4.23)

where qc�0� = q0 + iq1, qc�1� = q2 + iq3. Therefore, we may replace the quaternions p

and q by the corresponding 2×2 complex matrices to obtain a 4×4 STBC with complex
entries. There is a classical correspondence between unit quaternions and rotations in R3

given by q −→ Tq � p −→ q∗pq (details of the transformation Tq are given in [14]).
For QPSK, maximum-likelihood decoding requires a size-256 search. Through linear
combining operations and appropriate application of the transformation Tq, we showed
how to exploit the quaternionic structure of this code to reduce the complexity of ML
decoding to a size-16 search without loss of optimality.

In Figure 4.5, the significant performance gains achieved by the code in (4.22)
in the IEEE 802.16 WiMAX environment [83] as compared to single-antenna
transmission/reception translate to a 1.5- and 2.6-fold increase in the cell coverage area
at 10−3 bit error rate when used with one and two receive antenna(s), respectively. We
also compare in Figure 4.5 the effective throughput of our proposed quaternionic code
with the rate- 3

4 full-diversity Octonion code given in (A4.1) assuming QPSK modulation
and an outer RS(15� 11) code for both. We observe that our proposed code achieves a
throughput level of 1
46 bits per channel use, whereas the achievable throughput for the
Octonion code is 1
1 bits per channel use (33% increase).

4.3.5 Diversity-embedded space–time codes

The trade-off between rate and diversity was explored within the framework of fixed
alphabets by Tarokh, Seshadri, and Calderbank [74] and by Zheng and Tse [89] within
an information-theoretic framework. Common to both is the observation that to achieve
a high transmission rate, one must sacrifice diversity and vice versa. Consequently a
large body of literature has mainly emphasized the design of codes that achieve a certain
level of diversity (typically maximal diversity order), and a corresponding rate associated
with it, i.e. a particular point on this rate–diversity trade-off (see [31, 59] and references
therein).

As explained at the end of Section 4.2.4, a different point of view was proposed
by Diggavi et al. [22, 23], where the code was designed to achieve a high rate but has
embedded within it a higher-diversity (lower-rate) code (see Figure 4.6). Moreover,
in this work it was argued that diversity can be viewed as a systems resource that
can be allocated judiciously to achieve a desirable rate–diversity trade-off in wireless
communications. In particular, it was argued that if one designs the overall system for
a fixed rate–diversity operating point, we might be over-provisioning a resource which
could be flexibly allocated to different applications. For example, real-time applications
need lower delay and therefore higher reliability (diversity) compared to non-real-time
applications. By giving flexibility in the diversity allocation, one can simultaneously
accommodate multiple applications with disparate rate–diversity requirements [23].
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Let � denote the message set from the first information stream and � denote that
from the second information stream. The rates for the two message sets are, respectively,
R��� and R���. The decoder jointly decodes the two message sets with average error
probabilities, P̄e��� and P̄e���, respectively. We design the code X�a� b�, such that a
certain tuple �Ra�Da�Rb�Db� of rates and diversities are achievable, where Ra = R��� =
log�����/T , Rb = R��� = log�����/T and analogously to [89] we define

Da = lim
SNR→�

log P̄e���

log�SNR�
� Db = lim

SNR→�
log P̄e���

log�SNR�

 (4.24)

For fixed-rate codes it has been shown in [23] that to guarantee the diversity orders
Da�Db we need to design codes such that

min
a1 �=a2∈�

min
b1�b2∈�

rank�B�xa1�b1
� xa2�b2

�� ≥ Da/Mr (4.25)

min
b1 �=b2∈�

min
a1�a2∈�

rank�B�xa1�b1
� xa2�b2

�� ≥ Db/Mr� (4.26)

where B is the codeword difference matrix as defined in (4.7). Basically, this implies
that if we transmit a particular message a ∈ �, regardless of which message is chosen
in message set �, we are ensured a diversity level of Da for this message set. A similar
argument holds for message set �. Using this criterion several diversity-embedded codes
have been constructed and will be discussed in the following. This design rule is a
generalization of the design rule for traditional space–time codes given in Section 4.3.1.

Linear diversity-embedded codes

In [23], linear constructions of diversity-embedded codes were given. These code designs
are linear over the complex field in order to be able to decode them efficiently using the
sphere decoder algorithm [19], which has an average complexity that is only polynomial
(not exponential) in the rate, making it an attractive choice for decoding high-rate codes.
Another constraint that we impose in our code designs is to not expand the transmitted
signal constellation, in contrast with other designs based on constellation rotations. For
illustration we focus on one code example given in [23].

Code example

Let � come from the message set �a�0�� a�1�� ∈ � and � come from
�b�0�� b�1�� b�2�� b�3�� ∈ �. Hence, Ra = 1

2 log ��� and Rb = log ���, leading to a total rate
of Ra +Rb = 3

2 log ���.

X = Xa +Xb =

⎡
⎢⎢⎣

a1 a2 b3 b4

−a∗
2 a∗

1 b∗
4 −b∗

3

b1 b2 a∗
1 −a2

−b∗
2 b∗

1 a∗
2 a1

⎤
⎥⎥⎦ � (4.27)

where Xa is a function of variables a1, a2 and Xb is a function of variables b1, b2, b3,
b4. This code is linear over the complex field so that it can be decoded using the sphere
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Figure 4.7. Performance of a diversity-embedding space–time block code with perfect and estimated
CSI.

decoder [20], where the average complexity is polynomial rather than exponential in the
rate. The proof that this code achieves diversity 3 for variables a1, a2 and diversity 2 for
variables b1, b2, b3, b4 makes essential use of quaternion arithmetic. The code does not
require channel knowledge at the transmitter and it outperforms time-sharing schemes
[23]. The performance of this code with perfect and estimated CSI over a quasi-static
flat-fading Rayleigh channel is depicted in Figure 4.7.

Non-linear diversity-embedded codes

Constructions of a class of non-linear diversity-embedded codes were given in [12, 25],
and we explain the principles behind these constructions here. The basic idea of this class
of non-linear codes is to use rank properties of binary matrices to construct codes in the
complex domain with the desired diversity-embedding property. Given two message sets
���, they are mapped to the space–time codeword X as shown below:

���
f1−→ K =

⎡
⎢⎣

K�1� 1� � � � K�1� T�














K�Mt� 1� � � � K�Mt�T�

⎤
⎥⎦

f2−→ X =
⎡
⎢⎣

x�1� 1� � � � x�1� T�














x�Mt� 1� � � � x�Mt�T�

⎤
⎥⎦ �
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where K�m�n� ∈ �0� 1�log�����, i.e. a binary string and x�m�n� ∈ �. This construction is
illustrated later in Figure 4.9 for a constellation size of L bits. The basic idea is that we
choose sets �1� � � � ��L from which the sequence of binary matrices which encode the
constellations are chosen. These sets of binary matrices are chosen so that they have given
rank guarantees which reflect the ultimate diversity orders required for each message set.
Given the diversity order requirements we can choose these sets appropriately. For example,
if we desire a single diversity order (i.e. no diversity embedding) then we can choose
all the sets of binary matrices to be identical. At the other extreme all the sets could be
different, yielding L different levels of diversity embedding. Given the message set, we first
choose the matrices K1� � � � � KL. The first mapping f1 is obtained by taking matrices and
constructing the matrix K ∈�Mt×T each of whose entries is constructed by concatenating the
bits from the corresponding entries in the matrices K1� � � � � KL into an L-length bit-string.

This matrix is then mapped to the space–time codeword through a constellation mapper
f2. This can be done by using an L-level binary partition of a quadrature amplitude
modulation (QAM) or PSK signal constellation (see Figure 4.8).

As shown above, this structure can be used for one to L levels of diversity order.
However, for simplicity, we restrict our attention to two levels of diversity (as shown in
Figure 4.6). For concreteness consider a 4-QAM constellation, with two levels of diversity
order, Da�Db. Given that L = 2, we then assign layer 1 to diversity order Da and layer
2 to Db with Da ≥ Db. We choose sets of binary matrices �1��2 with rank guarantees
Da/Mr�Db/Mr respectively. Let the set sizes be ��1� = 2TRa� ��2� = 2TRb , yielding the
appropriate rates Ra�Rb. Therefore, given a message ma ∈ ��mb ∈ �, we choose the
matrices K1 ∈ �1� K2 ∈ �2 corresponding respectively to the messages ma�mb. Given
K1� K2, we can construct the space–time code X as illustrated in Figure 4.9. If we have
constellations of size 2L with L > 2 and we still need two levels of diversity, we can assign
layers 1� � � � �La to choose matrices with the same binary set �1 with rank guarantee
Da/Mr and layers, La + 1� � � � �L to choose matrices from the binary set �2 with rank
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Figure 4.8. A binary partition of a 32-point QAM constellation.
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guarantee Db/Mr . By choosing set cardinalities as ��1� = 2TRa/La� ��2� = 2TRb/Lb , we get
the corresponding rates Ra�Rb for the two diversity orders. Therefore as before given
message ma ∈ ��mb ∈ �, we choose the sequence of matrices K1� � � � � KLa

∈ �1 based
on ma and matrices KLa+1� � � � � KL ∈�2 based on mb. Using this sequence of L matrices,
we obtain the space–time codeword as seen in Figure 4.9.

In all this, the choice of the sets �l� l = 1� � � � �L has been unspecified. However
in [58], sets of Mt × T binary matrices ��Mt�T� r� were constructed for T ≥ Mt such
that the difference of any two matrices in the set had rank �Mt − r� over the binary
field. They showed that such sets had a cardinality of ���Mt�T� r�� = 2T�r+1�. Therefore,
these matrices yielded a rate of r +1 bits/transmission. In our construction we use these
matrices, with dl = �Mt − rl�, with d1 ≥ d2 ≥ · · · ≥ dL. This yields a rate of Rl = rl + 1
in each layer. In [25] it is shown that this construction for QAM constellations achieves
the rate tuple �R1�Mrd1� � � � �RL�MrdL�, with the overall equivalent single-layer code
achieving the rate–diversity point, �

∑
l Rl�MrdL�. As described above, we can have the

desired number of layers by choosing several identical diversity/rate layers.
The optimal decoding is a maximum-likelihood decoder which jointly decodes the

message sets. The performance of such a decoder is examined further in Section 4.4.2
along with applications of diversity-embedded codes.

4.4 Applications

In this section, we show how the STC algebraic structure can be exploited to enhance
end-to-end system performance and reduce implementation complexity. This is illustrated
through signal processing examples, new STC code constructions, and by examining
interactions with the higher networking layers.

4.4.1 Signal processing

In this section, we demonstrate how the STC structure can be exploited to reduce
the complexity of receiver signal processing algorithms for channel estimation, joint
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equalization and decoding (both channel-estimate-based and adaptive), and non-coherent
detection.

Channel estimation for quasi-static channels

For quasi-static channels, CSI can be estimated at the receiver using a training sequence
embedded in each transmission block. For single-transmit-antenna signaling, the training
sequence is only required to have “good” (i.e. impulse-like) auto-correlation properties.
However, for the Mt transmit-antenna scenarios, the Mt training sequences should, in
addition, have “low” (ideally zero) cross-correlation. In addition, it is desirable (in order to
avoid amplifier non-linear distortion) to use training sequences with constant amplitude.
Perfect root of unity sequences (PRUS; see [16] have these ideal correlation and constant-
amplitude properties. However, for a given training sequence length, PRUS do not always
belong to standard signal constellations such as PSK. Additional challenges in channel
estimation for multiple-transmit-antenna systems over the single-transmit-antenna case
are the increased number of channel parameters to be estimated and the reduced transmit
power (by a factor of Mt) for each transmit antenna.

In [35], it was proposed to encode a single training sequence by a space–time encoder
to generate the Mt training sequences.10 Strictly speaking, this approach is suboptimum
since the Mt transmitted training sequences are cross-correlated by the space–time encoder
which imposes a constraint on the possible generated training sequences. However, it
turns out that, with proper design, the performance loss from optimal PRUS training is
negligible [35]. Furthermore, this approach reduces the training sequence search space
from �2b�MtNt to �2b�Nt (assuming equal input and output alphabet size of 2b and length-Nt

training sequences), making exhaustive searches more practical and thus facilitating the
identification of good training sequences from standard signal constellations such as PSK.

The search space can be further reduced by exploiting special characteristics of the
particular STC. As an example, consider the eight-state 8-PSK STTC for two transmit and
one receive antennas whose equivalent CIR is given by (4.19). For a given transmission
block (over which the two channels h1�D� and h2�D� are constant), the input sequence
determines the equivalent channel. By transmitting only “even” training symbols from
the sub-constellation Ce = �0� 2� 4� 6�, pk = +1 and the equivalent channel is given by
he�D� = h1�D�+Dh2�D�. On the other hand, transmitting only “odd” training symbols
from the sub-constellation C0 = �1� 3� 5� 7�, results in pk = −1 and the equivalent channel
ho�D� = h1�D�−Dh2�D�. After estimating he�D� and ho�D�, we can compute

h1�D� = he�D�+ho�D�

2
and h2�D� = he�D�−ho�D�

2D

 (4.28)

Consider a training sequence of the form s = �se so	, where se has length Nt/2 and takes
values in the Ce sub-constellation and so has length Nt/2 and takes values in the Co

10 We assume, for simplicity, the same space–time encoder for the training and the information symbols.
However, they could be different in general.
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sub-constellation. Note that if se is a good sequence in terms of MMSE for the estimation
of he�D�, the sequence so created as so = a se where a = exp�i�k/4� and any k = 1� 3� 5� 7
achieves the same MMSE for the estimation of ho�D�. Thus, instead of searching over all
possible 8Nt sequences s, we can further restrict the search space to the 4Nt /2 sequences
se. A reduced-size search can identify sequences se and so = a se such that the channel
estimation MMSE is achieved. We emphasize that similar reduced-complexity techniques
can be developed for other STTCs by deriving their equivalent encoder models (as in
Figure 4.3).

In summary, the special STC structure can be utilized to simplify training sequence
design for multiple-antenna transmissions without sacrificing performance.

Integration of equalization and decoding

Our focus will be on Alamouti-type STBC with two transmit antennas. The treatment can
be extended to more than two antennas using orthogonal designs [72] at the expense of
some rate loss for complex signal constellations.

The main attractive feature of STBC is the quaternionic structure (see Appendix 4.1
for more discussions on quaternions) of the spatio-temporal channel matrix. This allows
us to eliminate inter-antenna interference using a low-complexity linear combiner (which
is a spatio-temporal matched filter and is also the maximum-likelihood detector in this
case). Then, joint equalization and decoding for each antenna stream proceeds using any
of well-known algorithms for the single-antenna case which can be implemented either
in the time or frequency domains. For illustration purposes, we describe next a joint
equalization and decoding algorithm for the single-carrier frequency-domain-equalizer
(SC FDE)-STBC. A more detailed discussion and comparison is given in [2].

The SC FDE-STBC receiver block diagram is given in Figure 4.10. After analog-to-
digital (A/D) conversion, the CP part of each received block is discarded. Mathematically,
we can express the input–output relationship over the jth received block as follows:

y�j� = H�j�
1 x�j�

1 +H�j�
2 x�j�

2 + z�j� � (4.29)
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Figure 4.10. FDE-STBC receiver block diagram.
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where H�j�
1 and H�j�

2 are N ×N circulant matrices whose first columns are equal to h�j�
1

and h�j�
2 , respectively, appended by �N −� − 1� zeros and z�j� is the noise vector. Since

H�j�
1 and H�j�

2 are circulant matrices, they admit the eigen-decompositions

H�j�
1 = Q∗��j�

1 Q � H�j�
2 = Q∗��j�

2 Q �

where Q is the orthonormal FFT matrix and �
�j�
1 (resp
 �

�j�
2 ) is a diagonal matrix whose

�n�n� entry is equal to the nth FFT coefficient of h�j�
1 (resp
 h�j�

2 ). Therefore, applying
the FFT to y�j�, we find (for j = k�k+1)

Y�j� = Qy�j� = �
�j�
1 X�j�

1 +�
�j�
2 X�j�

2 +Z�j� 


The SC FDE-STBC encoding rule is given by Al-Dhahir [1]

X�k+1�
1 �m� = X∗�k�

2 �m� and X�k+1�
2 �m� = −X∗�k�

1 �m� (4.30)

for m = 0� 1� � � � �N −1 and k = 0� 2� 4� � � � . The length-N blocks at the FFT output are
then processed in pairs resulting in the two blocks (we drop the time index from the
channel matrices since they are assumed fixed over the two blocks under consideration)

[
Y�k�

Y∗�k+1�

]
︸ ︷︷ ︸

Y

=
[

�1 �2

−�∗
2 �∗

1

]
︸ ︷︷ ︸

�

[
X�k�

1

X�k�
2

]

︸ ︷︷ ︸
X

+
[

Z�k�

Z∗�k+1�

]
︸ ︷︷ ︸

Z

� (4.31)

where X�k�
1 and X�k�

2 are the FFTs of the information blocks x�k�
1 and x�k�

2 , respectively,
and Z is the noise vector. We used the encoding rule in (4.30) to arrive at (4.31). To
eliminate inter-antenna interference, the linear combiner �∗ is applied to Y. Owing to
the quaternionic structure of �, a second-order diversity gain is achieved. Then, the two
decoupled blocks at the output of the linear combiner are equalized separately using the
MMSE FDE [66] which consists of N complex taps per block that mitigate intersymbol
interference. Finally, the MMSE-FDE output is transformed back to the time domain
using the inverse FFT where decisions are made.

Adaptive techniques

The coherent receiver techniques described up to now require CSI which is estimated
and tracked using training sequences/pilot symbols inserted in each block and then
used to compute the optimum joint equalizer/decoder settings. An alternative to this
two-step channel-estimate-based approach is adaptive space–time equalization/decoding
where CSI is not explicitly estimated at the receiver. Adaptive receivers still require a
training overhead to converge to their optimum settings which, in the presence of channel
variations, are adapted using previous decisions to track these variations. The celebrated
least mean square (LMS) adaptive algorithm [44] is widely used in single-antenna
communication systems today due to its low implementation complexity. However, it has
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been shown to exhibit slow convergence and suffer significant performance degradation
(relative to performance achieved with the optimum settings) when applied to broadband
MIMO channels due to the large number of parameters that need to be simultaneously
adapted and the wide eigenvalue spread problems encountered on those channels. Faster
convergence can be achieved by implementing a more sophisticated family of algorithms
known as recursive least squares (RLS). However, their high computational complexity
compared to LMS and their notorious behavior when implemented with finite precision
limit their appeal in practice. It was shown in [87] that the orthogonal structure of STBC
can be exploited to develop fast-converging RLS-type adaptive FDE-STBC at LMS-type
complexity. A brief overview is given next.

Our starting point in deriving the adaptive algorithm is the relation

[
X̂�k�

1

X̂�k�
2

]
=

[
A1 A2

A∗
2 −A∗

1

]
Y � (4.32)

where Y was defined in (4.31) and the diagonal matrices A1 and A2 are given by

A1 = �∗
1
diag

{
1

�̃�i� i�+ 1
SNR

}N−1

i=0

� A2 = �∗
2
diag

{
1

�̃�i� i�+ 1
SNR

}N−1

i=0

� (4.33)

with �̃�i� i� = ��1�i� i��2 +��2�i� i��2. Alternatively, we can write

[
X̂�k�

1

X̂�k�
2

]
=

[
diag�Y�k�� −diag�Y∗�k+1��

diag�Y�k+1�� diag�Y∗�k��

][
W∗

1

W2

]
= Uk	 � (4.34)

where W∗
1 and W2 are vectors containing the diagonal elements of A∗

1 and A2, respectively,
and 	 is a 2N × 1 vector containing the elements of W∗

1 and W2. The 2N × 2N

quaternionic matrix Uk contains the received symbols for blocks k and k+ 1. Equation
(4.34) can be used to develop a frequency-domain block-adaptive RLS algorithm for W
which, using the special quaternionic structure of the problem, can be simplified to the
following LMS-type recursions (see [87] for details of the derivation)

	k+2 = 	k +
[

Pk+2 0
0 Pk+2

]
Uk+2�Dk+2 −Uk+2	k� � (4.35)

where Dk+2 =
[

X�k+2�
1 X∗�k+2�

2

]T

for the training mode and Dk+2 =
[

X̂�k+2�
1 X̂∗�k+2�

2

]T

for
the decision-directed mode. The N ×N diagonal matrix Pk+2 is computed by the recursion

Pk+2 = −1�Pk −−1Pk�k+2Pk� � (4.36)
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Figure 4.11. Block diagram of an adaptive FDE-STBC joint equalizer/decoder.

where the diagonal matrices �k+2 and �k+2 are computed from the recursions

�k+2 = diag�Y�k���k+2diag�Y∗�k��

+diag�Y�k+1���k+2diag�Y∗�k+1��

�k+2 = �IN +−1�diag�Y�k��Pkdiag�Y∗�k��

+diag�Y�k+1��Pkdiag�Y∗�k+1����−1 


The initial conditions are 	0 = 0, P0 = �IN , where � is a large number, and the forgetting
factor  is chosen to be close to 1.

The block diagram of the adaptive FDE-STBC is shown in Figure 4.11. Pairs of
consecutive received blocks are transformed to the frequency domain using the FFT, then
the data matrix in (4.34) is formed. The filter output (the product Uk	k−2) is transformed
back to the time domain using an inverse FFT (IFFT) and passed to a decision device to
generate data estimates. The output of the adaptive equalizer is compared to the desired
response to generate an error vector which is, in turn, used to update the equalizer
coefficients according to the RLS recursions. The equalizer operates in a training mode
until it converges, then it switches to a decision-directed mode where previous decisions
are used for tracking. When operating over fast time-varying channels, retraining blocks
can be transmitted periodically to prevent equalizer divergence (see [87]).

Non-coherent techniques

Non-coherent transmission schemes do not require channel estimation, hence eliminating
the need for bandwidth-consuming training sequences and reducing terminal complexity.
This becomes more significant for rapidly fading channels where frequent retraining
is needed to track channel variations and for multiple-antenna broadband transmission
scenarios where more channel parameters (several coefficients for each transmit–receive
antenna pair) need to be estimated. One class of non-coherent techniques are blind
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identification and detection schemes. Here, the structure of the channel (finite impulse
response), the input constellation (finite alphabet) and the output (cyclostationarity) are
exploited to eliminate training symbols. Such techniques have a vast literature and we refer
the interested reader to a good survey in [79]. Another class of non-coherent techniques
is the generalized ML receiver in [82].

Several non-coherent space–time transmission schemes have been proposed for flat-
fading channels including differential STBC schemes with two [71] or more [49] transmit
antennas and group differential STC schemes (see, for example [47] and references
therein). Here, we describe a differential space–time transmission scheme for frequency-
selective channels we recently proposed in [21] that achieves full diversity (spatial and
multi-path) at rate one11 with two transmit antennas. This scheme is a differential form
for the OFDM-STBC structure described in [56]. A time-domain differential space–time
scheme with single-carrier transmission is presented in [21].

We consider two symbols X1�m� and X2�m� drawn from a PSK constellation which, in
a conventional OFDM system, would be transmitted over two consecutive OFDM blocks
on the same subcarrier m. Following the Alamouti encoding scheme, the two source
symbols are mapped as

X�1��m� = �X1�m��X2�m�	T � X�2��m� = �−X∗
2�m��X∗

1�m�	T � (4.37)

where X�1� represents the information-bearing vector for the first OFDM block and X�2�

corresponds to the second OFDM block.12 Let N denote the FFT size. Then X�1� and
X�2� are length-2N vectors holding the symbols to be transmitted by the two transmit
antennas. Consequently, after taking the FFT at the receiver, we have (at subcarrier m)

(
Y1�m� Y2�m�

−Y ∗
2 �m� Y ∗

1 �m�

)

=
(

H1�m� H2�m�

−H∗
2 �m� H∗

1 �m�

)(
X1�m� −X∗

2�m�

X2�m� X∗
1�m�

)
+noise �

(4.38)

where H1�m� and H2�m� are the frequency responses of the two channels at subcarrier m.

For block k and subcarrier m, denote the source symbols as u�k�
m =

[
u

�k�
1�m u

�k�
2�m

]T

,

the transmitted matrix as X�k�
m , and the received matrix as Y�k�

m . Then, in the absence of
noise, (4.38) is written as Y�k�

m = HmX�k�
m , where we assume that the channel is fixed over

two consecutive blocks. Using the quaternionic structure of Hm, it follows that

Y∗�k−1�
m Y�k�

m = ��H1�m��2 +�H2�m��2� X∗�k−1�
m X�k�

m 


11 This does not include the rate penalty incurred by concatenating OFDM-STBC with an outer code and
interleaving across tones which is common to all OFDM systems (see, for example, [66] for more discussion).
12 Intuitively, each OFDM subcarrier can be thought of as a flat-fading channel and the Alamouti code is applied
to each of the OFDM subcarriers. As a result, the Alamouti code yields diversity gains at every subcarrier.
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Figure 4.12. Performance comparison between coherent and differential OFDM-STBC with 2TX,
1RX, QPSK modulation, an FFT size of 64, � = 8.

Since we would like to estimate the source symbols contained in

U�k�
m

def=
(

u
�k�
1�m −u

∗�k�
2�m

u
�k�
2�m u

∗�k�
1�m

)
�

we define the differential transmission rule X�k�
m = �X∗�k−1�

m �−1 U�k�
m . Note that no inverse

computation is needed in computing �X∗�k−1�
m �−1 due to the quaternionic structure of

X∗�k−1�
m . Figure 4.12 illustrates the 3 dB SNR loss of differential OFDM-STBC relative to

its coherent counterpart (with perfect CSI assumed) for an indoor wireless environment.

4.4.2 Applications of diversity-embedded codes

Given that we can construct diversity-embedded codes, we would like to examine
how such codes can impact the wireless communication system design. We follow
Diggavi et al. [25] in examining three applications of diversity-embedded codes: (i) A
natural application would be for applications requiring unequal error protection (UEP).
For example, image, audio, or video transmission might need multiple levels of error
protection for sensitive and less sensitive parts of the message. (ii) A second application
could be to improve the overall throughput by opportunistically using the good channel
realizations without channel state feedback. (iii) A third application could be in reducing
delay in packet transmission using the different diversity orders for prioritized scheduling.
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Figure 4.13. UEP performance of diversity-embedded codes.

In this section, we examine the impact of diversity embedding for each of these
applications by comparing it to conventional single-layer codes. In all the numerical
results we have Mr = 1. The numerical results given below are from [25].

In Figure 4.13, the performance of a diversity-embedded code which is designed for
Mt = 2 and 4-QAM signal constellation is given. In Figure 4.13(a), the embedded code
has Ra = 1 bit/transmission at diversity order Da = 2 and Rb = 2 bits/transmission at
diversity order Db = 1. We compare this with a “full-rate,” maximal diversity order code
(Alamouti code with R = 2 bits/transmission and diversity order D = 2). We also plot the
performance of uncoded transmission with rate R = 4 bits/transmission and diversity order
D = 1. Qualitatively, we can see that the embedded code gives two levels of diversity.
Note that as expected, we do pay a penalty in rate (or error performance) over a single-
layer code designed for the specific diversity order, but the penalty can be made smaller
by cutting the rate for one of the diversity layers as demonstrated in Figure 4.13(b).

Figure 4.14 illustrates the advantage of diversity-embedded codes in terms of
opportunistically utilizing the channel conditions without feedback. In Figure 4.14(a), we
see that for 4-QAM, and Mt = 2, the diversity-embedded code outperforms the Alamouti
single-layer code designed for full diversity. However, at very high SNR, single-layer
transmission designed at the lower diversity order outperforms a diversity-embedded
code since it transmits at a higher rate. This illustrates that for moderate SNR regimes,
diversity-embedded codes outperform single-layer codes in terms of average throughput.
Figure 4.14(b) for 8-QAM shows that this regime increases with constellation size.

In the final application given in [25], the delay behavior if we combine a rudimentary
ACK/NACK feedback about the transmitted information along with space–time codes, is
examined. In the single-layer code the traditional automatic repeat request (ARQ) protocol
is used wherein if a packet is in error, it is re-transmitted. In a diversity-embedded code,
since different parts of the information get unequal error protection, we can envisage
an alternative use of the ARQ. For two diversity levels, we assume that ACK/NACK is
received separately for each diversity layer. The mechanism proposed in [25] is illustrated
in Figure 4.15. The information is sent along two streams, one on the higher diversity
level and the other on the lower diversity level. If the packet on the higher diversity level
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Figure 4.15. ARQ mechanism for diversity-embedded codes using prioritized scheduling.

goes through but the lower diversity level one fails, then in the next transmission, the
failed packet is sent on the higher diversity level and therefore receives a higher “priority.”
Therefore the lower priority packet opportunistically rides along with the higher priority
packet and thereby opportunistically uses the channel to reduce the delay.

In Figure 4.16, we examine the impact of the ARQ mechanism illustrated in Figure
4.15 with a comparison to single-layer schemes. In Figure 4.16(a) we transmit both the
single-layer and the diversity-embedded code using the same transmit 4-QAM alphabet.
We assume that the diversity-embedded code gets ACK/NACK feedback on both levels
separately. Figure 4.16(b) illustrates the same principle, but with 8-QAM for the diversity-
embedded code and 4-QAM for the single-layer code. The single-layer scheme at the lower
diversity order (D = 1) has double the rate of the maximal diversity single-layer code. The
comparison is made for the same packet size and therefore it gets individual ACK/NACK
for its packets. Figure 4.16 shows that there is an SNR regime where diversity-embedded
codes give lower average delay than the single-layer codes. Qualitatively this is similar
to the throughput maximization of Figure 4.14.
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4.4.3 Interactions with network layers

Multiple access: interference cancellation

Spatial diversity implies that different users expect to see different channel conditions.
We can double the number of STBC users (and hence network capacity) by adding a
second receiver at the base-station and employing interference cancellation techniques.
We can also deliver higher rates by multiplexing parallel data streams, and in previous
work we have described how to use four antennas at the base-station and two antennas
at the mobile to deliver twice the standard data rate on a GSM channel.

Our approach is to use algebraic structure to design a single-receiver architecture that
cancels interference when it is present and delivers increased diversity gain when it is
not. We illustrate this for the Alamouti code by showing that a second antenna at the
receiver can separate two users, each employing the Alamouti code. Consider vectors
r1� r2 where the entries of ri are the signals received at antenna i over two consecutive
time slots. If c = �c1� c2� and s = �s1� s2� are the codewords transmitted by the first and
second users, then

r =
[

r1

r2

]
=

[
H1 G1

H2 G2

][
c
s

]
+

[
w1

w2

]
�

where the vectors w1 and w2 are complex Gaussian random variables with zero mean
and covariance N0I2. The matrices H1 and H2 capture the path gains from the first user
to the first and second receive antennas. The matrices G1 and G2 capture the path gains
from the second user to the first and second receive antennas. What is important is that
all these matrices share the Alamouti structure. Define

D =
[

I2 −G1G−1
2

−H2H−1
1 I2

]
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and observe that

Dr =
[

H 0
0 G

][
c
s

]
+

[
w̃1

w̃2

]
�

where H = H1 −G1G−1
2 H2 and G = G2 −H2H−1

1 G1.
The matrix D transforms the problem of joint detection of two co-channel users into the

separate detection of two space–time users. It plays the role of the decorrelating detector
in CDMA systems; detection of the codeword c is through projection onto the orthogonal
complement of �GT

1 � GT
2 	. The algebraic structure of the Alamouti code (closure under

addition, multiplication, and taking inverses) implies that the matrices H and G have the
same structure as H1� H2� G1, and G2. Next, we show how the algebraic structure of the
Alamouti code leads to a single-receiver structure that cancels interference when it is
present and delivers increased diversity gain when it is not. The covariance matrix M of
the received signal is given by

M = E�rr∗	 =
[

H1

H2

][
H∗

1 H∗
2

]
︸ ︷︷ ︸

orthogonal projection
on �h1�h2�

+
[

G1

G2

][
G∗

1 G∗
2

]
︸ ︷︷ ︸

orthogonal projection
on �g1�g2�

+ 1
SNR

I4

and if [
H1

H2

]
= [

h1 h2

]
and

[
G1

G2

]
= [

g1 g2

]

then it can be shown that if i �= j then for all integers k, we have hiM
kh∗

j = giM
kg∗

j = 0
(see Section 4 of [13]).

The MMSE receiver looks for a linear combination �∗r of received signals that is
close to some linear combination �1c1 +�2c2 of the codeword c. The solution turns out
to be

�1 = �M −h2h∗
2�

−1h1� �1 = 1� �2 = h∗
2M−1h1

1−h∗
2M−1h1

�2 = �M −h1h∗
1�

−1h2� �2 = 1� �1 = h∗
1M−1h2

1−h∗
1M−1h2




Either �1 = 0 and �2 = 1, or �2 = 0 and �1 = 1! The MMSE interference canceller
maintains the separate detection feature of space–time block codes; errors in decoding
c1 do not influence the decoding of c2 and vice versa. Generalizations to the case of
frequency-selected channels are described in [28].

Integration of physical, link, and transport layers

It is well-known that errors at the wireless physical layer reverberate across layers and
have a negative impact on transport control protocol (TCP) performance (see [6] and
references therein).
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Figure 4.17. TCP throughput with one (a) and two (b) transmit antennas.

Roughlyspeaking,TCPinterprets frame/packet lossesassignsofnetworkcongestion,and
cuts the transmission rate by half, whenever these error events occur. When the link layer does
not hide frame errors, TCP times out and does not transmit anything for a significant amount
of time. Figure 4.17 (see the discussion in [70]) shows the ability of space–time block codes
(in this case the Alamouti code) to shift the SNR point at which TCP breaks down resulting in
significant improvements in throughput. In this example, there are no frame retransmissions
at the link-layer, and the operating point is in an SNR region where the bit-error rate (BER)
performance with only one transmit antenna is below the TCP breaking-point threshold,
and the BER with space–time codes is above this particular threshold.

Network utility maximization (NUM)

This brief section provides a glimpse into an emerging foundation for networking that is
both mathematically rich and practically relevant, with a promising track record of impact
on commercial systems (for a survey see [15]).

The layered architecture is one of the most fundamental and influential structures in
network design. Each layer in the protocol stack hides the complexity of the layer below
and provides a service to the layer above. While the general principle of layering is widely
recognized as one of the key reasons for the enormous success of the Internet, there is little
quantitative understanding as a systematic, rather than an ad hoc, process of designing
a layered protocol stack for wired and wireless networks. One possible perspective
to rigorously and holistically understand layering is to integrate the various protocol
layers into a single coherent theory, by regarding them as carrying out an asynchronous
distributed computation over the network to implicitly solve a global objective. Such a
theory will expose the interconnection between protocol layers and can be used to study
rigorously the performance trade-off in protocol layering, as different ways to distribute
a centralized computation. Even though the design of a complex system will always be
broken down into simpler modules, this theory will allow us to carry out this layering
process systematically and to explicitly trade-off design objectives.



174 Space–time coding for wireless communications

The approach of “protocol as a distributed solution” to some global optimization
problem in the form of NUM has been successfully tested in trials for TCP. The key
innovation from this line of work is to view the network as an optimization solver
and the congestion control protocol as distributed algorithms solving a specified NUM.
The framework of NUM has recently been substantially extended from an analytic tool
of reverse-engineering TCP congestion control to a general approach for understanding
interactions across layers. Application needs form the objective function, i.e. the network
utility to be maximized, and the restrictions in the communication infrastructure are
translated into many constraints of a generalized NUM problem. Such problems may
be very difficult non-linear, non-convex optimization with integer constraints. There are
many different ways to decompose a given problem, each of which corresponds to a
different layering scheme. These decomposition (i.e. layering) schemes have different
trade-offs in efficiency, robustness, and asymmetry of information and control, thus some
are “better” than others depending on the criteria set by the network users and managers.

The key idea in “layering as optimization decomposition” is as follows. Different
decompositions of an optimization problem, in the form of a generalized NUM are mapped
to different layering schemes in a communication network, and from functions of primal
or Lagrange dual variables coordinating the subproblems to the interfaces among the
layers. Since different decompositions correspond to different layer architectures, we can
also tackle the question “how to and how not to layer” by investigating the pros and
cons of decomposition techniques. Furthermore, by comparing the objective function
values under various forms of optimal decompositions and suboptimal decompositions,
we can seek “separation theorems” among layers: conditions under which strict layering
incurs no loss of optimality. The robustness of these separation theorems can be further
characterized by sensitivity analysis in optimization theory: how much will the differences
in the objective value (between different layer schemes) fluctuate as constant parameters
in utility maximization are perturbed.

4.5 Discussion and future challenges

A discussion about the issues and trade-offs involved in MIMO system design is now
in order. These issues include the choice of key system parameters including the block
length, the carrier frequency, and the number of transmit/receive antennas in addition
to the operating environment conditions such as high versus low SNR, high versus low
mobility, and strict versus relaxed delay constraints.

The length of the transmission block N (relative to the symbol period and the channel
memory �) is an important design parameter. Shorter blocks experience less channel time
variation (which reduces the need for channel tracking within the block), incur smaller
delay, and have smaller receiver complexity (typically, block-by-block signal processing
algorithm complexity grows in a quadratic or cubic manner with the block size). On the
other hand, smaller blocks could incur a significant throughput penalty due to overhead
(needed for various functions including guard sequence, synchronization, training, etc.).
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Concerning the carrier frequency fc, the current trend is towards higher fc where
more radio-frequency (RF) bandwidth is available, the antenna size is smaller (at the
same radiation efficiency), and the antenna spacing requirements (to ensure independent
fading) are less stringent due to the decreased wavelength. On the other hand, the main
challenges in migrating towards higher fc are the higher costs of manufacturing reliable
RF components, the increased propagation loss, and the increased sensitivity to Doppler
effects.

When selecting the number of transmit/receive antennas, several practical consider-
ations must be taken into account, as described next. Under strict delay constraints,
achieving high diversity gains (i.e. high reliability) becomes critical in order to minimize
the need for retransmissions. Since transmit/receive diversity gains experience diminishing
returns as their numbers increase, complexity considerations dictate the use of small
antenna arrays (typically no more than four antennas at each end). Current technology
limitations favor using more antennas at the base-station than at the user terminal.

For delay-tolerant applications (such as data file transfers), achieving high throughput
takes precedence over achieving high diversity and larger antenna arrays (of course
still limited by cost and space constraints) can be used to achieve high spatial rate
multiplexing gains. Likewise, high-mobility channel conditions substantially impact the
choice of system parameters such as the use of shorter blocks, lower carrier frequencies,
and non-coherent or adaptive receiver techniques.

STTC [74] use multiple transmit antennas to achieve diversity and coding gains. The
first gain manifests itself as an increase in the slope of the BER versus SNR curve (on a
log–log scale) at high SNR, while the latter gain manifests itself as a horizontal shift in that
same curve. At low SNR, it becomes more important to maximize the coding gain while
at high SNR diversity gains dominate performance. For SNR ranges typically encountered
on broadband wireless terrestrial links, it might be wise to sacrifice some diversity gain
in exchange for more coding gain. For example, using only two transmit and one receive
antennas for a channel with a delay spread as high as 16 taps, the maximum (spatial
and multi-path) diversity gain possible is 16 × 2 × 1 = 32. For typical SNR levels in the
10–25 dB range, it suffices to design STCs that achieve a much smaller diversity level
(e.g. up to 8) to limit the receiver complexity and to use the extra degrees of freedom
in code design to achieve a higher coding gain. STC have also been shown to result in
significant improvements in the networking throughput [70].

Wireless networks present an opportunity to re-examine functional abstractions of
traditional network layer protocols. Cross-layer interactions in wireless networks can
optimize throughput by making additional performance information visible between layers
in the IP protocol stack. Spatial diversity is critical in improving data rates and reliability
of individual links and leads to innovations in scheduling that optimize global throughput.
Space–time codes designed for small numbers of transmit and receive antennas have
been shown to significantly improve link capacity, and also system capacity through
resource allocation. This coding technology can be integrated with sophisticated signal
processing to provide a complete receiver that has computational complexity essentially
implementable on current chip technology. This bounding of signal processing complexity
is important given the energy constraints at the mobile terminal.
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Many challenges still exist at the physical layer on the road to achieving high-rate and
reliability wireless transmission. We conclude this chapter by enumerating some of these
challenges.

• Signal processing. While effective and practical joint equalization and decoding
schemes that exploit the multi-path diversity available in frequency-selective channels
have been developed, the full exploitation of time diversity in fast time-varying
channels remains elusive. The main challenge here is the development of practical
adaptive algorithms that can track the rapid variations of the large number of taps in
MIMO channels and/or equalizers. While some encouraging steps have been made
in this direction [52, 87], the allowable Doppler rates (which depend on the mobile
speed and carrier frequency) for high performance are still quite limited.

Another signal processing challenge is the design of MIMO training sequences
that are resilient to practical impairments such as receiver synchronization errors (for
example, residual frequency offsets in OFDM). It is also of practical importance to
construct training sequences with low peak-to-average power ratio to extend battery
life by improving efficiency of the transmit power amplifier. Some of our recent
work in this area is described in [60, 61].

• Code design. One challenging code design problem that has attracted significant
interest recently is the design of practical space–time codes that achieve the optimal
rate–diversity trade-off [88] and have a practical decoding complexity. As mentioned
in Section 4.3, some progress has been made in [32, 75, 86]. Another challenging
problem is the design of non-coherent encoding/decoding schemes for the family of
diversity-embedding codes.

• Networking. The interference cancellation techniques described in Section 4.3 can be
extended in severaldirections. Given the importanceofmobileadhocnetworksand their
lack of fixed infrastructure and centralized control, it would be interesting to drop the
assumption of time-synchronous users and explore the asynchronous case. Furthermore,
given the commercial interest in wireless systems with four transmit antennas, it
is important to explore interference cancellation based on the octonion space–time
block code, and on the non-linear quaternionic code described in Section 4.3.4.

Another challenging problem is the investigation of cross-layer interactions
between embedded-diversity coding and link-layer ARQ protocols (which come in
several hybrid and selective forms). In particular, the reliability that is lost when
spatial diversity is traded for rate can be recovered by the time diversity gained
through ARQ retransmission. Conversely, when rate is traded for spatial diversity,
it would be interesting to quantify the value of the reduced latency in terms of
throughput, delay, and power consumption.

4.6 Bibliographical notes

The past decade has witnessed significant progress in the understanding and design of space–
time codes. The information-theoretic underpinnings of space–time codes were given in [76]
and [33]. These authors established that multiple antennas can make wireless communication
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a high data-rate pipe. Though the rudiments of transmit spatial diversity were proposed in
[81, 84], the basis of modern space–time coding was given in [5, 74]. Since then, space–time
codes have been extended through linear (see [30, 43, 72] and references therein) and non-
linear designs (see [42, 59] and references therein). In another line of work, non-coherent
space–time codes, their design, analysis and information-theoretic properties have been
studied by Hochwald and Marzetta [46], Hochwald and Sweldens [45], Hughes [47], Zheng
and Tse [89] and references therein.

The diversity–multiplexing trade-off was first established in [74] for transmit alphabet
size. The informat in the context of the fixed theoretic question was posed and answered
in [89]. Since then, there has been a significant effort in designing codes achieving
the diversity–multiplexing trade-off (see [32, 75, 86] and references therein). The idea of
diversity-embedded space–time codes was first proposed in [23] where design criteria
and some constructions were given. Diversity embedding from an information-theoretic
viewpoint was examined in [27].

There has been extensive work in the area of signal processing techniques for space–
time codes (see, for example, the papers in the special issue [4] and references therein).
A more extensive survey of developments in diversity communications can also be found
in [24]. Several recent textbooks [40, 80] give excellent introductions to modern wireless
communications.

Appendix 4.1 Algebraic structure: quadratic forms

The simplest form of transmit diversity is the delay diversity scheme proposed by
Wittneben [84] for two transmit antennas, where a signal is transmitted from the second
antenna, then delayed one time slot and transmitted from the first antenna. Orthogonal
designs [72] are a class of space–time block codes that achieve maximal diversity with
decoding complexity that is linear in the size of the constellation. The most famous
example was discovered by Alamouti [5], and is described by a 2 × 2 matrix where the
columns represent different time slots, the rows represent different antennas, and the
entries are the symbols to be transmitted. The encoding rule is

[
c1 c2

] →
[

c1 c2

−c∗
2 c∗

1

]



Assuming a quasi-static flat-fading channel, the signals r1� r2 received over two
consecutive time slots are given by

[
r1

−r∗
2

]
=

[
h1 h2

−h∗
2 h∗

1

][
c1

−c∗
2

]
+

[
w1

−w∗
2

]
�

where h1� h2 are the path gains from the two transmit antennas to the mobile, and the
noise samples w1�w2 are independent samples of a zero-mean complex Gaussian random
variable with noise energy N0 per complex dimension. Thus r = Hc+w� where the matrix
H is orthogonal. The reason for broad commercial interest in the Alamouti code is that
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both coherent and non-coherent detection are remarkably simple. If the path gains are
known at the mobile (typically this is accomplished at some sacrifice in rate by inserting
pilot tones into the data frame for channel estimation) then the receiver is able to form

H∗r = �h�2c +w′


The new noise term w′ is still white, so that c1� c2 can be decoded separately rather than
jointly, which is far more complex.

Let u0� u1� � � � � us−1 be positive integers, and let x0� x1� � � � � xs−1 be commuting
indeterminates. A real orthogonal design of type �u0� u1� � � � � us−1� and size N is an
N ×N matrix X with entries 0�±x0�±x1� � � � , ±xs−1 satisfying

XXT =
s−1∑
j=0

ujx
2
j IN 


There are s indeterminates and N time slots, so the rate of the orthogonal design is s/N .
N = 2. A real orthogonal design of type (1,1) and size N = 2 corresponds to the

representation of the complex numbers C as a 2×2 matrix algebra over the real numbers
R. The complex number x0 + ix1 corresponds to the matrix

[
x0 x1

−x1 x0

]



N = 4. A real orthogonal design of type (1,1,1,1) and size N = 4 corresponds to the
representation of the quaternions Q as a 4 × 4 matrix algebra over the real numbers R.
The quaternion x0 + ix1 + jx2 +kx3 corresponds to the matrix

⎡
⎢⎢⎣

x0 x1 x2 x3

−x1 x0 −x3 x2

−x2 x3 x0 −x1

−x3 −x2 x1 x0

⎤
⎥⎥⎦ = x0I4 +x1

⎡
⎢⎢⎣

1
−1

−1
1

⎤
⎥⎥⎦

+x2

⎡
⎢⎢⎣

1
1

−1
−1

⎤
⎥⎥⎦+x3

⎡
⎢⎢⎣

1
−1

1
−1

⎤
⎥⎥⎦ 


N = 8. A real orthogonal design of type (1� 1� � � � � 1) and size N = 8 corresponds to
the representation of the octonions or Cayley numbers as an eight-dimensional algebra
over the real numbers R. This algebra is non-associative as well as non-commutative.

A complex orthogonal design of size N and type �u0� u1� � � � � us−1� v1, v2� � � � � vt� is a
matrix Z = X+ iY, where X and Y are real orthogonal designs of type �u0� u1� � � � � us−1�

and �v1� v2� � � � � vt� respectively, and where

ZZ∗ =
s−1∑
j=0

ujx
2
j +

t∑
j=1

vjy
2
j IN 
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Since

ZZ∗ = �X + iY��XT − iYT � = �XXT +YYT �+ i�YXT −XYT �

it follows that YXT = XYT . A pair of real orthogonal designs that is connected in this
way is called an amicable pair (see [37] for more information). Note that if t = s, then
the entries of X+ iY are linear combinations of the complex indeterminates zk = xk + iyk

and their complex conjugates z∗
k = xk − iyk. In fact, the definition of a complex orthogonal

design found in [72] is given in terms of these indeterminates. The rate of a complex
orthogonal design is �s + t�/2N .

A complex design of size N with t = s+1 determines a real orthogonal design of size
2N through the substitution

x0 + ix1 →
[

x0 x1

−x1 x0

]



N = 2. This is the Alamouti space–time block code. We may view quaternions as
pairs of complex numbers, where the product of quaternions �a� b� and �c�d� is given
by �ac−bd∗� ad+bc∗�. These are Hamilton’s biquaternions, and if we associate the pair
�a� b� with the 2×2 complex matrix

[
a b

−b∗ a∗

]

then we see that the rule for multiplying biquaternions coincides with the rule for matrix
multiplication.

N = 4. The Alamouti space–time block code determines the full-rate 4 × 4 real
orthogonal design via the above substitutions. However the full-rate 8×8 real orthogonal
design cannot be obtained from a 4×4 complex design.

The representation of the octonions as 4-tuples of complex numbers provides an
example of an extremal complex design. The product c = ab of octonions a =
�a0� a1� a2� a3� and b = �b0� b1� b2� 0� is given by

c0 = a0b0 −b∗
1a1 −b∗

2a2 −a∗
3b3

c1 = b1a0 +a1b
∗
0 −a3b

∗
2 +b3a

∗
2

c2 = b2a0 −a∗
1b3 +a2b

∗
0 +b∗

1a3

c3 = b3a
∗
0 +a1b2 −b1a2 +a3b0


It follows that right multiplication of an octonion a by octonions of the form b =
�b0� b1� b2� 0� can be represented as ab = aR�b0� b1� b2� 0�, where

R�b0� b1� b2� 0� =

⎡
⎢⎢⎣

b0 b1 b2 0
−b∗

1 b∗
0 0 b2

−b∗
2 0 b∗

0 −b1

0 −b∗
2 b∗

1 b0

⎤
⎥⎥⎦ 
 (A4.1)
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The columns of this matrix are orthogonal; hence R�b0� b1� b2� 0� is a rate- 3
4 complex

orthogonal design.
Given t symmetric, anti-commuting orthogonal matrices of size N , let �t�N�− 1 be

the number of skew-symmetric, anti-commuting orthogonal matrices of size N that anti-
commute with the initial set of t matrices. The next two theorems are proved using
Clifford algebras [17] and are due to Wolfe [85].

Theorem A4.1 There exists an amicable pair X� Y of real orthogonal designs of size N ,
where X has type �1� � � � � 1� on variables x0� x1� � � � � xs−1 and Y has type �1� � � � � 1� on
variables y1� y2� � � � � yt, if and only if s ≤ �t�N�−1.

Theorem A4.2 Let X� Y be an amicable pair of real orthogonal designs of size N = 2hN0,
where N0 is odd. Then the total number of real variables in X and Y is at most 2h+2,
and this bound is achieved by designs X� Y that each involve h+1 variables.

In fact, a group of Pauli matrices that appears in the construction of quantum
error correcting codes can be used to construct pairs X� Y where the entries of X are
0�±x0� � � � �±xs and the entries of Y are 0�±y1� � � � �±yt [13].
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5 Fundamentals of receiver
design

5.1 Introduction

This chapter is devoted to MIMO receivers, with special focus on single-user systems
and frequency-flat channels (multi-user systems and more general channels will be the
subject of the next chapter). We start with a brief discussion of uncoded MIMO systems,
describing their optimum (maximum-likelihood, ML) receivers. Since these may exhibit
a complexity that makes them unpractical, it is important to seek receivers that achieve
a close-to-optimum performance while keeping a moderate complexity: these would
remove the practical restriction to small signal constellations or few antennas. Linear
receivers and receivers based on the sphere-detection algorithm are examined as possible
solutions to the complexity problem. Next, we study iterative processing of received
signals. We introduce here the idea of factor graphs. Their use offers a versatile tool,
allowing one to categorize in a simple way the approximations on which MIMO receivers
and their algorithms are based. In addition, they yield a “natural” way for the description
of iterative (turbo) algorithms, and of their convergence properties through the use of
EXIT-charts. Using factor graphs, we describe iterative algorithms for the reception of
MIMO signals, along with some noniterative schemes that can be easily developed by
using the factor-graph machinery.

A basic assumption in this chapter is that channel state information (i.e., the values
taken on by all path gains) is available at the receiver, while the transmitter knows the
channel distribution (i.e., the joint probability density function of the channel gains). In
addition, the channel is quasi-static (i.e., it remains constant throughout the transmission
of a whole data frame or codeword), and the transmitted signals are two-dimensional.

This chapter is organized as follows. Section 5.2 describes simple receivers for uncoded
signals. Section 5.3 introduces factor graphs, the sum–product algorithm, and the turbo
algorithms. The next two sections categorize MIMO receivers based on factor-graph
concepts. We consider separately uncoded (Section 5.4) and coded (Section 5.5) MIMO
systems. Finally, Section 5.6 provides additional details on some suboptimum receivers
that have been presented in the literature.

5.2 Reception of uncoded signals

We consider first uncoded MIMO transmission, and the usual input–output relation (see
Fig. 1.2)

y = Hx +n (5.1)
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where n is a spatio-temporally white zero-mean circularly symmetric complex Gaussian
(ZMCSCG) noise vector with variance N0 per component, and we have omitted, for
notational simplicity, the factor

√
Es/MT , as it is not relevant in our ensuing discussion.

ML detection of x requires the minimization, with respect to x, of a squared norm:

x̂ = arg min
x

�y −Hx�2
F = arg min

x

MR∑
i=1

∣∣∣∣∣yi −
MT∑
j=1

hi�jxj

∣∣∣∣∣
2

(5.2)

where hi�j is the �i� j�th component of the matrix H. It is seen that exact calculation of the
right-hand side of the above requires the summation of MR ×MT terms for each value of
x. The MT ×1 vector x can take on 2QMT values, where 2Q is the size of the modulation
format used, and Q is the number of bits per signal. This is the number of computations
of the norm in (5.2) necessary to the minimization if exhaustive search for the minimum
is used. We see, in particular, that the complexity of an ML receiver grows exponentially
with Q and MT , which restricts its implementation to small signal constellations and
small numbers of transmit antennas. We now describe briefly a number of detectors that,
at the possible price of a loss in performance, reduce the receiver complexity. Next, we
introduce an algorithm that allows one to achieve ML detection with a lower number of
calculations.

5.2.1 Linear receivers

The basic idea here is to preprocess the received signal by transforming it linearly:

ỹ � Ay = AHx +An

so that the transformed channel-matrix AH becomes close to a diagonal matrix. This
allows the detection of each component of x to be performed separately. The preprocessing
matrix A can be chosen to remove the off-diagonal elements of AH (zero-forcing receiver):

ỹ = H†y (5.3)

(H† is the Moore–Penrose pseudoinverse of H), or to minimize the joint effects of off-
diagonal elements of AH and of the filtered noise An (linear minimum mean-square error
receiver, or LMMSE):

ỹ =
(

HHH + N0

E
I
)−1

HHy (5.4)

where E is the average energy of one component of vector x, N0 is the noise variance,
and I is the MT ×MT identity matrix. It is expected that the simplification entailed by
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linear receivers comes at the price of a poorer performance, especially in the case of
a number of receive antennas equal to that of transmit antennas (see, e.g., [11] and
[29, p. 152 ff.]).

5.2.2 Decision-feedback receivers

The preprocessing step of decision-feedback detection entails the decomposition of the
channel matrix H in the form of the product [24, p. 112]

H = QR (5.5)

Assume for simplicity MR ≥ MT (the most general case is treated in [15]). Then,
QHQ = IMT

, and the MT ×MT matrix R is upper triangular. With this decomposition, the
transformed observed vector ỹ � QHy takes the form

ỹ = Rx + ñ (5.6)

with the transformed noise vector ñ � QHn retaining the statistical properties of n. It
can be immediately seen that minimizing the metric m�x� � �y −Hx�2

F is tantamount to
minimizing

m̃�x� � �ỹ −Rx�2
F (5.7)

The structure of R suggests the following detection technique: first detect xMT
by

minimizing �ỹMT
− rMT �MT

xMT
�2; then, using the decision x̂MT

, detect xMT −1 by minimizing
�ỹMT −1 − rMT −1�MT −1xMT −1 − rMT −1�MT

x̂MT
�2 +�ỹMT

− rMT �MT
x̂MT

�2. This algorithm is prone
to error propagation (in fact, a wrong detection of any component of x is likely to cause
wrong decisions of the components detected after it). Notice that the performance of the
decision-feedback receiver can be improved by optimizing the antenna labeling in some
way, i.e., the order in which the signal components are detected.

5.2.3 Sphere detection

The sphere detection algorithm (SDA) achieves the performance of ML (or a close
approximation to it) with lower complexity. The basic idea is to restrict the search for the
optimum x to a smaller subset of potential candidates. Typically, the search is constrained
to the interior of a hypersphere centered at y and having radius r:

�y −Hx�2
F ≤ r2 (5.8)

Observe that, if r = �, the use of (5.8) does not entail any complexity reduction, as the
problem is exactly the same as the ML detection problem. The complexity is actually
reduced if one is able to choose an appropriate value for r , i.e., one that is small enough
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to decrease considerably the number of vectors x to be checked, but not so small that the
hypersphere is empty.

There are several possible implementations of the basic idea of sphere detection (see,
e.g., [2, 6, 15] and references therein). Here we describe a simple version of the SDA,
and comment briefly on possible extensions. Consider a tree such that the bottom leaves
correspond to all possible vectors x, with the components of x labeling its branches
from bottom to top. Figure 5.1 shows such a tree for the case of three transmit antennas
and quaternary modulation. Assume further, without any loss in performance, that y is
premultiplied by QH as in (5.6). With reference to Figure 5.1, ML detection can be viewed
as traversing the tree by computing the metric m̃�x� = �ỹ−Rx�2

F for all its branches, and
retaining the minimum value found. SDA consists of reducing the number of branches to
be checked, by suitably pruning the tree.

A simple algorithm runs as follows. Using decision feedback as described in
Section 5.2.2, obtain a preliminary estimate x̂ of x, and compute the corresponding metric
m̃� x̂ � � �ỹ−Rx̂�2

F . This value is chosen as the square radius of the sphere within which
we look for the ML vector. The tree is now traversed, depth-first, from top to bottom,
and the metric computed incrementally by adding one by one the terms of the summation

�ỹ −Rx�2
F =

MT∑
i=1

�ỹi − �Rx�i�2 (5.9)

Whenever it is discovered that at a node the partial sum accumulated is already bigger
than or equal to m̃� x̂ �, then there is no point in checking the leaves below that node.
These are consequently pruned out, and hence removed from further consideration. If
a new x is found whose metric is smaller than m̃� x̂ �, then this takes the place of x̂ in
the rest of the algorithm (geometrically, this corresponds to shrinking the hypersphere in
which the ML x is searched).

x3

x2

x1

Fig. 5.1. A tree describing the implementation of the SDA for a MIMO system with MT = 3 and
quaternary modulation.
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Several variations of this basic algorithm are possible. Among these,

(1) Instead of having a tree with depth MT whose branches are labeled by complex
signals, one may generate a tree with depth 2MT with branches labeled by
real signals obtained by separating real and imaginary parts of the components
of x. In this way, the number of terms in (5.9), and hence the expected
number of nodes to be visited, increases, but the processing at a single node
decreases. In [6, p. 1569, Section III.B] it is argued that, for very large scale
integration (VLSI) implementation of the SDA, using complex signals may be more
efficient.

(2) A breadth-first search, or an L-best search, can be implemented in lieu of the depth-
first search described above. The L-best search consists of an approximation of the
breadth-first search, whereby at each level of the tree only L nodes are kept, namely,
those with the smallest partial metrics. This solution may not lead to the ML signal
(and hence is suboptimum), but it has the advantage of providing a deterministic
throughput.

(3) With branches labeled by real signals, and with a square signal constellation (e.g.,
64-QAM), a version of the SDA generates, at each node, a real interval where the
signals labeling the lower branches are searched for.

5.3 Factor graphs and iterative processing

We move now to the examination of iterative MIMO receivers. To motivate our study,
based on factor graphs, let us consider maximum a posteriori probability (MAP) decisions.
Specifically, assume a code in a signal space, that is, a set � of vectors x = �x1� � � � � xn�

whose components xi are elements of the signal set � . MAP decisions consist of observing
the output y = �y1� � � � � yn� of a channel whose input is x, and of finding

x̂i = arg max
xi∈�

f �xi � y�� i = 1� � � � � n (5.10)

where the maximization is consistent with the code structure. MAP decisions minimize
the symbol error probability. Notice also that, if all symbols are equally likely, MAP
decisions are equivalent to maximum-likelihood decisions.

Generally, the maximization in (5.10) is easy to perform once f �xi � y� has been
computed, as it is sufficient to compute this function for all possible values of xi (usually,
there is a relatively small number of them in � ). The complex part is the calculation of
the functions f�xi � y�, called a posteriori probabilities (APPs). In fact, this requires a
marginalization operation, i.e., the computation of

f�xi � y� =∑
x1

∑
x2

· · ·∑
xi−1

∑
xi+1

· · ·∑
xn

f�x � y� (5.11)
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where f�x � y� is known, and x ∈ � . It is convenient to introduce the compact notation
∼xi to denote the set of indices x1� � � � � xi−1� xi+1� � � � � xn to be summed over, so that
we can write

f�xi � y� =∑
∼xi

f�x � y� (5.12)

In this framework, the MAP decision on symbol xi, i = 1� � � � � n, is made in two steps:
marginalization (i.e., computation of f�xi � y�) and hard decision (i.e., maximization of
f�xi � y� with respect to xi).

5.3.1 Factor graphs

With xi ∈ � , i = 1� � � � � n, the complexity of marginalization, computed as in (5.11),
grows exponentially with n. A simplification can be achieved when f , the function to be
marginalized, can be factored as a product of functions, each with less than n arguments.
Consider, for example, a function f�x1� x2� x3� that factors as follows:

f�x1� x2� x3� = g1�x1� x2�g2�x1� x3� (5.13)

Its marginal f1�x1� can be computed as

f1�x1� �
∑
∼x1

f�x1� x2� x3�

=∑
x2

∑
x3

g1�x1� x2�g2�x1� x3� =∑
x2

g1�x1� x2� ·∑
x3

g2�x1� x3�

where we see that this marginalization can be achieved by computing separately the
two simpler marginals

∑
x2

g1�x1� x2� and
∑

x3
g2�x1� x3�, and finally taking their product.

This procedure can be represented in a graphical form by drawing a factor graph. This
describes the fact that the function f factors as in (5.13), and is shown in Fig. 5.2. Each
node here can be viewed as a processor that computes a function whose arguments label
the incoming edges, and each edge as a channel along which these processors exchange
data. We see that the first sum

∑
x2

g1�x1� x2� can be computed locally at the g1 node,
because x1 and x2 are available there; similarly, the second sum

∑
x3

g2�x1� x3� can be
computed locally at the g2 node, because x1 and x3 are available there.

Formally, we describe a (normal) factor graph as a set of nodes, edges, and half-
edges. Every factor corresponds to a unique node, and every variable to a unique edge
or half-edge. The node representing the function g is connected to the edge or half-edge
representing the variable x if and only if x is an argument g. Half-edges are connected

x2 x1
x3g1 g2

Fig. 5.2. Factor graph of the function f�x1� x2� x3� = g1�x1� x2�g2�x1� x3�.
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to only one node, and terminate in a filled circle •. In the example of Fig. 5.2 we have
two nodes representing the factors g1 and g2, one edge, and two half-edges. An important
feature of factor graphs is the presence or absence of cycles: we say that a factor graph
has no cycles if removing any (regular) edge partitions the graph into two disconnected
subgraphs. A cycle of length � is a path through the graph that includes � edges and
closes back on itself. The girth of a graph is the minimum cycle length of the graph.

The definition of normality assumes implicitly that no variable appears in more than
two factors. For example, the graph of Fig. 5.3(a) does not satisfy our definition: in fact,
the variable x1 appears as a factor of g1, g2, and g3, and as a result it corresponds to more
than one edge. To be able to include in our graphical description also functions that factor
as in Fig. 5.3(a), we need to “clone” the variables appearing in more than two factors.
By doing this, any factor graph can be transformed into a normal one without any loss
of generality or of efficiency [18]. We now explain how this can be done.

The Iverson function

Let P denote a proposition that may be either true or false; we denote by �P� the Iverson
function

�P� �
{

1� P is true
0� P is false

Clearly, if we have n propositions P1� 	 	 	 � Pn, we have the factorization

�P1 and P2 · · · and Pn� = �P1��P2� · · · �Pn�

This function allows the transformation of any graph into a normal one. In fact, define
the “repetition” function r= (with three arguments, as a special case) as

r = �x1� x′
1� x′′

1� � �x1 = x′
1 = x′′

1 � (5.14)

This transforms the branching point of Fig. 5.3(a) into a node representing a repetition
function. Thus, the graph of Fig. 5.3(a) is transformed into the normal graph of Fig. 5.3(b).

=

(b)(a)

x2 x3
x1

x2 x3
x1

x″

x4 x4

g1

g3

g2 g2

g3

g1

1

x′1

Fig. 5.3. Factor graph of the function f�x1� x2� x3� x4� = g1�x1� x2�g2�x1� x3�g3�x1� x4�. (a) Non-
normal form. (b) Normal form.
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5.3.2 Examples of factor graphs

Here we describe some examples of factor graphs that play a central role in the study of
coded communication systems.

Tanner graphs

A linear binary block code can be represented by its Tanner graph. Consider an �N�K� linear
binary code � with words x, and its �N −K�×n parity-check matrix1

H =
⎡
⎢⎣

h1
			

hN−K

⎤
⎥⎦

The condition for the binary N -tuple x to be a word of � is that the following �N −K�

constraints be satisfied:

hix
′ = 0� i = 1� � � � �N −K

where �·�′ denotes transpose. Using the Iverson function, we can write

�x ∈ �� = �h1x′ = 0� � � � � hN−Kx′ = 0� =
N−K∏
i=1

�hix
′ = 0� (5.15)

The ith factor in the right-hand side of the equation above can be represented in graphical
form as a sum node

⊕
, connecting branches corresponding to the components of x that

+

+

+

= H = 

1

0 1 1 1

11

1110

0 0

00 0

0 0

0

0

0

x2

x3

x1

x4

x5

x6

x7

Fig. 5.4. Normal Tanner graph of a linear binary code with parity-check matrix H. The graph has
no cycles.

1 In this chapter we are using the same notation, H, for the MIMO channel matrix and the parity-check matrix of
a block code. Both are standard, time-honored notations that we do not want to change here, as we are confident
that no confusion will arise.
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+

= =
1

1

1 1

1 10

0

x2

x3x1

x4

H = 

+

Fig. 5.5. Normal Tanner graph of a linear binary code with parity-check matrix H. The graph has
one cycle.

are checked by hi. Figures 5.4 and 5.5 show examples of Tanner graphs without cycles
and with one cycle, respectively.

TWLK (Tanner–Wiberg–Loeliger–Koetter) graphs

Normal graphs can also be used to describe codes originally described by a trellis (e.g.,
terminated convolutional codes). A trellis can be viewed as a set of triples �
i−1� xi�
i�

describing which state transitions 
i−1 → 
i are driven by the channel symbol xi at time
i− 1, with i = 1� � � � � n. Let �i denote the set of branches in the trellis joining state 
i−1 to
state 
i. Then the set of branch labels in �i is the domain of a variable xi, while the set of
nodes at time i − 1 (respectively, i) is the domain of the state variable 
i−1 (respectively,

i). The initial and final state variables (corresponding to time 0 and time N , respectively)
take on a single value. The local function corresponding to the ith trellis section is

��
i−1� xi�
i� ∈ �i� (5.16)

and the whole trellis corresponds to a product of Iverson functions (Fig. 5.6):

�x ∈ �� =
n∏

i=1

��
i−1� xi�
i� ∈ �i� (5.17)

a

a

b

b0

1

1

0

2

3

�i = {(0, a, 0), (0, b, 2), (1, b, 1), (1, a, 3)}

xi    {a, b}

σi –1 σi

σi –1 σi

xi

Fig. 5.6. A section of a trellis and the node representing it in a normal TWLK graph.
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Notice how in this representation the graph edges are associated with states, the filled
dots with symbols, and the nodes with constraints. Notice also that the code representation
may be made more comprehensive by adding nodes corresponding to the source symbols
that drive the transitions between pairs of states. Denoting by ui these symbols, we have
the trellis description

�x ∈ �� =
n∏

i=1

��
i−1� ui� xi�
i� ∈ �i� (5.18)

As a simple example, Fig. 5.7 shows the Tanner graph, the trellis, and the TWLK
graph of the binary repetition code with length 4. The repetition nodes in part (b) of the
figure illustrate the fact that, in each trellis section, the coded symbol, the starting state,
and the ending state coincide.

Factor graph of a dispersive channel

Consider now factor graphs of channels. Our first example refers to a channel affected by
additive white Gaussian noise and linear intersymbol interference. Specifically, assume
that it responds to the complex N -tuple x = �x1� � � � � xN �′ with the �N + L�-tuple y =
�y1� � � � � yN+L�′, where

yk =
L∑

i=0

hixk−i +nk

and xi = 0 for i < 0. The samples nk form a complex Gaussian noise process, and
h0� � � � � hL are the channel gains, with L the channel memory. By suitable definition of
the �N +L�×N channel matrix H, we can write

y = Hx +n

where n is a complex Gaussian-noise vector, whose components are independent, with
zero mean and equal variances ��ni�2 = N0. The input–output relationship of the channel
can be described by the conditional probability density function (pdf)

f�y � x� ∝ exp
(−�y −Hx�2

F /N0

)=
N+L∏
k=1

f�yk � x� (5.19)

0 0 0 0

1
1

1
1

(a) (b)

=

==

Fig. 5.7. Three representations of the binary �4� 1� repetition code: (a) Normal Tanner graph, and
(b) Trellis and TWLK graph.
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where

f�yk � x� � exp

(
−�yk −

N∑
i=1

xihk−i�2/N0

)
(5.20)

The factor graph corresponding to the factorization (5.19) is shown in Fig. 5.8.
As a special case of the above, a memoryless (i.e., intersymbol-interference-free)

channel has L = 0, and hence

f�y � x� =
N∏

k=1

f�yk � xk� (5.21)

The corresponding factor graph is disconnected, as shown in Fig. 5.9.

Factor graph of a MIMO channel

Assume now a MIMO channel with MT transmit and MR receive antennas, as in (5.1).
The input–output relationship of the channel is described by the conditional pdf

f�y � x� ∝ exp
(−�y −Hx�2

F /N0

)=
MR∏
k=1

f�yk � x� (5.22)

where

f�yk � x� � exp
(−�yk −hkx�2/N0

)
(5.23)

and hk denotes the kth row of H. The factor graph corresponding to factorization (5.22)
is shown in Fig. 5.10. Note the similarity of this factor graph with that of Fig. 5.8: in both
cases interference is present (there, intersymbol interference; here, spatial interference).2

. . .

. . .= = =

x1

f ( y1 | x) f ( y2 | x) f ( yN+L | x)

x2 xN

Fig. 5.8. Factor graph of a dispersive channel.

. . .

x1

f ( y1 | x1) f ( y2 | x2) f ( yN | xN)

x2 xN

Fig. 5.9. Factor graph of a memoryless channel.

2 Multi-user detection can also be viewed in this framework, where interference is due to multiple users
accessing a common channel (see [13]).
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x1 x2 xMT

. . .

. . .
= = =

f ( y2 | x) f ( yMR
 | x)f ( y1 | x)

Fig. 5.10. Factor graph of a MIMO channel.

5.3.3 The sum–product algorithm

The sum–product algorithm (SPA) computes efficiently the marginals of a function whose
factors are described by a normal factor graph. This works when the graph is cycle-free,
and yields, after a finite number of steps, the marginal function corresponding to each
variable associated with an edge.

In this algorithm, two messages are associated with each edge, one for each direction.
Each message, denoted by ��xi�, is a function of the variable xi, and depends on the
direction. It is given in the form of a vector, whose components are the values taken on
by the message with correspondence to the values of xi. Messages that are probability
distributions of binary variables can be conveniently represented as a single number, the
ratio between two probabilities or its logarithm. In fact, as we are interested in MAP
decisions, the message ��0��1� can be equivalently represented as �1��1/�0�, or as
�0� log��1/�0��, and only the second component of the vector needs processing [18, 25].

Consider the node representing the factor g�x1� � � � � xn� (see Fig. 5.11). The message
�g→xi

�xi� out of this function node along the edge xi is the function

�g→xi
�xi� =∑

∼xi

g�x1� � � � � xn�
∏
� �=i

�x�→g�x�� (5.24)

. . .

x1

xi

μ x1→g(x1)

μ xn→g(xn)

g

xn
μg→ xi

(xi)

Fig. 5.11. The basic step of the sum–product algorithm.
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where �x�→g�x�� is the message incoming on edge x�. In words, the message �g→xi
�xi� is

the product of g and all messages towards g along all edges except xi, summed over all
variables except xi. Half-edges, which are connected to a single node, transmit towards
it a message with constant value 1.

Two important special cases are as follows.

(1) If g is a function of only one argument xi, then the product in (5.24) is empty, and
we simply have (see Fig. 5.12)

�g→xi
�xi� = g�xi�

(2) If g is the repetition function f=, then we have (see Fig. 5.13)

�f=→xi
�xi� =∏

� �=i

�x�→f=�xi� (5.25)

A simple example

Consider the function

f�x1� x2� x3� = g1�x1�g2�x1� x2�g3�x2� x3�

g
xi

g(xi)

Fig. 5.12. The basic step of the sum–product algorithm when a node is a function of only one
argument.

. . .

μ x1→ f = (x1)

=

x1

xn

μ xn→ f = (xn)

xi

∏ μ x� → f = (xi)
� ≠ i

Fig. 5.13. The basic step of the sum–product algorithm when a node represents the repetition
function f=.
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g1
x1

g2

μg2 → x2
(x2)

μg3 → x2
(x2)

x2

g3 x3

Fig. 5.14. Factor graph of the function g1�x1�g2�x1� x2�g3�x2� x3�, and messages exchanged by the
sum–product algorithm applied to the marginalization with respect to the variable x2.

whose factor graph is shown in Fig. 5.14. Its marginalization with respect to x2 can be
computed as follows:

f2�x2� =∑
x1

∑
x3

g1�x1�g2�x1� x2�g3�x2� x3�

=∑
x1

g2�x1� x2� g1�x1�︸ ︷︷ ︸
�g1→x

�x1�
1︸ ︷︷ ︸

�g2→x
�x2�
2

·∑
x3

g3�x2� x3�

︸ ︷︷ ︸
�g3→x

�x2�
2

which corresponds to the product of the two messages along edge x2 exchanged by the SPA.

Scheduling

The messages in the graph must be computed in both directions for each edge. After
all of them are computed according to some schedule, the product of the two messages
associated with an edge yields the marginal function sought. It should be observed here that
the choice of the computational schedule may affect the algorithm efficiency. A possible
schedule consists of requiring all nodes to update their outgoing messages whenever their
incoming messages are updated. In a graph without cycles, message computation may
start from the leaves, and proceed from node to node as the necessary terms in (5.24)
become available. In the flooding schedule, the messages are transmitted along all edges
simultaneously [25].

5.3.4 Factor graph with cycles: iterative algorithms

On a graph with cycles, a version of the SPA can still be applied, by implementing
the sum–product step (5.24) locally at any node after specifying a set of initial values,
a computational schedule, and a stopping rule [25]. However, this iterative (“turbo”)
algorithm may not converge, or it may converge to an incorrect APP distribution: exact
conditions for convergence are a topic of current research. Although a formal proof is still
missing, it is commonly accepted that the presence of short cycles should be avoided, as
they hinder convergence, but if the girth of the factor graph is very large, the loop-free
approximation can be made.3 To guarantee that the girth is large, so that the graph can

3 In [31], it is proven that the assumption of a graph without cycles holds asymptotically, as n grows large, for
low-density parity-check codes, while for turbo codes it has only a heuristic justification.
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be made locally cycle-free within some radius of any vertex, the systems should have
a large number of variables, and in addition an interleaver should be introduced in the
system: this is done, for example, with low-density parity-check codes and with turbo
codes. Under these conditions, in many practical cases the algorithm does converge to a
probability distribution yielding correct decisions: for this reason it is used in practice to
decode powerful codes (see, e.g., [18] and [7, Chapter 9]).

Approximations of the basic iterative algorithm, based on a complexity/performance
trade-off, are also possible. We shall describe infra some of them for the specific problem
of MIMO receivers. Approximations may be aimed at transforming the original factor
graph into one without cycles, which is especially useful when the graph girth cannot be
increased due to the small number of variables.4 The elimination of some cycles can also
be achieved. For example, messages can be transformed as follows [18, 20, 43].

(1) If all components of a message, except one, are nulled (this operation corresponds to
a “hard decision” on a symbol), then the message in the opposite direction need not
be computed.

(2) If all components of a message are made equal (this operation corresponds to the
“erasure” of a symbol), then only the message in the opposite direction need be
computed.

In both cases (1) and (2), the original undirected graph is converted into a partially
directed one. Node “clustering” [25] can also eliminate cycles, or the original graph may
be transformed into its dual, with the dual version of the sum–product algorithm used
on it [18].

5.3.5 Factor graphs and receiver structures

Let us now return to the problem of MAP detection of a transmitted symbol xi. We have
observed that we should find the maximum over xi of the conditional pdf f�xi � y�, where
y denotes the observation corresponding to the transmission of vector x. The computation
of f�xi � y� can be done in two steps: first, by factoring f�x � y�, next by marginalizing it
with respect to xi. Observe that

f�x � y� ∝ f�x�f�y � x�

The pdf f�x� describes our knowledge of the transmitted-signal statistics, while f�y � x�

describes what we know about the channel. Two cases are especially interesting.

4 Removal of cycles without approximations is always possible, but it may come at the expense of an
unacceptable increase in computational complexity.
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(1) The transmitted signals are uncoded. If we assume them independent, with known a
priori probabilities, then

f�x� =
N∏

i=1

f�xi�

(2) The transmitted vectors x are (equally likely) words of code � . Since f�x� = 1/�� � if
x is a codeword, while f�x� = 0 otherwise, we write

f�x� ∝ �x ∈ ��

Special cases were examined in Section 5.3.2.

Decoding over a general channel

Since we have

f�x � y� ∝ �x ∈ ��×f�y � x�

the factor graph of the factorization of f�x � y� is obtained by joining the code graph
(which describes the function �x ∈ ��) to the channel graph (which describes the function
f�y � x�). The corresponding sum–product algorithm is schematized in Fig. 5.15, where
i�xi� is called the intrinsic message, and e�xi� the extrinsic message of the code function
(if reference is made to the channel function, then the terms “intrinsic” and “extrinsic”
are interchanged).

We have, for i = 1� � � � �N ,
⎧⎪⎨
⎪⎩

i�xi� =∑
∼xi

f�y � x�
∏
j �=i

e�xj�

e�xi� =∑
∼xi

�x ∈ ��
∏
j �=i

i�xj�

In the special case of a memoryless channel, we have explicitly

i�xi� = f�yi � xi�

which shows how e�xi� depends on the code structure, and on the observation of all
components of y except yi (this explains why message e�xi� is called extrinsic).

. . .

[x ∈� ]

i(x1) e(x1) i(xN) e(xN)

f (y | x)

Fig. 5.15. Sum–product algorithm corresponding to decoding over a general channel.
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e(x1) i(x1) e(xN) i(xN)

f (xN)f (x1)

f (
 
y | x)

Fig. 5.16. Sum–product algorithm corresponding to equalizing a general channel.

Equalizing a dispersive channel

Without coding, the assumption is that the components of vector x are independent
random variables, so we can write

f�x � y� ∝
N∏

i=1

f�xi�×f�y � x�

The corresponding sum–product algorithm is schematized in Fig. 5.16, where

⎧⎪⎨
⎪⎩

i�xi� = f�xi�

e�xi� =∑
∼xi

f�y � x�
∏
j �=i

i�xj�

5.4 MIMO receivers for uncoded signals

As mentioned before, detection of uncoded signals at the output of a MIMO channel can
be viewed as a special case of equalization of a general channel. We have the normal
graph shown in Fig. 5.17, which corresponds to the factorization

f�x � y� ∝
MT∏
i=1

f�xi�×f�y � x1� � � � � xMT
�

=
MT∏
j=1

f�xi�×
MR∏
j=1

f�yj � x� (5.26)

with f�yj � x� given in (5.23).
The graph of Fig. 5.17 has cycles, but in practice iterative algorithms may not be

suitable, unless a very large number of antennas produces a very large girth. Thus, a
number of noniterative receivers have been advocated, which avoid the complexity of
direct marginalization. We categorize them in our factor-graph context. In particular,
we classify suboptimum MIMO receivers by considering three types of possible
simplifications, whose combination generates a taxonomy of detection algorithms.

(1) The structure of the factor graph is made simpler. This can be obtained by
preprocessing the received signal, typically in order to limit the effects of spatial
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Fig. 5.17. Factor graph corresponding to the APP detection of uncoded signals at the output of a
MIMO channel.

interference. We call interface a preprocessor transforming the observed vector y into
vector ỹ. Linear interfaces, which we denote by A�H� to stress their dependence on
the channel matrix H, operate by transforming y into

ỹ � A�H�y = A�H�Hx +A�H�n (5.27)

as we described briefly in Section 5.1.
(2) The messages exchanged among the graph nodes are approximated by some simplified

versions.
(3) The detection algorithm consists of a single sweep involving a finite number of steps.

5.4.1 Linear interfaces

We re-examine here the two linear interfaces examined in Section 5.1, and describe the
modifications they induce on the factor graph, as well as the resulting algorithms.

Zero-forcing interface

The linear transformation

ỹ = H†y

yields

ỹ = x +H†n

which shows that the spatial interference is completely removed from the received signal,
and justifies the name zero-forcing (ZF) used for this interface. Thus, the factor graph
becomes the one shown in Fig. 5.18, which is disconnected, and hence allows symbol-by-
symbol decisions. A well-understood drawback of ZF is the resulting noise enhancement
that turns out from the modification of the noise covariance matrix.
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Fig. 5.18. Factor graph corresponding to MIMO receiver factorization with a ZF interface.

Linear MMSE interface

Another preprocessing technique is based on the minimization of a mean-square error
(MSE). The linear minimum MSE (LMMSE) interface is obtained from the minimization
of the MSE

���Ay −x�2
F �

under the assumption of independent, identically distributed (iid) transmitted symbols. In
the general setting of (5.27), LMMSE is characterized by the matrix

A�H� =
(

HHH + N0

Es

I
)−1

HH (5.28)

where Es denotes the average energy of a transmitted symbol. Matrix A�H� exists for all
possible pairs MT �MR.

Spatial interference is mitigated since the off-diagonal terms in A�H�H are smaller
than the diagonal terms and can be neglected in a suboptimal receiver. The resulting
factor graph simplifies as illustrated by Fig. 5.19, where the neglected interfering links
are drawn as dotted lines. As a result, some residual spatial interference remains, but as

= = =. . .
x1

f (x1)

f 1

f (xMT –1) f (xMT 
)

xMT –1 xMT

fMT –1 fMT
fi =  f ( yi | x1, . . . , xMT

 )

Fig. 5.19. Factor graph corresponding to MIMO receiver factorization with an MMSE interface.
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an approximation it can be disregarded. The resulting detection algorithm is based on the
approximation

f�ỹi � x1� x2� � � � � xMT
� ≈ f�ỹi � xi� (5.29)

As shown in [11]–[29, p. 152 ff.], ZF and LMSSE interfaces perform well under the
condition that MR is significantly larger than MT .

5.4.2 Linear interfaces with nonlinear processing

A class of suboptimum receivers called V-BLAST is based on the following three
operations.

(1) Nulling of spatial interference. This is obtained by modifying the factor graph through
a linear preprocessing operation that transforms yi into ỹi for all i.

(2) Cancellation of spatial interference. This is obtained by simplifying the function
nodes as follows:

f�ỹi � xi� xi+1� � � � � xMT
� ≈ f�ỹi � xi� x̂i+1� � � � � x̂MT

�

sequentially for i = MT −1�MT −2� � � � � 1, where x̂ denotes a decision made on the
value of x.

(3) Ordering. This consists of ordering the antennas on which the above two steps are
performed, as discussed for example in [4, 12]. Here it suffices to observe that, since
V-BLAST is prone to error propagation, antenna ordering may affect considerably
the receiver performance.

Zero-forcing V-BLAST

Several variants of V-BLAST exist. Zero-forcing V-BLAST can be derived from the QR
factorization of the matrix H according to (5.5), and is characterized by the matrix

A�H� = Q† (5.30)

Hence,

A�H�y = Rx +Q†n

Since R is an upper triangular matrix, every ỹi, i = 1� � � � � min�MT �MR, depends only
on xj for j = i� � � � � t. The resulting factor graph simplifies as illustrated by Fig. 5.20.

A detection algorithm on the graph of Fig. 5.20 is based on the approximation (5.29),
and works with a single sweep, as follows:

x̂MT
= arg max

x∈x
f�ỹMT

� xMT
� (5.31)

x̂i = arg max
x∈x

f�ỹi � xi� x̂i+1� � � � � x̂MT
�� i = MT −1� � � � � 1 (5.32)

This detection algorithm yields a solution in MT steps.
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Fig. 5.20. Factor graph corresponding to MIMO receiver factorization with a V-BLAST interface.

LMMSE V-BLAST

LMMSE V-BLAST can be obtained by the minimization of the following MSE (where
G and R̂ are unknown matrices and R̂ is strictly upper triangular, i.e., Ri�j = 0 for i ≤ j):

�2�G� R̂� � ���Gy − R̂x −x�2
F �

= ����GH − R̂ − I�x +Gn�2
F �

= ���GH − R̂ − I�2
F +N0�G�2

F � (5.33)

The optimum matrices are obtained (after some algebra, as shown in [12]) as follows.
First, calculate the Cholesky factorization

H†H +�sIt = S†S

where S is an upper triangular matrix. Next, G and R̂ are given by
{

G = diag−1�S��S†�−1H†

R̂ = diag−1�S�S− I
(5.34)

In the general setting of (5.27), MMSE V-BLAST is characterized by the matrix

A�H� = G (5.35)

Hence, the detection algorithm is the same as the one illustrated for ZF V-BLAST with
matrix R = I+ R̂ obtained from (5.34). As discussed in [4], MMSE V-BLAST performs
better than ZF V-BLAST, especially at intermediate signal-to-noise ratios.

5.5 MIMO receivers for coded signals

With coded MIMO, long codewords and the presence of an interleaver allow the use
of receivers based on iterative SPA, although noniterative algorithms have also been
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proposed. The latter can be viewed as extensions of those described above in the context
of uncoded MIMO (for details, see [11, 12]).

A space–time codeword with block length N is described by the MT × N matrix
X � �x1� � � � � xN �. The row index of X indicates space, while the column index indicates
time: to wit, the ith component of the MT -vector xn, denoted xi�n, is a complex number
representing the two-dimensional signal transmitted by the ith antenna at discrete time n,
n = 1� � � � �N , i = 1� � � � �MT . The received signal is the MR ×N matrix Y = �y1� � � � � yN �,
with

Y = HX +N (5.36)

where N is a matrix of independent, zero-mean, circularly symmetric complex Gaussian
random variables (RVs) each having variance N0. Thus, the noise affecting the received
signal is spatially and temporally white, with ��NN†� = NN0IMR

. The channel is described
by the MR ×MT matrix H. Here we assume, as stated at the onset of this chapter, that H
is independent of both X and N, it remains constant during the transmission of an entire
codeword, and its realization (the channel-state information) is known at the receiver.

If the space–time code � is used, we have the factorization

f�X � Y� ∝ �X ∈ ��
N∏

n=1

f�yn � xn� (5.37)

corresponding to the factor graph of Fig. 5.21 where the interleaver � is included so as
to maximize the girth of the factor graph (a tilde denotes the variables after interleaving).
Notice also that, with reference to the block diagram of Fig. 1.2, the lower blocks of
Fig. 5.21 correspond to the symbol demapper.

5.5.1 Iterative sum–product algorithm

Consider again Fig. 5.21, and disregard for notational simplicity the presence of the
interleaver (thus, x̃i�n = xi�n). According to the basic step of the sum–product algorithm,

. . .. . .

. . .

. . .

. . .

. . .

[X ∈ � ]

x1, 1

x1, 1

f (y1 | x1) f (yN | xN)

xMT 
,1

x1, N xMT 
, NxMT 

,1

π

x1, N
��

� �

� xMT 
, N

�

Fig. 5.21. Factor graph corresponding to space–time encoded MIMO with an interleaver.
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the upper node, corresponding to the function �X ∈ ��, outputs messages that we denote
by �↓�xi�n� and are given by

�↓�xi�n� = ∑
∼xi�n

�X ∈ ��
∏

�j�m��=�i�n�

�↑�xj�m� (5.38)

where �↑�xi�n� are the messages output by the functional nodes f�yi � xi�, given by

�↑�xi�n� = ∑
∼xi�n

f�yn�xn�
∏
j �=i

�↓�xj�n� (5.39)

If the above messages are known exactly, the APPs can be computed as

f�xi�n � Y� ∝ �↓�xi�n��↑�xi�n� (5.40)

To interpret (5.40), let us focus first on the upper functional block of Fig. 5.21, and on its
edge corresponding to symbol xi�n. The APP of this symbol is proportional to the product
of two quantities:

(1) The extrinsic message e�xi�n� � �↓�xi�n�

(2) The intrinsic message i�xi�n� � �↑�xi�n�

(When we consider the lower functional blocks of Fig. 5.21, �↓�xi�n� plays the role of
the intrinsic message, and �↑�xi�n� that of the extrinsic message.) We have

f�xi�n � Y� ∝ e�xi�n�i�xi�n� (5.41)

In this context, the iterative sum–product (“turbo”) algorithm is one that exchanges
extrinsic messages after suitable interleaving/deinterleaving. This algorithm computes
repeatedly the two-way messages associated with the edges of the graph, until a
termination criterion stops the iterative process, after which the APPs are computed and
used for MAP decoding. The generation of extrinsic messages from the upper block
may be called “soft decoding” of � . For a code described through its TWLK graph, soft
decoding can be done through the BCJR algorithm or its approximation (see, e.g., [5]
or [7, Chapter 8]).5 The calculation of extrinsic messages from the lower blocks, called
“demapping,” or “APP equalization,” is more complex, as the factor graph corresponding
to the function f�yn � x̃n� has no special structure enabling efficient calculation of (5.39).
Hence, the computational complexity of (5.39) grows exponentially with MT N , the
product of the number of transmit antennas by the codeword length. Thus, low-complexity
iterative receivers should focus on approximations of this operation.

5 An interesting special case occurs when � is itself a turbo code, and hence requires iterative soft decoding:
see infra.
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5.5.2 Low-complexity approximations

From the iterative sum–product algorithm described above, we can derive several low-
complexity approximations. The procedure to do this can be described as the combination
of two steps.

(1) The received signal Y is linearly preprocessed to transform it into the matrix

Ỹ = A�H�Y = A�H�HX +A�H�N (5.42)

A typical consequence of preprocessing is a simplification in the structure of the
factor graph. As an example, if A�H� is the left pseudoinverse of H, then the factor
graph corresponding to each function f�yi � x̃i� in Fig. 5.21 becomes disconnected,
as the function factors into the product of MT terms. This considerably simplifies the
calculation of (5.39).

(2) The messages exchanged among the graph nodes are approximated by some simplified
versions. We classify these message approximations as hard and soft interference
cancellation (IC).

Message approximation: hard and soft decisions

An approach to simplifying the messages exchanged in the iterative algorithm symbols
consists of approximating them with vectors with only one nonzero component. This
can be done by replacing the random interfering symbols by their corresponding hard
decisions, i.e., by replacing the messages �↓�xi�n� with the Iverson functions

�̃↓�xi�n� � �xi�n = arg max
x

�
�k�
↓ �xi�n = x��

With this approximation, the summation in (5.39) reduces to a single term and hence a
single probability f�yn � xn� is computed.

Another way of simplifying the message functions consists of approximating them
by Gaussian distributions with the same mean and variance of the original (discrete)
distribution. The corresponding “soft-decision” approximation leads to a simple result
when the conditional distribution of the observations, given the transmitted signals, is
Gaussian as well. If this is the case,

f�yn � xn� = ��N0�
−MR exp�−�yn −Hxn�2

F /N0� (5.43)

The mean and variance of xi�n are given by

mi�n �
∑
x∈x

x�↓�xi�n = x�

and


2
i�n �

{∑
x∈x

�x�2�↓�xi�n = x�

}
−�mi�n�2
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respectively. Then, in order to calculate (5.39), we need to average f�yn � xn� with respect
to all the random Gaussian approximations of xj�n corresponding to j �= i. Assuming that
x is circularly distributed normal with mean m and covariance matrix �, which we write
x ∼ �c�m���, we have

x = det����−1 exp�−�x −m�†�−1�x −m���

and we obtain, from y = Hx +n,

�x�f�y � x�� = det���H�H† +N0Ir ��
−1

· exp�−�y −Hm�†�H�H† +N0Ir �
−1�y −Hm�� (5.44)

Next, by setting

�mi�n�x��j =
{

mj�n j �= i

x j = i
and ��i�n�x��j�k =

{

2

j�n j = k� j �= i

0 otherwise

we obtain the following approximation to the messages �↑�xi�n�:

�̃↑�xi�n = x� ∝ �c�mi�n�x�� H�i�n�x�H† +N0Ir �� x ∈ x

5.5.3 EXIT-charts

Since turbo algorithms operate on extrinsic probabilities, their convergence behavior can
be studied by examining how these evolve in time. A convenient graphical description
of this process is given by EXIT-charts [33], which yield approximate, yet reasonably
accurate, results. An EXIT-chart is a graph that illustrates the convergence of the iterative
SDA by showing the transformations induced on a single parameter associated with input
and output extrinsic messages. Let us focus for simplicity on a binary alphabet � =
�±1. The rationale behind EXIT-charts stems from the observation that the logarithmic
likelihood ratio (LLR)6

��x� � ln
e�x = +1�

e�x = −1�

is well approximated by a conditionally normal random variable (we write ��x ∼
� ���
2�) whose pdf f�� � x� satisfies the “consistency condition”

��� = 
2

2
(5.45)

where � and 
2 denote the conditional mean and the variance, respectively. Hence, under
this condition, a single parameter (e.g., 
2) completely defines f�� � x�.

6 Here we drop the subscripts i� n to simplify the notation.
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To justify the above, assume an AWGN channel so that the observed signal is

y = x+ z

with z ∼ � �0�
2
z �. Since

f�y � x� = 1√
2�
z

e−�y−x�2/2
2
z

the log-likelihood ratio

��y� � ln
f�y � x = +1�

f�y � x = −1�

takes value

��y� = 2

2

z

�x+ z� (5.46)

and hence, given x, � is conditionally Gaussian:

��y� � x ∼ �

(
2

2

z

x�
4

2

z

)
(5.47)

The observation that the conditional mean value of � equals the variance multiplied by
x/2 allows us to write the pdf of the LLR in the form

f�� � x� = 1√
2�


e−��−x
2/2�2/2
2
(5.48)

EXIT-charts describe the evolution of f�� � x� by showing the evolution of one
parameter derived from it. A common, convenient choice [38] is the mutual information
I�x��� between x and �, defined as7

I�x��� = 1
2

∑
x∈�±1

∫
f�� � x� log2

f�� � x�

f���
d� (5.49)

with f��� = 0	5�f�� � x = −1�+f�� � x = +1��.
If condition (5.45) is satisfied, then ��x ∼ � �x
2/2�
2�, and hence I�x��� depends

only on 
2. We have, explicitly, I�x��� = J�
2�, where

J�
2� � 1−
∫ �

−�
1√

2�

e−��w−x
2/2�2/2
2� log2�1+ e−xw�dw (5.50)

The function J�
2� is plotted in Fig. 5.22.

7 The notation here is not the most felicitous one, as it does not distinguish between the random variable x and
the values it takes on. We put up with it, as it is commonly used in the literature.
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Fig. 5.22. Plot of the function J�
2� defined in (5.50).

If f���x� is not known, then an approximation of the mutual information (5.49),
proposed in [36], is the following:

I�x��� ≈ 1− 1
S

S∑
k=1

log2 �1+ exp�−xk�k�� (5.51)

where �k, xk, k = 1� � � � � S, denote samples of the random variables �, x.
Refer again to Fig. 5.15. Since we assume � = �±1, we can denote the messages

exchanged as binary random vectors ��x� = ���x = +1����x = −1�� representing
probability distribution estimates. Since ��x = +1�+��x = −1� = 1, each one of these
messages is equivalently represented by the logarithm of the ratio of its components, i.e.,
by the LLR

�i = ln
��xi = +1�

��xi = −1�

This allows us to write I�x��� instead of I�x���. Specifically, we have two types of
messages:

(1) Input intrinsic messages �i�x� = i�x�

(2) Output extrinsic messages �e�x� = e�x�

It follows that we can define the intrinsic and extrinsic mutual informations as I i � I�x��i�

and Ie � I�x��e�, respectively.
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We are now ready to describe the behavior of each one of the functional blocks of
Fig. 5.15 by giving its extrinsic information transfer (EXIT) function

Ie = T�I i� (5.52)

EXIT functions can be obtained by Monte Carlo simulation. The general algorithm used
to derive the values of Ie from those of I i, and hence the EXIT function T , can be outlined
as follows (examples can be found in [23, 33, 37], and will be illustrated below).

(1) Generate a sample input vector x with K random entries in �±1.
(2) Choose a value of I i, and generate the vector of messages �i�x� entering the functional

block, under the constraint

I�x��i�x�� = I i

(3) Operate the SPA to obtain the extrinsic messages e�x� at the output of the block.
(4) Estimate Ie by using the approximation (5.51).

Notice that the EXIT-chart analysis is approximate, as it is based on the assumption of
independent extrinsic probabilities, which holds for an infinite-length interleaver. Thus,
some inaccuracies must be expected [26, 33, 37]. Nevertheless, the practical usefulness of
EXIT-charts for convergence predictions is unquestioned.

We now specialize to decoders and to demappers the algorithm for the derivation of
EXIT functions.

EXIT-charts of decoders

Under the assumption of a stationary memoryless channel, the conditional pdf f�y � x�

can be factored into the product
∏

i f�yi � xi�, and we have, from (5.50),

I i = J�
2
i �

Here the intrinsic information comes from channel observations, and 
2
i is the variance

of the additive noise.
A random vector u ∈ �±1K of uncoded symbols, K ≤ N , is generated, and passed

to the encoder of an �N�K� code. This outputs the codeword x ∈ �±1N . A Gaussian
random noise generator outputs, for each component x of x, the LLR �i such that

�i�x ∼ �

(
x


2
i

2
�
2

i

)

where 
2
i = J−1�I i�. The decoder outputs the LLRs �e. S values of it are used to

approximate Ie through (5.51), so that no Gaussian assumption is imposed on �e.
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Fig. 5.23. EXIT functions of rate-1/3, rate-1/2, and rate-2/3 RSC codes specified in the legend
(rate-2/3 codes are obtained by puncturing corresponding rate-1/2 codes). The curves plot Ie

against I i.

Figure 5.23 shows the EXIT functions referring to rate-1/3, rate-1/2, and rate-2/3
recursive systematic convolutional (RSC) codes with different generators and number
of states. Rate-2/3 codes are obtained by puncturing corresponding rate-1/2 codes. The
curves plot the mutual information Ie against I i. A notable common feature of these
EXIT-charts is that they can be regarded as smoother versions of a unit step function
whose level transition occurs at a value of I i equal to the code rate R. This can be
interpreted by observing that I i is equivalent to the mutual information exchanged between
the transmitted symbol x and the received signal y, and hence equals the capacity.
A capacity-achieving code can attain reliable communication if and only if I i > R, and
hence its EXIT curve would exhibit a sharp transition of the extrinsic mutual information
from 0 (unreliable communication) to 1 (reliable communication) in correspondence of
I i = R. Finite-complexity codes generate the smoother behavior exhibited by the EXIT
curves of Fig. 5.23.

Figure 5.24 refers to a rate-1/2 parallel turbo-code whose constituent RSC encoders
have generators �5� 7�. The curves plot the mutual information Ie vs. I i for different
numbers of iterations of the turbo decoding algorithm. Notice also how the transition
near R, which is symmetric for convolutional decoders, becomes asymmetric for turbo
decoders. These also show a migration from the “unreliable communication” condition
slower than convolutional codes of similar rate, but, as the number of iterations increases,
a faster acquisition of the “reliable communication” condition.
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Fig. 5.24. EXIT functions of a rate-1/2 parallel turbo-code whose constituent RSC encoders have
generators �5� 7�. The curves plot Ie against I i for different numbers of iterations of the turbo
decoding algorithm.

EXIT-charts of demappers

To evaluate the EXIT-chart of the demapper, we define a map (modulator) from the set
of binary m-vectors

xi = �xi1� � � � � xim�T

where xij ∈ �±1, to a signal set �:

�m � �±1m �→ �

Then, vector x = �xT
1 � � � � � xT

t �T is first generated and then passed through the modulator
to yield the vector

s = m�x� � ��m�x1�� � � � ��m�xt��
T

which is passed through the MIMO channel to obtain the received vector

y = Hm�x�+n

Vector y provides the message �i consisting of the conditional pdf

f�y � x� = ��
2
i �−MR exp�−�y −Hm�x��2

F /
2
i � (5.53)
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sampled at all possible values of x ∈ �±1mt. The evaluation of the extrinsic probability
distribution (message �e) depends on the specific approximation of the APP demapper
considered.

No approximation

When an APP demapper is used without approximations, exact calculation of the extrinsic
messages is generally complex. We may apply the approximation (5.51) to the samples
�e

ij .

Interference cancelers with linear filtering

Interference cancellation (IC) is based on the generation of soft estimates ŝ of the
transmitted symbol vector s that are used to eliminate, in an iterative fashion, the spatial
interference. For each transmit antenna, i = 1� � � � �MT , the soft estimates are computed
as follows:

ŝi = ∑
si∈�

sif�si� (5.54)

where, assuming that the bits contributing to the transmission of s are independent,
f�si� = f�xi� =∏m

j=1 f�xij� if si = �m�xi�.
Then, the IC block outputs, for each antenna i, the following soft values

ŷi = y −H ŝ+hiŝi

= hisi +
∑
j �=i

hj

(
sj − ŝi

)+n (5.55)

which are subsequently processed by the antenna-specific linear filters as described in
the following.

MMSE filter. The MMSE filter operates by minimizing over f the mean square error
���fH

i ŷi −xi�2�. As a result, the filter vector fi is obtained as

fi =
[

2

z Ir +H�
2
i HH

]−1
hi (5.56)

where �
2
i = diag�
2

1 � � � � �
2
i−1� 1�
2

i+1� � � � �
2
t � and the variances 
2

i are given by


2
i = ���si − ŝi�2�
= ∑

si∈�
�si�2f�si�−�ŝi�2 (5.57)

Recalling (5.54), the output of the ith filter is given by

ỹi = �ici +�i (5.58)
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where �i = fH
i hi and where �i is a complex Gaussian random variable with zero mean

and variance


2
�i

= �i −�2
i

Extrinsic probabilities are finally computed as follows:

e�xij� =∑
xi∼j

f�̃yi�xi�
∏
j′ �=j

f�xij′� (5.59)

where xi∼j denotes the vector xi without its jth component. The computational complexity
involved in the calculation of e�xij� is linear in MT and exponential in m, the number of
bits per symbol.

Maximum ratio combining filter. The maximum ratio combining (MRC) filter is based
on the filter vector fi = hi. Again, the filter output can be written as in (5.58) where
�i = hH

i hi and


2
�i

=∑
j �=i

�hH
i hj�2
2

j +
2
z hH

i hi

Figure 5.25 shows the EXIT function of the APP, IC+MMSE, and IC+MRC demappers
considered here. We assume four transmit and four receive antennas, a complex channel
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Fig. 5.25. Example of mutual information transfer function for different demappers, static channel,
QPSK modulation, and Eb/N0 = −2 dB, −5 dB.
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matrix H as in [23], a quadrature phase-shift keying (QPSK) signal set, and 1/
2
i =

Eb/N0 = −2 dB (solid lines) or −5 dB (dashed lines). The curves show that the APP
demapper outperforms all other processors as it achieves a better value of Ie at any given
I i. Increasing the signal-to-noise ratio corresponds to an approximate upward shift of the
transfer function curves, while increasing the number of antennas increases their slope
(see also [4, p. 77 ff.]).

EXIT-chart convergence analysis

Once the EXIT functions of two functional blocks have been obtained, they are drawn
on a single chart. Since the output of a block is the input of the other one, the second
transfer function is drawn after swapping its axes. The behavior of the iterative decoding
algorithm is described by a trajectory, i.e., a sequence of moves, along horizontal and
vertical steps, through the pair of EXIT functions.

Figure 5.26 shows qualitatively two examples of convergence behavior. For small
SNR, the two EXIT curves intersect, the trajectory is blocked, and no convergence occurs
to large values of mutual information (which correspond to small error probabilities). For
a higher value of SNR, instead, we have convergence, which is faster when the opening
between the two curves is wider.

For a finer analysis of the convergence of the iterative algorithm, estimates of the error
probability of a coded system can be superimposed to EXIT-charts to yield insight on the
receiver performance. Consider the APP distribution; by assuming its random conditional
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Fig. 5.26. EXIT-chart for an iterative algorithm and two values of SNR.
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LLR �p�x to be Gaussian, with mean 
2
p /2 and variance 
2

p , the bit error rate (BER)
Pb�e� can be approximated by

Pb�e� ≈ Q

(
�p


p

)
= Q

(
p

2

)
(5.60)

where Q�·� � �2��−1/2
∫ �

0 exp�−z2/2�dz is the Gaussian tail function. Since �p = �i +
�e, the assumption of independent LLRs leads to [33]


2
p = 
2

i +
2
e

which in turn yields

Pb�e� ≈ Q

(√
J−1�I i�+ J−1�Ie�

2

)
(5.61)

Figure 5.27 shows the BER plotted as a function of I i and Ie.

An example

Consider the combination of a decoder based on a rate-1/2 convolutional code with
generators �5� 7� and an MMSE-IC demapper. The MIMO channel has four transmit and
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Fig. 5.27. BER chart of an iterative receiver plotted as a function of Ie and I i.
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four receive antennas. Additionally, QPSK modulation is assumed, and the channel matrix
H is chosen as in [23], with Eb/N0 = −5 dB. Figure 5.28 illustrates the first few iterations
of the turbo algorithm. The figure shows the EXIT functions of the decoder (dashed
line) and of the demapper (solid line). They are taken from Figs. 5.23 (after coordinate
swapping) and 5.25, respectively. The dotted lines plot the constant-BER curves computed
by using (5.61). The arrows indicate the first few iterations of the turbo algorithm:
vertical arrows correspond to IC, while horizontal arrows correspond to decoding. The
points labeled k = 0� 1� 2 correspond to the extrinsic mutual information at the output
of the decoder after k iterations. Finally, BER values are reported in the figure (bottom
left) obtained by Monte Carlo simulation for comparisons with the values computed
by using (5.61) (dotted curves). Figure 5.29 shows the BER for the same system, as
obtained by simulation (solid lines) and by EXIT-chart analysis (points), for k = 0� 1� 2� 8
iterations.

5.5.4 Quasi-static channel

Our previous analysis was concerned with constant channels. In quasi-static channel
conditions, the channel matrix H is random, and changes independently from codeword

k = 1, BER = 5.2 × 10–2
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Fig. 5.28. Decoding path for the combination of a decoder (based on a rate-1/2 convolutional code
with generators (5,7)) and a demapper (MMSE IC on a MIMO system with four transmit and four
receive antennas), with QPSK modulation and Eb/N0 = −5 dB.



5.5 MIMO receivers for coded signals 221

10−3

10−2

10−1

100

−10 −8 −6 −4 −2 0 2

B
E

R

Eb 
/N0 (dB)

k = 0
k = 1
k = 2
k = 8

Fig. 5.29. Comparison of BER obtained by simulation and by EXIT-chart analysis, for a system
with MT = MR = 4, QPSK, and a deterministic channel.

to codeword. This implies that the demapper EXIT function changes with H, and
should be evaluated for a large number of samples in order to estimate the error
performance of the system. The computational burden necessary for convergence analysis
might be heavy, but can be substantially alleviated by observing (through computational
experience) that the EXIT function of the demapper exhibits in most cases an almost
linear behavior and, consequently, only two points are needed to approximate it as a
straight line.

This approximation is illustrated by Fig. 5.30, which considers the same system of
Fig. 5.28, and plots in addition the straight-line approximation of the EXIT function of
the demapper. The convergence points (obtained by the intersection of the demapper
and decoder EXIT functions) are denoted by C and C ′ for the exact and approximate
demapper EXIT functions, respectively. Obviously, these points lie on the decoder EXIT
function, and represent the asymptotic performance attainable with an infinite number of
iterations. It must be noted that the straight-line approximation leads to nonconservative
convergence estimates, due to the upward convexity of the exact EXIT function of
the demapper. Nevertheless, numerical results show that the approximation is fairly
accurate.

A sample set of convergence points is plotted in Fig. 5.31 to show their distribution for
the same system parameters. The points have been obtained by using different, randomly
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Fig. 5.30. Approximate and exact decoding trajectories for the combination of an MMSE
interference canceler with MR = MT = 4, rate R = 1/2 CC(5,7) convolutional code, QPSK
modulation, Eb/N0 = −5 dB.
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Fig. 5.32. BER obtained by simulation and by “linearized” EXIT-chart analysis for an MT = MR = 4
MIMO channel with MMSE interference cancellation, QPSK, and quasi-static independent Rayleigh
fading.

generated matrices H with iid circularly symmetric complex Gaussian random entries
with zero mean and unit variance (independent MIMO Rayleigh fading channel). It is seen
that the distribution of the points is quite concentrated, thus validating the assumption
that their variance is close enough to zero. Finally, Fig. 5.32 compares the BER obtained
by simulation (solid lines) and by the “linearized” EXIT-chart analysis (dots) and for
k = 0� 1� 2� 8 iterations.

5.6 Some iterative receivers

In this section we examine two specific implementations of the iterative receivers, whose
general idea was expounded above. Their block diagrams are shown in Figs. 5.33 and
5.34. The former, referred to in the following as MMSE+IC, has the MMSE filter located
before the IC loop. The latter (IC+MMSE) has the MMSE filter located inside the IC loop.
The IC+MMSE complexity is higher than for the MMSE+IC, since a bank of MMSE
filters has to be calculated at each iteration.
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Fig. 5.34. Another suboptimum implementation of a turbo receiver: the IC+MMSE receiver.

5.6.1 MMSE+IC receiver

The received signal is first passed through an MMSE filter whose output is

Ỹ = GY = X +LX +GN (5.62)

where

G � D−1A (5.63)
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and A � �HHH +�sI�
−1HH , D � diag�AH�, L � �D−1AH − It�, and �s = �Es/N0�

−1. At
iteration k, the turbo decoder provides soft estimates X̂�k� of the transmitted signal X. The
output of the IC block at iteration k is

Ỹ�k� = Ỹ −LX̂�k� (5.64)

5.6.2 IC+MMSE receiver

This receiver of Fig. 5.34 is based on a bank of MT MMSE filters, one for each transmit
antenna, located inside the IC loop and hence to be updated at each iteration step. This
is expected to outperform MMSE+IC, since now the filters can also mitigate the residual
interference.

Considering the �th signaling interval, let the output at iteration k of the interference
canceler corresponding to antenna i = 1� � � � �MT , be given by

ỹ�k+1�
i = H�x − x̂�k��+ x̂

�k�
i hi +n (5.65)

where x̂�k� = �x̂
�k�
1 � � � � � x̂

�k�
t �T is the �th column of X̂�k� and represents the decoder output

at iteration k > 0 (for k = 0 we set x̂�0� � 0).
As illustrated in [10], the signal output from the ith MMSE filter at iteration k is given

by

ỹ
�k�
i = f �k�

i

H
y�k�

i

where the ith normalized MMSE filter vector is

f �k�
i = ��

�k�
i �−1

[∑
j �=i

�1−v
�k�
j �hjh

H
j +hih

H
i +�sIr

]−1

hi

v
�k�
j � ���x̂�k�

j �2�/Es, and the normalization constant �
�k�
i is given by

�
�k�
i = hH

i

[∑
j �=i

�1−v
�k�
j �hjh

H
j +hih

H
i +�sIr

]−1

hi

(see [10] for further details).

5.6.3 Numerical results

Figure 5.35 compares the performance of both receivers for MT = MR = 16. QPSK is
used, along with a rate-1/2 turbo code obtained by parallel concatenation and puncturing
of two rate-1/2, four-state equal recursive systematic convolutional codes. At the receiver,
eight turbo decoder iterations are performed for each IC iteration. The codeword length
is N = 130. Detailed calculations show that the overall complexity increase of the
IC+MMSE versus the MMSE+IC receiver does not exceed 20%, and, in the case of
Fig. 5.35, it amounts to about 5%. The corresponding performance enhancement is more
than 1 dB at k = 4 iterations of the IC algorithm.
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Fig. 5.35. Performance comparison, in terms of the frame-error rate (FER), of MMSE+IC and
IC+MMSE receivers on a quasi-static fading channel with MT = MR = 16. The solid line
without markers gives the outage-probability lower bound. Solid lines with markers describe
the receiver performances for k = 0� 1� 4 interference-cancellation iterations (see [10] for further
details).

5.7 Bibliographical notes

Sphere detection was first applied to digital detection problems by Viterbo and
Biglieri [41]. An explicit flowchart of SDA in its original form can be found in [42],
where it is applied to the detection of rotated lattice constellations for single antenna,
independent-Rayleigh-fading channels. Its application to MIMO problems was advocated
in [14]. For recent developments, see [2, 6, 15, 21, 30, 34, 39, 40] and the references therein.
A VLSI implementation is described in the recent paper [6].

For an introduction to factor graphs and to the sum–product algorithm, see [25, 27]
and [7, Chapter 8]. Normal graphs were introduced by Forney [18]. Reference [28]
explores the connection between belief-propagation theory and turbo algorithms.

BLAST architectures were introduced in [19]. Turbo algorithms for MIMO receivers
are advocated in [3, 9, 22, 32].

For recent work on turbo algorithms for frequency-selective MIMO channels,
see [1, 16, 35]. Sequential Monte Carlo processors for use in iterative receivers are
described in [17].
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6 Multi-user receiver design

6.1 Introduction

The preceding chapter considered the design of receivers for MIMO systems operating
as single-user systems. Increasingly however, as noted in Chapters 2 and 4, wireless
communication networks operate as shared-access systems in which multiple transmitters
share the same radio resources. This is due largely to the ability of shared-access systems
to support flexible admission protocols, to take advantage of statistical multiplexing,
and to support transmission in unlicensed spectrum. In this chapter we will extend the
treatment of Chapter 5 to consider receiver structures for multi-user, and specifically,
multiple-access MIMO systems. We will also generalize the channel model considered
to include more general situations than the flat-fading channels considered in Chapter 5.
To treat these problems, we will first describe a general model for multi-user MIMO
signaling, and then discuss the structure of optimal receivers for this signal model. This
model will generally include several sources of interference arising in MIMO wireless
systems, including multiple-access interference caused by the sharing of radio resources
noted above, inter-symbol interference caused by dispersive channels, and inter-antenna
interference caused by the use of multiple transmit antennas. Algorithms for the mitigation
of all of these types of interference can be derived in this common framework, leading to a
general receiver structure for multi-user MIMO communications over frequency-selective
channels. As we shall see, these basic algorithms will echo similar algorithms that have
been described in Chapters 3 and 5. Since optimal receivers in this situation are often
prohibitively complex, the bulk of the chapter will focus on useful lower complexity
sub-optimal iterative and adaptive receiver structures that can achieve excellent
performance in mitigating interference in such systems. This discussion is organized as
follows.

Section 6.2 will introduce a simple, yet useful, model for the signals received by the
receiver in a MIMO system. This model is rich enough to capture the important behavior
of most wireless communication channels, while being simple enough to allow for the
straightforward motivation and understanding of the basic receiver elements arising in
practical situations. This section also derives a canonical multi-user MIMO receiver
structure, discusses several specific receivers that can be explained within this structure,
and provides a digital receiver implementation that will be useful in the discussion of
adaptive systems later in the chapter.

230
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As noted above, complexity is a major issue in multi-user receiver design and
implementation, and the remainder of this chapter addresses the problem of complexity
reduction in multi-user MIMO systems. This complexity takes two forms: computational,
or implementational, complexity; and informational complexity.

The first type of complexity refers to the amount of resources needed to implement
a given receiver algorithm. Optimal MIMO multi-user receiver algorithms are typically
prohibitively complex in this sense, and thus a major issue in this area is complexity
reduction. Sections 6.3 and 6.4 address the principal method for complexity reduction in
practical multi-user receivers, namely the use of iterative algorithms in which tentative
decisions are made and updated iteratively. There are a number of basic iterative
techniques, involving different trade-offs between complexity and performance, and
depending on the type of system under consideration, and these are described in
Section 6.3. In Section 6.4, we tackle the additional complexity that arises in receiving
space–time coded transmissions, such as those described in Chapter 4, in multi-user
MIMO systems. Here, iterative algorithms similar to those discussed in Chapter 5 provide
the answer to finding algorithms that can exploit the space–time coded structure with
only moderate increases in complexity.

The second type of complexity refers to the amount of knowledge that a given receiver
needs to have about the structure of received signals in order to effect signal reception.
Although, as we will see shortly, optimal MIMO multi-user reception requires knowledge
of the waveforms being transmitted by all users sharing the channel and the structure
of the physical channel intervening between transmitters and the receiver, this type of
knowledge is rarely available in practical wireless multi-user systems. Thus, it is necessary
to consider adaptive receiver algorithms that can operate without such knowledge, or with
only limited such knowledge. Such algorithms are the topic of Section 6.5, in which the
structure of adaptive MIMO multi-user receivers is reviewed.

The chapter will conclude in Sections 6.6 and 6.7 with a summary and pointers to
additional reading of interest in this general area.

6.2 Multiple-access MIMO systems

As noted above, this section will provide a general treatment of the multi-user MIMO
receiver design problem. Here we will focus on modeling and on the structure of optimal
receivers. In doing so, we will expose the principal issues underlying the reception of
signals in multi-user MIMO systems, and also will set the stage for more practical
algorithms developed in succeeding sections.

6.2.1 Signal and channel models

In order to discuss multi-user MIMO receiver structures, it is useful to first specify a
general model for the signal received by a MIMO receiver in a multi-user environment
(see Fig. 6.1). In doing so, we will build on the signaling model developed in Chapter 1,
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Figure 6.1. A multi-user MIMO system.

and in particular our model is an abstraction of the physical channel described there that
is especially useful for the purposes of this chapter. Specifically, a useful received signal
model for a multi-user MIMO system having K active users, MT transmit antennas and
MR receive antennas, and transmitting over a frame of B symbol periods, can be written
as follows:

rp�t� =
K∑

k=1

MT∑
m=1

B−1∑
i=0

bk�m�i�gk�m�p�t − iTs�+np�t�� p = 1� � � � �MR� (6.1)

where the various quantities are as follows:

• rp�·� = the signal received at the output of the pth receive antenna,
• bk�m�i� = the symbol transmitted by user k from its mth antenna in the ith symbol

interval,
• gk�m�p�·� = the waveform on which symbols from the mth antenna of user k arrive at

the output of the pth receive antenna,
• Ts = the symbol period, and
• np�·� = ambient noise at the pth receive antenna.

Each of the waveforms gk�m�p�·� can be modeled as

gk�m�p�t� =
∫ �

−�
sk�m�u�fk�m�p�t −u�du� (6.2)

where

• sk�m�·� = the signaling waveform used by user k on its mth antenna and
• fk�m�p�·� = the impulse response of the channel between the mth transmit antenna of

user k and the pth receive antenna output.

Thus, we are assuming linear modulation and a linear channel model, both of which are
reasonable assumptions for wireless systems. Note that, since gk�m�p�·� does not depend
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on the symbol index i in this model, we are implicitly assuming here that the channel is
stable (and time-invariant) over the transmission frame (which is BTs seconds long) and
that the transmitters use the same signaling waveforms in each symbol-period. The first
of these assumptions is valid for the coherence times and signaling parameters arising in
most systems of interest, while the latter is often violated, particularly in cellular systems.
However, with the exception of the adaptive methods of Section 6.5, this time variation is
not difficult to incorporate into any of the results described in this chapter, and is omitted
here for the sake of notational simplicity (see, e.g., [46]).

In order to minimize the number of parameters in this model, we will assume that the
signaling waveforms are normalized to have unit total energy, i.e.,

∫ �

−�

[
sk�m�t�

]2
dt = 1� k = 1� � � � �K� m = 1� � � � �MT � (6.3)

In reality, the actual transmitted waveforms will carry differing and non-unit energies,
reflecting the transmitted powers of the various users’ terminals. However, from the
vantage point of receiver design, the critical scale parameter is the received power of a
user, which will depend on the user’s transmitter power and the gain of the intervening
channel. Thus, it is convenient to lump all scaling of the signals into the channel impulse
response fk�m�p�·�� and to simply assume normalized waveforms (6.3) at the transmitter.
Again, from the receiver’s point of view, it is impossible anyway to separate the effects
of channel gain and transmit power on the received power. Also for convenience, we
will assume that the transmitted waveforms have a duration of only a single symbol
interval; i.e.,

sk�m�t� = 0� t � �0� Ts�� (6.4)

As with the normalization constraint (6.3), this assumption does not remove any generality
since received waveforms that extend beyond a single symbol interval can be modeled
via dispersion in the channel response.

A typical and useful model for the channel response is as a discrete multi-path model:

fk�m�p�t� =
L∑

	=1

hk�m�p�	
�t − �k�m�p�	�� (6.5)

where 
�·� denotes the Dirac delta function, and where hk�m�p�	 and �k�m�p�	 ≥ 0 denote the
channel gain and propagation delay, respectively, of the 	th path of the channel between
the mth transmit antenna of user k and the output of the pth receive antenna.1 In this
case, the waveforms gk�m�p�·� are of the form

gk�m�p�t� =
L∑

	=1

hk�m�p�	 sk�m�t − �k�m�p�	�� (6.6)

1 For simplicity, we lump the effects of the radio channel itself and the antenna response into the same term
hk�m�p�	� Often these two terms can be separated (see, e.g., [46]). However, no generality is lost in lumping
these effects together for the purposes of analysis and exposition.
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That is, in this model, the waveform received at a given receive antenna p from a
given transmit antenna m of a particular user k is the superposition of L scaled and
delayed copies of the waveform sk�m�·� transmitted from that antenna. Except where noted
otherwise, we will assume this particular model for the channel response in the following.

The signaling waveforms sk�m�·� can take many forms. Although these waveforms
can be thought of as being generic in our discussion, a quintessential example is the
case in which the transmitted signals are in direct-sequence code-division multiple-access
(DS/CDMA) format. This is a very widely used signaling format in wireless systems (used
notably in both major 3G cellular standards), and is the example used in the simulations
discussed in succeeding sections of this chapter. In the notation of this section, this format
can be described as follows.

DS/CDMA signaling

In the DS/CDMA format, the signaling waveforms used by all transmitters are in the
form of spread-spectrum signals; i.e., the waveforms

{
sk�m�·�} of (6.1) are of the form

sk�m�t� = 1√
N

N−1∑
j=0

c
�j�
k�m��t − �j −1�Tc�� 0 ≤ t ≤ Ts� (6.7)

where N is the spreading gain of the system, c
�0�
k�m� c

�1�
k�m� � � � � c

�N−1�
k�m is the spreading code

(or signature sequence) associated with the mth transmit antenna of user k� Tc = Ts/N

is the chip interval, and ��·� is a chip waveform having unit-energy and approximate
duration Tc� (For a general discussion of spread-spectrum signaling, see, e.g., [48].) In
studying this format, the chip waveform ��·� is often modeled as a unit-energy pulse of
duration Tc i.e.,

��t� =
⎧⎨
⎩

1√
Tc

� t ∈ �0� Tc�

0� otherwise�
(6.8)

Again, most of the results of this chapter apply to general signaling waveforms, and it
is not necessary to particularize to this specific format except where noted. It should also
be mentioned that these signaling waveforms, the symbols, the noise, and the channel
responses may be taken to be complex (rather than real as is tacitly assumed here). We
will not need this generality here until Section 6.5, and so we will defer discussions
of needed modifications (which are minor) until then. A complex version of the above
model can be found in [46], which allows for two-dimensional signaling constellations,
such as QPSK and QAM, to fit within this model.

As an additional assumption, we assume that the ambient noise processes
np�·��p = 1� � � � �MR� are mutually independent white Gaussian processes with common
spectral height �2� We also assume that the transmitted symbols take values in a finite
alphabet � containing ��� elements. Beginning in Section 6.3, we will specialize this to
the binary antipodal case � = �−1�+1�� This is primarily for convenience, as most of
the results in this chapter hold for more general signaling alphabets.
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Finally, we note that MT �B and L in the above model could vary from user to user,
while L could also vary from antenna pair to antenna pair. However, again for simplicity,
we will assume them to be constants, as the extensions of the discussions in the chapter
to these non-constant cases are quite straightforward.

6.2.2 Canonical receiver structure

A basic MIMO multi-user receiver structure can be usefully decomposed into two parts:
a front-end (or hardware) part and a decision algorithm (or software) part. In practice,
these pieces may not be completely distinct, as much of the front-end may be implemented
in software; but for the purposes of exposition, it is a useful decomposition.

A canonical front-end for such a system can be derived based on the theory
of statistical inference. In particular, it is of interest to examine the so-called
likelihood function of the observations (6.1) given the collection of transmitted symbols:{
bk�m�i�

}
k=1� � � � �Km=1� � � � �MT  i=0� � � � �B−1

. Owing to the assumption of white, Gaussian noise,
the logarithm of this likelihood function is given (up to a scalar multiple) by the Cameron–
Martin formula [29] to be

K∑
k=1

MT∑
m=1

B−1∑
i=0

bk�m�i�zk�m�i�− 1
2

K∑
k�k′=1

MT∑
m�m′=1

B−1∑
i�i′=0

bk�m�i�bk′�m′ �i′�C�k�m� i k′�m′� i′�� (6.9)

where, for k = 1� � � � �K�m = 1� � � � �MT � and i = 0� � � � �B−1�

zk�m�i� =
L∑

	=1

P∑
p=1

hk�m�p�	

∫ �

−�
rp�t�sk�m�t − �k�m�p�	 − iTs�dt� (6.10)

and for k�k′ = 1� � � � �K�m�m′ = 1� � � � �MT � and i� i′ = 0� � � � �B−1�

C�k�m� i k′�m′� i′� =
P∑

p=1

L∑
	�	′=1

hk�m�p�	hk′�m′�p�	′

×
∫ �

−�
sk�m�t − �k�m�p�	 − iTs�sk′�m′�t − �k′�m′�p�	′ − i′Ts�dt� (6.11)

Although the expression (6.9) may seem somewhat complicated, the key thing to note
about it is that the antenna outputs, r1�t�� r2�t�� � � � � rP�t�� enter into the likelihood function
only through the collection of “observables”

{
zk�m�i�

}
k=1� � � � �Km=1� � � � �MT  i=0� � � � �B−1

. This
means that this collection of variables is a sufficient statistic [29] for making inferences about
the corresponding set of transmitted symbols

{
bk�m�i�

}
k=1� � � � �Km=1� � � � �MT  i=0� � � � �B−1

. which
implies in turn that all attention can be restricted to this set of observables when designing
and building systems or algorithms for demodulating and detecting the transmitted symbols.
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Before turning to some types of algorithms that we might use for this purpose, it
is worthwhile to examine the structure of this set of observables a bit more closely. In
particular, it can be seen that (6.10) consists of three basic operations:

1. integration to obtain: xk�m�p�	�i� = ∫ �
−� rp�t�sk�m�t − �k�m�p�	 − iTs�dt

2. correlation to obtain: yk�m�	�i� =∑P
p=1 hk�m�p�	 xk�m�p�	�i� and

3. summation to obtain: zk�m�i� =∑L
	=1 yk�m�	�i��

The first operation is a matched filtering operation, so that we see that each received
antenna output is filtered with a filter that is matched to the waveform received on each
path from each transmit antenna in each symbol interval of each user. Thus, there are
K ×MR ×B ×L×MT matched filter outputs, which we can think of as being produced
by a bank of linear filters, each of which is sampled at the end of each signaling interval;
i.e., samples are taken at times iTs for i = 0� � � � �B−1�

The second operation, in which the matched filter outputs
{
xk�m�p�	�i�

}
are correlated

across the receive antenna array with the channel/antenna gains
{
hk�m�p�	

}
� can be viewed

as a form of beamforming, through which the spatial dimension afforded by the receive
array is exploited. Since the terms hk�m�p�	 also incorporate channel gains, this is not
strictly a simple beamforming operation in general, but it has a similar effect of coherently
collapsing the spatial dimension of the array. Note that, after beamforming, there are
K ×B×L×MT observables.

Finally, the third operation, in which the beamformer outputs
{
yk�m�	�i�

}
are added, is

a multi-path combiner, or Rake operation through which the spatial dimension introduced
by the multi-path channel is exploited. Typically a Rake receiver also includes a
correlation with the channel multi-path coefficients. This is being done here as part of
the beamforming operation. So, the combination of the second and third operations is
equivalent to beamforming followed by Rake combining, and this combination might be
decomposed in other ways in practice. After this third operation, there are K ×MT ×B

observables, one for each symbol in the frame of each user.
These three operations constitute the (hardware) front-end of a canonical multi-user

receiver, as illustrated in Fig. 6.2. This front-end is sometimes known as a space–time
matched filter. Note that, although this structure may seem complicated, it is essentially
composed of standard communication-system components: matched filters, beamformers,
and Rake receivers.
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Figure 6.2. A canonical MIMO multi-user receiver structure.
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It is noteworthy that this formalism and general front-end structure encompasses three
standard interference-mitigation problems in communications. To discuss this point, it is
useful to define the parameter

� =
⌈

maxk�m�p�	

{
�k�m�p�	

}
Ts

⌉
� (6.12)

where 
x� denotes the smallest integer not less than x� � is the maximum delay spread of
the wireless channels (6.5) in units of symbol intervals, and is thus the maximum extent to
which symbols of a given user interfere with one another. Returning to the general receiver
structure, the case in which K = MT = 1 and � > 1 is the channel equalization problem
studied notably in the 1970s; the case MT = � = 1 and K > 1 is the traditional multi-user
detection problem, studied notably in the 1980s; and finally the case in which K = � = 1
and MT > 1 is the standard MIMO communications problem, exemplified by the BLAST
architecture studied notably in the 1990s. Combinations of these problems and refinements
on them have been mainstays of research and development in digital communications
throughout the past few decades and continuing to the present day. The applicability of
the results in this chapter to these various problems, both individually and jointly, is worth
keeping in mind in the subsequent discussions. Thus, the receiver architectures described
herein can be applied other than in the multi-user MIMO communications setting, and
many of them generalize solutions to the more particular cases noted above.

6.2.3 Basic MUD algorithms

As illustrated in Fig. 6.2, the KMT B outputs of the canonical multi-user front-end are
operated upon by a decision algorithm whose purpose is to infer the values of the KMT B

transmitted symbols
{
bk�m�i�

}
� This decision algorithm can take many forms, ranging

through the full toolbox of statistical signal processing: optimal algorithms based on
maximum-likelihood or maximum a posteriori probability criteria, linear algorithms,
iterative algorithms, and adaptive algorithms. Each of these techniques will be discussed
briefly in the following paragraphs, and counterparts to these algorithms are discussed in
Sections 6.3 and 6.5. However, before discussing these types of algorithms, it is useful
to first examine the relationship between the observables

{
zk�m�i�

}
and the corresponding

symbols
{
bk�m�i�

}
to be inferred. To do so, it is convenient to collect the symbols into a

KMT B-long column vector b by sorting the symbols
{
bk�m�i�

}
first by symbol number,

then by user number, and finally by antenna number. That is,

b =

⎛
⎜⎜⎜⎜⎝

b�0�

b�1�
���

b�N −1�

⎞
⎟⎟⎟⎟⎠ (6.13)
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where

b�i� =

⎛
⎜⎜⎜⎜⎝

b1�i�

b2�i�
���

bK�i�

⎞
⎟⎟⎟⎟⎠ (6.14)

with

bk�i� =

⎛
⎜⎜⎜⎜⎝

bk�1�i�

bk�2�i�
���

bk�MT
�i�

⎞
⎟⎟⎟⎟⎠ � (6.15)

Similarly, we can denote by z the set of observables
{
zk�m�i�

}
collected into a KMT B-

long column vector indexed conformally with b� We can also define a KMT B ×KMT B

cross-correlation matrix R whose �n�n′�th element is given by the cross-correlation
C�k�m� i k′�m′� i′� from (6.11) where the indices are determined by matching with the
corresponding elements of b (or, equivalently, z); i.e., bn = bk�m�i� and bn′ = bk′�m′ �i′� with
n = �iK + �k−1��MT +m and n′ = �i′K + �k′ −1��MT +m′�

With these definitions, the observables and transmitted symbols can be related to one
another through the relationship

z = Rb+n� (6.16)

where n denotes a KMT B-long noise vector having the �
(
0��2R

)
distribution. (Here, 0

denotes a KMT B-long vector having all components equal to zero.)
As a simple example, we can consider the flat-fading, synchronous case, in which all

signals arrive at the receive array with the same symbol timing. This corresponds to the
discrete multi-path model of (??) with L = 1 and �k�m�p�	 ≡ 0�

fk�m�p�t� = hk�m�p�1
�t�� (6.17)

In this case, the matrix R is a block-diagonal matrix having B identical blocks along
its diagonal, each of dimension KMT × KMT � These square sub-matrices contain the
cross-correlations between the signals received from the different antennas of the different
users. So, for example, in this case, the first block is given by

Rn�n′ =
∫ �

�
sk�m�t�sk′�m′�t�dt ×

P∑
p=1

hk�m�p�1hk′�m′�p�1� n�n′ = 1� 2� � � � �KMT � (6.18)

where the indices n and n′ correspond, respectively, to antenna m of user k and antenna
m′ of user k′, both in the zeroth symbol interval. This block is then repeated B times
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along the diagonal of R� This example is further illuminated by considering the single-
receive-antenna case (MR = 1), in which this first diagonal block simplifies to

Rn�n′ =
∫ �

�
sk�m�t�sk′�m′�t�dt Ak�mAk′�m′ � n�n′ = 1� 2� � � � �KMT � (6.19)

with Ak�m = hk�m�1�1 for k�m = 1� � � � �K�MT � n = �k − 1�MT + m� and n′ = �k′ − 1�

MT +m′� This block is thus of the form

ARA (6.20)

where A is a diagonal matrix having the received amplitudes A1�1� � � � �A1�MT
�A2�1� � � � ,

A2�MT
�AK�1� � � � �AK�MT

on its diagonal, and where R is the normalized cross-correlation
matrix of the signaling multiplex:

Rn�n′ =
∫ �

�
sk�m�t�sk′�m′�t�dt� n�n′ = 1� 2� � � � �KMT � (6.21)

For example, in the DS/CDMA case of (6.7) and (6.8), this normalized cross-matrix is
given by

Rn�n′ = 1
N

N−1∑
j=0

c
�j�
k�mc

�j�
k′�m′ � n�n′ = 1� 2� � � � �KMT  (6.22)

that is, the normalized cross-correlation matrix is determined by the cross-correlations
of the spreading sequences used by the system. The specific structure of this matrix
depends on how the spreading sequences are allocated to the various users’ antennas.
In some systems, all antennas of the same user use the same spreading code, while
in others, different spreading codes are used for all antennas. As an example, if the
spreading codes are so-called m-sequences (see, e.g., [48]), then Rn�n′ = 1 for antennas
using identical spreading codes and Rn�n′ = −1/N� for antennas (and users) using different
spreading codes.

In the general case in which the channel is not flat or the users are not synchronous, the
block diagonal form of this example becomes a block Toeplitz form, as will be discussed
in Section 6.3. From (6.16) we see that the basic relationship between z and b is that of
a noisy linear model, and so the basic problem to be solved by the decision algorithm
in Fig. 6.2 is that of fitting such a model. At first glance, this appears to be a rather
straightforward problem, as the fitting of linear models is a classical problem in statistics.
However, the difficulty in this problem arises because the vector b to be chosen in this
fit has discrete-valued elements (e.g., ±1), and this significantly increases the complexity
of fitting this model (6.16).

In general, the most powerful techniques for data detection are maximum-likelihood
(ML) and maximum a posteriori probability (MAP) detection. ML detection makes
inferences about the transmitted symbols in (6.1) by choosing those symbol values that
maximize the log-likelihood function of (6.9). To get a sense of this task, it is useful to
use the compact notation of (6.16) to re-write the log-likelihood function (6.9) as

bT z − 1
2

bT Rb� (6.23)



240 Multi-user receiver design

So, the ML symbol decisions solve the optimization problem:

max
b∈�

[
bT z − 1

2
bT Rb

]
� (6.24)

where � = �KMT B� The optimization problem (6.24) is an integer quadratic program,
which is known to be an NP-complete computational problem. Since the size of the search
set � is potentially enormous at ���KMT B� solving this problem appears to be impossible.2

However, for most practical wireless channels, the matrix R has many zero elements
which reduces the complexity of this problem significantly. In particular, assuming that
the signaling waveforms �sk�m�·�� are limited in duration to a single symbol interval,
and given the finite multi-path channel model (6.5), the matrix R is a banded matrix,
meaning that all of its elements are zero except on a certain number of diagonals; i.e.,
Rn�n′ = 0 if �n−n′� > KMT �� where again � is the maximum delay spread of the wireless
channels (6.5) in units of symbol intervals (6.12). This bandedness allows for a complexity
reduction from the order of ���KMT B needed to exhaustively search for the ML solution,
to the order of ���KMT � (per symbol) to search via dynamic programming (see, e.g., [30]).
Although in most wireless channels the maximum delay spread � is much less than the
frame length B� even this reduced complexity is prohibitive for most applications as the
exponent KMT � could still be fairly large in a typical situation with dozens of users, a
few antennas per user, and a few symbols of delay spread. The ML detector is sometimes
referred to as the jointly optimal (JO) detector.

MAP detection is applicable to situations in which the receiver knows a prior
probability distribution governing the values that the transmitted symbols may assume.
In this situation, it is possible to consider the posterior probability distribution of a given
symbol, conditioned on the observations, and to infer that value for each symbol that has
maximum a posteriori probability (APP). That is, a given symbol, say bn is detected as
b̂n according to the following criterion:

b̂n = arg
{

max
a∈�

P�bn = a�z�
}

� (6.25)

Using Bayes’ formula, we can write the APP as

P�bn = a�z� =
∑

b∈�n�a
	�z�b�w�b�∑

b∈� 	�z�b�w�b�
� (6.26)

were �n�a denotes the subset of � in which the nth coordinate is fixed at a, w�b� is the
prior probability of b� and 	�z�b� denotes the likelihood function of z given b �

	�z�b� = e�bT z− 1
2 bT Rb�/�2

� (6.27)

Commonly, it is assumed that the symbol vector b is uniformly distributed in its range
�; i.e., that

w�b� ≡ ���−KMT B� (6.28)

2 Typically, K might be dozens, MT several, and B hundreds.
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This assumption is equivalent to assuming that all the symbols are independent and
identically distributed (i.i.d.) from time to time, from user to user, and from antenna to
antenna, and that each symbol is chosen equiprobably among the elements of �. This
assumption is not always valid, as we will discuss below. However, when it is valid,
the prior distribution drops out of the computation of the APP, and the MAP criterion
becomes

b̂n = arg

{
max
a∈�

∑
b∈�n�a

	�z�b�

}
� (6.29)

(Note that the denominator in the APP (6.26) is irrelevant to the maximization since it
does not depend on the value of any individual symbol.) The MAP detector is sometimes
termed the individually optimal (IO) detector since it chooses each symbol decision
according to a single-symbol criterion.

Like the ML detector, the computation of symbol decisions using (6.29) is generally
prohibitively complex. In particular, we note that computation of the APP for each
individual symbol value involves a summation over ���KMT B−1 values of the symbol
vector. Also like ML detection, however, this complexity can be reduced via dynamic
programming to the order of ���KMT � operations per symbol when the channel has delay
spread of � symbol intervals [30, 39].

As we see from the above discussion, the basic complexity of ML (JO) or MAP (IO)
data detection is quite complex, on the order of ���KMT � operations per detected symbol.
So, the complexity grows with the number of users, the number of antennas, and the
channel length. It is noteworthy that this issue is present even in the single-user (K = 1)
case, the single-antenna case (MT = 1), or in the flat-fading case (� = 1). Only if all of
these conditions is missing do we get a simple detector structure, which reduces in either
the ML or MAP case to a simple quantization:

b̂n = Q�zn�� (6.30)

where the quantizer Q � R → �� For example, in the case of binary antipodal symbols
(� = �−1�+1�), we take Q to be the signum function:

Q�z� = sgn�z� =
{ −1 z < 0

+1 z ≥ 0�
(6.31)

Since data detection must be performed on a relatively limited computing platform
(i.e., a communications receiver) at essentially the rate of data transmission (i.e., tens to
thousands of kilobits per second), it is of interest to consider alternatives to the optimal
detectors described above. One family of such detectors are the linear multi-user detectors,
which seek to balance the simplicity of the simple detector (6.30) with the power of IO or
JO detection. In linear detection, this is accomplished by first multiplying the sufficient
statistic z by a suitably chosen square matrix, and then quantizing the result:

b̂n = Q�vn�� (6.32)
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Figure 6.3. Linear multi-user algorithm.

where

v = Mz (6.33)

and where M is a KMT B×KMT B matrix. This type of detector is illustrated in Fig. 6.3.
Various types of detectors can be implemented through different choices of the matrix
M� Three key ones can be described as follows.

Space–time matched filter/rake receiver

The simplest example of a linear detector arises from choosing M to be the KMT B ×
KMT B identity matrix I, in which case the linear detector reduces to the simple detector
of (6.30). This detector is a classical space–time matched filter receiver which is optimal
in an additive white Gaussian noise (AWGN) channel. A flaw of this receiver is that
it addresses only the ambient noise, while ignoring the cross-correlations between the
signals affecting different symbols; i.e., it ignores the off-diagonal elements of R�

Decorrelating (zero-forcing) receiver

Noting from (6.16) that the mapping from transmitted symbols b to the observables z is
in the form of a (square) linear transformation plus noise, a natural detection strategy is
a zero-forcing detector that eliminates the interference embodied in the cross-correlation
matrix R� Assuming that R is non-singular, this can be implemented as a linear detector
with M = R−1� The resulting detector is known as the decorrelator. The decorrelator thus
quantizes the variables v = R−1z� which are given by

v = b+R−1n� (6.34)

Note that, as expected, these transformed observables are free of (inter-user, inter-antenna,
and inter-symbol) interference. However, this receiver is the opposite extreme of the
matched filter receiver, in that it is tantamount to ignoring the ambient noise to suppress
the interference. Using standard properties of the multivariate Gaussian distribution, the
noise terms in (6.34) are distributed according to

R−1n ∼ �
(
0��2R−1

)
� (6.35)
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Depending on the structure of R the inverse R−1 can have very large diagonal values,
leading to noise enhancement and consequently a high error rate. (This problem is well-
known in the context of equalization [33].) The assumption that R be invertible is not
overly restrictive in general, as R is at least non-negative definite. However, there are
non-trivial situations in which R can be singular, in which case the decorrelator is not a
viable structure.

MMSE receiver

While the matched filter addresses the ambient noise and the decorrelator addresses
the interference, the minimum-mean-square-error (MMSE) multi-user detector effects a
compromise between these two impairments by selecting the transformation M such as
the vector v = Mz is an MMSE estimate of the symbol vector b� For this criterion to make
sense, it is necessary to provide a prior model for b� On making the common assumption
that the elements of b are of zero-mean and mutually uncorrelated, the MMSE detector
corresponds to the following choice of the matrix M:

M = (
R +�2I

)−1
(6.36)

where, as before, I denotes the KMT B×KMT B identity matrix. Note that, it is clear from
this form that the MMSE detector represents a compromise between the matched filter
(M = I) and the decorrelator (M = R−1), in which the action of each is tempered with the
action of the other. The relative mix of these two is controlled by the noise level (or more
properly by the signal-to-noise ratio (SNR), as the signal strength is incorporated into R).
When the interference is dominant (i.e., for high SNR), the MMSE detector mimics the
decorrelator, while when the ambient noise is dominant (i.e., for low SNR) it mimics the
matched filter. More generally, it balances between these two.

In general, the complexity of linear multi-user detectors is that of matrix inversion,
which is on the order of �KMT B�3� As with the ML and MAP solutions, this complexity
can be reduced by exploiting bandedness in the case of short delay spread. In some cases,
this complexity may also be amortized over many frames. However, for most wireless
systems, such amortization is not possible as the signaling waveforms, the user population,
or the channel parameters may change from frame to frame. Thus, although the order of
complexity here has been reduced from exponential to polynomial, complexity is still a
concern for practical systems. Moreover, in both linear and nonlinear cases, constraints
on the transmitted symbols imposed by space–time coding or temporal channel coding
can add to this complexity substantially [30].

For these reasons, a number of other techniques for multi-user reception have been
developed, with the objective of reducing computational complexity while maintaining
good performance in the presence of multiple-access interference. The principal technique
for doing this is to make use of iterative algorithms to fit the linear model (6.16). This
can be done either linearly with a final quantization (i.e., iterative linear detection),
or nonlinearly with inter-iteration quantization (sometimes known as interference



244 Multi-user receiver design

cancellation). Section 6.3 will address this issue in some detail for multi-user MIMO
systems. When further complexity is introduced by channel coding, iterative algorithms
such as those described in Chapter 5 (in this case “turbo” style algorithms) again
allow for excellent performance with moderate complexity. This topic is addressed in
Section 6.4.

As noted above, another form of complexity is informational complexity, which arises
from the need to know the received waveforms

{
gk�m�p�·�

}
in the model (6.1) for the

received signal. There are two potential problems with this requirement. One is that the
channels intervening the transmitters and receiver are typically dynamic and behave in
an apparently random fashion. So, the channel parameters (assuming the channel can
be parameterized) are not readily known to the receiver. Another problem is that the
signaling waveforms of all users may also not be known to the receiver, because, for
example, the receiver may only be intended to receive a subset of the users. In either
case, it is thus necessary for the receiver to be able to adapt itself to those properties
of the signaling environment that it does not know. Receiver structures for this purpose
are described in Section 6.5. In preparation for this latter treatment, we turn briefly, in
the following subsection, to a discrete-time model for the received signals considered
above that is more suitable for developing and discussing such adaptive receiver
algorithms.

6.2.4 Digital receiver implementation

For receiver implementation, and particularly for the adaptive algorithms to be discussed
in Section 6.5, it is useful to consider a digital representation of the signals and observables
that we have described in the preceding paragraphs. This type of representation is typically
obtained by projecting the received signals (6.1) onto a finite set of functions arising
from a model in which there are finitely many degrees of freedom in the signals of
interest. (Most practical signaling methods have this property.) In this subsection, we will
particularize the above structures for this situation, and in particular will consider the
common case in which the signaling waveforms are in the DS/CDMA format, described
above and in Chapter 1. This model will then be used exclusively in Section 6.5. It
should be noted, however, that similar techniques can be applied in any system allowing
for a finite-degree-of-freedom model. A notable alternative example to DS/CDMA is
the case of orthogonal frequency-division multiple-access (OFDMA) systems, in which
the incoming signal can be decomposed along orthogonal sub-carrier signals using the
discrete Fourier transform (DFT).

Recall that, in the DS/CDMA format, the signaling waveforms used by all transmitters
are in the form (6.7). Here, we consider this format in the particular case where the chip
waveform is the unit pulse of (6.8). For this type of system, a natural set of observables
can be obtained by projecting the received signals of (6.1) onto time shifts of the chip
waveform ��·�:

rp�j� =
∫ �

�
rp�t���t − jTs�dt =

∫ �j+1�Tc

jTc

rp�t�dt� j = 0� 1� � � � � (6.37)
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If the system delays are all integer multiples of a chip interval (this is termed the “chip-
synchronous” case), then no information is lost in this operation, as the outputs of the
matched filter bank of Fig. 6.2 and hence the sufficient statistic z can be extracted from
these observables. In the chip-asynchronous case, inferential information may be lost in
performing this operation. However, this loss is often minimal and the signal-processing
advantages of reducing the observations to a discrete-time sequence outweigh this. (An
alternative for the chip-asynchronous case is to integrate over shorter time intervals and
thus effectively to over-sample the signal; however, we will not consider this level of
detail here. For further discussion, see [46].)

As noted above, in the chip-synchronous case, the sufficient statistic z can be written
as a function of the observables

{
rp�j�

}
and thus the ML and MAP detectors are functions

of these observables, as are the linear detectors described in the preceding subsection. In
the latter case it is sometimes convenient to combine all of the linear processing of the
receiver front end and the decision algorithm of Fig. 6.2 into a single linear transformation,
in which case symbol detection is of the form

b̂k�m�i� = Q

(
MR∑
p=1

∑
j

w
�j�
k�m�p�i�rp�j�

)
� (6.38)

where the coefficients
{
w

�j�
k�m�p�i�

}
are chosen appropriately. This structure is one that

can be adapted using standard adaptive algorithms to adjust the weighting coefficients.
Although there are a number of issues surrounding such an adaptation, such as the
decomposition of spatial and temporal combining, this structure is the essence of many
adaptive algorithms for multiantenna, multi-user receiver design. An extensive treatment
of this problem can be found in [46], and we will consider particularly the MIMO case
in Section 6.5.

6.3 Iterative space–time multi-user detection

Advanced signal processing such as multi-user detection, typically improves system
performance at the cost of computational complexity. As noted in Section 6.1, the optimal
maximum-likelihood multi-user detector has prohibitive computational requirements for
most current applications, and consequently a variety of linear and nonlinear multi-
user detectors have been proposed to ease this computational burden while maintaining
satisfactory performance [38, 46]. However, in many situations where the combined
system has large dimensions (e.g., large array size, large delay spread, large user
population, and combinations of these conditions), direct implementation of these sub-
optimal techniques still proves to be very complex. In this section, we discuss iterative
techniques for efficient space–time multi-user detection in MIMO systems [7, 8, 45].
Iterative methods are among the most practical techniques for multi-user detection. For
example, an implementation for 3G cellular systems is described in [19].
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6.3.1 System model

As noted in Section 6.1, we can restrict attention to the following system model (i.e., Eq.
(6.16)):

z = Rb+n� (6.39)

where R is the cross-correlation matrix, b is the symbol vector, and n is the background
noise at the input to the decision algorithm of Fig. 6.2. An optimal ML space–time multi-
user detector will maximize the log-likelihood function of (6.23), and the computational
complexity of this maximization is a major concern, particularly when the system
dimension is large. In the following, we will use a multi-path CDMA channel for
illustration purpose, but the techniques discussed can be readily applied to other equivalent
MIMO scenarios as well. In principle, the computational complexity of ML detection
grows exponentially with the size of R, which for a multi-path MIMO multi-user channel
is proportional to the number of users K� the number of transmit antennas MT � and the
data frame length B. As the data frame length is typically much larger than the multi-path
delay spread �, R exhibits a block Toeplitz structure exemplified as

R ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

R�0� R�1� · · · R���

R�−1� R�0� R�1� · · · R���

R�−�� · · · R�0� · · · R���

R�−�� · · · R�−1� R�0� R�1�

R�−�� · · · R�−1� R�0�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

� (6.40)

As noted in Section 6.1, dynamic programming can be used to reduce the computational
complexity of ML detection to O����KMT �� per transmitted symbol. This computational
requirement is still prohibitive except for very small values of ���, MT � �, and K.

6.3.2 Iterative linear space–time multi-user detection

In this section, we consider the application of iterative processing to the implementation
of various linear space–time multi-user detectors in algebraic form. After an introduction
to the general form of linear space–time multi-user detection (ST MUD), we go on to
discuss two general approaches to solving large systems of linear equations iteratively.
Subsequent sections will treat nonlinear iterative methods.

As noted in Section 6.1, linear multi-user detectors in the framework of (6.39) are of
the form

b̂ = sgn�Re�Mz��� (6.41)

where M is a linear detection matrix. For the linear decorrelating (zero-forcing) detector,
this matrix is given by

Md = R−1� (6.42)
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while for the linear minimum-mean-square-error (MMSE) detector, we have

Mm = �R +�2I�−1� (6.43)

Direct inversion of the matrices in (6.42) and (6.43) (after exploiting the block Toeplitz
structure) is of complexity O��KMT �2B�� per user per symbol.

The linear multi-user detection estimates of (6.41) can be seen as the solution of a
linear equation

Cv = z� (6.44)

with C = R for the decorrelating detector and C = R+�2I for the MMSE detector. Jacobi
and Gauss–Seidel iteration are two common low-complexity iterative schemes for solving
linear equations such as (6.44) [14]. If we decompose the matrix C as C = CL +D+CU ,
where CL denotes the lower triangular part, D denotes the diagonal part, and CU denotes
the upper triangular part, then Jacobi iteration can be written as

vm = −D−1�CL +CU �vm−1 +D−1z� (6.45)

and Gauss–Seidel iteration is represented as

vm = −�D+CL�−1CU vm−1 + �D+CL�−1z� (6.46)

From (6.45), Jacobi iteration can be seen to be a form of linear parallel interference
cancellation, the convergence of which is not guaranteed in general. One of the sufficient
conditions for the convergence of Jacobi iteration is that D − �CL + CU � be positive
definite. In contrast, Gauss–Seidel iteration, which (6.46) reveals to be a form of linear
serial interference cancellation, converges to the solution of the linear equation from any
initial value, under the mild conditions that C be symmetric and positive definite, which
is always true for the MMSE detector.

Another general approach to solving the linear equation (6.44) involves the use of
gradient methods, among which are steepest descent and conjugate gradient iteration [14].
Note that solving (6.44) is equivalent to minimizing the cost function

��v� = 1
2

vHCv −vHz� (6.47)

The idea of gradient methods is to successively minimize this cost function along a set
of directions �pm� via

vm = vm−1 +�mpm� (6.48)

with

�m = pH
mqm−1/pH

mCpm� (6.49)
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and

qm = −���v��v=vm
= z−Cvm� (6.50)

Different choices of the set �pm� give different algorithms. If we choose the search
direction pm to be the negative gradient of the cost function qm−1 directly, this algorithm is
the steepest descent method, global convergence of which is guaranteed. The convergence
rate may be prohibitively slow, however, due to the linear dependence of the search
directions, resulting in redundant minimization. If instead we choose the search direction
to be C-conjugate as follows

pm = arg min
p∈�⊥

m−1

�p−qm−1�� (6.51)

where �m = span�Cp1� � � � � Cpm�, then we have the conjugate gradient method, whose
convergence is guaranteed and performs well when C is close to identity either in the
sense of being a low-rank perturbation or in the sense of a norm. The computational
complexity of Gauss–Seidel and conjugate gradient iteration are similar, which is on the
order of O�KMT �m� per user per symbol, where m is the number of iterations. The
numbers of iterations required by the Gauss–Seidel and conjugate gradient methods to
achieve a stable solution to the associated large system equations have been found to be
of the same order in simulations.

6.3.3 Iterative nonlinear space–time multi-user detection

Nonlinear multi-user detectors are often based on bootstrapping techniques, which are
iterative in nature. In this section, we will consider the iterative implementation of
decision-feedback multi-user detection in the space–time domain. We also discuss briefly
the implementation of multistage interference canceling ST MUD, which serves as a
reference point for introducing a new expectation-maximization-(EM-) based iterative ST
MUD, to be discussed in the next subsection. For simplicity, we now restrict the signaling
alphabet to the binary antipodal set: � = �−1�+1�.

Cholesky iterative decorrelating decision-feedback ST MUD

Decorrelating decision-feedback multi-user detection (DDF MUD) exploits the Cholesky
decomposition R = FHF, where F is a lower triangular matrix, to determine the
feedforward and feedback matrix for detection via the algorithm

b̂ = sgn�F−Hz− �F−diag�F��b̂�� (6.52)

The discussion here applies readily to the implementation of MMSE decision-feedback
multi-user detection as well.

Suppose we are interested in detecting symbol bn. The purpose of the feedforward
matrix F−H is to whiten the noise and decorrelate against the “future users”
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�sn+1� � � � � sKMT B�; while the purpose of the feedback matrix �F − diag�F�� is to cancel
the interference from “previous users” �s1� � � � � sn−1�. Note that the performance of DDF
MUD is not uniform. While the first “user” is demodulated by its decorrelating detector,
the last detected “user” will essentially achieve its single-user lower bound providing
the previous decisions are correct. There is another form of Cholesky decomposition, in
which the feedforward matrix F is upper triangular. If we were to use this form instead
in (6.52), then the multi-user detection would operate in the reverse order, as would
the performance. The idea of Cholesky iterative DDF ST MUD is to employ these two
forms of Cholesky decomposition alternatively as follows. For lower triangular Cholesky
decomposition F1, first feedforward filtering is applied as

z1 = F−H
1 z� (6.53)

where it is readily shown that z1�i = F1�iibi +
∑i−1

j=1 F1�ijbj +n1�i, i = 1� � � � �KMT B, with
n1�i, i = 1� � � � �KMT B, being independent and identically distributed (i.i.d.) Gaussian
noise components with zero-mean and variance �2. We can see that the influence of
the “future users” is eliminated and the noise component is whitened. Then we use the
feedback filtering to cancel the interference from “previous users” as

u1 = z1 − �F1 −diag�F1��b̂� (6.54)

where it is easily seen that u1�i = z1�i −
∑i−1

j=1 F1�ij b̂j ≈ F1�iibi + n1�i, i = 1� � � � �KMT B.
Similarly, for upper triangular Cholesky decomposition F2, we have

z2 = F−H
2 z� (6.55)

where z2�i = F2�iibi +
∑KMT B

j=i+1 F2�ijbj +n2�i, i = KMT B� � � � � 1, and

u2 = z2 − �F2 −diag�F2��b̂� (6.56)

where u2�i = z2�i −
∑KMT B

j=i+1 F2�ij b̂j ≈ F2�iibi + n2�i, i = KMT B� � � � � 1. After the above
operations are (alternately) executed, the following log-likelihood ratio is calculated:

Li = 2 Re�F∗
1/2�iiu1/2�i�/�2� (6.57)

where F1/2 and u1/2 are used to give a shorthand representation for both alternatives. Then
the log-likelihood ratio is compared with the last stored value, which is replaced by the
new value if the new one is more reliable, i.e.,

Lstored
i =

{
Lstored

i if �Lstored
i � > �Lnew

i ��
Lnew

i otherwise�
(6.58)

Finally we make soft decisions b̂i = tanh�Li/2� at an intermediate iteration, which has
been shown to offer better performance than making hard intermediate decisions, and
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Figure 6.4. Cholesky iterative decorrelating decision-feedback ST MUD.

make hard decisions b̂i = sgn�Li� at the last iteration. Several iterations are usually enough
for the system to achieve an improved steady state without significant oscillation. The
structure of Cholesky iterative decorrelating decision-feedback ST MUD is illustrated in
Fig. 6.4 (assuming MT = 1).

The Cholesky factorization of the block Toeplitz matrix H (see (6.40)) can be
performed recursively. For � = 1 we have

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F 1�0� 0 · · · 0 0

F 2�1� F 2�0� · · · 0 0

0

���

0 0 · · · FM�1� FM�0�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� (6.59)

where the element matrices are obtained recursively as follows:

V B = R�0�� (6.60)

and, for i = B�B − 1� � � � � 1, we perform Cholesky decomposition of the reduced-rank
matrix V i to obtain Fi�0�

V i = FH
i �0�F i�0�� (6.61)

while Fi�1� is obtained as

Fi�1� = �FH
i �0��−1R�−1�� (6.62)

Finally we have

V i−1 = R�0� −R�1�V −1
i R�−1� (6.63)

for use in the next iteration. The extension of this algorithm to � > 1 is straightforward
and is omitted here.



6.3 Iterative space–time multi-user detection 251

Multistage interference canceling ST MUD

Multistage interference cancellation (IC) is similar to Jacobi iteration except that hard
decisions are made at the end of each stage in place of the linear terms that are fed back
in (6.45). Thus we have

b̂m = sgn�z− �CL +CU �b̂m−1� = sgn�z− �H −D�b̂m−1�� (6.64)

The underlying rationale for this method is that the estimator–subtracter structure exploits
the discrete-alphabet property of the transmitted data streams. This nonlinear hard-
decision operation typically results in more accurate estimates in high SNR situations.
Although the optimal decisions are a fixed point of the nonlinear transformation (6.64),
there are problems with the multistage IC such as a possible lack of convergence and
oscillatory behavior. In the following section we consider some improvements on space–
time multistage IC MUD. Except for the Cholesky factorization, the computational
complexity for Cholesky iterative DDF ST MUD is the same as multistage IC ST MUD,
which is essentially the same as that of linear interference cancellation, i.e., O�KMT �m�

per user per symbol.

6.3.4 EM-based iterative space–time multi-user detection

In this section, expectation-maximization-based multi-user detection is introduced to avoid
the convergence and stability problem of the multistage IC MUD.

The EM algorithm [10] provides an iterative solution of maximum–likelihood
estimation problems such as

�̂�Z� = arg max
�∈�

log f�Z��� (6.65)

where � ∈ � are the parameters to be estimated, and f�·� is the parameterized probability
density function of the observable Z. The idea of the EM algorithm is to consider a
judiciously chosen set of “missing data” W to form the complete data X = �Z� W� as an
aid to parameter estimation, and then to iteratively maximize the following new objective
function:

Q���� = E
[
log f�Z� W ���Z = z�

]
� (6.66)

where it is worth emphasizing again that � are the parameters in the likelihood function,
which are to be estimated, while � represent a priori estimates of the parameters from the
previous iterations. Together with the observations, these previous estimates are used to
calculate the expected value of the log-likelihood function with respect to the complete
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data X = �Z� W�. To be specific, given an initial estimate �0, the EM algorithm alternates
between the following two steps:

1. E-step, where the complete-data sufficient statistic Q���i� is computed;
2. M-step, where the estimates are refined by �i+1 = arg max�∈�

Q���i�.

It has been shown that EM estimates monotonically increase the likelihood, and converge
stably to an ML solution under certain conditions [10].

An issue in using the EM algorithm is the trade-off between the ease of implementation
and the convergence rate. One would like to add more “missing data” to make the
complete data space more informative so that the implementation of the EM algorithm is
simpler than the original setting (6.65). However, the convergence rate of the algorithm
is inversely proportional to the Fisher information contained in the complete data space.
This trade-off is essentially due to the simultaneous updating nature of the M-step in the
original EM algorithm [11]. Consequently, the space-alternating generalized EM (SAGE)
algorithm has been proposed in [11] to improve the convergence rate for multidimensional
parameter estimation. The idea is to divide the parameters into several groups (subspaces),
with only one group being updated at each iteration. Thus, we can associate multiple
less-informative “missing data” sets to improve the convergence rate while maintaining
the overall tractability of optimization problems. For each iteration, a subset of parameters
�Si

and the corresponding missing data WSi are chosen, which is called the definition
step. Then similarly to the EM algorithm, in the E-step we calculate

QSi��Si
�i� = E

[
log f�Z� WSi �Si

��i

S̃i
�Z = z�i�

]
� (6.67)

where �S̃i
denotes the complement of �Si

in the whole parameter set; in the M-step, the
chosen parameters are updated while the others remain unchanged as

⎧⎨
⎩

�i+1
Si

= arg max
�Si

∈�Si

QSi ��Si
�i��

�i+1
S̃i

= �i

S̃i
�

(6.68)

where �Si
denotes the restriction of the entire parameter space to those dimensions indexed

by Si. Like the traditional EM estimates, the SAGE estimates also monotonically increase
the likelihood and converge stably to an ML solution under appropriate conditions [11].

The EM algorithm is applied to space–time multi-user detection as follows. Suppose
we would like to detect a bit bn, n ∈ �1� 2� � � � �KMT B�, which can be viewed as the
parameter of interest, while the interfering users’ bits bk̃ = �bj�j �=n are treated as the
missing data. The complete-data sufficient statistic is given by (Rnm is the element of
matrix R at the nth row and mth column)

Q�bn bi
n� = 1

2�2

(
−Rnnb

2
n +2bn

(
zn −∑

m�=n

Rnmb̃m

))
� (6.69)
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with

b̃m = E
[
bm�Z = z bn = bi

n

]= tanh
(

Rmm

�2
�zm −Rmnb

i
n�

)
� (6.70)

which forms the E-step of the EM algorithm. The M-step is given by

bi+1
n = arg max

bn∈�
Q�bn bi

n� =
⎧⎨
⎩

sgn�zn −∑m�=n Rnmb̃m�� � = �±1��
1

Rnn

�zn −∑m�=n Rnmb̃m�� � = R�
(6.71)

where � = R (the set of real numbers) means a soft decision is needed, e.g., at an
intermediate stage. Note that in the E-step (6.70), interference from users j �= n is not taken
into account, since these are treated as “missing data.” This shortcoming is overcome by
the application of the SAGE algorithm, where the symbol vector of all users b = �bj�

KMT B
j=1

is treated as the parameter to be estimated and no missing data are needed. The algorithm
is described as follows: for i = 0� 1� � � � �

1. Definition step: Si = 1+ �i mod KMT B�

2. M-step:

{
bi+1

n = sgn�zn −∑m�=n Rnmbi
m�� n ∈ Si�

bi+1
m = bi

m� m � Si�
(6.72)

Note that there is no E-step since there are no missing data, and interference from all
other users is recreated from previous estimates and subtracted. The resulting receiver is
similar to the multistage interference canceling multi-user receiver (see (6.64)), except
that the symbol estimates are made sequentially rather than in parallel. However, with this
simple concept of sequential interference cancellation, the resulting multi-user receiver
is convergent, guaranteed by the SAGE algorithm. The multistage interference canceling
multi-user receiver discussed in Section 6.3.3, on the other hand, does not always
converge. The computational complexity of this SAGE iterative ST MUD is also O�K�m�

per user per symbol.

6.3.5 Simulation results

In this section, the performance of the above described space–time multi-user detectors
is examined through simulations on a CDMA example. We assume a K = 8-user CDMA
system with spreading gain N = 16. Each user, equipped with one single antenna, travels
through L = 3 paths before it reaches a base-station (or access point), equipped with a
uniform linear array with MR = 3 elements and half-wavelength spacing. The maximum
delay spread is set to be � = 1. The complex gains and delays of the multi-path and the
directions of arrival are randomly generated and kept fixed for the whole data frame. This
corresponds to a slow fading situation. The spreading codes of all users are randomly
generated and kept fixed for all the simulations.



254 Multi-user receiver design

0 1 2 3 4 5 6 7
10−4

10−3

10−2

10−1

SNR (dB)

B
it 

er
ro

r 
ra

te

User #8

Matched−Filter
SU MMSE
MU MMSE
Cholesky iterative MU DF
MU Multistage IC
Single User Bound

0 1 2 3 4 5 6
10−4

10−3

10−2

10−1

SNR(dB)

B
it 

er
ro

r 
ra

te
User #4

Matched−Filter
SU MMSE
MU MMSE
Cholesky iterative MU DF
MU Multistage IC
Single User Bound

0 1 2 3 4 5 6 7
10−5

10−4

10−3

10−2

10−1

SNR(dB)

B
it 

er
ro

r 
ra

te

User #5

Matched−Filter
SU MMSE
MU MMSE
Cholesky iterative MU DF
MU Multistage IC
Single User Bound

0 1 2 3 4 5 6
10−5

10−4

10−3

10−2

10−1

SNR (dB)

B
it 

er
ro

r 
ra

te

User #7

Matched−Filter
SU MMSE
MU MMSE
Cholesky iterative MU DF
MU Multistage IC
Single User Bound

(c) (d)

(a) (b)

Figure 6.5. Performance comparison of BER versus SNR for five space–time multi-user receivers.

First we compare the performance of various space–time multi-user receivers and
some single-user space–time receivers in Fig. 6.5. Five receivers are considered: the
single-user matched filter (matched filter), the single-user MMSE receiver (SU MMSE),
the multi-user MMSE receiver (MU MMSE) implemented using the Gauss–Seidel or
conjugate gradient iteration method (the performance is the same for both), the Cholesky
iterative decorrelating decision-feedback multi-user receiver (Cholesky iterative MU DF),
and the multistage interference canceling multi-user receiver (MU multistage IC). An
interested reader can refer to [45] for derivations of the single-user-based receivers. The
performance is evaluated after the iterative algorithms converge. Owing to the poor
convergence behavior of the multistage IC MUD, we measure its performance after three
stages. The single-user lower bound is also depicted for reference. We can see that
the multi-user approach greatly outperforms the single-user-based methods; nonlinear
MUD offers further gain over the linear MUD; and the multistage IC seems to approach
the optimal performance (not always though, as is seen in Fig. 6.7), when it has good
convergence behavior. Note that due to the introduction of spatial (receive antenna) and
spectral (RAKE combining) diversity, the SNR for the same BER is substantially lower
than that required by normal receivers without these methods.
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Figure 6.6. Performance comparison of decision-feedback ST MUD and Cholesky iterative ST
MUD.

Figure 6.6 shows the performance of Cholesky iterative decorrelating decision-
feedback ST MUD for two users, which is also typical for other users. We find that the
Cholesky iterative method offers uniform gain over its non-iterative counterpart. This
gain may be substantial for some users and negligible for others due to the individual
characteristics of signals and channels.

Finally, we show the advantage of the EM-based (SAGE) iterative method over the
multistage IC method with regard to the convergence of the algorithms. From Fig. 6.7
we find that, while the multistage interference canceling ST MUD converges slowly and
exhibits oscillatory behavior, the SAGE ST MUD converges quickly and outperforms the
multistage IC method. The oscillation of the performance of the multistage IC corresponds
to performance degradation as no statistically best iteration number can be chosen.

0 1 2 3 4 5

10−4

10−3

10−2

User #7

SNR (dB)

B
it 

er
ro

r 
ra

te

mstage 1
mstage 2
mstage 3
mstage 4
mstage 5
sage 1
sage 2
sage 3

0 1 2 3 4 5 6 7 8
10−4

10−3

10−2

10−1

100
User #8

SNR (dB)
(a) (b)

B
it 

er
ro

r 
ra

te

mstage 1
mstage 2
mstage 3
mstage 4
mstage 5
sage 1
sage 2
sage 3

Figure 6.7. Performance comparison of convergence behavior of multistage interference canceling
ST MUD and EM-based iterative ST MUD.
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6.3.6 Summary

In this section, we have considered several iterative space–time multi-user detection
schemes. It is shown that iterative implementation of these linear and nonlinear multi-
user receivers approaches the optimum performance with reasonable complexity. Among
these iterative implementations the SAGE space–time multi-user receiver outperforms the
others while requiring similar complexity. While we focus on single-cell communications,
all of the techniques discussed here can be extended to the multicell scenario [6], where
the requirement for efficient algorithms only becomes more stringent.

6.4 Multi-user detection in space–time coded systems

With the invention of powerful space–time coding techniques in the late 1990s as
described in Chapter 4, there has been a growing interest in adapting these to multiple-
access communication systems. Although early space–time code construction was
concerned with single-user channels [1, 36, 37] (see Chapter 4), subsequently it has been
shown that most of the performance criteria developed can still be used effectively in
multi-user channels [21]. Space–time block codes have been applied to multiple-access
communication systems in [9, 24, 25]. The receivers that explicitly take into account the
structure of the space–time block codes have been shown to perform well in this context
[23, 27].

Here we consider multi-user detection in space–time coded multiple-access systems.
As we will see, the joint maximum-likelihood decoder for such systems has prohibitively
large computational complexity, motivating a search for low-complexity, sub-optimal
detector structures. We investigate several partitioned space–time multi-user detectors
that separate the multi-user detection and space–time decoding into two stages. Both
linear and nonlinear schemes are considered for the first stage of the partitioned receiver
and the performance versus complexity trade-offs are discussed.

Inspired by the development of turbo codes [3, 4] that were discussed in Chapter 5,
various iterative detection and decoding schemes for multiple-access channels have been
proposed in recent years. These proposals show that in general iterative receivers can
offer significant performance improvements over their non-iterative counterparts. A good
example is [44], in which a soft interference canceling turbo receiver was proposed
for convolutionally coded CDMA. The performance results obtained via simulations
showed that it is possible to achieve near single-user performance with only a few
iterations in an asynchronous, multi-path CDMA channel. In this section, among others,
we will show a generalization of this idea to a space–time coded CDMA system as in
[20, 21, 26].

The development of turbo multi-user receivers for space–time coded systems here
closely follows that of [21]. In particular, we assume a multiple-access system based
on DS-CDMA signaling as opposed to space-division multiple-access as in [26]. There
are two main implementations of CDMA-based multiple transmit antenna systems. One
involves assigning a single spreading code to each user so that the signals transmitted
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from all its antennas are spread by the same code. We will assume a design of this
type. In an alternative implementation, each user is assigned multiple spreading codes
so that the signals transmitted from different antennas are spread by different codes
[9, 17, 18, 28].

Low-complexity multi-user receiver structures for space–time coded systems have been
described in [26, 47]. For example, a multistage receiver suitable for a system employing
both turbo and space–time block coding was proposed in [47]. Turbo receiver structures
for multiple-access systems with both space–time block and trellis coded systems have
been presented in [20, 21, 26]. In general these turbo receivers operate by partitioning the
detection and decoding into two separate stages. In the first stage, a multi-user detection
technique is employed and a set of soft outputs is generated for each user. The next stage
of the receiver is equipped with a bank of decoders (either channel, space–time or both)
that decode the individual user channel or space–time codes (or both). These decoders
then generate an updated set of soft information about the code symbols which can then
be fed back to the first stage to be used as a priori information at the next iteration. The
process continues by repeating the same steps.

In Section 6.4.1 we present a simplified signal model for a space–time coded,
synchronous multi-user system, while in Section 6.4.2 we derive the jointly optimal
ML detector/decoder. In Section 6.4.3, we consider low-complexity receiver structures
for space–time coded multi-user systems by separating the multi-user detection stage
from the space–time decoder stage. We consider both linear and nonlinear multi-
user detection stages. In particular, in this section, we consider partitioned space–
time multi-user receivers based on the linear decorrelator and on the linear MMSE
estimator, as well as two partitioned receiver structures based on nonlinear interference
canceling multi-user detection stages. Section 6.4.4 details a soft-input soft-output
(SISO) maximum a posteriori (MAP) decoder [2] that can be used as the second stage
of the interference canceling receivers (for more details on MAP decoding refer to
Chapter 5).

6.4.1 Signal model

Consider a system of K independent users, each employing an independent space–
time code with MT transmitter antennas. The binary information sequence �dk�n���

n=0

of user k, for k = 1� � � � �K, is first encoded by a space–time encoder, and then
the encoded data are divided into MT streams by passing them through a serial-
to-parallel converter. (For simplicity we assume that all the users employ the
same number of transmitter antennas, although generalizing to different numbers of
transmitter antennas is straightforward.) The code bits in each parallel stream are block
interleaved, BPSK symbol-mapped, modulated by an appropriate signature waveform,
sk�t�, and are transmitted simultaneously from the MT transmitter antennas. It should
be emphasized that throughout this section we assume that user k employs the same
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signaling waveform sk�t� in all its MT transmitter antennas (i.e., sk�m�t� = sk�t� for
m = 1� � � � �MT ).

The kth user’s transmitted signal at time t can thus be written as3

xk�t� = Ak√
MT

B−1∑
i=0

MT∑
m=1

bk�m�i�sk�t − iT�� (6.73)

where �bk�m�i� ∈ �+1�−1��B−1
i=0 is the symbol-mapped space–time encoder output of the

kth user on transmitter antenna m at time i, and B is the number of channel symbols
per user in a data frame which is assumed to be the same as the length of a space–
time codeword. We assume that the signature waveform of each user is supported only
on the interval 0 ≤ t ≤ T , and is normalized so that

∫ T

0 s2
k�t�dt = 1, for k = 1� � � � �K.

Thus, A2
k represents the transmitted energy per bit of user k, independent of the number

of transmitter antennas. Note that the model of (6.73) is otherwise general with regard
to the signaling format, and so the following results can be applied to any signaling
scheme. However, we are interested here in non-orthogonal signaling schemes such as
code-division multiple-access (CDMA).

Assuming that the fading is sufficiently slow to be constant over a received data frame,
the corresponding signal received at a single receive antenna can be written as

r�t� =
B−1∑
i=0

K∑
k=1

Ak√
MT

MT∑
nT =1

hk�mbk�m�i�sk�t − iT�+n�t� (6.74)

where n�t� is complex white Gaussian noise with zero-mean and variance N0/2 per
dimension. The complex fading coefficient, hk�m, between the kth user’s mth transmitter
antenna and the receiver, is assumed to be a zero-mean unit variance complex Gaussian
random variable with independent real and imaginary parts. Equivalently, hk�m has uniform
phase and Rayleigh amplitude; i.e., the so-called Rayleigh fading model. These fading
coefficients are assumed to be mutually independent with respect to both k and m. In what
follows, we assume that all parameters of the model (6.74) are known to the receiver.
Only the transmitted symbols are unknown.

6.4.2 Joint ML multi-user detection and decoding for space–time coded
multi-user systems

We start by considering the joint maximum-likelihood detection and decoding of the
symbols in the model of Section 6.4.1. To do so, we first establish some notation.

3 Elsewhere in this chapter, we have assumed that the transmitted signals are normalized, and have absorbed
the transmitter amplitude into the channel response. In this section, we will decompose the channel response to
explicitly show the transmitted amplitude as a separate term, similarly to (6.20).
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As before, we denote the kth user’s transmitted symbol vector (on MT antennas) at
time i by the vector bk�i� = �bk�1�i�� � � bk�MT

�i��T. Define, the BK ×MT K joint codeword
matrix D, of all users, as

D =

⎡
⎢⎢⎢⎣

D1 0B×MT
� � � 0B×MT

0B×MT
D2 � � � 0B×MT

���
���

� � �
���

0B×MT
0B×MT

� � � DK

⎤
⎥⎥⎥⎦ (6.75)

where we have also introduced the notation, for k = 1� � � � �K,

Dk =
⎡
⎢⎣

bT
k�0�
���

bT
k�B−1�

⎤
⎥⎦ � (6.76)

Note that Dk ∈ �+1�−1�B×MT , for k = 1� � � � �K. We will call the joint codeword, D, of
all users, the super codeword. The space–time coded output from all the users at time i

is the K ×KMT matrix denoted as D�i�, where

D�i� =

⎡
⎢⎢⎢⎣

bT
1�i� 01×MT

� � � 01×MT

01×MT
bT

2�i� � � � 01×MT

���
���

� � �
���

01×MT
01×MT

� � � bT
K�i�

⎤
⎥⎥⎥⎦ � (6.77)

The fading coefficients of the kth user can be collected into a vector
hk = [

hk�1� � � � � hk�MT

]T ∈ C
MT ×1, and we can combine all these fading coefficient

vectors into one vector h = [
hT

1 � � � hT
K

]T ∈ C
KMT ×1. With this notation, the output,

z�i� = �z1�i�� � � zK�i��T, of a bank of K matched filters (each matched to a user signature
waveform sk�t�) at the ith symbol interval can be written as

z�i� = RAD�i�h +��i� (6.78)

where the diagonal matrix A is defined as A = diag� A1√
MT

� � � � � AK√
MT

�, R is the (normalized)

cross-correlation matrix of the users’ signature waveforms and ��i� ∼ � �0�N0R�.
Let us denote the B-vector of the kth matched filter outputs corresponding to the complete

received codeword as zk = �zk�0�� � � zk�B−1��T and the BK-vector of outputs of all the
matched filters corresponding to a complete codeword as z = �z1� � � zK�T. Then we can write

z = �RA⊗ IB�Dh +� (6.79)

where � ∼ � �0�N0R ⊗ IB�, IB denotes the B × B identity matrix and ⊗ denotes the
Kronecker product. The joint ML multi-user decision rule for the space–time coded
CDMA system is then given by

D̂ = arg max
D

p�z�D� h�

= arg max
D

�2 Re
{
hHDT�A⊗ IB�z

}−hHDT�A⊗ IB��R ⊗ IB��A⊗ IB�Dh�
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where the maximization is over all the valid super codewords and we have used the fact
that for general matrices A, B, C, and D we have, �A⊗B��C⊗D� = �AC⊗BD� provided
the dimensions of the matrices A� B� C, and D are such that the various matrix products
are well-defined [22]. Note that this joint ML detector and decoder searches over a super
trellis made up by combining all the users’ space–time code trellises.

The asymptotic performance of a space–time code can be quantified by the so-called
diversity gain. The diversity gain determines the asymptotic slope of the probability of
error curve on a log scale. As discussed in Chapter 4, in order to maximize the diversity
gain for a Rayleigh fading channel one should design the space–time code such that the
minimum rank of the codeword difference matrix for any two codewords is as large as
possible [15, 36]. When this minimum rank over all pairs of distinct codewords is the
largest possible value MT , then the space–time code is said to achieve full-diversity.

In [21], it was shown that the space–time codes designed to achieve full-diversity
in single-user channels will also be able to achieve full-diversity asymptotically in the
CDMA multi-user channel, at least when the SNR is sufficiently large. That is, if the
minimum rank of all the valid error codewords Ek = Dk − D̂k is rk (where rk ≤ MT ), then
the asymptotic diversity advantage of the kth user’s space–time code in the multi-user
channel is equal to rk. In particular, if the kth user’s space–time code were to achieve the
full-diversity MT in a single-user environment, then it will also achieve the full-diversity
MT in the multi-user channel, at least asymptotically in SNR, as long as the signature
cross-correlation matrix is non-singular.

Figure 6.8 shows the performance results for the joint maximum-likelihood detector
in a space–time coded, synchronous, multiple-access system with two equal-power users
having a cross-correlation of 0�4. We set the number of receiver antennas to one, ignoring
the possibility of exploiting receiver diversity since our primary concern here is to
investigate the transmitter diversity schemes. In Fig. 6.8 we have shown the joint ML
receiver performance results for two systems: one with two transmit antennas and another
with four transmit antennas. We make use of full-diversity BPSK space–time trellis
codes with constraint length � = 5, given in [16], for both systems. Specifically, we
employ space–time codes based on the underlying rate-1/2 convolutional code with octal
generators �46� 72�, and the underlying rate-1/4 convolutional code with octal generators
�52� 56� 66� 76�, both given in [16], for the two- and four-antenna systems, respectively.
We use the frame error rate (FER) as the measure of performance. Also shown in
this figure is the performance of an equivalent system but without space–time coding.
Figure 6.8 reveals the significant gains that can be achieved with space–time coding in
multi-user systems. Moreover, it shows that the joint ML receiver performance is very
close to that of the single-user bound as predicted above.

It is easily seen that the above ML path search can be implemented as a maximum-
likelihood path search over a super trellis formed by combining all the users’ space–time
code trellises using the Viterbi algorithm. This is similar to the optimal decoder for
convolutionally coded CDMA channels derived in [12]. Assuming (for simplicity) that
all the users employ space–time codes based on underlying convolutional codes that have
a constraint length �, this super trellis will have a total of K�� − 1� states, resulting in
a total complexity per user of about ��2K�/K�, which is exponential in K�. Note also
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Figure 6.8. FER performance versus Eb/N0 (in dB) of the joint maximum-likelihood space–time
multi-user detector: K = 2 and � = 0�4.

that, in order to achieve full-diversity gain MT in an MT transmitter antenna system we
must have � ≥ MT [16, 37]. Hence, it is clear that even for a small number of users
this could easily become a prohibitively large computational burden at the receiver. This
motivates us to look for sub-optimal, low-complexity receiver structures for space–time
coded multi-user systems.

In order to reduce the computational complexity of joint multi-user detection and
space–time decoding while still achieving competitive performance against the joint ML
decision rule, one can use partitioned receiver structures. Specifically, the multi-user
detection and the space–time decoding can be separated into two stages, as is done in
[13] for the case of (single-antenna) convolutionally coded CDMA channels. At the first
stage of the partitioned receiver, multi-user detection is performed. The outputs from the
multi-user detection stage are then passed onto a bank of single-user space–time decoders
corresponding to the K users in the system. Thus, each user’s space–time decoder operates
independently from the others. Of course, it is possible to employ either an ML or
a maximum a posteriori probability decoder as the single-user space–time decoder at
the second stage of the receiver. Also, it is possible to use any reasonable multi-user
detection strategy at the first stage of the receiver. In the following we consider both
linear and nonlinear multi-user detectors as the first stage of the partitioned space–time
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multi-user receiver, and compare the performance of these receivers against the best
possible performance.

6.4.3 Partitioned low-complexity receivers for space–time coded multi-user
systems

We consider linear multi-user detection based partitioned receivers, followed by the
nonlinear multi-user detection approaches. For linear multi-user detectors, we investigate
both decorrelator and linear MMSE detectors [38]. For nonlinear approaches we consider
both a simple iterative receiver based on interference cancellation and the turbo principle,
and an improved iterative receiver based on instantaneous MMSE filtering after the
interference cancellation step.

Decorrelator-based partitioned space–time multi-user receiver

The decorrelator output at the ith symbol time is given by [38],

ẑ�i� = R
−1

z�i� = AD�i�h + �̂� (6.80)

where �̂ ∼ � �0�N0R
−1

�. The first stage of the receiver computes soft outputs
corresponding to each user’s transmitted symbol vectors at time i. The soft outputs are
the a posteriori probabilities (APPs) of each user’s transmitted symbol vectors, defined
as below for l = 1� � � � � 2MT , k = 1� � � � �K and i = 0� � � � �B − 1 (note that 2MT is the
number of possible transmitted symbol vectors):

pk�l�i� = P �bk�i� = sl�ẑ�i�� h� for sl ∈ �+1�−1�MT ×1�

From (6.80), we can write this a posteriori probability as

pk�l�i� = C1exp

(
− 1

N0�R
−1

�kk

�ẑk�i�−
Ak√
MT

sT
l hk�

2
)

�

where �R
−1

�kk is the �k� k�th element of the matrix R
−1

, ẑk�i� is the kth component of
the vector ẑ�i� and C1 is a normalizing constant.

The second stage of the partitioned receiver employs a bank of single-user space–time
Viterbi decoders that use these a posteriori probabilities as inputs. The kth user’s decoder
uses only the symbol vector probabilities corresponding to the kth user. This results
in a decentralized implementation of the receiver. Clearly this partitioned receiver is
equivalent to a single-user space–time coded system, except for a different noise variance
value. This leads to the following upper bound on the pairwise error probability of the
decorrelator-based partitioned space–time multi-user receiver

Pk��d�
e �Dk → D̂k� ≤ 1∏rk

n=1�k�n�Ek�

(
A2

k/MT

4N0�R
−1

�kk

)−rk

�

where rk is the rank of the codeword error matrix Ek = Dk − D̂k and �k�n �Ek�, for
n = 1� � � � � rk, are the non-zero eigenvalues of the MT ×MT matrix ET

kEk.



6.4 Multi-user detection in space–time coded systems 263

Linear MMSE-based partitioned space–time multi-user receiver

As is well-known, the decorrelator performance degrades when the background noise
is dominant, since it completely ignores the presence of background noise [38]. A
better compromise between suppressing the multiple-access interference (MAI) and the
background noise is obtained by employing a linear MMSE filter at the first stage of
the space–time receiver. The linear MMSE multi-user detector output at symbol time i is
given by [38]

ẑ�i� = A−1�R +N0A−2�−1z�i��

The decision statistic corresponding to the kth user can then be written as

ẑk�i� = Ak

MT

K∑
j=1

MkjAjb
T
j �i�hj + �̂k�i�

= A2
k

MT

MkkbT
k�i�hk + Ak

MT

∑
j �=k

MkjAjb
T
j �i�hj + �̂k�i� (6.81)

where we have defined M = �A2 +N0R
−1

�−1 and �̂k�i� ∼ � �0�
A2

k

MT
N0�MR

−1
M�kk�.

In order to compute the soft output a posteriori probabilities at the end of the first
stage, we make the assumption that the noise at the output of an MMSE multi-user
detector (residual MAI plus the background noise) can be modeled as being Gaussian
[32]. Therefore, we may model (6.81) as

ẑk�i� = A2
k

MT

MkkbT
k�i�hk + �̃k�i�� (6.82)

with �̃k�i� ∼ � �0� �2
k�i��. It can be shown that

�2
k�i� = 4

A2
k

MT

[∑
j �=k

A2
j

MT

M2
kj�hj�i��2 +N0�MR

−1
M�kk

]
� (6.83)

Using this model, the soft output a posteriori probabilities at the output of the linear
MMSE multi-user stage can be written as

pk�l�i� = P �bk�i� = sl�ẑ�i�� h�

= C2exp
(

− 1

�2
k�i�

�ẑk�i�−
A2

k

MT

MkksT
l hk�2

)
�

where C2 is a normalizing constant.
The second stage of this receiver operates exactly the same way as that in the

decorrelator-based partitioned receiver.
Figure 6.9 shows the FER performance of partitioned space–time multi-user receivers

based on linear first-stage multi-user detectors and ML single-user decoders, in a four-
user system with each having two transmit antennas. As before, we make use of the
full diversity BPSK space–time trellis code with constraint length � = 5 and based on
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Figure 6.9. FER performance versus Eb/N0 (in dB) of the linear first stage-based partitioned
space–time multi-user detectors: K = 4, � = 0�4, and MT = 2.

the underlying rate-1/2 convolutional code with octal generators �46� 72� [16]. User
cross-correlations are assumed to be �jk = 0�4 for all k �= j.

From Fig. 6.9 it can be seen that the linear first stage-based partitioned space–time
receivers may offer some diversity gain over single-antenna systems, though they fail
to capture the full gains achievable with space–time coding. This is clear from the
large performance gap between that of linear first stage-based partitioned receivers and
the single-user bound in Fig. 6.9. This performance degradation becomes severe with
increasing user cross-correlations, as one would expect. These results also justify our
iterative approach, which is capable of providing near single-user performance even
in severe MAI environments (as we will see below). We observe that for the given
cross-correlation values, the MMSE first stage performance is no better than that with a
decorrelator first stage. Of course in the case of smaller MAI than what we have simulated,
the MMSE first stage would outperform the decorrelator-based receiver, since in this case
the background noise would be the dominant noise source. In either case, these linear
detectors fail to exploit the large performance gains available with space–time coding.

Iterative MUD with interference cancellation for space–time coded CDMA

In this section we present a simple iterative receiver structure based on interference
cancellation and the turbo principle. Suppose that at the first stage of the receiver, we
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have available a priori probabilities of all users’ transmitted symbol vectors, pk�l�i�
p
2 =

P �bk�i� = sl�, for l = 1� � � � � 2MT , k = 1� � � � �K and i = 0� � � � �B − 1. Note that the
subscript 2 and superscript p indicate that these a priori probabilities were, in fact,
generated by the second stage of the receiver (i.e., the single-user space–time decoders)
at the previous iteration. Using these a priori probabilities pk�l�i�

p
2 , the interference-

canceling multi-user detector at the first stage of the receiver computes soft estimates of
the transmitted symbol vectors of all the users as

b̂k�i� =
2MT∑
l=1

slpk�l�i�
p
2 � (6.84)

These soft estimates are used to cancel the multiple-access interference at the output
of the kth user’s matched filter. The interference cancelled output corresponding to the
kth user is obtained as the kth component of the vector

ẑk�i� = ẑ�i�−RAD̂k�i�h� (6.85)

where D̂k�i� = diag�b̂1�i�� � � � � b̂k−1�i�� 0� b̂k+1�i�� � � � � b̂K�i��. From (6.85), with ẑk�i�

denoting the kth element of ẑk�i�, we have that

ẑk�i� = Ak√
MT

bT
khk +∑

j �=k

�kj

Aj√
MT

�bj − b̂j�
Thj +�k�i�� (6.86)

Since �k�i� ∼� �0�N0�, assuming all the previous estimates of the symbol vectors were
correct, the iterative interference-canceling space–time multi-user detector (IC-ST-MUD)
computes the soft output a posteriori probabilities of the transmitted symbol vectors of
user k, for k = 1� � � � �K, as

P
[
bk�i� = sl�z�i�� �b̂j�

K

j=1�j �=k

]
= C3exp

[
− 1

N0

�ẑk�i�−
Ak√
MT

sT
l hk�2

]
pk�l�i�

p
2

= pk�l�i�1pk�l�i�
p
2�

where C3 is a normalizing constant.
Following turbo decoding terminology, the term pk�l�i�1 is called the extrinsic a

posteriori probability as computed by the space–time multi-user detector. These extrinsic
a posteriori probabilities, pk�l�i�1, are de-interleaved and passed on to a bank of K single-
user soft-input/soft-output space–time MAP decoders, described in Section 6.4.4 below
(for a more general factor graph interpretation refer to Chapter 5). The kth user’s SISO
space–time MAP decoder computes a posteriori probabilities of the transmitted symbol
vectors for all the symbols in a given frame [44]. The extrinsic components of these
symbol vector APPs, pk�l�i�2, are then interleaved and fed back to the first stage of the
IC-ST-MUD, to be used as the a priori probabilities pk�l�i�

p
2 , in the next iteration. At the

final iteration, the space–time MAP decoders output hard decisions on the information
symbols. A block diagram of this iterative, interference-canceling space–time multi-user
detector is shown in Fig. 6.10.
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Figure 6.10. Iterative, interference-canceling, space–time multi-user detector.

FER performance of the iterative receiver based on interference cancellation is shown in
Fig. 6.11 for the same four-equal-power-user system in which each user has two antennas
considered in Fig. 6.9. From Fig. 6.11 we observe that with about four iterations we can
achieve most of the gain available from the iterative decoding process. Significantly, we
see that for medium values of �, this simple interference cancellation scheme can achieve
near single-user performance with few iterations, which is not possible with linear first
stages as we observed earlier.

However, this simple interference-cancellation-based iterative detector fails when the
cross-correlations between users are increased. In this case, the performance becomes
almost insensitive to the number of iterations since when the user cross-correlations are
high our estimates at the end of the initial iteration are very poor (which of course is
the same as a system employing a single-user matched filter front-end), and thus the
subsequent iterations will be based on these poor estimates.

The conventional matched filter complexity is ��1�. At each iteration, the first stage
of the receiver needs to compute 2MT symbol vector a posteriori probabilities. Hence, the
computational complexity of this partitioned receiver is ��2MT +2�� per user per iteration.
Note that even though both MAP and ML decoding have the same ��2�� complexity
order, the MAP decoding in general requires more computations compared to the ML
decoding. It has been shown that MAP decoding can be done with a complexity roughly
four times that of ML decoding [40].

Iterative MUD with interference cancellation and instantaneous MMSE filtering
for space–time coded multi-user systems

As we mentioned above, the performance of the iterative IC-ST-MUD receiver, proposed
in the previous section degrades considerably for medium to large cross-correlation values.
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Figure 6.11. FER performance versus Eb/N0 (in dB) of the partitioned iterative space–time receiver
based on interference-canceling multi-user detection: K = 4, � = 0�4, and MT = 2.

Especially when the user cross-correlations are high, the soft estimates at the initial
iteration can be very poor and thus the performance does not improve significantly on
subsequent iterations. In order to overcome this shortcoming, in this section we modify
the iterative receiver proposed in the previous section by the addition of an instantaneous
filter. This becomes similar to the iterative decoder proposed in [44] for a convolutionally
coded CDMA channel.

Specifically, we choose a linear MMSE filter that minimizes the mean square
error between the interference-suppressed output and the kth user’s fading-modulated
transmitted symbol vector. Clearly, when the soft estimates of the multiple-access
interference are very poor or they are not available at all (as in the case of the first
iteration), this filtering helps the receiver to still maintain an acceptable performance
level, as we will see by the simulation results.

The kth user’s linear MMSE filter at symbol time i applies weights wk�i� to the
interference-suppressed output ẑk�i� of (6.85), where wk�i� is designed so that

wk�i� = arg min
w

E
[�bT

k�i�hk −wHẑk�i��2
]
� (6.87)

It can easily be shown that the solution to (6.87) is given by

wk�i� = E
[
ẑk�i�ẑ

H
k �i�

]−1
E
[
ẑk�i�b

T
k�i�hk

]
� (6.88)
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with

E
[
ẑk�i�ẑ

H
k �i�

]= RVk�i�R +N0R�

and

E
[
ẑk�i�b

T
k�i�hk

]= Ak√
MT

�hk�2Rek�

where we have defined the matrix Vk�i� as

Vk�i� = diag

(
A2

1

MT

MT∑
m=1

�1− b̂2
1�m��h1�m�2� � � � �

A2
k

MT

�hk�2� � � � �
A2

K

MT

MT∑
m=1

�1− b̂2
K�m��hK�m�2

)
�

and ek is the kth unit vector. Denoting the matrix
(
RVk�i�R +N0R

)−1
by Mk�i�, we can

write the instantaneous linear MMSE filter corresponding to the kth user at symbol time
i as

wk�i� = Ak√
MT

�hk�2
(
RVk�i�R +N0R

)−1
Rek

= Ak√
MT

�hk�2Mk�i�Rek� (6.89)

We again model the residual noise at the linear MMSE filter output as having a
Gaussian distribution [32, 44]. Thus, we have the following model for vk�i�, the output of
the linear MMSE filter corresponding to the kth user at symbol time i:

vk�i� = wH
k �i�ẑk�i� = �k�i�b

T
k�i�hk +uk�i�� (6.90)

where uk�i� ∼ � �0� �2
k�i��. It can be shown that

�k�i� = A2
k

MT

�hk�2�Mk�i��k�k (6.91)

and

�2
k�i� = �hk�2

(
�k�i�−�2

k�i�
)
� (6.92)

The soft-output interference-canceling multi-user detector with instantaneous MMSE
filtering makes use of the model in (6.90) in order to compute the a posteriori probabilities
of the transmitted symbol vectors corresponding to the kth user:

P
[
bk�i� = sl � z�i�� �b̂j�

K

j=1�j �=k

]
= C4exp

[
−�vk�i�−�k�i�slhk�2

�2
k�i�

]
pk�l�i�

p
2

= pk�l�i�1pk�l�i�
p
2�

where C4 is a normalizing constant.
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Figure 6.12. FER performance versus Eb/N0 (in dB) of the partitioned iterative space–time receiver
based on interference canceling and linear MMSE filtering multi-user detection stage. K = 4,
� = 0�75, and MT = 2.

The second stage of this modified iterative receiver is a SISO space–time MAP decoder
which operates in exactly the same way as the receiver described in the previous section.
This decoder is described briefly in the following section.

Figure 6.12 shows the FER performance of the interference-canceling space–time
multi-user receiver with instantaneous linear MMSE filtering assuming the same four-user
system but with the cross-correlation between any pair of users being equal to 0�75. We
observe that this modified iterative receiver provides excellent performance and is able to
achieve near single-user performance with only a few iterations (two to three iterations),
even in the presence of considerable MAI.

The complexity of this MMSE-based interference-canceling partitioned receiver is
roughly about ��K2 +2MT +2�� per user per iteration. Note also that this iterative receiver
does not rely on spatial diversity for interference suppression but exploits the multi-user
signal structure, which is likely to be available at a base-station receiver.

6.4.4 Single-user soft-input soft-output space–time map decoder

In the following we briefly outline the single-user soft-input soft-output space–time MAP
decoder assumed in the iterative receivers above. The space–time encoder of each user is
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assumed to append zero bits to a given information bit block of size B′, so that the trellis
is always terminated in the zero state. Thus, the actual space–time code block length is
B = B′ +�−1 (since we assume that the rate of the space–time code is 1), where � is the
constraint length of the underlying convolutional code. In this section, we use the MAP
decoding algorithm [2] to compute the a posteriori probabilities of all the symbol vectors
and the information bits.

Similarly to the notation in [44], we will denote the state of the space–time trellis
at time i by a �� −1�-tuple, as Si = �s1

i � � � � � s�−1
i � = �di−1� � � � � di−�−1�, where di is the

input information bit to the space–time encoder at time i. The corresponding output code
symbol vector is denoted by bi. (Note that here we are using the subscripts to denote
the time index.) Let d�s′� s� be the input information bit that causes the state transition
from Si−1 = s′ to Si = s and b�s′� s� be the corresponding output bit vector, which is of
length MT .

Define the forward and backward recursions [2] as

�i�s� =∑
s′

�i−1�s
′�P�bi�s

′� s��� i = 1� � � � �B� (6.93)

and

�i�s� =∑
s′

�i+1�s
′�P�bi+1�s

′� s��� i = B−1� � � � � 0� (6.94)

where P�bi�s
′� s�� = P�bi = b�s′� s��. Initial conditions for (6.93) and (6.94) are given as

�0�0� = 1, �0�s �= 0� = 0, �B�0� = 1, and �B�s �= 0� = 0. The summations are over all
the states s′ where the state transition �s′� s� is allowed in the code trellis. Normalization
of forward and backward variables is done as in [44] to avoid numerical instabilities,
though we do not elaborate them here.

Let �l denote the set of state pairs �s′� s� such that the output symbol vector
corresponding to this transition is sl. The SISO ST MAP decoder of user k updates the a
posteriori symbol vector probabilities as

P�bk�i� = sl��pk�l′ �i�1�
B−1
i=0 � l′ = 1� � � � �L� = ∑

�s′�s�∈�l

�i−1�s
′��i�s�P�bi�s

′� s��

=
( ∑

�s′�s�∈�l

�i−1�s
′��i�s�

)
P�bk�i� = sl�

= pk�l�i�2pk�l�i�1� (6.95)

The extrinsic part of the above a posteriori symbol vector probability, pk�l�i�2, is
interleaved and fed back to the interference-canceling space–time multi-user detector, to
be used as the a priori probability pk�l�i�

p
2 , in the next iteration.

In the final iteration the SISO ST MAP decoder also computes the a posteriori log-
likelihood ratio (LLR) of the information bits. Again, similarly to the notation in [44], let
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�+ denote the set of state pairs �s′� s� such that the corresponding input information bit
is +1. �− is defined similarly. Then we have that

��dk�i�� = P�dk�i� = +1�

P�dk�i� = −1�

= log
∑

�+ �i−1�s
′��i�s�P�bi�s

′� s��∑
�− �i−1�s

′��i�s�P�bi�s
′� s��

�

Based on these a posteriori log-likelihood ratios, the decoder outputs a final hard decision
on the information bit dk�i� for i = 1� � � � �B′ −1, at the last iteration.

6.4.5 Summary

In this section, we have considered space–time coding for multiple-access systems in
the presence of quasi-static Rayleigh fading. We first obtained the joint ML receiver for
a space–time coded CDMA multi-user channel. This joint ML receiver can be shown
to achieve full-diversity advantage for each user if the individual space–time codes are
of full-diversity. A better trade-off between performance and computational complexity
at the receiver can be obtained by partitioning the multi-user detection and space–time
decoding into two stages at the receiver. In particular, a nonlinear iterative receiver based
on interference cancellation and instantaneous MMSE filtering is capable of capturing
most of the gains available with space–time coding in multiple-access channels, with only
a few iterations.

6.5 Adaptive linear space–time multi-user detection

We now turn to the situation in which some of the parameters of the model of (6.1)
are not known, and thus the receiver must adapt itself to the environment. To examine
this situation, two linear multi-user MIMO reception strategies are presented: diversity
and space–time multi-user detection. Citing advantages of the space–time technique,
linear adaptive implementations, including batch and sequential-adaptive algorithms for
synchronous CDMA in flat-fading channels, are then developed. The section concludes
with extensions to asynchronous CDMA in multi-path fading. Portions of this work first
appeared in [35].

6.5.1 Diversity multi-user detection versus space–time multi-user detection

We consider a K-user code division multiple-access (CDMA) system with processing
gain N , operating in flat-fading with MR receiver antennas and MT transmitter antennas.
For simplicity of exposition, we will consider only MT = MR = 2 and BPSK modulation
in this section. Extensions to other antenna configurations and modulation techniques are
straightforward. When two antennas are employed at the transmitter, we must first specify
how the information symbols are transmitted across the two antennas. Here we adopt the
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Alamouti space–time block coding scheme [1, 36] discussed in Chapter 1. Specifically,
for each user k, two information symbols bk�1 and bk�2 are transmitted over two symbol
intervals. At the first time interval, the symbol pair �bk�1� bk�2� is transmitted across the
two transmitter antennas; and at the second time interval, the symbol pair �−bk�2� bk�1� is
transmitted. After chip-matched filtering with respect to ��t� and chip-rate sampling, the
received signals at antenna 1 during the two symbol intervals are4

r1�1 =
K∑

k=1

[
hk�1�1bk�1 +hk�2�1bk�2

]
sk +n1�1 (6.96)

and

r2�1 =
K∑

k=1

[−hk�1�1bk�2 +hk�2�1bk�1

]
sk +n2�1� (6.97)

and the corresponding signals received at antenna 2 are

r1�2 =
K∑

k=1

[
hk�1�2bk�1 +hk�2�2bk�2

]
sk +n1�2 (6.98)

and

r2�2 =
K∑

k=1

[−hk�1�2bk�2 +hk�2�2bk�1

]
sk +n2�2� (6.99)

where hk�i�j� i� j ∈ �1� 2� is the complex channel response between transmitter antenna
i and receiver antenna j for user k and sk = �c

�0�
k c

�1�
k · · · c�N−1�

k �T ∈ �±1/
√

N�N is the
spreading code assigned to user k, as discussed previously in this chapter.

The noise vectors n1�1� n1�2� n2�1� and n2�2 are assumed to be independent and identically
distributed with distribution �c�0��2IN �.

Linear diversity multi-user detector

Denote

S
�= �s1 · · · sK�

and

R
�= ST S�

Suppose that user 1 is the user of interest. The combining weights for the linear
decorrelating detector [38] for user 1 can be written as

w1 = SR
−1

e1� (6.100)

4 In this section, we assume complex signaling waveforms and channel coefficients.



6.5 Adaptive linear space–time multi-user detection 273

where e1 denotes the first unit vector in R
K . Our first detection strategy, which we call

linear diversity multi-user detection, applies the linear multi-user detector w1 in (6.100)
to each of the four received signals r1�1� r1�2� r1�2� and r2�2 and then performs space–time
decoding. Specifically, denote the filter outputs as

z1�1
�= wT

1 r1�1 = h1�1�1b1�1 +h1�2�1b1�2 +u1�1� (6.101)

z2�1
�= (wT

1 r2�1

)∗ = −h∗
1�1�1b1�2 +h∗

1�2�1b1�1 +u∗
2�1� (6.102)

z1�2
�= wT

1 r1�2 = h1�1�2b1�1 +h1�2�2b1�2 +u1�2� (6.103)

z2�2
�= (wT

1 r2�2

)∗ = −h∗
1�1�2b1�2 +h∗

1�2�2b1�1 +u∗
2�2� (6.104)

with

ui�j

�= wT
1 ni�j ∼ �c

(
0�

�2

�2
1

)
� i� j = 1� 2 (6.105)

where �2
1

�= 1/
[
R

−1
]

1�1
.

We define the following quantities:

z
�= �z1�1z2�1z1�2z2�2�

T

u
�= �u1�1u

∗
2�1u1�2u

∗
2�2�

T

h1�1
�= �h1�1�1h1�2�1�

H

h̄1�1
�= �h1�2�1 −h1�1�1�

T

h1�2
�= �h1�1�2h1�2�2�

H

h̄1�2
�= �h1�2�2 −h1�1�2�

T �

Then (6.101)–(6.105) can be written as

z = [h1�1h̄1�1h1�2h̄1�2

]H
︸ ︷︷ ︸

HH
1

[
b1�1

b2�1

]
+u� (6.106)

with
u ∼�c

(
0�

�2

�2
1

· I4

)
� (6.107)

It is readily verified that

H1HH
1 =

[
E1 0
0 E1

]
� (6.108)

E1
�= ∣∣h1�1�1

∣∣2 + ∣∣h1�1�2

∣∣2 + ∣∣h1�2�1

∣∣2 + ∣∣h1�2�2

∣∣2 � (6.109)
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To form the maximum-likelihood decision statistic, we premultiply z by H1 and obtain

[
d1�1

d1�2

]
�= H1z = E1

[
b1�1

b1�2

]
+v� (6.110)

with

v ∼�c

(
0�

E1�
2

�2
1

· I2

)
� (6.111)

The corresponding symbol estimates are given by
[

b̂1�1

b̂1�2

]
= sign

(
�
{[

d1�1

d1�2

]})
� (6.112)

The bit error probability is then given by

PD
1 �e� = P

(
��d1�1� < 0 � b1�1 = +1

)

= P

[
E1 +�

(
0�

E1�
2

2�2
1

)
< 0

]
= Q

(√
2E1

�
·�1

)
� (6.113)

which fully exploits the available antenna diversity.

Linear space–time multi-user detector

Now consider the quantities:

r̃
�=

⎡
⎢⎢⎣

r1�1

r∗
2�1

r1�2

r∗
2�2

⎤
⎥⎥⎦ � ñ

�=

⎡
⎢⎢⎣

n1�1

n∗
2�1

n1�2

n∗
2�2

⎤
⎥⎥⎦ � hk

�=

⎡
⎢⎢⎣

hk�1�1

h∗
k�2�1

hk�1�2

h∗
k�2�2

⎤
⎥⎥⎦ � h̄k

�=

⎡
⎢⎢⎣

hk�2�1

−h∗
k�1�1

hk�2�2

−h∗
k�1�2

⎤
⎥⎥⎦ � (6.114)

Then (6.96)–(6.99) may be written as

r̃ =
K∑

k=1

(
bk�1hk ⊗ sk +bk�2h̄k ⊗ sk

)
+ ñ = S̃b+ ñ� (6.115)

where

S̃
�=
[
h1 ⊗ s1� h̄1 ⊗ s1� � � � � hK ⊗ sK� h̄K ⊗ sK

]
4N×2K

(6.116)

b
�=
[
b1�1b1�2b2�1b2�2 · · ·bK�1bK�2

]T

� (6.117)

Since hH
k h̄k = 0 it is easy to show that the decorrelating detector for detecting the symbol

b1�1 based on r̃ is given by

w̃1�1 = h1 ⊗w1

�h1�2
� (6.118)
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which we call linear space–time multi-user detection. Hence the output of the linear
space–time detector in this case is given by

z̃1 = w̃H
1�1r̃ = b1�1 +u1 (6.119)

with

u1
�= w̃H

1�1ñ ∼ �c

(
0��2�w̃1�1�2

)
(6.120)

where

�w̃1�1�2 = �w1�2

�h1�2
= 1

E1�
2
1

� (6.121)

Therefore the probability of error is given by

PST
1 �e� = P

(
� �z̃1� < 0 � b1�1 = +1

)

= P

[
1+�

(
0�

1

2E1�
2
1

)
< 0

]
= Q

(√
2E1

�
·�1

)
� (6.122)

Comparing (6.122) with (6.113) it is seen that when two transmitter antennas and two
receiver antennas are employed and the signals are transmitted in the form of a space–
time block code, then the linear diversity receiver and the linear space–time receiver have
identical performance. What, then, are the benefits of the space–time detection technique?
They include the following.

1. The user capacity for CDMA systems is limited by correlations among composite
signature waveforms. This multiple-access interference will tend to decrease as the
dimension of the vector space in which the signature waveforms reside increases.
The signature waveforms for linear diversity detection are of length N , i.e., they
reside in C

N . Since the received signals are stacked for space–time detection, these
signature waveforms reside in C

2N for two transmit and one receive antenna or C
4N

for two transmit and two receive antennas. As a result, the space–time structure can
support more users than linear diversity detection for a given performance threshold.
A specific example of this phenomenon is discussed in Section 6.5.3.

2. For adaptive configurations, linear diversity multi-user detection requires four
independent subspace trackers operating simultaneously since the receiver performs
detection on each of the four received signals, and each has a different signal subspace.
The space–time structure requires only one subspace tracker.

6.5.2 Adaptive linear space–time multi-user detection for flat-fading
CDMA

Signal model

Motivated by the above discussion, we now discuss adaptive space–time multi-user
detection algorithms for systems with two transmitter antennas and two receiver antennas.
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These algorithms are also blind, in the sense that the receiver requires knowledge only of
the signature waveform of the user of interest, i.e., neither a priori channel knowledge
nor the spreading codes of the interfering users are necessary for detection. As before, the
Alamouti space–time block code is used for transmission, so that during the first symbol
interval of block i, user k transmits �bk�1�i�� bk�2�i�� from the two transmit antennas.
During the second symbol interval, user k transmits �−bk�2�i�� bk�1�i��. Note that inherent
to any blind receiver in multiple transmitter antenna systems is an ambiguity issue. That
is, if the same spreading waveform is used for a user at both transmitter antennas, the
blind receiver cannot distinguish which symbol is transmitted from which antenna. To
resolve this ambiguity, we use two different spreading waveforms for each user, i.e., sk�j ,
j ∈ �1� 2� is the spreading code for user k for the transmission of symbol bk�j�i�. The
discrete-time received N -vector at base-station antenna 1 during the two symbol periods
for block i is

r1�1�i� =
K∑

k=1

(
hk�1�1bk�1�i�sk�1 +hk�2�1bk�2�i�sk�2

)+n1�1�i� (6.123)

and

r2�1�i� =
K∑

k=1

(−hk�1�1bk�2�i�sk�2 +hk�2�1bk�1�i�sk�1

)+n2�1�i�� (6.124)

and the corresponding signals received at antenna 2 are

r1�2�i� =
K∑

k=1

(
hk�1�2bk�1�i�sk�1 +hk�2�2bk�2�i�sk�2

)+n1�2�i� (6.125)

and

r2�2�i� =
K∑

k=1

(−hk�1�2bk�2�i�sk�2 +hk�2�2bk�1�i�sk�1

)+n2�2�i�� (6.126)

We stack the received signal vectors and denote

r̃�i�
�=

⎡
⎢⎢⎣

r1�1�i�

r∗
2�1�i�

r1�2�i�

r∗
2�2�i�

⎤
⎥⎥⎦ � ñ�i�

�=

⎡
⎢⎢⎣

n1�1�i�

n∗
2�1�i�

n1�2�i�

n∗
2�2�i�

⎤
⎥⎥⎦ �

hk

�=

⎡
⎢⎢⎣

hk�1�1

h∗
k�2�1

hk�1�2

h∗
k�2�2

⎤
⎥⎥⎦ � h̄k

�=

⎡
⎢⎢⎣

hk�2�1

−h∗
k�1�1

hk�2�2

−h∗
k�1�2

⎤
⎥⎥⎦ � (6.127)

Then we have

r̃�i� =
K∑

k=1

(
bk�1�i�hk ⊗ sk�1 +bk�2�i�h̄k ⊗ sk�2

)
+ ñ�i� (6.128)

= S̃b�i�+ ñ�i�� (6.129)
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where

S̃
�=
[
h1 ⊗ s1�1� h̄1 ⊗ s1�2� � � � � hK ⊗ sK�1� h̄K ⊗ sK�2

]
4N×2K

b�i�
�=
[
b1�1�i�b1�2�i�b2�1�i�b2�2�i� · · ·bK�1�i�bK�2�i�

]T

2K×1

and where ⊗ denotes the Kronecker product. The auto-correlation matrix of the stacked
signal r̃�i�, C, and its eigendecomposition are given by

C = E
[
r̃�i�r̃�i�H

]= S̃S̃H +�2I4N (6.130)

= Us�sU
H
s +�2UnUH

n � (6.131)

where �s = diag��1��2� � � � � �2K� contains the largest �2K� eigenvalues of C, the
columns of Us are the corresponding eigenvectors; and the columns of Un are the
�4N −2K� eigenvectors corresponding to the smallest eigenvalue �2.

The blind linear space–time MMSE filter for joint suppression of multiple access
interference and space–time decoding for symbol �b�i��1 = b1�1�i� is given by the solution
to the optimization problem

w1�1
�= arg min

w∈C4N
E
[∣∣b1�1�i�−wH r̃�i�

∣∣2] � (6.132)

It has been shown in [43, 46] that a scaled version of the solution can be written in terms
of the signal subspace components as

w1�1 = Us�
−1
s UH

s

(
h1 ⊗ s1�1

)
� (6.133)

and the decision is made according to

z1�1�i� = wH
1�1r̃�i�� (6.134)

b̂1�1�i� = sign
[
�
(
z1�1�i�

)]
(coherent detection)� (6.135)

and

�̂1�1�i� = sign
[
�
(
z1�1�i−1�∗z1�1�i�

)]
(differential detection)� (6.136)

Before we address specific batch and sequential adaptive algorithms, we note that these
algorithms can also be implemented using linear group-blind multi-user detectors [41]
which, incontrast to theirblindcounterparts, areconstructedwithknowledgeof thespreading
codes of a subset of the active users. They would be appropriate, for example, in cellular
uplink environments in which the receiver has knowledge of the signature waveforms of all
of the users in its cell, but not those of interfering users outside the cell. Specifically, we may
re-write (6.129) as

r̃�i� = S̆b̆�i�+ S̄b̄�i�+ ñ�i�� (6.137)
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where we have separated the users into two groups. The signature sequences of the known
users are the columns of S̆. The unknown users’ sequences are the columns of S̄. Then the
group-blind linear hybrid detector for symbol b1�1�i� is given by [41]

wGB
1�1 = Us�

−1
s UH

s S̆
[
S̆HUs�

−1
s UH

s S̆
]−1 (

h1 ⊗ s1�1

)
� (6.138)

This detector offers a significant performance improvement over blind implementations
of (6.133) for environments in which the signature sequences of some of the interfering
users are known.

Batch blind linear space–time multi-user detection

Implementation of (6.133) requires knowledge of the signal subspace components and
the channel. The subspace components can be estimated blindly from the received signal
using the sample auto-correlation matrix of the received signal. In order to obtain an
estimate of h1 we make use of the orthogonality between the signal and noise subspaces,
i.e., the fact that UH

n

(
h1 ⊗ s1�1

)= 0. In particular, we have

ĥ1 = arg min
h∈C4

∥∥UH
n

(
h ⊗ s1�1

)∥∥2

= arg max
h∈C4

∥∥UH
s

(
h ⊗ s1�1

)∥∥2

= arg max
h∈C4

(
hH ⊗ sT

1�1

)
UsU

H
s

(
h ⊗ s11

)

= arg max
h∈C4

hH
[(

I4 ⊗ sT
1�1

)
UsU

H
s

(
I4 ⊗ s1�1

)]
︸ ︷︷ ︸

Q

h (6.139)

= principal eigenvector of Q� (6.140)

In (6.140), ĥ1 specifies h1 up to an arbitrary complex scale factor �, i.e., ĥ1 = �h1,
but this ambiguity can be circumvented using differential modulation and detection. The
following is the summary of a batch blind space–time multi-user detection algorithm for
the two transmitter antenna/two receiver antenna configuration. The channel is assumed
to be constant for at least the duration of the batch size M .

Algorithm 1 (Batch blind linear space–time multi-user detector: synchronous CDMA,
two transmitter antennas and two receiver antennas)

• Estimate the signal subspace:

Ĉ = 1
M

M−1∑
i=0

r̃�i�r̃�i�H� (6.141)

= Ûs�̂sÛ
H
s + Ûn�̂nÛH

n � (6.142)
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• Estimate the channels:

Q̂1 = (I4 ⊗ sT
1�1

)
ÛsÛ

H
s

(
I4 ⊗ s1�1

)
� (6.143)

Q̂2 = (I4 ⊗ sT
1�2

)
ÛsÛ

H
s

(
I4 ⊗ s1�2

)
� (6.144)

ĥ1 = principal eigenvector of Q̂1, (6.145)

ˆ̄h1 = principal eigenvector of Q̂2. (6.146)

• Form the detectors:

ŵ1�1 = Ûs�̂
−1
s ÛH

s

(
ĥ1 ⊗ s1�1

)
� (6.147)

ŵ1�2 = Ûs�̂
−1
s ÛH

s

( ˆ̄h1 ⊗ s1�2

)
� (6.148)

• Perform differential detection:

z1�1�i� = ŵH
1�1r̃�i�� (6.149)

z1�2�i� = ŵH
1�2r̃�i�� (6.150)

�̂1�1�i� = sign
(
�
{
z1�1�i�z1�1�i−1�∗

})
� (6.151)

�̂1�2�i� = sign
(
�
{
z1�2�i�z1�2�i−1�∗

})
� (6.152)

i = 0� � � � �M −1�

A batch group-blind space–time multi-user detector algorithm can be implemented with
simple modifications to (6.147) and (6.148).

Adaptive blind linear space–time multi-user detection

To form a sequential blind adaptive receiver, we need adaptive algorithms for sequentially
estimating the channel and the signal subspace components Us and �s. First, we address
sequential adaptive channel estimation. Denote by z�i� the projection of the stacked signal
r̃�i� onto the noise subspace, i.e.,

z�i� = r̃�i�−UsU
H
s r̃�i� (6.153)

= UnUH
n r̃�i�� (6.154)

Since z�i� lies in the noise subspace, it is orthogonal to any signal in the signal subspace,
and in particular, it is orthogonal to �h1 ⊗ s1�1�. Hence h1 is the solution to the following
constrained optimization problem:
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min
h1∈C4

E
[∥∥z�i�H�h1 ⊗ s1�1�

∥∥2
]

= min
h1∈C4

E
[∥∥z�i�H�I4 ⊗ s1�1�h1

∥∥2
]

= min
h1∈C4

E

[∥∥∥∥
[ (

I4 ⊗ sT
1�1

)
z�i�
]H

h1

∥∥∥∥
2
]

s.t.�h1� = 1� (6.155)

In order to obtain a sequential algorithm to solve the above optimization problem, we
write it in the following (trivial) state space form

h1�i+1� = h1�i�� state equation

0 =
[ (

I4 ⊗ sT
1�1

)
z�i�
]H

h1�i�� observation equation�

The standard Kalman filter can then be applied to the above system as follows. Denote
x�i�

�= (
I4 ⊗ sT

1�1

)
z�i�:

k�i� = ��i−1�x�i�
(
x�i�H��i−1�x�i�

)−1
� (6.156)

h1�i� = (h1�i−1�−k�i�
(
x�i�Hh1�i−1�

))
/
∥∥h1�i−1�−k�i�

(
x�i�Hh1�i−1�

)∥∥� (6.157)

��i� = ��i−1�−k�i�x�i�H��i−1�� (6.158)

Once we have obtained channel estimates at block i, we can combine them with
estimates of the signal subspace components to form the detector in (6.133). Subspace
tracking algorithms of various complexities exist in the literature. Since we are stacking
received signal vectors and subspace tracking complexity increases at least linearly with
the signal subspace dimension, it is imperative that we choose an algorithm with minimal
complexity. The best existing low-complexity algorithm for this purpose appears to be
noise-averaged Hermitian–Jacobi fast subspace tracking (NAHJ-FST) [34]. This algorithm
has the lowest complexity of any algorithm used for similar purposes and has performed
well when used for signal subspace tracking in multi-path fading environments. Since the
size of Us is 4N × 2K, the complexity is 40 × 4N × 2K + 3 × 4N + 7�5�2K�2 + 7 × 2K

floating point operations per iteration. The algorithm and a multi-user detection application
are presented in [34]. The application to the current tracking problem is straightforward
and will not be discussed in detail.

Algorithm 2 (Blind adaptive linear space–time multi-user detector: synchronous CDMA,
two transmitter antennas, and two receiver antennas)

• Using a suitable signal subspace tracking algorithm, e.g., NAHJ-FST, update the
signal subspace components Us�i� and �s�i� at each block i.

• Track the channel h1�i� and h̄1�i� according to the following:
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z�i� = r̃�i�−Us�i�Us�i�
H r̃�i�� (6.159)

x�i� = (I4 ⊗ sT
1�1

)
z�i�� (6.160)

x̄�i� = (I4 ⊗ sT
1�2

)
z�i�� (6.161)

k�i� = ��i−1�x�i�
(
x�i�H��i−1�x�i�

)−1
� (6.162)

k̄�i� = �̄�i−1�x̄�i�
(

x̄�i�H�̄�i−1�x̄�i�
)−1

� (6.163)

h1�i� = (h1�i−1�−k�i�
(
x�i�Hh1�i−1�

))
/
∥∥h1�i−1�−k�i�

(
x�i�Hh1�i−1�

)∥∥ � (6.164)

h̄1�i� = (h̄1�i−1�− k̄�i�
(
x̄�i�H h̄1�i−1�

))
/
∥∥h̄1�i−1�− k̄�i�

(
x̄�i�H h̄1�i−1�

)∥∥ � (6.165)

��i� = ��i−1�−k�i�x�i�H��i−1�� (6.166)

�̄�i� = �̄�i−1�− k̄�i�x̄�i�H�̄�i−1�� (6.167)

• Form the detectors:

ŵ1�1�i� = Us�i��
−1
s �i�Us�i�

H
(

h1�i�⊗ s1�1

)
� (6.168)

ŵ1�2�i� = Us�i��
−1
s �i�Us�i�

H
(

h̄1�i�⊗ s1�2

)
� (6.169)

• Perform differential detection:

z1�1�i� = ŵ1�1�i�
H r̃�i�� (6.170)

z1�2�i� = ŵ1�2�i�
H r̃�i�� (6.171)

�̂1�1�i� = sign
(
�
{
z1�1�i�z1�1�i−1�∗

})
� (6.172)

�̂1�2�i� = sign
(
�
{
z1�2�i�z1�2�i−1�∗

})
� (6.173)

A group-blind sequential adaptive space–time multi-user detector can be implemented
similarly. The adaptive receiver structure is illustrated in Fig. 6.13.

form detectors

r [i] Us[i], Λs[i]
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H[i](g1[i]⊗s1,k)
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×

(2) (2)
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Figure 6.13. Adaptive receiver structure for linear space–time multi-user detectors.
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6.5.3 Blind adaptive space–time multi-user detection for asynchronous
CDMA in fading multi-path channels

Signal model

To extend the previous development to asynchronous multi-path channels, we must begin
with a continuous-time baseband signal model. The signal transmitted from antennas 1
and 2 due to the kth user for time interval i ∈ �0� 1� � � � �M −1� is given by

xk�1�t� =
M−1∑
i=0

[
bk�1�i�sk�1�t −2iTs�−bk�2�i�sk�2�t − �2i+1�Ts�

]
(6.174)

xk�2�t� =
M−1∑
i=0

[
bk�2�i�sk�2�t −2iTs�+bk�1�i�sk�1�t − �2i+1�Ts�

]
(6.175)

where M denotes the length of the data frame, Ts denotes the information symbol interval,
and �bk�i��i is the symbol stream of user k. Although this is an asynchronous system,
we have, for notational simplicity, suppressed the delay associated with each user’s
transmitted signal and incorporated it into the path delays in (6.3). We assume that for
each k, the symbol stream, �bk�i��i, is a collection of independent random variables that
take on values of +1 and −1 with equal probability. Furthermore, we assume that the
symbol streams of different users are independent. The transmitted signature waveforms
�sk�m�t�� are described in (6.26). The kth user’s space–time coded signals, xk�1�t� and
xk�2�t�, propagate from transmitter to receiver through the multi-path fading channel
described by (6.3), where �k�m�p�l, satisfying �k�m�p�1 ≤ �k�m�p�2 ≤ · · · ≤ �k�m�p�L, is the sum
of the corresponding path delay and the initial transmission delay of user k. It is assumed
that the channel is slowly varying, so that the path gains and delays remain constant over
the duration of one signal frame (MTs).

The received signal component due to the transmission of xk�1�t� and xk�2�t� through
the channel at receiver antennas 1 and 2 is given by

yk�1�t� = xk�1�t� �hk�1�1�t�+xk�2�t� �hk�2�1�t�� (6.176)

yk�2�t� = xk�1�t� �hk�1�2�t�+xk�2�t� �hk�2�2�t�� (6.177)

The total received signal at receiver antenna b ∈ �1� 2� is given by

rb�t� =
K∑

k=1

yk�b�t�+nb�t�� (6.178)

At the receiver, the received signal is match filtered to the chip waveform and sampled
at the chip rate, i.e., the sampling interval is Tc, N is the total number of samples per
symbol interval, and 2N is the total number of samples per time slot. The nth matched
filter output during the ith time slot is given by

rb�i� n�
�=
∫ 2iTs+�n+1�Tc

2iTs+nTc

rb�t���t −2iTs −nTc�dt� (6.179)
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Denote the maximum delay (in symbol intervals) by

�k�m�p

�=
⌈

�k�m�p�L +Tc

Ts

⌉
and �

�= max
k�m�p

�k�m�p� (6.180)

Closed-form expressions for the matched filter outputs rb�i� n� are provided in [35].
To fully exploit available diversity, we stack the matched filter outputs from both

receive antennas, forming the vector

r�i�
�=
[

r1�i�

r2�i�

]
4N×1

� (6.181)

where, for b ∈ �1� 2�,

rb�i�
�=
⎡
⎢⎣

rb�i� 0�
���

rb�i� 2N −1�

⎤
⎥⎦

2N×1

� (6.182)

Stacking m̄ successive sample vectors, we form

r�i�
�=
⎡
⎢⎣

r�i�
���

r�i+m−1�

⎤
⎥⎦

4Nm̄×1

(6.183)

= Hb�i�+n�i�� (6.184)

where H is a function of the spreading codes, the channel conditions, and the chip
waveform (see [35] for details), n�i� is additive white Gaussian noise, and where

b�i�
�=

⎡
⎢⎢⎣

b�i−
�/2��
���

b�i+m−1�

⎤
⎥⎥⎦

r×1

� b�i�
�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1�1�i�

���

bK�1�i�

b1�2�i�

���

bK�2�i�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2K×1

� (6.185)

and r
�= 2K�m̄+
�/2��.

We will see on page 285 that the smoothing factor, m̄, is chosen such that

m̄ ≥
⌈

N��+1�+K
�/2�+1
2N −K

⌉
(6.186)

for channel identifiability. Note that the columns of H (the composite signature vectors)
contain information about both the timings and the complex path gains of the multi-path
channel of each user. Hence an estimate of these waveforms eliminates the need for
separate estimates of the timing information

{
�k�m�p�l

}
.
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Blind MMSE space–time multi-user detection

Since the ambient noise is white, i.e., E�n�i�n�i�H� = �2I4Nm̄, the auto-correlation matrix
of the received signal in (6.184) is

Cr
�= E�r�i�r�i�H� = HHH +�2I4Nm̄ (6.187)

= Us�sU
H
s +�2UnUH

n � (6.188)

where (6.188) is the eigendecomposition of Cr. Note that Us has size 4Nm̄× r and Un

has size 4Nm̄× �4Nm̄− r�.
The joint MMSE multi-user detector and space–time decoder with corresponding

symbol estimate for bk�a�i�� a ∈ �1� 2� are given by

wk�a�i�
�= arg min

w∈C4Pm̄
E
[∣∣bk�a�i�−wHr�i�

∣∣2] � (6.189)

b̂k�a�i� = sign
[
Re
{
wk�a�i�

Hr�i�
}]

� (6.190)

The solution to (6.189) can be written in terms of the signal subspace components as [42]

wk�a�i� = Us�
−1
s UH

s hk�a� (6.191)

where hk�a

�= HeK�2
�/2�+a−1�+k is the composite signature waveform of user k for symbol
a ∈ �1� 2�. As for the synchronous case, this detector can be implemented in blind mode,
requiring knowledge only of the signature sequence of the user of interest and a (blind)
estimate of the channel.

Blind sequential Kalman channel estimation

The full details of the discrete-time channel model for the asynchronous multi-path case
appear in [35]. In summary, the composite signature waveform of user k for symbol a

can be written as

hk�a = Ck�afk�a (6.192)

where Ck�a is a matrix of size 4N�
�/2�+ 1�× �2N��+1�+2� that is constructed from
the ath spreading code assigned to user k. The vector fk�a, with size �2N��+1�+2�×1,
is a function of the channel state information for user k and is also defined in [35]. The
blind channel estimation problem involves the estimation of fk�a�1 ≤ k ≤ K�a = 1� 2�

from the received signal r�i�. As we did for the synchronous case, we will exploit the
orthogonality between the signal subspace and the noise subspace. Specifically, since Un

is orthogonal to the columnspace of H, we have

UH
n hk�a = UH

n Ck�afk�a = 0� (6.193)
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Denote by z�i� the projection of the received signal r�i� onto the noise subspace, i.e.,

z�i� = r�i�−UsU
H
s r�i� (6.194)

= UnUH
n r�i�� (6.195)

Using (6.193) we have

fH
k�aC

H

k�az�i� = 0� (6.196)

Our channel estimation problem, then, involves the solution of the optimization problem

f̂k�a = arg min
f

E
[∣∣∣fHC

H

k�az�i�
∣∣∣2
]

(6.197)

subject to the constraint �f� = 1. If we denote x�i�
�= C

H

k�az�i� then we can use the
Kalman-type algorithm described in (6.156)–(6.158) where h1�i� is replaced with fk�a�i�.

Note that a necessary condition for the channel estimate to be unique is that the matrix
UH

n Ck�a is tall, i.e., 4Nm̄ − 2K�m̄ + 
�/2�� ≥ 2N�� + 1� + 2. Therefore we choose the
smoothing factor, m̄, such that

m̄ ≥
⌈

N��+1�+K
�/2�+1
2N −K

⌉
� (6.198)

Using the same constraint, we find that for a fixed m, the maximum number of users that
can be supported is

min
{⌊

N�2m̄− �−1�−1
m̄+
�/2�

⌋
�

⌊
N

2

⌋}
� (6.199)

Notice that for reasonable choices of m̄ and �, (6.199) is larger than the maximum number
of users for the linear diversity receiver structure, given by

⌊
N�m̄− ��

2�m̄+ ��

⌋
� (6.200)

This represents a quantitative example of the user capacity benefit of space–time multi-
user detection discussed in Section 6.5.1.

Once an estimate of the channel state, f̂k�a, is obtained, the composite signature vector
of the kth user for symbol a is given by (6.192). Note that there is an arbitrary phase
ambiguity in the estimated channel state, which necessitates differential encoding and
decoding of the transmitted data.
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Algorithm summary

Algorithm 3 (Blind adaptive linear space–time multi-user detector: asynchronous multi-
path CDMA, two transmitter antennas and two receiver antennas)

• Stack matched filter outputs in (6.179) to create r�i�.
• Create Ck�a.
• Using a suitable signal subspace tracking algorithm, e.g., NAHJ-FST, update the

signal subspace components Us�i� and �s�i� at each time slot i.
• Track the channel fk�a�1 ≤ k ≤ K�a = 1� 2� according to the following:

z�i� = r�i�−Us�i�Us�i�
Hr�i�� (6.201)

x�i� = C
H

k�az�i�� (6.202)

k�i� = ��i−1�x�i�
(
x�i�H��i−1�x�i�

)−1
� (6.203)

fk�a�i� = (fk�a�i−1�−k�i�
(
x�i�H fk�a�i−1�

))
/
∥∥fk�a�i−1�−

k�i�
(
x�i�H fk�a�i−1�

)∥∥ � (6.204)

��i� = ��i−1�−k�i�x�i�H��i−1�� (6.205)

• Form the detectors:

wk�a�i� = Us�i��
−1
s �i�Us�i�

HCk�afk�a�i�� (6.206)

• Perform differential detection:

zk�a�i� = wk�a�i�
Hr�i�� (6.207)

�̂k�a�i� = sign
(
�
{
zk�a�i�zk�a�i−1�∗

})
� (6.208)

6.5.4 Simulation results

In this section, we present simulation results to illustrate the performance of blind adaptive
space–time multi-user detection. We first look at the synchronous flat-fading case; then
we consider the asynchronous multi-path-fading scenario. For all simulations we use
the two-transmit/two-receive antenna configuration. m-sequences of length 15 and their
shifted versions are employed as user spreading sequences. The chip pulse is a raised
cosine with a roll-off factor of 0.5. For the multi-path case, each user has L = 3 paths.
The delay of each path is uniformly distributed on �0� Ts�. Hence, the maximum delay
spread is one symbol interval, i.e., � = 1. The fading gain for each user’s channel is
generated from a complex Gaussian distribution and is fixed for all simulations. The
path gains in each users’ channel are normalized so that all user’s signals arrive at the
receiver with the same power. The smoothing factor is m̄ = 2 and the forgetting factor for
the subspace tracking algorithm for all simulations is 0.995. The performance measures
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are the bit-error probability and the signal-to-interference-plus-noise ratio, defined by
SINR

�= E2�wHr�/Var�wHr�, where the expectation is with respect to the data symbols
of interfering users and the ambient noise. In the simulations, the expectation operation
is replaced by time averaging. SINR is a particularly appropriate figure of merit for
MMSE detectors since it has been shown [32] that the output of an MMSE detector is
approximately Gaussian distributed. Hence, the SINR values (approximately) translate
directly and simply to bit-error probabilities, i.e., Pr�e� ≈ Q

(√
SINR

)
. The labeled

horizontal lines on the SINR plot represent bit-error-probability thresholds. For the SINR
plots, the number of users for the first 1500 iterations is four. At iteration 1501, three users
are added so that the system is fully loaded. At iteration 3001, five users are removed.

Figure 6.14 illustrates the adaptation performance for the synchronous, flat-fading
case. The SNR is fixed at 8 dB. Figure 6.15 shows the adaptation performance for the
asynchronous multi-path case. The SNR for this simulation is 11 dB. Notice that in both
cases the bit-error probability does not drop below tolerable levels even during transitions,
when users enter or leave the system. Convergence of the SINR to its maximum value is
almost instantaneous when users leave the system, and requires fewer than 500 iterations
when users are added to the system.
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Adaptation performance of blind adaptive space−time MUD for synchronous CDMA
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SNR = 8 dB; processing gain = 15;  ff = 0.995 

Figure 6.14. Adaptation performance of space–time multi-user detection for synchronous CDMA.
The labeled horizontal lines represent bit-error probability thresholds.
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Figure 6.15. Adaptation performance of space–time multi-user detection for asynchronous multi-
path CDMA. The labeled horizontal lines represent bit-error probability thresholds.

6.6 Summary

In this chapter, we have taken the work of the preceding chapters in several directions.
In Section 6.2, we introduced a general model for multiple-access signaling in MIMO
channels, and used this model to derive canonical receiver structures for multi-user
MIMO systems. This development ties the MIMO multi-user channel models discussed
in Chapter 2 together with receiver designs described in Chapters 3 and 5, and then
extends the latter to the multiple-access, frequency-selective channels arising in many
applications. Section 6.3 also echoes the detection problems discussed in Chapters 3
and 5, notably by re-emphasizing the importance of iterative algorithms in complexity
reduction for MIMO receivers. Section 6.4 describes how the structure imposed by space–
time coding techniques of Chapter 4 apply can be exploited, together with the turbo-style
iterative methods of Chapter 5, and can be used to significantly enhance the overall
receiver performance with little attendant increase in complexity. Although most of the
techniques in this chapter apply to general interference-type channels (multi-access, inter-
symbol, and inter-antenna), the focus has been on the direct-sequence CDMA channels
introduced in Chapter 1. Section 6.5 specifically deals with such channels, which are
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particularly amenable to adaptive implementation. Moreover, Section 6.5 exploits the
Alamouti space–time coding structure described in Chapters 1 and 4 in its adaptation
algorithms.

6.7 Bibliographical notes

As noted in Section 6.2, the methods discussed in this chapter have been developed over
a period of several decades. Early work on receiver design for channel-coded systems
and inter-symbol-interference channels dates from the 1960s and 1970s, respectively,
while the techniques for multiple-access and inter-antenna interference channels began
largely in the 1980s and 1990s, respectively. A review of these developments is found in
[30]. Complexity reduction through iterative algorithms and through adaptation have been
major issues throughout this development, with turbo-style algorithms gaining significant
interest in the 1990s. (An overview of iterative techniques is found in [31].) The current
decade has seen a number of developments, particularly in the development of new
analytical tools using methods of statistical physics, and in refinement, analysis and
understanding of adaptive and iterative methods. However, all of these areas are still
areas of active research, and new developments continue today. Perhaps the most critical
open issue lies in the transition of these methods into more widespread practice. Although
current wireless standards and systems do incorporate some of the ideas explored in
this chapter, there is still considerable opportunity for further practical development. The
iterative and adaptive methods are, of course, directed at precisely this goal.

For further additional reading on the subject matter of this chapter, the reader is
referred to the books by Verdú [38], Wang and Poor [46], and Comaniciu et al. [5]. The
first of these three books contains an excellent exposition of the fundamentals of multi-
user detection, while the second contains further elaboration and additional examples
illustrating the model of Section 6.2, as well as considerable discussion of various methods
of adaptive and iterative receiver design. Issues not treated in this chapter, such as
fast-fading and OFDM systems, are also considered there. Finally, the impact of these
methods on higher-layer networking issues, such as resource allocation, quality-of-service
provision, and network performance, is discussed in the third of these three books.
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