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7848-3-Q

FOREWORD

This is the Third Quarterly Report on a general study of UHF/VHF
electrically small antennas. The work includes four tasks involving the following
problems.

Task 1: Design of a physically small conical spiral antenna.

Task 2: The use of physically small slot antenna in a 300 MHz array.

Task 3: The use of endfire ferrite rod antennas in the 300 - 1000 MHz
frequency range.

Task 4: Study of the feasibility of using new type ferrite antennas at
frequencies as low as 30 MHz.
This particular report includes work on Task 1 only. Quarterly Reports
1 and 2 issued under this contract, and future quarterly reports, will treat all
four tasks.
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HELICAL AND LOG CONICAL HELICAL ANTENNAS LOADED
WITH AN ISOTROPIC MATERIAL

George G. Rassweiler
ABSTRACT

The determinental equation for a bifilar tape helix loaded inside with
a full core of isotropic material is numerically solved for the complex propa-
gation parameter of the primary current wave as a function of frequency. The
results of the tape helix calculation are compared to a simplified slow-wave,
inside-loaded sheath helix solution. Both methods show that such an antenna with
a small pitch angle ¢ has a diameter reduction factor for backward fire radiation
of approximately ,[(1 /u+ 1)/ (e+1) where ¢ and € are the relative permeability
and permittivity constants, respectively. Thus, the loading does achieve diameter
reduction by slowing the phase velocity of the primary current wave. The log-conical
helix is considered as a gradually tapered helix. The éeffect of dielectric loading is
found theoretically to greatly reduce the radiation attenuation rate, making long
active zones and small cone angles necessary for complete radiation of the power
from the source. The addition of ferrite to the loading causes less reduction in the
radiation attenuation, which allows some reduction in antenna length.

Experimental verification with antenna patterns, radiation efficiency, and
near field amplitude and phase measurements verify the theoretical diameter and
phase velocity reduction calculations; the calculated radiation attenuation rate of
a loaded helix is not quantitatively verified experimentally,
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I
INTRODUCTION

1.1 Statement of the Problem

The problem studied in this dissertation is that of the operation of the
bifilar helix and bifilar log-conical antennas fed in 'push-pull' (the current on
one wire 180° out of phase with respect to the other wire) and 'loaded' with an
isotropic material of arbitrary u and €. The shape of the loading material is
confined to the case of a full-core interior loading and simplified work on in-
terior cylinders of material. The emphasis is on the backward radiation
region, where the helix is a useful antenna.

Specifically, it is desired to obtain the current on the loaded antenna.
Since the problem at present is too complicated to solve exactly, approximations
must be found to the theoretical part and experiments must be performed to veri-
fy these results. In the theory, the current on the source-free helix is approxi-
mated by a single traveling wave and the problem becomes that of solving for
the propagation velocity of this wave, and attenuation of the wave along the helix
due to radiation. The conical antenna is treated as a gradually changing helix.

The mathematical models are first used to obtain the source-free mode
propagation characteristics of a 'sheath' helix in the presence of the loading
material, using asymptotic approximations that are valid only in the waveguide
or non-radiating region of operation. An assumption of a straight line k-3
characteristic then allows extrapolation into the radiation region. Then the
dispersion equation for the more exact tape model is solved, including its com-
plex zeros, which occur in the radiation region and correspond to 'leaky waves'.
On the basis of experimental data and previously used theoretical methods,

a single leaky current wave is assumed for the purpose of getting the source-
free propagation characteristics on the helix. The complex axial pro-
pagation constant, 3, of this dominant current wave yields both phase and
relative amplitude of the current along the antenna, which in turn determines

the far field patterns; these patterns are not calculated, but general statements



about them are made from studies of . Finally, a source problem is formulated
which, although not solved exactly, shows the significance of the leaky wave as the
dominant pole of an integral expression, and some of the approximations neces-

sary for this representation.

1.2 loaded Antennas: Review

The term 'loading' is used to refer to the addition of material to an antenna

for the purpose of reducing its size while maintaining similar electrical charac-
teristics. In particular it may be desired to preserve the same general far
field pattern or perhaps a match of impedance.

A useful concept of the action of such loading material is that the velocity
and wavelength of electromagnetic wave propagation are known to decrease in an
infinite medium of u €>1, where u and € are relative permeability and per-
mittivity, respectively. This reduction also decreases the dimensions or spacings
necessary for various resonances on an antenna in such an infinite medium, as
well as in a sufficiently large finite medium. Note that some well-known slow
wave structures employa ferrite or dielectric (Jasik, 1961). For very small antennas
compared to a wavelength, the increase of capacitance or inductance by loading
forms a more useful concept than the concept of phase velocity.

In reality, the loading medium is finite, and the waves outside the loading
material that couple with the antenna cannot be 'loaded' even though the fields
inside the material are 'loaded'. Thus, there will be electrical changes for any
change in antenna size although a favorable trade-off is possible in some cas/es.
The loading situation can be discussed in three parts, according to whether the
antenna is very small, about the same, or much larger than a wavelength.

Loading antennas much smaller than a wavelength is mainly a problem of
tuning or cancellation of input reactance, and performance should be compared
with that of external tuning with lumped transmission line elements. The loading
in this case would be encasement of the antenna by the material. The basic pro-

blems of narrow bandwidth and high losses are associated with large reactive



energies stored, regardless of the method of tuning. Loading can also affect
radiation resistance to some extent. Radiation resistance is important for
small antennas since it must be larger than ohmic losses for reasonable
efficiency. Smalldipoles loaded by encasement in a material are affected
mainly by permittivity, which reducés the radiation resistance, thus
making performance worse. Considerable analysis has been made of
small loaded dipoles (Adams and Kalafus, 1963; Galejs, 1962; New, 1960;
Polk, 1959; Grimes, 1958). Larger dipoles may have a small improvement in
radiation resistance due to improved distribution of the current on the dipole.
Small loaded loops are mainly affected by permeability, which increases the
radiation resistance and thus efficiency (Adams and Kalafus, 1963; Galejs, 1963;
New, 1960; Cruzan, 1959; Herman, 1958; Dropkin, 1958; Stewart, 1957; Rumsey
and Weeks, 1956; Wait, 1953; Page, 1946). Thus receiving performance can be
improved well beyond a dipole of the same size; the ferrite loaded loop is com-
mon in transistor radios today. Loading also has been used in cavity-backed
slots by simply filling the cavity with material (Adams and Lyon, 1965; Jones, H,
1956; Adams, 1964; Schroeder, 1964; Sharp and Jones, 1962; Brownell and
Kendall, 1960; Shanks and Galindo, 1959; Tyras and Held, 1958; Medved, 1957;
Angelakos and Korman, 1956; Admiralty Services; Wheeler, 1958),
Loading has reduced the resonant size of cavity backed slots, as is easily
understood by considering that the TE,, mode of an infinitely long rectangular
waveguide requires the width of the waveguide to be larger than one-half wave-
length in the medium. The wavelength with loading is reduced, thus so may the
waveguide size. The cavities are similarly reduced in size by adding material.
The far field pattern may be obtained simply by considering the open end of

the waveguide as an aperture with an approximately known field. More rigorous
analysés in the references cited verify this somewhat intuitive argument. Size
reductions of approximately 6:1 in each lineal dimension of the cavity, with
efficiencies of 25 per cent, have been achieved without severe bandwidth

problems (Adams, 1964).



For antennas much larger than’a wavelength where high directivities are
required, reducing the size while maintaining the same beamwidth requires
'supergain’' . Although this is possible, the stored energies increase tremendously
which tends to make losses high and bandwidths very small. Hansen (1966) con-
cisely summarizes some of the problems with reducing the size of both very
small and large antennas.

For antennas close to a wavelength in at least one dimension, such as
helices, loading can vary the size of the antenna without great increase in the
reactive stored energy which occurs for the high gain antennas. Therefore, the
bandwidths and losses are not greatly increased by loading. In addition, some
directivity can still be maintained whereas very small antennas allow no antenna
pattern control. In particular, a dimension (such as the helix diameter), which
does not affect the antenna pattern greatly, may be made smaller by loading
which ensures that the proper phasing of the helix along the axial direction is
maintained.

Loading of the broadband antennas such as the helical, log conical helical,
log-spiral and log-periodic antennas with material, slow wave structures, or
lumped elements, has been reported experimentally (Lyon, et al, 1965a, 1965b,
1965¢, 1966; Di Fonzo, 1964; Moore and Beam, 1963; Jones, d., et al, 1960;
Stephenson and Mayes, 1963; General Precision, 1962) but little theoretical
justification or detailed experimental verification has been made; this report
is intended to help fill this gap for material loading of helices and log-conical

antennas.

1.3 Helical Antennas: Review

The literature on the helix is very large; only the major bibliographic
sources and directly pertinent material will be cited. The literature generally
deals with either the waveguide (slow-wave) region of operation or the
antenna properties of the helix.

1.3.1 Waveguide (Slow-wave) Approach

Most of the literature deals with the helix as a non-radiating waveguide,



solving the problems of propagation, travelling wave tube interaction impedances,
and losses. Good bibliographies appear in Kornhauser (1949); Sensiper (1951, 1955);
Harvey (1964); Watkins (1958); Klock (1963) and Walter (1965). The article by
Sensiper (1955) is an especially complete, concise, and available review of

helical waveguide theory.

The helix is usually approximated by one of three major mathematical
models; the 'sheath’, the 'tape’, or the 'planar' or 'developed' helix models. A
little work with a helical coordinate system has also been done. The sheath model
assumes a cylinder with an anisotropically conducting surface in the direction of
the wire. In other words, current is allowed to flow only in the direction of the
wire, and uniformly over the cylindrical surface. No consideration to wire
shape or size is given. All modes of propagation are uncoupled due to the uni-
formity of the boundary conditions in the axial, z, direction. Thus each mode may be
considered separately. The sheath helix model has been found to give excellent
approximations to the propagation constant of a helix in the slow wave region
(Watkins, 1958; Pierce, 1950).

The tape helix model (Sensiper, 1951) replaces the conductor by an
infinitely thin, flat tape, of a given small width, S. A round wire size can be
approximated by an equivalent tape width; however, wire shape is not considered.
In order to satisfy the more difficult boundary conditions of the tape helix, all
modes must be used, increasing the difficulty of solution. Because the application
of all the boundary conditions leads to very complicated equations, two extremely
important steps used in all calculations so far with this model are; to simplify
the boundary condition on the tangential electric field, and to assume a current
distribution. The simplified boundary conditionis either thatthe tangéntial E field
is required to be zero only on the conductor center line, or a variational expres-
sion approximating the boundary condition is used. Both methods are insensitive
to the assumed current distribution for narrow conductors.

Methods using an integral equation approach (Klock, 1963; Kogan, 1949, 1959;
Phillips, 1950) produce almost the same dispersion equation when similar sim-

plifying assumptions are used. The Russians often use a variation of the tape



model by applying a so-called 'averaged boundary condition' to problems in-
volving thin periodic discontinuities such as this one (Moizhes, 1958; Smirnov,
1958). The method, apparently developed by Kantorovich (1939), replaces the
non-uniform boundary conditions with one uniform in z, but includes a term
which is logarithmic in the width of the conducting tape. As will be seen
later, such a term appears with the other methods of solution as well. The
tape model has been found to be more accurate than the sheath helix model for
travelling wave tube interaction problems and propagation near the 'forbidden'
regions (Klock, 1963; Watkins, 1958, Sensiper, 1951).

The 'plane' or 'developed' helix model is a two-dimensional model where
the helix is unwrapped and laid on a plane, with conduction still at an angle
(90°-y) to the propagation or axial direction, where ¢ is the pitch angle.
Because of the simplified geometry, more careful investigation of such things
as conductor shape (Chu, 1958) and loading (Ash, 1964) may be carried out. The
'planar' or 'developed' helix model appears to be a good approximation when
fields are confined to the vicinity of the conductors, as in higher modes or the
zeroth mode for helices fairly large with respect to the wavelength, However,
in the radiation regions where at least the dominant radiating mode is not at
all confined to the conductor region, this model appears to be inaccurate.

Rather than striving for a formal solution to study the problem of a tape
helix supporting many modes, Pierce and Tien (1954) have applied the general
theory of coupled modes to this problem and successfully showed how the stop
bands and pass bands are formed in a wire helix. However, Klock (1963) has
shown that the complex leaky mode solutions in the radiation region do not
follow this theory, which is basically a waveguide theory.

Although most of the theory of tape helices has been applied to the n=0
mode, there have been a few waveguide studies of the n= -1 mode for travelling
wave tubes (Johnson, et al, 1956; Tien, 1954; Jones, E., 1950).

The literature also contains many references on slow wave solutions to
the helix problem when a loading material is placed inside or outside. The

purpose of this loading was to either support the helices used in travelling wave



tubes, or to slow the axial wave velocity still more than with the helices in
air in order to achieve interaction with slow streams of electrons. All three
of the major mathematical models of helices have been used in these analyses.
These analyses all use the slow wave assumption, which allows the
very important simplifying approximation that the radial propagation
constants inside and outside the helix are equal. This approximation will be
discussed in more detail later. The major differences of the work reported
herein is that this approximation is not used for the tape helix, since it is not
valid in the fast wave zone.

Solutions for the loaded sheath helix (n=0 mode) have appeared in
Johnson (1959); Shestopalov (1958); Unger (1958); Swift and Hook (1958); Morgan
(1956); Tien (1963); and Olving (1955). Tape helix solutions with loading
material have been studied in Shestopalov (1960); Shestopalov and Kondtat'ev
(1959); Shestopalov and Yatsuk (1959); Kirschbaum (1959); Watkins (1954), and
Harris (1949). Anisotropic media outside a sheath helix have received con-
siderable attention for attenuators for unwanted travelling wave tubes
(Bulgakov, et al, 1960, 1961; Yakimenko and Shestopalov, 1962; Shestopalov
and Slyusarskii, 1954; Suhl and Walker, 1954).

1. 3.2 Helices as Antennas

The use of the helix as an antenna was developed experimentally quite
separately from all the mathematical propagation theories, partly because
these theories are waveguide theories, and do not take into account the pos-
sibility of radiation. In fact, the so-called 'forbidden' regions of operation
in the theory are forbidden only because radiation could take place.there,
contrary to waveguide assumptions.

‘There is a basie difference between forward- and backward-radiating
helices that is seldom stated in'the literature; forward radiation helices are
slow-wave antennas that depend upon a truncation to diffract a surface wave

into space that would otherwise continue to propagate without radiation. On
the other hand, backward wave helical antennas are 'leaky wave' antennas, in
that radiation takes place continuously along the antenna causing the current to

decay rapidly to zero away from the feed point.



‘The forward-radiating helix was the first helical antenna developed
(Kraus, 1950). Good bibliographies appéar in Harvey (1964), Walter (1965),
Jasik (1961) and Wong and Thomas (1959). The approach to calculations is
either to use experimental data or theoretical helical waveguide formulas to
obtain the current phase velocity along the wire (Maclean, 1962; Maclean
and Kouyoumjian, 1959; Kraus, 1950). The amplitude of the dominant forward-
fire current mode (called T, by Kraus) is assumed constant along the helix
following considerable experimental evidence (Marsh, 1951). The far fields
are then obtained by the usual integral of the current contributions (Fradin,
1961). Similar computations have also been done for a helix loaded with
material, while continuing to use the slow wave approximations in the fast
wave zone(Shestopalov and Bulgakov, 1961; Shestopalov, et al,1962)., Although
it will be shown later that higher space harmonics can be represented by these
slow wave approximations, the leaky or radiating harmonics cannot be. A
more satisfactory mathematical treatment of these far fields of the helices
uses a Weiner-Hopf approach (Mikazan, 1960) for a semi-infinite helix; the
result is shown to be close to the above methods, however.

Backward wave helices, emphasized in this report, are a more recent
discovery, stemming from the wideband log-conical helical antenna. Since the
currents of this antenna decay rapidly from the feed point, due to radiation, the
methods above fail, since they depended upon a constant current assumption.
The rate of decay of the current, as well as its phase velocity, becomes vital
in explaiﬂing the antenna operation. Again, the basic characteristics of the far
field can be predicted from a knowledge of the current; thus far field calcula-
tions are not emphasized here.

The important calculations of the backward wave helix antennas in air have
been done by Klock (1963) and Patton (1962), wifh considerable supporting work
done in the log-conical helix, to be discussed later. In both of these works, the
current decay is not assumed but calculated. Klock's method, which is used in
this report, is to numerically find the complex zeros of the determinantal

equation which determines the phase velocity of a current wave on the helix. The



zero corresponding to a given current wave then determines the complex propa-
gation constant for this wave, which specifies both amplitude (decay) and phase

of this current wave. In all these calculations, the helix line is assumed infinitely
long, as in all helical waveguide problems. The complex current wave is then
regarded as a 'leaky wave' (to be discussed later) which dominates the near

field for some frequencies, including the antenna surface. Patton (1962)

solves the Weiner-Hopf problem associated with a semi-infinite bifilar helix

in air fed at the end, i.e., the basic source problem. Only the far fields are
obtained by this method; the fundamental waves that exist on the helix are not
displayed.

1.4 Conical Helical Antennas: Review

The conical helix antenna without loading has been carefully investigated
recently; both experimentally (Dyson, 1964; McClelland, 1962; American
Electronics Laboratory, 1959; Carrel, 1957; Copeland, 1960) and theoretically
(Mittra and Klock, 1966; Timirev, 1958, 1965; Lee, 1960; Hellgren, 1953). Design
is still largely based on experimental data. The reference by Mittra and Klock
is the most recent of a long series of papers from The University of Illinois
which approach the problem as a pefturbation of a helix; i.e., a helix with
slowly varying diameter as one moves outward on the cone.

To understand why this technique has been successful requires an ex-
planation of the mechanism of radiation of a conical helix. Figure 1-1 shows
a typical bifilar (two-wire) conical helix and plots of the near field H (magnetic
field) and currents in the conductor. The most important characteristic of this
antenna is the active zone, shown in Fig. 1-1; i. e. the region where radiation
takes place. Since the radiation of this antenna is in the backward direction
with respect to the current phase velocity, the current decays in the forward
direction in the active zone due to radiation power loss, as shown in Fig. 1-1,
This active zone occurs at roughly one wavelength circumference when no
loading is present. As the wavelength is changed, the active zone obviously

moves along the conical helix to the new one-wavelength-circumference position.
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FIG. 1-1: THE BIFILAR LOG-CONICAL HELICAL ANTENNA
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This characteristic of 'adapting' to a change in frequency makes possible ex-
tremely large bandwidths for this antenna.

It is this active zone region, as contrasted with most antennas that have
a fairly uniform current, that makes possible the use of helix antenna theory
to explain the conical helix radiation properties. The regions outside the
active zone do not contribute to radiation; the active zone is sufficiently
short to consider it as a bifilar helix with its backward wave radiation pro -
perties. The combination of using a single current wave solution for B
and this gradually changing helix concept has successfully explained many of
the characteristics of conical helices, even those with large cone angles such
as the planar spiral (Mittra and Klock, 1966).

Several attempts to solve the cone problem itself as a source problem
using spherical harmonics have not yet yielded usable results for the cone,
but have proved useful for the planar spiral (Laxpati and Mittra, 1966).
Nevertheless, some modes on a conical helix have been represented in the
cited references to theoretical solutions of the conical helix. The approach
to conical helical antennas in this report will be via the gradually changing
helix.
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LOADED SHEATH HELIX SOURCE FREE MODES

The solution of a sheath helix that has an isotropic medium inside and
free space outside will be performed to compare the eigenvalues of the axial
propagation constant, Bo , with those of a sheath helix in free space, with
emphasis on the n = -1 mode used in endfire antennas. Other solutions to this
problem for the n = 0 mode are in the literature cited. Figure 2-1 shows the
geometry of the helix and defines the parameters. The helix is formed of a
cylindrical sheath, with an axis along the z axis, that conducts only in the
direction at the pitch angle, ¢ from a normal to the z direction on the sur-
face. Usually no periodicities in the z direction are employed in the solution,
although Klock and Mittra (1963) use periodicity to put the sheath helix disper-

sion equation in the same general form as the tape helix solution.

2.1 Basic Equations: Full Core Loading

The basic problem of the dispersion equation for free modes on a helix
is common in the literature. Following Sensiper (1951) and Watkins (1958),
it is known that an arbitrary solution to the vector wave equation in cylindrical

coordinates can be derived from the two scalar potentials 7 and 7 ™ satisfying

the same scalar wave equation; in free space,
(v2HP)T = 0 (2.1)

V2HAr*= 0, K=uluge, (2.2)

for an e]“Jt time dependence (i.e., at one frequency). Actually, the scalars «
and 7™ are the magnitudes of the Hertzian vector potentials, which have only
z components, i.e. r=m, and 7r*=7r: .

The field components of the TE (transverse electric) and TM (transverse
magnetic) modes which together can represent an arbitrary field may then be

derived from the potentials in the usual way,

12
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where E,. and H, will not be needed. Similarly, for the fields in a medium of
relative permeability, u, and relative permittivity, €, the €0 Mo and ko are
replaced by €56 HoH and kﬁ'é , respectively. The solutions to the scalar wave

equation in cylindrical coordinates are known to have the form

7'=C'L (vyr)exp(iut +nf-i,2) (2.7)
7r(.)=C°Kn(/'I'1 r)exp(j¢>t+jn¢—j B,z) (2.8)
7= DL (v _rlexp(jut-+ing-if 2) (2.9)
7 0= DK, (/7 r)exp(jut + ing-iB,2) (2. 10)
n=0, t1, T2, ..

where
In( 7nr), Kn( /"I'1 r) are modified Bessel functions of nth order, and
the primes denote derivatives with respect to argu-
ment,
Bn is the propagation constant of the nth mode in the z direction which

must be the same, inside and ouf, for continuity
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'/-1'1 =/B n'kg

w is the angular frequency of the wave

u, € are the relative permeability and permittivity of the medium,
respectively,

n is the mode number which takes on only integral values because

fields in the § direction, for rotations of 2 7, are identical,

i, o are substripts referring to inside and outside fields, respec-
tively,

c%1 and D% 1 are arbitrary constants.

The fields derived from these potentials may then be written from (2. 3)
to (2. 6) as below, where the factor exp(jwt+jnf-j Bn» is understood

i

E, - -YnCnIn('yn r) (2.11)
o _ 2.0
Ezn— -I"nCnKn( Fnr) (2.12)
i 2.1
Hzn= —'ynDnIn(ynr) (2.13)
H, = -I‘ D K (rr) (2.14)
EL - IEJLf-rlcil (v 1)+ D'I' (v 1) (2. 15)
fn 1 nn nt HRH T n'n' T :
nB
¢n———-C °K (/"' r)+3wu I"'D K ((/"' T) (2. 16)
i jwee v ng
H¢n= e C I ( r)+ ——D I (Y r) (2.17)
Jw €€0"’.n (o JUY nB
=——-————C K (I"r)+——-—- D K (/"r) (2.18)

H¢n r n
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Such modes can be considered separately, since each is orthogonal or

uncoupled because

27
RL e_jmﬂdyi =0 n¥m

0 = 27 n=m

and the boundary conditions for continuity of the fields are independent of
both z and ¢ Thus the boundary conditions for the continuity of a total field

0 0] Q0
i jn 0 m
E Fn(w, €U, 8 B)e 4 = F m(w, €1 a,B)ej 4
n =-w m=-o

may be multiplied on both sides by e_'Jnﬁand integrated over @ from zero to
to 27 to give

Since each mode can be considered separately, a shorthand notation will
be employed, omitting the subscript n as well as the arguments of the Bessel
functions and the exponential functions common to all fields. The arbitrary
constants C and D will also be renormalized to f, g, F and G to obtain
Watkin's (1958) form, with small letters used to denote inside fields and con-
stants, capital letters for outside ones.

The fields are then written

e, =fI (2.19)
E = FK (2. 20)
hz =gl (2. 21)
H, = GI (2.22)
jwpp
ey - nZB £ - 0 g1 (2.23)
¥ T U
jwu
- Mg 06k (2.24)
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. ]weeof' nB (
h,=—2f1' - 22 g1 2.25)
g v ;yzr
]we ng
H¢—-——-FK ————-GK (2. 26)
r ,-v r

where it must always be remembered that K = Kn( /"n"l‘). The boundary con-
ditions may then be applied; they are,

e//L=a= 0 (2.27)
E =0 (2. 28)
s
E-L = eL (2. 29)
r=a
H, =h (2. 30)
77 r=a

where e; , E, are field components perpendicular to the current flow on the
cylinder specified by r = a and e h// , E// , H// are field components parallel
to the current flow. Notice that in this formulation, the magnitude of the current
(related to H, ) does not occur. These boundary conditions may be rewritten in

terms of the field components as:

e -E =0 (2. 31)
zZ z

~E =0 2. 32)
% Ey ‘
ez+e¢cot¢ 0 (2. 33)
hz+h ¢cotzp—Hz -H ¢cotxp=0 (2. 34)

and substituting from (2. 19) - (2. 26),

fI-FK=0 (2. 35)

—jop p
f(—ﬁf-)HF( Pa Yg ¢ 0 \1+G(Jw 0
p Y

'Ya

)K 0 (2. 36)
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fI[— cotw__] +g (——i)l coty = 0 (2. 37)
jw €€ -jwe,
£1' cot¢+F(—-F-;—)K coty +
+gI|1- -2—— cotx/Z] +GK [1+£§- coty|=0 (2. 38)
Y a I" a

2.2 Dispersion Equation Solution

Four homogeneous equations with five unknowns must be solved. In order
for a solution to exist, the determinant of these equations must be zero. The
resulting determinant expresses the relation between 8 and k. After some

algebra, the equation is

2
2
KT _ [7 az—nBacotw] (2. 39)
K Czk2 2 2a2 cotzw
]
v K !I
2-IK (2. 40)
1K' 'y I rza—nBacotn//
WK 3T —nBacotz//

Equations (2. 39) and (2. 40) represent the general solution for propagation constant
Bvs k, of an arbitrary mode of a sheath helix fully loaded inside the helix with an

isotropic material.

2,3 Asymptotic Cases

The most simple limiting case of this rather complicated equation is when
a slow wave region is encountered; that is, when 3 =‘-L,9 >> kyu €2k o where v is
the velocity of propagation in the nth mode in the z direction corresponding to

the propagation constant (3. In this case

vy EMER (2.41)
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since
Y =/ g!"-k02u€

[ = Bz—-ko

and

and the square roots are both dominated by 8. In this case

KI_

To further see the value of C, it is convenient to look at the asymptotic approxi-
mations to Ih('yna) and Kn(/';1 a). For large arguments

Z

e
L (2)~ g (2. 43)
1 ez
In(Z) ~ m (2 44)
K (2)~ g?; e (2. 45)
K @w- [T 672 (2. 46)

Thus, if 'yna and /';l a are large, as they are in much of the slow wave region for u

and € not too large,

K'T ~
oL
and 2 lte
C = —-—T
1+ =
M
if

Ba=/ 2= ya>>ka>ka, kaf1 , k=kfie€.

The last approximation for ka 2 1 follows from the fact that an antenna radiating
in the endfire mode always has about this normalized radius, as will be seen

later.
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This large argument approximation is the only one available for then =0
mode and has often been applied before, as previously referenced. In the pre-
sent case, however, the n = -1 mode is the important one for the endfire antenna
use. Sensiper (1951), Watkins (1958), and many others have often used the large

order asymptotic approximations for the calculations of a helix in free space.

They are
¢ 1 en&
In(nZ)”m " (2. 47)
It (nz)~ -71}-5 : s (2. 48)
_ o
T e
Kn(nz) ~/ T (2. 49)
K! (nz)~ - /2—:: ‘;f e S (2. 50)
where
2 z
£ = f142° + In —Ze
1+,/ 1+zE
.25
u = (1+z2)

n >>1, angle(z) < % T

Thus, for n large, regardless of z

A
-t

> - 2
K1t
o2 Li”f— . 51)
1+t
u

Most important, even for n=#1, it has been found numerically that the
approximations are quite accurate even for small z (Watkins, 1958) and are far
more accurate for larger arguments. Thus for the loaded sheathl n| > 1 mode,
(2.51) is a good approximation for all real arguments. The author has found it
much poorer for arbitrary complex argument, especially near z > Tj.. Thus,
it should be recognized that near the fast wave region, particularly if pe>>1,

v is imaginary and the Bessel function J I{—j ynr), rather than In('ynr), governs



21

the fields inside. In this region, the above asymptotic approximations do not
apply. Extrapolation through this region is used herein from the slow wave
region B> ko u € for the sheath solution, Later, the tape helix will be solved
exactly.

An additional importance of (2. 51) is that all higher order modes follow
this behavior. In later tape calculations, the higher order modes will be found
to be important.

The meaning of C becomes clear from comparing the dispersion equation
(2. 39) to that of a helix in free space, u = € = C. This equation with C = 1 is
identical to Watkins' (1958) solution for a free space sheath helix, thus providing
a check of (2. 39). For C #1, the slow wave assumptions (2. 41) may be applied
to the dispersion equation (2. 39), yielding , for n = -1 and B = B_l,

-K _(Ba)I_.(Ba) 2
(ka)2= 2-1 -1 [_-pa+cot¢]

- > (2.52)
C'K_,(Ba)l' (Ba)  cot” g

where the solution (Ba) = 0 has been ignored in dividing the top and bottom by Sa.
From this equation, it may be seen that for a fixed B (such as one required for
endfire radiation), the size-frequency parameter, ka, is smaller when C is large
due to loading. A much more simplified form of (2. 51) is obtained by using the

large argument asymptotic expansions (2. 43) - (2. 46)

-K_;(Ba)1_, (Ba)

K' I' (a)

e

1 (2.53)

yielding,
B-l atany + 1
ka = S . (2.54)

This equation is a straight line on the k- diagram shown in Fig. 2:2, whose
slope is inversely proportional to C; i.e. for a givenf r fixed by the desired
radiation pattern,(ka) is proportional to the reduction factor,

1
e /) . (2. 55)
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FIG. 2-2: k- DIAGRAM FOR HELIX ANTENNA,
A = locus of backward plane wave.- B = locus of forward
plane wave. C = dispersion curves for typical slow-wave,
unloaded helix. D = dispersion curve for typical slow-wave,
loaded helix. E = radiation region for unloaded helix.
F = radiation region for loaded helix,
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2.4 Application to Antennas

To apply the above reduction in size to an antenna actually requires a
few more assumptions that are most clearly illustrated by a k-3 diagram,
such as Fig. 2-2. In this typical figure, k, is plotted vs B_;from an equation

similar to (2. 39), and is frequently called a dispersion curve. In addition,

several diagonal lines are plotted corresponding to k, = | B~1; on these lines, the
axial phase velocity of the wave is equal to the speed of light, which is known
to be approximately the speed necessary for efficient radiation of the wave
travelling on the helix,

In Fig. 2-2, it should be noted that the dispersion curve for the sheath
helix in the slow wave (large @1) region has a smaller k a for a given B_la and
a smaller slope when loaded than unloaded, as just discussed. However, as
the dispersion curve nears the k = —B_lline (axial propagation in the negative z
direction, or 'backward' at the speed of light) the curve drops down to the origin.
This dffect is due to the waveguide assumption that there should be no radiation;
i.e., that @_lmust remain real.

The waveguide assumption of no radiation does not apply to this problem,
The sheath helix in air with additional assumptions of periodicity has been shown
to have complex solutions for the propagation constant (Klock and Mittra, 1963)
corresponding to a. 'leaky wave' or continuously radiating current. These com-
plex solutions have k:-Br diagrams (where B, is the real part of ) that continue
rather close to the straight line asymptotic right into the fast wave region, as
shown by the dashed lines in Fig, 2-2. The more accurate tape helix model
to be discussed later has very similar solutions for complex 8 that come in-
creasingly close to this straight line gsymptote with decreasing tape width.
The use of 'engineering solutions' of the helix as the straight asymptotic line
continued from the slow wave region straight through the fast wave region
(Maclean, 1962) is based on these complex solutions. Since the tape helix

solution is more accurate, further discussion of these complex solutions will

be postponed until the tape helix section.
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If it isassumed that in the loaded helix solution, -this straight line behavior
from the slow to the fast wave region continues to exist, then the reduction in
slope in the slow wave region actually would correspond to a reduction in the
size of a loaded helix antenna that would have the necessary critical 8 = -k
needed for radiation. More exactly, the nominal reduction would be given by
the intersection of the straightline dispersion extrapolation with the k= -3 line
(Hong, ’1965). _The dispersion equation of the tape helix in air is known (Dyson,
1964; Klock, 1963) to be approximately

ka = Bja siny

where, as will be shown in the tape helix section 8, = Bo thcot Y. Thus, the
dispersion equation for the loaded helix, with the assumptions above, should

have the same slope except for the reduction factor (2.55), which yields

L
k a= 1+ u Boa siny . (2. 56)

o} 1+€

The intersection with the k = -8 line then gives

Kk a- (2.57)

[1+1 1
koa.g —1+—€'ZH =a (258)

as the relative size of the loaded helix at the nominal 'radiation point'

The behavior of the transverse propagation constants v and /7 is fixed
for a given k-8 variation and loading; however, their behavior gives a good
physical insight to the mechanism of radiation. For slow wave propagation,
both vy and [Mare large, causing sharp decay of the fields away from the helix
surface, as seen from the asymptotic behavior (2. 43 and 2. 45) of In('ya) and
Kn( /"a ) which describe the radial behavior of the fields. This rapid decay of
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the fields is a characteristic of 'tightly bound' non-radiating surface waves on
all guided wave structures. On the other hand, as Bn—> k near the radiation
zone, [ n—)- 0, which indicates that the fields decay slowly, and extend to
great radial distances from the helix. This is characteristic of a 'loosely-
coupled' wave that can radiate most of its power upon encountering even a
small discontinuity. Since the radial variation of the fields is small and the
axial phase velocity is close to the speed of light, the wave resembles a plane
wave, allowing the physically intuitive picture of the helix wave 'coupling’
wéll to a free space plane wave containing the radiated energy. For the helix
in air, the fields inside the helix are also slowly varying. However, when a
loading material is inserted inside the helix, the fields of the n = -1 mode near
the radiation zone resemble the H 1 hybrid mode of the dielectric rod antenna,
which is. described by J 1(—j vr) inside, and Kl(/"[:) outside the helix for the
waveguide region of operation. When [0 , as in‘ the radiation case, vy may
be large and imaginary, so that the fields inside the loading still resemble
those of waveguide propagation. In particular, the energy inside the helix is
concentrated close to the helix surface. It is also possible that a waveguide
effect could carry some of the energy past the intended radiation zone without

radiation.

2.5 Inside Layer loading: Sheath Helix

As another workable problem, the sheath helix with a cylinder layer of
isotropic loading material lends itself to calculation. The problem of layer
loading is important because often the weight of a full-core loading must be
decreased. Similar problems for outside layers for the n = 0 mode have been
studied (Swift and Hook, 1958).

Since this problem is more complicated than the full-core problem, the
slow wave assumption will be made at the outset; yn—%' /"'n x B:.__/_)/(B)’ where
7(3)is the v inside the loading cylinder in the central air core. The problem will
be done with the same notation as the first, except for the new innermost region
3, Fig. 2-3, which has 7(3)= 7(2)= 'y(l)=/"= B, €5= € Ha=H: If the notation
E(l)= E, E(2)=e, E(3)= E(3) is used for the E fields and similarly for the H fields,
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Region 1: My €5 r
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Ngion 2: ppg €€

Region 3: u o o 'y3
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> o e

FIG. 2-3; SHEATH HELIX WITH AN INTERIOR LOADING
CYLINDER.
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the fields can be written in the three regions as

Ez= FK (region 1) (2. 59)
ez=f(I+ClK) (region 2) (2. 60)
Ez(3)= F(3)I (region 3) (2.61)
H = GK (2. 62)
h =g(1+C,K) (2. 63)
HZ3L a®® g (2. 64)
BT (5 nB YK+G( _J‘%)K' (2. 65)
08 e.p dadal: (I'+Co K (2.6
¢ —2— 9 -8 Il 9 ) . 66)
E;‘S):FB) (—2——)I+G (2w =9 (2. 67)
jwe -
Hy=F —7_,—9 K'+G (—’_—fz‘rﬁ)K (2. 68)
_ Jwee ' \ B
h¢—f — (I"C/K')-g /—_’2——(I+CZK) (2. 69)
g3 §(® 19% G (281 2. 70
¢ i (= r r) . (2. 70)

The constants C1 and Cy can first be calculated from the boundary conditions at
r =b, the inside dielectric boundary, by employing the boundary conditions for
the continuity of the tangential components of the fields

Z=Ei3) (2. 71)
¢ (¢3) (2.72)
hz=Hi3) (2.73)

) (2. 74)

"y
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Substiting from (2. 59) - (2. 70), and eliminating F(3) and G(S), after some
algebra, the constants Cl and 02 are
_ K'(E)KE)
oo e (- Xere) (. 75)
1 K(§) (l—e K'(E’)H%’)) )
_ K(E)I'(€) ]
( | (1_ K'(E)I(S))
g K(E)I'(§)
%7 x@| T RO ) (2. 76)
( K(E)I'(§)

where £ = 'ynb. Using the asymptotic approximations for large n (2.53), as

well as the slow wave approximation > koue

~ IE) (l-¢
% -XE o (2. 77
o2 18 (-u) (2. 78)

2 K(§) (1+p)

The algebra for the original problem with boundary conditions at r = a (2. 63) -
(2. 66) can be written similarly to the full-core problem, except that (I+ClK)
replaces (I) 'inside' (region 2) for e, and (I +02K) replaces (I) inside for h, as
shown in (2.59) - (2. 70). Substituting into the same sheath helix boundary con-
ditions (2. 31) - (2. 34), setting the determinant of the four homogeneous equations

equal to zero as before, the resulting'dispersion equation is, after some algebra

K'T i} —[BZ a2 -nPa cot: (//] 2

KI r=a Ci 1{2a2[32azcot2 Y

(2.179)
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where
IMC K
1-€ FC, K ) %
c?- K (2. 80)
L TK)1K 1+CzK .
u K (I'+02K' -1 e

To verify that this constant C r approaches C as b -» 0, as should be
the case, first note that

1 .2
In(z) ( 5 z) n
K (z) n'(-1)! (as z > 0) (2. 81)
K (2)I (z)
Kn(Z)I;l(Z) "z
(z »0) (2. 82)
thus
Lim C1=0 ; £im CZ=O (2.83)
b >0 b-> 0
which gives
Ci - '1}15‘ - ¢ (2. 84)
=41
7

as it should for the full core case .
For the special case a®b >> 0, the asymptotic expansions for large argu-

ment may be employed to obtain simplifed formulas. Thus, in the numerator

of (2.80) In('yna)K;l('ynb) - €
) I'+ClK' K 1-K ('y a)I' ('y b) (1+€)
C3* <W >‘Iz T T I(rak (7 b) : (2.85)

K (7 a)l ('y b) (1+e)

However, from the large argument asymptotic forms
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In(vna)K n(1'nb) -2 vn(b-a)

(2.86)
K (v a)L (v b)
I K'(yb) -2+ (b-
g (Zna:n?(wnb))"’e e (2.87)
n' 'n™ n' T
Thus, (2.85) becomes
14 (1-¢) e) -2 Bn(b-a)
(1+e)
C3 (2. 88)
_ey 2B _(b-a)
1_ ((l -€), e n
(1+€)
Similarly,
(1 ) "ZB (b'a)
K'(I+C K) 1- =H o
Cy= K(I‘+C ) = () 3B boa) (2.89)
2 (1 ) n
(lm)
The dispersion equation reduction constant C f then becomes approximately,
1+eC
C% ¥ ——i—i (2. 90)
+=- C
u 4

The constants Cg and C 4 then may be interpreted as 'effectiveness' constants

of the e and u , respectively, relative to full core loading. These effectiveness
constants are functions only of the € or u they multiply as well as Bn. The
entire equation (2. 79) could, of course, be studied numerically; however, it

is illuminating to use a perturbation method for thick layers, by assuming B ch
(full core),and to study the effectiveness constant vs thickness for Bn . Figure
2-4 plots layer effectivness of € vs normalized layer thickness, Bn(b-a),

for the nth modes, with the restriction that Inl must be very small compared

to Bnb and Bna (in our case, n = -1). The correction factor 1/C 4 for 1/u is of



"SSANFIAILOIAIT DNIAVOT YIAVI H-2 'DII

(q-8)d ‘ssoworyy, Jofe]
0’e 0°¢ 0’1 L’ S° %" g ¢’ T°

31

_ T [T T T T T T 1 _

0¥

0s

09

0L
08
06
001

(yueo xed) > xo 1 Jo ssSUATIORIH



32

the same form as C3 and the same graph may be used for it.

To use Fig. 2-4, for example, note that for u or € less than 5, an
effectiveness of greater than 90 per cent may be achieved with a normalized
layer thickness Bn(b-a) >1.5. To relate this to actual layer thickness for a

ferrite powder on this project

W=2.2; €=38 C-= E’f 21.7,0=6°,
141
M

and from the known approximate relation between S and ko (2.56), using all
of the assumptions discussed with this equation previously for the extrapolation
of a sheath helix solution to a tape helix solution,
b ‘
0 siny

In the slow wave region at (for example) ka = .5,

Since

B_l(a—b)zl. 5 ,
from the graph, as stated above,

a-b , 1.5 _
x ~ 100 - 0.015

for 90 per cent layer effectivness. It has been verified experimentally (Chapter V)
that such a layer can reduce the helix at least approximately as well as full core
loading.

For additional accuracy in this perturbation method., Bn may be success=-
fully re-estimated from the computed effectiveness, each time followed by a
re-estimate of effectivness. Convergence is governed by the theory of solution

of equations by iteration.
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It may be verified that as b > a, that is, as the loading material thickness

goes to zero,

fHim Cy»lfe ; Him Cy»pu ; fim C, > 1
b-> a b> a by a

and the dispersion equation. becomes that of a helix in free space.

2.6 Limitations of Sheath Solutions

The sheath solution for a 'dominant' sheath mode has several difficulties.
Most important is that the assumption of a single dominant field distribution of
the form exp (—j¢) for determining B_l is an incorrect assumption, as will be
seen later. The far field is determined by a single (near field) sheath mode on
an actual helix, but an accurate near field representation requires additional
modes. Another serious limitation is the assumption of a straight line extra-
polation from the slow wave region S >ko u €. However, justification from the
tape solution to be discussed next provides a much firmer reason for imitially
studying new configurations by this sheath method. The sheath helix is a very
simple calculation. It could be extended to multiple layers of material, inside
and out. For the n=0 mode, some cases have been solved by Swift and Hook
(1958). The large (argument) asymptotes of the n=0 solutions may have behavior
similar to the higher order modes. Similar calculations for multiple dielectric
layers without a helix are found in Barnett (1963).
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FULL-CORE-LOADED TAPE HELIX, FREE MODES

3.1 Solution for Constants, Approximate Boundary Conditions

The same notation will be used as for the full-core-loaded sheath helix.
The fields for each spatial Fourier harmonic (sheath mode) are written the
same. The major difference is in the inhomogeneous boundary conditions,
different where the conductor exists and where it does not. Since the boundary
conditions on ¢ are a function of z, the orthogonality argument used in the
sheath helix case is not valid; i.e., the space harmonics are not orthogonal but
coupled to one another in a tape helix. To satisfy one of the boundary con-
ditions, the sum of all space harmonics must be used. Thus these harmonics
cannot be called modes, or complete solutions, of pi‘opagation on a tape helix,
as they were for the sheath helix.

The boundary conditions for the case of the tape helix are,

E(O)L - g® (3.1)
% lr=a r=a

(0) (i)
E =E (3.2)
§ r=a g r=a
H(zi)—H(zO) J g (defined as zero between conductors) (3.3)
(; )—H;l)-J (defined as zero between conductors) (3.4)
E( ) E( (;)—Eg)—o (on conductor) (3.5)

where, as before, Ez ¢ and Hz ¢ are components of the electric and magnetic
fields, respectively, and J , &Te components of the current density on the con-
ducting tape. In principle, the above boundary conditions completely specify a

problem, which would have a unique solution for J, E and H; however, in

34
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attempting to solve the equations exactly by expansion in terms of space
harmonics, an infinite order determinant arises from equating a sum of modes
to zero in (3.5). As mentioned in the Introduction, approximation methods
exist for finding the 8 vs k dispersion equation for this problem that have had
considerable success in the past for unloaded helices in both the slow and fast
wave (radiation) zones, and for loaded helices in the slow wave .zones; these
methods will applied herein to the loaded helix in the fast wave zone, following
Shestopalov's (1961) loaded slow wave solution and Klock's (1963) smloaded fast
wave solution.

An approximate solution to the problem of finding the 8 vs k is to assume a
single propagating current wave with an unknown S and an assumed distribution
on the tape. With additional complexity, more than one wave could be assumed,
of course. The boundary conditions (3.1) - (3.4) are then used to eliminate the
unknown constants of the potentials, as in the sheath problem, having the fields
expressed in terms of the assumed current, which in turn is a function of f3
and k. The remaining boundary condition (3.5) is replaced by an approximation
to obtain B vs k; either a variational expression is used, or E / / {(the component
of E parallel to the tape) is required to be zero on the center line of the tape.

For an expression variational in 8 with respect to current distribution,

/ xJ - §=/Ex<n‘°) i.45 = o (3. 6)

Surface of (*=complex conjugate)
Cylinder

is often chosen (Chodorow and Chu, 1955; Kiryushin, 1957) although more com-
plicated and flexible expressions can also be used (Bevensee, 1964).

In applying these approximate methods, the current will be chosen in this
report to be a single travelling wave on the helix tape (not a single space har-
monic) which travels only in the direction of the wire, with a constant phase
front in a plane z = constant, and a uniform amplitude across the tape, Defining
J // as the current parallel to the wire centerline,
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-iBs iz
Je =Je on the first tape
-iBs  -iB .z
J I/ =\-Je =-Je on the second tape (3.7)
0 off the tapes

where
s = distance along the tape = z/sin y

Bs = propagation constant along tape = Bosin v .

Here, the fact that a bifilar two-wire helix fed in 'push-pull' appears. The

fields and current are expanded into spatial Fourier harmonics, as in the sheath

helix,
Q0
io_ i,o y o
E'= E ) (r)exp(-iB_z+jnf+jwt) (3.8)
n, m=-0o
(0.0]
i,o i,o
)= 3 —o +- +-
H E H' (r)exp(-jB ztinf+jut) (3.9)
n,m=-0o
a
Iy j¢mexp(—ijZ+jn¢+jwt) (3. 10)
n,m=-co
J,= ? J, o018 ztinftiut) . (3.11)
n,m=-00

An important simplification of the helix problem can be made because of its

symmetries and periodicities. Thehelix becomes coincident with itself, if sub-

jected to one of the following coordinate changes:

(r,§, z)> (r, ¢, ztp) (glide symmetry) (3.12)
(r,d, z)> (r, ¢+2—7-rdz, z+dz) (differential screw
p
symmetry) (3.13)

where p is pitch (Fig.1-1),and
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(r.8, z)->(r,¢,z+§) (glide reflection
while simultaneously symmetry) (3. 14)
Jd > -J .

In addition, Floquet's theorein states that if a symmetry like (3.12) exists,
then the fields must be of the form

E (r.§,2)=E (r,,24p) - C; (3. 15)

where Cf is some complex function (Brillouin, 1946), not necessarily with an

absolut e value of unity. A convenient form for C in this case is,
_ . . n n +1 +
Cf—exp(—]Boz-Jm > z), m=0,T1,T2 .. .. (3. 16)

In the usual helix waveguide calculations, B, is assumed real for the lossless
case, but Floquet's theorem does not require this. In our case, Bo will often
be complex due to radiation. From (3.16)

_ 2rm
Bm—Bo+ = - (3.17)

In addition, because of the differential screw symmetry (3. 13)
m=n . (3.18)

Also, the expansion of the currents, taking into account the glide-reflection
symmetry (3. 14), by ordinary Fourier analysis, yields

. sin7né
J¢m- i¢o ﬁm{p (1-cos 7 n) (3. 19)

. 3
i.=1i ZRTE 1P (1-cos 7 n) (3. 20)
zm z0 m™n P
i, =32 cosy (3.21)
fo “p
i =Jé sin ¢ (3.22)
Z0 p :
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6 = tape width in z direction
-1Bo 9/

and the term e = 1 for the usual small 6. The first four boundary

conditions (3. 1) - (3.4) now may be applied; because of orthogonality of the

terms in these equations of continuity after expanding the currents, these

first four equations may be written for each space harmonic separately, as

with the sheath modes. Again, the exponential, arguments and harmonic num-

bers (n) will be suppressed.

al = AK (3.23)
jwu p jop
nf o nf 0
-a I-b = -A K-B K' (3.24)
va a F
jw €€ ng jwe
1 - 0 1 nB - 3
a I'-b 5 I-A 2 K+B——2—K i, (3.25)
Y a I a
BK—bI=-j¢ . (3.26)

If k0 is assumed specified, and in addition j ¢ and jz are assumed functions of

Bo and k0 as they are in (3.19)-(3. 22), then (3.23)-(3.26) are four inhomogeneous

equations in five unknowns; a, A, b, B, and Bo . They are to be solved for A, a, B

and b in terms of Bo and k, . The algebra in this problem is long, since /"# v,

whereas [ = v has been assumed in all other solutions in the literature. It is

done in some detail in Appendix A. The results for the constanta A and B

as functions of 3 _(via y_and/"_) are,
o n n

b
A--i_ L /?_3 [___L]Zﬂ 4] (3.27)

€ -
koI'CE 0 1 CIJ €

B= — gy 70,5 (3. 28)
Ic 1-C '
u e
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where
c, = [6-5- £ -‘i,'] (3. 29)
|, K 1K
c,* [7 ra 1'] (3.:30)
02(%"?};1?1')2
C = By (3. 31)
ue 12 ccr? '
o“ b€
Cg C, K
kuCTlT
(o] €
2
Cg C c_ K
Cy g ) (3. 33)
r Y u
i} rz]
c =|1- L2 (3. 34)
2
L v
Cgr ‘-‘aﬁ (3. 35)
cy=-€- (3. 36)

1=1(ya); K=K (/] a)
The constants a and b, which will not be needed, are relatedto A and B
via (3. 23) and (3. 26).

At this point, the simplified methods discussed before((3.)6) for handling
the difficult boundary condition (3. 5) must be applied. The variational tech-
nique (3. 6) will be used, although the technique of setting the center line E / /=0
can be shown to give an identical dispersion equation with the exception of the

squaring of the tape width factor (Watkins, 1958). This variational method for
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helix dispersion calculations has been thoroughly derived and explained by

Chodorow and Chu (1955) as well as others; it would suffice here to note that
Ex@ 0"
for tlns is that on the conductor Exd5=0 since the tangential E field is zero on

)* d8, the integrand of (3.6), should be zero everywhere. The reason

a perfect conductor.  Off of the conductor, but at the same radius, r=a,
(H(O) (i)
surface not containing current. The triple product integrand of (3.6) can be re-

arranged to contain either Exds or (H(O)—H(i)) xdsS; therefore the integrand is
(0)_ ()

)xdS=0 since the tangential component of H is continuous across any

zero everywhere. Forcing the integral of Ex(H ) - ds to zero, a less

strict condition, should give approximate results for 8 vs k. The integral (3. 6)

becomes
(00)
I= t(fr)l Jta ds= j (O)eXp( -8, z+ing) Z 1 SxP(iB_ z-jmf)+
n=- m=-q
(0 0] (0.0]
I En_exp(jﬁmz-jmﬁ‘) ds=0
n=-q m =-0

With the surface taken as one periodic cell, length p, the integral of the cross
product terms m =fn is zero due to orthogonality of the space harmonics, and a

constant L may be defined,

®
LA L - g0y g0 _o (3. 37)
= 2rap Bn Jon ¢n ¢n
n=-oo
© ) '
sk -an Sk J(‘JMO sk
L-= AKij + — AKj, - —BK'j, =0, (3. 38)
z n n'zn 2_ "n ngn n n'(n
n=-0o r‘na r'n '

An extremely important step for numerical calculations is to separate L into
the 'resonant' term (that term where B k,) and the other berms, B >>k,,
designated as the non-resonant remainder (Shestopalov, 1961).

= LR+LNR ) (3. 39)
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In the case of backward radiation, the resonant term is n = -1. The
resonant term is a very complicated one which cannot apparently be
readily simplified; the non-resonant terms may be well approximated by

asymptotic expressions, and these terms may be summed to get a very simple

approximation for the remainder.

3.2 Resonant.Term

A solution for the resonant term is really just a full solution, without

further approximations, for the general nth term, Ly s of the sum L. Since

only a single term, the resonant one, must be calculated from this expression,

the latter name is applied.
Substituting for A and B, from (3.27) and (3.28) in the general nth

term of L, and omitting the nth subscript throughout,
0 r1 K I'
+ ] +J ‘3 C]
Lp™In™ - k C (1 C €) )

LimB K/I' Po'[[. %, . .x
"2,k TlI-C €)/_—‘[Jz' Igtlg J¢C4]

JWO K 1

T EECL) ¢ ]¢(C +C )+] ]¢ -] (3 40)

where j =¥ -1, not to be confused with j ¢ , // or jn . Substituting

jn¢ =, cos Y (3.41)
i~ siny (3. 42)

the expression LR becomes



v ka 2 2
LR=jJ'2/ -e—o 7,9— I" ! \sinzw—simpcoswc N —“zésm‘pcosw ‘iﬁcoszwc 4)+
o a2 -¢ ) ‘a a
K'/1 2
+ C“ i Cue 7) cos MC’Y +CZ)-sinpcosw0;J (3. 43)

where the constants are defined in (3.29)-(3. 36). Factoring cos v and (1-C E)
out, and defining C_=C,/ (')

“o cos® Y k2 | K

i
Ly (IC)I"a(k)C

[(I"a) tan? y-nBatany(1+C;) *

2 1

2 (Ba) K

+n (C,+C_.-C.) . (3. 44)
) 5cu Gr+Cy 3]

Equation (3.44) is in the form used for computer analysis.
To check limiting cases of this equation against published solutions, it
should be noted that if M v >>0, and [Mand v are essentially real, which is

the degenerate slow-wave loaded tape helix case, when C‘Y’YJ’ 0, CIJG =0,

C > 1, and
4
t 1
oo [c E-K], o w[5-1 K]
1] I ul
+jk cosz¢ m 2
Ly—2 #1202 (tan w-——)—li- ——1-1 . (3. 45)
r v nve k.z 'y

o}
If, also, large argument asymptotic approximations are used to the Bessel

function products, as in (2.43)-(2.47)
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K/I'  K/I' ~ II' ¥ 1
C. (E_ K~ evl e+l (3.49
I I
K" 1 ~Tv -
1~ K'I _ . 1~ -1 (3.47)
c, K1k " 1 1
I ul o m

Thus (3. 45) becomes

k 1 2
Ly > * =2 cos?y 2 1—9 2 (tanZy -RBy 2 - 1 (3.49)
Y nV € 2 2 ' (1+€) 1
olk Y a 1+ -
o u
which checks with Shestopalov's (1961) general term for the slow-wave loaded
tape solution, after a few corrections are made to the published equations which
the author found upon re-deriving Shestopalov's work. This corrected form (3.45)
may be partially checked with Watkins(1958) solution (or many others which agree
with Watkins) for the general term of an unloaded tape helix (the uncorrected
Shestopalov formulas do not check), where € =u = 1. Upon using the Wronskian
for the modified Bessel function, rearranging constants and multiplying and
dividing by cotzw
ko 2 2 2 2 22
LR—> j-; siny jn E'ya) -2nfa coty+n Bz a

2 v
cot ¢ 22 2 i
723‘2 ]InKn-i-koa coty I'K' ) (3. 49)

which is Watkins' general form for a free-space tape helix solution, Thus, the

solution to the general formula in this report (3.44) reduces to published

solutions for certain limiting cases, providing a partial check of its validity.

The equation (3.44), however, is believed to be new and not previously published.
Studying (3.44) for a moment, it should be noticed that no obvious sim-

plifying assumptions can be made to this term. Since for the resonant term

n is small, here n = -1, the large order asymptotic approximations to the Bessel

functions are not very accurate in the general complex argument case, although
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they proved acceptable in the sheath helix case for real arguments. This
approximation was checked numerically by the author and found to be very
pdor for small complex arguments which are of interest. In particuiar, Y1
is imaginary over much of this range; thus» I_l('y_ 1a)—> -j J_1(+j'y_ l9,) ,
which is an oscillatory function. No approximations to J_ 1 have yet been
found useful in simplifying the resonant term. The large argument ap-

proximations are, of course, not possible since

72 =V(B_ a)%-(k )% ~0

for B_; ~k. Also, the two argumentsya and [Ma differ, which makes approxi-
mations of K'I/KI' and K'I'/KI, the two important products, additionally diffi-
cult, even in the regions where 7n is real.

To calculate the term (3. 44) by brute force on a computer is not especially
easy either, although that procedure was followed herein. The major difficulty
is that programs for modified Bessel functions of complex argument are not
readily available for the computer as subroutines, and those programs that
were later found and might have been changed for the present use were usually
for a limited range of argument and order, as well as requiring the slow double
precision calculations. Appendix B discusses the Bessel function subroutines

written by the author for use in this problem and other known work in this area.

3.3 Non-Resonant Remainder

For the rest of the terms of the infinite series representing L, a brute
force calculation could be used. The costs of computer time would be very
large, additional time for study of programming for the computer for accurate
Bessel functions of complex argument a.nd higher order would be required,
and no simple well-known function for the total non-resonant remainder would

be obtained. The method to follow shows this total non-resonant term clearly

and simply.
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Since for the non-resonant terms, Bn>>k )

= ,52 R =4
I'r'la— 2 koa Bna >0 . (3.50)

Also, except at isolated regions in the slow wave zone where BnN kue

for smalln, B _>> kvué , and

7,2 = /(Bna)z-(koa)2u e Ba>>0 . (3.51)

In addition, both [ 2 and 7,2 are almost purely real, and [~ for|n}> 1,
coty large, and u € not too large .

This combination of fairly large, nearly real arguments assures the
accuracy of a large order asymptotic approximation for the Bessel function
products, The large argument approximations are not applicable because the
series is of increasing order, n . In other words, all the usual slow wave
approximations apply to the non-resonant terms, except that large order, rather
than large argument, expansions are used.

For the non-resonant term, start with the slow wave (I'TI'1 x'yn) expression

for a loaded helix (3.45) and rewrite the first factor inside the brackets (using

/-;1~'Yn )
r i a” g BB nzﬁiaz
T = ——— (tan y- )—— (Fa) tanwan a tan)+
2,2 n 2 (koa) anz
(o] n n
(3.53)

Using the relations

Bna=(Bo+ -2—7;)—11 )a=Boa+nco’a// (3.54)

2 2 2 2 2
Pna —szla —ko a (3.55)
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the factor T becomes
2
[(B 2)” (k| 2)tany + 2°2 ] : (3.56)
e n

This simplified factor is essentially the one used by Tien (1953) and Sensiper
(1951, p. 59) for the tape helix in air. The effect of loading comes in the other

terms. A further simplification results for large n, since

) 2 2 2
= [(Boa+n coty) -kO a ] (3.57)
= nzcotzw (n large)

T ¥ 5(2) a’tan®y : (3. 58)

This simplification will be used to approximate all non-resonant terms, since
usually
Boa < ncoty and koau 2 62 <necoty . (3. 59)

For u and € very large, the second approximation may not hold for small n
and for large ¢, and additional terms would have to be calculated using the
exact expression (3.44), which was used for the resonant term.

The sum of the non-resonant terms may then be written, where rn =

resonant n, as
(o4}
k a ﬁza tan v,(;
2 7.2 K/1' K'/I
=+ —
LNR j ] cos d/( ) ) c +C . (3. 60)

F
rE— n ko a € M

Simplifying still further using the large order asymptotic expansions as in
(2.48) through (2.53), similarly to (3.46) and (3.47)
K/I' o I/' o cosy

C_ ~ &l T e+l (3.61)
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K'/I o -I'/I a -1/cosy
1] 1+- 1+—
M K

The cos y appears above, although it does not in (3. 46) and (3. 47) since from
(2.49) - (2.53)

In( r na) ~ I"na MNa

o - (3.63)
rre ) 71* _%_?2 anwnga2
n

Using (3.57) for large n

~ ncoty cot ¥

% =Y. cosy . (3.64)

n +tn cot ¢y

Substituting (3. 61) and (3. 62) into (3. 60), and multiplying and dividing by cos y,

2 kalB 2 2 2
§ 2 0 0 sin"y 1
=+j j_ cosy — - . (3. 65)
LNR n r;la k2 a2 €+l 1+ _l
n=-qo o H
n¥Frn

This non-resonant expression is close to Shestopalov's (1961), except that he uses
somewhat different slow wave approximations with large argument expansions,
resulting in an expression with Yo instead of Bo , and tan y rather than siny .
The expression (3. 65) is felt to be more exact and useful.

At this point, it is seen that the entire bracket is independent of n, In
addition, the n-dependent terms outside the bracket vary as
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2

. To )
sin — n
- p cosy . }lsinnA :
Sn 2[ LA ] ncotw—zsmwn oA :I (n odd) (3. 66)

p

Sn =0 (n even)

where A= 716 /p and where (3.57) and (3.19) - (3.20) have been used for jn and /-1‘1
respectively. Forsmall A (thin wires), the term varies as l/n until n is quite
large; i.e., the convergence is very slow. It is felt that even modern com-
puters cannot handle convergence as slow as this in the original Bessel function
form, and indeed there is no necessity to have the series in such a slowly con-
verging form. Although it is not mentioned in many non-Russian articles on

the tape helix, the series INR can be well approximated by a single term. To
be more exact, the series can be changed into a much more rapidly convergent
series, which is so good that the first term approximates the series very well.
The general problem of increasing the convergence of such series has often
been studied (Collin, 1960; Morse and Feshbach, 1953; Marcuvitz, 1964) and

has also been applied to helices and dipole arrays (Sensiper, 1951; Chodorow and
Chu, 1954; Serracchioli and Levis, 1959), but the importance of only the first
term used to get an excellent picture of the effect of all the higher modes is
mainly emphasized by the Russians (Shestopalov, 1961; Kogan, 1949, 1959),
Indeed, a very commonly used method in Russian literature for any problem
involving a narrow conductor or narrow gap in any geometry is the so-called
'averaged boundary condition', originally developed in the untranslated literature
but discussed by Moizhes (1958) and Smirnov (1958). In this method, the boundary
conditions contain a term logarithmic in1/A essentially the same as the first term of
the sum of the series LNR Except for this term in the boundary condition,

the problem is handled like a sheath analysis. However, it appears that for air
gaps between the material and the helix, or for layers of material, this method

is inaccurate and gives little insight to the problem.
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The importance of this asymptotic approximation is that it will usually
appear in thin conductor or gap problems and gives some physical insight to the
solution, whereas the associated original Fourier series will always be very
slowly converging and difficult to apply numerically, while giving no simple
insight into the problem. Rearranging the series for increased convergence, while
not stating the importance of the first term, fails to give the physical insight

To summarize, the series written for increased convergence is simply

L= Lg+Ly o

Q0
= Lt an- Fep + ZLN—(an- Fig (3.67)

n=-0 n=-

nF rn n #rn
where

Sn is given by (3.66)

2
. Bﬁa sinfy 1
kg 2,27 1 T 1
0 u

(3.68)

This last summation term is simply the error between the exact term Ln and
the asymptotic approximation for large n. This correction series could be used
on the computer since it converges rapidly. However, it will be assumed negli-
gible, since it has already been seen that the asymptotic approximations for
the Bessel function for large n are very accurate, if the argument is fairly
large and essentially real.

Series similar to (3.65) have been summed by Collin(1960), Chodorow and
Chu (1954), Kogan (1959) and others; however the sum for n odd has not been found
in the literature by the author, Appendix C indicates the method which gives
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1 -S- ~, 1.1
=Z=fn —+4+~-=F
5t ¥ Sn n 5 Fc . (3. 69)

Thus, the final approximate dispersion equation for the loaded tape helix is
= + g 3 3

L=Lo+Lyp ;.R+] F 8 F siny (3. 70)
where LR is calculated from (3.44), FkB from (3.68) and Fc from (3.69).
The equation (3.70) was solved on a digital computer for ko vs [ as will be
described in the next section. Just by inspection, however, considerable
insight into the solution can be gained. As A-» 0, that is, as the tape width
becomes small, the log term increases in importance until it completely domi-

nates the solution, i.e., F > 00. Thus, for the limiting case A =~ 0, the dis-

persion equation becomes

FkB 20
32 2
a
o s1n y 1
=0 (3.71)
k2 az €+l 1 +J_.

o
_+ . 1+ Zu
koa T Boa s1nxp’1+€ . (3. 72)

This equation will be recognized as the same as (2.56), which was derived in the

sheath helix case using the well known narrow conductor asymptote in free space,

koa=Boa sin (3.73)

from the tape helix theory and applying the slow wave reduction factor

I

C 1+e
found from slow-wave sheath theory. Actually, (3.73) for the helix in air,
although well known in the slow-wave region, has been shown valid in the leaky-

wave radiation region only recently by Klock (1963) using arguments based on
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the whole series. It has been extended to the loaded case above, using a
summation term which shows not only the behavior at A->»0, but the quantitative
behavior for small A. Numerically, it happens that the dominance of Lyp
occurs even at moderately small tape widths,

The logarithmic variation shows the dispersion equation is insensitive
to the exact tape width used. This is fortunate because the tape model itself
is not met in practice. If a more exact Lyg was desired, which does not seem
very important for the present case, the actual conductor shape would also
have to be considered, using perhaps the developed tape model for the higher
order terms.

Equations (3.70), (3.72) and (3.73) also give another very important approxi-
mate physical interpretation to the solution. Equation (3.73) indicates that for
very small conductors on a helix in free space, the phase velocity along the
wire is approximately the speed of light, that of a TEM wave, This suggests
that, as a good first approximation, the helix may be treated as an isolatéd,
straight, infinitely long wire propagating a TEM wave when calculations of con-
ductor phase velocity, fields and effect of conductor shape and loading are con-
sidered. The log( 1/A) term, which occurs also in calculations of self inductance
of a straight wire, also supports this model. In other words, the self inductance
of the thin wire helix dominates over any cross coupling of fields between dif-
ferent loops. The above conclusion actually need not be restricted to the helix
but probably occurs with most narrow-conductor structures. The Fletcher (1952)
method for dealing with the interdigital slow wave structure assumes this TEM
wave with considerable success. Also, the 'developed' or 'plane' helix model
uses this assumption, which depends on a very close binding of the fields to
the vicinity of the wires in at least the higher space harmonics, so that changes
in geometry (such as bending the plane into a cylinder) do not affect the propa-
gation constant,
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The reduction factors in (3.72) for the effect of material loading has in
fact been obtained and used by this 'developed helix' model with Fletcher's TEM
approximation (Ash, et al, 1964; Hair, 1964) and greatly facilitates the inter-
pretation of the loading effects of an anisotropic ferrite upon a helix slow wave
in the latter reference. The loading effect for an isotropic material, on the
inside of a developed helix only, can be seen to be essentially the effect of €,
and €,€ in parallel and the y o and u H in parallel. The effect of the permit-
tivity may be thought of as a lumped capacitance, and since capacitors in parallel
add like

Cp=C;+C,
the effective dielectric constant, € off of the two different dielectrics may be
written as

€t = (el+ ez)/z
Similarly, if the effect of the two u's is thought of as lumped inductance, which
add in parallel as

1 1
= i_ L—- (3.74)

1
Lp

The phase velocity reciprocal is

1 €1+€2
7 ~ILCy = MeegCett < | T 1
p =+ —
M1 Mg

From a physical picture of the fields, the two routes of the electric field between
two helix wires (capacity), one route inside and one outside the loading, appear

in parallel. The route of the. magnetic field around the wire is half in the material,
half outside. The reluctance (magnetic impedance) to the magnetic flux around
the wire which is added up around the magnetic path, is inversely proportional

to inductance, thus causing the 'inductances' of the two parts of the path to add

as inverses, as shown in (3.74) .
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Finally, in the interpretation of (3.70), it is noted that Ly must still be
considered in the fast wave region, since the argument of the Bessel function
Kn( f';la) gets small there, causing the outside fields, such as (2.12) and (2.14),
to get very large. Physically, this means that the strong surface wave approxi-
mated by the resonant space harmonic couples of the current wave to the
radiation fields. It is not obvious, however, in what manner u and € affect

this radiation. Numerical calculations appear necessary here.

3.4 Numerical Calculation of Tape Dispersion Equation

The numerical calculation of (3.70) required three large areas to be in-
vestigated. First, subroutines for modified Bessel functions of complex argu-
ment had to be written that permitted a large range of arguments from very
small to very large, at any argument angle. Higher orders of Bessel
Functions were also considered, for the problem of error estimate of the L
approximation. Appendix B discusses these subroutines. The second problem
area is the general method solution of an equation like (3.70) in the complex
plane. The Newton-Raphson method was chosen in this study. Mittra and
Laxpati (1964) also chose this method for finding the complex zeros of a similar
simpler dispersion equation. The final problem area was to implement this
method in a program that would find a solution for a given initial guess of §,
and given values of ko, 1, € Y ete., and track this solution as ko was varied
in small steps. The tracking of the solution improves the speed of investi-
gating the solutions as well saving much computer time. Without a method
of tracking in the complex plane, the instability of the Newton-Raphson method
makes it almost impossible to obtain results. A three-point extrapolation was
used to obtain each new point on the k-8 diagram, with a starter subroutine
that searched for the first three points, beginning in regions where the solution

was approximately known.
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The Newton-Raphson method is a common technique for the numerical
solution for an implicit equation G(x)=0 for real variable (Hildebrand , 1956).
The technique begins with a guess x;, of the correct solution , X, - A derivative
dG(x;)/dx is then calculated, and the next approximation to x, 18 x5,

G{x,)

If the first guess X is 'sufficiently'close to X s the solution will converge;
in fact, the convergence is very rapid, called 'quadratic’, since the error
€i of X, is of the order (r;‘i_l)2 where €118 the error in the X 1 approxi-
mation. This method can be extended to the comp_lex plane although very little
appears to have been written on such solutions. In the complex domain, res-
tricting G(z) to an analytic function in the region of interest,
- Glz, )
i GY(Z. )

G (zi-—l)

where G' is well-defined for an analytic function, and is the same regardless

. In the computer program, the approximation

of direction of approach to X1

used was

G(zi_l)-G(’zi_l—Az.)

"z )=
G'(z, ) — (3.75)

where A z was taken rather small, and could be changed to investigate stability
and validity of the solution .

Equation (3.75) was programmed directly as written, where G(z)=L( f3)
from equation (3.70). Complex arithmetical subroutines were used to perform
the complex arithmetical operations, since the MAD interpretive language used
at The University of Michigan had no defined complex numbers at the time. All
other subroutines (such as sin, cos) had to be revised. There is now a MAD

definition package for complex arithmetic that makes such programming much
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easier. FORTRAN could also be used, which has defined complex arithmetic.

A problem with the Newton-Raphson technique is that (3.75) may give a
relatively inaccurate G' for small Az since there is a difference of two nearly
equal functions. In addition, this function G(z) = L(B), with only eight digits of
accuracy available for single precision computer work, is a complicated com-
bination of Bessel functions which are themselves difficult to compute accurately
because of subtraction of nearly equal quantities in the formation of the defining
series. Attention to 'accuracy' was necessary throughout, although actually
'resolution' (the number of significant figures before the occurence of random
numbers) was found more important than accuracy (the number of significant
figures that are identical with the correct L(Bo))in obtaining accurate derivatives,

The initial guesses for Bo= Bor 1 Boi were made in the two regions where
experience has shown the answers are approximately known; a) the slow wave
region, and b) the 'radiation' point at the intersection of the asymptotic k-3
solution (3.72) with the backward plane wave TEM line ko=l'—Bo . In (a), the
asymptotic line: (3.72) is an excellent approximation, with Boi 2/0 (a real
variable solution), since little radiation takes place. For (b), the radiation
point determined B,. and f o Was taken nominally at -.01 and varied if
instability occurred. The second point in (b) was initially guessed by a small
shift from the first points. The third point was initially guessed by a linear
extrapolation of both Bor and Boi . The variation of f8 oi Was extremely rapid
near the slow wave region, causing instabilities in the solution, so that
initially in (b) the k-3 diagram was extended to the right, then to the left
from the initial point.

Note that the Newton-Raphson technique automatically gives the quantity
d1/dB which is related to the residue of the leaky wave pole associated with this
complex wave. In cases where numerical methods are used, it would seem
that the contribution of any pole in the complex plane to a contour integral is
more easily taken into account by numerically finding the residue than by

numerically integrating over the contour.
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It is important to note that the complex poles appear in pairs Bor TiB o’
so that the particular sign of Boi found in a root is not crucial to the solution;
only one root is physically acceptable. The proof of this property follows from
the property for Bessel functions,

3O ok (75 = *®
I (z™) = In (z) Kn(z ) K (z)

to® - '>:< 1 % - '>:<
In(z*) I (2) Kn(z3 K!™ (2)

and of the transverse propagation constants,
7B =7 ® r (8=

where * indicates complex conjugate. Since L is formed from real constants,
including ko, and arithmetic operations upon the v, 3, and the Bessel functions,
the function L(B) must also have the property I{8") = L () .

3.5 Results of the Computer Computation

The results of the computation are shown in Figs. 3-1 to 3-13, in the
form of k-3 diagrams. In each diagram

-ékoa/coh// = kp/2n
réﬁora/cot Y =B p[2m (3.176)

Ei A Boia/cotzp = Boip/27r

o™ 1

™|

A=7 6§[p

where, as usual, the subscripts r and i refer to real and imaginary components
of a complex variable. The figures are grouped by the three pitch angles (y = 2.6°,
59 25°) and the two normalized tape widths used (A= .1, .01). with separate
figures for dielectric loading, sd combined magnetic (u >1) and dielectric
loading. The particular sets of values ( u=6.6, €=12,6; €=3.77, = 2.2)

correspond to two ferrites in use on this project.
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Figure 3-1, for € = 1, shows a typical behavior of an unloaded backward-
fire helical current wave To (the notation will be discussed later). The k-Br
diagram is similar to the extrapolated k- diagram shown in Fig. 2-2 for the
sheath helix, but jutting upward away from the line, k= Br siny, shown in
Fig. 3-1. The imaginary part of B, B, isplotted to the right hand side of
the figure, using the same ordinate, k , but a different abscissa scale. For
the unloaded helix (e=1), the B_ i is seen to be very small for all values of k
such that the k—Br line is in the non-radiating region, i.e. to the left of the
k=1-B line, where the n=-1 space harmonic has an axial plane velocity less
than the speed of light. As the T{—ﬁ; line for € = 1 approaches k = 1—-[3- line;
i.e. as the axial phase velocity of the n=-1 space harmonic approaches the
speed of light, the value of E;suddenlyincreases greatly. Based upon experimental
evidence, /31 is the rate of radiation attenuation. It canbe expected to fall off after the
k- Br line is deep in the radiationregion, often rising afterward. Only the
behavior close to the sudden rise, where radiation is backward fire and the
To current wave dominates, is of interest at present.

Figure 3-1 shows the typical behavior of the dielectric loading. As
€ is increased, the radiation zone moves to lower values of the frequency-
size parameter, k. The radiation zone can clearly be seen from the increase
in the attenuation (Ei) due to radiation, and is seen to occur near the nominal

'radiation point' at the intersection of the lines

k=1-B=-B_, (3.77)
k =Bsiny —6&:—1 . (3.78)

However; the radiation attenuation, [? i also decreases with each increase
in the loading €. If the factor of reduction in 8 is greater than that of k,
then the active zone length will be unchanged with loading since both
radiation rate per unit of pitch distance, f,, and the pitch distance
(proportional to ko) are decreased equally. Notice in Fig. 3-1 that the
solutions are quite close to the asymptotic line given by (3.78) ,
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especially in the slow wave region and for the larger loadings in the fast wave
region,

In Fig. 3-2, the effect of raising u rather than € in the loadings is
shown. The solutions are again quite close to the asymptotic, and give only
small reductions even for large u . Nevertheless, the effect on B_i is very
interesting; it does not decrease as much as for high €, but on the contrary,
even increases for some values of u.

Figure 3-3 shows that a smaller tape width, A%,01, decreases B_ i
somewhat, but not drastically, in all cases. Figure 3-4 shows a similar ef-
fect for loading with u . In addition, several materials with both u and €
greater than air are shown. The compound ( u=2,2, €=3.77) has the charac-
teristics of a ferrite powder used in the experimental program (Chapter V).
The high 8; with the compound (€ = 5, u = 10) is notable, with the reservations
noted later about the rather large B_ ;" The other two compounds, while showing
a diameter reduction in ka , also show a considerable reduction in Bi .

Figures 3-5 through 3-8 show the effect of loading on a helix of greatly
reduced pitch angle, only 50, Again, as in fhe previous figures, € reduces
the diameter of the active zone more than u , but also reduces the B i The
combination (u = 2.2, €= 3.77) again appears to be a poor combination in
yielding a lower -Ei than even (€ = 5, u = 1), even though both have approxi-
mately the same diameter reduction capability . The curve for (u = 10, € = 1)
has a [? { even higher than free space, as in the previous figures, but the
same behavior of f r departing strongly from the asymptotic line.

Figures 3-9 through 3-12 show the effects of loading upon a helix of
rather large pitch angle, 25°. Some of the curves are somewhat incomplete
in their range of k o* due to a computational choice rather than any inherent
difficulty. The change of scale on the ordinate should be noticed. The curves
on Fig. 3-9 are quite comparable with those for the other pitch angles. Apparently
-B- i (attenuation per unit of normalized pitch p /21r) is insensitive to changes in
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pitch angle, although slightly less for y = 5°. Figure 3-10 shows that at

Y= 25°, the combination (€=3.77, u=2.2) is considerably better in terms of

B i The material (e=5, u=10) is still uniquely high in 8 " apparently due to
the large content of u . The material (€=12. 6, u=6.6), corresponding to a solid
ferrite used by this Laboratory, has a very good B i considering the great dia-
meter reduction accomplished. The performance is maintained at the smaller
tape width as well,

The splutions of the dispersion equation shown in Figs. 3-1 through 3-12
clearly correspond to a current wave with velocity along the wire approximately
the speed of light times the reduction factor of the loading material. This
current wave can exist alone; i. e. it is a complete solution or 'mode' which
satisfies all the boundary conditions; each spatial harmonic does not. This
'mode' has variously been called the T0 mode by Kraus (1950) or the Mode 1
by Klock (1963). There is a Mode 2 or T1 mode which has been ignored
throughout this paper, but which is important to forward fire (8> 1) helices.
Also, at least in the loaded helix case, solutions have been found to the dis-
persion equation with rather large Bi , such as the examples shown
in Fig. 3-13. With the exception of the ¢ = 25° curve, all these solutions were
for E> 1, but no concerted search for all possible solutions have been made.
The residue for these waves were considerably smaller than for the T, solu-
tions, indicating they are harder to excite. Since they decay more rapidly
than the T, wave, the T, wave will predominate on the antenna for
most of its length for values of B <1, for which Mode 2 is not strong, It
would appear that a more thorough investigation of these other waves should
be made. In this study, it is assumed that means exist to selectively excite
only the T, mode; the log-conical taper has been experimentally found to be

an excellent method, while the truncated helix is not quite as good a method.
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The computer solutions for large u ( > 10) show some unexpected behavior,
with the attenuation increasing drastically, above even that of the helix in free
space; in addition, diameter reduction with loading decreased from that with
smaller u . The physical reason for these solutions is not known. Checks
of the solution include considerable care in numerical checking, and the
closeness of the solutions to the known asymptotic solutions,

It may be concluded that from the computer solutions shown in Figs.

3-1 through 3-12, that loading of a helix antenna with a full core of material

can provide considerable diameter (or frequency) reduction, but that the active

length of the helix that takes part in radiation is not correspondingly reduced

when only dielectric loading is used. These conclusions can be seen from the

fact that the Eo of the radiation point is reduced when loading is applied

(showing size-frequency reduction); however, B i is also reduced. The attenu-

ation per normalized cell, 3, , would have to remain fixed for a scaling of

the active zone with diameter reduction. The use of materials having both high per-
mittivity and permeability (e.g. ferrites) appears to offer better hope of reducing this active
length, since B_i is still high for at least some combinations.

A final conclusion is that although the effect of pitch angle is rather
strong for some ferrites, otherwise neither ¢ nor the tape width A seem

to have a large effect on the radiation.
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FORMULATION OF A TAPE HELIX WITH A SOURCE

One of the simplest source problems for a helix is an infinite helix with
a very small voltage discontinuity source in the middle. The major object of
discussing this source problem in this report is to clarify the role of the com-
plex (leaky) wave solved for in Chapter IIl. This wave is shown to be a part
of the solution of a source problem in certain regions close to the antenna.

In fact, the point in solving for the leaky wave propagation constants has been
to use the complex To (leaky) wave alone as a good representation of the cur-
rent on the helix. Once the current on the helix has been obtained, the far
fields may be obtained by the usual integration. This method was used success-
fully by Tamir and Oliner (1963) on another problem as an alternative to the
usual saddle point integration for the far field. The actual evaluation of all

the integrals involved for the present function in the region of the antenna

(near field) proved too complicated for this report.

This problem of a small source for an infinite helix in air has been pre-
viously formulated by Sensiper (1951), under the assumption that no complex
solution to the determinental equation existed, and by Klock (1963), who used
the numerically found residues of the complex poles, but did not cover the
problem of the branch cut integrals involved. A solution for a simpler related
problem having periodic boundary conditions has been performed by Sigelmann
and Ishimaru (1965) for an infinite plane slab of dielectric covered on one side
by solid metal and on the other by periodic uniformly wide strips of metal with
narrow air gaps, and excited by a magnetic current source. This reference
covers the complete solution to the problem including the effect of the branch
points and leaky wave poles by the saddle point method, but only for the far
field. The location of the poles were not solved for. Karjala and Mittra (1965)

have solved a source problem with periodic corrugated surface.
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4.1 Formulation of the Inversion Integral

Much of the calculation is simplified by the results of Chapter IIl. The
source requires that the E-field parallel to the wire (E ,,) to be
E in the gap (source) |z| < 1/2

B (4.1)
/[ [0  onthe conductor l z| > 1/2

)
assuming that £ << A;i.e., no fringe affects in the gap. Admittedly, for a
very smal] A, such a gap becomes physically impossible.

The Fourier transform E / / of the E-field can then be written as

©
~ 1 +Bz
E//(B)— E;r/ E//(z)e dz

-0

- f-ﬂsmﬁ . (4.2)

However E/ /(B) can be written as the product

5 /(8 = (B G(B) (4.3)

where T(B) and é(ﬂ) are the Fourier transforms of the current in the helix with
the source and the Green's functionfor this problem, respectively. Inthis form, however, the
transform of the Green's function can be recognized immediately, without re-
calculation since it was essentially obtained in Chapter III.
In Sensiper's original method for finding the dispersion equation mentioned
in Chapter III, the equation
E /7S(z) =0 (4.4)

centerline
of tape

where NS refers to the no source or free mode case, was used rather than the

variational formulation (3.37) used in this report,
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Q0
_E:NS* NS % _ NS  * _

n=-0o n=-00

From (4.4) and (4.5),

)" (2)= exp (jut-§ B 5+ — . (4.6

n=-co I

Actually, the presence of the exponential factor is simply a way of avoiding the
general Fourier transform, by assuming a single frequency and a single Bo
propagation constant for the current wave in the free mode case. The current

is assumed in the form

1’;;5(z)=J exp(jwt—jBoz+jn¢) . (4.17)

The Fourier transforms of the electric field and the assumed current ‘causing'
the field obviously contain a delta function, indicating only one current wave was con-

sideredin the source free case,

6(B-B ) L (B
~NS _ 0 n
E// (Bo) Y j*
n

~NS J
L B) = 5 66-6)

where the 6 is the usual delta function. The Green's function relating this
particular assumed current to the field is

~NS
. ErB) | T7L®
G(B) = ':éL'S—_ = 3 on (4. 8)

I// (3 }

n
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where the Green's function is valid for any k and S, not just for the particular
ones assumed in the source free problem.
Using this Green's function, derived from the source-free problem, the

current in a general source problem can be obtained as follows.

From (4. 3)
L EuB
He - AL - (4.9)

el(:)

The inverse Fourier transform gives

® E@
I(z) = / —‘4[— ey, (4.10)
G(B)

-Q

Substituting from (4.8) and (4.2) ,

® o sinB ik
1(z) = % sinf tp prg,  EL / jz__z_ﬁ [z By,

BG(B 2m elfs)
~© ~© (4.11)

An almost identical integral, for the case of the unloaded infinite helix, has
been obtained by Klock (1963), Sensiper (1951) and Kogan (1949) by the method of
setting up the fundamental integral equation for the problem, and then solving

it approximately using expansions in terms of space harmonics. Sensiper (1951)
and Klock (1963) also used the method in Chapter III (mode-matching by boundary
conditions) for the unloaded source-free helix, and showed how the solutions

compared.

4.2 Contribution of Leaky Wave Poles: Relation to Free Mode Solutions

Notice that the solution for I(z) is now presented as an inversion integral
in which the zeros of G(f),which are also the zeros of the L(f) obtained in

Chapter III, are now the poles of the inversion integral. The complex B plane,
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with the poles and branch cuts of (4.11), is shown in Fig. 4-1. Only the odd
modes are excited; thus, only the odd ‘'cells' of (%In) have branch cuts and
poles. The poles corresponding to the complex (leaky) waves are also shown
in Fig. 4-1, along with the surface wave poles corresponding to the higher
modes.

The path of integration for the inversion integral (4.11) is along the
real B axis as shown. This integral is very involved due to the complexity
of L(B), but it could be performed numerically. A more common procedure
in this integral is to deform the contour of the integral in the B plane to the
infinite semicircle in the third and fourth quadrants of the 8 plane (B=Br+jBi),
as shown in Fig. 4-1. Because of the exponential factor in the integrand, the
integral is zero over this semicircle. However, since the deformation of the
path sweeps across the poles shown in the upper half of the B plane, residues
of the poles appear in the inversion integral in those regions of space where the
fields satisfy the radiation condition, such as on the surface of the antenna,
The actual problems of where the residues of complex waves contribute to the
inversion integral is best discussed via saddlepoint (steepest descent) methods
(Tamir and Oliner, 1963; Bernard and Ishimaru, 1963).

4.3 Contribution of the Branch Cut Integrals to the Inversion Integral

The residues of the poles enclosed in the semicircle are not the only
contributions to the integral. The path around the semicircle must be brought
in around the branch cuts, as shown, causing contributions due to these branch
cuts. These éontribuﬁons form the radiation fields and decay at least as
rapidly as (kz)'3/2 along the antenna (Tamir and Oliner, 1963).

The usual method of evaluating such integrals, including the effect of
the poles, is by the saddle point integration. However, this method depends
upon integrals of the form
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I= /‘F('y)e"jmr e-jBz dp

i} /F(We_jk cos ((9--.\¢)d¢

where the dependence of the fields in both dimensions of the two-dimensional
problem is exponential. The inversion integral (4.11) is more difficult be-
cause of the Bessel function dependence for (/'r). An asymptotic approximation
to the Bessel functions could be made to get an approximate exponential depen-
dence for the fields as a function of radius, such as was done by Patton (1962).

The saddle point method must be modified in the case that only small
distances are considered, as for the near fields of antennas, or when the
steepest descent contour passes close to a pole of the integrand. These modi-
fied methods are mathematically presented in Van Der Waerden (1951) and very
clearly in Bernard and Ishimaru (1963). Both modifications appear in the
present problem,

Because of the difficulty involved in performing the branch cut integrals,
particularly at the small distances on the surface of the antenna, an explicit
integration is not given here. Nevertheless, there are many cases when one can
say that the residue contributions from the poles are larger than the branch cut
integrals along a surface wave device. Briefly, if the exponential decay factor
of a surface wave pole is very small, then at moderate distances from the
source, the surface wave field corresponding to that pole will dominate over the
corresponding branch cut integral in the near field because of the greater decay
(kR)_afz, of the radiation field of the branch cut integral. In addition, Tamir and
Oliner (1963) have shown that the fields of a leaky wave with a small imaginary
part may also be dominant over the corresponding branch cut fields on the surface

of an antenna. A modified expression including an error function and the pole
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residue is said to be (Bernard and Ishimaru, 1963) an excellent near field approxi-
mation in the general direction of travel of a leaky wave.

The magnitude of the residue as well as the relative excitation of the
leaky wave versus the radiation field are both important additional factors.

The residue of the leaky wave in the helix case is quite large, which would in-
dicate a dominance of this leaky wave. Nevertheless, its attenuation coefficient
is fairly large.

Another recent report by Laxpati and Mittra (1966) on the source problem
for a planar spiral antenna shows more clearly that the integrals not associated
with the residue of the surface wave are very small if the gap across which the
source feds power is very small at the center of the spiral. Although attempts
to extend this work to a conical spiral antenna have so far been unsuccessful,
the principle is probably the same.

The main evidence for the dominance of the leaky wave contribution over
the other fields on the surface of the antenna, in the case of loaded helical
antennas, must at present come from the experimental measurements, due
to the complexity of the branch cut integrals. Experiments in Chapter V
definitely show an exponential decay of the currents for the helix. In addition,
phase measurements on the loaded conical helix (Chapter V) and amplitude and
phase measurements on the unloaded conical helix (Dyson, 1964) show a prop-
agation constant, including decay, such as predicted by the leaky wave pole

corresponding to the To current wave calculated in Chapter III.

4.4 Relative Magnitude of Pole Contributions

If the residues are dominant in (4.11), then the current on the conductor

may be represented by the residue theorem

(m) (m)
~ El Residues sin Bo 1/3 -iB o z
I2)= 57 ) ofthepoles E e (4.12)

m 0o

assuming that the integral on the infinite semicircle vanishes.
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1 18z

~ E e

= 5 \W R (4.13)
m dp

where

. 0l
sn[; f}é‘ ? 1 for m small, assuming only a few current waves are
large,

Bf)m) is the current wave propagation constant for the mth current wave
(not B, the propagation constant for the nth spatial har-

monic)

Although the residue versus the branch cut (space wave) contributions
have been discussed, no mention has been made of the relative amounts of
the residues from the various current waves (zeros of G{f) ) that can pror
pagate. Indeed, only the T, current wave has been discussed. However,
numerical calculations of residues for the free space monofilar helix (1Klock,
1963) have shown that near ka < 1, the residue of the T o current mode is
dominant over the T, current mode.

Experimentally, the phase velocity measurements of a narrow wire
bifilar conical helix in air for ka < 1 always give velocities of current pro-
pagation near the speed of light, corresponding to (4.14) and the T, current
mode.

A possible explanation of the dominance of the To wave residues is the
following; it is seen from (3.72) that the T, current wave corresponding to the
propagation constant Bo used in this report, is given for narrow conductors by
the non-resonant sum equal to approximately zero,

1
koa & Boa sin ¥ Ltp . (4.14)

1+e¢
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For a zero to occur in L(B) at any other B, say Bf)n) , the resonant term
would have to be very large to cancel the large non-resonant term. This could
cause large derivatives which could cause the residues of these other modes
to be very small compared to the T o Wave solution Bo.

Rather than numerically computing the dispersion equation using Bessel
functions, a complete numerical solution to the integral equation problem for
unloaded thin wire antennas may be performed . Mei (1965) has some such
computations, yielding similar results for the current distributions of a
planar spiral antenna, but with a standing wave in addition. A comparison of
such calculations to model calculations is given in Laxpati and Mittra (1966).
The problem of extending such calculations to material loaded antennas lies
in the resulting three-dimensional integrals compared to the one-dimension

integrals in the wunloaded wire case.
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EXTENSION TO THE CONICAL HELIX

5.1 Basic Step-wise Approximation: WKB Improvement

As has been discussed in the introduction there have been successful
studies of unloaded conical helix antennas as a helix with gradually varying
parameters (Mittra and Klock, 1966; Dyson, 1964) since an isolated 'active'
zone on the conical helix antenna is the main contributor to radiation. One
simple way to analyze the conical helix, then, is to use the k-Sdiagram for a
cylindrical helix of the same pitch and tape width as the conical helix has near its
active zone. The region smaller than the active zone is merely a good tapered
feed for the active zone; it does not contribute to radiation. The region larger
than the active zone does not possess any currents or fields, if the active zone
is well-designed to radiate all the energy fed to the antenna. Since the k-f3
diagram is usually normalized as ksa versus Ba or k.a/coty versus B/ cot y,
one can consider that either frequency k¢ or the radius a changes. For the
conical helix case, then, one only needs to gradually move up the k- diagram
as the cone-radius increases to find the appropriate complex f, for each part
of the cone, The real part of f3, gives the phase constant at each point; the
imaginary part gives the attenuation rate per unit distance. By integrating
these effects along the wire, phase and amplitude of the current can be obtained
at each point. Far field patterns can then be calculated. Actually, the phase
velocity (from Br) gives immediate knowledge of the general direction of
radiation, while inspection of attenuation rate (B;) indicates the active zone
extent; together, they indicate fairly well the performance of the conical helix
as an antenna, A fast attenuation rate is necessary for:complete radiation in a
conical helix that has a wide cone angle. A slower attenuation rate indicates a

longer active zone, and a necessarily small cone angle so that the phasing of
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all parts of the active zone will be for backfire radiation.

Instead of a stepwise approximation, some improvement may be obtained
by using the WKB method, often used in optics for ray tracing in inhomogeneous
media that have only slow spatial variations (Morse and Feshbach, 1953). Using
this method, Mittra and Klock (1966) report that instead of the form for the
current J(n') at a postion n' ,

n'
-3 [ Bleraz
Jm")= J(0)e O
obtained for the stepwise approximation by integrating of the phase effects, one
obtains a formula characteristic of the WKB method,

n'
3(a")=3(0) g(—(l%f-) exp[—j / BE) ds]
0

The analysis does assume a single To current wave predominant along the
conical helix tape. This is true for a well-designed slowly-tapered conical
helix, but has not always been the case for the loaded conical helix or the
cylindrical helix , probably due to inadequate tapering.

5.2 Effect of Antenna Loading on Active Region: Example

To discuss a specific example, from the results in Chapter I, Fig. 3-1
shows that an unloaded helix (¢/=12.6°, A= 1) has a maximum attenuation con-
stant of approximately B— i = .1, which means an exponential attenuation of the

form _
-Bi . 27I'Z/p
I(z) e

Thus for the current to be down by e'z,

~ 2D ~2

27[-3-1 .6

-
IR
w
wW

™
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i. e. one must have somewhat more than three cells, or pitch distances, in
the active region, defined by the diametrical range .17 <kafcoty<.25,
approximately . If the helix is loaded with a dielectric of €= 5, the B-i is
reduced to .03 -.04 maximum over a region .11 <ka <.13 asseen in Fig.
3-1. In this region W = 10p', or ten loaded pitch distances, p', must be
within the much narrower diametrical range. On the other hand, the pitch
distances (twice the wire to wire spacing) are less when the diameter D is
smaller; in the above case, if the ratio

p/p' 2D/ ¥ 11/.17% .65
w=10p' £ 6.5p

where W is the required axial length for the active region and has a value
about twice the original active zone length. Since this distance must be
achieved in a much narrower diametrical range, the maximum permissible
cone angle (i. e., taper) will have to be drastically reduced over the maximum
permis’sible cone angle in the unloaded case. Note that regardless of the shape
of the B_i curve, the upper limits of k must be considerably less than the
value at the intersection of the k--Br diagram with B = 1 line of broadside
radiation, if backfire radiation is to be achieved.

For cases where u and € are both used, or u alone, Bi remains high
in many cases, permitting larger maximum permissible cone angles than in the
dieledtrically loaded case, and opening the possibility of having a decrease in

the active region size.
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EXPERIMENTAL RESULTS

A large part of the present study was an experimental investigation of the
effect of material loading of helix and conical-helix antennas. Interior loading
was emphasized, but due to a lack of loading material and a desire to keep the
weight down, inside layers were emphasized rather than full-core loading,
which makes direct comparison with theory additionally difficult.

6.1 Facilities.

The measurements were performed both in the far field and near field
of the antennas. Far field measurements are very standard. Linear power
was recorded from the test antenna with a linearly polarized zig-zag trans-
mitting antenna, as the test antenna was rotated through 360°. A serious pro-
blem with far field measurements in the frequency range used (200 - 1000 MHz)
is the reflection from objects, particularly the ground plane. An outdoor range
was necessary. Careful attention to the reflection problem was paid, but still
many irregularities appear in the patterns. Absolute field measurements,
particularly for the antenna efficiency, are very difficult.

The near fields were measured on a range described by Knott (1965),
used mainly for surface field measurements of currents on metallic bodies
that are scattering incident S-band (3000 MHz) power. The probe available on
the near field range is a shielded loop probe designed to measure magnetic
fields at metallic surfaces due to surface currents. It is not fully balanced,
but has a single, very small,gap in the center of the loop. Whiteside (1962)
shows that such a loop measures H fields accurately when its diameter is
very small compared to a wavelength, as in the present case in which the
loop diameter is . 131" diameter, or when the gap of the probe is against a

metallic surface as in the case of surface current measurements. The loop
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must also be very small compared to a wavelength and to the wire spacing in
order to sample fields without significant variation of the fields across the
loop. The particular set-ups used in these experiments are described in Lyon
et al (1966). The near field measurements used a Scientific-Atlanta receiver
in order to pick up the very low signal levels. The phase measurements were
madeusing a standard amplitude-phase cancellation set-up with a reference
signal from the transmitter.

An interesting aspect of the near field measurements that that an anechoic
chamber was used that was designed for frequencies well above those used. In
fact, the room was only several wavelengths across at most points, although
long and tapered in the other dimension, the one in which the antennas were
pointed. In order to investigate the validity of such measurements, some crude
experiments were run in which metal plates and other objects were brought in
the vicinity of the antennas being measured. The effects upon the near field
measurements indicated that for measurements very close to the antennas, the
patterns were not disturbed, although the absolute amplitude was changed some-
what. These experiments also indicated that the effects of the probe upon the
current distribution were small.

Only when the metal plate was directly in the path of the radiation pattern
were there any significant effects. Thus, the absorbing room, although not
good enough for far field measurements, allowed near field measurements to
be taken indoors. Since the advantages of indoor measurements over outdoor
measurements are very great, this indoor near field measurement technique
appears very valuable. Nevertheless, when complicated near field patterns
occurred, the prediction of far field patterns was too difficult. Both measure-

ments appear necessary.
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6.2 Helix Experiments
In Chapter V, the close relation between the cylindrical helix and the

log-conical helix was explained. An experimental study of the cylindrical
helix was made, mainly in order to extrapolate the experimental data to a
conical hel}ix case.

The construction of a cylindrical helix is shown in Figs. 6-1 and 6-2.
It is wound over a fiberglass shell with RG-58U coaxial wire in an infinite
balun arrangement, i. e., the helix is bifilar, fed 1800 out of phase at the tip
(lower left of Fig. 6-2), but the feed wire from the tip is actually the inside
of the coaxial wire of one of the arms. As long as the antenna currents de-
cay to zero before they reach the base, the feed is a balanced one (Dyson,
1964) in that no currents flow down the feed wire. The loading is depicted
in Fig. 6-3. The loading effects of the fiberglass shell and balsa wood have
been found to be very small in the frequency range 200 - 900 MHz (Lyon et
al 1966).

The two loading powders used were an isotropic, low loss ferrite pow-
der with €=3.8, 41 =2.2 and a dielectric powder of €=10 (Emerson and Cuming,
Eccoflo, HiK-10). This admittedly gives only two check points for the theore-
tical formula. Several other experiments have been reported with different
dielectric constants. Shestopalov's (1961) reported data are very sketchy
far field patterns and near field amplitudes for the forward-radiation case.
Wong and Thomas (1959) used € quite small, giving little reduction. In the
slow waveguide region, the dielectric data is better (Shestopalov, 1960) and
verifies the theory of the slow wave loaded tape helix in that reference, but
is of less use in this study of antennas than data in the radiation region.

6.2.1: Far Field Measurements of the Loaded Helix

Figures 6-4 through 6-7 show the effects on the far field patterns of
helix No. 217 loaded with a full core or .25 layer of ferrite or dielectric.
The parameters of the helix are shown in Table IV-1. In Figs. 6-3 and 6-4,

the solid lines representing the unloaded antenna patterns, show unsatisfactory
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E (measured for H -plane pattern)
* Eg(measured for E-plane pattern)

A z(helix axis) Far Field Components Measured

N\ (spherical coordinates)

Antenna Pattern Coordinates

Yy
)\ < p/2 —= 6 | Base of Helix

) Of

Feed _
Point

Antenna fed through
coaxial cable inside
Arm 1 tofeedpoint.

A 4
Arm 2 Arm 1

// rm.2- outer shield of a coaxial cable.

Center wire of coax soldered to outside shield of Arm 2.

rm 1- coaxial cable fed from base of helix.

Details of infinite balun feed.

FIG. 6-2: THE BIFILAR CYLINDRICAL HELIX.
Normalized Tape Width, A= 76/p.
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rglass Tube, 11 38" Long.

4" Dia. Fibe

ﬁooomuroog
A T Ry
DONNNNNMNNNN

Side View

FIG. 6-3: LOADING DIAGRAM: BIFILAR HELIX (No. 213)

LAYER LOADING.
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360 MHz 410 MHz

:
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N
U/ \rG/
660 MHz 710 MHz 760 MHz
—— Unloaded —. —. .25" interior layer ----- full core load.

FIG. 6-4: HELIX WITH DIELECTRIC LOADING. PLOTS OF IE Iz.

Dielectric €=10, Antenna No.217 (4.7'" dia.), coordinates
from Fig. 6-2, 6 = 180° is '"backward",
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FIG. 6-5: HELIX WITH DIELECTRIC LOADING. PLOTS OF |Eg|”.
Dielectric €=10, Antenna No.217(3.7" dia), coordinates
from Fig. 6-2, 6=180°.is ""backward".
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360 MHz 410 MHz 460 MHz

%660 MHz 710 MHz ‘/ 760 MHz
) 6

— Unloaded — - — .25" interior layer ----- Full core load.

FIG. 6-6: HELIX WITH FERRITE LOADING. PLOTS OF [E ;| .
Ferrite powder €=3.77, u=2.2, Antenna No. 217 (4.¢7" dia.),
coordinates from Fig. 6-2, 9 = 180°is "backward'.
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410 MHz

510 MHz

— Unloaded —: — 25" interior layer ---- Full core load.

FIG. 6-6: HELIX WITH FERRITE LOADING. PLOTS OF |E, |
Ferrlte €=3.77 u=2.2, Antenna No. 217 (4.7 'dia) .
= 180°. is "backward".
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TABLE VI-1: SPECIFICATIONS OF HELIX TEST ANTENNAS

imension I.D. No. 213 I. D. No. 217
Type Bifilar Bifilar
Diameter 4 15" 4. 65"
Length 10" 16"
Conductor RG58U RG58U
Turns 6.5 9.5
Pitch 6. 6° 7°

(1.5") (1.8")

patterns below 610 MHz in either |E¢| or |[Eg| . The notation for the fields
is shown in Fig. 6-2. With either a full core or a . 25" layer of dielectric
powder (€=10), however, the antenna patterns have a single lobe near 9=180°
down to 460 MHz, a reduction of 150 MHz in the lowest operating frequency
for backward radiation, or a reduction factor of 460/610=0. 75. Actually,
the full core dielectric loading produces pattern degradation above 500 MHz,
especially in |E9| , 8o that a , 25" layer loading of dielectric is much superior
to full core loading in bandwidth, Many other loadings, whose patterns are
not shown in this report are summarized in the tables to follow. A thick
layer, such as . 75" produces some high frequency pattern degralation
similar to the full core loading.

In Figs. 6-5 and 6-6, for |E¢| and |E9| with ferrite loading, the antenna
patterns of the full core loading are good down to 460 MHz, and are much
more harrow-band than the unloaded helix, because the antenna patterns above
510 MHz are degraded. Above this frequency, the antenna radiates in the
forward (6=0°) direction. Also, similar to the case of dielectric loading, the
. 25" layer loading has a much wider bandwidth than the full core loading,
Antenna patterns are improved over the unloaded case, although not as good

as the dielectric case, down to 460-510 MHz, a reduction of 100 - 150 MHz.
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The frequencies of best backward radiation correspond to k=- _ 1> which
is sometimes called the 'resonant' frequency of the helix, corresponding to
the large resonant term discussed in Section 3. 2.

The patterns show that the bandwidths of this antenna are very broad,
so that shifts of a resonant frequency are hard to measure accurately.
With the much broader band conical-helix, the problem is much worse.
Another problem with the far field antenna pattern of the helix is that, for
extrapolation to conical-helix operation, an 'efficiency of radiation' in the
backward direction (9=180°) is desired to predict active zone characteristics
in the conical helix, Table VI-2 shows the frequencies at which a maximum
power was received at 6=180° by a helix relative to a half-wave dipole.
Data from another helix, No.213(Table VI-1) is also shown. Table VI-3
shows reduction factors computed using the lowest frequencies for a good
antenna pattern from Figs. 6-4 through 6-7, and also reduction factors
computed using the frequency for maximum received power at 6=180° from
Table VI-2. In both cases, the reduction factor was computed by dividing
the critical frequency with loading by the critical frequency without loading,
as was done in the dielectric loading reduction example above. The reduction
factors are seen to be less in every case than the theoretical reduction for-
mula for full core loading. The theoretical reduction is obtained from (2. 57)
by dividing the loaded (k,a) by the unloaded (koa),which is slightly more
accurate than the simplified formula \/(1+ 1/“) / (€+1)' . Near field measure-

ments and measurements on conical helices produce better checks with the

theory. The more exact theoretical values obtained from Figs. 3-5 and
3-6 agree within seéveral per cent with the simplified reduction formula
used above.

6.2.2: Near Field Measurements of the Loaded Helix

A more direct and sensitive measure of the loading effects of the
materials can be seen from near field measurements. In fact, the near

field phase measurements should give approximately the parameter ﬂOr
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TABLE VI-2: FREQUENCIES OF PEAK RECEIVED POWER AT 6 = 180°
FOR LOADED BIFILAR HELICES

Loading Thickness , t Loading Freq. for Max.,

Antenna  (inches) (t/x) Material  Radiated Power, MHz

No. 217 0 Air 730

No. 217 1/16 . 0033 Ferrite 625

No. 217 1/8 . 0064 Ferrite 600

No. 217 1/4 .0116 Ferrite 560

No. 217 Full Core Ferrite 460

No. 213 0 Air 820

No.213 1/2 . 0238 Ferrite 560

No. 213 1/2 (outside) . 0216 Ferrite 510

No. 213 Full Core Ferrite 530

No. 217 0 Air 730

No. 217 1/8 . 0064 Dielectric 610

No. 217 1/4 .012 Dielectric 610

No. 217 Full Core Dielectric 445

NOTES

1. Thickness relative to X is taken at the frequencies listed in the last
column.

2. Layers are inside and within . 04" of the conductor, unless specified
otherwise.

3. Frequencies for best circular polarization were usually lower, e.g.,

for 1/8" dielectric,550 MHz was the best frequency.
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calculated by theory. The actual near field measurements in this section
were largely performed by Pei-Rin Wu of the Radiation Laboratory (Wu,
1966; Lyon, 1966). Figures 6-8 and 6-9 show the near field amplitude of the
helix antenna No. 217 when loaded and unloaded with a ferrite powder layer
3/8" thick (. 02X thick, helix dia. 4.7"). From the figures, the best (resonant)
frequency of operation may be seen as the one that decays quickly along the
helix away from the feed point without rising to other high maxima. Without
loading, this best frequency is between 700 - 800 MHz; with loading it is be-
tween 550 - 700 MHz, a reduction factor of approximately 0.8. Note that the
measurement is more sensitive to changes in frequency than either the far
field patterns or the maximum-radiated-power measurement. The corres-
ponding frequencies from Table VI-2 are 720 MHz, unloaded and 535 MHz,
loaded; a reasonable, but not excellent check.

The near field phase measurement of the loaded case was so difficult
and time consuming that only a few were made. Since signal power was very
low in the resonant frequency region, two frequencies somewhat off center
were chosen, 500 and 900 MHz, The measurements showed a reduction factor
of . 6 (Lyon, et al 1966) which is the closest yet to the . 58 from crude full core
loading theory. This is the most sensitive measurement for finding the phase
velocity for checks with theoretical calculated phase velocity; however, the
far field and near field amplitude patterns show that more than phase velocity
information is needed to predict far field effects.

The variations in near-field amplitude of the helices off resonant fre-
quency cannot be completely explained by reflections from the end of the helix,
because of the amplitudes involved. Therefore, other waves must be pre-
sent off resonance, probably a current wave travelling up the helix toward
the feed. This effect is not seen (at least as strongly) in the unloaded conical
helix, indicating that it is a consequence of the abrupt feeding discontinuity

at the tip of the helix that does not occur with a well-tapered feed such as the

forward tip of a conical helix, and may make predictions of the conical helix
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from cylindrical helix operation more difficult. The infinite helix theory also
does not account for a feed discontinuity, making comparisons with theory
more difficult. A possibly similar effect has recently been reported for the
Yagi antenna (Ingerson and Mayes, 1966).

6.3 Log-Pyramidal Helix Experiments
The two pyramidal helices used in these experiments, which have al-

most identical parameters, are described in Table VI-4. They are logari-
thmic in the sense that the distance from the vertex to the wire varies ex~
ponentially with the azimuthal angle about the axis z. This assures a wideband
frequency of operation; however, the conductors used were constant-size wire
and did not scale with the distance from the vertex. The effect of constant
wire size is small for tightly wrapped (small pitch angle) helices (Dyson,
1964) as is the effect of using four-sided pyramidal approximations to right
circular cones. Again, layer loadings were usually used. Some far field
plots were made, but since the active region moves with frequency, the an-
tennas are very broadband and only the lower cutoff frequency can show any
loading reduction.

6.3.1: Far Field Measurements of Log-Pyramidal Helices

Figures 6-10 and 6-11 show the far field patterns for two different
loadings on the two different pyramidal helices. In both, the loaded patterns
at the very low frequencies are seen to be better than their unloaded counter-
parts. Using a lowest frequency criterié, a0.7 reduction factor may be ob-
tained, roughly similar to the loaded helices. The loading shown in Fig. 6-11
is a tapered loading, with the object being to load the low frequency (large)
end of the conical helix in order to reduce the large part of the cone while
keeping the relatively small tip of the cone unloaded. If the beamwidth, or
some other pattern factor is plotted versus frequency for Fig. 6-11, it can be
seen that the conical helix in air has relatively constant parameters down to
600 MHz; with loading, this first-pattern-disturbance criteria gives 300 - 350
MHz, for a considerably greater reduction (reduction factors, .5 - . 6) than

was computed above or in the case of the loaded cylindrical helices,
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TABLE VI-4: SPECIFICATIONS OF LOG-PYRAMIDAL HELIX ANTENNAS

I. D. Number
Dimension 221 223
Base, Side 9.47" 9,47
Apex, Side 1.56" 471
Height 13.44" 15.38"
Apex, Cone Angle 450 45°
Pitch Angle 85° 85°
Turns 8.5 14, 75
Outer Conductor RG58U No.20 Enamel
Coated Wire
Infinite Wideband
Feed Balun Hybrid
Nominal Freq. Range
Unloaded 500-900 MHz 500-3000MHz

NOTE

Both antennas were pyramidal with a square cross section. Construction
of No. 221 consisted of two-layer fiberglass epoxy layers forming the inside
supporting pyramid upon which the coax was wound. Antenna No. 223 was
made of 1" thick styrofoam layers forming the outside supporting pyramid,

with the antenna conductor cemented inside with epoxy.



106

Antenna Conductors
Outer Layer
of Styrofoam
1/4 radius loading
€=10, u=1

Antenna No. 223

| 600 MHz \ 700 MHz 900 MHz

N o -~

— — — — -

FIG. 6-10: TAPERED LOADING OF LOG-PYRAMIDAL HELIX NO. 223.
— Unloaded, — — — Loaded, Plots ofIE¢|2 .
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Antenna No. 221

Loading
Material
=1, €=10

230 MHz.

N

T~

400 MHz 500 MHz 600 MHz

FIG.6-11: TAPERED LOADING ON LOG-PYRAMIDAL HELIX NO. 221,
— Unloaded, — — — Loaded, Plots of ‘|E¢|2 :
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A serious problem with loading first becomes evident in Fig. 6-10 at
500 - 600 MHz, where the fields are seen to be very erratic. Further insight

into this problem will come from the near field measurements.
6. 3.2 Near Field Measurements of Log-Pyramidal Helices

Near field amplitude and phase measurements are considerably more
enlightening than far field plots for the conical helix antenna, because one can
see the 'active' zone move with frequency and loading. Excellent examples of
this also appear in Dyson (1964) and McClelland (1962) for the unloaded conical
helix.

Figure 6-12, selected from a large amount of data (Wu, 1966), shows
near field amplitude plots of Antenna 223 unloaded. Very similar plots resulted
with Antenna No. 221. The active zones show up very well as inc.reases in the
near field amplitude, which move with changes in frequency; high frequencies
have active zones near the tip, low frequencies (longer wavelength) have active
zones near the large end of the cone,

By properly adjusting the probe height above the antenna (in this case to
h/ 19, the effects of wires (higher order space harmonics) are eliminated be-
cause these effects cling very closely to the antenna's surface. Ata 1/20 to
1/10 distance from the surface, only the first space harmonic (n=-1) which
causes the radiation has large amplitudes, clearly showing the active zone where
the n=-1 harmonic is resonant. If a much closer probe spacing against the
wire is used, current along the wire may be plotted. This position was used
for phase measurements.

Figure 6-13 (Wu, 1966) shows the effects of loading with the dielectric layer,
€=10 (configuration shown in Fig. 6-10) upon the log-pyramidal helix. The near
field at 500MHz has a large hump at approximately the position of the hump at

900 MHz for the unloaded case. However, several humps occur rather than one.
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FIG. 6-12; DIELECTRIC LOADING OF LOG-PYRAMIDAL ANTENNA
NO. 223;: UNLOADED MODEL.
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FIG. 6-13; DIELECTRIC LOADING OF LOG PYRAMIDAL ANTENNA NO, 223:
LOADED MODEL. €=10. Loading as in Fig. 6-10.
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These humps may each correspond to a different active region. One might think
that they are simply different space harmonics coming to resonance, wherein the
first hump is the desired backward fire harmonic n = -1, and the others are
n=-3, n=-5, etc., excited because some of the power was not radiated in the
first active zone; however, the spacings are not 1 : 3 : 5 from the tip. Further,
Wu has noted that the second hump appears to occur at the position of the unloaded
active region. The theoretical tape solution as carried out so far gives no
insight into this problem. Although few solutions have been carried out near

the second hump, those that have do not indicate radiation, although the solu-
tions do indicate the decreased radiation rate that allows power to get through
the first region.

Results of current phase and amplitude measurements by the author on the
log-pyramidal helix No. 223 fully loaded with a dielectric (e=10) are shown in
Figs. 6-14 and 6-15. In Fig. 6-14, the experimental phase measurements show
excellent agreement with a line whose slope corresponds to the phase shift of a
wave which has a phase velocity along the wire Vp= .425¢, where c is the speed
of light in a vacuum, The slope of a line corresponding to the phase shift of a
wave going the speed of light along the wire is also shown. The factor .425 is

the theoretical very narrow tape helix reduction factor from (3. 72)

A @Y () = 425 = ko/ Ay sin?= v /e
where y=1, €=10 in this experiment. Thus, the formula for phase velocity
reduction along the wire due to loading has strong confirmation. An additional

verification of the phase velocity with the ferrite powder material inside Antemma
223 is also shown, along with data for the unloaded antenna.

The data for amplitude of the current wave along the wire, Fig. 6-15,
shows the expected drop off due to radiation in the active zone. Also, the
active zone clearly moves toward the tip of the antenna, displaying reductions
of the size of the antenna at the start of the active zone of 0.56 for the ferrite
loaded antenna and 0.49 for the dielectric loaded antenna. Also, the ampli-
tude of the current decreases faster in the case of ferrite loading than dielectric

loading. Actually the size reductions, computed from the positions where the
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FIG. 6-14: MEASURED PHASE OF LOG-PYRAMIDAL HELICAL ANTENNAS
NO. 221 and 223 WITH AND WITHOUT LOADING; v. = phase velocity
along wire, c¢ = speed of light. Theoretical curvesp from (3.72),
ko/Bw = vp/c ; for dielectric loading with € = 10, v_/c € .425; for
ferrite loading with € = 3.77, u = 2.2, ¥ /ec_ ¥ ,55; for unloaded
antennas, v_/c =1 5 BPw= Bo sin¥ = propgxgaeion parameter along
the wire.
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current amplitude decreases to .1 of the peak value, are 0.56 for the ferrite case

and 0.7 for the dielectric case, which indicates that the ferrite loading is better
than dielectric loading for size reduction. If the increases in current amplitude

near the base (Wire Nos. 17 and 19) are considered, the dielectric loaded case
requires a larger antenna than the unloaded antenna, due to incomplete radiation
in the first active zone. The rate of current attenuation for the unloaded case
is approximately that predicted by Fig. 3-5. However, the rates of attenuation of
the loaded cases are much larger than those predicted by Fig. 3-5 (dielectric

case) and Fig. 3-6 (ferrite case), neglecting the peaks of current near the an-
tenna base in the dielectric case. An envelope across the highest peaks in the
dielectric case would show a much slower decay, as predicted theoretically in
Fig. 3-5.

It should be noted that even with the loop probe touching the wire, there
were indications, from the fall-off of signal amplitude near the tip of the cone,
that the probe signal is not a good measure of current when the spacing between
antenna wires approaches the size of the probe.

In conclusion, the data on the phase velocity of the antenna current con-
firms the theoretical prediction of a reduction in phase velocity due to material
loading. Also, the amplitudes of the current, which indicate radiaﬁgn rate,
show a size reduction very close to that predicted from the simpliﬁed phase
velocity reduction formula obtained from (3. 72). The current attenuation from
the more exact tape-helix theory does not gquantitatively predict the actual cur-
rent attenuation in the two loaded cases ‘checked. More cases with different
loading materials must be checked experimentally for current attenuation,and the
formation of the secondary peaks needs to be explained before accurate experi-

mental attenuation values of current can be stated.



SUMMARY

7.1 Conclusions

1) A reduction in the diameter of helical and conical helical antennas may
be achieved by insertion of material of high € and/or u inside and close to
the conductors. Active zone lengths are not reduced by the same amount, and
may be increased by the use of dielectrics. Use of u as well as € (as

in ferrites) holds promise of some active region length reduction.

2) The performance of backfire bifilar helix may be approximately
analyzéd using one current wave, the To wave, with a complex propagation
constant. The higher space harmonics are very important in determining the
propagation constant. The numerical solution to the dispersion equation can
also give the residue of the corresponding leaky wave pole in a sirhple gap-
source problem. Extension of the solution to the tapered conical helix is
relatively simple by established methods of gradually varying structures. . An
asymptotic, narrow-tape-helix diameter-reduction factor upon the addition
of inside loading material is given by
1
1
l1+e€

1+

3) A sheath helix solution of the loaded helix accurately predicts the
solution for the real part of the propagation parameter, Bo, of the loaded tape
helix with a very narrow tape width (radiation) region by straight-line extra-
polation on the k - B diagram from the slow wave solution to the fast wave.
The close relation between the slow wave solutions and higher order harmonic
solutions,  not the dominance of one space harmonic on the tape helix,is the
reason for the accuracy of the sheath solution. Layered loading solutions may
be produced for the sheath helix, but the effect of layers on the higher
harmonics of the tape helix will have to be considered, possibly also
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using sheath solutions of the higher order harmonics. Since each higher space
harmonic (n > 1) is more closely bound to the helix surface than the n = -1
harmonic, the layered sheath solution given should provide a lower bound for

the effect of layer thickness.

4) Experimental studies of the near and far fields of both loaded helices
and log-conical helices partially confirms the diameter reduction factor for the
two materials used. A considerable range of material parameters and flexi-
bility in measuring loaded and unloaded structures may be obtained using pow~
dered materials rather than solid ones, with the retaining techniques developed.
However, further experimental confirmation was restricted to the availability
of materials having low loss for increased ranges of u and € values. Powdering

of the materials precludes very high u or € .

5) Near field measurements of conical helices have provedvery useful ininter-
preting the results of loading. For the rather large pyramidal cone angle used, loading
produces several 'active zones' onthe antenna and some interferences in the current
distribution. The first active zone is moved toward the tip as theory predicts. The second
active zone appears to occur at the unloaded active region position. This, and the
other active regions are not yet understood. However, they can destroy the
far field pattern, and should be eliminated by proper design of the first active
zone to allow full radiation,

7.2 Original Work Done

To the best of the author's knowledge, the following parts of the above
work are new and original:

1) The analysis of the fast wave solution of the tape helix fully loaded
inside and operating in the backfire mode, including the asymptotic studies of
the relative importance of the n=-1 space harmonic and the approximate sum
of the rest of the harmonics; some interpretation in terms of a corresponding

gap-source problem,
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2) The asymptotic study of the full-core-loaded sheath helix, in the
n= -1 mode, with application to helix antennas; the study of an inside layer-
loaded sheath helix in the n=-1 mode,

3) Experimental work on the loading of helix and log-conical helix an-
tennas, including both near and far field measurements; techniques of loading
with material powders, using fiberglass and styrofoam retainers; interpreta-
tion of loaded helix measurements relative to their value to predicting loaded
conical helix performance; verification of formulas for phase velocity

reduction. and size reduction.

7.3 Further Work

The progress attained in this research has shown some additional areas
that might be profitably studied.

1) Mathematical investigation of all other possible single current wave
modes of the loaded helix and the related source problems.

2) Possible application of coupled mode theory to the problem.,

3) Effect of loading only the higher space harmonics, preparatory to
discrete and layer loading analysis.

4) Experimental study of the effect of antenna parameters, particularly
cone (taper) angle on loaded active zones.

5) Experimental study of the effect of other values of material parameters,
particularly the theoretical prediction of the effect of high u on Bi .

6) Experimental study of the higher active regions; possible use for
higher gain in tapered structures.



APPENDIX A

SOLUTION OF TAPE HELIX AMPLITUDE CONSTANTS

The solution to {3.23) - (3.26) is a very straightforward solution to
four simultaneous equations. In order to facilitate checking, as well as
extensions fo this work, some steps will be given,

The equations (3. 23) and (3.26) are immediately used to eliminate a
and b from (3.24) and (3.26). From (3.23)

K! bu, I'
ng [AK aIl . [pfe™ ] ]
2 |2 'YZJ +Jw[B Il Y 0. (A.1)

Substituting for a and b

v K oup I jopp It j
A DBK [1___1_]+ij[0 HH K]+ LY

a n 72 r y I 0% I (A. 2)
Substituting,
2 1
C = 1—_[:_]; C = .L.' E-}. I.S'_
7Y + v v I ul
C:_I}E- C :.E
B a’ Y v
gives
jwAC,C I -j,C
2% w:/ B . _L’Iry (A3
o “1/-' rou

which is one of the two equations for A and B. For the other equation in A and

B, from (3.25)
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€ ee AK'
. o . 0 BK bl .
J— - + —— = -
Jw[ Y I'a F :] CBI: 5 "5 } i, (A. 4)

Substituting

as well as the other constants defined above, the other equation for A and B

becomes
jwAC_  BC, C - i, C o
€ B yww K_ 'z 4By
r 5 T el 2 : (A.6)
e " o e M°nr
0 0
Solving (A.3) and (A.6) for B, then multiply (A.6) by
C K
8 - C
2 l"I' 1
to get
CBC K Cz C2 K2 -j ¢C CZC
jud (| 5——| +B — WS"Z:eCI 5 (4.7
wull‘x' W Woeo/‘ cr 0 € € C, ren
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Subtract (A.7) from (A.3) to get

26‘2 2 2.2 . KI
C (K/1") - C,C C j C,C. (=
BC [- B v ! ]: _jQ Eg.;.i_?_l’}'_(_@_)_,.)z B ’YZI'Z)
M 2 2 I Y 2 r-Z I 2
weduuocec“/" k uC €W C,
(A.8)
Substituting
cAc? (K/I')2 cle
__Bv i . By w /K 2
C € .2 2 ’ CZ 2 2 Y12) CBC C3
HE xqcc Kuclre 1 v
U € o €
Cc,C
c.- B 1 K ; k2=w2ue
3 .2 112 o 0o
k uC
o €
There results the solution for B
IC (1-C )
u (1-C,d
Similarly, solving for A, multiply (A. 3) by
c,C K
Y
€, r
to get
CZC2 K2 cCCc,C K -j € C,C
jwA | "B "yy B _wByw . 8 vB¥w K (A.10)
2 2,2 r e "n 2 Ir )
A) eouuol" I o Iir €,
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Multiply (A. 6) by CIJ’ and subtract (A. 10) from it to get

ij[ c (K/I- :l -5,C, [CBC c, chc £ 1n

= : +j
weuuf‘ EI g l"I' Ie/"2 I

Substitute CNG as defined, after division by C“CG to give

2
-j j Cc,C C K/I
L e S B Ty [1+ w/] (A.12)
1 .
Ve e r T erc, T2 c,c

which then gives

_ . r jz‘:' _jz+jQC4
A= k I'C_ E;[ -c - (413

Thus, A and B are obtained.



APPENDIX B

NUMERICAL CALCULATION OF MODIFIED BESSEL FUNCTIONS
OF COMPLEX ARGUMENT AND INTEGER ORDER

The numerical calculation of modified Bessel functions of complex
argument but integral order has apparently not been completely explored.
The few programs that have been made up are not generally available, and
lack firm estimates on accuracy. They also appear to require double pre-
cision arithmetic while still being accurate for only a limited range of argument
and order. In addition, complex numbers are not as easily handled in most
computer languages as real numbers, thereby forcing step by step statements
of some arithmetic operations.

Naturally, I (z) and K (z) could be expressed as functions of the Bessel
function J,(z) and the Hankel functlons H )(z) and H (2)(2) but suitable pro-
grams are still not readily available.

Briefly, the basic series for the modified Bessel function of complex
argument is the ascending series, such as given in Abramowitz and Stegun

(1964).
[04] ( izg)k

In(Z)=( % Z)n T (B. 1)
k=0

00
K @=5(;2 7" E el 22 1™ (o @)
k=0

Q ( 1 ZZ)k
+ielgm § {w(kﬂ)+¢(n+k+1)}—i*——— (B. 2)
2' 2 k! (n+k)! ‘
=0
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where n-1

w(n)=-.57221 + Z k1

W(l)= -.57721. . ....

This is a fairly good series to use for small arguments z <2-7, n small,
and with single precision arithmetic (8 digits). For larger arguments and
orders, convergence gets much slower, and the series for I%(Z) yields very
poor accuracy, which can only be helped slightly (z <10 - 20) by double precision
arithmetic. The basic reason for this is that the series for K (z) subtracts al-
most equal quantities,since

-Z

K~e L~ & (z large)

and In(z) is in the definition of Kn(z). The same problem exists for Ht(lz)(z).
Harris and Pachares (1965) have worked out a double precision program with
the subtraction problem reportedly eliminated by rearrangement of terms for
Hlfl)(z) and }ﬁz)(z). Even the ascending series for I,(z), 6~90° (i. e. Jn(z) )
was found poor near the zeros for z > 3 .

For large arguments, it is necessary to use the asymptotic series for
large argument and order to supplement the ascending series. Unfortunately,
the overlap of regions when using only single precision is rather small and
quite dependent on the angle of the argument, so that much labor is necessary
in checking accuracy in all regions to assure six significant figures of accuracy.
This accuracy was felt essential because calculation of L(f) in Ssome regions
causes subtraction of nearly equal quantities, as does the stepwise approxi-
mation for the derivative dL(B)/dB . Additional problems of accuracy checking
exist for orders n > 1, because no tables are available,

The tables used to check n=0 and n=1 for z <10 were by the National
Bureau of Standards (1947,1950) on J,(z), J l(z), Yo(z) and Yl(z), where Nn(z)

is commonly used for Yn(z). Even though these tables had great accuracy, as
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many as 6 - 10 significant figures were often lost in the formulas relating J n(z)
and Yn(z) to Kn(z) (or Héz)(z) ). Thus, even double-precision programs for
Jn(z) and Y, (z) are inadequate for calculating K, (z) or Hflz)(z) for z > 10-15,
for some angles of the argument.

Several asymptotic series for large z were used in the regions z > 2 - 7
(depending on the angle) for calculation in this report for n < 1. The speed of
computation is much better than for the ascending series using double precision,
even where that is possible. Considerable care must be used in selecting the
proper series. Although the asymptotic series are mathematically valid
(as z - ), they are not necessarily numerically accurate for moderate z.

For instance, the series

Z .
I(z) —— {1-"“—‘—1 y @D l (B. 3)
n 27z 8z 2! (8z)2

where arg z<7 / 2, is given by Abramowitz and Stegun (1964); this series ignores
terms of the form e~% which may be found from the series for J,(z) found in the
same reference. Thus, the series for I,(z) is very poor for (arg z~r /2). This
has been checked numerically by the author. The series for J,(z) is more com-
plete and should be used rather than the one for In(z), although this was not
checked by the author. Some difficulty in the asymptotic series for Jn(z) was
encountered for 6 > 45°, where sines, cosines and exponentials of complex argu-
ment occur. The series Kn(z) has to be written from the series for Jn(z) and
Y,(z), to assure accuracy.

There are polynomials that have been written to approximate the Bessel
functions of a real variable , x, for n X 1, in various regions of x. These
have been worked out essentially from the ascending series for small z, and
from the asymptotic series for large z. They are given in Abramowitz and
Stegun (1964) for the Bessel functions of real variable In(x), Kn(x), Jn(x), Yn(x)

for n <1. They are particularly fast for computer use, since only six terms are
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used, and these may be computed iteratively. They were investigated for use
with complex variables by the author and found accurate in the general region
6 < 45° from the axis, although the accuracy and regions of use stated for x
had to be revised. Some trouble assuring six significant figures for the small
z polynomial forced use of the single precision ascending series for small z,
whereas for large z, the polynomial approximations to the asymptotic series
were used .

To summarize; the following formulas were used to compute In(z) ’ Igl(z),
n <1, based on point by point numerical checks of single precision accuracy,

[

where z =x+jy=re

1. ForI(z), n<1

1.1 When|z|<2.9 or (|z]|<6 and|y|<2[x|) use the ascending series
for I (z).

1.2 Otherwise, use polynomials for large x from Abramowitz and
Stegun (1964) for first quadrant variables with z replacing the
real variable x given.

1.2.1 If|y| >| x| use polynomial for J,)(x), and then transform
to I(x).
1.2.2 H|yl|< [x], use polynomial for I (x).

2. For Kn(z), n<l1

2.1 When|z|<2.9o0r (| z| <3.9 and|y|> 2 le), use ascending
series for Igl(z).
2.2 Otherwise, use polynomials for large x for first quandrant
variables, replacing x by z.
2.2.1 If[y |>|xl , use polynomial KS from Jj(z) and Y, (z)
(derived below).
2.2.2 If[y|<|x|, use polynomial for K(z) .
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A simpler method, said to give 4 - 6 figure accuray for H(z) (z),
but not checked by the author, uses the ascending series, z <5, and the
general asymptotic series for J,(z) and Y (z), z>5. The asymptotic series
is carried out until the terms begin to increase. Dr. E, K. Miller, of the High
Altitude Laboratory, The University of Michigan, has written a successful pro-
gram using this method.

Polynomial KS

For deriving Igl(z) for z large and almost purely imaginary, the asym-
ptotic expansions and polynomials are invalid; the polynomials for Jn(z) and
Y, (z) must be used. These may be combined in the first quadrant to give,

ntl 1 H(2) (-iz)

K (2)=(-))" " 3

12 (30023 (525 ¥ (-32)

But . fn (x)
Jn(x)= = sin Gn(x)

£ (%)
Yn(x)g = cos en(x)

where fn(x) and 6,(x) are polynomials given in Abramowitz and Stegun (1964).
Generalizing the real variable x to the complex variable z in the limited
range of the first quadrant z, 6 < 450, by analytic continuation
£ (-jz) 6 (-i2)

e
J-jz
This polynomial is accurate to approximately six significant figures or
better in the given sector | 9| < 45° for |z|> 4, as checked numerically at

K_(2)=-(-})"

quite a few critical points by the author,
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Using the conjugate relations

K (29K (2) ; 1 5-1; (2)

and the 180° rotation relations

1 (ze™)=(-1)" (=)
Kn(ze”i) = (—l)nKn(z)—ﬂi 1,(2)

the answers in the first quadrant may be transformed into any other quadrant.
Derivatives of the Bessel functions for n = 1 were calculated using re-
currence relations in terms of the n = 0 and n = 1 order functions. The
Bessel functions for larger orders may be obtained from the asymptotic series
for large n, which have been programmed and found accurate for n > 5, over
the sector 6 < 45°. Another method often used for Bessel functions of real
argument is the use of recurrence relations. Because of numerical stability
problems, In(x) may be calculated by recurrence for decreasing values of n,
while K, (x) must be calculated for increasing values of n. A method for cal-
culating Jn(x) or I,(x) for increasing values of n is by using a recurrence
method with the partial fraction expansion for Jn(x). Whether recurrence
methods work accurately numerically in the complex plane has not been found
by the author, although some discussion appears inHarris and Pachares (1965).
A possible problem is seen from the transformation of Kj(z) through 180°. For
large z, Kn(—z) then looks predominately like In(z). Since recurrence must be
done differently for In(x) and K (x), the question becomes what to do with
'in between' values of z.. The large n asymptotic form for I (z) and K (2)
supplemented by recurrence near the imaginary axis would probably give

moderate accuracy.
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Other programs for some of the Bessel functions, often not H( )(z) or
( )(z) are mentioned in Flesher (1961) and in the SHARE listings of IBM

programs. New York University, particularly, has written several programs
in SHARE; however, little information is available on the accuracy or the
method of computation, and considerable knowledge of the computer is necessary
to adapt these programs from SHARE to a particular computer system. Pro-
bably most of these programs use double-precision ascending series techniques
valid for moderate. arguments.

In this report, the asymptotic summation was used to eliminate the

higher order Bessel function problem, as well as to make the analysis clearer.



APPENDIX C
APPROXIMATE SUMMATION OF A SERIES

The summation (3.69) can be approximated by means of a trick similar

to Marcuvitz (1964, p.144). The series

2 2
s=2 sin” nd (C.1)
2 03
n odd
n=1,3,5,...

does not appear to be available in the literature. However, by differentiating

with respect to A,

ds' 2 2sinnAcosnA_ 2 sin2n A
A2 2 2 —3 (2
X oy n
n=1,3,5,... 1 n=1,3,5..

it can be put in a recognizedform. from Collin (1960, p.580)

= ejnx ‘ sinnx b4 X X x3
— = - - - 4=+ —4 (C,
Imag, 2 n2 5 £n 5 +2‘ + =t (C.3)
n=1,3,5,.. n=1,3,5,..
Replacing x/2 by A,
o 3
. .
g%=32 § 55‘—2-2-‘-\-=—§—-[-A 1nA+A+%—+...] (C.4)
A n A
n=1,3,5,..

Integrating with respect to A to get s,

N 2 [:Az £ at

—2-/(-AznA+A+-—+...)=— —InAH---+——+..:l
K

g'=
9 AZ 2 4 36
9 (C.5)
1 3 A
1= —_— - —
s InA+2+18+...
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which is the answer desired.

Actually, the resonant term n=(rn) should be subtracted from the sum
in (C. 1) since it is calculated separately. It's contribution is approximately
1 for n small, thus

0 2 2
2 sinnA ~ 1 1 A
§= = =qn —+=-+=—=+...
A2 3 A 2 18 (C. 6)
n=1,3,5 '
n m
i3 Zn Zl(Asmall)

It is, however, interesting to note some of the other forms that might be
encountered with different methods of solution for the differential equation. It
can be seen that they are all very close together, for small A,

For the monofilar tape helix solution according to Sensiper's method of
setting E //=0 on the tape center line, the series used is (Sensiper, 1951)

o4}

1 sinn A e 1
[ = 1 = + 1 -~
8, 7 E 5 n(-) =1+4n ) (C.7)

m=1 n

For the assumption of a non-uniform current across the tape, with peaks

at the edges of an inverse square form (Sensiper, 1951)
)

S; Jo(mX)'V,enE.
m A

Thus, the specific form of current or boundary condition applied to a nar-

IR

.7+ 4n (C.8)

1
-

row tape helix does not significantly affect the dispersion equation for small A.
In any case, further accuracy should begin by using the true wire shape in a
solution of some kind, probably with the developed helix model for the higher

order modes.
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