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Preface

This handbook is intended as a desk reference for the broad area of engineering
electromagnetics. Since electromagnetics provides the underpinnings for many tech-
nological fields such as wireless communications, fiber optics, microwave engineering,
radar, electromagnetic compatibility, material science, and biomedicine, there is a great
deal of interest in and need for training in the engineering applications of electromagnetics.
Practicing engineers in these diverse fields need to understand how engineering
electromagnetic principles can be applied to the formulation and solution of actual
engineering problems. As technologies wax and wane and engineers move around, they
find themselves learning new applications on the run.

The Handbook of Engineering Electromagnetics should serve as a bridge between
standard textbooks in electromagnetic theory and specialized references such as a
handbook on wireless antenna design. While textbooks are comprehensive in terms of the
theoretical development of the subject matter, they are usually deficient in the practical
application of that theory. Specialized handbooks, on the other hand, often provide
detailed lists of formulas, tables, and graphs, but do not provide the insight needed to
appreciate the underlying physical concepts. This handbook will permit a practicing
engineer/scientist to

Review the necessary electromagnetic theory in the context of the application

Gain an appreciation for the key electromagnetic terms and parameters

Learn how to apply the theory to formulate engineering problems

Obtain guidance to the specialized literature for additional details.

Since the Handbook of Engineering Electromagnetics is intended to be useful to
engineers engaged in electromagnetic applications in a variety of professional settings, the
coverage of topics is correspondingly broad in scope (as can be inferred from the table
of contents). In terms of fundamental concepts, the book includes coverage of Maxwell
equations, static fields, electromagnetic induction, waves, transmission lines, waveguides,
antennas, and electromagnetic compatibility (Chapters 1-10). In terms of electromagnetic
technologies, radar, wireless communication, satellite communication, and optical
communication are covered (Chapters 11-14). Chapter 15 provides an introduction
to various numerical techniques being used for computer-aided solutions to complex
electromagnetic problems. Given the ubiquitous nature of electromagnetic fields,

v
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it is important to consider their biological effects and safety standards (Chapter 16).
Chapter 17 presents a concise survey of current and evolving biomedical applications,
while Chapter 18 is a review of the techniques used for measuring the electromagnetic
properties of biological materials. In terms of frequency range, this book spans the
spectrum from static fields to light waves, with special emphasis on the radio frequency/
microwave range. Pertinent data in the form of tables and graphs are provided within the
context of the subject matter. In addition, Appendixes A and B are brief compilations of
important electromagnetic constants and units, respectively. Finally, Appendix C is a
convenient tutorial on vector analysis and coordinate systems.

To keep the size of this handbook manageable, certain topics (e.g., electrical
machines and semiconductor devices) had to be excluded. The primary guiding principle
has been to exclude applications where an analysis based on electromagnetic theory does
not play a significant role in actual engineering practice or areas where a meaningful
coverage could not be provided within the framework of the handbook.

First and foremost, I thank all the contributors, whose hard work is reflected in these
pages. I would like to express my appreciation to Dr. Amir Faghri, Dean of the School
of Engineering, and Dr. Robert Magnusson, Head of the Electrical and Computer
Engineering Department, University of Connecticut, for supporting my request for a
sabbatical leave (spring 2003), which facilitated the completion of this project. My editors
at Marcel Dekker, Inc., especially Taisuke Soda, provided valuable help and advice
throughout the project. I thank Anthony Palladino for his help in preparing the
manuscript of Appendix C. Finally, I would like to express my gratitude to my family for
their unfailing support and encouragement.

Rajeev Bansal
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Fundamentals of Engineering
Electromagnetics Revisited

N. Narayana Rao

University of lllinois at Urbana-Champaign
Urbana, lllinois, U.S.A.

In this chapter, we present in a nutshell the fundamental aspects of engineering
electromagnetics from the view of looking back in a reflective fashion at what has already
been learned in undergraduate electromagnetics courses as a novice. The first question that
comes to mind in this context is on what constitutes the fundamentals of engineering
electromagnetics. If the question is posed to several individuals, it is certain that they will
come up with sets of topics, not necessarily the same or in the same order, but all
containing the topic of Maxwell’s equations at some point in the list, ranging from the
beginning to the end of the list. In most cases, the response is bound to depend on the
manner in which the individual was first exposed to the subject. Judging from the contents
of the vast collection of undergraduate textbooks on electromagnetics, there is definitely a
heavy tilt toward the traditional, or historical, approach of beginning with statics and
culminating in Maxwell’s equations, with perhaps an introduction to waves. Primarily to
provide a more rewarding understanding and appreciation of the subject matter, and
secondarily owing to my own fascination resulting from my own experience as a student, a
teacher, and an author [1-7] over a few decades, I have employed in this chapter the
approach of beginning with Maxwell’s equations and treating the different categories of
fields as solutions to Maxwell’s equations. In doing so, instead of presenting the topics
in an unconnected manner, I have used the thread of statics—quasistatics—waves to cover
the fundamentals and bring out the frequency behavior of physical structures at the
same time.

1.1. FIELD CONCEPTS AND CONSTITUTIVE RELATIONS
1.1.4. Lorentz Force Equation

A region is said to be characterized by an electric field if a particle of charge ¢ moving with
a velocity v experiences a force F,, independent of v. The force, F,, is given by

F, = 4E (1.1)
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Figure 14 Illustrates that (a) the electric force is parallel to E but (b) the magnetic force is
perpendicular to B.

where E is the electric field intensity, as shown in Fig. 1.1a. We note that the units of E are
newtons per coulomb (N/C). Alternate and more commonly used units are volts per meter
(V/m), where a volt is a newton-meter per coulomb. The line integral of E between two
points A and B in an electric field region, j"i E-dl, has the meaning of voltage between
A and B. It is the work per unit charge done by the field in the movement of the charge
from A4 to B. The line integral of E around a closed path C is also known as the
electromotive force (emf) around C.

If the charged particle experiences a force which depends on v, then the region is said
to be characterized by a magnetic field. The force, F,,, is given by

F,,=qvxB (1.2)

where B is the magnetic flux density. We note that the units of B are newtons/(coulomb-
meter per second), or (newton-meter per coulomb) x (seconds per square meter), or volt-
seconds per square meter. Alternate and more commonly used units are webers per square
meter (Wb/m?) or tesla (T), where a weber is a volt-second. The surface integral of B over
a surface S, js B-dS, is the magnetic flux (Wb) crossing the surface.

Equation (1.2) tells us that the magnetic force is proportional to the magnitude of v
and orthogonal to both v and B in the right-hand sense, as shown in Fig. 1.1b. The
magnitude of the force is gvB sin «, where « is the angle between v and B. Since the force is
normal to v, there is no acceleration along the direction of motion. Thus the magnetic field
changes only the direction of motion of the charge and does not alter the kinetic energy
associated with it.

Since current flow in a wire results from motion of charges in the wire, a wire of
current placed in a magnetic field experiences a magnetic force. For a differential length @l
of a wire of current I placed in a magnetic field B, this force is given by

dF,, = Idl X B (1.3)

as shown in Fig. 1.2.
Combining Egs. (1.1) and (1.2), we obtain the expression for the total force
F=F,+F,, experienced by a particle of charge ¢ moving with a velocity v in a region of
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Figure 1.2 Force experienced by a current element in a magnetic field.

electric and magnetic fields, E and B, respectively, as

F=gE+¢gvXxB
=q(E+vXB) (1.4)

Equation (1.4) is known as the Lorentz force equation.

1.1.2. Material Parameters and Constitutive Relations

The vectors E and B are the fundamental field vectors that define the force acting on a
charge moving in an electromagnetic field, as given by the Lorentz force Eq. (1.4). Two
associated field vectors D and H, known as the electric flux density (or the displacement
flux density) and the magnetic field intensity, respectively, take into account the dielectric
and magnetic properties, respectively, of material media. Materials contain charged
particles that under the application of external fields respond giving rise to three basic
phenomena known as conduction, polarization, and magnetization. Although a material
may exhibit all three properties, it is classified as a conductor, a dielectric, or a magnetic
material depending upon whether conduction, polarization, or magnetization is the
predominant phenomenon. While these phenomena occur on the atomic or “microscopic”
scale, it is sufficient for our purpose to characterize the material based on ““‘macroscopic”
scale observations, that is, observations averaged over volumes large compared with
atomic dimensions.

In the case of conductors, the effect of conduction is to produce a current in the
material known as the conduction current. Conduction is the phenomenon whereby the free
electrons inside the material move under the influence of the externally applied electric
field with an average velocity proportional in magnitude to the applied electric field,
instead of accelerating, due to the frictional mechanism provided by collisions with the
atomic lattice. For linear isotropic conductors, the conduction current density, having the
units of amperes per square meter (A/m?), is related to the electric field intensity in the
manner

J.=oE (1.5)

where o is the conductivity of the material, having the units siemens per meter (S/m). In

semiconductors, the conductivity is governed by not only electrons but also holes.
While the effect of conduction is taken into account explicitly in the electromagnetic

field equations through Eq. (1.5), the effect of polarization is taken into account implicitly
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Applied + Total Field
PP= O Dielectric
Field,E, + E=E, +E;

Secondary Field, E

Polarization

Figure 1.3 Illustrates the effect of polarization in a dielectric material.

through the relationship between D and E, which is given by
D =¢E (1.6)

for linear isotropic dielectrics, where ¢ is the permittivity of the material having the units
coulomb squared per newton-squared meter, commonly known as farads per meter (F/m),
where a farad is a coulomb square per newton-meter.

Polarization is the phenomenon of creation and net alignment of electric dipoles,
formed by the displacements of the centroids of the electron clouds of the nuclei of the
atoms within the material, along the direction of an applied electric field. The effect of
polarization is to produce a secondary field that acts in superposition with the applied field
to cause the polarization. Thus the situation is as depicted in Fig. 1.3. To implicitly take
this into account, leading to Eq. (1.6), we begin with

D=gE+P (1.7)

where &, is the permittivity of free space, having the numerical value 8.854 x 1072, or
approximately 107°/367, and P is the polarization vector, or the dipole moment per unit
volume, having the units (coulomb-meters) per cubic meter or coulombs per square meter.
Note that this gives the units of coulombs per square meter for D. The term goE accounts
for the relationship between D and E if the medium were free space, and the quantity P
represents the effect of polarization. For linear isotropic dielectrics, P is proportional to E
in the manner

P = ¢ox.E (1.8)

where x,, a dimensionless quantity, is the electric susceptibility, a parameter that signifies
the ability of the material to get polarized. Combining Eqgs. (1.7) and (1.8), we have

D =¢o(1 + xo)E
= gog,E

—¢E (1.9

where ¢, (=14 x,) is the relative permittivity of the material.
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Applied +,/\ Total Field
Field, B, B=B,6+B,

Magnetic Material
+

Secondary Field, B,

Magnetization

Figure 1.4 Illustrates the effect of magnetization in a magnetic material.

In a similar manner, the effect of magnetization is taken into account implicitly
through the relationship between H and B, which is given by

(1.10)

TI®

for linear isotropic magnetic materials, where u is the permeability of the material, having
the units newtons per ampere squared, commonly known as henrys per meter (H/m), where
a henry is a newton-meter per ampere squared.

Magnetization is the phenomenon of net alignment of the axes of the magnetic
dipoles, formed by the electron orbital and spin motion around the nuclei of the atoms in
the material, along the direction of the applied magnetic field. The effect of magnetization
is to produce a secondary field that acts in superposition with the applied field to cause the
magnetization. Thus the situation is as depicted in Fig. 1.4. To implicitly take this into
account, we begin with

B = uoH + oM (1.11)

where p, is the permeability of free space, having the numerical value 47 x 10~7, and M is
the magnetization vector or the magnetic dipole moment per unit volume, having the units
(ampere-square meters) per cubic meter or amperes per meter. Note that this gives the
units of amperes per square meter for H. The term uoH accounts for the relationship
between H and B if the medium were free space, and the quantity uoM represents the effect
of magnetization. For linear isotropic magnetic materials, M is proportional to H in the
manner

M = . H (1.12)

where x,,, a dimensionless quantity, is the magnetic susceptibility, a parameter that
signifies the ability of the material to get magnetized. Combining Eqs. (1.11) and 1.12),
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we have
B
H=—F——

/¢L0(1 + Xm)

_ B

B Holr
B

=— (1.13)
"

where u, (=14 x,,,) is the relative permeability of the material.

Equations (1.5), (1.6), and (1.10) are familiarly known as the constitutive relations,
where o, ¢, and u are the material parameters. The parameter o takes into account
explicitly the phenomenon of conduction, whereas the parameters ¢ and p take into
account implicitly the phenomena of polarization and magnetization, respectively.

The constitutive relations, Egs. (1.5), (1.6), and (1.10), tell us that J. is parallel to E,
D is parallel to E, and H is parallel to B, independent of the directions of the field vectors.
For anisotropic materials, the behavior depends upon the directions of the field vectors.
The constitutive relations have then to be written in matrix form. For example, in an
anisotropic dielectric, each component of P and hence of D is in general dependent upon
each component of E. Thus, in terms of components in the Cartesian coordinate system,
the constitutive relation is given by

D, E11 €12 €13 E,
Dy =] €21 €& &1 Ey (1 . 14)
D, £31 €3 £33 E;

or, simply by
(D] = [¢][E] (1.15)

where [D] and [E] are the column matrices consisting of the components of D and E,
respectively, and [¢] is the permittivity matrix (tensor of rank 2) containing the elements ¢,
i=1, 2, 3 and j=1, 2, 3. Similar relationships hold for anisotropic conductors and
anisotropic magnetic materials.

Since the permittivity matrix is symmetric, that is, &;=¢j, from considerations of
energy conservation, an appropriate choice of the coordinate system can be made such
that some or all of the nondiagonal elements are zero. For a particular choice, all of the
nondiagonal elements can be made zero so that

€1 0 0
l=|0 & 0 (1.16)
0 0 &3
Then
Dy =& Ey (1.17a)

Dy = &,E, (1.17b)
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so that D and E are parallel when they are directed along the coordinate axes, although
with different values of effective permittivity, that is, ratio of D to E, for each such
direction. The axes of the coordinate system are then said to be the principal axes of the
medium. Thus when the field is directed along a principal axis, the anisotropic medium can
be treated as an isotropic medium of permittivity equal to the corresponding effective
permittivity.

1.2. MAXWELL'S EQUATIONS, BOUNDARY CONDITIONS, POTENTIALS,
AND POWER AND ENERGY

1.2.1. Maxwell’s Equations in Integral Form and the Law of
Conservation of Charge

In Sec. 1.1, we introduced the different field vectors and associated constitutive relations
for material media. The electric and magnetic fields are governed by a set of four laws,
known as Maxwell’s equations, resulting from several experimental findings and a purely
mathematical contribution. Together with the constitutive relations, Maxwell’s equations
form the basis for the entire electromagnetic field theory. In this section, we shall consider
the time variations of the fields to be arbitrary and introduce these equations and an
auxiliary equation in the time domain form. In view of their experimental origin, the
fundamental form of Maxwell’s equations is the integral form. In the following, we shall
first present all four Maxwell’s equations in integral form and the auxiliary equation, the
law of conservation of charge, and then discuss several points of interest pertinent to them.
It is understood that all field quantities are real functions of position and time; that is,
E=E(r, 1)=E(x, y, z, 1), etc.

Faraday’s Law

Faraday’s law is a consequence of the experimental finding by Michael Faraday in 1831
that a time-varying magnetic field gives rise to an electric field. Specifically, the
electromotive force around a closed path C is equal to the negative of the time rate of
increase of the magnetic flux enclosed by that path, that is,

d
E'dl:——J B-dS (1.18)
%c dr)g

where S is any surface bounded by C, as shown, for example, in Fig. 1.5.

Ampere’s Circuital Law

Ampere’s circuital law is a combination of an experimental finding of Oersted that electric
currents generate magnetic fields and a mathematical contribution of Maxwell that time-
varying electric fields give rise to magnetic fields. Specifically, the magnetomotive force
(mmf) around a closed path C is equal to the sum of the current enclosed by that path due
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Figure 1.5 Illustrates Faraday’s law.

Figure 1.6 [Illustrates Ampere’s circuital law.

to actual flow of charges and the displacement current due to the time rate of increase of
the electric flux (or displacement flux) enclosed by that path; that is,

fi; H-dl:J J-dS—}—ﬁJ D-dS (1.19)
c s dr g

where S is any surface bounded by C, as shown, for example, in Fig. 1.6.

Gauss’ Law for the Electric Field

Gauss’ law for the electric field states that electric charges give rise to electric field.
Specifically, the electric flux emanating from a closed surface S is equal to the charge
enclosed by that surface, that is,

fi;SD-dS = JV,odv (1.20)

where V is the volume bounded by S, as shown, for example, in Fig. 1.7. In Eq. (1.20), the
quantity p is the volume charge density having the units coulombs per cubic meter (C/m?).
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Figure 1.7 Illustrates Gauss’ law for the electric field.

Figure 1.8 [Illustrates Gauss’ law for the magnetic field.

Gauss’ Law for the Magnetic Field

Gauss’ law for the magnetic field states that the magnetic flux emanating from a closed
surface S is equal to zero, that is,

%B-dszo (1.21)
S

Thus, whatever magnetic flux enters (or leaves) a certain part of the closed surface
must leave (or enter) through the remainder of the closed surface, as shown, for example,
in Fig. 1.8.

Law of Conservation of Charge

An auxiliary equation known as the law of conservation of charge states that the current
due to flow of charges emanating from a closed surface S is equal to the time rate of
decrease of the charge inside the volume V" bounded by that surface, that is,

d
i;SJ dS——EJVpdv

or

1; J-dS+£J pdv=0 (1.22)
s dt )y
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Figure 1.9 Right-hand-screw-rule convention.

There are certain procedures and observations of interest pertinent to Eqgs. (1.18)—
(1.22), as follows.

1.

The direction of the infinitesimal surface vector dS in Figs. 1.5 and 1.6 denotes
that the magnetic flux and the displacement flux, respectively, are to be
evaluated in accordance with the right-hand screw rule (RHS rule), that is, in the
sense of advance of a right-hand screw as it is turned around C in the sense of C,
as shown in Fig. 1.9. The RHS rule is a convention that is applied consistently
for all electromagnetic field laws involving integration over surfaces bounded by
closed paths.

In evaluating the surface integrals in Eqs. (1.18) and (1.19), any surface S
bounded by C can be employed. In addition in Eq. (1.19), the same surface S
must be employed for both surface integrals. This implies that the time
derivative of the magnetic flux through all possible surfaces bounded by C is the
same in order for the emf around C to be unique. Likewise, the sum of the
current due to flow of charges and the displacement current through all possible
surfaces bounded C is the same in order for the mmf around C to be unique.
The minus sign on the right side of Eq. (1.18) tells us that when the magnetic flux
enclosed by C is increasing with time, the induced voltage is in the sense opposite
to that of C. If the path C is imagined to be occupied by a wire, then a current
would flow in the wire that produces a magnetic field so as to oppose the
increasing flux. Similar considerations apply for the case of the magnetic flux
enclosed by C decreasing with time. These are in accordance with Lenz’ law,
which states that the sense of the induced emf is such that any current it
produces tends to oppose the change in the magnetic flux producing it.

If loop C contains more than one turn, such as in an N-turn coil, then the surface
S bounded by C takes the shape of a spiral ramp, as shown in Fig. 1.10. For a
tightly wound coil, this is equivalent to the situation in which N separate,
identical, single-turn loops are stacked so that the emf induced in the N-turn coil
is N times the emf induced in one turn. Thus, for an N-turn coil,

(1.23)

where i is the magnetic flux computed as though the coil is a one-turn coil.
Since magnetic force acts perpendicular to the motion of a charge, the
magnetomotive (mmf) force, that is, §. H-dl, does not have a physical meaning
similar to that of the electromotive force. The terminology arises purely from
analogy with electromotive force for §CE~dl.
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Figure 110 Two-turn loop.

6. The charge density p in Eq. (1.20) and the current density J in Eq. (1.19) pertain
to true charges and currents, respectively, due to motion of true charges. They
do not pertain to charges and currents resulting from the polarization and
magnetization phenomena, since these are implicitly taken into account by the
formulation of these two equations in terms of D and H, instead of in terms of E
and B.

7. The displacement current, a’(fs D-dS)/dt is not a true current, that is, it is not a
current due to actual flow of charges, such as in the case of the conduction
current in wires or a convection current due to motion of a charged cloud in
space. Mathematically, it has the units of d[(C/m?) x m?]/dr or amperes, the
same as the units for a true current, as it should be. Physically, it leads to the
same phenomenon as a true current does, even in free space for which P is zero,
and D is simply equal to gE. Without it, the uniqueness of the mmf around a
given closed path C is not ensured. In fact, Ampere’s circuital law in its original
form did not contain the displacement current term, thereby making it valid only
for the static field case. It was the mathematical contribution of Maxwell that led
to the modification of the original Ampere’s circuital law by the inclusion of the
displacement current term. Together with Faraday’s law, this modification in
turn led to the theoretical prediction by Maxwell of the phenomenon of
electromagnetic wave propagation in 1864 even before it was confirmed
experimentally 23 years later in 1887 by Hertz.

8. The observation concerning the time derivative of the magnetic flux crossing all
possible surfaces bounded by a given closed path C in item 2 implies that the
time derivative of the magnetic flux emanating from a closed surface S is zero,
that is,

d
—¢ B-dS=0 1.24
i, 2

One can argue then that the magnetic flux emanating from a closed surface is
zero, since at an instant of time when no sources are present the magnetic field
vanishes. Thus, Gauss’ law for the magnetic field is not independent of
Faraday’s law.

9. Similarly, combining the observation concerning the sum of the current due to
flow of charges and the displacement current through all possible surfaces
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bounded by a given closed path C in item 2 with the law of conservation of
charge, we obtain for any closed surface S,

%G;Sn-ds_JVpdv) 0 (1.25)

where V' is the volume bounded by S. Once again, one can then argue that the
quantity inside the parentheses is zero, since at an instant of time when no
sources are present, it vanishes. Thus, Gauss’ law for the electric field is not
independent of Ampere’s circuital law in view of the law of conservation of
charge.

10. The cut view in Fig. 1.8 indicates that magnetic field lines are continuous,
having no beginnings or endings, whereas the cut view in Fig. 1.7 indicates that
electric field lines are discontinuous wherever there are charges, diverging from
positive charges and converging on negative charges.

1.2.2 Maxwell’s Equations in Differential Form
and the Continuity Equation

From the integral forms of Maxwell’s equations, one can obtain the corresponding
differential forms through the use of Stoke’s and divergence theorems in vector calculus,
given, respectively, by

%CA-dl:L(VxA)-dS (1.26a)
£A-ds - JV(V~A)dv (1.26b)

where in Eq. (1.26a), S is any surface bounded by C and in Eq. (1.26b), V is the volume
bounded by S. Thus, Maxwell’s equations in differential form are given by

V X E:—@ (1.27)
ot

VXH:J—i—Q (1.28)
ot

V-D=p (1.29)

V-B=0 (1.30)

corresponding to the integral forms Eqs. (1.18)—(1.21), respectively. These differential
equations state that at any point in a given medium, the curl of the electric field intensity is
equal to the time rate of decrease of the magnetic flux density, and the curl of the magnetic
field intensity is equal to the sum of the current density due to flow of charges and the
displacement current density (time derivative of the displacement flux density); whereas
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the divergence of the displacement flux density is equal to the volume charge density, and
the divergence of the magnetic flux density is equal to zero.

Auxiliary to the Maxwell’s equations in differential form is the differential equation
following from the law of conservation of charge Eq. (1.22) through the use of Eq. (1.26b).
Familiarly known as the continuity equation, this is given by

dp
VJ+—=0 1.31
= (1.31)

It states that at any point in a given medium, the divergence of the current density due to
flow of charges plus the time rate of increase of the volume charge density is equal to zero.

From the interdependence of the integral laws discussed in the previous section, it
follows that Eq. (1.30) is not independent of Eq. (1.27), and Eq. (1.29) is not independent
of Eq. (1.28) in view of Eq. (1.31).

Maxwell’s equations in differential form lend themselves well for a qualitative
discussion of the interdependence of time-varying electric and magnetic fields giving rise to
the phenomenon of electromagnetic wave propagation. Recognizing that the operations of
curl and divergence involve partial derivatives with respect to space coordinates, we
observe that time-varying electric and magnetic fields coexist in space, with the spatial
variation of the electric field governed by the temporal variation of the magnetic field in
accordance with Eq. (1.27), and the spatial variation of the magnetic field governed by the
temporal variation of the electric field in addition to the current density in accordance with
Eq. (1.28). Thus, if in Eq. (1.28) we begin with a time-varying current source represented
by J, or a time-varying electric field represented by dD/dt, or a combination of the two,
then one can visualize that a magnetic field is generated in accordance with Eq. (1.28),
which in turn generates an electric field in accordance with Eq. (1.27), which in turn
contributes to the generation of the magnetic field in accordance with Eq. (1.28), and so
on, as depicted in Fig. 1.11. Note that J and p are coupled, since they must satisfy
Eq. (1.31). Also, the magnetic field automatically satisfies Eq. (1.30), since Eq. (1.30) is not
independent of Eq. (1.27).

The process depicted in Fig. 1.11 is exactly the phenomenon of electromagnetic
waves propagating with a velocity (and other characteristics) determined by the
parameters of the medium. In free space, the waves propagate unattenuated with the
velocity 1/./mogo, familiarly represented by the symbol c. If either the term 0B/df in
Eq. (1.27) or the term dD/d¢ in Eq. (1.28) is not present, then wave propagation would not
occur. As already stated in the previous section, it was through the addition of the term

+ Eq. (1.28
J w< | H,B

+

Eq. (131) Eq. (1.27)

L (1.2
P Eq. (1.29) D,E

Figure 111 Generation of interdependent electric and magnetic fields, beginning with sources
J and p.
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oD/dt in Eq. (1.28) that Maxwell predicted electromagnetic wave propagation before it was
confirmed experimentally.

Of particular importance is the case of time variations of the fields in the sinusoidal
steady state, that is, the frequency domain case. In this connection, the frequency domain
forms of Maxwell’s equations are of interest. Using the phasor notation based on

A cos(wt + ¢) = Re[Ae/?e/”] = Re[Ae/'] (1.32)

where 4 = Ae/® is the phasor corresponding to the time function, we obtain these
equations by replacing all field quantities in the time domain form of the equations by the
corresponding phasor quantities and 9/9¢ by jw. Thus with the understanding that all
phasor field quantities are functions of space coordinates, that is, E = E(r), etc., we write
the Maxwell’s equations in frequency domain as

VXE=—joB (1.33)
VxH=1J+jwD (1.34)
V-D=5 (1.35)
V-B=0 (1.36)

Also, the continuity equation, Eq. (1.31), transforms to the frequency domain form
V-J+jwp=0 (1.37)
Note that since V-V x E = 0, Eq. (1.36) follows from Eq. (1.33), and since V-V x H = 0,

Eq. (1.35) follows from Eq. (1.34) with the aid of Eq. (1.37).
Now the constitutive relations in phasor form are

D =¢E (1.38a)

H-= B (1.38b)
nw

J.=0oE (1.38¢)

Substituting these into Eqs. (1.33)—(1.36), we obtain for a material medium characterized
by the parameters &, u, and o,

VXE=—jouH (1.39)
VxH = (0 + jwe)E (1.40)
V-H=0 (1.41)

v-E=" (1.42)
&
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Note however that if the medium is homogenecous, that is, if the material parameters are
independent of the space coordinates, Eq. (1.40) gives

V-E = V-VXH=0 (1.43)

o+ jwe

so that p = 0 in such a medium.

A point of importance in connection with the frequency domain form of Maxwell’s
equations is that in these equations, the parameters ¢, u, and o can be allowed to be
functions of w. In fact, for many dielectrics, the conductivity increases with frequency in
such a manner that the quantity o/we is more constant than is the conductivity. This
quantity is the ratio of the magnitudes of the two terms on the right side of Eq. (1.40), that
is, the conduction current density term oE and the displacement current density term joweE.

1.2.3. Boundary Conditions

Maxwell’s equations in differential form govern the interrelationships between the field
vectors and the associated source densities at points in a given medium. For a problem
involving two or more different media, the differential equations pertaining to each
medium provide solutions for the fields that satisfy the characteristics of that medium.
These solutions need to be matched at the boundaries between the media by employing
“boundary conditions,” which relate the field components at points adjacent to and on
one side of a boundary to the field components at points adjacent to and on the other side
of that boundary. The boundary conditions arise from the fact that the integral equations
involve closed paths and surfaces and they must be satisfied for all possible closed paths
and surfaces whether they lie entirely in one medium or encompass a portion of the
boundary.

The boundary conditions are obtained by considering one integral equation at a time
and applying it to a closed path or a closed surface encompassing the boundary, as shown
in Fig. 1.12 for a plane boundary, and in the limit that the area enclosed by the closed
path, or the volume bounded by the closed surface, goes to zero. Let the quantities
pertinent to medium 1 be denoted by subscript 1 and the quantities pertinent to medium 2
be denoted by subscript 2, and a,, be the unit normal vector to the surface and directed into
medium 1. Let all normal components at the boundary in both media be directed along a,,
and denoted by an additional subscript # and all tangential components at the boundary in
both media be denoted by an additional subscript 7. Let the surface charge density (C/m?)
and the surface current density (A/m) on the boundary be ps and Jg, respectively. Then,
the boundary conditions corresponding to the Maxwell’s equations in integral form can be
summarized as

a, X (E, —E») =0 (1.442)
a, X (H, — Hy) = Jg (1.44b)
an'(Dl — Dz) = ps (144C)

a,"(Bj —By)=0 (1.444)
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Medium 1, z>0
al’ el‘ul

Medium 2, z<0
05,6, 1, * Y

Figure 112 For deriving the boundary conditions at the interface between two arbitrary media.

or in scalar form,

En—Ep=0 (1.45a)
Hy—Hp=Js (1.45b)
D) — Dyp = ps (1.45¢)
By —Bn=0 (1.45d)

In words, the boundary conditions state that at a point on the boundary, the tangential
components of E and the normal components of B are continuous, whereas the tangential
components of H are discontinuous by the amount equal to Jg at that point, and the
normal components of D are discontinuous by the amount equal to pg at that point, as
illustrated in Fig. 1.12. It should be noted that the information concerning the direction
of Jg relative to that of (H; —H»), which is contained in Eq. (1.44b), is not present in
Eq. (1.45b). Hence, in general, Eq. (1.45b) is not sufficient and it is necessary to use
Eq. (1.44b).

While Egs. (1.44a)-(1.44d) or Egs. (1.45a)—(1.45d) are the most commonly used
boundary conditions, another useful boundary condition resulting from the law of
conservation of charge is given by

0
a,-(J; —Jo) = —Vs-Jg —% (1.46)

In words, Eq. (1.46) states that, at any point on the boundary, the components of J; and
J, normal to the boundary are discontinuous by the amount equal to the negative of the
sum of the two-dimensional divergence of the surface current density and the time
derivative of the surface charge density at that point.
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1.2.4. Electromagnetic Potentials and Potential Function Equations

Maxwell’s equations in differential form, together with the constitutive relations and
boundary conditions, allow for the unique determination of the fields E, B, D, and H for a
given set of source distributions with densities J and p. An alternate approach involving
the electric scalar potential ® and the magnetic vector potential A, known together as the
electromagnetic potentials from which the fields can be derived, simplifies the solution in
some cases. This approach leads to solving two separate differential equations, one for ®
involving p alone, and the second for A involving J alone.

To obtain these equations, we first note that in view of Eq. (1.30), B can be expressed
as the curl of another vector. Thus

B=VxA (1.47)

Note that the units of A are the units of B times meter, that is, Wb/m. Now, substituting
Eq. (1.47) into Eq. (1.27), interchanging the operations of 3/d¢ and curl, and rearranging,
we obtain

v B+ 5] =0

ot
E+2_ _vo
ot
A
E=-Vd-—— 1.48
o (1.43)

where the negative sign associated with V& is chosen for a reason to be evident later in Sec.
1.3.2. Note that the units of ® are the units of E times meter, that is, V. Note also that the
knowledge of ® and A enables the determination of E and B, from which D and H can be
found by using the constitutive relations.

Now, using Egs. (1.6) and (1.10) to obtain D and H in terms of ® and A and
substituting into Egs. (1.29) and (1.28), we obtain

A
V2o + V- [3—} —_° (1.492)
ot e
A
VxVxA+M%[V¢+Z—J:MJ (1.49b)

where we have assumed the medium to be homogeneous and isotropic, in addition to
being linear. Using the vector identity

VXVXA=V(V-A)— VA (1.50)

and interchanging the operations of 9/9¢ and divergence or gradient depending on the
term, and rearranging, we get

9
V2o + 2 (V-A) =2 (1.51a)
ot e
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AP FA
VzA—V[V-AﬂwE]—Me 87=—;LJ (1.51b)

These equations are coupled. To uncouple them, we make use of Helmholtz’s theorem,
which states that a vector field is completely specified by its curl and divergence. Therefore,
since the curl of A is given by Eq. (1.47), we are at liberty to specify the divergence of A.
We do this by setting

9D
VoA = —pe (1.52)

which is known as the Lorenz condition, resulting in the uncoupled equations

P P
5 FA

which are called the potential function equations. While the Lorenz condition may appear
to be arbitrary, it actually implies the continuity equation, which can be shown by taking
the Laplacian on both sides of Eq. (1.52) and using Egs. (1.53) and (1.54).

It can be seen that Eqgs. (1.53) and (1.54) are not only uncoupled but they are also
similar, particularly in Cartesian coordinates since Eq. (1.54) decomposes into three
equations involving the three Cartesian components of J, each of which is similar to (1.53).
By solving Egs. (1.53) and (1.54), one can obtain the solutions for ® and A, respectively,
from which E and B can be found by using Eqs. (1.48) and (1.47), respectively. In practice,
however, since p is related to J through the continuity equation, it is sufficient to find B
from A obtained from the solution of Eq. (1.54) and then find E by using the Maxwell’s
equation for the curl of H, given by Eq. (1.28).

1.2.5. Power Flow and Energy Storage

A unique property of the electromagnetic field is its ability to transfer power between two
points even in the absence of an intervening material medium. Without such ability, the
effect of the field generated at one point will not be felt at another point, and hence the
power generated at the first point cannot be put to use at the second point.

To discuss power flow associated with an electromagnetic field, we begin with the
vector identity

V- (ExH)=H-(VXE)—E-(VXxH) (1.55)
and make use of Maxwell’s curl equations, Egs. (1.27) and (1.28), to write

D 9B
V- ExH)=-E-J-E-——-H-— 1.56
( ) o o (1.56)

Allowing for conductivity of a material medium by denoting J =J,+ J., where Jj is that
part of J that can be attributed to a source, and using the constitutive relations (1.5), (1.6),
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and (1.10), we obtain for a medium characterized by o, ¢, and pu,

3l all
—E-Jy=o0®+—|=¢E*| +—|=pH*|+V-(ExH 1.57
0 =0¢ +az[28 }+al[2/¢ }Jr ( ) (1.57)

Defining a vector P given by
P=ExH (1.58)
and taking the volume integral of both sides of Eq. (1.58), we obtain

9 1 9 1

—| (E-Jp)dv= E>dv+— —¢E?)d —J —uH?\d ﬂgP-d

JV( Jo) dv JVU v+3fJV(28 >V+3[ V<2'u ' s S
(1.59)

where we have also interchanged the differentiation operation with time and integration
operation over volume in the second and third terms on the right side and used the
divergence theorem for the last term.

In Eq. (1.59), the left side is the power supplied to the field by the current source
Jo inside V. The quantities o E2, (1/2)eE?, and (1/2)uH? are the power dissipation density
(W/m?), the electric stored energy density (J/m?), and the magnetic stored energy density
(J/m%), respectively, due to the conductive, dielectric, and magnetic properties,
respectively, of the medium. Hence, Eq. (1.59) says that the power delivered to the
volume V' by the current source J is accounted for by the power dissipated in the volume
due to the conduction current in the medium, plus the time rates of increase of the energies
stored in the electric and magnetic fields, plus another term, which we must interpret as the
power carried by the electromagnetic field out of the volume V, for conservation of energy
to be satisfied. It then follows that the vector P has the meaning of power flow density
vector associated with the electromagnetic field. The statement represented by Eq. (1.59) is
known as the Poynting’s theorem, and the vector P is known as the Poynting vector. We
note that the units of E X H are volts per meter times amperes per meter, or watts per
square meter (W/m?) and do indeed represent power density. In particular, since E and H
are instantaneous field vectors, E X H represents the instantaneous Poynting vector. Note
that the Poynting’s theorem tells us only that the power flow out of a volume V is given
by the surface integral of the Poynting vector over the surface S bounding that volume.
Hence we can add to P any vector for which the surface integral over S vanishes, without
affecting the value of the surface integral. However, generally, we are interested in the total
power leaving a closed surface and the interpretation of P alone as representing the power
flow density vector is sufficient.

For sinusoidally time-varying fields, that is, for the frequency domain case, the
quantity of importance is the time-average Poynting vector instead of the instantaneous
Poynting vector. We simply present the important relations here, without carrying out the
derivations. The time-average Poynting vector, denoted by (P), is given by

(P) = Re[P] (1.60)
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where P is the complex Poynting vector given by

P:%Exﬁ* (1.61)

where the star denotes complex conjugate. The Poynting theorem for the frequency
domain case, known as the complex Poynting’s theorem, is given by

—J (1]_Ejg> dv = J (pa)dv +j2wj (W) — (we))dv +j£ P-dS (1.62)

v \2 14 14 s

where
(pa) = %GEE (1.63a)
(w,) = 3817:-17:* (1.63b)
(W) = %uﬁ-ﬁ* (1.63c¢)

are the time-average power dissipation density, the time-average electric stored energy
density, and the time-average magnetic stored energy density, respectively. Equation (1.62)
states that the time-average, or real, power delivered to the volume V' by the current source
is accounted for by the time-average power dissipated in the volume plus the time-average
power carried by the electromagnetic field out of the volume through the surface S
bounding the volume and that the reactive power delivered to the volume V' by the current
source is equal to the reactive power carried by the electromagnetic field out of the volume
J through the surface S plus a quantity that is 2w times the difference between the time-
average magnetic and electric stored energies in the volume.

1.3. STATIC FIELDS, QUASISTATIC FIELDS, AND WAVES
1.3.1. Classification of Fields

While every macroscopic field obeys Maxwell’s equations in their entirety, depending on
their most dominant properties, it is sufficient to consider a subset of, or certain terms
only, in the equations. The primary classification of fields is based on their time
dependence. Fields which do not change with time are called static. Fields which change
with time are called dynamic. Static fields are the simplest kind of fields, because for them
0/0t =0 and all terms involving differentiation with respect to time go to zero. Dynamic
fields are the most complex, since for them Maxwell’s equations in their entirety must be
satisfied, resulting in wave type solutions, as provided by the qualitative explanation in
Sec. 1.2.2. However, if certain features of the dynamic field can be analyzed as though the
field were static, then the field is called quasistatic.

If the important features of the field are not amenable to static type field analysis,
they are generally referred to as time-varying, although in fact, quasistatic fields are also
time-varying. Since in the most general case, time-varying fields give rise to wave
phenomena, involving velocity of propagation and time delay, it can be said that
quasistatic fields are those time-varying fields for which wave propagation effects can be
neglected.
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1.3.2. Static Fields and Circuit Elements

For static fields, d/0t = 0. Maxwell’s equations in integral form and the law of conservation
of charge become

E-dl=0 (1.64a)
c

H-dl:J J-dS (1.64b)
c s
ﬁ D°dS:J pdv (1.64¢)
s 14
ﬁ B-dS=0 (1.64d)
s

J-dS=0 (1.64¢)
s

whereas Maxwell’s equations in differential form and the continuity equation reduce to

VXE=0 (1.65a)
VxH=J (1.65b)
V-D=p (1.65¢)
V-B=0 (1.65d)
V-J=0 (1.65¢)

Immediately, one can see that, unless J includes a component due to conduction
current, the equations involving the electric field are completely independent of those
involving the magnetic field. Thus the fields can be subdivided into static electric fields,
or electrostatic fields, governed by Eqgs. (1.64a) and (1.64c), or Egs. (1.65a) and (1.65c¢),
and static magnetic fields, or magnetostatic fields, governed by Egs. (1.64b) and (1.64d),
or Egs. (1.65b) and (1.65d). The source of a static electric field is p, whereas the source of
a static magnetic field is J. One can also see from Eq. (1.64¢) or (1.65¢) that no relationship
exists between J and p. If J includes a component due to conduction current, then since
J.=0E, a coupling between the electric and magnetic fields exists for that part of the
total field associated with J.. However, the coupling is only one way, since the right side
of Eq. (1.64a) or (1.65a) is still zero. The field is then referred to as electromagnetostatic
field. Tt can also be seen then that for consistency, the right sides of Eqs. (1.64c) and (1.65¢)
must be zero, since the right sides of Egs. (1.64e) and (1.65¢) are zero. We shall now
consider each of the three types of static fields separately and discuss some fundamental
aspects.

FElectrostatic Fields and Capacitance

The equations of interest are Egs. (1.64a) and (1.64c¢), or Egs. (1.65a) and (1.65c). The first
of each pair of these equations simply tells us that the electrostatic field is a conservative
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field, and the second of each pair of these equations enables us, in principle, to determine
the electrostatic field for a given charge distribution. Alternatively, the potential function
equation, Eq. (1.53), which reduces to

V2o =~
&

(1.66)
can be used to find the electric scalar potential, ®, from which the electrostatic field can be
determined by using Eq. (1.48), which reduces to

E=_Vo (1.67)

Equation (1.66) is known as the Poisson’s equation, which automatically includes the
condition that the field be conservative. It is worth noting that the potential difference
between two points A4 and B in the static electric field, which is independent of the path
followed from A4 to B because of the conservative nature of the field is

Jj E-dl::Jj [—V®]-dl

=d,— Dp (1.68)

the difference between the value of ® at 4 and the value of ® at B. The choice of minus
sign associated with V& in Eq. (1.48) is now evident.

The solution to Poisson’s equation, Eq. (1.66), for a given charge density distribution
p(r) is given by

o(r) 1 J p)

= 1.69

4re |y Ir — 1| ( )
where the prime denotes source point and no prime denotes field point. Although cast in
terms of volume charge density, Eq. (1.69) can be formulated in terms of a surface charge
distribution, a line charge distribution, or a collection of point charges. In particular, for a
point charge Q(r'), the solution is given by

_ 00

It follows from Eq. (1.67) that the electric field intensity due to the point charge is given by

o) (r —r')

E®r) =
® drer — 1

(1.71)

which is exactly the expression that results from Coulomb’s law for the electric force
between two point charges.
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Equation (1.69) or its alternate forms can be used to solve two types of problems:

1. finding the electrostatic potential for a specified charge distribution by
evaluating the integral on the right side, which is a straightforward process
with the help of a computer but can be considerably difficult analytically except
for a few examples, and

2. finding the surface charge distribution on the surfaces of an arrangement of
conductors raised to specified potentials, by inversion of the equation, which is
the basis for numerical solution by the well-known method of moments.

In the case of type 1, the electric field can then be found by using Eq. (1.67).
In a charge-free region, p =0, and Poisson’s equation, Eq. (1.66), reduces to

Vo =0 (1.72)

which is known as the Laplace equation. The field is then due to charges outside the
region, such as surface charge on conductors bounding the region. The situation is
then one of solving a boundary value problem. In general, for arbitrarily shaped
boundaries, a numerical technique, such as the method of finite differences, is employed
for solving the problem. Here, we consider analytical solution involving one-dimensional
variation of ®.

A simple example is that of the parallel-plate arrangement shown in Fig. 1.13a, in
which two parallel, perfectly conducting plates (o = co, E =0) of dimensions w along the y
direction and / along the z direction lie in the x=0 and x =d planes. The region between
the plates is a perfect dielectric (o =0) of material parameters € and w. The thickness of the
plates is shown exaggerated for convenience in illustration. A potential difference of V7 is
maintained between the plates by connecting a direct voltage source at the end z=—/. If
fringing of the field due to the finite dimensions of the structure normal to the x direction is
neglected, or if it is assumed that the structure is part of one which is infinite in extent

T g
A + ¢ x=0 (a)

T Fly-0, @=V, y z
]
Y ¥iy-d,®=0

X

z=0

Figure 113 Electrostatic field in a parallel-plate arrangement.
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normal to the x direction, then the problem can be treated as one-dimensional with x as
the variable, and Eq. (1.72) reduces to

d*®
— 1.73
The solution for the potential in the charge-free region between the plates is given by

d(x) = %(d — %) (1.74)

which satisfies Eq. (1.73), as well as the boundary conditions of ® =0 at x=d and &=V
at x=0. The electric field intensity between the plates is then given by

v,
E=-Vo = 7"3,\, (1.75)

as depicted in the cross-sectional view in Fig. 1.13b, and resulting in displacement flux
density

_8V0

D dax

(1.76)

Then, using the boundary condition for the normal component of D given by Eq. (1.44c)
and noting that there is no field inside the conductor, we obtain the magnitude of the
charge on either plate to be

eV ewl

0= (7) (wh) = o Vo (1.77)

We can now find the familiar circuit parameter, the capacitance, C, of the parallel-
plate arrangement, which is defined as the ratio of the magnitude of the charge on either
plate to the potential difference V. Thus

!
C:%:% (1.78)

Note that the units of C are the units of ¢ times meter, that is, farads. The phenomenon

associated with the arrangement is that energy is stored in the capacitor in the form of
electric field energy between the plates, as given by

W, = (%8E%>(WM)

1 (ewl\ 5
=2 (7) Yo

1
= ECVO2 (1.79)

the familiar expression for energy stored in a capacitor.
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Magnetostatic Fields and Inductance

The equations of interest are Eqs. (1.64b) and (1.64d) or Egs. (1.65b) and (1.65d). The
second of each pair of these equations simply tells us that the magnetostatic field is
solenoidal, which as we know holds for any magnetic field, and the first of each pair of
these equations enables us, in principle, to determine the magnetostatic field for a given
current distribution. Alternatively, the potential function equation, Eq. (1.54), which
reduces to

VA =—ud (1.80)

can be used to find the magnetic vector potential, A, from which the magnetostatic field
can be determined by using Eq. (1.47). Equation (1.80) is the Poisson’s equation for the
magnetic vector potential, which automatically includes the condition that the field be
solenoidal.

The solution to Eq. (1.80) for a given current density distribution J(r) is, purely from
analogy with the solution Eq. (1.69) to Eq. (1.66), given by

A(r) = “J Iy (1.81)

T An ) r—r

Although cast in terms of volume current density, Eq. (1.81) can be formulated in terms of
a surface current density, a line current, or a collection of infinitesimal current elements. In
particular, for an infinitesimal current element 7dl(r'), the solution is given by

ol dI(r)

A = 4x|r — 1|

(1.82)

It follows from Eq. (1.47) that the magnetic flux density due to the infinitesimal current
element is given by

_ pldi(Y) X (r—1')
e —rP?

B(r) (1.83)

which is exactly the law of Biot-Savart that results from Ampere’s force law for the
magnetic force between two current elements. Similar to that in the case of Eq. (1.69),
Eq. (1.81) or its alternate forms can be used to find the magnetic vector potential and then
the magnetic field by using Eq. (1.47) for a specified current distribution.

In a current-free region, J =0, and Eq. (1.80) reduces to

VZA=0 (1.84)

The field is then due to currents outside the region, such as surface currents on conductors
bounding the region. The situation is then one of solving a boundary value problem as in
the case of Eq. (1.72). However, since the boundary condition Eq. (1.44b) relates the
magnetic field directly to the surface current density, it is straightforward and more
convenient to determine the magnetic field directly by using Egs. (1.65b) and (1.65d).
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Figure 1.14 Magnetostatic field in a parallel-plate arrangement.

A simple example is that of the parallel-plate arrangement of Fig. 1.13a with the
plates connected by another conductor at the end z=0 and driven by a source of direct
current Iy at the end z= —/, as shown in Fig. 1.14a. If fringing of the field due to the finite
dimensions of the structure normal to the x direction is neglected, or if it is assumed that
the structure is part of one which is infinite in extent normal to the x direction, then the
problem can be treated as one-dimensional with x as the variable and we can write the
current density on the plates to be

I
(—2) a, on the plate x =0
V

I
Js = <£)ax on the plate z =0 (1.85)

I
—(ﬁ)az on the plate x =d

In the current-free region between the plates, Eq. (1.65b) reduces to

a, a, a

i 0 0 =0 (1.86)
ox
H, H, H.

and Eq. (1.65d) reduces to

B,
X _ 0
ox

(1.87)

so that each component of the field, if it exists, has to be uniform. This automatically
forces H, and H. to be zero since nonzero value of these components do not satisfy the
boundary conditions Egs. (1.44b) and (1.44d) on the plates, keeping in mind that the field
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is entirely in the region between the conductors. Thus, as depicted in the cross-sectional
view in Fig. 1.14b,

I
H="a, (1.88)
w

which satisfies the boundary condition Eq. (1.44b) on all three plates, and results in
magnetic flux density

I
B=""a, (1.89)
w :

The magnetic flux, ¥, linking the current I, is then given by
I dl
v = (ﬂ)(dl) =2 (1.90)
w w

We can now find the familiar circuit parameter, the inductance, L, of the parallel-
plate arrangement, which is defined as the ratio of the magnetic flux linking the current to
the current. Thus

Ly _nd (1.91)
I() w

Note that the units of L are the units of u times meter, that is, henrys. The phenomenon
associated with the arrangement is that energy is stored in the inductor in the form of
magnetic field energy between the plates, as given by

1
W, = (E WH 2>wld

=-(—{
2(W>O
1

- Eug (1.92)

the familiar expression for energy stored in an inductor.

Electromagnetostatic Fields and Conductance

The equations of interest are

E-dl=0 (1.93a)
C

H-dl:J J(,-dS=aJ E-dS (1.93b)
C S S

D-dS =0 (1.93c)
S
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El; B-dS=0
N

or in differential form,

VXE=0
VxH=J.=0E
V-D=0

V-B=0

Rao

(1.93d)

(1.94a)
(1.94b)
(1.94c)

(1.94d)

From Eqgs. (1.94a) and (1.94c), we note that Laplace’s equation, Eq. (1.72), for
the electrostatic potential is satisfied, so that, for a given problem, the electric field
can be found in the same manner as in the case of the example of Fig. 1.13. The
magnetic field is then found by using Eq. (1.94b) and making sure that Eq. (1.94d) is also

satisfied.

A simple example is that of the parallel-plate arrangement of Fig. 1.13a but with
an imperfect dielectric material of parameters o, ¢, and u, between the plates, as shown in
Fig. 1.15a. Then, the electric field between the plates is the same as that given by Eq. (1.75),

that is,
Vo
E=—a,
d
1
,,’: ________________ y
-rl L____________W __‘_1
% ’/, ’ :I‘ """""""" z
_L LA s ¢ x=0
/’:'
’:/ O,€, 1 x
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Figure 115 Electromagnetostatic field in a parallel-plate arrangement.

(1.95)
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resulting in a conduction current of density
J.=—a, (1.96)

from the top plate to the bottom plate, as depicted in the cross-sectional view of Fig. 1.15b.
Since dp/dt =0 at the boundaries between the plates and the slab, continuity of current is
satisfied by the flow of surface current on the plates. At the input z=—/ this surface
current, which is the current drawn from the source, must be equal to the total current
flowing from the top to the bottom plate. It is given by

oV owl
Q=<7%WQ=77% (1.97)

We can now find the familiar circuit parameter, the conductance, G, of the parallel-
plate arrangement, which is defined as the ratio of the current drawn from the source to
the source voltage V. Thus

(1.98)

Note that the units of G are the units of o times meter, that is, siemens (S). The reciprocal
quantity, R, the resistance of the parallel-plate arrangement, is given by

d
== 1 .
R I.  owl (1.99)

The unit of R is ohms. The phenomenon associated with the arrangement is that power is
dissipated in the material between the plates, as given by

P, = (0 E*)(wid)

owl
= (d) Vs

=GV}
=20 (1.100)

the familiar expression for power dissipated in a resistor.

Proceeding further, we find the magnetic field between the plates by using Eq. (1.94b),
and noting that the geometry of the situation requires a y component of H, dependent on
z, to satisfy the equation. Thus

H=H,()a, (1.101a)
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H,
38—}: —"7’/‘) (1.101b)
Z
v,
H= —%z a, (1.101c)

where the constant of integration is set to zero, since the boundary condition at z=0
requires f, to be zero for z equal to zero. Note that the magnetic field is directed in the
positive y direction (since z is negative) and increases linearly from z=0 to z=—/, as
depicted in Fig. 1.15b. It also satisfies the boundary condition at z= —/ by being consistent
with the current drawn from the source to be w[H,]|.__,= (o Vo/d)(wl) = .

Because of the existence of the magnetic field, the arrangement is characterized by an
inductance, which can be found either by using the flux linkage concept or by the energy
method. To use the flux linkage concept, we recognize that a differential amount of
magnetic flux dy/ = uH,d(dz’) between z equal to (2’ —dz’) and z equal to z/, where
—[ <z <0, links only that part of the current that flows from the top plate to the bottom
plate between z=z" and z=0, thereby giving a value of (—Zz/I) for the fraction, N, of the
total current linked. Thus, the inductance, familiarly known as the internal inductance,
denoted L, since it is due to magnetic field internal to the current distribution, as
compared to that in Eq. (1.91) for which the magnetic field is external to the current
distribution, is given by

_Lpd (1.102)
3w
or 1/3 times the inductance of the structure if o =0 and the plates are joined at z=0, as in
Fig. 1.14b.
Alternatively, if the energy method is used by computing the energy stored in the
magnetic field and setting it equal to (1/2) L;I?, then we have

0
L;= Ilf(dw) Jz:# ;/.Hf, dz
= Lpdl (1.103)
3w

same as in Eq. (1.102).
Finally, recognizing that there is energy storage associated with the electric field
between the plates, we note that the arrangement has also associated with it a capacitance
C, equal to ewl/d. Thus, all three properties of conductance, capacitance, and inductance
are associated with the structure. Since for o =0 the situation reduces to that of Fig. 1.13,
we can represent the arrangement of Fig. 1.15 to be equivalent to the circuit shown in
Fig. 1.16. Note that the capacitor is charged to the voltage Vy and the current through it is
zero (open circuit condition). The voltage across the inductor is zero (short circuit
condition), and the current through it is Vy/R. Thus, the current drawn from the voltage
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Figure 1.16 Circuit equivalent for the arrangement of Fig. 1.15.
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Figure 117 Electroquasistatic field analysis for the parallel-plate structure of Fig. 1.13.

source is Vy/R and the voltage source views a single resistor R, as far as the current drawn
from it is concerned.

1.3.3. Quasistatic Fields and Low-frequency Behavior

As mentioned in Sec. 1.3.1, quasistatic fields are a class of dynamic fields for which certain
features can be analyzed as though the fieclds were static. In terms of behavior in the
frequency domain, they are low-frequency extensions of static fields present in a physical
structure, when the frequency of the source driving the structure is zero, or low-frequency
approximations of time-varying fields in the structure that are complete solutions to
Maxwell’s equations. Here, we use the approach of low-frequency extensions of static
fields. Thus, for a given structure, we begin with a time-varying field having the same
spatial characteristics as that of the static field solution for the structure and obtain field
solutions containing terms up to and including the first power (which is the lowest power)
in w for their amplitudes. Depending on whether the predominant static field is electric or
magnetic, quasistatic fields are called electroquasistatic fields or magnetoquasistatic fields.
We shall now consider these separately.

FElectroquasistatic Fields

For electroquasistatic fields, we begin with the electric field having the spatial dependence
of the static field solution for the given arrangement. An example is provided by the
arrangement in Fig. 1.13a excited by a sinusoidally time-varying voltage source V,(f)=
Vycoswt, instead of a direct voltage source, as shown by the cross-sectional view in
Fig. 1.17. Then,

Ey :% coswt a, (1.104)
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where the subscript 0 denotes that the amplitude of the field is of the zeroth power in w.
This results in a magnetic field in accordance with Maxwell’s equation for the curl of H,
given by Eq. (1.28). Thus, noting that J =0 in view of the perfect dielectric medium, we
have for the geometry of the arrangement,

oH, D, Vo .
1 00 DET0 G o (1.105)
0z ot d
v,
H, = ‘”Sdoz sinof a, (1.106)

where we have also satisfied the boundary condition at z=0 by choosing the constant
of integration such that [Hﬂ]z:o is zero, and the subscript 1 denotes that the amplitude of
the field is of the first power in w. Note that the amplitude of H,; varies linearly with z,
from zero at z=0 to a maximum at z=—/.

We stop the solution here, because continuing the process by substituting Eq. (1.106)
into Maxwell’s curl equation for E, Eq. (1.27) to obtain the resulting electric field will yield
a term having amplitude proportional to the second power in w. This simply means that
the fields given as a pair by Eqgs. (1.104) and (1.106) do not satisfy Eq. (1.27) and hence
are not complete solutions to Maxwell’s equations. The complete solutions are obtained
by solving Maxwell’s equations simultaneously and subject to the boundary conditions
for the given problem.

Proceeding further, we obtain the current drawn from the voltage source to be

Ig(1) = W[Hyl]z:—l

!
= —w(%) Vo sinwt

_ A dVe(0)
=¢ dt

(1.107)

or,
I, = joCV, (1.108)

where C=ewl/d is the capacitance of the arrangement obtained from static field
considerations. Thus, the input admittance of the structure is jwC so that its low-frequency
input behavior is essentially that of a single capacitor of value same as that found from
static field analysis of the structure. Indeed, from considerations of power flow, using
Poynting’s theorem, we obtain the power flowing into the structure to be

Pin = W’d[ExOHyl ]Z=0

ewl .
= - <7> V¢ sin wt cos wt

d(l .,
_E<§cvg) (1.109)
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Figure 1.18 Magnetoquasistatic field analysis for the parallel-plate structure of Fig. 1.14.

which is consistent with the electric energy stored in the structure for the static case, as
given by Eq. (1.79).

Magnetoquasistatic Fields

For magnetoquasistatic fields, we begin with the magnetic field having the spatial
dependence of the static field solution for the given arrangement. An example is provided
by thearrangement in Fig. 1.14a excited by a sinusoidally time-varying current source
I,(t) = Iy cos wt, instead of a direct current source, as shown by the cross-sectional view in
Fig. 1.18. Then,

I
H, =73 coswt a, (1.110)

where the subscript 0 again denotes that the amplitude of the field is of the zeroth power
in w. This results in an electric field in accordance with Maxwell’s curl equation for E,
given by Eq. (1.27). Thus, we have for the geometry of the arrangement,

3Ex1 8Bv() a),bLI() .
= — — = [ 1.111
0z ot w s ( )
onlz .
E| =——— sinwt a, (1.112)

w

where we have also satisfied the boundary condition at z=0 by choosing the constant of
integration such that [E\(]._,= 0 is zero, and again the subscript 1 denotes that the
amplitude of the field is of the first power in w. Note that the amplitude of E\; varies
linearly with z, from zero at z=0 to a maximum at z=—/.

As in the case of eclectroquasistatic fields, we stop the process here, because
continuing it by substituting Eq. (1.112) into Maxwell’s curl equation for H, Eq. (1.28), to
obtain the resulting magnetic field will yield a term having amplitude proportional to the
second power in w. This simply means that the fields given as a pair by Egs. (1.110) and
(1.112) do not satisfy Eq. (1.28), and hence are not complete solutions to Maxwell’s
equations. The complete solutions are obtained by solving Maxwell’s equations
simultancously and subject to the boundary conditions for the given problem.
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Proceeding further, we obtain the voltage across the current source to be

Vg(t) = d[Exl ]z:_[

= —a)('udl)lo sin wt
w

dl, (1)
=L—-=%
dt

(1.113)

or

V, =joL I, (1.114)

where L =pudl/w is the inductance of the arrangement obtained from static field
considerations. Thus, the input impedance of the structure is jwL, such that its low-
frequency input behavior is essentially that of a single inductor of value the same as that
found from static field analysis of the structure. Indeed, from considerations of power
flow, using Poynting’s theorem, we obtain the power flowing into the structure to be

Pin = n’d[Ele\"O]Z:—l

dl .
=— (,u )wlg sinwt cos wt
w

d <1L1§> (1.115)

~at\2

which is consistent with the magnetic energy stored in the structure for the static case, as
given by Eq. (1.92).

Quasistatic Fields in a Conductor

If the dielectric slab in the arrangement of Fig. 1.17 is conductive, as shown in Fig. 1.19a,
then both electric and magnetic fields exist in the static case because of the conduction
current, as discussed under electromagnetostatic fields in Sec. 1.3.2. Furthermore, the
electric field of amplitude proportional to the first power in w contributes to the creation of
magnetic field of amplitude proportional to the first power in w, in addition to that from
electric field of amplitude proportional to the zeroth power in w.

Thus, using the results from the static field analysis for the arrangement of Fig. 1.15,
we have for the arrangement of Fig. 1.19a

v
Ey :70 cos wt ay (1.116)
Vi
Jc,ozanz% cos of a, (1.117)
aVyz

Hy=- 7 coswr a, (1.118)
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Figure 1.19 (a) Zero-order fields for the parallel-plate structure of Fig. 1.15. (b) Variations of
amplitudes of the zero-order fields along the structure. (c) Variations of amplitudes of the first-order
fields along the structure.

as depicted in the figure. Also, the variations with z of the amplitudes of Ey and H,q are
shown in Fig. 1.19b.

The magnetic field given by Eq. (1.118) gives rise to an electric field having
amplitude proportional to the first power in w, in accordance with Maxwell’s curl equation
for E, Eq. (1.27). Thus

0E _ 0By _ Opo Voz

i 1.11
o o 7 sin wt (1.119)
_ouo Vo, oy
Eyg=- 2 (z -1 )smwl (1.120)

where we have also made sure that the boundary condition at z=—/ is satisfied. This
boundary condition requires that E, be equal to V,/d at z=—/. Since this is satisfied by
E,( alone, it follows that E,; must be zero at z=—/.

The electric field given by Eq. (1.116) and that given by Eq. (1.120) together give rise
to a magnetic field having terms with amplitudes proportional to the first power in o, in
accordance with Maxwell’s curl equation for H, Eq. (1.28). Thus

oH, o
2
:%d‘/o(zz_zz) sinwt—l—wi;/o sin o (1.121)

B wnaVy (23 — 3212)
N 6d

. Voz .
H\; smwt—i—we 0% Sin wr (1.122)
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where we have also made sure that the boundary condition at z=0 is satisfied. This
boundary condition requires that H, be equal to zero at z =0, which means that all of its
terms must be zero at z=0. Note that the first term on the right side of Eq. (1.122) is the
contribution from the conduction current in the material resulting from E,; and the
second term is the contribution from the displacement current resulting from Ey.
Denoting these to be H,. and H,q, respectively, we show the variations with z of the
amplitudes of all the field components having amplitudes proportional to the first power in
o, in Fig. 1.19c.

Now, adding up the contributions to each field, we obtain the total electric and
magnetic fields up to and including the terms with amplitudes proportional to the first
power in w to be

opoVy , 5 N
Ex:7 cos ol ——~ (z% = P)sinwt (1.123a)
Vi Voz . 2Vo(z* —3zP%) .
H',,,——(I 0Zcosa)H—wg 02 sme—wlw Ogil ol )sma)t (1.123b)
or
EY—EJF]@E(%—F) v (1.124a)
T ood 2d ¢
2(.3 2
- oz - L&z - .ud(z—fszl)_
Hy:—ng Jos Vg —]wTVg (1.124b)

Finally, the current drawn from the voltage source is given by

I, =w[H,]_,
_ 0wl+, ewl | uotwl - (1.125)
“\a 7 3d )7

The input admittance of the structure is given by
- I, ewl owl uol?

Y = 7_5 = 1 — _— 1 - 1 —

", jwd+d<jw3)

. oewl 1
NI Wowh + jaol2/3)]

(1.126)

where we have used the approximation [1 +jw(uol’/3)]" ~ [1 — jo(uol?/3)]. Proceeding
further, we have

T = jo ™ ¢ l
n =IO T dJowl) + jo(udl/3w)
1
= joC 4 —— (1.127)
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where C=¢ewl/d is the capacitance of the structure if the material is a perfect dielectric,
R=d/owl is the resistance of the structure, and L;= udl/3w is the internal inductance of
the structure, all computed from static field analysis of the structure.

The equivalent circuit corresponding to Eq. (1.127) consists of capacitance C in
parallel with the series combination of resistance R and internal inductance L;, same as in
Fig. 1.16. Thus, the low-frequency input behavior of the structure is essentially the same as
that of the equivalent circuit of Fig. 1.16, with the understanding that its input admittance
must also be approximated to first-order terms. Note that for o =0, the input admittance
of the structure is purely capacitive. For nonzero o, a critical value of o equal to /3¢/ul?
exists for which the input admittance is purely conductive. For values of o smaller than the
critical value, the input admittance is complex and capacitive, and for values of o larger
than the critical value, the input admittance is complex and inductive.

1.3.4. Waves and the Distributed Circuit Concept

In Sec. 1.3.3, we have seen that quasistatic field analysis of a physical structure provides
information concerning the low-frequency input behavior of the structure. As the
frequency is increased beyond that for which the quasistatic approximation is valid, terms
in the infinite series solutions for the fields beyond the first-order terms need to be
included. While one can obtain equivalent circuits for frequencies beyond the range of
validity of the quasistatic approximation by evaluating the higher order terms, no further
insight is gained through that process, and it is more straightforward to obtain the exact
solution by resorting to simultaneous solution of Maxwell’s equations when a closed form
solution is possible.

Wave Equation and Solutions

Let us, for simplicity, consider the structures of Figs. 1.17 and 1.18, for which the material
between the plates is a perfect dielectric (0 =0). Then, regardless of the termination at
z=0, the equations to be solved are

B oH

VXE=——=—yu— 1.128
o~ M (1.128a)
oD oE
XH=—=¢— 1.12
\% o 88t ( 8b)

For the geometry of the arrangements, E=E.(z,f)a, and H=H(z f)a,, so that
Egs. (1.128a) and (1.128b) simplify to

OE, oH,
x_ 00 1.129
0z~ My (1.1292)

oH, IE,
y_ 2% (1.129b)

z at
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Combining the two equations by eliminating H,, we obtain

9’E, 9’ E,
v \ 1.130
a2 Mp (1.130)

which is the wave equation. It has solutions of the form
Eu(z, t)=A cosw(t — Juez+¢*) + B coso(i + Jpuez+ ¢) (1.131)

The terms on the right side correspond to traveling waves propagating in the +z and —z
directions, which we shall call the (+) and (—) waves, respectively, with the velocity
1//me, or ¢/ /i€, Wwhere ¢ = 1/,/1oo is the velocity of light in free space. This can be
seen by setting the derivative of the argument of the cosine function in each term equal to
zero or by plotting each term versus z for a few values of ¢, as shown in Fig. 1.20a and b for
the (4) and (—) waves, respectively. The corresponding solution for H,, is given by

Hy(z, t)= [A Cosw(l—\/ﬁz+¢+) —B Cosw(l—i—\/ﬁz—l—(ﬁ)] (1.132)

1
Vu/e
For sinusoidal waves, which is the case at present, the velocity of propagation is

known as the phase velocity, denoted by v,, since it is the velocity with which a constant
phase surface moves in the direction of propagation. The quantity w./ue is the magnitude

cos [t —Juez) + ¢']

L RSV
DN m
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1
(C))
== cos [w(r +Ju€ez)+ ¢
5T )
} f 0
-1
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Figure 1.20 Plots of (a) cos [o(r — /11 z) + ¢ ]and (b) cos [o(t + /jez) + ¢~ ], versus z, for a
few values of .
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of the rate of change of phase at a fixed time ¢, for either wave. It is known as the phase
constant and is denoted by the symbol 8. The quantity /u/e, which is the ratio of the
electric field intensity to the magnetic field intensity for the (+) wave, and the negative of
such ratio for the (—) wave, is known as the intrinsic impedance of the medium. It is
denoted by the symbol 5. Thus, the phasor electric and magnetic fields can be written as

E. = Ae /% + BelP* (1.133)
1. - . -

H, = —(Ae /% — Be'F) (1.134)
coon

We may now use the boundary conditions for a given problem and obtain the
specific solution for that problem. For the arrangement of Fig. 1.17, the boundary
conditions are H,=0 at z=0 and E, = V,/d at z=—I. We thus obtain the particular
solution for that arrangement to be

— V.

E.=—%f_ 1.135
" d cospl cos pz ( )
- Ve

H, = nd cos B sin fz (1.136)

which correspond to complete standing waves, resulting from the superposition of (+) and
(—) waves of equal amplitude. Complete standing waves are characterized by pure half-
sinusoidal variations for the amplitudes of the fields, as shown in Fig. 1.21. For values of z
at which the electric field amplitude is a maximum, the magnetic field amplitude is zero,
and for values of z at which the electric field amplitude is zero, the magnetic field
amplitude is a maximum. The fields are also out of phase in time, such that at any value of
z, the magnetic field and the electric field differ in phase by 1 =7m/2w.

|E|

z Im 57 37 m 0

28 2 28 2B

< m w1 0
5 B B

Figure 1.21 Standing wave patterns for the fields for the structure of Fig. 1.17.
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Now, the current drawn from the voltage source is given by

L=wA]_,

_Jw I7g

tan gl (1.137)

so that the input impedance of the structure is

- VV
g .
Yin= =

== — tan B/ 1.138
7, Jd B ( )

which can be expressed as a power series in B/. In particular, for g/ < /2,

3 5
(BD°  28D° } (1.139)

_ W
Yin —]n—d|:,31+T+ 5

The first term on the right side can be identified as belonging to the quasistatic
approximation. Indeed for 8/« 1, the higher order terms can be neglected, and

v
m T]d

zjw(%m) (1.140)

)

same as that given by Eq. (1.111).

It can now be seen that the condition B/« 1 dictates the range of validity for the
quasistatic approximation for the input behavior of the structure. In terms of the
frequency f of the source, this condition means that /< v,/2n/, or in terms of the period
T'=1/f, it means that 7> 2n(//v,). Thus, as already mentioned, quasistatic fields are low-
frequency approximations of time-varying fields that are complete solutions to Maxwell’s
equations, which represent wave propagation phenomena and can be approximated to
the quasistatic character only when the times of interest are much greater than the
propagation time, //v,, corresponding to the length of the structure. In terms of space
variations of the fields at a fixed time, the wavelength A (=2n/8), which is the distance
between two consecutive points along the direction of propagation between which
the phase difference is 27, must be such that /< 1/2x; thus, the physical length of the
structure must be a small fraction of the wavelength. In terms of amplitudes of the fields,
what this means is that over the length of the structure, the field amplitudes are fractional
portions of the first one-quarter sinusoidal variations at the z=0 end in Fig. 1.21, with the
boundary conditions at the two ends of the structure always satisfied. Thus, because of the
cos Bz dependence of E, on z, the electric field amplitude is essentially a constant, whereas
because of the sin Bz dependence of I-_L on z, the magnetic field amplitude varies linearly
with z. These are exactly the nature of the variations of the zero-order electric field and the
first-order magnetic field, as discussed under electroquasistatic fields in Sec. 1.3.3.
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For frequencies slightly beyond the range of validity of the quasistatic approxima-
tion, we can include the second term in the infinite series on the right side of Eq. (1.139)
and deduce the equivalent circuit in the following manner.

= W B’
Yin N]ﬁ [,BH‘T}

. (ewl ewl udl
=i ) [+ () () (A4

or
= 1
" jw(ewl /d)[1 4+ w(ewl/d)(wpdl/3w)]

+ jo(udl/3w) (1.142)

1
Nja)(swl/d)

Thus the input behavior is equivalent to that of a capacitor of value same as that for the
quasistatic approximation in series with an inductor of value 1/3 times the inductance
found under the quasistatic approximation for the same arrangement but shorted at z=0,
by joining the two parallel plates. This series inductance is familiarly known as the stray
inductance. But, all that has occurred is that the fractional portion of the sinusoidal
variations of the field amplitudes over the length of the structure has increased, because
the wavelength has decreased. As the frequency of the source is further increased, more
and more terms in the infinite series need to be included, and the equivalent circuit
becomes more and more involved. But throughout all this range of frequencies, the overall
input behavior is still capacitive, until a frequency is reached when g/ crosses the value 7/2
and tan B/ becomes negative, and the input behavior changes to inductive! In fact, a plot of
tan Bl versus f, shown in Fig. 1.22, indicates that as the frequency is varied, the input
behavior alternates between capacitive and inductive, an observation unpredictable
without the complete solutions to Maxwell’s equations. At the frequencies at which the
input behavior changes from capacitive to inductive, the input admittance becomes infinity
(short-circuit condition). The field amplitude variations along the length of the structure
are then exactly odd integer multiples of one-quarter sinusoids. At the frequencies at
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Figure 1.22 Frequency dependence of tan gl.
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which the input behavior changes from inductive to capacitive, the input admittance
becomes zero (open-circuit condition). The field amplitude variations along the length of
the structure are then exactly even integer multiple of one-quarter sinusoids, or integer
multiples of one-half sinusoids.

Turning now to the arrangement of Fig. 1.18, the boundary conditions are E, =0 at
z=0and ﬁ‘ = I_g /w at z=—I[. We thus obtain the particular solution for that arrangement
to be

- jr)I_g .
=——LTE 1.14
E. w cos Bl sin fiz (1.143)
H —-——2%——-cosﬁz (1.144)
"7 w cos Bl ’

which, once again, correspond to complete standing waves, resulting from the
superposition of (4) and (—) waves of equal amplitude, and characterized by pure half-
sinusoidal variations for the amplitudes of the fields, as shown in Fig. 1.23, which are of
the same nature as in Fig. 1.21, except that the electric and magnetic fields are
interchanged.

Now, the voltage across the current source is given by

Ve=d[E]__,
o (1.145)
dl
=M% tan Bl
w
so that the input impedance of the structure is
-V d
Zin =2 =1 tan i (1.146)
Ig w

A

26 28 28 2B

Figure 1.23 Standing wave patterns for the fields for the structure of Fig. 1.18.
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which can be expressed as a power series in /. In particular, for gl < /2,

3 5
Zo =1 g B 26D (1.147)
w 3 15

Once again, the first term on the right side can be identified as belonging to the quasistatic
approximation. Indeed for g/« 1,

. d
w~ (Bl
w
_ jw<“‘”) (1.148)

w

same as that given by Eq. (1.118), and all the discussion pertinent to the condition for the
validity of the quasistatic approximation for the structure of Fig. 1.17 applies also to the
structure of Fig. 1.18, with the roles of the electric and magnetic fields interchanged. For
[ < A/2m, the field amplitudes over the length of the structure are fractional portions of the
first one-quarter sinusoidal variations at the z=0 end in Fig. 1.23, with the boundary
conditions at the two ends always satisfied. Thus, because of the cos Az dependence of H,
on z, the magnetic field amplitude is essentially a constant, whereas because of the sin 8z
dependence of E, on z, the electric field amplitude varies linearly with z. These are exactly
the nature of the variations of the zero-order magnetic field and the first-order electric
field, as discussed under magnetoquasistatic fields in Sec. 1.3.3.

For frequencies slightly beyond the range of validity of the quasistatic approxima-
tion, we can include the second term in the infinite series on the right side of Eq. (1.147)
and deduce the equivalent circuit in the following manner.

. 3
A%@q (M]

w B+ 3

o+ (o 2] 0149
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1 ewl
mwwm*mQ» (1130)

Thus the input behavior is equivalent to that of an inductor of value same as that for the
quasistatic approximation in parallel with a capacitor of value 1/3 times the capacitance
found under the quasistatic approximation for the same arrangement but open at z=0,
without the two plates joined. This parallel capacitance is familiarly known as the stray
capacitance. But again, all that has occurred is that the fractional portion of the sinusoidal
variations of the field amplitudes over the length of the structure has increased, because
the wavelength has decreased. As the frequency of the source is further increased, more
and more terms in the infinite series need to be included and the equivalent circuit becomes

or
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more and more involved. But throughout all this range of frequencies, the overall input
behavior is still inductive, until a frequency is reached when B/ crosses the value /2 and
tan Bl becomes negative and the input behavior changes to capacitive. In fact, the plot of
tan B/ versus f, shown in Fig. 1.22, indicates that as the frequency is varied, the input
behavior alternates between inductive and capacitive, an observation unpredictable
without the complete solutions to Maxwell’s equations. At the frequencies at which the
input behavior changes from inductive to capacitive, the input impedance becomes infinity
(open-circuit condition). The field amplitude variations along the length of the structure
are then exactly odd integer multiples of one-quarter sinusoids. At the frequencies at
which the input behavior changes from capacitive to inductive, the input impedance
becomes zero (short-circuit condition). The field amplitude variations along the length of
the structure are then exactly even integer multiples of one-quarter sinusoids, or integer
multiples of one-half sinusoids.

Distributed Circuit Concept

We have seen that, from the circuit point of view, the structure of Fig. 1.13 behaves like a
capacitor for the static case and the capacitive character is essentially retained for its input
behavior for sinusoidally time-varying excitation at frequencies low enough to be within
the range of validity of the quasistatic approximation. Likewise, we have seen that from a
circuit point of view, the structure of Fig. 1.14 behaves like an inductor for the static case
and the inductive character is essentially retained for its input behavior for sinusoidally
time-varying excitation at frequencies low enough to be within the range of validity of the
quasistatic approximation. For both structures, at an arbitrarily high enough frequency,
the input behavior can be obtained only by obtaining complete (wave) solutions to
Maxwell’s equations, subject to the appropriate boundary conditions. The question to ask
then is whether there is a circuit equivalent for the structure itself, independent of the
termination, that is representative of the phenomenon taking place along the structure and
valid at any arbitrary frequency, to the extent that the material parameters themselves are
independent of frequency? The answer is, yes, under certain conditions, giving rise to the
concept of the distributed circuit.

To develop and discuss the concept of the distributed circuit using a more general
case than that allowed by the arrangements of Figs. 1.13 and 1.14, let us consider the case
of the structure of Fig. 1.15 driven by a sinusoidally time-varying source, as in Fig. 1.19a.
Then the equations to be solved are

B oH
VxE=-2"—_, 2% 1.151
a - M (1.151a)

oD JE

For the geometry of the arrangement, E= E(z, t)a,and H= H (z, t)a,, so that Eqs. (1.151a)
and (1.151b) simplify to

0E,  oH,
= (1.152a)

oH, IE,
My 6B, — 2= 1.152b
= TRy (1.152b)
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Now, since E. and H. are zero, we can, in a given z =constant plane, uniquely define a
voltage between the plates in terms of the electric field intensity in that plane and a current
crossing that plane in one direction on the top plate and in the opposite direction on the
bottom plate in terms of the magnetic field intensity in that plane. These are given by

V(z,t) = dE\(z,1) (1.153a)
I(z,t) = wH,(z, 1) (1.153b)

Substituting Eqgs. (1.153a) and (1.153b) in Eqgs. (1.152a) and (1.152b), and rearranging, we
obtain

aV(z, l)__ ﬂ’ al(z, 1) (1.1542)
oz w ot '

ol(z, 1) row ew1dV(z, t)
S0 [ [

Writing the derivates with respect to z on the left sides of the equations in terms of
limits as Az — 0, and multiplying by Az on both sides of the equations provides the
equivalent circuit for a section of length Az of the structure, as shown in Fig. 1.24, in
which the quantities £, C, and G, given by

c:’f—j (1.155a)
cz%v (1.155b)
g:(’; (1.155¢)

are the inductance per unit length, capacitance per unit length, and conductance per unit
length, respectively, of the structure, all computed from static field analysis, except that
now they are expressed in terms of ““per unit length’ and not for the entire structure in a
“lump.” It then follows that the circuit representation of the entire structure consists of an
infinite number of such sections in cascade, as shown in Fig. 1.25. Such a circuit is known
as a distributed circuit. The distributed circuit notion arises from the fact that the

I(z,1) I(z+ Az,t)
o 1YY o
+ LAz +
CAz
V(z,t) Az V(z+ Az,2)
o— ~95

Figure 1.24 Circuit equivalent for Egs. (1.159a and b), in the limit Az — 0.
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Figure 1.25 Distributed circuit representation of the structure of Fig. 1.19a.

inductance, capacitance, and conductance are distributed uniformly and overlappingly
along the structure. A physical interpretation of the distributed-circuit concept follows
from energy considerations, based on the properties that inductance, capacitance, and
conductance are elements associated with energy storage in the magnetic field, energy
storage in the electric field, and power dissipation due to conduction current flow, in the
material. Since these phenomena occur continuously and overlappingly along the
structure, the inductance, capacitance, and conductance must be distributed uniformly
and overlappingly along the structure.

A physical structure for which the distributed circuit concept is applicable is
familiarly known as a transmission line. The parallel-plate arrangement of Figs. 1.13-1.15
is a special case of a transmission line, known as the parallel-plate line, in which the waves
are called uniform plane waves, since the fields are uniform in the z = constant planes. In
general, a transmission line consists of two parallel conductors having arbitrary cross
sections and the waves are transverse electromagnetic, or TEM, waves, for which the fields
are nonuniform in the z = constant planes but satisfying the property of both electric and
magnetic fields having no components along the direction of propagation, that is, parallel
to the conductors. For waves for which the electric field has a component along the
direction of propagation but the magnetic field does not, as is the case for transverse
magnetic or TM waves, the current on the conductors crossing a given transverse plane
cannot be expressed uniquely in terms of the magnetic field components in that plane.
Likewise, for waves for which the magnetic field has a component along the direction of
propagation but the electric field does not, as is the case for transverse electric or TE
waves, the voltage between the conductors in a given transverse plane cannot be expressed
uniquely in terms of the electric field components in that plane. Structures which support
TM and TE waves are generally known as waveguides, although transmission lines are also
waveguides in the sense that TEM waves are guided parallel to the conductors of the line.

All transmission lines having perfect conductors are governed by the equations

W0 _ ol

¢ = (1.156a)
o(z,1) _ GV — CaV(z, ) (1.156b)
o9z ot

which are known as the transmission-line equations. The values of £, C, and G differ from
one line to another, and depend on the cross-sectional geometry of the conductors. For the
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parallel-plate line, £, C, and G are given by Egs. (1.155a), (1.155b), and (1.155c),
respectively. Note that

LC = e (1.157a)
g
C

(1.157b)

o
e
a set of relations, which is applicable to any line governed by Egs. (1.156a) and (1.156b).
Thus for a given set of material parameters, only one of the three parameters, £, C, and G,
is independent.

In practice, the conductors are imperfect, adding a resistance per unit length and
additional inductance per unit length in the series branches of the distributed circuit.
Although the waves are then no longer exactly TEM waves, the distributed circuit is
commonly used for transmission lines with imperfect conductors. Another consideration
that arises in practice is that the material parameters and hence the line parameters can be
functions of frequency.

1.3.5. Hertzian Dipole Fields via the Thread of
Statics=Quasistatics=Waves

In the preceding three sections, we have seen the development of solutions to Maxwell’s
equations, beginning with static fields and spanning the frequency domain from
quasistatic approximations at low frequencies to waves for beyond quasistatics. In this
section, we shall develop the solution for the electromagnetic field due to a Hertzian dipole
by making use of the thread of statics—quasistatics—waves, as compared to the commonly
used approach based on the magnetic vector potential, for a culminating experience of
revisiting the fundamentals of engineering electromagnetics.

The Hertzian dipole is an elemental antenna consisting of an infinitesimally long
piece of wire carrying an alternating current /(¢), as shown in Fig. 1.26. To maintain the
current flow in the wire, we postulate two point charges Q(¢) and Q,(#) terminating the
wire at its two ends, so that the law of conservation of charge is satisfied. Thus, if

1(t) = Iy cos wt (1.158)

Z

Figure 1.26 For the determination of the electromagnetic field due to the Hertzian dipole.
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then
Iy .
0(t) =— sinwt (1.159a)
w

0:(0 =~ sinwr = 0,0 (1.159b)

For d/dt =0, the charges are static and the current is zero. The field is simply the
electrostatic field due to the electric dipole made up of O =—0, = Q. Applying Eq. (1.70)
to the geometry in Fig. 1.26, we write the electrostatic potential at the point P due to the
dipole located at the origin to be

q,_&(l_i> (1.160)

T dme\r;,
In the limit dI — 0, keeping the dipole moment Qq(d/) fixed, we get

_ Qo(dl) cosb

P 1.161
4rer? ( )
so that the electrostatic field at the point P due to the dipole is given by
di .
E—_ve = 20 )(2 cos 6 a, + sin 6 ay) (1.162)
4rer’

With time variations in the manner Q(f) = —Q»(f) = Qy sin wt, so that Iy = wQ,, and
at low frequencies, the situation changes to electroquasistatic with the electric field of
amplitude proportional to the zeroth power in w given by

_ Qo(dl) sin wt

| O
4mer3

(2 cosB a, +sin 6 ay) (1.163)

The corresponding magnetic field of amplitude proportional to the first power in w is given
by the solution of

aDy 1) 0N
=2

VxH =—= 1.164
T ot (1.164)
For the geometry associated with the arrangement, this reduces to
a, ay ay
r2 sin6 r sinf r -
k) 9 0 — 88_0 (1.165)
or % f

0 0 r sin® Hy,
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so that

_ wQo(dl) coswt

H
! 47r?

sin 6 a, (1.166)

To extend the solutions for the fields for frequencies beyond the range of validity of
the quasistatic approximation, we recognize that the situation then corresponds to wave
propagation. With the dipole at the origin, the waves propagate radially away from it so
that the time functions sin wt and cos wt in Eqs. (1.163) and (1.166) need to be replaced by
sin (wt — Br) and cos (wt — Br), respectively, where f=w,/ue is the phase constant.
Therefore, let us on this basis alone and without any other considerations, write the field
expressions as

_ Io(dl) sin (w1 = fr)

E 3 (2 cosB a, + sin 6 ay) (1.167)
4rewr

p = D) cos@=F) Gy (1.168)
472

where we have also replaced Qg by Iy/w, and pose the question as to whether or not these
expressions represent the solution for the electromagnetic field due to the Hertzian dipole.
The answer is “‘no,” since they do not satisfy Maxwell’s curl equations

9B oH
X = —-— = -0 — .
VXE T (1.169a)
D IE
xH="2"=¢2" 1.1
\Y o= 6 (1.169b)

which can be verified by substituting them into the equations.

There is more than one way of resolving this discrepancy, but we shall here do it
from physical considerations. Even a cursory look at the solutions for the fields given by
Egs. (1.167) and (1.168) points to the problem, since the Poynting vector E X H
corresponding to them is proportional to 1/r°, and there is no real power flow associated
with them because they are out of phase in wt by 7/2. But, we should expect that the fields
contain terms proportional to 1/r, which are in phase, from considerations of real power
flow in the radial direction and from the behavior of the waves viewed locally over plane
areas normal to the radial lines emanating from the Hertzian dipole, and electrically far
from it (Br > 1), to be approximately that of uniform plane waves with the planes as their
constant phase surfaces, as shown in Fig. 1.27.

To elaborate upon this, let us consider two spherical surfaces of radii r, and r,
and centered at the dipole and insert a cone through these two surfaces such that its
vertex is at the antenna, as shown in the Fig. 1.27. Then the power crossing any
portion of the spherical surface of radius r, must be the same as the power crossing
the spherical surface of radius r, inside the cone. Since these surface areas are
proportional to the square of the radius and since the surface integral of the Poynting
vector gives the power, the Poynting vector must have an r component proportional to
1/r%, and it follows that the solutions for E, and H, must contain terms proportional to 1/r
and in phase.
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Figure 1.27 Radiation of electromagnetic waves far from the Hertzian dipole.

Thus let us modify the expression for H given by Eq. (1.168) by adding a second term
containing 1/r in the manner

H

_ lo(dl) sin® [cos (i = fr) A cos (i - ﬂ"+5)}a , (1.170)

4 r? r

where 4 and § are constants to be determined. Then, from Maxwell’s curl equation for H,
given by Eq. (1.169b), we obtain

E

21y(dl) cosé [sin(wt — Br) A sin(wt — Br+6)
= + al‘
drew 3 r?

Io(dl) sin O [sin(wt — Br) B sin(wi — Br)
+ +
drew 3 r?

(1.171)

L AB cos (a); — Br+ 6)] a0

Now, substituting this in Maxwell’s curl equation for E given by Eq. (1.169a), we get

H— Iy(dl) sin6 [2 sin (wt — Br) n 2A cos(wt — Br+96)
- A7 /3}‘3 ,32”3
_ A _
N cos (a)rl2 Br) n cos (a)tr Br+ 8)i| as (1.172)
But Eq. (1.172) must be the same as Eq. (1.170). Therefore, we set
2 sin(a)t—ﬂr)+2A cos(a)t—ﬁr+6):0 (1.173)

’3,,3 /32 r3
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which gives us

(1.174)
(1.175)

Substituting Eqgs. (1.174) and (1.175) in Egs. (1.171) and (1.172), we then have the
complete electromagnetic field due to the Hertzian dipole given by

E— 21o(dl) cosé |:sin (wt — Br) 4 B cos (wt — ﬁr)} a
drew I r?
Io(dl) sin@ |:sin (wt — Br) B cos(wt — Br)
_l’_
drew I r?
5
_ M} a0 (1.176)
H- Io(dl) sin@ |:cos (a)t2— pr) B sin(wt — ,Br)] 2y (1.177)
4 r r

Expressed in phasor form and with some rearrangement, the field components are
given by

= 2Bnlo(dl) cosO[ . 1 17 s

b= [ 7By +(ﬁr)2} ‘ (179
- B*nlo(dl) sinf |:_, 1 1 ii| ipr

Ey = i J TS + TS g\ (1.179)
= Byd) sin6[ 1 1] g

Hy=— [(ﬁr)z +‘]E] e’ (1.180)

The following observations are pertinent to these field expressions:

1. They satisfy all Maxwell’s equations exactly.

For any value of r, the time-average value of the 6§ component of the Poynting
vector is zero, and the time-average value of the r component of the Poynting
vector is completely from the 1/r terms, thereby resulting in the time-average
power crossing all possible spherical surfaces centered at the dipole to be the
same.

3. At low frequencies such that Br< 1, the 1/(8r)® terms dominate the 1/(Br)*
terms, which in turn dominate the 1/(Ar) terms, and e “# (1 —jBr), thereby
reducing the field expressions to the phasor forms of the quasistatic
approximations given by Egs. (1.163) and (1.166).

Finally, they are the familiar expressions obtained by using the magnetic vector
potential approach.
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21. INTRODUCTION

The term electrostatics brings visions of Benjamin Franklin, the ‘“kite and key”
experiment, Leyden jars, cat fur, and glass rods. These and similar experiments heralded
the discovery of electromagnetism and were among some of the first recorded in the
industrial age. The forces attributable to electrostatic charge have been known since the
time of the ancient Greeks, yet the discipline continues to be the focus of much research
and development. Most electrostatic processes fall into one of two categories. Sometimes,
electrostatic charge produces a desired outcome, such as motion, adhesion, or energy
dissipation. Electrostatic forces enable such diverse processes as laser printing,
electrophotography, eclectrostatic paint spraying, powder coating, environmentally
friendly pesticide application, drug delivery, food production, and electrostatic precipita-
tion. Electrostatics is critical to the operation of micro-electromechanical systems
(MEMS), including numerous microsensors, transducers, accelerometers, and the
microfluidic “lab on a chip”. These microdevices have opened up new vistas of discovery
and have changed the way electronic circuits interface with the mechanical world.
Electrostatic forces on a molecular scale lie at the core of nanodevices, and the inner
workings of a cell’s nucleus are also governed by electrostatics. A myriad of self-
assembling nanodevices involving coulombic attraction and repulsion comprise yet
another technology in which electrostatics plays an important role.

Despite its many useful applications, electrostatic charge is often a nuisance to be
avoided. For example, sparks of electrostatic origin trigger countless accidental explosions
every year and lead to loss of life and property. Less dramatically, static sparks can
damage manufactured products such as electronic circuits, photographic film, and thin-
coated materials. The transient voltage and current of a single spark event, called an
electrostatic discharge (ESD), can render a semiconductor chip useless. Indeed, a billion-
dollar industry specializing in the prevention or neutralization of ESD-producing
electrostatic charge has of necessity evolved within the semiconductor industry to help
mitigate this problem.

Unwanted electrostatic charge can also affect the production of textiles or plastics.
Sheets of these materials, called webs, are produced on rollers at high speed. Electrostatic
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charge can cause webs to cling to rollers and jam production lines. Similarly, the sparks
that result from accumulated charge can damage the product itself, either by exposing
light-sensitive surfaces or by puncturing the body of the web.

This chapter presents the fundamentals that one needs in order to understand
electrostatics as both friend and foe. We first define the electrostatic regime in the broad
context of Maxwell’s equations and review several fundamental concepts, including
Coulomb’s law, force-energy relations, triboelectrification, induction charging, particle
electrification, and dielectric breakdown. We then examine several applications of
electrostatics in science and industry and discuss some of the methods used to moderate
the effects of unwanted charge.

2.2. THE ELECTROQUASISTATIC REGIME

Like all of electromagnetics, electrostatics is governed by Maxwell’s equations, the elegant
mathematical statements that form the basis for all that is covered in this book. True
electrostatic systems are those in which all time derivatives in Maxwell’s equations are
exactly zero and in which forces of magnetic origin are absent. This limiting definition
excludes numerous practical electrostatic-based applications. Fortunately, it can be
relaxed while still capturing the salient features of the electrostatic domain. The
electroquasistatic regime thus refers to those cases of Maxwell’s equations in which
fields and charge magnitudes may vary with time but in which the forces due to the electric
field always dominate over the forces due to the magnetic field. At any given moment in
time, an electroquasistatic field is identical to the field that would be produced were the
relevant charges fixed at their instantaneous values and locations.

In order for a system to be electroquasistatic, two conditions must be true: First, any
currents that flow within the system must be so small that the magnetic fields they produce
generate negligible forces compared to coulombic forces. Second, any time variations in
the electric field (or the charges that produce them) must occur so slowly that the effects of
any induced magnetic fields are negligible. In this limit, the curl of E approaches zero, and
the cross-coupling between E and H that would otherwise give rise to propagating waves is
negligible. Thus one manifestation of the electroquasistatic regime is that the sources of
the electric field produce no propagating waves.

The conditions for satisfying the electroquasistatic limit also can be quantified via
dimensional analysis. The curl operator V x has the dimensions of a reciprocal distance
AL, while each time derivative df in Maxwell’s equations has the dimensions of a time Az.
Thus, considering Faraday’s law:

VxE= —ouH
ot

2.1)

the condition that the left-hand side be much greater than the right-hand side becomes
dimensionally equivalent to

E uH (2.2)
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This same dimensional argument can be applied to Ampere’s law:

E
VXH:%-FJ (2.3)

which, with J =0, leads to

> (2.4)

Equation (2.4) for H can be substituted into Eq. (2.2), yielding

E u eEAL
Bl 2.5
AL > At At 25)
This last equation results in the dimensional condition that
At
AL K (2.6)
JIE

The quantity 1/,/ue is the propagation velocity of electromagnetic waves in the medium
(i.e., the speed of light), hence Ar/,/ue is the distance that a wave would travel after
propagating for time At. If we interpret At as the period T of a possible propagating wave,
then according to Eq. (2.6), the quasistatic limit applies if the length scale AL of the system
is much smaller than the propagation wavelength at the frequency of excitation.

In the true electrostatic limit, the time derivatives are exactly zero, and Faraday’s law
Eq. (2.1) becomes

VxE=0 2.7
This equation, together with Gauss’ law
V.¢E = 14 (28)

form the foundations of the electrostatic regime. These two equations can also be
expressed in integral form as:

EI;E .dl=0 (2.9)
and

J£E~dA :Jpa’V (2.10)
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Figure 214 A simple system consisting of two parallel electrodes of area A4 separated by a
distance d.

The curl-free electric field Eq. (2.7) can be expressed as the gradient of a scalar
potential &:

E=-Vo 2.11)

which can be integrated with respect to path length to yield the definition of the voltage
difference between two points a and b:

a
Vab:—J E-dl 2.12)
b

Equation (2.12) applies in any geometry, but it becomes particularly simple for parallel-
electrode geometry. For example, the two-electrode system of Fig. 2.1, with separation
distance d, will produce a uniform electric field of magnitude

E, :5 (2.13)

when energized to a voltage V. Applying Gauss’ law to the inner surface of the either
electrode yields a relationship between the surface charge p, and E,,

¢E, = p, (2.14)

Here p, has the units of coulombs per square meter, and ¢ is the dielectric permittivity of
the medium between the electrodes. In other, more complex geometries, the solutions to
Egs. (2.9) and (2.10) take on different forms, as discussed in the next section.

2.3. DISCRETE AND DISTRIBUTED CAPACITANCE
When two conductors are connected to a voltage source, one will acquire positive charge

and the other an equal magnitude of negative charge. The charge per unit voltage is called
the capacitance of the electrode system and can be described by the relationship

cz% (2.15)
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Here +£Q are the magnitudes of the positive and negative charges, and V is the voltage
applied to the conductors. It is easily shown that the capacitance between two parallel
plane electrodes of area 4 and separation d is given approximately by

C=-"% (2.16)

where ¢ is the permittivity of the material between the electrodes, and the approximation
results because field enhancements, or “fringing effects,” at the edges of the electrodes
have been ignored. Although Eq. (2.16) is limited to planar electrodes, it illustrates the
following basic form of the formula for capacitance in any geometry:

permittivity x area parameter
length parameter

Capacitance = (2.17)

Table 2.1 provides a summary of the field, potential, and capacitance equations for
energized electrodes in several different geometries.

2.4. DIELECTRIC PERMITTIVITY

The dielectric permittivity of a material describes its tendency to become internally
polarized when subjected to an electric field. Permittivity in farads per meter can also can
be expressed in fundamental units of coulombs per volt-meter (C/V-m). The dielectric
constant, or relative permittivity, of a substance is defined as its permittivity normalized to
€0, Where gy=8.85 x 107" F/m is the permittivity of free space. For reference purposes,
relative permittivity values for several common materials are provided in Table 2.2. Note
that no material has a permittivity smaller than &.

2.5. THE ORIGINS OF ELECTROSTATIC CHARGE

The source of electrostatic charge lies at the atomic level, where a nucleus having a fixed
number of positive protons is surrounded by a cloud of orbiting electrons. The number of
protons in the nucleus gives the atom its unique identity as an element. An individual atom
is fundamentally charge neutral, but not all electrons are tightly bound to the nucleus.
Some electrons, particularly those in outer orbitals, are easily removed from individual
atoms. In conductors such as copper, aluminum, or gold, the outer electrons are weakly
bound to the atom and are free to roam about the crystalline matrix that makes up the
material. These free electrons can readily contribute to the flow of electricity. In insulators
such as plastics, wood, glass, and ceramics, the outer electrons remain bound to individual
atoms, and virtually none are free to contribute to the flow of electricity.

Electrostatic phenomena become important when an imbalance exists between
positive and negative charges in some region of interest. Sometimes such an imbalance
occurs due to the phenomenon of contact electrification [1-8]. When dissimilar materials
come into contact and are then separated, one material tends to retain more electrons and
become negatively charged, while the other gives up electrons and become positively
charged. This contact electrification phenomenon, called triboelectrification, occurs at the
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Table 2.1 Field, Potential, and Capacitance Expressions for Various Electrode Geometries

Geometry E field Potential Capacitance
Planar ,
E =2 o=vL o4
Area A YT d d d
y=d
y=0
Cylindrical
V 2meh
Ey = b = v In é C= e
R rin(b/a) In(b/a) \r In(b/a)
Length h
Spherical
vV _
Er:27 = Vg(b r) C =4ne ba
r2[1/a— 1/b] r(b—a) b—a
b
Wedge
V
b Ey=— d=V- C:%In(é>
/{ 0=a or o o a
a
— 81 o
Length h
Parallel lines (at :I:aV) o~ el . <’_1> cn neh
O @ In(d/a) D) In(d/a)
“—d —3 i .
r1; 1o = distances to lines
d>>a
Wire to plane 2me
Cr—o—
a -1
cosh™ [(h + a)/da]
O
h h>a
_

points of intimate material contact. The amount of charge transferred to any given contact
point is related to the work function of the materials. The process is enhanced by friction
which increases the net contact surface area. Charge separation occurs on both conductors
and insulators, but in the former case it becomes significant only when at least one of the
conductors is electrically isolated and able to retain the separated charge. This situation is
commonly encountered, for example, in the handling of conducting powders. If neither
conductor is isolated, an electrical pathway will exist between them, and the separated
charges will flow together and neutralize one another. In the case of insulators, however,
the separated charges cannot easily flow, and the surfaces of the separated objects remain
charged. The widespread use of insulators such as plastics and ceramics in industry and
manufacturing ensures that triboelectrification will occur in numerous situations.
The pneumatic transport of insulating particles such as plastic pellets, petrochemicals,
fertilizers, and grains are particularly susceptible to tribocharging.
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Table 2.2 Relative Permittivities of Various Materials

Air 1 Polycarbonate ~3.0
Alumina 8.8 Polyethylene 2.3
Barium titanate (BaTiO3) 1200 Polyamide ~3.4-45
Borosilicate glass 4 Polystyrene 2.6
Carbon tetrachloride 2.2 Polyvinyl chloride 6.1
Epoxy ~3.4-3.7 Porcelain ~5-8
Ethanol 24 Quartz 3.8
Fused quartz (SiO,) 3.9 Rubber ~2-4
Gallium arsenide 13.1 Selenium 6
Glass ~4-9 Silicon 11.9
Kevlar ~3.545 Silicon nitride 7.2
Methanol 33 Silicone ~3.2-4.7
Mylar 3.2 Sodium chloride 5.9
Neoprene ~4-6.7 Styrofoam 1.03
Nylon ~3.54.5 Teflon 2.1
Paper ~1.5-3 Water ~ 80
Paraffin 2.1 Wood (dry) 1.4-2.9
Plexiglas 2.8

Table 2.3 The Triboelectric Series

POSITIVE

Quartz Copper

Silicone Zinc

Glass Gold

Wool Polyester

Polymethyl methacrylate (Plexiglas) Polystyrene

Salt (NaCl) Natural rubber

Fur Polyurethane

Silk Polystyrene

Aluminum Polyethylene

Cellulose acetate Polypropylene

Cotton Polyvinyl chloride

Steel Silicon

Wood Teflon

Hard rubber NEGATIVE

Source: Compiled from several sources [9-13].

The relative propensity of materials to become charged following contact and
separation has traditionally been summarized by the triboelectric series of Table 2.3. (Tribo
is a Greek prefix meaning frictional.) After a contact-and-separation event, the material
that is listed higher in the series will tend to become positively charged, while the one that
is lower in the series will tend to become negatively charged. The vagueness of the phrase
“will tend to” in the previous sentence is intentional. Despite the seemingly reliable order
implied by the triboelectric series, the polarities of tribocharged materials often cannot be
predicted reliably, particularly if the materials lie near each other in the series. This
imprecision is evident in the various sources [9—13] cited in Table 2.3 that differ on the
exact order of the series. Contact charging is an imprecise science that is driven by effects
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occurring on an atomic scale. The slightest trace of surface impurities or altered surface
states can cause a material to deviate from the predictions implied by the triboelectric
series. Two contact events that seem similar on the macroscopic level can yield entirely
different results if they are dissimilar on the microscopic level. Thus contact and separation
of like materials can sometimes lead to charging if the contacting surfaces are
microscopically dissimilar. The triboelectric series of Table 2.3 should be viewed as a
probabilistic prediction of polarity during multiple charge separation events. Only when
two materials are located at extremes of the series can their polarities be predicted reliably
following a contact-charging event.

2.6. WHEN IS “STATIC” CHARGE TRULY STATIC?

The term static electricity invokes an image of charge that cannot flow because it is held
stationary by one or more insulators. The ability of charge to be static in fact does depend
on the presence of an insulator to hold it in place. What materials can really be considered
insulators, however, depends on one’s point of view. Those who work with electrostatics
know that the arrival of a cold, dry winter is synonymous with the onset of “static
season,” because electrostatic-related problems are exacerbated by a lack of humidity.
When cold air enters a building and is warmed, its relative humidity declines noticeably.
The tendency of hydroscopic surfaces to absorb moisture, thereby increasing their surface
conductivities, is sharply curtailed, and the decay of triboelectric charges to ground over
surface-conducting pathways is slowed dramatically. Regardless of humidity level,
however, these conducting pathways always exist to some degree, even under the driest
of conditions. Additionally, surface contaminants such as dust, oils, or residues can add to
surface conduction, so that eventually all electrostatic charge finds its way back to ground.
Thus, in most situations of practical relevance, no true insulator exists. In electrostatics,
the definition of an insulator really depends on how long one is willing to wait. Stated
succinctly, if one waits long enough, everything will look like a perfect conductor sooner
or later. An important parameter associated with “static electricity” is its relaxation time
constant—the time it takes for separated charges to recombine by flowing over conducting
pathways. This relaxation time, be it measured in seconds, hours, or days, must always be
compared to time intervals of interest in any given situation.

2.7. INDUCTION CHARGING

As discussed in the previous section, contact electrification can result in the separation of
charge between two dissimilar materials. Another form of charge separation occurs when a
voltage is applied between two conductors, for example the electrodes of a capacitor.
Capacitive structures obey the relationship

0 ==CV (2.18)

where the positive and negative charges appear on the surfaces of the opposing electrodes.
The electrode which is at the higher potential will carry +Q; the electrode at the lower
potential will carry —Q. The mode of charge separation inherent to capacitive structures is
known as inductive charging. As Eq. (2.18) suggests, the magnitude of the inductively
separated charge can be controlled by altering either C or V. This feature of induction
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charging lies in contrast to triboelectrification, where the degree of charge separation often
depends more on chance than on mechanisms that can be controlled.

If a conductor charged by induction is subsequently disconnected from its source of
voltage, the now electrically floating conductor will retain its acquired charge regardless of
its position relative to other conductors. This mode of induction charging is used often in
industry to charge atomized droplets of conducting liquids. The sequence of diagrams
shown in Fig. 2.2 illustrates the process. The dispensed liquid becomes part the capacitive
electrode as it emerges from the hollow tube and is charged by induction. As the droplet
breaks off, it retains its charge, thereafter becoming a free, charged droplet. A droplet of a
given size can be charged only to the maximum Raleigh limit [9,14,15]:

Onmax = 87 /607 R, (2.19)

Here y is the liquid’s surface tension and R, the droplet radius. The Raleigh limit signifies
the value at which self repulsion of the charge overcomes the surface tension holding the
droplet together, causing the droplet to break up.

2.8. DIELECTRIC BREAKDOWN

Nature is fundamentally charge neutral, but when charges are separated by any
mechanism, the maximum quantity of charge is limited by the phenomenon of dielectric
breakdown. Dielectric breakdown occurs in solids, liquids and gases and is characterized
by the maximum field magnitude that can be sustained before a ficld-stressed material
loses its insulating properties.* When a solid is stressed by an electric field, imperfections

Figure 2.2 Charging a conducting liquid droplet by induction. As the droplet breaks off (d), it
retains the charge induced on it by the opposing electrode.

*Breakdown in vacuum invariably occurs over the surfaces of insulating structures used to support
opposing electrodes.
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or stray impurities can initiate a local discharge, which degrades the composition
of the material. The process eventually extends completely through the material, leading
to irreversible breakdown and the formation of a conducting bridge through which
current can flow, often with dramatic results. In air and other gases, ever-present
stray electrons (produced randomly, for example, by ionizing cosmic rays) will accelerate
in an electric field, sometimes gaining sufficient energy between collisions to ionize
neutral molecules, thereby liberating more electrons. If the field is of sufficient
magnitude, the sequence of ensuing collisions can grow exponentially in a self-
sustaining avalanche process. Once enough electrons have been liberated from their
molecules, the gas becomes locally conducting, resulting in a spark discharge. This
phenomenon is familiar to anyone who has walked across a carpet on a dry day and then
touched a doorknob or light switch. The human body, having become electrified with
excess charge, induces a strong electric field on the metal object as it is approached,
ultimately resulting in the transfer of charge via a rapid, energetic spark. The most
dramatic manifestation of this type of discharge is the phenomenon of atmospheric
lightning.

A good rule of thumb is that air at standard temperature and pressure will break
down at a field magnitude of about 30kV/cm (i.e., 3MV/m or 3 x 10°V/m). This number
increases substantially for small air gaps of 50pum or less because the gap distance
approaches the mean free path for collisions, and fewer ionizing events take place. Hence a
larger field is required to cause enough ionization to initiate an avalanche breakdown. This
phenomena, known as the Paschen effect, results in a breakdown-field versus gap-distance
curve such as the one shown in Fig. 2.3 [9,10,12,18,19]. The Paschen effect is critical to the
operation of micro-electromechanical systems, or MEMS, because fields in excess of
30kV/cm are required to produce the forces needed to move structural elements made
from silicon or other materials.

Paschen Curve in Air at 1 ATM
70 T . . . . T r
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Figure 2.3 Paschen breakdown field vs. gap spacing for air at 1 atmosphere. For large gap
spacings, the curve is asymptotic to 3 x 10°V/m.
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2.9. CORONA DISCHARGE

One of the more common methods for intentionally producing electrostatic charge
involves the phenomenon of corona discharge. Corona is a partial breakdown that occurs
when two electrodes, one sharp and the other much less so, are energized by a voltage
source. In such a configuration, the electric field around the sharp electrode is greatly
enhanced. At some critical level of voltage, called the onset voltage, the field near the sharp
electrode exceeds the dielectric breakdown strength of the gas, typically air. This localized
breakdown produces free electrons and positive ions via the avalanche process. In the
remainder of the electrode space, however, the field is substantially weaker, and no
ionization takes place. Thus the breakdown that occurs near the stressed electrode
provides a source of ions, but no spark discharge occurs. If the stressed electrode is
positive, the positive ions will be repelled from it, providing an abundant source of positive
ions. If the stressed electrode is negative, the free electrons will be repelled from it but will
quickly attach to neutral molecules upon leaving the high field region, thereby forming
negative ions. The phenomenon of corona is illustrated graphically in Fig. 2.4 for a
positive source electrode.

For either ion polarity, and in most electrode configurations, the relationship
between applied voltage and the resulting corona current follows an equation of the form
ic=gV(V —V¢), where V¢ is the critical onset voltage of the electrode system and g is a
constant. The values of g and V¢ will depend on many factors, including electrode
geometry, spacing, radii of curvature, and surface roughness, as well as on ion mobility,
air temperature, and air pressure. One must generally determine g and V< empirically, but
in coaxial geometry this relationship can be solved analytically [18]. The result is a
complex formula, but for small currents, the equation for cylindrical geometry can be
approximated by

i = 47'[8() KV(V - Vc)
L T B In(b/a)

(2.20)

Here i; is the current per unit axial length, b and a are the outer and inner coaxial radii,
respectively, and « is the ion mobility (about 2.2 x 107*m?/V-s for air at standard
temperature and pressure). As the applied voltage V' is increased, corona will first occur at
the corona onset voltage V. For coaxial electrodes with an air dielectric, V¢ is equal to

Figure 2.4 Basic mechanism of corona discharge near a highly stressed electrode. Positive
corona is shown; a similar situation exists for negative corona.
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Figure 2.5 Plot of corona onset voltage V. vs. inner conductor radius a for coaxial electrodes with
10-cm outer conductor radius.

the voltage at which the electric field on the surface of the inner electrode first reaches the
value given by Peek’s equation [18,20]:

0.0308
Epeek = mEpx <1 + )

NG (2.21)
Here Ep =3 x 10°V/m is the breakdown strength of air under uniform field conditions, a
is the inner conductor radius in meters, m is an empirical surface roughness factor, and
standard temperature and pressure are assumed. Note that E ., will always be larger than
the breakdown field Ey,. Peek’s equation describes the field that must be established at the
inner conductor surface before local breakdown (corona) can occur. The equation is also
approximately valid for parallel-wire lines. For smooth conductors m =1, and for rough
surfaces m=0.8.
In a coaxial system, the clectric field magnitude at the inner radius a is given by

%

~ aln(b/a) (222

E(r)
hence the corona onset voltage becomes

b 0.0308 b
VC = Epcck aln <Z) = Ebk <l + 7) aln <Z> (223)

A plot of V¢ versus a for the case »=10cm is shown in Fig. 2.5.

2.10. CHARGES AND FORCE

The electrostatic force fj, between two charges ¢, and ¢, separated by a distance r is
governed by Coulomb’s law, a fundamental principle of physics:

q1q
fa=g (2.24)
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The direction of this force is parallel to a line between the charges. All other force
relationships in electrostatics derive from Coulomb’s law. If a collection of charges
produces a net electric field E, it is easily shown by integration that the collective force
exerted on a solitary charge g by all the other charges becomes just gE. This simple
relationship comprises the electric field term in the Lorentz force law of electromagnetics:

F = ¢(E+v x B) (2.25)

In many practical situations in electrostatics, one is interested in the forces on conductors
and insulators upon which charges reside. Numerous mathematical methods exist for
predicting such forces, including the force-energy method, the boundary element method,
and the Maxwell stress tensor [21-24]. Of these three methods, the force-energy method is
the one most easily understood from basic principles and the most practical to use in many
situations. The analysis that follows represents an abridged derivation using the force-
energy method.

We first consider a constant-charge system in which two objects carrying fixed
charges experience a net force Fy (as yet unknown). One such hypothetical system is
illustrated in Fig. 2.6. If one of the objects is displaced against Fy by an incremental
distance dx relative to the other object, then the mechanical work dW,, performed on the
displaced object will be F dx. Because the objects and their fixed charges are electrically
isolated, the work transferred to the displaced body must increase the energy stored in the
system. The stored electrostatic energy W, thus will be augmented by dW,,, from which it
follows that

d W‘H
Fo="" (2.26)

As an example of this principle, consider the parallel-electrode structure of Fig. 2.7, for
which the capacitance is given by

=" (2.27)
X

Figure 2.6 One charged object is displaced relative to another. The increment of work added to
the system is equal the electrostatic force Fy times the displacement dx.
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Figure 2.7 Parallel electrodes are energized by a voltage source that is subsequently disconnected.
Fixed charges £Q remain on the electrodes.

If the electrodes are precharged, then disconnected from their source of voltage, the
charge will thereafter remain constant. The stored electrical energy can then be expressed
as [24]

Q2

W, =
2C

(2.28)

The force between the electrodes can be found by taking the x derivative of this
equation:

_dW(,_QZd
7 ax T 2 dx

2
(ﬁ) - 2%1 (2.29)

Equation (2.29) also describes the force between two insulating surfaces of area A that
carry uniform surface charge densities p,==+ Q/A4.

It is readily shown [21-24] that applying the energy method to two conductors left
connected to the energizing voltage V yields a similar force equation:

_aw,

F
r dx

(2.30)

Here W, is the stored electric energy expressed as 1/2C V> . When this formula is applied to
a system in which voltage, not charge, is constrained, the force it predicts will always be
attractive.

Equation (2.30) is readily applied to the parallel-electrode structure of Fig. 2.7 with
the switch closed. The force between the conductors becomes

, 2 A AV?
dw, V°d <8 ):_s v (231)

dx 2 dx 2x2

X

This force is inversely proportional to the square of the separation distance x.

2.11. PARTICLE CHARGING IN AIR

Many electrostatic processes use the coulomb force to influence the transport of charged
airborne particles. Examples include electrostatic paint spraying [10,16], electrostatic
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Figure 2.8 Conducting sphere distorts an otherwise uniform electric field. The field components
are given by Eq. (2.32). If the source of the field produces ions, the latter will follow the field lines to
the particle surface.

powder coating, electrostatic crop spraying [25,26], electrostatic drug delivery, and
electrostatic precipitation. These processes are described later in this chapter. Airborne
particles are sometimes charged by induction, requiring that initial contact be made with a
conducting electrode. In other processes, particles are charged by ions in the presence of an
electric field.

In this section, we examine the latter process in more detail. To a first
approximation, many airborne particles can be treated as conducting spheres—an
assumption that greatly simplifies the equations governing particle charging. The
approximation requires that the particle have a shape free from prominent asymmetries
and also that the intrinsic charging time of the particle, given by the ratio ¢/o of the
particle’s permittivity to conductivity, be much shorter than other time scales of interest.
Suppose that an uncharged particle of radius R, is situated in a uniform, downward-
pointing electric field E,, as depicted in Fig. 2.8. A “uniform field” in this case is one that
does not change spatially over the scale of at least several particle radii. Further suppose
that a uniform, homogeneous source of unipolar ions is produced by the system and
carried toward the particle by the electric field. These ions might be produced, for example,
by some form of corona discharge. If we assume the ion density to be small enough such
that space-charge perturbation of the field is negligible, the electric field components in the
neighborhood of the particle become:

2R}
E, = E0<1 +7”) cosf + Q

4rre,r?

and
R3
Ey=E, (r—;’ — 1) sin@ (2.32)

with E,=0 . Here Q represents any charge that the conducting particle may carry. If Q is
positive, the second term in the equation for E, adds a uniform radial component that
points outward.
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Figure 2.9 As the particle collects charge Q, the field lines are increasingly excluded from the
particle surface.

Figure 2.8 shows the field pattern for the case Q =0. Note that E is everywhere
perpendicular to the particle surface, where Ey=0. lons will be transported to the surface
of the particle by the field, thereby increasing the magnitude of Q. If the ions are positive,
only field lines leading into the particle will contribute to its charging. Field lines that
originate from the surface of the particle cannot carry ions, because no source of ions
exists there. As charge accumulates on the particle and the second term for E, in Eq. (2.32)
becomes larger, the field pattern for Q #0 takes the form shown in Fig. 2.9. The reduction
in magnitude of the inward-pointing field lines restricts the flow of ions to the particle
surface. When Q/4meqr” in Eq. (2.32) becomes equal to the factor E,(1 + ZR;/rS) atr=R,,
all field lines will originate from the particle itself, so that further ion charging of the
particle will cease. Under this condition, E, at §=180° and r= R, becomes zero. The
charge limit Qg can thus be found by setting E, in Eq. (2.32) to zero, yielding

Qsat
R~ (2.33)
or
Qsar = 12780 R E, (2.34)

The value given by Eq. (2.34) is called the saturation charge of the particle, or sometimes
the Pauthenier limit [27]. It represents the maximum charge that the particle can hold. For
a 100-um particle situated in a 100-kV/m field, for example, the saturation charge
calculated from Eq. (2.34) becomes 0.33 pC.

Note that Qs,, increases with particle radius and the ambient field E,, but it is not
dependent on ion mobility or ion density. These latter quantities affect only the rate of
particle charging [15,24].

For Q < Q.. it can be shown via surface integration of the field equation, Eq. (2.32),
that the ion current to the particle is given by

2
9 ) (2.35)

sat

d
ip=—= 37R) EoNion K<1 -
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where N is the ambient ion density, g;o, the ion charge, and « the ion mobility. Solving this
differential equation results in an expression for Q as a function of time:

_ t/t
o@) = Qsatm (2.36)

This hyperbolic charging equation is governed by the time constant t=4ey/Ng;on k. For
the typical values N=10"ions/m® and x =2 x 10 ~*m?/Vs for singly charged ions in air,
particle charging will be governed by the hyperbolic charging time constant =1.1 ms.
Note that this latter value is independent of particle radius and electric field magnitude.

212. CHARGED PARTICLE MOTION

A charged, airborne particle will experience two principal forces: electrostatic and
aerodynamic. The former will be given by

Felee = QE (237)

where Q is the particle charge, while the latter will be given by the Stokes’ drag
equation [9,15]:

Fdrag = _67T77Rp(Up - Uair) (238)

Here U,, is the particle velocity, U, the ambient air velocity (if any), and n the kinematic
viscosity of air. At standard temperature and pressure, = 1.8 x 107> N-s/m? [9]. Equation
(2.38) is valid for particles in the approximate size range 0.5 to 25 pm, for which inertia can
usually be ignored. For smaller particles, Brownian motion becomes the dominant
mechanical force, whereas for particles larger than about 25 pm, the Reynolds number for
typical values of U, approaches unity and the Stokes’ drag limit no longer applies.

The balance between Fje. and Fgy,, determines the net particle velocity:

Y

=Uy+-——E
Ur Um+6m7Rp

(2.39)

The quantity Q/6nnR,, called the particle mobility, describes the added particle velocity
per unit electric field. The mobility has the units of m?/V -s.

2.13. ELECTROSTATIC COATING

Electrostatic methods are widely used in industry to produce coatings of excellent quality.
Electrostatic-assisted spraying techniques can be used for water or petroleum-based paints
as well as curable powder coatings, surface lacquers, and numerous chemical substrates. In
electrostatic paint spraying, microscopic droplets charged by induction are driven directly
to the surface of the work piece by an applied electric field. In power coating methods, dry
particles of heat-cured epoxies or other polymers are first charged, then forced to the
surface of the work piece by electrostatic forces. Similar spraying techniques are used to
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coat crops with minimal pesticides [17, 25, 26]. In one system, electrostatic methods are
even used to spray tanning solution or decontamination chemicals on the human body.
Electrostatic methods substantially reduce the volume of wasted coating material, because
particles or droplets are forced directly to the coated surface, and only small amounts miss
the target to become wasted product.

2.14. ELECTROSTATIC PAINT SPRAYING

The basic form of an electrostatic paint spray system is illustrated in Fig 2.10. Paint is
atomized from a pressurized nozzle that is also held at a high electric potential relative to
ground. Voltages in the range 50kV to 100kV are typical for this application. As paint is
extruded at the nozzle outlet, it becomes part of the electrode system, and charge is
induced on the surface of the liquid jet. This charge will have the same polarity as the
energized nozzle. As each droplet breaks off and becomes atomized, it carries with it its
induced charge and can thereafter be driven by the electric field to the work piece. Very
uniform charge-to-mass ratios Q/m can be produced in this way, leading to a more
uniform coating compared to nonelectrostatic atomization methods. The technique works
best if the targeted object is a good conductor (e.g., the fender of an automobile), because
the electric field emanating from the nozzle must terminate primarily on the work piece
surface if an efficient coating process is to be realized.

Once a droplet breaks away from the nozzle, its trajectory will be determined by a
balance between electrostatic forces and viscous drag, as summarized by Eq. (2.39). If the
ambient air velocity Uy;, is zero, this equation becomes

U, = 0
P 6 R,

(2.40)

Of most interest is the droplet velocity when it impacts the work surface. Determining its
value requires knowledge of the electric field at the work surface, but in complex

Figure 2.10 Basic electrostatic spray system. Droplets are charged by induction as they exit the
atomization nozzle.
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geometries, analytical solutions are seldom possible. Estimation or empirical measurement
using a field mill (see Sec. 2.18) is usually required. Velocities in the range 0.1 to 100 m/s
are common in electrostatic painting operations [9-16].

Note that the particle radius in Eq. (2.40) can be expressed in terms of the droplet
mass, given by

o 47tR[3,)/

3 (2.41)

where is the mass density of the liquid. The velocity equation, Eq. (2.40), can thus be
written as

2
:2prgE
P70 M

(2.42)

This form of the equation illustrates the significance of the charge-to-mass ratio of the
droplet. For a given electric field magnitude, the droplet velocity will be proportional to
Q/M. Because Q has a maximum value determined by either the Raleigh limit of Eq. (2.19)
or the saturation charge limit of Eq. (2.34), Eq. (2.42) will be limited as well. For a 100-um
droplet of unity density charged to its saturation limit in a 100kV/m field, the impact
velocity becomes about 0.1 m/s.

2.15. ELECTROPHOTOGRAPHY

The “‘simple” copy machine has become common in everyday life, but in reality, this
machine is far from simple. The copier provides a good example of how electrostatics can
be used to transfer particles between surfaces. The transfer process, first invented by
Chester Carlson around 1939 [10], is also known as electrophotography, or sometimes
xerography. Although the inner workings of a copy machine are complex [28], its basic
features can be understood from the simplified diagram of Fig. 2.11. A thin photosensitive
layer is deposited over a grounded surface, usually in the form of a rotating drum. The
photosensitive material has the property that it remains an insulator in the dark but
becomes partially conducting when exposed to light.

In the first step, the photoconductor is charged by ions from a corona source. This
device, sometimes called a corotron [21], is scanned just over the surface of the
photoconductor, allowing ions to migrate and stick to the photoconductor surface. These
deposited charges are strongly attracted to their image charges in the underlying ground
layer, but because the dark photoconductor is an insulator, the charges cannot move
toward each other, but instead remain fixed in place.

Next, light projected from the image to be reproduced is focused on the
photoconductor surface. The regions of the image corresponding to black remain
insulating, while the white areas are exposed to light and become conducting. The charge
deposited over these latter regions flows through the photoconductor to the ground plane,
thereby discharging the photoconductor. The remaining electrostatic pattern on the drum
is called a latent image.

The photoconductor is next exposed to toner particles that have been charged,
usually by triboelectrification, to a polarity opposite that of the latent image. Some field
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Figure 2.1 Basic elements of an electrostatic photocopier. As the light-sensitive drum rotates, it is
charged, exposed to the image, dusted with toner, brought into contact with the paper, then
discharged, and cleaned. The imprinted page passes through a fuser which melts the toner into
the paper.

lines from the latent image extend above the surface and are of sufficient magnitude to
capture and hold the charged toner particles. The latent image is thus transformed into a
real image in the form of deposited toner particles.

In the next step of the process, image on the toner-coated drum is transferred to
paper. The paper, backed by its own ground plane, is brought in proximity to the
photoconductor surface. If the parameters are correctly chosen, the toner particles will be
preferentially attracted to the paper and will jump from the photoconductor to the paper
surface. The paper is then run through a high-temperature fuser which melts the toner
particles into the paper.

216. ELECTROSTATIC PRECIPITATION

Electrostatic precipitation is used to remove airborne pollutants in the form of smoke,
dust, fumes, atomized droplets, and other airborne particles from streams of moving gas
[29-34]. Electrostatic precipitators provide a low cost method for removing particles of
diameter 10 um or smaller. They are often found in electric power plants, which must
meet stringent air quality standards. Other applications include the cleaning of gas streams
from boilers, smelting plants, blast furnaces, cement factories, and the air handling
systems of large buildings. Electrostatic precipitators are also found on a smaller scale in
room air cleaners, smoke abatement systems for restaurants and bars, and air cleaning
systems in restaurants and hospitals (e.g., for reducing cigarette smoke or airborne
bacteria). Electrostatic precipitators provide an alternative to bag house filters which
operate like large vacuum-cleaner bags that filter pollutants from flowing gas.
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Figure 212 Schematic diagram of a single-stage, cylindrical electrostatic precipitator. Dust-laden
air enters at the bottom of the stack; clean air exits the top. Negative corona current charges the
particles, which then precipitate on the chamber walls. Mechanical “rapping” is used to help
dislodge the dust to the collection bin.

The pressure drop across a bag-house filtration system can be very large, hence smaller
pressure drop is one principal advantage of electrostatic precipitator systems. Another
advantage of an electrostatic precipitator is its lower power consumption compared to a
bag-house system, because less air handling equipment is required. The overall pressure
drop in a large, industrial-scale electrostatic precipitator, for which the gas flow rate may
exceed 1000 m’/min, is typically less than 10 mm H,O from source to exit [32].

The basic elements of a precipitator system are shown in Fig. 2.12. The particle-laden
gas stream flows through a collection of corona electrodes mounted inside a rigid duct.
The corona electrodes can be thin, parallel wires suspended on insulators, or a series of
sharp points facing the duct walls. As discussed in Sec. 2.9, corona current will flow once
the applied voltage exceeds the critical onset value expressed by Peek’s formula, Eq. (2.21).
In a large industrial precipitator, this onset voltage might be in the tens-of-kilovolts range,
while the onset voltage in a small scale room precipitator is usually below 10kV. It is
difficult to achieve stable corona discharge below about 5kV because the small gap sizes
required to achieve Peek’s field often lead to complete spark breakdown across the
electrode gap.

The electrodes in an electrostatic precipitator serve two functions. The corona
discharge produces a steady stream of ions which charge the airborne particles via the ion-
impact charging mechanism described in Sec. 2.11. The charged particles then experience a
transverse coulomb force gE and migrate toward the walls of the duct where they are
collected and later removed by one of several cleaning methods. These methods include
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periodic washing of the duct walls, mechanical rapping to cause the particles to fall into a
collection bin, and replacement of the duct’s inner lining. This last method is usually
reserved for small, bench-top systems.

Although most airborne particles will be neither spherical nor perfectly conducting,
the model of Egs. (2.32)-(2.36) often provides a reasonable estimate of particle charging
dynamics. One important requirement is that the particles have enough residence time in
the corona-ion flux to become charged to saturation and to precipitate on the collection
walls of the duct.

Two problems of concern in the design of electrostatic precipitators include gradient
force motion of dielectric or conducting particles, and a phenomenon known as back
ionization. Gradient force, which is independent of particle charge, occurs whenever a
particle is situated in an electric field whose magnitude changes with position, that is, when
VIE| # 0. This phenomenon is illustrated schematically in Fig. 2.13 for a conducting,
spherical particle. The free electrons inside the particle migrate toward the left and leave
positive charge to the right, thereby forming a dipole moment. The electric field in
Fig. 2.13a is stronger on the right side of the particle, hence the positive end of the dipole
experiences a stronger force than does the negative end, leading to a net force to the right.
In Fig. 2.13b, the field gradient and force direction, but not the orientation of the dipole,
are reversed. For the simple system of Fig. 2.13, the force can be expressed by the one-
dimensional spatial derivative of the field:

d

E,

(2.43)

In three-dimensional vector notation, the dipole moment is usually expressed as

p=qd

where d is a vector pointing from the negative charge of the dipole to its positive charge.
Hence in three dimensions, Eq. (2.43) becomes

F=(p V)E (2.44)

Figure 2.13 A conducting or dielectric particle in a nonuniform field. The particle is polarized,
pulling the positive end in the direction of the field lines and the negative end against them. The net
force on the particle will be toward the side that experiences the stronger field magnitude. (a) Positive
force dominates; (b) negative force dominates.
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Equation (2.44) also applies in the more general case of a diclectric particle, where the
force density f is expressed in terms of the polarization vector P =np:

f=(P-V)E (2.45)

where 7 is the number of polarized dipoles per unit volume.

In the corona electrode configuration of an electrostatic precipitator, the field
gradient is most pronounced near the corona-producing electrode. Here the gradient force
can exceed the coulomb force in magnitude and cause pollutant particles to migrate
toward, and deposit on, the high voltage electrode rather than on the collector plate. This
phenomenon reduces the efficiency of the precipitator but can be avoided by ensuring that
the particles acquire saturation charge quickly as they flow through the duct.

The second problem in precipitation, called back ionization, or sometimes back
corona [32,33], occurs when the precipitated particles have high resistivity. The corona
current passing through the built-up layer on its way to the duct walls can raise the surface
potential of the layer. If this surface potential exceeds the breakdown strength of air, a
discharge occurs in the layer, liberating electrons and producing positive ions. These ions
migrate toward the negative electrode and tend to neutralize the pollutant particles. This
process can greatly reduce the collection efficiency of the precipitator.

217. FIELD AND CHARGE MEASUREMENT

The ability to measure electrostatic fields and charge is important in many scientific and
engineering disciplines. Measuring these quantities usually requires specialized instru-
mentation, because a standard voltmeter is useful in only a limited set of circumstances.
For example, if one attempts to measure the potential of a charged, electrically isolated
conductor with a voltmeter, as in Fig. 2.14, the internal impedance of the meter will fix the
conductor potential at zero and allow its charge to flow to ground, thereby obscuring the
original quantity to be measured. A standard voltmeter is altogether useless for measuring
the potential of a charged insulator, because a voltmeter requires that some current,
however small, be drawn from the point of measurement. Moreover, the surface of a
charged insulator need not be an equipotential; hence the concept of voltage becomes
somewhat muddied.

Figure 2.14 Attempting to measure the voltage of a charged, isolated conductor (a) results in a
discharged object of zero potential (b).
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218. ELECTROSTATIC FIELD MILL

Numerous devices have been developed to measure electrostatic fields and voltages,
including force sensors [35] and high-impedance solid-state sensors [35-38], but the most
prevalent for measuring electrostatic fields has been the variable capacitance field mill
[9,10,39,40]. The term field mill is used here in its broadest sense to describe any
electrostatic field measuring device that relies on mechanical motion to vary the
capacitance between the sensor and the source of the field. The variable aperture variety
is prevalent in atmospheric science, electric power measurements, and some laboratory
instruments, while the vibrating capacitor version can be found in numerous laboratory
instruments.

The motivation for the variable aperture field mill comes from the boundary
condition for an electric field incident upon a grounded, conducting electrode:

¢E = p, (2.46)
or
E=" (2.47)
&

where p, is the surface chanrge density. A variable aperture field mill modulates the
exposed area of a sensing electrode, so that the current flowing to the electrode becomes

(0 _dpd_ 4
Tdr T dr T dr

(2.48)

For a time-varying, periodic A(?), the peak current magnitude will be proportional to the
electric field incident upon the field mill.

One type of variable aperture field mill is depicted in Fig. 2.15. A vibrating vane
periodically blocks the underlying sense electrode from the incident field, thereby causing

Figure 2145 Simplified rendition of the variable-aperture field mill.



Applied Electrostatics 77

the induced charge to change periodically. If the exposed area varies sinusoidally as

1 in wt
A=A, % (2.49)
then the peak current to the sensing electrode will be given by
A
Ipcak = weE=2 (2.50)

2

If the electric field strength varies spatially on a scale comparable to the span of the
aperture, then the field mill will respond to the spatial average of the incident field taken
over the aperture area. Fields with small-scale spatial variations are found in several
industrial, biological, and micromechanical applications. Aperture diameters as small as
0.5mm are practical and may be found inside the probes of commercially available field
meters and noncontacting voltmeters.

2.19. NONCONTACTING VOLTMETER

The field mill described in the previous section is important to an instrument known as
the feedback-null surface potential monitor, or noncontacting voltmeter [9,10,41-43].
Commercial versions of these instruments are standard equipment in most electrostatics
laboratories. The most salient feature of this measurement method is that surface
potentials can be measured without physical contact. The basic operating principle of the
meter is illustrated in Fig. 2.16. A small field mill is mounted on the end of a hand-held
probe, but its outer housing is not connected to ground. The output signal of the field-mill
feeds a phase-sensitive detection circuit and high-voltage amplifier. The output of the
latter is connected back to the probe housing, thereby forming a negative feedback loop.
When the probe encounters an object at nonzero potential, the detected field signal,
amplified by the high-voltage amplifier, raises the potential of the probe until the field
incident on the probe approaches zero. This concept is illustrated in Fig. 2.17. The
feedback loop attains equilibrium when the probe body is raised to the same potential as
the surface being measured, resulting in only a small residual field at the probe aperture.
The residual signal in this “null-field” condition can be made arbitrarily small by
increasing the gain of the high-voltage amplifier. Under equilibrium feedback conditions,

Figure 216 Basic structure of a noncontacting voltmeter.
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Figure 217 The noncontacting voltmeter in operation. Top: Probe approaches charged object to
be measured. Bottom: Probe potential is raised until the field it measures is zero (null signal
condition).

Figure 248 Using a noncontacting voltmeter to measure a charged, electrically isolated
conductor.

the high voltage on the probe body, monitored using any suitable metering circuit,
provides a measure of the surface potential. If the surface potential varies spatially, the
meter output will reflect the spatial average encountered by the probe’s aperture. The
measuring range of the instrument is determined by the positive and negative saturation
limits of the high-voltage amplifier. Values up to a few kilovolts (positive and negative) are
typical for most commercial instruments.

When a noncontacting voltmeter reads the surface of a conductor connected to a
fixed voltage source, the reading is unambiguous. If the probe approaches a floating
conductor, the situation can be modeled by the two-body capacitance system of Fig. 2.18.
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In this diagram, C; and C, denote the capacitances to ground of the conductor and probe,
respectively, and C,, represents their mutual capacitance. The charge Q; on the conductor
will be given by [44]

01=CV +Cu(V1 = 1) (2.51)

The feedback loop of the meter will raise the potential of the probe until V, =V, so that
Eq. (2.51) becomes

)

V, =
1C]

(2.52)

This unambiguous result reflects the potential of the floating conductor with the probe
absent.

One of the more common uses of noncontacting voltmeters involves the
measurement of charge on insulating surfaces. If surface charge on an insulating layer is
tightly coupled to an underlying ground plane, as in Fig. 2.19, the surface potential V of
the charge layer will be well defined. Specifically, if the layer has thickness d , the surface
potential becomes

Vi—E-d= (&)d (2.53)

&

The surface charge and its ground-plane image function as a double layer that introduces a
potential jump between the ground plane and the upper surface of the insulator.
The potential of a noncontacting voltmeter probe placed near the surface will be
raised to the same potential V, allowing the surface charge p, to be determined from
Eq. (2.52).

If the charge on the insulator is not tightly coupled to a dominant ground plane, its
surface potential will be strongly influenced by the position of the probe as well as by the
insulator’s position relative to other conductors and dielectrics. Under these conditions,
the reading of the noncontacting voltmeter becomes extremely sensitive to probe position
and cannot be determined without a detailed analysis of the fields surrounding the charge
[45]. Such an analysis must account for two superimposed components: the field £,
produced by the measured charge with the probe grounded, and the field E} created by the
voltage of the probe with the surface charge absent. The voltmeter will raise the probe
potential until a null-field condition with Ey4 Ep=0 is reached. Determining the
relationship between the resulting probe voltage and the unknown surface charge requires
a detailed field solution that takes into account the probe shape, probe position, and

Surface Charge Ps—\
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Figure 2,19 Surface charge on an insulator situated over a ground plane. The voltage on the
surface of the insulator is clearly defined as pgd/e.
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insulator geometry. Because of the difficulty in translating voltmeter readings into actual
charge values, noncontacting voltmeter measurements of isolated charge distributions that
are not tightly coupled to ground planes are best used for relative measurement purposes
only. A noncontacting voltmeter used in this way becomes particularly useful when
measuring the decay time of a charge distribution. The position of the probe relative to the
surface must remain fixed during such a measurement.

2.20. MICROMACHINES

The domain of micro-electromechanical systems, or MEMS, involves tiny microscale
machines made from silicon, titanium, aluminum, or other materials. MEMS devices are
fabricated using the tools of integrated-circuit manufacturing, including photolithogra-
phy, pattern masking, deposition, and etching. Design solutions involving MEMS are
found in many areas of technology. Examples include the accelerometers that deploy
safety airbags in automobiles, pressure transducers, microfluidic valves, optical processing
systems, and projection display devices.

One technique for making MEMS devices is known as bulk micromachining. In this
method, microstructures are fabricated within a silicon wafer by a series of selective
etching steps. Another common fabrication technique is called surface micromachining.
The types of steps involved in the process are depicted in Fig. 2.20. A silicon substrate is
patterned with alternating layers of polysilicon and oxide thin films that are used to build
up the desired structure. The oxide films serve as sacrificial layers that support the

Figure 2,20 Typical surface micromachining steps involved in MEMS fabrication. Oxides are
used as sacrificial layers to produce structural members. A simple actuator is shown here.
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Figure 2.21 Applying a voltage to the actuator causes the membrane structure to deflect
toward the substrate. The drawing is not to scale; typical width-to-gap spacing ratios are on the
order of 100.

Figure 2.22 The MEMS actuator of Fig. 2.21 can be modeled by the simple mass-spring structure
shown here. F, is the electrostatic force when a voltage is applied; F;, is the mechanical restoring
force.

polysilicon during sequential deposition steps but are removed in the final steps of
fabrication. This construction technique is analogous to the way that stone arches were
made in ancient times. Sand was used to support stone pieces and was removed when the
building could support itself, leaving the finished structure.

One simple MEMS device used in numerous applications is illustrated in Fig. 2.21.
This double-cantilevered actuator consists of a bridge supported over a fixed activation
electrode. The bridge has a rectangular shape when viewed from the top and an
aspect ratio (ratio of width to gap spacing) on the order of 100. When a voltage is applied
between the bridge and the substrate, the electrostatic force of attraction causes the
bridge to deflect downward. This vertical motion can be used to open and close valves,
change the direction of reflected light, pump fluids, or mix chemicals in small micromixing
chambers.

The typical bridge actuator has a gap spacing of a few microns and lateral
dimensions on the order of 100 to 300 um. This large aspect ratio allows the actuator to be
modeled by the simple two-clectrode capacitive structure shown in Fig. 2.22.
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The electrostatic force in the y direction can be found by taking the derivative of the stored
energy (see Sec. 2.10):

1 AV?
FE:i—CVz—ig0 v

W2 (g—y) (259

Here y is the deflection of the bridge, A4 its surface area, and g the gap spacing at zero
deflection. As Eq. (2.54) shows, the electrostatic force increases with increasing deflection
and becomes infinite as the residual gap spacing (g — y) approaches zero. To first order, the
mechanical restoring force will be proportional to the bridge deflection and can be
expressed by the simple equation

Fy = —ky (2.55)

The equilibrium deflection y for a given applied voltage will occur when Fy= Fg,
i.e., when

AV?
- &0 ! (2.56)
(g—»)

Figure 2.23 shows a plot of y versus V obtained from Eq. (2.56). For voltages above the
critical value V., the mechanical restoring force can no longer hold back the electrostatic
force, and the bridge collapses all the way to the underlying electrode. This phenomenon,
known as snap-through, occurs at a deflection of one third of the zero-voltage gap spacing.
It is reversible only by setting the applied voltage to zero and sometimes cannot be undone
at all due to a surface adhesion phenomenon known as sticktion.

! } Snap through
1/3 of gap region

Figure 2.23 Voltage displacement curve for the actuator model of Fig. 2.22. At a deflection equal
to one-third of the gap spacing, the electrostatic force overcomes the mechanical restoring force,
causing the membrane to “‘snap through” to the substrate.
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The deflection at which snap-through occurs is easily derived by noting that at
v="V,, the slope of the voltage—displacement curve becomes infinite, i.e., dV/dy becomes
zero. Equation (2.56) can be expressed in the form

k
V= ‘/%—Z(g —y) 2.57)

The y derivative of this equation becomes zero when y=g/3.

2.21. DIGITAL MIRROR DEVICE

One interesting application of the MEMS actuator can be found in the digital mirror
device (DMD) used in computer projection display systems. The DMD is an array of
electrostatically-actuated micromirrors of the type shown in Fig. 2.24. Each actuator is
capable of being driven into one of two bi-stable positions. When voltage is applied to the
right-hand pad, as in Fig 2.24a, the actuator is bent to the right until it reaches its
mechanical limit. Alternatively, when voltage is applied to the left-hand pad, as in
Fig. 2.24b, the actuator bends to the left. The two deflection limits represent the logic 0 (no
light projected) and logic 1 (light projected) states of the mirror pixel.

2.22. ELECTROSTATIC DISCHARGE AND CHARGE NEUTRALIZATION

Although much of electrostatics involves harnessing the forces of charge, sometimes static
electricity can be most undesirable. Unwanted electrostatic forces can interfere with
materials and devices, and sparks from accumulated charge can be quite hazardous in the
vicinity of flammable liquids, gases, and air dust mixtures [12, 46-51]. In this section, we
examine situations in which electrostatics is a problem and where the main objective is to
eliminate its effects.

Many manufacturing processes involve large moving webs of insulating materials,
such as photographic films, textiles, food packaging materials, and adhesive tapes. These
materials can be adversely affected by the presence of static electricity. A moving web is
easily charged by contact electrification because it inevitably makes contact with rollers,
guide plates, and other processing structures. These contact and separation events provide
ample opportunity for charge separation to occur [52]. A charged web can be attracted to
parts of the processing machinery, causing jams in the machinery or breakage of the web
material. In some situations, local surface sparks may also occur that can ruin the

Figure 2.24 Simplified schematic of digital mirror device. Each pixel tilts £ 10° in response to
applied voltages.
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processed material. This issue is especially important in the manufacturing of
photographic films, which can be prematurely exposed by the light from sparks or other
discharges.

Electrostatic charge is very undesirable in the semiconductor industry. Sensitive
semiconductor components, particularly those that rely on metal-oxide-semiconductor
(MOS) technology, can be permanently damaged by the electric fields from nearby
charged materials or by the discharges that occur when charged materials come into
contact with grounded conductors. Discharges similar to the ““carpet sparks’ that plague
temperate climates in winter can render semiconductor chips useless. A static-charged
wafer also can attract damaging dust particles and other contaminants.

The term electrostatic discharge (ESD) refers to any unwanted sparking event caused
by accumulated static charge. An abundance of books and other resources may be found
in the literature to aid the electrostatics professional responsible for preventing ESD in a
production facility [53-58].

Numerous methods exist to neutralize accumulated charge before it can lead to an
ESD event. The ionizing neutralizer is one of the more important devices used to prevent
the build up of unwanted static charge. An ionizer produces both positively and negatively
charged ions of air that are dispersed in proximity to sensitive devices and work areas.
When undesirable charge appears on an object from contact electrification or induction
charging, ions of the opposite polarity produced by the ionizer are attracted to the object
and quickly neutralize it. The relatively high mobility of air ions allows this neutralization
to occur rapidly, usually in a matter of seconds or less.

The typical ionizer produces ions via the process of corona discharge. A coronating
conductor, usually a sharp needle point, or sometimes a thin, axially mounted wire, is
energized to a voltage on the order of 5 to 10kV. An extremely high electric field develops
at the electrode, causing eclectrons to be stripped from neutral air molecules via an
avalanche multiplication process (see Sec. 2.9). In order to accommodate unwanted charge
of either polarity, and to avoid inadvertent charging of surfaces, the ionizer must
simultaneously produce balanced quantities of positive and negative charge. Some ionizers
produce bipolar charge by applying an ac voltage to the corona electrode. The ionizer thus
alternately produces positive and negative ions that migrate as a bipolar charge cloud
toward the work piece. Ions having polarity opposite the charge being neutralized will be
attracted to the work surface, while ions of the same polarity will be repelled. The
undesired charge thus extracts from the ionizer only what it needs to be neutralized.

Other ionizers use a different technique in which adjacent pairs of electrodes are
energized simultaneously, one with positive and the other with negative dc high voltage.
Still other neutralizers use separate positive and negative electrodes, but energize first the
positive side, then the negative side for different intervals of time. Because positive and
negative electrodes typically produce ions at different rates, this latter method of
electrification allows the designer to adjust the “on” times of each polarity, thereby
ensuring that the neutralizer produces the proper balance of positive and negative ions.

Although the production of yet more charge may seem a paradoxical way to
eliminate unwanted charge, the key to the method lies in maintaining a proper balance of
positive and negative ions produced by the ionizer, so that no additional net charge is
imparted to nearby objects or surfaces. Thus, one figure of merit for a good ionizer is its
overall balance as measured by the lack of charge accumulation of either polarity at the
work piece served by the ionizer. Another figure of merit is the speed with which an ionizer
can neutralize unwanted charge. This parameter is sometimes called the ionizer’s
effectiveness. The more rapidly unwanted static charge can be neutralized, the less
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chance it will have to affect sensitive electronic components or interfere with a production
process. Effectiveness of an ionizer is maximized by transporting the needed charge as
rapidly as possible to the neutralized object [21]. Sometimes this process is assisted by air
flow from a fan or blowing air stream. Increasing the density of ions beyond some
minimum level does not increase effectiveness because the extra ions recombine quickly.

2.23. SUMMARY

This chapter is intended to serve as an introduction to the many applications of
electrostatics in science, technology, and industry. The topics presented are not all
inclusive of this fascinating and extensive discipline, and the reader is encouraged to
explore some of the many reference books cited in the text. Despite its long history [59],
electrostatics is an ever-evolving field that seems to emerge anew with each new vista of
discovery.

REFERENCES

1. Schein, L.B.; LaHa, M.; Novotny, D. Theory of insulator charging. Phys. Lett. 1992, 4 167,
79-83.

2. Horn, R.G.; Smith, D.T. Contact electrification and adhesion between dissimilar materials.
Science 1992, 256, 362-364.

3. Harper, W.R. Contact and frictional electrification. In Monographs on the Physics and
Chemistry of Materials; Clarendon Press: Oxford, 1967.

4. Shinbrot, T. A look at charging mechanisms. J. Electrostat. 1985, 77, 113-123.

5. Davies, D.K. Charge generation of dielectric surfaces. J. Phys. 1969, D2, 1533.

6. Schein, L.B.; Cranch, J. The static electrification of mixtures of insulating powders. J. Appl.
Phys. 1975, 46, 5140.

7. Schein, L.B.; Castle, G.S.P.; Dean, A. Theory of monocomponent development. J. Imag.
Technol 1989, /5, 9.

8. Schein, L.B.; LaHa, M.; Novotny, D. Theory of insulator charging. Phys. Lett. 1992, 4 167, 79.

9. Cross, J. Electrostatics: Principles, Problems and Applications; 10P Publishing: Bristol,
1987; 500.

10. Taylor, D.M.; Secker, P.E. Industrial Electrostatics; John Wiley and Sons: New York, 1994.

11. Montgomery, D.J. Static electrification in solids. Solid State Phys. 1959, 9, 139-197.

12.  Glor, M. Electrostatic Hazards in Powder Handling; John Wiley and Sons: New York, 1988.

13. Coechn, A. Ann. Physik, 1898, 64, 217.

14. JW (Lord) Raleigh, On the equilibrium of liquid conducting masses charged with electricity.
Phil. Mag. 1882, 74, 184-186.

15. Melcher, J.R. Continuum Electromechanics; MIT Press: Cambridge, Massachusetts, 1981, 8.44.

16. Bailey, A.G. Electrostatic Spraying of Liquids; John Wiley and Sons: New York, 1988.

17. Law, S.E. Electrostatic atomization and spraying. In Handbook of Electrostatic Processes;
Chang, J.S., Kelly, A.J., Crowley, J.M., Eds.; Marcel Dekker: New York, 1995; 413-440.

18. Cobine, J.D. Gaseous Conductors; Dover Press: New York, 1958, 252-281.

19. Tobazéon, R. Electrical phenomena of dielectric materials. In Handbook of Electrostatic
Processes; Chang, J.S., Kelly, A.J., Crowley, J.M., Eds.; Marcel Dekker: New York, 1995;
51-82.

20. Peek, F.W. Dielectric Phenomena in High Voltage Engineering; McGraw-Hill: New York, 1929,
48-108.

21. Crowley, J.M. Fundamentals of Applied Electrostatics; Wiley: New York, 1986, 164, 207-225.



86

22.

23.

24.

25.

26.
27.

28.

29.
30.

31.

32.
33.

34.

35.

36.

37.

38.

39.

40.
41.

42.

43.

44.

45.

46.

47.

48.

49.

Horenstein

Haus, H.; Melcher, J.R. Electromagnetic Fields and Energy; Prentice-Hall: Englewood Cliffs,
NJ, 1989, 486-521.

Woodson, H.; Melcher, J.R. Electromechanical Dynamics; John Wiley and Sons: New York,
1968, Chapter 8.

Zahn, M., Electromagnetic Field Theory: A Problem Solving Approach; John Wiley and Sons:
New York, 1979, 204-230.

Law, S.E. Electrostatic pesticide spraying: concepts and practice. IEEE Trans. 1983, 14-19 (2),
160-168.

Inculet, 1.1.; Fisher, J.K. Electrostatic aerial spraying. IEEE Trans. 1989, 25 (3).

Pauthenier, M.M.; Moreau-Hanot, M. La charge des particules spheriques dans un champ
ionize. J. Phys. Radium (Paris) 1932, 3, 590.

Schein, L.B. Electrophotography and Development Physics; 2nd Ed.; Springer Verlag:
New York, 1992.

White, H.J. Industrial Electrostatic Precipitation; Reading, Addison-Wesley: MA, 1962.
Masuda, S.; Hosokawa, H. Electrostatic precipitation. In Handbook of Electrostatics;
Chang, J.S., Kelly, A.J., Crowley, J.M., Eds.; Marcel Dekker: New York, 1995; 441-480.
Masuda, S. Electrical precipitation of aerosols. Proc. 2nd Aerosol Int. Conf., Berlin, Germany:
Pergamon Press, 1986; 694-703.

White, H.J. Particle charging in electrostatic precipitation. AIEE Trans. Pt. 1, 70, 1186.
Masuda, S.; Nonogaki, Y. Detection of back discharge in electrostatic precipitators. Rec.
IEEE/IAS Annual Conference, Cincinnati, Ohio, 1980; 912-917.

Masuda, S.; Obata, T.; Hirai, J. A pulse voltage source for electrostatic precipitators. Rec.
IEEE/IAS Conf., Toronto, Canada, 1980; 23-30.

Nyberg, B.R.; Herstad, K.; Larsen, K.B.; Hansen, T. Measuring electric fields by using pressure
sensitive elements. IEEE Trans. Elec. Ins, 1979, EI-14, 250-255.

Horenstein, M. A direct gate field-effect transistor for the measurement of dc electric fields.
IEEE Trans. Electr. Dev. 1985, ED-32 (3): 716.

McCaslin, J.B. Electrometer for ionization chambers using metal-oxide-semiconductor field-
effect transistors. Rev. Sci. Instr. 1964, 35 (11), 1587.

Blitshteyn, M. Measuring the electric field of flat surfaces with electrostatic field meters.
Evaluation Engineering, Nov. 1984, 23 (10), 70-86.

Schwab, A.J. High Voltage Measurement Techniques; MIT Press: Cambridge, MA, 1972,
97-101.

Secker, P.E. Instruments for electrostatic measurements. J. Elelectrostat. 1984, 76 (1), 1-19.
Vosteen, R.E.; Bartnikas, R. Electrostatic charge measurement. Engnr Dielectrics, Vol IIB,
Electr Prop Sol Insul Matls, ASTM Tech Publ 926, 440—489.

Vosteen, W. A high speed electrostatic voltmeter technique. Proc IEEE Ind Appl Soc Annual
Meeting IAS-88(2): 1988; 1617-1619.

Horenstein, M. Measurement of electrostatic fields, voltages, and charges. In Handbook of
Electrostatics; Chang, J.S., Kelly, A.J., Crowley, J.M. Eds.; Marcel Dekker: New York, 1995;
225-246.

Popovic, Z.; Popovic, B.D. Introductory Electromagnetics; Prentice-Hall: Upper Saddle River,
N1J, 2000; 114-115.

Horenstein, M. Measuring surface charge with a noncontacting voltmeter. J. Electrostat. 1995,
35, 2.

Gibson, N.; Lloyd, F.C. Incendivity of discharges from electrostatically charged plastics. Brit.
J. Appl. Phys. 1965, 16, 619-1631.

Gibson, N. Electrostatic hazards. In Electrostatics ’83; Inst. Phys. Conf. Ser. No. 66, Oxford,
1983; 1-11.

Glor, M. Hazards due to electrostatic charging of powders. J. Electrostatics 1985, 16,
175-181.

Pratt, T.H. Electrostatic Ignitions of Fires and Explosions; Burgoyne: Marietta, GA, 1997,
115-152.



Applied Electrostatics 87

50.

S1.

52.

53.
54.

55.
56.
57.

58.
59.

Liittgens, G.; Wilson, N. Electrostatic Hazards, Butterworth-Heinemann: Oxford, 1997,
137-148.

Bailey, A.G. Electrostatic hazards during liquid transport and spraying. In Handbook of
Electrostatics; Chang, J.S., Kelly, A.J., Crowley, J.M., Eds.; Marcel Dekker: New York, 1995;
703-732.

Hughes, J.F.; Au, A.M.K_; Blythe, A.R. Electrical charging and discharging between films and
metal rollers. Electrostatics ’79. Inst. Phys. Conf. Ser. No. 48, Oxford, 1979; 37-44.
Horvath, T.; Berta, 1. Static Elimination; Research Studies Press: New York, 1982; 118.
Davies, D.K. Harmful effects and damage to electronics by electrostatic discharges.
J. Electrostatics 1985, 16, 329-342.

McAteer, O.J.; Twist, R.E. Latent ESD failures, EOS/ESD Symposium Proceedings, Orlando,
FL, 1982; 41-48.

Boxleitner, W. Electrostatic Discharge and Electronic Equipment: A Practical Guide for
Designing to Prevent ESD Problems; IEEE Press: New York, 1989, 73-84.

McAteer, O.J. Electrostatic Discharge Control; McGraw-Hill: New York, 1990.

Greason, W. Electrostatic Discharge in Electronics; John Wiley and Sons: New York, 1993.
Moore, A.D. Electrostatics and Its Applications; John Wiley and Sons: New York, 1973.



3

Magnetostatics

Milica Popovic
McGill University
Montréal, Quebec, Canada

Branko D. Popovié¢'
University of Belgrade
Belgrade, Yugoslavia

Zoya Popovic
University of Colorado
Boulder, Colorado, U.S.A.

To the loving memory of our father, professor, and coauthor. We hope that he would
have agreed with the changes we have made after his last edits.
— Milica and Zoya Popovic

3.1. INTRODUCTION

The force between two static electric charges is given by Coulomb’s law, obtained directly
from measurements. Although small, this force is easily measurable. If two charges are
moving, there is an additional force between them, the magnetic force. The magnetic force
between individual moving charges is extremely small when compared with the Coulomb
force. Actually, it is so small that it cannot be detected experimentally between just a pair
of moving charges. However, these forces can be measured using a vast number of
electrons (practically one per atom) in organized motion, i.c., electric current. Electric
current exists within almost electrically neutral materials. Thus, magnetic force can be
measured independent of electric forces, which are a result of charge unbalance.
Experiments indicate that, because of this vast number of interacting moving
charges, the magnetic force between two current-carrying conductors can be much larger
than the maximum electric force between them. For example, strong electromagnets can
carry weights of several tons, while electric force cannot have even a fraction of that
strength. Consequently, the magnetic force has many applications. For example, the
approximate direction of the North Magnetic Pole is detected with a magnetic device—a
compass. Recording and storing various data are most commonly accomplished using
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magnetic storage components, such as computer disks and tapes. Most household
appliances, as well as industrial plants, use motors and generators, the operation of which
is based on magnetic forces.

The goal of this chapter is to present:

Fundamental theoretical foundations for magnetostatics, most importantly
Ampere’s law

Some simple and commonly encountered examples, such as calculation of the
magnetic field inside a coaxial cable

A few common applications, such as Hall element sensors, magnetic storage, and
MRI medical imaging.

3.2. THEORETICAL BACKGROUND AND FUNDAMENTAL EQUATIONS
3.2.1. Magnetic Flux Density and Lorentz Force

The electric force on a charge is described in terms of the electric field vector, E. The
magnetic force on a charge moving with respect to other moving charges is described in
terms of the magnetic flux density vector, B. The unit for B is a tesla (T). If a point charge Q
[in coulombs (C)] is moving with a velocity v [in meters per second (m/s)], it experiences a
force [in newtons (N)] equal to

F=0vxB (3.1)

where “x” denotes the vector product (or cross product) of two vectors.

The region of space in which a force of the form in Eq. (3.1) acts on a moving charge
is said to have a magnetic field present. If in addition there is an electric field in that region,
the total force on the charge (the Lorentz force) is given by

F=QE+QvxB (3.2)

where E is the electric field intensity in volts per meter (V/m).

3.2.2. The Biot=Savart Law

The magnetic flux density is produced by current-carrying conductors or by permanent
magnets. If the source of the magnetic field is the electric current in thin wire loops, i.e.
current loops, situated in vacuum (or in air), we first adopt the orientation along the loop
to be in the direction of the current in it. Next we define the product of the wire current, 7,
with a short vector length of the wire, d1 (in the adopted reference direction along the
wire), as the current element, 1dl (Fig. 3.1a). With these definitions, the magnetic flux
density due to the entire current loop C (which may be arbitrarily complex), is at any point
given by the experimentally obtained Biot-Savart law:

Idlxa

_ Mo + XA (3.3)
A Jo 7

The unit vector a, is directed from the source point (i.e., the current element) rowards the

field point (i.e., the point at which we determine B). The constant w( is known as the
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(b)

Figure 3.1 (a) A current loop with a current element. (b) Two current loops and a pair of current
elements along them.

permeability of vacuum. Its value is defined to be exactly

po = 4 x 1077 H/m

Note that the magnetic flux density vector of individual current elements is perpendicular
to the plane of the vectors r and d1. Its orientation is determined by the right-hand rule
when the vector dl is rotated by the shortest route towards the vector a,. The (vector)
integral in Eq. (3.3) can be evaluated in closed form in only a few cases, but it can be
always evaluated numerically.

The line current / in Eq. (3.3) is an approximation to volume current. Volume
currents are described by the current density vector, J [amperes per meter squared (A/m?)].
Let AS be the cross-sectional area of the wire. The integral in Eq. (3.3) then becomes a
volume integral where 7d1 is replaced by J - AS - dl=J - dv. At high frequencies (above
about 1MHz), currents in metallic conductors are distributed in very thin layers on
conductor surfaces (the skin effect). These layers are so thin that they can be regarded as
geometrical surfaces. In such cases we introduce the concept of surface current density
J; (in A/m), and the integral in Eq. (3.3) becomes a surface integral, where 7d1 is replaced
by J,dS.

3.2.3. Units: How Large is a Tesla?

The unit for magnetic flux density in the SI system is a tesla* (T). A feeling for the
magnitude of a tesla can be obtained from the following examples. The magnetic flux
density of the earth’s dc magnetic field is on the order of 10~* T. Around current-carrying

*The unit was named after the American scientist of Serbian origin Nikola Tesla, who won the ac—dc
battle over Thomas Edison and invented three-phase systems, induction motors, and radio
transmission. An excellent biography of this eccentric genius is Tesla, Man out of Time, by Margaret
Cheney, Dorset Press, NY, 1989.
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conductors in vacuum, the intensity of B ranges from about 107° T to about 107> T. In air
gaps of electrical machines, the magnetic flux density can be on the order of 1T.
Electromagnets used in magnetic-resonance imaging (MRI) range from about 2T to
about 4 T [5,15]. Superconducting magnets can produce flux densities of several dozen T.

3.2.4. Magnetic Force

From Eq. (3.2) it follows that the magnetic force on a current element /d1 in a magnetic
field of flux density B is given by

dF =IdlxB (N) (3.4)

Combining this expression with the Biot—Savart law, an expression for the magnetic force
between two current loops C; and C, (Fig. 3.1b) is obtained:

dFc onczz%fﬁ EF Ldl x Iidl (3.5
TJc b

3.2.5. Magnetic Moment

For a current loop of vector area S (the unit vector normal to S, by convention, is
determined by the right-hand rule with respect to the reference direction along the loop),
the magnetic moment of the loop, m, is defined as

m=17xS (3.6)

If this loop is situated in a uniform magnetic field of magnetic flux density B, the
mechanical moment, T, on the loop resulting from magnetic forces on its elements is

T=mxB 3.7

This expression is important for understanding applications such as motors and
generators.

The lines of vector B are defined as (generally curved) imaginary lines such that
vector B is tangential to them at all points. For example, from Eq. (3.3) it is evident that
the lines of vector B for a single current element are circles centered along the line of the
current element and in planes perpendicular to the element.

3.2.6. Magnetic Flux

The flux of vector B through a surface is termed the magnetic flux. It plays a very
important role in magnetic circuits, and a fundamental role in one of the most important
electromagnetic phenomena, electromagnetic induction. The magnetic flux, ®, through a
surface S is given by

o= J B-dS in webers (Wb) (3.9)
s
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The magnetic flux has a very simple and important property: it is equal to zero through
any closed surface,

{sBdS:O (3.9)
S

This relation is known as the law of conservation of magnetic flux and represents the fourth
Maxwell’s equation in integral form. In differential form, it can be written as V- B =0,
using the divergence theorem. An interpretation of the law of conservation of magnetic
flux is that “magnetic charges” do not exist, i.e., a south and north pole of a magnet are
never found separately. The law tells us also that the lines of vector B do not have a
beginning or an end. Sometimes, this last statement is phrased more loosely: it is said that
the lines of vector B close on themselves.

An important conclusion follows: If we have a closed contour C in the field and
imagine any number of surfaces spanned over it, the magnetic flux through any such
surface, spanned over the same contour, is the same. There is just one condition that needs
to be fulfilled in order for this to be true: the unit vector normal to all the surfaces must be
the same with respect to the contour, as shown in Fig. 3.2. It is customary to orient the
contour and then to define the vector unit normal on any surface on it according to the
right-hand rule.

3.2.7. Ampere’s Law in Vacuum

The magnetic flux density vector B resulting from a time-invariant current density J has a
very simple and important property: If we compute the line integral of B along any closed
contour C, it will be equal to w times the total current that flows through any surface
spanned over the contour. This is Ampere’s law for dc (time-invariant) currents in vacuum
(Fig. 3.3):

jECB -dl :JSJ -dS (3.10)

The reference direction of the vector surface elements of S is adopted according to the
right-hand rule with respect to the reference direction of the contour. In the applications of
Ampere’s law, it is very useful to keep in mind that the flux of the current density vector
(the current intensity) is the same through all surfaces having a common boundary

S
Si

Figure 3.2 Two surfaces, S; and S,, defined by a common contour C, form a closed surface to
which the law of conservation of magnetic flux applies—the magnetic flux through them is the same.
The direction chosen for the loop determines the normal vector directions for S; and S, according to
the right-hand rule.
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Figure 3.3 Three current loops and the illustration of Ampere’s law. The line integral of B along
C in the case shown equals I}-I,—I5.

contour. Ampere’s law is not a new property of the magnetic field—it follows from the
Biot—Savart law, which in turn is based on experiment.

Ampere’s law in Eq. (3.10) is a general law of the magnetic field of time-invariant
(dc) currents in vacuum. It can be extended to cases of materials in the magnetic field, but
in this form it is not valid for magnetic fields produced by time-varying (ac) currents. Since
the left-hand side in Ampere’s law is a vector integral, while the right-hand side is a scalar,
it can be used to determine analytically vector B only for problems with a high level of
symmetry for which the vector integral can be reduced to a scalar one. Several such
practical commonly encountered cases are a cylindrical wire, a coaxial cable and parallel
flat current sheets.

3.2.8. Magnetic Field in Materials

If a body is placed in a magnetic field, magnetic forces act on all moving charges within the
atoms of the material. These moving charges make the atoms and molecules inside the
material look like tiny current loops. The moment of magnetic forces on a current loop,
Eq. (3.7), tends to align vectors m and B. Therefore, in the presence of the field, a
substance becomes a large aggregate of oriented elementary current loops which produce
their own magnetic fields. Since the rest of the body does not produce any magnetic field, a
substance in the magnetic field can be visualized as a large set of oriented elementary
current loops situated in vacuum.A material in which magnetic forces produce such
oriented elementary current loops is referred to as a magnetized material. It is possible to
replace a material body in a magnetic field with equivalent macroscopic currents in vacuum
and analyze the magnetic field provided that we know how to find these equivalent
currents. Here the word macroscopic refers to the fact that a small volume of a material is
assumed to have a very large number of atoms or molecules.

The number of revolutions per second of an electron around the nucleus is very
large—about 10'° revolutions/s. Therefore, it is reasonable to say that such a rapidly
revolving electron is a small (elementary) current loop with an associated magnetic
moment. This picture is, in fact, more complicated since in addition electrons have a
magnetic moment of their own (their spin). However, each atom can macroscopically be
viewed as an equivalent single current loop. Such an elementary current loop is called an
Ampere current. It is characterized by its magnetic moment, m=IS. The macroscopic
quantity called the magnetization vector, M, describes the density of the vector magnetic
moments in a magnetic material at a given point and for a substance with N Ampere
currents per unit volume can be written as

m
M=Z%"V=Nm 3.11)
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The significance of Eq. (3.11) is as follows. The magnetic field of a single current loop
in vacuum can be determined from the Biot—Savart law. The vector B of such a loop at
large distances from the loop (when compared with the loop size) is proportional to the
magnetic moment, m, of the loop. According to Eq. (3.11) we can subdivide magnetized
materials into small volumes, AV, each containing a very large number of Ampere
currents, and represent each volume by a single larger Ampere current of moment M A V.
Consequently, if we determine the magnetization vector at all points, we can find vector B
by integrating the field of these larger Ampere currents over the magnetized material. This
is much simpler than adding the fields of the prohibitively large number of individual
Ampere currents.

3.2.9. Generalized Ampere’s Law and Magnetic Field Intensity

Ampere’s law in the form as in Eq. (3.10) is valid for any current distribution in vacuum.
Since the magnetized substance is but a vast number of elementary current loops in
vacuum, we can apply Ampere’s law to fields in materials, provided we find how to include
these elementary currents on the right-hand side of Eq. (3.10). The total current of
elementary current loops “strung’” along a closed contour C, i.e., the total current of all
Ampere’s currents through the surface S defined by contour C, is given by

]Ampere through S = + M. dl (312)
C

The generalized form of Ampere’s law valid for time-invariant currents therefore reads

inl =MO(LJ-dS+£M-dl> (3.13)

Since the contour C is the same for the integrals on the left-hand and right-hand sides of
the equation, this can be written as

1§C (%—M) -dl =LJ-dS (3.14)

The combined vector B/uy — M has a convenient property: Its line integral along any
closed contour depends only on the actual current through the contour. This is the only
current we can control—switch it on and off, change its intensity or direction, etc.
Therefore, the combined vector is defined as a new vector that describes the magnetic field
in the presence of materials, known as the magnetic field intensity, H:

H=2_m (a/m (3.15)
Mo

With this definition, the generalized Ampere’s law takes the final form:

TFCH ~dl =LJ -dS (3.16)
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As its special form, valid for currents in vacuum, this form of Ampere’s law is also valid
only for time-constant (dc) currents.

The definition of the magnetic field intensity vector in Eq. (3.15) is general and valid
for any material. Most materials are those for which the magnetization vector, M, is a
linear function of the local vector B (the cause of material magnetization). In such cases a
linear relationship exists between any two of the three vectors H, B, and M. Usually,
vector M is expressed as

M= x,H (Xxm 1s dimensionless, M in A/m) (3.17)

The dimensionless factor y,, is known as the magnetic susceptibility of the material. We
then use Eq. (3.17) and express B in terms of H:

B =uo(1l + x)H =pou,H (u, 1s dimensionless, o in H/m) (3.18)

The dimensionless factor w,=(1 + x,,,) is known as the relative permeability of the material,
and w as the permeability of the material. Materials for which Eq. (3.18) holds are /inear
magnetic materials. If it does not hold, they are nonlinear. If at all points of the material
is the same, the material is said to be homogeneous; otherwise, it is inhomogeneous.

Linear magnetic materials can be diamagnetic, for which x, <0 (i.e., u, < 1), or
paramagnetic, for which x,, > 0 (i.e., u, > 1). For both diamagnetic and paramagnetic
materials u, = 1, differing from unity by less than 40.001. Therefore, in almost all
applications diamagnetic and paramagnetic materials can be considered to have u = .

Ampere’s law in Eq. (3.16) can be transformed into a differential equation, i.c., its
differential form, by applying Stokes’ theorem of vector analysis:

VxH=J (3.19)

This differential form of the generalized Ampere’s law is valid only for time-invariant
currents and magnetic fields.

3.2.10. Macroscopic Currents Equivalent to a Magnetized Material

The macroscopic currents in vacuum equivalent to a magnetized material can be both
volume and surface currents. The volume density of these currents is given by

J,=VxM (A/m?) (3.20)

This has a practical implication as follows. In case of a linear, homogeneous material of
magnetic susceptibility yx,,, with no macroscopic currents in it,

Jn =V XM=V x (uH) =xmVx H=0 (3.21)

since VxH=0 if J=0, as assumed. Consequently, in a linear and homogeneous
magnetized material with no macroscopic currents there is no volume distribution of
equivalent currents. This conclusion is relevant for determining magnetic fields of
magnetized materials, where the entire material can be replaced by equivalent surface
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currents. For example, the problem of a magnetized cylinder reduces to solving the simple
case of a solenoid (coil).

3.2.11. Boundary Conditions

Quite often it is necessary to solve magnetic problems involving inhomogeneous magnetic
materials that include boundaries. To be able to do this it is necessary to know the
relations that must be satisfied by various magnetic quantities at two close points on the
two sides of a boundary surface. Such relations are called boundary conditions. The two
most important boundary conditions are those for the tangential components of H and the
normal components of B. Assuming that there are no macroscopic surface currents on the
boundary surface, from the generalized form of Ampere’s law it follows that the tangential
components of H are equal:

Hltang = H2tang (322)

The condition for the normal components of B follows from the law of conservation of
magnetic flux, Eq. (3.8), and has the form

Binorm = Banorm (323)

The boundary conditions in Eqs. (3.22) and (3.23) are valid for any media—Iinear or
nonlinear. If the two media are linear, characterized by permeabilities ; and u,, the two
conditions can be also written in the form

B]tang _ B2tang (324)
M1 H2
and
#1Hinorm = t2Honorm (3.25)

If two media divided by a boundary surface are linear, the lines of vector B and H
refract on the surface according to a simple rule, which follows from the boundary
conditions. With reference to Fig. 3.4, this rule is of the form

tan o _ M1 (3.26)
tanoay U2 ’

On a boundary between two magnetized materials, Fig. 3.5, the equivalent surface
current density is given by

Jms =nx (M1 - Mz) (327)

Note that the unit vector n normal to the boundary surface is directed into medium 1
(Fig. 3.5).

The most interesting practical case of refraction of magnetic field lines is on the
boundary surface between air and a medium of high permeability. Let air be medium 1.
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Figure 3.4 Lines of vector B or vector H refract according to Eq. (3.26).

Figure 3.5 Boundary surface between two magnetized materials.

Then the right-hand side of Eq. (3.26) is very small. This means that tan «; must also be
very small for any oy (except if @y = /2, i.e., if the magnetic field lines in the medium of
high permeability are tangential to the boundary surface). Since for small angles
tan o) = oy, the magnetic field lines in air are practically normal to the surface of high
permeability. This conclusion is very important in the analysis of electrical machines with
cores of high permeability, magnetic circuits (such as transformers), etc.

3.2.12. Basic Properties of Magnetic Materials

In the absence of an external magnetic field, atoms and molecules of many materials have
no magnetic moment. Such materials are referred to as diamagnetic materials. When
brought into a magnetic field, a current is induced in each atom and has the effect of
reducing the field. (This effect is due to electromagnetic induction, and exists in all
materials. It is very small in magnitude, and in materials that are not diamagnetic it is
dominated by stronger effects.) Since their presence slightly reduces the magnetic field,
diamagnetics evidently have a permeability slightly smaller than w,. Examples are water
(i, =0.9999912), bismuth (u, =0.99984), and silver (u, =0.999975).

In other materials, atoms and molecules have a magnetic moment, but with no
external magnetic field these moments are distributed randomly, and no macroscopic
magnetic field results. In one class of such materials, known as paramagnetics, the atoms
have their magnetic moments, but these moments are oriented statistically. When a field is
applied, the Ampere currents of atoms align themselves with the field to some extent. This
alignment is opposed by the thermal motion of the atoms, so it increases as the
temperature decreases and as the applied magnetic field becomes stronger. The result of
the alignment of the Ampere currentsis a very small magnetic field added to the external field.
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Figure 3.6 Schematic of an unmagnetized (a) paramagnetic and (b) ferromagnetic materials. The
arrows show qualitatively atomic (or molecular) magnetic moments.

For paramagnetic materials, therefore, u is slightly greater than g, and w, is slightly
greater than one. Examples are air (i, = 1.00000036) and aluminum (u, = 1.000021).

The most important magnetic materials in electrical engineering are known as
ferromagnetics. They are, in fact, paramagnetic materials, but with very strong interactions
between atoms (or molecules). As a result of these interactions, groups of atoms (10'? to
10" atoms in a group) form inside the material, and in these groups the magnetic moments
of all the molecules are oriented in the same direction. These groups of molecules are
called Weiss domains. Each domain is, in fact, a small saturated magnet. A sketch of
atomic (or molecular) magnetic moments in paramagnetic and ferromagnetic materials is
given in Fig. 3.6.

The size of a domain varies from material to material. In iron, for example, under
normal conditions, the linear dimensions of the domains are 10um. In some cases they can
get as large as a few millimeters or even a few centimeters across. If a piece of a highly
polished ferromagnetic material is covered with fine ferromagnetic powder, it is possible to
see the outlines of the domains under a microscope. The boundary between two domains is
not abrupt, and it is called a Bloch wall. This is a region 1078—10"%um in width (500 to
5000 interatomic distances), in which the orientation of the atomic (or molecular)
magnetic moments changes gradually.

Above a certain temperature, the Curie temperature, the thermal vibrations
completely prevent the parallel alignment of the atomic (or molecular) magnetic moments,
and ferromagnetic materials become paramagnetic. For example, the Curie temperature of
iron is 770°C (for comparison, the melting temperature of iron is 1530°C).

In materials referred to as antiferromagnetics, the magnetic moments of adjacent
molecules are antiparallel, so that the net magnetic moment is zero. (Examples are FeO,
CuCl, and FeF,, which are not widely used.) Ferrites are a class of antiferromagnetics very
widely used at radio frequencies. They also have antiparallel moments, but, because of
their asymmetrical structure, the net magnetic moment is not zero, and the Weiss domains
exist. Ferrites are weaker magnets than ferromagnetics, but they have high electrical
resistivities, which makes them important for high-frequency applications. Figure 3.7
shows a schematic comparison of the Weiss domains for ferromagnetic, antiferromagnetic
and ferrite materials.

Ferromagnetic materials are nonlinear, i.e., B # uH. How does a ferromagnetic
material behave when placed in an external magnetic field? As the external magnetic field
is increased from zero, the domains that are approximately aligned with the field increase
in size. Up to a certain (not large) field magnitude, this process is reversible—if the field is
turned off, the domains go back to their initial states. Above a certain field strength, the
domains start rotating under the influence of magnetic forces, and this process is
irreversible. The domains will keep rotating until they are all aligned with the local
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Figure 3.7 Schematic of Weiss domains for (a) ferromagnetic, (b) antiferromagnetic, and (c)
ferrite materials. The arrows represent atomic (or molecular) magnetic moments.

AB AB
Byl-----=
]
B |
-Hm "HC /%H

:% i !
]
L _____ _Bm

(a) (b)

Figure 3.8 (a) Typical hysteresis loop for a ferromagnetic material. (b) The hysteresis loops for
external fields of different magnitudes have different shapes. The curved line connecting the tips of
these loops is known as the normal magnetization curve.

magnetic flux density vector. At this point, the ferromagnetic is saturated, and applying a
stronger magnetic field does not increase the magnetization vector.

When the domains rotate, there is friction between them, and this gives rise to some
essential properties of ferromagnetics. If the field is turned off, the domains cannot rotate
back to their original positions, since they cannot overcome this friction. This means that
some permanent magnetization is retained in the ferromagnetic material. The second
consequence of friction between domains is loss to thermal energy (heat), and the third
consequence is hysteresis, which is a word for a specific nonlinear behavior of the material.
This is described by curves B(H), usually measured on toroidal samples of the material.
These curves are closed curves around the origin, and they are called hysteresis loops,
Fig. 3.8a. The hysteresis loops for external fields of different magnitudes have different
shapes, Fig. 3.8b.

In electrical engineering applications, the external magnetic field is in many cases
approximately sinusoidally varying in time. It needs to pass through several periods until
the B(H) curve stabilizes. The shape of the hysteresis loop depends on the frequency of the
field, as well as its strength. For small field strengths, it looks like an ellipse. It turns out
that the ellipse approximation of the hysteresis loop is equivalent to a complex
permeability. For sinusoidal time variation of the field, in complex notation we can
write B = uH = (u/'—ju/)H, where underlined symbols stand for complex quantities. (This
is analogous to writing that a complex voltage equals the product of complex impedance
and complex current.) This approximation does not take saturation into account. It can be
shown that the imaginary part, u”, of the complex permeability describes ferromagnetic
material hysteresis losses that are proportional to frequency (see chapter on electro-
magnetic induction). In ferrites, which are sometimes referred to as ceramic ferromagnetic
materials, the dielectric losses, proportional to f2, exist in addition (and may even be
dominant).
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Table 3.1 Magnetic Properties of Some Commonly Used Materials

Material Relative permeability, pu, Comment

Silver 0.9999976 Diamagnetic

Copper 0.99999 Diamagnetic

Gold 0.99996 Diamagnetic

Water 0.9999901 Diamagnetic

Aluminum 1.000021 Paramagnetic

Moly permalloy 100 (few) Ferromagnetic with air

Ferrite 1000 For example, NiO - Fe,03,
insulator

Nickel 600 Ferromagnetic

Steel 2000 Ferromagnetic

Iron (0.2 impurity) 5000 Ferromagnetic

Purified iron (0.05 impurity) 2 x 10° Ferromagnetic

Supermalloy As high as 10° Ferromagnetic

The ratio B/H (corresponding to the permeability of linear magnetic materials)
for ferromagnetic materials is not a constant. It is possible to define several
permeabilities, e.g., the one corresponding to the initial, reversible segment of the
magnetization curve. This permeability is known as the initial permeability. The range
is very large, from about 500 u for iron to several hundreds of thousands uy for some
alloys.

The ratio B/H along the normal magnetization curve (Fig. 3.8b) is known as the
normal permeability. If we magnetize a material with a dc field, and then add to this field a
small sinusoidal field, a resulting small hysteresis loop will have a certain ratio AB/AH.
This ratio is known as the differential permeability. Table 3.1 shows some values of
permeability for commonly used materials.

3.2.13. Magnetic Circuits

Perhaps the most frequent and important practical applications of ferromagnetic materials
involve cores for transformers, motors, generators, relays, etc. The cores have different
shapes, they may have air gaps, and they are magnetized by a current flowing through a
coil wound around a part of the core. These problems are hard to solve strictly, but the
approximate analysis is accurate enough and easy, because it resembles dc circuit analysis.

We will restrict our attention to thin linear magnetic circuits, i.e., to circuits with
thickness much smaller than their length, as in Fig. 3.9, characterized approximately by a
convenient permeability (e.g., initial permeability), assumed to be independent of the
magnetic field intensity. The magnetic flux in the circuit is determined from the equations.

Ampere’s law applied to a contour that follows the center of the magnetic core in
Fig. 3.9 can be written as

fi; H - dl =H,L\+H,L,=NI (3.28)
C
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Figure 3.9 A thin magnetic circuit. L; and L, are lengths of the core sides along contour
C through the center of the magnetic core of cross-section AS.

where
H; = f — f% (3.29)

is the magnetic field intensity in each section of the core, assuming a linear magnetic
material or a small-signal (dynamic) permeability. An additional equation is obtained for
the magnetic fluxes ®; at the “nodes” of the magnetic circuit, recalling that

} B-dS=) & =0 (3.30)
So

for any closed surface Sy. Equations (3.28)—(3.30) can be combined to have the same form
as the analogous Kirchoff’s laws for electrical circuits:

Z D, =0 for any node

which is analogous to

S =0 (331)

ZRmiCD,- - ZN,-I,- =0  for any closed loop
i i

analogous to
S RIL=) Vi=0 (3.32)

L.
Ry = oS for any branch
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analogous to

1L
R — 3.33
=5 (3.33)
where R, is referred to as magnetic resistance, and o is the electrical conductance. The last
equation is Ohm’s law for uniform linear resistors.
If the magnetic circuit contains a short air gap, Ly long, the magnetic resistance of
the air gap is calculated as in Eq. (3.33), with u; = uo.

3.3. APPLICATIONS OF MAGNETOSTATICS

The sections that follow describe briefly some common applications of magnetostatic fields
and forces, with the following outline:

1. Forces on charged particles (cathode ray tubes, Hall effect devices)

2. Magnetic fields and forces of currents in wires (straight wire segment, Helmholtz
coils)

3. Magnetic fields in structures with some degree of symmetry (toroidal coil,
solenoid, coaxial cable, two-wire line, strip-line cable)

4. Properties of magnetic materials (magnetic shielding, magnetic circuits)

5. System-level applications (magnetic storage, Magnetic Resonance Imaging—
MRI).

3.3.1. Basic Properties of Magnetic Force on a Charged
Particle (the Lorentz Force)

By inspecting the Lorentz force in Eq. (3.2), we come to the following conclusion: The
speed of a charged particle (magnitude of its velocity) can be changed by the electric force
QE. It cannot be changed by the magnetic force Qv x B, because magnetic force is always
normal to the direction of velocity. Therefore, charged particles can be accelerated only by
electric forces.

The ratio of the maximal magnetic and maximal electric force on a charged particle
moving with a velocity v equals vB/E. In a relatively large domain in vacuum, it is
practically impossible to produce a magnetic flux density of magnitude exceeding 1 T, but
charged particles, e.g., electrons, can easily be accelerated to velocities on the order of
1000 km/s. To match the magnetic force on such a particle, the electric field strength must
be on the order of 10°V/m, which is possible, but not easy or safe to achieve. Therefore, for
example, if we need to substantially deflect an electron beam in a small space, we use
magnetic forces, as in television or computer-monitor cathode-ray tubes.

The horizontal component of the earth’s magnetic field is oriented along the north—
south direction, and the vertical component is oriented downwards on the northern
hemisphere and upwards on the southern hemisphere. Therefore, cathode-ray tubes that
use magnetic field deflection have to be tuned to take this external field into account. It is
likely that your computer monitor (if it is a cathode-ray tube) will not work exactly the
same way if you turn it sideways (it might slightly change colors or shift the beam by a
couple of millimeters) or if you use it on the other side of the globe.
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Figure 310 Charged particle in a uniform magnetic field.

Charged Particle Moving in a Uniform Magnetic Field

Consider a charged particle Q >0 moving in a magnetic field of flux density B with a
velocity v normal to the lines of vector B, Fig. 3.10. Since the magnetic force on the charge
is always perpendicular to its velocity, it can only change the direction of the charged
particle motion. To find the trajectory of the particle, note that the magnetic force on the
particle is directed as indicated, tending to curve the particle trajectory. Since v is normal
to B, the force magnitude is simply QvB. It is opposed by the centrifugal force, mv?/R,
where R is the radius of curvature of the trajectory. Therefore,

mvz

QvB == (3.34)

so that the radius of curvature is constant, R = mv/QB. Thus, the particle moves in a
circle. It makes a full circle in

2R 2mm
t=T=—=—— 3.35
" OB (3.35)

seconds, which means that the frequency of rotation of the particle is equal to
f =1/T = QB/2xm. Note that f does not depend on v. Consequently, all particles that
have the same charge and mass make the same number of revolutions per second. This
frequency is called the cyclotron frequency. Cyclotrons are devices that were used in the
past in scientific research for accelerating charged particles. A simplified sketch of a
cyclotron is shown in Fig. 3.11, where the main part of the device is a flat metal cylinder,
cut along its middle. The two halves of the cylinder are connected to the terminals of an
oscillator (source of very fast changing voltage). The whole system is in a uniform
magnetic field normal to the bases of the cylinder, and inside the cylinder is highly
rarefied air.

A charged particle from source O finds itself in an electric field that exists between
the halves of the cylinder, and it accelerates toward the other half of the cylinder. While
outside of the space between the two cylinder halves, the charge finds itself only in a
magnetic field, and it circles around with a radius of curvature R = mv/QB. The time it
takes to go around a semicircle does not depend on its velocity. That means that it will
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Figure 3.1 Sketch of a cyclotron used in scientific research to accelerate charged particles by
means of electric and magnetic fields.

always take the charge the same amount of time to reach the gap between the two
cylinders. If the electric field variation in this region is adjusted in such a way that the
charge is always accelerated, the charge will circle around in larger and larger circles, with
increasingly larger velocity, until it finally shoots out of the cyclotron. The velocity of the
charge when it gets out of the cyclotron is v = QBa/m. This equation is valid only for
velocities not close to the speed of light. For velocities close to the speed of light, the mass
is not constant (it is increased due to relativistic effects). As a numerical example, for
B=1T,Q0=e,a=0.5m, m = 1.672 x 102" kg (a proton), the particles will be accelerated
to velocities v = 47.9 x 10°m/s. Cyclotrons are not used any more for particle physics
research, but they were instrumental in the initial phases of this science. At the University
of Chicago, for example, a cyclotron was used for research that led to the development of
the atomic bomb.

The Hall Effect

In 1879, Edwin Hall discovered an effect that can be used for measuring the magnetic field
and for determining the sign of free charges in conductors. Let a conducting ribbon have a
width d and is in a uniform magnetic field of flux density B perpendicular to the ribbon,
Fig. 3.12. A current of density J flows through the ribbon. The free charges can in
principle be positive (Fig. 3.12a) or negative (Fig. 3.12b). The charges that form the
current are moving in a magnetic field, and therefore there is a magnetic force F =Qv x B
acting on them. Due to this force, positive charges accumulate on one side of the ribbon,
and negative ones on the other side. These accumulated charges produce an electric field
Ey. This electric field, in turn, acts on the free charges with a force that is in the opposite
direction to the magnetic force. The charges will stop accumulating when the electric force
is equal in magnitude to the magnetic force acting on each of the charges. Therefore, in
steady state

OvB = QEy or Ey =vB (3.36)
Between the left and right edge of the ribbon, one can measure a voltage equal to

\Via| = Eyd = vBd (3.37)
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Figure 342 The Hall effect in case of (a) positive free-charge carriers, and (b) negative free-charge
carriers.

In the case shown in Fig. 3.12a, this voltage is negative, and in Fig. 3.12b it is positive.
Thus, the sign of the voltage corresponds to the sign of free charge carriers and can be
determined by a voltmeter.

Since J = NQv, where N is the number of free charges per unit volume, the Hall
voltage becomes

Jd
Vio| =—=B8B 3.38
V12l NO (3.38)

Thus, if the coefficient Jd/NQ is determined for a ribbon such as the one sketched in
Fig. 3.12, by measuring V',, the magnetic flux density B can be determined. Usually, Jd/
NQ is determined experimentally. This ribbon has four terminals: two for the connection
to a source producing current in the ribbon, and two for the measurement of voltage
across it. Such a ribbon is called a Hall element.

For single valence metals, e.g., copper, if we assume that there is one free electron per
atom, the charge concentration is given by

_ NApm

N
M

(3.39)

where N4 is Avogadro’s number (6.02 x 10*atoms/mol), p,, is the mass density of the
metal, and M is the atomic mass.

As a result of the above properties, Hall elements are key components in devices used
for a wide range of measurements:

The Hall effect is most pronounced in semiconductors. Hall-effect devices are
commonly used to determine the type and concentration of free carriers of
semiconductor samples, as can be deduced from Egs. (3.38) and (3.39).

Gaussmeters (often called teslameters) use a Hall element to measure magnetic flux
density, by generating output voltage proportional to the magnetic field.
Special attention is given to the design of the accompanying Hall-effect probes.
The accuracy and calibration of Hall-effect Gaussmeters is verified by
standardized reference magnets.
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In integrated circuits technology, the Hall effect is used for sensors and switches. In
sensors, the magnetic flux density through the Hall element determines the
output voltage; in switches, it determines the switching state. Hall-effect sensor
operation is robust with respect to environmental conditions.

Linear Hall sensors, which generate voltage proportional to the magnetic flux
perpendicular to the Hall plate, are characterized by output quiescent voltage (the output
voltage in absence of the magnetic field) and sensitivity. Their industrial applications
include measurement of angle, current, position and distance, and pressure, force, and
torque sensors. In automotive industry, they are used for active suspension control,
headlight range adjustment, liquid level sensors, power steering, and so on. With very low
energy consumption (a fraction of a mW), linear Hall sensors are more efficient and cost
effective than most inductive and optoelectronic sensors.

A Hall switch contains an integrated comparator with predefined switching levels
and an open-drain transistor at its digital output, which can be adapted to different logic
systems. The output characteristic of a Hall switch resembles a hysteresis-like (B, Voui)
curve. The magnetic flux density B of the hysteresis ranges from Byg to Byy; if B > B, the
output transistor is switched on, and if B < By, the transistor is switched off. These
switches are also available in a differential form, where the output transistor is switched
according to the difference of the magnetic flux between two Hall-element plates separated
typically by several millimeters. Finally, in the case of two-wire Hall switches, the output
signal of the switch is a current of an internal source, which is switched on or off by the
magnetic field applied to the Hall plate. In all Hall switches, simplified switching ensures a
clean, fast, and bounceless switch avoiding the problems present in mechanical contact
switches. Hall-effect switches are more cost effective than most electromechanical switches.
Among other applications, they are widely used for commutation of brushless DC motors,
wheel speed sensors, measurement of rotations per minute, pressure switches, position-
dependent switches, etc. The automotive industry uses Hall switches, e.g., in ignition
and wiper systems, door locks, window raising controls, and retraction-roof controls
and for break light switches. In the computer industry, this type of switch is used in
keyboards.

3.3.2. Magnetic Fields of Currents in Wires

Biot—Savart’s law in Eq. (3.3) can be used to calculate vector B produced by currents in
wire loops of arbitrary shapes (i.e., a variety of electrical circuits). Such loops are often
made of (or can be approximated by) a sequence of interconnected straight wire segments.
Evaluation of B in such cases can greatly be simplified if we determine vector B produced
by the current in a single straight wire segment. With reference to Fig. 3.13, using
Biot—Savart’s law, the following expression is obtained

I
B =""(sing, —sin6)) (3.40)
dra

Helmbholtz Coils

To obtain in a simple manner highly uniform magnetic field in a relatively large domain of
space in air, Helmholtz coils can be used. They consist of two thin, parallel, coaxial circular
loops of radius «a that are a distance a apart, Fig. 3.14a. Each loop carries a current I,
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Figure 3.3 Calculating the magnetic field at point P due to a straight wire segment with current /.
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Figure 314 (a) Sketch of a Helmholtz pair of coils. The magnetic field in the center is highly
uniform. (b) Photograph of a micro-electromachined anti-Helmholtz coils (courtesy Profs. Victor
Bright and Dana Anderson, University of Colorado at Boulder). The inductors are released to spring
up into position.
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and the two currents are in the same direction. Starting from the Biot—Savart law, we find
that the magnetic field at a distance z from the center of one loop, on their common axis, is
axial, of magnitude

B.(z) = ’ . (3.41)

It can be proven that, at z=a/2, the first, second, and even the third derivatives of B.(z)
are zero, which means that the magnetic flux density around that point is highly uniform.

If the currents in Helmholtz coils are flowing in opposite directions, the magnetic
field has a null in the center, accompanied by a very large gradient. An interesting
application of this anti-Helmholtz pair of coils is in the emerging field of atomic optics,
where large gradients of the magnetic field are used to guide atoms and even Bose-Einstein
condensates. A photograph of a micro-electromachined (MEM) anti-Helmholtz pair is
shown in Fig. 3.14b.

Magnetic Force Between Two Long Parallel Wires:
a Definition of the Ampere

Two parallel current-carrying wires can either attract or repel each other, depending on
the direction of the currents in them. If the wires are in vacuum (air) and are very long
(theoretically infinitely long), if currents in them are of equal magnitude 7 and the distance
between them is d, the force per unit length of the wires is

]2
Fper unit length = M0 ﬁ (3.42)

To get a feeling for the magnetic forces between current-carrying conductors, from
this equation we find that, for d=1m and /=1 A, the force on each of the wires is 2x
1077 N/m. This used to be one of the definitions of the unit for electrical current, the
ampere.

Magnetic Force on the Short Circuit of a Two-Wire Line

As another example, the magnetic force on the segment 4-4’ of the two-wire-line short
circuit shown in Fig. 3.15a is given by

I? —
quo—lnd a
2 a

(3.43)

If a large current surge occurs in the line, the force shock on the short circuit can be quite
large. For example, if there is a sudden increase of current intensity to /=35000A,
a=0.5cm, and d=50cm, the force shock is about 23 N, which may be sufficient to open
the short circuit if it is not firmly connected.

Magnetic Force in a Loudspeaker

Shown in Fig. 3.15b is a sketch of a permanent magnet used in loudspeakers. The lines of
the magnetic flux density vector are radial, and at the position of the coil the magnitude
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Figure 315 (a) A Short-circuited two-wire line. (b) Permanent magnet and coil used in a
loudspeaker.

is B=1T. Let the coil have N turns, its radius be a, and the current in the coil be I
The magnetic force on the coil (which is glued to the loudspeaker membrane) is
F = 2naNIB. If, in particular, /=0.15A, N=10, and a=0.5cm, we find that F=0.047 N.

3.3.3. Applications of Ampere’s Law

Ampere’s law can be used to determine the magnetic field produced by currents in
structures with a high level of symmetry. Common and practical examples are
discussed below.

Magnetic Field of a Straight Wire

Consider a straight, very long (theoretically infinite) wire of circular cross section of
radius «, Fig. 3.16a. (A wire may be considered infinitely long if it is much longer than the
shortest distance from it to the observation point.) There is a current of intensity 7 in the
wire distributed uniformly over its cross section. Note that, due to symmetry, both outside
and inside the wire the lines of vectors B and H are circles centered along the wire axis and
in planes normal to it. Therefore, the only unknown is the magnitude of these vectors as a
function of the distance r from the wire axis. Using Ampere’s law we find that

I
B(r) = % forr>a (3.44)
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As long as the point is outside the wire, the radius of the wire a is irrelevant. This
expression for B outside a round wire is valid for a wire of any radius, including an
infinitely thin one. Inside the wire, the magnetic flux density is given by

olr

B(r) = forr<a (3.45)

2ma?

(b)

(©)

Figure 3.16 (a) Cross section of straight wire of circular cross section with a current of intensity 7.
(b) The cross section of a coaxial cable with very thin outer conductor. (c) A toroidal coil with N
windings. (d) Longitudinal and transverse cross sections of a solenoid. (e) A current sheet. (f) Two
parallel current sheets.
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Figure 3.16 Continued.

Magnetic Field in a Coaxial Cable

Using the same procedure we find the magnetic flux density due to currents / and -7 in
conductors of a coaxial cable, Fig. 3.16b. If the outer conductor is assumed to be very thin
(as it usually is), outside the cable the magnetic field does not exist, and inside the cable,
the magnetic flux density is radial and equal to

polr forr<a
) 2na?
B(r) = (3.46)
mol for r
— orr>a
2mr

Magnetic Field of a Toroidal Coil

Another commonly used case in inductors and transformers is that of a toroidal coil,
Fig. 3.16¢c. The cross section of the toroid is arbitrary. Assume that the coil is made of N
uniformly and densely wound turns with current of intensity /. From the Biot-Savart law,
we know that the lines of vector B are circles centered on the toroid axis. Also, the
magnitude of B depends only on the distance r from the axis. Applying Ampere’s law yields
the following expressions for the magnitude, B(r), of the magnetic flux density vector:

0 outside the toroid
B =1 uoNI
27r

(3.47)

inside the toroid
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As a numerical example, for N=1000, /=2 A, and a mean toroid radius of r=10cm, we
obtain B=4mT. This value can be larger if, for example, several layers of wire are wound
one on top of each other, so that N is larger. Alternatively, the torus core can be made of a
ferromagnetic material, resulting in much larger magnitude of the magnetic flux density
inside the core.

Magnetic Field of a Long Solenoid

Assume that the radius r of the toroid becomes very large. Then, at any point inside the
toroid, the toroid looks locally as if it were a cylindrical coil, known as a solenoid (from a
Greek word which, roughly, means “‘tubelike”), Fig. 3.16d. We conclude that outside an
“infinitely long” solenoid the flux density vector is zero. Inside, it is given by Eq. (3.47)
with r very large, or since N’ = N /2nr is the number of turns per unit length of the toroid,
i.e., of the solenoid,

B=poN'I inside the solenoid (coil) (3.48)

The field inside a very long solenoid is uniform, and the expression is valid for any cross
section of the solenoid. As a numerical example, N/ =2000 windings/m and /=2 A result
in B=5mT.

Magnetic Field of a Planar Current Sheet and Two Parallel Sheets

Consider a large conducting sheet with constant surface current density J; at all points,
Fig. 3.16e. From the Biot—Savart law, vector B is parallel to the sheet and perpendicular to
vector Jg, and B is directed in opposite directions on the two sides of the sheet, as indicated
in the figure. Applying Ampere’s law gives

J,
B= ,uo?s for a current sheet (3.49)

For two parallel current sheets with opposite surface currents of the same magnitude
(Fig. 3.16f), from the last equation and using superposition we find that the magnetic field
outside the sheets is zero, and between two parallel current sheets

B = poJs (3.50)

Magnetic Field of a Stripline

Equation (3.50) is approximately true if the sheets are not of infinite width, and are close
to each other. Such a system is called a strip line. Assume that the strip line is filled with a
ferrite of relative permeability w,. Since a > g, where a is the finite strip width and g is the
distance (gap) between two infinitely long strips, the magnetic field outside the strips can
be neglected, and the resulting magnetic flux density inside the strip line is B = w,uol/a.
The magnitude of the magnetization vector in the ferrite is M = (i, — 1)/ /a. The density
of equivalent surface magnetization currents is thus Jy,; = (i, — 1)I/a. These currents
have the same direction as the conduction currents in the strips, but are many times greater
than the surface current over the strips.
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3.3.4. Magnetic Shielding; Magnetic Materials for EMC Testing

Imagine two cavities (air gaps) inside an uniformly magnetized material of relative
permeability u,. One is a needlelike cavity in the direction of the vector B. The other is a
thin-disk cavity, normal to that vector. According to boundary conditions, the ratio of
magnitudes of the magnetic flux density vectors in the two cavities and that in the
surrounding material is equal to 1/u, and 1, respectively. We can therefore conclude that
the theoretical possibility of reducing the external time-invariant magnetic field by means
of “magnetic shielding” is by a factor of 1/u,. Note, however, that the shielding effect of
conductive ferromagnetic materials is greatly increased for time-varying fields, due to the
skin effect (see chapter on electromagnetic induction). Note that, for EMC/EMI
(electromagnetic compatibility and electromagnetic interference) testing, ferrite anechoic
chambers are used. These rely on magnetic losses inside ferrite materials and will briefly be
discussed in Chapter 4.

3.3.5. Measurements of Basic Properties of Magnetic Materials

The curve B(H) that describes the nonlinear material is usually obtained by measurement.
The way this is done is sketched in Fig. 3.17. A thin toroidal core of mean radius R, made
of the material we want to measure, has N tightly wound turns of wire, and a cross-
sectional area S. If there is a current / through the winding, the magnetic field intensity
inside the core is given by

NI
H= R (3.51)
From this formula, the magnetic field magnitude for any given current can be calculated.
Around the toroidal core there is a second winding, connected to a ballistic galvanometer
(an instrument that measures the charge that passes through a circuit). It can be shown
that the charge that flows through the circuit is proportional to the change of the magnetic
flux, AQ o« A® = S AB, and therefore to the change of the B field as well. By changing the
current / through the first winding, the curve B(H) can be measured point by point. If the
field H is changing slowly during this process, the measured curves are called static
magnetization curves.

Figure 3147 Sketch of setup for measurement of magnetization curves.
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Figure 3.8 Magnetization and demagnetization curves.

Permanent Magnets

If a ferromagnetic body is magnetized (desirably to saturation) and the external magnetic
field is switched off, the body remains magnetized, i.e., becomes a permanent magnet. If
the body is a thin toroid and the magnetic field is produced by a uniformly wound coil, the
magnetization curve is as in Fig. 3.18. When the current after saturation of the toroid is
switched off, the operating point moves to the point labeled B,, known as the remanent flux
density. If the current is reversed (changes sign), the point moves along the curve to the left
of the B axis, sometimes referred to as the demagnetization curve. The magnetic field
intensity H, corresponding to zero B is known as the coercive magnetic field. If we cut a
piece out of the magnetized toroid with remanent flux density inside it, the operating point
will move along the demagnetization curve. A magnetic field will exist in the air gap, and a
permanent toroidal magnet is obtained.

Permanent magnets are used in a large variety of applications, one of the most
common being data storage on magnetic disks and tapes, in the form of small magnetized
patches on thin magnetic films deposited on plastic substrate.

3.3.6. Magnetic Storage

Magnetic materials have been used for storing data since the very first computers. In the
1970s, magnetic core memories were used and an example is shown in Fig. 3.19. The
principle of operation of magnetic core memories is an excellent illustration of both
magnetostatics and electromagnetic induction. Furthermore, it appears that these
components might see a revival for space applications due to the radiation hardness of
magnetic materials. In Fig. 3.19a, one bit of the memory is a small ferromagnetic torus,
with two wires passing through it. One of the wires is connected to a circuit used for both
writing and reading, and the second wire is used only for reading. To write a “1”” or a “0”’,
a positive or negative current pulse, respectively, is passed through the first wire. This
results in the core magnetized to either B, or —B, on the hysteresis curve, respectively.
Elements of an entire memory are arranged in matrices, with two wires passing through
each torus, Fig. 3.19b. The current passing through each row or column is half of the
current needed to saturate the torus, so both the row and the column of the specific bit
need to be addressed. The readout process requires electromagnetic induction and will be
described in the next chapter.

A common magnetic storage device used today is the hard disk drive in every
computer. Information is written to the disk by magnetizing a small piece of the disk
surface. As technology is improving, the amount of information that can be stored on a
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Figure 3.19 (a) A portion of a magnetic core memory matrix and (b) a close-up showing
individual memory elements, where each torus represents 1 bit. The wire radius is 35 pm and the core
diameter 420 um.

standard-size hard disk is rapidly growing [6,14]. In 2002, drives with more than 20 Gbytes
were readily available in personal computers, while in 1995, a few hundred mega bytes
were standard. The development is in the direction of increasing disk capacity and
increasing speed (or reducing access time). These two requirements compete with each
other, and the engineering solution, as is usually the case, needs to be a compromise.

We will now describe in a simple manner how data are written on the disk. The hard
disk itself is coated with a thin coating of ferromagnetic material such as Fe,O3. The disk
is organized in sectors and tracks, as shown in Fig. 3.20a.

The device that writes data to the disk (and reads data from it) is called a magnetic
head. Magnetic heads are made in many different shapes, but all operate essentially
according to the same principle. We here describe the operation of the writing process on
the example of a simplified head which is easy to understand and is shown in Fig. 3.21. The
head is a magnetic circuit with a gap. The gap is in close proximity to the tracks, so there is
some leakage flux between the head and the ferromagnetic track.

In the “write” process, a current flows through the windings of the magnetic head,
thus creating a fringing magnetic field in the gap. The gap is as small as 5 um. As the head
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head track
(b)

Figure 3.20 (a) Hard disk tracks. (b) Sketch of qualitative shapes of hysteresis curves required for
the head and track magnetic materials.

moves along the track (usually the track rotates), the fringing field magnetizes a small part
of the track, creating a south and a north pole in the direction of rotation. These small
magnets are about 5 um long and 25 um wide. A critical design parameter is the height of
the head above the track: the head should not hit the track, but it also needs to be as close
as possible to maximize the leakage flux that magnetizes the track. Typically, the surface
of the track is flat to within several micrometers, and the head follows the surface profile
at a distance above it of about 1um or less. This is possible because the head
aerodynamically flies above the disk surface. The current in the head windings should be
strong enough to saturate the ferromagnetic track. If the track is saturated and the
remanent flux density of the track material is large, the voltage signal during readout is
maximized. The requirements on material characteristics for the head and tracks are
completely opposite: the head needs to have a low value of the remanent magnetic flux
density, since during readout any remaining B essentially represents noise. In contrast, the
track material needs to stay magnetized as long as possible with as high a B as possible.
A sketch of the relative desired hysterisis curves is shown in Fig. 3.20b. The principle of
readout is an excellent example of electromagnetic induction and is described briefly in the
next chapter.
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Figure 3.21 The magnetic head aerodynamically flies over the disk surface at a distance above it
of only about 1um while following the surface profile. In the figure, the surface profile is shown as
ideally flat, which in practice is not the case.

3.3.7. Magnetic Circuits

Consider a thin toroidal coil of length L, area of cross section S, and with N turns. Assume
that the permeability of the core is u and that a current / is flowing through the coil. Using
Egs. (3.32) and (3.33), the following is obtained

NI NI

® =R, " WS

N
= up IS = uN'IS (3.52)

This is the same result as that obtained by determining B for the coil using Ampere’s law,
and ® =B-S.

The analysis of arbitrarily complex thin linear magnetic circuits is very simple—it is
analogous to the analysis of dc electrical circuits. However, real magnetic circuits are
neither thin, nor linear. Nevertheless, thin linear magnetic circuits can be used as the basis
for approximate analysis of actual magnetic circuits.

Consider a thick, U-shaped core of permeability 1| > uo, closed by a thick bar of
permeability w; > o, as shown in Fig. 3.22. N turns with a current 7 are wound on the
core. The exact determination of the magnetic field in such a case is almost impossible. The
first thing we can conclude is that since wy,us > o, the tangential component of the
magnetic flux density B is much larger in the core than in the air outside it. The normal
components of B are equal, so the magnetic flux density inside the core is generally much
larger than outside the core. Therefore, the magnetic flux can be approximately considered
to be restricted to the core. This is never exactly true, so this is the first assumption we are
making.

Further, if we assume that Eqs. (3.32) and (3.33) are reasonably accurate if lengths
L; and L, are used as average lengths for the two circuit sections (with their actual cross-
sectional areas), we can approximately analyze the circuit using thin-circuit theory. It is
instructive to show that the error in doing so is acceptable.
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Figure 3.22 A realistic thick magnetic circuit of an inductor.

Figure 3.23 (a) A toroidal coil. (b) Cross section of the coil.

A toroidal coil and its cross section are shown in Fig. 3.23. Since the coil has N
densely wound turns with a current 7, from Ampere’s law we find that B = uNI/2nr. The
exact value of the magnetic flux through the toroid cross section is

cI)cxact =

e In- (3.53)

wNIh r’dr _ uNIh b
r 27 a

a

According to Egs. (3.32) and (3.33), adopting the average length of the toroidal core, the
approximate flux is

NI NI _ uNIh2(b - a)

q)a roximate — 55 — = 3.54
pproximate = p T (m(a + b))/ (u(b —a)h) ~ 2m  b+a (3-54)
The relative error is

cI)approximate - (Dexact _ 2(b/a - 1) (3 55)

(Dexact B (b/a) ln(b/a) B
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which is very small even for quite thick toroids. For example, if b/a=e=2.718..., the
error is less than 8%. Therefore, the magnetic flux in the magnetic circuit in Fig. 3.23 can
be determined approximately as

o~ NI
L1/(u1S1) + La/(12S2)

(3.56)

If the magnetic material of a circuit cannot be approximated as linear, i.e., there is no
equivalent relative permeability, the measured relationship B(H) must be used.

3.3.8. Nuclear Magnetic Resonance (NMR) and Magnetic
Resonance Imaging (MRI)

Superconducting loops can carry currents of enormous densities on the order of 1000 A/mm?
and consequently can be used to make the strongest electromagnets known. Extremely
strong superconducting magnets (0.5-30T) are used in nuclear magnetic resonance
(NMR) systems, best known in medical applications as magnetic resonance imaging
(MRI). These devices are able to resolve three-dimensional molecule structures. Currently,
NMR-based products are used in diverse fields, such as biomedical imaging, human
genome research, and pharmaceutical industry [4,5,8,20].

First observed by Felix Bloch and Edward M. Purcell in 1946, the phenomenon
which serves as the basis of the NMR technology can be explained as follows [1]. Nuclei of
certain common atoms, such as hydrogen and carbon, have a magnetic moment of their
own (referred to as spin). When in a strong static magnetic field, the atom spins align
themselves either against or along the external magnetic field. If, in addition, a radio-
frequency magnetic field is applied at exactly the magnetic-field intensity-dependent spin
resonant frequency, the spin changes, producing a resonant energy state switching, which
results in absorption or emission of energy. Atoms of different elements have different
resonance frequencies at which the spin change occurs in the presence of a magnetic field
of specified strength. This “signature frequency” allows researchers to identify the atoms
and molecules present in the material under test.

Stronger magnetic fields result in increased sensitivity, permitting the analysis of
smaller structures and therefore a higher resolution. The increase in the magnetic field
strength results in higher concentration of the aligned spins and in higher signature
resonant frequency. These two factors give rise to improved resolution by means of a
higher signal-to-noise ratio. Finally, since the energy change of the spins through a single
scan is very small, a clear, high signal-to-noise ratio image is achieved by superposition of
many repeated NMR scans.

In most NMR systems, the strong magnetic field is produced by superconducting
electromagnets. In some configurations, hybrid magnets are used, where an inner layer
constructed of a resistive electromagnet is surrounded by a superconducting magnet layer.
In both cases, the magnet is commonly placed in the ground, with a conveniently
constructed access to the bore. Several key terms are associated with the NMR technology
(Dr. Vesna Mitrovi¢, Centre National de la Recherche Scientifique, Grenoble, France,
personal communication, 2002; Dr. Mitrovi¢ is now with Brown University), and are
briefly outlined next.

Spectral resolution of the NMR measurement is expressed in parts per million (ppm),
with reference to the frequency of the radio signal used for inducing the resonance.
The bore of the NMR magnet is the hollow part of the NMR device, which holds the
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material or body under test. The entire NMR system of magnets and coils is cooled in a
pool of liquid helium. The cold bore structure refers to the configuration where the magnet
and the coils are placed directly into the liquid helium, while the “warm bore”
configuration has additional layers of vacuum and liquid nitrogen, allowing the space
within the bore itself to be at the room temperature. The shim coils (or bobbins), the
inductive coils strategically placed and current-sourced with respect to the magnet, can be
found in all NMR devices and serve for tunable compensation and improvement of
magnetic field homogeneity. For detailed specifications and new solutions, the reader is
encouraged to read additional information available on the internet sites of the leading
manufacturers and research groups: Varian Inc.; Oxford Instruments, UK; National High
Magnetic Field Laboratory in Florida, U.S.A.; and Centre National de la Recherche
Scientifique in Grenoble, France.

Today, NMR is an essential tool for the discovery and development of
pharmaceuticals [8]. Special state-of-the-art sensitive NMR systems with high resolution
used in human genome research allow structural analysis to analyze DNA samples found,
for example, in protein membranes.

Since the early 1980s, NMR techniques have been used for medical visualization of
soft body tissues. This application of NMR is called magnetic resonance imaging (MRI),
and it is enabled by hydrogen nuclei present in the water and lipid content of animal tissue.
Imaging magnets for animal imaging commonly have higher field strengths (3—7 T) than
those used for human diagnosis (0.3—-1.5T). MRI provides high-contrast images between
different tissues (brain, heart, spleen, etc.) and is sufficiently sensitive to differentiate
between normal tissues and those that are damaged or diseased. Functional M RI (fMRI)
[20] uses higher-field magnets (4 T) to help visualize the activity of the sensory, cognitive
and motor system. Figure 3.24 shows an example of an MRI scan of the brain of one of

Figure 3.24 An MRI scan of the brain of one of the authors, performed using a GE instrument
with a magnetic field flux density of 1.5T (courtesy University of Colorado Health Science Center,
Denver, Colorado).
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the authors. At the time of this writing, the main manufacturers or MRI imaging systems
are Siemens and General Electric.
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4.1. INTRODUCTION

In 1831 Michael Faraday performed experiments to check whether current is produced in
a closed wire loop placed near a magnet, in analogy to dc currents producing magnetic
fields. His experiment showed that this could not be done, but Faraday realized that a
time-varying current in the loop was obtained while the magnet was being moved toward it or
away from it. The law he formulated is known as Faraday’s law of electromagnetic
induction. It is perhaps the most important law of electromagnetism. Without it there
would be no electricity from rotating generators, no telephone, no radio and television, no
magnetic memories, to mention but a few applications.

The phenomenon of electromagnetic induction has a simple physical interpretation.
Two charged particles (“‘charges™) at rest act on each other with a force given by
Coulomb’s law. Two charges moving with uniform velocities act on each other with an
additional force, the magnetic force. If a particle is accelerated, there is another additional
force that it exerts on other charged particles, stationary or moving. As in the case of the
magnetic force, if only a pair of charges is considered, this additional force is much smaller
than Coulomb’s force. However, time-varying currents in conductors involve a vast
number of accelerated charges, and produce effects significant enough to be easily
measurable.

This additional force is of the same form as the electric force (F = QE). However,
other properties of the electric field vector, E in this case, are different from those of the
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electric field vector of static charges. When we wish to stress this difference, we use a
slightly different name: the induced electric field strength.

The induced electric field and electromagnetic induction have immense practical
consequences. Some examples include:

The electric field of electromagnetic waves (e.g., radio waves or light) is basically the
induced electric field;

In electrical transformers, the induced electric field is responsible for obtaining
higher or lower voltage than the input voltage;

The skin effect in conductors with ac currents is due to induced electric field;

Electromagnetic induction is also the cause of “magnetic coupling” that may result
in undesired interference between wires (or metal traces) in any system with
time-varying current, an effect that increases with frequency.

The goal of this chapter is to present:

Fundamental theoretical foundations for electromagnetic induction, most impor-
tantly Faraday’s law;

Important consequences of electromagnetic induction, such as Lentz’s law and the
skin effect;

Some simple and commonly encountered examples, such as calculation of the
inductance of a solenoid and coaxial cable;

A few common applications, such as generators, transformers, electromagnets, etc.

4.2. THEORETICAL BACKGROUND AND FUNDAMENTAL EQUATIONS
4.24. The Induced Electric Field

The practical sources of the induced electric field are time-varying currents in a broader
sense. If we have, for example, a stationary and rigid wire loop with a time-varying
current, it produces an induced electric field. However, a wire loop that changes shape
and/or is moving, carrying a time-constant current, also produces a time-varying current in
space and therefore induces an electric field. Currents equivalent to Ampére’s currents in
a moving magnet have the same effect and therefore also produce an induced electric field.

Note that in both of these cases there exists, in addition, a time-varying magnetic
field. Consequently, a time-varying (induced) electric field is always accompanied by
a time-varying magnetic field, and conversely, a time-varying magnetic field is always
accompanied by a time-varying (induced) electric field.

The basic property of the induced electric field Ej,4 is the same as that of the static
electric field: it acts with a force F = QE;,q on a point charge Q. However, the two
components of the electric field differ in the work done by the field in moving a point
charge around a closed contour. For the static electric field this work is always zero, but
for the induced electric field it is not. Precisely this property of the induced electric field
gives rise to a very wide range of consequences and applications. Of course, a charge can
be situated simultaneously in both a static (Coulomb-type) and an induced field, thus
being subjected to a total force

F=Q(Es + Einq) 4.1)
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We know how to calculate the static electric field of a given distribution of charges,
but how can we determine the induced electric field strength? When a charged particle
is moving with a velocity v with respect to the source of the magnetic field, the answer
follows from the magnetic force on the charge:

Eng=vxB (V/m) 4.2)

If we have a current distribution of density J (a slowly time-varying function of
position) in vacuum, localized inside a volume v, the induced electric field is found to be

Boa == (o] Z%) v @3

In this equation, r is the distance of the point where the induced electric field is being
determined from the volume element dV. In the case of currents over surfaces, J(¢) - dV
in Eq. (4.3) should be replaced by Js(¢) - dS, and in the case of a thin wire by i(¢) - dl.

If we know the distribution of time-varying currents, Eq. (4.3) enables the
determination of the induced electric field at any point of interest. Most often it is not
possible to obtain the induced electric field strength in analytical form, but it can always
be evaluated numerically.

4.2.2. Faraday’s Law of Electromagnetic Induction

Faraday’s law is an equation for the total electromotive force (emf) induced in a closed
loop due to the induced electric field. This electromotive force is distributed along the loop
(not concentrated at a single point of the loop), but we are rarely interested in this
distribution. Thus, Faraday’s law gives us what is relevant only from the circuit-theory
point of view—the emf of the Thevenin generator equivalent to all the elemental
generators acting in the loop.

Consider a closed conductive contour C, either moving arbitrarily in a time-constant
magnetic field or stationary with respect to a system of time-varying currents producing an
induced electric field. If the wire segments are moving in a magnetic field, there is an
induced field acting along them of the form in Eq. (4.2), and if stationary, the induced
electric field is given in Eq. (4.3). In both cases, a segment of the wire loop behaves as an
elemental generator of an emf

de = Eipq - dl (4.4)
so that the emf induced in the entire contour is given by
e= ff; Eing - dl 4.5)
c
If the emf is due to the contour motion only, this becomes

e:+VXB~dl (4.6)
c
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It can be shown that, whatever the cause of the induced electric field (the contour
motion, time-varying currents, or the combination of the two), the total emfinduced in the
contour can be expressed in terms of time variation of the magnetic flux through the
contour:

@ rou ~in
_M:_ij B-dS (V) (4.7)
N

= Ein -dl =
¢ i d dr di

This is Faraday’s law of electromagnetic induction. The reference direction along the
contour, by convention, is connected with the reference direction of the normal to the
surface S spanning the contour by the right-hand rule. Note again that the induced
emf in this equation is nothing but the voltage of the Thévenin generator equivalent to
all the elemental generators of electromotive forces Ei,q - dl acting around the loop.
The possibility of expressing the induced emf in terms of the magnetic flux alone is not
surprising. We know that the induced electric field is always accompanied by a magnetic
field, and the above equation only reflects the relationship that exists between the two
fields (although the relationship itself is not seen from the equation). Finally, this equation
is valid only if the time variation of the magnetic flux through the contour is due either
to motion of the contour in the magnetic field or to time variation of the magnetic field
in which the contour is situated (or a combination of the two). No other cause of time
variation of the magnetic flux will result in an induced emf.

4.2.3. Potential Difference and Voltage in a Time-varying
Electric and Magnetic Field

The voltage between two points is defined as the line integral of the total electric field
strength, given in Eq. (4.1), from one point to the other. In electrostatics, the induced
electric field does not exist, and voltage does not depend on the path between these points.
This is not the case in a time-varying electric and magnetic field.

Consider arbitrary time-varying currents and charges producing a time-varying
electric and magnetic field, Fig. 4.1. Consider two points, 4 and B, in this field, and two
paths, a and b, between them, as indicated in the figure. The voltage between these two
points along the two paths is given by

B
VABalongaorb = J (Est + Eind) -dl (48)

Aalongaorb

i(t)

q() "

Figure 4.1 An arbitrary distribution of time-varying currents and charges.
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The integral between 4 and B of the static part is simply the potential difference between
A and B, and therefore

B
VaBalongaors = Va4 — Vp +J Einq - dl 4.9)

Aalongaorb

The potential difference V4 — V' does not depend on the path between 4 and B, but
the integral in this equation is different for paths ¢ and b. These paths form a closed
contour. Applying Faraday’s law to that contour, we have

do
€induced in closed contour AaBbA = % Eind ~dl = J Eind -dl + J Eind cdl = — 7
AaBbA AaB BbA t

(4.10)

where @ is the magnetic flux through the surface spanned by the contour AaBbA. Since
the right side of this equation is generally nonzero, the line integrals of E;,q from 4 to B
along a and along b are different. Consequently, the voltage between two points in a time-
varying electric and magnetic field depends on the choice of integration path between these
two points.

This is a very important practical conclusion for time-varying electrical circuits.
It implies that, contrary to circuit theory, the voltage measured across a circuit by
a voltmeter depends on the shape of the leads connected to the voltmeter terminals. Since
the measured voltage depends on the rate of change of magnetic flux through the surface
defined by the voltmeter leads and the circuit, this effect is particularly pronounced at high
frequencies.

4.2.4. Self-inductance and Mutual Inductance

A time-varying current in one current loop induces an emyf in another loop. In linear
media, an electromagnetic parameter that enables simple determination of this emf is the
mutual inductance.

A wire loop with time-varying current creates a time-varying induced electric
field not only in the space around it but also along the loop itself. As a consequence,
there is a feedback—the current produces an effect which affects itself. The parameter
known as inductance, or self-inductance, of the loop enables simple evaluation of this
effect.

Consider two stationary thin conductive contours C; and C, in a linear
medium (e.g., air), shown in Fig. 4.2. When a time-varying current #;(¢) flows through
the first contour, it creates a time-varying magnetic field, as well as a time-varying
induced electric field, Eji,q(¢). The latter produces an emf e»(¢) in the second contour,
given by

en(t) = i; Eiing - db 4.11)
C

where the first index denotes the source of the field (contour 1 in this case).
It is usually much easier to find the induced emf using Faraday’s law than in any
other way. The magnetic flux density vector in linear media is proportional to the current
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Figure 4.2 Two coupled conductive contours.

that causes the magnetic field. It follows that the flux ®,(¢) through C, caused by the
current 71(¢) in C; is also proportional to i;(¢):

®15(t) = L1z - 11(2) 4.12)

The proportionality constant L, is the mutual inductance between the two contours. This
constant depends only on the geometry of the system and the properties of the (linear)
medium surrounding the current contours. Mutual inductance is denoted both by L, or
sometimes in circuit theory by M.

Since the variation of ij(¢) can be arbitrary, the same expression holds when the
current through C; is a dc current:

D = Lk (4.13)

Although mutual inductance has no practical meaning for dc currents, this definition is
used frequently for the determination of mutual inductance.
According to Faraday’s law, the emf can alternatively be written as

ddyy diy (1)
dr dt

612([) = — (414)

The unit for inductance, equal to a Wb/A, is called a henry (H). One henry is
quite a large unit. Most frequent values of mutual inductance are on the order of a mH,
pH, or nH.

If we now assume that a current i(¢) in C, causes an induced emf in C;, we talk
about a mutual inductance Ly;. It turns out that L, = L, always. [This follows from the
expression for the induced electric field in Eqgs. (4.3) and (4.5).] So, we can write

@ @
Lp=—2=L,=-—2  (H) (4.15)
I L

These equations show that we need to calculate either @1, or ®;; to determine the mutual
inductance, which is a useful result since in some instances one of these is much simpler to
calculate than the other.
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Note that mutual inductance can be negative as well as positive. The sign depends on
the actual geometry of the system and the adopted reference directions along the two
loops: if the current in the reference direction of one loop produces a positive flux in the
other loop, then mutual inductance is positive, and vice versa. For calculating the flux,
the normal to the loop surface is determined by the right-hand rule with respect to its
reference direction.

As mentioned, when a current in a contour varies in time, the induced electric
field exists everywhere around it and therefore also along its entire length. Consequently,
there is an induced emf in the contour itself. This process is known as self-induction.
The simplest (even if possibly not physically the clearest) way of expressing this emfis to
use Faraday’s law:

_ dq)self(t)

e = dt

(4.16)

If the contour is in a linear medium (i.e., the flux through the contour is proportional
to the current), we define the self-inductance of the contour as the ratio of the flux @y (t)
through the contour due to current i(¢) in it and i(¢),

_ q)self(t)
=~ (H) 4.17)

Using this definition, the induced emf can be written as

e(f) = — % (4.18)

The constant L depends only on the geometry of the system, and its unit is again
a henry (H). In the case of a dc current, L = ®/I, which can be used for determining the
self-inductance in some cases in a simple manner.

The self-inductances of two contours and their mutual inductance satisfy the
following condition:

LiiLy > L%z (419)

Therefore, the largest possible value of mutual inductance is the geometric mean of the
self-inductances. Frequently, Eq. (4.19) is written as

Li» =kyLi1Lx» —1<k<l (4.20)

The dimensionless coefficient k is called the coupling coefficient.

4.2.5. Energy and Forces in the Magnetic Field

There are many devices that make use of electric or magnetic forces. Although this is not
commonly thought of, almost any such device can be made in an “electric version” and in
a “magnetic version.” We shall see that the magnetic forces are several orders of
magnitude stronger than electric forces. Consequently, devices based on magnetic forces
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are much smaller in size, and are used more often when force is required. For example,
electric motors in your household and in industry, large cranes for lifting ferromagnetic
objects, home bells, electromagnetic relays, etc., all use magnetic, not electric, forces.

A powerful method for determining magnetic forces is based on energy contained in
the magnetic field. While establishing a dc current, the current through a contour has to
change from zero to its final dc value. During this process, there is a changing magnetic
flux through the contour due to the changing current, and an emf is induced in the
contour. This emf opposes the change of flux (see Lentz’s law in Sec. 4.3.2). In order to
establish the final static magnetic field, the sources have to overcome this emf, i.e., to spend
some energy. A part (or all) of this energy is stored in the magnetic field and is known as
magnetic energy.

Let n contours, with currents i;(¢), i»(¢), . .., i,(f) be the sources of a magnetic field.
Assume that the contours are connected to generators of electromotive forces
e1(1),ex(t),...,e,(r). Finally, let the contours be stationary and rigid (i.e., they cannot
be deformed), with total fluxes ®,(z), ®2(?), ..., ®,(¢). If the medium is linear, energy
contained in the magnetic field of such currents is

1 n
i e 421
Wi 2; «Pr 4.21)

This can be expressed also in terms of self- and mutual inductances of the contours and the
currents in them, as

n n

Wu=53" 3 Luli (4.22)

j=1 k=1
which for the important case of a single contour becomes

1 1
= —1D == LI 4.2
Wi 3 5 (4.23)

If the medium is ferromagnetic these expressions are not valid, because at least one
part of the energy used to produce the field is transformed into heat. Therefore, for
ferromagnetic media it is possible only to evaluate the total energy used to obtain the field.
If B, is the initial magnetic flux density and B, the final flux density at a point, energy
density spent in order to change the magnetic flux density vector from B; to B, at that
point is found to be

" H(1)-dB(r)  (J/m?) (4.24)

By

dAd, J
dv
In the case of linear media (see Chapter 3), energy used for changing the magnetic
field is stored in the field, i.e., dA,, = dW,,. Assuming that the B field changed from zero to
some value B, the volume density of magnetic energy is given by

dw, 3 B 1B 1 1
"_ | Z.dB=-—=—-uH?>=-BH 3 4.2
a J,,u dB =37 =3 ul =3 (I/m’) (4.25)
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The energy in a linear medium can now be found by integrating this expression over
the entire volume of the field:

! pH>dv () (4.26)

Wm:[
v 2

If we know the distribution of currents in a magnetically homogeneous medium, the
magnetic flux density is obtained from the Biot-Savart law. Combined with the relation
dF,, =1 -dl x B, we can find the magnetic force on any part of the current distribution.
In many cases, however, this is quite complicated.

The magnetic force can also be evaluated as a derivative of the magnetic energy. This
can be done assuming either (1) the fluxes through all the contours are kept constant or (2)
the currents in all the contours are kept constant. In some instances this enables very
simple evaluation of magnetic forces.

Assume first that during a displacement dx of a body in the magnetic field along the
x axis, we keep the fluxes through all the contours constant. This can be done by varying
the currents in the contours appropriately. The x component of the magnetic force acting
on the body is then obtained as

Fo= —(dW’”> (4.27)
o =const

dx

In the second case, when the currents are kept constant,

F, = +<dW’”> (4.28)
I = const

dx

The signs in the two expressions for the force determine the direction of the force.
In Eq. (4.28), the positive sign means that when current sources are producing all the
currents in the system (/= const), the magnetic field energy increases, as the generators are
the ones that add energy to the system and produce the force.

4.3. CONSEQUENCES OF ELECTROMAGNETIC INDUCTION
4.31. Magnetic Coupling

Let a time-varying current i(¢) exist in a circular loop C, of radius a, Fig. 4.3. According
to Eq. (4.3), lines of the induced electric field around the loop are circles centered at the
loop axis normal to it, so that the line integral of the induced electric field around a
circular contour C, indicated in the figure in dashed line is not zero. If the contour C; is
a wire loop, this field acts as a distributed generator along the entire loop length, and a
current is induced in that loop.

The reasoning above does not change if loop C, is not circular. We have thus
reached an extremely important conclusion: The induced electric field of time-varying
currents in one wire loop produces a time-varying current in an adjacent closed wire loop.
Note that the other loop need not (and usually does not) have any physical contact with
the first loop. This means that the induced electric field enables transport of energy from
one loop to the other through vacuum. Although this coupling is actually obtained by
means of the induced electric field, it is known as magnetic coupling.
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C

Figure 4.3 A circular loop C; with a time-varying current (). The induced electric field of this
current is tangential to the circular loop C, indicated in dashed line, so that it results in a distributed
emf around the loop.

Figure 4.4 Illustration of Lentz’s law.

Note that if the wire loop C; is not closed, the induced field nevertheless induces
distributed generators along it. The loop behaves as an open-circuited equivalent
(Thévenin) generator.

4.3.2. Lentz’s Law

Figure 4.4 shows a permanent magnet approaching a stationary loop. The permanent
magnet is equivalent to a system of macroscopic currents. Since it is moving, the magnetic
flux created by these currents through the contour varies in time. According to the
reference direction of the contour shown in the figure, the change of flux is positive,
(d®/dr) > 0, so the induced emf'is in the direction shown in the figure. The emf produces
a current through the closed loop, which in turn produces its own magnetic field, shown in
the figure in dashed line. As a result, the change of the magnetic flux, caused initially by the
magnet motion, is reduced. This is Lentz’s law: the induced current in a conductive
contour tends to decrease the change in magnetic flux through the contour. Lentz’s law
describes a feedback property of electromagnetic induction.
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4.3.3. Eddy Currents

A very important consequence of the induced electric field are eddy currents. These are
currents induced throughout a solid metal body when the body is situated in a time-
varying magnetic (i.e., induced electric) field.

As the first consequence of eddy currents, there is power lost to heat according
to Joule’s law. Since the magnitude of eddy currents is proportional to the magnitude
of the induced electric field, eddy-current losses are proportional to the square of
frequency.

As the second consequence, there is a secondary magnetic field due to the induced
currents which, following Lentz’s law, reduces the magnetic field inside the body. Both
of these effects are usually not desirable. For example, in a ferromagnetic core shown in
Fig. 4.5, Lentz’s law tells us that eddy currents tend to decrease the flux in the core, and the
magnetic circuit of the core will not be used efficiently. The flux density vector is the
smallest at the center of the core, because there the B field of all the induced currents adds
up. The total magnetic field distribution in the core is thus nonuniform.

To reduce these two undesirable effects, ferromagnetic cores are made of mutually
insulated thin sheets, as shown in Fig. 4.6. Now the flux through the sheets is encircled by
much smaller loops, the emf induced in these loops is consequently much smaller, and so
the eddy currents are also reduced significantly. Of course, this only works if vector B is
parallel to the sheets.

In some instances, eddy currents are created on purpose. For example, in induction
furnaces for melting metals, eddy currents are used to heat solid metal pieces to melting
temperatures.

4.3.4. The Skin Effect and the Proximity and Edge Effects

A time-invariant current in a homogeneous cylindrical conductor is distributed uniformly
over the conductor cross section. If the conductor is not cylindrical, the time-invariant
current in it is not distributed uniformly, but it exists in the entire conductor. A time-
varying current has a tendency to concentrate near the surfaces of conductors. At very
high frequencies, the current is restricted to a very thin layer near the conductor surface,
practically on the surfaces themselves. Because of this extreme case, the entire
phenomenon of nonuniform distribution of time-varying currents in conductors is
known as the skin effect.

Figure 4.5 Eddy currents in a piece of ferromagnetic core. Note that the total B field in the core is
reduced due to the opposite field created by eddy currents.
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Figure 4.6 A ferromagnetic core for transformers and ac machines consists of thin insulated
sheets: (a) sketch of core and (b) photograph of a typical transformer core.

The cause of skin effect is electromagnetic induction. A time-varying magnetic field is
accompanied by a time-varying induced electric field, which in turn creates secondary
time-varying currents (induced currents) and a secondary magnetic field. The induced
currents produce a magnetic flux which opposes the external flux (the same flux that
“produced” the induced currents). As a consequence, the total flux is reduced. The larger
the conductivity, the larger the induced currents are, and the larger the permeability, the
more pronounced the flux reduction is. Consequently, both the total time-varying
magnetic field and induced currents inside conductors are reduced when compared with
the dc case.

The skin effect is of considerable practical importance. For example, at very high
frequencies a very thin layer of conductor carries most of the current. Any conductor (or
for that matter, any other material), can be coated with silver (the best available
conductor) and practically the entire current will flow through this thin silver coating.
Even at power frequencies in the case of high currents, the use of thick solid conductors is
not efficient, and bundled conductors are used instead.

The skin effect exists in all conductors, but, as mentioned, the tendency of current and
magnetic flux to be restricted to a thin layer on the conductor surface is much more
pronounced for a ferromagnetic conductor than for a nonferromagnetic conductor of the
same conductivity. For example, for iron at 60 Hz the thickness of this layer is on the order
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of only 0.5mm. Consequently, solid ferromagnetic cores for alternating current electric
motors, generators, transformers, etc., would result in poor use of the ferromagnetic
material and high losses. Therefore, laminated cores made of thin, mutually insulated
sheets are used instead. At very high frequencies, ferrites (ferrimagnetic ceramic materials)
are used, because they have very low conductivity when compared to metallic
ferromagnetic materials.

Consider a body with a sinusoidal current of angular frequency w and let the
material of the body have a conductivity ¢ and permeability w. If the frequency is high
enough, the current will be distributed over a very thin layer over the body surface, the
current density being maximal at the surface (and parallel to it), and decreasing rapidly
with the distance z from it:

J(z) = Joe 7P (4.29)
where
who
- 7’; = Jauo/f (4.30)

The intensity of the current density vector decreases exponentially with increasing z. At
a distance § the amplitude of the current density vector decreases to 1/e of its value Jj
at the boundary surface. This distance is known as the skin depth. For example, for
copper (o = 57 x 10°S/m, = po), the skin depth at 1 MHz is only 0.067 mm. For iron
(0 = 107 S/m, u, = 1000), the skin depth at 60 Hz is 0.65 mm, and for sea water (0 =4 S/m,
= wo), at the same frequency it is 32.5m. Table 4.1 summarizes the value of skin depth
in some common materials at a few characteristic frequencies.

The result for skin depth for iron at power frequencies (50 Hz or 60 Hz), § = 5 mm,
tells us something important. Iron has a conductivity that is only about six times less
than that of copper. On the other hand, copper is much more expensive than iron. Why
do we then not use iron wires for the distribution of electric power in our homes? Noting
that there are millions of kilometers of such wires, the savings would be very large.
Unfortunately, due to a large relative permeability—iron has very small power-frequency
skin depth (a fraction of a millimeter)—the losses in iron wire are large, outweighing the
savings, so copper or aluminum are used instead.

Keeping the current intensity the same, Joule losses increase with frequency due to
increased resistance in conductors resulting from the skin effect. It can be shown that
Joule’s losses per unit area are given by

dPy

o= Ry Ho)>  (W/m?) (4.31)

Table 4.1 Values of Skin Depth for Some Common Materials at 60 Hz, 1 kHz, 1 MHz, and 1 GHz.

Material f=60Hz f=1kHz f=1MHz f=1GHz
Copper 8.6l mm 2.1mm 0.067 mm 2.11pm
Iron 0.65 mm 0.16 mm 5.03 um 0.016 pm
Sea water 32.5m 7.96m 0.25m 7.96 mm

Wet soil 650 m 159m 5.03m 0.16m
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where Hj is the complex rms value of the tangential component of the vector H on the
conductor surface, and R; is the surface resistance of the conductor, given by

R, = \/@ Q) (4.32)
20

Equation (4.32) is used for determining the attenuation in all metal waveguides, such as
two-wire lines (twin-lead), coaxial lines, and rectangular waveguides.

The term proximity effect refers to the influence of alternating current in one
conductor on the current distribution in another nearby conductor. Consider a coaxial
cable of finite length. Assume for the moment that there is an alternating current only in
the inner conductor (for example, that it is connected to a generator), and that the outer
conductor is not connected to anything. If the outer conductor is much thicker than the
skin depth, there is practically no magnetic field inside the outer conductor. If we apply
Ampére’s law to a coaxial circular contour contained in that conductor, it follows that the
induced current on the inside surface of the outer conductor is exactly equal and opposite
to the current in the inner conductor. This is an example of the proximity effect. If
in addition there is normal cable current in the outer conductor, it is the same but opposite
to the current on the conductor outer surface, so the two cancel out. We are left with
a current over the inner conductor and a current over the inside surface of the outer
conductor. This combination of the skin and proximity effects is what is usually actually
encountered in practice.

Redistribution of Current on Parallel Wires and Printed Traces

Consider as the next example three long parallel wires a certain distance apart lying in
one plane. The three ends are connected together at one and at the other end of the wires,
and these common ends are connected by a large loop to a generator of sinusoidal emf.
Are the currents in the three wires the same? At first glance we should expect them to
be the same, but due to the induced electric field they are not: the current intensity in the
middle wire will always be smaller than in the other two.

The above example is useful for understanding the distribution of ac current across
the cross section of a printed metal strip, such as a trace on a printed-circuit board. The
distribution of current across the strip will not be uniform (which it is at zero frequency).
The current amplitude will be much greater along the strip edges than along its center.
This effect is sometimes referred to as the edge effect, but it is, in fact, the skin effect in strip
conductors. Note that for a strip line (consisting of two close parallel strips) this effect is
very small because the induced electric fields due to opposite currents in the two strips
practically cancel out.

4.3.5. Limitations of Circuit Theory

Circuit theory is the basic tool of electrical engineers, but it is approximate and therefore
has limitations. These limitations can be understood only using electromagnetic-field
theory. We consider here the approximations implicit in Kirchhoff’s voltage law (KVL).
This law states that the sum of voltages across circuit branches along any closed path is
zero and that voltages and currents in circuit branches do not depend on the circuit actual
geometrical shape. Basically, this means that this law neglects the induced electric field
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produced by currents in the circuit branches. This field increases with frequency, so
that at a certain frequency (depending on circuit properties and its actual size) the
influence of the induced electric field on circuit behavior becomes of the same order of
magnitude as that due to generators in the circuit. The analysis of circuit behavior in such
cases needs to be performed by electromagnetic analysis, usually requiring numerical
solutions.

As a simple example, consider the circuit in Fig. 4.7, consisting of several printed
traces and two lumped (pointlike, or much smaller than a wavelength) surface-mount
components. For a simple two-loop circuit 10cm x 20 cm in size, already at a frequency of
10 MHz circuit analysis gives results with errors exceeding 20%. The tabulated values
in Fig. 4.7 show the calculated and measured complex impedance seen by the generator
at different frequencies.

Several useful practical conclusions can be drawn. The first is that for circuits that
contain wires or traces and low-valued resistors, this effect will become pronounced at
lower frequencies. The second is that the behavior of an ac circuit always depends on the
circuit shape, although in some cases this effect might be negligible. (A complete
electromagnetic numerical solution of this circuit would give exact agreement with theory.)
This directly applies to measurements of ac voltages (and currents), since the leads of the
meter are also a part of the circuit. Sometimes, there is an emf induced in the meter leads
due to flux through loops formed by parts of the circuit and the leads. This can lead to
errors in voltage measurements, and the loops that give rise to the error emyf are often
referred to as ground loops.

4.3.6. Superconducting Loops

Some substances have zero resistivity at very low temperatures. For example, lead has
zero resistivity below about 7.3K (just a little bit warmer than liquid helium). This
phenomenon is known as superconductivity, and such conductors are said to be

Frequency Calculated Re(Z) Measured Re(Z) Calculated Im(Z) Measured Im(Z)

10 MHz 25Q 20Q —-150Q —-110Q
20 MHz 62 1 -90Q ~0Q
50 MHz 1Q 5Q —-50Q +180 &2
100 MHz ~0Q 56 Q2 —-15Q +470 2

Figure 4.7 Example of impedance seen by the generator for a printed circuit with a surface-mount
resistor and capacitor. The table shows a comparison of results obtained by circuit theory and
measured values, indicating the range of validity of circuit theory.
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superconductors. Some ceramic materials (e.g., yttrium barium oxide) become super-
conductors at temperatures as ‘“high” as about 70 K (corresponding to the temperature of
liquid nitrogen). Superconducting loops have an interesting property when placed in a
time-varying magnetic field. The Kirchhoff voltage law for such a loop has the form

do

Y7 0 (4.33)
since the emf in the loop is —d®/dt and the loop has zero resistance. From this equation,
it is seen that the flux through a superconducting loop remains constant. Thus, it is
not possible to change the magnetic flux through a superconducting loop by means
of electromagnetic induction. The physical meaning of this behavior is the following:
If a superconducting loop is situated in a time-varying induced electric field, the
current induced in the loop must vary in time so as to produce exactly the same induced
electric field in the loop, but in the opposite direction. If this were not so, infinite current
would result.

4.4. APPLICATIONS OF ELECTROMAGNETIC INDUCTION
AND FARADAY’S LAW

4.41. An AC Generator

An ac generator, such as the one sketched in Fig. 4.8, can be explained using Faraday’s
law. A rectangular wire loop is rotating in a uniform magnetic field (for example, between
the poles of a magnet). We can measure the induced voltage in the wire by connecting
a voltmeter between contacts C; and C,. Vector B is perpendicular to the contour axis.
The loop is rotating about this axis with an angular velocity w. If we assume that at t=0
vector B is parallel to vector n normal to the surface of the loop, the induced emf in the
loop is given by

A1)

e(t) =

= wabBsin wt = Ey,x sin wt (4.34)

In practice, the coil has many turns of wire instead of a single loop, to obtain a larger
induced emf. Also, usually the coil is not rotating, but instead the magnetic field is rotating
around it, which avoids sliding contacts of the generator.

C,C, sliding
contacts

Figure 4.8 A simple ac generator.
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4.4.2. Induction Motors

Motors transform electric to mechanical power through interaction of magnetic flux
and electric current [1,20,26]. Electric motors are broadly categorized as ac and dc motors,
with a number of subclassifications in each category. This section describes the basic
operation of induction motors, which are most often encountered in industrial use.

The principles of the polyphase induction motor are here explained on the example
of the most commonly used three-phase version. In essence, an induction motor is
a transformer. Its magnetic circuit is separated by an air gap into two portions. The
fixed stator carries the primary winding, and the movable rotor the secondary winding,
as shown in Fig. 4.9a. An electric power system supplies alternating current to the primary

'4_—_ onecycle —— 3

Figure 4.9 (a) Cross section of a three-phase induction motor. 1-1’, 2-2’, and 3-3' mark the
primary stator windings, which are connected to an external three-phase power supply. (b) Time-
domain waveforms in the windings of the stator and resulting magnetic field vector rotation as a
function of time.
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winding, which induces currents in the secondary (short-circuited or closed through
an external impedance) and thus causes the motion of the rotor. The key distinguishable
feature of this machine with respect to other motors is that the current in the secondary
is produced only by electromagnetic induction, i.e., not by an external power source.

The primary windings are supplied by a three-phase system currents, which produce
three stationary alternating magnetic fields. Their superposition yields a sinusoidally
distributed magnetic field in the air gap of the stator, revolving synchronously with the
power-supply frequency. The field completes one revolution in one cycle of the stator
current, as illustrated in Fig. 4.9b. Thus, the combined effect of three-phase alternating
currents with the shown angular arrangement in the stator, results in a rotating magnetic
field with a constant magnitude and a mechanical angular speed that depends on the
frequency of the electric supply.

Two main types of induction motors differ in the configuration of the secondary
windings. In squirrel-cage motors, the secondary windings of the rotor are constructed
from conductor bars, which are short-circuited by end rings. In the wound-rotor motors,
the secondary consists of windings of discrete conductors with the same number of poles
as in the primary stator windings.

4.4.3. Electromagnetic Measurement of Fluid Velocity

The velocity of flowing liquids that have a small, but finite, conductivity can be measured
using electromagnetic induction. In Fig. 4.10, the liquid is flowing through a flat insulating
pipe with an unknown velocity v. The velocity of the fluid is roughly uniform over the
cross section of the pipe. To measure the fluid velocity, the pipe is in a magnetic field with
a flux density vector B normal to the pipe. Two small electrodes are in contact with the
fluid at the two ends of the pipe cross section. A voltmeter with large input impedance
shows a voltage V" when connected to the electrodes. The velocity of the fluid is then given
by v="V/B.

4.4.4. Measurement of AC Currents

A useful application of the induced electric field is for measurement of a sinusoidal
current in a conductor without breaking the circuit (as required by standard current
measurement). Figure 4.11 shows a conductor with a sinusoidal current of amplitude 7,
and angular frequency w flowing through it. The conductor is encircled by a flexible thin
rubber strip of cross-sectional area S, densely wound along its length with N’ turns of wire
per unit length. We show that if we measure the amplitude of the voltage between the
terminals of the strip winding, e.g., V,,, we can calculate 7,,,.
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Figure 4,10 Mecasurement of fluid velocity.
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There are dN = N'dl turns of wire on a length d/ of the strip. The magnetic flux
through a single turn is &y = B - S, and that through dN turns is

dd = &y dN = N'S dl- B (4.35)

The total flux through all the turns of the flexible solenoid is thus
P = ff) dd = N/Sf{; B-dl=puoN'S i) (4.36)
c c

according to Ampere’s law applied to the contour C along the strip. The induced emf in
the winding is e = —d®/dt, so that, finally, the expression for the amplitude of i(¢) reads
I, = m//'LON,SCU-

4.4.5. Problems in Measurement of AC Voltage

As an example of the measurement of ac voltage, consider a straight copper wire of radius
a=1mm with a sinusoidal current i(f) = 1coswtA. A voltmeter is connected between
points 1 and 2, with leads as shown in Fig. 4.12. If »=50cm and ¢=20cm, we will
evaluate the voltage measured by the voltmeter for (1) @ = 314rad/s, (2) w = 10*rad/s,

Figure 411 A method for measuring ac current in a conductor without inserting an ammeter into
the circuit.

| b |
| o |
C
1 2
é g 2a
i(t) T

Figure 412 Measurement of ac voltage.
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and (3) w = 10°rad/s. We assume that the resistance of the copper conductor per unit
length, R’, is approximately as that for a dc current (which actually is not the case,
due to skin effect). We will evaluate for the three cases the potential difference V; — V, =
R’b - i(?) and the voltage induced in the leads of the voltmeter.

The voltage measured by the voltmeter (i.e., the voltage between its very terminals,
and not between points 1 and 2) is

Violtmeter = (V1 — V2) —e = Rbi—e (4.37)

where R’ = 1/ocynma®, (ocy = 5.7 x 107 S/m), and e is the induced emf in the rectangular
contour containing the voltmeter and the wire segment between points 1 and 2 (we neglect
the size of the voltmeter). This emf is approximately given by

o= tobdiy cta
T 2n dt a

(4.38)

The rms value of the potential difference (V; — V>) amounts to 1.97mV, and does not
depend on frequency. The difference between this potential difference and the voltage
indicated by the voltmeter for the three specified frequencies is (1) 117.8 uV, (2) 3.74 uV,
and (3) 3.74 V. This difference represents an error in measuring the potential difference
using the voltmeter with such leads. We see that in case (2) the relative error is as large as
189%, and that in case (3) such a measurement is meaningless.

4.4.6. Readout of Information Stored on a Magnetic Disk

When a magnetized disk with small permanent magnets (created in the writing process)
moves in the vicinity of the air gap of a magnetic head, it will produce time-variable flux in
the head magnetic core and the read-and-write coil wound around the core. As a result, an
emf will be induced in the coil reflecting the magnetization of the disk, in the form of
positive and negative pulses. This is sketched in Fig. 4.13. (For the description of the
writing process and a sketch of the magnetic head, please see Chapter 3.)

Figure 443 A hard disk magnetized through the write process induces a emf in the read process:
when the recorded magnetic domains change from south to north pole or vice versa, a voltage pulse
proportional to the remanent magnetic flux density is produced. The pulse can be negative or
positive.
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Historical Note: Magnetic Core Memories

In the readout process of magnetic core memories described in Chapter 3, a negative
pulse is passed through circuit 1 in Fig. 4.14. If the core is magnetized to a ““1”* (positive
remanent magnetic flux density of the hysteresis curve), the negative current pulse brings
it to the negative tip of the hysteresis loop, and after the pulse is over, the core will remain
at the negative remanent flux density point. If, on the other hand, the core is at “0”
(negative remanent magnetic flux density of the hysteresis curve), the negative current
pulse will make the point go to the negative tip of the hysteresis loop and again end at the
point where it started.

While the above described process is occurring, an emyf is induced in circuit 2,
resulting in one of the two possible readings shown in Fig. 4.14. These two pulses
correspond to a ““1”” and a ““0.” The speed at which this process occurs is about 0.5-5 ps.

4.4.7. Transformers

A transformer is a magnetic circuit with (usually) two windings, the “primary” and
the “secondary,” on a common ferromagnetic core, Fig. 4.15. When an ac voltage is
applied to the primary coil, the magnetic flux through the core is the same at the secondary
and induces a voltage at the open ends of the secondary winding. Ampeére’s law for this
circuit can be written as

Niiy — Npiy = HL (4.39)

n,ln

At

(b)

Figure 4.14 (a) A magnetic core memory bit and (b) induced voltage pulses during the readout
process.
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Figure 415 Sketch of a transformer with the primary and secondary windings wound on a
ferromagnetic core.

where N; and N, are the numbers of the primary and secondary windings, i{; and i,
are the currents in the primary and secondary coils when a generator is connected to the
primary and a load to the secondary, H is the magnetic field in the core, and L is the
effective length of the core. Since H = B/u and, for an ideal core, u — oo, both B and H
in the ideal core are zero (otherwise the magnetic energy in the core would be infinite).
Therefore, for an ideal transformer

h_N (4.40)

L N
This is the relationship between the primary and secondary currents in an ideal
transformer. For good ferromagnetic cores, the permeability is high enough that this is a
good approximation.

From the definition of magnetic flux, the flux through the core is proportional to the
number of windings in the primary. From Faraday’s law, the induced emf in the secondary
is proportional to the number of times the magnetic flux in the core passes through the
surface of the secondary windings, i.e., to N,. (This is even more evident if one keeps in
mind that the lines of induced electric field produced by the primary current encircle the
core, i.e., going along the secondary winding the integral of the induced electric field is NV,
times that for a single turn.) Therefore, the following can be written for the voltages across
the primary and secondary windings:

V1 Nl
n_M 4.41
A (4.41)

Assume that the secondary winding of an ideal transformer is connected to a resistor of
resistance R,. What is the resistance seen from the primary terminals? From Egs. (4.40)
and (4.41),

2
R =R, (ﬂ) (4.42)
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Of course, if the primary voltage is sinusoidal, complex notation can be used, and
the resistances R; and R, can be replaced by complex impedances Z; and Z,. Finally, if
we assume that in an ideal transformer there are no losses, all of the power delivered to
the primary can be delivered to a load connected to the secondary. Note that the voltage
in both windings is distributed, so that there can exist a relatively high voltage between
two adjacent layers of turns. This would be irrelevant if, with increasing frequency, this
voltage would not result in increasing capacitive currents and deteriorated transformer
performance, i.e., basic transformer equations become progressively less accurate with
increasing frequency. The frequency at which a transformer becomes useless depends on
many factors and cannot be predicted theoretically.

4.4.8. Induced EMF in Loop Antennas

An electromagnetic plane wave is a traveling field consisting of a magnetic and electric
field. The magnetic and electric field vectors are mutually perpendicular and perpendicular
to the direction of propagation of the wave. The electric field of the wave is, in fact, an
induced (only traveling) electric field. Thus, when a small closed wire loop is placed in the
field of the wave, there will be an emf induced in the loop. Small in this context means
much smaller than the wave wavelength, and such a loop is referred to as a loop antenna.
The maximal emf is induced if the plane of the loop is perpendicular to the magnetic field
of the wave. For a magnetic field of the wave of root-mean-square (rms) value H, a wave
frequency f, and loop area (normal to the magnetic field vector) S, the rms value of the
emf induced in the loop is

dd
emf = ‘E‘ =2muof-H-S (4.43)

4.5. EVALUATION OF MUTUAL AND SELF-INDUCTANCE

The simplest method for evaluating mutual and self-inductance is using Egs. (4.15) and
(4.17), provided that the magnetic flux through one of the contours can be calculated. This
is possible in some relatively simple, but practical cases. Some of these are presented
below.

4.5.1. Examples of Mutual Inductance Calculations

Mutual Inductance Between a Toroidal Coil and a Wire Loop

Encircling the Toroid

In order to find the mutual inductance between a contour C; and a toroidal coil C, with N
turns, Fig. 4.16, determining L1, is not at all obvious, because the surface of a toroidal coil
is complicated. However, L,; = ®;;/1, is quite simple to find. The flux d® through the
surface dS = h - dr in the figure is given by

wolNI
2mr

d®y(r) = B(r) - dS = h-dr (4.44)
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Figure 4.16 A toroidal coil and a single wire loop encircling the toroid.

so that the total flux through C;, equal to the flux through the cross section of the torus, is

b Nh_ b
2 or  Lp=Ly =", (4.45)
a 2 a 2w a

woNLh r dr  uoNLh
Py =i | — =
2

Note that mutual inductance in this case does not depend at all on the shape of the wire
loop. Also, if a larger mutual inductance (and thus larger induced emf) is required, the
loop can simply be wound two or more times around the toroid, to obtain two or more
times larger inductance. This is the principle of operation of transformers.

Mutual Inductance Between Two Toroidal Coils

As another example, let us find the mutual inductance between two toroidal coils tightly
wound one on top of the other on a core of the form shown in Fig. 4.16. Assume that one
coil has N; turns and the other N, turns. If a current /; flows through coil 2, the flux
through coil 1 is just N times the flux ®;; from the preceding example, where N should be
substituted by N,. So

Ni{N>h, b
Ly = Lo _ HoVifolt, P

o , (4.46)

Mutual Inductance of Two Thin Coils

Let the mutual inductance of two simple loops be Li,. If we replace the two loops by two
very thin coils of the same shapes, with N; and N, turns of very thin wire, the mutual
inductance becomes NN;L;,, which is obtained directly from the induced electric field.
Similarly, if a thin coil is made of N turns of very thin wire pressed tightly together, its
self-inductance is N2 times that of a single turn of wire.

Mutual Inductance of Two Crossed Two-wire Lines

A two-wire line crosses another two-wire line at a distance d. The two lines are normal.
Keeping in mind Eq. (4.3) for the induced electric field, it is easily concluded that their
mutual inductance is zero.
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4.5.2. Inductors and Examples of Self-inductance Calculations

Self-inductance of a Toroidal Coil

Consider again the toroidal coil in Fig. 4.16. If the coil has N turns, its self-inductance
is obtained directly from Eq. (4.45): This flux exists through all the N turns of the coil,
so that the flux the coil produces through itself is simply N times that in Eq. (4.45). The
self-inductance of the coil in Fig. 4.16 is therefore

o M0N2h

L
2

In2 (4.47)
a

Self-inductance of a Thin Solenoid

A thin solenoid of length » and cross-sectional area S is situated in air and has N tightly
wound turns of thin wire. Neglecting edge effects, the self-inductance of the solenoid
is given by

2
L:MZS (4.48)

However, in a practical inductor, there exists mutual capacitance between the
windings, resulting in a parallel resonant equivalent circuit for the inductor. At low
frequencies, the capacitor is an open circuit, but as frequency increases, the reactance
of the capacitor starts dominating. At resonance, the parallel resonant circuit is an
open, and beyond that frequency, the inductor behaves like a capacitor. To increase
the valid operating range for inductors, the windings can be made smaller, but that limits
the current handling capability. Figure 4.17 shows some examples of inductor
implementations.

Figure 417 (a) A low-frequency inductor, with L~1mH, wound on a core with an air gap,
(¢) an inductor with a permalloy core with L~0.1mH, (c) a printed inductor surrounded
by a ferromagnetic core with L~ 10uH, (d) small higher frequency inductors with L=~ 1uH,
(e) a chip inductor for surface-mount circuits up to a few hundred MHz with L~0.1puH,
and (f) a micromachined spiral inductor with L~ 10-20nH and a cutoff frequency of 30 GHz

(Q > 50).
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Figure 4.17 Continued.



Electromagnetic Induction 149

Figure 4.17 Continued.

The inductor in Fig. 4.17a is wound on a ferromagnetic core, which has the effect of
increasing the inductance by u,. The small air gap in the core increases the current
handling capability of the inductor. To see why this is true, the magnetic circuit equations
(3.31)—(3.33) can be applied, using the approximation that an effective u, can be defined
for the ferromagnetic. Let the effective length (perimeter of the centerline) of the core be L
and that of the air gap Ly <« L. Then

1 L
NI = R,y®y + R,,® = (Rm() + Rm)CD = /L_B(LO + —) (449)
0 .

r

where N is the number of windings of the inductor, ® is the magnetic flux through
the core and, approximately, through the air gap, and B is the corresponding magnetic flux
density. For an inductor wound on a core without an air gap, the above expression
becomes

B (4.50)
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where I’ is the current with no air gap in the core, assuming the number of windings, the
flux and the dimensions of the core are kept the same. The ratio of the two currents is

i_Lo+L/Mr_1_I_MrLo
T L L

(4.51)

It can be seen that for the same windings, flux, size, and core material, a higher current
in the windings can be used if an air gap is present. Typical relative permeabilities
of ferromagnetic cores are in the several thousands (see Table 3.1), while the air gap length
is controlled by insulator (usually mylar) sheets of variable thickness, on the order of
a fraction of a millimeter. Almost all the magnetic energy is contained in the air gap, since
the magnetic field in the gap is w, times larger than in the core. The gap therefore enables
both larger inductance values and higher current handling, as long as the ferromagnetic
does not saturate.

In moly permalloy materials (see Table 3.1), the relative permeability is smaller
than in pure ferromagnetics because the material is made with distributed air gaps
(bubbles). An inductor with a permalloy core is shown in Fig. 4.17b. The distributed
air regions increase the magnetic energy and therefore the current handling capability.
Since the effective u, is lower, the inductance values are not as high (in the pH range).

Figure 4.17c shows a printed spiral inductor, whose value is increased by wrapping
a core around the printed-circuit board. Such inductors can have values on the order
of 0.1 mH. Figure 4.15d shows a small high-frequency inductor (several hundred MHz)
with a value on the order of tens of microhenry, and Fig. 4.17¢ shows a surface-mount
inductor with values on the order of 0.1 pH and cutoff frequency in the few hundred
megahertz range. Figure 4.17f shows a miniature high-frequency micromachined (MEM)
inductor suspended in air in order to reduce capacitance due to the presence of
the dielectric, resulting in values of inductance on the order of 10-20nH with a usable
frequency range above 20 GHz [21]. At high frequencies, due to the skin effect, the loss in
the inductor becomes large, and values of the Q factor are in the range of Q > 0.

Self-inductance of a Coaxial Cable

Let us find the external self-inductance per unit length of a coaxial cable. We first need
to figure out through which surface to find the flux. If the cable is connected to a generator
at one end and to a load at the other, the current flows “in” through the inner conductor
and flows back through the outer conductor. The flux through such a contour, for a cable
of length £, is the flux through the rectangular surface in Fig. 4.18,

b
@ = J B - dr =0, (4.52)
27 a

a

so that the external self-inductance per unit length of the cable is

b
=52 (4.53)
2r a
As a numerical example, for bla=e=2.71828..., L'=02puH/m. For a common

high-frequency coaxial cable RG-55/U cable, a = 0.5 mm, » =2.95 mm, and the inductance
per unit length is around 3.55nH/cm.
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Figure 4.18 Calculating the self-inductance of a coaxial cable.

2
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Figure 4.19 (a) Calculating the self-inductance of a thin two-wire line and (b) the mutual
inductance between two parallel two-wire lines.

External Self-inductance of a Thin Two-wire Line

A frequently used system for transmission of signals is a thin two-wire line, Fig. 4.19a.
Its inductance per unit length is determined as follows. We can imagine that the line is
actually a very long rectangular contour (closed with a load at one end, and a generator
at the other end), and that we are looking at only one part of it, sketched in the figure.
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At a distance r from conductor 1, the current in it produces a magnetic flux density
of intensity Bj(r) = pol/27r, and the current in conductor 2 a magnetic flux density
By(r) = wol /27(d — r). The total flux through a strip of width dr and length / shown in
the figure is therefore

d—a
= J [Bi(r) + Bo(r)] - h - dr = MOT[hlng (4.54)

a
since d > a. The inductance per unit length of the two-wire line is therefore

=t (4.55)
T a
As a numerical example, for d/a=200, L' =2.12 uH/m. We have only calculated the flux
through the surface outside of the conductors. The expression for L' above is therefore
called the external self-inductance of the line. There is also an internal self-inductance, due
to the flux through the wires themselves (see the example below, Sec. 4.6.3).

Bifilar Coil

To obtain a resistive wire with the smallest self-inductance possible, the wire is bent
sharply in the middle and the two mutually insulated halves are pressed tightly together.
This results in the smallest external flux possible and, consequently, in the smallest
self-inductance. If such a bent wire is wound into a winding, a bifilar coil is obtained.

4.5.3. More on Mutual Inductance

Mutual Inductance Between Two Parallel Two-wire Lines

Mutual inductance per unit length of two two-wire lines running parallel to each other,
shown in the cross section in Fig. 4.19b, can be obtained by calculating the magnetic flux
per unit length due to current in one line through the other. For the reference directions of
the two lines the indicated result is

/
I = <DI, 1n_ Ho n714i’23
LI = "7 —5_

= 4.56
I 2w ri3ro4 (4.56)

Self-inductance and Mutual Inductance of Two Windings

over a Toroidal Core

A thin toroidal core of permeability u, mean radius R, and cross-sectional area S
is densely wound with two coils of thin wire, with N; and N, turns, respectively. The
windings are wound one over the other. The self- and mutual inductances of the coils are

_BNES o pN3S

uN,N,S
L= = L, =20122
"7 2R 2 12

27nR "’ 27 R

(4.57)

so that the coupling coefficient k= 1.
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4.5.4. Neumann’s Formula for Inductance Calculations

Neumann’s Formula for Mutual Inductance of Two-wire Loops

Starting from the induced electric field due to a thin-wire loop, it is possible to derive
a general formula for two thin-wire loops in a homogeneous medium, Fig. 4.20, known as
Neumann’s formula. With reference to Fig. 4.20, it is of the form

Lu:ﬂjﬁ 1; dly - dly (4.58)
G Jc r

Note that L;; would have the same form, except that the order of integration and
the dot product of current elements would exchange places. Since this does not affect the
result, we conclude that L, = L;. Note also that explicit evaluation of the dual integral in
Eq. (4.58) can be performed only in rare instances, but it can always be integrated
numerically with ease.

Flat Multiconductor Cable

As an example of application of Neumann’s formula, consider » narrow coplanar strips
that run parallel to each another over a distance d, Fig. 4.21. This is a model of a flat

C G

Figure 4.20 Two loops made out of thin wire.

Figure 4.21 A flat multiconductor cable (transmission line).
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multiconductor cable (transmission line), such as the ones used to connect a printer to
a computer. Let the currents in the strips be (), i»(¢), . .., i,(f). We wish to determine
the emf induced, for example, in strip no. 1 by the time-varying current in all the other
strips. Although, as explained, this type of coupling is usually referred to as magnetic
coupling, it is actually an example of mutual coupling by means of an induced electric field.

Note that we need not have closed loops in the Neumann formula—what matters is
the induced electric field and the length of the wire in which we determine the induced emf
(i.e., the line integral of the induced field). The total emfin conductor no. 1 induced by the
other conductors running parallel to it for a distance d is given by

n . d rd
o dij(1) (J J dlld1j>
e1(t) = —— 4.59
10 47;]_; i \Jy)o (4.59)
The elements dly, db, . .., dl, are along the center lines of the strips. The integrals can be

evaluated explicitly using tables of integrals. Note that the reference direction of currents
in all the strips is assumed to be the same.

Neumann’s Formula for External Self-inductance of a Wire Loop

Neumann’s formula in Eq. (4.58) can be modified to enable the evaluation of external
self-inductance. At first glance, one can just consider the case when the two contours, C)
and C,, in Neumann’s formula overlap, and the self-inductance of a loop results. This is
not so, however, because the integral becomes singular and divergent (1/r is zero when
elements d/, and dl, coincide).

To alleviate this problem, assume instead that one loop, e.g., C = Cj, is along the
axis of the loop and the other, C' = (>, is along the surface of the wire (Fig. 4.22). The
distance between line elements of such two contours is never zero, and the integral
becomes convergent. The flux computed in this case is the flux that a line current along the
loop axis produces through a contour on the wire surface, so this is precisely the external
loop inductance. The Neumann formula for the external inductance of a loop is thus

L:ﬂfﬁ 1; di - di (4.60)
47'[ clJc r

As with Eq. (4.58), it is possible to integrate the dual integral in this equation explicitly
only rarely, but it can always be integrated numerically.

Figure 4.22 A wire loop and two possible contours of integration in the Neumann formula for
self-inductance.
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4.6. ENERGY AND FORCES IN THE MAGNETIC FIELD: IMPLICATIONS
AND APPLICATIONS

4.6.1. Magnetic Energy of Two Magnetically Coupled Contours

In the case of two contours (n=2), Egs. (4.21) and (4.22) for the magnetic energy of n
contours become

1
W, = E(Ilq)l + IQCI)Q) (461)
and
[
Wy = §L1111 + §L2212 + Lo I (4.62)

This energy can be smaller or larger than the sum of energies of the two contours when
isolated, since L, can be positive or negative.

4.6.2. Losses in Ferromagnetic Materials Due to Hysteresis
and Eddy Currents

Let us observe what happens to energy needed to maintain a sinusoidal magnetic field
in a piece of ferromagnetic material. The hysteresis curve of the material is shown in
Fig. 4.23, and the arrows show the direction in which the operating point is moving in the
course of time. According to Eq. (4.24), the energy density that needs to be spent at a point
where the magnetic field is H, in order to change the magnetic flux density by dB, is
equal to HdB. In the diagram in Fig. 4.23, this is proportional to the area of the
small shaded rectangle. So, the integral of HdB is proportional to the sum of all
such rectangles as the point moves around the hysteresis curve.

Figure 4.23 Hysteresis curve of a ferromagnetic material.
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Starting from point a in Fig. 4.23 moving to point b, the magnetic field H
is positive. The increase dB is also positive, so H.dB is positive, and the energy density
needed to move from point a to b is proportional to the area of the curved triangle abc
in the figure. From b to d, H is positive, but B is decreasing, so that dB is negative.
Therefore, the product H.dB is negative, which means that in this region the energy
used up on maintaining the field is negative. This in turn means that this portion of the
energy is returned back from the field to the sources. The density of this returned
energy is proportional to the area of the curved triangle bdc. From d to e, the product
H.dB is positive, so this energy is spent on maintaining the field, and from e to a, the
product is negative, so this energy is returned to the sources. Therefore, we come to the
conclusion that only the energy density proportional to the area of the curved triangles
bed and efa is returned to the sources. All the rest, which is proportional to the area
formed by the hysteresis loop, is lost to heat in the ferromagnetic material. These losses
are known as hysteresis losses. If the frequency of the field is f, the operating point
circumscribes the loop f times per second. Consequently, hysteresis losses are
proportional to frequency (and to the volume of the ferromagnetic material if the field
is uniform).

If the ferromagnetic material is conductive, there are also eddy-current losses,
proportional to the square of frequency. As an example, consider a solenoid with a
ferromagnetic core made of thin, mutually insulated sheets. To estimate the eddy-current
and hysteresis losses, the fotal power losses are measured at two frequencies, f; and
/>, for the same amplitude of the magnetic flux density. The total power losses are found
to be Py and P,, respectively. Knowing that hysteresis losses are proportional to frequency,
and eddy-current losses to the square of frequency, it is possible to separately determine
these losses as follows. First the total losses can be expressed as

2
P= Ptotal losses — Physterisis losses Peddy-current losses — Af + Bf (463)

where 4 and B are constants. Consequently,

Py = Afi + Bf} and Py = Af> + Bf (4.64)
from which

_PE=Pf? ies

(s =) (4.65)

Ferrite Anechoic Chambers for EMC/EMI Testing

For testing electromagnetic compatibility and interference over a broad frequency range,
dimensions of absorber material for adequately low reflections would be very large and
impractical. Anechoic chambers made for this purpose have walls made of ferrite material,
with very high magnetic losses in the megahertz and gigahertz frequency range. As a result
of the high losses, the walls can be made much thinner, and for increased absorption over a
broader bandwidth the ferrite tiles are sometimes backed with a dielectric layer of
dielectric backed with metal.
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4.6.3. Internal Inductance of a Straight Wire at Low Frequencies

The energy of a wire with a current i is distributed outside the wire, as well as inside the
wire, since there is a magnetic field both outside and inside the wire. From the energy
expression W,, = Li*/2 for a single current contour, we can write

2 Wm inside conductor
Linternal = l.2 and Lexlernal =

2 Wm outside conductor
3 (4.66)

Consider a long straight wire of circular cross section and permeability . If the
current in the wire is assumed to be distributed uniformly (or very nearly so, i.c., we
consider low frequencies), according to Ampeére’s law, the magnetic field inside the
wire is equal to H(r) = Ir/2na’. Using Eqgs. (4.26) and (4.66), we find that the internal
inductance of the wire per unit length is given by

/ 1o

internal — 87

(4.67)

Note that the internal inductance does not depend on the radius of the wire.

4.6.4. Total Inductance of a Thin Two-wire Line at Low Frequencies

The total self-inductance per unit length of a thin two-wire line with wires made of
a material with permeability u, radius of the wires a, and distance between the wire
axes d > a is the sum of its external inductance in Eq. (4.55) and the internal inductance
of both wires:

/ / ’ Mo d Mo
L = Linternal + Lexternal = ;ll’l; + 2% (468)
As a numerical example, if p =y and d/a=100, we get L, .., = |.84pH/m and

’

Listernas = 0.1pH/m. In this example, the external inductance is much larger than
the internal inductance. This is usually the case.

4.6.5. Force of an Electromagnet

As an example of the force formula in Eq. (4.27), the attractive force of an electromagnet,
sketched in Fig. 4.24, is evaluated below. The electromagnet is in the shape of a horseshoe,
and its magnetic force is lifting a weight W, shown in the figure. This is a magnetic circuit.
Let us assume that when the weight W moves by a small amount dx upward, the flux in
the magnetic circuit does not change. That means that when the weight is moved upward,
the only change in magnetic energy is the reduction in energy contained in the two air
gaps, due to their decreased length. This energy reduction is

W, 1B
_ AW 1B o (4.69)
dx 2 o

and the force is now equal to

Fo=z—28=— (4.70)
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Figure 4.24 Sketch of an electromagnet lifting a ferromagnetic weight.

As a numerical example, let B=1T, and S=1000 cm?. For this case, Fy, = 7.96 x 10* N,
which means that this electromagnet can lift a weight of about 8 tons! Such electromagnets
are used, for example, in cranes for lifting large pieces of iron.

4.6.6. Comparison of Electric and Magnetic Pressure

The expression for the pressure of magnetic forces on boundary surfaces between mate-
rials of different magnetic properties can be obtained starting from Eqs. (4.27) and (4.28).
For two magnetic media of permeabilities w; and u,, the pressure on the interface,
assumed to be directed into medium 1, is given by

1 B
p =500 = )+ @7

with the reference direction of pressure into medium 1. We know that magnetic flux
density of about 1T is quite large and not easily attainable. Therefore, for Byom = 1 T,
Hing =0, and py > p1 = po, the largest magnetic pressure that can be obtained is on
the order of

N
pm, max ~ 4005000 E

The electric pressure on a metallic conductor in vacuum is given by the expression
Pe.max = (1/2)g0E>. The electric strength of air is about 3 x 10 V/m. This means that the
largest electric pressure in air is approximately

Pe.max = 0.5(8.86 x 10712) (3 x 10°)* ~ 40 N/m?>

Consequently, the ratio of the maximal magnetic and maximal electric pressure is
approximately

Pm, max — 10,000

Pe, max
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This is an interesting and important conclusion. Although “electric’” and “magnetic”
versions of almost any device can be designed using electric and magnetic forces, the
magnetic version will require much smaller space for the same amount of power. To get an
idea for the order of magnitude of the magnetic and electric pressure, note that a typical
car-tire pressure is around 200 kPa =200,000 N/m? (or 30 psi).

4.6.7. High-frequency Resistance and Internal Inductance of a Wire

It is easy to understand from Ohm’s law that a metal wire has a resistance at dc given by
the resistance for a uniform resistor. As the frequency increases, this resistance changes
due to the skin effect, i.e., the redistribution of current across the cross section of the
conductor. For a cylindrical wire of radius «, the associated resistance per unit length is
given by R’ = Rg/2ma, where Rs = /wu/20 is the surface resistance of the conductor
with conductivity o at an angular frequency w and is obtained from assuming the current
flows through a cross section determined by skin depth.

At high frequencies, a wire also has magnetic energy stored nonuniformly inside
it, and this is associated with internal inductance of the wire per unit length. It can be
shows that the reactive power at high frequencies inside a conductor is equal to the
power of Joule losses due to the wire surface resistance. The power of heat loss is given
by Pley = RgI?/2ma, and the inductance per unit length of a cylindrical wire at high
frequencies is found from Rsl*/2ma = wL) I*. Therefore, the resistance and internal
inductance per unit length of a cylindrical metal wire at a frequency w are given by

1 jou 1 il
ro L e Jer 4.72
2ra\ 20 an nt 2 raw \ 20 4.72)

This frequency-variable internal inductance should be added to the external inductance
when, e.g., calculating the characteristic impedance of cables at high frequencies.

4.7. SOME INTERESTING EXAMPLES OF
ELECTROMAGNETIC INDUCTION

In this section a few interesting examples that the authors encountered in practice, and
that they feel might be useful to the reader, are described. In particular, a commonly
encountered case is that of signal cross-talk due to a current-carrying wire that passes
through a hole in a metal casing (Sec. 4.7.2).

4.71. Mutual Inductance Between Monophase
Cables Laid on the Bottom of the Sea

Assume we have three single-phase 60-Hz power cables laid at the bottom of the sea, for
example, to supply electric power to an island. The cables are spaced by a few hundred
meters and are parallel to each other. (Three distant single-phase instead of one three-
phase cable are often used for safety reasons: if a ship accidentally pulls and breaks one
cable with an anchor, two are left. In addition, usually a spare single-phase cable is laid to
enable quick replacement of a damaged one.) If the length of the cables is long (in practice,
it can be many kilometers), we might expect very large mutual inductance between these
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cables, due to the huge loops they form, and, consequently, unbalanced currents in the
three cables. The 60-Hz sea water skin depth, however, tells us that there will be practically
no mutual inductance between the cables.

4.7.2. Cross Talk Due to Current in Wire Passing Through
a Hole in a Metal Casing

An interesting and commonly encountered practical effect occurs when a single wire with
a high-frequency current passes through a hole in a metal sheet (e.g., the side of a metal
chassis). High frequency in this case means that skin depth should be much smaller than
the sheet thickness. Consequently, the reasoning is valid, surprisingly, also for power
frequencies (60 or 50 Hz) if the sheet is ferromagnetic and its thickness is on the order of
10 mm or greater.

If Ampére’s law is applied to a contour encircling the hole so that it is further
away from the sheet surface than the skin depth, the line integral of vector H is practically
zero, because there is no magnetic field so deep in the sheet. This means that the total
current encircled by the contour is practically zero, i.e., that the current induced on the
hole surface is practically the same as the current in the wire. Of course, once it leaves the
surface of the hole, this current continues to flow over both sheet surfaces, producing
its own magnetic and induced electric field. Consequently, the signal carried by the
current through the wire can be transmitted as described to undesirable places, causing
unexpected cross talk.

4.7.3. Rough Calculation of Induced Voltages in a Human Body
Due to Currents in Power Lines

There is often concern that fields radiated by power lines might be harmful for human
health. It is interesting to do a calculation of the induced voltages in the human body that
result from currents in power lines. There are two mechanisms by which a voltage can be
produced in such a situation: that produced by the electric field, and that induced through
electromagnetic induction due to magnetic field variations. This example shows
a calculation of the two mechanisms on the example of the human head, assuming that
it is the most important, and possibly the most sensitive part of a human body. Assume
that a human head is a sphere with a radius of 10 cm and consisting mostly of salty water.
For this example, the induced voltages in the head are calculated for the power lines being
as close as 20m from the human head, and they carry 100 A of unbalanced current,
Fig. 4.25. For any other input information, the results can be easily scaled.

The magnetic flux density 20m away from a wire with 100A of current is
B = pol/2nr = 1 uT. (How large is this? The earth’s dc magnetic field is on average 50 uT
on the surface, and as a person moves in this field, some voltage will be induced, but
humans are presumably adapted to this effect.) Faraday’s law can be used to calculate the
induced emf around the head due to the calculated value of B:

0

E-dl=—— J
ot head cross section

around head

B-dS

In complex notation, the above equation becomes 27FEiyquced = —jwBma®, where a is
the radius of the head. From here, the value of the voltage due to the induced field
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1=100A
f=60Hz

20m

S

Figure 4.25 Calculating approximately the electromagnetic influence of a power line on the head
of a human standing under it.

across a single 10-um cell in our head is calculated to be about 33 pV for a power-line
frequency of 60 Hz.

This is only one component of the effect of power lines on the human. The other is
due to the electric field, which depends on the voltage of the power line. A reasonable
value for the electric field close to the power line is around £=1kV/m. Salt water has
a resistivity p of about 1 Qm, and to find the voltage across a single cell that can be added
to the induced voltage, the following reasoning can be made. We first find the charge
density o produced on the head due to the high field, we then find the total charge QO by
integration. Assuming a 60-Hz field frequency, this changing charge will produce a current
I, and a corresponding current density J. The current density in the nonperfect conductor
produces an ohmic voltage drop across a cell. The following equations describe this
reasoning, assuming the head is perfectly spherical:

/2
o(0) = 3g9E cos 0= J odS = J o(9)2rasing - do = 3wegEa®
head 0

I
I =270 =0.315pA Jzﬂ—a2 V=FE-10um = pJ - 10 pm >~ 100 pV

Thus the total voltage across a cell in the human head due to a high-voltage line nearby is
calculated to be about 133 pV. For comparison, normal neural impulses are much larger:
they are spikes with around 100-mV amplitudes, frequency between 1 and 100 Hz, and
duration of about a millisecond.
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Electromagnetic (EM) wave propagation deals with the transfer of energy or informa-
tion from one point (a transmitter) to another (a receiver) through the media such as
material space, transmission line, and waveguide. It can be described using both
theoretical models and practical models based on empirical results. Here we describe the
free-space propagation model, path loss models, and the empirical path loss formula.
Before presenting these models, we first discuss the theoretical basis and characteristics of
EM waves as they propagate through material media.

5.1. WAVE EQUATIONS AND CHARACTERISTICS

The EM wave propagation theory can be described by Maxwell’s equations [1,2].

V x E(r,t) = —%B(r,t) (5.1
V x H(r,t) = %D(r,l) +J(r,0) (5.2)
V- D(r,t) = p(r,1) (5.3)
V-B(r,)=0 (5.4)

In the above equations, the field quantities E and H represent, respectively, the electric and
magnetic fields, and D and B the electric and magnetic displacements. J and p represent
the current and charge sources. This set of differential equations relates the time and space
rates of change of various field quantities at a point in space and time. Furthermore, the
position vector r defines a particular location in space (x,y,z) at which the field is being
measured. Thus, for example,

E(x,y,z,0) = E(r,1) (5.5)

163
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An auxiliary relationship between the current and charge densities, J and p, called the
continuity equation is given by

V. J(r0) = —% p(r.0) (5.6)

The constitutive relationships between the field quantities and electric and magnetic
displacements provide the additional constraints needed to solve Egs. (5.1) and (5.2).
These equations characterize a given isotropic material on a macroscopic level in terms
of two scalar quantities as

B = uH = pop,H (5.7)
D = ¢E = gp¢,E (5.8)

where o =4 x 1077 H/m (henrys per meter) is the permeability of free space and
g0 = 8.85 x 10712 F/m (farads per meter) is the permittivity of free space. Also, &, and L,
respectively, characterize the effects of the atomic and molecular dipoles in the material
and the magnetic dipole moments of the atoms constituting the medium.

Maxwell’s equations, given by Eqgs. (5.1) to (5.4), can be simplified if one assumes
time-harmonic fields, i.e., fields varying with a sinusoidal frequency w. For such fields, it is
convenient to use the complex exponential e/“'. Applying the time-harmonic assumption
to Egs. (5.1) to (5.4), we obtain the time-harmonic wave propagation equations

V x E(r) = —joB(r) (5.9)
V x H(r) = joD(r) + J(r) (5.10)
V- D(r) = p(r) (5.11)
V-B(@) =0 (5.12)

The solution of Maxwell’s equations in a source free isotropic medium can be obtained
by using Egs. (5.9) and (5.10) and applying Eqgs. (5.7) and (5.8) as follows:

V x E(r) = —jouH(r) (5.13)

V x H(r) = joweE(r) (5.14)
Taking the curl of the Eq. (5.13) and using Eq. (5.14) we get

V x V x E(r) = —jopV x H(r) = o usE(r) (5.15)
Using a vector identity, and noting that p =0, we can write Eq. (15) as

VZE(r) + o’ ueE(r) =0 (5.16)

This relation is called the wave equation. For example, the x component of E(r) is

& & & 5
(W‘l‘ﬁ‘i‘@)E\(r) + o pueEy(r) =0 (5.17)
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5.14.1. Attenuation

If we consider the general case of a lossy medium that is charge free (p = 0), Egs. (5.9)
to (5.12) can be manipulated to yield Helmholz’ wave equations

V’E —y’E=0 (5.18)
V’H— ’H =0 (5.19)
where y = o + jB is the propagation constant, « is the attenuation constant in nepers per

meter or decibels per meter, and B is the phase constant in radians per meters. Constants «
and B are given by

,u,s_ o2 ]

a:w\7 1+<E> 1 (5.20)
,us_ o\2 i

=l 1+ () ! (5.21)

where w = 27 f is the angular frequency of the wave and o is the conductivity of the
medium.

Without loss of generality, if we assume that the wave propagates in the z direction
and the wave is polarized in the x direction, solving the wave equations in Egs. (5.18) and
(5.19), we obtain

E, = Eye”* cos (wt — Bz) (5.22)
Ey
H, = ﬁe *cos (wt — Pz — 6,) (5.23)
’ n

where 1 = |n|/6, is the intrinsic impedance of the medium and is given by

w/e

Il = ———=
I[1 + (o/we)’]

tan 20, = é 0<6, <45 (5.24)

Equations (5.22) and (5.23) show that as the EM wave propagates in the medium, its
amplitude is attenuated to e™*°.

5.1.2. Dispersion

A plane electromagnetic wave can be described as
E(r) = Eyge /%" = E e /kerthiths) (5.25)

where E,o is an arbitrary constant, and k = k.a,.+k,a, +k.a. is the vector wave and
r =a.x +a, y + a.z is the vector observation point. The substitution of the assumed form
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of the plane wave in Eq. (5.17) yields
K+ Ky + k2 =k = o’ pe (5.26)

This equation is called the dispersion relation. It may also be written in terms of the
velocity v defined by

k=2 (5.27)
v

The other components of E(r) with the same wave equation also have the same dispersion
equation.
The characteristic impedance of plane wave in free space is given by

_|El
=i f f_3779 (5.28)

5.1.3. Phase Velocity
By assuming k = k. = w./ue, the electric field can be described by

E(z,) = Eycos (wt — k.z + ¢) (5.29)

For an observer moving along with the same velocity as the wave, an arbitrary point on

the wave will appear to be constant, which requires that the argument of the E(z,f) be
constant as defined by

— k.z + ¢ = constant (5.30)

Taking the derivative with respect to the z yields

dz o
E:k_:vp (5.31)

where v, is defined as the phase velocity; for free space it is

1
3_ = ——=3x 108 m/s (5.32)

bl

which is the velocity of light in free space.

5.1.4. Group Velocity

A signal consisting of two equal-amplitude tones at frequencies wy+ Aw can be
represented by

f(t) = 2coswytcos Awt (5.33)
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which corresponds to a signal carrier at frequency wy being modulated by a slowly varying
envelope having the frequency Aw. If we assume that each of the two signals travels along
a propagation direction z with an associated propagation constant k(w), then the
propagation constant of each signal is k(wy = Aw). An expansion in a first-order Taylor
series yields

k(wy + Aw) = k(wo) + Awk! (w) (5.34)
where
k
K =2, (5.35)

The substitution of Eq. (5.34) into Eq. (5.33) following some mathematical manipulation
yields

f(t,2) =2coswy(t — 1) cos Aw(t — T4) (5.36)
where

= %0())0)2 (5.37)
and

1, = k'(wo)z (5.38)

The quantities 7, and 7, are defined as the phase and group delays, respectively. The
corresponding propagation velocities are

z
_ =z 5.39
her (539)
by = — (5.40)
tg

For a plane wave propagating in a uniform unbounded medium, the propagation constant
is a linear function of frequency given in Eq. (5.26). Thus, for a plane wave, phase and
group velocities are equal and given by

1
JIHE

Vv, = Vg =

) (5.41)

It is worthwhile to mention that if the transmission medium is a waveguide, k(w) is
no longer a linear function of frequency. It is very useful to use the w-k diagram shown in
Fig. 5.1, which plots w versus k(w). In this graph, the slope of a line drawn from the origin
to the frequency wy gives the phase velocity and the slope of the tangent to the curve at wy
yields the group velocity.
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»>c

Slope = vg(o)

(O1) Wi

/" Slope = vp(wo)

v
o

Figure 514 -k diagram.

5.1.5. Polarization

The electric field of a plane wave propagating in the z direction with no components in the
direction of propagation can be written as

E(z) = (ayEx + a,Ey)e (5.42)
By defining

E. = Ee’* (5.43)

Ey = Eye’” (5.44)
we obtain

E(z) = (a,Exoe™ + a,Ef )e 7 (5.45)

Assuming 4 = E\y/Ey and ¢ = ¢, — ¢, and E,y = 1, we can write Eq. (5.45) as

E(z) = (a, +a,de’*)e "= (5.46)

Case I A=0. E(z) = a,e /%" and E(z,f) = a, cos (wt — k.z). The movement of the
electric field vector in the z=0 plane is along the x axis. This is known as a
linearly polarized wave along the x axis.

Case II: A=1, ¢ =0.

E(z) = (a, +a,)e 7 (5.47)
and

E(z.0) = (ay +a,) cos (wf — k.z) (5.48)
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This is again a linear polarized wave with the electric field vector at 45 degrees
with respect to the x axis.
Case III: A=2, o =0.

E(z.0) = (ay + 2a,) cos (wf — k.z) (5.49)

This is again a linear polarized wave with the electric field vector at 63 degrees
with respect to the x axis.
Case IV: A=1, ¢ =n/2.

E(z) = (a, +ja,)e 7% (5.50)
and
E(z,t) = a, cos (wt — k.z) — a, sin (wf — k.z) (5.51)

In this case the electric field vector traces a circle and the wave is defined to be
left-handed circularly polarized. Similarly, with ¢ = —m/2, it is a right-handed
circularly polarized wave.

Case VI. A=2 and ¢#0. This is an example of an elliptically polarized wave.

5.1.6. Poynting’s Theorem

The relationships between the eclectromagnetic fields can be described by Poynting’s
theorem. For an isotropic medium, Maxwell’s curl equations can be written as

VXxE=—u— 5.52
X e (5.52)

oF
VXH:EE-FJ (5.53)

where the current density J can be described as having two components:
J=J; + J. (5.54)

where J. = oE represents conduction current density induced by the presence of the
electric fields and J; is a source current density that induces electromagnetic fields. The
quantity E - J has the unit of power per unit volume (watts per unit cubic meter). From
Egs. (5.52) and (5.53) we can get

E-J:E~VXH—8E-% (5.55)

Applying the vector identity

V.- AxB)=B-VxA—-A-VxB (5.56)
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gives

E
E~J:H~VXE—V~(EXH)—5E~%—I (5.57)

Substituting Eq. (5.52) into Eq. (5.57) yields

oH oE

Integrating Eq. (5.58) over an arbitrary volume V' that is bounded by surface S with an
outward unit normal to the surface n shown in Fig. 5.2 gives

”JE Jadv = ;(”J 1/2H* dv + J” 1/2¢|EJ? dv) +ﬁsﬁ (ExH)ds (5.59)

where the following identity has been used

JJJ‘ V- -Adv :ﬁiﬁ -Ads (5.60)

Equation (5.59) represents the Poynting theorem. The terms 1/2x|H|> and 1/2¢|E|* are
the energy densities stored in magnetic and electric fields, respectively. The term
gs n - (E x H) ds describes the power flowing out of the volume V. The quantity P = E x H
is called the Poynting vector with the unit of power per unit area. For example, the
Poynting theorem can be applied to the plane electromagnetic wave given in Eq. (5.29),
where ¢ =0. The wave equations are

Ev(z,0) = Eycos (wf — k.z) (5.61)
Hy(z,t) = \/%Eo cos (wt — k.z) (5.62)

The Poynting vector is in the z direction and is given by

P, = E.H, = \/EE& cos?(wr — k.z) (5.63)

S

Figure 5.2 A volume JV enclosed by surface S and unit vector n.
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Applying the trigonometric identity yields

_ el ] _
PZ—\/;E0[2+2C052(0)[ k;z)j| (5.64)

It is worth noting that the constant term shows that the wave carries a time-averaged
power density and there is a time-varying portion representing the stored energy in space
as the maxima and the minima of the fields pass through the region.

We apply the time-harmonic representation of the field components in terms of
complex phasors and use the time average of the product of two time-harmonic quantities
given by

(A(H)B(1)) = LRe(AB*) (5.65)
where B* is the complex conjugate of B. The time average Poynting power density is
(P) = {Re(E x H") (5.66)
where the quantity P = E x H is defined as the complex Poynting vector.
5.1.7. Boundary Conditions

The boundary conditions between two materials shown in Fig. 5.3 are
En=Ep (5.67)
H, =Hp (5.68)
In the vector form, these boundary conditions can be written as
nx(E —E)=0 (5.69)

ﬁ X (H] — Hz) =0 (570)

D2 & B2

Figure 5.3 Boundary conditions between two materials.
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Thus, the tangential components of electric and magnetic field must be equal on the
two sides of any boundary between the physical media. Also for a charge- and current-
free boundary, the normal components of electric and magnetic flux density are
continuous, i.e.,

D1 = Dya (5.71)

Bnl = B112 (572)

For the perfect conductor (infinite conductivity), all the fields inside of the conductor are
zero. Thus, the continuity of the tangential electric fields at the boundary yields

E =0 (5.73)

Since the magnetic fields are zero inside of the conductor, the continuity of the normal
magnetic flux density yields

B, =0 (5.74)
Furthermore, the normal electric flux density is
D, = p, (5.75)

where p, is a surface charge density on the boundary. The tangential magnetic field is
discontinuous by the current enclosed by the path, i.e.,

H,=J, (5.76)

where J; is the surface current density.

5.1.8. Wave Reflection

We now consider the problem of a plane wave obliquely incident on a plane interface
between two lossless dielectric media, as shown in Fig. 5.4. It is conventional to define two
cases of the problem: the electric field is in the xz plane (parallel polarization) or normal
to the xz plane (parallel polarization). Any arbitrary incident plane wave may be treated
as a linear combination of the two cases. The two cases are solved in the same
manner: obtaining expressions for the incident, reflection, and transmitted fields in each
region and matching the boundary conditions to find the unknown amplitude coefficients
and angles.

For parallel polarization, the electric field lies in the xz plane so that the incident
fields can be written as

E; = Eo(aycos6; — a. sin 6;)e/ki(xsinbi+zcos6) (5.77)

Hi — ﬂavefjk](xsine,drzcos@,v) (578)
m -
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Figure 5.4 A plane wave obliquely incident at the interface between two regions.
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where k| = w. /161 and n; = 4/ /€. The reflected and transmitted fields can be obtained

by imposing the boundary conditions at the interface.

E, =T Ey(aycos b, + a.sin 9,.)3_-/’“('” sin 0=z cos ;)

I Ey . P
H, = Il aye jk1(x sin 6,—z cos 0,)

m
E, = EyT}(aycos 6, — a.sin 0,)ekalxsinbitzcos6,)

_ BT

H[ — ayeﬁ/kz(x sin 0,4z cos 6;)
n2

where ky = w,/u28;, m2 = V/u2/e2

0, =0, kisinf; = krsinf, (Snell’s law)

_m cosf; — ny cosH;
M cosb; + np cosb;

and

_ 21, cos 6;
" npcos6, + 1 cosb;

T

(5.79)

(5.80)

(5.81)

(5.82)

(5.83)

(5.84)

(5.85)

For perpendicular polarization, the electric field is normal to the xz plane. The

incident fields are given by

_ —jki(xsin 6;+z cos 6;
E; = Eyaye )

Ey : k(e sin G-+
H; = —(—ay cos b; + a. sin §;)e /F1xsinbitzcost)
m

(5.86)

(5.87)
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while the reflected and transmitted fields are

E, = T Egaye /fitsintr=zcosth) (5.88)

H, = F;1E0 (aycos 6, + a. sin 9,)@’”"('” sin 6, —z cos 6y) (5.89)

E, = EgTyaye /R0snfrtzcost) (5.90)

H, = E‘;ZT L (—ay cOs 0, + a. sin B,)e k2 sinfr=cosfr) (5.91)
where

kysin; =k, sinf, = k, sin 9, (Snell’s law) (5.92)

_m cosf; — ny coso;
L 5 cos6; + ny cos b,

(5.93)

and

_ 21, cos 6;
L= 1, cos 0; + 1 cos b,

(5.94)

5.2. FREE-SPACE PROPAGATION MODEL

The free-space propagation model is used in predicting the received signal strength
when the transmitter and receiver have a clear line-of-sight path between them. If the
receiving antenna is separated from the transmitting antenna in free space by a distance r,
as shown in Fig. 5.5, the power received P, by the receiving antenna is given by the Friis
equation [3]

2\’
P, = GrGt( ) P, (595)
4y

where P, is the transmitted power, G, is the receiving antenna gain, G, is the transmitting
antenna gain, and A is the wavelength (= ¢/f) of the transmitted signal. The Friis equation

P, G, Pr, G

T{ }R

<
<

»
>

r

Figure 5.5 Basic wircless system.
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relates the power received by one antenna to the power transmitted by the other, provided
that the two antennas are separated by r > 2d?/A, where d is the largest dimension of
either antenna. Thus, the Friis equation applies only when the two antennas are in the far
field of each other. It also shows that the received power falls off as the square of the
separation distance r. The power decay as 1/r in a wireless system, as exhibited in Eq.
(5.95), is better than the exponential decay in power in a wired link. In actual practice, the
value of the received power given in Eq. (5.95) should be taken as the maximum possible
because some factors can serve to reduce the received power in a real wireless system. This
will be discussed fully in the next section.

From Eq. (5.95), we notice that the received power depends on the product P,G,. The
product is defined as the effective isotropic radiated power (EIRP), i.c.,

EIRP = P,G, (5.96)

The EIRP represents the maximum radiated power available from a transmitter in the
direction of maximum antenna gain relative to an isotropic antenna.

5.3. PATH LOSS MODEL

Wave propagation seldom occurs under the idealized conditions assumed in Sec. 5.1. For
most communication links, the analysis in Sec. 5.1 must be modified to account for the
presence of the earth, the ionosphere, and atmospheric precipitates such as fog, raindrops,
snow, and hail [4]. This will be done in this section.

The major regions of the earth’s atmosphere that are of importance in radio wave
propagation are the troposphere and the ionosphere. At radar frequencies (approximately
100 MHz to 300 GHz), the troposphere is by far the most important. It is the lower
atmosphere consisting of a nonionized region extending from the earth’s surface up to
about 15km. The ionosphere is the earth’s upper atmosphere in the altitude region from
50 km to one earth radius (6370 km). Sufficient ionization exists in this region to influence
wave propagation.

Wave propagation over the surface of the earth may assume one of the following
three principal modes:

Surface wave propagation along the surface of the earth
Space wave propagation through the lower atmosphere
Sky wave propagation by reflection from the upper atmosphere

These modes are portrayed in Fig. 5.6. The sky wave is directed toward the ionosphere,
which bends the propagation path back toward the earth under certain conditions in a
limited frequency range (below 50 MHz approximately). This is highly dependent on the
condition of the ionosphere (its level of ionization) and the signal frequency. The surface
(or ground) wave takes effect at the low-frequency end of the spectrum (2-5MHz
approximately) and is directed along the surface over which the wave is propagated. Since
the propagation of the ground wave depends on the conductivity of the earth’s surface, the
wave is attenuated more than if it were propagation through free space. The space wave
consists of the direct wave and the reflected wave. The direct wave travels from the
transmitter to the receiver in nearly a straight path while the reflected wave is due to
ground reflection. The space wave obeys the optical laws in that direct and reflected wave
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Sky wave

Direct wave
J Reflected wave
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Figure 5.6 Modes of wave propagation.

components contribute to the total wave component. Although the sky and surface waves
are important in many applications, we will only consider space wave in this chapter.

In case the propagation path is not in free space, a correction factor F is included
in the Friis equation, Eq. (5.74), to account for the effect of the medium. This factor,
known as the propagation factor, is simply the ratio of the electric field intensity E,, in
the medium to the electric field intensity E, in free space, i.c.,

Eﬂl
F=3 (5.97)

The magnitude of F is always less than unity since E,, is always less than E,. Thus, for a
lossy medium, Eq. (5.95) becomes

2\
P, = G,G,(—) P,|F? (5.98)
drr

For practical reasons, Egs. (5.95) and (5.98) are commonly expressed in logarithmic form.
If all the terms are expressed in decibels (dB), Eq. (5.98) can be written in the logarithmic
form as

P,. = Pz + Gr + Gt - Lo - Lm (599)
where P=power in dB referred to 1 W (or simply dBW), G =gain in dB, L,=free-space
loss in dB, and L,, loss in dB due to the medium. (Note that GdB=10logqG.) The

free-space loss is obtained directly from Eq. (5.98) as

4
L, =20 log% (5.100)
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while the loss due to the medium is given by
L, = —20log|F| (5.101)

Our major concern in the rest of this subsection is to determine L, and L,, for an
important case of space propagation that differs considerably from the free-space
conditions.

The phenomenon of multipath propagation causes significant departures from free-
space conditions. The term multipath denotes the possibility of EM wave propagating
along various paths from the transmitter to the receiver. In multipath propagation of
an EM wave over the earth’s surface, two such path exists: a direct path and a path
via reflection and diffractions from the interface between the atmosphere and the earth.
A simplified geometry of the multipath situation is shown in Fig. 5.7. The reflected and
diffracted component is commonly separated into two parts: one specular (or coherent)
and the other diffuse (or incoherent), that can be separately analyzed. The specular
component is well defined in terms of its amplitude, phase, and incident direction. Its main
characteristic is its conformance to Snell’s law for reflection, which requires that the angles
of incidence and reflection be equal and coplanar. It is a plane wave, and as such, is
uniquely specified by its direction. The diffuse component, however, arises out of the
random nature of the scattering surface and, as such, is nondeterministic. It is not a plane
wave and does not obey Snell’s law for reflection. It does not come from a given direction
but from a continuum.

The loss factor F that accounts for the departures from free-space conditions is
given by

F=1+Tp,DS®)e 7 (5.102)

Receiver

Direct Path™—9

Indirect
Path

h; Flat Earth
== =
//// \\\\\
// \\\
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- ~. 4 Curved Earth
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e >~
-~ =~
\\
/// S~<
7/

Figure 5.7 Multipath geometry.
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where

I' = Fresnel reflection coefficient.
p, =roughness coefficient.
D =divergence factor.
S(6) =shadowing function.
A =phase angle corresponding to the path difference.

The Fresnel reflection coefficient I accounts for the electrical properties of the earth’s
surface. Since the earth is a lossy medium, the value of the reflection coefficient depends on
the complex relative permittivity . of the surface, the grazing angle ¥, and the wave
polarization. It is given by

_siny—z

= - (5.103)

smy +z

where
z =1/ —cos2yr for horizontal polarization (5.104)
[e _ cos?
z= Ve oSy for vertical polarization (5.105)
&

o
g.=¢& —]J =g, —j60o/ (5.1006)

we

o

e, and o are, respectively, the dielectric constant and the conductivity of the surface; w
and A are, respectively, the frequency and wavelength of the incident wave; and i is the
grazing angle. It is apparent that 0 < || < 1.

To account for the spreading (or divergence) of the reflected rays due to earth
curvature, we introduce the divergence factor D. The curvature has a tendency to spread
out the reflected energy more than a corresponding flat surface. The divergence factor is
defined as the ratio of the reflected field from curved surface to the reflected field from flat
surface. Using the geometry of Fig. 5.8, we get D as

261G, \ 2
D=(14———F— 5.107
( +aeGsmtp) ( )

where G = G + G is the total ground range and a, = 6370 km is the effective earth radius.
Given the transmitter height %, the receiver height /,, and the total ground range G, we
can determine G, G,, and . If we define

) n=1/2
P=5 |:ae(hl + o) + 7} (5.108)

2a,(hy — 1
o =cos”! [w} (5.109)
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Figure 5.8 Geometry of spherical earth reflection.

and assume /) < hp and G| < G», using small angle approximation yields [5]

G —G+ cosn+a
1=5 p 3
G, =G—-G;
G;
¢l:_) l:1a2
de

172
]

R; = [1} + 4ac(a. + hy) sin*(;/2) i=12

The grazing angle is given by

. 1 (2ah + 1 — R
_ 1 24 1 1
Y =sin ( 4R, )

or

. 1 (2ah +h + R
_ 1 [ < 1 1 _
Y= s ( 2(a, + )R, ) 4
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(5.110)
(5.111)

(5.112)

(5.113)

(5.114)

(5.115)

Although D varies from 0 to 1, in practice D is a significant factor at low grazing angle ¢

(less than 0.1 %).



180 Kolbehdari and Sadiku

The phase angle corresponding to the path difference between direct and reflected
waves is given by

2

A= ;T(Rl + Ry — Ry) (5.116)

The roughness coefficient p, takes care of the fact that the earth surface is not sufficiently
smooth to produce specular (mirrorlike) reflection except at very low grazing angle. The
earth’s surface has a height distribution that is random in nature. The randomness arises
out of the hills, structures, vegetation, and ocean waves. It is found that the distribution
of the heights of the earth’s surface is usually the gaussian or normal distribution of
probability theory. If 0y, is the standard deviation of the normal distribution of heights, we
define the roughness parameters

_csny (5.117)
A

If g<1/8, specular reflection is dominant; if g> 1/8, diffuse scattering results. This
criterion, known as the Rayleigh criterion, should only be used as a guideline since the
dividing line between a specular and a diffuse reflection or between a smooth and a rough
surface is not well defined [6]. The roughness is taken into account by the roughness
coefficient (0 <p,<1), which is the ratio of the field strength after reflection with
roughness taken into account to that which would be received if the surface were smooth.
The roughness coefficient is given by

p, = exp[—2(27g)’] (5.118)

Shadowing is the blocking of the direct wave due to obstacles. The shadowing function
S(0) is important at low grazing angle. It considers the effect of geometric shadowing—the
fact that the incident wave cannot illuminate parts of the earth’s surface shadowed by
higher parts. In a geometric approach, where diffraction and multiple scattering effects are
neglected, the reflecting surface will consist of well-defined zones of illumination and
shadow. As there will be no field on a shadowed portion of the surface, the analysis should
include only the illuminated portions of the surface. A pictorial representation of rough
surfaces illuminated at angle of incidence 6(= 90° — /) is shown in Fig. 5.9. It is evident

Shadow
¥

v
<

Figure 5.9 Rough surface illuminated at an angle of incidence.
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from the figure that the shadowing function S(6) equals unity when 6 =0 and zero when
0 = /2. According to Smith [7],

1 — (1/2)erfe(a)

= 11
5© 1+2B (5.119)
where erfc(x) is the complementary error function,
erfe(x) = 1 — erfe(x) 2 Joc " dy (5.120)
x)=1- X)=——| e .
NEFR
and
P erfe(a) (5.121)
= 1a ﬁe a a .
_ cotd (5.122)
2s
Op
s = e rms surface slope (5.123)
1

In Eq. (5.123), oy, is the rms roughness height and oy is the correlation length. Alternative
models for S(0) are available in the literature. Using Eqs. (5.103) to (5.123), we can
calculate the loss factor in Eq. (5.102). Thus

4 Rd

L, =20log (5.124)

L, = —20log[l + TpDS©O)e "] (5.125)

5.4. EMPIRICAL PATH LOSS FORMULA

Both theoretical and experimental propagation models are used in predicting the path loss.
In addition to the theoretical model presented in the previous section, there are empirical
models for finding path loss. Of the several models in the literature, the Okumura et al.
model [8] is the most popular choice for analyzing mobile-radio propagation because of its
simplicity and accuracy. The model is based on extensive measurements in and around
Tokyo, compiled into charts, that can be applied to VHF and UHF mobile-radio
propagation. The medium path loss (in dB) is given by [9]

A+ Blog,r for urban area
L,=1{ A+ Blog,r—C for suburban area (5.126)
A+ Blog,yr— D for open area
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Figure 510 Radio propagation over a flat surface.

where r (in kilometers) is the distance between the base and mobile stations, as illustrated
in Fig. 5.10. The values of 4, B, C, and D are given in terms of the carrier frequency f
(in MHz), the base station antenna height /, (in meters), and the mobile station antenna
height /,, (in meters) as

A =69.55+426.16log, f — 13.821og,, hy — a(h,,) (5.127a)
B =449 — 6.5510g, (5.127b)
f‘ 2
C = 5.4+2<log10‘2—8) (5.127¢)
D =40.94 —19.331og,, f + 4.78(log10 f)2 (5.127d)
where

0.8 — 1.561ogy f/ + (1.1 logyy f — 0.7)h,, for medium/small city
all) = | 8.28[logo(1.54h,) 1.1 for £ > 200 MHz

3.2[log;o(11.75h,,)]’—4.97 for f < 400 MHz for large city
(5.128)

The following conditions must be satisfied before Eq. (5.127) is used: 150 < f'< 1500 MHz;
1 <r<80km; 30 <h,<400m; 1<h,, <10m. Okumura’s model has been found to be
fairly good in urban and suburban areas but not as good in rural areas.
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6.1. INTRODUCTION

A transmission line is an electromagnetic guiding system for efficient point-to-point
transmission of electric signals (information) and power. Since its earliest use in telegraphy
by Samual Morse in the 1830s, transmission lines have been employed in various types of
electrical systems covering a wide range of frequencies and applications. Examples of
common transmission-line applications include TV cables, antenna feed lines, telephone
cables, computer network cables, printed circuit boards, and power lines. A transmission
line generally consists of two or more conductors embedded in a system of dielectric
media. Figure 6.1 shows several examples of commonly used types of transmission lines
composed of a set of parallel conductors.

The coaxial cable (Fig. 6.1a) consists of two concentric cylindrical conductors
separated by a dielectric material, which is either air or an inert gas and spacers, or a foam-
filler material such as polyethylene. Owing to their self-shielding property, coaxial cables
are widely used throughout the radio frequency (RF) spectrum and in the microwave
frequency range. Typical applications of coaxial cables include antenna feed lines, RF
signal distribution networks (e.g., cable TV), interconnections between RF electronic
equipment, as well as input cables to high-frequency precision measurement equipment
such as oscilloscopes, spectrum analyzers, and network analyzers.

Another commonly used transmission-line type is the two-wire line illustrated in
Fig. 6.1b. Typical examples of two-wire lines include overhead power and telephone lines
and the flat twin-lead line as an inexpensive antenna lead-in line. Because the two-wire line
is an open transmission-line structure, it is susceptible to electromagnetic interference. To
reduce electromagnetic interference, the wires may be periodically twisted (twisted pair)
and/or shielded. As a result, unshielded twisted pair (UTP) cables, for example, have
become one of the most commonly used types of cable for high-speed local area networks
inside buildings.

Figure 6.1c—¢ shows several examples of the important class of planar-type
transmission lines. These types of transmission lines are used, for example, in printed
circuit boards to interconnect components, as interconnects in electronic packaging, and
as interconnects in integrated RF and microwave circuits on ceramic or semiconducting
substrates. The microstrip illustrated in Fig. 6.1c consists of a conducting strip and a

185
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Figure 6.1 Examples of commonly used transmission lines: (a) coaxial cable, (b) two-wire line,
(c) microstrip, (d) coplanar stripline, (¢) coplanar waveguide.

conducting plane (ground plane) separated by a dielectric substrate. It is a widely used
planar transmission line mainly because of its ease of fabrication and integration with
devices and components. To connect a shunt component, however, through-holes are
needed to provide access to the ground plane. On the other hand, in the coplanar stripline
and coplanar waveguide (CPW) transmission lines (Fig. 6.1d and e) the conducting signal
and ground strips are on the same side of the substrate. The single-sided conductor
configuration eliminates the need for through-holes and is preferable for making
connections to surface-mounted components.

In addition to their primary function as guiding system for signal and power
transmission, another important application of transmission lines is to realize capacitive
and inductive circuit elements, in particular at microwave frequencies ranging from a few
gigahertz to tens of gigahertz. At these frequencies, lumped reactive elements become
exceedingly small and difficult to realize and fabricate. On the other hand, transmission-
line sections of appropriate lengths on the order of a quarter wavelength can be
easily realized and integrated in planar transmission-line technology. Furthermore,
transmission-line circuits are used in various configurations for impedance matching. The
concept of functional transmission-line elements is further extended to realize a range of
microwave passive components in planar transmission-line technology such as filters,
couplers and power dividers [1].

This chapter on transmission lines provides a summary of the fundamental
transmission-line theory and gives representative examples of important engineering
applications. The following sections summarize the fundamental mathematical
transmission-line equations and associated concepts, review the basic characteristics of
transmission lines, present the transient response due to a step voltage or voltage pulse
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as well as the sinusoidal steady-state response of transmission lines, and give practical
application examples and solution techniques. The chapter concludes with a brief
summary of more advanced transmission-line concepts and gives a brief discussion of
current technological developments and future directions.

6.2. BASIC TRANSMISSION-LINE CHARACTERISTICS

A transmission line is inherently a distributed system that supports propagating
electromagnetic waves for signal transmission. One of the main characteristics of a
transmission line is the delayed-time response due to the finite wave velocity.

The transmission characteristics of a transmission line can be rigorously determined
by solving Maxwell’s equations for the corresponding electromagnetic problem. For an
“ideal” transmission line consisting of two parallel perfect conductors embedded in a
homogeneous diclectric medium, the fundamental transmission mode is a transverse
electromagnetic (TEM) wave, which is similar to a plane electromagnetic wave described
in the previous chapter [2]. The electromagnetic field formulation for TEM waves on a
transmission line can be converted to corresponding voltage and current circuit quantities
by integrating the electric field between the conductors and the magnetic field around a
conductor in a given plane transverse to the direction of wave propagation [3,4].

Alternatively, the transmission-line characteristics may be obtained by considering
the transmission line directly as a distributed-parameter circuit in an extension of the
traditional circuit theory [5]. The distributed circuit parameters, however, need to be
determined from electromagnetic field theory. The distributed-circuit approach is followed
in this chapter.

6.2.1. Transmission-line Parameters

A transmission line may be described in terms of the following distributed-circuit
parameters, also called line parameters: the inductance parameter L (in H/m), which
represents the series (loop) inductance per unit length of line, and the capacitance
parameter C (in F/m), which is the shunt capacitance per unit length between the two
conductors. To represent line losses, the resistance parameter R (in 2/m) is defined for the
series resistance per unit length due to the finite conductivity of both conductors, while the
conductance parameter G (in S/m) gives the shunt conductance per unit length of line due
to dielectric loss in the material surrounding the conductors.

The R, L, G, C transmission-line parameters can be derived in terms of the electric
and magnetic field quantities by relating the corresponding stored energy and dissipated
power. The resulting relationships are [1,2]

L=L2J H . H"ds 6.1)
11" J)s
C—G—/J E-E'ds (6.2)
VI )s '
R,
=—2J H Hdl (6.3)
17 Jci+c
:&azn‘sj E.E*ds (6.4)
4 s
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ek

where E and H are the electric and magnetic field vectors in phasor form, denotes
complex conjugate operation, R, is the surface resistance of the conductors,” € is the
permittivity and tand is the loss tangent of the dielectric material surrounding the
conductors, and the line integration in Eq. (6.3) is along the contours enclosing the two
conductor surfaces.

In general, the line parameters of a lossy transmission line are frequency dependent
owing to the skin effect in the conductors and loss tangent of the dielectric medium.* In the
following, a lossless transmission line having constant L and C and zero R and G
parameters is considered. This model represents a good first-order approximation for
many practical transmission-line problems. The characteristics of lossy transmission lines
are discussed in Sec. 6.4.

6.2.2. Transmission-line Equations for Lossless Lines

The fundamental equations that govern wave propagation on a lossless transmission line
can be derived from an equivalent circuit representation for a short section of transmission
line of length Az illustrated in Fig. 6.2. A mathematically more rigorous derivation of the
transmission-line equations is given in Ref. 5.

By considering the voltage drop across the series inductance LAz and current
through the shunt capacitance CAz, and taking Az — 0, the following fundamental
transmission-line equations (also known as telegrapher’s equations) are obtained.

ov(z, 1) _ 7 di(z, 1) (6.5)
oz ot .
di(z, 1) B ov(z, 1)
20 _C = (6.6)

Figure 6.2 Schematic representation of a two-conductor transmission line and associated
equivalent circuit model for a short section of lossless line.

"For a good conductor the surface resistance is R; = 1/08,, where the skin depth 8, = 1/{/nf uo
is assumed to be small compared to the cross-sectional dimensions of the conductor.

*The skin effect describes the nonuniform current distribution inside the conductor caused by the
time-varying magnetic flux within the conductor. As a result the resistance per unit length increases
while the inductance per unit length decreases with increasing frequency. The loss tangent of the
dielectric medium tan § = €”/¢€’ typically results in an increase in shunt conductance with frequency,
while the change in capacitance is negligible in most practical cases.
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The transmission-line equations, Egs. (6.5) and (6.6), can be combined to obtain a one-
dimensional wave equation for voltage

#v(z, 1) v(z, 1)
=LC
0z2 o2

(6.7)

and likewise for current.

6.2.3. General Traveling-wave Solutions for Lossless Lines

The wave equation in Eq. (6.7) has the general solution

Wz, t)=v (l - —) +v (l + i) (6.8)
Vp Vp

where v (t —z/v,) corresponds to a wave traveling in the positive z direction, and
v (t+z/vy,) to a wave traveling in the negative z direction with constant velocity of
propagation

by = (6.9)

Figure 6.3 illustrates the progression of a single traveling wave as function of position
along the line and as function of time.
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Figure 6.3 Illustration of the space and time variation for a general voltage wave vt(r —z/v,):
(a) variation in time and (b) variation in space.
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A corresponding solution for sinusoidal traveling waves is

— _Z + — = -
comimfeolsoloDe]
= v cos(wt — Bz + ¢1) + vy cos(wt + Bz + ¢7)

= (6.11)

is the phase constant and A = v,/f is the wavelength on the line. Since the spatial phase
change Bz depends on both the physical distance and the wavelength on the line, it is
commonly expressed as electrical distance (or electrical length) 6 with

9:,32:277; (6.12)
The corresponding wave solutions for current associated with voltage v(z,?) in

Eq. (6.8) are found with Eq. (6.5) or (6.6) as

vt —z/vp)  v(t+2/v))

o
i) =" 7

(6.13)

The parameter Z, is defined as the characteristic impedance of the transmission line and
is given in terms of the line parameters by

L
z= [t (6.14)

The characteristic impedance Z, specifies the ratio of voltage to current of a single
traveling wave and, in general, is a function of both the conductor configuration
(dimensions) and the electric and magnetic properties of the material surrounding the
conductors. The negative sign in Eq. (6.13) for a wave traveling in the negative z direction
accounts for the definition of positive current in the positive z direction.

As an example, consider the coaxial cable shown in Fig. 6.1a with inner conductor of
diameter d, outer conductor of diameter D, and dielectric medium of dielectric constant e,..
The associated distributed inductance and capacitance parameters are

wo, D

=" In= 6.15

L 27rlnd (6.15)
2men€,

= 1
In(D/d) (6.16)

where 1y = 4m x 1077 H/m is the free-space permeability and €y &~ 8.854 x 10~'> F/m is
the free-space permittivity. The characteristic impedance of the coaxial line is

L 1 [, D 60 D
Zo_\/;_zﬂ /Goerlnd_ﬁlnd (Q) (6.17)
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and the velocity of propagation is

1 1 c

LC  Jumoce, /€ (6.18)

Vp

where ¢ ~ 30 cm/ns is the velocity of propagation in free space.

In general, the velocity of propagation of a TEM wave on a lossless transmission line
embedded in a homogeneous dielectric medium is independent of the geometry of the line
and depends only on the material properties of the diclectric medium. The velocity of
propagation is reduced from the free-space velocity ¢ by the factor 1/,/€,, which is also
called the velocity factor and is typically given in percent.

For transmission lines with inhomogeneous or mixed dielectrics, such as the
microstrip shown in Fig. 6.1c, the velocity of propagation depends on both the cross-
sectional geometry of the line and the dielectric constants of the dielectric media. In this
case, the electromagnetic wave propagating on the line is not strictly TEM, but for many
practical applications can be approximated as a quasi-TEM wave. To extend Eq. (6.18) to
transmission lines with mixed dielectrics, the inhomogeneous dielectric is replaced with a
homogeneous dielectric of effective dielectric constant €. giving the same capacitance per
unit length as the actual structure. The effective diclectric constant is obtained as the ratio
of the actual distributed capacitance C of the line to the capacitance of the same structure
but with all dielectrics replaced with air:

C
Cair

Ecff = (6.19)

The velocity of propagation of the quasi-TEM wave can be expressed with Eq. (6.19) as

1 c
y, —= =
P JHotokerr /et

(6.20)

In general, the effective dielectric constant needs to be computed numerically;
however, approximate closed-form expressions are available for many common
transmission-line structures. As an example, a simple approximate closed-form expression
for the effective dielectric constant of a microstrip of width w, substrate height 4, and
dielectric constant ¢, is given by [6]

e+1 ¢—1 1

+
2 2 1+ 10h/w

Eoff = (6.21)

Various closed-form approximations of the transmission-line parameters for many
common planar transmission lines have been developed and can be found in the literature
including Refs. 6 and 7. Table 6.1 gives the transmission-line parameters in exact or
approximate closed form for several common types of transmission lines (assuming no
losses).
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Table 6.1 Transmission-line Parameters for Several Common Types of Transmission

Lines
Transmission line Parameters
_Ho
L= o In(D/d)
_ 2mene,
" In(D/d)
1
Zo = — | Pn(Dsd)
2\ €€,
Coaxial line €eff = €
L= @cosh_l(D/d)
T
B TENEr
~ cosh™! (D/d)
Zo =+ [P cosh\(D/d)
Two-wire line TV €o¢r
€off = €
e+ 1 e -1 1
€eff =
=2 2 ,/1+10h/w
w
— | forw/h<1
Microstrip Y eef )
Flz(lz for w/h > 1
= w/h+2.42 — 0.44h/w + (1 — h/w)°
t—0 [6]
1 +(er— DK(K)K(K)
! 2K (kDK (k)
inh[zw/(4h)]
K =./1=k%= sinnfrw /&l
! U™ sinh[zd/(4h)]
Coplanar waveguide K =+v1—k2=\/(1—(w/d)?)
30 K(K)
- Jeer K(k)
t—0 [6]

(K(k) is the elliptical integral of the first kind)

6.3. TRANSIENT RESPONSE OF LOSSLESS TRANSMISSION LINES

A practical transmission line is of finite length and is necessarily terminated. Consider a
transmission-line circuit consisting of a section of lossless transmission line that is
connected to a source and terminated in a load, as illustrated in Fig. 6.4. The response of
the transmission-line circuit depends on the transmission-line characteristics as well as the
characteristics of the source and terminating load. The ideal transmission line of finite
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Figure 6.4 Lossless transmission line with resistive Thévénin equivalent source and resistive
termination.

length is completely specified by the distributed L and C parameters and line length /,
or, equivalently, by its characteristic impedance Zy = +/L/C and delay time

ty=—=IJLC (6.22)

of the line.* The termination imposes voltage and current boundary conditions at the end
of the line, which may give rise to wave reflections.

6.3.1. Reflection Coefficient

When a traveling wave reaches the end of the transmission line, a reflected wave is
generated unless the termination presents a load condition that is equal to the
characteristic impedance of the line. The ratio of reflected voltage to incident voltage at
the termination is defined as voltage reflection coefficient p, which for linear resistive
terminations can be directly expressed in terms of the terminating resistance and the
characteristic impedance of the line. The corresponding current reflection coefficient is
given by —p. For the transmission-line circuit shown in Fig. 6.4 with resistive terminations,
the voltage reflection coefficient at the termination with load resistance R; is

Ri—2Z

— = 6.23
PL= R, T+ Z (6.23)

Similarly, the voltage reflection coefficient at the source end with source resistance Rg is

_ Rs— 2

Ps = m (6.24)

The inverse relationship between reflection coefficient p; and load resistance R; follows
directly from Eg. (6.23) and is

_I+p

Ry =
1 —pL

Z (6.25)

*The specification in terms of characteristic impedance and delay time is used, for example, in the
standard SPICE model for an ideal transmission line [8].
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It is seen from Eq. (6.23) or (6.24) that the reflection coefficient is positive for a
termination resistance greater than the characteristic impedance, and it is negative for a
termination resistance less than the characteristic impedance of the line. A termination
resistance equal to the characteristic impedance produces no reflection (p=0) and is called
matched termination. For the special case of an open-circuit termination the voltage
reflection coefficient is p,c = +1, while for a short-circuit termination the voltage reflection
coefficient is pgc = —1.

6.3.2. Step Response

To illustrate the wave reflection process, the step-voltage response of an ideal transmission
line connected to a Thévénin equivalent source and terminated in a resistive load, as
shown in Fig. 6.4, is considered. The transient response for a step-voltage change with
finite rise time can be obtained in a similar manner. The step-voltage response of a lossy
transmission line with constant or frequency-dependent line parameters is more complex
and can be determined using the Laplace transformation [5].

The source voltage vg(?) in the circuit in Fig. 6.4 is assumed to be a step-voltage
given by

vs(t) = VoU(1) (6.26)
where
1 fort>0
v = { 0 fort <0 (6.27)

The transient response due to a rectangular pulse vpuse(#) of duration 7" can be obtained
as the superposition of two step responses given as vpuse(t) = VoU(t) — VoU(t — T).

The step-voltage change launches a forward traveling wave at the input of the line at
time r=0. Assuming no initial charge or current on the line, this first wave component
presents a resistive load to the generator that is equal to the characteristic impedance of
the line. The voltage of the first traveling wave component is

Z
vz 0) = VORSTOZO U(z - f) - V1+U<t - Vi) (6.28)
P P

where v, is the velocity of propagation on the line. For a nonzero reflection coeflicient p,
at the termination, a reflected wave is generated when the first traveling wave arrives at the
termination at time ¢ = t; = //v,. If the reflection coefficients at both the source and the
termination are nonzero, an infinite succession of reflected waves results. The total voltage
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response on the line is the superposition of all traveling-wave components and is given by

Zy z
H=—VolUlt—— Ult—2t —
vz, t) = Rs 1 Zo 0|: ( v,,) + oL ( d+vp>

z
+ ,OSPLU(Z -2y ——) + ,OS,OLU(I — 4ty +V—>
14

r (6.29)
2 2 z 2
+pS,0LU(Z—4Z,/ _v_) —i-,OS,o U(l— 614 + )
P Vp
.. }
Similarly, the total current on the line is given by
Vo z z
i(z,t Ult—— ) —pUlt—2t;+—
@0 = RS+ZO|: ( Vp) pr ( ! Vp>
z ) z
+ psprU l—2ld—v— —,Os,OLU l—4ld+v—
’ ’ (6.30)

z z
+p§piU(f—41d ——) — pépiU(t— 614 +—>
v, v,

+}

The reflected wave components on the lossless transmission line are successively delayed
copies of the first traveling-wave component with amplitudes appropriately adjusted by
the reflection coefficients. Equations (6.29) and (6.30) show that at any given time and
location on the line only a finite number of wave components have been generated.
For example, for t = 3¢, three wave components exist at the input of the line (at z=0) and
four wave components exist at the load (at z=1).

Unless both reflection coefficients have unity magnitudes, the amplitudes of the
successive wave components become progressively smaller in magnitude and the infinite
summations in Egs. (6.29) and (6.30) converge to the dc values for 1 — oo. The steady-
state (dc) voltage V,, is obtained by summing the amplitudes of all traveling-wave
components for ¢ — oo.

Voo = v(z,1 — 00) = Voll + pL + pspL + pspi + psp + )

A
Rg+ Z)

Z 1+ pr

Rs+Zy "1—pspr

(6.31)

The steady-state voltage can also be directly obtained as the dc voltage drop across the
load after removing the lossless line, that is

R,

Voo =—————V, 6.32
T Rs+R; " (6.32)
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The steady-state current is

Vo

Ioo=——
*  Rs+RL

(6.33)

6.3.3. Lattice Diagram

The lattice diagram (also called bounce or reflection diagram) provides a convenient
graphical means for keeping track of the multiple wave reflections on the line. The general
lattice diagram is illustrated in Fig. 6.5. Each wave component is represented by a sloped
line segment that shows the time elapsed after the initial voltage change at the source as a
function of distance z on the line. For bookkeeping purposes, the value of the voltage
amplitude of each wave component is commonly written above the corresponding line
segment and the value of the accompanying current is added below. Starting with voltage
ViE =VoZy/(Rs + Zy) of the first wave component, the voltage amplitude of each
successive wave is obtained from the voltage of the preceding wave by multiplication with
the appropriate reflection coefficient p; or pg in accordance with Eq. (6.29). Successive
current values are obtained by multiplication with —p; or —pg, as shown in Eq. (6.30).
The lattice diagram may be conveniently used to determine the voltage and current
distributions along the transmission line at any given time or to find the time response at
any given position. The variation of voltage and current as a function of time at a given
position z = z; is found from the intersection of the vertical line through z; and the
sloped line segments representing the wave components. Figure 6.5 shows the first five
wave intersection times at position z; marked as ¢y, 1, t3, t4, and ts, respectively. At each

RS | ]
| I
| ]

vs(t) : Zo,t4 \ Ry
| ]
A A
] |
< Ps PL > !
o 0 2 iy
T ]
b 1 V1+ : 2
1 I
td T : V1+/ZO I
o~ o= : x| Zo !
2tq | —pL™t :
t3 | pSpL V1+ :
I
| Pspy -+ |
€ 1/2 '
3ty : ) V+ 0 |
1 pgPL'Y )
-~ - x| Zo !
4tdt4‘ _____ AR / :
5 | L2303 7+ :
| 2
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€ 1/2 ,
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1
- 3 + | Zo !
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Figure 6.5 Lattice diagram for a lossless transmission line with unmatched terminations.
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v(z=2,1)/Vo
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Figure 6.6 Step response of a lossless transmission line at z =z, =//4 for Ry = Zy/2 and
R, = 5Zy; (a) voltage response, (b) current response.

intersection time, the total voltage and current change by the amplitudes specified for the
intersecting wave component. The corresponding transient response for voltage and
current with Ry = Zy/2 and R; = 5Z corresponding to reflection coefficients pg = —1/3
and p;, = 2/3, respectively, is shown in Fig. 6.6. The transient response converges to the
steady-state Voo = 10/11 Vyy and I, = 2/11(Vy/Zy), as indicated in Fig. 6.6.

6.3.4. Applications

In many practical applications, one or both ends of a transmission line are matched to
avoid multiple reflections. If the source and/or the receiver do not provide a match,
multiple reflections can be avoided by adding an appropriate resistor at the input of the
line (source termination) or at the end of the line (end termination) [9,10]. Multiple
reflections on the line may lead to signal distortion including a slow voltage buildup or
signal overshoot and ringing.
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Figure 6.7 Step-voltage response at the termination of an open-circuited lossless transmission
line with Rg = 57y (ps = 2/3).

Over- and Under-driven Transmission Lines

In high-speed digital systems, the input of a receiver circuit typically presents a load to a
transmission line that is approximately an open circuit (unterminated). The step-voltage
response of an unterminated transmission line may exhibit a considerably different
behavior depending on the source resistance.

If the source resistance is larger than the characteristic impedance of the line, the
voltage across the load will build up monotonically to its final value since both reflection
coefficients are positive. This condition is referred to as an underdriven transmission
line. The buildup time to reach a sufficiently converged voltage may correspond to
many round-trip times if the reflection coefficient at the source is close to +1
(and pp = poc = +1), as illustrated in Fig. 6.7. As a result, the effective signal delay
may be several times longer than the delay time of the line.

If the source resistance is smaller than the characteristic impedance of the line, the
initial voltage at the unterminated end will exceed the final value (overshoot). Since the
source reflection coefficient is negative and the load reflection coefficient is positive,
the voltage response will exhibit ringing as the voltage converges to its final value. This
condition is referred to as an overdriven transmission line. It may take many round-trip
times to reach a sufficiently converged voltage (long settling time) if the reflection
coefficient at the source is close to —1 (and p; = poc = +1), as illustrated in Fig. 6.8.
An overdriven line can produce excessive noise and cause intersymbol interference.

Transmission-line Junctions

Wave reflections occur also at the junction of two tandem-connected transmission lines
having different characteristic impedances. This situation, illustrated in Fig. 6.9a, is often
encountered in practice. For an incident wave on line 1 with characteristic impedance Zj |,
the second line with characteristic impedance Z, presents a load resistance to line 1 that
is equal to Zjy,. At the junction, a reflected wave is generated on line 1 with voltage
reflection coefficient p;; given by

Zop — 2o,

o2 2ol (6.34)
Zox+ Zo,

P11
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Figure 6.8 Step-voltage response at the termination of an open-circuited lossless transmission line
with Rg = Zy/5 (ps = —2/3).
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Figure 6.9 Junction between transmission lines: (a) two tandem-connected lines and (b) three
parallel-connected lines.
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In addition, a wave is launched on the second line departing from the junction. The
voltage amplitude of the transmitted wave is the sum of the voltage amplitudes of
the incident and reflected waves on line 1. The ratio of the voltage amplitudes of the
transmitted wave on line 2 to the incident wave on line 1 is defined as the voltage
transmission coefficient p; and is given by

o =1+p1=5—"— (6.35)

Similarly, for an incident wave from line 2, the reflection coefficient p,, at the junction is

Zo1 — Zop

_ _ 6.36
Zo1 + Zoa i (6.36)

£22

The voltage transmission coefficient p;> for a wave incident from line 2 and transmitted
into line 1 is

220’1

_cfol (6.37)
Zo1+ Zo>

pr2=14pn =

If in addition lumped elements are connected at the junction or the transmission lines are
connected through a resistive network, the reflection and transmission coefficients will
change, and in general, p; < 1+ pj; [5].

For a parallel connection of multiple lines at a common junction, as illustrated in
Fig. 6.9b, the effective load resistance is obtained as the parallel combination of the
characteristic impedances of all lines except for the line carrying the incident wave.
The reflection and transmission coefficients are then determined as for tandem connected
lines [5].

The wave reflection and transmission process for tandem and multiple parallel-
connected lines can be represented graphically with a lattice diagram for each line. The
complexity, however, is significantly increased over the single line case, in particular if
multiple reflections exist.

Reactive Terminations

In various transmission-line applications, the load is not purely resistive but has a reactive
component. Examples of reactive loads include the capacitive input of a CMOS gate, pad
capacitance, bond-wire inductance, as well as the reactance of vias, package pins, and
connectors [9,10]. When a transmission line is terminated in a reactive element, the
reflected waveform will not have the same shape as the incident wave, i.e., the reflection
coefficient will not be a constant but be varying with time. For example, consider the step
response of a transmission line that is terminated in an uncharged capacitor C;. When the
incident wave reaches the termination, the initial response is that of a short circuit, and
the response after the capacitor is fully charged is an open circuit. Assuming the source
end is matched to avoid multiple reflections, the incident step-voltage wave is
vi(t) = Vo/2U(t — z/v,). The voltage across the capacitor changes exponentially
from the initial voltage vep =0 (short circuit) at time t=¢, to the final voltage



Transmission Lines 201

0.8+ E
= 0.6t K |
~ s
T e, s

L]
5044 vy ]
)
. ,’ === source end
0.2% ‘e = ]oad end J
"k
"
I'd
0 [ ] L ! | 1 L
0 1 2 3 4 5 6 7 8

t/tq

Figure 6.10 Step-voltage response of a transmission line that is matched at the source and
terminated in a capacitor C; with time constant t = Z,Cy; = 1.

Veap(t = 00) =V} (open circuit) as

Veap() = Vo[1 — e /T U(t — 1) (6.38)
with time constant

1=270CL (6.39)

where Z, is the characteristic impedance of the line. Figure 6.10 shows the step-voltage
response across the capacitor and at the source end of the line for t = #,.

If the termination consists of a parallel combination of a capacitor C; and a resistor
R;, the time constant is obtained as the product of C; and the parallel combination of
R; and characteristic impedance Z,. For a purely inductive termination L;, the initial
response is an open circuit and the final response is a short circuit. The corresponding time
constant is t = Ly /Zj.

In the general case of reactive terminations with multiple reflections or with more
complicated source voltages, the boundary conditions for the reactive termination are
expressed in terms of a differential equation. The transient response can then be
determined mathematically, for example, using the Laplace transformation [11].

Nonlinear Terminations

For a nonlinear load or source, the reflected voltage and subsequently the reflection
coefficient are a function of the cumulative voltage and current at the termination
including the contribution of the reflected wave to be determined. Hence, the reflection
coefficient for a nonlinear termination cannot be found from only the termination
characteristics and the characteristic impedance of the line. The step-voltage response for
each reflection instance can be determined by matching the I~V characteristics of the
termination and the cumulative voltage and current characteristics at the end of the
transmission line. This solution process can be constructed using a graphical technique
known as the Bergeron method [5,12] and can be implemented in a computer program.
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Figure 611 [Illustration of the basic principle of time-domain reflectometry (TDR).

Time-Domain Reflectometry

Time-domain reflectometry (TDR) is a measurement technique that utilizes the infor-
mation contained in the reflected waveform and observed at the source end to test,
characterize, and model a transmission-line circuit. The basic TDR principle is illustrated
in Fig. 6.11. A TDR instrument typically consists of a precision step-voltage generator
with a known source (reference) impedance to launch a step wave on the transmission-line
circuit under test and a high impedance probe and oscilloscope to sample and display the
voltage waveform at the source end. The source end is generally well matched to establish
a reflection-free reference. The voltage at the input changes from the initial incident
voltage when a reflected wave generated at an impedance discontinuity such as a change in
line impedance, a line break, an unwanted parasitic reactance, or an unmatched
termination reaches the source end of the transmission line-circuit.

The time elapsed between the initial launch of the step wave and the observation of
the reflected wave at the input corresponds to the round-trip delay 2¢, from the input to
the location of the impedance mismatch and back. The round-trip delay time can be
converted to find the distance from the input of the line to the location of the impedance
discontinuity if the propagation velocity is known. The capability of measuring distance is
used in TDR cable testers to locate faults in cables. This measurement approach is
particularly useful for testing long, inaccessible lines such as underground or undersea
electrical cables.

The reflected waveform observed at the input also provides information on the type
of discontinuity and the amount of impedance change. Table 6.2 shows the TDR response
for several common transmission-line discontinuities. As an example, the load resistance in
the circuit in Fig. 6.11 is extracted from the incident and reflected or total voltage observed
at the input as

1+ P Viotal
L T—p "2 Vincident — Viotal (040

where pP= Vreﬂected/Vincident = (RL - ZO)/(RL + ZO) and Viotat = Vincident + Vreflected -
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Table 6.2 TDR Responses for Typical Transmission-line Discontinuities.

TDR response Circuit
O
Zo,tq % Ry =2
O
O
Zo,tq % Ri > Zy
O
| o
—pVi
W i AR Zo,ta Ry < Zy
(L+p)V1
. [e;
2t4 t
- 1
Vi (1+pL)V1 Zo,tq Cr T~ %RL > Zo
p— O
24 t T=R1Zy/(RL+Zy)CL

\ LL
‘/i - (e
Zo,tq Ry, > Zy
(1+p )V ’
i o

t=L /(RL+Z)

2tq t

The TDR principle can be used to profile impedance changes along a transmission
line circuit such as a trace on a printed-circuit board. In general, the effects of multiple
reflections arising from the impedance mismatches along the line need to be included to
extract the impedance profile. If the mismatches are small, higher-order reflections can be
ignored and the same extraction approach as for a single impedance discontinuity
can be applied for each discontinuity. The resolution of two closely spaced discontinuities,
however, is limited by the rise time of step voltage and the overall rise time of the
TDR system. Further information on using time-domain reflectometry for analyzing and
modeling transmission-line systems is given e.g. in Refs. 10,11,13—15.
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6.4. SINUSOIDAL STEADY-STATE RESPONSE
OF TRANSMISSION LINES

The steady-state response of a transmission line to a sinusoidal excitation of a given
frequency serves as the fundamental solution for many practical transmission-line
applications including radio and television broadcast and transmission-line circuits
operating at microwave frequencies. The frequency-domain information also provides
physical insight into the signal propagation on the transmission line. In particular,
transmission-line losses and any frequency dependence in the R, L, G, C line parameters
can be readily taken into account in the frequency-domain analysis of transmission lines.
The time-domain response of a transmission-line circuit to an arbitrary time-varying
excitation can then be obtained from the frequency-domain solution by applying the
concepts of Fourier analysis [16].

As in standard circuit analysis, the time-harmonic voltage and current on the
transmission line are conveniently expressed in phasor form using Euler’s identity
e/’ = cos® + jsinf. For a cosine reference, the relations between the voltage and current
phasors, V(z) and I(z), and the time-harmonic space—time-dependent quantities, v(z, f) and
i(z, 1), are

v(z, t) = Re{V(2)e’'} (6.41)
i(z, 1) = Re{I(2)e’"} (6.42)

The voltage and current phasors are functions of position z on the transmission line and
are in general complex.

6.4.1. Characteristics of Lossy Transmission Lines

The transmission-line equations, (general telegrapher’s equations) in phasor form for a
general lossy transmission line can be derived directly from the equivalent circuit for a
short line section of length Az — 0 shown in Fig. 6.12. They are

O Ry jwnic) (6.43)
dz

— @ = (G +joC)V(z) (6.44)
z

LAz RAz
I(z) - O:W\—N\f\f J_ © —I(z+A4%)
V(2) CAZ/‘\ %Gm V(z+Az)
A — |

Figure 6.12 Equivalent circuit model for a short section of lossy transmission line of length Az
with R, L, G, C line parameters.
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The transmission-line equations, Egs. (6.43) and (6.44) can be combined to the complex
wave equation for voltage (and likewise for current)

>V (2)
dz?

= (R+ jowL)(G + joC)V(z) = y*V(2) (6.45)

The general solution of Eq. (6.45) is
VR =Vi@+V (@ =Vie "+ Ve (6.46)

where y is the propagation constant of the transmission line and is given by

y=a+jB=(R+jwL)G + joC) (6.47)

and Vi = |Vl and Vy = |V |e/® are complex constants. The real time-harmonic
voltage waveforms v(z, r) corresponding to phasor V(z) are obtained with Eq. (6.41) as

vz, ) =vT(z,) + v (z,1) (6.48)
= |V le ™ cos(wt — Bz + ¢1) + |V |e* cos(wt + Bz + ¢7) '
and are illustrated in Fig. 6.13.

The real part « of the propagation constant in Eq. (6.47) is known as the attenuation
constant measured in nepers per unit length (Np/m) and gives the rate of exponential
attenuation of the voltage and current amplitudes of a traveling wave.* The imaginary
part of y is the phase constant 8 = 27/} measured in radians per unit length (rad/m), as in
the lossless line case. The corresponding phase velocity of the time-harmonic wave is
given by

w

by =2 (6.49)

which depends in general on frequency. Transmission lines with frequency-dependent
phase velocity are called dispersive lines. Dispersive transmission lines can lead to signal
distortion, in particular for broadband signals.

The current phasor I(z) associated with voltage V(z) in Eq. (6.46) is found with
Eq. (6.43) as

1() = —e V" = —_¢tr" (6.50)
0

*The amplitude attenuation of a traveling wave V*¥(z) = Ve ™ = Ve 7% over a distance / can
be expressed in logarithmic form as In|V*(z)/VT(z+ )| = al (nepers). To convert from the
attenuation measured in nepers to the logarithmic measure 201log;, |V (2)/V*(z + /)| in dB, the
attenuation in nepers is multiplied by 201og;, e & 8.686 (1 Np corresponds to about 8.686 dB). For
coaxial cables the attenuation constant is typically specified in units of dB/100 ft. The conversion to
Np/m is 1 dB/100 ft ~0.0038 Np/m.
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(b)

Figure 6.13 [Illustration of a traveling wave on a lossy transmission line: (a) wave traveling in +z
direction with ¢ =0 and «=1/(21) and (b) wave traveling in —z direction with ¢~ =60° and
a=1/2A).

The quantity Z, is defined as the characteristic impedance of the transmission line and is
given in terms of the line parameters by

R+ joL
Zy = | 2o 6.51
"7\ G+ joC 6.51)

As seen from Eq. (6.51), the characteristic impedance is in general complex and frequency
dependent.

The inverse expressions relating the R, L, G, C line parameters to the characteristic
impedance and propagation constant of a transmission line are found from Eqgs. (6.47) and
(6.51) as

R+ joL =yZ, (6.52)

G+ jwC = y/Z, (6.53)
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These inverse relationships are particularly useful for extracting the line parameters
from experimentally determined data for characteristic impedance and propagation
constant.

Special Cases

For a lossless line with R=0 and G =0, the propagation constant is y = jov/LC.
The attenuation constant « is zero and the phase velocity is v, = w/8 =1 /~LC. The
characteristic impedance of a lossless line is Zy = +/L/C, as in Eq. (6.14).

In general, for a lossy transmission line both the attenuation constant and the phase
velocity are frequency dependent, which can give rise to signal distortion.* However, in
many practical applications the losses along the transmission line are small. For a low loss
line with R <« wL and G « wC, useful approximate expressions can be derived for the
characteristic impedance Z, and propagation constant y as

L .1 (R G

and

R /|C G |L

The low-loss conditions R < wL and G « wC are more easily satisfied at higher
frequencies.

6.4.2. Terminated Transmission lines

If a transmission line is terminated with a load impedance that is different from the
characteristic impedance of the line, the total time-harmonic voltage and current on
the line will consist of two wave components traveling in opposite directions, as given
by the general phasor expressions in Egs. (6.46) and (6.50). The presence of the two
wave components gives rise to standing waves on the line and affects the line’s input
impedance.

Impedance Transformation

Figure 6.14 shows a transmission line of finite length terminated with load impedance Z;.
In the steady-state analysis of transmission-line circuits it is expedient to measure distance
on the line from the termination with known load impedance. The distance on the line
from the termination is given by z'. The line voltage and current at distance z’ from the

*For the special case of a line satisfying the condition R/L = G/C, the characteristic impedance
Zy = /L/C, the attenuation constant @ = R//L/C, and the phase velocity v, = 1/~/LC are
frequency independent. This type of line is called a distortionless line. Except for a constant signal
attenuation, a distortionless line behaves like a lossless line.
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termination can be related to voltage V; = V(2 = 0) and current I; = I(z/ = 0) at the
termination as

V(Z) = Vi coshyz + I} Zysinh yZ’ (6.56)
, 1y . , ,
1(Z) = VL(—>smh yz' + I cosh yz (6.57)
Zy

where V;/I; = Z;. These voltage and current transformations between the input and
output of a transmission line of length z’' can be conveniently expressed in 4 BCD matrix
form as*

[V(z/)]_[A B} [V(O)]_[ cosh(yz') Zosinh(yz/):| [V(O)] 6.58)
1) || c p||10)| = | 1/zy)sinh(yz) coshyz) || 1(0) :

The ratio V'(z')/1(z') defines the input impedance Z;,(z') at distance z’ looking toward
the load. The input impedance for a general lossy line with characteristic impedance Z,
and terminated with load impedance Z; is

V() , Zp+ ZtanhyZ
1(z) ~ “°Zy+ Z; tanh yz

Zu(@) = (6.60

It is seen from Eq. (6.60) that for a line terminated in its characteristic impedance
(Z; = Z,), the input impedance is identical to the characteristic impedance, independent
of distance z'. This property serves as an alternate definition of the characteristic
impedance of a line and can be applied to experimentally determine the characteristic
impedance of a given line.

The input impedance of a transmission line can be used advantageously to determine
the voltage and current at the input terminals of a transmission-line circuit as well as the
average power delivered by the source and ultimately the average power dissipated in
the load. Figure 6.15 shows the equivalent circuit at the input (source end) for the
transmission-line circuit in Fig. 6.14. The input voltage V;, and current [, are easily

*The ABCD matrix is a common representation for two-port networks and is particularly useful for
cascade connections of two or more two-port networks. The overall voltage and current
transformations for cascaded lines and lumped elements can be easily obtained by multiplying the
corresponding ABCD matrices of the individual sections [1]. For a lossless transmission line, the
ABCD parameters are

4 B cosf JjZysin @
= LU/zosi 6.59
|: ¢ D ]lossless line [ (J/ZO) sin 6 cos 6 ] ( )

where 6 = BZ’ is the electrical length of the line segment.
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Figure 614 Transmission line of finite length terminated in load impedance Z;.

ZS Iin

1 -

| S | +1

I

Vs Vin : Zin(z, = l)

>y

I

2 =1

Figure 615 Equivalent circuit at the input of the transmission line circuit shown in Fig. 6.14.

determined from the voltage divider circuit. The average power delivered by the source to
the input terminals of the transmission line is

1
Pave,in = ERe{ le:l} (661)

The average power dissipated in the load impedance Z; = R; +jX; is

2

LV R, (6.62)

1 1
Pave,L :ERG{VLIZ} :§|IL|2RL :E Z_L

where V; and I; can be determined from the inverse of the ABCD matrix transformation
Eq. (6.58).* In general, Pave. 1 < Pave.in for a lossy line and Pave 1. = Pave.in for a lossless
line.

Example. Consider a 10m long low-loss coaxial cable of nominal characteristic
impedance Z, = 75, attenuation constant o« =2.2dB per 100ft at 100 MHz, and
velocity factor of 78%. The line is terminated in Z; = 100, and the circuit is
operated at f=100MHz. The ABCD parameters for the transmission line are
A=D=-0.1477+j0.0823, B=(—0.9181+;74.4399)Q, and C=(—0.0002+4;0.0132)Q~".
The input impedance of the line is found as Zj, =(59.3+4/4.24)Q2. For a source voltage
|Vs|=10V and source impedance Zs=75%, the average power delivered to the input of
the line i8S P,ye in=164.2mW and the average power dissipated in the load impedance is
Payve.r, =138.3mW. The difference of 25.9mW (= 16% of the input power) is dissipated in
the transmission line.

*The inverse of Eq. (6.58) expressing the voltage and current at the load in terms of the input voltage
and current is

V. D —B Vi
[ILL]:[—C A ][1] (6.63)
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Transmission Lines as Reactive Circuit Elements

In many practical transmission-line applications, transmission-line losses are small and
often negligible. In particular, short sections of transmission lines used as circuit elements
in high-frequency circuits are often assumed to be lossless.

For a lossless line with y = jB and terminated in a complex load impedance Z;,
the input impedance is

Z; +jZytan6

Zin(0) = Zy 2L 207
in(®) 0Zo+jZ, tan 6

(6.64)

where 6 = Bz’ = 27z’ /A is the electrical distance from the termination. Two particularly
important special cases are the short-circuited line with Z; =0 and the open-circuited line
with Z; — oo.

The input impedance of an open-circuited lossless transmission line is

Zoc = —jZycotd = jXo (6.65)

which is purely reactive. The normalized reactance is plotted in Fig. 6.16a. For small line
lengths of less than a quarter wavelength (6 < 90°), the input impedance is purely

Figure 616 Normalized input reactance of a lossless transmission line terminated in (a) an open
circuit and (b) a short circuit.
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capacitive, as expected. With increasing electrical distance 6, the input reactance alternates
every quarter wavelength between being capacitive and inductive. Any reactance value
—00 < X,y < 400 can be achieved by appropriately adjusting the electrical length (i.e., by
varying the physical length or the frequency (wavelength)). Furthermore, for line lengths
corresponding to multiples of a half wavelength, the input impedance is again an open
circuit. In contrast, for line lengths corresponding to odd multiples of a quarter
wavelength, the input impedance is zero [Zoc(z' = A/4+n)/2)=0,n=0,1,2,...].

The input impedance of a short-circuited lossless transmission line is also purely
reactive and is given by

Zs = jZptan 6 = jX (6.66)

Figure 6.16b shows the normalized reactance X./Z, as a function of electrical length 6.
For small line lengths of less than a quarter-wavelength (6 < 90°), the input impedance of
a short-circuited line is purely inductive, as expected. The dependence of the input
reactance of the short-circuited line on electrical length 6 corresponds to that of the open-
circuited line with a shift by a quarter wavelength. In particular, for line lengths
corresponding to multiples of A/2, the input impedance is zero, whereas for line lengths
corresponding to odd multiples of A/4, the input impedance of a short-circuited lossless
line is an open circuit [Zy (2 = A/4 + nA/2) > oo, n=10,1,2,...].

An important application of open- and short-circuited transmission lines is the
realization of reactive circuit elements for example for matching networks and filters, in
particular at microwave frequencies ranging from a few gigahertz to tens of gigahertz.* At
these frequencies, ordinary lumped elements become exceedingly small and difficult to
realize and fabricate. In contrast, open- and short-circuited transmission-line sections
with lengths on the order of a quarter wavelength become physically small enough to
be realized at microwave frequencies and can be easily integrated in planar circuit
technology. In practice, it is usually easier to make a good short-circuit termination than
an open-circuit termination because of radiation from the open end and coupling to
nearby conductors.

Example. To illustrate the design of reactive transmission-line segments, an
equivalent inductance Leq = SnH and an equivalent capacitance C.q = 2pF are realized

*Qpen- and short-circuit input impedance measurements for a general lossy transmission line can
also be used to determine the transmission-line parameters. From Z,. = Zj,cothyz and
Zs. = Zptanh yZ’ for a lossy line follows

Zy = AY ZocZse (667)

and

ZSC

6.68
7o (6.68)

tanh yz' =

However, care should be taken in the extraction of y = o + jB from Eq. (6.68) due to the periodicity
of the phase term Bz’, which must be approximately known.
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at f=5GHz using a short-circuited 50-Q microstrip line with effective dielectric constant
€efr = 1.89. From Eq. (6.66) follows

Zytan6
Leq, N % (669)
Ceq.sc = ! (6.70)
a5 wZytan O¢ ’

The minimum electrical lengths for positive values for L.q and C,q are found as ; = 72.3°
(/,/x =0.201) and 6¢c =162.3° (/-/» =0.451). With A =436cm the corresponding
physical lengths of the short-circuited microstrip segments are /; = 0.88cm and
lo =197cm.

Complex Reflection Coefficient

The behavior of a terminated line is further examined in terms of incident and reflected
waves at the termination. The ratio of the voltage phasors ¥~ and V' at the termination
is defined as the voltage reflection coefficient I’y = V= /F* and is given in terms of the
load impedance Z; and characteristic impedance Z, as

Iy = Tyleft = 2L 20

= 6.71
Zr+ 2 ( )

The load reflection coefficient I'; is in general complex. Here, a different symbol than in
Eq. (6.23) is used to emphasize the definition of the complex reflection coefficient as ratio
of voltage phasors. For a passive load |I'z| < 1. If the terminating load impedance equals
the characteristic impedance of the line (matched termination), I’y = 0 and V'~ = 0. For
an open-circuit termination, I'y =T',c = +1, while for a short-circuit termination,
') =Ty =—1. In general, for a purely reactive termination Z; =jX; (X, >0 or
X1 < 0) and real characteristic impedance, the magnitude of the reflection coefficient
is |FL| =1.

Standing Waves

The total voltage and current along a lossless transmission line with y =jB can be
expressed with reflection coefficient I'; at the termination as

V(') = V(e 4 T e ) (6.72)
V+ iR~ oy

1(z') = ——{e"P — T e} (6.73)
Zy

The superposition of the two opposing traveling wave components leads to periodic
variations in voltage and current along the line due to constructive and destructive wave
interference. The resulting wave interference component is known as a standing wave. For
an arbitrary termination with reflection coefficient I'; = |I';|e/’r, the voltage and current
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Figure 617 Voltage and current standing-wave patterns for a lossless transmission line terminated
in a complex load impedance with T'; = 0.6¢/¢0".

standing-wave patterns are given by

V= |VJ|\/ (14T cos? (ﬂZ’ - %) + (1 = |T])’sin’ </32’ - %) (6.74)

|(z)| = "\/(1 IT.])? cos? (,BZ’ — 9;) + (1 4 |Tz])* sin® (,Bz’ — 9;) (6.75)

Figure 6.17 illustrates the relative voltage and current variations along a lossless
transmission line for a general complex load impedance with T'; = 0.6¢/°"". In general,
the standing-wave pattern on a lossless transmission line is periodic with a period of /2
(or 180°in 6). The voltage magnitude alternates between the maximum and minimum
values Viax and Vi, given by

Vinin = (1 = ITLDIV{ | (6.77)

Similarly, the maximum and minimum current values /., and I,;, are

Vil Vinax
mdx—(1+|FL|)u— ; (6.78)
0
Vil Vi
o = (1 = 12 2 = 2o (679)
0

The locations with maximum voltage can be found from the condition Bz’ — 6, /2 = nx
(n=0,1,2,...). The minimum voltages are located a quarter wavelength from the
maximum voltages. Locations with current maximum correspond to locations with
minimum voltage and vice versa.
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The ratio of Viax to Viin 1s defined as the standing-wave ratio (SWR, or S for short)
and is given in terms of the reflection coefficient at the termination by

SWR = Vmax — Imax _ 1 + |FL|

Vmin Imin N 1 - |FL|

(6.80)

The standing-wave ratio is a measure for the amount of mismatch at the termination. The
standing-wave ratio for a matched termination is SWR = 1. For an open-circuit, a short-
circuit, or a purely reactive termination SWR — co. For a resistive or complex
termination, 1 < SWR < oo. In general, SWR varies in the range

I <SWR < o0 (6.81)

Table 6.3 shows the standing-wave patterns for several special types of terminations.
For an open-circuit termination and a purely resistive termination with R; > Z;, the
voltage is maximum at the termination. In contrast, the voltage at the termination is
minimum for a short-circuit termination or a purely resistive termination with R; < Zj.
A resistive termination causes a compression in the standing-wave pattern, whereas a
reactive termination gives rise to a shift of the voltage maximum away from the
termination. For a complex termination as shown in Fig. 6.17 with I'; = 0.6e/°"", the
standing-wave pattern is both compressed (SWR = 4) and shifted toward the source side
by 6./2 = +30° compared to the open-circuit case.

The standing-wave ratio and the distance from the termination to the nearest voltage
maximum can be determined in an experimental setup to find the complex reflection
coefficient and, hence, the complex impedance of an unknown termination.* The reflection
coefficient magnitude |I';| is given in terms of SWR as

SWR — 1

ITLl = SWR + 1 (6.82)

Example. From standing-wave measurements, the standing-wave ratio is found
as SWR = Viax/Vmin = 5, the distance between successive voltage minima is 20cm,
and the distance from the termination to the nearest voltage minimum is 4cm. From
Eq. (6.82) follows the magnitude of the reflection coefficient at the termination as
Tzl =(5—=1)/(5§4+ 1) =2/3. The wavelength on the line corresponds to twice the distance
between successive voltage minima and is A = 40cm. The distance from the termination
to the closest voltage minimum is 4/40 A = A/10 or 36°, and the distance to the nearest
voltage maximum is /10 + A/4 = 0.35A or 126°. The phase of the reflection coefficient is
0, =2 x 126° = 252°. The corresponding load impedance is found with Z; = Zy(1 +T';)/
(1—-Ty) as Zy =(0.299 — j0.683)Z,.

In most applications, the phase information for the reflection coefficient is not
needed. The magnitude of the reflection coefficient directly determines the fraction of

*In practice, it is easier to accurately determine the location of a voltage minimum. The location to
the voltage maximum can be obtained from the location of the voltage minimum by adding or
subtracting a quarter wavelength.

F6



Transmission Lines 215

Table 6.3 Standing-wave Patterns on a Lossless Transmission Line for Special Types
of Terminations

Type of termination Standing-wave pattern

Open circuit
V()] =21V |l cos |
n o V7]
1 =—
1 ==

'r=+1 SWR =

| sin BZ|

Short circuit
V()| = 2|V || sin BZ'|
V+
1G] =27 |cos 7|
I'r=—1 SWR =00

270 180 90 0

—
6 =Bz’ (degrees)

Resistive termination R; > Z

2 .
V() = m | V(Tl\/RZL cos? Bz’ + Zé sin’ Bz
L 0
2 Vi .
1 = g o cos? b= + B s
L 0 0
R, —Z Ry
N=——>0 SWR=—
TR+ Z Zy

Resistive termination R; < Z

2
V() = m | V{H\/Zé cos? Bz + RZL sin’ Bz
2 Vi .
O = s 72\ Ricow b + Zsin
R -2, Zy
N=——7+<0 SWR=—
L R, + Z R,

Reactive termination Z; = jX
V=21V | cos(B — 01/2)|
NS L [
1)) =220 sin(pz' — 6,/2)|
Z
FL = lefe’-

0 =2tan"(Zy/X1) SWR — 00
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average incident power that is reflected back on the transmission line. With Egs. (6.72) and
(6.73), the net power flow on a lossless transmission line is given by

V2
27,

Poe(Z) = %Re{ V(I (Z)} = (1 - |FL|2) = P’

ave

(1—1T.1) (6.83)

which is independent of position z’ on the line. The fraction of average incident power P,
that is reflected is

P..=—ITL*P}

ave

(6.84)

The negative sign in Eq. (6.84) indicates the power flow away from the load. Note that the
incident power P is the combined power due to all forward traveling wave components
and thus depends on the load impedance if the source is not matched (Zs # Zj).

In many transmission systems, such as a radio transmitter site, it is critical to
monitor the amount of reflected power. The percentage of reflected power can be directly
determined from the measured standing-wave ratio. For example, for SWR =1.5, the
magnitude of the reflection coefficient is 0.2, which means that 4% of the incident power is
reflected. For a 60-KW transmitter station this would amount to a reflected power of

2400 W.

6.4.3. The Smith Chart

The Smith chart, developed by P. H. Smith in 1939, is a powerful graphical tool for solving
and visualizing transmission-line problems [17,18]. Originally intended as a graphical
transmission-line calculator before the computer age to perform calculations involving
complex impedances, the Smith chart has become one of the primary graphical display
formats in microwave computer-aided design software and in some commonly used
laboratory test equipment, in particular the network analyzer.

The transformation of complex impedance along a transmission line given in
Eq. (6.64) is mathematically complicated and lacks visualization and intuition. On the
other hand, the reflection coefficient undergoes a simple and intuitive transformation
along the transmission line. The reflection coefficient at distance z’ from the termination is
defined as I'(z') = V= (2')/ V(') and is given in terms of the reflection coefficient at the
termination I'y, by

D) = Do = |7 Jel62) (059

The magnitude of the reflection coefficient is unchanged along the lossless line and
the phase of the reflection coefficient is reduced by twice the electrical distance from the
termination.

The Smith chart combines the simple transformation property of the reflection
coefficient along the line with a graphical representation of the mapping of normalized
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Figure 6.48 Illustration of the basic features of the Smith chart.

impedance to the complex reflection coefficient plane given by

Zin(z) _1+T(2)

2 =="7 =110

(6.86)

Here, z=r+jx = Z/Z, is defined as the normalized impedance with respect to the
characteristic impedance of the line. The combination of these two operations in the Smith
chart enables the simple graphical determination and visualization of the impedance
transformation along a transmission line. Other parameters, such as the standing-wave
ratio or the locations of voltage maxima and minima on the line can be simply read off the
Smith chart, and more advanced transmission-line calculations and circuit designs can be
performed with the Smith chart.

Figure 6.18 illustrates the basic features of the Smith chart. The chart shows a grid
of normalized impedance coordinates plotted in the complex plane of the reflection
coefficient. The impedance grid consists of a set of circles for constant values of normalized
resistance r and a set of circular arcs for constant values of normalized reactance x. Any
normalized impedance Z = r + jX on a transmission line corresponds to a particular point
on or within the unit circle (|T'] = 1 circle) in the complex plane of the reflection coefficient.
For a matched impedance the r = 1 circle and x = 0 line intersect at the origin of the Smith
chart (I'=0). The open-circuit point I'=1 is to the far right, and the short-circuit point
' =—1 is to the far left, as indicated in Fig. 6.18. In a real Smith chart, as shown
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Figure 619 Smith chart example for Z; = (25 +25)Q and Z;, = 50 Q.

in Fig. 6.19, a fine grid is used for added accuracy, and scales are added to help with the
calculation of phase change in reflection coefficient along the transmission line.

Example. To illustrate the use of the Smith chart for transmission-line calculations,
consider a lossless line with characteristic impedance Z; = 50 2, which is terminated in a
complex load impedance Z; = (25+;25)2. The normalized load impedance is
z=10.5+;0.5 and is shown on the Smith chart as the intersection of the r =0.5 and
x = 0.5 grid circles. The load reflection coefficient can be directly read off from the Smith
chart. The radius of the transformation circle through Z; (relative to the radius of the unit
circle r = 0) gives the magnitude of the reflection coefficient as |I'z| = 0.45. The phase of
the reflection coefficient is 6; = 116.5°. The standing-wave ratio on the line corresponds to
the normalized maximum impedance z,,,, along the line, which is real and lies on the
intersection of the transformation circle and the x = 0 line. The standing-wave ratio can be
directly read off the Smith chart as SWR = 2.6. For a given electrical length of the line, the
input impedance is found by first determining the reflection coefficient at the input through
clockwise rotation on the transformation (SWR) circle by twice the electrical length of the
line, as given by Eq. (6.85). Assuming an electrical length of / = 0.1025 A, the phase of the
reflection coefficient changes by —28/ = —4z x 0.1025. This amounts to a rotation in
clockwise direction by about 74°. For convenience, the Smith chart includes scales around
its periphery, which can be used to determine the amount of phase rotation directly in
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units of wavelengths. In this example, the starting value at the load on the rotation scale
labeled “toward generator” is 0.088. The end value is 0.088 + 0.1025 = 0.1905. The phase
of the reflection coefficient is read off as 6, = 42.5°. Finally, the input impedance is
obtained as the intersection of the line through the origin with constant phase and the
transformation circle. The normalized input impedance is approximately found as
Zin = 1.54 1.1, or Ziy(z' =1 =10.10251) = (75 +j55) Q.

In transmission-line problems with parallel-connected elements, it is advantageous to
work with admittances rather than impedances. The impedance Smith chart can be
conveniently used with normalized admittances y =g+ jb = YZ, by considering the
relationship

z—1 y—1
r= =
z+1 y+1

(6.87)

where y = 1/z. This relationship shows that the impedance grid can be directly used as
admittance grid with g = const circles and b = const circular arcs if the reflection
coefficient is multiplied by negative one, which amounts to a rotation by 180° on the Smith
chart. Then, the open circuit is located at the far left and the short circuit is at the far right.
The conversion from normalized impedance coordinates to normalized admittance
coordinates given by y = 1/z can be simply achieved on the Smith chart by a 180° rotation
along the transformation (SWR) circle. For example, for the normalized load impedance
z = 0.5+ 0.5, the normalized load admittance is found asy = 1/z = 1 —j, as indicated in
Fig. 6.19.

6.4.4. Impedance Matching

In many transmission-line applications, it is desirable to match the load impedance to the
characteristic impedance of the line and eliminate reflections in order to maximize the
power delivered to the load and minimize signal distortion and noise.* Reducing or
eliminating reflections from the load is particularly important in high-power RF
transmission systems to also minimize hot spots along a transmission line (e.g., the feed
line between the transmitter and the antenna) that are caused by standing waves and not
exceed the power-handling capabilities of the transmission line. Excessive reflections can
also damage the generator, especially in high-power applications.

In practice, the impedance of a given load is often different from the characteristic
impedance Z, of the transmission line, and an additional impedance transformation
network is needed to achieve a matched load condition. Figure 6.20 illustrates the basic
idea of matching an arbitrary load impedance Z; to a transmission line. The matching
network is designed to provide an input impedance looking into the network that is equal
to Z, of the transmission line, and thus eliminate reflections at the junction between the
transmission line and the matching network. The matching network is ideally lossless so

*In general, impedance matching can be done at the load or the source end, or at both ends of the
transmission line. For a matched source, maximum power is delivered to the load when it is
matched to the transmission line and power loss on the line is minimized. For a given source
impedance Zg, maximum power transmission on a lossless line is achieved with conjugate matching
at the source (Zi, = Z%) [1].
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Figure 6.20 General illustration of impedance matching at the termination.

that all incident power on the line ends up being dissipated in the load. A lossless matching
network may consist of lumped reactive elements or reactive transmission-line elements
(stubs) at higher frequencies and/or cascaded transmission-line sections of appropriate
length.

A matching network requires at least two adjustable parameters, such as a lumped
series element and a lumped shunt element, each with adjustable reactance value, to
independently transform the real and imaginary parts of the load impedance. Because the
elements in the matching network are frequency dependent, the exact matching condition
is generally achieved only at a single design frequency. For other frequencies, the reflection
coefficient will be sufficiently small only over a narrow bandwidth about the design
frequency. Larger matching bandwidths may be achieved if more independent elements
are used in the matching network.

Many different design choices of matching networks are available. The selection of a
particular matching network may depend on a number of factors including realizability
in a given technology, required bandwidth, simplicity, occupied space, tunability of the
matching network, and cost of implementation. In the following, two common matching
methods using sections of lossless transmission lines are described to further illustrate the
concept of impedance matching.

Quarter-wave Transformer

A lossless transmission line of length /= A/4 has a special simplified impedance
transformation property, which can be advantageously used for impedance matching.
With Eq. (6.64), the input impedance of a lossless transmission line of length / = 1/4
and characteristic impedance Zj t that is terminated with load impedance Z, is

ZZ
Zinliz 4= ZLLT (6.88)

In particular, any purely resistive load impedance Z; = R; is transformed into a resistive
input impedance given by Rj, = &T /Rr. Hence, a quarter-wave section of a transmission
line can be directly used to match a purely resistive load impedance R; to a line with
characteristic impedance Z, if the characteristic impedance Zy 1 of the quarter-wave
section is given by

Zo.1 = R.Zo (6.89)

For example, to match a half-wave dipole antenna with input impedance Z; ~ 73 Q to a
twin-lead cable with Z; =300, the characteristic impedance of the quarter-wave
transformer should be Zy 1 = /732300 Q2 ~ 148 Q2.
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Figure 6.21 Impedance matching of a complex load using a quarter-wave transformer.

If the load impedance is complex, it is necessary to first transform the complex
impedance to a real impedance. This can be accomplished with a section of transmission
line of appropriate length / between the load and the quarter-wave transform, as
illustrated in Fig. 6.21. A transmission line can transform any complex load impedance
with |[I'z| < 1 to a resistive impedance at the locations with either voltage maximum or
voltage minimum. The transmission-line transformation of a complex load to a real
impedance is best illustrated on the Smith chart. For example, consider a complex load
consisting of a parallel combination of R, =125Q and C; =2.54pF. At the design
frequency fo=1GHz, the load impedance is Z; = (25 —j50) Q2. The normalized load
impedance z; = 0.5 —; for Zy = 50Q is shown on the Smith chart in Fig. 6.22. The
transformation circle intersects the X = 0 grid line at ryj, ~ 0.24 and rpax = 1/rmin &~ 4.2.
The distance to the closest location with real input impedance (Zj, = rmin) is found as
[y =0.135A. The input impedance at this location is Zj, | = R = rminZo ~ 12, and
the characteristic impedance of the quarter-wave transformer is found as
Zo1 = /RZy ~24.5Q. The second solution with real input impedance is at the
voltage maximum with R = rp.«Zo ~210Q2 and /[, =0.135A+0.25A = 0.385A. The
corresponding characteristic impedance of the quarter-wave transformer is
Zo.1 = ~/RZy ~ 102.5 Q. Typically, the solution with the shortest line length /; is chosen
unless it is difficult to realize the characteristic impedance of the corresponding quarter-
wave transformer.

Figure 6.23 shows the response of the matching network as a function of frequency.
The matching network gives an exact match (SWR =1) at the design frequency
fo=1GHz. The bandwidth defined here as the frequency band around the center
frequency with SWR < 1.5 is about 100 MHz or 10%. The standing-wave ratio response
without matching network is also shown in Fig. 6.23 for comparison.

The bandwidth of the matching network can be increased, for example, by cascading
multiple quarter-wave sections (multisection quarter-wave transformer) with smaller
impedance steps per section giving an overall more gradual impedance transformation [1].
This type of matching network can be easily implemented in planar transmission line
technology, such as microstrip, where the characteristic impedance can be changed
continuously by varying the line width or spacing.

Stub Matching

In another common impedance matching technique, a reactive element of appropriate
value is connected either in series or in parallel to the transmission line at a specific
distance from the load. The reactive element can be realized as open- or short-circuited
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Figure 6.22 Graphical illustration on the Smith chart of quarter-wave matching and shunt (stub)
matching of a complex load impedance Z;/Z, = 0.5 —j.
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Figure 6.23 SWR =1.5 bandwidth of an example matching network using a quarter-wave
transformer. Also shown with a dashed line is the response without the matching network.
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Figure 6.24 Matching network with a parallel shunt element.

stub or as lumped inductor or capacitor element. The two design parameters of a stub
matching network are the distance from the termination at which the reactive element is
connected, and the stub length needed to realize the required reactance.

The general matching procedure with a single reactive element or a stub is
demonstrated for a parallel (shunt) configuration with shunt admittance element Yy,
connected at distance d from the termination, as illustrated in Fig. 6.24. For shunt
connections it is more convenient to work with admittances than with impedances. The
transmission line transforms the load admittance Y; = 1/Z; to an input admittance
Yin = G+ jB at distance d from the termination. In the first step of the matching
procedure, distance d is selected such that the real part of the input admittance is matched
as G = Yy, and the nonzero input susceptance B is determined. In the second step, a
reactive shunt element with admittance Yy, = —jB is added to cancel out susceptance B in
the input admittance. The summation of shunt admittance and input admittance of the
line yields a matched total admittance Yy = 1/Z.

The shunt matching procedure is further illustrated on the Smith chart shown in
Fig. 6.22. The same normalized load impedance z; = 0.5 —j as in the previous matching
network example is assumed. The corresponding normalized load admittance is found
from the Smith chart as y; = 0.4 4,0.8. The transformation circle with |I'| = const
intersects the g = 1 circle at two points labeled as P, and P, satisfying the condition
Vi, = 1 +jb. Any complex load admittance with |[I'z| <1 can be transformed by a
transmission line of appropriate length to a point on the g =1 circle. The normalized
input admittances at points P, and P, are y; ; =1+/1.58 and y;, , =1~—/1.58,
respectively. The distance from the termination to point P; on the line with matched
real part of the input admittance is found as d; = 0.0631. The distance to P, is
dr = dy +0.144 1 = 0.207 1. The normalized input susceptance b; = 1.58 at position Py is
capacitive and needs to be canceled with an inductive shunt element with normalized
admittance yy, = —j1.58. The required shunt element may be realized with a lumped
inductor or an open- or short-circuited stub of appropriate length. Similarly, matching
position P, with y; , =1—/1.58 requires a capacitive shunt element to cancel the
susceptance. The capacitive shunt admittance may be realized with a lumped capacitor or
an open- or short-circuited stub of appropriate length.

6.5. FURTHER TOPICS OF TECHNOLOGICAL IMPORTANCE
AND FUTURE DIRECTIONS

In this section, further transmission-line topics of technological importance are briefly
discussed and current developments and future directions are outlined.
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6.5.1. Coupled Lines

Transmission-line circuits often consist of multiple parallel conductors that are in close
proximity to each other. Examples of multiconductor transmission-line systems include
multiphase power lines, telephone cables, and data bus lines on the printed-circuit board
(PCB) of a digital system. Due to the proximity of the conductors, the time-varying
electromagnetic fields generated by the different transmission lines interact, and the lines
become capacitively and inductively coupled. The propagation characteristics of coupled
lines depend not only on the line parameters of the individual lines but also on the mutual
distributed capacitance and inductance parameters.

The capacitive and inductive coupling between transmission lines often leads to
adverse effects in a transmission system. As an example, coupling between closely spaced
lines (interconnects) in digital systems can lead to unwanted crosstalk noise and generally
sets an upper limit in interconnection density (see e.g. Refs. 10 and 19). On the other hand,
electromagnetic coupling between adjacent lines can be used to advantage to realize a
variety of components for microwave circuits such as filters, directional couplers, and
power dividers [1]. Recently, there has also been increased interest in the realization
of compact three-dimensional embedded passive components for RF and mixed-
signal modules, and new compact designs using coupled lines have been demonstrated
(e.g., Ref. 20). A general overview of coupled transmission-line theory and its
application to cross-talk analysis and design of passive microwave components is given,
e.g., in Ref. 5.

6.5.2. Differential Lines

A differential line can be considered as a special case of two symmetric coupled lines. A
differential line consists of two closely spaced symmetric signal conductors that are driven
with identical signals of opposite polarity with respect to a common ground reference
(differential signaling). The main advantages of differential lines include an increased
immunity to common-mode noise and the localized ground references at the input and
output of the line. In particular, the net return current in the ground conductor of a
differential transmission line is ideally zero, which helps to eliminate or reduce the effects
of nonideal current return paths with finite resistance and inductance. As a disadvantage,
differential lines require more conductor traces and generally need to be carefully routed to
avoid conversion between differential- and common-mode signals. Because of the
advantageous properties of differential lines compared to regular (single-ended) lines,
however, differential lines are increasingly being used for critical signal paths in high-speed
analog and digital circuits (see, e.g., Refs. 10 and 19). Differential circuit architectures are
also being employed in parts of RF circuits because of their superior noise-rejection
properties [21].

6.5.3. Chip- and Package-level Interconnects

Transmission lines or electrical interconnects are present at various levels of an electronic
system ranging from cabling to printed-circuit board level to chip packaging to chip level.
The electrical interconnections in an electronic package constitute the electrical interface
between the chip (or a set of chips packaged in a module) and the rest of the electronic
system. The package interconnections can generally be represented by a combination of
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lumped R, L, C elements and nonuniform coupled transmission lines. In some advanced
high-performance packages the interconnections are realized in form of a miniature
printed wiring board with several levels of metalization. The electronic package may
significantly influence the electrical performance of an integrated circuit; hence, the
package characteristics should be included in the design phase of the integrated circuit.
The co-design of the integrated circuit and package has recently been pursued for both
digital and RF integrated circuits as well as for system-on-a-chip solutions.

At the chip level, interconnects in VLSI and RF integrated circuits usually behave as
lumped or distributed RC circuits because of the large series resistance of the metalization.
With increasing clock frequencies, however, the distributed series inductance becomes
more and more significant. As a result, inductance effects cannot be neglected in some
of the longer on-chip interconnects in present-day high-performance VLSI circuits [22].
On-chip interconnects with nonnegligible inductance exhibit transmission-line behavior
and need to be modeled as lossy transmission lines rather than RC lines.

6.5.4. CAD Modeling of Transmission Lines

The development of dispersive single and coupled transmission-line models for computer-
aided design (CAD) tools is an active area of research in both industry and academia.
In general, the line parameters of a transmission line are frequency dependent because of
conductor loss (including skin and proximity effects), substrate loss, and dispersion
induced by inhomogeneous dielectric substrates. The frequency-dependent transmission-
line parameters, however, cannot be represented directly in a time-domain simulator
environment such as SPICE. Several approaches for modeling lossy dispersive
transmission lines have been developed including (1) convolution with the impulse
response of the lossy transmission line, (2) synthesis of the frequency-dependent line
parameter in terms of ideal lumped elements and controlled sources for a short line
section, and (3) mathematical macromodels obtained with model-order reduction (MOR)
techniques resulting in an approximation of the transmission-line characteristics with a
finite number of pole-residue pairs. Other areas of current and future interest include the
efficient extraction of the line parameters (or parasitics) and the cosimulation of the
electromagnetic, thermal, and mechanical phenomena in an electronic system. A review of
the methodologies for the electrical modeling of interconnects and electronic packages is
given in Ref. 23. Modeling of coupled transmission lines—interconnects based on model-
order reduction is further described in Ref. 24.
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Waveguides and Resonators
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71. INTRODUCTION

Any structure that transports electromagnetic waves can be considered as a waveguide.
Most often, however, this term refers to either metal or dielectric structures that transport
electromagnetic energy without the presence of a complete circuit path. Waveguides that
consist of conductors and dielectrics (including air or vacuum) are called metal waveguides.
Waveguides that consist of only dielectric materials are called dielectric waveguides.

Metal waveguides use the reflective properties of conductors to contain and
direct electromagnetic waves. In most cases, they consist of a long metal cylinder
filled with a homogeneous dielectric. More complicated waveguides can also contain
multiple dielectrics and conductors. The conducting cylinders usually have rectangular or
circular cross sections, but other shapes can also be used for specialized applications.
Metal waveguides provide relatively low loss transport over a wide range of frequencies—
from RF through millimeter wave frequencies.

Diclectric waveguides guide electromagnetic waves by using the reflections that
occur at interfaces between dissimilar dielectric materials. They can be constructed for
use at microwave frequencies, but are most commonly used at optical frequencies, where
they can offer extremely low loss propagation. The most common dielectric waveguides
are optical fibers, which are discussed elsewhere in this handbook (Chapter 14: Optical
Communications).

Resonators are either metal or dielectric enclosures that exhibit sharp resonances at
frequencies that can be controlled by choosing the size and material construction of the
resonator. They are electromagnetic analogs of lumped resonant circuits and are typically
used at microwave frequencies and above. Resonators can be constructed using a
large variety of shaped enclosures, but simple shapes are usually chosen so that their
resonant frequencies can be easily predicted and controlled. Typical shapes are rectangular
and circular cylinders.

7.2. MODE CLASSIFICATIONS

Figure 7.1 shows a uniform waveguide, whose cross-sectional dimensions and material
properties are constant along the waveguide (i.e., z) axis. Every type of waveguide has an
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Figure 71 A uniform waveguide with arbitrary cross section.

infinite number of distinct electromagnetic field configurations that can exist inside it.
Each of these configurations is called a mode. The characteristics of these modes depend
upon the cross-sectional dimensions of the conducting cylinder, the type of dielectric
material inside the waveguide, and the frequency of operation.

When waveguide properties are uniform along the z axis, the phasors representing
the forward-propagating (i.e., +z) time-harmonic modes vary with the longitudinal
coordinate z as E, H o« e~ %, where the ¢/*’ phasor convention is assumed. The parameter
y is called the propagation constant of the mode and is, in general, complex valued:

y=a+jp (7.1)

where j = V=1 , a is the modal attenuation constant, which controls the rate of decay of
the wave amplitude, 8 is the phase constant, which controls the rate at which the phase
of the wave changes, which in turn controls a number of other modal characteristics,
including wavelength and velocity.

Waveguide modes are typically classed according to the nature of the electric and
magnetic field components that are directed along the waveguide axis, E. and H., which
are called the longitudinal components. From Maxwell’s equations, it follows that the
transverse components (i.e., directed perpendicular to the direction of propagation) are
related to the longitudinal components by the relations [1]

1 JoE. . O0H.

E, = s (J/ax +Jjop 3 ) (7.2)
1/ 9E. . OH.

Ey=—13 (7/ M ) (7.3)
1 . O0FE. oH

H, = i (—]a)e oy +y o ) (7.4)
1 /. OE. 0H.

H, = 7 <st o 17 oy ) (7.5)

where,
P =K+ (7.6)

k = 2nf /e is the wave number of the dielectric, f'= w/2m is the operating frequency in Hz,
and u and e are the permeability and permittivity of the dielectric, respectively. Similar
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expressions for the transverse fields can be derived in other coordinate systems, but
regardless of the coordinate system, the transverse fields are completely determined by the
spatial derivatives of longitudinal field components across the cross section of the
waveguide.

Several types of modes are possible in waveguides.

TE modes: Transverse-electric modes, sometimes called H modes. These modes have
E.=0 at all points within the waveguide, which means that the electric field
vector is always perpendicular (i.e., transverse) to the waveguide axis. These
modes are always possible in metal waveguides with homogeneous dielectrics.

TM modes: Transverse-magnetic modes, sometimes called E modes. These modes
have H. =0 at all points within the waveguide, which means that the magnetic
field vector is perpendicular to the waveguide axis. Like TE modes, they are
always possible in metal waveguides with homogeneous dielectrics.

EH modes: These are hybrid modes in which neither E. nor H. is zero, but the
characteristics of the transverse fields are controlled more by E. than H.. These
modes usually occur in dielectric waveguides and metal waveguides with
inhomogeneous dielectrics.

HE modes: These are hybrid modes in which neither E. nor H. is zero, but the
characteristics of the transverse fields are controlled more by H. than E.. Like
EH modes, these modes usually occur in dielectric waveguides and in metal
waveguides with inhomogeneous dielectrics.

TEM modes.: Transverse-electromagnetic modes, often called transmission-line modes.
These modes can exist only when more than one conductor with a complete dc
circuit path is present in the waveguide, such as the inner and outer conductors
of a coaxial cable. These modes are not considered to be waveguide modes.

Both transmission lines and waveguides are capable of guiding electromagnetic
signal energy over long distances, but waveguide modes behave quite differently with
changes in frequency than do transmission-line modes. The most important difference is
that waveguide modes can typically transport energy only at frequencies above distinct
cutoff frequencies, whereas transmission line modes can transport energy at frequencies all
the way down to dc. For this reason, the term transmission line is reserved for structures
capable of supporting TEM modes, whereas the term waveguide is typically reserved for
structures that can only support waveguide modes.

7.3. MODAL FIELDS AND CUTOFF FREQUENCIES

For all uniform waveguides, E. and H. satisfy the scalar wave equation at all points within
the waveguide [1]:

VE. +KPE. =0 (7.7)

V’H. + kK°H. =0 (7.8)

where V? is the Laplacian operator and k is the wave number of the dielectric. However,
for +z propagating fields, d()/dz = —y(), so we can write

V2E, + PE. =0 (7.9)
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and
ViH. + WP H. =0 (7.10)

where A? is given by Eq. (7.5) and Vf is the transverse Laplacian operator. In Cartesian
coordinates, V> = 3*/dx* + 3*/3y*. When more than one dielectric is present, E. and H.
must satisfy Egs. (7.9) and (7.10) in each region for the appropriate value of k in each
region.

Modal solutions are obtained by first finding general solutions to Eqgs. (7.9)
and (7.10) and then applying boundary conditions that are appropriate for the particular
waveguide. In the case of metal waveguides, E.=0 and 9H,/dp = 0 at the metal walls,
where p is the direction perpendicular to the waveguide wall. At dielectric—dielectric
interfaces, the E- and H-field components tangent to the interfaces must be continuous.
Solutions exist for only certain values of /, called modal eigenvalues. For metal waveguides
with homogeneous dielectrics, each mode has a single modal eigenvalue, whose value is
independent of frequency. Waveguides with multiple dielectrics, on the other hand, have
different modal eigenvalues in each dielectric region and are functions of frequency, but
the propagation constant y is the same in each region.

Regardless of the type of waveguide, the propagation constant y for each mode
is determined by its modal eigenvalue, the frequency of operation, and the dielectric
properties. From Egs. (7.1) and (7.6), it follows that

y=a+jB=~h -k (7.11)

where £ is the modal eigenvalue associated with the dielectric wave number k. When
a waveguide has no material or radiation (i.e., leakage) loss, the modal eigenvalues are
always real-valued. For this case, y is either real or imaginary. When k*> 4?, =0 and
B> 0, so the modal fields are propagating fields with no attenuation. On the other hand,
when k% <h?, « >0, and =0, which means that the modal fields are nonpropagating
and decay exponentially with distance. Fields of this type are called evanescent fields. The
frequency at which k*=A? is called the modal cuttoff frequency f.. A mode operated
at frequencies above its cutoff frequency is a propagating mode. Conversely, a mode
operated below its cutoff frequency is an evanescent mode.

The dominant mode of a waveguide is the one with the lowest cutoff frequency.
Although higher order modes are often useful for a variety of specialized uses of wave-
guides, signal distortion is usually minimized when a waveguide is operated in the
frequency range where only the dominant mode is propagating. This range of frequencies
is called the dominant range of the waveguide.

7.4. PROPERTIES OF METAL WAVEGUIDES

Metal waveguides are the most commonly used waveguides at RF and microwave frequen-
cies. Like coaxial transmission lines, they confine fields within a conducting shell, which
reduces cross talk with other circuits. In addition, metal waveguides usually exhibit lower
losses than coaxial transmission lines of the same size. Although they can be constructed
using more than one dielectric, most metal waveguides are simply metal pipes filled with
a homogeneous dielectric—usually air. In the remainder of this chapter, the term metal
waveguides will denote self-enclosed metal waveguides with homogeneous dielectrics.
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Metal waveguides have the simplest electrical characteristics of all waveguide types,
since their modal eigenvalues are functions only of the cross-sectional shape of the metal
cylinder and are independent of frequency. For this case, the amplitude and phase
constants of any allowed mode can be written in the form:

f 2
w1 </—> for/ < /e (7.12)
0

for f > f,
and
0 for f < f.
B= f 2 (7.13)
h (7) -1 for f > f,
where
) h
Je= N (7.14)

Each mode has a unique modal eigenvalue /, so each mode has a specific cutoff frequency.
The mode with the smallest modal eigenvalue is the dominant mode. If two or more modes
have the same eigenvalue, they are degenerate modes.

7.41. Guide Wavelength

The distance over which the phase of a propagating mode in a waveguide advances by 27
is called the guide wavelength /... For metal waveguides, § is given by Eq. (7.13), so /. for
any mode can be expressed as

5 :
P S (7.15)

N

where 2 = (f/me)”" is the wavelength of a plane wave of the same frequency in the
waveguide dielectric. For /> f., 4,”~ /. Also, g — o0 as f — f., which is one reason
why it is usually undesirable to operate a waveguide mode near modal cutoff frequencies.

7.4.2. Wave Impedance

Although waveguide modes are not plane waves, the ratio of their transverse electric and
magnetic field magnitudes are constant throughout the cross sections of the metal
waveguides, just as for plane waves. This ratio is called the modal wave impedance and has
the following values for TE and TM modes [1]:

o
e A S (7.16)

v gy
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and

N ET _L_ s 2
Zm = Hr = jaor my 1=(/e/f) (7.17)

where Er and Hp are the magnitudes of the transverse electric and magnetic fields,
respectively, and n = /u/e is the intrinsic impedance of the dielectric. In the limit as
f — oo, both Ztg and Zty approach n. On the other hand, as f — f., Ztg — oo and
Z1tm — 0, which means that the transverse electric fields are dominant in TE modes near
cutoff and the transverse magnetic fields are dominant in TM modes near cutoff.

7.4.3. Wave Velocities

The phase and group velocities of waveguide modes are both related to the rates of
change of the modal propagation constant 8 with respect to frequency. The phase
velocity u), is the velocity of the phase fronts of the mode along the waveguide axis and
is given by [1]

(7.18)

u,,:

=€

Conversely, the group velocity is the velocity at which the amplitude envelopes of narrow-
band, modulated signals propagate and is given by [1]

o (0B)
Ug =55 = <%> (7.19)

Unlike transmission-line modes, where B is a linear function frequency, B is not
a linear function of frequency for waveguide modes; so u, and u, are not the same
for waveguide modes. For metal waveguides, it is found from Egs. (7.13), (7.18), and
(7.19) that

Uy, = _ UTEM (7.20)
VI1=(e/f)

and

ug = ureny/ 1=(fo/f)’ (7.21)

where utpm = 1/,/11¢ is the velocity of a plane wave in the dielectric.

Both u, and u, approach urgm as f — oo, which is an indication that waveguide
modes appear more and more like TEM modes at high frequencies. But near cutoff,
their behaviors are very different: u, approaches zero, whereas u, approaches infinity.
This behavior of 1, may at first seem at odds with Einstein’s theory of special relativity,
which states that energy and matter cannot travel faster than the vacuum speed of light c.
But this result is not a violation of Einstein’s theory since neither information nor energy
is conveyed by the phase of a steady-state waveform. Rather, the energy and information
are transported at the group velocity, which is always less than or equal to c.
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7.4.4. Dispersion

Unlike the modes on transmission lines, which exhibit differential propagation delays (i.e.,
dispersion) only when the materials are lossy or frequency dependent, waveguide modes
are always dispersive, even when the dielectric is lossless and walls are perfectly
conducting. The pulse spread per meter At experienced by a modulated pulse is equal to
the difference between the arrival times of the lowest and highest frequency portions of the
pulse. Since the envelope delay per meter for each narrow-band components of a pulse is
equal to the inverse of the group velocity at that frequency, we find that the pulse
spreading At for the entire pulse is given by

1

Ug

At =—
Ug

(7.22)

max min

where 1 /”g|max and 1/ug| . are the maximum and minimum inverse group velocities
encountered within the pulse bandwidth, respectively. Using Eq. (7.21), the pulse
spreading in metal waveguides can be written as

1 1 1

At = —
T\ I=Gelfoin? 1=l fon)?

(7.23)

where fin and f.c are the minimum and maximum frequencies within the pulse 3-dB
bandwidth. From this expression, it is apparent that pulse broadening is most pronounced
when a waveguide mode is operated close to its cutoff frequency f..

The pulse spreading specified by Eq. (7.23) is the result of waveguide dispersion,
which is produced solely by the confinement of a wave by a guiding structure and has
nothing to do with any frequency-dependent parameters of the waveguide materials. Other
dispersive effects in waveguides are material dispersion and modal dispersion. Material
dispersion is the result of frequency-dependent characteristics of the materials used in the
waveguide, usually the dielectric. Typically, material dispersion causes higher frequencies
to propagate more slowly than lower frequencies. This is often termed normal dispersion.
Waveguide dispersion, on the other hand, causes the opposite effect and is often termed
anomalous dispersion.

Modal dispersion is the spreading that occurs when the signal energy is carried by
more than one waveguide mode. Since each mode has a distinct group velocity, the effects
of modal dispersion can be very severe. However, unlike waveguide dispersion, modal
dispersion can be eliminated simply by insuring that a waveguide is operated only in its
dominant frequency range.

7.4.5. Effects of Losses

There are two mechanisms that cause losses in metal waveguides: dielectric losses and
metal losses. In both cases, these losses cause the amplitudes of the propagating modes to
decay as e”“, where « is the attenuation constant, measured in units of Nepers per meter.
Typically, the attenuation constant is considered as the sum of two components:
a=ua, +o. where a; and o, are the attenuation constants due to dielectric and metal
losses alone, respectively. In most cases, dielectric losses are negligible compared to metal
losses, in which case o ~ «..
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Often, it is useful to specify the attenuation constant of a mode in terms of its decibel
loss per meter length, rather than in Nepers per meter. The conversion formula between
the two unit conventions is

 (dB/m) = 8.686 x o (Np/m) (7.24)

Both unit systems are useful, but it should be noted that & must be specified in Np/m when
it is used in formulas that contain the terms of the form e™%

The attenuation constant «, can be found directly from Eq. (7.11) simply by
generalizing the dielectric wave number k to include the effect of the dielectric conductivity
o. For a lossy dielectric, the wave number is given by k> = w?us(1 + o/jwe), where o is the
conductivity of the dielectric, so the attenuation constant a, due to dielectric losses alone is
given by

ag= Re<\/h2 — a)zus(l—l—,a)) (7.25)
Jws

where Re signifies “‘the real part of ” and / is the modal eigenvalue.

The effect of metal loss is that the tangential electric fields at the conductor
boundary are no longer zero. This means that the modal fields exist both in the dielectric
and the metal walls. Exact solutions for this case are much more complicated than the
lossless case. Fortunately, a perturbational approach can be used when wall conductivities
are high, as is usually the case. For this case, the modal field distributions over the cross
section of the waveguide are disturbed only slightly; so a perturbational approach can be
used to estimate the metal losses except at frequencies very close to the modal cutoff
frequency [2].

This perturbational approach starts by noting that the power transmitted by a
waveguide mode decays as

P = Pye 2% (7.26)

where P, is the power at z=0. Differentiating this expression with respect to z,
solving for «., and noting that dP/dz is the negative of the power loss per meter P;, it
is found that

1P,
== 7.27
=3"p (7.27)

Expressions for «,. in terms of the modal fields can be found by first recognizing that
the transmitted power P is integral of the average Poynting vector over the cross section S
of the waveguide [1]:

P= lRe(J E x H* - ds) (7.28)
2 s

where “*” indicates the complex conjugate, and ““-”” and ““ x " indicate the dot and cross
products, respectively.
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Similarly, the power loss per meter can be estimated by noting that the wall currents
are controlled by the tangential H field at the conducting walls. When conductivities are
high, the wall currents can be treated as if they flow uniformly within a skin depth of the
surface. The resulting expression can be expressed as [1]

P, = Rs# |H |*dl (7.29)
C

N —

where R, = /7tf /o is the surface resistance of the walls (u and o are the permeability and
conductivity of the metal walls, respectively) and the integration takes place along
the perimeter of the waveguide cross section.

As long as the metal losses are small and the operation frequency is not too close to
cuttoff, the modal fields for the perfectly conducting case can be used in the above integral
expressions for P and P;. Closed form expressions for «,. for rectangular and circular
waveguide modes are presented later in this chapter.

7.5. RECTANGULAR WAVEGUIDES

A rectangular waveguide is shown in Fig. 7.2, consisting of a rectangular metal cylinder
of width a and height b, filled with a homogenous dielectric with permeability and
permittivity u and &, respectively. By convention, it is assumed that a > b. If the walls are
perfectly conducting, the field components for the TE,,, modes are given by

E, = Hd%%cos(mg x) sin (%y) exp(jwt—ry,z) (7.30a)
E, = —Hoj}%:g sin (% x) cos (% y) exp(jwt—ru,,z) (7.30b)
E.=0 (7.30c)
H,=H, Zg: "7 in (? x) cos(%y) exp(jwt—rmumz) (7.30d)
H,=H, Z'ﬁ% cos (%x) sin(%y) exp(jwt—ru,,z) (7.30¢)
H.=H, cos(? x) cos (?y) exp(jwt—ru,z) (7.30f)

Figure 7.2 A rectangular waveguide.
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The modal eigenvalues, propagation constants, and cutoff frequencies are

= )
Yin = i + J B = J2rf ) /e [ 1 — (%)2 (7.32)
N o, -

For the TE,,,, modes, m and n can be any positive integer values, including zero, so long
as both are not zero.
The field components for the TM,,,, modes are

E, = —F, <Z§:) (%) cos(% x) sin (% y) exp(jwt—rpunz) (7.34a)
E,=—E Zg: % sin (g x) cos(% y) exp(jowt—runz) (7.34b)
E. = Ejsin (% x) sin (%y) exp(jwt—ru,z) (7.34c)
H, = on};%j % sin (? x) cos (% y) exp(jwt—ruumz) (7.344d)
H, = —Eg‘%g cos(% x) sin (’%ﬂ y) exp(jwt—ru,,z) (7.34¢)
H.=0 (7.34f)

where the values of /,,,,, Y,um, and f., are the same as for the TE,,,, modes [Eqs. (7.31)—(7.33)].
For the TM,,,, modes, m and n can be any positive integer value except zero.

The dominant mode in a rectangular waveguide is the TE ;o mode, which has a cutoff
frequency of

1

Jew = 2ayie (7.35)

The modal field patterns for this mode are shown in Fig. 7.3. Table 7.1 shows the
cutoff frequencies of the lowest order rectangular waveguide modes (referenced to the

Figure 7.3 Field configuration for the TE;y, (dominant) mode of a rectangular waveguide.
(Adapted from Ref. 2 with permission.)
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Table 74 Cutoff Frequencies of the
Lowest Order Rectangular Waveguide
Modes for a/b=2.1.

Jelfero Modes
1.0 TE o

2.0 TE,,

2.1 TE,

2.326 TE,;;, TM;
2.9 TE»;, TM»,;
3.0 TEs,

3.662 TE3;, TM;5,
4.0 TE4

Frequencies are Referenced to the Cutoff
Frequency of the Dominant Mode.

ST
TS

(b)

Figure 7.4 Field configurations for the TE;;, TM;;, and the TE,;; modes in rectangular
waveguides. (Adapted from Ref. 2 with permission.)

cutoff frequency of the dominant mode) when a/b=2.1. The modal field patterns of
several lower order modes are shown in Fig. 7.4.

The attenuation constants that result from metal losses alone can be obtained by
substituting the modal fields into Eqgs. (7.27)—(7.29). The resulting expressions are [3]

- 2R, ", - b
mn b (1 _ h%m/kZ)l/z k2 a
b (eom h2)\ (nab + m*d?

and

2R, < n*b’ + m*a?
Omn =
b’?(l - miz/k2)1/2 nba + m*a?

) TM modes (7.37)

where R;=./nfu/o is the surface resistance of the metal, 5 is the intrinsic impedance of
the dielectric (377 2 for air), &j,,,= 1 for m=0 and 2 for m > 0, and the modal eigenvalues
hym are given by Eq. (7.31). Figure 7.5 shows the attenuation constant for several lower
order modes as a function of frequency. In each case, losses are highest at frequencies near
the modal cutoff frequencies.
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Figure 7.5 The attenuation constant of several lower order modes due to metal losses in
rectangular waveguides with a/b =2, plotted against normalized wavelength. (Adapted from Baden
Fuller, A.J. Microwaves, 2nd Ed.; Oxford: Pergamon Press Ltd., 1979, with permission.)

7.6. CIRCULAR WAVEGUIDES

A circular waveguide with inner radius a is shown in Fig. 7.6, consisting of a rectangular
metal cylinder with inside radius a, filled with a homogenous dielectric. The axis of the
waveguide is aligned with the z axis of a circular-cylindrical coordinate system, where p
and ¢ are the radial and azimuthal coordinates, respectively. If the walls are perfectly
conducting, the equations for the TE,,, modes are

E/J = HOJ/’(I/;—MZ Ju (hnmp) sin neg eXP(le—V;znﬂ) (738‘1)
Ey = Ho"J, () 0 n @XP(jeot =Y 2) (7.38b)

nm

E.=0 (7.38¢)
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Figure 7.6 A circular waveguide.

VYnm

Hy,=—Ho, (i p) cOS n¢p €XP(jeot—YiamZ) (7.38d)
nm
VYim1 . .
H¢ = HO - Jn(hnmp) s n¢ CXP(]COZ—anZ) (7386)
hnmlo
Hz = HOJn(hnmp) Cos i’l¢ eXp(jCl)f—)/n;;1Z) (738f)

where n is any positive valued integer, including zero and J,(x) and J,(x) are the regular
Bessel function of order n and its first derivative [4,5], respectively, and u and e are the
permeability and permittivity of the interior dielectric, respectively. The allowed modal
eigenvalues 7, are

g =L (7.39)
a

Here, the values p/,,, are roots of the equation
S P) =0 (7.40)

where m signifies the mith root of J;,(x). By convention, 1 <m < co, where m =1 indicates
the smallest root. Also for the TE modes,

2
Yam = O + JBum =](2]Tf)\/ wey 1 — (?) (7.41)
Pum
R 7.42
Sem 2ra. /e ( )

The equations that define the TM,,,, modes in circular waveguides are

E,=—E, Z’” T () COS np X0t —Yium2) (7.432)
ynmn . .
E¢ =k Jn(hnmp) sin ng CXP(jwl—J/an) (743b)

h2 o

nm
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E. = EyJ,,(hymp) cos ng exp(jot—yumz) (7.43¢c)

H,= —EOJ}Z.C;—SZ J (M p) sin ng exp(jwt—yumz) (7.43d)
m

H, = —on}.lig J! (hymp) cos ng exp(jwt—Yum?z) (7.43¢)
nm

H.=0 (7.43f)

where 7 is any positive valued integer, including zero. For the TM,,,, modes, the values of
the modal eigenvalues are given by

_ Pnm

/. (7.44)
a
Here, the values p,,, are roots of the equation
Ju(pum) =0 (7.45)

where m signifies the mith root of J,(x), where 1 <m < co. Also for the TM modes,

2
Vim = Cum~+7 Bum =](27Tf)\//I§ 1 - <f;;m> (7.46)
_ Pmm
O N T (1.47)

The dominant mode in a circular waveguide is the TE;; mode, which has a cutoff
frequency given by

0.293
= 4
fll a\/ﬁ (7 8)

The configurations of the electric and magnetic fields of this mode are shown in Fig. 7.7.
Table 7.2 shows the cutoff frequencies of the lowest order modes for circular waveguides,
referenced to the cutoff frequency of the dominant mode. The modal field patterns of
several lower order modes are shown in Fig. 7.8.

Figure 7.7 Field configuration for the TE;; (dominant) mode in a circular waveguide. (Adapted
from Ref. 2 with permission.)
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Table 7.2 Cutoff Frequencies of
the Lowest Order Circular Wave-
guide Modes.

Jelfenn Modes
1.0 TE,,
1.307 TM;
1.66 TE,,;
2.083 TEy, TM;
2.283 TE;,;
2.791 T™,,
2.89 TE4,
3.0 TE»

Frequencies are Referenced to the Cutoff
Frequency of the Dominant Mode.

Figure 7.8 Ficeld configurations of the TMy;, TEq;, and TE,; modes in a circular waveguide.
(Adapted from Ref. 2 with permission.)

The attenuation constants that result from metal losses alone can be obtained by
substituting the modal fields into Eqgs. (7.27)—(7.29). The resulting expressions are [3]

RS (p:mz)z n2 :|
Ay = + TE modes (7.49)
an[1 = (P tka?]” [ @R () 2
and
R
aﬂ[l - (pnm/ka)z]l/2

TM modes (7.50)

Opm =

Figure 7.9 shows the metal attenuation constants for several circular waveguide modes,
each normalized to the surface resistance R; of the walls. As can be seen from this figure,
the TE,, modes exhibit particularly low loss at frequencies significantly above their cutoff
frequencies, making them useful for transporting microwave energy over large distances.

7.7. COAXIAL-TO-WAVEGUIDE TRANSITIONS

When coupling electromagnetic energy into a waveguide, it is important to ensure that
the desired mode is excited and that reflections back to the source are minimized, and
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Figure 7.9 The attenuation constant of several lower order modes due to metal losses in circular
waveguides with diameter d, plotted against normalized wavelength. (Adapted from Baden Fuller,
A.J. Microwaves, 2nd Ed.; Oxford: Pergamon Press Ltd., 1979, with permission.)

that undesired higher order modes are not excited. Similar concerns must be considered
when coupling energy from a waveguide to a transmission line or circuit element. This
is achieved by using launching (or coupling) structures that allow strong coupling between
the desired modes on both structures.

Figure 7.10 shows a mode launching structure launching the TE;y mode in a
rectangular waveguide from a coaxial transmission line. This structure provides good
coupling between the TEM (transmission line) mode on the coaxial line and the
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Figure 710 Coaxial-to-rectangular waveguide transition that couples the coaxial line to the TE g
waveguide mode.

Figure 711 Coaxial-to-rectangular transitions that excite the TM; and TM;, modes.

TE,( mode. The probe extending from inner conductor of the coaxial line excites a strong
vertical electric field in the center of the waveguide, which matches the TE;y modal E field.
The distance between the probe and the short circuit back wall is chosen to be approxi-
mately /,/4, which allows the backward-launched fields to reflect off the short circuit and
arrive in phase with the fields launched toward the right.

Launching structures can also be devised to launch higher order modes. Mode
launchers that couple the transmission line mode on a coaxial cable to the TM;; and TE;
waveguide modes are shown in Fig. 7.11.

7.8. COMPARATIVE SURVEY OF METAL WAVEGUIDES

All waveguides are alike in that they can propagate electromagnetic signal energy via an
infinite number of distinct waveguide modes. Even so, each waveguide type has certain
specific electrical or mechanical characteristics that may make it more or less suitable for
a specific application. This section briefly compares the most notable features of the most
common types: rectangular, circular, elliptical, and ridge waveguides.

Rectangular waveguides are popular because they have a relatively large dominant
range and moderate losses. Also, since the cutoff frequencies of the TE|y and TEy; modes
are different, it is impossible for the polarization direction to change when a rectangular
waveguide is operated in its dominant range, even when nonuniformities such as bends
and obstacles are encountered. This is important when feeding devices such as antennas,
where the polarization of the incident field is critical.
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Circular waveguides have a smaller dominant range than rectangular waveguides.
While this can be a disadvantage, circular waveguides have several attractive features.
One of them is their shape, which allows the use of circular terminations and connectors,
which are easier to manufacture and attach. Also, circular waveguides maintain their
shapes reasonably well when they are bent, so they can be easily routed between the
components of a system. Circular waveguides are also used for making rotary joints,
which are needed when a section of waveguide must be able to rotate, such as for the
feeds of revolving antennas. Another useful characteristic of circular waveguides is
that some of their higher order modes have particularly low loss. This makes them
attractive when signals must be sent over relatively long distances, such as for the feeds
of microwave antennas on tall towers.

An elliptical waveguide is shown in Fig. 7.12a. As might be expected by their shape,
elliptical waveguides bear similarities to both circular and rectangular waveguides. Like
circular waveguides, they are easy to bend. The modes of elliptical waveguides can be
expressed in terms of Mathieu functions [6] and are similar to those of circular waveguides,
but exhibit different cutoff frequencies for modes polarized along the major and minor
axes of the elliptical cross section of the waveguide. This means that unlike circular
waveguides, where the direction of polarization tends to rotate as the waves pass through
bends and twists, modal polarization is much more stable in elliptical waveguides. This
property makes elliptical waveguides attractive for feeding certain types of antennas,
where the polarization state at the input to the antenna is critical.

Single and double ridge waveguides are shown in Fig. 7.12b and c, respectively.
The modes of these waveguides bear similarities to those of rectangular guides, but can
only be derived numerically [7]. Nevertheless, the effect of the ridges can be seen by
realizing that they act as a uniform, distributed capacitance that reduces the characteristic
impedance of the waveguide and lowers its phase velocity. This reduced phase velocity
results in a lowering of the cutoff frequency of the dominant mode by a factor of 5 or
higher, depending upon the dimensions of the ridges. Thus, the dominant range of a ridge
waveguide is much greater than that of a standard rectangular waveguide. However, this
increased frequency bandwidth is obtained at the expense of increased loss and decreased
power handling capacity. The increased loss occurs because of the concentration of current
flow on the ridges, with result in correspondingly high ohmic losses. The decreased power
handling capability is a result of increased E-field levels in the vicinity of the ridges, which
can cause breakdown (i.e., arcing) in the dielectric.

Waveguides are also available in a number of constructions, including rigid, semi-
rigid, and flexible. In applications where it is not necessary for the waveguide to bend, rigid
construction is always the best since it exhibits the lowest loss. In general, the more flexible
the waveguide construction, the higher the loss.

Figure 712 (a) Elliptical, (b) single-ridge, and (c) double-ridge waveguides.
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7.9. CAVITY RESONATORS

Resonant circuits are used for a variety of applications, including oscillator circuits,
filters and tuned amplifiers. These circuits are usually constructed using lumped reactive
components at audio through RF frequencies, but lumped components become less
desirable at microwave frequencies and above. This is because at these frequencies, lumped
components either do not exist or they are too lossy.

A more attractive approach at microwave frequencies and above is to construct
devices that use the constructive and destructive interferences of multiply reflected waves
to cause resonances. These reflections occur in enclosures called cavity resonators.
Metal cavity resonators consist of metallic enclosures, filled with a dielectric (possibly air).
Dielectric resonators are simply a solid block of dielectric material, surrounded by air.
Cavity resonators are similar to waveguides in that they both support a large number of
distinct modes. However, resonator modes are usually restricted to very narrow frequency
ranges, whereas each waveguide mode can exist over a broad range of frequencies.

7.9.1. Cylindrical Cavity Resonators

A cylindrical cavity resonator is shown in Fig. 7.13, consisting of a hollow metal
cylinder of radius @ and length 4, with metal end caps. The resonator fields can be
considered to be combinations of upward- and downward-propagating waveguide modes.
If the dielectric inside the resonator is homogeneous and the conducting walls are lossless,
the TE fields are

Jjoun

E, = Hy—— 7 Jo(hump) sin nep [AJre*jﬂan + A*ejﬂllyilz]ejwl (7.51a)

Ey = H0 p iy " (hump) cos ng [ A+ e™Pm= 4 A~ e/Pm=] e/t (7.51b)
nm

H,= —H, Z’ﬂf,;(hnm p) cos ng [ AT e /Pm= — A~ elPm?]e ! (7.51c)

Hy = Hy /’1’2” T hump) sin ngp [ A+ em= — 4= e Pm]e /" (7.51d)
nm

H. = HoJy(hynp) cosng [ATe /P 4 4= e Pm7]e /! (7.51e)

Here, the modal eigenvalues are h,, = p,,/a, where the values of p, are given by
Eq. (7.40). To insure that E, and Ej vanish at z==+d)2, it is required that 4~ = A" (even

Figure 713 A cylindrical cavity resonator.
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modes) or A~ =—A" (odd modes) and that B, be restricted to the values /7/d, where
[=0,1,.... Each value of / corresponds to a unique frequency, called a resonant
frequency. The resonant frequencies of the TE,,,; modes are

1 '\ ()
St = N ( P ) +(F> (TE,,,; modes) (7.52)

In a similar manner, the TM fields inside the resonator are of the form

E,=—E, Z”m I (hump) cos ng [ At e Pm* 4 A~ /Pl (7.53a)

Ey = Ey Zz Tu(hmp) sin n [A+e™7Pm® 4 A= IPm] el (7.53b)

E. = EoJ,(hynp) cosng [ATe7Pm= — 4= e Pm=]e /! (7.53¢)

H,=—E ;;;)sn Ju(hump) sinng [AT e Pm= — 4= /Pm=] e/t (7.53d)

Hy= R 3 ©E T (hump) cos nep [ AT e TPz — 4= Im]e it (7.53¢)
nm

where the modal eigenvalues are h,,, = p,,/a, where the values of p,, are given by
Eq. (7.45). Here, E, must vanish at z==4d/2, so it is required that 4~ = A" (even modes)
or A~ =—A" (odd modes) and that B, be restricted to the values /r/d, where /=0, 1,. ...
The eigenvalues of the TM,,,, modes are different than the corresponding TE modes,
so the resonant frequencies of the TM,,,; modes are also different:

1 '\ 2 I ?
it =g | (5) (M modes) (754

Figure 7.14 is a resonant mode chart for a cylindrical cavity, which shows the resonant
frequencies of the lowest order modes as a function of the cylinder radius to length ratio.
Here, it is seen that the TE;;; mode has the lowest resonant frequency when a/d <2,
whereas the TMy;o mode has the lowest resonant frequency when a/d > 2.

An important characteristic of a resonant mode is its quality factor Q, defined as

average energy stored
power loss

0 =2nf x

(7.55)

At resonance, the average energies stored in the electric and magnetic fields are equal,
so Q can be expressed as

4rf W,
Py

0= (7.56)
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Figure 714 Resonant mode chart for cylindrical cavities. (Adapted from Collin, R. Foundations
for Microwave Engineering; McGraw-Hill, Inc.: New York, 1992, with permission.)

where W, is the time-average energy stored in electric field and P; is the time-average
dissipated power at resonance. This is the same definition for the quality factor as is used
for lumped-element tuned circuits [8]. Also as in lumped circuits, the quality factor Q and
the 3-dB bandwidth (BW) of a cavity resonator are related by

BW :% [Hz] (7.57)

where f, is the resonant frequency of the cavity.

The losses in metal resonators are nearly always dominated by the conduction losses
in the cylinder walls. Similar to the way in which waveguide losses are evaluated, this
power loss can be evaluated by integrating the tangential H fields over the outer surface

of the cavity:

P = %ff; H?, ds
R ’ 2 rd
- ”O J0[|H¢(p = O +|HoAp = @) Jadg d=
a (21
2| |11 =0 + 1tz = 0] dpd¢} (7.58)

where R; is the surface resistance of the conducting walls and the factor 2 in the second
integral occurs because the losses on the upper and lower end caps are identical. Similarly,
the energy stored in the electric field is found by integrating the electric energy density
throughout the cavity.

e @ 27 pd/2 R , i
o : ; : pdod 7.59
‘ 4J0J0 .[_d/z(l p|+| ¢|+| z|)10 pdodz ( )



248 Demarest

Using the properties of Bessel functions, the following expressions can be obtained for
TE,,,, modes [9]:

00 _ (1= (10, | (@3 + masay’T”
do 27r[(p;m)2+(2a/d)(lna/d)2+(nlrra/p;md)(l — 2a/d)]

TE,,,; modes (7.60)

where § = 1/\/nfue is the skin depth of the conducting walls and A, is the free-space
wavelength. Similarly, for TM,,,,; modes [9],

pnm
27(1 4+ 2a/d)
0—= T™M,,,, modes (7.61)
o | [p2, + Umaay]”?
2n(1 + 2a/d)

=0

Figure 7.15 shows the Q values of some of the lowest order modes as a function
of the of the cylinder radius-to-length ratio. Here it is seen that the TEg, has the highest
0, which makes it useful for applications where a sharp resonance is needed. This mode
also has the property that H,=0, so there are no axial currents. This means that
the cavity endcaps can be made movable for tuning without introducing additional cavity
losses.

Coupling between metal resonators and waveguiding structures, such as coaxial
cables and waveguides, can be arranged in a variety of ways. Figure 7.16 shows
three possibilities. In the case of Fig. 7.16a, a coaxial line is positioned such that the
E field of the desired resonator mode is tangential to the center conductor probe.
In the case of Fig. 7.16b, the loop formed from the coaxial line is positioned such that
the H field of the desired mode is perpendicular to the plane of the loop. For waveguide
to resonator coupling, an aperture is typically placed at a position where the H
fields of both the cavity and waveguide modes have the same directions. This is shown in
Fig. 7.16c.

/a,

0 05 1 15 2 25 3
QO/d

Figure 715 O for cylindrical cavity modes. (Adapted from Collin, R. Foundations for Microwave
Engineering; McGraw-Hill, Inc.: New York, 1992, with permission.)
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Figure 716 Coupling to methods for metal resonators. (a) probe coupling, (b) loop coupling,
(c) aperture coupling.

7.9.2. Dielectric Resonators

A resonant cavity can also be constructed using a dielectric cylinder. Like metal cavity
resonators, dielectric resonators operate on the principle of constructive interference of
multiply reflected waves, but dielectric resonators differ in that some fringing or leakage of
the fields occur at the dielectric boundaries. Although this fringing tends to lower the
resonator Q values, it has the advantage that it allows easier coupling of energy into and
out of these resonators. In addition, the high dielectric constants of these resonators allow
them to be made much smaller than air-filled cavity resonators at the same frequencies.
A number of dielectric materials are available that have both high dielectric constants,
low loss-tangents (tand), and high temperature stability. Typical examples are barium
tetratitanate (e, =37, tan§=0.0005) and titania (¢,=95, tan§=0.001).

Just as in the case of metal cavity resonators, the modes of dielectric resonators can
be considered as waveguide modes that reflect back and forth between the ends of the
cylinder. The dielectric constants of dielectric resonators are usually much larger than the
host medium (usually air), so the reflections at the air—dielectric boundaries are strong, but
have polarities that are opposite to those obtained at dielectric—conductor boundaries.
These reflections are much like what would be obtained if a magnetic conductor were
present at the dielectric interface. For this reason, the TE modes of dielectric resonators
bear similarities to the TM modes of metal cavity resonators, and vice versa.

An exact analysis of the resonant modes of a dielectric resonator can only be
performed numerically, due to the difficulty of modeling the leakage fields. Nevertheless,
Cohn [10] has developed an approximate technique that yields relatively accurate results
with good physical insight. This model is shown in Fig. 7.17. Here, a dielectric cylinder of
radius «a, height d, and dielectric constant ¢, is surrounded by a perfectly conducting
magnetic wall. The magnetic wall forces the tangential H field to vanish at p=a, which
greatly simplifies analysis, but also allows fields to fringe beyond endcap boundaries.

The dielectric resonator mode that is most easily coupled to external circuits (such as
a microstrip transmission line) is formed from the sum of upward and downward TE,
waves. Inside the dielectric (|z| < d/2), these are

H. = HyJo(kpp)(Ate P + A7 e/P)e’! (7.62a)
]ﬁ / —jBz — Bz iw

H,= —Hok—pJo(kpp)(AJre Bz — 4™ elP) el (7.62b)

Ey = Hy"R T (kpp) (AT e + A7 TP e (7.62¢)

ko
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Figure 717 Magnetic conductor model of dielectric resonator.

where

‘B = 1 / 8;‘k3 - k%) (763)

and k, = 2ntf \/IL0€, is the free-space wave number. The value of &, is set by the require-
ment that H. vanishes at p=a, so

kpa = po1 = 2.4043 (7.64)

Symmetry conditions demand that either AT = A~ (even modes) or AT = —4~ (odd modes).
The same field components are present in the air region (|z| > d/2), where there are
evanescent fields which decay as eI, where the attenuation constant « is given by

a= [k k2 (7.65)

Requiring continuity of the transverse electric and magnetic fields at the cylinder
endcaps z==d/2 yields the following resonance condition [11]:

Bd =2 tan™! (%) tin (7.66)

where / is an integer. Using Eqgs. (7.63) and (7.65), Eq. (7.66) can be solved numerically
for k, to obtain the resonant frequencies. The lowest order mode (for /=0) exhibits a
less-than-unity number of half-wavelength variations along the axial coordinate z. For
this reason, this mode is typically designated as the TEq;s mode.

An even simpler formula, derived empirically from numerical solutions, for the
resonant frequency of the TE;s mode is [12]

34 a
,=— (=434 )
JGH ammﬁ<d+3 5) (7.67)
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Figure 718 (a) Dielectric resonator coupled to a microstrip line and (b) the equivalent circuit.

where ap,, is the cylinder radius in millimeters. This formula is accurate to roughly 2%
for the range 0.5 <a/d <2 and 30 <¢, < 50.

Dielectric resonators typically exhibit high Q values when low-loss diclectrics are
used. In that case, radiation loss is the dominant loss mechanism, and typical values
for the unloaded Q range from 100 to several thousand. For situations where higher
Q values are required, the resonator can be placed in a shielding box. Care should be
taken that the distance between the box and the resonator is large enough so that the
resonant frequency of the resonator is not significantly affected.

Figure 7.18a shows a dielectric resonator that is coupled to a microstrip transmission
line. Here, it is seen that the magnetic fields lines generated by the microstrip line
couple strongly to the fringing magnetic field of the TEy;5; mode. The amount of coupling
between the the microstrip line and the resonator is controlled by the offset distance
b between the resonator and the line.

The equivalent circuit that the resonator presents to the microstrip line is shown in
Fig. 7.18b. In this model, the resonator appears as a parallel resonant circuit, coupled to
the microstrip like through a 1:1 transformer. The resonator’s resonant frequency f, and
unloaded Q are related to the lumped circuit parameters by the relations

1
fo = e JiC (7.68)
0 = 2nf,RC (7.69)

The effect of the coupling between the resonator and the transmission line is to decrease
the circuit Q. The larger the coupling, the smaller the overall Q. The coupling g between
the resonator and the transmission line is defined as the ratio of the unloaded Q to the
external Q. When both the source and load sides of the transmission line are terminated
in matched loads, the external load presented to the resonator is 2Z,, so

_ 0 _ woRC _ i
N Oext N wo(zzo)c N 27,

g (7.70)

where Z, is the characteristic impedance of the transmission line. In practice, g can
be determined experimentally by measuring the reflection coefficient I" seen from the
source end of the transmission line when both the source and load are matched to
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the transmission line. At resonance, the load seen by the source is Z, + R, so the reflection
coefficient is:

:(Zo+R)_Zo: g
Zy+R)+2Z, 1+4g¢g

(7.71)

Equations (7.68)—(7.71) can be used to uniquely determine the lumped parameters that a
given resonator presents to a transmission line.
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Antennas: Fundamentals
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8.1. INTRODUCTION TO RADIATION

Electromagnetic radiation is one of the principal forms of conveying information from one
point to another—from person to person, computer to computer, telephone to telephone
and broadcast radio station to radio receiver. The radiation used in these communi-
cations systems usually lies in the frequency range from extremely low frequencies (ELF)
to optical and ultraviolet (UV) frequencies. For example, ELF radiation (frequency
band 3 Hz to 3kHz) is used in through-earth propagation and telephone modems. Optical
and UV frequencies are commonly used with optical fibers and sometimes in open-air
links. Electromagnetic radiation can be trapped and directed along conductive wires
(transmission lines), dielectric filled conducting pipes (wave guides), and in dielectric pipes
sheathed with dielectric materials with a lower dielectric constant (optical fibers).

In many cases it is desirable to have a wireless EM link so that the radiation
is unguided and will generally follow a line-of-sight path (i.e., a geometrical optics path).
In the radio-frequency (RF)-microwave-frequency range, antennas are often used to
launch and focus the radiation to a limited beam width so that the signal to noise ratio at
the receiver is maximum and the interference to other wireless links in the same frequency
band is minimized. An antenna is therefore a device that converts confined radiation from
a transmission line or waveguide into an unguided but directed electromagnetic wave in
the ambient medium (often, but not always, air).

While electromagnetic waves can propagate along the interface between media (e.g.,
surface waves) and in waveguides (e.g., TE and TM waves) in such a way that the electric
and magnetic fields are not perpendicular to the direction of propagation, in most cases,
the free-space radiation is in the form of a transverse electromagnetic (TEM) wave. For
example, for a TEM wave, if we choose the electric field vector E to lie in the direction
of the z axis, the magnetic field vector H to lie in the x direction, then the direction
of propagation can be defined by the wave vector k, which lies in the y direction. This is
shown in Fig. 8.1.

The electric field strength E has the units of V/m, the magnetic field strength H
has units A/m, so the power density of the electromagnetic wave is given by the

255
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X

Figure 84 TEM wave with axis definition.

Poynting vector S, where
S=ExH (8.1)

S has the units of watts per square meter and so is a measure of the power density of
the radiation.

The radiation is described as being linearly polarized if the direction of the E field
remains constant along the path of propagation.

In a TEM wave, it is possible for the direction of E to vary continuously in the
xz plane perpendicular to the direction of radiation. In this case the radiation scribes
an ellipse or circle as it propagates, and the radiation is called elliptical or circular polariza-
tion. Simple vector addition can show that elliptically polarized radiation has a linearly
polarized component and a linearly polarized wave has a circularly polarized component.

The electric field vector E defines the force exerted on a charged particle in
the presence of a TEM wave. If the charged particles are free to move, e.g., as electrons on
the surface of a good conductor, a current is induced on the wire, and this can be detected
and processed using standard electronic circuit techniques. Clearly, if a linearly polarized
TEM wave has an E component in the z direction, then a straight wire in the z direction
will have maximum current induced, whereas a wire directed in the x or y direction will
have zero current. Thus a simple straight wire can be used to detect the presence on an
electromagnetic wave, and so a wire is the basic form of a linearly polarized antenna.

The receiving characteristics of an antenna are identical to its transmitting charac-
teristics; thus, descriptions of the properties of an antenna are equally valid in terms of
the reception characteristics and transmission characteristics. This property is described
in terms of the reciprocity principle for a communications link in which the transmitting
and receiving antennas can be exchanged and the signal strength into the receiver is
unchanged providing there is no media boundary in the vicinity of the antennas.

8.2. ANTENNA TERMINOLOGY

There are many different requirements for antenna systems. In broadcast applications
(e.g., radio, television), it is desirable that the transmitted radiation can be detected over a
large area. In point to point applications (e.g., fixed microwave link, communications with
a fixed earth station and a geostationary satellite), it is desirable to confine the transmitted
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radiation to a small angle. In mobile communications applications, a point-to-point
communications link is required, but the location of one point can move continuously
during the transmission. In the case of multiple in—multiple out systems (MIMO), the
location of the antennas can be quite varied. Recently there is increased interest in ad hoc
radio networks or unplanned networks that self-assemble using smart antennas.

In designing a communications system, it is necessary to calculate the radiation
strength at the receiver to ensure adequate signal-to-noise ratio for the correct inter-
pretation of the signals received. This is called a link budget calculation. Therefore, it
is necessary to specify the directional characteristics of the antenna in such a way that
the power received by the target receiver can be calculated from the power delivered to
the input terminals of the transmitting antenna.

It is convenient to specify the principal radiation direction in terms of a spherical
polar coordinate system centered on the transmitting antenna. In Fig. 8.2, the principal
radiation direction (main beam direction) of the antenna is (¢,0y), and the strength of the
radiation in other directions is plotted as a three-dimensional surface. In this polar plot,
the distance from the origin of the coordinate system (the phase center of the antenna) and
a point on the surface represents the radiation field strength in that particular direction
when measured in the far field, i.e., some considerable distance from the antenna. The
spread in the radiation field can be defined in terms of the angular displacement from
the principal direction of radiation where the field strength falls to one half the power
(or —3dB) in the principal direction. These half power points define the two beam widths
A6 and A¢ as shown in Fig. 8.2.

The directional characteristics can be described by two-dimensional and three-
dimensional radiation patterns, in which the relative signal strength is plotted as a function
of angle. The field strength is usually plotted in dBi. This is the gain in dB relative to an
isotropic radiator having the same power output. As the radiation pattern represents the
three-dimensional gain as a function of two angular directions (6 and ¢), it is common to
define a plane (e.g., the # =90° plane) and plot the signal strength for all angular positions
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Figure 8.2 Main beam direction definition and beam width.
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in that plane (e.g., all values of ¢ for the 6 =90° case). Usually that plane includes the
origin of the coordinate system or the phase center of the antenna. In some applications
such as an antenna located just above an infinite ground plane, the cut-plane for the
radiation pattern includes the maximum radiation gain, which is elevated from the ground
plane. In this case the radiation pattern is taken at a fixed elevation angle above the
phase center of the antenna. In Fig. 8.2, this elevated radiation pattern would be located
at 8 =6, for all values of ¢.

Figure 8.3 is an example of a two-dimensional radiation pattern in which the —3 dB
beam width is defined. The front-to-back ratio FB of an antenna is another important
characteristic and is defined in terms of the ratio of the field strength in the direction
(60,%0) to the field strength in the opposite direction (180° — 6y,¢p¢ + 180°). FB is usually
defined in dB.

The directivity of an antenna is the ratio of the power density in the main beam to the
average power density (i.e., total radiated power divided by 4) [1]. The larger the value of
the directivity, the more directional is the antenna. The directivity is always greater than 1.

The antenna efficiency is similar to the directivity but also includes losses in the
antenna structure (e.g., the effect of finite conductivity, dielectric losses and sometimes
even the impedance mismatch with the transmission feed line).

Antenna gain is the ratio of the radiation intensity in the main beam to the radiation
intensity in every direction assuming that all radiated power is evenly distributed in all
possible directions [1].

An antenna can also be described in terms of a circuit element connected to a
transmission line. The input impedance of an antenna Z, has both real and imaginary
parts—the real part R, relates to the loss of energy due to the radiated field and material
losses; the imaginary part X, relates to the inductive or capacitive load that the antenna
structure presents. Maximum power transfer is achieved when the antenna input
impedance is equal to the characteristic impedance Z, of the transmission feed line
across the frequency range of interest. That is,

Z(l = Ra +an = ZO (82)

-3dB

180 beamwidth

270

Figure 8.3 Typical two-dimensional radiation pattern illustrating the 3-dB beamwidth.
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If there is an impedance mismatch, then there is reflection of the signal back into
the transmission line. This is commonly described in terms of the scattering parameter Sy,
and can be determined using Eq. (8.3)

Za_ZO

S11 = 201logg 7.+ Zo

(8.3)

The resonant frequency f, of the antenna can be defined as that frequency where the
reactance of the antenna is zero [1]. This can be shown to be true when the S;; value is a
minimum. The frequency bandwidth of an antenna is commonly defined as the frequency
range where the S;; value is less than — 10dB. In numerical terms, this definition implies
that the antenna constitutes an impedance mismatch that reflects less than 10% of the
power back into the transmission line.

It is possible and sometimes desirable to define the resonant frequency of an
antenna in terms of the radiation pattern or antenna gain rather than the impedance. This
approach allows the designer to devote most attention to the radiation characteristics
of the antenna rather than the impedance matching. It is possible to construct impedance
matching circuits to reduce the impact of S;; on the link budget. Quarter wavelength
chokes are one matching technique used with coaxial cables and microstrip lines [2,3].

The power delivered to the transmission line connected to the feed point of
a receiving antenna has been extracted from the radiation falling on the antenna. The
radiated field strength is measured in watts per square meter so that one can define
the effective area of an antenna illuminated by the incoming radiation, even when the
physical area of the antenna structure is very small. In some cases, such as a parabolic
dish antenna or other aperture antennas, the antenna area is obvious. For wire antenna
structures it is not so obvious, and the effective antenna area must be calculated from the
antenna gain assuming uniform radiation is incident over the surface of the antenna [1,2].

Note that in receiving the power from an incoming radio wave, currents are excited
in the antenna, which, in turn, cause the receiving antenna to radiate. Thus the maximum
energy harvested from an antenna is one-half the energy falling on the antenna.

8.3. SIMPLE ANTENNA STRUCTURES

From the principle of reciprocity, it is possible to describe antennas in terms of their
transmission or reception characteristics. In this section we will focus on reception
characteristics—that is, the conversion of an incoming TEM wave to a current on
a transmission line.

A linearly polarized TEM wave with an electric field component parallel to
a conducting wire will induce a current to flow in the wire. This current is maximized
if the wire forms part of a resonant circuit at the frequency of the incoming radiation.
Thus a straight wire in air having length /=4/2, with a transmission line connected to
its center point has a fundamental resonance frequency f given by the equation

nc

f=7

(8.4)

where n=1. There are additional resonant frequencies for positive integer values of n.
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At the resonant frequency, the current in the antenna is a standing wave. The RMS
current along the length of the antenna element is one-half of a sinusoid with maximum
current in the center and zero current on the ends. The voltage distribution on the antenna
is approximately one half cosinusoidal so the impedance of the antenna at the center feed
point is maximized. As noted before, there is maximum power transfer from the antenna
to the transmission line when the antenna impedance is identical to the characteristic
impedance of the transmission line. This can be achieved by using standard transmission
line matching techniques, by adjusting the feed position along the wire, or by adjusting the
inductive load on the antenna by changing the wire thickness or the wire length.

A short thin wire has a cosinusoidal radiation pattern in the plane containing the
antenna wires (see Fig. 8.4). This is referred to as the E-plane radiation pattern as it lies
parallel to the E field vector of the radiation from the antenna. There is no preferred
direction in the plane perpendicular to the antenna wire, the so-called H-plane radiation
pattern as the structure is completely symmetric about this line. The input resistance R,
for an electrically short dipole wire (i.e., /<< 4/2) is given by [2,3]

2
R, = 2077 <i> (8.5)

The corresponding radiation pattern is found in all major antenna textbooks [2-5].
Also, the antenna impedance is linearly related to the length of the element provided the
inequality

l<§

remains valid.

180

270

Figure 8.4 E-plane radiation pattern of a Hertzian dipole in dB. The gain has been normalized
to 0dB.
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For a resonant straight-wire antenna, /= 4/2, the radiation pattern is still dependent
on 6 only and is given by

cos(sin(#)/2))
sin 6

E@®,¢) = (8.6)

and the antenna impedance
Z="T73+4+425Q

This antenna is called a half-wave dipole and its radiation pattern is shown in Fig. 8.4
[2-5]. If the length of the antenna is reduced slightly, the imaginary part of the impedance
can be reduced to zero and the antenna resonates with an input impedance which has a
real component only [3].

A long straight wire with length / has a radiation pattern given by

cos(cos(0)kl/2) — cos(kl/2)

E®) = Eo sin 6

(8.7)

where the wave number k = 27/1. Note that when the size of a radiating structure exceeds
A in one or more dimensions, the radiation pattern has side lobes and nulls. This is
illustrated in Fig. 8.5 for a number of center-fed thin-wire antennas with different lengths.

A wire antenna located in the vicinity of a ground plane has its radiation pattern and
impedance influenced by the ground plane because currents are induced to flow in the
conductor. The simplest approach to understanding this type of antenna structure is to
imagine that the ground plane can be replaced by an image antenna element which is
located equidistant below the plane. This is illustrated in Fig. 8.6. The vertical current
components are in phase with the source currents and the horizontal current components

Figure 8.5 Radiation patterns for a number of thin-wire dipole antennas. The antennas lengths
are 0.54, 1.0 4, and 1.5 4 as shown. All gains have been independently normalized to 0 dB.
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Figure 8.6 Current image elements reflected in the perfectly conducting ground plane of infinite
extent. Note that currents normal to the ground plane have an image current in the same direction
whereas horizontal currents have an image current in the opposite direction.

Figure 8.7 Simple loop antenna structures with balanced transmission lines.

are 180 degrees out of phase with the driven element. Thus a vertical wire element of length
A/4 with one end located on the ground plane has the radiation pattern of a half wave
dipole in the hemisphere above the plane. The input impedance of this element is one-half
that of the half-wave dipole. This antenna configuration is referred to as a quarter-wave
monopole [2-5].

An alternative approach to constructing radiating structures is to use a conducting
loop of wire. This can be considered to react to the magnetic field component of a TEM
wave. The H field component of the radiation drives currents to circulate in the loop.
Two simple, single turn, loop antenna structures are illustrated in Fig. 8.7. The current
induced in a loop antenna can 