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Preface
 

This second edition of Fundamentals of Radar Signal Processing shares with
the first the goal of providing in-depth coverage of fundamental topics in radar
signal processing from a digital signal processing perspective. The techniques
and interpretations of linear systems, filtering, sampling, and Fourier analysis
are used throughout to provide a modern and unified tutorial approach. The
coverage includes a full range of the basic signal processing techniques on
which virtually all modern radar systems rely, including topics such as target
and interference models, matched filtering, waveform design, Doppler
processing, threshold detection, and measurement accuracy. Introductions are
provided to track filtering and the advanced topics of synthetic aperture imaging
and space-time adaptive array processing to provide a bridge to more in-depth
texts on these topics.

The first edition was published in 2005 with the intention of filling what I
perceived to be a void in the technical literature on radar. There existed at that
time a number of excellent books on radar systems in general (e.g., Skolnik,
Edde) that provided an excellent qualitative and descriptive introduction to
radar systems as a whole and could be enthusiastically recommended as first
texts for anyone interested in the topic. Indeed, having worked on speech
enhancement in graduate school, I read the first edition of Skolnik’s
Introduction to Radar Systems when I accepted a job in radar, hoping to avoid
appearing completely ignorant on my first day at the new job. (It didn’t work,
through no fault of Skolnik.) Some of these texts (e.g., Peebles, Mahafza)
provided greater quantitative depth on basic radar systems and some signal
processing topics. At the same time, a number of good quality texts were
available on advanced topics in radar signal processing, principally synthetic
aperture imaging (Jakowatz et al., Carrara et al., Soumekh) and space-time
adaptive processing (Klemm, Guerci). The problem, in my view, was the
existence of a substantial gap between the qualitative systems books and the
quantitative advanced signal processing books. Specifically, I believed the
radar community lacked a current text providing a concise, unified, and modern
treatment of the basic radar signal processing techniques mentioned above on
which these more advanced methods are founded. It was my hope that this book
would fill that gap.

The reception accorded the first edition since its publication has been
gratifying. I have received many very kind and encouraging comments and it has
been adopted for use by a number of universities and companies. I believe it has
largely been successful in meeting its goals. Its success, however, also quickly
brought to light many ways in which the book could be improved.

New books continue to appear, particularly the excellent Principles of



Modern Radar series. I believe it remains true today, somewhat to my surprise,
that most radar textbooks generally address either the entire radar system or
very specialized processing topics, and that few attempt to address the full suite
of basic signal processing concepts found in virtually every radar that form the
basis for advanced techniques. That is, the gap still exists. The goal of the text
has therefore remained the same. The specific goal of the second edition is to
strengthen that coverage, broaden it slightly, correct and improve the
presentation, and provide additional resources that will increase its usefulness
as a textbook as well as a professional reference.

This book was originally developed and used over several years in
support of two courses at Georgia Tech. It was primarily developed as a
product of ECE 6272, Fundamentals of Radar Signal Processing, a semester-
length first-year graduate course. Elements of this book were also used in
abbreviated and simplified form in the one-week professional education course
of the same name taught periodically through Georgia Tech’s Professional
Education division. Since publication of the first edition, I have continued to use
it for both courses. Through those experiences and just the passage of time I
have learned more, both about the topics and how to convey them, and I have
tried to incorporate that knowledge into the updated text.

There is one major change and many minor to moderate ones from the first
edition. The major change is the addition of what is now Chap. 7,
“Measurements and Tracking.” This chapter introduces an important basic topic
missing from the first edition, that of measurement accuracy. The Cramèr-Rao
lower bound (CRLB) and maximum likelihood estimation are introduced and
applied to measurements of time delay, frequency, phase, and angle using
common techniques such as matched filtering with peak detection, leading edge
pulse detection, the DFT, and monopulse angle measurement. Also included is
an overview of basic track filtering covering α-β and Kalman filters. This
chapter should have been in the first edition, and I am happy to remedy its
absence now.

Changes to the other portions of the text are more modest. The review of
basic digital signal processing concepts previously in Chap. 1 has been
relocated to App. B and expanded slightly. An entirely new App. A has been
added to reference basic information from random variables and random signals
needed for this text, including common probability density functions (PDFs) in
radar; estimators and the CRLB; and the effect of linear shift-invariant systems
on random signals.

Chapter 2 attempts to improve the discussion of fluctuating target models.
The traditional Swerling models do not apply in many situations today, both
because finer-resolution radars require new PDFs and because the “scan-to-
scan” and “pulse-to-pulse” terminology is a poor fit to processing based on
coherent processing intervals (CPIs). However, the analysis strategy remains
valid. I have therefore kept the presentation of the detector design and analysis



strategy based on the Neyman-Pearson criterion largely intact while reducing
reliance on the “scan-to-scan” and “pulse-to-pulse” terminology for discussing
noncoherent integration issues. I have not abandoned these terms completely
because the student still needs to understand them to interpret the literature and
apply it to modern systems. The other change to Chap. 2 is a modest increase in
the discussion of clutter reflectivity.

Chapter 3 has been renamed “Pulsed Radar Data Acquisition” but is
largely unchanged. The discussion of acquiring a datacube for one CPI has been
reorganized a bit to make the sequence clearer. Similarly, Chap. 4 on
waveforms has been expanded only slightly, to add time-domain control of
linear FM sidelobes and brief mentions of the stepped-chirp waveform,
mismatched filters for binary phase codes, and continuous wave radar.

Chapter 5 on Doppler processing has been significantly expanded to
include more explanation of the behavior of the pulse Doppler spectrum in the
presence of range and Doppler ambiguities. A short mention of the pros and
cons of the low, medium, and high PRF regimes has been added. Coverage of
ambiguity resolution has been increased and a discussion of blind zones added.
Also, the discussion of staggered pulse repetition frequencies for moving target
indication has been redone in terms of pulse repetition intervals.

Chapter 6 on basic detection theory and Chap. 7 on constant false alarm
rate (CFAR) thresholding have been combined into the new Chap. 6 but are
otherwise little changed except for corrections and clarifications. Chapter 8 on
synthetic aperture radar has likewise been corrected and clarified, with some
additional information on interferometric SAR added. Finally, Chap. 9 on
adaptive beamforming and space-time adaptive processing has also been
corrected and clarified. The only significant change has been the elimination of
most of the material on computational issues in STAP. (Perhaps a future third
edition will have room for a new chapter that can address computational issues
in all the radar signal processing techniques.) While SAR and adaptive
interference suppression are extremely important in modern radar, the intent of
this text is to introduce the basics and prepare the student to tackle some of the
many fine books that address these topics in depth.

Throughout the text, I attempt to do a better job of identifying and bringing
out common themes that arise again and again in radar signal processing, if
sometimes in disguise. These include phase history, coherent integration,
matched filtering, integration gain, and maximum likelihood estimation.

A one-semester course in radar signal processing can cover Chaps. 1
through 7, perhaps also skipping some of the later sections of Chaps. 2 and 3 for
additional time savings. Such a course provides a solid foundation for more
advanced work in detection theory, adaptive array processing, synthetic
aperture imaging, and more advanced radar concepts such as passive and
bistatic systems. A quarter-length course could cover Chaps. 1 through 5 and the
non-CFAR portion of Chap. 6 reasonably thoroughly. In either case, a firm



background in basic continuous and discrete signal processing and an
introductory exposure to random variables and processes are advisable. In this
edition, I have added homework problems to each chapter to improve the
book’s usefulness as an academic text. Solutions to the problems are available
to instructors of courses using the text on request from the publisher.

Since publication of the first edition, I have collected and maintained a
thorough list of every error reported to me by readers or that I have found
myself and made it available on the textbook support website at
http://www.radarsp.com. That website also provides additional support
information such as occasional technical memo supplements on topics related to
this book, and some simple MATLAB®-based software demos and projects that
I have used in my classes. I have tried in this edition to eliminate all known
errors without introducing new ones. Complete success is certainly impossible,
but I sincerely hope I have mostly succeeded. (Being all new content, Chap. 7
and App. A remain particularly at risk for errors in this edition.) I invite readers
to send any and all errata that they find to me at mrichards@gatech.edu. As
always, I will make available at the website an errata document with all known
errors in this edition.

Mark A. Richards, Ph.D.

http://www.radarsp.com
mailto:mrichards@gatech.edu
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Symbols
 

The following definitions and relations between symbols are used throughout
this text except as otherwise specifically noted. Some symbols, such as θ, have
more than one usage; their meaning is generally clear from the context.
 
* Convolution operator
⊗ Kronecker product operator

Hadamard product operator
(x) Continuous variable x
[x] Discrete variable x
((·))x Modulo x
~ “Is distributed as”
x Vector variable
X Matrix variable
x' Matrix or vector transpose
x* Complex conjugate
xH Hermitian transpose
αq Clutter temporal fluctuation vector
αGO Threshold multiplier, “greatest-of” CFAR
αlog Threshold multiplier, log CFAR
αSO Threshold multiplier, “smallest-of” CFAR
αν Doppler time scaling factor
β Bandwidth; standard deviation of interference process
βC Nonlinear term of nonlinear FM waveform bandwidth
βD Doppler bandwidth
βL Linear term of nonlinear FM waveform bandwidth
βn Noise-equivalent receiver bandwidth
βnn Null-to-null bandwidth
βr Rayleigh bandwidth
βrms Root-mean-square bandwidth
βυ = υ/c Normalized velocity
βx, βy, βz Spatial bandwidth in x, y, and z dimensions
χ Signal-to-noise ratio
χ1 Single sample signal-to-noise ratio
χN N-sample signal-to-noise ratio



χout Output signal-to-noise ratio
χ∞ Signal-to-noise ratio with perfect noise level estimate
χΣ Lobing antenna sum channel signal-to-noise ratio
δ Grazing angle
δ[·] Discrete impulse function
δθ Target angle relative to boresight
δD(·) Dirac impulse (“delta”) function
δR Range error
δt Differential delay
Δθ Angular resolution, lobing antenna squint
Δψ Change in squint angle
ΔCR Cross-range resolution
ΔF Frequency step size
ΔFD Doppler frequency resolution
Δh Height displacement
ΔR Range resolution
ΔRb Range relative to central reference point
ΔRc Range curvature
ΔRs Range bin spacing
ΔRw Range walk
Δt Time resolution
Δtb Time relative to central reference point delay
ε I/Q amplitude mismatch
εΔ/Σ Error in lobing antenna ratio voltage υΣ/Δ

ϕ Elevation angle; phase; baseband received signal phase
Non-baseband received signal phase

ϕ3 3-dB elevation beamwidth
ϕfg Interferometric phase difference
ϕmax Maximum quadratic phase error
ϕn Subpulse phase in phase-coded waveform
ϕnn Null-to-null elevation beamwidth
γ Q channel DC offset; interferogram coherence
Γ Tracking index; gamma function
η Volume reflectivity

κ I channel DC offset; Doppler spectrum oversampling
factor; adaptive filter scale factor

(a\b) Likelihood function for parameter a given data b



λ Wavelength; eigenvalue
Λ Likelihood ratio

Estimated mean
θ Azimuth angle; phase; baseband transmitted signal phase
θ(t) Phase modulation of waveform

Non-baseband transmitted signal phase
θ Vector of random phases
θ3 3-dB azimuth beamwidth
θaz Azimuth beamwidth
θel Elevation beamwidth
θnn Null-to-null azimuth beamwidth
θSAR Effective beamwidth of synthetic aperture radar
θt Target angle of arrival
Θ Parameter to be estimated
Θ Parameter vector to be estimated

Estimate of Θ
Estimate of Θ

ρ = ζ exp[jψ] = ρI
+ jρQ

Complex baseband reflectivity

ρI Baseband reflectivity in-phase (I) component
ρQ Baseband reflectivity quadrature-phase (Q) component
ρf, ρfg Normalized autocorrelation or cross-correlation function
ρ' Effective baseband complex reflectivity

Complex non-baseband reflectivity

Non-baseband reflectivity in-phase (I) component
Non-baseband reflectivity quadrature-phase (Q) component
Cross-range averaged effective baseband complex

reflectivity
Range spatial spectrum (Fourier transform of )

σ = |ρ|2 = ζ2 Radar cross section (RCS)
σ0 Area reflectivity
σh Surface roughness

Variance of random variable x
Precision of estimate

Σ Diagonal matrix of clutter powers
ζ Baseband reflectivity amplitude (ζ ≥ 0)



Non-baseband reflectivity amplitude (  ≥ 0)
τ Pulse length
τc Subpulse length in phase coded waveform
γ Sufficient statistic
ω Normalized frequency (radians per sample)
ωD Normalized Doppler frequency shift (radians per sample)

ws
Sampling interval in normalized frequency ω (samples per

radian)
Ω Frequency (radians per second)
Ωθ Azimuth rotation rate (radians per second)
ΩD Doppler frequency shift (radians per second)

Ωdiff Doppler frequency mismatch (radians per second)
Ωi Matched Doppler frequency shift (radians per second)
ψ Baseband reflectivity phase; squint angle

Non-baseband reflectivity phase
a Baseband transmitted signal amplitude
as(θ) Spatial steering vector
at(θ) Temporal steering vector

Non-baseband transmitted signal amplitude
A Ambiguity function
A, Â, Signal amplitude
Â Complex ambiguity function
Ae Effective antenna aperture size
Aq Covariance matrix of clutter temporal fluctuations
An Complex amplitude of subpulse in phase coded waveform
AF(θ), AF(θ, ϕ)      Phased array antenna array factor
APB A priori bound
b Amplitude

Non-baseband received signal amplitude
B Number of bits; interferometric baseline
BN Length of Barker phase code

Accuracy of estimator
c Speed of light
cq Clutter space-time steering vector for patch q
CA Clutter attenuation
CRLB Cramèr-Rao lower bound



Cx(·) Characteristic function of random variable x; centroid of
signal x

d Phased array element spacing
dM Mahalanobis distance
dpc Phase center spacing
D Antenna aperture size
Daz Antenna size, azimuth dimension
Del Antenna size, elevation dimension
DSAR Synthetic aperture size
DOF Degrees of freedom
DR Dynamic range
Dx, Dy, Dz Antenna aperture size in x, y, or z dimension
e Eigenvector
E, Ex Energy; energy in signal x
E(·) Expected value
E(θ, ϕ) Electric field amplitude
Eel(θ), Eel(θ, ϕ) Phased array antenna element pattern
f Normalized frequency (cycles per sample)

Quantized version of a function f
fD Normalized Doppler frequency shift (cycles per sample)

fDt
Target normalized Doppler frequency shift (cycles per

sample)
fθ Normalized spatial frequency (cycles per sample)
F Fourier transform of a function f

F Fourier transform operator; track filter state transition
matrix

F Frequency (hertz)
Fθ Spatial frequency (cycles per meter)
Fb Beat frequency, blind Doppler frequency (hertz)
Fbs Blind Doppler frequency using staggered PRIs
Fc Corner frequency (hertz)
FD Doppler frequency shift (hertz)
FDa Apparent Doppler frequency (hertz)
FDua Unambiguous Doppler frequency interval (hertz)
Fg Greatest common divisor of a set of staggered PRFs

Fi Instantaneous frequency (hertz)
Fn Noise figure



Fs Sampling frequency (samples per second)
Ft Transmitted frequency (hertz)
Fus Unstaggered blind Doppler frequency
g, G Tracking process noise gain
G Antenna voltage or power gain
Gnc Noncoherent integration gain
Gs Maximum receiver gain
Gsp Signal processing gain
h Height
h Filter weight vector; beamformer weight vector
h, H Tracking observation matrix
h(t) Impulse response (continuous time)
h[n] Impulse response (discrete time)
H0 Null hypothesis (interference only)
H1 Nonnull hypothesis (target plus interference)
H(f), H(F), H(ω),

H(Ω) Frequency response in various units

H(z) Discrete-time system function
HN(z) System function of N-pulse canceller

HN,P(F) Frequency response of N-pulse canceller with P staggered
PRFs

I Interference power; improvement factor
I(Θ) Fisher information matrix
Iopt Improvement factor for matched filter
IN Nth-order identity matrix
Isub Suboptimum improvement factor
I In-phase channel
Ik In-phase component, sample k
I(·, ·) Incomplete gamma function
I(·) Fisher information matrix
Jn(t) Jammer signal
J Jammer signal sample vector

K, k, K Tracking filter gain; Kalman filter gain (symbol varies with
dimensionality)

kp Stagger ratio
kΔ/Σ Lobing antenna Δ/Σ error slope

Spatial frequency (cycles per meter); DFT size; normalized



K quantizer step size
KR Range spatial frequency (cycles per meter)
Ku Cross-range spatial frequency (cycles per meter)
Kx, Ky, Kz Spatial frequency in x, y, or z dimensions

Kθ
Spatial frequency corresponding to AOA θ (cycles per

meter)

kθ
Normalized spatial frequency corresponding to AOA θ

(cycles per sample)
L Number of fast time samples per pulse
La Atmospheric loss factor
Ld Target depth as viewed from the radar
L0 Maximum acceptable signal-to-interference ratio loss
Ls System loss factors; synthetic aperture radar swath length
LSIR Signal-to-interference ratio loss
Lw Target width as viewed from the radar
LPG Loss in processing gain
m Mean of random variable
mn Mean of nth element of a random vector

Mean of random vector
Nonrandom portion of mean of random vector random

M Number of slow time samples per coherent processing
interval

M Tracking mean-square error estimate matrix

MDD Minimum detectable Doppler shift
MDD+, MDD- Minimum detectable positive, negative Doppler shift
Mopt Optimum value of M in “M of N” detection rule
Ms DPCA time slip
nP Matched filter output noise power
N Noise power; number of phase centers
Nγ Number of spotlight SAR radial slices
NR Number of spotlight SAR range samples
Nspot Number of spotlight SAR images per unit time
px(·) Probability density function for a random variable x
Px(·) Cumulative density function for a random variable x
P Power; degrees of freedom in space-time snapshot
P(θ, ϕ) Antenna one-way power pattern



Pθ(θ) Azimuth one-way antenna power patternPϕ(ϕ) Elevation one-way antenna power pattern
PA Periodic ambiguity function
Pb Backscattered power
PBD Binary integrated probability of detection
PBFA Binary integrated probability of false alarm
PCD Cumulative probability of detection
PCFA Cumulative probability of false alarm
PD Probability of detection

Expected value of probability of detection
PFA Probability of false alarm

Expected value of probability of false alarm
PM Probability of miss
Pr Received power; relative power of I/Q mismatch image
Pr · Probability of argument occurring
Pt Transmitted power
PL Processing loss
PRF Pulse repetition frequency (pulses per second)
q Quantizer step size
Q Power density
Q Quadrature channel
Qb Backscattered power density
Qk Quadrature component, sample k
QM Marcum Q function
Qt Transmitted power density
R, R0 Range
Ra Apparent range
Rmin Minimum range
Rt True range
Rua Unambiguous range
Ruas Unambiguous range using staggered PRIs
Rw Range window, range swath
ŝ Estimated standard deviation

sA
Autocorrelation of phase code complex amplitude

sequence
sf Autocorrelation of a function or random signal f
sfg Cross-correlation of functions or random signals f and g



sp(t) Output of filter matched to single pulse in pulse train
waveformS Polarization scattering matrix

Sf (ω) Power spectrum of a function or random signal f

Sfg(ω) Cross-power spectrum of functions or random signals f and
g

Sx Covariance matrix for a random vector x

Transformed covariance matrix

x Estimated covariance matrix
SIR Signal-to-interference ratio
SQNR Signal-to-quantization noise ratio
t, t0 Time
t Target model vector

Transformed target model vector

T Pulse repetition interval; detection threshold; track
measurement update interval

T Transformation matrix
T' Equivalent receiver temperature; detection threshold

Estimated threshold
Estimated threshold, log CFAR

Tθ Sampling interval in θ
Ta Aperture time
Tavg Average PRI of a set of staggered PRFs
TM Time of matched filter output peak
Tp pth PRI in set of staggered PRFs
Ts Fast time sampling interval; sampling interval in s = sin θ
Ttot Sum of PRIs corresponding to set of staggered set of PRFs
Tw Time corresponding to swath width
u Along-track coordinate of synthetic aperture radar platform
u, u Tracking process noise
UDSF Usable Doppler space fraction
var(x) Variance of random variable x
υ Platform velocity
υΣ, υΔ Sum and difference lobing voltages
υΣ/Δ Lobing antenna ratio voltage
υa Apparent velocity
υb Blind speed



υbs Blind speed using staggered PRIs

υL, υR Left and right lobing antenna voltages
υua Unambiguous velocity interval
w, w Tracking measurement noise
wf Temporal weight vector
wθ Spatial weight vector

Mean of random variable x
Estimated value of random variable x

x = a exp[jθ] = xI +
jxQ

Transmitted signal, baseband

Transmitted signal, non-baseband

xI Baseband transmitted signal in-phase (I) component
Non-baseband transmitted in-phase (I) component

xP Along-track coordinate of synthetic aperture radar scatterer

xQ
Baseband transmitted signal quadrature-phase (Q)

component
Non-baseband transmitted quadrature-phase (Q) component

xp(t) Subpulse of phase coded waveform
xp(t) Single pulse of pulse train waveform
y = b exp[jϕ] = yI +

jyQ
Received signal, baseband

y Baseband received signal sample vector
Transformed baseband received signal sample vector

Received signal, non-baseband

yI Baseband received signal in-phase (I) component
yI Non-baseband received signal in-phase (I) component
yQ Baseband received signal quadrature-phase (Q) component

Non-baseband received signal quadrature-phase (Q)
component

y[l, m, n] Datacube for one coherent processing interval
y[l, m] Fast time/slow time data matrix for one CPI
ys[m] Slow time sequence for one CPI
z Detected output

Transformed detected output
Z Meteorological reflectivity; altitude



Acronyms
 

The following acronyms are used throughout this text.
 
1D One-Dimensional
2D Two-Dimensional
AC Alternating Current
ACF Autocorrelation Function
A/D Analog-to-Digital
AF Ambiguity Function
AGC Automatic Gain Control
AMF Adaptive Matched Filter
AMTI Airborne Moving Target Indication
AOA Angle of Arrival
AR Autoregressive
ASR Airport Surveillance Radar
AWGN Additive White Gaussian Noise
BPF Bandpass Filter
BSR Beam Sharpening Ratio
BT Time-Bandwidth Product
CA Clutter Attenuation
CA-CFAR Cell-Averaging Constant False Alarm Rate
CAT Computerized Axial Tomography
CCD Coherent Change Detection
CDF Cumulative Distribution Function
CF Characteristic Function
CFAR Constant False Alarm Rate
CMT Covariance Matrix Taper
CNR Clutter-to-Noise Ratio
CRLB Cramèr-Rao Lower Bound
CRP Central Reference Point
CRT Chinese Remainder Theorem
CPI Coherent Processing Interval
CUT Cell under Test
CW Continuous Wave
D/A Digital-to-Analog



dB Decibel
dBsm Decibels relative to 1 square meter
DBS Doppler Beam Sharpening
DC Direct Current
DCT Discrete Cosine Transform
DF CFAR Distribution-Free Constant False Alarm Rate
DFT Discrete Fourier Transform
DOF Degrees of Freedom
DPCA Displaced Phase Center Antenna
DSP Digital Signal Processing
DTED Digital Terrain Elevation Data
DTFT Discrete Time Fourier Transform
EA Electronic Attack
ECM Electronic Countermeasures
EKF Extended Kalman Filter
EM Electromagnetic
EMI Electromagnetic Interference
ENOB Effective Number of Bits
ERIM Environmental Research Institute of Michigan
FFT Fast Fourier Transform
FIR Finite Impulse Response
FM Frequency Modulation
FMCW Frequency Modulated Continuous Wave
FSK Frequency Shift Keying
GLRT Generalized Likelihood Ratio Test
GMTI Ground Moving Target Indication
GOCA

CFAR Greatest-of Cell-Averaging Constant False Alarm Rate

GPS Global Positioning System
GTRI Georgia Tech Research Institute
HF High Frequency
HPRF High Pulse Repetition Frequency
I In-Phase
ICM Internal Clutter Motion; Intrinsic Clutter Motion
IDFT Inverse Discrete Fourier Transform
IF Intermediate Frequency



IFFT Inverse Fast Fourier Transformi.i.d. Independent, Identically Distributed
IFSAR Interferometric Synthetic Aperture Radar
IIR Infinite Impulse Response
IMM Interacting Multiple Models
IMU Inertial Measurement Unit
INS Inertial Navigation System
InSAR Interferometric Synthetic Aperture Radar
IPD Interferometric Phase Difference
ISAR Inverse Synthetic Aperture Radar
ISL Integrated Sidelobe Level, Interference Subspace Leakage
JNR Jammer-to-Noise Ratio
KA Knowledge-Aided
KF Kalman Filter
LEO Low Earth Orbit
LCM Least Common Multiple
LFM Linear Frequency Modulation
LNA Low Noise Amplifier
LO Local Oscillator
LPF Lowpass Filter
LPG Loss in Processing Gain
LPRF Low Pulse Repetition Frequency
LRT Likelihood Ratio Test
LSB Least Significant Bit
LSE Least Squares Estimate
LSI Linear Shift-Invariant
LTI Linear Time-Invariant
MDD Minimum Detectable Doppler
MDV Minimum Detectable Velocity
MLE Minimum Likelihood Estimate (or Estimator, or Estimation)

MMSE Minimum Mean-Squared Error, Minimum Means-Squared
Estimate

MMW Millimeter Wave
MPRF Medium Pulse Repetition Frequency
MSB Most Significant Bit
MSE Mean-Squared Error
MTD Moving Target Detector



MTI Moving Target Indication
MVU Minimum Variance Unbiased
NASA National Aeronautics and Space Agency
NEXRAD Next Generation Radar
NLFM Nonlinear Frequency Modulation
NRL Naval Research Laboratory
OS CFAR Order Statistic Constant False Alarm Rate
PAF Periodic Ambiguity Function
PC Principal Components
PDF Probability Density Function
PFA Polar Format Algorithm
PGA Phase Gradient Algorithm
PL Processing Loss
PPP Pulse Pair Processing
PRF Pulse Repetition Frequency
PRI Pulse Repetition Interval
PSD Power Spectrum (or Spectral) Density
PSL Peak Sidelobe Level
PSM Polarization Scattering Matrix
PSP Principle of Stationary Phase
PSR Point Spread Response
Q Quadrature
RCS Radar Cross Section
RCSR Radar Cross Section Reduction
RD Range-Doppler
RF Radar Frequency
RMB Reed-Mallet-Brennan
RMS Root-Mean-Square
ROI Region of Interest
RSS Root Sum Square
RV Random Variable
RVP Residual Video Phase
SAR Synthetic Aperture Radar
SB Sampling Bound
SQNR Signal-to-Quantization Noise Ratio

S-CFAR Switching Constant False Alarm Rate



SCR Signal-to-Clutter Ratio
SIR Signal-to-Interference Ratio; Shuttle Imaging Radar
SMI Sample Matrix Inverse
SMTI Surface Moving Target Indication
SNR Signal-to-Noise Ratio
SOCA

CFAR Smallest-of Cell-Averaging Constant False Alarm Rate

STALO Stable Local Oscillator
STAP Space-Time Adaptive Processing
T/R Transmit/Receive
UDSF Usable Doppler Space Fraction
UHF Ultra-High Frequency
UMP Uniformly Most Powerful
VHF Very High Frequency
WGN White Gaussian Noise
ZZB Ziv-Zakai Bound



CHAPTER 1
Introduction to Radar Systems and Signal

Processing
 

1.1   History and Applications of Radar
The word “radar” was originally an acronym, RADAR, for “radio detection
and ranging.” Today, the technology is so common that the word has become a
standard English noun. Many people have direct personal experience with radar
in such applications as measuring fastball speeds or, often to their regret, traffic
control.

The history of radar extends to the early days of modern electromagnetic
theory (Swords, 1986; Skolnik, 2001). In 1886, Hertz demonstrated reflection of
radio waves, and in 1900 Tesla described a concept for electromagnetic
detection and velocity measurement in an interview. In 1903 and 1904, the
German engineer Hülsmeyer experimented with ship detection by radio wave
reflection, an idea advocated again by Marconi in 1922. In that same year,
Taylor and Young of the U.S. Naval Research Laboratory (NRL) demonstrated
ship detection by radar and in 1930 Hyland, also of NRL, first detected aircraft
(albeit accidentally) by radar, setting off a more substantial investigation that
led to a U.S. patent for what would now be called a continuous wave (CW)
radar in 1934.

The development of radar accelerated and spread in the middle and late
1930s, with largely independent developments in the United States, Britain,
France, Germany, Russia, Italy, and Japan. In the United States, R. M. Page of
NRL began an effort to develop pulsed radar in 1934, with the first successful
demonstrations in 1936. The year 1936 also saw the U.S. Army Signal Corps
begin active radar work, leading in 1938 to its first operational system, the
SCR-268 antiaircraft fire control system, and in 1939 to the SCR-270 early
warning system, the detections of which were tragically ignored at Pearl
Harbor. British development, spurred by the threat of war, began in earnest with
work by Watson-Watt in 1935. The British demonstrated pulsed radar that year,
and by 1938 established the famous Chain Home surveillance radar network that
remained active until the end of World War II. They also built the first airborne
interceptor radar in 1939. In 1940, the United States and Britain began to
exchange information on radar development. Up to this time, most radar work
was conducted at high frequency (HF) and very high frequency (VHF)
wavelengths; but with the British disclosure of the critical cavity magnetron
microwave power tube and the United States formation of the Radiation
Laboratory at the Massachusetts Institute of Technology, the groundwork was



laid for the successful development of radar at the microwave frequencies that
have predominated ever since.

Each of the other countries mentioned also carried out CW radar
experiments, and each fielded operational radars at some time during the course
of World War II. Efforts in France and Russia were interrupted by German
occupation. On the other hand, Japanese efforts were aided by the capture of
U.S. radars in the Philippines and by the disclosure of German technology. The
Germans themselves deployed a variety of ground-based, shipboard, and
airborne systems. By the end of the war, the value of radar and the advantages of
microwave frequencies and pulsed waveforms were widely recognized.

Early radar development was driven by military necessity, and the military
is still a major user and developer of radar technology. Military applications
include surveillance, navigation, and weapons guidance for ground, sea, air, and
space vehicles. Military radars span the range from huge ballistic missile
defense systems to fist-sized tactical missile seekers.

Radar now enjoys an increasing range of applications. One of the most
common is the police traffic radar used for enforcing speed limits (and
measuring the speed of baseballs and tennis serves). Another is the “color
weather radar” familiar to every viewer of local television news. The latter is
one type of meteorological radar; more sophisticated systems are used for large-
scale weather monitoring and prediction and atmospheric research. Another
radar application that affects many people is found in the air traffic control
systems used to guide commercial aircraft both en route and in the vicinity of
airports. Aviation also uses radar for determining altitude and avoiding severe
weather, and may soon use it for imaging runway approaches in poor weather.
Radar is commonly used for collision avoidance and buoy detection by ships,
and is now beginning to serve the same role for the automobile and trucking
industries. Finally, spaceborne (both satellite and space shuttle) and airborne
radar is an important tool in mapping earth topology and environmental
characteristics such as water and ice conditions, forestry conditions, land usage,
and pollution. While this sketch of radar applications is far from exhaustive, it
does indicate the breadth of applications of this remarkable technology.

This text tries to present a thorough, straightforward, and consistent
description of the signal processing aspects of radar technology, focusing
primarily on the more fundamental functions common to most radar systems.
Pulsed radars are emphasized over CW radars, though many of the ideas are
applicable to both. Similarly, monostatic radars, where the transmitter and
receiver antennas are collocated (and in fact are usually the same antenna), are
emphasized over bistatic radars, where they are significantly separated, though
again many of the results apply to both. The reason for this focus is that the
majority of radar systems are monostatic, pulsed designs. Finally, the subject is
approached from a digital signal processing (DSP) viewpoint as much as
practicable, both because most new radar designs rely heavily on digital



processing and because this approach can unify concepts and results often
treated separately.

1.2   Basic Radar Functions
Most uses of radar can be classified as detection, tracking, or imaging. This
text addresses all three, as well as the techniques of signal acquisition and
interference reduction necessary to perform these tasks.

The most fundamental problem in radar is detection of an object or
physical phenomenon. This requires determining whether the receiver output at
a given time represents the echo from a reflecting object or only noise.
Detection decisions are usually made by comparing the amplitude A(t) of the
receiver output (where t represents time) to a threshold T(t), which may be set a
priori in the radar design or may be computed adaptively from the radar data; in
Chap. 6 it will be seen why this detection technique is appropriate. The time
required for a pulse to propagate a distance R and return, thus traveling a total
distance 2R, is just 2R/c; thus, if A(t) > T(t) at some time delay t0 after a pulse is
transmitted, it is assumed that a target is present at range

(1.1)
 
where c is the speed of light.1

Once an object has been detected, it may be desirable to track its location
or velocity. A monostatic radar naturally measures position in a spherical
coordinate system with its origin at the radar antenna’s phase center, as shown
i n Fig. 1.1. In this coordinate system, the antenna look direction, sometimes
called the boresight direction, is along the +x axis. The angle θ is called
azimuth angle, while ϕ is called elevation angle. Range R to the object follows
directly from the elapsed time from transmission to detection as just described.
Elevation and azimuth angle ϕ and θ are determined from the antenna
orientation, since the target must normally be in the antenna main beam to be
detected. Velocity is estimated by measuring the Doppler shift of the target
echoes. Doppler shift provides only the radial velocity component, but a series
of measurements of position and radial velocity can be used to infer target
dynamics in all three dimensions.



 FIGURE 1.1   Spherical coordinate system for radar measurements.
 

Because most people are familiar with the idea of following the movement
of a “blip” on the radar screen, detection and tracking are the functions most
commonly associated with radar. Increasingly, however, radars are being used
to generate two-dimensional images of an area. Such images can be analyzed for
intelligence and surveillance purposes, for topology mapping, or for analysis of
earth resources issues such as mapping, land use, ice cover analysis,
deforestation monitoring, and so forth. They can also be used for “terrain
following” navigation by correlating measured imagery with stored maps. While
radar images have not achieved the resolution of optical images, the very low
attenuation of electromagnetic waves at microwave frequencies gives radar the
important advantage of “seeing” through clouds, fog, and precipitation very
well. Consequently, imaging radars generate useful imagery when optical
instruments cannot be used at all.

The quality of a radar system is quantified with a variety of figures of
merit, depending on the function being considered. In analyzing detection
performance, the fundamental parameters are the probability of detection PD
and the probability of false alarm PFA. If other system parameters are fixed,
increasing PD always requires accepting a higher PFA as well. The achievable
combinations are determined by the signal and interference statistics, especially
the signal-to-interference ratio (SIR). When multiple targets are present in the
radar field of view, additional considerations of resolution and sidelobes arise
in evaluating detection performance. For example, if two targets cannot be
resolved by a radar, they will be registered as a single object. If sidelobes are
high, the echo from one strongly reflecting target may mask the echo from a
nearby but weaker target, so that again only one target is registered when two



are present. Resolution and sidelobes in range are determined by the radar
waveform, while those in angle are determined by the antenna pattern.

In radar tracking, the basic figure of merit is accuracy of range, angle, and
velocity estimation. While resolution presents a crude limit on accuracy, with
appropriate signal processing the achievable accuracy is ultimately limited in
each case by the SIR.

In imaging, the principal figures of merit are spatial resolution and dynamic
range. Spatial resolution determines what size objects can be identified in the
final image, and therefore to what uses the image can be put. For example, a
radar map with 1 km by 1 km resolution would be useful for land use studies,
but useless for military surveillance of airfields or missile sites. Dynamic range
determines image contrast, which also contributes to the amount of information
that can be extracted from an image.

The purpose of signal processing in radar is to improve these figures of
merit. SIR can be improved by pulse integration. Resolution and SIR can be
jointly improved by pulse compression and other waveform design techniques,
such as frequency agility. Accuracy benefits from increased SIR and
interpolation methods. Sidelobe behavior can be improved with the same
windowing techniques used in virtually every application of signal processing.
Each of these topics are discussed in the chapters that follow.

Radar signal processing draws on many of the same techniques and
concepts used in other signal processing areas, from such closely related fields
as communications and sonar to very different applications such as speech and
image processing. Linear filtering and statistical detection theory are central to
radar’s most fundamental task of target detection. Fourier transforms,
implemented using fast Fourier transform (FFT) techniques, are ubiquitous,
being used for everything from fast convolution implementations of matched
filters, to Doppler spectrum estimation, to radar imaging. Modern model-based
spectral estimation and adaptive filtering techniques are used for beamforming
and jammer cancellation. Pattern recognition techniques are used for
target/clutter discrimination and target identification.

At the same time, radar signal processing has several unique qualities that
differentiate it from most other signal processing fields. Most modern radars are
coherent, meaning that the received signal, once demodulated to baseband, is
complex-valued rather than real-valued. Radar signals have very high dynamic
ranges of several tens of decibels, in some extreme cases approaching 100 dB.
Thus, gain control schemes are common, and sidelobe control is often critical to
avoid having weak signals masked by stronger ones. SIR ratios are often
relatively low. For example, the SIR at the point of detection may be only 10 to
20 dB, while the SIR for a single received pulse prior to signal processing is
frequently less than 0 dB.

Especially important is the fact that, compared to most other DSP
applications, radar signal bandwidths are large. Instantaneous bandwidths for an



individual pulse are frequently on the order of a few megahertz, and in some
fine-resolution2 radars may reach several hundred megahertz and even as high as
1 GHz. This fact has several implications for digital signal processing. For
example, very fast analog-to-digital (A/D) converters are required. The
difficulty of designing good converters at multi-megahertz sample rates has
historically slowed the introduction of digital techniques into radar signal
processing. Even now, when digital techniques are common in new designs,
radar word lengths in high-bandwidth systems are usually a relatively short 8 to
12 bits, rather than the 16 bits common in many other areas. The high data rates
have also historically meant that it has often been necessary to design custom
hardware for the digital processor in order to obtain adequate throughput, that
is, to “keep up with” the onslaught of data. This same problem of providing
adequate throughput has resulted in radar signal processing algorithms being
relatively simple compared to, say, sonar processing techniques. Only in the late
1990s has Moore’s Law3 provided enough computing power to host radar
algorithms for a wide range of systems on commercial hardware. Equally
important, this same technological progress has allowed the application of new,
more complex algorithms to radar signals, enabling major improvements in
detection, tracking, and imaging capability.

1.3   Elements of a Pulsed Radar
Figure 1.2 is one possible block diagram of a simple pulsed monostatic radar.
The waveform generator output is the desired pulse waveform. The transmitter
modulates this waveform to the desired radio frequency (RF) and amplifies it
to a useful power level. The transmitter output is routed to the antenna through a
duplexer, also called a circulator or T/R switch (for transmit/receive). The
returning echoes are routed, again by the duplexer, into the radar receiver. The
receiver is usually a superheterodyne design, and often the first stage is a low-
noise RF amplifier. This is followed by one or more stages of modulation of the
received signal to successively lower intermediate frequencies (IFs) and
ultimately to baseband, where the signal is not modulated onto any carrier
frequency. Each modulation is carried out with a mixer and a local oscillator
(LO). The baseband signal is next sent to the signal processor, which performs
some or all of a variety of functions such as pulse compression, matched
filtering, Doppler filtering, integration, and motion compensation. The output of
the signal processor takes various forms, depending on the radar purpose. A
tracking radar would output a stream of detections with measured range and
angle coordinates, while an imaging radar would output a two- or three-
dimensional image. The processor output is sent to the system display, the data
processor, or both as appropriate.



 FIGURE 1.2   Block diagram of a pulsed monostatic radar.
 

The configuration of Fig. 1.2 is not unique. For example, many systems
perform some of the signal processing functions at IF rather than baseband;
matched filtering, pulse compression, and some forms of Doppler filtering are
very common examples. The list of signal processing functions is redundant as
well. For example, pulse compression and Doppler filtering can both be
considered part of the matched filtering process. Another characteristic which
differs among radars is at what point in the system the analog signal is digitized.
Older systems are, of course, all analog, and many currently operational systems
do not digitize the signal until it is converted to baseband. Thus, any signal
processing performed at IF must be done with analog techniques. Increasingly,
new designs digitize the signal at an IF stage, thus moving the A/D converter
closer to the radar front end and enabling digital processing at IF. Finally, the
distinction between signal processing and data processing is sometimes unclear
or artificial.

In the next few subsections, the major characteristics of these principal
radar subsystems are briefly discussed.

1.3.1   Transmitter and Waveform Generator
The transmitter and waveform generator play a major role in determining the
sensitivity and range resolution of radar. Radar systems have been operated at
frequencies as low as 2 MHz and as high as 220 GHz (Skolnik, 2001); laser
radars operate at frequencies on the order of 1012 to 1015 Hz, corresponding to
wavelengths on the order of 0.3 to 30 μm (Jelalian, 1992). However, most



radars operate in the microwave frequency region of about 200 MHz to about 95
GHz, with corresponding wavelengths of 0.67 m to 3.16 mm. Table 1.1
summarizes the letter nomenclature used for the common nominal radar bands
(IEEE, 1976). The millimeter wave band is sometimes further decomposed into
approximate subbands of 36 to 46 GHz (Q band), 46 to 56 GHz (V band), and
56 to 100 GHz (W band) (Richards et al., 2010).

 TABLE 1.1   Letter Nomenclature for Nominal Radar Frequency Bands
 

Within the HF to Ka bands, specific frequencies are allocated by
international agreement to radar operation. In addition, at frequencies above X
band, atmospheric attenuation of electromagnetic waves becomes significant.
Consequently, radar in these bands usually operates at an “atmospheric
window” frequency where attenuation is relatively low. Figure 1.3 illustrates
the atmospheric attenuation for one-way propagation over the most common
radar frequency ranges under one set of atmospheric conditions. Most Ka band
radars operate near 35 GHz and most W band systems operate near 95 GHz
because of the relatively low atmospheric attenuation at these wavelengths.



 FIGURE 1.3   One-way atmospheric attenuation of electromagnetic waves.
(Source: EW and Radar Systems Engineering Handbook, Naval Air Warfare
Center, Weapons Division, http://ewhdbks.mugu.navy.mil/)
 

Lower radar frequencies tend to be preferred for longer range surveillance
applications because of the low atmospheric attenuation and high available
powers. Higher frequencies tend to be preferred for finer resolution, shorter
range applications due to the smaller achievable antenna beamwidths for a
given antenna size, higher attenuation, and lower available powers.

Weather conditions can also have a significant effect on radar signal
propagation. Figure 1.4 illustrates the additional one-way loss as a function of
RF frequency for rain rates ranging from a drizzle to a tropical downpour. X-
band frequencies (typically 10 GHz) and below are affected significantly only
by very severe rainfall, while millimeter wave frequencies suffer severe losses
for even light-to-medium rain rates.

http://ewhdbks.mugu.navy.mil/


 FIGURE 1.4   Effect of different rates of precipitation on one-way atmospheric
attenuation of electromagnetic waves. (Source: EW and Radar Systems
Engineering Handbook, Naval Air Warfare Center, Weapons Division,
http://ewhdbks.mugu.navy.mil/)
 

Radar transmitters operate at peak powers ranging from milliwatts to in
excess of 10 MW. One of the more powerful existing transmitters is found in the
AN/FPS-108 COBRA DANE radar, which has a peak power of 15.4 MW
(Brookner, 1988). The interval between pulses is called the pulse repetition
interval (PRI), and its inverse is the pulse repetition frequency  (PRF). PRF
varies widely but is typically between several hundred pulses per second (pps)
and several tens of thousands of pulses per second. The duty cycle of pulsed
systems is usually relatively low and often well below 1 percent, so that
average powers rarely exceed 10 to 20 kW. COBRA DANE again offers an
extreme example with its average power of 0.92 MW. Pulse lengths are most
often between about 100 ns and 100 μs, though some systems use pulses as short
as a few nanoseconds while others have extremely long pulses, on the order of 1
ms.

It will be seen (Chap. 6) that the detection performance achievable by a
radar improves with the amount of energy in the transmitted waveform. To
maximize detection range, most radar systems try to maximize the transmitted
power. One way to do this is to always operate the transmitter at full power
during a pulse. Thus, radars generally do not use amplitude modulation of the
transmitted pulse. On the other hand, the nominal range resolution ΔR is
determined by the waveform bandwidth β according to Chap. 4.

(1.2)
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For an unmodulated pulse, the bandwidth is inversely proportional to its

duration. To increase waveform bandwidth for a given pulse length without
sacrificing energy, many radars routinely use phase or frequency modulation of
the pulse.

Desirable values of range resolution vary from a few kilometers in long-
range surveillance systems, which tend to operate at lower RFs, to a meter or
less in very fine-resolution imaging systems, which tend to operate at high RFs.
Corresponding waveform bandwidths are on the order of 100 kHz to 1 GHz, and
are typically 1 percent or less of the RF. Few radars achieve 10 percent
bandwidth. Thus, most radar waveforms can be considered narrowband,
bandpass functions.

1.3.2   Antennas
The antenna plays a major role in determining the sensitivity and angular
resolution of the radar. A wide variety of antenna types are used in radar
systems. Some of the more common types are parabolic reflector antennas,
scanning feed antennas, lens antennas, and phased array antennas.

From a signal processing perspective, the most important properties of an
antenna are its gain, beamwidth, and sidelobe levels. Each of these follows
from consideration of the antenna power pattern. The power pattern P(θ, ϕ)
describes the radiation intensity during transmission in the direction (θ, ϕ)
relative to the antenna boresight. Aside from scale factors, which are
unimportant for normalized patterns, it is related to the radiated electric field
intensity E(θ, ϕ), known as the antenna voltage pattern, according to

(1.3)
 
For a rectangular aperture with an illumination function that is separable in the
two aperture dimensions, P(θ, ϕ) can be factored as the product of separate one-
dimensional patterns (Stutzman and Thiele, 1998):

(1.4)
 

For most radar scenarios, only the far-field (also called Fraunhofer)
power pattern is of interest. The far-field is conventionally defined to begin at a
range of D2/λ or 2D2/λ for an antenna of aperture size D. Consider the azimuth
(θ) pattern of the one-dimensional linear aperture geometry shown in Fig. 1.5.
From a signal processing viewpoint, an important property of aperture antennas
(such as flat plate arrays and parabolic reflectors) is that the electric field
intensity as a function of azimuth E(θ) in the far field is just the inverse Fourier
transform of the distribution A(y) of current across the aperture in the azimuth



plane (Bracewell, 1999; Skolnik, 2001):

 FIGURE 1.5   Geometry for one-dimensional electric field calculation on a
rectangular aperture.
 

(1.5)
 
where the “frequency” variable is (2π/λ) sinθ and is in radians per meter. The
idea of spatial frequency is introduced in App. B.

To be more explicit about this point, define s = sinθ and ζ = y/λ.
Substituting these definitions in Eq. (1.5) gives

(1.6)
 
which is clearly of the form of an inverse Fourier transform. (The finite integral
limits are due to the finite support of the aperture.) Because of the definitions of
ζ and s, this transform relates the current distribution as a function of aperture
position normalized by the wavelength to a spatial frequency variable that is
related to the azimuth angle through a nonlinear mapping. It of course follows
that

(1.7)
 
The infinite limits in Eq. (1.7) are misleading, since the variable of integration s



= sinθ can only range from –1 to +1. Because of this,  is zero outside of this
range on s.

Equation (1.5) is a somewhat simplified expression that neglects a range-
dependent overall phase factor and a slight amplitude dependence on range
(Balanis, 2005). This Fourier transform property of antenna patterns will, in
Chap. 2, allow the use of linear system concepts to understand the effects of the
antenna on cross-range resolution and the pulse repetition frequencies needed to
avoid spatial aliasing.

An important special case of Eq. (1.5) occurs when the aperture current
illumination is a constant, A(y) = A0. The normalized far-field voltage pattern is
then the familiar sinc function,

(1.8)
 
If the aperture current illumination is separable, then the far-field is the product
of two Fourier transforms, one in azimuth (θ) and one in elevation (ϕ).

The magnitude of E(θ) is illustrated in Fig. 1.6, along with the definitions
for two important figures of merit of an antenna pattern. The angular resolution
of the antenna is determined by the width of its mainlobe, and is conventionally
expressed in terms of the 3-dB beamwidth. This can be found by setting 

 and solving for the argument α = π(Dy/λ) sinθ. The answer can be
found numerically to be α = 1.4, which gives the value of θ at the –3-dB point
as θ0 = 0.445λ/Dy. The 3-dB beamwidth extends from –θ0 to +θ0 and is therefore



 FIGURE 1.6   One-way radiation pattern of a uniformly illuminated aperture. The
3-dB beamwidth and peak sidelobe definitions are illustrated.
 

(1.9)
 
Thus, the 3-dB beamwidth is 0.89 divided by the aperture size in wavelengths.
Note that a smaller beamwidth requires a larger aperture or a shorter
wavelength. Typical beamwidths range from as little as a few tenths of a degree
to several degrees for a pencil beam antenna where the beam is made as
narrow as possible in both azimuth and elevation. Some antennas are
deliberately designed to have broad vertical beamwidths of several tens of
degrees for convenience in wide area search; these designs are called fan beam
antennas.

The peak sidelobe of the pattern affects how echoes from one scatterer
affect the detection of neighboring scatterers. For the uniform illumination
pattern, the peak sidelobe is 13.2 dB below the mainlobe peak. This is often
considered too high in radar systems. Antenna sidelobes can be reduced by use
of a nonuniform aperture distribution (Skolnik, 2001), sometimes referred to as
tapering or shading the antenna. In fact, this is no different from the window or
weighting functions used for sidelobe control in other areas of signal processing
such as digital filter design, and peak sidelobes can easily be reduced to around
25 to 40 dB at the expense of an increase in mainlobe width. Lower sidelobes
are possible, but are difficult to achieve due to manufacturing imperfections and
inherent design limitations.

The factor of 0.89 in Eq. (1.9) is often dropped, thus roughly estimating the
3-dB beamwidth of the uniformly illuminated aperture as just λ/Dy radians. In
fact, this is the 4-dB beamwidth, but since aperture weighting spreads the
mainlobe it is a good rule of thumb.

The antenna power gain G is the ratio of peak radiation intensity from the
antenna to the radiation that would be observed from a lossless, isotropic
(omnidirectional) antenna if both have the same input power. Power gain is
determined by both the antenna pattern and by losses in the antenna. A useful
rule of thumb for a typical antenna is (Stutzman, 1998)



(1.10)
 
Though both higher and lower values are possible, typical radar antennas have
gains from about 10 dB for a broad fan-beam search antenna to approximately
40 dB for a pencil beam that might be used for both search and track.

Effective aperture Ae is an important characteristic in describing the
behavior of an antenna being used for reception. If a wave with power density
W W/m2 is incident on the antenna, and the power delivered to the antenna load
is P, the effective aperture is defined as the ratio (Balanis, 2005)

(1.11)
 
Thus, the effective aperture is the area Ae such that, if all of the power incident
on the area was collected and delivered to the load with no loss, it would
account for all of the observed power output of the actual antenna. (Note,
however, that Ae is not the actual physical area of the antenna. It is a fictional
area that accounts for the amount of incident power density captured by the
receiving antenna.) Effective aperture is directly related to antenna directivity,
which in turn is related to antenna gain and efficiency. For most antennas, the
efficiency is near unity and the effective aperture and gain are related by
(Balanis, 2005)

(1.12)
 
Two more useful antenna concepts are the antenna phase front (or wave front)
and phase center (Balanis, 2005; Sherman, 1984). A phase front of a radiating
antenna is any surface on which the phase of the field is a constant. In the far-
field, the phase fronts are usually approximately spherical, at least over
localized regions. The phase center of the antenna is the center of curvature of
the phase fronts. Put another way, the phase center is the point at which an
isotropic radiator should be located so that the resulting phase fronts best match
those of the actual antenna. The phase center concept is useful because it defines
an effective location of the antenna, which can in turn be used for analyzing
effective path lengths, Doppler shifts, and so forth. For symmetrically
illuminated aperture antennas, the phase center will be centered in the aperture
plane, but may be displaced forward or backward from the actual aperture.
Referring to Fig. 1.5, the phase center would occur at y = 0, but possibly x ≠ 0,
depending on the detailed antenna shape.

Another important type of antenna is the array antenna. An array antenna
is one composed of a collection of individual antennas called array elements.



The elements are typically identical dipoles or other simple antennas with very
broad patterns. Usually, the elements are evenly spaced to form a uniform
linear array as shown in Fig. 1.7. Figure 1.8 illustrates examples of real array
and aperture antennas.

 FIGURE 1.7   Geometry of the uniform linear array antenna.
 



 FIGURE 1.8   Examples of typical array and aperture antennas. (a) Slotted
phased array in the nose of an F/A-18 aircraft. This antenna is part of the
AN/APG-73 radar system. (b) A Cassegrain reflector antenna. (Image (a)
courtesy of Raytheon Corp. Image (b) courtesy of Quinstar Corp. Used with
permission.)
 

The voltage pattern for the linear array is most easily arrived at by



considering the antenna in its receive, rather than transmit mode. Suppose the
leftmost element is taken as a reference point, there are N elements in the array,
and the elements are isotropic (unity gain for all θ). The signal in branch n is
weighted with the complex weight an. For an incoming electric field E0 exp(jΩt)
at the reference element, the total output voltage E can easily be shown to be
(Stutzman and Thiele, 1998; Skolnik, 2001)

(1.13)
 
This is similar in form to the discrete Fourier transform (DFT) of the weight
sequence {an}. Like the aperture antenna, the antenna pattern of the linear array
thus involves a Fourier transform, this time of the weight sequence (which
determines the current distribution in the antenna). For the case where all the an
= 1, the pattern is the familiar “aliased sinc” function, whose magnitude is

(1.14)
 
This function is very similar to that of Eq. (1.8) and Fig. 1.6. If the number of
elements N is reasonably large (nine or more) and the product Nd is considered
to be the total aperture size D, the 3-dB beamwidth is 0.89λ/D, and the first
sidelobe is 13.2 dB below the mainlobe peak; both numbers are the same as
those of the uniformly illuminated aperture antenna. Of course, by varying the
amplitudes of the weights an, it is possible to reduce the sidelobes at the
expense of a broader mainlobe. The phase center is at the center of the array.

Actual array elements are not isotropic radiators. A simple model often
used as a first-order approximation to a typical element pattern Eel(θ) is

(1.15)
 
The right-hand side of Eq. (1.13) is then called the array factor AF(θ), and the
composite radiation pattern becomes

(1.16)
 
Because the cosine function is slowly varying in θ, the beamwidth and first
sidelobe level are not greatly changed by including the element pattern for
signals arriving at angles near broadside (near θ = 0°). The element pattern does
reduce distant sidelobes, thereby reducing sensitivity to waves impinging on the



array from off broadside.
The discussion so far has been phrased in terms of the transmit antenna

pattern (for aperture antennas) or the receive pattern (for arrays), but not both.
The patterns described have been one-way antenna patterns. The reciprocity
theorem guarantees that the receive antenna pattern is identical to the transmit
antenna pattern (Balanis, 2005). Consequently, for a monostatic radar, the two-
way antenna pattern (power or voltage) is just the square of the corresponding
one-way pattern. It also follows that the antenna phase center is the same in both
transmit and receive modes.

1.3.3   Receivers
It was shown in Sec. 1.3.1 that radar signals are usually narrowband, bandpass,
phase- or frequency-modulated functions. This means that the echo waveform
r(t) received from a single scatterer is of the form

(1.17)
 
where the amplitude modulation A(t) represents only the pulse envelope. The
major function of the receiver processing is demodulation of the information
bearing part of the radar signal to baseband, with the goal of measuring θ(t).
Figure 1.9 illustrates the conventional approach to receiver design used in most
classical radars.

 FIGURE 1.9   Conventional quadrature channel receiver model. In this
illustration, the lower channel is the in-phase (“I”) channel, and the upper is the
quadrature phase (“Q”) channel.
 

The received signal is split into two channels. One channel, called the in-
phase or “I” channel of the receiver (the lower branch in Fig. 1.9) mixes the
received signal with an oscillator, called the local oscillator (LO), at the radar
frequency. This generates both sum and difference frequency components:



(1.18)
 
The sum term is then removed by the lowpass filter, leaving only the modulation
term A(t)cos[θ(t)]. The other channel, called the quadrature phase or “Q”
channel, mixes the signal with an oscillator having the same frequency but a 90°
phase shift from the I channel oscillator. The Q channel mixer output is

(1.19)
 
which, after filtering, leaves the modulation term A(t)sin[θ(t)]. If the input r(t) is
written as A(t)cos[Ωt + θ(t)] instead, the upper channel of Fig. 1.9 becomes the
I channel and the lower the Q channel, with outputs A(t)cos[θ(t)] and
–A(t)sin[θ(t)], respectively. In general, the I channel is the one where the
oscillator function (sine or cosine) is the same as that used in modeling the
signal.

The reason that both the I and Q channels are needed is that either one
alone does not provide sufficient information to determine the phase modulation
θ(t) unambiguously. Figure 1.10 illustrates the problem. Consider the case
shown in Fig. 1.10a. The signal phase θ(t) is represented as a solid black
phasor in the complex plane. If only the I channel is implemented in the
receiver, only the cosine of θ(t) will be measured. In this case, the true phasor
will be indistinguishable from the gray phasor –θ(t). Similarly, if only the Q
channel is implemented so that only the sine of θ(t) is measured, then the true
phasor will be indistinguishable from the gray phasor of Fig. 1.10b, which
corresponds to π – θ(t). When both the I and Q channels are implemented, the
phasor quadrant is determined unambiguously.4 In fact, the signal processor will
normally assign the I signal to be the real part of a complex signal and the Q
signal to be the imaginary part, forming a single complex signal



 FIGURE 1.10   (a) The I channel of the receiver in Fig. 1.9 measures only the
cosine of the phasor θ(t). (b) The Q channel measures only the sine of the
phasor.
 

(1.20)
 

Equation (1.20) implies a more convenient way of representing the effect
of an ideal coherent receiver on a transmitted signal. Instead of representing the
transmitted signal by a sine function, an equivalent complex exponential function
is used instead.5 The echo signal of (1.17) is thus replaced by

(1.21)
 
The receiver structure of Fig. 1.9 is then replaced with the simplified model of
Fig. 1.11, where the echo is demodulated by multiplication with a complex
reference oscillator exp(– jΩt). This technique of assuming a complex
transmitted signal and corresponding complex demodulator produces exactly the
same result obtained in Eq. (1.20) by explicitly modeling the real-valued signals
and the I and Q channels, but is much simpler and more compact. This complex
exponential analysis approach is used throughout the remainder of the book. It is
important to remember that this is an analysis technique; actual analog hardware
must still operate with real-valued signals only. However, once signals are
digitized, they may be treated explicitly as complex signals in the digital
processor.

 FIGURE 1.11   Simplified transmission and receiver model using complex
exponential signals.
 

Figure 1.9 implies several requirements on a high-quality receiver design.
For example, the local oscillator and the transmitter frequencies must be
identical. This is usually ensured by having a single stable local oscillator
(STALO) in the radar system that provides a frequency reference for both the
transmitter and the receiver. Furthermore, many types of radar processing
require coherent operation. The IEEE Standard Radar Definitions defines



“coherent signal processing” as “echo integration, filtering, or detection using
amplitude and phase of the signal referred to a coherent oscillator” (emphasis
added) (IEEE, 1982). Coherency is a stronger requirement than frequency
stability. In practice, it means that the transmitted carrier signal must have a
fixed phase reference for several, perhaps many, consecutive pulses. Consider a
pulse transmitted at time t1 of the form a(t – t1) sin[Ω(t – t1) + ϕ], where a(t) is
the pulse shape. In a coherent system, a pulse transmitted at time t2 will be of the
form a(t – t2) sin[Ω(t – t1) + ϕ]. Note that both pulses have the same argument (t
– t1) + ϕ for their sine term; only the envelope term changes location on the time
axis. Thus, both sinusoids are referenced to the same absolute starting time and
phase. This is as opposed to the second pulse being of the form a(t – t2) sin[Ω(t
– t2) + ϕ], which is nonzero over the same time interval as the coherent pulse a(t
– t2) sin[Ω(t – t1) + ϕ] and has the same frequency, but has a different phase at
any instant in time. Figure 1.12 illustrates the difference visually. In the coherent
case, the two pulses appear as if they were excised from the same continuous,
stable sinusoid; in the noncoherent case, the second pulse is not in phase with
the extension of the first pulse. Because of the phase ambiguity discussed
earlier, coherency also implies a system having both I and Q channels.

 FIGURE 1.12   Illustration of the concept of a fixed phase reference in coherent
signals. (a) Coherent pulse pair generated from the reference sinusoid. (b)
Reference sinusoid. (c) Noncoherent pulse pair.
 

Another requirement is that the I and Q channels have perfectly matched
transfer functions over the signal bandwidth. Thus, the gain through each of the
two signal paths must be identical, as must be the phase delay (electrical length)
of the two channels. Of course, real receivers do not have perfectly matched
channels. The effect of gain and phase imbalances will be considered in Chap.
3. Finally, a related requirement is that the oscillators used to demodulate the I



and Q channels must be exactly in quadrature, that is, 90° out of phase with one
another.

In the receiver structure shown in Fig. 1.9, the information-bearing portion
of the signal is demodulated from the carrier frequency to baseband in a single
mixing operation. While convenient for analysis, pulsed radar receivers are
virtually never implemented this way in practice. One reason is that active
electronic devices introduce various types of noise into their output signal, such
as shot noise and thermal noise. One noise component, known as flicker noise
or 1/F noise, has a power spectrum that behaves approximately as F –1 and is
therefore strongest near zero frequency. Since received radar signals are very
weak, they can be corrupted by 1/F noise if they are translated to baseband
before being amplified.

Figure 1.13 shows a more representative superheterodyne receiver
structure. The received signal, which is very weak, is amplified immediately
upon reception using a low-noise amplifier (LNA). The LNA, more than any
other component, determines the noise figure of the overall receiver. It will be
seen in Sec. 2.3 that this is an important factor in determining the radar’s signal-
to-noise ratio (SNR), so good design of the LNA is important. The key feature
of the superheterodyne receiver is that the demodulation to baseband occurs in
two or more stages. First, the signal is modulated to an IF, where it receives
additional amplification. Amplification at IF is easier because of the greater
percentage bandwidth of the signal and the lower cost of IF components
compared to microwave components. In addition, modulation to IF rather than to
baseband incurs a lower conversion loss, improving the receiver sensitivity,
and the extra IF amplification also reduces the effect of flicker noise. Finally,
the amplified signal is demodulated to baseband. Some receivers may use more
than two demodulation stages (so that there are two or more IF frequencies), but
two stages is the most common choice. One final advantage of the
superheterodyne configuration is its adaptability. The same IF stages can be
used with variable RFs simply by tuning the LO so as to track changes in the
transmitted frequency.

 FIGURE 1.13   Structure of a superheterodyne radar receiver.
 



1.4   Common Threads in Radar Signal Processing
A radar system’s success or failure in detecting, tracking, and imaging objects
or features of interest in the environment is affected by various characteristics of
those objects, the environment, and the radar itself, and how they are reflected
in the received signals available for processing. Two of the most basic and
important signal quality metrics are the signal-to-interference ratio and the
resolution. Because of their importance, improving SIR and resolution is the
major goal of most of the basic radar signal processing discussed in this text.

While subsequent chapters discuss a wide variety of signal processing
techniques, there are a few basic ideas that underlie most of them. These include
coherent and noncoherent integration, target phase history modeling,
bandwidth expansion, and maximum likelihood estimation. The remainder of
this section gives a heuristic definition of SIR and resolution, and then
illustrates the simplest forms of integration, phase history modeling, and
bandwidth expansion and how they affect SIR and resolution. Maximum
likelihood estimation is deferred to Chap. 9 and App. A.

1.4.1   Signal-to-Interference Ratio and Integration
Consider a discrete-time signal x[n] consisting of the sum of a “desired signal”
s[n] and an interfering signal w[n]:

(1.22)
 

The discussion is identical for continuous time signals. The SIR χ of this
signal is the ratio of the power of the desired signal to that of the interference. If
s[n] is deterministic, the signal power is usually taken as the peak signal value,
and may therefore occur at a specific time t0. In some deterministic cases, the
average signal power may be used instead. The interference is almost invariably
modeled as a random process, so that its power is the mean-square E{|w[n]|2}.
If the interference is zero mean, as is very often the case, then the power also
equals the variance of the interference, . If the desired signal is also modeled
as a random process, then its power is also taken to be its mean-square or
variance.

As an example, let s[n] be a complex sinusoid Aexp[jωn] and let w[n] be
complex zero mean white Gaussian noise of variance . The SIR of their sum
x[n] is

(1.23)
 
In this case, the peak and average signal power are the same. If s[n] is a real-



valued sinusoid Acos[ωn] and w[n] is real-valued zero mean white Gaussian
noise of variance , the peak SIR would be the same but the average SIR
would be  because the average power of a real cosine or sine function of
amplitude A is A2/2.

A variation is the “energy SIR,” defined as the ratio of the total energy Es =
Σ |s[n]|2 in the signal s[n] divided by the average noise power:

(1.24)
 
The proportionality between Es and A depends on the signal shape. For a
rectangular pulse or a complex exponential of amplitude A and duration N
samples, it is just Es = N · A2. It can be seen in Chap. 6 that when matched filters
are used, the peak SIR at the filter output is the energy SIR of the original signal.

SIR affects detection, tracking, and imaging performance in different ways.
In general, detection performance improves with SIR in the sense that PD
increases for a given PFA as SIR increases. For instance, it will be seen in Chap.
6 that for one particular model of the target behavior and detection algorithm, PD
is related to PFA according to

(1.25)
 
which shows that PD → 1 as χ → ∞ for fixed PFA. As another example, the limit
on precision (standard deviation of repeated measurements) due to additive
noise of typical estimators of range, angle, frequency, or phase tends to decrease
as ; this behavior will be demonstrated in Chap. 9. In radar imaging (Chap.
8), SIR directly affects the contrast or dynamic range (ratio of reflectivity of
brightest to dimmest visible features) of the image. These considerations make it
essential to maximize the SIR of radar data, and many radar signal processing
operations discussed in this text have as their primary goal increasing the SIR.
The ways in which this is done will be discussed along with each technique.

1.4.2   Resolution
The closely related concepts of resolution and a resolution cell will arise
frequently. Two equal-strength scatterers are considered to be resolved if they
produce two separately identifiable signals at the system output, as opposed to
combining into a single undifferentiated output.6 The idea of resolution is
applied in range, cross-range, Doppler shift or velocity, and angle of arrival.
Two scatterers can simultaneously be resolved in one dimension, say range, and
be unresolved in another, perhaps velocity.

Figure 1.14 illustrates the concept of resolution, in this case in frequency.



Part (a) of the figure shows a portion of the positive frequency spectrum of the
sum of two unit amplitude cosine functions with zero initial phase, one at 1000
Hz and one at 1500 Hz. This signal could represent the Doppler spectrum of two
moving targets with the same echo strength but different radial velocities. The
observation time is such that the mainlobe of the sinc function contributed by
each has a Rayleigh width (peak to first null width) of 100 Hz. The two vertical
dotted lines mark the two cosine frequencies. There are two distinct, well-
separated peaks in the spectrum. The actual frequency of each peak is perturbed
very slightly from the expected value by the sidelobes of the other sinusoid.
Nonetheless, these two signal components are considered well resolved. Parts
(b) through (d) of the figure repeat this measurement with the frequency spacing
reduced to 100, 75, and 50 Hz. At 100 Hz spacing the two spectral peaks are
still well resolved, though with more perturbation of the apparent frequencies,
but as the separation drops below the Rayleigh width to 75 and then to 50 Hz,
they blur into a single spectral peak. At 50 Hz, they are no longer resolved; the
spectrum measurement does not show two separate signals. At 75 Hz they are
marginally resolved, although a little noise added to the data would make that a
precarious claim. It appears that a separation of about the Rayleigh width or
greater is needed for clear resolution of the two frequencies. This demonstration
also suggests that the width of the signature of a single isolated target is the
major determinant of the system’s resolution.



 FIGURE 1.14   Resolution of two sinusoids in frequency, each having a Rayleigh
width of 100 Hz. (a) Well resolved at 500 Hz spacing. (b) Well resolved at 100
Hz spacing. (c) Marginally resolved at 75 Hz spacing. (d) Unresolved at 50 Hz
spacing.
 

The resolution of a radar in turn determines the size of a resolution cell. A
resolution cell in range, velocity, or angle is the interval in that dimension that
contributes to the echo received by the radar at any one instant. Figure 1.15
illustrates resolution and the resolution interval in the range dimension for a
simple constant-frequency pulse. If a pulse whose leading edge is transmitted at
time t = 0 has duration τ seconds, then at time t0 the echo of the leading edge of
the pulse will be received from a scatterer at range ct0/2. At the same time,
echoes of the trailing edge of the pulse from a scatterer at range c(t0 – τ)/2 are
also received. Any scatterers at intermediate ranges would also contribute to the
voltage at time t0. Thus, scatterers distributed over cτ/2 in range contribute
simultaneously to the received voltage. In order to resolve the contributions
from two scatterers into different time samples, they must be spaced by more
than cτ/2 meters so that their individual echoes do not overlap in time. The
quantity cτ/2 is called the range resolution ΔR. Similarly, two- and three-
dimensional resolution cells can be defined by considering the simultaneous
resolution in, say, range, azimuth angle, and elevation angle.

 FIGURE 1.15   Geometry for describing conventional pulse range resolution. See
text for explanation.
 



This description of range resolution applies only to unmodulated, constant
frequency pulses. As will be seen in Chap. 4, pulse modulation combined with
matched filtering can be used to obtain range resolution finer than cτ/2.

Angular resolution in the azimuth and elevation dimensions is determined
by the antenna beamwidths in the same planes. Two scatterers at the same range
but different azimuth (or elevation) angles will contribute simultaneously to the
received signal if they are within the antenna mainlobe and thus are both
illuminated at the same time. For the purpose of estimating angular resolution,
the mainlobe width is typically taken to be the 3-dB beamwidth θ3 of the
antenna. Thus, the two point scatterers in Fig. 1.16 located at the 3-dB edges of
the beam define the angular resolution of the radar. The figure illustrates the
relation between the angular resolution in radians and the equivalent resolution
in units of distance, which will be called the cross-range resolution  to denote
resolution in a dimension orthogonal to range. The arc length at a radius R for an
angle subtending θ3 radians is exactly Rθ3. The cross-range resolution ΔCR is
the distance between two scatterers located at the 3-dB edges of the beam,
corresponding to the dashed line in Fig. 1.16, and is given by

 FIGURE 1.16   The angular resolution is determined by the 3-dB antenna
beamwidth θ3.
 

(1.26)
 
where the approximation holds when the 3-dB beamwidth is small, which is
usually the case for pencil beam antennas. This result is applicable in either the
azimuth or elevation dimension.

Three details bear mentioning. First, the literature frequently fails to
specify whether one- or two-way 3-dB beamwidth is required or given. The
two-way beamwidth should be used for monostatic radar. Second, note that
cross-range resolution increases linearly with range, whereas range resolution
was a constant. Finally, as with range resolution, it will be seen later (Chap. 8)



that signal processing techniques can be used to improve resolution far beyond
the conventional Rθ limit and to make it independent of range as well.

The radar resolution cell volume V is approximately the product of the
total solid angle subtended by the 3-dB antenna mainlobe, converted to units of
area, and the range resolution. For an antenna having an elliptical beam with
azimuth and elevation beamwidths θ3 and ϕ3, this is

(1.27)
 
The approximation in the second line of Eq. (1.27) is 27 percent larger than the
expression in the first line, but is widely used. Note that resolution cell volume
increases with the square of range because of the two-dimensional spreading of
the beam at longer ranges.

1.4.3   Data Integration and Phase History Modeling
A fundamental operation in radar signal processing is integration of samples to
improve the SIR. Both coherent integration and noncoherent integration are of
interest. The former refers to integration of complex (i.e., magnitude and phase)
data, while the latter refers to integration based only on the magnitude (or
possibly the squared or log magnitude) of the data.

Suppose a pulse is transmitted, reflects off a target, and at the appropriate
time the receiver output signal is measured, consisting of a complex echo
amplitude Aejϕ corrupted by additive noise w. The noise is assumed to be a
sample of a random process with power . The single-pulse SNR is

(1.28)
 

Now suppose the measurement is repeated N – 1 more times. One expects
to measure the same deterministic echo response, but with an independent noise
sample each time. Form a single measurement z by integrating (summing) the
individual measurements; this sum of complex samples, retaining the phase
information, is a coherent integration:



(1.29)
 

The power in the integrated signal component is N2A2. Provided the noise
samples w[n] are independent of one another and zero mean, the power in the
noise component is the sum of the power in the individual noise samples.
Further assuming each has the same power , the total noise power is now 
. The integrated SNR becomes

(1.30)
 

Coherently integrating N measurements has improved the SNR by a factor
of N; this increase is called the integration gain. Later chapters show that, as
one would expect, increasing the SNR improves detection and parameter
estimation performance. The cost is the extra time, energy, and computation
required to collect and combine the N pulses of data.

In coherent integration, the signal components added in phase, i.e.,
coherently. This is often described as adding on a voltage basis, since the
amplitude of the integrated signal component increased by a factor of N, with the
result that signal power increased by N2. The noise samples, whose phases
varied randomly, added on a power basis. It is the alignment of the signal
component phases that allowed the signal power to grow faster than the noise
power.

Sometimes the data must be preprocessed to ensure that the signal
component phases align so that a coherent integration gain can be achieved. If
the target had been moving in the previous example, the signal component of the
measurements would have exhibited a Doppler shift, and Eq. (1.29) would
instead become

(1.31)
 
for some value of normalized Doppler frequency fD. The signal power in this
case will depend on the particular Doppler shift, but except in very fortunate
cases will be less than A2 N2. However, if the Doppler shift is known in
advance, the phase progression of the signal component can be compensated
before summing:



(1.32)
 
The phase correction aligns the signal component phases so that they add
coherently. The noise phases are still random with respect to one another. Thus,
the integrated signal power is again N2A2, while the integrated noise power is
aga i n , and therefore an integration gain of N is again achieved.
Compensation for the phase progression so that the compensated samples add in
phase is an example of phase history modeling: if the sample-to-sample pattern
of target echo phases can be predicted or estimated (at least to within a constant
overall phase), the data can be modified with a countervailing phase so that the
full coherent integration gain is achieved. Phase history modeling is central to
many radar signal processing functions and is essential for achieving adequate
gains in SNR.

In noncoherent integration, the phases are discarded and some function of
the magnitudes of the measured data samples are added, such as the magnitude,
magnitude-squared, or log-magnitude. If the magnitude-squared is chosen, then z
is formed as

(1.33)
 
The important fact is that phase information in the received signal samples is
discarded.

The first line of Eq. (1.33) defines noncoherent square-law integration. The
next two lines show that, because of the nonlinear magnitude-squared operation,
z cannot be expressed as the sum of a signal-only part and a noise-only part due
to the presence of the third term involving cross-products between signal and
noise components. A similar situation exists if the magnitude or log-magnitude
is chosen for the noncoherent integration. Consequently, a noncoherent
integration gain cannot be simply defined as it was for the coherent case.

It is possible to define a noncoherent gain implicitly. For example, in
Chap. 6 it will be seen that detection of a constant-amplitude target signal in



complex Gaussian noise with a probability of detection of 0.9 and a probability
of false alarm of 10–8 requires a single-sample SNR of 14.2 dB (about 26.3 on a
linear scale). The same probabilities can be obtained by integrating the
magnitude of 10 samples each having an individual SNR of only 5.8 dB (3.8 on
a linear scale). The reduction of 8.4 dB (a factor of 26.3/3.8 = 6.9) in the
required single-sample SNR when 10 samples are noncoherently integrated is
the implied noncoherent integration gain.

Noncoherent integration is much more difficult to analyze than coherent
integration, typically requiring derivation of the probability density functions of
the noise-only and signal-plus-noise cases in order to determine the effect on
detection and parameter estimation.

Chapter 6 will show that in many useful cases, the noncoherent integration
gain is approximately Nα, where α ranges from about 0.7 or 0.8 for small N to
about 0.5 ( ) for large N, rather than in direct proportion to N. Thus,
noncoherent integration is less efficient than coherent integration. This should
not be surprising, since not all of the signal information is used.

1.4.4   Bandwidth Expansion
The scaling property of Fourier transforms states that if x(t) has Fourier
transform X(Ω) = F{x(t)}, then

(1.34)
 
Equation (1.34) states that if the signal x is compressed in the time domain by
the factor α > 1, its Fourier transform is stretched (and scaled) in the frequency
domain by the same factor (Papoulis, 1987). When α < 1, Eq. (1.34) shows that
stretching in the time domain results in compression in the frequency domain.
This reciprocal spreading behavior is illustrated in Fig. 1.17. Part (a) shows a
sinusoidal pulse with a frequency of 10 MHz and a duration of 1 μs and its
Fourier transform, which is a sinc function centered on 10 MHz and with a
Rayleigh mainlobe width of 1 MHz, the reciprocal of the 1 μs pulse duration. In
part (b) the pulse has the same frequency but only one-quarter the duration. Its
spectrum is still a sinc centered at 10 MHz, but the Rayleigh width is now four
times larger at 4 MHz. The spectrum amplitude is also reduced by a factor of
four. This effect can also be viewed in the opposite direction: if the signal gets
wider in the frequency domain, it must get narrower in the time domain.



 FIGURE 1.17   Illustration of reciprocal spreading property of Fourier
transforms. (a) A sinusoidal pulse and the main portion of its Fourier transform.
(b) A narrower pulse has a wider transform. See text for details.
 

Combining the reciprocal spreading property of Fourier transforms with
the observation that resolution depends on signal width shows that improving
resolution requires increasing “bandwidth” in the opposite Fourier domain. For
example, improving range resolution for simple pulses requires using shorter
pulses, as was seen in Sec. 1.4.2; but Fig. 1.17 shows that a shorter pulse
implies a wider spectrum, i.e., more bandwidth. Conversely, it was also shown
i n Sec. 1.4.2 that improving resolution in the frequency domain requires a
narrower spectrum mainlobe and thus according to Fig. 1.17, a longer
observation (more “bandwidth”) in the time domain. This behavior holds for
any two functions related by a Fourier transform: finer resolution in one domain
requires wider support in the opposite domain.

Radar designers have developed techniques for increasing the appropriate
bandwidth to obtain improved resolution in various dimensions. For example,
improving resolution in range requires increasing waveform bandwidth, which
has led to the use of wideband phase- and frequency-modulated waveforms in
place of the simple pulse (Chap. 4). Improving cross-range resolution requires
viewing a scene over a wide angular interval to increase cross-range spatial



frequency bandwidth, and leads to the synthetic aperture techniques of Chap. 8.
Improving velocity (equivalently, Doppler) resolution requires a long time
observation and is accomplished with multipulse waveforms. Because the
antenna far-field pattern is the Fourier transform of the aperture current
distribution, improved angular resolution can be obtained with larger apertures,
i.e., bigger antennas.

1.5   A Preview of Basic Radar Signal Processing
There are a number of instances where the design of a component early in the
radar signal processing chain is driven by properties of some later component.
For example, in Chap. 4 it will be seen that the matched filter maximizes SNR;
but it is not until the performance curves for the detectors that follow the
matched filter are derived that it will be seen that maximizing SNR also
optimizes detection performance. Until the detector is considered, it is hard to
see exactly how performance depends on SNR. Having seen the major
components of a typical pulsed coherent radar system, the most common signal
processing operations in the radar signal processing chain are now described
heuristically. By sketching out this preview of the “big picture” from beginning
to end, it may be easier to understand the motivation for and interrelation of
many of the processing operations to be described in later chapters.

Figure 1.18 illustrates one possible sequence of operations in a generic
radar signal processor. The sequence shown is not unique, nor is the set of
operations exhaustive. In addition, the point in the chain at which the signal is
digitized varies in different systems; it might occur as late as the output of the
clutter filtering step. The operations can be generally grouped into signal
conditioning and interference suppression; imaging; detection ; and
postprocessing. Radar signal phenomenology must also be considered. In the
next few subsections the basic purpose and operation of each block in this
signal processing chain is described.



 FIGURE 1.18   One example of a generic radar signal processor flow of
operations.
 

1.5.1   Radar Time Scales
Radar signal processing operations take place on time scales ranging from less
than a nanosecond to tens of seconds or longer, a range of 10 to 12 orders of
magnitude. Different classes or levels of operations tend to operate on
significantly different time scales. Figure 1.19 illustrates one possible
association of operations and time scale.



 FIGURE 1.19   Illustration of the range of time scales over which radar signal
processing is performed.
 

Operations that are applied to data from a single pulse occur on the
shortest time scale, often referred to as fast time because the sample rate,
determined by the instantaneous pulse bandwidth (see Chap. 2), is on the order
of hundreds of kilohertz (kHz) to as much as a few gigahertz in some cases.
Corresponding sampling intervals range from a few microseconds down to a
fraction of a nanosecond, and signal processing operations on these samples
therefore tend to act over similar time intervals. Typical fast time operations are
digital I/Q signal formation, beamforming, pulse compression or matched
filtering, and sensitivity time control.

The next level up in signal processing operations operates on data from
multiple pulses. The sampling interval between pulses (the PRI) is typically on
the order of tens of microseconds to hundreds of milliseconds, so again
operations that involve multiple pulses occupy similar time scales. Due to the
much slower sampling rate compared to single-pulse operations, such
operations are said to act in slow time. Typical operations include coherent and
noncoherent integration, Doppler processing of all types, synthetic aperture
imaging, and space-time adaptive processing. The idea of slow and fast time
will be revisited in the discussion of the data organizational concept of the
datacube in Chap. 3.

A group of pulses that are to be somehow combined coherently, for



example via Doppler processing or synthetic aperture radar (SAR) imaging,
are said to form a coherent processing interval  (CPI). A still higher level of
radar processing acts on data from multiple CPIs and therefore operates on an
even longer time scale often called a dwell and typically lasting milliseconds to
ones or tens of seconds. Operations on this scale include multiple-CPI detection
and ambiguity resolution techniques, multilook SAR imaging, and track filtering.
Some radars may track detected targets for many seconds or minutes using data
from multiple dwells. Track filtering operates in this regime. Finally, some
imaging radars may monitor an area over days, months, or even years.

1.5.2   Phenomenology
To design a successful signal processor, the nature of the signals to be
processed must be understood. Phenomenology refers to the characteristics of
the signals received by the radar. Relevant characteristics include signal power,
frequency, phase, polarization, or angle of arrival; variation in time and spatial
location; and randomness. The received signal phenomenology is determined by
both intrinsic features of the physical object(s) giving rise to the radar echo,
such as their physical size or their orientation and velocity relative to the radar;
and the characteristics of the radar itself such as its transmitted waveform,
polarization, or antenna gain. For example, if more power is transmitted a more
powerful received echo is expected, all other things being equal.

In Chap. 2, models of the behavior of typical measured signals that are
relevant to the design of signal processors are developed. The radar range
equation will give a means of predicting signal power. The Doppler
phenomenon will predict received frequency. It will be seen that the complexity
of the real world gives rise to very complex variations in radar signals; this will
lead to the use of random processes to model the signals, and to particular
probability density functions that match measured behavior well. A (very) brief
overview of the behavior of the variation of ground and sea echo with sensing
geometry and radar characteristics will be given. It will also be shown that
measured signals can be represented as the convolution of the “true” signal
representing the ideal measurement with the radar waveform (in the range
dimension) or its antenna pattern (in the azimuth or elevation dimension, both
also called cross-range dimension). Thus, a combination of random process and
linear systems theory will be used to describe radar signals and to design and
analyze radar signal processors.

1.5.3   Signal Conditioning and Interference Suppression
The first several blocks after the antenna in Fig. 1.18 can be considered as
signal conditioning operations whose purpose is to improve the SIR of the data
prior to detection, parameter measurement, or imaging operations. That is, the
intent of these blocks is to “clean up” the radar data as much as possible. This is
done in general with a combination of fixed and adaptive beamforming, pulse



compression, clutter filtering, and Doppler processing.
Beamforming is applicable when the radar antenna is an array, i.e., when

there are multiple phase center signals, or channels, available to the signal
processor. Fixed beam-forming is the process of combining the outputs of the
various available phase centers to form a directive gain pattern, similar to that
shown in Fig. 1.6. The high-gain mainlobe and low sidelobes selectively
enhance the echo strength from scatterers in the antenna look direction while
suppressing the echoes from scatterers in other directions, typically clutter. The
sidelobes also provide a measure of suppression of jamming signals so long as
the angle of arrival of the jammer is not within the mainlobe of the antenna. By
proper choice of the weights used to combine the channels, the mainlobe of the
beam can be steered to various look directions, and the tradeoff between the
sidelobe level and the mainlobe width (angular resolution) can be varied.

Adaptive beamforming takes this idea a step further. By examining the
correlation properties of the received data across channels, it is possible to
recognize the presence of jamming and clutter entering the antenna pattern
sidelobes and design a set of weights for combining the channels such that the
antenna not only has a high-gain mainlobe and generally low sidelobes, but also
has a null in the antenna pattern at the angle of arrival of the jammer. Much
greater jammer suppression can be obtained in this way. Similarly, it is also
possible to increase clutter suppression by this technique. Space-time adaptive
filtering (STAP) combines adaptive beamforming in both angle and Doppler for
simultaneous suppression of clutter and jammer interference. Figure 1.20
illustrates interference suppression using STAP, allowing a previously invisible
target signal to be seen and perhaps detected. The two vertical bands in Fig.
1.20a represent jammer energy, which comes from a fixed angle of arrival but is
usually in the form of relatively wideband noise; thus it is present at all Doppler
frequencies observed by the radar. The diagonal band in Fig. 1.20a is due to
ground clutter, for which the Doppler shift depends on the angle from the radar
to the ground patch contributing energy. Figure 1.20b shows that the adaptive
filtering has created nulls along the loci of the jammer and clutter energy,
making the target at 0° angle of arrival and 400 Hz Doppler shift apparent.
Adaptive interference suppression will be introduced in Chap. 9.



 FIGURE 1.20   Example of effect of adaptive beamforming. (a) Map of received
signal power as a function of angle of arrival and signal Doppler shift. (b)
Angle-Doppler map after adaptive processing. (Images courtesy of Dr. W. L.
Melvin. Used with permission.)
 

Pulse compression is a special case of matched filtering. Many radar
system designs strive for both high sensitivity in detecting targets and fine range
resolution (the ability to distinguish closely spaced targets). Upcoming chapters
show that target detectability improves as the transmitted energy increases, and
that range resolution improves as the transmitted waveform’s instantaneous
bandwidth increases. If the radar employs a simple, constant-frequency
rectangular envelope pulse as its transmitted waveform the pulse must be
lengthened to increase the transmitted energy for a given power level. However,
lengthening the pulse also decreases its instantaneous bandwidth, degrading the
range resolution. Thus sensitivity and range resolution appear to be in conflict
with one another.

Pulse compression provides a way out of this dilemma by decoupling the
waveform bandwidth from its duration, thus allowing both to be independently
specified. This is done by abandoning the constant-frequency pulse and instead
designing a modulated waveform. A very common choice is the linear frequency
modulated (linear FM, LFM, or “chirp”) waveform, shown in Fig. 1.21a. The
instantaneous frequency of an LFM pulse is swept over the desired bandwidth
during the pulse duration; the frequency may be swept either up or down, but the
rate of frequency change is constant.



 FIGURE 1.21   (a) Linear FM waveform modulation function, showing an
increasing instantaneous frequency. (b) Output of the matched filter for the LFM
waveform of (a).
 

The matched filter is by definition a filter in the radar receiver designed to
maximize the SNR at its output. The impulse response of the filter having this
property turns out to be a replica of the transmitted waveform’s modulation



function that has been reversed in time and conjugated; thus the impulse
response is “matched” to the particular transmitted waveform modulation. Pulse
compression is the process of designing a waveform and its corresponding
matched filter so that the matched filter output in response to the echo from a
single point scatterer concentrates most of its energy in a very short duration,
thus providing good range resolution while still allowing the high transmitted
energy of a long pulse. Figure 1.21b shows the output of the matched filter
corresponding to the LFM pulse of Fig. 1.21a; note that the mainlobe of the
response is much narrower than the duration of the original pulse. The concepts
of matched filtering, pulse compression, and waveform design, as well as the
properties of linear FM and other common waveforms, are described in Chap.
4. There it is seen that the 3-dB width of the mainlobe in time is approximately
1/β seconds, where β is the instantaneous bandwidth of the waveform used. This
width determines the ability of the waveform to resolve targets in range.
Converted to equivalent range units, the range resolution is given by

(1.35)
 
[This is the same as Eq. (1.2) presented earlier.]

Clutter filtering and Doppler processing are closely related. Both are
techniques for improving the detectability of moving targets by suppressing
interference from clutter echoes, usually from the terrain in the antenna field of
view, based on differences in the Doppler shift of the echoes from the clutter
and from the targets of interest. The techniques differ primarily in whether they
are implemented in the time or frequency domain and in historical usage of the
terminology.

Clutter filtering usually takes the form of moving target indication, or
MTI, which is simply pulse-to-pulse highpass filtering of the radar echoes at a
given range to suppress constant components, which are assumed to be due to
nonmoving clutter. Extremely simple, very low-order (most commonly first- or
second-order) digital filters are applied in the time domain to samples taken at a
fixed range but on successive transmitted pulses.

The term “Doppler processing” generally implies the use of the fast
Fourier transform algorithm, or occasionally some other spectral estimation
technique, to explicitly compute the spectrum of the echo data for a fixed range
across multiple pulses. Due to their different Doppler shifts, energy from
moving targets is concentrated in different parts of the spectrum from the clutter
energy, allowing detection and separation of the targets. Doppler processing
obtains more information from the radar signals, such as number and
approximate velocity of moving targets, than does MTI filtering. The cost is
more required radar pulses, thus consuming energy and timeline, and greater



processing complexity. Many systems use both techniques in series. Clutter
filtering and Doppler processing are the subjects of Chap. 5.

1.5.4   Imaging
Most people are familiar with the idea of a radar producing “blips” on a screen
to represent targets, and in fact systems designed to detect and track moving
targets may do exactly that. However, radars can also be designed to compute
fine-resolution images of a scene. Figure 1.22 compares the quality routinely
obtainable in SAR imagery in the mid-1990s to that of an aerial photograph of
the same scene; close examination reveals many similarities and many
significant differences in the appearance of the scene at radar and visible
wavelengths. Not surprisingly, the photograph is easier for a human to interpret
and analyze, since the imaging wavelengths (visible light) and phenomenology
are the same as the human visual system. In contrast, the radar image, while
remarkable, is monochromatic, offers less detail, and exhibits a “speckled”
texture, some seemingly unnatural contrast reversals, and some missing features
such as the runway stripes. Given these drawbacks, why is radar imaging of
interest?

 FIGURE 1.22   Comparison of optical and SAR images of the Albuquerque
airport. (a) Ku band (15 GHz) SAR image, 3-m resolution. (b) Aerial
photograph. (Images courtesy of Sandia National Laboratories. Used with
permission.)
 

While radars do not obtain the resolution or image quality of photographic



systems, they have two powerful advantages. First, they can image a scene
through clouds and inclement weather due to the superior propagation of RF
wavelengths. Second, they can image equally well 24 hours a day since they do
not rely on the sun for illumination; they provide their own “light” via the
transmitted pulse. If the example of Fig. 1.21 were repeated in the middle of a
rainy night, the SAR image on the left would not be affected in any noticeable
way, but the optical image on the right would disappear entirely.

To obtain fine-resolution imagery, radars use a combination of high-
bandwidth waveforms to obtain good resolution in the range dimension and the
synthetic aperture radar technique to obtain good resolution in the cross-range
dimension. The desired range resolution is obtained while maintaining adequate
signal energy by using pulse compression waveforms, usually linear FM. A long
pulse that is swept over a large enough bandwidth β and processed using a
matched filter can provide very good range resolution according to Eq. (1.35).
For example, range resolution of 1 m can be obtained with a waveform swept
over 150 MHz. Depending on their applications, modern imaging radars usually
have range resolution of 30 m or better; many systems have 10 m or better
resolution, and some advanced systems have resolution under 1 m.

For a conventional nonimaging radar, referred to as a real aperture  radar,
the resolution in cross-range is determined by the width of the antenna beam at
the range of interest and is given by Rθ3 as shown in Eq. (1.26). Realistic
antenna beamwidths for narrow-beam antennas are typically 1° to 3°, or about
17 to 52 mrad. Even at a relatively short imaging range of 10 km, the cross-
range resolution that results would be 170 to 520 m, much worse than typical
range resolutions and too coarse to produce useful imagery. This poor cross-
range resolution is overcome by using SAR techniques.

The synthetic aperture technique refers to the concept of synthesizing the
effect of a very large antenna by having the actual physical radar antenna move
in relation to the area being imaged. Thus, SAR is most commonly associated
with moving airborne or space-based radars, rather than with fixed ground-
based radars. Figure 1.23 illustrates the concept. By transmitting pulses at each
indicated location, collecting the range data for each pulse, and properly
processing it together, a SAR system creates the effect of a much larger phased
array antenna being flown along the aircraft flight path. As suggested by Eq.
(1.9) (though some details differ in the SAR case), a very large aperture size
produces a very narrowly focused effective antenna beam, thus making possible
very fine cross-range resolution. The SAR concept is explained more fully in
Chap. 8. A more modern and robust viewpoint based on integrating over a range
of angles is also given there.



 FIGURE 1.23   The concept of synthetic aperture radar.
 

1.5.5   Detection
The most basic function of a radar signal processor is detection of the presence
of one or more targets of interest. Information about the presence of targets is
contained in the echoes of the radar pulses. These echoes compete with receiver
noise, undesired echoes from clutter signals, and possibly intentional or
unintentional jamming. The signal processor must somehow analyze the total
received signal and determine whether it contains a desirable target echo and, if
so, at what range, angle, and velocity.

Because the complexity of radar signals leads to the use of statistical
models, detection of target echoes in the presence of competing interference
signals is a problem in statistical decision theory. The theory as applied to radar
detection will be developed in Chap. 6. There it will be seen that in most cases
optimal performance can be obtained using threshold detection. In this method,
the magnitude of each complex sample of the radar echo signal, possibly after
signal conditioning and interference suppression, is compared to a precomputed
threshold. If the signal amplitude is below the threshold, it is assumed to be due
to interference signals only. If it is above the threshold, it is assumed that the
stronger signal is due to the presence of a target echo in addition to the
interference, and a detection or “hit” is declared. In essence, the detector makes
a decision as to whether the energy in each received signal sample is too large
to likely have resulted from interference alone; if so, it is assumed a target echo
contributed to that sample. Figure 1.24 illustrates the concept. The “clutter +
target” signal might represent the variation in received signal strength versus



range (fast time) for a single transmitted pulse. It crosses the threshold at three
different times, suggesting the presence of three targets at different ranges.

 FIGURE 1.24   Illustration of threshold detection.
 

Because they are the result of a statistical process, threshold detection
decisions have a finite probability of being wrong. For example, a noise spike
could cross the threshold, leading to a false target declaration, commonly called
a false alarm. These errors are minimized if the target spikes stand out strongly
from the background interference, i.e., if the SIR is as large as possible. If this is
the case the threshold can be set relatively high, resulting in few false alarms
while still detecting most targets. This fact also accounts for the importance of
matched filtering in radar systems. The matched filter maximizes the SIR, thus
providing the best threshold detection performance. Furthermore, the achievable
SIR increases monotonically with the transmitted pulse energy E, thus
encouraging the use of longer pulses to get more energy on the target. Since
longer simple pulses reduce range resolution, the technique of pulse
compression is also important so that fine resolution can be obtained while
maintaining good detection performance.

The concept of threshold detection can be applied to many different radar
signal processing systems. Figure 1.24 illustrates its application to a fast-time
(range) signal trace, but it can be equally well applied to a signal composed of
measurements at different Doppler frequencies for a fixed range, or in a two-
dimensional form to combined range-Doppler data or to SAR imagery.

There are numerous significant details in implementing threshold detection.
Various detector designs work on the magnitude, squared-magnitude, or even
log-magnitude of the complex signal samples. The threshold is computed from
knowledge of the interference statistics so as to limit false alarms to an
acceptable rate. However, in real systems the interference statistics are rarely
known accurately enough to allow for precomputing a fixed threshold. Instead,



the required threshold is set using interference statistics estimated from the data
itself, a process called constant-false-alarm rate (CFAR) detection. Detection
processing is described in detail in Chap. 6.

1.5.6   Measurements and Track Filtering
Radar systems employ a wide variety of processing operations after the point of
target detection. One of the most common postdetection processing steps, and
one of the three major functions of interest in this text, is tracking of targets, an
essential component of many radar systems. Tracking is comprised of (usually
multiple) measurements of the position of detected targets followed by track
filtering.

The radar signal processor detects the presence of targets using threshold
detection methods. The range, angle, and Doppler resolution cell in which a
target is detected provide a coarse estimate of its location in those coordinates.
Once detected, the radar will seek to refine the estimated range by using signal
processing methods to more precisely estimate the time delay after pulse
transmission at which the threshold crossing occurred, the angle of the target
relative to the antenna mainbeam direction, or its radial velocity. Individual
measurements will have some error due to interference, and so provide a noisy
snapshot of the target location and motion at one instant in time.

The term track filtering describes a higher-level, longer time scale process
of integrating a series of such measurements to estimate a complete trajectory of
the target over time. It is often described as data processing rather than signal
processing. Because there may be multiple targets with crossing or closely
spaced trajectories, track filtering must deal with the problems of determining
which measurements to associate with which targets being tracked, and with
correctly resolving nearby and crossing trajectories. A variety of optimal
estimation techniques have been developed to perform track filtering. An
excellent reference in this area is Bar-Shalom (1988).

Figure 1.25 illustrates a series of noisy measurements in one dimension of
the position of two targets and the filtering of that noisy trajectory using an
extremely simple alpha-beta filter, to be discussed in Chap. 9. The position in
the x dimension versus time for each target is shown by the gray lines, so the
two targets are moving at different velocities along the x axis and one passes the
other at around time step 32. The circle and diamond markers indicate the noisy
radar measurements of position for each. The solid black lines are the smoothed
estimates of position produced by the alpha-beta filter. In part (a) of the figure,
the filter correctly associates the measurements with each target when they
cross, so that each smoothed estimate follows the same target over the
observation time. In Fig. 1.25b, the noise variance is higher, causing the filter to
incorrectly swap the tracks around time step 40. This represents an error in
measurement-to-track data association. A variety of techniques are available to
attempt to address this problem; a few are discussed in Chap. 9.



 FIGURE 1.25   Track filtering of noisy measurements for two targets in one
dimension using an alpha-beta filter. Markers show individual measurements.
Gray lines are actual position, black lines are filtered position estimates. (a)
Low measurement noise. (b) Tracks incorrectly switch targets in higher
measurement noise.
 

1.6   Radar Literature
This text covers a middle ground in radar technology. It focuses on basic radar
signal processing from a digital signal processing point of view. It does not
address radar systems, components, or phenomenology in any great depth except
where needed to explain the signal processing aspects; nor does it provide in-
depth coverage of advanced radar signal processing specialties. Fortunately,
there are many excellent radar reference books that address both needs. Good
books appear every year; those listed in the paragraphs that follow are current
as of the year 2013.

1.6.1   Radar Systems and Components
Probably the most classic introductory text to radar systems, now in its third
edition, is by Skolnik (2001). The newest and one of the best “radar 101”
introductions is the new text by Richards et al. (2010), the first of a three-
volume series. The 1990s saw the introduction of several general radar system
textbooks. The text by Edde (1995) also has an associated self-study course.
Peebles (1998) provides a recent, comprehensive introduction, while Mahafza
(2000) provides a number of useful MATLAB® files to aid in simulation and
experimentation. Morris and Harkness (1996) provides a good introduction to
airborne pulsed Doppler systems specifically. A newer discussion of pulsed
Doppler systems is given by Alabaster (2012). An up-to-date survey of a broad
range of traditional and modern radar applications is given in Scheer and
Melvin (2014), showing how many of the techniques discussed in both these
introductory texts and the more specialized ones discussed below are brought
together into complete systems.



1.6.2   Basic Radar Signal Processing
It is this author’s opinion that there are a number of excellent books about radar
systems in general, including coverage of components and system designs, and
several on advanced radar signal processing topics, especially in the area of
synthetic aperture imaging. There have been few books that address the middle
ground of basic radar signal processing, such as pulse compression, Doppler
filtering, and CFAR detection. Such books are needed to provide greater
quantitative depth than is available in the radar systems books without
restricting themselves to in-depth coverage of a single advanced application
area, and this text aims to fill that gap. Nonetheless, there are a few texts that fit
somewhat into this middle area. Nathanson (1991) wrote a classic book, now in
its second edition, that covers radar systems in general but in fact concentrates
on signal processing issues, especially RCS and clutter modeling, waveforms,
MTI, and detection. Probably the closest text in intent to this one is by Levanon
(1988), which provides excellent analyses of many basic signal processing
functions. The new text by Levanon and Mozeson (2004) addresses the
widening variety of radar waveforms in detail. A recent text by Sullivan (2000)
is interesting especially for its introductory coverage of both SAR and space-
time adaptive processing (STAP), thus providing a bridge between basic signal
processing and more advanced texts specializing in SAR and STAP.

1.6.3   Advanced Radar Signal Processing
Two very active areas of advanced radar signal processing research are SAR
imaging and STAP. SAR research extends back to 1951, but only in the 1990s
did open literature textbooks begin to appear in the market. There are now many
good textbooks on SAR. The first comprehensive text was by Curlander and
McDonough (1991). Based on experience gained at the NASA Jet Propulsion
Laboratory, it emphasizes space-based SAR and includes a strong component of
scattering theory as well. Cumming and Wong (2005) is a newer text that also
emphasizes spaced-based SAR. The spotlight SAR mode received considerable
development in the 1990s, and two major groups published competing texts in
the mid-1990s. Carrara, Goodman, and Majewski (1995) represented the work
of the group at the Environmental Research Institute of Michigan (ERIM, now a
part of General Dynamics, Inc.); Jakowatz, Jr., et al. (1996) represented the
work of a group at Sandia National Laboratories, a unit of the U.S. Department
of Energy. Franceschetti and Lanari (1999) provide a compact, unified treatment
of both major modes of SAR imaging, namely stripmap and spotlight. The book
by Soumekh (1999) is the most complete academic reference on synthetic
aperture imaging and includes a number of MATLAB® simulation resources.

STAP, one of the most active radar signal processing research areas, began
in earnest in 1973 and is correspondingly less mature than SAR processing.
Klemm (1998) wrote the first significant open literature text on the subject. Just
as with the Curlander and McDonough book in the SAR community, this book



was the first sign that a series of STAP texts can be expected as that research
topic matures and reaches mainstream use. The book by Guerci (2003) is the
newest primer on this subject at this writing, while Van Trees (2002) prepared
a detailed text that continues his classic series on detection and estimation.
Additionally, there are other texts on more limited forms of adaptive
interference rejection. A good example is the one by Nitzberg (1999), which
discusses several forms of sidelobe cancellers. An excellent new book covering
a wide range of advanced radar signal processing techniques, including such
new topics as multi-input, multi-output radar, and compressive sensing, is the
companion volume to (Richards et al., 2010) by Melvin and Scheer (2013).

1.6.4   Radar Applications
The preceding sections have cited a number of books addressing general radar
applications, such as imaging or pulse Doppler. There are a number of books in
the literature devoted to more specific application areas. The forthcoming text
by Melvin and Scheer (2014) will provide an excellent survey of and
introduction to a wide range of applications in a single text, and will complete
the Principles of Modern Radar series.

1.6.5   Current Radar Research
Current radar research appears in a number of scientific and technical journals.
The most important in the United States are the Institute of Electrical and
Electronics Engineers (IEEE) Transactions on Aerospace and Electronic
Systems, Transactions on Geoscience and Remote Sensing, Transactions on
Signal Processing, and Transactions on Image Processing . Radar-related
material in the latter is generally limited to papers related to SAR processing,
especially interferometric three-dimensional SAR. In the United Kingdom, radar
technology papers are often published in the Institution of Engineering and
Technology (IET) [formerly the Institution of Electrical Engineers (IEE)]
journal IET Radar, Sonar, and Navigation.
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Problems
  1.  Compute the range R corresponding to echo delays t0 of 1 ns, 1 μs, 1 ms,

and 1 second.
  2.  Compute the time delays for two-way propagation to targets at distances of

100 km, 100 statute miles, and 100 ft.
  3.  Radar is routinely used as one means of measuring the distance to objects in

space. For example, it has been used to calculate the orbital parameters
and rate of rotation of the planet Jupiter. The distance from Earth to Jupiter
varies from 588.5 × 106 to 968.1 × 106 km. What are the minimum and
maximum time delays in minutes from the time a pulse is transmitted in the
direction of Jupiter until the time the echo is received? If pulses are
transmitted at a rate of 100 pulses per second, how many pulses are in
flight, either on their way to Jupiter or back again, at any given instant?

  4.  Table 1.1 defines the millimeter wave (MMW) band to extend from 40 to
300 GHz. Only certain frequencies in this band are widely used for radar.
This is partly due to frequency allocation rules (which frequencies are



allotted to which services), but also due to atmospheric propagation.
Based on Fig. 1.3, list two frequencies in the MMW band that might be
preferable for radar use, and two that would not be suitable. Explain.

  5.  Compute the bandwidth β needed to achieve range resolutions of 1 m, 1 km,
and 100 km. What is the length of a rectangular pulse having this Rayleigh
bandwidth (peak-to-first null width of the Fourier transform) for each
value of resolution?

  6.  In terms of Dy and λ, what is the peak-to-first null beamwidth (called
Rayleigh beamwidth) in radians of the antenna pattern for an aperture
antenna with constant illumination? Give both the general result, and a
small-angle approximation.

  7.  How large must a uniformly illuminated aperture antenna be (value of Dy) in
terms of wavelengths so that its 3-dB beamwidth is 1°? What is the
estimated gain in decibels of an antenna having azimuth and elevation
beamwidths θ3 = ϕ3 = 1°, based on the approximation in Eq. (1.10)?

  8.  Suppose a police “speed gun” radar has a rectangular antenna. It is desired
to have a cross-range resolution ΔCR of 10 ft at a distance of one-quarter
mile. What is the required antenna width in inches if the radar frequency is
9.4 GHz? Repeat for 34.4 GHz.

  9.  Continuing problem 8, what is the actual cross-range resolution in feet at
each RF if the antenna width is 6 in.?

10.  Starting from Eq. (1.13) and setting an = 1, derive Eq. (1.14).
11.  What is the maximum 3-dB beamwidth θ3 in degrees such that the

approximation for the cross-range resolution, Rθ3, in the last step of Eq.
(1.26) has an error of no more than 1 percent?

12.  Determine the cross-range resolution ΔCR in meters at ranges of 10, 100,
and 1000 km for a 3-dB beamwidth θ3 = 3°.

13.  Determine the approximate size of a volume resolution cell in cubic meters,
ΔV, for R = 20 km, ΔR = 100 m, and θ3 = ϕ3 = 3°.

14.  Suppose Eq. (1.31) is modified to consider the magnitude-squared of the
signal-plus-noise data:

 
        Show explicitly that z cannot be expressed as the sum of a signal-only and

a noise-only term.

The remaining problems relate to topics covered in Appendix B.



15.  What is the Nyquist sampling rate (minimum rate to avoid aliasing) for the
signal x(t) having the spectrum X(F) shown in the figure below? Sketch a
block diagram of a system for recovering a new signal  from samples of
x(t) taken at the Nyquist rate, such that the spectrum  has the same shape
as X(F), but is centered at F = 0.

 
16.  In some cases, the spectrum replication property of sampling can be used as

a substitute for demodulation. Given a signal xa(t) with the spectrum
shown, what is the lowest sampling rate that will ensure both no aliasing of
the spectrum, and that one of the spectrum replicas is centered at F = 0?

 
17.  How many bits are required in an A/D converter to provide a dynamic

range of at least 40 dB? What is the expected SQNR with this number of
bits, assuming k = 3?

18.  Numerical values of spatial frequency differ greatly from the usual temporal
frequency values. What is the spatial frequency in cycles per meter for a 1-
GHz electromagnetic wave?

19.  What is the instantaneous frequency in hertz of the waveform x(t) = exp[j ·
exp(–αt)]?

20.  Determine a phase function ψ(t) such that the instantaneous frequency in
hertz of the waveform x(t) = cos[ ψ(t)], –τ/2 ≤ t ≤ τ/2 seconds, sweeps
linearly from –β/2 Hz to +β/2 Hz.

21.  Suppose signal x1 is 30 dB greater in power than signal x2. What is the ratio
of their power in linear units (i.e., not in dB)? What is the ratio of the
corresponding voltages?

_____________



1 c = 2.99792458 × 108 m/s in a vacuum. A value of c = 3 × 108 m/s is normally used except where very
high accuracy is required.
2 Systems exhibiting good or poor resolution are commonly referred to as high- or low-resolution systems,
respectively. Since better resolution means a smaller numerical value, in this text the terms “fine” and
“coarse” are used instead.
3 Gordon Moore’s famous 1965 prediction was that the number of transistors on an integrated circuit would
double every 18 to 24 months. This prediction has held remarkably true for nearly 40 years, enabling the
computing and networking revolutions that began in earnest in the 1980s.
4 This is analogous to the use of the two-argument atan2() function instead of the single-argument atan()
function in many programming languages such as FORTRAN or C.
5 Although these formalizations are not needed for the discussions in this text and are therefore avoided for
simplicity, it is worthwhile to note that the complex signal in Eq. (1.21) is the analytic signal associated with
the real-valued signal of Eq. (1.17). The imaginary part of Eq. (1.21) is the Hilbert transform of the real
part.
6 The effects of unequal signal strength and noise on resolution are considered in (Mir and Wilkinson, 2008).



CHAPTER 2
Signal Models

 

2.1   Components of a Radar Signal
While a radar transmits a controlled, well-defined signal, the signal measured at
the receiver output in response is the superposition of several major
components, none of them entirely under the control of the designer. The major
components are the target, clutter, noise , and, in some cases, jamming. These
signals are sometimes subdivided further. For instance, clutter can be separated
into ground clutter and weather clutter (such as rain), while jamming can be
separated into active jamming (noise transmitters) and passive jamming (such as
chaff clouds). Signal processing is applied to this composite signal; the goal is
to extract useful information regarding the presence of targets and their
characteristics, or to form a radar image. Noise and jamming are interference
signals; they degrade the ability to detect targets and measure their position and
velocity. Clutter may be interference in some cases, such as when detecting
aircraft, or may be the desired signal itself, as with a ground imaging radar. The
effectiveness of the signal processing is measured by the improvement it
provides in the various figures of merit, such as detection probability, signal-
to-interference ratio (SIR), or angle accuracy.

It was shown in Chap. 1 that conventional pulsed radars transmit
narrowband, bandpass signals. Transmitted energy is maximized by restricting
amplitude modulation to on-off pulsing; phase modulation is used to expand the
instantaneous bandwidth when needed to improve resolution. Thus, an
individual transmitted radar pulse can be written as

(2.1)
 
where a(t) is the constant amplitude pulse envelope, Ft is the radar carrier
frequency, and θ(t) may be a constant or may represent phase modulation of the
pulse. It will usually be assumed that a(t) is an ideal, square pulse envelope of
amplitude A and duration τ seconds. The instantaneous power of this signal is
just Ps = A2/2. The signal at the receiver output will be a combination of echoes
of  from targets and clutter, noise, and possibly jamming.

Because the target and clutter components are delayed echoes of the
transmitted pulse, they are also narrowband signals, although their amplitude
and phase modulation will in general be altered, e.g., by propagation loss and
Doppler shift. Receiver noise appears as an additive random signal. Thus, the



received signal resulting from a single pulse echoing from a scatterer at range R0
= ct0/2 can be modeled as

(2.2)
 
 where n(t) = receiver noise

   k = echo amplitude factor due to propagation losses and target
reflectivity

ϕ(t) = echo phase modulation due to target interaction
The important parameters of  are the delay time t0, the echo component
amplitude k · |a(t)| and its power relative to the noise component, and the echo
phase modulation function θ(t – t0) + ϕ(t). These characteristics are used to
estimate target range, scattering strength, and radial velocity, suppress jamming
and clutter, form images, and so forth.

The amplitude and phase modulation functions also determine the range
resolution ΔR of a measurement. For example, ΔR = cτ/2 if θ(t) is a constant
and  is a simple constant-frequency pulse of length τ seconds. Resolution in
angle and cross range is determined by the 3-dB width of the antenna pattern in
a nonimaging radar.

In order to design good signal processing algorithms, good models of the
signals to be processed are needed. In this chapter, an understanding of common
radar signal characteristics pertinent to signal processing is developed by
presenting models of the effect of the scattering process on the amplitude, phase,
and frequency properties of radar measurements. While deterministic models
suffice for simple scatterers, it will be seen that complicated real targets require
statistical descriptions of the scattering process.

2.2   Amplitude

2.2.1   Simple Point Target Radar Range Equation
T h e radar range equation (Richards et al., 2010; Skolnik, 2001) is a
deterministic model that relates received echo power to transmitted power in
terms of a variety of system design parameters. It is a fundamental relation used
for basic system design and analysis. Since the received signals are narrowband
pulses of the form of Eq. (2.2), the received power Pr estimated by the range
equation can be directly related to the received pulse amplitude.

To derive the range equation, assume that an isotropic radiating element
transmits a waveform of power Pt watts into a lossless medium. Because the
transmission is isotropic and no power is lost in the medium, the power density
at a range R is the total power Pt divided by the surface area of a sphere of



radius R, which is

(2.3)
 
Instead of isotropic radiators, real radars use directive antennas to focus the
outgoing energy. As described in Chap. 1, the antenna gain G is the ratio of
maximum power density to isotropic density. Thus, in the direction of maximum
radiation intensity, the power density at range R becomes

(2.4)
 
This is the power density incident upon the target if it is aligned with the
antenna’s axis of maximum gain.

When the electromagnetic wave with power density given by Eq. (2.4) is
incident upon a single discrete scattering object, or point target, at range R the
incident energy is scattered in various directions; some of it may also be
absorbed by the scatterer itself. In particular, some of the incident power is
reradiated toward the radar, or backscattered. Imagine that the target collects
all of the energy incident upon a collector of area σ square meters and reradiates
it isotropically. The reradiated power is then

(2.5)
 
The quantity σ is called the radar cross section (RCS) of the target. One
important fact about RCS is that σ is not equal to the physical cross-sectional
area of the target; it is an equivalent area that can be used to relate incident
power density at the target to the reflected power density that results at the
receiver. RCS will be discussed further in Sec. 2.2.3.

Because RCS is defined under the assumption that the backscattered power
is reradiated isotropically, the density of the backscattered power at a range R
is found by dividing the power of Eq. (2.5) by the surface area of a sphere of
radius R as was done in Eq. (2.3), giving the backscattered power density at the
radar receiver as

(2.6)
 
If the effective aperture size of the radar antenna is Ae square meters, the total



backscattered power collected by the receiving antenna will be

(2.7)
 
It was shown in Chap. 1 that the effective aperture of an antenna is related to its
gain and operating wavelength according to Ae = λ2G/4π. Thus

(2.8)
 
Equation (2.8) describes the power that would be received if an ideal radar
operated in free space and used no signal processing techniques to improve
sensitivity. Various additional loss and gain factors are customarily added to the
formula to account for a variety of additional considerations. For example,
losses incurred in various components such as the duplexers, power dividers,
waveguide, and radome (a protective covering over the antenna), and
propagation effects not found in free space propagation, can be lumped into a
system loss factor Ls that reduces the received power. System losses are
typically in the range of 3 to 10 dB but can vary widely. One of the most
important loss factors, particularly at X band and higher frequencies, is
atmospheric attenuation La(R). Unlike system losses, atmospheric losses are a
function of range. If the one-way loss in decibels per kilometer of Fig. 1.3 is
denoted by α, the loss in decibels for a target at range R meters (not kilometers)
is

(2.9)
 
In linear units, the loss is therefore

(2.10)
 
Atmospheric loss can be inconsequential at 10 GHz and moderate ranges, or
tens of decibels at 60 GHz and a range of a few kilometers. (This is the reason
why 60 GHz is not a popular radar frequency.) This example also shows that,
like system losses, atmospheric loss is a strong function of radar frequency.

Incorporating atmospheric and system losses in Eq. (2.8) finally gives



(2.11)
 
Equation (2.11) is one simple form of the radar range equation. It relates
received echo power to fundamental radar system and target parameters such as
transmitted power, operating frequency, and antenna gain; radar cross section;
and range. Because the power of the radar signal is proportional to the square of
the electric field amplitude, the range equation also serves as a model of the
amplitude of the target and clutter components of the signal. Note that all
variables in Eq. (2.11) are in linear units, not decibels, even though several of
the parameters are often specified in decibels; frequent examples include the
atmospheric losses, antenna gain, and RCS. Also note that Pr is instantaneous,
not average, received power. Finally, realize that for a scatterer at range R, the
backscattered EM wave will be received with a time delay of 2R/c seconds
after transmission.

As an example, consider an X-band (10-GHz) radar with a peak
transmitted power of 1 kW and a pencil beam antenna with a 1° beamwidth, and
suppose an echo is received from a jumbo jet aircraft with an RCS of 100 m2 at
a range of 10 km. The received power can be determined using Eq. (2.11). The
antenna gain can be estimated from Eq. (1.10) to be G = 26,000/(1)(1) = 26,000
= 44 dB. The wavelength is λ = c/F = 3 × 108/10 × 109 = 3 × 10–2 m = 3 cm.
Assuming atmospheric and system losses are negligible, the received power is

(2.12)
 
Even though this example is a large target at short range, the received power is
only 3.07 nW, nearly 12 orders of magnitude less than the transmitted power!
Nonetheless, this signal level is adequate for reliable detection in many cases.
This example illustrates the huge dynamic ranges observed in radar between
transmitted and received signal powers.

An important consequence of Eq. (2.11) is that for a point target, the
received power decreases as the fourth power of range from the radar to the
target. Thus, the ability to detect a target of a given radar cross section
decreases rapidly with range. Range can be increased by increasing transmitted
power, but because of the R4 dependence, the power must be raised by a factor
of 16 (12 dB) just to double the detection range. Alternatively, the antenna gain
can be increased by a factor of 4 (6 dB), implying an increase in antenna area by
a factor of 4. On the other hand, designers of “stealth” aircraft and other target
vehicles must reduce the RCS σ by a factor of 16 in order to halve the range at
which they can be detected by a given radar system.

The range equation is a fundamental radar system design and analysis tool.
More elaborate or specialized versions of the equation can be formulated to



show the effect of other variables, such as pulse length, intermediate frequency
(IF) bandwidth, or signal processing gains. Several such variations are given in
Richards et al. (2010). The range equation also provides the basis for
calibrating a radar system. If the system power, gain, and losses are carefully
characterized, then the expected received power of echoes from test targets of
known RCS can be computed. Calibration tables equating receiver voltage
observed due to those same echoes to incident power density can then be
constructed.

Signal processing techniques can increase the effective received power,
and therefore increase the obtainable range. The effect of each technique on
received power is discussed as they are introduced in later chapters.

2.2.2   Distributed Target Forms of the Range Equation
Not all scattering phenomena can be modeled as a reflection from a single point
scatterer. Ground clutter, for example, is best modeled as distributed scattering
from a surface, while meteorological phenomena such as rain or hail are
modeled as distributed scattering from a three-dimensional volume. The radar
range equation can be rederived in a generalized way that accommodates all
three cases.

Equation (2.3) is still applicable as a starting point. To consider
distributed scatterers, and because the gain of the antenna varies with azimuth
and elevation angle, Eq. (2.4) must be replaced with an equation that accounts
for the effect of the antenna power pattern P(θ, ϕ) on the power density radiated
in a particular direction (θ, ϕ):

(2.13)
 
Assume that the antenna boresight corresponds to θ = ϕ = 0. The antenna
boresight is normally the axis of maximum gain so that P(0, 0) = G.

Now consider the scattering from an incremental volume dV located at
range and angle coordinates (R, θ, ϕ). Suppose the incremental RCS of the
volume element is dσ square meters, and that dσ in general varies with position
in space. The incremental backscattered power from dV is

(2.14)
 
As before, dσ is defined such that it is assumed this power is reradiated
isotropically, and then collected by the antenna effective aperture, adjusted for
the angle of arrival. After substituting for effective aperture and accounting for
losses, this results in an incremental received power of



(2.15)
 
Again, this power is received 2R/c seconds after transmission. The total
received power is obtained by integrating over all space to obtain a generalized
radar range equation

(2.16)
 
In Eq. (2.16), the volume of integration V is all of three-dimensional space.
However, the backscattered energy from all ranges does not arrive
simultaneously at the radar. As discussed in Sec. 1.4.2, only scatterers within a
single range resolution cell of extent ΔR contribute significantly to the radar
receiver output at any given instant. Thus, a more appropriate form of the
generalized radar range equation gives the received power as a function of time,

(2.17)
 
where ΔR is the range interval of the resolution cell centered at range R0 and Ω
represents integration over the angular coordinates.

By integrating power, it is being assumed that the backscatter from each
volume element adds noncoherently rather than coherently. This means that the
power of the composite electromagnetic wave formed from the backscatter of
two or more scattering centers is the sum of the individual powers, as opposed
to the voltage (electric field amplitude) being the sum of the individual
amplitudes, in which case the power would be the square of the voltage sum.
Noncoherent addition occurs when the phases of the individual contributors are
random and uncorrelated with one another, as opposed to the coherent case
when they are in phase. This issue will be revisited in Sec. 2.7.

The general result of Eq. (2.17) is more useful if evaluated for the special
cases of point, volume, and area scatterers. Beginning with the point scatterer,
the differential RCS in the resolution cell volume is represented by a Dirac
impulse function of weight σ :

(2.18)
 
Using Eq. (2.18) in Eq. (2.17) gives the range equation for a point target at



(R0,θ0,ϕ0),

(2.19)
 
If the point scatterer is located on the antenna boresight θ0 = ϕ0 = 0, P(θ0, ϕ0) =
G and Eq. (2.19) is identical to Eq. (2.11).

Next consider the volume scattering case where the RCS seen by the radar
is presumed to be due to a distribution of scatterers evenly distributed
throughout the volume, rather than associated with a single point. In this case, σ
is expressed in terms of RCS per cubic meter, or volume reflectivity, denoted
as η. The units of reflectivity are m2/m3 = m–1. The RCS of a differential volume
element dV is then

(2.20)
 
where dΩ is a differential solid angle element. The range equation becomes

(2.21)
 
If it is assumed that atmospheric loss is slowly varying over the extent of a
range resolution cell, then La(R) can be replaced by La(R0), where R0 is the
center of the range resolution cell, and removed from the integral. The integral
over range that remains is

(2.22)
 
provided the range resolution is small compared to the absolute range, which is
usually the case. Using Eq. (2.22) in Eq. (2.21) gives

(2.23)
 

Integration over the angular coordinates requires knowledge of the antenna
pattern. One common approximate model of the mainlobe of many antennas is a
Gaussian function (Sauvageot, 1992). It can be shown that a good approximation



to the integral in Eq. (2.23) over the cross-range variables for the Gaussian case
is (Probert-Jones, 1962)

(2.24)
 
where θ3 and ϕ3 are the 3-dB beamwidths in azimuth and elevation. For first-
order calculations, the much simpler assumption is frequently made that the
antenna power pattern P(θ, ϕ) is a constant equal to the gain G over the 3-dB
beamwidths and zero elsewhere, so that the integral reduces to G2θ3ϕ3, a value
2.5 dB higher than that of Eq. (2.24). Using this approximation, Eq. (2.23)
reduces to the range equation for volume scatterers:

(2.25)
 
Unlike the point scatterer case described by Eq. (2.11) or (2.19), the received
power in the volume scattering case of Eq. (2.25) decreases only as R2 instead
of R4. The reason is that the size of the radar resolution cell, which determines
the extent of the scatterers contributing to the received power at any one instant,
increases as R2 due to the spreading of the antenna beam in angle at longer
ranges.

Finally, the area scattering case will be considered. This model is used
for the RCS of electromagnetic scattering from the ground, forest, ocean, and
other surfaces. The area scattering case must further be divided into two
subcases depending on whether the range extent of the scatterers contributing to
the echo is limited by the antenna elevation beamwidth or by the range
resolution.

First assume that the scattering surface is represented by a flat plane1 and
consider the extent of the mainlobe on the surface. The cross-range extent is
simply R0θ3, where R0 is the nominal range to the center of the illuminated area.
To estimate the down-range extent, consider Fig. 2.1 that shows the boresight
vector intersecting the scattering plane at a grazing angle of δ radians. The
extent of the beam “footprint” in the down-range dimension is therefore R0ϕ3/sin
δ meters. Now suppose a pulse of range resolution ΔR is transmitted as shown
in Fig. 2.2. Regardless of the antenna footprint, the range extent of scatterers
within the resolution cell, and therefore backscattering energy at any instant, is
ΔR/cosδ meters.



 FIGURE 2.1   Projection of elevation beamwidth onto a horizontal plane at a
slant range R0 and grazing angle δ.
 

 

 
FIGURE 2.2   Projection of range resolution onto a horizontal plane at a slant
range R0 and grazing angle δ.
 

Scatterers will not contribute significantly to the received signal unless



they are both illuminated (so that there is some backscatter) and within the
mainlobe of the antenna (so that their backscatter is not significantly attenuated).
Consequently, the effective downrange extent of the resolution cell is the lesser
of the range resolution and the elevation beamwidth as each is projected onto
the scattering surface. Depending on the relative values of range, range
resolution, and grazing angle, either could be the limiting factor. If the range
resolution limits the effective extent, the resolution cell is said to be pulse
limited; if the mainlobe extent is the limiting factor, it is said to be beam
limited. These two cases are shown in Fig. 2.3. The boundary between the two
cases is obtained by equating the pulse length and elevation beam extents as
projected onto the ground plane to see which is shorter:



 FIGURE 2.3   Relative geometry of antenna footprint and pulse envelope: (a)
beam-limited case and (b) pulse-limited case.
 

(2.26)
 

In area scattering the differential RCS is proportional to the differential
area of the scattering surface and can be represented as

(2.27)
 
where σ0 (called “sigma nought”) is the area reflectivity  in m2/m2 and is
therefore dimensionless. The area reflectivity of many surface types is a
significant function of the grazing angle δ. The generalized range equation [Eq.
(2.17)] becomes

(2.28)
 
where ΔA is the illuminated area at range R0.

If the illuminated area is beam limited, applying the geometry of Fig. 2.3a
to the differential scattering element at range R0 shows that the area contributing
to the backscatter at one instant is R2ϕ3θ3/sinδ. Thus, a differential area
contributing to the received power is of the form

(2.29)
 
Applying this to Eq. (2.28) and again using the constant-gain approximation to
the antenna 3-dB beamwidth gives the beam-limited range equation for area
scatterers:

(2.30)
 



If the illuminated area is pulse limited, the geometry of Fig. 2.3b shows
that the area contributing to the backscatter at one instant is Rθ3ΔR/cosδ. The
differential contribution is thus

(2.31)
 
The first-order approximation of constant gain over the mainlobe can be used
again, though the integral over ϕ is now limited to the range that covers the
extent of the pulse on the ground. Equation (2.28) becomes

(2.32)
 
Note that power varies as R–2 in the beam-limited case because, as with the
volume scattering, the resolution cell size grows in both cross-range and down-
range extent with increasing range. In the pulse-limited case, power varies as R–

3 because the resolution cell extent increases in only the cross-range dimension
with increasing range.

If the range of interest varies by a large amount, there will be significant
variation in the grazing angle δ and therefore in both the antenna beam and pulse
footprint extents. For instance, for a radar at a constant altitude h and a slant
range R to the ground, sinδ = h/R. As R increases, the beam-limited antenna
footprint area will then increase as R3 instead of R2 so that the clutter power
would be expected to fall only as R–1. However, σ 0 may also vary significantly
with grazing angle (see Section 2.3.1). Additional complications occur when R
increases so much that a radar that was beam limited at a relatively short range
and steep grazing angle becomes pulse limited at a longer range and shallower
grazing angle, or the grazing angle falls below the “critical angle”.
Consequently, the received clutter power may fall off at various rates from R–1

to R–3 or even more rapidly at very shallow angles (Long, 2001; Currie, 2010).

2.2.3   Radar Cross Section
Section 2.2.1 introduced the radar cross section to heuristically account for the
amount of power reradiated by the target back toward the radar transmitter. To
restate the concept, assume that the incident power density at the target is Qt and
the backscattered power density at the transmitter is Qb. If that backscattered
power density resulted from isotropic radiation from the target, it would have to
satisfy



(2.33)
 
for some total backscattered power Pb. RCS is the fictional area over which the
transmitted power density Qt must be intercepted to collect a total power Pb that
would account for the received power desnity. In other words, σ must satisfy

(2.34)
 
Combining Eqs. (2.33) and (2.34) gives

(2.35)
 
This definition is usually written in terms of electric field amplitude. Also, in
order to make the definition dependent only on the target characteristics, range
is eliminated by taking the limit as R tends to infinity. Thus, the formal definition
of radar cross section becomes (Knott et al., 1985)

(2.36)
 
where Eb and Et are the backscattered and transmitted electric field complex
amplitudes, respectively.

The RCS just defined is a single real scalar number. Implicit in the
definition is the use of a single polarization of the transmitted wave and a single
receiver polarization, usually the same as the transmitted polarization.
However, the polarization state of a transverse electromagnetic plane wave is a
two-dimensional vector, and therefore two orthogonal polarization basis
vectors are required to fully describe the wave. The most common basis choices
are linear (horizontal and vertical polarizations) and circular (left and right
rotating polarizations). Furthermore, a general target will modify the
polarization of an incident wave, so that the energy backscattered from, say, the
vertical component of the incident wave may have both vertical and horizontal
components. To account fully for polarization effects, RCS must be generalized
to the polarization scattering matrix (PSM) S, which relates the complex
amplitudes of the incident and backscattered fields. For a radar using a linear
polarization basis this relation is (Knott et al., 1985; Mott, 1986; Holm, 1987)



(2.37)
 
Instead of a single real number, the target backscattering characteristics are now
described by four complex numbers. If the radar transmitted and received, say,
only the vertical component, then the RCS σ would be related to S by

(2.38)
 
Radars can be designed to measure the full complex PSM. Other designs
measure the magnitudes but not the phases of the elements of the PSM, or the
magnitudes of two of the PSM elements. These polarimetric measurements can
be used for a variety of target analysis purposes. However, a discussion of
polarimetric techniques is beyond the scope of this book. Henceforth, it will be
assumed that only a single fixed polarization is transmitted and a single fixed
polarization received, and consequently that RCS is described by a scalar,
rather than matrix, function. The reader is referred to the works by Holm (1987)
and Mott (1986) for discussions of polarimetric radars and polarimetric signal
processing.

Typical values of RCS for targets of interest range from 0.01 m2 (–20 dB
with respect to 1 m2, or –20 dBsm) to hundreds of square meters (≥ +20 dBsm).
Both larger and smaller values are also observed. Table 2.1 lists representative
RCS values for various types of targets.



  Source: After Skolnik (2001).
 TABLE 2.1   Typical RCS Values at Microwave Frequencies
 

2.2.4   Radar Cross Section for Meteorological Targets
The field of radar meteorology expresses the reflectivity of weather targets such
as rain or snow in terms of a normalized factor called the reflectivity (here
called the volume reflectivity) and usually represented with the symbol Z
(Sauvageot, 1992; Doviak and Zrnic, 1993). Weather targets are an example of
volume clutter. The actual observed echo is the composite backscatter of many
raindrops, suspended water particles, hailstones, or snowflakes in the radar’s
resolution cell.

Suppose the RCS of the ith individual scatterer is σi and assume
noncoherent addition. Then the total RCS of a volume V containing N such
scatterers is Σσi and the volume reflectivity is

(2.39)
 

Water droplets are often modeled as small conducting spheres. When the



ratio of the sphere radius a to the radar wavelength λ is small, specifically
2πa/λ  1, the radar cross section associated with the ith scatterer can be
expressed as

(2.40)
 
where Di is the drop diameter, usually given in millimeters, and

(2.41)
 
with m the complex index of refraction. The index of refraction is a function of
both the temperature and wavelength. However, for wavelengths between 3 and
10 cm [radar frequencies between X band (10 GHz) and C band (3 GHz)] and
temperatures between 0 and 20°C, the value of |K|2 is approximately a relatively
constant 0.93 for scatterers composed of water and 0.197 for ice. Substituting
Eq. (2.40) in Eq. (2.39) gives

(2.42)
 
Now define the quantity

(2.43)
 
Z is called the reflectivity factor and is usually expressed in units of mm6/m3.
Due to the large range of values observed for Z, it is commonly expressed on a
decibel scale and denoted as dBZ. Using this definition in Eq. (2.42) gives the
following expression for the observed RCS

(2.44)
 
Thus, given a measured echo power, the radar range equation can be used to
estimate η, and then Eq. (2.44) can be used to convert η to Z.

Because it is related only to the volume density and size of scatterers,
meteorologists prefer to express radar echo strength in terms of the reflectivity Z



rather than the RCS η. The value of Z can then be related to the amount of water
in the air or the precipitation rate. A number of models are used to relate the
observed values of Z to rain rates. These models depend on the type of
precipitation, e.g., snow versus thunderstorm rain versus orographic2 rain. A
common model is that of Table 2.2, which shows the six-level equivalence
between observed Z values (in dBZ) and rainfall rates used in the U.S.
NEXRAD national weather radar system. Very similar scales are used in the
commercial “Doppler weather radar” systems familiar to every watcher of
television weather forecasts.

 TABLE 2.2   Correspondence between dBZ Reflectivity and Rain Rate
 

It is important to note that the dBZ values in Table 2.2 are 10 times the
base 10 logarithm of Z in mm6/m3. When Z is given in m6/m3 = m3, it must be
multiplied by 1018 to convert it to units of mm6/m3 before converting to a decibel
scale and using Table 2.2.

2.2.5   Statistical Description of Radar Cross Section
The radar cross section of real targets cannot be effectively modeled as a
simple constant. In general, RCS is a complex function of aspect angle,
frequency, and polarization, even for relatively simple scatterers. For example,
the conducting trihedral corner reflector of Fig. 2.4 is often used as a calibration
target in field measurements. Its RCS when viewed along its axis of symmetry
(looking “into the corner”) can be determined theoretically; it is (Knott et al.,
1985)



 FIGURE 2.4   Square trihedral corner reflector.
 

(2.45)
 
Thus the RCS increases with increasing frequency. On the other hand, at least
one frequency-and aspect-independent scatterer exists. The RCS of a conducting
sphere of radius a is a constant πa2, provided a  λ. It is independent of aspect
angle because of the spherical symmetry.

A simple example of frequency and aspect dependence is the two-scatterer
“dumbbell” target of Fig. 2.5. If the nominal range R is much greater than the
separation D, the range to the two scatterers is approximately

 FIGURE 2.5   Geometry for determining relative RCS of a “dumbbell” target.
 

(2.46)
 
If the signal a · exp(j2πFt) is transmitted, the echo from each scatterer will be
proportional to a · exp[j2πF(t – 2R1,2 (θ))/c]. The voltage  of the composite



echo is therefore proportional to RCS is proportional to the power of the
composite echo. Taking the squared magnitude of Eq. (2.47) and simplifying
leads to the result

(2.47)
 

(2.48)
 

Equation (2.48) shows that the RCS is a periodic function of both radar
frequency and aspect angle. The larger the scatterer separation in terms of
wavelengths, the more rapidly the RCS varies with angle or frequency. An exact
calculation of the variation in RCS of the dumbbell target is plotted in Fig. 2.6
for the case D = 10λ and R = 10,000D. The plot has been normalized so that the
maximum value corresponds to 0 dB. Notice the multilobed structure as the
varying path lengths traversed by the echoes from the two scatterers cause their
echoes to shift between constructive and destructive interference. Also note that
the maxima at aspect angles of 90° and 270° (the two “end fire” cases) are the
broadest, while the maxima at the two “broadside” cases of 0° and 180° are the
narrowest. Figure 2.7 plots the same data in a more traditional polar format.



 FIGURE 2.6   Relative radar cross section of the “dumbbell” target of Fig. 2.5
when D = 10λ and R = 10,000D.
 

 



 
FIGURE 2.7   Polar plot of the data of Fig. 2.6.
 

The relative RCS of a target with multiple scatterers can be computed as a
function of θ and λ using a generalization of Eq. (2.47). Suppose there are N
scatterers, each with its own RCS σi, located at ranges Ri(θ) from the radar.
Note that the ranges Ri vary with aspect angle θ. The complex voltage of the
echo will be, to within a proportionality constant

(2.49)
 

Each term in Eq. (2.49) represents the echo from a single scatterer. This
equation highlights an extremely important characteristic of these echoes. In
addition to being scaled by the scatterer reflectivity, each term is also phase-



shifted relative to the carrier by the amount –4πR/λ radians. As will be seen,
this range-dependent phase shift provides the basis for most fundamental
coherent radar signal processing operations such as Doppler processing,
imaging, and adaptive beamforming. The phase shift is a very sensitive, but also
very ambiguous, indicator of range changes since every λ/2 change in range
produces a 2π change in phase.

The RCS σ is proportional to . Define

(2.50)
 
and

(2.51)
 

RCS variations like those of Fig. 2.6 become very complicated for
complex targets having many scatterers of varying individual RCS. Figure 2.8
shows a “target” consisting of 50 point scatterers randomly distributed within a
rectangle 5 m wide and 10 m long. The RCS of each individual point scatterer is
a constant, σi = 1.0. Figure 2.9 shows the relative RCS, computed at 0.2°
increments using Eq. (2.51), which results when this target is viewed 10 km
from its center at a frequency of 10 GHz. The dynamic range is similar to that of
the simple dumbbell target, but the lobing structure is much more complicated.3

 FIGURE 2.8   Random distribution of 50 scatterers used to obtain Fig. 2.9. See
text for additional details.
 



 

 
FIGURE 2.9   Relative RCS of the complex target of Fig. 2.8 at a range of 10 km
and radar frequency of 10 GHz.
 

The complicated variation of RCS with radar frequency and target aspect
angle observed for even moderately complex targets leads to the use of a
statistical description for radar cross section (Levanon, 1988; Nathanson, 1991;
Skolnik, 2001). This means that the RCS σ of the scatterers within a single
resolution cell is considered to be a random variable with a specified
probability density function (PDF). The mean or median RCS is typically used
for radar range equation calculations, but the full PDF is needed for detection
probability calculations, as will be seen in Chap. 6.

One of a variety of PDFs is used to describe the statistical behavior of the
RCS for different targets. Consider first a target consisting of a large number of
individual scatterers (similar to that of Fig. 2.8), each with its own individual
but fixed RCS and randomly distributed in space. Because of its high sensitivity
to small range changes, the phase of the echoes from the various scatterers can
be assumed to be a random variable distributed uniformly on (0, 2π]. Under
these circumstances, the central limit theorem guarantees that the real and
imaginary parts of the composite echo can each be assumed to be independent,
zero mean Gaussian random variables with the same variance, say α2 (Papoulis
and Pillai, 2001; Beckmann and Spizzichino, 1963). In this case, the squared-



magnitude σ has an exponential PDF:

(2.52)
 
where  is the mean value of the RCS σ. The corresponding amplitude ζ
has a Rayleigh PDF:

(2.53)
 
The phase of the complex echo will be uniformly distributed over (0,2π].

While the exponential model for RCS is only strictly accurate in the limit
of a very large number of scatterers, in practice it can be a good model for a
target having as few as 10 or 20 significant scatterers. Figure 2.10 compares a
histogram of the RCS values from Fig. 2.9 to an exponential curve of the form of
Eq. (2.52) having the same mean . Even though only 50 scatterers are used, the
fit of the total RCS histogram to the Rayleigh/exponential distribution is quite
good. This same effect is observed when the randomly distributed scatterers
also have random individual cross sections drawn from the same Gaussian
distribution, a somewhat more general and plausible situation than the fixed-
RCS case.



 FIGURE 2.10   Histogram of RCS data of Fig. 2.9 and exponential PDF with the
same mean.
 

Instead of an ensemble of equal-strength scatterers, some radar targets are
better modeled as consisting of one or a few dominant scatterers contributing
most of the RCS, modified by the contributions of a number of smaller
scatterers. Many PDFs have been advocated and used to model these targets.
Table 2.3 summarizes several of the more common models for the variability of
RCS with aspect angle and radar frequency for targets with and without
dominant scatterers.4 The mean value  of RCS is given for each case in which
the PDF is not written explicitly in terms of . The variance var(σ) is also given
for each case. Other common PDFs not included in Table 2.3 are the non-central
chi-square and K distributions. Additional information on these PDFs and their
relationships, including more conventional forms and in some cases the
characteristic functions, is given in App. A. Additional discussion of some of
these PDFs in the context of clutter modeling is also given in Sec. 2.3.4.



 TABLE 2.3   Common Statistical Models for Radar Cross Section
 

The shape of the PDF of RCS directly affects detection performance, as
will be seen in Chap. 6. Figure 2.11a compares the exponential, fourth-degree
chi-square, second-degree noncentral chi-square, Weibull, and log-normal
density functions when all have an RCS variance of 0.5. The exponential
distribution then necessarily has a mean of 0.5. The fourth-degree chi-square
necessarily has a mean of 1.0, and the parameters of the remaining density
functions have been chosen to give them a mean of 1.0 as well. Figure 2.11b
repeats the same data on a semilogarithmic scale so that the behavior of the PDF
“tails” is more evident. Note that the Weibull and second-degree non-central
chi-square distributions are very similar for this choice of parameters. The chi-
square is also similar, but has a somewhat less extensive tail to the distribution.



The log-normal has both the narrowest peak and the longest tail of any of the
distributions shown for this choice of parameters. Unlike all of the others, the
exponential does not have a distinct peak near the mean RCS. Each of the others
does have a distinct peak, making them suitable for distributions with one or a
few dominant scatterers.

 FIGURE 2.11   Comparison of five models for the probability density function of
radar cross section: (a) linear scale, (b) log scale. See text for additional
details.
 

One fundamental difference among the various RCS models of Table 2.3 is



whether the probability density function has one or two free parameters. The
nonfluctuating, exponential, and all chi-square (once the order is stated) are all
one-parameter distributions. The one parameter in the form given earlier is the
mean RCS, . The non-central chi-square, Weibull, and log-normal are two-
parameter distributions, as is the chi-square with variable degree. The
parameters are  and a2 for the non-central chi-square,  and m for the variable-
order chi-square, B and C for the Weibull, and σm and s for the log-normal in the
forms given. For a one-parameter distribution, estimating the mean is sufficient
to characterize the complete PDF. For the two-parameter case estimates of two
parameters, usually the variance and either the mean or median, must be
computed to characterize the PDF. This distinction is important in the design of
automatic detection algorithms in Chap. 6.

Most radar analysis and measurement programs emphasize RCS
measurements, which are proportional to received power. Sometimes ζ, the
corresponding voltage, is of interest, particularly for use in simulations where
Eq. (2.50) is used explicitly to model the composite echo from a multiple
scatterer target. The probability density function for the voltage is then required
in order to properly model the probabilistic variations of the complex sum. The
PDF of |ζ| is easily derived from the PDF of σ using basic results of random
variables (Papoulis and Pillai, 2001). Because RCS is nonnegative, the
transformation5

(2.54)
 
from RCS to voltage has only one real solution for σ, namely σ = ζ,2. It then
follows that the PDF of ζ is given by

(2.55)
 

Equation (2.55) can be used to write the voltage PDFs by inspection from
Table 2.3. The results, given in Table 2.4, are expressed in terms of the
parameters of the corresponding RCS distribution from Table 2.3. Additional
information is given in App. A.



 TABLE 2.4   Voltage Distributions Corresponding to Common Statistical
Models of Radar Cross Section
 

As has been seen, the RCS of a complex target varies with both transmitted
frequency and aspect angle. Another important characteristic of a target’s
signature is the decorrelation interval in time, frequency, and angle. This is the
change in time, frequency, or angle required to cause the echo amplitude to



decorrelate to a specified degree. If a rigid target such as a building is
illuminated with a series of identical radar pulses and there is no motion
between the radar and target, one expects the same received complex voltage y
from each pulse (ignoring receiver noise). If motion between the two is
allowed, however, the relative path length between the radar and the various
scatterers comprising the target will change, causing the composite echo
amplitude to fluctuate as in Fig. 2.9. Thus, for rigid targets, decorrelation of the
RCS is induced by changes in range and aspect angle. On the other hand, if
natural clutter such as the ocean surface or a stand of trees is illuminated, the
signature will decorrelate even if the radar and target do not move relative to
each other. In this case the decorrelation is caused by the “internal motion” of
the clutter, such as the wave motion on the sea surface or the blowing leaves and
limbs of the trees. The rate of decorrelation is influenced by factors external to
the radar such as wind speed. Range or aspect changes also induce
decorrelation of clutter signatures.

Although the behavior of real targets can be quite complex, a useful
estimate of the change in frequency or angle required to decorrelate a target or
clutter patch can be obtained by the following simple argument. Consider a
target consisting of a uniform line array of point scatterers tilted at an angle θ
with respect to the antenna boresight and separated by Δx from one another, as
shown in Fig. 2.12. Assume an odd number 2M + 1 of scatterers indexed from –
M to +M as shown. The total target extent is then L = (2M + 1)Δx. If the
nominal distance to the radar R0 is much larger than the target extent, R0  L,
then the incremental distance an EM plane wave must travel from one scatterer
to the next is Δx · sinθ. If the target is illuminated with the waveform Aexp(jΩt),
the received signal will be



 FIGURE 2.12   Geometry for calculation of RCS decorrelation interval in
frequency and aspect angle.
 

(2.56)
 
To simplify the notation, define

(2.57)
 
Kθ is a spatial frequency in rads/m (see App. B). Then  can be considered as
a function  of both t and Kθ. The correlation in the variable Kθ, which
includes both aspect angle and radar frequency, is of interest. Note that  is
periodic in Kθ with period 2π/α. The deterministic autocorrelation of  as a
function of the lag ΔKθ is therefore



(2.58)
 
The complex exponential terms outside the summations cancel. Interchanging
integration and summation and collecting terms then gives

(2.59)
 
A change of variables K′θ = αKθ makes it clear that the integral has the form of
the inverse discrete-time Fourier transform of a constant spectrum S(Kθ) = 2π/α.
Therefore, the integral is just the discrete impulse function (2θ/α)δ[n – l]. Using
this fact reduces Eq. (2.59) to a single summation over l that can be evaluated to
give

(2.60)
 
The decorrelation interval can now be determined by evaluating Eq. (2.60) to
find the value of ΔKθ which reduces sy to a given level. This value of ΔKθ can
then be converted into equivalent changes in frequency or aspect angle.

One criterion is to choose the value of ΔKθ corresponding to the first zero
of the correlation function, which occurs when the argument of the numerator
equals π. The resulting value is the Rayleigh width of the autocorrelation
function. Using Eq. (2.61) and recalling that L = (2M + 1) Δx gives

(2.61)
 
Recall that Kθ = (2π/c)F sinθ. The total differential of z is then dKθ = (2π/c) ·
[sinθ · dF + Fcosθ · dθ]. To determine the decorrelation interval in angle for a
fixed radar frequency, set dF = 0 to give dKθ = (2π/c) · Fcosθ · dθ, so that ΔKθ
≈ (2π/c) · Fcosθ · Δθ. Similarly, the frequency step required to decorrelate the
target is obtained by fixing the aspect angle θ so that dθ = 0, leading to ΔKθ ≈
(2π/c) · sinθ · ΔF. Combining these relations with Eq. (2.61) then gives the



desired result for the change in angle or frequency required to decorrelate the
echo amplitude:

(2.62)
 
Note that L cosθ is the projection of the target extent orthogonal to the radar
boresight, while Lsinθ is the projection along the radar boresight. Thus, the
decorrelation interval in aspect angle is driven by the width of the target as
viewed from the radar, while the interval in frequency is driven by the depth. A
more general pair of expressions that can be applied to more arbitrary many-
scatterer targets is then

(2.63)
 
where Lw and Ld are the target width and depth, respectively, as viewed from the
radar.

As an example, consider a target the size of an automobile, about 5 m long.
At L band (1 GHz), the target signature can be expected to decorrelate in (3 ×
108)/(2 × 5 × 109) = 30 mrad of aspect angle rotation relative to a broadside
view (so the width is 5 m), about 1.7°, while at W band (95 GHz), this is
reduced to only 0.018°. The frequency step required for decorrelation from a
head-on aspect (depth of 5 m) is 30 MHz. This result does not depend on the
nominal transmitted frequency.

As another example, Fig. 2.13a shows the autocorrelation function in
angle for many-scatterer targets similar to that of Fig. 2.8, using only the data
for aspect angles over a range ±3°. Each of the two autocorrelation functions
shown is the average of the autocorrelations of 20 different random targets,6

each having 20 randomly placed scatterers in a 5 m by 10 m box. The black
curve is the autocorrelation of the data around a nominal boresight orthogonal to
the 5 m side of the target, while the gray curve is the autocorrelation of the data
viewed from the 10-m side. These look angles correspond to viewing the target
nominally from the right and from the top in Fig. 2.8. At F = 10 GHz, the
expected decorrelation interval in angle when viewed from the right is 0.34°;
while when viewed from the top it is 0.17°. These expected decorrelation
intervals are marked by the vertical dashed lines in Fig. 2.13a. In both cases, the
first minimum of the correlation function occurs the predicted amount of change
in the aspect angle. Figure 2.13b shows the average autocorrelation function in
frequency over 30 similar random targets. The autocorrelation in this simulation
does not have a distinct minimum, but the predicted decorrelation intervals
closely approximate the first zero crossing.



 FIGURE 2.13   Average autocorrelation function for many-scatterer targets: (a)
angle autocorrelation functions, (b) frequency autocorrelation functions. See text
for details.
 

Figure 2.9 demonstrated that viewing a complex target from a sufficiently



different aspect angle will decorrelate the RCS, i.e., result in a significantly
different measured value. Figure 2.14 illustrates the ability of frequency agility
to force RCS variations. A 20 scatterer, 5 m by 10 m random target was
observed from a fixed aspect angle of about 54°, making its effective depth
approximately 10sin(54°) = 8.1 m. If the same RF frequency was used for each
pulse, the RCS and thus received power would be exactly the same on each
pulse. However, in this case the RF frequency was increased by 18.5 MHz
[calculated from Eq. (2.63)] from one pulse to the next, starting at 10.0 GHz.
The resulting relative RCS measurements vary by 38 dB, a factor of about 6300.

 FIGURE 2.14   Variation in RCS due to frequency agility for a constant viewing
angle. See text for details.
 

It will be seen in Chap. 6 that in certain cases detection performance is
improved when successive target measurements are uncorrelated. For this
reason, some radars use a technique called frequency agility to force
decorrelation of successive measurements (Ray, 1966). In this process, the
radar frequency is increased by ΔF Hz or more between successive pulses,
where ΔF is given by Eq. (2.63), ensuring that the target echo decorrelates from
one pulse to the next. Once the desired number of uncorrelated measurements is
obtained, the cycle of increasing frequencies is repeated for the next set of
measurements.

Equation (2.63) is based on a highly simplified target model and an
assumption about what constitutes the correlation interval. A different
definition, for example defining the interval by the point at which the correlation
function first drops to 1/2 or 1/e of its peak, would result in a smaller estimate
of the required change in angle or frequency to decorrelate the target. Also,



many radars operate on the magnitude-squared of the echo amplitude, rather than
the magnitude as has been assumed in this derivation. A square law detector
produces a correlation function proportional to the square of Eq. (2.60)
(Birkmeier and Wallace, 1963). The first zero therefore occurs at the same
value of ΔKθ, and the previous conclusions still apply. However, if a different
definition of the correlation interval is used (such as the 50 percent
decorrelation point), the required change in ΔKθ is less for the square law than
for the linear detector.

2.2.6   Target Fluctuation Models
It is common in radar detection algorithms to make a detection decision based
not on one, but on a set of N noncoherently combined measurements from a
given resolution cell. One way such a set of measurements can arise, and
possibly the original motivation for this model, is based on the operation of a
ground-based surveillance radar. Consider a radar with an antenna that rotates
at a constant angular velocity Ω radians per second with an azimuth beamwidth
of θ radians and a pulse repetition frequency of PRF pulses per second (hertz).
Suppose that a target is present at a particular location. The geometry is shown
in Fig. 2.15a. Assume that significant returns are received only when the target
is in the antenna mainlobe. Every complete 360° scan of the antenna results in a
new set of N = (θ/Ω)PRF mainbeam pulses containing an echo of the target as
the beam scans past. Consequently, it would seem to make sense to integrate the
measurements from the same range bin over N successive pulses in an attempt to
improve signal-to-noise ratio before performing a detection test. Early radars
could only do this noncoherently.

 FIGURE 2.15   Sample scenarios for collection of multiple noncoherently related
measurements: (a) rotating surveillance antenna with noncoherent radar, (b)
multiple CPIs with a coherent radar.



 

This is not the only way a set of related measurements can arise. Many
modern systems are designed to transmit a rapid burst of M pulses at a constant
PRF, often with the antenna staring in a fixed or nearly fixed direction, forming
a coherent processing interval (CPI) of data. As will be seen in Chap. 4, the M-
pulse burst is a common waveform well suited to Doppler measurements and
interference suppression. The radar may then repeat the measurement, collecting
a series of N CPIs in the same look direction. Successive CPIs may share the
same radar parameters, or the radar may change the PRF, the waveform, or the
RF (frequency agility). The data from the same range bin within a single CPI are
usually combined coherently, for instance to form a Doppler spectrum for that
range bin. However, combining data across CPIs must generally be done
noncoherently. An example would be noncoherent integration of N
measurements of the same range-Doppler resolution cell in the N CPIs as shown
in Fig. 2.15b, prior to testing that cell for the presence of a target.

If the target, the radar, or both are moving during the time a set of N
measurements is collected, a natural question is whether the target RCS during
that time should be considered constant or varying. That is, assuming frequency
agility is not used, does the radar-target aspect angle vary so little that the RCS
should be modeled as the same random variable during the entire set of N pulses
or CPIs? Or is the aspect changing so rapidly that the RCS decorrelates from
one pulse or CPI to the next, and so should be modeled as independent random
variables from the appropriate PDF? The answer has a significant impact on
both the procedure and the results for computing detection probabilities, as will
be seen in Chap. 6.

These questions require consideration of the dynamics of the radar-aircraft
encounter in light of the decorrelation interval in angle given in Eq. (2.63). As
an example, consider the crossing encounter of Fig. 2.16a. Aircraft #1 views
aircraft #2 at broadside from a range of 5 km with an X band (10 GHz) radar.
Assume aircraft #2 is traveling at 100 m/s and has a length (width as viewed
from the radar) of 10 m. Assume that aircraft #1 transmits a burst of M = 10
pulses at a 1-kHz PRF. In the resulting 10 ms CPI, aircraft #2 will travel 1 m,
resulting in an angular change with respect to aircraft #1 of approximately
1/5000 = 0.2 mrad. From Eq. (2.63), the decorrelation interval in angle is
expected to be (3 × 108)/(2·10·10 × 109) = 1.5 mrad. Because the actual angle
change within a CPI is less than the angular decorrelation interval, one would
expect all the pulses within a CPI to experience essentially the same RCS. Now
suppose that the radar transmits a series of pulse bursts, each one starting 100
ms after the previous burst. The angular change between aircraft #1 and #2 from
one CPI to the next is then 2 mrad, which is greater than the 1.5 mrad
decorrelation interval. Consequently, it is expected that the aircraft RCS during
a given CPI will be uncorrelated with that during other CPIs.



 FIGURE 2.16   Crossing target scenario: (a) encounter geometry, (b) target RCS
for five 10-pulse CPIs. See text for motion and radar details.
 

Figure 2.16b illustrates these effects using another 10 × 5 m random
complex target model with the radar and motion parameters just described. The
RCS observed for the target on each pulse is plotted for five CPIs. Notice that
the RCS is nearly constant within each CPI. The greatest intra-CPI variation is
only about 0.4 dB. Significantly greater variation is seen from one CPI to the
next, with the total range in this example being approximately 9 dB.
Consequently, the full set of five CPIs of data could reasonably be modeled by
drawing one random value of RCS from an exponential PDF to represent each
CPI. The same RCS value is used for all pulses within a CPI. If pulse-to-pulse
frequency agility was used with a frequency step exceeding the 30 MHz dictated
b y Eq. (2.63), the RCS of each individual pulse would be expected to be
uncorrelated with all of the other pulses, though still drawn from the exponential
PDF.

Traditionally in radar, when a set of N measurements that are to be
noncoherently combined are completely correlated with one another but are
uncorrelated with a subsequent, new set of N measurements, they are said to
exhibit scan-to-scan decorrelation. When each individual measurement is
uncorrelated with all of the others, they are said to exhibit pulse-to-pulse
decorrelation. This terminology probably originates from scenarios like that of
Fig. 2.15a. The N measurements to be combined are the N pulses obtained from
one scan of the radar past the target. If the target moves slowly enough that the N
pulses from one scan reflect the same RCS value, but fast enough that by the
time the radar scans through a full circle and returns to the target again the next
group of N pulses reflects a different RCS value, then the term “scan-to-scan



decorrelation” would be very descriptive. If frequency agility were used or
radar-target motion and collection time were such that each pulse exhibits a
different RCS value, the term “pulse-to-pulse decorrelation” would be apt.

The “scan-to-scan” and “pulse-to-pulse” terminology has a long legacy in
performance analysis of radars using noncoherent integration. It is used in much
of the classical literature, but in modern coherent radars it often does not relate
well to the actual data collection and processing methods used. In the CPI-based
data collection protocol of Fig. 2.15b and the related numerical example of Fig.
2.16, the data are correlated from one pulse to the next but are uncorrelated from
one CPI to the next. However, the intra-CPI data will likely be combined
coherently. The noncoherent combination will occur from one CPI to the next,
for instance by noncoherently integrating the same range-Doppler bin from each
CPI. Because the measurements that are actually integrated noncoherently will
be uncorrelated in this example, the appropriate detection analysis results from
the literature would be those for “pulse-to-pulse” decorrelation even though the
actual data are highly correlated from one pulse to the next!

Another example of this confusion can arise when a series of CPIs
represents a single short-term “look” at the target region, often called a dwell,
rather than the result of different passes over the same region from a regular
scan pattern. In the former case the elapsed time may still be short and the target
may not decorrelate between CPIs, while in the latter the timeline would likely
be longer and the target would be more likely to decorrelate. If noncoherent
integration across CPIs is performed, the data might be best modeled as “scan-
toscan” decorrelation in the former case because the data values from integrated
are expected to be similar, while in the second case they would be different and
the appropriate mathematical results would be those for noncoherently
integrating dissimilar values, namely the classical “pulse-to-pulse” case.

These terminology concerns can become an issue in detection performance
analysis. Many published results use the “scan-to-scan” and “pulse-to-pulse”
decorrelation terminology. In interpreting radar literature for modern radars, the
reader is cautioned to consider carefully the correlation properties of the
measurements that will be noncoherently combined for a single detection
decision. The critical point is whether those measurements are expected to be
highly correlated, i.e., all approximately the same random variable, or whether
they are expected to be highly decorrelated (different random variables). If the
measurements are highly correlated, published results on “scan-to-scan”
mathematical models are applicable. If they are uncorrelated, “pulse-to-pulse”
models are applicable. Newer literature is less likely to use the “scan-to-scan”
and “pulse-to-pulse” terminology, obviating this problem over time.

A target fluctuation model is a combination of a PDF describing the RCS
variation with angle, RF, or other important parameters and a decorrelation
model for measurements to be combined noncoherently. Any PDF that models
the RCS distribution for the targets and radar of interest could be used.



Examples include any of the PDFs in Table 2.3. For manmade targets, the
decorrelation model is usually taken as one of the extremes of either the fully
correlated or fully decorrelated models. Analysis carried out using these two
models produces bounding results for detection performance. In reality, the
noncoherently combined measurements will often be partially correlated. Partial
correlation models specified with a pulse-to-pulse correlation coefficient or an
autocorrelation function are sometimes given, though this is more common in
clutter modeling.

2.2.7   Swerling Models
An extensive body of radar detection theory has been built up using the four
Swerling models of target RCS fluctuation and noncoherent integration
(Swerling, 1960; Meyer and Mayer, 1973; Nathanson, 1991; Skolnik, 2001).
They are formed from the four combinations of two choices for the PDF and two
for the correlation properties. The two density functions used are the
exponential and the chi-square of degree 4 (see Table 2.3). The exponential
model describes the behavior of a complex target consisting of many scatterers,
none of which is dominant. The fourth-degree chi-square model targets having
many scatterers of similar strength with one dominant scatterer. Although the
Rice distribution is the exact PDF for this case, the chi-square is an
approximation based on matching the first two moments of the two PDFs (Meyer
and Mayer, 1973). These moments match when the RCS of the dominant
scatterer is  times that of the sum of the RCS of the small scatterers,
so the fourth-degree chi-square model fits best for this case. More generally, a
chi-square of degree 2m = 1 + [a2/(1 + 2a)] is a good approximation to a Rice
distribution with a ratio of a2 of the dominant scatterer to the sum of the small
scatterers. However, only the specific case of the fourth-degree chi-square is
considered a Swerling model.

The Swerling models are denoted as “Swerling 1,” “Swerling 2,” and so
forth. Table 2.5 defines the four cases. A nonfluctuating target is sometimes
identified as the “Swerling 0” or “Swerling 5” model.

 TABLE 2.5   Swerling Models
 

Figures 2.17 and 2.18 illustrate the difference in the behavior of two of the



Swerling models. In both cases, the received power from a single point
scatterer having a unit mean Swerling RCS is plotted, and in both it is assumed
that 10 samples are obtained on each of three scans or CPIs of the radar. Figure
2.17 is a sample Swerling 1 (exponential PDF, fully correlated) series. In
contrast, Fig. 2.18 illustrates a Swerling 4 case (fourth-degree chi-square PDF,
fully decorrelated) in which each individual sample is independent of the
others.

 FIGURE 2.17   Three scans or CPIs, each having 10 samples of a unit mean
Swerling 1 power sequence.
 

 



 
FIGURE 2.18   Three scans or CPIs, each having 10 samples of a unit mean
Swerling 4 power sequence.
 

2.2.8   Effect of Target Fluctuations on Doppler Spectrum
A common operation in radar signal processing is computing the discrete-time
Fourier transform (DTFT) of the data in a particular range bin for one CPI. The
DTFT is a coherent combination of measurements, usually over a sufficiently
short CPI that the target echo RCS and thus amplitude do not decorrelate
significantly. As will be seen in Chap. 4, the series of samples within a CPI for
a constant-velocity target will form a discrete-time sinusoid. Thus, the usual
model for the DTFT of a target is an aliased sinc function [also called an asinc,
dsinc (digital sinc), or Dirichlet function] with its mainlobe centered at the
appropriate frequency and with sidelobes that peak 13.2 dB below the mainlobe
peak and decay at frequencies further from the mainlobe.

In cases where there are significant RCS fluctuations within the CPI, the
amplitude and phase of the target data will vary within the CPI, so that the input
to the DTFT is no longer a discrete sinusoid with a constant complex amplitude.
Figure 2.19 illustrates the resulting effect on the DTFT. The gray spectrum is
that of an unwindowed zero-frequency sinusoid, modeling the returns from 20
pulses echoed from a stationary 10 × 5 m simulated many-scatterer target
viewed at a constant aspect angle. The black line is the spectrum of data



observed using the same target and waveform, but with the aspect angle
changing 0.7 mrad per pulse. The total angle change over 20 pulses is then 13.3
mrad, nearly nine times the decorrelation interval of 1.5 mrad. The target echo
amplitude and phase will then both fluctuate significantly, raising the sidelobes
and smearing the target energy over a wider frequency range, effectively
whitening the spectrum significantly.

 FIGURE 2.19   Effect of intra-CPI target fluctuations on Doppler spectrum.
 

2.3   Clutter
In radar the term clutter refers to a component of the received signal due to
echoes from volume or surface scatterers. Such scatterers include the earth’s
surface, both terrain and sea; weather echoes (for example, rain clouds); and
man-made distributed clutter, such as so-called chaff clouds of airborne
scatterers, typically made out of lightweight strips of reflecting material. Clutter
echoes are sometimes interference and sometimes the desired signal. For
instance, synthetic aperture imaging radars are designed to image the earth
surface, thus the terrain clutter is the target in a SAR. For an airborne or space-
borne surveillance radar trying to detect moving vehicles on the ground, clutter
echo from the surrounding terrain is an interference signal.

From a signal processing point of view, the major concern is how to model
clutter echoes. As with man-made targets, clutter is a complex target with many
scatterers per resolution cell so that the echoes are highly sensitive to radar
parameters and encounter geometry. Like complex targets, clutter is therefore
modeled as a random process. In addition to temporal correlation, clutter can



also exhibit spatial correlation: the reflectivity samples from adjacent resolution
cells may be correlated. Two excellent general references on land and sea
clutter phenomenology are Ulaby and Dotson (1989) and Long (2001). A good
brief introduction is Currie (2010).

Clutter echoes differ from target echoes in that they will typically exhibit
different PDFs, temporal and spatial correlation properties, Doppler
characteristics, and power levels. These differences can be exploited to
separate target and clutter signals. Means to do so are the principal concern of
Chaps. 5 and 9. Clutter differs from noise in two major ways: its power
spectrum is not white (i.e., it is correlated interference), and, since it is an echo
of the transmitted signal, the received clutter power is affected by such radar
and scenario parameters as the antenna gain, transmitted power, and the range
from the radar to the terrain. In contrast, noise power is affected by none of
those factors, but is affected by the radar receiver noise figure and bandwidth.

2.3.1   Behavior of σ0

Area clutter (land and sea surface) reflectivity is characterized by its mean or
median value of radar cross section, σ0 (dimensionless), the probability density
function of the reflectivity variations, and their correlation in space and time.
Many of the same PDFs described in Sec. 2.2.5 are applied to modeling σ 0 as
well. Popular examples include the exponential, lognormal, and Weibull
distributions.

The area reflectivity σ0 of terrain observed by the radar is a strong function
of terrain type and condition (e.g., surface roughness and moisture), weather
(wind speed and direction, precipitation), engagement geometry (especially
grazing angle), and radar parameters (wavelength, polarization). Consequently,
selection of a PDF is not sufficient to model clutter. It is also necessary to
model the dependence of σ0 on these parameters. Consider land clutter. Values
of σ0 commonly range from –60 to –10 dB. Extensive measurement programs
over the years have collected statistics of land clutter under various conditions
and resulted in many tabulations of σ0 for various terrain types and conditions,
as well as models for the variation of σ0. Figure 2.20 shows one set of
representative data for the area reflectivity of desert terrain versus radar
frequency and grazing angle. Note that σ0 generally increases with radar
frequency, and decreases at shallower grazing angles. For a given frequency, the
variation with grazing angle over the range shown is 20 to 25 dB. For a given
grazing angle, the variation across frequency in this example is about 10 dB.
Figure 2.21 is one example of the variation in σ0 versus grazing angle for
different terrain types at a fixed frequency, in this case S band. Generally,
reflectivity increase with terrain roughness, from the presumably smoother
desert terrain to the complex, rough urban terrain.



 FIGURE 2.20   Behavior of σ0 of desert terrain versus radar frequency and
grazing angle. (Data from Currie, 2010.)
 

 

 
FIGURE 2.21   Behavior of σ0 versus terrain type and grazing angle at S band.
(Data from Currie, 2010.)
 

As seen in those figures, σ0 varies significantly with grazing angle.
Generally, it decreases rapidly at very low grazing angles, and increases
rapidly at very high grazing angles (radar look direction normal to the clutter
surface), with a milder variation in a middle “plateau region.” Figure 2.22 is a
notional diagram of this behavior. A common model for the behavior of σ0 over
the plateau region is the “constant gamma” model (Long, 2001):



 FIGURE 2.22   General behavior of σ0 with grazing angle for land clutter. (After
Long, 2001.)
 

(2.64)
 
where γ is a characteristic of the particular clutter type at the radar frequency
and polarization of interest. This model predicts that σ0 is maximum at normal
incidence and becomes vanishingly small as the grazing angle tends to zero.
However, it does not adequately reflect the degree of change in σ0 often
observed at near-normal or near-zero incidence angles, and additional models
are often used at these two extremes.

Various predictive models for σ0 as a function of important parameters
have been presented in the literature. One well-known example is the Georgia
Tech Research Institute (GTRI) model given by

(2.65)
 
where σh is the RMS surface roughness and the parameters A, B, C, and D
depend on the clutter type and radar frequency. Sample values for X band are
given in Table 2.6.



  Source: Adapted from Currie (2010).
 TABLE 2.6   GTRI Land Clutter Model Parameters for X Band
 

Models of a similar spirit exist for sea clutter σ0. Important parameters for
sea clutter reflectivity in addition to frequency, grazing angle, and polarization
include wind speed and direction relative to the radar boresight, wave height,
and multipath. Details of one representative model developed at GTRI are given
in Currie (2010).

2.3.2   Signal-to-Clutter Ratio
In many scenarios, the dominant interference is not noise, but clutter.
Consequently, the signal-to-clutter ratio (SCR) is often of more importance
than the signal-to-noise ratio (SNR). The SCR is easily obtained as the ratio of
the received target power, given by Eq. (2.11) to the received clutter power,
given by Eq. (2.25), (2.30), or (2.32) for the volume clutter, beam-limited area
clutter, and pulse-limited area clutter cases, respectively. The resulting
equations are

(2.66)
 

In each case, such system parameters as the transmitted power and the
antenna gain cancel out. This occurs because both the clutter and target signals
are echoes of the radar pulse; increasing power or antenna gain increases the
strength of both types of echoes equally. Thus, the SCR just becomes the ratio of
the target RCS to the total RCS of the contributing clutter.

2.3.3   Temporal and Spatial Correlation of Clutter
Clutter decorrelation in time is induced by internal motion for clutter, such as



tree leaves moving in the wind or waves on the sea surface, and by changes in
radar-target geometry for both clutter and targets. Various investigators have
experimentally characterized the decorrelation characteristics of clutter echoes
due to internal motion, or equivalently, their power spectrum. For example, one
model suggested to estimate the power spectrum of the RCS of foliated trees or
rain uses a cubic spectrum (Currie, 2010):

(2.67)
 

The corner frequency Fc is a function of the wavelength and either wind
speed (for trees) or rain rate (for rain). Some sample measured values are given
i n Table 2.7. A higher corner frequency (wider power spectrum) implies a
shorter decorrelation interval (narrower autocorrelation function). Shorter
decorrelation times render the clutter signals more like white noise and degrade
the effectiveness of some of the clutter suppression techniques of Chap. 5.
Notice that for a given weather condition, the clutter decorrelates more rapidly
at higher radar frequencies. Figure 2.23 plots additional windblown tree clutter
data that also show the decrease in decorrelation time for both increased clutter
motion and increased radar frequency.

  Source: Currie, N. C. “Clutter Characteristics and Effects,” chapter 10 in J. L. Eaves and K. E. Reedy
(eds.), Principles of Modern Radar. Van Nostrand Reinhold, New York, 1987.
 TABLE 2.7   Cubic Power Spectrum Corner Frequencies (Hz) for Rain and Tree
Clutter
 

 



 
FIGURE 2.23   Decorrelation time of windblown tree clutter versus frequency
and wind speed. [Data from Currie (2010)].
 

Another model frequently used to model generic power spectra is the
Gaussian given by

(2.68)
 
The Gaussian model is very commonly used in weather radar, and is the basis of
the pulse pair Doppler velocity estimation technique discussed in Chap. 5.

Both the cubic and Gaussian power spectral models can be well matched
by a low-order autoregressive (AR, or all-pole) spectrum model of the form
(Haykin et al., 1982)

(2.69)
 
Real clutter measured from ground-based radars appears to be well matched
using an order N of only two to four. Other studies of clutter measured by
airborne radars in a landing scenario indicate that orders up to 10 may be
required (Baxa, 1991). The AR clutter spectrum model has the advantage that its
parameters can be computed directly from measured data and adapted in real



time using the Levinson-Durbin or similar algorithms (Kay, 1988). Furthermore,
the AR parameters can be used to construct optimal adaptive clutter suppression
filters, as is seen in Chap. 5. The disadvantage is that the calculations rapidly
become computationally intensive as the model order increases.

Another decorrelation model, more recently developed and popular in
studies of detection of ground targets from moving platforms, is the Billingsley
model. This model represents the correlation properties of windblown tree
clutter and other vegetative cover, said to be the “most pervasive” ground
clutter (Billingsley, 2001). This model assumes that the clutter temporal power
spectrum is the sum of a two-sided decaying exponential function and an
impulse at the origin in Doppler frequency space

(2.70)
 
where the parameter α, which established the ratio of the DC to AC
components, is a function of both wind and radar frequency, while β, which
determines the width of the AC power spectral component, is dependent
primarily on wind conditions. The corresponding autocorrelation function is

(2.71)
 

Based on extensive measurements, Billingsley proposed empirical
formulas for α and β:

(2.72)
 

(2.73)
 
where w is the wind speed in statute miles per hour and F0 is the radar carrier
frequency in GHz.

Note that β and therefore the decorrelation time does not depend on radar
frequency, somewhat in conflict with earlier models. Caution is needed in
applying Eq. (2.73) due to mixed units. Specifically, w is in statute miles per
hour but β is in meters per second.

The “DC term” in Eqs. (2.70) and (2.71) represents a constant, nonrandom
component of the clutter echo that is sometimes called a “persistent component”



of the received signal. For such a component to exist, both the amplitude and
phase of the reflectivity of the clutter scatterers involved must be constant. Thus,
the DC component is attributable to backscatter from elements such as bare
ground, rocks, and tree trunks. The AC term accounts for back-scatter from
moving elements such as leaves, branches, and blades of grass. Simple
autoregressive filters can be used to implement the model in simulations
(Mountcastle, 2004).

2.3.4   Compound Models of Radar Cross Section
As is seen in Chap. 6, radar detection performance predictions depend strongly
on the details of target and clutter RCS models. Furthermore, it is well known
that RCS statistics vary significantly with a host of factors such as geometry,
resolution, wavelength, and polarization. Consequently, the development of
good statistical RCS models is a very active area of empirical and analytical
research. Following are three brief examples of an extension to the basic
modeling approach described earlier, all motivated by the complexities of
modeling clutter. Because the literature regarding these models is developed
primarily in terms of the echo amplitude (voltage) ζ instead of RCS σ or power,
the remainder of this section also concentrates on amplitude PDFs.

Some amplitude PDFs are physically motivated, especially the Rayleigh
(exponential RCS) model (which follows from a central limit theorem
argument) and the Rice or Rician model (which corresponds to a Rayleigh
model with an additional dominant scattering source). Others, such as the log-
normal or Weibull, have been developed empirically by fitting distributions to
measured data. One attempt to provide a physical justification for a non-
Rayleigh model abandons the single-PDF approach, instead assuming that the
random variable representing echo amplitude can be written as the product of
two independent random variables, ζ = x · y. The PDF of ζ can then be
represented in a Bayesian formulation as

(2.74)
 

This model has been used to describe sea clutter (Jakeman and Pusey,
1976; Ward, 1981). The random variable x is identified with a slowly
decorrelating component having a voltage distribution following a central chi-
square of degree 2m with m ≥ 2.5. This component is introduced to account for
“bunching” of scatterers due to ocean swell structure and radar geometry, and
represents variation in the mean of the amplitude over time. The distribution
pζ|x(ζ|x) is assumed to represent the composite of a large number of independent
scatterers. Its amplitude distribution is therefore Rayleigh. The resulting overall
PDF pζ(ζ) can be shown to be the K distribution, which is given by



(2.75)
 
where Ka–1(·) is the modified Bessel function of the second kind and order a–1
a nd . Thus, the product formulation suggests that modulation of a
standard Rayleigh variable by a central chi-distributed geometric term can
account for observed sea clutter distributions. Additional information on the K
distribution is given in App. A.

More recent research has begun to bridge the gap between the physics of
scattering and the apparent success of compound clutter models of the type
promoted by Ward and Jakeman and Pusey. Sangston summarizes the work on
extensions of the “many scatterer” physical model that leads to the Rayleigh
distribution (Sangston, 1994). Specifically, consider the model of Eq. (2.50),
but let the number of scatterers N be a random variable instead of a fixed
constant. This representation is referred to as a number fluctuations model.
Depending on the choice of the statistics of the number N of scatterers
contributing to the return at any given time, this modified version of Eq. (2.50)
can result in K, Weibull, gamma, Nakagami-m, or any of a number of other
distributions in the class of so-called Rayleigh mixtures.

Much of the work in compound RCS models has been performed in the
context of sea clutter analysis, and empirical sea clutter data have often been
observed to exhibit non-Rayleigh statistics such as Weibull, K, and log-normal
distributions. The number fluctuation model is intuitively appealing in this case
because it can be related to the physical behavior of waves. Specifically,
scattering theory suggests that the principal scatterers on the ocean surface are
the small capillary waves, as opposed to the large swells. These small
scattering centers tend to cluster near the crest of the swells, with fewer of them
in between. In other words, they are nonuniformly distributed over the sea
surface. Consequently, a radar illuminating the sea will receive echoes from a
variable number N of scatterers as the crests of the swells move into and out of
a given resolution cell. By summing echoes from a variable number of
scatterers, the number fluctuation model predicts the Weibull and K
distributions and provides a link between a phenomenological model of sea
scatter and these empirically observed statistics.

All of the statistical models described in Sec. 2.2.5 apply to the scattering
observed from a single resolution cell. That is, they represent the variations in
RCS observed by measuring the same region of physical space multiple times,
for example by transmitting multiple pulses in the same direction and measuring
the received power at the same delay after each transmission. Another use of the
product model of Eq. (2.74) is to describe the spatial variation of clutter



reflectivity. If the scene being viewed by the radar is nonhomogenous, then the
characteristics of the RCS observed in one resolution cell might vary
significantly from those of another. For example, the dominant clutter observed
by a scanning radar at a coastal site might be an urban area in one look direction
and the sea in another. Another example occurs when scattered rain cells occupy
only part of the scanned region, so that some resolution cells contain rain while
others are clear.

This situation can be modeled by letting the slowly decorrelating term x in
the product model represent spatial variations in the local mean of the received
voltage. If the PDF of x is log-normal with a large variance and the PDF of ζ
conditioned on x is gamma distributed (which includes Rayleigh as a special
case), then the overall PDF of the product ζx has a lognormal distribution
(Lewinski, 1983). Consequently, the product model implies that lognormal
variations of the local mean from one resolution cell to another could account
for the log-normal variation often used to model ground clutter returns. A
similar argument can be used to justify the log-normal model for target RCS by
modeling the variation of RCS with aspect angle as a log-normal process.

2.4   Noise Model and Signal-to-Noise Ratio
The echo signal received from a target or clutter inevitably competes with
noise. There are two sources of noise: that received through the antenna from
external sources, and that generated in the radar receiver itself.

External noise is a strong function of the direction in which the radar
antenna is pointed. The primary contributor is the sun. If the antenna is directed
toward the night sky and there are no interfering microwave sources, the
primary source is galactic (also called cosmic) noise. Internal noise sources
include thermal noise (also called Johnson noise) due to ohmic losses, shot
noise and partition noise due to the quantum nature of electric current, and
flicker noise due to surface leakage effects in conducting and semiconducting
devices (Carlson, 1976).

Of these various sources, thermal noise is normally dominant. The theories
of statistical and quantum mechanics dictate that the thermal noise voltage in an
electronic circuit is a zero-mean Gaussian random process (Curlander and
McDonough, 1991). The mean energy of the random process is kT/2 joules,
where T is the temperature of the noise source in kelvins (absolute temperature)
and k = 1.38 × 10–23 J/K is Boltzmann’s constant. The power spectrum Sn(F) of
the thermal noise delivered to a matched load is

(2.76)
 



where h = 6.6254 × 10–34 J/s is Planck’s constant . If hF/kT  1, a series
approximation gives exp(hF/kT) ≈ 1 + hF/kT so that Eq. (2.76) reduces to the
white noise spectrum

(2.77)
 

Note that Eq. (2.77), when integrated over frequency, implies infinite
power in the white noise process. In reality, however, the noise is not white
[Eq. (2.76)] and, in any event, it is observed in any real system only over a
finite bandwidth. For frequencies below 100 GHz, the approximation of Eq.
(2.77) requires the equivalent noise temperature T’ (to be defined below) to be
larger than about 50 K, which is almost always the case. Consequently, thermal
noise has a white power spectrum. For many practical systems it is reasonable
to choose the temperature of the system to be the “standard” temperature T0 =
290 K = 62.3°F so that kT0 ≈ 4 × 10–21 W/Hz.

In a coherent radar receiver, the noise present at the front end of the system
contributes noise to both the I and Q channels after the quadrature demodulation.
The I and Q channel noises are both zero-mean Gaussian random processes with
equal power. Since the total noise spectral density is kT W/Hz, the noise density
in each channel individually is kT/2 W/Hz. Furthermore, if the power spectrum
of the input noise is white, then the I and Q noise processes are uncorrelated and
their power spectra are also white. Since the I and Q noise processes are
Gaussian and uncorrelated, it follows that they are also independent (Papoulis
and Pillai, 2001). Finally, since the I and Q signals are independent zero-mean
Gaussian processes, it also follows that the magnitude of the complex signal I +
jQ is Rayleigh distributed, the magnitude-squared is exponentially distributed,
and the phase angle tan–1 (Q/I) is uniformly distributed over (0, 2π].

The bandwidths of the various components of a receiver vary, but the
narrowest bandwidth is generally approximately equal to the bandwidth of the
transmitted pulse. If the receiver contains any component of narrower bandwidth
signal, energy will be lost, reducing sensitivity. If the most narrowband
component has a bandwidth appreciably wider than the pulse bandwidth, the
signal will have to compete against more noise power than necessary, again
reducing sensitivity. Thus for the purpose of noise power calculation, the
frequency response of the receiver can be approximated as a bandpass filter
centered at the transmit frequency with a bandwidth equal to the waveform
bandwidth.

Real filters do not have perfectly rectangular passbands. For analyzing
noise power the noise-equivalent bandwidth βn of a filter described by the
transfer function H(F) is used. Figure 2.24 illustrates the concept. The noise
equivalent bandwidth is the width an ideal rectangular filter with gain equal to
the peak gain of the actual filter must have so that the area under the two squared



frequency responses are equal. This condition guarantees that given a white
noise input, both filters exhibit the same output noise power. Thus

 FIGURE 2.24   Illustration of the concept of noise equivalent bandwidth of a
filter.
 

(2.78)
 
where the receiver power gain Gs is defined as the maximum gain of |H(F)|2.
The total noise power N present at the output of the filter H(F) is then given by

(2.79)
 

White noise passed through a filter H(F) is no longer white, but instead has
the power spectrum |H(F)|2. If |H(F)|2 is approximated as a rectangular filter of
two-sided bandwidth βn Hz, the autocorrelation function of the noise at the filter
output is approximately a sinc function with its first zero at lag 1/βn seconds.
However, it will be seen in Chap. 3 that the receiver output is normally sampled
at intervals of approximately 1/βn seconds. Consequently, the noise component
of the successive receiver output samples are still uncorrelated with one
another.

The power spectral density of white noise at the output of any source or
circuit can be described as the product of Boltzmann’s constant and some
equivalent temperature T′, mimicking the simple formulation of Eq. (2.77).
Source noise power is usually referenced to the input of a system so that the
power gain Gs (or loss if Gs < 1) of the system must also be taken into account.
That is, if the observed output power spectral density (still assumed white over



the receiver bandwidth) at the output of a receiver is some value Sn, then an
equivalent temperature T′ of the noise source at its input is defined to be

(2.80)
 
so that Sn = kT′Gs and the total noise power is

(2.81)
 
The total output noise power at the receiver output is the primary quantity of
interest. In a radar system, the contributors to this noise include the external
noise, the intrinsic kT0βn thermal noise, and additional thermal noise due to
losses in the antenna structure and nonideal receivers. Detailed noise analyses
assign individual equivalent noise temperatures to each stage in the system; a
good introductory description is given in Curlander and McDonough (1991).
When considering the system as a whole, it is common to express the total
output noise power as the sum of the power that would be observed due to the
minimum noise density kT0 at the input and a second term that accounts for the
additional noise due to the nonideal system

(2.82)
 

In this equation, Gs is now the power gain of the complete receiver system,
including antenna loss effects. The equivalent temperature Te used to account
for noise above the theoretical minimum is called the effective temperature of
the system.

The noise temperature description of noise power is most useful for low-
noise receivers. An alternative description common in radar is based on the
idea of noise figure Fn, which is the ratio of the actual noise power at the output
of a system to the minimum power kT0βnGs (Skolnik, 2001). As with noise
temperatures, various noise figures can be defined to include the effects of just
the receiver, or of the entire antenna and receiver system, and so forth. Here, the
term noise figure used without qualification will mean the noise figure of the
complete receiver system, so that

(2.83)
 
Equation (2.83) shows that knowledge of the noise equivalent bandwidth, gain,



and noise figure of the receiver system are sufficient to calculate the output
noise power using N = kT0βnFnGs. It also follows from using Eq. (2.82) in Eq.
(2.83) that Te = (Fn – 1)T0. Typical noise figures for radars can be as low as 2
or 3 dB, and as high as 10 dB or more. Corresponding effective temperatures
range from about 170 K to over 2600 K.

In Sec. 2.2, the term “radar range equation” was applied to Eqs. (2.11),
(2.25), (2.30), and (2.32). These expressions described the echo power
received by the radar given various system and propagation conditions. As will
be seen in Chap. 6, the detection performance of a radar depends not on the
received power per se but on the SNR at the point of detection. Equation (2.83)
can be used to convert the power range equations to SNR range equations.

To illustrate, consider the point target range equation [Eq. (2.11)], which
expresses the power Pr of the signal available at the input to the receiver. The
signal power at the output will be P0 = Gs Pr provided the signal bandwidth is
entirely contained within the receiver bandwidth Bn. From Eq. (2.83), the output
noise power is No = kT0βnFnGs. The SNR is therefore

(2.84)
 
The last expression in Eq. (2.84) gives the SNR in terms of transmitter and
receiver characteristics, target RCS, range, and loss factors. Modifications of
Eqs. (2.25), (2.30), and (2.32) for volume and area scatterers to express them in
terms of signal to noise ratio are obtained in the same manner by simply
including the quantity kT0βnFn in their denominators.

Equation (2.84) represents the SNR at the receiver output, but prior to any
signal processing. The point of most of the techniques discussed in this text is to
increase the SNR above that value through signal processing means so as to
obtain better detection, measurement, and imaging results. The impact of signal
processing on the SNR can be modeled by simply adding a signal processing
gain term Gsp to the range equation:

(2.85)
 
In ensuing chapters, Gsp will be expressed in terms of the parameters of specific



techniques such as matched filtering and Doppler processing.
Like Eq. (2.11), Eq. (2.85) is also often called the radar range equation. In

the remainder of this text, the term “range equation” or “radar range equation”
usually refers to the SNR form of Eq. (2.85) and its analogues for volume and
area scatterers.

2.5   Jamming
Jamming refers to intentional interference directed at the radar system from a
hostile emitter. Jamming is an example of electronic countermeasures  (ECM)
or electronic attack (EA). As noted earlier, the purpose of most radar signal
processing is to improve the SIR of the data so as to improve detection,
tracking, and imaging performance. The purpose of many jamming techniques is
just the opposite: to reduce the SIR so that the radar performance is degraded.

The most basic form of jamming is simple noise jamming. A hostile emitter
directs an amplified noise waveform at the victim radar, essentially increasing
the noise level out of the receiver. If the noise power spectrum fills the entire
radar receiver bandwidth, then the noise out of the receiver will appear like any
other white noise process and is modeled in the same way. More advanced
forms of noise jamming use various amplitude and frequency modulations.
Instead of noise, other jamming techniques use waveforms designed to mimic
target echoes and fool the radar into detecting and tracking nonexistent targets.

Even a limited discussion of ECM is outside the scope of this text, due
both to the breadth of the topic and the limited amount of material publishable in
the open literature. The reader is referred to Lothes et al. (1990) for a good
general reference on jamming signals in radar.

2.6   Frequency Models: The Doppler Shift

2.6.1   Doppler Shift
If the radar and scatterer are not at rest with respect to each other, the frequency
Fr of the received echo will differ from the transmitted frequency Ft due to the
Doppler effect. Doppler shifts can be used to advantage to detect echoes from
moving targets in the presence of much stronger echoes from clutter or to
drastically improve cross-range resolution. Uncompensated Doppler shifts can
also have harmful effects, particularly a loss of sensitivity for some types of
waveforms. Thus, characterization and measurement of Doppler shifts is an
important topic in radar.

Consider an arbitrary waveform x(t), pulsed or not, transmitted by a
monostatic radar. The waveform is reflected from a perfectly conducting target
at an arbitrarily time-varying range R(t). For instance, a constant-range target



would have R(t) equal to a fixed R0 meters, while a constant-velocity target
would have R(t) = R0 – vt meters.7 It makes no difference whether the radar, the
target, or both are moving such that the range between the two is R(t), so it can
be assumed without loss of generality that the radar is stationary and the target is
moving, and that all measurements are made in the frame of reference of the
radar. Under these conditions the received signal can be shown to be (Cooper,
1980; Gray and Addison, 2003)

(2.86)
 
where k absorbs all radar range equation amplitude factors and h(t) is the
function that satisfies

(2.87)
 
The dot over h(t) in Eq. (2.86) denotes the time derivative. The minus sign
(180° phase shift) is required by the boundary conditions at a perfectly
conducting surface. The function h(t), which has units of seconds, is the time at
which a wave must have been launched in order to intercept the moving target at
time t and range R(t). For example, if R(t) is a constant R0, then h(t) = t – R0/c.

For instantaneous velocities  that are a small fraction of the speed of
light (virtually always the case as will be discussed shortly), the “quasi-
stationary” assumption is commonly made. This holds that the range change
during the short flight of any particular point in the waveform from the
transmitter to the target is negligible. Then R[h(t)] ≈ R(t) so that (Cooper, 1980)

(2.88)
 
The last step also uses the assumption . This result is exact when the
target is stationary, R(t) = R0. Then h(t) = t–R0/c exactly and 
exactly.

The case of a constant-velocity target is of special interest. Returning to the
exact result of Eqs. (2.86) and (2.87), let R(t) = R0–vt and define βv ≡ v/c. It is
easy to show that



(2.89)
 
so that (Gleiser, 1979; DiFranco and Rubin, 2004; Peebles, 1998)

(2.90)
 
If the transmitted waveform is a standard RF pulse

(2.91)
 
where A(t) is the pulse envelope, the received echo waveform will be

(2.92)
 

Inspection of Eq. (2.92) reveals several characteristics of the received
signal. Its frequency is αvFt Hz. The change in frequency is the Doppler shift
FD:

(2.93)
 
The Doppler shift is positive for approaching targets (v > 0) and negative for
receding targets as expected. The phase of the received signal is decreased by

(2.94)
 

The waveform is scaled in time by the factor αv. For example, for an
approaching target, αv > 1 and a transmitted pulse is shortened by a factor of αv



on reception; for a receding target it is lengthened by a factor of αv. The
compression (expansion) of the pulse in time results in an expansion
(contraction) of the pulse bandwidth by the factor αv due to the reciprocal
spreading property of Fourier transforms. Finally, the amplitude of the
waveform is scaled by the factor αv (in addition to the range equation effects), a
consequence of conservation of energy when the time scale is altered.

It is virtually always the case in radar that the ratio |βv| = |v/c| is very small.
For example, a car traveling at 60 mph (26.82 m/s) has a ratio |v/c| of 8.94 × 10–

8; an aircraft at Mach 1 (about 340.3 m/s at sea level) has |v/c| = 1.13 × 10–6; and
even a low-earth orbit (LEO) satellite with a velocity of 7800 m/s has |v/c| = 2.6
× 10–5. Expand each of the terms 1/(1 ± βv) and αv = (1 + βv)/(1 – βv) in a
binomial series and retain terms only to first order in βv:

(2.95)
 
Equation (2.90) and the sinusoidal pulse special case of Eq. (2.92) then reduce
to

(2.96)
 
The echoed pulse length τ′ = τ/α ≈ (1 – 2βv)τ. This small change in the pulse
envelope duration of 2αvτ seconds is insignificant and can be ignored. The
amplitude factor of α ≈ (1 + 2βv) is certainly negligible compared to range
equation effects and can also be ignored. The change in delay from 2R0/c to 2(1
+ βv)R0/c represents a percentage change of βv in the delay and is also usually
insignificant, though for a system with fine range resolution at long enough
ranges the error could become a significant fraction of a range resolution cell.
However, βv cannot be neglected in the phase term because the factor of
4πβvR0/λ will frequently be a large fraction or even a multiple of π. With these
three approximations to the envelope term and amplitude, the Doppler shift
effects on the sinusoidal pulse of Eq. (2.96) reduce to



(2.97)
 
The key result is that, to an excellent approximation, the pulse echoed from a
constant-velocity target exhibits a Doppler shift of 2vFt/c = 2v/λ Hz and a phase
shift of –(1 + βv)4π/λR0 radians.

The numerical values of Doppler shift are small compared to the RF
frequencies. Table 2.8 gives the magnitude of the Doppler shift corresponding to
a velocity of 1 m/s at various radar frequencies. The Mach 1 aircraft observed
with the L band radar would cause a Doppler shift of only 2.27 kHz in the 1
GHz carrier frequency.

 TABLE 2.8   Doppler Shift Resulting from a Velocity of 1 m/s
 

For a monostatic radar and a constant-velocity target, the observed
Doppler shift is proportional to the component of velocity in the direction of the
radar, called the radial velocity. If the angle between the velocity vector
relative to the radar of a target traveling at v meters per second and the vector
from the radar position to the target position (sometimes called the cone angle)
i s ψ, the radial velocity is v · cosψ meters per second. The geometry is
illustrated in two dimensions in Fig. 2.25. The magnitude of the Doppler shift is
maximum when the target is traveling directly toward or away from the radar.
The Doppler shift is zero, regardless of the target velocity, when the target is
crossing orthogonally to the radar boresight.



 FIGURE 2.25   Doppler shift is determined by the radial component of relative
velocity between the target and radar.
 

Equations (2.86) and (2.87) can be solved for the exact behavior of other
regular patterns of radar-target motion as well. The solution for constant
acceleration is given in Gray and Addison (2003). Even where a closed form
solution for h(t) is difficult or impossible to find, it can still be developed using
an iterative approximation approach.

2.6.2   The Stop-and-Hop Approximation and Phase History
The quasi-stationary assumption of Eq. (2.88) provides a simplified but very
useful model of reflection of a radar pulse from a target moving relative to the
radar. Applying it to the pulsed waveform A(t)exp[j(2πFtt + ϕ0)] and using the
same envelope approximations employed to obtain Eq. (2.97) gives

(2.98)
 
where R0 is the initial range at the time of pulse transmission. Equation (2.98)
states that the echo is received with a time delay corresponding to the range at
the beginning of the pulse transmission but with a phase modulation related to
the time variation in range. This is the “stop” part of the stop-and-hop
assumption common in radar analysis: the envelope of the echo appears as if the
target motion effectively stopped while the pulse was in transit. The “hop”



portion will be discussed shortly.
Equation (2.98) adequately describes not only constant but also time-

varying Doppler frequency shifts. If the target moves relative to the radar at
constant velocity, R(t) = R0 – vt,

(2.99)
 
Equation (2.99) is identical to the second line of Eq. (2.97), with the exception
that the constant phase shift is –4πR0/λ instead of –(1 + βv)4πR0/λ radians. This
difference in the constant phase shift does not affect the magnitude or Doppler
shift of the echo and can be ignored. Thus the analysis approach of Eq. (2.88) is
consistent with the earlier results in all important respects.

For a more interesting example of the use of Eq. (2.88), consider Fig. 2.25
again. Let the radar be located at (x, y) coordinates (xr = 0, yr = 0) with its
antenna aimed in the +y direction, and let the coordinates of the target aircraft
be (xt = vt, yt = R0). This means that the target aircraft is on the radar boresight
at a range R0 at time t = 0 and is crossing orthogonal to the radar line of sight at
a velocity v meters per second. The range between radar and aircraft is

(2.100)
 
While it is possible to work with Eq. (2.100) directly, it is common to expand
the square root in a power series:

(2.101)
 
In evaluating this expression, the range of t that must be considered may be
limited by any of several factors, such as the time the target is within the radar
main beam or the coherent processing interval duration over which pulses will
be collected for subsequent processing.

Assume that the distance traveled by the target within this time of interest is
much less than the nominal range R0 so that higher-order terms in (vt/R0) can be
neglected:



(2.102)
 
Equation (2.102) shows that the range is approximately a quadratic function of
time for the crossing target scenario of Fig. 2.25. Using this truncated series in
Eq. (2.98) gives

(2.103)
 
All of the terms are the same as in the constant-velocity case of Eq. (2.99)
except for the middle exponential. Recall that instantaneous frequency is
proportional to the time derivative of phase. The quadratic phase function
therefore represents a Doppler frequency shift that varies linearly with time due
to the changing radar-target geometry:

(2.104)
 

As the target aircraft approaches from the left in Fig. 2.25 (t < 0) the
instantaneous Doppler shift is positive. When the aircraft is abreast of the radar
(t = 0) the Doppler shift is zero because the radial component of velocity is
zero. Finally, as the aircraft passes by the radar (t > 0) the Doppler shift
becomes negative, as would be expected for a receding target. This quadratic
range case is important in synthetic aperture radar and will be revisited in Chap.
8.

The exponential term exp(– j4πR(t)/λ) in Eq. (2.98) is called the phase
history of the received signal. This terminology is applied both to the complex
exponential and to just its phase function (–4πR(t)/λ). The phase history encodes
the variation of the range between the target and radar during the data collection
time. For the constant-velocity example [Eq. (2.99)], the phase history is a
linear function of time corresponding to a constant frequency sinusoid, i.e., a
constant Doppler shift. For the crossing target example of Eq. (2.103), it is a
quadratic function of time, producing a Doppler shift sinusoid having a
frequency that varies linearly with time. Other radar-target motions will
produce other functional forms for the phase history.

More generally, the term phase history can refer to the variation of phase
(or the corresponding complex exponential) in any dimension of the radar data.
Two other common uses are to describe the fast-time phase function of a
frequency- or phase-modulated waveform or the spatial phase variation across
the face of an array antenna at a fixed time. As will be seen, the phase history is
central to radar signal processing. The design of many important radar signal



processing operations depends critically on accurately modeling or estimating
the phase history of the collected data. Examples include pulse compression,
adaptive interference cancellation, and imaging.

2.6.3   Measuring Doppler Shift: Spatial Doppler
The Doppler shifts observed in radar are too small to be measured from a single
pulse echo in most cases. In Chap. 7 it will be seen that a lower bound on the
standard deviation of the error in measuring the frequency of a complex sinusoid
with unknown amplitude, frequency, and phase using a discrete Fourier
transform (DFT) and an observation of length Tobs seconds at an integrated SNR
in the DFT of χ is  Hz. Applying this to measuring Doppler, this
value must be much less than the Doppler shift if that shift is to be measured
with reasonable precision, leading to a requirement that . Even
for a rather high Doppler shift of 10 kHz and a very good SNR of 30 dB (χ =
1000), Tobs must be much larger than 123 μs. To measure the Doppler shift with
a single pulse would therefore require pulse lengths greater than 1 ms, much
longer than the sub-millisecond (usually less than 100 μs) pulse lengths typically
used. For a 1-kHz Doppler shift and 20-dB SNR, a pulse longer than 10 ms
would be needed. For this reason, most radars do not measure Doppler shift on
an intrapulse basis, although a few designed for very high speed targets
(satellites and missiles) and using very long pulses can do so.

The long observation time needed can be obtained by using multiple
pulses. Suppose a series of M distinct pulses of duration τ are transmitted
beginning at times tm = mT, where T is the pulse repetition interval (PRI). The
mth transmitted pulse and received echo (using the quasi-stationary assumption)
are

(2.105)
 

(2.106)
 
After demodulation, the baseband received signal is

(2.107)
 
where k′ includes the exp(–jϕ0) term. Assume each baseband pulse echo is
sampled 2Rs/c seconds after transmission, corresponding to a range Rs. Also



assume a target is present within the range bin corresponding to that sample time
for the entire data collection time of mT seconds, meaning that R(t) remains in
the range interval [Rs–cτ/2, Rs].8 The mth sample in this range bin is then

(2.108)
 
The constant  combines k′ and the amplitude of the sampled pulse envelope
A(·). The series of sampled echoes y[m] forms the slow-time series of samples
for that range bin, as will be described in Chap. 3.

The “stop” assumption applied in Eq. (2.98), when used across a series of
pulses as in (2.107), is called the stop-and-hop approximation. Relative to the
radar, the target is assumed to “stop” at the time of each pulse transmission at
the corresponding range R(mT) and then “hop” to the range at the next pulse
transmission time, rather than moving continuously.

Consider again a constant velocity target, R(t) = R0 – vt. The slow-time
data series becomes

(2.109)
 
The first exponential in Eq. (2.109) is a constant phase shift for all of the slow-
time samples y[m] and is of little consequence. The second exponential is a
discrete complex sinusoid with normalized frequency 2vT/λ cycles/sample,
corresponding to the expected Doppler frequency of 2v/λ Hz. Thus, the phase
history obtained from a moving target using a series of pulses provides a way to
measure the Doppler shift with good precision by observing the signal over an
observation time much longer than that of a single pulse.

The manifestation of the target Doppler shift in the slow-time phase history
is sometimes referred to as spatial Doppler. This terminology emphasizes the
fact that the Doppler shift is measured not from intrapulse frequency changes,
but rather from the change of phase of the echoes at a given range bin over a
series of pulses. Because of the inability to measure intrapulse Doppler
frequency shifts in most systems, the term “Doppler processing” in radar usually
refers to sensing and processing this spatial Doppler information.



2.7   Spatial Models
Previous sections have dealt with models of Doppler shift and the received
power (both mean value and statistical fluctuations) of radar echoes from a
single resolution cell. In this section, the variation in received complex voltage
or power as a function of the spatial dimensions of range and angle will be
considered. It will be seen that the observed complex voltage can be viewed as
the output of a linear filter with the weighted variation in reflectivity over range
or angle as its input. A similar result holds for power when the reflectivity field
has a random phase variation. These relationships will lay the groundwork for
an analysis of data sampling requirements and range and angle resolution in
subsequent chapters.

2.7.1   Coherent Scattering
Consider a stationary pulsed radar. At time zero it transmits the equivalent
complex signal

(2.110)
 
Assume that  has unit amplitude so that the transmitted signal amplitude is
represented by the term . This signal echoes off a differential scatterer of
cross section dσ(R, θ, ϕ) at coordinates (R, θ, ϕ). The baseband complex
reflectivity or just reflectivity of the differential scatterer is, from Eq. (2.50),
dζ(R, θ, ϕ) exp[jψ(R, θ, ϕ) so that dσ =|dζ|2. The term involving ψ accounts for a
possible constant phase shift on reflection at the scatterer surface. The antenna
is assumed to be mechanically scanning9 in either or both angle coordinates with
one-way voltage pattern E(θ,ϕ) so that at the time of transmission it is steered in
the direction (θ0,ϕ0). Then analogously to Eq. (2.16), the differential received
voltage is

(2.111)
 
where E(θ,ϕ) is the one-way antenna voltage pattern. Equation (2.110) can be
simplified by separating the reflectivity terms and the terms which depend on
spatial location and collapsing all of the other system-dependent amplitude
terms into a single constant . The term dζ exp(jψ) is termed the



baseband complex reflectivity or just reflectivity of the differential scatterer
and will be denoted as dρ. Making these substitutions and removing the carrier
term with coherent demodulation leaves only the baseband complex received
voltage dy for the single differential scatterer

(2.112)
 
Equation (2.112) gives the contribution to the received echo voltage of a
differential scatterer element at coordinates (R,θ,ϕ). The total received voltage
is obtained by integrating these differential contributions over all space:

(2.113)
 

Equation (2.113) is a coherent scattering model: the differential scatterers
are assumed to add as complex voltages. This is most appropriate for
reflectivity fields characterized by relatively static configurations of scatterers,
e.g., man-made vehicle and urban areas. The case where the scatterers are not
static is considered in Sec. 2.7.4.

Now write dρ(R, θ, ϕ) = ρ(R, θ, ϕ) · dV = ρ(R, θ, ϕ) R2 cosϕ dR dθ dϕ to
obtain

(2.114)
 
Define the effective reflectivity ρ′ to include the attenuation due to atmospheric
loss, the phase rotation due to two-way propagation range, and the cosϕ term of
the differential volume element:

(2.115)
 
Applying Eq. (2.115) to Eq. (2.114), the received signal is seen to be similar to



a three-dimensional convolution of the effective reflectivity with a convolution
kernel comprising the antenna two-way voltage pattern in the angle coordinates
and the pulse modulation function in the range coordinate. Specifically,

(2.116)
 
where the symbols ∗t, ∗θ, and ∗ϕ denote convolution over the indicated
coordinate. Now assume the antenna pattern is symmetric in the two angular
coordinates, as is often the case; rescale the time variable to units of range; and
replace θ0 and ϕ0 with general angular variables θ and ϕ. These substitutions
finally give

(2.117)
 

Equations (2.116) and (2.117) are stated as approximate convolutions
because of the finite integration limits in the angular variables, which arise due
to the periodicity in angle of the antenna pattern and scene reflectivity. A full
discussion of a spherical convolution-like equation similar to Eq. (2.114),
including development of the Fourier transform relations, is given in Baddour
(2010). Nonetheless, like a linear convolution, Eq. (2.117) computes the output
at a given point in space as a local average of the reflectivity distribution,
weighted by the antenna pattern and waveform. For most antennas and pulses,
these patterns concentrate most of their energy in a relatively small finite region
defined by the mainlobe for the antenna pattern and the pulse duration for the
waveform. Consequently, the output signal can be expected to behave like a true
linear convolution.

The convolutional model of Eq. (2.117) is an important result. Its
significance is that it allows interpretation of the measured data as the result of a
linear filtering process, so that Fourier transform relations between y(θ, ϕ, R),
ρ′(R, θ, ϕ) , E2(θ, ϕ), and x(t) can be established and applied to model signal
properties, determine sampling rates, and so forth. For example, the range
resolution of the measured reflectivity function is seen to be limited by the pulse
duration. (In Chap. 4 it will be seen that the introduction of matched filtering
will significantly change this statement.) Similarly, for a conventional scanning
radar, the angular resolution will be determined by the antenna beamwidth. (In
Chap. 8 it will be seen that the introduction of synthetic aperture techniques also
significantly changes this statement.) It also follows from the filtering action of
x(t) and E2(θ, ϕ) that the bandwidth of the measured reflectivity function in
range and angle is limited by the bandwidth of the waveform modulation
function and antenna power pattern. This observation will be used in Chap. 3 to



determine the range and angle sampling requirements.

2.7.2   Variation with Angle
Now consider the variation in reflectivity with angle for a fixed range, say R0.
Define the range-averaged effective reflectivity

(2.118)
 
This is the reflectivity variation in angle, taking into account the range averaging
at each angle due to the finite pulse length. Note that in the limit of very fine
range resolution, i.e., if the pulse modulation x(2R/c) → δD(R – R0), then 

, that is, the “range-averaged” reflectivity would exactly
equal the effective reflectivity evaluated at the range of interest R0.

Applying Eq. (2.118) to Eq. (2.117) gives

(2.119)
 
where again symmetry of the antenna pattern has been assumed in the second
line. Equation (2.119) is a special case of Eq. (2.117) showing that the complex
voltage at the output of a coherent receiver for a fixed range and a scanning
antenna is approximately the convolution in the angle dimensions of the range-
averaged effective reflectivity function evaluated at the range R0,  with
the antenna two-way voltage pattern E2(θ, ϕ).

As mentioned earlier, the interpretation of Eq. (2.119) as a linear
convolution is an approximation. Suppose that the elevation angle ϕ is fixed, and
consider only the variation in azimuth angle θ. Because the integration is over a
full 2π radians and the integrand is periodic in θ with period 2π, the integration
over azimuth is a circular convolution of periodic functions.

This would not appear to be the case if instead θ is fixed and ϕ varies
because the integrand is over a range of only π radians. However, one could
equally well replace Eq. (2.119) as



(2.120)
 

For fixed azimuth, this is now a circular convolution of periodic functions
in elevation. Taken together, the two integrals over the angular variables
implement a two-dimensional weighting and averaging over the (θ, ϕ) space. So
long as the antenna beamwidths are small compared to 2π, this circular
convolution will closely approximate a linear convolution in the vicinity of (θ,
ϕ).

Figure 2.26 illustrates intuitively in one angle dimension the process
described by Eq. (2.119). Assume that the elevation angle is fixed at ϕ = 0° and
consider only the azimuth variation. An array of ideal point scatterers is
illuminated by a radar that scans in azimuth across the target field. The response
to any one scatterer is maximum when the radar boresight is aimed at that
scatterer; as the radar boresight moves away, the strength of the echo declines
because less energy is directed to the scatterer on transmission, and the antenna
is also less sensitive to echoes from directions other than the boresight on
reception. For an isolated scatterer, the amplitude of the coherent baseband
received signal y(θ, 0; R0) at the receiver output will be proportional to E2(θ,
0). Thus, a graph of the received signal mimics the antenna two-way azimuth
voltage pattern.

 FIGURE 2.26   When scanning past an array of point scatterers, the receiver



output is a superposition of replicas of the antenna pattern.
 

Assuming a linear receiver so that superposition applies, the response to
two closely spaced point scatterers is proportional to two replicas of the
antenna pattern, overlapped and added to get a composite response. If the two
scatterers are close enough together, the individual responses are not resolved,
but instead blur together into a single peak as illustrated in Fig. 2.26. The details
of the combined response depend on the relative phase of the two individual
responses; they may combine in or out of phase, yielding significantly different
composites. However, the separation at which scatterers are consistently
resolved regardless of relative phase clearly depends on the antenna pattern
E2(θ, 0), and in particular on the mainlobe beamwidth.

Because of the approximately linear convolution relation of Eq. (2.119) the
spatial Fourier transform of the observed signal is approximately the input
spatial Fourier transform multiplied by the Fourier transform of the antenna
pattern. Practical antenna patterns have lowpass spectra. Equation (2.121) gives
the ideal two-way azimuth voltage patterns for circular and rectangular
apertures of width D (Balanis, 2005):

(2.121)
 
Figure 2.27 plots these patterns on a decibel scale for the case D = 40λ.

 FIGURE 2.27   Two-way antenna voltage patterns for ideal, uniformly



illuminated circular and rectangular apertures.
 

The corresponding spatial spectra are shown in Fig. 2.28. For the
rectangular aperture, it is a triangle function with a support of twice the aperture
width. The reason is easy to see: the one-way voltage pattern is just the inverse
Fourier transform of the aperture function, which for uniform illumination is a
rectangular pulse of the width of the aperture. When that pattern is squared to get
the two-way pattern, the Fourier transform of the squared pattern is the self-
convolution of the Fourier transform of the unsquared pattern. Thus, the
rectangular aperture function is convolved with itself to give a triangle of twice
the aperture width. The spectrum for the circular aperture has the same width
but is somewhat smoother.

 FIGURE 2.28   Spatial spectra corresponding to the antenna patterns of Fig. 2.27.
 

The spatial spectra of these idealized, but typical, antenna patterns are
lowpass functions. Thus, the upper frequencies in the spatial spectrum of the
observed data will be strongly attenuated and in fact effectively removed. Since
resolution is proportional to bandwidth, Eq. (2.121) and Fig. 2.28 show that the
antenna pattern reduces resolution because it has a strongly lowpass spatial
spectrum.

2.7.3   Variation with Range
A development similar to that in Sec. 2.7.2 can be carried out to specialize Eq.
(2.117) for the variation of received voltage in the range dimension along the
boresight look direction (θ0,ϕ0).10 First, interchange the order of integration in
Eq. (2.114) so that the outer integral is over range. Next, define the new quantity



(2.122)
 

This is the reflectivity variation in range, taking into account the azimuth
and elevation averaging at each range due to the nonideal antenna power pattern.
Note that in the limit as the antenna power pattern tends to the ideal E2(θ, ϕ) →
GδD(θ, ϕ), then , that is, the “angle-averaged” reflectivity
exactly equals the effective reflectivity along the antenna look direction, as
expected.

Applying Eq. (2.122) to Eq. (2.117) leaves (Munson and Visentin, 1989)

(2.123)
 
or an equivalent equation, using time units instead of range units

(2.124)
 
Equation (2.123) or (2.124) shows that the complex voltage at the output of a
coherent receiver versus time for a given antenna look direction is the
convolution in the range dimension of the angle-averaged effective reflectivity
function in that look direction, , with the waveform modulation function
x(t).

2.7.4   Noncoherent Scattering
Equation (2.114) and its approximate form (2.117) assume coherent addition of
individual differential scatterer echoes; that is, the complex amplitude
(magnitude and phase) of the total response is the complex sum of the
differential complex echoes. For distributed area or volume clutter contributing
very large numbers of scatterers with essentially random phases such as rain or
natural ground clutter (grass, trees, water, etc.), it is more useful to model the
scatterer reflectivity as having a random phase with either a random or
nonrandom magnitude. The total received signal is then also a random variable,



and the expected value of the received power becomes of interest.
From Eqs. (2.112) and (2.113), the power of the integrated received

voltage can be written

(2.125)
 
The subscripts “1” and “2” distinguish the spatial variables in the two integrals.

Returning to the expression of the reflectivity distribution ρ(R, θ, ϕ) as the
product of its phase term exp[jψ(R, θ, ϕ)] and its amplitude ζ(R, θ, ϕ), model ψ
as uniformly distributed over (0, 2π] and white in all three spatial variables,
w hi l e ζ may be random or deterministic; if random, it is statistically
independent of ψ. The autocorrelation function of ρ is then sρ (R, θ, ϕ) = |ζ(R, θ,
ϕ)|2 δD(R)δD(θ)δD(ϕ) and the mean received power becomes

(2.126)
 
Again assuming a symmetric antenna pattern, this becomes finally

(2.127)
 

Equation (2.127) is the noncoherent equivalent of (2.117). It shows the
received power in the case of noncoherent scattering to be the 3D convolution
of the squared reflectivity, weighted by R–2, convolved with the two-way
antenna power pattern and the waveform power envelope. Thus, the received
power still obeys a convolutional model, but with differences in the range
dependence. Similar results are developed for weather clutter in Sec. 4.4 of
Doviak and Zrnic (1993).

2.7.5   Projections



The range-averaged reflectivity  of Eq. (2.118) and the angle-averaged
reflectivity  of Eq. (2.122) are examples of projections. In each case,
the three-dimensional reflectivity is reduced in dimension by integrating over
one or more dimensions. The range-averaged reflectivity was reduced to a two-
dimensional function by integrating over range, while the angle-averaged
reflectivity was reduced to a one-dimensional function by integrating over both
angle coordinates.

The idea of projections, particularly the angle-averaged projection 
, will be important in deriving the polar format spotlight SAR

algorithm in Chap. 8. The projections that will be needed are integrals over
straight lines or planar surfaces. The averaging in Eq. (2.122) is over the
surface of a sphere. However, for small beamwidths only a region of θ3 radians
in azimuth and ϕ3 radians in elevation contributes significantly to the integral,
and at long ranges this limited region is nearly planar.

2.7.6   Multipath
The convolutional model of the measured range profile is based on the
assumption of superposition of backscattered fields and a one-to-one mapping
of echo arrival time to range, t → R = ct/2. The superposition of electric fields
is a valid assumption, but the mapping of time to range may not be. To illustrate,
consider Fig. 2.29, which diagrams two phenomena that violate this assumption.
Figure 2.29a illustrates the problem of multipath, in which echoes from the
same target arrive at the radar receiver via two different paths. The first is the
direct path of total length 2R0. The second is the “multipath” or “ground bounce”
path with length R0 + R1 + R2 > 2R0. Though not shown, it is also possible for a
portion of the transmitted wave to arrive at the target via the ground bounce and
be scattered back along both paths, meaning that there may also be an echo with
a time delay corresponding to a two-way path length of 2(R0 + R1 + R2).
Consequently, one scatterer may produce echoes at three different apparent
ranges if multipath is present. Whether these appear as distinct echoes depends
on the relationship between the path length difference and the pulse length. The
ground bounce echoes are often, but not always, significantly attenuated with
respect to the direct path echo. The degree of attenuation depends on the bistatic
scattering characteristics of the surface, the antenna pattern characteristics
(because the multipath bounce is not on the peak of the mainlobe) and the
problem geometry. As the range between target and radar varies, the path length
difference also varies, so that the direct and multipath bounces may alternately
add in and out of phase, provided the path length difference is such that the two
received echoes overlap. Multipath is generally most significant for targets
located at low altitude over a good reflecting surface such as a relatively
smooth terrain or calm ocean and at long range, so that the grazing angles
involved are small.



 FIGURE 2.29   Illustration of two scattering phenomena which violate the one-to-
one mapping of time to range: (a) multipath, (b) multiple bounce.
 

Figure 2.29b illustrates the effect of multiple bounce echoes in a situation
involving two scatterers. A portion of the energy reflected from the more distant
scatterer bounces off the nearer scatterer, then reflects a second time off the
distant scatterer and returns to the radar. Obviously additional multiple bounces
are also possible. For the situation sketched, three apparent echoes will again
result, with the third due to a phantom scatterer 2ΔR behind the second actual
scatterer. As with multipath, the amplitude of multiple bounce echoes often falls
off rapidly, and the same considerations of in- and out-of-phase superposition
apply.

These possible differences in the measured and actual reflectivity
distributions do not mean that range profile measurements are not useful. They
do mean that in situations where significant multipath or multiple bounce
phenomena are possible, the range profiles must be interpreted with care.

2.8   Spectral Model
There is one more interpretation of the received radar signal that proves useful
in subsequent chapters. The preceding two sections have emphasized linear
filtering models of the spatial reflectivity distribution as observed through the
received complex baseband signals. However, it was pointed out previously
that radar cross section is a function of, among many other things, the radar
frequency. Thus, it is useful to investigate the significance of the radar



transmitted frequency Ft on the reflectivity measurements.
To understand the role of transmitted frequency, it is necessary to deal with

the radar signal while it is still at the radar frequency Ft. If the development
from Eq. (2.110) to Eq. (2.124) is repeated without demodulating the signals to
baseband and the range variation is considered, the RF version of Eq. (2.124)
can be obtained:

(2.128)
 
Now consider the Fourier transform of  with respect to the time (range)
variable t. Using simple properties of Fourier transforms gives

(2.129)
 
Figure 2.30 provides a pictorial interpretation of this equation under the
assumption that the transmitted waveform x(t) is a narrowband waveform. In
this case,

 FIGURE 2.30   Pictorial interpretation of Eq. (2.130), illustrating the spectral
sampling effect of a narrowband radar pulse.
 

(2.130)



 
so that the amplitude of the spectrum of the received pulse, and therefore of the
pulse itself, is proportional to the amplitude of the spectrum of the angle
averaged range profile, evaluated at the transmitted frequency. Since it is the
complex spectrum that appears in Eq. (2.124), both the amplitude and phase of
the returned pulse are affected by the amplitude and phase of the reflectivity
spectral sample. Equation (2.130) shows that a narrowband radar pulse can be
interpreted as measuring a frequency sample of the spectrum of the angle-
averaged reflectivity range variation.

Another case of interest occurs when x(t) is a wideband pulse of
bandwidth β Hz. For some waveforms such as the linear frequency-modulated
pulse, the magnitude of the spectrum X(F) is approximately a rectangle as shown
i n Fig. 2.31. The spectrum of the receiver waveform  is then
approximately that of the angle-averaged range profile over the bandwidth of the
pulse, modified by the phase of the pulse spectrum:

 FIGURE 2.31   Pictorial interpretation of Eq. (2.131) illustrating the spectral
windowing effect of a wideband radar pulse.
 

(2.131)
 
In other words, the pulse spectrum acts as a window selecting a portion of the
spectrum of the angle-averaged reflectivity. This result will be useful in
understanding the use of linear FM and other modulated waveforms to achieve
fine range resolution in Chap. 4.

2.9   Summary
An understanding of the nature of the signals of interest is prerequisite to the
design of successful signal processing systems. This chapter reviews the most



common signal models used in designing and analyzing radar signal processors.
It has been seen that multiple views of the radar echo are used: its variation in
amplitude, space, time, and frequency, and deterministic and statistical
interpretations of these variations.

Radar signal modeling traditionally focuses most strongly on amplitude
models, that is, on radar cross section. RCS is viewed as a deterministic
quantity, predictable in principle through the use of Maxwell’s equations if the
scattering is modeled accurately enough. The radar range equation in its many
forms (only a very small subset of which has been introduced here) is the radar
engineer’s most fundamental tool for estimating received signal amplitude or,
conversely, determining required system characteristics such as transmitted
power or antenna gain.

The radar system is a measuring instrument, used to observe the variation
of RCS in space. Its pulse function (modulation and carrier term) and antenna
power pattern determine its measurement characteristics, which in turn
determine the achievable resolution and required sampling rates. The effect of
the radar measurement system on the spatial variation of observed RCS is well
modeled by the convolution of the combined pulse-and-antenna pattern
measurement kernel with the three-dimensional reflectivity function. This
important observation means that the tools of linear systems analysis can be
brought to bear to help analyze and understand the performance of radar
systems. The carrier frequency, in combination with any Doppler shifts,
determines what portion of the reflectivity frequency spectrum is sampled by the
pulse. This observation reinforces the need for frequency domain analyses of
radar measurements. Linear systems and frequency domain viewpoints are
relied on heavily throughout the remainder of the book.

Even though RCS is a deterministic quantity, its sensitivity to radar
frequency, aspect angle, and range coupled with the complexity of typical
targets results in very complex behavior of observed amplitude measurements.
Statistical models are used to describe this complexity. A variety of statistical
models, comprising both probability density functions and correlation
properties, have gained acceptance for various scenarios and form the basis for
much analysis, particularly in calculations of probabilities of detection and false
alarm, two of the most important radar performance measures.
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Problems
  1.  Find the received power Pr expected from a radar and target having the

following parameters: RF frequency = 95 GHz (W band), transmitted
power = 100 W, antenna beamwidth = 2º in azimuth and 5º in elevation,
system losses = 5 dB, target range = 3 km, target RCS = 20 m2. Use Fig.



1.3 and assume operation near sea level to estimate atmospheric losses.
What is the ratio in decibels of the received power to the transmitted
power?

  2.  By how many dB will the received power be reduced (not the absolute
power received, but the reduction in power) in problem 1 if the weather
changes from clear to a heavy rain of 25 mm/h? Estimate the needed
parameters from Fig. 1.4.

  3.  Suppose the parameters of a radar are such that the power of the echo from
a particular target is just detectable at a range of 50 miles. If the target RCS
is reduced by 10 dB, what will be the new detection range? By how many
dB must the RCS be reduced to reduce the detection range to 5 miles?

  4.  According to the Smithsonian Air and Space Museum, the RCS of a B-52
bomber is about 1000 m2, while that of a B-2 stealth bomber is 10–6 m2. If a
given radar system could detect the B-52 at a range of 100 km, at what
range could the same radar system detect the B-2 stealth bomber? Assume
that atmospheric losses are negligible. If the B-2 flies at 550 mph, how
much warning time would the radar give?

  5.  The example around Eq. (2.12) in the text calculated a received power Pr =
3.07 × 10–9 W at a range of 10 km. If the radar noise figure is 10 dB and the
receiver noise equivalent bandwidth is 10 MHz, what is the expected
signal-to-noise ratio in dB for the same target and range? Assume the
receiver is at the standard temperature T0 = 290 K.

  6.  Consider a “millimeter wave (MMW) seeker,” which is a small radar
typically used on a small missile. The RF frequency is 95 GHz and the 3
dB beamwidth is 1º in both azimuth and elevation. The range resolution ΔR
is 5 m. The grazing angle of the antenna beam with respect to the ground is
20º, and the slant range to the ground, i.e., along the line of sight of the
antenna, is 5 km. The terrain has a reflectivity of σ0 = –10 dB. Is the range
resolution of this system beam limited or pulse limited? What is the
approximate area of the resolution cell on the ground? What is the total
RCS σ of the resolution cell?

  7.  A radar is attempting to detect a point target in the presence of ground
clutter. The parameters of the radar and its environment are such that the
SNR at a range of R = 10 km is 30 dB, while the clutter-to-noise ratio
(CNR) at the same range is 20 dB. The detection performance at this range
is “clutter limited” because the clutter is the dominant interference.
Assuming pulse-limited clutter interference, at what range will the SNR
and CNR be equal? Equivalently, at what range will the signal-to-clutter
ratio (SCR) equal 1 (0 dB)?

  8.  Consider the WSR-88D “NEXRAD” weather radar used by the U.S.



National Weather Service. It is an S-band (3 GHz) system with elevation
and azimuth beamwidths of 0.88º and pulse length in its “short pulse” mode
of τ = 1.57 ms. Suppose the radar measures the RCS in a region of a rain
storm 50 km away as σ = 20 m2. Assume the simplified model of the
resolution cell volume used to get Eq. (2.25), namely ΔV = (ΔR)(Rθ3)(Rϕ3)
= ΔR · R2θ3ϕ3. What are the range, azimuth, and elevation resolutions, and
the resolution cell volume ΔV? What is the volume reflectivity η? Using
Eq. (2.44), compute the value of the meteorological reflectivity factor Z in
mm6/m3. Using Table 2.2, how hard is it raining? Note: The value of Z that
results from Eq. (2.44) will be in m6/m3 = m3 if wavelength is in meters.
Convert this to units of mm6/m3 by multiplying by 1018 before converting to
a decibel scale to get dBZ.

  9.  In terms of wavelengths, by how much must the range between the radar and
a scatterer change in order for the received echo phase to change by 180°?
How far is this at RF frequencies of 1 GHz (L band), 10 GHz (X band),
and 95 GHz (MMW band)?

10.  The fourth degree chi-square PDF used to model the case of one dominant
scatterer with many small scatterers is an approximation to the exact model
for this case, which is the non-central chi-square PDF of degree 2. Both
PDFs are listed in Table 2.3 along with the formulas for their variances.
Show that when they both have the same mean , their variances will also
be the same if the non-central chi-square parameter .

11.  Suppose a target was modeled as consisting of one large scatterer and many
small ones, but that the ratio a2 of the large scatterer RCS to the sum of the
small scatterer RCS values is 1 (instead of  as assumed by the fourth-
degree chi-square model). Assuming the means of the two distributions are
the same, what degree 2m should be chosen for the chi-square so as to
match the variance of the non-central chi-square of degree 2 (See Table
2.3.) Repeat for a2 = 10. Note: m does not have to be an integer.

12.  Part of the significance of choosing the probability density function used to
model target RCS (or clutter or other interference) is that the differences in
the “tails” of the PDF can have a significant impact on the probability of
observing relatively large signal values, sometimes called signal “spikes.”
Recall that the probability that a random variable x described by a PDF
px(x) exceeds some value T is given by

 
        Consider a set of RCS data with a mean value (linear scale) of 1.0.

Compute the probability that the RCS σ is greater than 2 when an



exponential PDF is a good model for the RCS statistics, and again when a
fourth-degree chi-square is a good model for the statistics. What is the
ratio of the exponential PDF value to the chi-square PDF value? Repeat for
σ > 10.

13.  A ground-based airport surveillance radar has an antenna that rotates at 10
rpm (revolutions per minute). The 3-dB azimuth bandwidth of the antenna
is 3º. Assume the PRF is chosen to give an unambiguous range of 150 km.
How many pulses will be transmitted during the time a given target is
within the antenna mainbeam during a single rotation? (This is the number
of “hits” the radar gets on the target on each rotation.)

14.  Consider a complex target with dimensions of 2 m by 4 m. What is the
maximum change in aspect angle needed to decorrelate the target RCS,
assuming the radar frequency remains fixed at F = 3 GHz? Repeat for F =
35 GHz.

15.  For the same target considered in the previous problem, what is the
maximum frequency step needed to decorrelate the target RCS, regardless
of radar-target aspect angle?

16.  A stationary, fixed-frequency radar collects several CPIs of data, each
consisting of several pulses, from a stationary complex target. What is an
appropriate correlation model for this data within a CPI? What is the
appropriate model from one CPI to the next? Justify the answers.

17.  Consider a radar at a fixed height above the ground of h m, with the
boresight intercepting the ground at a slant range of R m. Show that in this
scenario, the constant-gamma model for σ0 given by Eq. (2.64) implies that
the received clutter power will be proportional to R–2 if the clutter echo is
beam-limited. What will be the proportionality if σ0 is independent of
grazing angle?

18.  Use the GTRI clutter model of Eq. (2.65) with λ = 3 cm and the X-band
data in Table 2.6 to compute and plot or sketch on a single graph the
variation in σ0 in dBsm for grass, trees, and urban clutter as the grazing
angle δ varies from 10° to 70°. Assume σh = 10λ.

19.  Show that the GTRI model predicts that σ0 becomes independent of surface
roughness when σh  10λ.

20.  Consider the four radar system parameters of antenna azimuth plane size,
antenna elevation plane size, transmitter power, and pulse length. Which of
these affect the signal-to-clutter ratio (SCR) in a beam-limited area clutter
scenario? Repeat for a pulse-limited area clutter scenario. Justify the
answers.

21.  Use the Billingsley clutter model to estimate the time lag required for the



AC term only of the clutter to decorrelate to 10 percent of its power
(maximum correlation value) for wind speeds of 5, 15, and 25 mph.
Assume F0 = 1 GHz. Repeat for 10 GHz.

22.  At the standard temperature of T0 = 290 K, at what frequency in hertz does
Sn(F) of Eq. (2.76) fall to 3 dB below its value at F = 0 Hz? It may be
necessary to find the answer numerically, but a small number of terms in
the series approximation to the exponential can be used to develop a good
initial estimate.

23.  What is the effective noise temperature in kelvins for a system with a noise
figure of 3 dB? Repeat for 6 dB and 10 dB.

24.  Consider an aircraft that has a radial velocity of Mach 2 (about 660 m/s)
away from a stationary L-band (1 GHz) radar. What is the difference in the
magnitude of the Doppler shift calculated from Eq. (2.93) and the
approximation resulting from Eq. (2.97)? Note: On some calculators, the
difference may be too small for the calculator precision. If this is the case,
try using MATLAB® or a similar computational system to calculate the
difference; use format long in MATLAB® to display more decimal
places than the default. The difference can also be estimated by
considering the largest term dropped from the series expansion [Eq.
(2.95)].

25.  Suppose two aircraft are flying straight and level at the same altitude. At a
particular instant one is traveling due north at 100 m/s, while the other is
flying directly at the first but in the southwesterly direction. What is the
radial velocity between the two aircraft at that instant? What is the Doppler
shift in hertz, including the sign, at that instant?

26.  A stationary radar with a rotating antenna (typical of an airport approach
radar, for instance) observes an aircraft moving through its airspace in a
straight line at a speed of 200 mph. The aircraft approaches from the east,
flies directly in front of the radar, and continues to the west. Sketch the
general behavior of the radial velocity of the target relative to the radar as
it flies from east to west through the airspace. Label significant values.

27.  Derive an expression for the maximum radial velocity of a constant-radial
velocity target such that the total range migration in a CPI of M pulses
collected with a PRI of T seconds is less than the range resolution cτ/2.
The answer will be in terms of M, T, and τ. What is this velocity for a
relatively long (for Doppler processing purposes) CPI of 30 pulses at T =
1 ms and a pulse length of 10 μs?

28.  In Eqs. (2.100) to (2.104) the time-varying range between a moving radar
and a stationary target was computed. A series expansion was used to
approximate the range as a quadratic function (specifically, a parabola),



and then the instantaneous Doppler shift was shown to be a linear function
of time. What kind of conic section curve describes the range variation if
the approximation to the square root is not made? Derive the formula for
the instantaneous Doppler shift in this case.

29.  Consider again the series approximation to range referred to in the previous
problem. Find the maximum absolute value of t such that the magnitude of
the dropped fourth-order term in t in the series approximation [see Eq.
(2.101)] is less than 10 percent of the magnitude of the retained second-
order term. (This condition is a limit on the amount of data that can be
collected while still using the approximation to the range.) Give the
numerical value of the maximum allowable t when v = 100 m/s and R0 = 10
km.

30.  Suppose the reflectivity distribution ρ(θ, ϕ, R) consists of a single isolated
point scatterer at coordinates (θt, ϕt, Rt), i.e., ρ(θ, ϕ, R) = ρtδD(θ – θt)δD(ϕ –
ϕt)δD(R – Rt). Determine y(θ0, ϕ0, R0) of Eq. (2.114). What determines the
shape of this function in the azimuth (θ) dimension for fixed ϕ and t?
Repeat for the elevation and fast time dimensions with the other two
variables fixed.

31.  The first zero of the function J1(x) occurs at x ≈ 3.8317. What is the ratio of
the Rayleigh azimuth beamwidth of a circular aperture of diameter D with
uniform illumination to the azimuth beamwidth of a rectangular antenna of
the same width D, also with uniform illumination? Figure 2.27 can be used
as an approximate check on the result.

32.  Consider a scatterer at elevation h above the ground plane, and an incoming
EM plane wave at a grazing angle of δ radians. What is the difference in
path lengths between the “single bounce” direct reflection (path #1 in the
adjoining figure) and the “double bounce” multipath reflection (path #2), as
a function of δ and h? If h = 50 m and the radar slant range resolution is ΔR
= 20 m, will the double-bounce echo appear in the same range bin as the
single-bounce echo?

 
33.  Continuing with the previous problem, assume the range bin spacing is

greater than the path length difference so that both echoes combine in a



single range bin. Develop a formula for the phase difference between the
two echoes in terms of δ, h, and the wavelength λ. If the amplitudes of the
direct and double-bounce reflections are the same (very unlikely), at what
values of h will there be a maximum total signal amplitude? At what values
of h will there be a null in the signal amplitude?

34.  δR in the figure below is the maximum path length difference between a
constantrange path of length R over an integration angle θ and a straight-
line path of equal range R at the center of the integration angle. Find the
maximum integration angle θ such that δR ≤ λ/8. The answer will depend
on R. A path length difference of this amount would lead to an echo phase
change of –4πδR/λ = –π/2 radians, often used as an upper bound on the
tolerable phase error in various calculations.

 

_____________
1 This ignores earth curvature effects that are significant in very long range or spaceborne radars. See
Nathanson (1991) or Skolnik (2001) for additional details.
2 A form of rain that occurs when moist air is lifted over an obstacle such as a mountain range, cooling as it
rises and condensing into rainfall.
3 RCS also varies similarly with angle over the full 3D sphere, not just in a 2D plane.
4 An unfortunate tendency in radar terminology is to use the name of the PDF of amplitude when actually
discussing the PDF of power. The most common example is to refer to a “Rayleigh RCS” target, or some
similar term. A target with an exponential PDF for RCS is almost certainly meant when this occurs. Caution
is advised to be certain as to whether a given PDF models amplitude or power.
5 Because the power P of a real sinusoid is related to its amplitude A according to P = A2/2 instead of just P
= A2 as with a complex sinusoid, some authors present a slightly different form for the voltage distributions.
6 The autocorrelation function for any one many-scatterer target can vary significantly from the results
predicted by this analysis and the average shapes seen in Fig. 2.13; the expected value of the
autocorrelation must be estimated by averaging over many similar targets.
7 It is probably more common to define a constant-velocity target so that positive v corresponds to
increasing range, but the preference here is to define v so that a positive v gives a positive Doppler shift.



8 Movement of a target across multiple range bins during the series of pulses due to high rates of radar-
target motion is known as range migration. It is much more common in imaging radar due to their much
longer observation times, and so is discussed in Chap. 8.
9 The results in this section must be modified for an electronically scanned antenna, for which the antenna
pattern is a function of the scan angles.
10 The analysis can be carried out equally easily for an off-boresight look direction. The only difference is to
substitute an antenna gain value other than the peak gain G.



CHAPTER 3
Pulsed Radar Data Acquisition

 

As has been seen, radar measures the spatial distribution of reflectivity in the
three-dimensional spherical coordinate system of range, azimuth angle, and
elevation angle. Pulsed radars do this by emitting a series of individual pulses
and recording the received voltage as a function of time, equivalent to range.
Modern pulsed radars use coherent receivers so that the measured voltage is
complex valued. They also record and process the data digitally. As with any
digital data acquisition system, the selection of sampling rates and quantization
strategies are crucial design decisions, affecting signal fidelity, resolution,
aliasing, and noise properties, as well as processor memory and computational
requirements.

3.1   Acquiring and Organizing Pulsed Radar Data

3.1.1   One Pulse: Fast Time
Suppose a radar transmits a single pulse of length τ seconds. The leading edge
of the pulse is emitted at time t = 0. As discussed in Chap. 2, the echo power at
the receiver due to clutter and targets will decay with range or time, typically at
rates between R–1 and R–4, while the noise power generated within the receiver
will be constant. Figure 3.1 is a notional illustration of this behavior. Depending
on the goals of the particular radar mode of operation, the radar will measure
the received power over some interval in range, say from R1 to R2. The interval
R2 – R1 is called the range swath or the range window Rw. The range to the
beginning of the range swath, R1, may be influenced by a number of factors. For
example, for an airborne downlooking radar it might equal the altitude of the
radar, since no clutter echoes could occur at a shorter range. In a ground
imaging mode, it would likely be determined by the range to the nearest edge of
the antenna mainbeam. Similarly, the end of the range swath, R2, might be set in
different radars by the far edge of the mainbeam on the ground, or by the
maximum expected detection range for targets of interest. Another constraint on
R2 is the unambiguous range, to be discussed shortly.



 FIGURE 3.1   Signal level versus range, and range swath or window Rw.
 

In a monostatic radar, the radar receiver must be isolated from the antenna
during pulse transmission so as to avoid damaging the sensitive receiver circuits
with leakage of the high-power transmitted signal. Consequently, the receiver is
off for the first τ seconds after pulse transmission begins, so the minimum range
from which a full echo can be received is Rmin = cτ/2 m. In practice, Rmin may be
somewhat larger to allow for the finite switching time needed to reconnect the
receiver to the antenna after pulse transmission, and in some environments to
protect against particularly strong near-in clutter. Any clutter or target scatterer
closer to the radar than Rmin will produce an echo that arrives in part during the
initial τ seconds after transmission. That portion of the pulse echo will therefore
not be seen at the receiver. A pulse that is not received in whole or part because
it arrives during the time the receiver is isolated is said to be eclipsed.

The received signal is demodulated using a coherent receiver as described
in Chap. 1. The resulting complex-valued baseband signal is sampled at a high
rate, typically in the range of hundreds of kilohertz to a few tens of megahertz
and sometimes higher. To implement the desired range swath, sampling begins
at time t1 = 2R1/c after pulse transmission and ends at time t2 + τ = 2R2/c + τ.
The additional τ seconds at the end of the sampling period are needed to capture
the end of the echo of the pulse from the far edge of the swath. The resulting
samples are stored in a digital memory as shown in Fig. 3.2a, where each cube
represents a single baseband sample. A set of L samples from a single
transmitted pulse are referred to as range bins, range gates, range cells, or
fast-time samples.1 The phases of these complex samples are the fast-time
phase history of the pulse echo data.



 FIGURE 3.2   Organization of received data: (a) vector of fast-time samples for
one pulse, (b) matrix of fast-time/slow-time samples for one CPI.
 

How rapidly should one sample the echo from a single received pulse, i.e.,
what should the spacing of the range bins be? The Nyquist theorem states that
the sampling rate Fs should equal or exceed the bandwidth of the received signal
(see App. B). In Chap. 2 it was shown that the received signal in the range
dimension can be modeled as the convolution of the range reflectivity function
and the modulation function x(t) of the transmitted waveform. The spectrum of
the received signal is thus the product of the spectra of the range reflectivity
function and the modulation function. This means that the bandwidth of the
received fast-time signal will be limited by the bandwidth of the transmitted
pulse. Therefore, the Nyquist rate in fast time is simply the bandwidth of the
transmitted pulse.

As shown in App. B, the spectrum of the simple complex exponential pulse
of frequency F0 Hz is a sinc function in the frequency domain centered at F0 Hz.
This spectrum is not strictly bandlimited; however, the 3-dB bandwidth β3 is
0.89/τ Hz, both the Rayleigh bandwidth βr and 4 dB bandwidth β4 are 1/τ Hz,
and the null-to-null bandwidth βnn is 2/τ Hz. These approximate bandwidth
measures are shown in Fig. 3.3 with F0 = 0 for convenience.



 FIGURE 3.3   Four definitions of bandwidth for the spectrum of a simple
rectangular pulse of duration τ.
 

Since the sinc spectrum is decidedly not bandlimited, a Nyquist bandwidth
cannot be unambiguously defined for the simple pulse. An approximate
bandwidth can be defined as the two-sided frequency interval beyond which the
spectrum amplitude is “insignificant,” but this approach is not very useful in this
case because of the slow decay of the sinc function. For example, a criterion of
40 dB reduction in the spectrum from its peak gives an approximate Nyquist
bandwidth of about 66 times the 3-dB bandwidth. In radar, 3-dB bandwidths are
commonly used; thus “the bandwidth” of the simple pulse is often defined to be
β3 = 0.89/τ Hz. More conservative definitions use the Rayleigh bandwidth of 1/τ
Hz and the null-to-null bandwidth βnn = 2/τ Hz, which encompass 78 percent and
91 percent of the total spectrum energy, respectively. The Rayleigh bandwidth
βr is used here to estimate appropriate range sampling rates, i.e., the sampling
rate Fs = βr, so the sampling interval in fast time is Ts = 1/Fs = 1/βr. The
corresponding range bin spacing is

(3.1)
 

In practice, the fast time signal is often sampled at some margin above the
Nyquist rate. This compensates both for the transition band of receiver
antialiasing filters and for some of the non-bandlimited nature of common pulse
waveforms. Sampling rate margins of 20 to 50 percent are common.

It will be seen in Chap. 4 that pulses are often phase modulated in order to
increase their bandwidth. The pulse spectrum is then no longer a sinc function.



In fact, many phase modulated pulses are designed to have a spectrum that is
approximately constant magnitude (but with complicated phase characteristics)
over some desired bandwidth β, where β is much larger than the simple pulse
bandwidth of approximately 1/τ. Thus, an idealized model of the spectrum of the
ideal received phase-modulated radar pulse after translation to baseband is

(3.2)
 
where Φ(F) is some phase function. Figure 3.4 shows an example, the
magnitude spectrum of a linear frequency-modulated or “chirp” waveform with
a time-bandwidth product of 100; this waveform is studied in Chap. 4. On the
normalized frequency scale shown, the spectrum is approximately rectangular
with support f ∈(– 0.5, + 0.5), corresponding to ±β/2 Hz. This case offers a
relatively unambiguous definition of the bandwidth of the pulse (namely, β Hz),
making application of the Nyquist criterion to range sampling straightforward.

 FIGURE 3.4   Magnitude of the Fourier transform of a linear FM “chirp”
waveform having a time-bandwidth product of 100.
 

3.1.2   Multiple Pulses: Slow Time and the CPI
The radar transmits not just a single pulse, but a periodic series of pulses. In
some cases (e.g., a rotating weather or surveillance radar), the pulse series may
be continuously ongoing, but in many cases it is organized into groups of M



pulses. The time between pulses is denoted as the pulse repetition interval
(PRI) or inter-pulse period (IPP) and denoted as T. Its inverse is the pulse
repetition frequency  (PRF).2 The PRF may range from a few hundred pulses
per second (also called, casually, hertz) to tens and sometimes a few hundreds
of kilohertz.

The vectors of L fast-time samples collected for each of the M pulses are
typically organized into a two-dimensional matrix y[l, m] as shown in Fig. 3.2b.
The pulse number dimension is called the slow time axis. The time required to
collect this data is simply MT seconds. If a coherent series of pulses was used
that time is called the coherent processing interval (CPI). The term CPI is used
to refer both to the matrix of data and the time required to collect it. While there
are exceptions, a CPI of data is usually collected using a constant PRI, constant
radar frequency (RF), and the same pulse waveform for all pulses in the CPI.

Although the data for a single CPI is collected by columns (pulses), once it
is stored in memory it may be accessed in any fashion. In Fig. 3.2b the fourth
range bin for each pulse is shaded gray. This row of samples in the data matrix
is the slow-time signal for that range bin. These samples represent the echo
received after the same delay from the time of transmission for successive
pulses. Assuming the antenna boresight is not moving significantly from pulse to
pulse, these samples represent the reflectivity from the same range and angle,
i.e., the same region in three-dimensional space, measured with a sampling
interval equal to the pulse repetition interval PRI. The slow-time sampling
frequency is therefore the PRF.

How should the PRF be chosen? The PRF affects, and is affected by, many
aspects of the radar and environment. As was seen in the discussion of spatial
Doppler in Chap. 2, the slow-time phase history reflects the Doppler
components in the received signal. One criterion for choosing the PRF is to
avoid aliasing of the spectrum replicas so as to preserve the information in the
Doppler spectrum for subsequent processing such as pulse Doppler target
detection or synthetic aperture imaging. Thus, the Nyquist requirement in slow
time is that the PRF be at least as large as the slow-time signal bandwidth.

A nonzero Doppler bandwidth results from two sources: intrinsic motion
of the scatterers in the area being measured, and motion of the radar platform. If
the area being measured is a target in the conventional sense of a man-made
vehicle or object, its intrinsic motion is simply the motion of the vehicle.3 If it is
clutter, then intrinsic motion can be due to wind blowing the leaves of trees or
blades of grass, waves on the ocean, falling and swirling rain, air-conditioning
fans on tops of buildings, and so forth. For instance, the Doppler power
spectrum corner frequencies in Table 2.7 imply an intrinsic Doppler spread on
the order of 0.5 to 1.0 m/s for rain at X band. The intrinsic Doppler spread of
moving man-made objects can be much larger. Consider an urban clutter scene
where a stationary radar observes automobile traffic with a maximum speed of
55 mph both toward and away from the radar. The radar therefore sees targets



with a velocity spread of 110 mph, or about 50 m/s. For a more extreme
example, consider a moving radar installed on one of two subsonic (200 m/s)
jet aircraft flying in opposite directions. As they approach, the closing rate is
400 m/s; once they pass, they separate at 400 m/s. The change in velocities
observed by the radar on one of the aircraft over time is 800 m/s.

A moving radar can also induce a spread in the Doppler bandwidth of
stationary objects in the beam. This is most relevant in air-to-ground radars.
Figure 3.5 illustrates in two dimensions an approach to estimating the Doppler
bandwidth of a patch of terrain induced by radar platform motion. The 3-dB
radar beamwidth is θ3 radians. Recall from Chap. 2 that the Doppler shift for a
radar moving at velocity v with its boresight squinted ψ radians off the velocity
vector is

 FIGURE 3.5   Geometry for estimating the Doppler bandwidth component due to
radar platform motion.
 

(3.3)
 
Now consider three point scatterers P1, P2, and P3, each at the same range from
the radar. P1 and P3 are at the 3-dB edges of the antenna beam, while P2 is on
boresight. Because all three are at the same range, the received echo at a delay
corresponding to that range is the superposition of the echoes from all three
scatterers. However, each is at a slightly different angle with respect to the
aircraft velocity vector. P2 is on the boresight at the squint angle of ψ, but P1
and P3 are at ψ ± θ3/2 radians. The difference in the Doppler shift of the echoes
from P1 and P3 is then



(3.4)
 
Many radar antenna beamwidths are small, typically less than 5°. Applying a
small angle approximation to the sin(θ3/2) term in Eq. (3.4) gives a simple
expression for Doppler bandwidth due to platform motion

(3.5)
 

As can be seen from Fig. 3.5, Eq. (3.4) or (3.5) assumes the radar is
squinted sufficiently that the main beam does not include the velocity vector, that
is, | ψ | > θ3/2. If the radar is forward looking or nearly so, then the cos(ψ – θ3/2)
term in Eq. (3.4), which represents the largest Doppler shift in the mainbeam, is
replaced by 1. A more complete expression for the platform motion-induced
Doppler bandwidth is therefore

(3.6)
 
For example, an L band (1 GHz) side-looking (ψ = 90°) radar with a beamwidth
of 3° traveling at 100 m/s will induce βD ≈ 35 Hz, while an X band (10 GHz)
side-looking radar with a 1° beam flying at 200 m/s will induce βD ≈ 233 Hz.
The same two radars in a forward-looking configuration induce negligible
Doppler bandwidths of only 0.9 Hz and 0.5 Hz, respectively. Thus, while
absolute Doppler shift due to platform motion is highest for a forward-looking
system, the Doppler bandwidth spread is highest for a side-looking system.

In the previous example, the radar was viewing a patch of ground and the
Doppler bandwidth observed by a stationary radar would be 0 Hz. The nonzero
Doppler bandwidth βD is entirely due to the motion of the observing radar, not
to the characteristics of the target scene itself. The total Doppler bandwidth
observed is approximately the sum of the bandwidth induced by platform motion
[Eq. (3.6)] and the intrinsic bandwidth of the scene being measured. The PRF
should be chosen equal to or greater than this value if possible to meet the
Nyquist sampling criterion for the slow-time signal.

Although the Doppler spectrum of the illuminated terrain is both shifted



according to Eq. (3.3) and broadened according to Eq. (3.6) by relative motion
between the terrain and platform, the shift in center frequency is not relevant to
selection of the PRF; only the bandwidth determines the Nyquist rate. Also, note
that antenna patterns are not strictly limited in angular extent, and therefore the
motion-induced Doppler spectrum is not strictly bandlimited to the value based
on the 3-dB bandwidth given in Eq. (3.6). Nonetheless, Eq. (3.6) provides a
good basis for estimating motion-induced bandwidth.

3.1.3   Doppler and Range Ambiguities
For any sampled time signal, the sampling frequency determines the aliasing
interval of the DTFT of that signal. The DTFT of the slow-time signal in a given
range bin is the Doppler spectrum. The PRF is the slow-time sampling rate and
therefore determines the aliasing interval of the Doppler spectrum. For reasons
to be seen in Chap. 5, this interval is called the blind Doppler shift, denoted
FDb. The equivalent radial velocity interval is called the blind velocity vb. They
are given by

(3.7)
 
Because the Doppler or radial velocity spectrum is usually plotted on the
interval [–FDb/2, + FDb/2) or [–vb/2, + vb/2), the quantities FDb/2 and vb/2 are
sometimes called the unambiguous Doppler or velocity, FDua or vua. Care must
be taken to determine if a stated value refers to the full unambiguous interval FDb
or vb, or to the frequency (velocity) cutoff point ± FDua or ±vua.

Because the Doppler spectrum measured with a pulse burst waveform is
periodic in frequency, targets having a Doppler shift FD (radial velocity v)
outside of the unambiguous Doppler or radial velocity interval will be aliased
into that interval. The apparent (aliased) Doppler shift FDa or radial velocity va
will satisfy

(3.8)
 
where the integer n is chosen such that FDa and va fall in the unambiguous
interval.

As a numerical example, consider a 10-GHz radar viewing a target with a
radial velocity v of +100 m/s. The Doppler shift will be FD = 6.67 kHz. If the
radar collects a CPI of data using a PRF of 3 kHz and obtains the Doppler



spectrum via a DTFT of the slow time signal in the appropriate range bin, the
blind Doppler and velocity intervals are FDb = 3 kHz and vb = 45 m/s,
respectively. The unambiguous Doppler shift and velocity are then 1.5 kHz and
22.5 m/s. The DTFT will be interpreted as covering [–1.5, +1.5) kHz and [–
22.5, +22.5) m/s. The target’s Doppler shift and velocity are outside of these
intervals and will therefore be aliased into them. With n = 2 in Eq. (3.8), it is
seen that the apparent Doppler and velocity are FDa = 0.67 kHz and va = +10
m/s.

The PRF also sets a limit on the range swath. In particular, the maximum
range from which the end of the echo of one pulse can be received before the
next pulse is transmitted is the unambiguous range Rua. It must satisfy 2Rua/c + τ
< T, so

(3.9)
 
The approximation in the second line applies when T  τ and is often cited as
the definition of Rua. The far edge of the sampled range swath (R2 in Fig. 3.1)
must be limited to Rua m or less so the full pulse echo from a scatterer at R2 is
received before the next pulse is transmitted.

In general, it is desirable to be able to choose the PRF to provide the
desired unambiguous range and Doppler bandwidth simultaneously. However,
unambiguous range increases with decreasing PRF, while the blind Doppler
interval increases with increasing PRF. Equations (3.7) and (3.9) can be
combined to make this explicit:

(3.10)
 
Because the right-hand side of either version of Eq. (3.10) is a constant for a
given RF, increasing Rua requires decreasing FDb or vb. As a result, in many
situations it is not possible to simultaneously obtain the desired unambiguous
velocity interval and unambiguous range with a single PRF.

To illustrate the effect of the PRF on range measurements more fully,
consider the idealized signals of Fig. 3.6a. In the first line, a pulse is transmitted
at time t = 0. It is assumed that there are two targets present at ranges R1 and R2,
and that the PRF is such that the unambiguous range falls between these two.
The target echoes occur 2R1/c and 2R2/c seconds after transmission, as shown.
Now suppose a second pulse is transmitted at a PRI T = 2Rua/c. Assume τ  T



so that the approximation Rua ≈ cT/2 from Eq. (3.9) can be used for simplicity.
The same target echo profile is repeated, simply delayed by T seconds as shown
on the second line. The next line continues this behavior for a third pulse and
any subsequent pulses.

 FIGURE 3.6   Illustration of range ambiguous target returns: (a) pattern of
received data for three pulses, (b) total received signal.
 

Figure 3.6b shows the resulting total return observed by the radar. In the
first PRI (0 < t < T), only one target echo is observed because target #2 is past
the unambiguous range. In the second PRI (T < t < 2T) two target echoes are
observed: target #1 from pulse #2, and target #2 from pulse #1. This pattern
repeats in the third and subsequent PRIs until the pulse train ends. If the radar
receives detectable echoes from ranges up to N times the unambiguous range,
the pattern of returns observed after each pulse will reach steady state in the Nth
PRI. In Fig. 3.6, it reaches steady state in the second PRI.

Once steady state is achieved, each pulse appears to result in two
detections at the apparent ranges R1a and R2a as shown in Fig. 3.6b. For target
#1, the apparent range is the actual range. However, target #2 was beyond Rua
and so aliases to the apparent range R2a = R2 – Rua. In general, if the radar is
sensitive enough to detect targets beyond the unambiguous range for a given
PRF, the apparent ranges will be ambiguous. In particular, given a detection at
an apparent range Ra, the target’s actual range could be any value R0 that
satisfies



(3.11)
 
and is within the plausible maximum detection range of the radar. Note that n =
0 for target #1 and n = 1 for target #2 in the example of Fig. 3.6. Techniques to
deal with range and Doppler ambiguities are discussed in Chap. 5.

Figure 3.7 illustrates the structure of the CPI of data that would result from
this example. Suppose the unambiguous range corresponds to seven range bins.4

Assume the ranges to targets #1 and #2 correspond to the sixth and eleventh
range bins. During PRI #1, only the first target is detected, so the first fast-time
column of data has only one detection in range bin #6. Target #2 will alias to
range bin 11– 7 = 4, so the second and subsequent pulses will show detections
in range bins #4 and #6.

 FIGURE 3.7   Steady-state range ambiguous return for the scenario of Fig. 3.6.
 

This example also illustrates the existence of a start-up transient in
processing when the returns are range ambiguous. If the scenario and PRF are
such that targets can be detected at ranges of at least (N–1)Rua but no further than
NRua (N = 2 in the example), the received signal will not achieve steady state
until the Nth PRI (second PRI in this example).

Range aliasing also affects clutter returns. If the clutter echo power is
above the receiver noise levels at ranges exceeding Rua, the clutter echoes will
also fold over, so that the clutter competing with targets in the steady state may
actually be the combined clutter of several range ambiguity intervals. Also like
targets, the clutter level versus range in a given PRI will not reach steady state
until multiple pulses have been transmitted if the clutter is range ambiguous. If
the clutter reaches steady state in the Nth PRI, the first N – 1 pulses are often
called clutter fill pulses. Processing of this nonstationary data generally gives
degraded results; it is often better to discard the data from the clutter fill pulses



and use only the data received after steady state is achieved. Conversely, if it is
desired to have a certain number of steady state PRIs for subsequent processing,
the number of pulses is often augmented by the necessary number of clutter fill
pulses.

It is tempting to conclude that range ambiguities could be resolved by
observing whether or not a target detection appears in all of the pulses. A target
detection missing from the first n pulses in a CPI suggests that the actual range is
the apparent range plus n times the unambiguous range. This idea will work if
detection algorithms are applied to the fast time data for each pulse separately
and the SNR is high enough that the probability of missed detections is small.
However, it is rare to use a CPI of data in this manner. More commonly, the
SNR of the single-pulse data is not adequate for reliable detection so that it is
not known whether the target is absent in the first n pulses. Instead, the slow
time data will be coherently or noncoherently integrated in order to obtain an
adequate SNR.

In addition to creating the possibility of range ambiguities, the use of
multiple pulses also aggravates the eclipsing phenomenon. A target at any
integer multiple of the range Rua ≈ cT/2, corresponding to time delays that are
integer multiples of the PRI T, will produce an echo that arrives as the next
pulse is being transmitted. During this interval, the receiver will again be
isolated, so the target echo will be eclipsed. Targets at other time delays within
the interval (nT – τ, nT + τ) for any integer n will be partially eclipsed. Thus,
the pulse burst creates a series of blind zones in range or time delay. Targets in
these blind zones will be difficult or impossible to detect, even when they have
adequate SNR. Techniques to overcome this limitation are discussed in Chap. 5.

3.1.4   Multiple Channels: The Datacube
Some radars, but by no means all, have antennas that provide multiple
simultaneous outputs. The most obvious example is a system using a phased
array antenna with multiple subarrays, each having its own receiver, or even
with one receiver per array element in some cases. Each receiver will generate
a matrix of data like that of Fig. 3.2b for every pulse burst. The complete set of
data y[l, m, n] from all N channels is called a datacube and is illustrated in Fig.
3.8. The third dimension is often referred to as the receiver channel or phase
center dimension. Another type of system that generates a datacube uses a
monopulse antenna, common in some types of tracking radars. A monopulse
antenna has three output channels and so generates a datacube having N = 3
layers. Radar data is often explicitly organized in the processor memory in a
datacube format, i.e., as a three-dimensional structure of complex-valued data.



 FIGURE 3.8   Datacube illustrating one CPI of data from a multichannel pulsed
radar.
 

How large is a datacube? The number of samples in each dimension are
determined by the characteristics of the desired radar measurements. The
number L of range samples is simply the length of the range swath divided by
the range bin spacing, L = Rw/ΔRs. The swath length is determined by mission
requirements, while the range bin spacing is determined primarily by the
waveform bandwidth as seen in Eq. (3.1). Both may vary significantly for the
same radar as it switches between various operating modes with different
search ranges and range resolutions.

One important determinant of the number of pulses M in a CPI is the
desired Doppler resolution (equivalently, velocity resolution). The Doppler
spectrum is the DTFT of the slow-time data. The duration of the slow-time
signal is the CPI length of MT seconds. The Doppler resolution will therefore
be on the order of ΔFD = 1/MT,5 giving the required number of pulses as M =
1/ΔFDT = PRF/ΔFD. Thus, M depends on the PRF as well as the Doppler
resolution, and can vary widely. In pulse-Doppler processing for basic target
detection and tracking, M is frequently a small number of tens of pulses.
However, in fine-resolution imaging it can be hundreds or even thousands of
pulses.

For a multichannel receiver, the number N of channels is more difficult to
characterize. A phased array antenna with a receiver per element may have
hundreds or thousands of phase centers, each constituting a receiver channel. A
subarrayed architecture may have many fewer, perhaps ranging from as little as
three or four to a few tens. A monopulse antenna has three phase centers. The
antenna type, size, and architecture all significantly influence N.

The datacube view of a CPI of data from a multichannel pulsed radar
provides a good conceptual model for understanding most digital radar signal
processing operations. Many of the basic radar signal processing operations
considered in the remainder of this text correspond to processing one-



dimensional subvectors or two-dimensional submatrices of the datacube in
various dimensions. Figure 3.9 illustrates these relationships. The particular
operations depicted are discussed in upcoming chapters. For example, pulse
compression (see Chap. 4) is implemented as a one-dimensional convolution on
a single vector in the fast-time (range) dimension. Pulse compression can be
performed independently on each such range vector for every pulse and receiver
channel.

 FIGURE 3.9   Correspondence between key radar signal processing functions
and operations on the radar datacube.
 

3.1.5   Dwells
A dwell, sometimes also called the time on target, is another term for a radar
data collection interval. Like the term CPI, a dwell can refer both to a time
interval and to the data collected within that time. It is defined in the IEEE
standard for radar definitions as “a data acquisition interval during which the
data is usually processed together for detection or measurement” (IEEE, 2008).
Consider a rotating radar like that shown in Fig. 2.15a and imagine that the
beamwidth is 3° and the antenna scans at a rate of 60° per second. A point target
would be in the beam for 50 ms during each scan. If the radar has a PRF of 2000
pulses per second, a target would be illuminated with 100 pulses during the
traversal of the mainbeam. Since it is known that the echo of a target, if present,
would be present in 100 successive pulses, it might be sensible to integrate 100
pulses at a time for SNR improvement before performing a detection test. In this
scenario, the dwell time would be the full 50 ms. If only 50 pulses at a time
were integrated, the dwell time would be considered to be 25 ms.

The idea of a dwell is not limited to mechanically scanning radars.
Consider a pulsed Doppler radar with an electronically scanned antenna pointed



in some particular direction. The radar emits a CPI of data consisting of 20
pulses at a 2-kHz PRF. The CPI is then 10 ms. Suppose the radar collects three
such CPIs while illuminating the same region, with 50 ms from the start of one
CPI to the start of the next. The total data collection time of 110 ms from the
beginning of the first CPI to the end of the third would be the dwell time for the
radar in that look direction.

The terms “dwell” and “CPI” are sometimes used synonymously, but the
preceding example illustrates that they are not the same. For a coherent radar
that organizes its data into CPIs, a dwell can correspond to one or more CPIs.
For rotating and similar mechanically scanned radars, a dwell is usually the
time it takes to scan across a point target.

3.2   Sampling the Doppler Spectrum
Selecting a value for the pulse repetition frequency determines the sampling rate
for the slow-time signal. The frequency spectrum of the slow-time signal is
traditionally called the Doppler spectrum, because the nonzero frequency
components are due to the spatial Doppler effect arising from the relative
motion between the radar and target scene. Doppler processing, which is the
analysis or modification of the information about the target scene contained in
the Doppler spectrum, will be the subject of Chap. 5. Doppler processing will
sometimes be performed directly in the slow-time domain, that is, directly on
the time signal represented by a row of y[l, m]; but frequently the spectrum of
each row will be explicitly calculated. In a digital processor, this must be done
with a discrete Fourier transform (DFT) or other discrete spectral analysis
technique. In this section, it is assumed that the spectrum is computed using
conventional DFT techniques; no nonlinear spectral estimation methods or other
alternatives are considered. The question then arises as to how closely
successive samples of the computed Doppler spectrum should be spaced, i.e.,
what should be the Doppler sampling interval?

3.2.1   The Nyquist Rate in Doppler
The Nyquist criterion concept can be applied to sampling in frequency as well
as the more usual application to sampling in time. The result will be a frequency
sampling rate that is dependent on a “bandwidth” in the time domain.

The Nyquist sampling rate in the frequency domain can be determined by
reviewing the relation between the sampled Doppler spectrum and the slow-
time signal. Let a single finite duration slow-time signal (one row of y[l, m]) be
denoted as ys[m], 0 ≤ m ≤ M – 1. The DTFT of ys[m] is (Oppenheim and
Schafer, 2010)



(3.12)
 
Ys(ω) is a function of a continuous frequency variable, despite the fact that the
signal ys[m] is discrete. Furthermore, it is periodic in ω with period 2π radians
per sample.

Consider the K-point discrete spectrum Ys[k] formed by sampling Ys(ω) at
K evenly spaced points along the interval [0, 2π),

(3.13)
 
Interpret Ys[k] as a K-point DFT. To find the relation between it and the original
signal ys[m], compute its inverse DFT:

(3.14)
 
The inner sum can be evaluated as

(3.15)
 
where δ [·] is the discrete-time unit impulse function.6 Substituting Eq. (3.15)
back in Eq. (3.14) gives

(3.16)
 
Although a finite length signal ys[m] was assumed in the previous analysis, the
result also holds for infinite-length signals.

Equation (3.16) shows that, in the dual of time domain sampling behavior,
sampling the frequency spectrum replicates the signal in the time domain with a
period proportional to the frequency sampling rate. Specifically, if the slow-
time signal spectrum is computed at K frequency points, the time domain signal



obtained by an inverse DFT of those frequency samples is the original slow-
time signal replicated at intervals of K samples. Recall that ys[m] is confined to
the interval [0, M – 1]. If K ≥ M, ys[m – qK] = 0 in the interval of interest [0, K–
1] for all q ≠ 0, so that ŷs[m] = ys[m]. This is the usual case where the DFT size
is at least as long as the data sequence size.

The Nyquist rate for sampling in the frequency dimension is now apparent.
I f K ≥ M the original slow-time signal ys[m] is not aliased by the frequency
domain sampling operation. Consequently, it can be recovered from the
replicated signal ŷs[m] implied by the sampled spectrum by simply excising the
principal period m ∈ [0, K – 1]. This is the equivalent of the lowpass filter
required to reconstruct a sampled time-domain signal; the time and frequency
domains have simply been reversed in this discussion of sampling in the
frequency domain.

Since K ≥ M, the frequency domain sampling interval ωs must satisfy

(3.17)
 
The corresponding Nyquist sampling rate in the frequency domain is 7

(3.18)
 
Thus, the width of the signal’s region of support (i.e., its length or “bandwidth”)
in the time domain of M samples plays the same role for sampling in frequency
as does the width of a signal’s region of support in frequency (its actual
bandwidth) for sampling in time.

In some systems the number of Doppler samples computed is less than the
number of data samples available, i.e., K < M. This can occur if only a limited
number of spectrum samples are required by the system design. In early digital
radar processors, it was more likely motivated by the difficulty of implementing
a larger DFT at radar data rates, a problem mostly obviated by computing
advances enabled by Moore’s law. One way to compute a K-point DFT from an
M-point sequence when K < M is to simply retain only K data samples and
compute their K-point DFT. This is not desirable when there are M > K samples
available for two reasons. First, the DTFT of the K samples used is not the same
as that of the full M-point sequence, so the DFT will give us samples of a
reduced-resolution DTFT. Second, by not using all M available samples, the
signal-to-noise ratio (SNR) of the calculated spectrum is reduced because only
K samples instead of all M available samples are coherently integrated by the
DFT. It is rarely a good idea to discard measured data if the highest possible
measurement quality is desired.

If the Doppler spectrum samples are still to be equal to samples of the



DTFT of ys[m] in this case, Eqs. (3.13) to (3.16) imply that it is necessary to
form a new, reduced-length K-point sequence s[m] from the slow-time data
sequence ys[m] by aliasing it according to Eq. (3.16). This operation, depicted
pictorially in Fig. 3.10, is sometimes called data turning. It maximizes the SNR
of the Doppler spectrum samples by using all of the available samples, and is in
fact used in some older operational radars.

 FIGURE 3.10   Illustration of the “zero padding” and “data turning” operations:
(a) original 12-point data sequence, (b) zero-padded to 16 points for use in a
16-point DFT, (c) data turning to create an aliased 8-point sequence shown in
(d) for use in an 8-point DFT.
 

3.2.2   Straddle Loss
The previous section established the Nyquist sampling rate in Doppler
frequency. When actually computing the sampled spectrum, whether by the DFT
or other means, one would like to be confident that the sampled spectrum
captures all of the important features of the underlying DTFT. For example, if
the DTFT exhibits significant peaks, it is hoped that one of the spectral samples
will fall on or very near that peak so that the sampled spectrum captures this
feature.

An appropriate signal model to consider this issue is a pure complex
sinusoid, corresponding for example to a target moving at constant velocity
relative to the radar over the observation interval and therefore exhibiting a
constant Doppler shift. Thus, the slow-time signal ys[m] is modeled as



(3.19)
 
where ωD is the Doppler frequency shift in normalized radian frequency units.
The DTFT of ys[m] is

(3.20)
 
That is, Ys(ω) is a so-called digital sinc, aliased sinc (asinc), or Dirichlet
function, circularly shifted in the frequency domain so that its peak occurs at ω =
ωD. An example is shown in Fig. 3.11 for the case ωD = π/2 (corresponding to fD
= ωD / 2π = 0.25) and M = 20. Significant features of this DTFT include the
peak amplitude and frequency, the mainlobe bandwidth, and the sidelobe
structure. In particular, the M-point DTFT of a pure complex sinusoid of
amplitude A has a peak value of MA, with the peak sidelobe about 13.2 dB
below the peak. The 3-dB width of the mainlobe in normalized frequency units
i s β3 = 0.89/M cycles per sample, the Rayleigh width is βr = 1/M cycles per
sample, and the null-to-null mainlobe width is βnn = 2/M cycles per sample.
These metrics are illustrated in Fig. 3.11.

 FIGURE 3.11   The magnitude of the DTFT of a sampled pure complex sinusoid
of 20 samples length, normalized frequency 0.25 cycles per sample, and
amplitude 1.
 

The DFT computes per samples of this spectrum at normalized frequencies
2πk/K rads/sample. Figure 3.12 shows the result when K = M and the sinusoid



frequency exactly equals one of the DFT frequencies, that is, ωD = 2πk0/K for
some k0 (k0 = 5 and K = 20 in this example, corresponding to ωD = π/2 rads per
sample). One DFT sample falls on the peak of the asinc function, while all of
the others fall on its zeroes, so that the DFT becomes an impulse function. This
could be viewed as an ideal measurement, since the discrete spectrum indicates
a single sinusoid at the correct frequency and nothing else; but it does not reveal
the mainlobe width or sidelobe structure of the underlying DTFT.

 FIGURE 3.12   The 20-point DFT of a sampled pure complex sinusoid of 20
samples length, normalized frequency 0.25 cycles per sample, and amplitude 1.
The dotted line shows the underlying DTFT of the same data from Fig. 3.11.
 

More importantly, the good result of Fig. 3.12 depends critically on the
actual sinusoid frequency exactly matching one of the DFT sample frequencies.
If this is not the case, the DFT samples will fall somewhere on the asinc
function other than the peak and zeros. Figure 3.13 shows the result when the
example of Figs. 3.11 and 3.12 is modified by changing the normalized
frequency from 0.25 to 0.275 (equivalently, changing ωD to 0.55π), exactly
halfway between two DFT sample frequencies. Now a pair of DFT samples
straddle the actual underlying peak of the asinc function, while the other samples
fall near the sidelobe peaks. Even though the underlying asinc function is
identical in shape in both cases, differing only by a half-bin shift on the
frequency axis, the effect on the apparent spectrum measured by the DFT is
dramatic: a broadened and attenuated mainlobe, and the appearance of
significant sidelobes where before there apparently were none.



 FIGURE 3.13   Same as Fig. 3.12 except for a frequency shift of the sinusoid by
one-half DFT bin to a normalized frequency of 0.275 cycles per sample.
 

Because the DFT sample frequencies straddle the true peak of the
underlying DTFT, the apparent peak amplitude of the spectrum in Fig. 3.13 is
about 13, whereas the peak amplitude of the underlying DTFT (and thus of the
DFT in Fig. 3.12) is 20. This reduction in measured peak signal amplitude is
called a straddle loss (because the samples straddle the true peak location).8

One obvious way to reduce straddle loss is to sample the Doppler
frequency axis more densely, i.e., to choose the number of spectrum samples K
> M. The resulting samples are more closely spaced so that the maximum
amount by which a sample frequency can miss the peak frequency of the DTFT
is reduced, thus reducing the straddle loss. Figure 3.14 continues the example of
Fig. 3.13, but with the sampling density doubled to 2M samples per Doppler
spectrum period (40 samples in this case), and then to 12.8M samples per
spectrum period (256 samples). Increasing the sample density causes the
apparent spectrum measured by the DFT to begin to resemble the underlying
asinc of the DTFT even at as little as 2M samples per period. At 12.8M
samples per spectrum period, the DFT gives an excellent representation of the
details of the underlying DTFT.



 FIGURE 3.14   Continuation of the example of Fig. 3.13: (a) 40-point DFT of the
20-point sinusoid of normalized frequency 0.275, (b) 256-point DFT of the
same sequence.
 

The off-peak sampling loss (straddle loss) for a sinusoidal signal can be
limited to a specified value, at least for this idealized signal, by appropriate
choice of the spectrum sampling rate K. For example, the loss can be limited to
3 dB or less by choosing K such that the interval 2π/Κ between samples does
not exceed the 3 dB width of the asinc function. The 3-dB width can be found by
considering just the magnitude of Eq. (3.20) with ω = 0 for convenience. The
peak value of the asinc function is MA, thus it is necessary to find the value ω3
o f ω such that the asinc function has the value . This is best done
numerically. The answer is a strong function of M for small M but rapidly
approaches an asymptotic value of ω3 = 2.79/M for M ≥ 10. It follows that the 3
dB width of the asinc function is Δω = 5.58/M radians.

The sampling interval for a rate of K samples per period is 2π/Κ radians.
Equating this to the 3-dB width and solving gives the sampling rate required to
limit off-peak sampling attenuation to 3 dB in the Doppler spectrum in terms of
the Nyquist rate of M samples per Doppler spectrum period,

(3.21)
 
which is 13 percent higher than the Nyquist sampling rate in Doppler. If the off-
peak sampling loss is to be kept significantly less than 3 dB, the Doppler
spectrum must be oversampled still more.

The analysis leading to Eq. (3.21) can be repeated for any specified level
of tolerable straddle loss. Figure 3.15 shows the worst-case straddle loss as a
function of the oversampling factor κ (i.e., K = κ M) for the case M = 100. Both
undersampled (κ < 1) and oversampled (κ > 1) cases are shown. The loss is



somewhat less for very short duration sequences (M < 10) but varies little for
larger M.

 FIGURE 3.15   Maximum off-peak Doppler spectrum sampling loss for a
sinusoidal slow-time signal sampled at κ M samples per Doppler spectrum
period.
 

3.3   Sampling in the Spatial and Angle Dimensions
As discussed earlier, two distinct types of spatial sampling are of concern in a
radar system. One type concerns the design of phased array antennas. A phased
array samples the incoming wavefront at the individual array element locations.
Thus, the spacing of these elements must be chosen to adequately sample the
wavefront for any incidence angle. The second concerns beam steering.
Mechanically or electronically steered antennas can change the pointing
direction of their antenna beam. As the beam is scanned to search or map a
region in space, a decision must be made as to how far it is permissible to scan
before another pulse (or burst of pulses) must be emitted by the radar so that the
external environment is adequately sampled. The next two subsections address
these questions.

3.3.1   Spatial Array Sampling
Chapter 1 introduced the concept of spatial frequency and wavenumber.
Consider a uniform linear array with element spacing d, as shown in Fig. 3.16.
The wavenumber (spatial radian frequency) of an RF signal with wavelength λ
impinging on the array antenna from a direction of arrival θ radians off the
normal to the array, as shown in the figure, is



 FIGURE 3.16   Geometry of a uniform linear array antenna.
 

(3.22)
 
The equivalent spatial frequency in cyclical units is just

(3.23)
 
The angle of arrival θ can vary between –90° and +90°, so the spatial frequency
bandwidth becomes

(3.24)
 
It follows immediately by the Nyquist criterion that the required spatial
sampling interval is

(3.25)
 
Thus, the elements of the array should be spaced no more than λ/2 meters apart
to avoid aliasing of spatial frequencies.9

Many practical arrays, particularly large wideband systems, employ more
complicated architectures effectively having two spatial sampling intervals. The
complete antenna array is broken into a relatively small number of subarrays,
each of which is populated with elements obeying the Nyquist spacing of Eq.
(3.25). Since the multielement subarrays are necessarily separated by multiples



o f d, they contribute a term to the complete antenna pattern that does exhibit
spatial aliasing. As a result, the overall antenna pattern can exhibit aliasing in
some circumstances, depending on whether phase or time delay steering is used
for individual elements and across subarrays, the steering direction of the array,
and the bandwidth of the radar waveform. An introduction to these issues is
given in Bailey (2010).

3.3.2   Sampling in Angle
Consider a steerable or scanning antenna, whether mechanically steered
(typically a parabolic dish or slotted flat-plate array, and others) or
electronically steered (phased array), with a 3-dB beamwidth θ3 radians. Each
pulse transmitted samples the reflectivity of the environment in the direction in
which the antenna is pointed. If a region in angular (elevation and azimuth)
space is to be searched, the question arises: how densely in angle must the
space be sampled? That is, how much can the antenna be steered before another
pulse should be transmitted? Smaller angular sampling intervals provide a
better representation of the search volume, but also require more pulses and
therefore more time to search a given volume. Since the antenna voltage pattern
suppresses returns more than about ± θ3/2 radians from the antenna boresight,
one intuitively expects that to adequately sample the reflectivity of the scene
scanned by the antenna, it will be necessary to make a new measurement every
time it scans by some angle on the order of θ3. The Nyquist criterion can be
applied to this spatial sampling problem to quantify this expectation.

It was seen in Chap. 2 [Eq. (2.119)] that the observed reflectivity in angle
for a constant range is the convolution of the range-averaged reflectivity with
the two-way antenna voltage pattern. An equivalent expression in just one angle
dimension for simplicity, say azimuth, is

(3.26)
 
where y(θ; R0) is the complex coherent receiver output as a function of azimuth
angle θ at range R0,  is the range-averaged reflectivity evaluated at range
R0 and E2(θ) is the two-way voltage pattern in the angular dimension θ. It
follows that the Fourier transform in the angle dimension of y is the product of
the Fourier transforms of the antenna pattern and the range-averaged reflectivity.

Taking the pattern of the ideal rectangular aperture as representative, it
was seen in Chap. 1 that the two-way antenna voltage pattern is



(3.27)
 
Defining s = sinθ and α = D/λ, Eq. (3.27) can be rewritten as

(3.28)
 
which is a sinc-squared function. It follows immediately that its Fourier
transform is a triangle function in the normalized variable (x/λ), where x is the
spatial dimension of the antenna aperture (Bracewell, 1999). This function is
illustrated in Fig. 3.17.

 FIGURE 3.17   Fourier transform of the two-way antenna voltage pattern for an
ideal rectangular antenna aperture with uniform illumination.
 

Because the Fourier transform of the antenna pattern has a width of 2α, the
Nyquist sampling interval in s must be

(3.29)
 
Recall that s = sinθ. To convert Ts into a sampling interval in θ, consider the
differential ds = cosθ dθ, so that dθ = ds/cosθ. Thus, a small interval Ts in s
corresponds approximately to an interval Tθ = Ts/cosθ in θ. The minimum value
for Tθ occurs when θ = 0 so that Tθ = Ts. Thus, the sampling interval in angle
becomes (using α = D/λ for the second step)

(3.30)
 
This is the Nyquist sampling interval in angle for a rectangular aperture of size
D with uniform illumination.

As a final step, this result can be expressed in terms of 3-dB beamwidths.



The 3-dB beam-width of an aperture antenna is of the form (Balanis, 2005)

(3.31)
 
For the uniformly illuminated case, k = 0.89. Combining Eqs. (3.30) and (3.31)
gives

(3.32)
 
Fo r k = 0.89, this gives a Nyquist sampling rate of 0.56 times the 3-dB
beamwidth, or 1.8 samples per 3-dB beamwidth. In practice, many systems
sample in angle at approximately one sample per 3-dB beamwidth. The search
space is then undersampled in angle, at least according to the Nyquist criterion.

While derived for the uniformly illuminated aperture, these results apply to
all aperture antennas. For a finite aperture of size D, different antenna patterns
(for instance, with lower sidelobes at the expense of a wider mainlobe) are
obtained by changing the aperture illumination function, typically by tapering it
in a manner similar to windowing operations in signal processing. The Fourier
transform of these antenna power patterns will still be the autocorrelation of the
corresponding illumination function. Since the illumination function still has
finite support, its autocorrelation will still be limited to a width of 2α in s, as
shown in Fig. 3.17; only the detailed shape of the function will change. Thus,
Eq. (3.32) applies for any finite aperture antenna. The difference is that the
factor k will be different for different illumination functions. Lower sidelobe
antennas will have values of k in the range of approximately 1.4 to 2.0, giving
corresponding Nyquist sampling rates on the order of 2.8 to four samples per 3-
dB beamwidth for low sidelobe antennas.

For a rotating radar, the angular sampling rate of Eq. (3.31) implies a
lower bound on PRF. Suppose the rate of rotation is Ω 0 radians per second. In
order that successive pulses be transmitted in directions differing by no more
than the Tθ of (3.31), the PRI and PRF must satisfy

(3.33)
 

Equations (3.33) and (3.9) illustrate a conflict between volume coverage
and search rate in a rotating search radar. For a given antenna design, θ3 and k
are fixed. Then, increasing the sweep rate Ω0 will increase the volume search
rate, but will also require an increased PRF; but a higher PRF reduces the



unambiguous range, reducing the volume that can be searched without
ambiguities.

3.4   I/Q Imbalance and Digital I/Q
In Chap. 1, it was shown that the output of a quadrature receiver given a real-
valued bandpass signal as input is the same as would be obtained by using the
equivalent analytic (one-sided spectrum) complex signal with complex
demodulation by the signal exp(–jΩ0t). In other words, the quadrature receiver
acts to select the upper band of the bandpass signal and shift it to baseband. Any
system that accomplishes this same result can be used to derive the in-phase and
quadrature signals needed for further signal processing.

The quadrature receiver could, in principle, be implemented entirely
digitally. The input signal would be converted to a digital signal after the low-
noise amplifier. The mixing operations would be replaced by multiplications,
and the analog lowpass filters by digital filters. This is not done in practice
because a straightforward implementation would require the A/D converter to
operate at about twice the carrier frequency rather than twice the information
bandwidth of the signal (specifically, 2F0 + β rather than just β samples per
second), a technologically unreasonable requirement. On the other hand, the
conventional analog quadrature receiver also has technological limitations, as
mentioned briefly in Chap. 1. Correct operation assumes that the two channels
are perfectly matched in delay and gain across the frequency band of interest,
there are no DC biases in either channel, and the two reference oscillators are
exactly 90° out of phase. In this section, the effect of I/Q imbalances is
investigated, and then two digital I/Q receiver structures that combat imbalance
errors are described.

3.4.1   I/Q Imbalance and Offset
Figure 1.9 describing the conventional quadrature receiver is repeated below as
Fig. 3.18, but with the addition of an amplitude mismatch factor (1 + ε), a phase
mismatch ϕ, and DC offsets γ and κ in the in-phase (I) and quadrature (Q)
channels, respectively. Take the I channel as the gain and phase reference
without loss of generality, so the gain and phase errors are placed entirely in the
Q (upper) channel. As shown in the figure, the introduction of these errors is
reflected as an undesired gain and phase shift in the Q channel output, along
with the DC offset in each channel. For processing, the I and Q channel outputs
are combined as usual into a single complex signal, x(t) = I(t) + jQ(t). In the
absence of mismatch errors, x(t) = Aexp[jθ(t)]. How are the mismatch errors
manifested in x(t)?



 FIGURE 3.18   Conventional coherent receiver of Fig. 1.9 with amplitude and
phase mismatch errors and DC offsets.
 

Inspection of Fig. 3.18 gives

(3.34)
 
where the time dependence of θ(t) has been dropped to simplify the notation
slightly. Note that the constant α is complex but β is not, and that α = β = 1 in the
absence of gain and phase errors, i.e., if ε = ϕ = 0. Using the identities

(3.35)
 
in Eq. (3.34) and collecting terms of equal amplitude gives

(3.36)
 
Equation (3.36) shows that in the presence of amplitude or phase errors, the
complex signal x(t) will not only contain the desired signal component (with a
slightly modified amplitude) Aexp[jθ(t)], but also an image component with a
different amplitude and a conjugated phase function, as well as a complex DC
term. The image component is an error resulting from the amplitude and phase



mismatches; the DC component is the direct result of the individual channel DC
offsets.

Recall that the phase function exp[jθ(t)] can represent phase modulation of
the radar waveform, the effect of the environment on the waveform (such as a
phase shift due to spatial Doppler), or both. In the case of a spatial Doppler
phase shift, θ (t) on the mth pulse will be of the form ωDm for some normalized
Doppler radian frequency ωD. The image component will then have a phase shift
of the form –ωDm. Thus, over a series of M pulses, the mismatches will give
rise to a false signal at the negative of each actual Doppler frequency component
in addition to the desired signal. Furthermore, the DC component is equivalent
to a false signal at a Doppler shift of zero, i.e., clutter or a stationary target.

As another example, suppose θ (t) represents the intentional quadratic
phase modulation used to construct a linear FM chirp signal, θ (t) = αt2 (see
Chap. 4 for details). Then the image component will have a phase modulation of
–αt2, which represents a linear frequency modulation (FM) signal with a slope
opposite to the transmitted pulse. This signal will not be properly compressed
by the matched filter, instead causing an apparent increase in the noise floor
(Sinsky and Wang, 1974).

To judge the significance of the gain and phase mismatch errors, consider
the ratio Pr of the power in the image component relative to that in the desired
component. From Eq. (3.36), this is

(3.37)
 
Figure 3.19 illustrates the value of Pr as a function of the phase and amplitude
imbalance.



 FIGURE 3.19   Relative power of I/Q mismatch-induced signal image as a
function of amount of phase and amplitude mismatch.
 

It is also useful to consider simplifications of Eq. (3.37) for the cases of
small amplitude mismatch only and small phase mismatch only. First consider
the case of small amplitude mismatch only (ε  1), so that ϕ = 0. Then

(3.38)
 
Amplitude mismatch is often specified in decibels, as is the relative power of
the image signal component. A mismatch of k dB implies that 20 log10(1 + ε) =
k. Substituting this relation in Eq. (3.38) and expressing the result in decibels
gives

(3.39)
 
For example, an amplitude mismatch of 0.1 dB gives rise to an image
component 44.7 dB below the desired component of x(t).

A result similar to Eq. (3.38) holds for the case of small phase mismatch



only, that is, ε = 0 and ϕ  1. In this case Eq. (3.37) reduces to

(3.40)
 
where the second line is obtained using the small angle approximation cos ϕ ≈ 1
– ϕ2/2. Note that ϕ is in radians. The relative power of the image component in
decibels is then

(3.41)
 
As an example, a phase mismatch of 1° gives an image component
approximately 41.2 dB below the desired response.

3.4.2   Correcting I/Q Errors
As shown in Fig. 3.18, the I and Q signals in the presence of mismatch can be
modeled as

(3.42)
 
where the dependence on time t continues to be suppressed to simplify the
notation. The desired in-phase signal I is Acosθ, and in the quadrature channel is
Asinθ. Is it possible to recover the desired outputs from the available
measurements of Eq. (3.42)?

Consider forming a new I′ and Q′ as a linear combination of the measured I
and Q. Specifically, require that I′ = Acosθ and Q′ = Asinθ. Although it is
straightforward to solve the general problem, it is obvious that the DC offsets
should simply be subtracted, and then a linear combination of the zero-offset
data formed

(3.43)
 
By inspection, a11 = 1 and a12 = 0. The remaining equation is



(3.44)
 
Applying a trigonometric identity for sin(θ – ϕ) and equating terms in sinθ and
cosθ on both sides of Eq. (3.44) leads to the following solution for a21 and a22:

(3.45)
 
Using Eq. (3.45) in Eq. (3.43) gives the final transformation required

(3.46)
 

Once the I/Q errors ε, ϕ, γ, and κ are determined, Eq. (3.46) can be used to
compute a new value Q′ for the quadrature channel sample for each measured I-
Q sample pair. The difficulty, of course, is in actually determining the errors;
the correction is then easy. The errors are generally estimated by injecting a
known pilot signal, usually a pure sinusoid, into the receiver and observing the
outputs. Details for one specific technique to estimate gain and phase errors are
given in Churchill et al. (1981); that paper also derives limits to mismatch
correction (and thus to image suppression) caused by noise, which introduces
errors into the estimates of ε and ϕ.

A second method for eliminating I/Q error is based on the idea of
transmitting multiple pulses, stepping the starting phase of each pulse through a
series of evenly spaced values, and then integrating the measured returns. To see
how this technique works, suppose the input signal in Fig. 3.18 is changed to A
sin [Ωt + θ (t) + k(2π/N)] for some fixed integer N and variable integer k; i.e.,
the pulse is one of a series of N pulses, where the initial phase is increased by
2π/N radians on each successive pulse. The extra phase shift propagates to the
output signals

(3.47)
 
for k = 0, 1, …, N – 1. The development leading to Eq. (3.36) can be repeated
to obtain the complex signal for this case, which is (still suppressing the t



dependence of θ)

(3.48)
 

Now coherently integrate the N pulses xk to form a single composite
measurement, applying a counter phase rotation to each to realign their phases:

(3.49)
 
The summations in the middle and last terms of Eq. (3.49) can be evaluated in
closed form to give

(3.50)
 
and

(3.51)
 
so that

(3.52)
 
Thus, as long as at least three pulses are used, the process of rotating the
transmitted phase, compensating the received measurements, and integrating
will suppress both the undesired image component and the DC component!

The algebraic correction technique of Eq. (3.46) is applied to individual
I/Q sample pairs, requiring two real multiplies and three real additions per time
sample (assuming the correction coefficients have been precomputed). The



major advantage of this technique is that it can be applied individually to each
pulse of data. Its major disadvantage is that it requires the transmitter/receiver
control and analog hardware be augmented to allow pilot signal insertion for
determining the correction coefficients. The pilot signal operation is performed
relatively infrequently on the assumption that ε and ϕ vary only slowly.

The phase rotation and integration technique of Eqs. (3.47) to (3.49), in
contrast, requires integration of at least three pulses with the transmitted phase
adjusted for each pulse. Thus, the technique requires both high-speed transmitter
phase control and more time to complete a measurement since multiple pulses
must be collected. The increase in required time implies also an assumption that
the scene being measured does not vary during the time required for the multiple
pulses; decorrelation of the scene degrades the effectiveness of the technique.
This method also places a heavier load on the signal processor, since the
integration requires N complex multiplies and N – 1 complex additions per time
sample, or a total of 4N real multiplies and 4N – 2 real additions, with N ≥ 3.
However, the integration method has one very important advantage: it does not
require knowledge of any of the errors ε, ϕ, γ, and κ. It also has the side benefit
that the integration of multiple pulses increases the signal-to-noise ratio of the
final result x(t). Given these considerations, it is often used in instrumentation
systems at fixed site installations, such as turntable RCS measurement facilities.
In these systems, N is often on the order of 16 to 64, and may even be as high as
65,536 (64K) in some cases.

Note also that Eqs. (3.47) to (3.49) implicitly assume that the phase
modulation θ(t) is the same for each pulse xk(t). If θ(t) represents waveform
modulation (e.g., a linear FM chirp), this will be true; but if θ(t) contains a term
representing environmental phase modulation, for example due to Doppler shift,
then the technique assumes that the appropriate component of θ(t) is the same on
each of the pulses integrated. This is the case for stationary targets (assuming the
radar is also stationary). For constant Doppler targets, the frequency implied by
θ(t) will be the same from pulse to pulse, but the absolute phase will change in
general, so that the target response does not integrate properly. For accelerating
targets, the assumption will fail entirely. The phase rotation and integration
technique is therefore most appropriate for stationary or nearly stationary (over
N PRIs) targets. The algebraic technique does not have this limitation, since it
operates on individual pulses only.

3.4.3   Digital I/Q
Digital I/Q or digital IF is the name given to a collection of techniques that
form the I and Q signals digitally in order to overcome the channel matching
limitations of analog receivers. A number of variations have been described in
the literature. In general, they all share two characteristics. First, they use
analog mixing and filtering to shift the single real-valued input signal to a low
intermediate frequency prior to A/D conversion, greatly relaxing the A/D speed



requirements compared to RF sampling. Furthermore, the intermediate
frequency (IF) is chosen so that required complex multiplications by functions
of the form exp(jω0n) reduce to particularly simple forms. Second, they use a
combination of digital filtering and down sampling to obtain a final output
consisting only of the desired sideband of the original spectrum, sampled at or
near the appropriate Nyquist rate of β complex samples per second. Two
approaches are briefly described here.

The first method, which is particularly elegant, is described in (Rader,
1984.) The RF signal is assumed to have a bandpass spectrum with an
information bandwidth of β Hz. Figure 3.20 is a block diagram of the system,
and Fig. 3.21 sketches the signal spectrum at various points in the system. The
first step is an analog frequency shifting operation that translates this spectrum
to a low IF of β Hz. The bandpass filter rejects the double frequency terms
created by the mixer. The spectrum is therefore bandlimited to ±β/2 Hz, so the
Nyquist rate is 3β samples per second. However, for reasons that will become
clear shortly a higher sampling rate of 4β samples per second is used, giving a
discrete-time signal with the spectrum shown in Fig. 3.21c.

 FIGURE 3.20   Architecture of Rader’s system for digital generation of in-phase
and quadrature signals. (After Rader, 1984.)
 

 



 
FIGURE 3.21   Spectra corresponding to successive signals in the digital I/Q
system of Fig. 3.20. (a) Spectrum of bandpass input signal with information
bandwidth β Hz, (b) result of translation to an IF frequency also equal to β, (c)
one period of spectrum on normalized frequency scale after A/D conversion, (d)
only the upper sideband remains after filtering, (e) a replica of the upper
sideband is centered at DC after decimation. (After Rader, 1984.)
 

Recall that the goal of quadrature demodulation is to select one sideband of
the bandpass signal and translate it to baseband. Assume that the upper sideband
is to be retained. The next step is therefore to filter the real signal  to
eliminate the lower sideband. Since the resulting spectrum will not be
Hermitian, the output signal must be complex; this is shown in Fig. 3.20 as a
one-input, two-output filter. The required frequency response is clear from the
spectrum diagrams in Fig. 3.21; it is



(3.53)
 
This asymmetric filter frequency response corresponds to a complex-valued
impulse response, giving rise to the complex output from the single real input.

While Eq. (3.53) states that the value of H(ω) around DC is unconstrained,
in fact it should be close to zero. The filter will then also suppress any DC
component in the signal (not sketched in Fig. 3.21) that may have been
introduced by nonideal mixing in the first analog frequency translation. Thus,
this digital I/Q architecture also makes it easier to suppress mixer bias terms.
This would not be possible if the spectrum had been translated to the lowest
possible IF frequency, namely β Hz, since there would then be no region of the
spectrum around DC that did not contain signal components of interest.

A particularly efficient design for realizing the filter H(z) as a pair of low-
order recursive filters is based on the mathematics of phase-splitting networks;
details are given in Rader (1984). However, the particular design of the filters
is not central to the architecture of the approach.

The final step is to translate the remaining spectral sideband, centered at
ω0 = π/2, to baseband and to reduce the sampling rate from 4β to the final
Nyquist rate β. This can be accomplished by multiplying the complex filter
output  by the sequence exp(–jπn/2) = (–j)n and then simply discarding three of
every four samples. Because of the special form of the multipliers, the complex
multiplications could be implemented simply with sign changes and
interchanges of real and imaginary parts, rather than with actual complex
multiplications. This is a consequence of having selected the original sampling
rate to be 4β instead of 3β.

However, this multiplication is not shown in Fig. 3.20 because, in fact, it is
not necessary at all. The spectrum of the decimator output y[n] is related to the
spectrum of  according to (Oppenheim and Schafer, 2010)

(3.54)
 
Equation (3.54) states that the decimation process causes the spectrum to
replicate at intervals of π/2 radians. Since the nonzero portion of the spectrum is
bandlimited to π/2 radians, these replications abut but do not alias; furthermore,
since the spectrum prior to decimation is centered at ω = π/2, one of the



replications (k = 3, specifically) is centered at ω = 2π radians. The periodicity
of the spectrum of a discrete-time signal therefore guarantees that there is a
replica centered at ω = 0 as well; this replica is the final desired spectrum.
Thus, the real and imaginary outputs of the decimator are the desired I and Q
signals. Another digital I/Q system that uses the spectrum replicating properties
of decimation to advantage is described in Rice and Wu (1982).

The success of the decimation operation in eliminating the need for a final
complex frequency translation depended on the proper relationship between the
bandwidth and center frequency of the signal, and the decimation factor. This is
the major reason for choosing the IF to be β instead of β/2 (or some other
permissible value), and the sampling frequency as 4β instead of 3β (or some
other value).

Rader’s digital I/Q architecture has reduced the number of analog signal
channels from two to one, making the issues of oscillator quadrature and gain
and phase matching completely moot, while also providing a natural opportunity
to filter out DC biases introduced by the remaining analog mixer. Furthermore,
the two A/D converters required at the output of the conventional quadrature
receiver to enable subsequent digital processing have been reduced to one.
There are two major costs to these improvements. The first is an increase by a
factor of four in the A/D converter speed requirement, from β samples per
second for conventional baseband sampling to 4β samples per second for
Rader’s system; this may be difficult at radar signal bandwidths. The second is
the introduction of the need for high-rate digital filtering, which is
computationally expensive (although Rader’s efficient filter design lessens this
cost).

Figures 3.22 and 3.23 sketch the processor conceptual architecture and the
relevant signals of the second digital I/Q architecture (Shaw and Pohlig, 1995).
In this case, analog frequency translation is used to shift the signal spectrum to a
lower IF than used by Rader, namely 0.625β. The signal is then A/D converted
at a rate of 2.5β samples per second, resulting in the signal  having a
spectrum centered at ω = π/2 as shown in Fig. 3.23. An explicit complex
modulation by exp(+jπn/2) = jn then shifts one of the sidebands, in this case the
lower one, to baseband, resulting in the spectrum shown in Fig. 3.23d. Clearly 

 is complex as a result of this complex modulation.

 FIGURE 3.22   Conceptual architecture of Lincoln Laboratory system for digital



generation of in-phase and quadrature signals. (After Shaw and Pohlig, 1995.)
 

 

 
FIGURE 3.23   Spectra corresponding to successive signals in the digital I/Q
system of Fig. 3.22. (a) Spectrum of bandpass input signal with information
bandwidth of β Hz, (b) result of translation to an IF frequency of 0.625β, (c) one
period of spectrum on normalized frequency scale after A/D conversion, (d)
digital complex modulation centers the lower sideband at DC, (e) only the
lower sideband remains after lowpass filtering, (f) decimation by two reduces
the sampling rate to 1.25β. (After Shaw and Pohlig, 1995.)
 

The next step is to lowpass filter  to remove the upper sideband,
leaving only the baseband portion of the spectrum. A 16-point finite impulse



response (FIR) digital filter is used for this task in Shaw and Pohligh (1995).
Once the lowpass filtering is completed, the spectrum is nonzero only for ω ∈
(–0. 4 π, +0.4π). The sampling rate is then reduced by a factor of two by
discarding every other output sample. The final result is the desired digital I and
Q signals, sampled at a rate of 1.25β samples per second.

As with Rader’s system, the computational complexity is actually reduced
by taking advantage of the properties of decimation and FIR filters. The
decimation is performed immediately after the A/D conversion by splitting the
data into even- and odd-numbered sample streams. The complex modulation by
jn, which implies both sign changes and real/imaginary interchanges, then
reduces only to sign changes on every other sample in each channel, and the 16-
point FIR filters are replaced with 8-point FIR filters in each channel without
any reduction in filtering quality.

A significant advantage of this system over Rader’s is that the A/D
converter must operate at only 2.5 times the signal information bandwidth,
rather than four times the bandwidth. This is an important savings at high radar
bandwidths. There are three disadvantages. The first is that the lower IF and
sampling rate require sharper transitions in the digital filter, therefore increasing
the filter order necessary to achieve a given stopband suppression and thus the
computational complexity of the filter. The second is the requirement for an
explicit multiplication by jn. Although this reduces to switching and sign
changes, it nonetheless represents extra processing. Third, the final sampling
rate exceeds the signal Nyquist rate by 25 percent, whereas in Rader’s system it
equaled the Nyquist rate. This increases the computational load by 25 percent
over the minimum necessary throughout the remainder of the digital processing.
This may not be a problem in practice. Sampling rates are usually set somewhat
above Nyquist rates anyway to provide a margin of safety, since real signals are
never perfectly bandlimited.

Two other details merit mention. It may appear that modulating the
sideband to baseband before filtering eliminates the possibility of using the
digital filter to suppress DC bias errors from the analog mixer. However, that
same modulation will move any DC term contributed by the mixer to ω = π/2,
where it can still be removed by the lowpass filter. Finally, in the Rader system
the I and Q signals were derived from the upper sideband of the original
bandpass signal, while in the Shaw and Pohlig system the lower sideband was
used. Because the original signal was real valued, its spectrum was Hermitian,
and consequently the spectra of the complex outputs of the two systems, say
Y1(ω) and Y2(ω), are related according to Y2(ω) = Y1

* (–ω) so that y2[n] = y1
*[n].

Thus the I outputs of the two systems are (ideally) identical, while the Q outputs
differ in sign. Clearly, either system could be modified to use the opposite
sideband.
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Problems
  1.  Compute the minimum range for a radar using pulse lengths of 1 ns, 1 μs,

and 1 ms.
  2.  A radar transmits a series of 10 μs long pulses at a PRI of 100 μs.

Determine the maximum and minimum target range such that at least a
portion of the echo from one pulse will arrive back at the receiver during
the transmission of the next pulse. Targets in this range interval will be
completely or partially eclipsed. What target range produces a completely
eclipsed echo?

  3.  Suppose a radar has a pulse length of 100 ns. What is the Rayleigh



bandwidth of the pulse spectrum, in Hz? What is the 3 dB bandwidth in
Hz?

  4.  Consider two signals: a square pulse x1(t) of length τ seconds, and a
triangle x2(t) of length 2τ seconds obtained by convolving the square pulse
with itself, x2(t) = x1(t) * x1(t). What is the relationship between the two
spectra X1(F) and X2(F)? Determine the relationship between the 3-dB
bandwidths of X1(F) and X2(F). How does this compare to the relationship
between the Rayleigh bandwidths of X1(F) and X2(F)?

  5.  Consider two RF pulses at frequencies of 5.0 GHz and 5.01 GHz. Assume
two pulses are resolvable in frequency if their center frequencies are
separated by at least the Rayleigh resolution of the individual pulses. What
is the minimum pulse length required so that the two pulses could be
resolved in frequency?

  6.  A finite pulse train waveform is composed of 20 pulses, each of 10 μs
length and separated by a PRI of 1 ms. What is the coherent processing
interval for this waveform?

  7.  Consider an X-band (10 GHz) radar on a aircraft traveling at 100 m/s.
Assume the 3-dB azimuth beamwidth of the antenna is 3°. Compute the
Doppler shift FD of a scatterer on the antenna boresight and the Doppler
bandwidth βD across the beam for squint angles of ψ = 0°, 30°, 60°, and
90°.

  8.  Consider a radar with a PRF of 5 kHz. What is the maximum unambiguous
range, Rua, of this radar in km? If a target is located at a range of 50 miles,
how many pulses will the radar have transmitted before the first echo from
the target arrives? What will be the apparent range of the target in
kilometers?

  9.  Assuming a sidelooking radar (ψ = 90°) and Nyquist sampling in slow
time, determine the relationship between the maximum unambiguous range
Rua and the antenna beamwidth θax. Ignore eclipsing. Using θax ≈ λ/Daz,
determine the relationship between Rua and the antenna azimuth dimension
Daz.

10.  Suppose a target is at a range of 10 km from a C-band (5 GHz) radar and
has a radial velocity of +50 m/s with respect to the radar. Determine
whether the target is ambiguous in range and velocity, and the apparent
range and velocity Ra and va for PRFs of 1, 10, and 100 kHz. The
unambiguous velocity interval is considered to be [–vua/2, +vua/2].

11.  Suppose a C-band (5 GHz) radar has a fast-time sampling rate of 2M
samples per second and a PRF of 5000 pulses per second. A CPI of data is
to be collected that will cover a range interval of 30 km and support
velocity resolution of 10 m/s. What are the dimensions of the data matrix



for one CPI of data?
12.  There is sometimes a concern as to whether a target will stay in the same

range bin while during the time it takes to collect a CPI of data. Sometimes
this is an issue, but often it is not. Using the PRF and number of pulses in
the CPI from the previous problem, what is the total duration of the CPI in
seconds? Consider a target moving at 100 m/s (about 224 mph). How far
does the target move during one CPI, and how does that compare to the
range bin size? What is the minimum target velocity in m/s such that the
target would move more than one range bin in range during the CPI?

13.  Suppose N samples of time-domain data are collected at a sampling rate of
Fs samples per second. The K-point DFT of the data is computed.
Depending on the relative values of K and N, zero padding or data turning
is used as required. Develop a formula for the spacing of the DFT bins in
hertz.

14.  Consider a sequence of 20 slow-time data samples collected at a PRF of 2
kHz. If a 1000-point DFT of this sequence is computed, what is the spacing
between DFT frequency samples in hertz?

15.  Derive a condition on the DFT size K similar to that of Eq. (3.21) for a
maximum straddle loss of 1 dB. The result will depend on the value of M.
Instead of solving the appropriate equations numerically, use the first two
terms of the Taylor series for sin(x) to get a closed-form result. Figure 3.15
can be used as an approximate check on the result for the case M = 100.

16.  Consider a search radar at 1 GHz (L band) with a rotating D = 10 m dish
antenna. Suppose the beamwidth is θ3 = 2º. What is the antenna parameter k
in Eq. (3.31)? What is the Nyquist sampling rate in degrees for this
antenna? If the antenna rotates at a rate of one revolution every 6 seconds,
what is the PRF required to achieve this angular sampling rate?

17.  Compute the relative power ratio Pr in the image component of the output of
an I/Q receiver when there is a simultaneous mismatch of 0.1 dB in gain
and 1º in phase. Express the answer in dB. Use Fig. 3.19 to check the
answer.

18.  Consider a digital I/Q architecture similar to Rader’s. Starting with the
original signal spectrum of Fig. 3.21a, assume that the signal is
demodulated from the original center frequency F0 to an IF of β Hz. What
will be the minimum required sampling rate Fs of the real-valued data?
Assuming this value for Fs and also that the sampling rate is reduced to the
minimum possible without aliasing in the last step, sketch the complete set
of spectra from the original analog spectrum X(F) to the final discrete time
spectrum Y(ω), similar to Fig. 3.21. Also show the required frequency
response H(ω) of the digital filter, assuming the upper sideband is the one



that is retained. Discuss the spectrum recentering step in going from the
equivalent of Fig. 3.21d to the equivalent of Fig. 3.21e: can demodulation
by decimation be used and, if not, why not? If multiplication by complex
exponentials is used, do the multipliers assume a simplified form?
Summarize the pros and cons of this system versus Rader’s system.

_____________
1 The terms resolution bins and resolution cells are also sometimes used synonymously with range bins,
and in many cases are synonymous; but the sampling interval in range does not always equal the range
resolution, so caution should be used in interpreting the latter two terms.
2 In this text, the abbreviations “PRF” and “PRI” are used both as acronyms and as mathematical variables.
When used as an acronym, they are not italicized (PRF, PRI); when used as mathematical variables, they
are italicized (PRF, PRI).
3 Note that the velocity of portions of a vehicle may differ from the nominal velocity of the vehicle as a
whole. The Doppler frequency corresponding to the nominal velocity is frequently termed the skin return.
However, the lug nuts on the wheels on a wheeled vehicle have velocities ranging from zero to twice the
nominal velocity of the vehicle. Some laser radars even attempt to measure the Doppler shifts due to vehicle
vibration. The spectrum of Doppler shifts from different portions of a vehicle is sometimes called a
microDoppler spectrum.
4 Seven range bins is unrealistically few in most situations, but is used here for ease of illustration.
5 The precise value depends on the definition of mainlobe width that is used, and whether or not weighting
for sidelobe control is employed.
6 Not to be confused with the “Dirac delta” impulse function δD(·) used in continuous-time analysis.
7 Using a DFT size K that is strictly greater than the number of time samples M is often referred to as zero
padding. This term is a relic of traditional software for computing the fast Fourier transform, which often
returned the vector of frequency samples in the same variable used to input the time samples. When K > M,
the input vector was “padded” to the required length of K by adding K–M zeros at the end. The term has
nothing to do with the mathematics of the DFT.
8 Straddle loss is also called scallop loss by some authors, e.g., Harris (1978).
9 This same result is often derived in antenna literature by requiring that the antenna pattern not contain
grating lobes, which are replicas of the antenna pattern caused by sampling of the aperture of a phased
array antenna by the elements.



CHAPTER 4
Radar Waveforms

 

4.1   Introduction
A radar transmits a waveform typically modeled as

(4.1)
 
The term Ω in the argument of the sine function is the carrier radar frequency
(RF) in radians per second. The term a(t) represents amplitude modulation of
the RF carrier; in a pulsed radar, this is typically just a rectangular function that
pulses the waveform on and off. The term θ(t) models any phase or frequency
modulation of the carrier. It can be zero, a nonzero constant, or a nontrivial
function. The overbar on  denotes that the signal is on a carrier, i.e., it has not
yet been demodulated. Figure 4.1 illustrates three example waveform types
common in pulsed radar. The simple pulse is simply a constant-amplitude burst
at the RF frequency. The frequency of the linear frequency modulated (LFM)
pulse increases at a constant rate during the time the pulse is on. LFM pulses can
also have decreasing frequency during the pulse. The third example is a binary
phase-coded pulse. In this waveform, the frequency is constant but the absolute
phase of the waveform changes from zero to π radians several times within the
pulse. That is, the value of θ(t) changes between the constants zero and π at
specific times within the pulse.



 FIGURE 4.1   Examples of common pulsed radar waveforms: (a) simple pulse,
(b) linear frequency modulated (LFM) pulse, (c) binary phase-coded pulse.
 

As discussed in Chap. 1, the real-valued waveform of Eq. (4.1) is more
conveniently modeled by its complex equivalent

(4.2)
 
The portion of  other than the carrier term, or equivalently the complex
baseband signal after demodulation, is called the complex envelope of the
waveform

(4.3)
 
It is this function that describes the amplitude and phase or frequency
modulation applied to the RF carrier and is considered to be “the waveform” in
this chapter.

Radar waveforms can be characterized in several ways. Perhaps first is
whether the waveform is continuous wave (CW) or pulsed; sometimes
variations such as “interrupted CW” are defined as well. Pulsed waveforms can
be defined based on a single pulse, or “the waveform” can be considered to be
a multipulse burst. Both pulsed and CW waveforms can be further categorized
based on the presence or absence of frequency or phase modulation. If present,



the modulation may be intrapulse (applied to individual pulses), interpulse
(applied across the pulses of a multipulse waveform), or both. Phase
modulation can be biphase (two possible states) or polyphase (more than two
phase states); frequency modulation can be linear or nonlinear. Intrapulse
amplitude modulation may be used, but usually is not.

The choice of waveform directly determines or is a major contributor to
several fundamental radar system performance metrics. These include the
signal-to-noise ratio (SNR) χ, the range resolution ΔR, the Doppler (velocity)
resolution ΔFD (Δv), ambiguities in range and Doppler, range and Doppler
sidelobes, and range-Doppler coupling. These metrics are determined by such
waveform attributes as the pulse duration, bandwidth, amplitude, and phase or
frequency modulation. While all of these metrics are discussed, the primary
emphasis is on SNR, range resolution, and Doppler resolution because these are
the most fundamental drivers in choosing the waveform. As an example, the
simple pulse of Fig. 4.1a has a duration of τ seconds and an amplitude of A
volts. The SNR will prove to be proportional to the waveform energy, which is
the product A2τ of its power and duration. The range resolution of cτ/2 is
proportional to the pulse duration. It will be shown shortly that both the
waveform bandwidth and the Doppler resolution of the simple pulse are
inversely proportional to the pulse length.

Two classic references on radar waveforms are Cook and Bernfeld (1993)
and Rihaczek (1996). Most radar system books cover the fundamentals of radar
waveforms (e.g., Nathanson, 1991; Peebles, 1998). A complete modern
reference on radar waveforms is Levanon and Mozeson (2004), while good
brief surveys of basic and advanced waveforms are in Keel (2010) and Keel
and Baden (2012), respectively. In addition to covering the mainstream
waveforms such as pulse bursts and LFM, this text covers the many
developments in phase codes in recent decades. Another new text that focuses
more on advanced waveforms and emerging applications is Gini et al. (2012).

4.2   The Waveform Matched Filter

4.2.1   The Matched Filter
So far, it has been implicitly assumed that the overall frequency response of the
radar receiver is a bandpass characteristic with a bandwidth equal to or greater
than that of the transmitted signal. Equivalently, once the carrier is demodulated
out, the effective frequency response is a lowpass filter with a bandwidth equal
to that of the complex envelope. It will be shown in Chap. 6 that detection
performance improves with increasing SNR. Thus, it is reasonable to ask what
overall receiver frequency response H(Ω) will maximize the SNR.

To answer this question, note that the spectrum of the receiver output, y(t),



will be Y(Ω) = H(Ω)X(Ω), where X(Ω) is the spectrum of the waveform (and
thus, except for a phase shift due to an overall delay, of a received target echo).
Consider maximizing the SNR at a specific time TM. The power of the signal
component of the output at that instant is

(4.4)
 
To determine the output noise power, consider the case where the interference
is white noise with power spectral density . The noise power spectral
density at the output of the receiver will be . The total output
noise power is then

(4.5)
 
and the SNR measured at time TM is

(4.6)
 

Clearly, χ depends on the receiver frequency response. The choice of H(Ω)
that will maximize χ can be determined via the Schwarz inequality. One of many
forms of the Schwarz inequality is

(4.7)
 
with equality if and only if B(Ω) = α A*(Ω), with α any arbitrary constant.
Applying Eq. (4.7) to the numerator of Eq. (4.6) give the upper bound on SNR
as

(4.8)
 
The SNR is maximized when



(4.9)
 
This particular choice of the receiver filter frequency or impulse response is
called the matched filter, because the response is “matched” to the signal
waveform. Thus, the waveform and the receiver filter needed to maximize the
output SNR are a matched pair. If the radar changes waveforms, it must also
change the receiver filter response in order to stay in a matched condition. The
impulse response of the matched filter is obtained by time-reversing and
conjugating the complex waveform. The gain constant α is often set equal to
unity; it has no impact on the achievable SNR, as seen later in this chapter. The
time TM at which the SNR is maximized is arbitrary. However, TM ≥ τ is
required for h(t) to be causal.

Given an input signal x′(t) consisting of both target and noise components,
the output of the matched filter is given by the convolution

(4.10)
 
The second line of Eq. (4.10) is recognized as the cross-correlation of the
target-plus-noise signal x′(t) with the transmitted waveform x(t), evaluated at
lag TM – t. Thus, the matched filter implements a correlator with the transmitted
waveform as the reference signal.

It is useful to determine the maximum value of SNR achieved by the
matched filter. Using H(Ω) = αX*(Ω) exp(–jΩTM) in Eq. (4.6)

(4.11)
 
The energy in the signal x(t) is



(4.12)
 
where the second step follows from Parseval’s relation. Using Eq. (4.12) in Eq.
(4.11) gives

(4.13)
 
Equation (4.13) states the remarkable result that the maximum achievable SNR
depends only on the energy of the waveform and not on other details such as its
modulation. Two waveforms having the same energy will produce the same
maximum SNR, provided each is processed through its own matched filter.

Although it is the ratio of the peak signal component power to the noise
power, the SNR of Eq. (4.13) is called the energy SNR because the peak signal
power at the matched filter output equals the energy of the transmitted signal. To
see this, note that the peak signal component at the matched filter output is given
by Eq. (4.10) with t = TM

(4.14)
 
Also, the duration of the signal component of the matched filter output is exactly
2τ seconds, since it is the convolution of the τ-second pulse with the τ-second
matched filter impulse response.

The previous results can be generalized to develop a filter that maximizes
output signal-to-interference ratio (SIR) when the interference power spectrum
is not white. In radar, this is useful for example in cases where the dominant
interference is clutter, which generally has a colored power spectrum. The
result can be expressed as a two-stage filtering operation. The first stage is a
whitening filter that converts the interference power spectrum to a flat spectrum
(and also modifies the signal spectrum in the process); the second stage is then a
conventional matched filter as described earlier, but designed for the now-
modified signal spectrum. Details are given by Kay (1998).

4.2.2   Matched Filter for the Simple Pulse
To illustrate the previous ideas, consider a simple pulse of duration τ:

(4.15)
 



The corresponding matched filter impulse response is

(4.16)
 
where TM > τ for causality. Because x(t) is a much simpler function than its
Fourier transform (a sinc function), it is easier to work with the correlation
interpretation of Eq. (4.10) to compute the output. Figure 4.2 illustrates the two
terms in the integrand, helping to establish the regions of integration. Part a of
the figure shows that

 FIGURE 4.2   Convolution of simple pulse and its matched filter: (a) TM – τ ≤ t ≤
TM, (b) TM ≤ t ≤ TM + τ.
 

(4.17)
 
while part b is useful in identifying the next two regions

(4.18)
 



The result is

(4.19)
 
This result is illustrated in Fig. 4.3. The matched filter output is a triangle
function of duration 2τ seconds with its peak at t = TM as expected. The peak
value is ατ; since the energy of the unit amplitude pulse is just τ, the peak value
equals αE as predicted.

 FIGURE 4.3   Matched filter output for a simple pulse.
 

The noise power at the output of the matched filter is

(4.20)
 
The SNR is therefore

(4.21)
 
consistent with Eq. (4.13). Note that the gain α has no effect on the SNR.

4.2.3   All-Range Matched Filtering
The matched filter was designed to maximize the output SNR at a particular time
instant TM. This raises several questions. How should TM be chosen, and how
can the range of a target be related to the resulting output? What happens if the



received signal contains echoes from multiple targets at different ranges?
Start by choosing TM = τ, the minimum value that results in a causal

matched filter. Now suppose the input to the matched filter is the echo from a
target at an unknown range R0, corresponding to a time delay t0 = 2R0/c. The
signal component of the output of the matched filter will be

(4.22)
 
This is just the correlation of the received, delayed echo and the matched filter
impulse response. The output waveform will again be a triangle with its peak at
correlation lag zero. This occurs when s – t0 = s + τ – t, or t = t0 + τ. The
matched filter output will appear as in Fig. 4.4. The peak will occur at time tpeak
= t0 + τ, corresponding to the actual delay to the target plus the delay of the
causal matched filter. The target range can be easily determined from
observation of the matched filter output as R0 = c(tpeak – τ)/2.

 FIGURE 4.4   Output of the matched filter for a target at range R0 = ct0/2.
 

This discussion shows that the matched filter parameter TM can be chosen
arbitrarily (typically as TM = τ). Once TM is known, the range of a target can be
determined by detecting the time at which a peak occurs at the matched filter
output, subtracting TM to get the delay to the target and back, and converting to
units of range. Thus, a single choice of TM allows detection of targets at all
ranges. One simply samples the matched filter output at a series of fast-time
sample instants tk; if a peak occurs at time tk, it corresponds to a target at range
c(tk – TM)/2. If the received signal contains echoes from multiple targets at
different ranges, by superposition the matched filter output will contain multiple
copies of the single-pulse triangle response, one centered at the time delay (plus
filter delay) of each of the various targets.

4.2.4   Straddle Loss
In modern practice, matched filtering is carried out digitally so that y(t) is
sampled at some fast-time sampling rate Fs = 1/Ts. Typically Fs equals or is
slightly greater than the waveform bandwidth β. The range sample spacing is



then cTs/2 meters. In general, targets do not arrange themselves precisely at
ranges corresponding to the range samples. The receiver then will not sample
the matched filter output precisely at its peak. The result is a reduction in the
measured signal amplitude and therefore an SNR loss.

This is exactly the issue of straddle loss that was discussed in Chap. 3 with
regard to the DFT of frequency domain data. In either case, the finite sampling
rate allows the processor to “miss” the peak response, whether it is the matched
filter output in fast time or the spectrum of a slow-time signal. Straddle loss also
arises in angular sampling with scanning antennas. In any of these cases it can be
reduced with higher sampling rates or various interpolation methods.
Consideration of these methods is deferred to the discussion of pulse Doppler
analysis in Chap. 5 and the analyses of time delay, frequency, and angle
estimation in Chap. 7. All of the methods there can be applied to the fast-time
straddle loss for the various waveforms in this chapter.

4.2.5   Range Resolution of the Matched Filter
By determining the range separation that would result in nonoverlapping echoes,
it was shown in Chap. 1 that the range resolution achieved by a simple pulse of
duration τ seconds is cτ/2 meters. When a matched filter is used, the output due
to each scatterer is now 2τ seconds long, but is also triangular rather than
rectangular in shape. Does the longer matched filter output result in a larger
value of range resolution?

Before considering this question, it is useful to recall that the demodulated
echo from a scatterer at range R0 meters has not only a delay of t0 = 2R0/c
seconds, but also an overall phase shift of exp[j(–4π/λ)R0] radians.1 A change of
only λ/4 in range will cause a change of 180° in the received echo phase. Two
overlapping target responses may therefore add either constructively or
destructively in phase, and small deviations in their spacing can result in large
changes in the composite response. Consider two targets at ranges ct0/2 and
ct0/2 + cτ/2 and assume τ is such that the two matched filter responses add in
phase. Then the composite response at the matched filter output is a flat-topped
trapezoid as shown in Fig. 4.5a. Clearly, if the separation between the two
scatterers increases, a dip will begin to develop in the composite response,
even when the separation is such that they remain in phase. If the separation
decreases, the in-phase response will still be a trapezoid, but with a higher peak
and a shorter flat region as the responses overlap more. Because any increase in
separation will result in a dip between the two responses, the separation of cτ/2
meters is still considered to be the range resolution of the matched filter output.
Thus, using a matched filter does not degrade the range resolution. To reinforce
this further, recall that the definition of the Rayleigh resolution is the peak-to-
first null distance. Inspection of Fig. 4.3 shows that cτ/2 is also the Rayleigh
resolution of the simple pulse matched filter output.



 FIGURE 4.5   Composite matched filter response due to two scatterers separated
by cτ/2 meters: (a) target responses in phase, (b) target responses 180° out of
phase.
 

Scatterers that are closer together than the Rayleigh resolution may still be
resolved if the spacing is such that the individual responses add out of phase.
Figure 4.5b illustrates the case where the two responses differ in phase by 180°.
Destructive interference in the region of overlap causes a deep null in the
composite response. However, this null is very sensitive to the fine spacing of
the scatterers and cannot be relied on to resolve two targets.

4.3   Matched Filtering of Moving Targets
Suppose a simple pulse is transmitted, x(t) = 1, 0 ≤ t ≤ τ, and it echoes from a
target moving toward the radar with a radial velocity of v meters per second.
After demodulation, the received waveform (ignoring the overall time delay)
will be x′(t) = x(t)exp(jΩDt), with ΩD = 4πv/λ. Because the echo is different
from x(t), a filter matched to x(t) will not be matched to x′(t). If the target
velocity is known, the matched filter for x′(t) can be constructed:

(4.23)
 
The frequency response of this matched filter is



(4.24)
 
Thus, the matched filter for x′(t) can be obtained by simply shifting the center
frequency of the matched filter for x(t) to the expected Doppler shift.

A more interesting situation occurs when the velocity is not known in
advance so that the receiver filter is not matched to the target Doppler shift.
More generally, suppose the filter is matched to some Doppler shift Ω i radians
per second but the actual Doppler shift of the echo is ΩD. Choosing TM = 0 for
simplicity, the matched filter output will be zero for | t | > τ. For 0 ≤ t ≤ τ the
response is

(4.25)
 
If the filter is in fact matched to the actual Doppler shift, Ωi = ΩD, the output
becomes

(4.26)
 
The analysis is similar for negative t, –τ ≤ t ≤ 0. The complete result is

(4.27)
 
Thus, | y(t) | is the usual triangular function, peaking as expected at t = 0.

If there is a Doppler mismatch, Ωi ≠ ΩD, the response at the expected peak
time t = 0 is

(4.28)



 
Defining Ωdiff ≡ ΩD – Ω i

(4.29)
 
Equation (4.29) is plotted in Fig. 4.6. The first zero of this sinc function occurs
at Fdiff = 1/τ Hz.2 Relatively small Doppler mismatches (Fdiff  1/τ) will cause
only slight reductions in the matched filter output peak amplitude. Large
mismatches, however, can cause very substantial reductions.

 FIGURE 4.6   Effect of Doppler mismatch on matched filter response at expected
peak time.
 

The effect of Doppler mismatch can be either good or bad. If targets are
moving and the velocities are unknown, mismatch will cause reductions in
observed peaks and, if severe enough, may prevent detection. The signal
processor must either estimate the target Doppler so that the matched filter can
be adjusted or construct matched filters for a number of different possible
Doppler frequencies and observe the output of each to search for targets. On the
other hand, if the goal is to be selective in responding only to targets of a
particular Doppler shift, it is desirable to have a matched filter that suppresses
targets at other Doppler shifts.

From Fig. 4.6, it is clear that the Rayleigh resolution of the Doppler
mismatch response is 1/τ Hz. The resolution in velocity is therefore λ/2τ meters



per second. For typical pulse lengths, these are fairly large values. For example,
a 10 μs pulse would exhibit a Rayleigh resolution in Doppler of 100 kHz, or in
velocity at X band (10 GHz) of 1500 m/s. Many systems do not observe such
high Doppler shifts, so Doppler mismatch effects are insignificant and targets
cannot be resolved in Doppler on a single pulse. If finer Doppler resolution is
desired, a very long pulse may be needed. For example, velocity resolution of 1
m/s at X band requires a 15-ms pulse. The range resolution is then a very poor
2250 km. This conflict between good range resolution and good Doppler
resolution can be resolved using a pulse burst waveform, which will be
addressed in Sec. 4.5.

4.4   The Ambiguity Function

4.4.1   Definition and Properties of the Ambiguity Function
In the preceding sections, the matched filter response for the simple pulse
waveform has been analyzed to show its behavior both in time and in response
to Doppler mismatches. The ambiguity function (AF) is an analytical tool for
waveform design and analysis that succinctly characterizes the behavior of a
waveform paired with its matched filter. The AF is useful for examining
resolution, sidelobe behavior, and ambiguities in both range and Doppler for a
given waveform, as well as phenomena such as range-Doppler coupling
(introduced in Sec. 4.6.4).

Consider the output of a matched filter for a waveform x(t) when the input
is a Doppler-shifted response x(t)exp(j2πFDt). Also assume that the filter has
unit gain (α = 1) and is designed to peak at TM = 0; this merely means that the
time axis at the filter output is relative to the expected peak output time for the
range of the target. The filter output will be

(4.30)
 
which is defined as the complex ambiguity function Â(t, FD). An equivalent
definition can be given in terms of the signal spectrum by applying basic Fourier
transform properties:

(4.31)
 
The ambiguity function3 is defined as the magnitude of Â(t, FD),



(4.32)
 
It is a function of two variables: the time delay relative to the expected matched
filter peak output, and the mismatch between that Doppler shift for which the
filter was designed, and that which is actually received. For example, the AF
evaluated at time t = 0 corresponds to the output of the actual matched filter at
time t = 2R0/c + τ for a target at range R0. The particular form of the AF is
determined entirely by the complex waveform x(t).

Three properties of the ambiguity function are of immediate interest. The
first states that if the waveform has energy E, then

(4.33)
 
Thus, when the filter is matched in Doppler to the echo and is sampled at a
delay corresponding to the target range, the response will be maximum. If the
filter is not matched or is sampled at a different delay, then the response will be
less than or equal to (usually less than) the maximum. The second property
states that total area under any ambiguity function is constant and is given by

(4.34)
 
This conservation of energy statement implies that, in the design of waveforms,
one cannot remove energy from one portion of the ambiguity surface without
placing it somewhere else; it can only be moved around on the ambiguity
surface. The third property is a symmetry relation:

(4.35)
 

In order to prove the first property, start with the square of Eq. (4.32)

(4.36)
 
Applying the Schwartz inequality to Eq. (4.36) yields

(4.37)



 
Each integral is just the energy E in x(t), so that

(4.38)
 
The equality holds only if x(s) = x(s – t)exp(–j2πFDs) for all s, which occurs if
and only if t = FD = 0. Making these substitutions in Eq. (4.38) gives the equality
in Eq. (4.33).

The proof of the second property starts by defining the complex conjugate
of the complex ambiguity function, where

(4.39)
 
The squared magnitude of the ambiguity function can then be written as

(4.40)
 
The total energy in the ambiguity surface is

(4.41)
 
Isolating those terms integrated over t and FD yields the following two
relationships:

(4.42)
 

(4.43)
 
Substituting these into Eq. (4.41) yields



(4.44)
 
The first integral on the right-hand side of Eq. (4.44) is just the energy E of the
pulse measured in the time domain; the second is, by Parseval’s theorem, also
the energy. Thus

(4.45)
 

The symmetry property can be proved by substituting –t and –FD for t and
FD, respectively, in the definition in Eq. (4.30)

(4.46)
 
Now make the change of variables s′ = s + t to get

(4.47)
 
Since A(t, FD) ≡|Â(t, FD)|, Eq. (4.35) follows immediately.

It is reasonable to ask what would be an ideal ambiguity function. The
answer varies depending on the intent of the system design, but a commonly
cited goal is the “thumbtack” ambiguity function of Fig. 4.7, which features a
single central peak with the remaining energy spread uniformly throughout the
delay-Doppler plane. The narrow central peak implies good resolution in both
range and Doppler. The lack of any secondary peak implies that there will be no
range or Doppler ambiguities. The uniform plateau suggests low and uniform
sidelobes, minimizing target masking effects. All of these features are beneficial
for a system designed to make fine-resolution measurements of targets in range
and Doppler or to perform radar imaging. On the other hand, a waveform
intended to be used for target search might be preferred to be more tolerant of
Doppler mismatch so that the Doppler shift of targets whose velocity is not yet
known does not prevent their detection due to a weak response at the matched
filter output. Thus, what is “ideal” in the way of an ambiguity function depends
on the use to which the waveform will be put.



 FIGURE 4.7   “Thumbtack” ambiguity function.
 

4.4.2   Ambiguity Function of the Simple Pulse
As a first example of an ambiguity function, consider a simple pulse centered on
the origin and normalized to have unit energy (E = 1) for convenience

(4.48)
 
Applying Eq. (4.30) gives for t > 0

(4.49)
 
The ambiguity function for t > 0 is the magnitude of Eq. (4.49)

(4.50)
 
Repeating the derivation for t < 0 gives a similar result, but with the quantity (τ
– t) replaced by (τ + t). The complete AF of the simple pulse is therefore



(4.51)
 

Equation (4.51) is plotted in Fig. 4.8 in a three-dimensional surface plot
and in Fig. 4.9 as a contour plot, which is often easier to interpret and is
therefore used in most cases in the remainder of this chapter. The AF for a
simple pulse is a triangular ridge oriented along the delay axis. Doppler
mismatches on the order of 1/τ Hz or more drastically reduce and spread the
matched filter output peak, as was shown previously.

 FIGURE 4.8   Ambiguity function of a unit-energy simple pulse of length τ.
 

 



 
FIGURE 4.9   Contour plot of the simple pulse ambiguity function of Fig. 4.8.
 

The zero-Doppler response A(t, 0) gives the matched filter output when
there is no Doppler mismatch. Setting FD = 0 in Eq. (4.51) and using
L’Hôpital’s rule to resolve the indeterminate form gives

(4.52)
 
Similarly, the zero-delay cut A(0, FD) gives the output of the matched filter at the
expected peak time t = 0 as a function of Doppler mismatch. Using t = 0 in Eq.
(4.51) immediately gives

(4.53)
 
Equations (4.52) and (4.53) are the expected triangle and sinc functions derived
previously. They are illustrated in Fig. 4.10.



 FIGURE 4.10   (a) Zero-Doppler cut of simple pulse AF, (b) zero-delay cut.
 

A Doppler mismatch not only reduces the peak amplitude but, if severe
enough, completely alters the shape of the range response of the matched filter.
Figure 4.11 shows the effect of varying degrees of Doppler mismatch on the
matched filter range response. These curves should be compared to Fig. 4.10a.
A mismatch of 0.31/τ Hz results in a reduction of about 16 percent in the peak



amplitude, but the peak remains at the correct time delay. A larger shift, for
example 0.94/τ, not only reduces the maximum output amplitude by 65 percent
but eliminates the central peak altogether. By the time the mismatch is several
times 1/τ, the response becomes completely unstructured. Note that a mismatch
of n/τ Hz means that there will be n cycles of the Doppler frequency during the
pulse duration τ. Also recall that for typical pulse lengths, 1/τ is a large Doppler
shift, so that the simple pulse still ranks as a relatively Doppler-tolerant
waveform. For instance, if τ = 10 μs, a Doppler shift of 0.31/τ is 31 kHz,
corresponding at an RF of 10 GHz to a velocity of 465 m/s, or 1040 mph. Even
with this very large Doppler mismatch, the simple pulse matched filter output
retains its basic shape, correct peak location, and suffers only the 16 percent
(1.5 dB) amplitude loss.

 FIGURE 4.11   Effect of Doppler mismatch on the range response of the matched
filter for the simple pulse.
 

4.5   The Pulse Burst Waveform
The flip side of the Doppler tolerance of the simple pulse described in the
preceding example is that its Doppler resolution is very poor. If the designer
wants the radar system to respond to targets only at certain velocities and reject
targets at nearby velocities, the simple pulse is not adequate as a waveform.
Better frequency resolution requires a longer observation time. The pulse burst
waveform is one way to meet this requirement. It is defined as



(4.54)
 
 where xp(t) = single pulse of length τ

M = number of pulses in the burst
T = pulse repetition interval

While the constituent pulse xp(t) can be any single-pulse waveform, for the
moment only the simple pulse will be considered. Figure 4.12 illustrates this
waveform. The solid line forming the envelope of the sinusoidal pulses is the
actual baseband waveform x(t). The train of RF pulses that results when it is
impressed upon a carrier is denoted as usual as . The total duration MT
(which includes the dead time after the last pulse) is the coherent processing
interval (CPI).

 FIGURE 4.12   Pulse burst waveform and the resulting train of RF pulses.
 

4.5.1   Matched Filter for the Pulse Burst Waveform
The matched filter for the pulse burst is (with α = 1 and TM = 0)

(4.55)
 
and the matched filter output, given an echo from a range corresponding to a
time delay t0, is therefore

(4.56)
 
The inner integral is the matched filter output for the constituent simple pulse.



Let t0 = 0 for simplicity; the results can be adjusted for any other delay t0 by
shift invariance. Renaming the simple pulse matched filter output from Eq.
(4.19) as sp(t), Eq. (4.56) becomes

(4.57)
 
where the symmetry of sp(t) has been used in the last step. Equation (4.57) states
that the matched filter output is a superposition of shifted copies of sp(t). The
double summation can be simplified by noting that all terms that have the same
value of (n – m) are identical and can be combined. There are M combinations
of m and n such that m – n = 0, namely, all those where m = n. There are M – 1
cases where m – n = +1 and another M – 1 cases where m – n = –1. Continuing
in this vein gives

(4.58)
 
The matched filter output for the pulse burst waveform is simply a sum of scaled
and shifted replicas of the output of the filter matched to a single constituent
pulse.

Since the constituent pulse xp(t) is of duration τ, sp(t) is of duration 2τ. If T
> 2τ as is usually the case, none of the replicas of sp(t) overlap one another.
Figure 4.13 illustrates a pulse burst waveform and the corresponding matched
filter output for this case and M = 3. The peak output occurs at t = TM = 0:



 FIGURE 4.13   (a) Pulse burst waveform, M = 3, (b) matched filter output.
 

(4.59)
 
where the last step uses sp(mT) = 0 when T > τ. In this equation Ep is the energy
in the single pulse xp(t), while E is the energy in the entire M-pulse waveform.
Note that the peak response is M times that achieved with a single pulse of the
same amplitude. Recall the radar range equation signal processing gain factor
Gsp of Eq. (2.85). The increase in the matched filter output peak for the pulse
burst waveform represents a coherent signal processing gain of a factor Gsp = M
that will improve the SNR compared to a single-pulse waveform, aiding
detection probability and measurement precision.

4.5.2   Pulse-by-Pulse Processing
The structure of Eq. (4.58) suggests that it is not necessary to construct an
explicit matched filter for the entire pulse burst waveform x(t), but rather that
the matched filter can be implemented by filtering the data from each individual
pulse with the single-pulse matched filter and then combining those outputs. This
process, called pulse-by-pulse processing, uses separable two-dimensional
processing in fast time and slow time. It provides a much more convenient
implementation and is consistent with how pulse burst waveforms are processed
in real systems.

Define the matched filter impulse response for the individual pulse in the
burst, assuming TM = 0

(4.60)
 
The output from this filter for the mth transmitted pulse, assuming a target at
some delay tl, is

(4.61)
 
Assume that the echo from the individual pulse matched filter for the first pulse
(m = 0) is sampled at t = tl; that value will be y0(tl) = sp(0). Now sample the
filter response to each succeeding pulse at the same delay after its transmission



(i.e., sample the same range bin for each pulse). The filter output for pulse m is
sampled at t = tl + mT, giving ym(tl + mT) = sp(0) again.

If the sample taken at time tl after pulse transmission is associated with
range bin l, the M samples so obtained form a discrete constant-valued sequence
y[l, m] = sp(0), 0 ≤ m ≤ M – 1. The discrete-time causal matched filter in the
slow-time (m) dimension for such a sequence is h[m] = αy*[M – 1 – m]; with α
= 1/sp(0), h[m] = 1 for 0 ≤ m ≤ M – 1. The output of this discrete-time matched
filter is

(4.62)
 
The peak output will occur when the two functions in the summand completely
overlap, which requires m = M – 1; then

(4.63)
 
Equation (4.63) indicates that in pulse-by-pulse processing, matched filtering of
the slow-time sequence from a given range bin reduces to coherently integrating
the slow-time samples in each range bin, and the resulting peak output is
identical to that obtained with a whole-waveform continuous matched filter of
Eq. (4.55). Figure 4.14 illustrates the row of slow-time samples that are
integrated (after matched filtering of the single pulse in fast time) to complete
the matched filtering process for the pulse burst. This operation is performed
independently for each range bin.



 FIGURE 4.14   Slow-time sequence to be integrated for matched filtering of a
pulse burst waveform.
 

4.5.3   Range Ambiguity
Evaluating the pulse burst matched filter output at t = 0 gave the peak output for
a target at the time delay t0 under consideration. Normally t0 < T and if a peak is
observed it will be interpreted as implying the presence of a target at range R0 =
ct0/2 m. However, suppose the data instead contain echoes from a target an
additional T seconds of delay further away. The received waveform will be
unchanged except for a delay of T seconds and a reduced amplitude according to
the range equation. The amplitude reduction is not pertinent to the discussion
and is ignored. By shift invariance, the matched filter output of Eq. (4.58) will
also be delayed by T seconds

(4.64)
 
Now when the matched filter output is evaluated at t = 0 the result is

(4.65)
 
In this expression (and continuing to assume T > 2τ) only the m = –1 term is
nonzero, so that

(4.66)
 
This equation shows that the output at the sample time is reduced from MEp to
(M – 1)Ep. The situation is illustrated in Fig. 4.15 from both the whole-
waveform matched filter and pulse-by-pulse viewpoints. From the former
viewpoint, a local peak of the matched filter output is sampled, but the global
peak is missed because the filter is “tuned” for the wrong delay. The result,
while not zero, is a reduced-amplitude sample, reducing SNR. From the latter
viewpoint, the echo appears in only M – 1 of the M slow-time samples
integrated because it first returns after the sampling window following
transmission of the second pulse rather than the first.



 FIGURE 4.15   Pulse burst matched filtering when target is range ambiguous by
one PRI: (a) whole-waveform matched filter output. Compare to Fig. 4.13b. (b)
Slow-time data in pulse-by-pulse processing viewpoint. Compare to Fig. 4.14.
 

This behavior creates two problems. The reduced amplitude of the target
component of the matched filter output reduces the SNR and thus the probability
of detecting the target. Assuming the reduced-amplitude response does prove
large enough to be detected, the processor will assume the target is at delay t0
when in fact it is at t0 + T. This phenomenon whereby there is more than one
possible range that can be associated with a detection is called a range
ambiguity. First discussed in Chap. 3, it is a characteristic of pulse burst
waveforms. It is not readily apparent if a peak at the matched filter output is due
to a target at the implied range or at that range plus a multiple of the
unambiguous range Rua = cT/2 meters.

As will be seen in Chap. 5, it is common in some radars to operate at a
PRF for which the unambiguous range is less than the maximum detection range,
so methods are needed to counter these two problems. Range ambiguities can be
resolved using multiple pulse burst waveforms at different PRFs as discussed in
Chap. 5. The reduction in matched filter output amplitude and SNR for range-
ambiguous targets is countered by noting that it occurs because the pulse burst
echo is not fully overlapped with the matched filter reference pulse burst at the
output sampling time when the target time delay t0 > T. The solution to this
problem is to extend the transmitted waveform. Suppose the radar can be



expected to detect targets at ranges up to P · Rua. Extend the transmitted
waveform from M to M + P – 1 pulses. The receiver matched filter remains the
same M-pulse waveform. Still using t0 = 0 and TM = 0, the matched filter output
will be the waveform shown in Fig. 4.16a. It indicates that the full integrated
target power of MA2τ = MEp will be obtained for a target at the delay TM (zero
in the figure) for which the matched filter is tuned, but also for targets at the
ambiguous delays TM + pT, p = 0, …, P – 1. Evaluating the matched filter output
for delays TM between zero and T allows full-SNR matched filtering of targets
at delays up to TM + (P – 1)T, corresponding to ranges up to P · Rua as desired.
The pulse-by-pulse viewpoint is shown in Fig. 4.16b. A target in the Pth delay
interval, (P – 1)T ≤ t0 < PT, will produce a response in the appropriate range
bin in the Pth and later slow time samples. By integrating only samples P
through M + P – 1 in each range bin the design integration gain of M can be
achieved for all targets up to ranges P · Rua.

 FIGURE 4.16   Effect of extending the transmitted waveform with additional
pulses when P range ambiguities can occur: (a) whole-waveform matched filter
output. (b) slow-time data in pulse-by-pulse processing viewpoint.
 

Another issue arises with pulse burst waveforms and clutter echoes.



Suppose the radar can be expected to receive significant clutter returns at ranges
up to P · tua, and consider the clutter component of the slow-time signal for a
given range bin in the pulse-by-pulse processing viewpoint. When the range bin
of interest is sampled at delay t0 < T after the first pulse is transmitted, only
clutter echoes from the corresponding range ct0/2 will be sampled at the
receiver. When the range bin is sampled again after the second pulse, the clutter
component will include echoes from the second pulse and range ct0/2 as well as
from the first pulse and range c/2(t0 + T). These two contributions represent
echo from two physically different patches of clutter scatterers. The first slow-
time sample, which includes echoes from only the nearer patch, may differ
significantly in power and statistical behavior from the second slow-time
sample, which includes echoes from both. The Pth and subsequent slow-time
samples will contain contributions from all P contributing range intervals and
therefore exhibit the consistent clutter power levels and statistical behavior
needed for effective clutter filtering and target detection. Extending the
transmitted waveform to M + P – 1 pulses as above therefore allows collection
of M steady-state clutter measurements. In Chap. 5 these additional pulses will
be called “clutter fill” pulses. The first P – 1 slow-time samples will be
discarded in each range bin and only the remaining M samples will be used in
clutter filtering, coherent integration, and detection processing.

4.5.4   Doppler Response of the Pulse Burst Waveform
To consider the effect of a Doppler mismatch on the pulse burst waveform and
its matched filter, consider a target moving toward the radar at velocity v meters
per second so that its range is R0 – vt meters at time t. Assume that the “stop-
and-hop” approximation is valid and that the target motion does not exceed one
range bin over the CPI, that is, MvT < cτ/2; this ensures that all echoes from a
given target appear in the same range bin over the course of a CPI. The
demodulated echoes will have a phase shift of –(4π/λ)R(t) = –(4π/λ)(R0 – vt).
Adopting the pulse-by-pulse processing viewpoint and absorbing the phase
exp(–j4πR0/λ) due to the nominal range R0 into the overall gain, the individual
matched filtered outputs for each pulse become

(4.67)
 
The corresponding slow-time sequence is

(4.68)



 
Integrating the slow-time samples gives

(4.69)
 
Equation (4.69) gives the system response to the pulse burst waveform in an
arbitrary range bin l as a function of the normalized Doppler mismatch ωD.

This is the familiar asinc function. Figure 4.17 shows the central portion of
the magnitude of this function. The zeros occur at intervals of 1/M cycles per
sample in normalized frequency; thus, the Rayleigh resolution in Doppler is 1/M
cycles per sample or 1/MT Hz. MT is the duration of the entire pulse burst
waveform. The Doppler resolution is therefore determined by the duration of the
entire waveform instead of the duration of a single pulse. In this manner, the
pulse burst waveform achieves much better Doppler resolution than a single
pulse of the same duration while maintaining the same range resolution. The cost
is the time and energy required to transmit and receive M pulses instead of one
and the computational load of integrating M samples in each range bin.

 FIGURE 4.17   Central portion of the Doppler mismatch response of the slow-
time signal using a pulse burst waveform.
 

Integrating the slow-time samples of the pulse burst echo corresponds to
implementing a matched filter in slow time for a signal with zero Doppler shift;



in this case the expected slow-time signal is simply a constant. A matched filter
for a Doppler-shifted pulse burst can be implemented by continuing to use the
single-pulse matched filter in fast time and constructing the appropriate slow-
time matched filter for the signal expected for a given Doppler shift.

Suppose the normalized Doppler shift of interest is ωD radians per sample.
The expected slow-time signal is then of the form Aexp(jωDm). After
conjugation and time-reversal the slow-time matched filter coefficients will be
h[m] = exp(+jωDm). Consider the response of this filter when the actual
Doppler shift of the signal is ω. The matched filter peak output occurs when the
impulse response and data sequence are fully overlapped, giving

(4.70)
 
which is identical to Eq. (4.69) except that the peak of the asinc function has
been shifted to ω = ωD radians per sample.

Note that the first line of Eq. (4.70) is simply the discrete time Fourier
transform of the slow-time data sequence. Thus, a matched filter for a pulse
burst waveform and a Doppler shift of ωD radians can be implemented with a
single-pulse matched filter in fast time and a DTFT in slow time, evaluated at
ωD. If ωD is a discrete Fourier transform frequency, i.e., of the form 2πk/K for
some integers k and K, the slow-time matched filter can be implemented with a
DFT calculation. It follows that a K-point DFT of the data y[l, m] in the slow-
time dimension simultaneously computes the output of K-matched filters, one at
each of the DFT frequencies. These frequencies correspond to Doppler shifts of
Fk = k/KT hertz or radial velocities vk = λk/2KT meters per second, k = 0,…, K
– 1. The fast Fourier transform (FFT) algorithm then allows very efficient
search of the data for targets at various Doppler shifts by simply applying an
FFT to each slow-time row of the data matrix.

4.5.5   Ambiguity Function for the Pulse Burst Waveform
Inserting the definition of the pulse burst waveform of Eq. (4.54) into the
definition of the complex ambiguity function of Eq. (4.30) gives



(4.71)
 
Substitute s′ = s – mT

(4.72)
 
If the complex ambiguity function of the single simple pulse xp(t) is denoted as
Âp(t, FD), the integral in Eq. (4.72) is Âp(t + (n – m)T, FD). Thus

(4.73)
 

The double sum in Eq. (4.73) is somewhat difficult to deal with.
Obviously, all combinations of m and n having the same difference m – n result
in the same summand in the second sum, but the dependence of the exponential
term on m only prevents straightforward combining of all such terms. Defining
n′ = m – n, it can be shown by simply enumerating all of the combinations that
the double summation of some function f [m, n] can be written (Rihaczek, 1996)

(4.74)
 
Applying the decomposition of Eq. (4.74) to Eq. (4.73) gives

(4.75)
 
The geometric series that appears in both halves of the right-hand side of this
equation sums to



(4.76)
 
Using this result in Eq. (4.75) and combining the two remaining sums over n′
into one while renaming the index of summation as m gives

(4.77)
 
Equation (4.77) expresses the complex ambiguity function of the coherent pulse
train in terms of the complex ambiguity function of its constituent simple pulses
and the PRI.

Recall that the support in the delay axis of Âp(t, FD) is |t| ≤ τ. If T > 2τ,
which is almost always the case, the replications of Âp in Eq. (4.77) will not
overlap and the magnitude of the sum of the terms as m varies will be equal to
the sum of the magnitude of the individual terms. The ambiguity function of the
pulse burst waveform can then be written as

(4.78)
 

To understand this ambiguity function, it is convenient to first look at the
zero Doppler and zero delay responses. The zero Doppler response is obtained
by setting FD = 0 in Eq. (4.78) and recalling that Ap(t, 0) = 1 – |t|/τ :

(4.79)
 
Equation (4.79) describes the triangular output of the single-pulse matched
filter, repeated every T seconds and weighted by an overall triangular function
M – |m|. Figure 4.18 illustrates this function for the case M = 5 and T = 4τ. The
ambiguity function has been normalized by the signal energy E so that it has a
maximum value of 1.0. Note that, as with any waveform, the maximum of the AF
occurs at t = 0 and the duration is twice the total waveform duration (2MT in
this case). The local peaks every T seconds represent the range ambiguities
discussed previously in Sec. 4.5.3 and illustrated in Fig. 4.15a. If the
transmitted waveform were extended by P pulses while the reference waveform



remained M pulses long as discussed above, there would be P consecutive
spikes with the full amplitude of 1.0, similar to Fig. 4.16a.

 FIGURE 4.18   Zero-Doppler cut of the ambiguity function of a pulse burst. M =
5 pulses, T = 4τ.
 

The zero delay cut is obtained by setting t = 0 in Eq. (4.78) and recalling
that Ap(0, FD) = |sin(πFDτ)/πFDτ|(assuming a unit energy simple pulse), giving

(4.80)
 

The response is an asinc function with a first zero at FD = 1/MT Hz,
repeating with a period of 1/T Hz. This basic behavior is weighted by a more
slowly varying true sinc function with its first zero at 1/τ Hz. This structure is
evident in Fig. 4.19, which shows a portion of the zero delay cut for the same
case with M = 5 and T = 4τ. The 1/T spacing of the principal peaks in the zero-
delay response is the blind Doppler shift first defined in Chap. 3.



 FIGURE 4.19   Zero-delay cut of the pulse burst ambiguity function with M = 5
and T = 4τ.
 

Figure 4.20 is a contour plot of a portion of the complete ambiguity
function for this waveform. Note the broadening of the response peaks in
Doppler when sampling at the range-ambiguous delays such as 4τ and 8τ
(corresponding to ± 0.2 and ± 0.4 on the normalized delay scale of the contour
plot). This phenomenon is caused by the (M – |m|) term in the asinc term of Eq.
(4.78) and reflects the fact that at these range-ambiguous delays fewer than M
pulses are contributing to the matched filter local output peak. The reduced
observation time results in degraded Doppler resolution. Again, if the
transmitted waveform were extended by P pulses, there would be P consecutive
range peaks which retained the full Doppler resolution. This plot also illustrates
the breakup of the well-defined peaks in delay when the Doppler mismatch
reaches 1 / τ hertz (corresponding to 20 on the normalized Doppler scale of the
plot).



 FIGURE 4.20   A portion of the ambiguity function for the pulse burst waveform
with M = 5 and T = 4τ. Positive frequencies only shown.
 

Figure 4.21 is a diagram of the structure of the central peak of the pulse
burst ambiguity function and the first repeated peaks in Doppler and range. This
figure summarizes how the various waveform parameters determine the
resolution in range and Doppler, the range ambiguity interval, and the blind
Doppler interval. The individual pulse length τ is chosen to achieve the desired
range resolution (cτ/2 meters). The pulse repetition interval T sets the ambiguity
interval in range (cT/2 meters) and the blind interval in Doppler (1/T Hz).
Finally, once the PRI is chosen, the number of pulses in the burst determines the
Doppler resolution (1/MT Hz).



 FIGURE 4.21   Relationship between pulse burst waveform parameters and
range and Doppler resolution and ambiguities.
 

4.5.6   The Slow-Time Spectrum and the Periodic Ambiguity Function
It would seem that the DTFT Y [l, ωD) of the slow-time sequence y[l, m] should
be related to the variation of the complex ambiguity function Â(t, FD) in
Doppler. The slow-time sequence y[l, m] is obtained by sampling the output of
the simple pulse matched filter output sp(t) at the same delay after transmission
on each pulse. If the target motion across the CPI is small compared to the range
resolution (i.e., the target moves only a small fraction of a range bin during the
CPI), the amplitude of the sample taken on each pulse will be the same. This
amplitude will be the maximum value sp(0) if the sampling time exactly
corresponds to the target range; if the sampling time differs from that
corresponding to the target range by Δt seconds the measured amplitude on each
pulse will be sp(Δt). Thus, the slow-time sequence in a given range bin will
have constant amplitude but the ambiguity function of the waveform will
determine that amplitude based on the alignment of the target range and the range
bin sampling times.

If there is relative motion between the radar and target, there will be a
sample-to-sample decrease in the phase of the slow-time samples of the form –
4πmvT/λ. If the target is within the first unambiguous range interval the target
echo will be present in all M slow-time samples for the appropriate range bin
and the magnitude of the DTFT will have the |sin(πFDMT)/sin(πFDT)|form seen
i n Eq. (4.80). However, the|sin(πFDτ)/πFDτ|term of the AF Doppler response
due to the individual pulse shape will not be observed in the DTFT; rather, this
term will weight the overall amplitude of the DTFT. Finally, if the target range



exceeds Rua the target echo will not be present in all of the slow-time samples
and the Doppler resolution will degrade in Y [l, ωD) in the same manner it did in
Â(t, FD).

When the transmitted pulse burst waveform is extended by P pulses to
provide full integration gain of a factor of M for targets extending over P range
ambiguities, the matched filter output maintains its full maximum peak value of
MEp over the P range ambiguities (delay interval 0 to (P – 1)T) of interest as
shown in Fig. 4.16a. The same result over only that delay interval could be
obtained by at least two equivalent calculations: correlation of an M-pulse
transmitted waveform with an infinitely extended reference, evaluated over [0,
(P – 1)T], or circular correlation of an M-pulse waveform with an M-pulse
reference. The periodic ambiguity function (PAF) is a modification of the
complex AF of Eq. (4.30) that, when applied to a pulse burst waveform,
produces the full-gain AF over this delay interval. A typical definition is
(Levanon, 2010; Levanon and Mozeson, 2004)

(4.81)
 
A significant property of the PAF is its relation to the AF of the single
constituent pulse in the pulse burst when T > 2τ:4

(4.82)
 
That is, the PAF is the AF of the single pulse multiplied by the DTFT of a
discrete M-sample pulse. This is exactly the DTFT Y [l, ωD) that will result
from the pulse-by-pulse processing approach as described above.

4.6   Frequency-Modulated Pulse Compression
Waveforms

A simple pulse has only two parameters, its amplitude A and its duration τ. The
range resolution cτ/2 is directly proportional to τ; better resolution requires a
shorter pulse. Most modern radars operate with the transmitter in saturation.
That is, any time the pulse is on, its amplitude is kept at the maximum value of
A; amplitude modulation other than on/off switching is not used. The energy in
the pulse is then A2τ. This mode of operation maximizes the pulse energy, which
is then also directly proportional to τ. As will be seen in Chaps. 6 and 7,
increasing pulse energy improves detection and estimation performance. Thus,
improving resolution requires a shorter pulse, while improving detection and



estimation performance requires a longer pulse. The two metrics are coupled in
this unfortunate way because there is effectively only one free parameter τ in the
design of the simple pulse waveform.

Pulse compression waveforms decouple energy and resolution. Recall that
a simple pulse has a Rayleigh bandwidth β = 1/τ Hz and a Rayleigh resolution in
time at the matched filter output of τ seconds. Thus, the time-bandwidth product
(BT product) of the simple pulse is τ(1/τ) = 1. A pulse compression waveform,
in contrast, has a bandwidth β that is much greater than 1/τ. Equivalently, it has a
duration τ much greater than that of a simple pulse with the same bandwidth, τ 
1/β. Either condition is equivalent to stating that a pulse compression waveform
has a BT product βτ much greater than one.

Pulse compression waveforms are obtained by adding frequency or phase
modulation to a simple pulse. There are a vast number of pulse compression
waveforms in the literature. In this text, only the most commonly used types will
be described. These include linear frequency modulation, biphase codes, and
certain polyphase codes. Nonlinear FM will also be briefly introduced. Many
other waveforms are described in Levanon and Mozeson (2004) and Keel and
Baden (2012).

4.6.1   Linear Frequency Modulation
A linear frequency modulated waveform is defined by

(4.83)
 
The complex equivalent is

(4.84)
 
The instantaneous frequency in hertz of this waveform is the time derivative of
the phase function

(4.85)
 
This function is shown in Fig. 4.22, assuming β > 0. Fi(t) sweeps linearly across
a total bandwidth of β Hz during the τ-second pulse duration. The waveform x(t)
[Eq. (4.83), or the real part of Eq. (4.84)] is shown in Fig. 4.23 for βτ = 50. The
LFM waveform is often called a chirp waveform in analogy to the sound of an
acoustic sinusoid with a linearly changing frequency. When β is positive the
pulse is an upchirp; if β is negative it is a downchirp. The BT product of the



LFM pulse is simply βτ; βτ  1 if the LFM pulse is to qualify as a pulse
compression waveform.

 FIGURE 4.22   Instantaneous frequency of an LFM pulse.
 

 

 
FIGURE 4.23   Real-valued LFM upchirp waveform, BT product βτ = 50.
 

Figure 4.24 shows the magnitude spectrum of the LFM waveform for a
relatively low BT product case (βτ = 10), and again for a higher BT product
case (βτ = 100). For low BT the spectrum is relatively poorly defined. As the
BT product increases the spectrum takes on a more rectangular shape. This is
intuitively reasonable: because the sweep is linear, the waveform spreads its
energy uniformly across the spectrum.



 FIGURE 4.24   Magnitude spectrum of an LFM waveform: (a) βτ = 10, (b) βτ =
100.
 

Figure 4.25 shows the output of the matched filter for the same two chirp
waveforms. The dotted line superimposed on the output waveform is the output
of a matched filter for a simple pulse of the same duration. As always, the total
duration of the matched filter output is 2τ seconds. In both cases, the LFM
waveform results in a matched filter output with a Rayleigh resolution much
narrower than τ. In fact, the Rayleigh resolution is very nearly 1/β in each case
(this will be confirmed shortly), an improvement over the simple pulse by a
factor of the time-bandwidth product βτ.



 FIGURE 4.25   Output of matched filter for an LFM waveform: (a) βτ = 10, (b)
βτ = 100. The dotted line is the output of a matched filter for a simple pulse of
the same duration.
 

Simple and LFM pulses of the same amplitude and duration will have the
same peak power at the matched filter output and achieve the same output SNR
in accordance with Eq. (4.13). However, for an LFM pulse and a simple pulse
of the same amplitude to have the same fast-time Rayleigh resolution at the
output of their matched filters, the simple pulse must be shorter than the LFM
pulse by the factor βτ. The energy in the simple pulse and the SNR achieved are
then also less by the factor of βτ. In other words, the LFM waveform with



proper matched filtering achieves a signal processing gain of Gsp = βτ compared
to a simple pulse of the same Rayleigh resolution.

Unlike the simple pulse case, the matched filter output for the LFM pulse
exhibits a sidelobe structure. Figure 4.26 expands the central portion of Fig.
4.25b, showing the distinctly sinc-like mainlobe and first few sidelobes. This
should not be surprising: the waveform spectrum X(F) (Fig. 4.24b) is
approximately a rectangle of width β Hz. Consequently, the spectrum of the
matched filter output, |X(F)|2, will also be approximately a rectangle of width β.
The time-domain output of the matched filter is therefore expected to be
approximately a sinc function with a Rayleigh resolution of 1/β seconds.

 FIGURE 4.26   Expanded view of central portion of Fig. 4.25b.
 

To summarize, the LFM waveform enables separate control of pulse
energy (through its duration) and range resolution (through its swept bandwidth).
The possibility of pulse compression is created by the use of matched filters.
The output of the matched filter is not a replica of the transmitted waveform x(t),
but of its autocorrelation function sx(t). Therefore, if a waveform can be
designed that has a long duration but a narrowly concentrated autocorrelation,
both good range resolution and good energy can be obtained simultaneously.
This in turn is accomplished by modulating a long pulse to spread its bandwidth
beyond the usual 1/τ. Since the spectrum of the autocorrelation function is just
the squared magnitude of the waveform spectrum, a spectrum spread over β Hz
will tend to produce a filter output with most of its energy concentrated in a
mainlobe of about 1/β seconds duration. The linear FM pulse is the first
example of such a waveform, but phase coded waveforms will provide more
examples of this approach.



4.6.2   The Principle of Stationary Phase
The Fourier transform of Eq. (4.84) is a relatively complicated result involving
the sine integral Si(F) (Rihaczek, 1996). A very useful and much simpler
approximation can be derived using the principle of stationary phase (PSP), an
advanced technique in Fourier analysis. The PSP is useful for approximate
evaluation of integrals with highly oscillatory integrands; thus, it applies
particularly well to Fourier transforms. Write x(t) in amplitude and phase form,
x(t) = A(t) exp[jθ(t)], and consider its Fourier transform

(4.86)
 
Define the phase ϕ(t, Ω) of the Fourier integral as the combination of the signal
phase and the Fourier kernel phase

(4.87)
 
Of course, the exact Fourier transform is known for many signals having
relatively simple phase functions τ(t). The PSP is most useful when the signal
phase function and thus the total integral phase ϕ(t, Ω) is continuous but
nonlinear or otherwise complicated.

Define a stationary point of the integrand as a value of t = t0 such that the
first time derivative of the integral phase ϕ′(t0, Ω) = 0. Then the PSP
approximation to the spectrum is (Born and Wolf, 1959; Papoulis and Pillai,
2002; Raney, 1992)

(4.88)
 
where ϕ′(t0, Ω) is the second time derivative of ϕ(t, Ω) evaluated at t = t0. If
there are multiple stationary points the spectrum is the sum of such terms for
each stationary point. Equation (4.88) states that the magnitude of the spectrum
at a given frequency Ω is proportional to the amplitude of the signal envelope at
the time that the stationary point occurs and, more importantly, is inversely
proportional to the square root of the rate of change of the frequency ϕ′(t0, Ω) at
that time. The PSP also implies that only the stationary points significantly
influence X(Ω).

The PSP can be applied to estimate the spectrum of the LFM waveform.



The waveform is defined as

(4.89)
 
Thus

(4.90)
 
The integrand phase and its derivatives are then

(4.91)
 
The stationary points are found by setting ϕ′(t, Ω) = 0 and solving for t. In this
case, there is only one stationary point:

(4.92)
 
Inserting Eq. (4.92) into Eq. (4.88) gives

(4.93)
 
Recalling the finite support of the signal envelope A(t), the term A(Ω/2α)
becomes (using α = πβ/τ)



(4.94)
 
The final result is

(4.95)
 

Figure 4.27 compares this approximation with the exact spectrum when βτ
= 100. Equation (4.95) estimates that|X(Ω)|is constant over the range ±β/2 Hz
and is zero outside of this range. This is both intuitively satisfying, since this is
exactly the range over which the instantaneous frequency of the LFM pulse
sweeps, and consistent with the increasingly rectangular shape of the exact
spectrum observed in Fig. 4.23 as the BT product increases. The PSP result also
gives an estimate of the phase of the spectrum which, like the temporal phase of
the waveform x(t), is seen to be quadratic in frequency.

 FIGURE 4.27   Comparison of actual magnitude spectrum and PSP
approximation for an LFM pulse with βτ = 100.
 

4.6.3   Ambiguity Function of the LFM Waveform
The ambiguity function of an LFM pulse can be obtained by direct calculation,



similar to the simple pulse, but with a good deal more tedium. An easier way is
to introduce the “chirp property” of the ambiguity function and then apply it to
the LFM case. Suppose that a waveform x(t) has an ambiguity function A(t, FD).
Create a modified waveform x′(t) by modulating x(t) with a linear FM complex
chirp and compute its complex ambiguity function

(4.96)
 
Taking the magnitude of Â′(t, FD) gives the ambiguity function of the chirp signal
in terms of the ambiguity function of the original signal without the chirp

(4.97)
 

Equation (4.97) states that adding a chirp modulation to a signal skews its
ambiguity function in the delay-Doppler plane. Applying this property to the
simple pulse AF [Eq. (4.51)] gives the AF of the LFM waveform

(4.98)
 
Figure 4.28 is a contour plot of the AF of an LFM pulse of duration τ = 10 μs
and swept bandwidth β = 1 MHz; thus, the BT product is 10. The AF retains the
triangular ridge of the simple pulse but is now skewed in the delay-Doppler
plane as predicted by Eq. (4.97).



 FIGURE 4.28   Contour plot of the ambiguity function of an LFM waveform with
βτ = 10.
 

The zero-Doppler cut of the LFM ambiguity function is the matched filter
output when there is no Doppler mismatch:

(4.99)
 
This function was illustrated for BT products of both 10 and 100 in Fig. 4.25.
The Rayleigh resolution of the LFM pulse is obtained by examination of Eq.
(4.99). The peak of A(t, 0) occurs at t = 0. The first zero occurs when the
argument of the numerator equals π, which occurs when βt(1–|t|/τ) = 1. For
positive t, this becomes

(4.100)
 
The roots of this equation are . Since the
argument of the square root in the last expression is less than one, taking the
negative sign gives the positive root closest to zero and thus the Rayleigh
resolution in time. This result can be simplified with the following series



expansion of the square root

(4.101)
 
Thus, the Rayleigh resolution in time is approximately 1/β seconds,
corresponding to a Rayleigh range resolution ΔR of

(4.102)
 

The zero-delay response is

(4.103)
 
which is simply a standard sinc function. The Doppler resolution of the LFM
pulse is the same as that of a simple pulse, namely

(4.104)
 
Equation (4.103) shows that, like the simple pulse, the Doppler resolution of an
LFM pulse is inversely proportional to the pulse length. Furthermore, the energy
in the LFM pulse is still A2τ, directly proportional to the pulse length. Equation
(4.102) shows that, unlike the simple pulse, the range resolution is inversely
proportional to the swept bandwidth. The LFM waveform has two parameters,
bandwidth and duration, which can now be used to independently control pulse
energy and range resolution. The pulse length is chosen (along with the pulse
amplitude A) to set the desired energy, while the swept bandwidth is chosen to
obtain the desired range resolution.

The expression c/2β for range resolution is quite general. For instance, the
Rayleigh bandwidth of a simple pulse is β = 1/τ Hz; using this in c/2β gives ΔR
= cτ/2 as before. While bandwidth and pulse length are directly related in the
simple pulse, modulation of the LFM waveform has decoupled them. If βτ > 1
for the LFM pulse the range resolution will be better than that of a simple pulse
of the same duration by the factor βτ. Alternatively, the range resolution of a
simple pulse of length τ can be matched by an LFM pulse that is longer (and thus



higher energy, given the same transmitted power) by the factor βτ.

4.6.4   Range-Doppler Coupling
The skew in the ambiguity function for the LFM pulse gives rise to an interesting
phenomenon. Consider the AF of Eq. (4.98). The peak of this sinc-like function
will occur when

(4.105)
 
That is, when there is a Doppler mismatch the peak of the matched filter output
will not occur at t = 0 as desired. Instead, it will be shifted by an amount
proportional to the Doppler shift. Because the target range will be estimated
based on the time of occurrence of this peak, a Doppler mismatch will induce an
error in measuring range. The corresponding range error will be

(4.106)
 
The amplitude of the peak will also be reduced by the factor (1 –|t|/τ) = (1 –
FD/β) . Figure 4.29 illustrates the skewed ridge of the LFM ambiguity function
and the relationship between Doppler shift and range measurement error.

 FIGURE 4.29   Illustration of the effect of range-Doppler coupling on apparent
target range.
 

While an incorrect range measurement is certainly undesirable, range-
Doppler coupling is a useful phenomenon in some systems. A simple pulse with
duration τ will have a Doppler Rayleigh resolution of 1/τ Hz; targets with
Doppler mismatches approaching this value or larger will produce a greatly



attenuated output from the matched filter and will likely go undetected. An LFM
pulse of the same duration will still produce a significant output peak for a much
broader range of Doppler shifts, even though the peak will be mislocated in
range. Nonetheless, the target will be more likely to be detected. The LFM
waveform is said to be more Doppler tolerant than the simple pulse. This
makes it a good choice for surveillance applications because a relatively large
range of Doppler shifts can be searched with an LFM pulse. The range error can
be eliminated, at least for isolated targets, by repeating the measurements with
an LFM pulse of the opposite slope, e.g., an upchirp followed by a downchirp.
In this case the sign of the range error will be reversed. Averaging the two
measurements will give the true range and also allow determination of the
Doppler shift.

4.6.5   Stretch Processing
LFM waveforms are often the waveform of choice for exceptionally wideband
radar systems where the swept bandwidth β may be hundreds of megahertz or
even exceed 1 GHz. Digital processing can be difficult to implement in such
systems because the high instantaneous bandwidth of the waveform requires
equally high sampling rates in the A/D converter. It is difficult to obtain high-
quality A/D converters at these rates with wordlengths longer than perhaps 8
bits with current technology; wordlengths at 1 GHz are expected to reach only
about 11 bits by 2020 (Jonsson, 2010). In addition, the sheer number of samples
generated can be stressing for the signal processor.

Stretch processing  is a specialized technique for matched filtering of
wideband LFM waveforms. It is also called deramp processing, deramp on
receive, dechirp, and one-pass processing. It is essentially the same as the
processing used with linear frequency-modulated continuous wave (FMCW)
radar. Stretch processing is most appropriate for applications seeking very fine
range resolution over relatively short range intervals (called range windows or
range swaths).

Figure 4.30 shows the scenario for analyzing stretch processing. The
central reference point  (CRP) is in the middle of the range window of interest
at a range of R0 meters, corresponding to a time delay of t0 seconds. Consider a
scatterer at range Rb and time delay tb = t0 + δtb. The problem will be analyzed
in terms of differential range or delay relative to the CRP, denoted δRb and δtb.
The transmitted waveform is the LFM pulse of Eq. (4.84). The echo from the
scatterer, with the carrier frequency included, is



 FIGURE 4.30   Scenario for stretch processing analysis.
 

(4.107)
 
where ρ is proportional to the scatterer reflectivity. This echo is processed with
the modified coherent receiver in complex equivalent form shown in Fig. 4.31.
The unique aspects of this stretch receiver are the reference oscillator and the
Fourier transform. The oscillator contains a conventional term exp(–jΩt) to
remove the carrier. However, it also contains a replica of the transmitted chirp,
referenced to the time delay t0 corresponding to the CRP. The reason for the
Fourier transform will be apparent shortly.

 FIGURE 4.31   Complex equivalent receiver for stretch processor.
 

After some algebra and using tb = t0 + δtb, the output y(t) can be expressed
as



(4.108)
 
The phase term that is quadratic in δtb is a complex constant. In synthetic
aperture imaging it is called the residual video phase (RVP). The middle
complex exponential contains a term that is linear in t and therefore represents a
constant-frequency complex sinusoid. By inspection, the sinusoid frequency is
Fb = –βδtb/τ Hz. Fb is proportional to δtb and thus to the range of the scatterer
relative to the CRP. The differential range can be obtained from the mixer output
frequency as

(4.109)
 

Heuristically, the scatterer produces a constant frequency tone at the output
of the stretch receiver because the receiver not only removes the carrier from
the LFM echo but also combines it in a mixer with a replica of the LFM with a
delay corresponding to the CRP. In the conventional real-signal receiver of Fig.
1.13, the mixer produces sum and difference “beat” frequencies. The sum
frequency is removed by a lowpass filter. (This LPF is not needed in the
complex representation and is therefore not shown in Fig. 4.31.) The difference
frequency is the difference between the instantaneous frequency of the LFM
echo and the LFM reference. Since both have the same sweep rate, this beat
frequency is a constant.

If there are several scatterers distributed at ranges Ri and delays δti, the
stretch receiver output is simply the superposition of several terms of the form
of Eq. (4.108)

(4.110)
 
Thus the output of the stretch receiver contains a different beat frequency tone
for each scatterer. The reason for the Fourier transform block in Fig. 4.31 is
now apparent. Spectral analysis of y(t) can identify the beat frequencies present
in the mixer output and therefore the ranges and amplitudes of the scatterers
present in the composite echo. Figure 4.32 illustrates the instantaneous
frequencies and timing of the signals involved for three scatterers, one in the
middle and one at each edge of the scene.



 FIGURE 4.32   Instantaneous frequency vs. time for an LFM transmitted pulse
and echoes from three scatterers. See text for details.
 

It is desirable that the reference LFM chirp completely overlap the echo
from a scatterer anywhere within the range window. If the range window is Rw =
cTw/2 meters long the leading edge of the echo from a scatterer at the nearest
range, R0 – Rw/2, will arrive t0 – Tw/2 seconds after transmission as shown in
Fig. 4.32. The trailing edge of the echo from the scatterer at the far limit of the
range window, R0 + Rw/2, will arrive t0 + Tw/2 + τ seconds after transmission.
Thus, data from the range window have a total duration of Tw + τ seconds. To
ensure complete overlap of the reference chirp with echoes from any part of the
range window the reference chirp must be Tw + τ seconds long and so will
sweep over (1 + Tw/τ)β Hz.

Another issue evident in Fig. 4.32 is range skew. This is the phenomenon
whereby the beat frequencies for scatterers at different ranges, while all of the
same duration (provided the reference chirp is lengthened), start and stop at
different times. This complicates weighting of the mixer output prior to spectral
analysis for range sidelobe control. If the window is aligned with the beat
frequency for the center scatterer response, it will be misaligned with earlier
and later scatterer responses. If it is lengthened to cover the full mixer output
duration of Tw + τ seconds, none of the beat frequencies will be weighted by the
full window and each will have a different effective window function. In either
case, sidelobe suppression will be poor.

This problem can be solved by placing an additional filter between the
mixer output and the Fourier transform. Notice that the scatterer at delay δtb
relative to the patch center generates a beat frequency of –β · δtb/τ Hz. What is
needed is a filter whose frequency response has unit magnitude for all



frequencies so as not to distort the scatterer amplitudes, but also a group delay5

of –δtb seconds at the frequency –β · δtb/τ. It can be shown that the required
frequency response in analog radian frequency units is H(Ω) = exp(–jΩ2τ/2βΩ),
which has unit magnitude for all frequencies and a quadratic phase in the
frequency domain (see Prob. 15). All of the beat frequencies will be aligned in
time at the output of this filter. As an extra benefit, this filter also corrects RVP
(Carrara et al., 1995).

The bandwidth of the stretch receiver output can be obtained by
considering the difference in beat frequencies for scatterers at the near and far
edges of the range window. This gives

(4.111)
 
If Tw < τ, the bandwidth at the receiver output is less than the original signal
bandwidth β. The mixer output can then be sampled with slower A/D converters
and the number of range samples needed to represent the range window data is
reduced. Thus, the stretch technique is most effective for systems performing
fine range resolution analysis over limited range windows. Also note that while
the digital processing rates have been reduced, the analog receiver hardware up
through the LFM mixer must still be capable of handling the full instantaneous
signal bandwidth.

As an example, consider a 100 μs pulse with a swept bandwidth of 750
MHz, giving a BT product of 75,000. Suppose the desired range window is Rw
= 1.5 km, corresponding to a sampling window of Tw = 10 μs. In a conventional
receiver the sampling rate will be 750 megasamples per second. Data from
scatterers over the extent of the range window will extend over Tw + τ seconds,
requiring (750 MHz)(10 μs + 100 μs) = 82,500 samples to represent the range
window. In contrast, the bandwidth at the output of the stretch receiver will be
(Tw/τ)β = 75 MHz. The sampled time interval remains the same, so only 8250
samples are required. Restricting the analysis to a delay window one-tenth the
length of the pulse and using the stretch technique has resulted in a factor of 10
reduction in both the sampling rate required and the number of samples to be
digitally processed.

Stretch processing of linear FM waveforms preserves both the resolution
and the range-Doppler coupling properties of conventionally processed LFM.
Consider the output of the stretch mixer for a scatterer at differential range δtb
from the central reference point. This signal will be a complex sinusoid at a
frequency Fb = –β · δtb/τ Hz observed for a duration of τ seconds. In the absence
of windowing, the Fourier transform of this signal will be a sinc function with



its peak at Fb and a Rayleigh resolution of 1/τ Hz. The processor will be able to
resolve scatterers whose beat frequencies are at least ΔFb = 1/τ Hz apart. The
time-delay spacing that gives this frequency separation satisfies

(4.112)
 
The corresponding range separation is then the usual result for range resolution

(4.113)
 
If the reference oscillator sweep is not lengthened as discussed above to fully
overlap the echo from scatterers at any location in the range window, the range
resolution will be degraded. Specifically, the duration τ′ of the beat frequency
will be less than τ seconds for scatterers at any delay other than the center of the
window due to the incomplete overlap. The Rayleigh resolution of the Fourier
transform of that scatterer’s beat frequency will increase to a value 1/τ′ > 1/τ,
causing the range resolution of Eq. (4.113) to increase proportionately. The
processing gain will similarly be reduced from the ideal factor of βτ.

To consider the effect of Doppler shift on the stretch processor, replace 
in Eq. (4.107) with

(4.114)
 
Repeating the previous analysis, Eq. (4.108) becomes

(4.115)
 
Equation (4.115) shows that the effect of a Doppler shift is to increase the beat
frequency Fb by FD Hz. Since beat frequency is mapped to differential range by
the stretch processor according to δRb = –cFbτ/2β, this implies a measured range
shift of

(4.116)
 
which is the same range-Doppler coupling relationship obtained previously.



Stretch processing and especially Eq. (4.110) will be revisited and
extended in Chap. 8, where the technique is central to the polar format algorithm
for spotlight synthetic aperture radar imaging. Additional details of stretch
processing are given in Keel and Baden (2012).

4.7   Range Sidelobe Control for FM Waveforms
It was seen in the previous section that the output of the LFM matched filter
exhibits sidelobes in range (equivalently, delay). These are a consequence of
the approximately rectangular LFM matched filter output spectrum, which
produces a sinc-like range response. The first range sidelobe is approximately
13 dB below the output peak for moderate-to-high BT products, and about –15
dB for small BT products. Sidelobes this large are unacceptable in many
systems that will encounter multiple targets in range due to target masking. This
phenomenon is shown in Fig. 4.33a, where the smaller target is barely visible
above the sidelobes of the stronger target despite being separated by
approximately sixteen times the Rayleigh resolution. The smaller target could
not be reliably detected in this scenario. If the sidelobes could be reduced, this
masking effect could be greatly reduced as shown in part b of the figure.



 FIGURE 4.33   Effect of windowing on target masking: (a) no windowing, (b)
Hamming window applied.
 

For a simple pulse, the matched filter output is a triangle function, which
exhibits no sidelobes. Thus, sidelobe reduction is not an issue for that waveform
and it will not be further discussed. For the LFM pulse, there are two basic
approaches to delay sidelobe reduction: shaping the receiver frequency
response, and shaping the waveform spectrum.

4.7.1   Matched Filter Frequency Response Shaping
Recall from finite impulse response (FIR) digital filter design that to reduce



sidelobes of the frequency response of a digital filter, a window function is
applied in the time domain to the impulse response. The goal here is to reduce
sidelobes in range, corresponding to the time domain, so the analogous
approach is to window the receiver frequency response in the frequency
domain.

The matched filter frequency response is H(F) = X*(F), and at least for
larger BT products is approximately rectangular. A modified frequency
response H′(F) can be obtained by multiplying H(F) by a window function
w(F)6

(4.117)
 
Figure 4.34a shows a Hamming window function overlaid on the matched filter
frequency response for an LFM waveform with βτ = 100. H′(F) is the product of
these two functions. The resulting impulse response h′(t) is shown in Fig. 4.34b.
The response of both the matched filter and the filter of Fig. 4.34b to the
unwindowed LFM echo are overlaid in Fig. 4.35. The LFM waveform used had
βτ = 100 and the window cutoff was placed at ±β/2 Hz. The peak sidelobe has
dropped 23.7 dB, from 13.5 dB below the mainlobe peak in the unwindowed
case to 37.2 dB below the mainlobe peak for the windowed case. This comes at
a cost of the mainlobe peak gain dropping 5.35 dB and the Rayleigh time (range)
resolution increasing by 93 percent.



 FIGURE 4.34   Hamming weighting of the LFM receiver frequency response: (a)
Hamming window overlaid on matched filter frequency response, (b) resulting
filter impulse response h′(t).
 

 



 
FIGURE 4.35   Comparison of the receiver filter output with (black curve) and
without (gray curve) frequency-domain Hamming weighting of the matched
filter. See text for details.
 

Since the matched frequency response does not have a perfectly sharp
cutoff frequency, there is some uncertainty as to where in frequency to place the
window cutoff. In the example, the support of the window equals the
instantaneous frequency cutoff, which is 0.36 cycles per sample on the
normalized frequency scale for this particular sampled LFM waveform.
However, this choice cuts off some of the waveform energy in the sidelobes,
increasing the mismatched filtering losses. A case could be made for a narrower
support so that the window is applied only over the relatively flat portion of the
spectrum. This would provide range sidelobes more closely matching those
expected for the chosen window but would reduce the effective bandwidth,
further degrading the range resolution. A case could also be made for increasing
the support to maximize the output energy, but this choice might increase the
range sidelobes by “wasting” some of the window shape on the skirts of the
LFM spectrum.

Since H′(F) ≠ X*(F), the modified receiver is not matched to the
transmitted LFM pulse and therefore the output peak and SNR will be reduced
from their maximum values. This effect was evident in Fig. 4.33b, where the
peak of the dominant target response is several dB lower than the unwindowed
case in part a of the figure. The losses in output peak amplitude and SNR can be
estimated from the window function w(F). In practice, a discrete window w[k]
will be applied to a discrete-frequency version of H(F) , H[k]. The loss in the
peak signal output from the matched filter, called the loss in processing gain
(LPG), is



(4.118)
 
where K is the window length. The loss in SNR at the matched filter output is
called the processing loss (PL) and is

(4.119)
 
With these definitions LPG and PL are both greater than one so that the losses in
decibels are positive numbers. For a relatively long Hamming window, the LPG
is approximately 5.4 dB while the PL is approximately 1.4 dB. Both are weak
functions of K and are slightly larger for small K. These formulas are
approximate when applied to windowing of the LFM spectrum due to the finite-
width transition of the LFM spectrum and the designer’s discretion in choosing
the cutoff of the window in frequency. In the example above, the LPG is 5.35
dB. Derivation of these formulas is deferred to Chap. 5, where they will arise
again in the context of Doppler processing and where the results will be exact.

4.7.2   Matched Filter Impulse Response Shaping
The impulse response of the filter just obtained and illustrated in Fig. 4.34b
suggests that similar results could have been obtained by windowing the LFM
waveform in the time domain. Consider again the signal in Eq. (4.89) having an
arbitrary amplitude function A(t) and a quadratic phase function. The PSP
approximation to its spectrum was given in Eq. (4.93). The magnitude of the
spectrum is proportional to the time-domain amplitude:

(4.120)
 
If A(t) has finite support on –τ/2 ≤ t ≤ τ/2, it follows that X(Ω) will have finite
support on –β/2 ≤ F ≤ β/2 and in that interval|X(Ω)|has the same shape as the
window magnitude | A(t)|. Thus, a Hamming-shaped (for example) spectrum can
be obtained by applying a Hamming window to the impulse response h(t)
instead of the frequency response H(F). Note that this result is specific to the
use of a linear FM waveform.

The output of the resulting filter is overlaid on the matched filter response
i n Fig. 4.36. It has the same general character as the frequency-domain



weighting result but with some differences in details of the sidelobe structure.
The peak is reduced from 60 to 54.64 dB with weighting, a nearly identical LPG
of 5.36 dB. The peak sidelobe of the weighted response is 40.7 dB below the
corresponding mainlobe peak, 3.5 dB better than the frequency-domain case.
The Rayleigh width has increased 97 versus 93 percent in the frequency domain
weighted case. This is consistent with the better sidelobe performance of the
time-domain case. Additional detail on frequency- and time-domain weighting
of LFM waveforms is available in Richards (2006).

 FIGURE 4.36   Comparison of the receiver filter output with (black curve) and
without (gray curve) time-domain Hamming weighting of the matched filter. See
text for details.
 

4.7.3   Waveform Spectrum Shaping
The principal limitation of the receiver weighting approach to range sidelobe
control is that the resulting filter is not matched to the transmitted waveform,
resulting in an SNR loss. An alternative approach is to design a modified pulse
compression waveform whose matched filter output inherently has lower
sidelobes than the standard LFM. The waveform should be designed to have a
spectrum shaped like that of a window function with the desired sidelobe
behavior. Such a waveform would combine the maximized SNR of a truly
matched filter with low sidelobes. There are two common ways to shape the
spectrum. Both start with the idea that the LFM spectrum’s relatively square
shape is the result of a linear sweep rate combined with a constant pulse
amplitude, resulting in a fairly uniform distribution of the signal energy across
the spectral bandwidth. The spectral energy could be reduced at the edges,
giving a “window-shaped” spectrum, by reducing the signal amplitude at the
pulse edges while maintaining a constant sweep rate, by using a faster sweep



rate at the edges with a constant pulse amplitude so as to spend less time in each
spectral interval near the band edges, or both. The technique using variable
sweep rates is referred to as nonlinear FM (NLFM).

The amplitude modulation technique implies operating the power amplifier
at less than full power over the pulse length. This requires more complicated
transmitter control but, more importantly, results in a pulse with less than the
maximum possible energy for the given pulse length. This technique is not
discussed further in this book; see Levanon and Mozeson (2004) for more
information.

Two methods that have been proposed for NLFM waveform design are the
principle of stationary phase method and empirical techniques. The PSP
technique is used to design a temporal phase function from a prototype spectral
amplitude function; the instantaneous frequency function is then obtained from
the temporal phase. Examples of using this technique for deriving NLFM
waveforms from common window functions such as Hamming or Taylor
functions are given in Keel and Baden (2012).

One empirically developed design gives the instantaneous frequency
function as (Price, 1979)

(4.121)
 
The term βLt/τ represents a linear FM component, while the term involving βC is
designed to achieve a result that approximates a Chebyshev-shaped (constant
sidelobe level) spectrum. Since Fi(t) = (1/2π)(dθ(t)/dt), integrating and scaling
this instantaneous frequency function gives the required phase modulation

(4.122)
 

Figure 4.37 illustrates the behavior of the resulting nonlinear FM
waveform for the case where βLτ = 50 and βCτ = 20. The waveform is sampled
at 10 times the bandwidth of the linear term, Ts = 1/10βL. The instantaneous
frequency (part a of the figure) is nearly linear in the center of the pulse but
sweeps much more rapidly near the pulse edges. This reduces the spectral
density at the pulse edge, resulting in the spectrum shown in part c, which has a
window-like tapered shape instead of the usual nearly square LFM spectrum.
The resulting matched filter output, shown in part d, has most of its sidelobes
between –48 and –51 dB with the first sidelobe at –29 dB. In contrast, Fig. 4.38
illustrates the spectrum of the same waveform with βC set to zero. This results in
a linear FM waveform with the usual nearly square spectrum. These two figures



are on the same normalized frequency scale. Comparing the spectra of these two
waveforms illustrates how the nonlinear term has spread and tapered the LFM
spectrum to lower the matched filter sidelobes. The LFM matched filter output
has a peak sidelobe of –13.5 dB, decaying approximately as 1/F at higher
frequencies. The Rayleigh resolution in time of the NLFM waveform is
approximately 0.8/βL, less than the 1/βL value observed for the LFM case but
greater than 1/(βL + βC).



 FIGURE 4.37   Nonlinear FM waveform: (a) normalized instantaneous frequency
τ Fi(t), (b) resulting phase modulation function, (c) magnitude of Fourier
spectrum, (d) magnitude of matched filter output.
 

 

 



FIGURE 4.38   FM waveform having same linear component as that of Fig. 4.33,
but no nonlinear component: (a) magnitude of Fourier spectrum, (b) magnitude
of matched filter output.
 

An example of a hybrid technique that combines a similar frequency
modulation function with amplitude tapering of the matched filter impulse
response is described in De Witte and Griffiths (2004). It is claimed there that
the far sidelobes are controlled primarily by the maximum instantaneous
frequency, while the near-in sidelobes are controlled by the amplitude
weighting.

In addition to the more difficult phase control required, the major
drawback of nonlinear FM pulses is their Doppler intolerance. Figure 4.39
shows the matched filter output for the waveform of Fig. 4.37 when a Doppler
mismatch of 7/τ Hz is present. While the general sidelobe level remains largely
unchanged, the mainlobe is seriously degraded, exhibiting both range-Doppler
coupling (a shift of the peak) and severe spreading and ambiguity caused by
very high near-in sidelobes. The major advantage of NLFM over linear FM with
receiver weighting is that the receiver filter for the NLFM waveform is a
matched filter so that lower sidelobes are achieved with is no reduction of the
matched filter output peak.

 FIGURE 4.39   Output of NLFM matched filter when FD = 7/τ Hz.
 



4.8   The Stepped Frequency Waveform
The LFM waveform increases resolution well beyond that of a simple pulse by
sweeping the instantaneous frequency over the desired range β within the pulse.
This technique is very effective and very common but does have drawbacks in
some systems, particularly those using very large bandwidths on the order of
hundreds of megahertz or more. First, the transmitter hardware must be capable
of generating the LFM sweep. Second, all of the analog components must be
able to support an instantaneous bandwidth of β Hz without introducing
distortion. Even if stretch processing is used, the same is true of the receiver
components up to and including the dechirp mixer and reference oscillator.

A second issue arises in systems using phase-steered array antennas.
Recall from Chap. 1 that the antenna pattern of a phase-steered array antenna is
determined primarily by the array factor where d is the element spacing and the
{an} are the complex weights on each subarray output. The antenna is steered to
a particular look direction θ0 by setting the steering weights an according to7

(4.123)
 

(4.124)
 
The magnitudes of the weights are chosen to provide the desired sidelobe level.
E(θ) will exhibit a peak at θ = θ0; for example, if|an|≡ 1, E(θ) will be an asinc
function with its peak at θ0. Note that the phases of the required weights {an} are
a function of the wavelength λ. If an LFM pulse is transmitted, the effective
wavelength changes during the pulse sweep. If the system is wideband, this
wavelength change will be significant and the value of θ at which E(θ) peaks
will change as well. That is, the antenna look direction will actually change
during the LFM sweep (see Prob. 18). This undesired frequency steering effect
is an additional source of SNR loss.

Stepped frequency waveforms are an alternative technique for obtaining a
large bandwidth and thus fine range resolution without requiring intrapulse
frequency modulation. A stepped frequency waveform is a pulse burst
waveform. Each pulse in the burst is a simple, constant-frequency pulse;
however, the RF is changed from one pulse to the next. The most common
stepped frequency waveform employs a linear frequency stepping pattern,
where the RF of each pulse is increased by ΔF Hz from the preceding pulse.
Factoring out the starting RF gives the following baseband waveform



(4.125)
 
Figure 4.40 illustrates the linearly stepped frequency waveform.

 FIGURE 4.40   Linearly frequency-stepped waveform.
 

Because only simple pulses are used for each constituent pulse, the
instantaneous bandwidth capability of the transmitter and receiver need be only
on the order of 1/τ Hz. The total bandwidth of the waveform as a whole is M ·
ΔF. When used with a phase-steered array antenna, the time between pulses can
be used to reset the phase shifters to update the {an} sequence and maintain a
nearly constant steering direction θ0 as the effective wavelength changes from
pulse to pulse. The major disadvantages of this waveform are that it requires a
pulse-to-pulse tunable transmitter and receiver, and that M PRIs are required to
collect data over the desired bandwidth instead of just one.

The pulse-by-pulse processing viewpoint applied to the constant-frequency
pulse burst waveform can be applied again to analyze the matched filter
response for the stepped frequency waveform. Suppose the radar is stationary,
and a stationary target is located at a range corresponding to a delay tl + δt,
where δt represents an incremental delay relative to the nominal delay tl
corresponding to range bin l. Individual pulses are processed through the simple
pulse matched filter as before, producing the output waveforms (assuming TM =
0)

(4.126)
 
This output is then sampled at t = tl + mT (that is, tl seconds after the current
pulse was transmitted), corresponding to range Rl = ctl/2. The resulting sample
becomes the lth coarse range bin sample for the current pulse

(4.127)
 



Equation (4.127) shows that the slow-time sequence at a fixed coarse range bin
l when using a linearly stepped frequency waveform is a discrete time sinusoid.
The frequency is proportional to the displacement of the scatterer from the
nominal range bin location of Rl = ctl/2 meters. The amplitude of the sequence is
weighted by the triangular simple pulse matched filter response evaluated at the
incremental delay sp(δt).

Following the earlier discussion of pulse-by-pulse processing for the
conventional pulse burst waveform, the slow-time matched filter impulse
response for a target located at the nominal delay tl + δt is h[m] =
exp(–j2πmΔFδt). Thus, the matched filter impulse response is different for
every value of δt. Consider a DTFT of the slow-time data

(4.128)
 
The summation will yield an asinc function having its peak at ω = 2πΔFδt. Thus,
the peak of the DTFT of the slow-time data in a fixed range bin with a linearly
stepped frequency waveform provides a measure of the delay of the scatterer
relative to the nominal delay tl. Specifically, if the peak of the DTFT is at ω =
ωp, the scatterer is at an incremental delay

(4.129)
 
Note also that the DTFT evaluated at ωp is the matched filter for the slow-time
sequence, so that the data samples are integrated in phase

(4.130)
 
The factor of M is the coherent integration gain from using M pulses. If δt = 0,
meaning the matched filter output was sampled at its peak, Y[l, ω) = MEp = E,
the total waveform energy. If δt ≠ 0 the ambiguity function of the individual
pulses reduces the amplitude of the slow-time samples by |sp(δt)|. This
represents a straddle loss.



It follows that applying a K-point DFT to the slow-time sequence
implements K filters, each matched to a different incremental delay δt. Thus, the
DFT of the slow-time data within a single range bin for a stepped frequency
waveform is a map of echo amplitude versus incremental range within that
coarse range bin.

The DTFT of an M-point sinusoid has a Rayleigh frequency resolution of
Δf = 1/M cycles per sample. Using the scaling between f and t from Eq. (4.129),
the corresponding time resolution is Δt = 1/M · ΔF seconds; the range
resolution is therefore

(4.131)
 
where β is the total stepped bandwidth M · ΔF. Thus, the linearly stepped
frequency waveform achieves the same range resolution as a single pulse of
bandwidth β. If a K-point DFT is used to process the slow-time data the DFT
output will provide range measurements at intervals of

(4.132)
 
Since K ≥ M normally, the DFT output provides echo amplitude samples at
intervals equal to or less than the range resolution. This fine-resolution
reflectivity map is often called a high resolution range profile 8 or just a range
profile.

The total bandwidth β of the stepped frequency waveform is determined by
the desired range resolution. It can be realized by various combinations of the
number of frequency steps M and the step size ΔF. To determine how to choose
these parameters, note that the DTFT of the slow-time data is periodic in ω with
period 2π radians per sample. Because the DTFT peak is at ωp = 2πΔFδt, the
range profile is periodic in δt with period 1/ΔF. This periodicity establishes the
required coarse range bin spacing. Specifically, avoiding range ambiguities in
the range profile requires c/2ΔF > Lt, where Lt is the maximum target length of
interest. Once ΔF is chosen, M is selected to span the bandwidth required to
provide the desired fine range resolution. The DFT range profile then
effectively breaks each relatively large coarse range bin (c/2ΔF meters) into M
fine-resolution range bins (c/2β meters) sampled at K points within the coarse
range bin. If K = M the range sample spacing equals the range resolution. If K >
M the range profile is oversampled compared to the resolution by the factor
K/M. The pulse length τ is chosen to balance straddle losses and range
ambiguities. Recall that the single-pulse matched filter output sp(t) is 2τ seconds
long. Choosing τ < 1/2ΔF means that sp(t) will be no more than 1/ΔF seconds



long so that a scatterer will only influence measurements in one coarse range
bin, avoiding range ambiguities. On the other hand, the shorter τ is made, the
greater the potential straddle loss for targets located between coarse range
samples. A detailed consideration of these tradeoffs is in Keel and Baden
(2012).

Details of the Doppler response and ambiguity function of the linearly
stepped frequency waveform are available in Levanon and Mozeson (2004). A
small central portion of the ambiguity function is shown in Fig. 4.41 for the case
M = 8 pulses, PRI T = 10τ, and a frequency step size of ΔF = 0.8/τ. The
resulting bandwidth is β = M · ΔF = 6.4/τ Hz. The AF displays both the skewed
response typical of a linear FM modulation, and the range and Doppler
ambiguities typical of pulse burst waveforms. Ambiguities in delay (range) are
evident at intervals of T seconds, corresponding to 1/8 = 0.125 on the
normalized scale of the figure. The first zero in Doppler of the main ridge
occurs at 1/MT Hz, corresponding to 1 on the normalized Doppler scale.

 FIGURE 4.41   Contour plot of the central portion of the ambiguity function of a
pulse burst waveform. M = 8, T = 10τ, and ΔF = 0.8/τ.
 

Figure 4.42a further magnifies the delay coordinate of this AF. The delay
coordinate now covers the interval ± τ = ± 0.0125 (± 1/80) on this normalized
scale. The zero-delay and zero-Doppler axes are highlighted by the heavier gray
lines. The expected Rayleigh resolution in delay is 1/ΔF = τ/6.4, which



becomes 0.002 on this scale. The dotted heavy gray line marks the + 0.002
delay coordinate. It can be seen that this intersects the first null on the zero-
Doppler axis of the AF, confirming that the intended resolution is achieved.

 FIGURE 4.42   Contour plot of the central portion of the ambiguity function of a
pulse burst waveform: M = 8, T = 10τ, (a) ΔF = 0.8/τ (same waveform as Fig.
4.41), (b) ΔF = 2.5/τ.
 



Choosing ΔF > 1/τ allows generation of a wide total bandwidth with fewer
pulses and therefore a shorter data collection time, but the resulting
undersampling creates aliasing that appears as extra range ambiguities (also
called grating lobes). Figure 4.42b shows a similar view of another case with
ΔF · τ = 2.5 but the other parameters unchanged. The bandwidth is now 20/τ Hz
so the resolution in delay is correspondingly finer. However, there are now five
peaks along the zero-Doppler axis, representing five range ambiguities, within ±
1 pulse length.

4.9   The Stepped Chirp Waveform
The stepped chirp waveform is a stepped frequency waveform that substitutes
an LFM constituent pulse for the constant-frequency pulse used above. It can
achieve very wideband operation without resorting to stretch processing,
thereby avoiding the restriction of short range windows. In addition, it avoids
the array frequency steering effects mentioned previously so long as the
individual pulse bandwidth is not too large.

The stepped chirp waveform can allow a large frequency step ΔF > 1/τ
without suffering the aliasing seen in the conventional stepped frequency
waveform. Careful design is needed to relate the LFM pulse bandwidth and
length to the RF step size in order to achieve effective suppression of the
ambiguities. Details and sample parameter sets are given in Levanon and
Mozeson (2004). Processing of the waveform requires individually
demodulating and matched filtering each individual pulse, and then post-
processing the ensemble to construct a new signal with the full bandwidth. This
post-processing can be performed in either the time or frequency domain.
Details are given in Keel and Baden (2012).

4.10   Phase-Modulated Pulse Compression Waveforms
The second major class of pulse compression waveforms is referred to as phase
coded waveforms. A phase coded waveform has a constant RF but an absolute
phase that is switched between one of two or more fixed values at regular
intervals within the pulse length. Such a pulse can be modeled as a collection of
N contiguous subpulses xn(t) of duration τc, each with the same frequency but a
(possibly) different phase



(4.133)
 
The total pulse length is τ = Nτc. Individual subpulses are often referred to as
chips. Phase coded waveforms are divided into biphase codes and polyphase
codes. A biphase code has only two possible choices for the phase state ϕn,
typically 0 and π; a polyphase code has more than two phase states. There are
several common subcategories of each. Figure 4.1c was an example of a
biphase-coded waveform.

The matched filter output for a phase coded pulse is derived in detail in
Levanon and Mozeson (2004); the result is now summarized. Denote the
sequence of complex amplitudes of the individual pulse chips xn(t) of Eq.
(4.133) as {An} = {exp[jϕn]}. Express the time variable t in terms of the chip
duration τc and an offset η, as t = kτc + η, 0 ≤ η < τc. The matched filter output,
which is just the autocorrelation of x(t), is

(4.134)
 
where sA[k] is the discrete autocorrelation of the complex amplitude sequence
{An}. Equation (4.134) shows that sx(t) takes on the value sA[k] at t = kτc, and is
linearly interpolated (in the complex plane) between adjacent samples. Thus,
the matched filter output can be determined by computing the autocorrelation of
the amplitude sequence and interpolating between those values. One
consequence of this result and the fact that the {An} have unit magnitude is that
the peak value of the autocorrelation will always be sx(0) = N.

4.10.1   Biphase Codes
The most common biphase codes in radar are the Barker codes. Barker codes
are a specific set of biphase sequences that have a maximum sidelobe magnitude
of 1 at the matched filter output and therefore attain an N : 1 ratio of the peak to
the highest sidelobe. A low-frequency Barker coded waveform for N = 13 is
shown in Fig. 4.43. The phase switches are visible at τ = 5τc, 7τc, 9τc, 10τc, 11 τc,
and 12τc. Because there are only two phase states, the waveform is often
represented by a diagram such as the one shown in Fig. 4.44, using either “+”
and “–” symbols as shown, or +1 and –1 symbols. Note that biphase codes do
not necessarily change phase state at every subpulse transition.



 FIGURE 4.43   Barker coded waveform, N = 13.
 

 

 
FIGURE 4.44   Binary sequence describing the Barker code of Fig. 4.43.
 

Recall that pulse compression waveforms have a bandwidth β  1/τ.
Because phase coded waveforms are constant frequency, it may not be obvious
that their spectrum is spread. However, the discontinuities caused by the phase
transitions do spread the signal spectrum. As an example, Fig. 4.45 shows the
effect of a single phase switch of 180° on the spectrum of a constant-frequency
waveform. While the effect depends on the point in the pulse at which the switch
occurs, clearly it significantly spreads the signal energy in frequency. Multiple
phase transitions increase this effect: Fig. 4.46 compares the spectra of the 13-
bit Barker coded waveform with that of a simple pulse of the same duration.
The Rayleigh bandwidth of the Barker spectrum is β = 1/τc Hz (about 13 times
as wide as that of the simple pulse in this specific case). In addition, the
sidelobes of the Barker waveform spectrum decay much more slowly than those
of the simple pulse.



 FIGURE 4.45   Effect of a single 180° phase switch on the spectrum of a
constant-frequency pulse: (a) phase switch occurs at t = τ/2, (b) phase switch
occurs at t = 3τ/4.
 

 



 
FIGURE 4.46   Spectra of a 13-bit Barker coded pulse and a simple pulse of the
same length.
 

Because of the increased bandwidth, the signal processing gain due to
pulse compression with the Barker codes in particular, and phase codes in
general, is the same factor Gsp = βτ that applied for the LFM waveform. This is
again because a simple pulse must be shorter than a phase-coded pulse by the
factor βτ to achieve the same Rayleigh resolution in time. Note that in the case
of phase codes, βτ can also be expressed as τ/τc.

One of the major disadvantages of Barker codes is that there are not very
many of them. Barker codes have been found only for N up to 13. Sample Barker
codes of all known lengths are listed in Table 4.1; more than one code exists for
some lengths, while none exist for N = 6, 8 – 10, and 12. The table also lists the
peak sidelobe level (PSL) relative to the mainlobe peak, which is simply 20
log10(1/N). Because of the modest lengths, low PSLs are not attainable.



 TABLE 4.1   Barker Codes
 

As an example, consider the Barker code with N = 13. Representing the
code sequence of Table 4.1 as the sequence {An} = {1,1,1,1,1,–1,–1,1,1,–1,1,–
1,1} gives the autocorrelation sequence
{1,0,1,0,1,0,1,0,1,0,1,0,13,0,1,0,1,0,1,0,1,0,1,0,1}. Figure 4.47 illustrates the
resulting autocorrelation function obtained by interpolating between the discrete
autocorrelation samples. In addition to a peak autocorrelation value of N and
sidelobe peaks equal to 1, the discrete autocorrelation sequence sidelobes of a
Barker code always follow an alternating pattern of zeros and ones.
Consequently, the Rayleigh resolution is always τc seconds in time or cτc/2
meters in range. Thus, the resolution is set by the chip length instead of the
complete pulse length.



 FIGURE 4.47   Matched filter output for a 13-bit Barker code.
 

Barker codes have two major disadvantages. The first is that the lack of
Barker codes longer than N = 13 limits the degree of sidelobe suppression
possible. The second is that they are very Doppler intolerant. A Doppler phase
rotation of 360° across the full pulse is more than sufficient to completely break
up the structure of the matched filter output, as seen in the 13-bit Barker
ambiguity function contour plot of Fig. 4.48. As a consequence, it is common to
design Barker coded waveforms to limit the Doppler phase rotation to one-
quarter cycle or less, which requires that the maximum expected Doppler shift
and target velocity satisfy



 FIGURE 4.48   Contour plot of ambiguity function of a 13-bit Barker code.
 

(4.135)
 
This constraint limits the Doppler mismatch loss to 1 dB or less.

The limited number and length of Barker codes has led to various
techniques for constructing longer biphase codes with good sidelobe properties.
Combined or nested Barker codes form a longer code as the Kronecker product
of two shorter Barker codes. If an N-bit Barker code sequence is denoted as BN,
an MN-bit code can be constructed as BM ⊗ BN. The Kronecker product is simply
t h e BN code repeated M times, with each repetition multiplied by the
corresponding element of the BM code. For example, a 20-bit code can be
constructed as the product B4 ⊗ B5

(4.136)
 
These codes have a peak sidelobe higher than 1. The autocorrelation of the code
o f Eq. (4.136) is shown in Fig. 4.49. Notice that the magnitude of the peak
sidelobes is 5, so that the PSL compared to the autocorrelation peak is only 1/4



instead of the 1/20 that would be obtained if a 20-bit Barker code existed. A
code that obtains a PSL = 2 for N = 20 is discussed momentarily.

 FIGURE 4.49   Autocorrelation of combined B4 ⊗ B5 code.
 

Another technique uses pseudorandom noise sequences to generate much
longer biphase codes. Pseudorandom sequences have length N = 2P – 1 for some
P and generally exhibit range sidelobes on the order of –10 log10(N). For
example, the matched filter output for a typical N = 1023 (P = 10) code, shown
in Fig. 4.50, has peak sidelobes just above –30 dB.



 FIGURE 4.50   Matched filter output for a 1023-bit pseudorandom biphase code.
 

While the Barker codes are the only biphase codes with a peak sidelobe
value of 1 that are known to exist, one can seek longer codes with minimum
peak sidelobe (MPS) levels for the length of interest. These MPS codes are
found by exhaustive search techniques, taking advantage of certain properties of
biphase code autocorrelations to prune the search somewhat. As an example, the
MPS code for N = 20 has a maximum sidelobe level of 2, giving a PSL ratio of
1/10 instead of the 1/4 obtained by the nested Barker code above. The state of
the art is summarized and references given in Keel (2010). The peak sidelobe
for MPS codes of lengths 2 through 5, 7, 11, and 13 (Barker codes) is 1; for N =
6, 8 – 10, 12, 14 – 21, 25, and 28 is 2; for N = 22 – 24, 26 – 27, 29 – 48, and 51
is 3; for N = 49 – 50 and 52 – 82 is 4; and for N = 83 – 105 is 5. The MPS has
not been established at this writing for codes longer than 105. Table 4.2 lists
one sample code for the longest code length in each of these sidelobe level
regimes; additional sample codes for other lengths are available in the
references. It is evident that the sidelobe level in dB improves only very slowly
as the code length increases.



 TABLE 4.2   Sample Minimum Peak Sidelobe Biphase Codes
 

4.10.2   Polyphase Codes
Biphase codes, as noted previously, have poor Doppler tolerance. They also
suffer from precompression bandlimiting effects. As is shown in Fig. 4.51, the
spectrum of a typical biphase code not only exhibits the desired mainlobe
spreading, but also a very slow falloff of the far sidelobes. This is a direct
consequence of the sharp phase discontinuities. Practical receivers will have a
noise-limiting bandpass filter that will bandlimit the biphase waveform
spectrum, smoothing the phase transitions. This has the effect of mismatching the
received waveform relative to the correlator, reducing the peak gain and
widening the mainlobe.

 FIGURE 4.51   Matched filter output for a 16-bit Frank code.
 



Polyphase codes allow arbitrary values for the chip phases ϕn. Compared
to biphase codes, they can exhibit lower sidelobe levels and greater Doppler
tolerance. A number of polyphase codes are in common use. These include
“polyphase Barker codes,” the Frank codes, and the P1, P2, P3, P4, and P(n, k)
codes. All of these except the polyphase Barker codes are related to LFM or
NLFM waveforms. Numerous other polyphase codes have been proposed; many
are described in Levanon and Mozeson (2004). The special case of quadriphase
codes is described in Keel and Baden (2012).

Frank codes are codes whose length is a square, N = M2 for some M. The
phase sequence for a Frank code is given by

(4.137)
 
As an example, if M = 4 so N = 16, the sequence of phases becomes

(4.138)
 

Figure 4.51 shows the magnitude of the matched filter output for the case N
= 16.9 Note that while the mainlobe has a local minimum at t = τc, it does not go
to zero at that point as the Barker code autocorrelations do. The largest sidelobe
in this example is , larger than the Barker codes. The sidelobe level is 
or –21.1 dB. Figure 4.52 shows the ambiguity function in contour plot form. The
main ridge is skewed in the delay-Doppler plane, similar to the range-Doppler
coupling of an LFM ambiguity function.



 FIGURE 4.52   Contour plot of 16-bit Frank code ambiguity function.
 

The P3 and P4 codes of length N are given, respectively, by

(4.139)
 
Unlike the Frank code, these codes can be generated for any length N. Figure
4.53 shows the matched filter output for the N = 20 P3 code, while Fig. 4.54
shows the corresponding ambiguity function. Again, range-Doppler coupling is
evident.



 FIGURE 4.53   Matched filter output for a 20-bit P3 code.
 

 

 
FIGURE 4.54   Contour plot of ambiguity function of 20-bit P3 code.
 



The Frank, P3, and P4 codes all are based on quadratic phase
progressions, as is evident from Eqs. (4.137) and (4.139), and are therefore
related to LFM waveforms. Figure 4.55 shows the (unwrapped) phase
progression of these three codes for the case N = 16. The P3 and P4 codes are
truly quadratic, the difference being whether the minimum phase “slope” occurs
at the beginning (P3) or the middle (P4) of the waveform. The smallest phase
increments, and thus the minimum discontinuities in the actual RF waveform,
occur where the phase slope is least. The Frank code uses a piecewise linear
approximation to a quadratic phase progression. The phase increment is
constant for M bits at a time and then increases for the next M bits. This can be
viewed as a phase code approximation to a stepped-frequency waveform having
M steps and M bits per step (Lewis and Kretschmer, 1986). As a result, the
Frank code is less Doppler tolerant than the P3 and P4 codes.

 FIGURE 4.55   Unwrapped phase sequences of 16-bit Frank, P3, and P4 codes.
 

Bandlimiting of the phase-coded waveform prior to matched filtering
results in an increase in mainlobe width but a decrease in PSL in codes that
have the smallest phase increments in the middle of the codes (Lewis and
Kretschmer, 1986; Levanon and Mozeson, 2004). Codes with the largest phase
increments near the end exhibit the opposite behavior. Thus, of the three codes
shown, the P4 will show the greatest tolerance to precompression bandlimiting
in the sense of maintaining or improving its sidelobe level at the matched filter
output.

Just as phase codes can be designed based on linear frequency modulation
waveforms, they can also be designed based on nonlinear frequency modulation
waveforms. A class of codes based on NLFM waveforms designed using the



PSP technique mentioned earlier is given in Felhauer (1994). No closed form
expression is known for these P(n, k) codes; they must be found numerically.
Typical results are very similar to those for the empirical NLFM waveforms
described earlier. The effect of Doppler mismatch is similar to that observed in
Fig. 4.39. This is an improvement over conventional polyphase codes, which
are prone to exhibiting significantly increased sidelobes near the ends of the
code and, in many cases, large spurious peaks well above the general sidelobe
level. P(n, k) codes also exhibit better tolerance to precompression
bandlimiting than do codes based on linear FM, since their spectra are already
shaped by the basic NLFM design approach. Their chief disadvantage is the
difficulty of their design.

Another approach to reducing spectral sidelobes and thus improving
precompression bandlimiting tolerance is the use of quadriphase codes. These
codes are obtained from biphase codes by mapping the binary phase
progression to a four-phase code using a specified transformation, and also by
replacing the rectangular subpulse chips with half-cosine chips of twice the
width. Compared to the biphase code, the resulting codes have significantly
lower spectral sidelobes, nearly the same autocorrelation sidelobes, but a
significant loss of time (range) resolution. Details are given in Keel and Baden
(2012).

Polyphase Barker codes are polyphase codes that exhibit a maximum
sidelobe peak level of 1. The phases of a length-N code are either unrestricted,
or restricted to a Pth root of unity, ϕn = 2πpn/P for some integers pn and P and n
∈ [0, N – 1]. Figure 4.56 shows the discrete autocorrelation of a polyphase
Barker code having N = 51, P = 50, and the following {pn} sequence:



 FIGURE 4.56   Autocorrelation of an N = 51 polyphase Barker code.
 

 
The PSL is –34.2 dB, significantly better than the –24.6 dB for the 51-point
MPS code in Table 4.2.

4.10.3   Mismatched Phase Code Filters
The sidelobe structure of phase-coded waveforms can be improved with the use
o f mismatched filters, just as is done with stepped frequency and FM
waveforms to improve their sidelobe structures. For phase-coded waveforms,
this implies correlating the code sequence with another discrete-time sequence,
not necessarily restricted in the amplitudes or phases of its coefficients, such
that some metric of the sidelobe structure is optimized. Mismatched filters can
be designed to minimize the output PSL, minimize the output integrated sidelobe
level (ISL) (sum of the squares of all the sidelobe values of the discrete
correlation of the code and filter, divided by the square of the peak), or to shape
the output sidelobe response, for instance to enforce particularly low near-in
sidelobes at the expense of higher distant sidelobes. The filter order L is usually
larger than the code length. In many cases the design of the mismatched filter
coefficients can be formulated as the solution of a weighted least squares
problem, for which many numerical algorithms are available. Other
optimization techniques, such as L1 minimization using convex optimization
algorithms, can also be employed.

Figure 4.57 illustrates two examples of mismatched filter design. In both
cases, the waveform phase code was the same N = 64 MPS biphase code. The
peak sidelobe of the matched filter output for this length is 4, giving a PSL in dB
of 20 log10(4/64) = –24.1 dB. The ISL for the matched filter is –6.7 dB. The
solid line in the figure is the result of a mismatched filter of length L = 130
designed to minimize the PSL. The filter impulse response is normalized to have
the same energy as the code and its matched filter impulse response, namely 64.
This filter achieves a PSL of –31.4 dB, an 8.3 dB improvement compared to the
matched filter. The ISL is –9.8 dB, an improvement of about 3.1 dB. However,
there is now an LPG of 1.11 dB relative to the matched filter.



 FIGURE 4.57   Autocorrelation of two L = 130 mismatched filters for the same N
= 64 MPS code. Solid line: Optimal PSR filter response. Dotted line: Optimal
ISR filter response. (After Keel and Baden, 2012.)
 

The dotted line is the result of an L = 130 filter designed to minimize the
ISL and also normalized to an energy of 64. The PSL is now about –23.1 dB, 1
dB worse than the matched filter and 7.3 dB worse than the minimum-PSL filter.
However, the ISL is now –12 dB, 5.3 dB better than the matched filter and 2.2
dB better than the minimum-PSL filter. The LPG is 0.85 dB relative to the
matched filter, a 0.26 dB improvement compared to the minimum-PSL filter.

4.11   Costas Frequency Codes
Costas waveforms are a class of pulse compression waveforms having aspects
of both phase-coded and stepped frequency pulse burst waveforms (Costas,
1984). A Costas waveform is similar to a polyphase waveform in that it is a
single pulse waveform divided into N subpulses. It is similar to the linearly
stepped frequency waveform in that, rather than maintaining a constant
frequency and altering the phase of each subpulse, it alters the subpulse
frequencies, stepping through a set of N frequencies that differ by ΔF Hz. Unlike
the stepped frequency pulse burst, however, the Costas waveform does not step
through the frequencies in linear order. The Costas pulse can be expressed as

(4.140)
 
where the sequence c [n] denotes the ordering of the stepped frequencies.



Figure 4.58 shows the frequency sequence for a typical low-order Costas
waveform. With proper design of the frequency step sequence, the Costas
waveform can be designed to have a more thumbtack-like ambiguity function
than the linearly stepped waveform. Figure 4.59 illustrates the ambiguity
function of a Costas waveform with N = 15; the frequency step sequence was
c[n] = {1,7,8,11,3,13,9,14,12,6,5,2,10,0,4}. Note the generally low and
relatively uniform sidelobe structure throughout the delay-Doppler plane. The
construction and properties of Costas waveform are discussed and more
examples given in Levanon and Mozeson (2004).

 FIGURE 4.58   Frequency sequence for Costas waveform with N = 7.
 

 



 
FIGURE 4.59   Ambiguity function for a Costas waveform with N = 15.
 

4.12   Continuous Wave Radar
All of the preceding discussion in this chapter, and indeed in virtually this entire
text, is centered on pulsed radar. Pulsed radars are capable of very long-range
application, can easily measure range and velocity, and can achieve fine-
resolution imaging. However, pulsed radars require high peak powers in order
to achieve good average power and suffer eclipsing and blind zones.

Continuous wave (CW) radar is another class of radar system that
transmits and receives continuously. They do not necessarily require as complex
a transceiver as does a pulsed system. Because transmission is continuous, the
average power equals the peak power, a situation more amenable to the use of
solid-state or other peak-power-limited transmit sources. Solid state sources in
particular enable the development of very low-cost radar systems. This also
means that good average power can be achieved without high peak powers,
which is helpful when a low probability of intercept is desired. Eclipsing does
not occur, making CW systems superior for short-range measurements.
Furthermore, CW systems do not suffer blind zones in range or velocity. Given
these characteristics, CW radar is popular for a variety of low-power, short-
range applications, especially those involving velocity measurements. Common
examples include police and sports “speed guns,” radar altimeters and fuzes,
missile seekers, meteorology, and automotive cruise control and collision
avoidance radar. There are also many more complex or unusual applications
such as short-range synthetic aperture imaging, RCS measurements, and storage
tank level measurements.

Like pulsed radar, CW radar can be operated with different waveforms,
many of them analogous to pulse waveforms. These include constant-frequency,
linear and nonlinear FM, biphase and polyphase coding, and frequency coding,
as well as techniques less common in pulsed radar such as frequency shift
keying (FSK), sinusoidal modulation, and noise modulation. The most common
CW waveform is the linear FM, usually called FMCW.

An excellent overview of CW radar configurations, design, waveforms,
and applications is available in Piper (2014). A comparative discussion of CW,
FMCW, and FSK waveforms in the context of automotive radar is given in
Rohling and Kronauge (2012).
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Problems
  1.  Consider a stationary radar transmitting a simple square pulse (modulation

only, not including the carrier term) of duration τ:

 
        The receiver uses a causal matched filter with TM = τ, so h(t) = x*(τ – t).

The pulse is transmitted with the leading edge being emitted at time t = 0.
An echo is received from a stationary target at a range of R meters. At what
time tpeak will the peak output of the matched filter be observed? Show all
work.

  2.  Consider the same pulse and matched filter used in the previous problem.
Assume that now the target is at range R meters when the pulse hits it, but
is moving with a radial velocity toward the radar of kλ/2τ m/s, where k is
any integer (except k ≠ 0). The received signal (again, after the carrier is
removed) can be modeled as

 
        where FD is the Doppler shift in hertz. Find the output waveform of the

causal matched filter. What is its value at t = 2R/c + τ seconds?
  3.  Suppose the ambiguity function of some waveform x(t) of duration τ = 1

http://www.radarsp.com


millisecond is given by

 
        (Note: This is not a possible AF because it is not time-limited to ±τ

seconds duration in the delay coordinate, but it will do for this problem.)
Suppose there are two targets in the radar’s line of sight, one at R = 10 km
and one at R = 10.1 km. Also assume that both have the same RCS and
ignore the effect of the small range difference on the received echo power.
The radar and the first target are stationary. The second target is traveling
toward the radar at 100 m/s. The radar is operating at 1 GHz. What is the
Doppler shift of the echo from the second target, in hertz? If the matched
filter output is sampled at a time delay corresponding to the range to the
first target (= 2 × (10 km)/c = 66.67 μs), the sample will contain
contributions from both the first and second targets. Use A(t, FD) to
determine the relative amplitude of the contribution from the second target
compared to that of the first target. Express the answer in dB.

  4.  Consider a simple pulse burst waveform with M = 30 pulses, each of 10 μs
duration, and a PRI of T = 100 μs. Assuming no weighting functions are
used, what are the range resolution, Doppler resolution, unambiguous
range, and unambiguous Doppler shift of this waveform?

  5.  Consider a linear FM waveform that sweeps from 9.5 to 10.5 GHz over a
pulse length of 20 μs. What is the bandwidth β? What is the time-
bandwidth product? What will be the Rayleigh resolution (peak to first
null) of the matched filter output in meters? What would be the Rayleigh
resolution in meters of a square pulse of the same energy (assuming both
have the same amplitude)?

  6.  Continuing with the same LFM waveform as in the previous problem, what
will be the frequency in hertz of the first zero of the zero delay cut of the
ambiguity function? (This will be the Doppler resolution, or Doppler
sensitivity, of the pulse.)

  7.  Consider an LFM waveform of bandwidth β = 1 MHz and pulse length τ = 1
ms. Suppose an echo is received from a target at a true range of 10 km that
is Doppler shifted by 1 kHz. What will be the apparent range of the target,
i.e., what will be the range corresponding to the time at which the matched
filter output peaks?

  8.  Consider an LFM pulse with β = 50 MHz and τ = 1 msec. Compute the
Doppler shift required to displace the matched filter output by three
Rayleigh range resolution cells. No windowing for sidelobe control is
used. At 10 GHz, compute the radial velocity associated with that value of



Doppler shift. Compute the loss in peak amplitude due to the Doppler shift
in dB.

  9.  Suppose a radar uses a simple rectangular pulse of duration τ seconds and
processes it through the corresponding matched filter. Assume the matched
filter output is sampled at a rate equal to its Rayleigh bandwidth. What is
the worst-case straddle loss in dB? Repeat for an LFM waveform with a
sufficiently large BT product so that its spectrum is well-approximated by
a rectangle of width β Hz. Assume no weighting for sidelobe control is
used with either waveform.

10.  Consider an LFM pulse of duration τ = 1 ms. Suppose that a range window
of only 1.5 km extent is of interest, so it is decided to use stretch
processing. The range window is centered on a nominal range of 100 km
(think of this as “zooming in” on targets in the vicinity of 100 km). A range
resolution of 1.5 meters is required. What is the required bandwidth β?
What will be the βτ product of the LFM pulse? What will be the bandwidth
of the stretch mixer output?

11.  Continue with the same scenario and LFM waveform as in the previous
problem. Suppose that a beat frequency of 100 kHz is observed at the
mixer output. What is the range of the target, relative to the 100 km center
of the range window? Ignore any delay in the matched filter.

12.  Consider a stationary X-band (10 GHz) radar transmitting a β = 500 MHz
LFM waveform and using stretch processing in the receiver. The pulse
length is τ = 10 μs. A radar is often considered “narrowband” if the
percentage bandwidth, defined as β divided by the RF frequency, is less
than 10 percent; otherwise it is “wideband.” Is this radar narrowband or
wideband? What is the expected range resolution in meters?

13.  Continuing with the same LFM waveform, suppose a Hamming window is
applied to the signal at the output of the stretch mixer, before the FFT is
performed. What will be the new value for the expected range resolution,
based on the Rayleigh definition of resolution? (Hint: The peak-to-null
width of the DTFT of a Hamming window of length τ seconds is 2/τ Hz; for
a rectangular window it is 1/τ Hz.) What bandwidth β would be required to
achieve 0.3 m resolution if the Hamming window is used to keep the range
sidelobes low?

14.  Continuing with the same radar and 500 MHz LFM pulse as in the previous
two problems, suppose the stretch processor is set up for a nominal range
(center of the range window) of R0 = 200 km and a range window of 300 m
(200 km ± 150 m). However, suppose the reference LFM signal is only τ =
10 μs seconds long, i.e., it is not lengthened to allow for signals arriving
from the leading or trailing edges of the range window. The reference



signal is timed to overlap exactly with the echo from a target at range R0.
What will be the duration at the mixer output of the beat frequency tone
between the echo from a scatterer at the leading edge of the range window
(200 km – 150 m) and the LFM reference? Assuming a rectangular window
(i.e., no Hamming window), what will be the range resolution at the
leading edge of the window?

15.  It was stated that range skew at the output of a stretch processor could be
corrected with a filter having the frequency response H(Ω) =
exp(–jΩ2τ/2βΩ) where βΩ = 2πβ is in radian frequency units. Show that the
group delay function dg(Ω) of this filter meets the stated requirement,
namely dg(–βΩ · δtb/τ) = –δtb seconds. Group delay in seconds is defined as
dg(Ω) = – dΦ(Ω)/dΩ, where Φ(Ω) = arg [H(Ω)].

16.  Assuming a sampling rate of Fs samples per second at the stretch mixer
output, convert the analog frequency response H(Ω) of the previous
problem to an equivalent discrete-time frequency response H(ω). Also
give the expression for H(ω) in the particular case when Fs is chosen to
match the stretch mixer output bandwidth of Eq. (4.111).

17.  Explicitly compute the loss in processing gain LPG and the processing loss
PL as a function of K for a triangular window of odd length K + 1 (so K is
even) defined according to

 
        Numerically evaluate the result for K = 4 and K = 20 and give the answers

in dB. What are the asymptotic values in dB for LPG and PL as K →∞?
The following facts may be useful (be careful about the limits):

 
        (Hint: sum just the first half of the triangle, then use symmetry to get the

sum of the whole function. Be careful not to double-count any samples.)
18.  Consider the array steering factor E(θ0) of Eq. (4.123) and use the weights

given in Eq. (4.124) with |an| = 1 for all n. Assume the phases of the
weights are computed for a wavelength λ0 and steering angle θ0, but the
waveform bandwidth is approximately 10 percent of the nominal frequency
so that the effective wavelength varies over the range of (1 ± 0.05)λ0.
Derive an equation that gives the new angle θ at which E(θ) will be
maximum in terms of λ0, θ0, and the actual wavelength λ. When the actual
wavelength is 5 percent larger than λ0 and the design steering angle is θ0 =



10°, what will be the actual steering angle (angle of the maximum of E(θ))?
Repeat for θ0 = 30° and 70°.

19.  Compute the integrated sidelobe ratios for the Barker codes in Table 4.1.
20.  Determine the chip length and pulse length of a biphase-coded waveform

for a pulsed radar to meet the following requirements:
         a.   Rayleigh range resolution = 0.3 meter.
         b.   Pulse compression gain > 15 dB.
         c.   Maximum allowable blind range within first range ambiguity = 50

meters.
         d.   Less than one-quarter cycle of Doppler phase rotation across the pulse

for Doppler shifts up to 2000 Hz.
        One or both parameters may have a range of allowable values. Give the

full range if this is the case.
21.  Consider Barker, MPS, and pseudorandom biphase codes. State whether

each code type can meet the requirements of the previous problem. If not,
state the reason; if so, state at least one specific length that will work.

22.  Compute explicitly the N = 4 = 22 Frank code. What is the sequence of
phases ϕn in the code (expressed as an angle in radians, e.g., 0, π/3, etc.)?
Compute the autocorrelation function of the detected code sequence exp
(jϕn) explicitly by hand. Sketch the magnitude of the autocorrelation
function. What is the peak sidelobe level, relative to the peak of the
autocorrelation function, in dB?

23.  Repeat the previous problem for an M = 4 P4 code. (Be sure to use the
complex autocorrelation function.)

24.  Equation (4.134) expressed the continuous autocorrelation function sx(t) of
a phase-coded waveform for t = kτc + η as a linear interpolation between
the possibly complex discrete autocorrelation values sA[k] and sA[k + 1] of
the code sequence sA[k]. Show that this linear interpolation of the complex
values also linearly interpolates the real and imaginary parts of sA[k] and
sA[k + 1], but that the magnitude of the interpolated value is not the linear
interpolation of the magnitudes of sA[k] and sA[k + 1].

25.  Some waveform/matched filter pairs are more sensitive to Doppler
mismatch (“less Doppler tolerant”) than others. Consider three different
waveforms, all using pulses of length τ seconds: a single simple pulse, a
single LFM pulse with βτ = 1000, and a pulse burst composed of 30 simple
pulses of length τ with a PRI of 10τ seconds. Denote the time of the peak
matched filter output when there is no Doppler shift as tmax. Suppose a
target with a Doppler shift of FD = 1/τ Hz is present. The matched filter
does not compensate for this Doppler shift. For each waveform, what will



be the magnitude of the matched filter output waveform at t = tmax compared
to the value at tmax when there is no Doppler shift? Which of these
waveforms is most Doppler tolerant in this case? Which is least Doppler
tolerant?

_____________
1 This phase shift term was absorbed into the effective reflectivity ρ′ in Chap. 2.
2 Note that a frequency component of 1/τ hertz goes through exactly one full cycle during a pulse of
duration τ seconds.
3 Some authors define the term “ambiguity function” as | Â(t, FD)|2 or as Â(t, FD) itself. Also, some authors

define the ambiguity function as .
The definition used here is consistent with that given in Rihaczek (1996).
4 A slightly more complicated version of this result holds when T ≤ 2τ, see (Levanon and Mozeson, 2004).
5 Group delay in seconds is the negative of the derivative of the frequency-domain phase function Φ(Ω) of
H(Ω) = | H(Ω) | exp[jΦ(Ω)] with respect to Ω. It is a measure of the filter delay for inputs of a given
frequency. See Oppenheim and Schafer (2010).
6 The lower case w is used for the frequency-domain window function w(F) to emphasize that the
multiplying function is the window function itself (e.g., a Hamming window) rather than its Fourier
transform.
7 Array antennas can also be steered using time delay units at each element or a combination of phase
steering within a subarray and time delay steering across subarrays. Pure time-delay-steered arrays do not
suffer antenna steering errors due to wideband waveforms.
8 While “fine” is preferred in this text to “high” to describe small values of resolution, the term “high range
resolution profile” is well-established in the literature.
9 This figure may appear to violate the earlier claim that the continuous autocorrelation function is a linear
interpolation between the discrete autocorrelation values of the code sequence exp(jϕn). However, linear
interpolation of the complex values does not result in linear interpolation of the magnitude; see Prob. 4.24.



CHAPTER 5
Doppler Processing

 

Doppler processing is the term applied to filtering or spectral analysis of the
signal received from a fixed range over a period of time corresponding to
several pulses. The purpose is generally to suppress clutter returns and to
enable the detection of targets in the presence of significant clutter.

Figure 5.1a shows a notional scenario where a down-looking stationary
radar observes four moving targets in a ground clutter background. The gray
dashed lines represent range bins. Receding targets are in bins 4, 11, and 18,
while an approaching target shares bin 11. Figure 5.1b is a stylized
representation of the range-Doppler power spectrum that might result from this
scenario. The light gray background represents the receiver noise floor, which
is spread uniformly throughout the range-Doppler map. The band of energy
extending through all of the range bins represents the ground clutter echo.
Because the radar is stationary, the clutter is centered at zero Doppler shift, and
its power fades with range in accordance with the range equation. The four
small ovals represent the returns from the moving targets. Their echo energy is
located in the appropriate range bins. Their Doppler coordinates depend on the
direction and speed of each target with respect to the radar.



 FIGURE 5.1   Notional range-Doppler spectrum for a down-looking stationary
radar. Noise, clutter, and target components are shown: (a) scenario, (b) range-
Doppler echo power distribution, (c) Doppler spectrum of range bin 11.
 

Figure 5.1c highlights the notional Doppler spectrum of the slow-time
signal from range bin 11, containing the two middle moving targets. Since the
slow-time data is sampled at a rate equal to the pulse repetition frequency of the
radar, this spectrum is periodic with a period equal to the PRF, so only the
principal period from –PRF/2 to +PRF/2 is shown. The portion of the spectrum
where clutter is the dominant interference is often termed the clutter region. The
width ßC in hertz of the clutter region is determined by the actual clutter motion,
the RF frequency, and the PRF. The portion where noise is the dominant
interference is called the clear region; note that the clear region is clear of
clutter but not of all interference. Sometimes a skirt region is defined at the
transition between the clutter and clear regions; in the skirt region, both noise



and clutter are significant interference sources. The moving targets appear in the
spectrum at Doppler shifts consistent with their radial velocities relative to the
radar.

Doppler processing is most often of interest when the relative amplitudes
of the clutter, target, and noise signals are as shown: the target returns are above
the noise floor (signal-to-noise ratio SNR  1), but weaker than the clutter
(signal-to-clutter ratio SCR  1). In this case, targets cannot be detected reliably
based on amplitude in the slow-time domain alone because the presence or
absence of the target makes little difference to the total signal power. Doppler
processing is used to separate the target and clutter signals in the frequency
domain. The clutter can be filtered out, leaving the target return as the strongest
signal present, or the spectrum can be computed explicitly so that targets outside
of the clutter region can be located by finding frequency components that
significantly exceed the noise floor.

In this chapter the two major classes of Doppler processing, moving target
indication (MTI) and pulse Doppler processing, are described. In the
terminology used here MTI refers to the case where the slow-time signal is
processed entirely in the time domain. Pulse Doppler processing refers to the
case where the signal is processed in the frequency domain.1 As will be seen,
MTI processing produces limited information at very low computational cost;
pulse Doppler processing requires more computation but produces more
information and greater signal-to-interference ratio (SIR) improvement. Only
coherent Doppler processing using digital implementations is considered since
this is the approach taken in most modern radars. Good general references
include Richards (2010) and Schleher (2010). Alternative systems using
noncoherent Doppler processing and implementations based on analog
technologies are described in Eaves and Reedy (1987), Nathanson (1991), and
Schleher (2010).

5.1   Moving Platform Effects on the Doppler Spectrum
The notional Doppler spectrum of Fig. 5.1 represents a very simple case. While
it is realistic for some scenarios, the Doppler spectrum for a given range bin can
be greatly complicated by factors such as a moving radar platform, or range and
Doppler ambiguities caused by aliasing of the target signatures.

The effect of the PRF in the Doppler dimension is straightforward. The
PRF establishes the width of one period of the Doppler spectrum as discussed
above. Clutter or target signals having Doppler shifts outside of the range ±
PRF/2 will alias into that interval. Figure 5.2 illustrates how the spectrum of
Fig. 5.1c might look if the PRF were reduced by 40 percent. The clutter
spectrum is unchanged but now represents a larger fraction of the total spectrum
width. That is, the clear region is a smaller percentage of the spectrum width



while the clutter region is a larger percentage. The target originally at velocity
v1 is still unaliased and so still appears at Doppler shift 2v1/λ. The Doppler shift
of the target originally at the (negative) velocity v2 was outside the new
spectrum range ±PRF′/2 and so aliases to a new apparent Doppler shift of 2v2/λ
+ PRF′.

 FIGURE 5.2   Effect of a 40 Percent PRF reduction on the Doppler spectrum of
Fig. 5.1c.
 

Now consider the effect of platform motion on the range-Doppler map
observed from an airborne or spaceborne platform. As described in Chap. 3, the
Doppler shift observed for any target or clutter scatterer is increased by the
platform-induced Doppler shift component of FD = 2v cosψ/λ Hz, where ψ is the
cone angle between the platform velocity vector and the line of sight (LOS) to
the scatterer. Figure 5.3a shows an aircraft in level flight with a forward but
down-looking radar illuminating ground clutter. In this case the cone angle ψ is
the depression angle ψMLC shown. While most of the echo energy will be in the
radar mainbeam, it is common to have measurable (above the noise floor)
clutter echo through both forward-and rear-looking sidelobes as well. Ground
clutter echoes received from different directions will appear at both different
Doppler shifts due to different cone angles, and at different ranges due to
different distances to the ground. Target echoes will again appear at the
appropriate Doppler shift and range bin, where the Doppler shift now is
proportional to the total radial velocity due to both the platform motion and the
target motion.



 FIGURE 5.3   Notional Doppler spectrum of ground clutter observed from a
moving radar platform: (a) sources of clutter return, (b) notional clutter
spectrum in the boresight range bin, (c) notional spectrum in the altitude line
range bin.
 

As shown in Fig. 5.3a, the mainlobe clutter (MLC) will occur at some
positive Doppler shift and the appropriate range bins. Clutter echo received
from below the aircraft will occur at a near range bin corresponding to the
aircraft altitude and at zero Doppler shift. This clutter component is termed the
altitude line (AL). Although it is transmitted and received through the radar
sidelobes, the altitude line nonetheless tends to be relatively strong due to the
relatively short vertical range and the high reflectivity of most clutter at normal



incidence. Other ranges may exhibit clutter seen through the antenna sidelobes,
called sidelobe clutter (SLC). SLC is weaker than MLC because it is observed
through the lower-gain sidelobes. It is also weaker than the AL due to longer
ranges and non-vertical incidence. SLC can potentially extend from Doppler
shifts approaching +2v/λ (directly ahead of the radar) to –2v/λ (directly behind
the radar), though the amplitude will drop rapidly due to increasing range at
those maximum Doppler shifts.

Figure 5.3b is a sketch of the notional MLC spectrum at the range bin
corresponding to the radar boresight, assuming the PRF is high enough to avoid
any aliasing. The MLC will be centered at FMLC = 2vcosψMLC/λ, where ψMLC is
the depression angle from the horizontal velocity vector to the radar boresight
vector. The width βMLC of the MLC will be approximately the sum of the
intrinsic clutter spectrum width βC and the mainlobe widening due to platform
motion of βD = 2vθsinψMLC/λ, where θ is the antenna azimuth beamwidth in
radians. Figure 5.3c is a similar sketch for the altitude line, which would occur
at a closer range bin. Range bins nearer than that of the AL can contain only
noise.

Figure 5.4 is a more detailed simulated range-Doppler clutter spectrum for
a down-looking airborne radar viewing flat homogeneous ground clutter. The
aircraft is traveling level at an altitude of 10,000 feet (3048 m) and a velocity of
300 mph (134.1 m/s). The RF is 10 GHz. The radar antenna has a 2.5°
beamwidth, and its boresight is scanned 45° clockwise (right) of the velocity
vector in azimuth and 10° down in elevation. The boresight will then intersect
the ground at a range of 17.3 km. The component of velocity along the boresight
(i.e., vcosψMLC) is 93.4 m/s, giving a Doppler shift at the center of the mainlobe
clutter of 6.23 kHz. The maximum clutter Doppler shift that could be observed
is ±89.4 kHz, corresponding to relative velocities of ±134.1 m/s, the aircraft
velocity.



 



 
FIGURE 5.4   Simulated clutter range-velocity spectrum for an airborne radar
viewing ground clutter: (a) perspective view, (b) overhead view, (c) clutter
power versus range, integrated over velocity, (d) clutter power versus velocity,
integrated over range. See text for details.
 

The simulation used a constant-γ model for clutter reflectivity, a sinc2 two-



way antenna power gain, and accounted for receiver noise, clutter cell size and
power variation with range, and other factors. The resulting range-Doppler
clutter spectrum, not including any aliasing in range or Doppler due to the PRF,
is shown in Fig. 5.4. Part a of the figure gives a 3D view, while part b is shows
a perhaps more useful 2D view. It is readily seen that the maximum clutter
power occurs at the mainlobe peak, centered at 93.4 m/s and 17.3 km. The high
antenna sidelobes (no weighting was used) create visible rings of clutter power
around the mainlobe. The shortest-range clutter occurs at zero velocity and just
over 3 km; this is the altitude line, and it is also relatively strong. It can be seen
that at any longer range, which must be at some angle other than directly below
the radar, the clutter must have a nonzero velocity, so the clutter energy spreads
to the maximum relative velocities of ±134.1 m/s (Doppler shifts of ±89.4 kHz)
as the range increases. In these figures, positive velocities (Doppler shifts) must
come from clutter in front of the aircraft, while negative velocities come from
clutter behind the aircraft. Figure 5.4c of the figure show the total clutter power
versus range, integrated over velocity. This illustrates the high AL return, the
fall-off of the clutter with range, and the large MLC return before the clutter
falls off again. Figure 5.4d shows the power versus velocity, integrated over
range, and illustrates the MLC, the relatively strong AL and the falloff at higher
velocities, which imply greater cone angle, longer ranges, and shallower
grazing angles with attendant lower clutter reflectivity.

These examples only hint at the complexity of the range-Doppler spectrum.
The subject will be revisited in Sec. 5.3 as part of the discussion of pulse
Doppler processing. Despite the potential complexity, the simple spectrum of
Fig. 5.1c has all the features needed to introduce MTI.

5.2   Moving Target Indication
Figure 5.5 illustrates a two-dimensional data matrix formed from the coherently
demodulated baseband returns from a series of M pulses comprising one
coherent processing interval (CPI). This matrix corresponds to one two-
dimensional horizontal plane from the radar datacube of Fig. 3.8. Thus, a
similar matrix exists for each phase center in the antenna system. In a single-
aperture system, or at the point in an array where the data from multiple phase
centers have been combined, there is only a single two-dimensional data matrix
as shown.2



 FIGURE 5.5   Notional two-dimensional data matrix. Each cell is one complex
number.
 

 

 
FIGURE 5.6   MTI filtering and detection process.
 

The samples in each column are successive samples of the returns from a
single pulse, i.e., successive range bins. Each element of a column is one
complex number representing the real and imaginary (I and Q) components of
one range sample. Consequently, each row represents a series of measurements
from the same range bin over successive pulses. The sampling rate in the fast
time or range dimension (vertical column in Fig. 5.5) is at least equal to the
transmitted pulse bandwidth and therefore is on the order of hundreds of
kilohertz to tens or even hundreds of megahertz. The slow-time or pulse number
dimension (horizontal row in Fig. 5.5) is sampled at the pulse repetition interval
of the radar. Thus the sampling rate in this dimension is the PRF and is on the
order of ones to tens, and sometimes hundreds of kilohertz. As indicated by the
shading, Doppler filtering operates on rows of this matrix.

MTI processing applies a linear filter to the slow-time data sequence in



order to suppress the clutter component. Figure 5.6 illustrates the process. The
type of filtering needed can be understood by considering Fig. 5.7. In this figure,
it is again assumed that knowledge of the platform motion and scenario
geometry has been used to center the clutter spectrum at zero Doppler frequency.
Clearly, some form of highpass filter, as suggested by the notional frequency
response |H(FD)| shown, is needed to attenuate the clutter without filtering out
moving targets in the clear portions of the Doppler spectrum.

 FIGURE 5.7   The concept of moving target indication filtering: (a) Doppler
spectrum and MTI filter frequency response, (b) Doppler spectrum after
filtering.
 

The output of the highpass MTI filter will be a new slow-time signal
containing components due to noise and, possibly, one or more targets. This
signal is passed to a detector typically consisting of a matched filter followed
by a threshold test. If the peak matched filter output exceeds the threshold (i.e.,
its energy is too great to likely be the result of noise alone), a target will be
declared. Note that in MTI processing, the presence or absence of a moving
target in the range bin of interest is the only information obtained. The filtering
process of Fig. 5.6 does not provide any estimate of the Doppler frequency at
which the target energy causing the detection occurred, or even of its sign; thus,
it “indicates” the presence of a moving target but does not determine whether the



target is approaching or receding, or at what radial velocity. Furthermore, it
provides no indication of the number of moving targets present. If multiple
moving targets are present in the slow-time signal from a particular range the
result will still be only a “target present” decision from the detector. On the
other hand, MTI processing is very simple and computationally undemanding.
Despite its simplicity, a well-designed MTI can improve the SCR by several to
sometimes 20 or more decibels in some clutter conditions.

5.2.1   Pulse Cancellers
The major MTI design decision is the choice of the particular MTI filter to be
used. MTI filters are typically low order, simple designs. Indeed, some of the
most common MTI filters are based on very simple heuristic design approaches.
Suppose a fixed radar illuminates a moving target surrounded by perfectly
stationary clutter. The clutter component of the echo signal from each pulse
would be identical, while the phase of the moving target component would vary
due to the changing range. Subtracting the echoes from successive pairs of
pulses would cancel the clutter components completely. The target signal would
not cancel in general due to the phase changes.

This observation motivates the two-pulse MTI canceller, also referred to
as the single or first-order canceller. Figure 5.8a illustrates the flowgraph of a
two-pulse canceller. The input data are a sequence of baseband complex (I and
Q) data samples from the same range bin over successive pulses, forming a
discrete-time sequence y[m] with an effective sampling interval T equal to the
pulse repetition interval. The discrete time transfer function (also called the
system function) of this linear finite impulse response (FIR, also called tapped
delay line or nonrecursive) filter is simply H(z) = 1 – z–1. The frequency
response as a function of analog frequency F in hertz is obtained by setting z = ej

2πFT:

 FIGURE 5.8   Flowgraphs and transfer functions of basic MTI cancellers: (a)
two-pulse canceller, (b) three-pulse canceller.
 



(5.1)
 

It is common to work with normalized frequency f = FT cycles per sample
or with the radian equivalent, ω = ΩT = 2πFT radians per sample. In terms of
normalized radian frequency the frequency response of the two-pulse canceller
is

(5.2)
 
Recall that as F ranges from –1/2T to +1/2T, f ranges from –0.5 to + 0.5 and ω
from –π to +π.

Figure 5.9a plots the magnitude of the frequency response of the two-pulse
canceller. The filter does indeed have a null at zero frequency to suppress the
clutter energy. Spectral components representing moving targets may either be
partially attenuated or amplified, depending on their location on the Doppler
frequency axis. As with all discrete-time filters, the frequency response is
periodic with a period of 1 in the normalized cyclical frequency variable f,
corresponding to a period of 2π in the normalized frequency variable ω or a
period of 1/T = PRF in actual frequency in hertz. The shaded area highlights the
principal period from –PRF/2 to +PRF/2; this is all that is normally plotted.
Considering only this frequency range, it is clear that the frequency response is
highpass in nature. The implications of the periodicity will be considered in
Sec. 5.2.4.



 FIGURE 5.9   Frequency response of basic MTI cancellers: (a) two-pulse
canceller, (b) three-pulse canceller.
 

The two-pulse canceller is a very simple filter. Its implementation requires
no multiplications and only one subtraction per output sample. As Fig. 5.9a
shows, however, it is a poor approximation to an ideal highpass filter for clutter
suppression. The next traditional step up in MTI filtering is the three-pulse
(second-order or double) canceller obtained by cascading two two-pulse
cancellers. The flowgraph and frequency response are shown in Figs. 5.8b and
5.9b. The three-pulse canceller clearly improves the null breadth in the vicinity
of zero Doppler, but it does not improve the consistency of response to moving
targets at various Doppler shifts away from zero Doppler. It requires only two
subtractions per output sample.

Despite their simplicity, the two-and three-pulse cancellers can be very
effective against clutter with moderate-to-high pulse-to-pulse correlation.
Figure 5.10 shows a simulated clutter sequence formed by passing a white noise
sequence through a filter with a Gaussian power spectrum having a standard



deviation of σf = 0.05 on a normalized frequency scale; i.e., the standard
deviation is 5 percent of the full width of the principal period of the spectrum.
Also shown are the outputs from the two- and three-pulse cancellers. The power
in the two-pulse canceller output has been reduced by 13.4 dB relative to the
unfiltered clutter sequence. For the three-pulse canceller, the reduction is 21.9
dB.

 FIGURE 5.10   Clutter cancellation using two-and three-pulse cancellers. See
text for details.
 

The idea of cascading two-pulse canceller sections to obtain higher order
filters can be extended to the N-pulse canceller obtained by cascading N – 1
two-pulse canceller sections. The transfer function of the N-pulse canceller is
therefore

(5.3)
 
The corresponding impulse response coefficients of the filter are given by the
binomial series

(5.4)
 

Other types of digital highpass filters could also be designed for MTI



filtering. For example, an FIR highpass filter could be designed using standard
digital filter design techniques such as the window method or the Parks-
McClellan algorithm. To be suitable as an MTI filter, the FIR filter frequency
response should have a zero at F = 0. In terms of the four recognized classes of
FIR digital filters (see Oppenheim and Schafer, 2010, Sec. 5.7), the MTI filter
can be either type I (even order with symmetric impulse response) or type IV
(odd order with antisymmetric impulse response). The transfer functions of type
IV filters always have a zero at z = 1 so that the frequency response is zero at f
= 0, ideal for an MTI filter. The two-pulse canceller (which has an order of 1)
is an example of a type IV filter. Type I filters do not necessarily have a zero at
f = 0, but can be made to have one by requiring that the sum of the impulse
response coefficients h[m] equal zero. The three-pulse canceller is an example
of a type I filter that has been designed to be suitable as an MTI filter.

Type II and III filters are unsuitable because they always have a zero at z =
–1, corresponding to a frequency response null at a normalized frequency of f =
0.5; this creates extra undesirable blind speeds (see Sec. 5.2.4). Alternatively,
infinite impulse response (IIR) highpass filters could be designed. Many
operational radar systems, however, use two- or three-pulse cancellers for the
primary MTI filtering due to their computational simplicity.

5.2.2   Vector Formulation of the Matched Filter
The N-pulse cancellers described previously can be remarkably effective and
have been widely used. Nonetheless, they are motivated by heuristic ideas. Can
a more effective pulse canceller be designed? Since the goal of MTI filtering is
to improve the signal-to-clutter ratio, it should be possible to apply the matched
filter concept of Chap. 4 to this problem. To do so for discrete-time signals, it is
convenient to first restate the matched filter using vector notation. This will also
aid in generalizing the matched filter somewhat.

Consider a complex signal column vector y = [y[m] y[m – 1] · · · y[m – N
+ 1]]T and a filter weight vector h = [h [0] · · · h[N – 1]]T. The superscript T
represents matrix transpose so that y and h are N-element column vectors. A
single output sample z of the filter is given by z = hTy. The power in the output
sample is given by

(5.5)
 
where a superscript H represents the Hermitian (complex) transpose.

The matched filter is obtained by finding the filter coefficient vector h that
maximizes the SIR of the filtered data. Denote the desired target signal vector by
t and the interference vector by w, so that y = t + w. The interference is a
random process, but it is not assumed to be white or Gaussian, thus allowing
modeling of both noise and clutter. The filtered signal and interference are,



respectively, hTt and hTw. The power in the signal component is therefore
hHt*tTh, and in the interference component it is hHw*wT h. Because the
interference power is a random variable (RV), its expected value is used to get
meaningful results. The expected value of w*wT is the interference covariance
matrix SI

(5.6)
 
It follows also that , and . With this definition the SIR
becomes

(5.7)
 

As in Chap. 4, the filter h that maximizes Eq. (5.7) is found using the
Schwarz inequality, which in a form suitable for vector-matrix manipulations is

(5.8)
 
where  and equality occurs if and only if p = kq for some scalar
constant k. To apply Eq. (5.8), first note that the matrix SI will be positive
definite so that it can be factored into the form SI = AHA for some matrix A; that
is, A is the “square root” of SI in some sense. Define p = Ah and q = (AH)–1t*.
This choice is contrived so that pHq = hHt* and therefore |pHq|2 = hH t*tT h,
which is the numerator of Eq. (5.7). The Schwarz inequality then gives

(5.9)
 
Rearranging Eq. (5.9) to isolate the SIR of Eq. (5.7) shows that

(5.10)
 
with equality only when p = kq. The optimal weight vector therefore satisfies
Ahopt = k(AH)-1t*, or, with k = 1



(5.11)
 
Finally, the filtered data become, using 

(5.12)
 

Equation (5.11) is of fundamental importance and great versatility in signal
processing generally and radar signal processing in particular. It will be used in
this text not only for clutter filtering and pulse Doppler processing, but also for
space-time adaptive processing, detection, and estimation.

5.2.3   Matched Filters for Clutter Suppression
The results of the previous section can now be applied to N-point (order N – 1)
MTI filters that are more optimal than the N-pulse canceller. Equation (5.11)
shows that the linear filter that optimizes detection performance in the presence
of additive interference is the FIR matched filter, and that the coefficients of the
filter are given by the matrix equation

(5.13)
 
 where h = N × 1 column vector of filter coefficients

SI = N × N covariance matrix of the interference

t = N × 1 column vector representing the desired target signal to which
the filter is matched

and the asterisk denotes the complex conjugate.
To determine the optimal filter coefficients h, models are needed for the

interference and target characteristics, SI and t. For a simple example, consider
the first-order (length N = 2) matched filter. Assume the interference w[m]
consists of the sum of zero mean stationary white noise n[m] of power
(variance)  and zero mean stationary colored clutter c[m] of power 

(5.14)
 
The clutter exhibits a correlation from one pulse to the next given by 

  the first normalized



autocorrelation coefficient ρc [1] is denoted as simply ρ for simplicity. The
noise and clutter are uncorrelated with one another.

The definition of SI is

(5.15)
 
Consider the s11 element. Using the fact that the noise and clutter are
uncorrelated and that each is zero mean, it can be quickly concluded that

(5.16)
 
Next consider the s12 element

(5.17)
 
Again, the noise and clutter are zero mean and uncorrelated and the noise is
white, so that the expected values of the first three terms are zero. However, the
last term becomes the pulse-to-pulse correlation of the clutter so that

(5.18)
 
It is easy to see that s22 = s11 and that . Thus

(5.19)
 
so that



(5.20)
 
where k absorbs constants resulting from the matrix inversion.

SI represents the available information on the interference. The elements on
the main diagonal will always be identical and equal to the total interference
power, which is the sum of the independent interference source powers. The
off-diagonal elements represent the correlation properties of the interference
over one PRI. Because the noise is white, it does not contribute to the off-
diagonal elements, whereas the clutter does contribute provided ρ = ρc[1] ≠ 0.
More generally, an Nth order filter will require the N × N covariance matrix
and will involve correlation coefficients up to ρc[N – 1].

To finish computing h, a model is needed for the assumed target signal
phase history t. For a target moving at a constant radial velocity, the expected
target signal is just a discrete complex sinusoid at the appropriate Doppler
frequency FD. Following the discussion in Sec. 2.6.3, assume the waveform is a
train of M simple pulses with PRI T and RF transmit frequency Ft. If the target is
at a nominal range R0 and is moving toward the radar at a radial velocity of v
meters per second, the slow-time phase history will be of the form

(5.21)
 
where FD = 2v/λ is the usual Doppler shift, Rs ≈ R0 is the range corresponding to
the sampling time, and all constants are absorbed into A at each step.

Only N samples at a time of y[m] are of interest in analyzing an N-sample
canceller. Assuming N ≤ M and recalling the results of App. B on vector
representation of linear filtering, the series of N samples ending at m = m0,
{y[m0], y[m0 – 1], …, y[m0 – N + 1]}, can be represented in vector form as

(5.22)
 
where the phase terms due to the delay to the first sample of interest, m0, have



been absorbed into A and the signal has been renamed t to emphasize that it is
only the target component. For the specific case M = 2 this becomes

(5.23)
 

In practice, the target velocity and therefore Doppler shift are unknown; a
target might be anywhere in the Doppler spectrum. The Doppler shift FD is
therefore modeled as a random variable with a uniform probability density
function over [–PRF/2, +PRF/2) and the expected value of t is computed. The
expected value of the constant 1 is, of course, 1. The expected value of the
second component of t is

(5.24)
 
The signal model then becomes simply

(5.25)
 
Finally, combining Eqs. (5.20) and (5.25) in Eq. (5.13) gives the coefficients of
the optimum two-pulse filter

(5.26)
 
In this equation the constant A has been dropped because it affects target, clutter,
and noise equally and is therefore of no consequence.

To interpret this result, consider the case where the clutter is the dominant
interference. Then  is negligible compared to  and h ≈ [1 – ρ*]T. Now
suppose the clutter is highly correlated over one PRI so that ρ is close to one.
Then h ≈ [1 – 1]T, nearly the same as the two-pulse canceller. Despite its
simplicity, the two-pulse canceller is therefore nearly a first-order matched
filter for MTI processing when the clutter-to-noise (CNR) is high and the clutter
is highly correlated over one PRI. In the limit of very high CNR and perfectly
correlated clutter, the two-pulse canceller is exactly the first-order matched
MTI filter.

The vector matched filter derivation of the optimum two-pulse MTI filter



given previously is easily extended to higher order MTI filters. As the order
increases, the corresponding N-pulse canceller becomes a poorer
approximation of the matched filter (Schleher, 2010).

It is interesting to consider the form of the optimum filter when the
dominant interference is noise rather than clutter, that is, . In this case the
optimum first-order MTI filter of Eq. (5.26) reduces to (ignoring overall scale
factors again)

(5.27)
 
Equation (5.27) states that in the presence of completely uncorrelated
interference and with no knowledge of the target velocity, the filter impulse
response reduces to a single impulse, h[m] = δ[m]. Since convolving any signal
with δ[m] just returns the same signal, the filter does nothing. In the clutter-
dominated case, the filter combined the two slow-time samples because, even
though constructive interference of the target could not be guaranteed, the high
correlation of the clutter did guarantee that the clutter signal would be
suppressed. On average the overall effect was beneficial. In the noise-
dominated case, there is still no guarantee that the target signal will be
reinforced, and in addition there is now no guarantee that the noise will be
suppressed. The filter therefore does not combine the two data samples at all.

The previous analysis assumes that the target Doppler shift is unknown and
therefore considers all target Doppler frequencies equally likely. It is easy to
modify the analysis to match the MTI filter to a specific Doppler shift or to the
case where the target Doppler extends only over a portion of the Doppler
spectrum. These alternative assumptions manifest themselves as alternate
models for the desired signal vector t. The second case is treated in Schleher
(2010) and in Prob. 8; here the case of a known Doppler shift for the target and
a two-pulse canceller is considered. The interference and signal models are
exactly the same as given earlier except that now the target Doppler shift in t is
not a random variable but a specific, fixed value. Therefore, it is not necessary
to take an expected value of t. The filter coefficient vector is

(5.28)
 
where again all overall constants have been dropped. While this result is easy



to implement if the interference statistics are known, it is difficult to interpret.
However, in the noise-limited case ( ), it reduces to

(5.29)
 
Equation (5.29) shows that in this case the optimum filter adds the two target
samples together with a phase correction to the second so that they add in phase.
In other words, the filter performs a coherent integration of the two target
samples.

5.2.4   Blind Speeds and Staggered PRFs
The frequency response of all discrete-time filters is periodic, repeating with a
period of one in the normalized cyclical frequency, corresponding to a period of
PRF = 1/T Hz of Doppler shift. Figure 5.9 illustrated this for the two- and three-
pulse cancellers. Since MTI filters are designed to have a null at zero
frequency, they will also have nulls at Doppler frequencies that are multiples of
the pulse repetition frequency. Consequently, a target moving with a radial
velocity that results in a Doppler shift equal to a multiple of the PRF will be
suppressed by the MTI filter. Velocities that result in these unfortunate Doppler
shifts are called blind speeds because the target return will be suppressed; the
system is “blind” to such targets. From a digital signal processing point of view,
blind speeds represent target velocities that will be aliased to zero velocity.
Equivalently, they correspond to Doppler shifts that will be aliased to zero
frequency.

For a given PRF, the unambiguous range is

(5.30)
 
The first blind speed is

(5.31)
 
The corresponding Doppler shift Fb simple equals the PRF. As the PRF is
increased for a given RF, the unambiguous range decreases and the first blind
speed increases. Figure 5.11 shows the unambiguous range-Doppler coverage
regions that are possible. For example, each point on the line marked “1 GHz”
represents a combination of Rua and vb corresponding to some PRF. The dotted
lines mark one example, corresponding to 400 m/s for the first blind speed and a
56.25 km unambiguous range. Equation (5.31) can be used to see that these



values correspond to PRF = 2667 pulses per second.

 FIGURE 5.11   Ambiguity-free range-Doppler coverage regions.
 

There is some confusion in the terminology regarding the meaning of
“unambiguous velocity” or “unambiguous Doppler shift.” The blind speed
defined in Eq. (5.31) is the velocity interval between zeros of the MTI filter
response. Generally, the range of velocities that are considered to be
measurable without ambiguity is then [–vb/2,+vb/2]. The unambiguous velocity is
then said to be vb/2 because targets having a velocity magnitude greater than this
will be aliased. In terms of Doppler shift, the blind Doppler shift is PRF Hz,
allowing unambiguous measurements over the interval [–PRF/2, + PRF/2]. The
unambiguous Doppler shift is considered to be PRF/2 Hz. However, in some
sources the unambiguous velocity (Doppler shift) is taken to be vb m/s (PRF
Hz), so caution is needed in interpreting the literature. In this text, unambiguous
velocity or Doppler shift will mean one-half of the first blind velocity or
Doppler shift.

The unambiguous range could be thought of as the range coverage of the
radar for a given PRF while the corresponding blind speed or Doppler could be
considered the velocity or Doppler coverage. Equations (5.30) and (5.31) can
be combined to show that for a given RF and single PRF the combined range-
velocity coverage is a constant, independent of the PRF. The combined range-
Doppler coverage is also independent of the RF:



(5.32)
 

Blind speeds could be avoided by choosing the PRF high enough so that the
first unambiguous velocity exceeds any actual velocity likely to be observed for
targets of interest. Unfortunately, higher PRFs also correspond to shorter
unambiguous ranges. It is frequently not feasible to operate at a PRF that allows
unambiguous coverage of both the range and velocity intervals of interest. For
example, suppose a designer requires unambiguous range of 100 km and at least
±112.5 m/s of unambiguous velocity coverage, corresponding to a 225 m/s blind
speed. Figure 5.11 shows that the maximum RF at which this is possible is 1
GHz. If the radar is required to be at X band (10 GHz), the combination of 100
km unambiguous range coverage and 112.5 m/s unambiguous velocity coverage
is not obtainable and some ambiguity must be accepted in range, Doppler, or
both.

The use of staggered PRFs or staggered PRIs is an alternative approach
that raises the first blind speed significantly with only a modest reduction in the
unambiguous range (Levanon, 1988; Schleher, 2010). PRF staggering can be
performed on either a pulse-to-pulse or CPI-to-CPI basis. The latter case is
common in airborne pulse Doppler radars and is deferred to Sec. 5.3.8. Pulse-
to-pulse stagger varies the PRI from one pulse to the next within a single CPI or
dwell. One common approach is to cycle through a set of P preselected PRIs
from one pulse to the next, repeating when all of the PRIs have been used.
Figure 5.12 illustrates the pulse timing sequence for a case with P = 2. The
resulting slow-time data for a given range bin is then passed through an MTI
filter. As will be seen, this process has the advantage of achieving increased
Doppler coverage with a single dwell.

 FIGURE 5.12   Pulse sequence timing for two staggered PRIs.
 

One disadvantage of staggering is that the slow-time data are now a
nonuniformly sampled sequence, making coherent Doppler filtering impractical
and complicating analysis. Another is that ambiguous mainlobe clutter can cause
large pulse-to-pulse amplitude changes as the PRI varies since the range of the
second-time-around clutter that folds into each range cell will change as the PRI
changes. Consequently, pulse-to-pulse PRI stagger is generally used only in low



PRF modes where there are no range ambiguities.
Staggered PRI operation can be analyzed in terms of either the PRIs or the

corresponding PRFs. The former is more direct and is used here. Consider a
system using P staggered PRIs {T0, T1, …, TP–1}. The corresponding set of pulse
repetition intervals is {PRFp} = {1/Tp}. Assume that each of the PRIs is
selected as an integer multiple of a base interval Tg,

(5.33)
 
with corresponding PRFs, PRFp = 1/Tp and Fg = 1/Tg. This is reasonable for
many radar systems, where Tg may correspond to the fast-time sampling interval
and the set of integers {kp} to the number of range bins in each PRI. The {kp}
are called the staggers3 and the ratio km: kp of any two of them is called a
stagger ratio. In many practical cases the staggers are chosen to be relatively
prime integers.

For a given PRI, any MTI filter will exhibit blind Doppler frequencies at
all integer multiples of the corresponding PRF. Consequently, the first true blind
Doppler frequency Fbs of a system using staggered PRIs will be the lowest
frequency that is blind at all of the corresponding PRFs, i.e., the least common
multiple (LCM) of the set

(5.34)
 
A complete cycle through the set of PRIs takes a total period Ttot equal to the
sum of each of the staggered PRIs

(5.35)
 

It is of interest to determine how much the blind Doppler of the staggered
system is increased relative to a comparable unstaggered system. A reasonable
choice for an unstaggered system to serve as a baseline reference is one whose
PRI equals the average PRI of the staggered system. The time required to collect
N pulses will then be approximately the same for the two systems. The average
PRI is

(5.36)



 
The blind Doppler frequency that would be observed in an unstaggered
waveform with this average PRI is

(5.37)
 
Using Eqs. (5.34), (5.36) and (5.37) and noting that FgTg = 1 gives an
expression for the first blind Doppler frequency of the staggered PRI system in
terms of the staggers {kp} and the blind Doppler of the reference unstaggered
system

(5.38)
 
For example, a two-PRI system with a stagger ratio of 3:4 would have a first
blind Doppler that is 3.5 times that of a system using a fixed PRI equal to the
average of the two individual PRIs. If a third PRF is added to give the set of
staggers {3, 4, 5}, the first blind Doppler will be four times that of the
comparable unstaggered system.

These equations simplify if all of the staggers are indeed mutually prime. In
that event, the LCM of the set of inverse staggers {1/kp} equals 1 (See Prob.
5.14). The blind Doppler shift [Eq. (5.34)] of the staggered system then equals
Fg and the factor by which the blind Doppler frequency is expanded relative to
the unstaggered case [Eq. (5.38)] is just the average of the staggers.

If a pure sinusoid Aexp(jΩt) is input to a linear time-invariant (LTI)
system, the output will be another pure sinusoid at the same frequency but with
possibly different amplitude and phase, Bexp(jΩt + ϕ). However, if a pure
sinusoid is sampled at nonuniform time intervals the resulting series of samples,
if interpreted as a conventional discrete-time sequence, will not be equivalent
to a uniformly sampled pure sinusoid at the appropriate frequency so that the
sampled signal will contain multiple frequency components. Any subsequent
processing, even though itself LTI, will still result in an output spectrum
containing multiple frequency components. Thus, a system utilizing nonuniform
time sampling is not LTI and the frequency response of a pulse-to-pulse
staggered system does not exist in a conventional sense. Instead, an approach
based on first principles can be used to explicitly compute the effect of a two-
pulse canceller on a complex sinusoid of arbitrary frequency and initial phase
for the MTI filter structure of interest. Repeating for each possible sinusoid
frequency, the effect of the combination of staggered sampling and MTI filtering
can be determined for targets of different Doppler shifts (Roy and Lowenschuss,



1970; Levanon, 1988; Schleher, 2010).
A constant-PRI system with PRI T transmits pulse #m in an N-pulse

sequence at time tm = mT, m = 0,…, N – 1. In a P-stagger system, the sequence
of sampling times {tm} is

(5.39)
 
The notation ((·))P denotes evaluation of the argument modulo P. Note that the
{Tp} are the sampling time increments, not the absolute sampling times, and that
tm – tm–1 = T((m–1))P. The slow-time phase history of Eq. (5.21) for a constant PRI
and constant-velocity target is easily generalized to the following form for a
staggered PRI system:

(5.40)
 
Now consider the two-pulse canceller network of Fig. 5.8a.4 Using Eqs. (5.39)
and (5.40), the output z[m] = y[m] – y[m – 1] can be written explicitly as

(5.41)
 

The magnitude of the frequency response for the sampling + filter system
can be defined as the square root of the ratio of the power of the filter output
sequence to that of the input sequence. The power of each input sample is |y[m]|2
= |k|2. The power of the output samples |z[m]|2 depends on the index m due to the
varying PRIs. The average output power is therefore computed over one cycle
of the staggered PRIs. The sum from m = 0 to P – 1 of T((m–1))P is the same as the
sum of Tm so the expression for the squared magnitude of the average two-pulse
canceller filter frequency response becomes



(5.42)
 
where the notation |HN, P(F)|2 indicates the power gain or attenuation of an N-
pulse canceller using P staggers when the input is a sinusoid of frequency F0.
Generalizing the specific F0 to an arbitrary frequency F and renaming the
summation index gives the squared magnitude of the frequency response of the
two-pulse canceller with staggered PRIs

(5.43)
 
The actual frequency in hertz rather than normalized frequency is used in Eq.
(5.43) because the nonuniform sampling rate invalidates the usual definition of
normalized frequency. The response of more general MTI filters can be
obtained using a similar approach.

Figure 5.13a compares the frequency response of a two-pulse canceller
using two (P = 2) PRIs versus the reference baseline single-PRF system. The
staggered case uses PRIs of 4/3 ms and 1 ms (thus PRFs of 750 and 1000 pulses
per second). Tg = 1/3 ms, giving Fg = 3 kHz. The set of staggers kp is {3, 4}. The
first blind Doppler shift Fbs occurs at the least common multiple of 750 and
1000 Hz, which is also 3000 Hz. The reference unstaggered PRF and blind
Doppler Fb, which is the reciprocal of the average PRI Tavg = 7/6 ms, is 857.14
Hz. The baseline unstaggered response collected using PRI = Tavg shows blind
Doppler frequencies at integer multiples of 857.14 Hz. Thus, staggering the PRF
has increased the blind Doppler frequency and thus the velocity and Doppler
coverage by a factor of 3.5 (= 3000/857.14) consistent with Eq. (5.38).



 FIGURE 5.13   Comparison of two-pulse canceller frequency response with
unstaggered waveform and 3:4 staggered waveform: (a) Two PRIs in a 3:4
stagger ratio, (b) five PRIs in a 51:62:53:61:58 stagger ratio. The inset expands
the portion of the graph near zero frequency.
 

It remains to determine the effect of the pulse stagger on the unambiguous
range. The unambiguous range Ruas of the staggered-PRI system is simply the



shortest of the unambiguous ranges for each individual PRI

(5.44)
 
The unambiguous range for the reference unstaggered system is Rua = cTavg/2.
The ratio is

(5.45)
 
which is 6/7 for this example, about a 14 percent reduction. The increase in the
total range-Doppler coverage is the product of Eqs. (5.38) and (5.45),

(5.46)
 
For mutually prime staggers, lcm({1/kp}) = 1 and this reduces to simply
min[{kp}], equal to a factor of three in the example above. Thus, the use of two
PRIs with a 3:4 stagger ratio has reduced the unambiguous range by 14 percent,
but has expanded the Doppler coverage by 350 percent and the combined range-
Doppler coverage by 300 percent.

Figure 5.13b illustrates the frequency response obtained using Tg = 100 μs
and five mutually prime staggers in the ratio 51:62:53:61:58 with a two-pulse
canceller.5 Only the staggered response is shown; the equivalent unstaggered
response would have nulls every 175.4 Hz. The insert expands the power
spectrum around zero Doppler shift to make the clutter null more visible. The
first blind Doppler shift is at 10 kHz, a 57× increase as expected from Eq.
(5.38). The unambiguous range reduction is 10.5 percent. The combined range-
Doppler coverage is increased by 51×.

Additional examples, special cases suited to weather radar, and the use of
both infinite impulse response (IIR) filters and time-varying filters for MTI are
discussed in Shrader and Gregers-Hansen (2008). An alternative design
approach based on randomized PRIs to extend the blind speed is discussed in
Vergara-Domingues (1993).

5.2.5   MTI Figures of Merit
The goal of MTI filtering is to suppress clutter. In doing so, it also attenuates or
amplifies the target return, depending on the particular target Doppler shift. The
change in signal and clutter power then affects the probabilities of detection and



false alarm achievable in the system in a manner dependent on the particular
design of the detection system.

There are three principal MTI figures of merit in use. Clutter attenuation
measures only the reduction in clutter power at the output of the MTI filter as
compared to the input, but is simplest to compute. Improvement factor
quantifies the increase in signal-to-clutter ratio due to MTI filtering; as such, it
accounts for the effect of the filter on the target as well as on the clutter.
Subclutter visibility is a more complex measure that also takes into account the
detection and false alarm probabilities and the detector characteristic. Because
of its complexity, it is less often used. In this chapter, attention is concentrated
on clutter attenuation CA and improvement factor I.

There are several ways to approach the calculation of the improvement
factor. These include frequency domain approaches using clutter power spectra
and MTI filter transfer functions, autocorrelation functions of the input and
output of the MTI filter, and the vector method. Each will be illustrated in turn,
starting with the frequency domain approach, which is perhaps the most
intuitive.

Clutter attenuation is simply the ratio of the clutter power at the input of the
MTI filter to the clutter power at the output

(5.47)
 

 where  and  = clutter power at the filter input and output, respectively
                    Sc (F) = sampled clutter power spectrum

H(F) = discrete-time MTI filter frequency response
Since the MTI filter presumably reduces the clutter power, the clutter

attenuation will be greater than one. In fact, it can be 13 dB or more in favorable
conditions. However, it also depends on the clutter itself through Sc(F). The
shape of the clutter power spectrum and its spread in hertz are determined by the
physical phenomenology and RF. The percentage of the digital spectrum width
to which a given clutter spectrum is mapped depends on the PRF and therefore
is determined by the system design. Consequently, a change in RF, PRF, or
clutter power spectrum due to changing terrain or weather conditions will alter
the achieved clutter cancellation.

Improvement factor I is defined formally as the signal-to-clutter ratio at the
filter output divided by the signal-to-clutter ratio at the filter input, averaged
over all target radial velocities of interest (IEEE, 2008). Considering for the



moment only a specific target Doppler shift, the improvement factor can be
written in the form

(5.48)
 
where G is the filter gain. Figure 5.9 makes clear that the effect of the MTI filter
on the target signal is a strong function of the target Doppler shift. Thus, G is a
function of target velocity, while clutter attenuation CA is not. The improvement
factor is the signal processing gain Gsp in the radar range equation due to MTI
filtering.

To reduce I to a single number instead of a function of target Doppler, the
definition calls for averaging uniformly over all target Doppler shifts “of
interest.” If a target is known to be at a specific velocity, the improvement factor
can be obtained by simply evaluating Eq. (5.48) at the known target Doppler. It
is more common to assume the target velocity is unknown a priori and use the
average target gain over all possible Doppler shifts, which is just

(5.49)
 
An alternative expression for the gain that is often easier to compute for simple
MTI filters follows from converting Eq. (5.49) back to normalized frequency
units and applying Parseval’s theorem:

(5.50)
 
For example, a two-pulse canceller has only two nonzero coefficients, +1 and –
1, giving immediately G = 2. Combining Eqs. (5.47) and (5.49) in gives the
expression for the improvement factor

(5.51)
 

Equivalent expressions for improvement factor can be developed in terms



of the autocorrelation function of the clutter and the MTI filter impulse response
(Levanon, 1988; Nathanson, 1991). For low-order filters such as two- or three-
pulse cancellers and clutter power spectra with either measured or analytically
derivable autocorrelation functions, the resulting equations can be easier to
evaluate than the frequency domain versions.

As an example of the autocorrelation approach, consider the output of the
two-pulse canceller when the input is just clutter; this is c′[m] = c[m] – c[m –
1]. The expected value of the filter output power is

(5.52)
 
where Re{·} denotes the real part of the argument.6 Assuming that c[m] is
stationary,

(5.53)
 
where

(5.54)
 
is the autocorrelation function of c[m]. Note that . Also define the
normalized autocorrelation function

(5.55)
 
The clutter attenuation component of the improvement factor in Eq. (5.48) can
now be written as

(5.56)
 
As noted above, the gain for a two-pulse canceller is G = 2; thus the
improvement factor for the two-pulse canceller is



(5.57)
 
A similar analysis can be used to derive the improvement factor for a three-
pulse canceller; it is

(5.58)
 

To see how these formulas are used, consider the case where the clutter
spectrum is Gaussian with variance (in normalized radian frequency units) ,
that is, . Assuming σω  π so that the continuous-time Fourier
transform pair for Gaussian functions can be used to a good approximation, the
normalized autocorrelation function for c [m] at lag k is (Richards, 2006)

(5.59)
 
Using Eq. (5.59) in Eqs. (5.57) and (5.58) gives the improvement factor for a
Gaussian clutter spectrum with a two- or three-pulse canceller:

(5.60)
 
Table 5.1 shows the improvement factor predicted for two- and three-pulse
cancellers for the case of a Gaussian clutter power spectrum of various spectral
widths using Eq. (5.60). If the clutter spectrum is narrow compared to the PRF,
the improvement factor can be 13 dB or more even for the simple two-pulse
canceller. If the clutter spectrum is wide, much of the clutter power will be in
the passband of the MTI highpass filter and the improvement factor will be
small.



 TABLE 5.1   Improvement Factor for Gaussian Clutter Power Spectrum
 

The third approach for computing the improvement factor uses the vector
analysis techniques employed in determining the matched filter for MTI. For
comparison with the autocorrelation analysis given previously, consider the
case where  (clutter only) and h = [1 – 1]T (two-pulse canceller).
Improvement factor is the ratio of the signal-to-interference ratio at the filter
output to the SIR at the filter input. While the optimum MTI filter was derived
by averaging over possible target Doppler frequencies, in evaluating the
improvement factor it is assumed that any specific target has a specific Doppler
frequency. The improvement factor is calculated for that specific target Doppler
frequency and then averaged over allowable Doppler frequencies. Since SIR at
the input does not depend on Doppler frequency, it is sufficient to do the
averaging on the output SIR.

Consider therefore the signal vector given by Eq. (5.23) and the clutter
covariance matrix given by Eq. (5.19) (with ). The input SIR is just .
Equation (5.7) gave an explicit expression for the output SIR. The numerator of
this expression is

(5.61)
 
This is the two-pulse canceller MTI filter output signal power for a target at
Doppler shift FD Hz. Averaging over all target Doppler shifts gives for the
numerator

(5.62)
 
The denominator of Eq. (5.7) is



(5.63)
 
Dividing Eq. (5.62) by Eq. (5.63) gives the output SIR; further dividing that
ratio by the input SIR gives the improvement factor for a two-pulse canceller
operating against clutter only (no noise)

(5.64)
 
Since ρc in the matrix formulation is the same as ρc[1], this is the same
expression obtained using autocorrelation methods in Eq. (5.57). The same
result could also have been obtained in the vector analysis by simply using the
target model vector averaged over Doppler, t = [1 0]T.

Additional MTI metrics can be defined. Improvement factor I is an average
of the improvement in signal-to-clutter ratio over one Doppler period. At some
Doppler shifts, the target is above the clutter energy, while at others it is below
the clutter and therefore not detectable. I does not indicate over what percentage
of the Doppler spectrum a target can be detected. The concept of MTI visibility
factor or target visibility V has been proposed to quantify this effect
(Kretschmer, 1986). V is the percentage of the Doppler spectrum over which the
improvement factor for a target at a specific frequency is greater than or equal to
the average improvement factor I. A related metric is the usable Doppler space
fraction (UDSF), which in turn is determined by the minimum detectable
velocity (MDV) or minimum detectable Doppler (MDD). These metrics are
common in space-time adaptive processing, so their discussion is deferred to
Chap. 9.

5.2.6   Limitations to MTI Performance
The basic idea of MTI processing is that repeated measurements of stationary
clutter yield the same echo amplitude and phase; thus successive measurements,
when subtracted from one another, should cancel. Any effect internal or external
to the radar that causes the received echo from a stationary target to vary will
cause imperfect cancellation, limiting the improvement factor.

Perhaps the simplest example is transmitter amplitude instability. Consider
a two-pulse canceller and suppose that the amplitude of each pulse may differ in
amplitude from the nominal amplitude by up to ±5 percent (equivalent to 20
log10(1.05/1) = 0.42 dB). The signal resulting from subtracting two echoes from
a perfectly stationary target can have an amplitude that is as large as 10 percent



that of the nominal echo amplitude. Consequently, clutter attenuation may be as
poor as 20 log10(1/0.1) = 20 dB even though the clutter is perfectly stationary.
For a two-pulse canceller with an average signal gain G of 2 (6 dB), the
maximum achievable improvement factor is 26 dB.

A more realistic analysis of the limitations due to amplitude jitter can be
obtained by modeling the amplitude of the mth transmitted pulse as A[m] = k(1 +
a[m]), where a[m] is a zero mean, white random process with variance  that
represents the percentage variation in transmitted amplitude, and k is a constant.
The received signal will have a complex amplitude of the form k′(1 + a[m])
exp(jϕ), where ϕ is the phase of the received slow-time sample and the constant
k′ absorbs all the radar range equation factors. The average power of this signal,
which is the input to the pulse canceller, is

(5.65)
 
The expected value of the two-pulse canceller output power will be

(5.66)
 
The achievable clutter cancellation is thus

(5.67)
 
For example, an amplitude variance of 1 percent ( ) limits two-pulse
clutter cancellation to a factor of 50.5, or 17 dB. Because the average target
gain G of the two-pulse canceller is G = 2 (3 dB), the limit to the improvement
factor I is 50.5 × 2 = 101, or 17 + 3 = 20 dB.

Another example is phase drift in either the transmitter or receiver. This
can occur due to instability in coherent local oscillators used either as part of
the waveform generator on the transmit side or in the demodulation chains on the
receiver side. Consider the weighted coherent integration of M data samples
y[m] with a zero-mean stationary white phase error ϕ[m]

(5.68)



 
where the {am} are the integration weights. Assume that each data sample y[m]
is a (possibly complex) constant A. Then the power of the weighted coherent
sum in the absence of phase error ϕ[m] is

(5.69)
 
It can be shown that the integrated power when a white Gaussian phase error is
present is (Richards, 2003)

(5.70)
 
where  is the variance of the phase noise in radians. This can be applied to the
two-pulse canceller by letting M = 2 and a0 = 1, a1 = –1. Equation (5.70) then
gives the power at the canceller output as . Since the power of a
clutter sample before the canceller is |A|2, the limitation on two-pulse
cancellation due to the phase noise becomes .

A Gaussian PDF for phase error is reasonable when the error is small, but
not when it becomes large because the PDF is not confined to the interval [–π,
π]. An extension to this analysis uses instead the Tikhonov distribution for
phase:

(5.71)
 
As the parameter α varies from zero to infinity, the PDF varies from uniform
random to a fixed value of zero radians, as shown in Fig. 5.14. Using this PDF
produces very similar results to the Gaussian analysis, differing only in
replacing the quantity  in Eq. (5.70) and the two-pulse canceller
improvement factor limit by the quantity [I1(α)/I0(α)]2, where I1(α) and I0(α) are
the modified Bessel functions of the first kind and orders one and zero,
respectively (Richards, 2011).



 FIGURE 5.14   The Tikhonov PDF for phase.
 

Other sources of limitation due to radar system instabilities include
instability in transmitter or oscillator frequencies, transmitter phase drift,
coherent oscillator locking errors, PRI jitter, pulse width jitter, and quantization
noise. Simple formulas can be developed to bound the achievable clutter
attenuation due to each of these error sources, as well as some others not
mentioned. Still another source is PRI stagger. When used in a range-ambiguous
scenario, PRI stagger results in clutter from different distant ranges aliasing to
the same near ranges on different PRIs, so that the clutter becomes less
stationary and the clutter attenuation is degraded. Additional information and
analysis on these and other issues is available in Shrader and Gregers-Hansen
(2008), Nathanson (1991), and Schleher (2010).

External to the radar, the chief factor limiting MTI improvement factor is
simply the width of the clutter spectrum itself. Wider spectra put more clutter
energy outside of the MTI filter null, so that less of the clutter energy is filtered
out. This effect is evident in Eq. (5.47) and was illustrated numerically in Table
5.1. The effective clutter spectrum width can be increased by radar system
instabilities or by measurement geometry and dynamics. For instance, a scanning
antenna adds some amplitude modulation due to antenna pattern weighting to the
clutter return. The power spectrum of the measured clutter is then the
convolution in the frequency domain of the actual clutter power spectrum and
the squared magnitude of the Fourier transform of the amplitude modulation
caused by the antenna scanning. This convolution increases the observed
spectral width somewhat. In some cases, the clutter power spectrum may not be
centered on zero Doppler shift. A good example is rain clutter. Moving weather
systems will have a nonzero average Doppler representing the rate at which the
rain cell is approaching or receding from the radar system. Unless this average



motion is detected and compensated, the MTI filter null will not be centered on
the clutter spectrum and cancellation will be poor.

The largest source of clutter offset and spreading is radar platform motion.
Recall from Chap. 3, Eq. (3.5), that the motion-induced clutter bandwidth is

(5.72)
 
The offset in center frequency of the clutter spectrum can be as much as a few
kilohertz for fast aircraft when forward looking, while the motion-induced
spectral spread can be tens to a few hundreds of hertz for a sidelooking
configuration. This clutter spreading adds to the intrinsic spread of the clutter
spectrum due to internal motion and can often be the dominant effect determining
the observed clutter spectral width and therefore determining the MTI
performance limits.

5.3   Pulse Doppler Processing
Pulse Doppler processing is the second major class of Doppler processing.
Recall that in MTI processing the fast time-slow-time data matrix is highpass
filtered in the slow-time dimension, yielding a new fast-time/slow-time data
sequence in which the clutter components have been attenuated. Pulse Doppler
processing differs in that filtering in the slow-time domain is replaced by
explicit spectral analysis of the slow-time data for each range bin. Target
detection is then performed directly on the range-Doppler matrix of data.
Because the range-Doppler matrix is the fundamental data quantity in pulse-
Doppler processing, the first step is to form it from the fast-time/slow-time CPI
matrix by computing the one-dimensional spectrum of the slow-time signal in
each range bin. The spectral analysis is most commonly by far performed using
the fast Fourier transform (FFT) algorithm to compute the discrete Fourier
transform (DFT) as shown in Fig. 5.15, but other techniques can also be used.
The computed DFT is a frequency-sampled version of the DTFT of the slow-
time signal. The figure emphasizes the fact that the number of frequency samples
K does not have to equal the number of slow-time samples M; often K > M as
shown.



 FIGURE 5.15   Conversion of the fast-time/slow-time data matrix to a range-
Doppler matrix.
 

Consider the notional pulse Doppler spectrum for one range bin shown in
Fig. 5.16. The DTFT of the data is shown in a fashion similar to earlier figures.
The white dots represent the samples of the DTFT computed by the DFT; these
are the only actually available data. Assuming that the clutter has been centered
at zero Doppler, spectral samples at or near zero frequency will be dominated
by the strong clutter signal even though noise is also present. Spectral samples
in the clear region have only thermal noise to interfere with signal detection.
Each clear-region spectrum sample can be individually compared to a noise-
based threshold to determine whether the signal at that range bin and Doppler
frequency appears to be noise only or noise plus a target. If the sample crosses
the threshold it not only indicates the presence of a target in that range bin but
also its approximate velocity, since the Doppler frequency bin is known. The
samples that are clutter-dominated are often simply discarded on the grounds
that the SIR will be too low for successful detection. However, other systems
use a technique called clutter mapping, discussed in Sec. 5.6.1, to attempt
detection of strong targets in the clutter region using a clutter-based threshold.



 FIGURE 5.16   The computed pulse Doppler spectrum is a frequency-sampled
version of an underlying discrete-time Fourier transform.
 

The advantages of pulse Doppler processing are that it provides at least a
coarse estimate of the radial velocity component of a moving target and that it
provides a way to detect multiple targets, provided they are separated enough in
Doppler to be resolved. The chief disadvantages are greater computational
complexity of pulse Doppler processing as compared to MTI filtering and
longer required dwell times due to the use of more pulses for the Doppler
measurements. Thorough discussions of pulse Doppler processing are contained
in Morris and Harkness (1996) and Stimson (1998). An excellent new addition
to the literature is Alabaster (2012).

5.3.1   The Discrete-Time Fourier Transform of a Moving Target
To understand the issues in pulse Doppler processing it is useful to understand
the appearance of noise, clutter, and target signals in the range-Doppler map.
Begin by again considering the Fourier spectrum of an ideal constant radial
velocity moving point target and the effects of a sampled Doppler spectrum. The
issues are the same as those considered when discussing the sampling of the
Doppler spectrum in Chap. 3. Consider a radar illuminating a moving target
over a CPI of M pulses, and suppose a moving target is present in a particular
range bin. If the target’s velocity is such that the Doppler shift is FD Hz, the
slow-time received signal after quadrature demodulation is

(5.73)
 
where T is the radar’s pulse repetition interval and is the effective sampling
interval in slow time. The signal of Eq. (5.73) is the same signal considered in
Chap. 3 [Eq. (3.19)], except for the change from normalized frequency ωD in
radians to analog frequency FD in hertz; they are related according to ωD =



2πFDT. Equation (3.20) gave the M-pulse discrete-time Fourier transform of this
signal; converting to analog frequency gives

(5.74)
 
Y(F) is an asinc7 function with its peak at F = FD as expected and a peak
magnitude of MA. Its magnitude is illustrated in Fig. 5.17a for the case where FD
= PRF/4, M = 20 samples, and A = 1. So long as M ≥ 4, the Rayleigh (peak-to-
null) mainlobe bandwidth is 1/MT Hz; this is also the 4-dB bandwidth. The
width of the mainlobe at the –3 dB points is 0.89/MT Hz. The first sidelobe is
13.2 dB below the response peak. These mainlobe width measures determine
the Doppler resolution of the radar system. They are all inversely proportional
to MT, which is the total elapsed time of the set of pulses used to make the
spectral measurement. Thus, Doppler resolution is determined by the
observation time of the measurement as first discussed in Chap. 1. Longer
observation allows finer Doppler resolution.



 FIGURE 5.17   Magnitude of the discrete-time Fourier transform of an ideal
moving target slow-time data sequence with FD = PRF/4 and M = 20 samples:
(a) no window, (b) Hamming window.
 

Because of the high sidelobes, it is common to use a data window to
weight the slow-time data samples y[m] prior to computing the DTFT or DFT.
To analyze this case, replace y[m] by ω[m]y[m] in the computation of the DTFT
and again use Eq. (5.73) for the particular form of y[m]. Y(F) becomes



(5.75)
 
where the notation Yw(F) is used to emphasize that the spectrum is computed
with a window applied to the data. This is simply the Fourier transform of the
window function itself, shifted to be centered on the target Doppler frequency
FD rather than at zero. Figure 5.17b illustrates the effect of the window on the
DTFT for the same data used in part a of the figure. In fact, the asinc function of
Fig. 5.17a is also just the Fourier transform of the rectangular window function
(equivalent to no window). An extensive description of common window
functions and their characteristics is in Harris (1978). In general, nonrectangular
windows cause an increase in mainlobe width, a decrease in peak amplitude,
and a decrease in SNR in exchange for large reductions in peak sidelobe level.

It is straightforward to compute the reduction in peak amplitude and the
SNR loss given the window function w[n]. Consider the peak gain first. From
Eq. (5.74), the peak value of | Y(F)|2 when no window is used is A2M2.
Evaluating Eq. (5.75) at F = FD gives the peak power when a window is used:

(5.76)
 
The ratio |Y(F)|2/|Y(FD)|2, called the loss in processing gain (LPG), is

(5.77)
 
With this definition LPG ≥ 1, so the loss in dB is a positive number. Using Eq.
(5.77), the LPG can be computed for any window. Values of 5 to 8 dB are
common. Details depend on the specific window function, but the LPG is
typically a weak function of the window length M, higher for small M and
rapidly approaching an asymptotic value for large M (on the order of 100 or
more).

Although the window reduces the peak amplitude of the DTFT
substantially, it also reduces noise power. Processing loss (PL) is the reduction
in SNR at the peak of the DTFT for a pure sinusoidal input. Denoting the SNR
with and without the window as χ and χw, respectively, it is possible to separate
the effects of the window on the target and noise components of the signal



(5.78)
 
To determine the window’s effect on the noise power, suppose y[m] is a zero
mean stationary white noise with variance σ2. Then the windowed noise power
is

(5.79)
 
The unwindowed noise power N can be obtained from Eq. (5.79) by setting
w[m] = 1 for all m, giving N = Mσ2. Using Eq. (5.77) and these values for N and
Nw in Eq. (5.79) gives the processing loss

(5.80)
 

Like the loss in peak gain, the processing loss is a weak function of M that
is higher for small M but quickly approaches an asymptotic value. As an
example, for the Hamming window the loss in SNR is 1.75 dB for a very short
(M = 8) window, decreasing asymptotically to about 1.35 dB for long windows.
Table 5.2 summarizes the four key properties of 3-dB resolution, peak sidelobe
level, loss in processing gain, and processing loss for several common
windows. Also shown is worst-case straddle loss, to be discussed next. All of
these characteristics of windows are the same as discussed in Chap. 4 in the
context of range side-lobe control. A much more extensive table, including both
more metrics and many more types of windows, is given in Harris (1978).8



 TABLE 5.2   Properties of Some Common Data Windows
 

5.3.2   Sampling the DTFT: The Discrete Fourier Transform
In practice, the DTFT is not computed because its frequency variable is
continuous. Instead, the discrete Fourier transform is computed

(5.81)
 
As discussed in Chap. 3, for a finite length data sequence Y[k] is just Y(F)
evaluated at F = k/KT = k (PRF/K) Hz. These samples are called Doppler bins.
Thus, the DFT computes K samples of the DTFT evenly spaced across one
period of the DTFT. The DFT is almost invariably computed using an FFT
algorithm. The appearance of a plot of the Doppler spectrum computed using a
DFT can be a strong function of the relation between the actual DTFT shape and
the number and location of the DFT frequency samples.

In some situations, the number of data samples available can be greater
than the desired DFT size, that is, M > K. This occurs when there is a need to
reduce the DFT size for computational reasons, or when the radar timeline
permits the collection of more pulses than the number of Doppler bins required
and it is desirable to use the extra pulses to improve the SNR of the Doppler
spectrum measurement. The data turning procedure described in Chap. 3 and
Fig. 3.10 allows the use of a K-point DFT while taking advantage of all of the
data.

Some caution is needed in applying a data window when the data are
modified by zero padding or turning. In either case a length M window should
be applied to the data before it is either zero padded or turned. Applying a K-
point window to the full length of a zero-padded sequence has the effect of



multiplying the data by a truncated, asymmetric window (the portion of the
actual window that overlaps the M nonzero data points), resulting in greatly
increased sidelobes. Applying a shortened K-point window to a turned data
sequence results in DFT samples that do not equal samples of the DTFT of the
windowed M-point original data sequence.

Because the DFT is a sampled version of the DTFT, the peak value of the
DFT obtained for a pure sinusoidal signal is greatest when the Doppler
frequency coincides exactly with one of the DFT sample frequencies, and
decreases when the target signal is between DFT frequencies. This reduction in
amplitude is called a Doppler straddle loss. The amount of loss depends on the
particular window used and the ratio K/M. For a given signal length M, the
straddle loss is always greatest for signal frequencies exactly halfway between
DFT sample frequencies. The calculation can be simplified by assuming that the
signal frequency is FD = 0 so that y[m] = w[m] and then evaluating Eq. (5.81)
with k = 0 (DFT sample on the “sinusoid” peak) and k = 1/2 (1/2 bin away from
the sinusoid peak). To be explicit, consider the rectangular window case; then

(5.82)
 
Assuming K ≥ M and evaluating at k = 1/2 gives

(5.83)
 
The last step was obtained by assuming that K is large enough to allow a small
angle approximation to the sine function in the denominator. Y[0] is obtained
either by applying L’HÔpital’s rule to the second form of Eq. (5.82) or
computing it explicitly from the first form; the result is Y [0] = M. The maximum
straddle loss for the DFT filterbank with no windowing is

(5.84)
 
This equation verifies that the loss depends on the ratio K/M. The worst case
occurs when the sinc term is minimized; this happens when K = M. In decibels,
this worst-case loss for a rectangular window is sinc (1/2) = sin(π/2)/(π/2) =
2/π, equivalent to –3.92 dB.

The straddle loss for shaped windows varies somewhat with M as can be
seen in Table 5.2. A calculation for the Hamming window similar to that



leading to Eq. (5.84) results in a smaller maximum straddle loss of 1.75 dB for
very long windows (M > 300 or so), dropping to 1.5 dB for very short (M = 8)
windows. Thus, while any nonrectangular window causes a reduction in peak
gain, typical windows have the desirable property of having less variability in
gain as the Doppler shift of the target varies. This effect is illustrated in Fig.
5.18, which shows the maximum DFT output amplitude as a function of the
target Doppler shift for rectangular and Hamming windows for the case of M =
K = 16. Observe the general reduction in peak amplitude for the Hamming-
windowed data compared to the unwindowed data. On the other hand, the
variation in amplitude is significantly less for the windowed data (1.6 dB
versus 3.9 dB); i.e., the amplitude response is more consistent, an
underappreciated benefit of windowing.

 FIGURE 5.18   Variation of DFT output with complex sinusoid input frequency
for two different data analysis windows.
 

5.3.3   The DFT of Noise
The target signals discussed in the previous sections compete with interference,
primarily noise and clutter, so the characteristics of the DTFT and DFT of the
interference are of interest. First consider noise. Assume the usual model of
additive complex WGN with variance  in the M-sample slow-time signal
y[m]. The value of the DTFT at any particular frequency or of any DFT sample
is a weighted sum of the same M i.i.d. (independent identically distributed)
complex Gaussian time samples and so is also a complex Gaussian RV. If no
window is used the weights are the DTFT or DFT kernel values exp(–jωm) or
exp(–j2πkm/K). Because these weights have unit magnitude, the resulting



spectrum (DTFT or DFT) sample will have variance . If the slow-time data
is windowed, the variance becomes , where Ew = ∑w |w[m]|2 is the energy of
the window sequence. Because the DTFT and DFT samples are complex
Gaussian, it also follows that the magnitude of a spectrum sample has a
Rayleigh PDF, the magnitude-squared has an exponential PDF, and the phase
has a uniform PDF over [–π, π]. The PDF and its parameters are important in
setting detection thresholds as will be seen in Chap. 6. These and additional
properties of the DTFT and DFT of noise are derived in Richards (2007).

DTFT and DFT values at different frequencies or indices for random
inputs are, in general, correlated. In the unwindowed case the normalized
autocorrelation function in frequency is an asinc function of peak amplitude 1
and a zero spacing of 2π/M radians per sample. For the windowed case, the
normalized autocorrelation function follows the shape of the DTFT of the
window function. In the case of an unwindowed DFT of size K = M the DFT
sample spacing matches the zero spacing of the asinc function so that the DFT
samples will be uncorrelated. Because the complex samples are Gaussian, they
are also independent in this case.

5.3.4   Pulse Doppler Processing Gain
The DTFT and DFT represent forms of coherent integration in the slow-time
domain and result in a processing gain. Equation (5.74) shows that each sample
o f y[m] is phase-adjusted by multiplication with the DTFT kernel and then
integrated. If no window is used, then at the value of F that matches the signal
frequency, F = FD, the kernel values exactly compensate the phase history of the
data such that all of the signal samples add in phase. At this frequency Y(FD) =
A·M. The value of the noise component at the same frequency value will be .
The SNR is therefore  a processing gain of a factor of
Gsp = M compared to the SNR in the slow-time signal before the DTFT. The
same result applies for the DFT. Note that in the DFT case, the processing gain
is determined by M, the number of slow-time samples and not by K, the DFT
size. Computing a DFT larger than the number of time domain samples, K > M,
does not increase the processing gain.

Various issues can reduce Gsp. When a window is used with either a DTFT
or DFT, Gsp is decreased by the processing loss PL described earlier [Eq.
(5.80)]. In this case, the range equation signal processing gain due to Doppler
processing becomes Gsp = M/PL. When a DFT is used, Gsp is also reduced by
any straddle loss that may occur.

5.3.5   Matched Filter and Filterbank Interpretations of Pulse Doppler
Processing with the DFT

Equation (5.13) defined the coefficients of the matched Doppler filter. In MTI
filtering, it is assumed that the target Doppler shift is unknown. The resulting



signal model of Eq. (5.25) leads to the pulse canceller as a near-optimum MTI
filter for small order N. In contrast, DFT-based pulse Doppler processing
attempts to separate target signals based on their particular Doppler shift.
Assume that the signal is a pure complex sinusoid (ideal moving target) at a
Doppler shift of FD Hz. Based on Eq. (5.21), the model of the signal vector is
then

(5.85)
 
where the complex scalar A absorbs all constants. If the interference consists
only of white noise (no correlated clutter), SI reduces to  I. It follows that for
an arbitrary data vector y the output hTy of the matched filter becomes

(5.86)
 
This is the DTFT of y[m] to within the scale factor A. When FD = k/KT =
kPRF/K for some integer k, Eq. (5.86) is simply the K-point DFT of the data
sequence y[m] to within the scale factor A. Consequently, the DFT is a matched
filter to ideal constant radial velocity moving target signals, provided that the
Doppler shift equals one of the DFT sample frequencies and the interference is
white. This result is very closely related to the two-pulse canceller for a
specific target Doppler and noise interference only considered in Sec. 5.2.3.

Since the K-point DFT computes K different outputs from each input
vector, it effectively implements a bank of K matched filters at once, each tuned
to a different Doppler frequency. The frequency response shape of each matched
filter is just the asinc function. To see this, denote the impulse response vector
in Eq. (5.86) when FD = k/MT as hk. To within a scale factor

(5.87)
 
The corresponding discrete time frequency response Hk(ω) is

(5.88)



 
This summation evaluates to the asinc function of Eq. (5.74) shifted to a center
frequency of ω = –2πk/K, which is equivalent to ω = 2π (K – k)/K. The kth DFT
sample therefore corresponds to filtering the data with a bandpass filter having
a frequency response with an asinc function shape centered at the frequency of
the (K – k)th DFT sample.

If the data are windowed before processing with a window function w[m],
Eq. (5.86) becomes (again for FD = k/KT)

(5.89)
 
The impulse response vector and frequency response are then

(5.90)
 

(5.91)
 
The DFT still implements a bandpass filter centered at each DFT frequency but
the filter frequency response shape now becomes that of the window function.

The relation between the DFT and a bank of filters can be made more
explicit. Consider a slow-time signal y[m] obtained with a long series of pulses
and an M-point window function w[m]. The window function can be slid along
the data sequence to select a portion of the data for spectral analysis as shown
in Fig. 5.19. The DTFT of the resulting sequence w[m – p]y[p] is, in terms of
analog frequency F,



 FIGURE 5.19   Relationship between data sequence x[m] and M-point sliding
analysis window w[m].
 

(5.92)
 
Equation (5.92) shows that, aside from a phase factor, the DTFT at a particular
frequency is equivalent to the convolution of the input sequence and a modulated
window function, evaluated at time m. Furthermore, if W(F) is the discrete-time
Fourier transform of w[m] (converted to an analog frequency scale), the DTFT
of w[p]exp(+ j2π FDpT) is W(F + FD), which is simply the Fourier transform of
the window shifted so that it is centered at Doppler frequency –FD Hz. This
means that measuring the DTFT at a frequency FD is equivalent to passing the
signal through a bandpass filter centered at –FD and having a passband shape
equal to the Fourier transform of the window function. Since the DFT evaluates
the DTFT at K distinct frequencies at once, it follows that pulse Doppler
spectral analysis using the DFT is equivalent to passing the data through a bank
of bandpass filters.

Of course, it is possible to build a literal bank of bandpass filters, each one
perhaps individually designed, and some systems are constructed in this way.
For example, the zero-Doppler filter in the filterbank can be optimized to match
the expected clutter spectrum or even made adaptive to account for changing
clutter conditions. Most commonly, however, the DFT is used for Doppler
spectrum analysis. This places several restrictions on the effective filterbank
design. There will be K filters in the bank, where K is the DFT size; the filter



center frequencies will be equally spaced, equal to the DFT sample frequencies;
and all the passband filter frequency response shapes will be identical,
determined by the window used and differing only in center frequency. The
advantages to this approach are simplicity and speed with reasonable
flexibility. The FFT provides a computationally efficient implementation of the
filterbank: the number of filters can be changed by changing the DFT size; the
filter shape can be changed by choosing a different window; and the filter
optimizes the output SNR for targets coinciding with a DFT filter center
frequency in a noise-limited interference environment.

5.3.6   Fine Doppler Estimation
Peaks in the DFT output that are sufficiently above the noise level to cross an
appropriate detection threshold are interpreted as responses to moving targets,
i.e., as samples of the peak of an asinc component of the form of Eq. (5.74). As
has been emphasized, there is no guarantee that a DFT sample will fall exactly
on the asinc function peak. Consequently, the amplitude and frequency of the
DFT sample giving rise to a detection are only approximations to the actual
amplitude and frequency of the asinc peak. In particular, the estimated Doppler
frequency of the peak can be off by as much as one-half Doppler bin, equal to
PRF/2K Hz.

If the DFT size K is significantly larger than the slow-time data sequence
length M, several DFT samples will be taken on the asinc mainlobe and the
largest may well be a good estimate of the amplitude and frequency of the asinc
peak. Frequently, however, K = M and sometimes, with the use of data turning,
it is even true that K < M. In these cases, the Doppler samples are far apart and
a half-bin error may be intolerable. One way to improve the estimate of the true
Doppler frequency FD is to interpolate the DFT in the vicinity of the detected
peak.

The most obvious way to interpolate the DFT is to zero pad the data and
compute a larger DFT. In the absence of noise the interpolated values are exact.
However, this approach is computationally expensive and interpolates all of the
spectrum. If finer sampling is needed only over a small portion of the spectrum
around a detected peak the zero padding approach is inefficient.

Computing a larger DFT is tantamount to interpolation using an asinc
interpolation kernel. To see this, consider evaluating the DTFT at an arbitrary
value of ω using only the available DFT samples. This can be done by
computing the inverse DFT to recover the original time-domain data and then
computing the DTFT from those samples:



(5.93)
 
The term in braces is the interpolating kernel. It can be expressed in closed form
as

(5.94)
 
Combining these gives

(5.95)
 
Equations (5.94) and (5.95) can be used to compute the DTFT at any single
value of ω from the DFT samples. It can be applied to interpolate the values of
the DFT over localized regions with any desired sample spacing and the result
is exact in the absence of noise. However, it remains relatively computationally
expensive.

A simpler but very serviceable technique for interpolating local peaks is
illustrated in Fig. 5.20. For each detected peak in the magnitude of the DFT
output, a second-order polynomial is fit through that peak and the two adjacent
magnitude data samples. Once the polynomial coefficients are known, the
amplitude and frequency of its peak are easily found by differentiating the
formula for the polynomial and setting the result to zero. It can be shown that the
second-order polynomial passing through the three samples can be expressed as



 FIGURE 5.20   Refining the estimated target amplitude and Doppler shift by
quadratic interpolation around the DFT peak.
 

(5.96)
 
where Δk is the location of the interpolated peak relative to the index k0 of the
apparent peak so that the estimated peak location becomes k′ = k0 + Δk (see Fig.
5.20). Differentiating this equation with respect to Δk, setting the result to zero,
and solving for Δk gives the estimated location of the polynomial peak relative
to k0 as

(5.97)
 

The amplitude of the estimated peak A′ = |Y [k0 + Δk]| is found by
computing Δk and then using that result in Eq. (5.96). Note that the formula for
Δk behaves in intuitively satisfying ways. If the first and third DFT magnitude
samples are equal, Δk = 0; the middle sample is the estimated peak. If the
second and third samples are equal, Δk = 1/2, indicating the estimated peak is
halfway between the two samples; a similar result applies if the first and second
DFT magnitude samples are equal.

This interpolation technique is less effective when the width of the
presumed mainlobe response that is to be interpolated is so narrow that the
apparent peak and its two neighbors are not on the same lobe of the response.



This occurs when the spectrum is sampled at the Nyquist rate in Doppler, K =
M; no window is applied to the data; and the data frequency does not happen to
fall on a DFT frequency sample (the very situation in which interpolation is
most needed). Figure 5.21a illustrates this case. The data are M = 20 samples of
a 1.35-kHz complex sinusoid sampled at 5 kHz. The spectrum was computed
using a K = 20 point DFT. Without interpolation, the largest DFT magnitude
sample has a value of 15.15. This apparent peak amplitude is in error by 24.3
percent from the true DTFT peak value of 20. The DFT samples occur every
5000/20 = 250 Hz, so the apparent peak occurs at a frequency of 1500 Hz, an
error of 150 Hz.



 FIGURE 5.21   Ideal Doppler spectrum due to a moving target, sampled at the
Nyquist rate: (a) no window, (b) Hamming window.
 

If the interpolation procedure is applied to these data, poor results will be
achieved because the assumption that the three points are on a quadratic curve
segment is not valid. For these particular data, the interpolation technique will
estimate the true frequency and amplitude of the spectral peak as 1295.4 Hz and
15.41, respectively. The amplitude estimate is improved only slightly, to a 23
percent error. The frequency error is reduced significantly, to 54.6 Hz, but is



still large.
This problem can be avoided by ensuring that the sample set is dense

enough to guarantee that the three samples are all on the mainlobe. One way to
do this is to oversample in Doppler, i.e., choose K > M. Another is to window
the data. For most common windows, the expansion of the mainlobe that results
is sufficient to guarantee that the apparent peak samples and its two neighbors
fall on the same lobe, so that the basic assumption of a quadratic segment is
more valid. Figure 5.21b illustrates this effect by applying a Hamming window
to the same data used for Fig. 5.21a and again applying a 20-point DFT. Note
that the peak DTFT amplitude is now 10.34 due to the effect of the Hamming
window. Applying quadratic interpolation to this spectrum gives an estimated
spectral peak frequency and amplitude of 1336.6 Hz and 9.676, respectively,
errors of 6.4 percent in amplitude and 13.4 Hz in frequency. A hybrid technique
can be defined that combines attributes of the quadratic interpolation and the
more exact asinc interpolation. The parabolic method is used to identify the
frequency of the peak, and then Eq. (5.95) is used to estimate the amplitude.
This approach improves amplitude accuracy while avoiding the need to
compute Eq. (5.95) more than once.

Figure 5.22 illustrates the frequency estimation performance of the
quadratic interpolator both with and without Hamming windowing on a
sinusoidal data sequence of length M = 30. Part a of the figure illustrates the
minimally sampled case K = M. The interpolated frequency estimates are best
when the actual frequency is either very close to a sample frequency or exactly
half way between two sample frequencies. If no window is used, the worst case
error of 0.23 bins occurs when the actual frequency is 0.35 bins away from a
sample frequency. A Hamming window reduces this maximum error to 0.067
bins at an offset of 0.31 bins. Figure 5.22b shows the performance when the
spectrum sampling density is slightly more than doubled to K = 64. The
maximum frequency estimation error is only 0.022 bins without the window and
0.014 bins with the Hamming window.



 FIGURE 5.22   Noise-free frequency estimation performance of quadratic
interpolator M = 30. (a) Minimally sampled case (K = 30), (b) oversampled
case (K = 64).
 

Figure 5.23 shows the amplitude estimation performance for the same
cases. Figure 5.23a shows that the interpolator reduces the worst-case straddle
loss from 3.92 to 3.22 dB when no window is used, and from 1.68 to 0.82 dB



when a Hamming window is used. The worst-case amplitude error with the
oversampled spectrum using K = 64 is reduced to 0.17 dB without a window
and only 0.05 dB with the Hamming window.

 FIGURE 5.23   Noise-free amplitude estimation performance of quadratic
interpolator M = 30. (a) Minimally sampled case (K = 30), (b) oversampled
case (K = 64).



 

Many other interpolation-based estimators have been proposed for the
DFT; several are described in Jacobsen and Kootsookos (2007) and MacLeod
(1998). They include versions of Eqs. (5.96) and (5.97) that use the complex
DFT data Y[k] instead of its magnitude and achieve significantly better
frequency estimation accuracy in noise-free data, as well as adjustments to the
weighting coefficients in either the complex or magnitude version which
improve accuracy when a window is used on the data. Another family of
interpolators uses the apparent peak and the larger of its two neighbors to
compute Δk as

(5.98)
 
where Y[k±] is the larger of Y[k0 – 1] and Y[k0 + 1]. While this estimator uses
only two DFT values explicitly, it implicitly uses three since two must be
examined to determine which is Y[k± ]. Complex and magnitude-only versions of
this estimator also exist. Its frequency estimation performance is surprisingly
good in the absence of noise.

These interpolation techniques are not limited to Doppler frequency
estimation only. The same issues of sampling density and straddle loss arise at
the output of the matched filter in fast time, for instance, and the same
interpolation techniques can be applied to improve the range estimates. The
application to time delay (range) estimation, along with simulation results for
this and alternative techniques, is discussed in Chap. 7.

The above results are all for noise-free data, an unrealistic assumption.
Estimation accuracy and the effect of interpolation algorithms will be revisited
more formally in Chap. 7. It will be seen there the two-point interpolator is of
little value in the presence of noise, but that the quadratic interpolator is still
effective at high SNR. Other effects unrelated to interpolation dominate the
estimation precision at mid to low SNRs.

5.3.7   Modern Spectral Estimation in Pulse Doppler Processing
So far, the DFT has been used exclusively to compute the spectral estimates
needed for pulse Doppler processing. Other spectral estimators can be used.
One that has been applied to radar is the autoregressive (AR) model, which
models the actual spectrum Y(ω) of the slow-time signal with a spectrum of the
form



(5.99)
 
The algorithm finds the set of model coefficients {ap} that optimally fits Ŷ(ω) to
Y(ω) for a given model order P. These coefficients are found by solving a set of
normal equations (Hayes, 1996) derived from the autocorrelation of the slow-
time data y[m]; the actual spectrum Y(ω) is not needed. The {ap} are then used
to compute an estimated spectrum according to Eq. (5.99), which can be
analyzed for target detection, pulse pair processing, or other functions.

Modeling the spectrum as shown in Eq. (5.99) is equivalent to modeling
the slow-time signal y[m] as the impulse response of an IIR filter with frequency
response . The inverse filter is an FIR filter with impulse
response coefficients h[m] = am and a0 = 1. If y[m] is passed through this filter
the output spectrum will be approximately constant provided that the actual
signal spectrum is accurately modeled by Eq. (5.99). It follows that if the {ap}
are chosen such that |Ŷ(ω)|2 is a good model of the power spectrum of random
process data such as noise and clutter, then passing that data through the inverse
filter will produce a new random process with an approximately flat power
spectrum. Thus, the FIR filter designed from the model coefficients whitens the
signal, removing any correlated signal components such as clutter.

Figure 5.24 illustrates the application of AR spectral estimation to design a
clutter filter to enhance detection of windshear from an airborne radar (Keel,
1989). Part a shows the Fourier spectrum of the slow-time data from one range
bin. Two peaks are evident above the noise floor. The one at zero velocity is
ground clutter. The smaller peak at approximately 8 m/s is due to windblown
rain. The middle plot shows the frequency response of an optimal clutter filter
implemented from the {ap}. The third plot shows the Fourier spectrum of the
slow-time data after processing with the clutter filter. The ground clutter has
been significantly suppressed and the weather echo is now the dominant spectral
feature.



 FIGURE 5.24   Clutter suppression and windshear detection using an
autoregressive Doppler spectrum estimate: (a) Fourier spectrum of raw data,
(b) frequency response of clutter suppression filter derived from the AR
coefficients, (c) Fourier spectrum of filtered data. (Figure courtesy of Dr. Byron
M. Keel, GTRI.)
 

5.3.8   CPI-to-CPI Stagger and Blind Zone Maps
Pulse Doppler processing sometimes is combined with pulse cancellers. In this
case, the applicability of the concept of blind speeds is clear. If a pulse
canceller is not used, there is no highpass filter and therefore a target whose
Doppler shift equals an integer multiple of the PRF will not be filtered out as in
MTI processing. However, the target energy will be indistinguishable from
clutter energy since it will alias to the DC portion of the spectrum and combine
with the clutter energy. Targets having Doppler shifts equal to a multiple of the
PRF will still go undetected, so the corresponding target velocities are still
blind speeds.

In CPI-to-CPI PRF stagger, a coherent processing interval of M pulses is
transmitted at a fixed PRF. A second CPI is then transmitted at a different fixed
PRF. Because the blind speeds are different for each PRF used, a target that
falls in a blind speed of one PRF may be visible in the others. This concept is
illustrated in Fig. 5.25, which shows a notional Doppler spectrum for two
different PRFs. The plots are shown on the same frequency scale. First consider
the upper spectrum plot, which corresponds to data collected at PRF1. A target
whose Doppler equals PRF1 will be aliased to zero Doppler shift, where it will
be undetectable if clutter is present. If the same target scenario is measured with
a lower pulse repetition frequency PRF2 as shown in the lower half of the
figure, the Doppler shift of the target no longer matches the PRF. The target
energy aliases to a nonzero Doppler where it does not compete with the clutter
and is still detectable.



 FIGURE 5.25   The use of two PRFs to avoid blind speeds in pulse Doppler
radar. The target Doppler shift equals the PRF in the upper sketch, but not in the
lower sketch.
 

In some systems, as many as eight PRFs may be used. The first velocity that
is blind at all of the PRFs is the LCM of the individual blind speeds, which will
usually be much higher than any one of them alone. Target detections are
typically accepted and passed to subsequent processing only if they occur in
some minimum fraction of the PRFs used, for example two out of two or three
out of eight PRFs.

The advantages of a CPI-to-CPI stagger system are that range-aliased
clutter can be canceled within each CPI using coherent MTI and that the radar
system stability, particularly in the transmitter, is not as critical as with a pulse-
to-pulse stagger system (Schleher, 1991). The disadvantages are that the overall
velocity response may not be very good and that the transmission of multiple
CPIs consumes large amounts of the radar timeline and energy.

This discussion shows that for a given PRF there are periodic blind zones
in Doppler spaced by the PRF. A target whose Doppler shift is such that it
either is in the clutter region or aliases to the clutter region is unlikely to be
detected. Equivalently, if the target falls into a clutter region caused by the
periodically repeated clutter spectrum will likely go undetected. The idea is
illustrated in Fig. 5.26a, which indicates clutter at zero Doppler and its first two
periodic repetitions at ±PRF Hz. The target shown just above PRF Hz but still
within the clutter region is considered to be in the blind zone centered at FD =
PRF Hz.



 FIGURE 5.26   Blind zones in Doppler and range: (a) blind zones in Doppler due
to the periodic repetition of the mainlobe clutter spectrum, (b) blind zones in
range due to pulse transmission and near-in clutter in a monostatic radar. Partial
eclipsing of two of the three target echoes is also shown.
 

Recall that there are also blind zones in range or fast time in a monostatic
radar as discussed in Sec. 3.1.3. The range blind zones due to pulse eclipsing
are deliberately extended in some systems by keeping the receiver disconnected
from the antenna for an additional period of time beyond the pulse length. The
purpose is to avoid saturating the receiver with very strong near-in clutter
returns, such as those from the altitude line. Figure 5.26b illustrates range blind
zones and eclipsing. Pulses of duration τ are transmitted every T seconds as
shown in the upper line. The middle line shows three target echoes after each
pulse and strong near-in clutter returns. The bottom line shows that the receiver
will be off during the time of transmission of the pulse and of reception of the



near-in clutter echoes. These “off” periods represent the blind zones in range. In
this example, the first target is close enough to the radar that its echo is 50
percent eclipsed because it arrives during the near-in clutter interval. The third
echo is also 50 percent eclipsed because the target is far enough away that a
portion of the echo is received during transmission of the next pulse. The middle
echo is not eclipsed.

Blind zones in range and Doppler collectively combine to form a two-
dimensional blind zone map as shown in Fig. 5.27. Targets that fall within a
range blind zone are undetectable no matter what their Doppler shift. Targets
that fall within a Doppler blind zone are undetectable at any range. The spacing
of the blind zones in both dimensions is determined by the PRF of the radar. If
the PRF is increased, the Doppler blind zones spread further apart but the range
blind zones contract to become closer together. This observation leads to the
idea of using CPI-to-CPI stagger in combination with an “M out of N” detection
logic to maximize the combinations of range and Doppler shift at which targets
can be detected.



 FIGURE 5.27   Blind zone map for one PRF formed by combined blind zones in
Doppler and range.
 

Figure 5.28 shows blind zone maps for a 10-GHz radar having a 10-μs
pulse length and using two PRIs, 100 μs and 120 μs, on successive CPIs. The
range blind zones are not lengthened for near-in clutter. The clutter velocity
spread is assumed to be ±20 m/s. The velocity axis is shown only for positive
velocity; the negative portion of the axis would be its mirror image. Both maps
are shown to the same scale in range and velocity. Notice that the first range
blind zone and the zero-velocity blind zone are the same for any PRF and so
always overlap in all PRFs used. This is not true for their repetitions in range
and Doppler due to the change in periodicity when the PRF is changed. For
example, a target at a velocity of 300 m/s and range of 30 km is blind in both
range and velocity at the 100-μs PRI but is not in a blind zone at the 120-μs PRI.



 FIGURE 5.28   Blind zone maps for two different PRIs. The maps are drawn to
the same velocity and range scales. Left: PRI = 100 μs. Right: PRI = 120 μs.
 

The left image of Fig. 5.29 results from overlaying the two blind zone maps
i n Fig. 5.28 on common intervals in range and velocity. Range-velocity
coordinates that are in the blind zone at both PRFs are shown as black; those in
only one of the two blind zones are shown in gray; and those in the clear on both
PRFs are shown in white. For example, the target at 300 m/s and 30 km
mentioned above falls in the gray area, suggesting that a radar collecting a CPI
of data at each of these two PRIs would detect the target on only one of them
(120 μs). The image on the right is the blind zone map that would result from the
use of these two PRIs and a “1 of 2” detection logic. This means that a detection
at particular range-velocity coordinates is accepted as being a true target if it is
detected on at least one of the CPIs; detection on both is not required. With this
logic, a target at any range-velocity pair in the white or gray area of the left
figure would be expected to be detectable (assuming adequate SIR). Only the
coordinate pairs in the black area of the left image would be considered blind,
leading to the blind zone map shown on the right.



 FIGURE 5.29   Blind zones using two PRIs and a “1 of 2” detection rule. Left:
Overlay of the two blind zone maps of Fig. 5.28. Right: Resulting blind zone
map using “1 of 2” detection logic.
 

A problem with a “1 of N” rule is that a single false alarm would be
accepted as a target. A more conservative “2 of 2” rule would mean a target
was detectable only if it was in the clear on both PRIs. The effective blind zone
map would be black in all of the black and gray regions of the left image in Fig.
5.29, with the result that very few combinations of range and velocity would
correspond to detectable targets. Thus, there is a tradeoff between the range-
velocity coverage area in which targets are detectable and the immunity to false
alarms and other error sources. Using values of N larger than two offers more
compromise options and better results. Figure 5.30 shows an exceptionally good
blind zone map for a system using eight PRFs with a “3 of 8” detection rule. The
radar operates at 10 GHz with a 1-μs pulse length, blanking of 10 near-in clutter
cells, a ±17 m/s mainlobe clutter spread, and a 10-ms CPI. An evolutionary
algorithm was used to select PRIs that maximized the detectable region within
the range and velocity limits shown; the result was the set {51, 53, 60, 63, 67,
84, 89, 93} μs (Davis and Hughes, 2002). Nearly all of the range-velocity space
shown is in the clear except for the first range and Doppler blind zones. “M of
N” detection logic is discussed further in Chap. 6.



 FIGURE 5.30   “3 of 8” blind zone map obtained using evolutionary algorithms
to select the PRIs. See text for details.
 

5.4   Pulse Pair Processing
Pulse pair processing (PPP) is a form of Doppler processing common in
meteorological radar. Unlike the MTI and pulse Doppler techniques discussed
so far in this chapter, the goal of pulse pair processing is not clutter suppression
to enable the detection of moving targets. In PPP it is assumed that the spectrum
of the slow-time data consists of noise and a single Doppler peak, generally not
located at zero Doppler (though it could be), that is due to echo from moving
weather events such as wind-blown rain or other particulates. The goal of PPP
is to estimate the parameters of that spectral peak. These are then used as the
input to higher-level algorithms for estimating precipitation types and rates,
forecasting severe weather, and so forth in both ground-based and airborne
weather radars. In airborne radars, it is also one of the techniques used for
windshear detection.

Pulse pair processing assumes the radar is looking generally upward if it is
ground-based, or forward if it is airborne. Consequently, it is assumed that
ground clutter competing with the weather signatures is small or negligible, or
has been removed by MTI filtering. The notional Doppler spectrum Sy(F)
assumed by PPP is shown in Fig. 5.31. It consists only of white noise and a
single spectral peak due to backscatter from weather-related phenomena



 FIGURE 5.31   Notional slow-time power spectrum assumed in pulse pair
processing.
 

(5.100)
 
The weather peak Sw(F) is often assumed to be approximately Gaussian shaped
and is characterized by its amplitude, mean, and standard deviation. The total
area of the Sw(F) power spectrum component equals the power of the
meteorological echo. PPP is used to estimate the power, mean Doppler shift F0,
and variance  (commonly called the spectral width) of the weather
component. Each of these can be estimated using either time- or frequency-
domain algorithms, all of which are included under the PPP rubric.

Consider time-domain measurements first. The autocorrelation and power
spectrum of the slow-time data sequence y[m], m = 0, …, M – 1 obtained from
M pulses sampled at a particular range bin are

(5.101)
 

(5.102)
 
The power in the slow-time signal can be estimated in the time domain from the
peak of the autocorrelation function

(5.103)
 

To see how to estimate the mean frequency, ignore the noise for the
moment and assume that the signal component is a pure sinusoid; the power



spectrum of a finite segment would then be an asinc function squared. Now
compute the first autocorrelation lag

(5.104)
 
The argument of the exponential, –2π F0T, is simply the negative of the amount
of phase rotation in one sample period for a sampled sinusoid of original analog
frequency F0 Hz. The frequency can be estimated from Eq. (5.104) as

(5.105)
 
Multiplying  by λ/2 converts the result into units of velocity. Although derived
for the pure sinusoid, this time-domain PPP frequency estimator works well for
more general signals provided there is a single dominant frequency component
with adequate SNR. The frequency estimate will be aliased if the Doppler
frequency is outside the interval ±PRF/2.

Since the complex exponential inside the summation in Eq. (5.104) does
not depend on m and so could be brought out of the sum, it is not necessary to
compute the full autocorrelation lag sy[1]; it would suffice to simply compute
y[m]y*[m + 1] using only two slow-time samples. In reality, noise is present in
all of the samples and using all M available samples in the full summation
averages the noise and improves the estimate quality.

To obtain a time-domain estimate of , assume that the Doppler power
spectrum exhibits a Gaussian shape with standard deviation σF. The estimate of
F0 can be used to remove the mean Doppler component, giving a modified
sequence y′[m] with its Doppler spectrum centered at zero frequency. It is
convenient to start with the continuous-time equivalent y′(t) . Sy′(F) will be a
zero-mean Gaussian function

(5.106)
 



It follows that the continuous-time autocorrelation function is also Gaussian

(5.107)
 
where the variable z represents the autocorrelation lag. If the sampling interval
T is chosen sufficiently small to guarantee that Sy′ (1/2T) ≈ 0, the discrete time
spectrum and autocorrelation will also form a Gaussian pair to a very good
approximation (Richards, 2006). The sampled autocorrelation function will be

(5.108)
 
and the corresponding DTFT, still in units of hertz, is

(5.109)
 

Because sy′[0] = |A|2, the first autocorrelation lag can be written

(5.110)
 
Equation (5.110) is easily solved to give an estimate for the spectrum standard
deviation in terms of only sy′ [0] and sy′ [1]

(5.111)
 
Equations (5.103), (5.105), and (5.111) are the time-domain pulse pair
processing estimators. They can be computed from only two autocorrelation
lags of the slow-time data in each range bin.

Equation (5.111)  is sometimes simplified to avoid the natural logarithm
calculation. Consider the following series expansion and approximation of ln(x)

(5.112)
 



Applying Eq. (5.112) to Eq. (5.111)  gives the simplified spectral width
estimator

(5.113)
 

The basic PPP measurements of signal power, frequency, and spectral
width can also be performed in the frequency domain. The power is obtained by
applying Parseval’s theorem to Eq. (5.103)

(5.114)
 
A practical calculation uses the DFT version of Parseval’s theorem with the
DFT Y [k] of y[m]

(5.115)
 

There are two frequency-based methods for estimating the mean frequency
of the signal. The first is a direct analog to Eq. (5.105)

(5.116)
 
The integrand in Eq. (5.116) is real except for the ejω term. Noting that for a
complex number z, arg{z} = atan{Im(z)/Re(z)}, Eq. (5.116) gives the estimator

(5.117)
 
In practice, the DFT version is used:



(5.118)
 

The other frequency-domain mean frequency and spectral width estimators
result from viewing the signal spectrum of Fig. 5.31 as a probability density
function. A valid PDF must be real and nonnegative, a condition met by the
power spectrum. However, a PDF must also have unit area, so the power
spectrum must be normalized to ensure this is the case. By Parseval’s theorem,
the integral of |Y(ω)|2 = 2πEy, where Ey is the energy in y[m]; this is the required
normalization factor. For any arbitrary PDF pz(z) the mean and variance are
given by

(5.119)
 
Applying the first of these definitions to the power spectrum gives an alternative
mean frequency estimator

(5.120)
 
Similarly, an estimator of the spectral width is

(5.121)
 

Generally, the time-domain estimators are preferred if the SNR is low or
the spectral width is very narrow (Doviak and Zrni , 1993). In the latter case,
the signal is closer to the pure sinusoid assumption that motivated the time-
domain estimator. In addition, the time-domain methods are more
computationally efficient because no Fourier transform calculations are
required. Conversely, the frequency-domain estimators tend to provide better
estimators at high SNR and large spectral widths. The frequency domain



estimator also allows reduction of the noise before the estimates are calculated,
reducing the estimate bias. This process, called spectral subtraction, is
depicted in Fig. 5.32. The noise power spectrum N(ω) is estimated from a
presumed clear region of the spectrum and then simply subtracted off to form a
reduced-noise power spectrum

 FIGURE 5.32   Spectral subtraction.
 

(5.122)
 
Because of the statistical variations of any given data set, it is possible that 
may have some negative values; these are usually set to zero.

Figure 5.33 shows two images from the KFFC WSR-88D NEXRAD
weather radar located in Peachtree City, Georgia, just south of Atlanta and
operated by the U.S. National Weather Service. The images were collected on
March 19, 1996 and show a heavy storm in the area. While these images are
much more easily viewed in color than in grayscale, some features are visible.
The image on the left is a map of the power estimate, proportional to the volume
reflectivity η. Lighter grays represent areas of heavier rainfall. The image on the
right is a map of the radial velocity measured by the radar and thus of the wind
speed. The large area on the left and top-left of the image with the circular inner
boundary represents a range-aliased region where reliable velocity estimates
are not available. The radar itself is at the center of the circle having this
boundary. Inside that radius, the black area at the top represents a high velocity
toward the radar, while the dark gray area inside the circular contour and to the
left and bottom of the image represents high wind speeds away from the radar.
Thus, the wind is blowing from the top to the bottom in this image. The various
square and round markers in the power and velocity images are created by the
analysis software and flag various features in the storm.



 FIGURE 5.33   Sample weather radar images obtained with pulse pair
processing: (a) power image, (b) velocity image. (Images courtesy of National
Severe Storms Laboratory.)
 

5.5   Additional Doppler Processing Issues

5.5.1   Combined MTI and Pulse Doppler Processing
It is not unusual to have both MTI filtering for gross clutter removal and pulse
Doppler spectrum analysis for detailed examination of the Doppler spectrum.
Since both operations are linear, the order in which they are applied would
appear to make no difference to the final Doppler spectrum used for detection.
However, differences in signal dynamic range can make their order significant
in considering hardware effects when finite-wordlength hardware is used.

Clutter is usually the strongest component of the signal; it can be several
tens of decibels above the target signals of interest. If the DFT of the slow-time
signal is computed prior to MTI filtering, the sidelobes of the response from the
clutter around DC may swamp potential target responses at near-in velocities,
masking these targets from possible detection. If the processor dynamic range is
limited as well, the effect of the strong clutter signal on processor automatic
gain control may drive the target signal amplitude below the minimum
detectable signal of the processor, effectively filtering out the target.

For these reasons, the MTI filter is generally placed first if both processes
are used. The MTI filter will attenuate the clutter component selectively so that



the target signals become the dominant components. Subsequent finite
wordlength processing will adapt the dynamic range to the targets rather than the
now-suppressed clutter. In the increasingly common floating point processors,
dynamic range is less of an issue.

5.5.2   Transient Effects
All of the discussion in this chapter has assumed a steady-state scenario in the
sense that the clutter spectrum is stationary and that filter transient effects have
been ignored. In range-ambiguous medium and high PRF modes the received
signal sample in each range bin contains contributions from multiple ranges
because of the multiple contributing pulses. Whenever the radar PRF changes
several pulses, known as clutter fill pulses, they must be transmitted before a
steady-state situation is achieved. Here “steady state” means that the physical
clutter intervals contributing to a given range bin are the same for each pulse so
that the clutter statistics can be expected to be stationary from one pulse to the
next. For example, suppose that in steady state each range gate contains
significant contributions from L = 4 pulses (four range ambiguities). Then the
clutter signature in each range bin will reach a steady-state condition only for
the fourth and subsequent pulses in a CPI. This issue was first discussed in
Chap. 4.

Steady-state operation of the digital filters used for MTI processing occurs
when the output value depends only on actual data input values rather than any
initial (typically zero-valued) samples used to initialize the processing. For FIR
filters of length N, the first and last N – 1 samples of the complete convolution
are transient in the sense that the filter impulse response does not fully overlap
the finite data sequence. These transient output samples are often discarded.

These two effects are independent. To see how many pulses are needed in
total to obtain an M-point non-transient, steady-state sequence yss[m], consider
Fig. 5.34. Assume P total pulses are transmitted. This sketch assumes L = 4
range ambiguities and a three pulse canceller (N = 3) MTI filter, but is labeled
for general L and N. The notional data sequence y[m] is shown as ramping up in
amplitude over the first L samples. While actual data would vary unpredictably
depending on the clutter scenario, this represents the increasing number of range
ambiguities present in each sample, stabilizing at four when m = 3 (the fourth
sample). Recall that the convolution of h and y is given by yss[n] = Σ y[m]h[n –
m]. The three-sample sequence in the figure represents the three-pulse canceller
filter coefficients h[n – m]. (The actual coefficient values would be {+1, –2,
+1}). It can be seen from the figure that in general the first value of n for which
the filter coefficients will overlap only with steady-state measured data occurs
when L – 1 = n – N + 1, i.e. n = L + N – 2 (n = 5 in this example). The last value
for which this is true occurs when n = P – 1. The number of output samples in
this interval is M = (P – 1) – (L + N – 2) + 1. Therefore, P = M + L + N – 2
pulses are needed to obtain M valid outputs for further processing.



 FIGURE 5.34   Determination of the relationship between number of range
ambiguities L, MTI filter length N, and number of steady-state slow-time
samples P needed to obtain M non-transient steady-state samples.
 

For example, suppose 20 valid stationary pulses are needed for the pulse
Doppler DFT. Also suppose a three-pulse canceller (N = 3) is used and the
unambiguous range and radar sensitivity are such that L = 4 range ambiguities
are present in the measured data. Then the CPI should collect 25 pulses of data,
discard the first five outputs of the MTI filter (three for the range ambiguity
buildup and two for the filter transient) and pass only the last 20 outputs to the
pulse Doppler DFT or other processing. Additional pulses may be used to set
the automatic gain control of the receiver and are also not used for Doppler
processing.

5.5.3   PRF Regimes
As was seen in Chap. 4, measurements made with a pulse burst waveform can
be ambiguous in range, Doppler, or both. Pulse Doppler radars in particular
frequently operate in scenarios that are ambiguous in one or both of the range
and Doppler dimensions. Modern airborne pulse Doppler radars operate in a
dizzying variety of modes having various range and Doppler span and resolution
requirements. Pulse burst waveforms using a variety of constituent pulses,
including simple pulses, LFM, and Barker phase codes at a minimum, are
common. To meet the various mode requirements, PRFs ranging from several
hundred hertz to 100 kHz or more are used.

Pulse Doppler radar operation is commonly divided into three PRF
regimes according to their ambiguity characteristics. Many radars operate in all
three regimes, depending on the requirements of the moment. The dividing lines
are not absolute, but depend on the mission requirements. Given an unambiguous
range Rua and unambiguous velocity vua of interest, where vua is one-half the
blind speed vb, the radar is considered to be in a low PRF mode if the PRF is
sufficiently low to be unambiguous in range over the interval of interest, but is
ambiguous in velocity, meaning targets of interest have velocities outside the
range ±vua. The high PRF mode is the opposite: the system is ambiguous in
range but not in velocity. In a medium PRF mode, the radar is ambiguous in
both. This tradeoff is summarized in Fig. 5.35. The line plots the achievable
combinations of Rua and vua at 10 GHz. Suppose the desired range and velocity



coverage are 60 km and 300 m/s (±150 m/s), respectively. The range limit might
be set by the expected maximum detection range of the radar, while the velocity
limit might be set by the maximum expected relative velocity of targets of
interest. The shaded area indicates a range of PRFs (in this case, 2.5 to 20 kHz)
that will result in ambiguities in both dimensions. PRFs below 2.5 kHz will be
ambiguous in Doppler but not in range; those from 2.5 to 20 kHz will be
ambiguous in both; and those above 20 kHz will be ambiguous in range but not
in Doppler.

 FIGURE 5.35   Low, medium, and high PRF regimes for a notional X-band radar.
 

The choice of PRF regime has major effects on the range-Doppler target
and clutter spectrum. Consider again the radar and clutter scenario associated
with Fig. 5.4 and suppose the maximum range and velocity intervals of interest
are 75 km and ±150 m/s. Now consider viewing the same scenario with low,
medium, and high PRFs of 2, 10, and 30 kHz, respectively. Table 5.3 lists the
unambiguous range, Doppler, and velocity intervals for each of these PRFs for
reference.



 TABLE 5.3   Unambiguous Range, Doppler, and Velocity Intervals for Selected
PRFs and a 10-GHz RF
 

Figure 5.36 compares the unaliased range-Doppler clutter spectrum of Fig.
5.4b to the aliased versions at each of these PRFs. In all cases the clutter echo
out to a range of 75 km has been included in the computation. Figure 5.36a
repeats the unaliased spectrum for convenient comparison. The MLC is centered
at 17.3 km and 93.4 m/s as noted earlier. The SLC spreads over ±134.1 m/s but
is mostly confined to ranges of 15 km or less.



 



 
FIGURE 5.36   Effect of low, medium, and high PRFs of Table 5.3 on the ground
clutter range-Doppler spectrum: (a) unaliased spectrum, (b) viewed with a 2-
kHz PRF, (c) viewed with a 10-kHz PRF, (d) viewed with a 30-kHz PRF. See
text for details.
 

Part b of the figure is the low PRF spectrum. The mainlobe clutter is



centered at its unambiguous range of 17.3 km, but the velocity has aliased from
its actual value of 93.4 m/s to an ambiguous velocity of 3.4 m/s (93.4 – 3 × 30).
The SLC is heavily aliased in velocity but fades with range so that most targets
do not compete with it. If MTI filtering is applied to suppress the MLC there
will be blind speeds every 30 m/s in the affected range bins.

Part c of the figure is the medium PRF case. The MLC is ambiguous in both
range and Doppler, having aliased to a range of 2.3 km (17.3 – 15) and a
velocity of –56.6 m/s (93.4 – 150). Notice that the MLC and its sidelobes now
wrap around in the range dimension and that the SLC wraps around in Doppler.
SLC is now present at essentially all ranges and Dopplers, though in varying
amounts and patterns in different range cells. The SLC also wraps in range but
this is less evident.

Part d of the figure is the high PRF case. The MLC again wraps to the
ambiguous range of 2.3 km (17.3 – 3 × 5) but is spread fairly uniformly
throughout the short 5 km unambiguous range. It is located at its unambiguous
velocity of 93.4 m/s. The narrow spread of the MLC in velocity allows it to be
filtered out with a relatively narrow MTI or other notch filter with little risk of
filtering out moving targets. The clutter out to 75 km has folded over 15 times to
“fit” into the 5 km unambiguous range at this PRF. There is now significant and
relatively constant SLC at all ranges, though the AL and other near-in clutter is
still visible beginning at just over 2 km. On the other hand, the radar is now
unambiguous in Doppler and the full SLC spread in velocity of ±134.1 m/s can
be seen. In addition, there is now a clear region in the Doppler spectrum for
velocities having a magnitude between 134.1 and 225 m/s that was not present
in the other figures, enabling noise-limited detection of targets at these high
relative velocities.

Table 5.4 summarizes the major strengths and weaknesses of low, medium,
and high PRF operation, especially from the viewpoint of an airborne radar.
Broadly speaking, low PRF modes are very effective for ranging, mapping, and
imaging modes, but poor at detection of moving targets due to the lack of a
sizable clear region. High PRF operation is complementary to low PRF
operation in both its strengths and weaknesses. High PRF modes are good for
detection of high-Doppler shift targets (e.g., rapidly closing aircraft or missiles)
in high clutter due to the large clear region, but poor at detection of low-
Doppler targets (slow-moving closing targets or opening targets) due to high
sidelobe clutter and little or no range gating capability. Medium PRF operation
is a compromise that retains most of the strengths of each without the inherited
weaknesses becoming too severe. In-depth discussion of the properties and
processing for all three regimes is given in Alabaster (2012), Morris and
Harkness (1996), and Stimson (1998).



 TABLE 5.4   Partial List of Advantages and Disadvantages of PRF Regimes for
Airborne Radar
 

For a given PRF regime, the problem of picking the particular PRFs to be
used remains. Two commonly cited approaches are the “major-minor method”
and the “M-of-N method.” The major-minor method begins by picking at least
two and more likely three “major” PRFs in the regime of interest. The PRFs are
separated by at least the MLC Doppler width ßMLC to guarantee that the first
repetitions of the mainlobe clutter portion of the Doppler spectrum at each PRF
do not overlap, thus making detection presumably possible on at least one of the
PRFs for targets outside of the zero-Doppler clutter region. For each major
PRF, two “minor” PRFs are then selected for use in range ambiguity resolution.
This technique results in sets of six or nine PRFs in total.

The M-of-N method decides how many total PRFs will be used (often eight
in airborne radar) and on how many a detection will be required (usually three).
Any three PRFs on which a detection is observed can be used for range
ambiguity resolution. A variety of techniques have been used to search for sets
that result in good blind zone maps within bounds on the maximum and minimum
PRF; Fig. 5.30 was a particularly good example. A typical ad hoc approach
begins by choosing PRFs that are stepped by at least βMLC/(N – M) Hz. This
choice ensures that the first Doppler blind zones for each PRF do not overlap
for more than N – M PRFs, meaning that any target Doppler shift in that vicinity
will be in the clear on at least M PRFs.

There are some constraints that must be satisfied by the PRFs in either
method. The minimum desired percentage of the Doppler spectrum that is



outside the MLC region sets a minimum PRF. The maximum allowable duty
cycle of the radar transmitter and the pulse length (derived from the required
range resolution when a simple pulse is used) establish a maximum PRF.
Candidate PRFs are often adjusted so that there are an integer number of range
bins within the unambiguous range for each PRI; this eases ambiguity resolution.
In addition to these practical considerations, the set of PRFs used for
disambiguating range and velocity have to satisfy the “decodability constraints.”

(5.123)
 
where Rua and FDb are the maximum range and Doppler shift coverage of
interest. These constraints ensure that the ambiguity resolution algorithms
discussed next can provide a unique solution within that coverage area.
Additional constraints for robust operation include decodability and blindness
“margins” in range and Doppler and minimum transmit time. Generally, the best
PRF sets are obtained using advanced constrained search techniques rather than
the simpler major-minor or M-of-N methods.

Extensive discussion of PRF selection considerations and examples with
an emphasis on airborne multimode radars is given in Alabaster (2012). PRF
selection may be less complex in radars with less varied missions and less
complicated environments. For example, weather radars typically map weather
conditions in their surrounding region using fewer and less complex PRF sets. In
weather radar, volume clutter is the target of interest. Ground clutter is minimal
because the system is not generally down-looking (although airborne weather
radars may be). Weather radars typically require relatively long unambiguous
ranges and therefore low PRFs to provide adequate area coverage. The WSR-
88D radar used by the U.S. National Weather Service for long-range weather
observation uses PRFs of 322 Hz to 1282 Hz, giving unambiguous ranges of 466
to 117 km. The RF is approximately 3 GHz, so the corresponding unambiguous
velocity intervals are ±8 m/s (about ±18 mph) and ±32 m/s (about ±72 mph).
They are well short of the approximately ±100 mph velocity interval considered
adequate by meteorologists. Consequently, ambiguous windspeed measurements
are a common problem in weather radar. Because weather radars are interested
in continuous reflectivity fields (wind flows, storm cells, etc.) distributed in
three dimensions instead of discrete targets, they can also take advantage of
special ambiguity resolution methods that rely on continuity of the measured
velocities and other special features of the measured data; some of these
techniques are described in Doviak and Zrni  (1993). Another approach
combines pulse pair processing with two staggered PRFs to compute two
autocorrelation values that can be combined to extend the unambiguous range.



Another novel technique applies a pulse-to-pulse phase code similar to the
LFM-like P3 and P4 codes discussed in Chap 4. Correlating with specific
elements of the code on receive can emphasize a particular range foldover
region at the expense of the others. These two techniques are discussed in Zrni
(2008).

5.5.4   Ambiguity Resolution
Several techniques exist to resolve range and Doppler ambiguities when
multiple-PRF data is available. Consider range ambiguity resolution first. Once
a PRF is selected, it establishes an unambiguous range Rua = c/2PRF. A target at
an actual range Rt > Rua will be detected at an apparent range Ra that satisfies

(5.124)
 
for some integer k. Equivalently

(5.125)
 
where the notation ((·)) x denotes modulo x. Normalize the range measurements
to the range bin spacing ΔR, for example, na = Ra/ΔR; then

(5.126)
 
The basic approach to resolving range ambiguities relies on multiple PRFs.
Suppose that there are Ni range bins in the unambiguous range interval on PRF i;
thus, Ruai = Ni ΔR. Note that the unambiguous range is different for each PRF.
For simplicity, assume that the range bin spacing is the same in each PRF. Then

(5.127)
 
The set of equations in Eq. (5.127) is called a set of congruences.

The set of congruences can be solved using the Chinese remainder
theorem (CRT) (Trunk and Brockett, 1993). The CRT states that given a set of r
relatively prime integers N0, N1, … , Nr–1 and the set of congruences in Eq.
(5.127), there exists a unique solution (modulo N = N0N1 … Nr –1) for nt given
by the equations



(5.128)
 
To make the procedure clearer, consider the case of r = 3 PRFs. Then nt
satisfies

(5.129)
 
where

(5.130)
 
(for example, α1 = β 1N0N2) and the βi are the smallest integers such that

(5.131)
 

To illustrate the procedure, suppose that the true range of a target,
normalized to the range bin size, is nt = 19. Further suppose that the three PRFs
are chosen such that the number of range bins in the unambiguous range for each
PRF are N0 = 11, N1 = 12, and N2 = 13. On the first PRF the target will be
detected in the apparent range bin . Similarly,  and 

. From Eq. (5.131), β0 is the smallest integer that satisfies ((β0 × 12
× 13))11 = 1; that is, β0 satisfies β0 × 12 × 13 = 156β0 = 11k + 1 for some integer
k. The solution is β0 = 6. In the same manner it is found that β1 = 11 and β2 = 7.
Equation (5.130) then gives α0 = 6 × 12 × 13 = 936, α1 = 1573, and α2 = 924.
Finally, Eq. (5.129) gives the estimate of the true range bin as

(5.132)
 
which is the correct result.

A serious problem with the CRT is its extreme sensitivity to errors induced
by noise and range quantization. There is no guarantee that the actual range Rt
will be an integer multiple of the range bin spacing ΔR as assumed previously;
the target may in fact straddle range bins. In addition, noise in the measurements
may cause the target to be located in an incorrect range bin. To illustrate the
effect of such errors, repeat the previous example but suppose that  is for
some reason measured to be 7 instead of the correct value of 6. Carrying out the
previous calculations will give  instead of 19, a huge error.

A “robust CRT” that controls the maximum error is given in Li et al.



(2010). However, it is more useful to introduce the coincidence algorithm for
determining nt. This technique is essentially a graphical implementation of the
CRT (Hovanessian, 1976; Morris and Harkness, 1996). The method is best
illustrated with an example. Again presume that r = 3 PRFs are used. Suppose
that there are two targets with true ranges corresponding to range bins na = 6 and
nb = 11. Further suppose that PRFs are such that the number of range bins in
each unambiguous range interval are N0 = 7, N1 = 8, and N2 = 9. This means that
the first target is actually unambiguous at each PRF, while the second is
ambiguous at each PRF. The measured data will be

(5.133)
 
This measurement scenario is illustrated in Fig. 5.37.

 FIGURE 5.37   Notional measured data for illustrating coincidence algorithm for
range ambiguity resolution.
 

The graphical technique proceeds by taking the pattern of detections at
each PRF and replicating it as shown in Fig. 5.38. In essence, the replication
implements Eq. (5.126), placing a detection at each value of na + kN0 and nb +
kN0 within the maximum detection range of the radar. These detections represent
the plausible ranges for each target at each PRF. The algorithm then searches for
a range bin that exhibits a detection at all three PRFs, indicating that that range
bin is consistent with the measurements at all three PRFs. As shown in Fig.
5.38, this process correctly detects the true range bins na = 6 and nb = 11 in this
example.



 FIGURE 5.38   Coincidence detection of target ranges in replicated range data.
 

The graphical interpretation suggests various methods to reduce the
sensitivity of the CRT to measurement errors. In one approach, exact
coincidence is not required to declare a target. Instead, a tolerance NT is
established and a detection is declared if a detection occurs in all three PRFs at
some range bin nt ± NT. Depending on the range bin size and SNR, NT will
typically be only 1 or 2 range bins. A more sophisticated version of this basic
idea is described in Trunk and Kim (1994). Their method combines a systematic
approach to clustering plausible ranges from each PRF into candidate target
ranges with a maximum likelihood calculation to recognize multiple target
situations.

In the last example three PRFs proved sufficient to resolve two different
range-ambiguous targets. In general, N PRFs are required to successfully
disambiguate N – 1 targets. If the number of targets exceeds N – 1, ghosts can
appear (Morris and Harkness, 1996). Ghosts are false targets resulting from
false coincidences of range-ambiguous data from different targets. The problem
is illustrated in Fig. 5.39, which repeats the example of Fig. 5.38 using only two
of the previous three PRFs. While targets will still be detected at the correct
bins na = 6 and nb = 11, a third coincidence occurs between detections from
targets 1 and 2 at range bin nc = 20, representing an apparent third target. Unless
additional data such as tracking information is available, the signal processor
has no way of recognizing that the last coincidence is among detections from
different targets. Thus, the processor will declare the presence of three targets
in this example, the two correct targets and one “ghost.” Use of a third PRF as in
Fig. 5.38 eliminates this ghost. More extensive discussion of ghosting in range
and Doppler and of ghosting due to false alarms is given in Alabaster (2012).

 FIGURE 5.39   Formation of ghosts in range ambiguity resolution.
 

In a medium or high PRF mode the radar may also suffer velocity
ambiguities. This problem is identical to that of range ambiguities: given an



apparent Doppler shift Ft, the actual Doppler shift must be of the form Ft +
k·PRF for some integer k. Use of the DFT for spectral estimation results in
quantization of the Doppler spectrum into Doppler bins (equivalently, velocity
bins), analogous to range bins in the range dimension. The same techniques used
for range disambiguation can therefore be used to resolve velocity ambiguities
as well.

The coincidence algorithm can be readily extended to simultaneously
disambiguate detections in both range and Doppler. Other extensions to deal
with radar systems that do not use the same range resolution in each PRF
(typically so as to maintain constant duty cycle) or the same velocity resolution,
as well as references to other disambiguation algorithms are given in Alabaster
(2012). A newer approach using the emerging technique of sparse
reconstruction has been proposed in Shaban and Richards (2013). It also works
in range and Doppler simultaneously and appears tolerant of reasonable
numbers of missed detections due to blind zones or other causes, false alarms,
and other data inconsistencies.

5.6   Clutter Mapping and the Moving Target Detector

5.6.1   Clutter Mapping
All of the MTI and pulse Doppler processing discussed so far has been focused
on reducing the clutter power that interferes with the signature of a moving
target so as to improve the SIR and ultimately the probability of detection.
These techniques are not effective for targets with little or no Doppler shift, and
that therefore are not separable from the clutter based on Doppler shift. Clutter
mapping is a technique for detection of moving targets with zero or very low
Doppler shift. It is intended for maintaining detection of targets on crossing
paths, that is, passing orthogonal to the radar line of sight so that the radial
velocity is zero; such targets are discarded by MTI and pulse Doppler
processing. Clutter mapping can be effective if the target RCS is relatively large
and the competing clutter is relatively weak, a situation depicted in Fig. 5.40
that can arise for instance in a ground-based air surveillance radar. In that
situation the antenna is tilted upward so that mainlobe ground clutter is not
present to compete with the target echo (though weather clutter may be); the
clutter is primarily from the sidelobes.



 FIGURE 5.40   Pulse Doppler spectrum for a large RCS crossing target in weak
clutter.
 

The concept of clutter mapping is shown in Fig. 5.41, which presumes that
conventional pulse Doppler processing is applied to targets having Doppler
shifts sufficient to separate them from the ground clutter, i.e., those in the clear
region of the Doppler spectrum. The output of the zero-Doppler bin and others
in the clutter region is used to create a stored map of recent clutter echo power
for each range-azimuth cell in the radar’s search area. This map is updated
continuously to allow for clutter variations due to weather and other
environmental changes. On each scan, the received power in the clear region
Doppler bins is applied to a conventional threshold detector using a threshold
based on the noise that dominates the interference in those bins. Instead of being
discarded, the current received power in the clutter region Doppler bins for
each range-azimuth cell is applied to a separate detector using a threshold based
on the stored clutter power level for that cell. The clutter map procedure is a
form of constant false alarm rate (CFAR) detection but with the interference
power estimated by averaging in time instead of in space. The details of
threshold detection and CFAR are discussed in Chap. 6



 FIGURE 5.41   The concept of clutter mapping for detection of strong targets in
clutter.
 

Instead of using the zero-Doppler output of a pulse Doppler processor
(typically an FFT of the slow-time data), many clutter maps systems pass the I/Q
slow-time data through a separate “zero velocity filter” as shown in Fig. 5.42.
The zero velocity filter serves the opposite purpose of an MTI filter. It is a
lowpass design, the output of which consists only of ground clutter and crossing
target returns. The design of the zero-Doppler filter can be optimized for the
clutter environment at a specific radar site and can also be made adaptive to
clutter changes, for instance due to weather in the area.

 FIGURE 5.42   Zero-Doppler filter used to isolate low-Doppler targets and
ground clutter.
 

5.6.2   The Moving Target Detector
The moving target detector (MTD) is a term applied to the Doppler processing
system used in many airport surveillance radars. The MTD combines most of
the techniques discussed previously and others to achieve good overall moving



target detection performance. A block diagram of the original MTD is shown in
Fig. 5.43 (Nathanson, 1991). The upper channel begins with a standard three-
pulse canceller. The clutter-cancelled output is then applied to an 8-point FFT
for pulse Doppler analysis. Two PRFs are used in a CPI-to-CPI stagger to
extend the unambiguous velocity region. The “frequency domain weighting” is
an implementation of time-domain windowing of the data for Doppler sidelobe
control. Certain windows, including for example the Hamming, can be
efficiently implemented as a convolution in the frequency domain with a 3-point
kernel. The individual FFT samples are applied to a 16-range-bin cell-
averaging CFAR threshold detector (to be discussed in Chap. 6) with thresholds
selected separately for each frequency bin.

 FIGURE 5.43   Block diagram of a complete “moving target detector” system.
 

To provide some detection capability for crossing targets, the lower
channel uses a site-specific zero-velocity filter to isolate the echo from clutter
and low-Doppler targets. The output is again applied to a clutter map threshold
detector. The original MTD updated the clutter map using an 8-scan moving
average, corresponding to 32 seconds of data history (Skolnik, 2001).

The MTD design has progressed through several generations since the
implementation described here. Versions used in the ASR-9 and ASR-12 airport
surveillance radars are described respectively in Taylor and Brunins (1985)
and Cole et al (1998). Additional discussion of the design and performance of
the Doppler filterbank and zero-velocity filters is given in Shrader and Gregers-
Hansen (2008).

5.7   MTI for Moving Platforms: Adaptive Displaced
Phase Center Antenna Processing



5.7.1   The DPCA Concept
MTI filtering and pulse Doppler processing provide an effective way to detect
moving targets whose Doppler shift is in the clear region of the spectrum on at
least one PRF. Airborne targets can generally be detected in this manner.
However, slow-moving ground targets having actual Doppler shifts only slightly
higher than the ground clutter or less will appear within the clutter spectrum or
on its skirts at all PRFs and are therefore very difficult to detect. Recall that
platform motion can substantially spread the ground clutter spectrum as
described in Eq. (5.72). This spread of mainlobe clutter exacerbates the
problem, raising the minimum velocity at which slow-moving ground targets can
be detected. This phenomenon is illustrated in Fig. 5.44, which shows the
spreading of the mainlobe clutter by the platform motion after the change in
Doppler center frequency has been removed. Because of this spreading, clutter
energy may compete directly with relatively slow-moving targets (“slow
movers,” typically surface targets such as vehicles on land and ships on the
sea), making MTI processing less effective and detection difficult. Processing
techniques intended to detect such “slow movers” from moving platforms are
referred to as ground moving target indication  (GMTI) or surface moving
target indication (SMTI).

 FIGURE 5.44   Illustration of the effect of a moving radar platform on the
Doppler spectrum and the detection of “slow movers.” The change in Doppler
center frequency has been removed.
 

Displaced phase center antenna (DPCA) processing is a technique for
countering the platform-induced clutter spectral spreading. By minimizing the
clutter spectral width, DPCA improves the probability of detection for slow-
moving targets. It is a special case of the more general space-time adaptive
processing (STAP) introduced in Chap. 9. Heuristically, the basic concept is to
create the effect of a stationary antenna even though the platform is moving
forward by electronically moving the receive aperture backward during
operation, thus avoiding the clutter spreading. More specifically, DPCA
processing attempts to compensate for aircraft motion by using multiple receive
subapertures to create carefully controlled multiple virtual phase centers such
that data received on one subaperture have the same virtual phase center as the
data received on a different subaperture some time later. By properly



combining samples staggered by this delay time from the slow-time data streams
from the same range bin but different receive subapertures, effective MTI
cancellation can be achieved. References for basic DPCA are Skolnik (2001),
Shaw and McAulay (1983), Staudaher (1990), and Lightstone et al. (1991).

Figure 5.45 illustrates the concept using an electronic antenna that has two
subapertures. The entire antenna is used on transmission for maximum gain so
the phase center for transmission is the point T in the middle of the antenna.
Each half of the antenna has its own receiver so there are in effect two receive
apertures having respective phase centers R1 and R2 which are each dpc meters
from the transmit phase center. If the transmit phase center is located at position
x0 on the first pulse transmitted, the forward receive phase center is at x0 + dpc
and the aft receive phase center is at x0 – dpc, a separation of 2dpc. The effective
phase center for a complete transmit-receive path is approximately halfway
between the transmit and receive phase centers. Thus, for the common full-array
transmit apertures and the two receive apertures the effective two-way phase
centers are at x0 + dpc/2 and x0 – dpc/2, a separation of dpc meters.

 FIGURE 5.45   Relationship of transmit and receive aperture phase centers in
DPCA processing.
 

Now consider the motion of the platform over Ms pulses. If the pulse
repetition interval is T and the platform velocity is v, the effective transmit-
receive phase centers move forward by vMsT meters in Ms PRIs. The idea of
DPCA is to achieve effective MTI cancellation by combining pulses measured
from the same phase center location in space in a pulse canceller. Specifically,



if the T-R1 phase center is at position x0 + dpc/2 on the first pulse, then Ms

pulses later the T-R2 transmit phase center will be at position x0 – dpc/2 + vMsT.
Equating these two positions gives

(5.134)
 
Ms is the “time slip” in pulses.

The significance of the time slip given by Eq. (5.134) is that the clutter
component of the slow-time signal received on the aft receive aperture is highly
correlated with the slow-time signal in the same range bin received on the
forward receive aperture Ms pulses earlier because it represents the same
ground clutter measured from the same point in space. Consequently, two-pulse
cancellation can be implemented by taking each sample from the R1 data stream
and subtracting the sample from the R2 data stream taken Ms pulses later as
illustrated in Fig. 5.46. Even though these data samples were collected on
different receive apertures and one or more pulses apart in time, their effective
transmit-receive phase centers are the same so they appear equivalent to
successive pulses from a stationary antenna. The effective stationarity of the
antenna then implies that the clutter spectral width is not spread by the platform
motion, therefore improving the clutter cancellation and the detection of slow-
moving ground targets.

 FIGURE 5.46   Illustration of two-pulse cancellation across two received data
streams in DPCA for a time slip of approximately Ms = 3 PRIs.
 

In general, Ms will not be integer. For example, if dpc = 3 meters, v = 200



m/s and T = 2 ms, then Ms = 3.75 pulses. A typical DPCA implementation will
round Ms to the nearest integer for coarse alignment of the two data streams and
then use adaptive processing as described next to achieve good clutter
cancellation.

5.7.2   Adaptive DPCA
While conventional bandlimited interpolation could be used to implement
fractional-PRI timing adjustments, in practice there will also be mismatches
between channels that will make it impossible to achieve high cancellation
ratios even if the time alignment is perfect. Adaptive processing can be
combined with the basic DPCA cancellation to minimize the clutter residue at
the processor output and therefore maximize the improvement factor. The
following discussion of adaptive DPCA is modeled after the “suboptimum
matched filter algorithm” in Shaw and McAulay (1983). This algorithm assumes
that an integer PRI delay of one channel with respect to the other is used to
achieve coarse time alignment of the two-phase center channels to be combined.
Each received signal channel is then divided into Doppler bins using a DFT.
MTI cancellation is performed independently in each subband, allowing the
adaptive cancellation weight to be optimized separately for each Doppler bin
and improving overall performance.

The vector analysis approach will be used to model the signals and
develop the adaptive filtering. Transmit a CPI of M + Ms pulses and collect L
range bins of data for each pulse and each of the N = 2 phase centers, resulting
in an L × (M + Ms) × 2 datacube y[l, m, n]. Advance the aft channel slow-time
data (n = 1) to coarse-align it with the fore channel (n = 0) in each range bin and
retain only the overlapped slow-time samples to obtain the L × M × 2 datacube

(5.135)
 
where yf [l, m] is the “fore” channel data plane, ya [l, m] is the “aft” channel
data plane, and the dotted horizontal line represents vertical concatenation of
datacube planes. The pulse number (slow time) index m is now in the range 0 ≤
m ≤ M – 1. The separation of the datacube into phase center planes is done for
convenience because the DPCA filter will apply weighting in that dimension
only. Now take the K-point DFT of the data in each range bin to get the L × K ×
2 range-Doppler datacube



(5.136)
 
Equation (5.136) points out that the time slip adjustment adds a linear phase
term to the aft channel Doppler data. This effect applies to both target and
interference signal components. For a given range-Doppler bin [l, k], [l, k, n]
is a 2 × 1 column vector.

The signals at each subaperture consist of clutter, noise, and (if present)
target components. Because the weighting will be in the phase center dimension,
a model of the covariance matrix SI = E{ * T} of the phase center data for
each range-Doppler bin similar to that of Eq. (5.19) is needed. Begin with the
clutter. It is not white in slow time, so its power spectrum is not flat and the
clutter covariance  is a function of the range index l and Doppler index k.
The clutter at the same range-Doppler bin is correlated across the spatial phase
center channels to some degree determined by the platform motion and time slip
correction. That correlation is denoted by the normalized phase-center
dimension correlation function ρ[k] and also varies with the Doppler bin. The
thermal noise is assumed uncorrelated between channels and is white.
Therefore, for a fixed range-Doppler bin SI will take the 2 × 2 form

(5.137)
 
The coefficient β[k] accounts for any mismatch in the gain and frequency
response or subaperture antenna patterns of the two channels.

Next, a model similar to Eq. (5.23) or (5.25) for the target data in the
Doppler domain is needed. A CPI of fast-time/slow-time data for a moving
point target in range bin lt is modeled as

(5.138)
 

 where γf and γa =
complex scalar constants representing the unknown target
phases and (possibly unequal) amplitudes in the fore and aft
receive channels

At = target amplitude
δ [·] = discrete impulse function

The target phases represented by γf and γa are determined by the absolute range
and the angle of arrival as well as the electrical lengths of the receive paths.

It is useful to note the relationship between the angle of arrival and the



phase difference between the signals observed at the same moment on the fore
and aft antenna subapertures. Figure 5.47 shows a wavefront impinging on two
receivers representing the two antenna phase centers separated by a distance dpc.
The angle of arrival of the wavefront, measured from the normal to the line
connecting the two receivers, is θa. As shown in the figure, the additional
distance the wavefront must travel after arriving at the first receiver before it
reaches the second receiver is dpcsinθa. Consequently, the phase difference in
the signals received at the two sites becomes

 FIGURE 5.47   Geometry for relating angle of arrival to phase difference at two
subaperture receive phase centers. The angle of arrival shown is considered
negative; positive angles of arrival are clockwise from the normal to the line
connecting the phase centers.
 

(5.139)
 
The subscript k on the wavelength has been added to emphasize that the
appropriate wavelength should be used for each Doppler bin to which Eq.
(5.139) will be applied.

Using Eq. (5.139), assuming |γf| = |γa| = 1, and letting R be the range from
the scatterer to the fore aperture (rightmost in Fig. 5.47), γf and γa of Eq. (5.138)
can be expanded as follows



(5.140)
 
The terms ψf and ψa represent the receiver phase shifts, which are different for
each channel in general.

After the Doppler DFT, the target data model of Eqs. (5.138) and (5.140)
results in the following target range-Doppler domain signal model

(5.141)
 
where kt = (FDKT/2π) is the target Doppler shift converted to an equivalent DFT
bin number. The two impulse functions serve to confine the response to range
bin lt and Doppler bin kt. If K > M there will be multiple DFT samples on the
target DTFT mainlobe and the assumption that the target response is essentially
confined to one Doppler bin is less valid.

As before, the SIR can be maximized with a matched filter that computes
the scalar quantity for each range-Doppler bin

(5.142)
 
Since the target signal AOA is not known a priori the target signal vector is
again averaged over all values of AOA in [–π/ 2 , π/2]. Absorbing out all
common constants into the complex amplitude, the new target vector becomes
simply

(5.143)
 
The target location in range-Doppler space is not assumed known so the same
target model is used in each range and Doppler bin.

An alternative to assuming an unknown AOA is to assume specific values
for θa. For example, a series of values in an interval equal to the antenna
mainlobe width and centered on the nominal steering angle used on transmit
might be generated and used. However, the loss in SIR from using the much
simpler Eq. (5.143) is very small (Shaw and McAulay, 1983).

The exact clutter and noise statistics are also not known a priori.
Consequently, SI cannot be known exactly, but it can be estimated from the data.
Since the clutter covariance is expected to have essentially the same form in
every range bin, one way to estimate SI would be to compute a sample average



over several range bins

(5.144)
 
This estimate of  then replaces the actual SI in Eq. (5.142). Since the
coefficients used to combine the fore and aft data streams are computed from the
data itself, this is now an adaptive DPCA processor. This method for estimating
SI is analogous to cell-averaging CFAR interference estimation to be discussed
in Chap. 6 and revisited in Chap. 9.

Equation (5.144) implicitly assumes that the covariance matrices in the
range bins adjoining bin k are all the same as the covariance matrix in bin k
itself. Even if the physical clutter is the same over the averaging interval, this
assumption also requires that a preprocessing gain control step compensate for
the expected R3 variation9 in clutter power with range. Noise power does not
vary with range or Doppler.

Combining Eqs. (5.136), (5.137), (5.142), and (5.143) gives the output of
the DPCA system. Assuming that  is a good approximation to SI and absorbing
all constants into a single constant α gives

(5.145)
 
While complicated, the structure of a two-pulse canceller is clearly present in
the subtraction of Ya [l, k] from Yf [l, k]. If the interference is clutter-limited so
that  and also highly correlated across phase centers so that ρ[k]→ 1
(implying that the coarse alignment was very successful), the output simplifies
to

(5.146)
 
The two-pulse canceller structure is clearer here. The complex exponential in
the Doppler index k is equivalent to a time-domain shift of Ms samples, in
accordance with the DPCA condition discussed earlier. The factor β[k]
provides a Doppler-dependent weighting factor that can be optimized to
maximize cancellation in each Doppler channel.

The matched filter design assumes that  is an estimate of the covariance
of the interference only, i.e., it should not contain any target signal components.
A practical system must take steps to ensure this is the case, perhaps by skipping



range bins containing targets already in track, averaging over enough range bins
to minimize any unknown target influences, prescreening the data for large
amplitudes that might indicate a target, or other means. Many of the required
techniques are similar to those used in constant false alarm rate detection,
discussed in Chap. 6.

DPCA is a clutter suppression technique, and as such it makes sense to
apply it only on the Doppler bins in the clutter region. It is easy to see that if the
interference is noise-limited the adaptive DPCA operation reduces to
performing no operation (see Prob. 36). Consequently, DPCA should not be
applied in the clear region of the Doppler spectrum.
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Problems
  1.  An aircraft has a 4° azimuth 3-dB beamwidth. The RF is 10 GHz and the

antenna is steered to a squint angle ψ of 30°. If the aircraft flies at 100 m/s,
what is the Doppler spread of the clutter echoes induced by the aircraft
motion?

  2.  Suppose the aircraft in the previous problem has a PRF of 10 kHz. Sketch a
Doppler spectrum similar to that of Fig. 5.1c, but with noise and mainlobe
clutter components only. What range of Doppler shifts lie in the mainlobe
clutter region of the spectrum? What range of Doppler shifts lie in the clear
region of the spectrum? What percentage of the total spectrum width from
–PRF/2 to +PRF/2 is in the clear region?

  3.  If the PRF in the previous problem is changed to 1 kHz, what percentage of
the total spectrum width will lie in the clear region?

  4.  Consider a 10-GHz airborne radar traveling straight, level, and forward at
200 mph at an altitude of 30,000 feet. The antenna is pointed at an azimuth
angle of 0° and an elevation angle of –20°, similar to Fig. 5.3a. What will
be the radial velocity in meters per second of echoes from stationary
scatterers in the following locations: (a) directly ahead of the aircraft, (b)
at the point where the antenna boresight intercepts the ground, (c) directly



below the aircraft, (d) on the ground directly to the left or right of the
aircraft (azimuth angle of ±90°), and (e) directly behind the aircraft?

  5.  Verify all of the calculations regarding Fig. 5.4 given in the text. These
include boresight range to the ground, component of velocity along the
boresight, Doppler shift at the middle of the mainlobe clutter, maximum
Doppler shift of clutter, and maximum radial velocity of clutter.

  6.  For the aircraft in Prob. 4, sketch the approximate unaliased slant range-
velocity distribution of the ground clutter (mainlobe + sidelobe) in a
“bird’s-eye” format similar to that of Fig. 5.36a. The slant range axis of the
sketch should cover 0 to 100 km and the velocity axis should cover ±vmax,
where vmax is the maximum possible radial velocity in meter per second
that could be observed from scatterers in front of the radar. It is not
necessary to represent antenna gain effects; concentrate on indicating
where the mainlobe clutter will be centered and the intervals in range and
velocity where clutter energy will be seen.

  7.  Suppose the radar in the previous problem has an operating frequency of 10
GHz and a PRF of 3 kHz. What are the unambiguous slant range Rua and
blind velocity interval vb? Sketch the approximate aliased range-velocity
distribution of the ground clutter (mainlobe + sidelobe) in a format similar
to that of “bird’s-eye” format similar to that of Fig. 5.36c. The slant range
axis of the sketch should cover 0 to Rua and the velocity axis should cover
±vua = ±vub/2. Concentrate on indicating where the mainlobe clutter will be
centered and the intervals in range and velocity where clutter energy will
be seen.

  8.  Use the vector form of the matched filter to find the coefficients of an
optimum two-pulse (N = 2) MTI filter under the assumptions that (a) the
interference is white noise only, and (b) only approaching targets are of
interest, that is, those with positive Doppler shifts; however, targets can be
approaching with any positive velocity between 0 and λ · PRF/4
(corresponding to FD = PRF/2) being equally likely. Repeat for receding
targets. Interpret the result: that is, explain how the particular form of the
filter coefficients will maximize the SIR at the filter output for this target
and interference model.

  9.  Suppose an MTI radar is placed on a moving platform such that the clutter
spectrum, rather than being centered at normalized radian frequency ω = 0,
is instead centered on ω = π/2. If the clutter observed by a stationary
platform was c[m], the new clutter process can be modeled crudely as
c′[m] = c[m]exp(jπm/2). (This is an oversimplified model because it does
not account for the broadening of the clutter spectrum caused by platform
motion, but that effect is ignored in this problem for simplicity.) Assume
the target can be at any velocity with equal likelihood. Ignore the noise,



i.e., assume σn
2 = 0. Assume the stationary clutter c[m] has power  and

first autocorrelation lag . Use the vector approach to find the
coefficients of the optimum two-pulse (N = 2) matched filter for this case.
Compare to the N = 2 vector matched filter for the stationary radar. Explain
how the shift in the clutter power spectrum center frequency changes the
coefficients. Interpret the resulting coefficients as in the previous problem.

10.  Use the vector form of the matched filter to find the coefficients of an
optimum two-pulse MTI filter under the assumptions that (a) the
interference is white noise plus a pure complex sinusoid at some specific
normalized radian frequency ωJ, and (b) target velocity is uniform random
over the entire spectrum. Specifically, the interference signal becomes

 
        where n[m] is a stationary white noise process with power . This could

be a simple model for a jammer at frequency ωJ. What is the frequency
response H(ω) of the filter having the resulting coefficients? Explain how
this frequency response will affect the jammer and target signals.

11.  Consider a pulse-to-pulse staggered PRF system using a series of P = 3
PRIs, namely .

         a.   What are the base interval Tg and the set of staggers {kp}?
         b.   What is the average PRI, Tavg?
         c.   What is the first blind Doppler frequency, Fbs, of the staggered system?
         d.   What is the ratio Fbs/Fb of the first blind Doppler of the staggered

system to the first blind speed of a constant-PRF system having the
average PRI Tavg?

12.  Now consider the effect of the staggered PRIs of the previous problem on
range coverage.

         a.   What is the unambiguous range, Rus, corresponding to the average PRI
from Prob. 11? (This would be the unambiguous range of a constant-
PRI system that used the same amount of time to collect N pulses as
the staggered-PRF system.)

         b.   For the three PRFs in Prob. 11, what is the maximum unambiguous
range Ruas?

         c.   What is the factor by which the range coverage (unambiguous range) is
reduced in the staggered PRF system of Prob. 11 relative to the
unstaggered system?

13.  Using the numerical results from the previous two problems, determine the



percentage by which the total range-velocity coverage, defined as the
product of the unambiguous range and first blind Doppler, increased in the
staggered case as compared to the unstaggered case? In other words,
compute RuasFbs/RuaFb. Show that the numerical results agree with the result
predicted by Eq. (5.46).

14.  Assume a set of integer staggers {kp} is mutually prime. Show that
lcm{1/kp} = 1. Hint #1: For any set of numbers β, α ·lcm(β1, …, βp} =
lcm(αβ1, …, αβp}. Hint #2: Use hint #1 with a = β1 · β2 · … · βp and the
prime factorization method for finding the least common multiple.

15.  Consider a three-pulse canceller; thus the filter coefficients are h[m] = {1,
–2, 1}. Suppose the clutter c[m] at the canceller input has an
autocorrelation function given by

 
         a.   Find the clutter power spectrum on a normalized radian frequency

scale, Sc(ω).
         b.   The improvement factor I was expressed as the product of “gain” and

“clutter attenuation,” I = G·CA, in Eq. (5.48). Find the gain G for the
three-pulse canceller using Eq. (5.49).

         c.   Use the autocorrelation method to find the improvement factor I for the
three-pulse canceller with this clutter process.

16.  Repeat Prob. 15(c) using the frequency domain approach. The value of G
from Prob. 15(b) can be reused.

17.  Repeat Prob. 15(c) using the vector matched filter approach. Recompute
both G and CA using the vector method.

18.  Compute the clutter attenuation CA when using a two-pulse canceller,
assuming the clutter Doppler power spectrum is of the form

 
        Assume Fco ≤ PRF/2 and express the answer in terms of Fco.
19.  Consider an M = 32 pulse sequence of slow-time data collected with PRF

= 10 kHz. A radix 2 FFT algorithm is used to compute the Doppler
spectrum of the data. If the Doppler frequency samples are to have a
spacing of 100 Hz or less, what is the minimum FFT size K that should be
used? What is the resulting spacing of the Doppler frequency samples in
hertz?



20.  Consider a C band (5 GHz) radar using a pulse repetition frequency of PRF
= 3500 pulses per second. The radar collects 30 pulses of data. For a
given range, the slow-time data sequence is zero-padded and input to a 64-
point DFT to compute the Doppler spectrum. What is the spacing of the
DFT samples in normalized radian frequency (i.e, on the –π to +π scale)?
What is the spacing in hertz? In meters per second? What is the Rayleigh
resolution (peak-to-first null width) in Doppler, in hertz? In meters per
second?

21.  An X-band (10 GHz) pulse-Doppler radar collects a fast-time/slow-time
matrix of 30 pulses by 200 range bins per pulse. This is converted to a
range-Doppler matrix by applying a Hamming window and then a 64-point
fast Fourier transform to each slow-time row. Suppose that there is a target
with a constant radial velocity of 30 m/s approaching the radar at a range
corresponding to range bin #100. The PRF is 6000 samples per second.
There is no ground clutter, and noise can be ignored as well. For which
FFT sample index k0 is |Y[k0]| the largest? (Remember that the DC sample
is k = 0.) What velocity in meters per second does this sample correspond
to? What is the error between the apparent velocity based on the largest
FFT sample and the actual velocity?

22.  Continuing Prob. 21: in terms of the window function w[m], give an
expression for the peak value of the DTFT (not DFT) of the windowed
data in range bin #100, assuming that each slow-time sample has an
amplitude of 1 before windowing. What is the numerical value of this
peak? (MATLAB® or a similar computational tool can be used to compute
this value). Now suppose the peak value of the magnitude of the FFT of the
data |Y[k0]| = 15.45. What is the straddle loss in dB?

23.  Continuing with Probs. 21 and 22, suppose also that |Y[k0 – 1]| = 11.61 and
|Y[k0 + 1]| = 14.61. Use the amplitude-based quadratic interpolation
technique of Eqs. (5.96) and (5.97) to estimate the velocity of the target
and the peak amplitude of the DTFT. Compute the new values of velocity
error and straddle loss and compare to those found in Probs. 21 and 22.

24.  Consider two radars. The first is a 3-GHz weather radar having a desired
unambiguous range of Rua = 300 km and unambiguous velocity vua = vb/2 of
50 m/s (about 112 mph). The second is a 10-GHz airborne radar having a
desired unambiguous range of Rua = 100 km and unambiguous velocity vua
= vb/2 of 250 m/s (about 560 mph). For each radar, is a 1 kHz PRF
considered to be a low, medium, or high PRF?

25.  What is the lowest PRF that would be considered “high” for each of the two
radars in the previous problem?

26.  Consider range ambiguity resolution using three PRFs. Suppose the three



PRFs correspond to N0 = 4, N1 = 5, N2 = 7 range cells. A single target is
detected in the first range bin on the first PRF, the fourth range bin on PRF
#2, and the second range bin on PRF #3; i.e., na 0 = 1, na 1 =4, na 2 = 2.
Assume the radar sensitivity is such that it could possibly detect targets out
to the 15th range bin. Use the coincidence algorithm to determine the true
range bin number for this target.

27.  Repeat the previous problem using the Chinese Remainder Theorem
approach.

28.  Again consider range ambiguity resolution using three PRFs. Suppose the
three PRFs correspond to N0 = 3, N1 = 4, and N2 = 5 range cells. Two
targets are detected in each PRF: in range bins 1 and 2 of the first PRF,
bins 1 and 4 of the second PRF, and bins 2 and 4 of the third PRF. Assume
the radar sensitivity is such that it could possibly detect targets out to the
25th range bin. How many targets will be reported by the coincidence
algorithm, and in which range bins?

29.  Now assume that in the previous problem, one false alarm occurs on the
third PRF in range bin #3. How many targets will be reported by the
coincidence algorithm, and in which range bins?

30.  Now suppose that in Prob. 28, the target in range bin #4 on the third PRF is
not detected (a missed detection). How many targets will be reported by
the coincidence algorithm, and in which range bins?

31.  Finally, suppose only the second and third PRFs in problem 28 are used.
How many targets will be reported by the coincidence algorithm, and in
which range bins?

32.  Suppose a radar has a pulse length of t = 10 μs and a PRF of 10 kHz.
Assume that the clutter observed by the radar has a two-sided spectral
width of 1 kHz (i.e., the clutter spectrum occupies the range from –500 to
+500 Hz). Sketch the blind zone map for these operating conditions. For
the vertical axis, use time in seconds from 0 to 400 μs; for the horizontal
axis, use Doppler frequency in hertz from –10,000 to +10,000 Hz.

33.  A weather radar has a PRF of 2 kHz. Using a series of 50 samples of data
from a particular range bin and look direction, the following values of the
autocorrelation function are computed: sy[0] = 50, sy[1] = 30 exp(jp/3).
Use the pulse-pair processing (PPP) time domain method to compute the
estimated mean frequency of the echo in hertz.

34.  Continuing with the same weather radar, the mean Doppler shift is now
removed from the data to obtain a new sequence y [́m] with autocorrelation
lags sy′[0] = 50, sy′[1] = 30. Use the PPP time domain method to compute
the estimated spectral width of the echo in hertz. Use the version of the
spectral width estimator that contains the ln(·) function. Remember that



spectral width is the variance of the spectrum, not the standard deviation.
35.  Repeat the spectral width calculation using the version based on the series

approximation to ln(x) given in Eq. (5.113). What is the percentage error in
this estimate compared to the estimate in the previous problem?

36.  Assume the simplified target model of Eq. (5.143) and suppose the adaptive
DPCA system is noise limited at a particular Doppler bin, .
Show that the output z[l, k] of Eq. (5.145) reduces to simply Yf [l, k] to
within a scale factor. That is, the processor does not combine the fore and
aft channels in noise-limited Doppler bins.

_____________
1 Skolnik (2001) distinguishes MTI and pulse Doppler by defining pulse Doppler as a system that uses a
PRF high enough to avoid blind speeds (see Sec. 5.2.4). In this text the two terms are instead differentiated
based on the type of processing used and the information obtained.
2 Not all digital processors necessarily form a data matrix similar to Fig. 5.5 explicitly. MTI processors in
particular can be implemented more simply. However, the data matrix is used explicitly in many other
processors and is useful for illustration of Doppler filtering concepts.
3 Some authors work in terms of the PRFs instead of the PRIs and use the term “staggers” to refer to ratios
of PRFn.
4 It is important to realize that the number of staggers used is independent of the canceller order selected. A
two-pulse canceller can be implemented with two staggers or 10 staggers.
5 The order of the PRIs makes no difference to the power spectrum. Alternating shorter and longer PRIs
keeps the transmitter duty cycle more nearly constant.
6 Since the power spectrum is real-valued, the autocorrelation function must be Hermitian symmetric. It can
therefore be complex valued. However, clutter is usually modeled by a power spectrum that is also an even
function of frequency (i.e., symmetric about F = 0), for example a Gaussian clutter spectrum with a zero
mean. With this extra constraint, the autocorrelation function must be real-valued also, so the Re{} operator
can be dropped in Eq. (5.52) and other equations in this section.
7 “Aliased sinc,” also called the Dirichlet function. It is the discrete-variable equivalent of the usual
continuous-variable sinc function.
8 Harris uses a slightly different definition of the windows than is now conventional in data analysis and
simulation packages for reasons having to do with DFT symmetry properties. Effectively, his version of an
M-point-shaped window (e.g., Hamming) is the first M points of the (M + 1)-point symmetric window
commonly used. The difference is of minor consequence, especially as M gets large.
9 This correction factor assumes pulse-limited ground clutter as described in Chap. 2. Other appropriate
factors are used if this is not the case.



CHAPTER 6
Detection Fundamentals

 

As was noted in Chap. 1, the primary functions to be carried out by a radar
signal processor are detection, tracking, and imaging. In this chapter, the
concern is detection. In radar, this means deciding whether a given radar
measurement is the result of an echo from a target or simply represents the
effects of interference. If it is decided that the measurement indicates the
presence of a target further processing is usually undertaken. This additional
processing might, for instance, take the form of tracking via precise range, angle,
or Doppler measurements.

Detection decisions can be applied to signals present at various stages of
the radar signal processing, from raw echoes to heavily preprocessed data such
as Doppler spectra or even synthetic aperture radar images. In the simplest case,
each range bin (fast-time sample) for each pulse can be individually tested to
decide if a target is present at the range corresponding to the range bin, and the
spatial angles corresponding to the antenna pointing direction for that pulse.
Since the number of range bins can be in the hundreds or even thousands and
pulse repetition frequencies can range from a few kilohertz to tens or hundreds
of kilohertz, the radar can be making many thousands to millions of detection
decisions per second.

It was seen in Chap. 2 that both the interference and the echoes from
complex targets are best described by statistical signal models. Consequently,
the process of deciding whether or not a measurement represents the influence
of a target or only interference is a problem in statistical hypothesis testing. In
this chapter, it will be shown how this basic decision strategy leads to the
concept of threshold testing as the most common detection logic in radar.
Performance curves will be derived for the most basic signal and interference
models.

Clutter (echoes from the ground) is sometimes interference and sometimes
the target. If one is trying to detect a moving vehicle, ground clutter, along with
noise and possibly jamming, is the interference; but if one is trying to image a
region of the earth, this same terrain becomes the desired target and only noise
and jamming are the interference.

An excellent concise reference for modern detection theory is given in
Chap. 5 of Johnson and Dudgeon (1993). When greater depth is needed, another
excellent modern reference with a digital signal processing point of view is Kay
(1998). An important classical textbook in detection theory is Van Trees (1968),
while Meyer and Mayer (1973) provide a classical in-depth analysis and many
detection curves specifically for radar applications.



6.1   Radar Detection as Hypothesis Testing
For any radar measurement that is to be tested for the presence of a target, one
of two hypotheses can be assumed to be true:

      1.  The measurement is the result of interference only.
      2.  The measurement is the combined result of interference and echoes from

a target.

The first hypothesis is denoted as the null hypothesis H0 and the second as the
non-null hypothesis H1. The detection logic therefore must examine each radar
measurement to be tested and select one of the hypotheses as best accounting for
that measurement. If H0 best accounts for the data, the system declares that a
target was not present at the range, angle, or Doppler coordinates of that
measurement; if H1 best accounts for the data, the system declares that a target
was present.1

Because the signals are described statistically, the decision between the
two hypotheses is an exercise in statistical decision theory. A general approach
to this problem is described in many texts (e.g., Kay, 1998). The analysis starts
with a probability density function (PDF) that describes the measurement to be
tested under each of the two hypotheses. If the sample to be tested is denoted as
y, the following two PDFs are required:

py(y|H0) = PDF of y given that a target was not present
py(y|H1) = PDF of y given that a target was present

Thus, part of the detection problem is to develop models for these two PDFs. In
fact, analysis of radar performance is dependent on estimating these PDFs for
the system and scenario at hand. Furthermore, a good deal of the radar system
design problem is aimed at manipulating these two PDFs in order to obtain the
most favorable detection performance.

More generally, detection will be based on N samples of data yn forming a
column vector y

(6.1)
 
The N-dimensional joint PDFs py(y|H0) and py(y|H1) are then used.

Assuming the two PDFs are successfully modeled, the following
probabilities of interest can be defined:

Probability of
Detection, PD:

The probability that a target is declared (i.e., H1 is
chosen) when a target is in fact present.



Probability of
False Alarm, PFA:

The probability that a target is declared (i.e., H1 is
chosen) when a target is in fact not present.Probability of

Miss, PM:
The probability that a target is not declared (i.e., H0 is
chosen) when a target is in fact present.

Note that PM = 1 – PD. Thus, PD and PFA suffice to specify all of the
probabilities of interest. As the latter two definitions imply, it is important to
realize that, because the problem is statistical, there will be a finite probability
that the decisions will be wrong.2

6.1.1   The Neyman-Pearson Detection Rule
The next step in making a decision is to decide what the rule will be for
deciding what constitutes an optimal choice between the two hypotheses. This is
a rich field. The Bayes optimization criterion assigns a cost or risk to each of
the four possible combinations of actual state (target present or not) and
decision (select H0 or H1). In radar, it is more common to use a special case of
the Bayes criterion called the Neyman-Pearson criterion. Under this criterion,
the decision process is designed to maximize the probability of detection PD
under the constraint that the probability of false alarm PFA does not exceed a set
value. The achievable combinations of PD and PFA are affected by the quality of
the radar system and signal processor design. However, it will be seen that for a
fixed system design, increasing PD implies increasing PFA as well. The radar
system designer will generally decide what rate of false alarms can be tolerated
based on the implications of acting on a false alarm, which may include using
radar resources to start a track on a nonexistent target, or in extreme cases even
firing a weapon! Recalling that the radar may make tens or hundreds of
thousands, even millions of detection decisions per second, values of PFA must
generally be quite low. Values in the range of 10 –4 to 10–8 are common, and yet
may still lead to false alarms every few seconds. Higher-level logic
implemented in downstream data processing, beyond the scope of this book, is
often used to reduce the number or impact of false alarms.

Each vector of measured data values y can be considered to be a point in
N-dimensional space. To have a complete decision rule, each point in that space
(each possible combination of N measured data values) must be assigned to one
of the two allowed decisions, H0 or H1. Then, when the radar measures a
particular set of data values (“observation”) y, the system declares either
“target absent” or “target present” based on the preexisting assignment of y to
either H0 or H1. Denote the set of all observations y for which H1 will be chosen
as the region 1. Note that 1 is not necessarily a connected region. General
expressions can now be written for the probabilities of detection and false
alarm as integrals of the joint PDFs over the region 1 in a N-dimensional space:



(6.2)
 

Because probability density functions are nonnegative, Eq. (6.2) proves a
claim made earlier, namely that PD and PFA must rise or fall together. As the
region 1 grows to include more of the possible observations y, either integral
encompasses more of the N-dimensional space and therefore integrates more of
the nonnegative PDF. The opposite is true if 1 shrinks. That is, as 1 grows or
shrinks, both PD and PFA must decrease or increase.3 In order to increase
detection probability, the false alarm probability must be allowed to increase as
well. Loosely speaking, to achieve a good balance of performance, the points
that contribute more probability mass to PD than to PFA are assigned to 1. If the
system can be designed so that py(y|H0) and py(y|H1) are as disjoint as possible,
this task becomes easier and more effective. This point will be revisited later.

6.1.2   The Likelihood Ratio Test
The Neyman-Pearson criterion is motivated by the goal of obtaining the best
possible detection performance while guaranteeing that the false alarm
probability does not exceed some tolerable value. Thus, the Neyman-Pearson
decision rule is to

(6.3)
 
where α is the maximum allowable false alarm probability.4 This optimization
problem is solved by the method of Lagrange multipliers. Construct the function

(6.4)
 
To find the optimum solution, maximize F and then choose λ to satisfy the
constraint criterion PFA = α. Substituting Eq. (6.2) into Eq. (6.4)

(6.5)
 
Remember that the design variable here is the choice of the region 1. The first
term in the second line of Eq. (6.5) does not depend on 1, so F is maximized by
maximizing the value of the integral over 1. Since λ could be negative, the



integrand can be either positive or negative, depending on the values of λ and
the relative values of py(y|H0) and py(y|H1). The integral is therefore maximized
by including in 1 all the points, and only the points, in the N-dimensional space
for which py(y|H1) + λpy(y|H0) > 0, that is, 1 is all points y for which py(y|H1) >
– λpy(y|H0). This leads directly to the decision rule:

(6.6)
 

Equation (6.6) is known as the likelihood ratio test (LRT). Although
derived from the point of view of determining what values of y should be
assigned to decision region 1, it in fact allows one to skip over explicit
determination of 1 and gives a rule for optimally guessing, under the Neyman-
Pearson criterion, whether a target is present or not based directly on the
observed data y and a threshold –λ (which must still be computed). This
equation states that the ratio of the two PDFs, each evaluated for the particular
observed data y, should be compared to a threshold. If that “likelihood ratio”
exceeds the threshold, choose hypothesis H1, i.e., declare a target to be present.
If it does not exceed the threshold, choose H0 and declare that a target is not
present. Under the Neyman-Pearson optimization criterion, the probability of a
false alarm cannot exceed the original design value PFA. Note again that models
o f py(y|H0) and py(y|H1) are required in order to carry out the LRT. Finally,
realize that in computing the LRT, the data processing operations to be carried
out on the observed data y are being specified. What exactly the required
operations are depends on the particular PDFs.

The LRT is as ubiquitous in detection theory and statistical hypothesis
testing as is the Fourier transform in signal filtering and analysis. It arises as the
solution to the hypothesis testing problem under several different decision
criteria, such as the Bayes minimum cost criterion, or maximization of the
probability of a correct decision. Substantial additional detail is provided in
Johnson and Dudgeon (1993) and Kay (1998). As a convenient and common
shorthand, it is convenient to express the LRT in the following notation:

(6.7)
 
From Eq. (6.6), Λ(y) = py(y|H1)/py(y|H0) and η = –λ.

Because the decision depends only on whether the LRT exceeds the
threshold or not, any monotone increasing5 operation can be performed on both
sides of Eq. (6.7) without affecting the values of observed data y that cause the



threshold to be exceeded, and therefore without affecting the performance (PD
a nd PFA). A well-chosen transformation can sometimes greatly simplify the
computations required to actually carry out the LRT. Most common is to take the
natural logarithm of both sides of Eq. (6.7) to obtain the log likelihood ratio
test:

(6.8)
 

To make these procedures more concrete, consider what is perhaps the
simplest example, detection of the presence or absence of a constant in zero-

mean Gaussian noise of variance . Let w be a vector of independent
identically distributed (i.i.d.) zero mean Gaussian random variables. When the
constant is absent (hypothesis H0) the data vector y = w follows an N-
dimensional normal distribution with a scaled identity covariance matrix. When
the constant is present (hypothesis H1) , y = m + w = m1N + w and the
distribution is simply shifted to a nonzero positive mean6:

(6.9)
 
where m > 0 and 0N, 1N, and IN are, respectively, a vector of N zeros, a vector of
N ones, and the identity matrix of order N. The model of the required PDFs is
therefore

(6.10)
 

The likelihood ratio Λ(y) and the log-likelihood ratio can be directly
computed from Eq. (6.10):

(6.11)



 

(6.12)
 
Because of its simpler form, the log-likelihood ratio will be used. Substituting
Eq. (6.12) into Eq. (6.8) and rearranging gives the decision rule:

(6.13)
 
where all the right-hand-side constants have been combined into a single
constant T. Note that the right-hand side of the equation consists only of
constants, though not all are yet known. Equation (6.13) thus specifies that the
available data samples yn be integrated (summed) and the integrated data
compared to a threshold. This integration is an example of how the LRT
specifies the data processing to be performed on the measurements. Note also
that Eq. (6.13) does not require specifically evaluating the PDFs, let alone
determining what exactly is the region in N-space comprising 1 or whether the
observation y is in it.

In many cases of interest, the specific form of the log-likelihood ratio can
be further rearranged to isolate on the left-hand side of the equation only those
terms explicitly including the data samples yn, moving all other constants to the
right-hand side. Equation (6.13) is such a rearrangement of Eqs. (6.8) and
(6.12). The term Σyn is called a sufficient statistic for this problem, and is
denoted by ϒ(y). The sufficient statistic, if it exists, is a function of the data y
that has the property that the likelihood ratio (or log-likelihood ratio) can be
written as a function of ϒ(y), i.e., the data appear in the likelihood ratio only
through ϒ(y) (Van Trees, 1968). This means that in making a decision that is
optimal under the Neyman-Pearson criterion, knowing the sufficient statistic
ϒ(y) is as good as knowing the actual data y. In particular, the decision
criterion in Eq. (6.8) can be expressed as

(6.14)
 



The idea of a sufficient statistic is quite rich. For example, it can be
interpreted as a geometric coordinate transformation chosen to place all of the
useful information in the first coordinate (Van Trees, 1968). Procedures for
verifying that a statistic (a function of the data y) is sufficient are given in Kay
(1993), as is the Neyman-Fisher factorization theorem for identifying sufficient
statistics. Detailed consideration of the properties of sufficient statistics is
beyond the scope of this text; the reader is referred to the references for greater
depth.

The specific value of the threshold η = –λ that will ensure that PFA = α as
desired has not yet been found. The original expression for PFA was given in Eq.
(6.2), but this is not very useful since its evaluation requires the N-dimensional
joint PDF of y and an explicit definition of the region 1, which have been
defined only implicitly as the points in N-space for which the LRT exceeds the
still-unknown threshold. Since they are functions of the random data y, Λ and ϒ
are also random variables and thus have their own probability density functions.
An alternate approach to computing the LRT threshold is thus to express PFA in
terms of Λ or ϒ and then solve those expressions for η or equivalently for T.
The required expressions are

(6.15)
 
or

(6.16)
 
Because false alarms are the result of interference and do not involve targets,
the result depends only on the PDF of the likelihood ratio [if using Eq. (6.15)]
or the sufficient statistic [if using Eq. (6.16)] when a target is not present. Given
a specific model of that PDF, a specific value can be computed for η
(equivalently, λ or T.

To illustrate these results, continue the “constant in Gaussian noise”
example by finding the threshold and then evaluating the performance, working
with the sufficient statistic ϒ(y). In this case ϒ(y) is the sum of the individual
data samples yn. Under hypothesis H0 (no target), the samples are i.i.d. It
follows that . A false alarm occurs anytime ϒ > T, so



(6.17)
 

Equation (6.17) is the integral of a Gaussian PDF, so the error function
erf(x) will appear in the solution. The standard definition is (Abramowitz and
Stegun, 1972)7

(6.18)
 
Also define the complementary error function erfc(x) corresponding to erf(x)

(6.19)
 
One will generally be interested in finding the value of x that results in a certain
value of erf(x) or erfc(x); thus the inverse error and complementary error
functions, denoted by erf –1(z) and erfc–1(z), respectively, are of interest. It
follows from Eq. (6.19) that the two are related by erfc–1(z) = erf –1(1 – z).8

With the change of variables , Eq. (6.17) can be written as

(6.20)
 
Finally, Eq. (6.20) can be solved to obtain the threshold T in terms of the
tabulated inverse error function:

(6.21)
 
Equations (6.20) and (6.21) show how to compute PFA given T and vice versa.

All of the information needed to carry out the LRT in its sufficient statistic
form of Eq. (6.14) is now available. ϒ(y) is just the sum of the data samples,
while the threshold T can be computed from the number N of samples, the

variance  of the noise, which is assumed known, and the desired false alarm
probability PFA.

The performance of this detector is evaluated by constructing a receiver
operating characteristic (ROC) curve. There are four interrelated variables of



interest: PD, PFA, the noise power , and the constant m whose presence or
absence is to be decided. The latter two are characteristics of the given signals,
while PFA is generally fixed as part of the system specifications at whatever
level is deemed tolerable. Thus it is necessary only to determine PD. The
approach is identical to that used for determining PFA: determine the probability
density function of the sufficient statistic ϒ under the hypothesis H0 and integrate
the area under it from the threshold to + ∞.

Continuing the example, note that the only change under hypothesis H1 is
that the individual data samples yn now each have mean m, so their sum ϒ has
mean Nm. Thus,  and

(6.22)
 
Again applying the definition of the error function in Eq. (6.18) leads to

(6.23)
 
Since the primary concern is the relationship between the performance metrics
PD and PFA, Eq. (6.21) can be used in Eq. (6.23) to eliminate the threshold T and
arrive at

(6.24)
 

Nm is considered to be the signal voltage of interest in the sufficient
statistic ϒ(y). The corresponding signal power is (Nm)2. The power of the noise
component of ϒ(y) is . Thus, the term  is the square root of the
signal-to-noise ratio χ for this problem, and Eq. (6.24) can be rewritten as



(6.25)
 

Figure 6.1 illustrates how the detection and false alarm probabilities
follow from the PDFs under the two hypotheses and the threshold, and how their
relative values depend on the relation between the two PDFs. Two Gaussian
PDFs with variance equal to one are shown. The leftmost has a zero mean,
while the rightmost has a mean of 1. With  and m = 1/N these fit the
model of Eq. (6.9) and the subsequent analysis. PD and PFA are the areas under
the right and left PDFs, respectively, from the threshold (shown as a vertical
line at about ϒ = 1.5) to + ∞. The receiver design thus consists of adjusting the
position of the threshold until the black area equals the acceptable false alarm
probability. The detection probability is then the gray area (which includes the
black area). This figure again makes it clear that PD and PFA must increase or
decrease together as the threshold moves lower or higher. The achievable
combinations of PD and PFA are determined by the degree to which the two
distributions overlap.

 FIGURE 6.1   Gaussian probability density functions of the sufficient statistic
when  under hypothesis H0 (left) and H1 (right).
 

Figure 6.2 illustrates the ROC for this problem with the SNR χ as a
parameter. Part a of the figure plots the ROC using linear scales for both PFA



and PD. Several features are worth noting. First, PFA = PD when χ = 0 (implying
m = 0). This is to be expected since in that case, the PDF of ϒ(y) is the same
under either hypothesis. For a given PFA and χ > 0, PD increases as the SNR
increases, a result which should also be intuitively satisfying. Finally, note how
abrupt the transition between near-zero and near-unity detection probabilities
becomes as the SNR increases. This is a little misleading, since radars normally
operate with very low values of PFA; depending on the type of system, PFA is
typically no higher than 10–3 and very often is in the range of 10–6 to 10–8 or even
lower. Figure 6.2b plots the same data on a logarithmic scale for PFA, which
better reveals the characteristics of the ROC for false alarm probabilities of
interest in radar signal processing.



 FIGURE 6.2   Receiver operating characteristic for the Gaussian example: (a)
displayed on a linear PFA scale, (b) displayed on a logarithmic PFA scale.
 

If the achievable combinations of PD and PFA do not meet the performance
specifications, what can be done? Consideration of Fig. 6.1 suggests two
answers. First, for a given PFA, PD can be increased by causing the two PDFs to
move further apart when a target is present. That is, the presence of a target must



cause a larger shift in the mean m of the distribution of the sufficient statistic. It
was shown that the signal-to-noise ratio equals . Thus, one way to
improve the detection/false alarm tradeoff is to increase the SNR. This
conclusion is borne out in Fig. 6.2. Figure 6.3a illustrates the effect of increased
SNR on the PDFs and performance probabilities under the two hypotheses using
the same threshold as Fig. 6.1.

 



FIGURE 6.3   Two ways to modify the PDFs of Fig. 6.1 to improve the tradeoff
between detection and false alarms: (a) increasing the signal power, (b)
reducing the noise power.
 

The second way to improve the performance tradeoff is to reduce the

overlap of the PDFs by reducing their variance. Reducing the noise power 
will reduce the variance of both PDFs, leading to the situation shown in Fig.
6.3b (where the area corresponding to PFA is too small to be seen) and again
improving performance. As with the first technique of increasing m, reducing 

 again constitutes increasing the SNR. Thus, consistent with Eq. (6.25),
improving the tradeoff between PD and PFA requires increasing the SNR χ. This
is a fundamental result that will arise repeatedly.

Radar systems are designed to achieve specified values of PD and PFA
subject to various conditions, such as specified ranges, target types, interference
environments, and so forth. The designer can work with antenna design,
transmitter power, waveform design, and signal processing techniques, all
within cost and form factor constraints. The job of the designer is therefore to
develop a radar system design which ultimately results in a pair of “target
absent” and “target present” PDFs at the point of detection with a small enough
overlap to allow the desired PD and PFA to be achieved. If the design does not
do this, the designer must redesign one or more of these elements to reduce the
variance of the PDFs, shift them further apart, or both until the desired
performance is obtained. Thus, a significant goal of radar system design is
controlling the overlap of the two PDFs analogous to those in Fig. 6.1, or
equivalently, maximizing the SNR.

6.2   Threshold Detection in Coherent Systems
The Gaussian problem considered so far is useful to introduce and explain the
major elements of Neyman-Pearson detection such as the likelihood ratio test,
probabilities of detection and false alarm, receiver operating characteristics,
and the major design tradeoffs that follow. The problem seems “radar-like”:
under one hypothesis, only Gaussian noise is observed; under the other, a
constant was added to the noise, which could be interpreted as the echoes from
a steady target. Figure 6.4 summarizes the design and analysis strategy that was
used. Beginning with models of the PDF of the data under hypotheses H0 and H1,
the LRT or log-LRT is written down and manipulated to isolate the terms
involving the measured data. If necessary or useful, a simplified detector law is
substituted (see Section 6.2.3). The sufficient statistic is then identified and its
PDF under each hypothesis determined. The PDF under H0 is integrated to get a
relationship between the threshold T and the PFA which is solved analytically or



numerically to determine the threshold that gives the desired PFA. Finally, that
threshold value is used with the PDF of ϒ under H1 to get PD. This same
analysis strategy will be used repeatedly to develop the detector design and
evaluate its performance for various data models. The only difference will be in
the raw data PDFs py(y|H0) and py(y|H1) assumed in the first step. However,
changes to these PDFs ripple through the entire process, changing the likelihood
ratio, then the sufficient statistic and thus the detector design, the threshold
setting, and finally the detection performance.

 FIGURE 6.4   Strategy for radar detector design, analysis, and performance
evaluation.
 

The real constant-in-white Gaussian noise (WGN) example is not a good



model for any radar detection problem due to at least three major limitations.
First, coherent radar systems that produce complex-valued measurements are of
most interest. The approach must therefore be extended to the complex case.
Second, there are unknown parameters. The analysis so far has assumed that
such signal parameters as the noise variance and target amplitude are known,
when in fact these are not known a priori but must be estimated if needed. To
complicate matters further, some parameters are linked. Specifically in radar,
the (unknown) echo amplitude varies with the (unknown) echo arrival time
according to the appropriate version of the radar range equation. Thus, the LRT
must be generalized to develop a technique that can work when some signal
parameters are unknown. Finally, as seen in Chap. 2, there are a number of
established models for radar signal phenomenology that must be incorporated.
In particular, it is necessary to account for fluctuating targets, i.e., statistical
variations in the amplitude of the target components of the measured data when a
target is present. Furthermore, while the Gaussian PDF remains a good model
for noise, in many problems the dominant interference is clutter which may have
one of the distinctly non-Gaussian PDFs discussed in Chap. 2. The next
subsections begin addressing these shortcomings by extending the LRT to
coherent systems.

6.2.1   The Gaussian Case for Coherent Receivers
An appropriate model for noise at the output of a coherent receiver was
developed in Chap. 2. It was shown there that if the noise in the system prior to
quadrature signal generation is a zero mean, white Gaussian process with power

,9 the I and Q channels will each contain independent, identically
distributed zero-mean white Gaussian processes with power  That is,
the noise power splits evenly but independently between the two channels. A
complex noise process for which the real and imaginary parts are i.i.d. is called
a circular random process . The expression for the joint PDF of N complex
samples of the circular Gaussian random process is

(6.26)
 
where m is the N × 1 vector mean of the N × 1 vector signal y = m + w, Sy is the
N × N covariance matrix of y

(6.27)
 
and H is the Hermitian (conjugate transpose) operator. In most cases the noise
samples are i.i.d. so that , which in turn means that .



Treatment of the case where the noise samples are not equal-variance, and the
colored noise case where Sy is not even diagonal, is beyond the scope of this
text. The reader is referred to Dudgeon and Johnson (1993) and Kay (1998) for
these more complex situations.

Equation (6.26) now reduces to

(6.28)
 
Further simplifications occur when all of the means under H1 are identical so
that m = m1N, where m can now be complex-valued. In this case Eq. (6.28)
reduces slightly further to

(6.29)
 

The LRT for the coherent version of the previous Gaussian example can be
obtained by repeating the steps in the example of Eqs. (6.10) through (6.25)
using the PDF of Eq. (6.28), with m = 0N under hypothesis H0 and m ≠ 0N under
H1. The log-likelihood ratio is

(6.30)
 
where the second line of Eq. (6.30) applies only to the case where the means
are identical (m = m1N).

Some interpretation of Eq. (6.30) is in order. The term mHy is the dot
product of the complex vectors m and y. As seen in App. B, this dot product
represents an FIR filtering operation evaluated at the particular instant when the
equivalent impulse response mH and the data vector y completely overlap.
Furthermore, since the impulse response of the filter is identical to the signal
whose presence is to be detected under hypothesis H1, namely m1N, it is a
matched filter. The same reasoning applies if the elements of m are the samples
of a modulated waveform or any other function of interest.

The second term in lnΛ, which is the complex dot product of m with itself,
expands to . This is just the energy E in m. In the equal means
case E = N|m|2.



Finally, note the Re{·} operator applied to the matched filter output mHy.
Because m and y are complex, one might be concerned that the dot product
could be purely imaginary or nearly so, such that Re{mHy} ≈ 0. The measured
data y would then have little or no effect on the threshold test. For this example,
m = 0N under hypothesis H0 and the Re{·} operator is inconsequential. Under

hypothesis H1 each element of m is a complex number . If the target is
actually present the elements of the measured data vector y = m + w will be of

the form  where wn is a zero mean complex Gaussian noise sample.
It follows that

(6.31)
 
The first term is again the energy E in the signal m; this is real-valued and
therefore unaffected by the Re{·} operator. The second term is simply weighted
and integrated noise samples. The phase of this noise component and therefore
the effect of the Re{·} operator is random. Its effect on the phase of the sum will
be large when the SNR is low, but minimal when the SNR is high.

It is evident by inspection of Eq. (6.30) that the sufficient statistic is now
Re{mHy}. Expressing the LRT in its sufficient statistic form for the complex
case gives

(6.32)
 
Note that if m = m1N, the term Re{mHy} = m Σyn and Eq. (6.32) is very similar
to Eq. (6.13).

To complete consideration of the complex Gaussian case, its performance,
i . e . , PD and PFA, must be determined. The sufficient statistic 

 is just a sum of Gaussian random variables and so will
also be Gaussian. To determine the performance of the coherent detector, the
PDF of ϒ must be determined under each hypothesis. To do so it is useful to
first consider the quantity z = mHy, which will be a complex Gaussian. First
suppose hypothesis H0 is true. In this case the {yn} are zero mean and therefore
so is z. Because the {yn} are independent the variance of z is just the sum of the
variances of the individual weighted samples:



(6.33)
 
Thus, under hypothesis H0, . Similarly, under hypothesis H1 y = m
+ w and . Note that the mean of z is real in both cases. The power
of the complex Gaussian noise splits evenly between the real and imaginary
parts of z. Since ϒ = Re{mHy}, it follows that  under H0 and 

 under H1. Following the procedure used in Sec. 6.1.2, it can be
seen that

(6.34)
 
Repeating the development of Eqs. (6.22) to (6.24) gives the probability of
detection

(6.35)
 
Note again that the last term in Eq. (6.35) is the square root of the energy in the

signal m, divided this time by the noise power , i.e., the signal-to-noise
ratio. Thus Eq. (6.35) can be written as

(6.36)
 
Finally, in the equal means case when m = m1N, Eq. (6.35) is similar (but not
identical) to Eq. (6.24). The coherent case includes the term

because all of the signal energy competes with only
half of the noise power.

Figure 6.5 shows the receiver operating characteristic for this example. It



is identical in general form to the real-valued case of Fig. 6.2, however, for a
given signal-to-noise ratio the performance is better because in the coherent
receiver the signal competes with only half the noise power. For example, in
this coherent case a signal-to-noise ratio of 13 dB produces PD = 0.94 at a PFA =
10–6. Figure 6.2 shows that in the real case the same χ and PFA produce a PD of
just under 0.39.

 FIGURE 6.5   Performance of the coherent receiver on the complex Gaussian
example.
 

6.2.2   Unknown Parameters and Threshold Detection
In general, perfect knowledge of each of the parameters of the PDFs pϒ(ϒ |H0)
and pϒ(ϒ |H1) is required to carry out the LRT, which usually means having
perfect knowledge of py(y |H0) and py(y |H1). In the Gaussian example, for
instance, it was assumed that the expected signal y is known under the various

hypotheses, as well as the noise sample variance . This is not the case in the
real world, where the PDFs that form the likelihood ratio may depend on one or
more parameters ξ that are unknown. Depending on the available information
three cases arise;

      1.  ξ is a random variable with a known probability density function.
      2.  ξ is a random variable with an unknown probability density function.



      3.  ξ is deterministic but unknown.

Different techniques are used to handle each of these cases. The first is the most
important because it has the greatest effect on the structure of the optimal
Neyman-Pearson detector.

To illustrate the approach for handling a random parameter with a known
PDF, consider yet again the complex Gaussian case. The optimal detector
implemented a matched filter operation mHy followed by the Re{·} operator.
The success of the matched filter structure depended on knowing exactly the
constant component of y = m + w under hypothesis H1, so that the filter
coefficients could be set equal to m and the filter output would be real-valued.
Recall that, when applied to radar, y under H0 is considered to consist only of
samples w of receiver noise, and under H1 to consist of noisy samples m + w of
the echoes from a radar target over multiple pulses, or alternately successive
fast-time samples of the waveform of one pulse echo from a target.

Claiming perfect knowledge of m implies knowing the range to the target
very precisely, since a variation in one-way range of only λ/4 causes the
received echo phase to change by 180°. A quarter-wavelength is only 30 cm at
L band and 3.16 mm at 95 GHz. Because this precision is usually unrealistic, it
is more reasonable to assume m is known only to within a phase factor exp(jθ),
where the phase angle θ is considered to be a random variable distributed
uniformly over (0, 2π] and independent of the random variables {mn}. In other
words, , where  is known exactly but θ is a random phase. Note
that the energy in  is the same as that in m, that is, . This “unknown
phase” assumption cannot usually be avoided in radar. What is its effect on the
optimal detector and its performance?

The goal remains to carry out the LRT, so it is necessary to return to its
basic definition of Eq. (6.6) and determine py(y|H0) and py(y|H1), both of which
now presumably depend on θ, and use the technique known as the Bayesian
approach for random parameters with known PDFs (Kay, 1998).10 Specifically,
compute the PDF under Hi by averaging the conditional PDFs py(y|Hi, θ) over θ

(6.37)
 
The unconditional PDFs py(y|Hi) are then used to define the likelihood ratio in
the usual way.

As an example of the Bayesian approach for random parameters, consider
again the complex Gaussian case, but now with an unknown phase in the data, 

. The conditional PDF of the observations y becomes, under each of
the two hypotheses,



(6.38)
 
Expanding the exponent in Eq. (6.38) gives

(6.39)
 
where ϕ is the unknown but fixed phase of the inner product .

Notice that py(y|H0,θ) does not depend on θ after all (not surprising since
there is no target present in this case to present an unknown phase), so it is not
necessary to apply Eq. (6.37). However, in py(y|H1) the dependence on θ is
explicit. Assuming a uniform random phase, defining θ′ = ϕ – θ, and applying
Eq. (6.37) under H1 gives

(6.40)
 
Equation (6.40) is a standard integral. Specifically, integral 9.6.16 in Olver et
al. (2010) is

(6.41)
 
where I0(z) is the modified Bessel function of the first kind. Using this result and
properties of the cosine function, Eq. (6.40) becomes

(6.42)
 
The log-LRT now becomes



(6.43)
 
or in sufficient statistic form

(6.44)
 

Equation (6.44) defines the signal processing required for optimum
detection in the presence of an unknown phase. It calls for taking the magnitude
of the matched filter output , passing it through the memoryless nonlinearity
ln[I0(·)], and comparing the result to a threshold. This result is appealing in that
the matched filter is still applied to utilize the internal phase structure of the
known signal and maximize the integration gain, but then a magnitude operation
is applied because the absolute phase of the result cannot be known. Also, note
that the argument of the Bessel function is the energy in the matched filter output
divided by half the noise power; again, a signal-to-noise ratio. Only half of the
noise power appears because the total noise power in the complex case is split
between the real and imaginary channels.

As a practical matter, it is desirable to avoid having to compute the natural
logarithm and Bessel function for every threshold test, since these might occur
millions of times per second in some systems. Because the function ln[I0(·)] is
monotonically increasing, the same detection results can be obtained by simply
comparing its argument  to a modified threshold. Equation (6.44) then
becomes simply

(6.45)
 
Figure 6.6 illustrates the optimal detector for the coherent detector with an
unknown phase.



 FIGURE 6.6   Structure of optimal detector when the absolute signal phase is
unknown.
 

The performance of this detector will now be established. Let .
The detection test becomes simply ; thus the distribution of z under each of
the two hypotheses is needed. As in the known phase case, under hypothesis H0

(target absent) ; thus the real and imaginary parts of  are
independent of one another and each distributed as . It follows (see
Chap. 2 or App. A) that z is Rayleigh distributed

(6.46)
 
The probability of false alarm is

(6.47)
 
It is convenient to invert this equation to obtain the threshold setting in terms of
PFA:

(6.48)
 

Now consider hypothesis H1, i.e., target present. In this case .
Since E is real-valued, the real part  is distributed as N(E, Eβ2/2) while the
imaginary part is distributed as N(0, Eβ2/2). It again follows that the PDF of z is

(6.49)
 
where I0(z) is again the modified Bessel function of the first kind. Equation
(6.49) is the Rician PDF. The probability of detection is obtained by integrating
it from T’ to + ∞.

In normalized form, the required integral is



(6.50)
 
The expression QM(α, γ) is known as Marcum’s Q function . It arises frequently
in radar detection calculations. A closed form for this integral is not known.
Algorithms for evaluating QM(α, γ) are compared in Cantrell and Ojha (1987).
The Communications ToolboxTM and Signal Processing ToolboxTM optional
packages of MATLAB® includes a marcumq function to evaluate QM(α, γ);
another MATLAB® algorithm is given by Kay (1998).

By defining a change of variables the integral of Eq. (6.49) can be put into
the form of Eq. (6.50). Specifically, choose  and .
Substituting into Eq. (6.49) and doing the integration gives

(6.51)
 
Finally, noting that  is the signal-to-noise ratio χ and expressing the
threshold in terms of the false alarm probability using Eq. (6.48) gives

(6.52)
 

It is usually the case that the energy E in m or  is not known. Fortunately,

Eq. (6.52) does not depend on E (or the noise power  explicitly, but only on
their ratio χ, so that it is possible to generate the ROC without this information.
However, actually implementing the detector requires a specific value of the
threshold T′ as given in Eq. (6.48), and this does require knowledge of both E
a nd . One way to avoid this problem is to replace the matched filter
coefficients  with a normalized coefficient vector . This choice simply
normalizes the gain of the matched filter to 1. The energy in this modified
sequence is , leading to a modified threshold

(6.53)
 
The modified matched filter gain and threshold result in no change to the ROC
so that Eq. (6.52) remains valid. Setting of the threshold  still requires

knowledge of the noise power ; removal of this restriction is the subject of
Sec. 6.5. The handling of unknown amplitude parameters is discussed in



somewhat more detail in Sec. 6.2.4.
The performance of the envelope detector in this example is given in Fig.

6.7. The general behavior is very similar to the known phase coherent detector
case of Fig. 6.5. Closer inspection, however, shows that for a given PFA, the
coherent detector obtains a higher PD. To make this point clearer, Fig. 6.8
compares the detection curves for the coherent and envelope detectors (known
and unknown phase, respectively), plotted two different ways. Part (a) of the
figure simply repeats the 10-dB curves from the two earlier figures. At PFA =
10–4 and χ = 10 dB, for example, PD is about 0.74 for the coherent detector. This
figure drops to 0.6 when the envelope detector is used.

 FIGURE 6.7   Performance of the linear envelope detector for the Gaussian
example with unknown phase.
 

 



 
FIGURE 6.8   Performance difference between coherent and envelope detectors
for the complex Gaussian example: (a) difference in PD for χ = 10 dB, (b)
difference in PD for PFA = 10–6.
 

Figure 6.8b plots the detection performance as a function of χ with PFA

fixed (at 10–6 in this example). This figure shows that, to achieve the same



probability of detection, the envelope detector requires about 0.6 dB higher
SNR than the coherent detector at PD = 0.9, and about 0.7 dB more at PD = 0.5.
The extra signal-to-noise ratio required to maintain the detection performance of
the envelope detector compared to the coherent case is called an SNR loss. SNR
losses can result from many factors; this particular one is often called the
detector loss. It represents extra SNR that must be obtained in some way if the
performance of the envelope detector is to match that of the ideal coherent
detector. Increasing the SNR in turn implies one or more of many radar system
changes, such as greater transmitter power, a larger antenna gain, reduced range
coverage, and so forth.

The phenomenon of detector loss illustrates a very important point in
detection theory: the less that is known about the signal to be detected, the
higher must be the SNR to achieve a given combination of PD and PFA. In this
case, not knowing the absolute phase of the signal has cost about 0.6 dB.
Inconvenient though it may be, this result is intuitively satisfying: the worse the
knowledge of the signal details, the worse the performance of the detector will
be.

6.2.3   Linear and Square-Law Detectors
Equation (6.44) defines the optimal Neyman-Pearson detector for the Gaussian
example with an unknown phase in the data. It was shown that the ln[I0(x)]
function could be replaced by its argument x without altering the performance. In
Sec. 6.3.2 a simpler detector characteristic than ln[I0(·)] will again be desirable
for noncoherent integration, but it will not be possible to simply substitute any
monotonic increasing function. It is therefore useful to see what approximations
can be made to the ln[I0(·)] function.

A standard series expansion for the Bessel function holds that

(6.54)
 

Thus for small x, I0(x) ≈ 1 + x2/4. Furthermore, one series expansion of the
natural logarithm has ln(1 + z) = z – z2/2 + z3/3 + …. Combining these gives

(6.55)
 
Equation (6.55) shows that if x is small, the optimal detector is well
approximated by a matched filter followed by a so-called square law detector,
i.e., a magnitude squaring operation. The factor of four can be incorporated into
the threshold in Eq. (6.44).



For large values of x, ; then

(6.56)
 
The constant term on the right of Eq. (6.56) can be incorporated into the
threshold in Eq. (6.44), while the linear term in x quickly dominates the
logarithmic term for x  1. This leads to the linear detector approximation for
large x

(6.57)
 
Figure 6.9 illustrates the fit between the square law and linear approximations
and the exact ln[I0(·)] functions. The square law detector is an excellent fit for x
< 3 dB, while the linear detector fits the ln[I0(x)] very well for x >10 dB.

 FIGURE 6.9   Approximation of the ln[I0(·)] detector characteristic by the square
law detector when its argument is small, and the linear detector when its
argument is large.
 

Finally, note that it is easy enough to compute the squared magnitude of a
complex-valued test sample as simply the sum of the squares of the real and



imaginary parts. The linear magnitude requires a square root and is less
computationally convenient.

6.2.4   Other Unknown Parameters
The preceding sections have shown the effect of unknown phase of the received
signal on the optimal detector. However, other parameters of the received signal
are also unknown in practice. The amplitude of the echo depends on all of the
factors in the radar range equation, including especially the unknown target
radar cross section and, at least until it is successfully detected, its range. In
addition, the target may be moving relative to the radar, so that the echo is
modified by a Doppler shift.

The derivation of the magnitude-based detectors of Secs. 6.2.2 and 6.2.3
included an assumption that the received signal amplitude was known.
Specifically, it was assumed that the received signal sample vector  was
known, except for its absolute phase. However, as noted the absolute amplitude
is also unknown in general. To determine the effect of an unknown amplitude,
assume that the received signal is , where A is an unknown but deterministic
scale factor.11 The analysis of Sec. 6.2.2 can be repeated under this assumption.
The detector output under hypothesis H0 is unchanged as would be expected,
since the target echo with its unknown amplitude is not present in this case.
Under hypothesis H1, the detector output is now . Note that
the detector still considers the quantity  rather than  because the 
arises from the matched filter applied to the data and thus does not include the
unknown amplitude factor A of the signal echo. Also, the quantity  is
now the energy of the matched filter reference signal, while the actual signal
energy becomes A2E.

The equivalent of Eq. (6.51) is now

(6.58)
 

As before, the second argument of Eq. (6.58) can be written in terms of the
probability of false alarm. Furthermore, because the actual signal energy is now
A2E, the first argument is still . Thus, the detection performance is still given
by Eq. (6.52). The unknown echo amplitude neither requires any change in the
detector structure nor changes its performance.

Despite the unknown amplitude, the sufficient statistic was not changed.
Furthermore, the probability of false alarm could be computed without
knowledge of the amplitude. When both these conditions hold, the detection test
is called a uniformly most powerful (UMP) test (Dudgeon and Johnson, 1993).

A UMP does not exist for the case where the signal delay (range) is



unknown, which again is the only realistic assumption that can be made in radar.
It is therefore necessary to resort to a generalized likelihood ratio test (GLRT),
in which the likelihood ratio is written as a function of the unknown signal delay
Δ, and then the value of D that maximizes the likelihood ratio is found. Details
are given in Dudgeon and Johnson (1993). The problem of estimating the time
delay or range that maximizes the likelihood ratio is a major topic in Chap. 7.
The result simply requires evaluation of the matched filter output to identify the
range that produces the maximum output. In practice, each matched filter output
sample is compared to a threshold. If the threshold is crossed, a detection is
declared and the value of Δ at which the threshold crossing occurs is taken as an
estimate of the target delay.

If the target is moving, an unknown Doppler shift will be imposed on the
incident signal. The received echo will then be proportional not to , but to a
modified signal  where the samples of the reference signal  have been
multiplied by the complex exponential sequence exp(jωDn), where ωD is the
normalized Doppler shift. The required matched filter impulse response is now 

; if  is replaced by  in the derivations of Sec. 6.2.2, the same performance
results as before will be obtained. Because ωD is unknown, however, it is
necessary to test for different possible Doppler shifts by conducting the
detection test for multiple possible values of ωD, similar to the procedure used
to test for unknown range. If a set of K potential Doppler frequencies uniformly
spaced from –PRF/2 to +PRF/2 is to be tested, the matched filter can be
implemented for all K frequencies at once using the pulse Doppler processing
techniques described in Chap. 5.

6.3   Threshold Detection of Radar Signals
The results of the preceding sections can now be applied to some reasonably
realistic scenarios for detecting radar targets in noise. These scenarios will
almost always include unknown parameters of the signal to be detected (the
target), specifically, its amplitude, absolute phase, time of arrival, and Doppler
shift. Both detection using a single sample of the target signal and, when
available, multiple samples are of interest. In the latter case, as discussed in
Chap. 2, the target signal is often modeled as a random process, rather than a
simple constant; the discussion in this chapter will be limited to the four
Swerling models to illustrate both the approach and the classical, and still very
useful, results obtained in these cases. Furthermore, it will be seen that the idea
of pulse integration is needed in the case of multiple samples. Finally, a square-
law detector will be assumed, though one important approximation that applies
to linear detectors will also be introduced. Figure 6.10 represents one possible
taxonomy of the most common variations on the radar detection problem.



 FIGURE 6.10   Taxonomy of detection problems considered. (Adapted from
Levanon, 1988.)
 

Each of these will be discussed in turn in this section, with the exception of the
Swerling 3 and 4 cases, for which the strategy is shown but the details are not
carried out; the partially correlated case, which is not considered; and adaptive
threshold-setting techniques (CFAR), which are the subject of Sec. 6.5.

6.3.1   Coherent, Noncoherent, and Binary Integration
The ability to detect targets is inhibited by the presence of noise and clutter.
Both are modeled as random processes; the noise as uncorrelated from sample
to sample, the clutter as partially correlated (including possibly uncorrelated)
from sample to sample. The target is modeled as either nonfluctuating (i.e., a
constant) or a random process that can be either completely correlated or
completely uncorrelated from sample to sample (the Swerling models), or
partially correlated from sample to sample. The signal-to-interference ratio
(SIR) and thus the detection performance are often improved by integrating
(adding) multiple samples of the target and interference, motivated by the idea
that the interference can be “averaged out” by adding multiple samples. This
idea was first discussed in Chap. 1. Thus, in general detection will be based on
N samples of the target + interference. Note that care must be taken to integrate



samples that represent the same range and Doppler resolution cells.
Integration may be applied to the data at three different stages in the

processing chain

      1.  After coherent demodulation, to the baseband complex-valued (I and Q,
or magnitude and phase) data. Combining complex data samples is
referred to as coherent integration.

      2.  After envelope detection, to the magnitude (or squared or log magnitude)
data. Combining magnitude samples after the phase information is
discarded is referred to as noncoherent integration.

      3.  After threshold detection, to the target present/target absent decisions.
This technique is called binary integration.

A system could elect to use none, one, or any combination of these techniques.
Many systems use at least one integration technique, and a combination of either
coherent or noncoherent with post-detection binary integration is also common.
The major cost of integration is the time and energy required to obtain multiple
samples of the same range, Doppler, and/or angle cell (or multiple threshold
detection decisions for that cell); this is time that cannot be spent searching for
targets elsewhere, or tracking already-known targets, or imaging other regions
of interest. Integration also increases the signal processing computational load.
Modern systems vary as to whether this is an issue: the required operations are
simple, but must be performed at a very high rate in many systems.

In coherent integration, complex data samples yn are combined to form a
new complex variable y:

(6.59)
 
As shown in Chap. 1, if the SNR of a single sample yn is χ1 the integrated data
sample y has an SNR χN = Nχ1 provided that all of the samples add in phase.
That is, coherent integration attains an integration gain of a factor of N. This is
the signal processing gain Gsp in the radar range equation due to coherent
integration. Detection calculations are then based on the result for a single
sample of target + noise having the improved SNR χN.

In noncoherent integration, phase information is discarded. Instead, the
magnitudes or squared magnitudes of the data samples are integrated.
(Sometimes another function of the magnitude, such as the log-magnitude, is
used.) Most classical detection results have been developed for the square law
detector, which bases detection on the quantity



(6.60)
 
Consideration will be largely restricted to the square law detector in this
section.

When coherent integration is used, detection results are obtained by using
single-sample (N = 1) results with χ1 replaced by the integrated χN. The situation
for noncoherent integration is more complicated. As shown in Chap. 1, the
integrated signal z cannot be expressed as the sum of a target-only part and a
noise-only part, so that an integrated SNR cannot be defined directly. It will
prove necessary to determine the actual probability density function of the
integrated random variable z to compute detection results; this is done in the
next subsection.

Binary integration takes place after an initial detection decision has taken
place. That initial decision may be based on a single sample or on data that have
already been coherently or noncoherently integrated. Whatever the processing
before the threshold detection, after it the result is a choice between hypothesis
H0, “target absent,” and H1, “target present.” Because there are only two
possible outputs of the detector each time a threshold test is made, the output is
said to be binary. Multiple binary decisions can be combined in an “M out of N”
decision logic in an attempt to further improve the performance. This type of
integration is discussed in Sec. 6.4.

6.3.2   Nonfluctuating Targets
Now consider detection based on noncoherent integration of N samples of a
nonfluctuating target (sometimes called the “Swerling 0” or “Swerling 5” case)
in white Gaussian noise. The amplitude and absolute phase of the target
component are unknown. Thus, an individual data sample yn is the sum of a
complex constant  for some real amplitude  and phase θ, and a
complex white Gaussian noise sample wn of power  in each of the I and Q

channels (total noise power )

(6.61)
 
Under hypothesis H0, the target is absent and yn = wn. The PDF of zn = |yn| is
Rayleigh



(6.62)
 
Under hypothesis H1, zn is a Rician voltage density

(6.63)
 
For a vector z of N such samples the joint PDFs are, for each zn ≥ 0

(6.64)
 

(6.65)
 
The LRT and log-LRT become

(6.66)
 

(6.67)
 
Incorporating the term involving the ratio of signal power and noise power on
the left-hand side into the threshold gives

(6.68)
 

Equation (6.68) shows that, given N noncoherent samples of a
nonfluctuating target in white noise, the optimal Neyman-Pearson detection test
scales each sample by the quantity , passes it through the monotonic
nonlinearity ln [I0(·)], and then integrates the processed samples and performs a



threshold test. There are two practical problems with this equation. First, it is
desirable to avoid computing the function ln[I0(·)] possibly millions of times

per second. Second, both the target amplitude  and the noise power  must
be known to perform the required scaling. The test can be simplified by using
the results of Sec. 6.2.3. Applying the square law detector approximation of Eq.
(6.55) to Eq. (6.68) gives the test:

(6.69)
 
Combining all constants into the threshold gives us the final detection rule:

(6.70)
 
Equation (6.70) states that the squared magnitudes of the data samples are
simply integrated and the integrated sum compared to a threshold to decide
whether a target is present or not. The integrated variable z is the sufficient
statistic ϒ for this problem.

The performance of the detector must now be determined. It is convenient
to scale the zn, replacing them with the new variables  and thus
replacing z with ; such a scaling does not change the
performance, but merely alters the threshold value that corresponds to a
particular PD or PFA. The PDF of  is still either Rayleigh or Rician as in Eqs.
(6.62) and (6.63), but now with unit noise variance:

(6.71)
 

(6.72)
 
where  is the SNR. Since a square law detector is being used, define 

; then z′ = Σ rn. The PDF of rn is exponential under H0 and a generalized
noncentral chi-squared density under H1:



(6.73)
 

(6.74)
 

Since z′ is the sum of N scaled random variables rn, the PDF of z′ is the N-
fold convolution of the PDF given in Eq. (6.73) or (6.74). This is most easily
found using characteristic functions (CFs; see App. A). If Cz(q) is the CF
corresponding to a PDF pz(z), the CF of the N-fold convolution of the PDFs is
the product of their individual characteristic functions, i.e. .

Under hypothesis H0 the CF of rn can be readily shown to be

(6.75)
 
The characteristic function of z′ is therefore

(6.76)
 
The PDF of z′ is obtained by inverting its characteristic function using the
Fourier-like inverse CF transform, giving

(6.77)
 
Using Eq. (6.76) in Eq. (6.77) and referring to any good Fourier transform table
(with allowance for the reversed sign of the Fourier kernel in the definition of
the characteristic function), the Erlang density is obtained

(6.78)
 



This reduces to the exponential PDF when N = 1 as would be expected since in
that case z′ is the magnitude squared of a single sample of complex Gaussian
noise.

The probability of false alarm is obtained by integrating Eq. (6.78) from
the threshold value to + ∞. The result is (Olver et al., 2010)

(6.79)
 
where

(6.80)
 
is Pearson’s form of the incomplete gamma function.12 For a single sample (N =
1), Eq. (6.79) reduces to the especially simple result

(6.81)
 
This value of the threshold applies to the normalized statistic . The
corresponding result for the unnormalized statistic z is

(6.82)
 
Equation (6.79) can be used to determine the probability of false alarm PFA for a
given threshold T or, more likely, the required value of T for a desired PFA.

Now the probability of detection PD corresponding to the same threshold
must be determined. Start by finding the PDF of the normalized, integrated, and
square-law-detected samples under hypothesis H1. Each individual data sample
rn has a generalized noncentral chi-squared PDF [Eq. (6.74)]; the corresponding
characteristic function is

(6.83)
 
The CF of the sum z′ of N such samples is



(6.84)
 
and the PDF of z′ is13

(6.85)
 

PD is found by integrating Eq. (6.85). One version of the result is (Meyer
and Mayer, 1973)

(6.86)
 
Note that the summation term in the second line of Eq. (6.86) only contributes
when N ≥ 2. Equations (6.79) and (6.86) define the performance achievable for
a nonfluctuating target with noncoherent integration using a square law detector
(Meyer and Mayer, 1973; DiFranco and Rubin, 1980).

Figure 6.11 shows the effect of the number of samples noncoherently
integrated, N, on the receiver operating characteristic when PFA = 10–8. This
figure shows that noncoherent integration reduces the required single-sample
SNR required to achieve a given PD and PFA, but not by the factor N achieved
with coherent integration. For example, consider the single-sample SNR
required to achieve PD = 0.9. For N = 1, this is 14.2 dB; for N = 10, it drops to
6.1 dB, a reduction of 8.1 dB, but less than the 10 dB that corresponds to the
factor of 10 increase in the number of pulses integrated. This reduction in
required single-sample SNR is called the noncoherent integration gain.



 FIGURE 6.11   Effect of noncoherent integration on detection performance for a
nonfluctuating target in complex Gaussian noise as a function of single-sample
SNR.
 

6.3.3   Albersheim’s Equation
The performance results for the case of a nonfluctuating target in complex
Gaussian noise are given by Eqs. (6.79) and (6.86). While relatively easy to
implement in a modern software analysis system such as MATLAB®, these
equations do not lend themselves to manual calculation. Fortunately, there does
exist a simple closed-form expression relating PD, PFA, and SNR c that can be
computed with simple scientific calculators. This expression is known as
Albersheim’s equation (Albersheim, 1981; Tufts and Cann, 1983).

Albersheim’s equation is an empirical approximation to the results in
(Robertson, 1967) for computing the single-sample SNR χ1 required to achieve
a given PD and PFA. It applies under the following conditions:

        •  Nonfluctuating target in Gaussian (i.i.d. in I and Q) noise
        •  Linear (not square-law) detector
        •  Noncoherent integration of N samples

The estimate is given by the series of calculations



(6.87)
 
Note that χ1 is in decibels. The error in the estimate of χ1 is less than 0.2 dB for
10–7 ≤ PFA ≤ 10–3, 0.1 ≤ PD ≤ 0.9, and 1 ≤ N ≤ 8096, a useful range of
parameters. For the special case of N = 1, Eq. (6.87) reduces to

(6.88)
 
On a linear (not decibel) scale, the last line of Eq. (6.88) is just χ1 = A + 0.12AB
+ 1.7B.

To illustrate, suppose PD = 0.9 and PFA = 10–6 are required for a
nonfluctuating target in a system using a linear detector. If detection is to be
based on a single sample, what is the required SNR of that sample? This is a
direct application of Albersheim’s equation. Compute A = ln(0.62 × 106) =
13.34 and B = ln(9) = 2.197. Equation (6.88) then gives χ1 = 13.14 dB; on a
linear scale, this is 20.59.

If N = 100 samples are noncoherently integrated, it should be possible to
obtain the same PD and PFA with a lower single-sample SNR. To confirm this,
use Eq. (6.87). The intermediate parameters A and B are unchanged. χ1 is now
reduced to –1.26 dB, a reduction of 14.4 dB corresponding to a factor of 27.54
on a linear scale. This value closely matches that obtained using the exact
expressions. It is much better than the  rule of thumb sometimes given for
noncoherent integration, which would give a gain factor of only 10 for N = 100
samples integrated. Rather, the gain is approximately N 0.7 in this example.
Albersheim’s equation will be used shortly to develop an expression for
estimating the noncoherent integration gain.

Albersheim’s equation is useful because it requires no function more exotic
than the natural logarithm and square root for its evaluation so it can be used
with virtually any scientific calculator. If a somewhat larger error can be
tolerated, it can also be used for square-law detector results for the
nonfluctuating target, Gaussian noise case. Specifically, square law detector
results are within 0.2 dB of linear detector results (Robertson, 1967; Tufts and
Cann, 1983). Thus, the same equation can be used for rough calculations over
the range of parameters given previously with errors not exceeding 0.4 dB.

Equations (6.87) and (6.88) provide for calculation of χ1 given PD, PFA,



and N. It is possible to solve Eq. (6.87) for either PD or PFA in terms of the other
a nd χ1 and N, further extending its usefulness. For instance, the following
calculations show how to estimate PD given the other factors (χ1 is in dB)

(6.89)
 
In Eq. (6.89) A and B are the same values as in Eq. (6.87), though B cannot be
computed in terms of PD since PD is now the unknown. A result similar to Eq.
(6.89) can be derived for computing PFA (see Prob. 11).

Albersheim’s equation can also be used to write a relatively compact
formula for estimating the noncoherent integration gain Gnc for nonfluctuating
targets. Gnc is the reduction in single-sample SNR required to achieve a
specified PD and PFA when N samples are combined and is the range equation
signal processing gain Gsp for noncoherent integration. In dB, it is given by

(6.90)
 
On a linear scale this becomes

(6.91)
 
where

(6.92)
 
The constant k depends only on PD and PFA, while the term f (N) is a slowly



declining function only of N.
Figure 6.12 plots this estimate of Gnc in decibels for Albersheim’s

nonfluctuating, linear detector case as a function of N for PD = 0.9 and PFA = 10–

6. Also shown are curves corresponding to N 0.7 and N 0.8. The noncoherent gain
is slightly better than N 0.8 for very few samples integrated (N = 2 or 3), with the
effective exponent on N declining slowly as N increases. Gnc is bracketed by N
0.7 and N 0.8 to in excess of N = 100 samples integrated; the gain eventually
slows asymptotically to become proportional to  for very large N. This can
be seen from Eqs. (6.91) and (6.92), which show that as N →∞, f (N) → –0.38
and Gnc becomes proportional to .14 Large N to achieve a given PD and PFA
implies a very poor single-sample SNR so that a large amount of integration is
needed, while small N implies a relatively large single-sample SNR. Another
conclusion is then that noncoherent integration is more efficient when the single-
sample SNR is higher to begin with. In any event, the simplicity and robustness
of noncoherent integration, requiring no knowledge of the phase, means it is
widely used to improve the SNR before the threshold detector.

 FIGURE 6.12   Noncoherent integrations gain Gnc for a nonfluctuating target,
estimated using Albersheim’s equation.
 

6.3.4   Fluctuating Targets
The analysis in the preceding section considered only nonfluctuating targets,
sometimes called the “Swerling 0” or “Swerling 5” case. A more realistic
model allows for target fluctuations. If one of the Swerling fluctuation models is
used, the target RCS is drawn from either the exponential or chi-squared PDF



and the RCS of a group of N samples follows either the uncorrelated or fully
correlated model as described in Chap. 2. Note that using a fluctuating target
model has no effect on the probability of false alarm. PFA is determined only by
the PDF when no target is present; thus Eq. (6.79) still applies.

The strategy for determining the probability of detection depends on the
target fluctuation model used. Figure 6.13 illustrates the approach. In all cases,
the PDF of the magnitude-squared of a single sample of signal + noise is a
generalized noncentral chi-squared so that the CF of a single square-law
detected sample is still given by Eq. (6.83). However, the SNR in that
expression is now a random variable because the target RCS is a random
variable.

 FIGURE 6.13   Strategy for computing PD for fluctuating target models.
 

In a fully correlated case (e.g., Swerling 1 or 3) the target RCS is a fixed
value for all N pulses integrated to form z′. Thus, the CF of z′ is the N-fold
product of Eq. (6.83) with itself

(6.93)
 
This is the same expression as Eq. (6.84) except that now Cz′ is written
explicitly as a function of all of q, χ, and N. Next take the expected value of the
CF over the SNR



(6.94)
 
where pχ (χ) is the PDF of the SNR.

For the Swerling 1 model the PDF of the SNR is exponential:

(6.95)
 
where  is the mean value of the SNR. Using Eqs. (6.93) and (6.95) in Eq.
(6.94) gives the characteristic function averaged over the signal fluctuations:

(6.96)
 
The N = 1 and N > 1 cases are best handled separately. For N = 1 the CF
simplifies to just . The inverse is the PDF of z′ under
hypothesis H1 for Swerling case 1 and N = 1,

(6.97)
 
The inverse of the more general CF for N > 1 of Eq. (6.96) is the PDF

(6.98)
 
Integrating the PDF of Eqs. (6.97) and (6.98) from the threshold T to + ∞ leads
to the following expression for the probability of detection in the Swerling 1
case (Meyer and Mayer, 1973):

(6.99)
 



The expression for N > 1 can be simplified when ; both
conditions will be true in any scenario where target detection is likely to be
successful. The result is

(6.100)
 
Furthermore, Eq. (6.100) is exact when N = 1; in this case it reduces to the N =
1 case in Eq. (6.99). For the N = 1 case, Eq. (6.81) can then be used in Eq.
(6.99) to write a direct relationship between PD and PFA for a single sample of a
Swerling 1 target

(6.101)
 

In an uncorrelated fluctuation model such as the Swerling 2 or 4 cases,
each of the N samples noncoherently integrated has a different value of SNR.
Consequently, it is appropriate to average over the SNR in the single-sample CF
first

(6.102)
 
and then perform the N-fold multiplication of the averaged single-sample CF to
get the CF of the integrated data

(6.103)
 

For the Swerling 2 model specifically the exponential PDF can again be
used for the SNR [Eq. (6.95)], applying it this time in Eq. (6.102) to arrive at

(6.104)
 
and thus

(6.105)
 



Inverse transforming Eq. (6.105) gives the PDF of z′ under hypothesis H1 for
Swerling case 2:

(6.106)
 
Integrating Eq. (6.106) gives the probability of detection, which can be shown
to be (Meyer and Mayer, 1973)

(6.107)
 

When N = 1 correlation models are irrelevant. Because they are based on
the same PDF for RCS the Swerling 1 and 2 cases therefore produce the same
outcome. This is most easily seen by observing that the CFs of the detection
statistic z′ for each case given in Eqs. (6.96) and (6.105) and the corresponding
PDFs of Eqs. (6.97) and (6.106) are identical for N = 1. Consequently, the
simple results of Eqs. (6.99) and (6.101) can be used for both models.

Results for Swerling 3 and 4 targets can be obtained by repeating the
previous analyses for the Swerling 1 and 2 cases, but with a chi-squared instead
of exponential density function for the SNR:

(6.108)
 
Derivations of the resulting expressions for PD can be found in Meyer and
Mayer (1973), DiFranco and Rubin (1980), and many other radar detection
texts. Table 6.1 summarizes one form of the resulting expressions. For N = 1 the
Swerling 3 and 4 results are in fact identical.



 TABLE 6.1   Probability of Detection for Swerling Model Fluctuating Targets
with a Square-Law Detector
 

Figure 6.14 compares the detection performance of the four Swerling
model fluctuating targets and the nonfluctuating target for N = 10 samples as a
function of the mean single-sample SNR for a fixed PFA = 10–8. Assuming that
the primary interest is in relatively high (> 0.5) values of PD, the upper half of
the figure is of greatest interest. In this case, the nonfluctuating target is the most
favorable in the sense that it achieves a given probability of detection at the
lowest SNR. The worst case (highest required SNR for a given PD) is the
Swerling case 1, which corresponds to fully correlated samples and an
exponential PDF of the target RCS. For instance, PD = 0.9 requires χ ≈ 6.1 dB
for the nonfluctuating case, but χ ≈ 14.5 dB for the Swerling 1 case, a difference
of 8.4 dB.



 FIGURE 6.14   Comparison of detection performance for nonfluctuating and
Swerling fluctuating target models using noncoherent integration of 10 pulses (N
= 10) and a fixed probability of false alarm PFA = 10–8 with a square law
detector.
 

At least two general conclusions can be drawn from Fig. 6.14. First, for
values of  in the mid-teens of decibels (certainly the case if detection is to be
very likely), PD is greatest for nonfluctuating targets. Evidently target
fluctuations make detection more difficult, i.e., require a higher SNR to achieve
a given PD and PFA. Second, given that a target exhibits a fluctuating RCS,
uncorrelated fluctuations (e.g., Swerling 2 and 4) aid target detectability
compared to correlated fluctuations (e.g., Swerling 1 and 3). The last
observation suggests that it is desirable to be able to force the data collected
from a complex target and subsequently combined noncoherently to be fully
decorrelated. Many radars use frequency agility to accomplish this. As
discussed in Chap. 2, stepping the radar RF from one CPI or pulse to the next, as
appropriate, will decorrelate successive target RCS measurements provided the
frequency step size ΔF ≥ c/2Ld, where Ld is the target depth as viewed from the
radar.

6.3.5   Shnidman’s Equation



The analytic results in Table 6.1 are too complex for “back-of-the-envelope”
calculations or even for calculation on programmable calculators. Albersheim’s
equation provided a simple approximation for the nonfluctuating target case, but
it is not applicable to fluctuating targets in general or the Swerling models in
particular. This is a serious limitation since the nonfluctuating case provides
overly optimistic results for most parameter ranges of interest.

Fortunately, empirical approximations have also been developed for the
Swerling cases. One example is Shnidman’s equation  (Shnidman, 2002).
Similar to Albersheim’s equation, this series of equations gives the single-pulse
SNR χ1 required to achieve a specified PD and PFA with noncoherent integration
of N samples. Unlike Albersheim’s equation, the results are for a square law
detector. However, as noted previously the differences in the required SNR for
linear and square-law detectors are typically no more than 0.2 dB.

Shnidman’s equation is given by the following series of calculations:

(6.109)
 

(6.110)
 

(6.111)
 



(6.112)
 
The function sign(x) is +1 if x > 0 and –1 if x < 0. Note that several of the
equations simplify in the nonfluctuating case, K = ∞. Specifically, in this case C1
= C2 = 0 so that in turn CdB = 0 and C = 1.

The accuracy bounds on Shnidman’s equation are somewhat looser than
those specified for Albersheim’s equation. Except at the extreme values of PD
for the Swerling 1 case, the error in the estimate of χ1 is less than 0.5 dB for 0.1
≤ PD ≤ 0.99, 10–9 ≤ PFA ≤ 10–3, and 1 ≤ N ≤ 100. This is a much wider range for
PD than used in Albersheim’s equation. The range of N is much smaller but still
large enough for almost all problems of interest. Figure 6.15 illustrates the error
in the estimate of the single-pulse SNR χ1 using Shnidman’s equation for the
case PFA = 10–6, N = 5, and PD over the specified range of 0.1 to 0.99.

 FIGURE 6.15   Example of error in estimating χ1 via Shnidman’s equation for PFA

= 10–6 and N = 5.
 

A still more accurate approximation for the nonfluctuating and Swerling 1
cases is described in Hmam (2003). However, it is not applicable to all of the
Swerling cases and the computations, while easy, are more extensive.



6.4   Binary Integration
Any coherent or noncoherent integration is followed finally by comparing the
integrated data to a threshold. The result is a choice between two hypotheses,
“target present” or “target absent,” so the output is binary in the sense that it
takes one of only two possible outcomes. If the entire detection process is
repeated N times for a given range, Doppler, or angle cell, N binary decisions
will be available. Each decision of “target present” will have some probability
PD of being correct and a probability PFA of being incorrect. To improve the
reliability of the detection decision, the decision rule can require that a target be
detected on some number M of the N decisions before it is finally accepted as a
valid target detection. This process is called binary integration, “M of N”
detection, or coincidence detection (Levanon, 1988; Skolnik, 2001).

To analyze binary integration, begin by assuming a nonfluctuating target so
that the probability of detection PD is the same for each of N threshold tests.
Then the probability of not detecting an actual target (i.e., the probability of a
miss) on one trial is 1 – PD. If there are N independent trials, the probability of
missing the target on all N trials is (1 – PD)N. Thus, the probability of detecting
the target on at least one of N trials, denoted the binary integrated probability
PBD, is

(6.113)
 

Table 6.2 shows the single-trial probability of detection required to
achieve PBD = 0.99 as a function of N. Clearly, a “1 of N” decision rule
achieves a high binary integrated probability of detection with relatively low
single-trial probabilities of detection. In other words, the “1 of N” rule
increases the effective probability of detection. This has the effect of reducing
the SNR required to achieve the final target value of PD.

 TABLE 6.2   Single-Trial PD Needed to Achieve PBD = 0.99
 

The trouble with the “1 of N” rule is that it “works” for the probability of
false alarm also. The probability of at least one false alarm in N trials is the
binary integrated probability of false alarm, PBFA:

(6.114)



 
Assuming that PFA  1, Eq. (6.114) can be approximated as

(6.115)
 
where the binomial series expansion was used to obtain the second line.
Equation (6.115) shows that the “1 of N” rule increases PFA by a factor of
approximately N, an undesirable result. What is needed is a binary integration
rule that increases PBD compared to PD, while leaving PBFA equal to or less than
PFA. An “M of N” strategy provides better results.

Consider the binary integrated probability PB of M successes in N trials
when the probability of success on a single trial is p; it is

(6.116)
 
where

(6.117)
 
Equation (6.116) can be applied to the probability of false alarm by letting p =
PFA, and to the probability of detection by letting p = PD. In the former case, a
“success” is a false alarm, i.e., the event that has a probability of p; in the latter
case, a “success” is a correct detection. Consider the specific example of a “2
of 4” rule, that is, N = 4 and M = 2. Using these parameters in Eq. (6.116) gives

(6.118)
 

To determine the effect of this rule on the probability of false alarm, let p =
PFA. Assuming that PFA  1, Eq. (6.118) can be approximated by its first term
and simplified to obtain



(6.119)
 
Thus, the “2 of 4” rule will result in a binary integrated false alarm probability
that is less than the single-trial PFA as desired. Because single-trial values of PD
are not necessarily very close to 1, Eq. (6.118) cannot easily be approximated
in a simple form similar to Eq. (6.119). Table 6.3 shows the binary integrated
probability obtained using a “2 or 4” rule for various values of the single-trial
probability p. The three cases above the dotted line are appropriate for
considering the effect on example single-trial probabilities of detection, while
the two cases below the line are examples of the effect on example single-trial
probabilities of false alarm. This table shows that the “2 of 4” rule not only
reduces the probability of false alarms, it also increase the probability of
detection so long as the single-trial PD is reasonably high.

 TABLE 6.3   Binary Integrated Probability Using a “2 of 4” Rule
 

This example illustrates the characteristics required of an “M of N” rule.
For small values of p, PB should be less than or equal to p so that the rule
reduces false alarm probabilities. For larger values of p, PB should be greater
than or equal to p so that detection probabilities are increased by binary
integration. To show the effect of the “M of N” rule on large and small single-
trial probabilities, Fig. 6.16 plots the ratio of PB to p for N = 4 and all four
possible choices of M. A ratio greater than 1 means PB is greater than p; this
should be the case for values of p appropriate to single-trial detection
probabilities. Conversely, for small values of p appropriate to false alarm
probabilities, the ratio should be less than 1. Figure 6.16 shows that the ratio is
greater than 1 for all values of p for the “1 of 4” rule, consistent with the earlier
discussion. Similarly, the “4 of 4” rule results in a ratio that is always less than
1, good for false alarm reduction but bad for improving detection. The “2 of 4”
and “3 of 4” rules both provide good false alarm reduction for small values of p
and detection improvement for large values of p. However, the “3 of 4” rule
increases probabilities only for p equal to approximately 0.75 or higher, a
relatively narrow range, and the increase is very slight. The “2 of 4” rule



improves detection for values of p down to approximately 0.23, still well above
any likely single-trial false PFA. Thus the “2 of 4” rule appears to be the best
choice when N = 4.

 FIGURE 6.16   Ratio of the binary integrated probability to the single-trial
probability for an “M of 4” binary integration rule.
 

Recall that a nonfluctuating target has been implicitly assumed since the
single-trial PD was taken to be the same on each trial. The results can be
extended to fluctuating targets (Weiner, 1991; Shnidman, 1998). One result of
these analyses is that for a given Swerling model, PFA specification, SNR, and
number of trials N, there is a value Mopt of M that maximizes PBD for a given
PBFA, N, and SNR. Mopt can be estimated as

(6.120)
 
where the parameters a and b are given in Table 6.4 for the various Swerling
models with PD = 0.9 and 10-8 ≤ PFA ≤ 10–4 (“Swerling 0” is the nonfluctuating
case) (Shnidman, 1998). Mopt must be rounded to the nearest integer.



 TABLE 6.4   Parameters for Estimating Mopt
 

Another term sometimes used for the binary integrated probability is
cumulative probability. However, that term is more commonly restricted to
describe the probability of detecting a target at least once in N tries, for example
on N successive scans of a surveillance radar (IEEE, 2008). If the individual
scan PD is the same on each scan, the cumulative probability PCD is the binary
integrated probability for the “1 of N” case given in Eq. (6.113). If the target
range changes significantly during the N scans, the individual scan SNR and thus
PD would be expected to change so that a more general formula would be
required.

6.5   Constant False Alarm Rate Detection
Standard radar threshold detection, as discussed in the preceding sections,
assumes that the interference level is known and constant. This in turn allows
accurate setting of a threshold that guarantees a specified PFA. In practice,
interference levels are often variable. Constant false alarm rate (CFAR)
detection, also frequently referred to as “adaptive threshold detection” or
“automatic detection,” is a set of techniques designed to provide predictable
detection and false alarm behavior in more realistic interference scenarios.

6.5.1   The Effect of Unknown Interference Power on False Alarm
Probability

In the preceding sections the detection and false alarm performance of a square
law detector were considered for a target in complex white Gaussian
interference as a function of the target fluctuation model and number of
measurements noncoherently integrated. It was shown in Eq. (6.82) that for a
single unnormalized data sample (N = 1) of a nonfluctuating target the false
alarm probability and threshold were (repeating them here for convenience)

(6.121)
 



The threshold T is seen to be proportional to the interference power, ,
with the multiplier α a function of the desired false alarm probability.

To tune the square law detector for a particular radar system, an
acceptable value of PFA must be chosen. The threshold is then computed
according to Eq. (6.121). The probability of detection that will be achieved is
determined by the target SNR.

Accurate setting of the threshold requires accurate knowledge of the

interference power . In some systems this is known, but in many it is not.

When the interference is principally receiver noise it is possible to measure 
and calibrate the detector. In day-to-day operation, however, the receiver noise
will vary over time due to factors such as temperature changes and component
aging. Temperature compensation and periodic recalibration, if possible, can
combat this problem. If the total interference power is significantly affected by
external sources, the variability can be much more severe. In very low noise
radar systems, a significant part of the noise power is cosmic noise. The total
receiver interference then varies with the look direction and the time of day. In
conventional radars, the total interference power can be affected by in-band
electromagnetic interference  (EMI). For example, UHF radars can be affected
by television transmissions, while certain wireless communication services can
compete with higher frequency radars, especially in urban areas. If the dominant
interference is ground clutter, its power will vary radically with the type of
terrain being illuminated and even the weather and seasons. For instance, open
desert has a relatively low reflectivity, while refrozen snow can have a very
high reflectivity. Finally, the dominant interference can be hostile
electromagnetic emissions deliberately directed at the radar system (jamming).
In this case, the interference power can be extremely high.

In any of these cases the observed PFA will vary from the intended value.
To see how significant this variation might be, let PFA0 be the intended
probability of false alarm when the actual interference power is the expected

value of ; thus  ln PFA0. Now suppose the actual interference power

is . The actual PFA, using Eq. (6.121) with the threshold designed assuming

an interference power of , will be

(6.122)
 
and the increase in false alarm probability will be a factor of



(6.123)
 

Figure 6.17 plots Eq. (6.123) for three different values of the design false
alarm probability. This figure shows that even modest increases of 2 dB can
cause an unintended increase in PFA of 1.5 to 3 orders of magnitude, with the
largest changes occurring when the desired PFA is lowest. When the increase is
3 dB (a factor of 2 ×), . Clearly, such sensitivity to small changes in
interference power or, equivalently, small errors in setting the threshold will
have major impacts on radar performance.

 FIGURE 6.17   Increase in probability of false alarm for fixed threshold due to
increase in noise power.
 

The reason for the large increase in PFA observed in Fig. 6.17 is that the

threshold T was based on an incorrect value for the interference power .
More generally, as the interference power at the output of the radar receiver
varies, the actual PFA will vary widely. From a system point of view, this is
highly undesirable. When the interference power rises, the number of false
alarms will also rise, possibly by orders of magnitude. It might seem that the
difference between a probability of false alarm of 10–8 and a rate of 10–6 may be
insignificant, but consider the example of a simple radar system with a PRF of
10 kHz and 200 range bins. If each range bin is tested, this system makes



(10,000)(200) = two million detection decisions per second. With PFA = 10–8,
false alarms occur on average only once every 50 seconds. If PFA rises to 10–6,
the system is confronted with an average of two false alarms every second. How
much of a concern this increase is depends on the impact of a false alarm in the
overall radar system. This could include increased demand on radar or signal
processor resources to confirm or reject the false alarm or to start unneeded
tracks, increased cluttering of an operator display, or reduced time for search
and tracking of other targets.

If the interference power drops below that assumed when calculating the
threshold, the false alarm probability will drop. This may seem inconsequential
or even desirable, but a reduced PFA represents a threshold that is higher than
necessary to achieve the system design goals. Since PFA and PD always increase
or decrease together as discussed earlier, this means that the probability of
detection is less than could be achieved with a correctly set threshold.

6.5.2   Cell-Averaging CFAR
In order to obtain predictable and consistent performance the radar system
designer would usually prefer a constant false alarm rate. To achieve this the
actual interference power must be estimated from the data in real time so that the
detector threshold can be adjusted to maintain the desired PFA. A detection
processor that can maintain a constant PFA is called a CFAR processor.

Figure 6.18 shows a generic radar detection processor. The detector
shown is for a system using range-Doppler processing, but other systems might
consider only a one-dimensional vector of range cells in making a decision.
Still other systems might perform the detection process on a radar image, so that
the individual cells are pixels in a two-dimensional image. Whatever the form
of the data, the detector will test each available data sample for the presence or
absence of a target. The current cell under test (CUT), denoted by xi in Fig.
6.18, is compared against a threshold determined by the interference power. If
the value of the data in the test cell exceeds the threshold, the processor
declares a target present at the range and velocity (or range, or image location,
as appropriate) corresponding to the CUT. The next cell is then tested and so
forth until a target present/target absent decision has been made for all cells of
interest.



 FIGURE 6.18   Generic detection processor.
 

To set the threshold for testing cell xi, the interference power in the same
cell must be known. Since it may be variable, it must be estimated from the data.
The approach used in CFAR processing is based on two major assumptions:

        •  The neighboring cells contain interference with the same statistics as the
CUT (called homogeneous interference), so that they are representative
of the interference that is competing with the potential target.

        •  The neighboring cells do not contain any targets; they contain
interference only.

Under these conditions, the interference statistics in the CUT can be estimated
from the measured samples in the adjoining cells.

The statistics that must be estimated are determined by the statistics needed
to implement the threshold test. For Gaussian interference and linear or square
law detectors, the interference will be Rayleigh or exponential distributed,
respectively. In either case, the interference PDF has only one free parameter,
the mean interference power. Thus, the CFAR processor must estimate the mean
interference power in the CUT by using the measured data in the adjoining cells.

For a more specific example, consider the square law case. The PDF of a
cell xi, assuming the interference is i.i.d. WGN in the I and Q signals with

power  in each (total power of ), is

(6.124)
 
As seen in Eq. (6.121), knowledge of  is needed to set the threshold. When

exact knowledge of  is not available, it must be estimated.
Assume that N cells in the vicinity of the cell under test are used to

estimate , and that the interference in each is i.i.d. WGN. The joint PDF of a
vector x of N such samples is

(6.125)
 



Equation (6.125) is the likelihood function ℓ (see Chap. 7) for the observed

data vector x. The maximum likelihood estimate of  is obtained by

maximizing Eq. (6.125) with respect to  while Σ xi is held constant (Kay,
1993). It is equivalent and more convenient to maximize the log-likelihood
function

(6.126)
 
Setting the derivative of Eq. (6.126) with respect to  equal to zero gives

(6.127)
 
Solving Eq. (6.127) for  gives the unsurprising result that the maximum
likelihood estimate is just the average of the available data samples:

(6.128)
 
The required threshold is then estimated as a multiple of the estimated
interference power:

(6.129)
 
Because the interference power and thus the threshold are estimated from an
average of the power in the cells adjoining the test cell, this CFAR approach is
referred to as cell-averaging CFAR  (CA CFAR). Because the interference
power is estimated rather than known exactly, the scale factor α will not have
the same value as in Eq. (6.121); it will be derived in the next subsection.

Equation (6.128) states that the parameter of the exponential PDF
describing the square-law detected data should be estimated from an average of
N adjoining data samples. Figure 6.19 shows two examples of how the samples
to be averaged are selected. Figure 6.19a shows a one-dimensional data vector
of range cells with the CUT, xi, in the middle. The data in the grey cells to either
side, representing data from ranges nearer and farther from the radar than the
CUT, are averaged to estimate the noise parameter. These cells are called the



reference cells . The cross-hatched cells immediately adjacent to the CUT,
called guard cells, are excluded from the average. The reason is that a target, if
present, might straddle range cells. In that case, the energy in the cell adjacent to
xi would contain both interference and target energy and would therefore not be
representative of the interference alone. The extra energy from the target would
tend to raise the estimate of the interference parameter. For instance, in the

square law detector case, the estimate of  would be too high, resulting in a
threshold that was too high and a lower PFA and PD than intended. If the system
range resolution is such that anticipated targets could extend over multiple range
cells, more than one guard cell would be skipped on each side of the CUT. The
combined reference cells, guard cells, and cell under test are referred to as the
CFAR window.

 FIGURE 6.19   CFAR windows: (a) one-dimensional window for range-only
processor, (b) two-dimensional window for range-Doppler processor.
 

Figure 6.19b shows a typical two-dimensional equivalent to the one-
dimensional case, in this case applied to a range-Doppler matrix after detection.
Both the guard region and the reference window are now two dimensional. A
two-dimensional CFAR window could also be applied to synthetic aperture
radar imagery, in which case the two dimensions would be simply the range and
cross-range spatial dimensions. In the range-Doppler case, the cell-averaging
CFAR might be applied only over certain range and Doppler cells because



ground clutter renders the interference nonhomogeneous in Doppler and
possibly in range.

6.5.3   Analysis of Cell-Averaging CFAR
The intent of the adaptive calculation of the threshold is to provide a constant
false alarm rate despite varying interference power levels. In this subsection,
the detector performance is analyzed for the case of a square law detector to see
if this goal has been achieved. The threshold computed according to Eq. (6.129)
will be a random variable, and therefore so will be the probability of false
alarm. The detector will be considered to be CFAR if the expected value of PFA

does not depend on the actual value of .
Combining Eqs. (6.128) and (6.129) gives an expression for the estimated

threshold

(6.130)
 
Define zi = (α/N)xi; thus  Standard results from probability theory and
Eq. (6.124) give the PDF of zi

(6.131)
 
The PDF of  is the Erlang density

(6.132)
 
The PFA observed with the estimated threshold will be . This is now
also a random variable; its expected value is

(6.133)
 
Completing this standard integral and performing some algebraic manipulations



gives the final result:

(6.134)
 
For a given desired , the required threshold multiplier is obtained by solving
Eq. (6.134) to obtain

(6.135)
 
Note that  does not depend on the actual interference power  but only on
the number N of neighboring cells averaged and the multiplier. Thus, the cell-
averaging technique exhibits CFAR behavior.

Now that a rule for selecting the CA CFAR threshold has been determined,
the detection performance can be determined. Equation (6.99) shows that for a
single sample of a Swerling 1 or 2 target with the threshold ,
where  is the mean signal-to-noise ratio. The expected value of PD is obtained
by averaging over the threshold

(6.136)
 
This integral is the same general form as Eq. (6.133); the result is

(6.137)
 
Note that this also does not depend on the interference power. However, this
result is specific to the assumptions of complex WGN, a square law detector,
Swerling 1 or 2 target, and a single test sample.

Figure 6.20 illustrates the operation of cell-averaging CFAR. The

simulated data correspond to additive complex WGN with power 10log10( )
= 20 dB. A single nonfluctuating target with a power of 35 dB is present in
range bin 50; the SNR is thus 10 log10(χ) = 15 dB.



 FIGURE 6.20   Example of cell-averaging CFAR threshold behavior.
 

If the desired PFA = 10–3, Eq. (6.121) gives the ideal T = 691, equal to 28.4 dB.
This threshold level is indicated on the plot. Note that the ideal threshold is a
multiple of –ln(PFA) = 6.91 times the true interference power; equivalently, the
threshold is 8.4 dB above the interference power level.

Now consider a CA CFAR with leading and lagging windows of 10 cells
each after skipping a three-cell “guard region” to each side of the CUT. Thus N
= 20 cells are averaged to estimate the interference power.15 From Eq. (6.135),
the multiplier α will be 8.25, placing the threshold about 9.2 dB above the
estimated mean power. The line labeled “CFAR threshold” shows the
computed threshold as the reference window slides across the data. Except in
the vicinity of the target, the estimated threshold tracks the ideal threshold well,
staying within 2 dB across most of the data. Note that the data exceed the CFAR
threshold only at range bin 50. In this example the CFAR detector works very
well: a detection would correctly be declared when the CFAR test cell is
located at range bin 50, but there are no false alarms (threshold crossings) at
any other range bins.

The increase in the threshold to either side of the target location is
characteristic of cell-averaging CFAR. For the particular CFAR window
configuration used here the cell containing the target will be in the leading
reference window and will be included in the estimate of the interference power

when the test cell is between range bins 37 and 46. The estimated power 
and, in turn, the computed threshold  will be significantly raised. This
phenomenon repeats when the test cell is between bins 54 and 63 so that the



target is in the lagging reference window. When a target is in the reference
window, the assumption that all of the reference cells share the same
interference statistics as the test cell is violated and the estimate of the
interference power is unreliable. However, when the test cell is located at the
cell containing the target, the reference windows contain only noise samples and
the threshold falls to an appropriate level, allowing target detection. The extent
of the elevated threshold regions to either side of a target equals the extent of the
leading and lagging windows. The extent of the region of normal threshold level
between the two elevated regions equals the total number of guard cells plus
one (for the test cell).

As the number of reference cells N becomes large, the estimate  should

converge to the true value  and the average probabilities of detection and
false alarm should also converge to the values obtained in Sec. 6.3.4. To see
this, it is easier to work with ln  than with  itself:

(6.138)
 
Taking the limit as N → ∞

(6.139)
 
Similarly

(6.140)
 
Combining Eqs. (6.139) and (6.140) gives the relation:

(6.141)
 
which is identical to Eq. (6.101) for a Swerling 1 target, no noncoherent
integration, and a known interference power.

All of the previous discussion has been for a square-law detector. Similar
analyses can be carried out for a linear detector, but the results are more
difficult to obtain in closed form. Suppose that the measurements {wi} are the



output of a linear detector. The threshold will be set according to

(6.142)
 
A formula can be found relating  and  that must be solved iteratively and is
numerically difficult (Raghavan, 1992). The exact results show excellent
agreement with the approximation (Di Vito and Moretti, 1989)

(6.143)
 
where c = 4/π. Notice the similarity to Eq. (6.135). The square root is a
consequence of using a linear rather than square-law detector. For N > 4 the (c –
1) exp(1 – N) term is negligible and since c ≈ 1.27, . Furthermore,
although the square law detector CA CFAR performs marginally better than the
linear detector for some parameter choices, its performance is virtually
identical for parameter values of practical interest.

In the example of Fig. 6.20 it was noted that for the parameters given the
ideal threshold would be 8.4 dB above the mean power if the interference
power were known exactly, but if the power had to be estimated from the data
with N = 20 the threshold would be 9.2 dB above the estimated power level.
This higher threshold compared to the interference power level is necessary to
compensate for the imperfectly known interference power and guarantee the
desired . Because the threshold multiplier is increased in CFAR, the average
probability of detection for a target of a given SNR will be decreased relative
to the known-interference case. Alternately, to achieve a specified  for a given

, a higher SNR will be required than would be were the interference power
known exactly. This increase in SNR required to achieve specified detection
statistics when using CFAR techniques is called the CFAR loss.

To quantify the CFAR loss in the case of a CA CFAR, combine Eqs.
(6.134) and (6.137) to eliminate the multiplier α and solve for the value of SNR
required to achieve a specified combination of  and . The result is a
function of the number of samples averaged and is denoted by :

(6.144)
 
As N → ∞, the estimate of interference power converges to the true value and
so  and  will converge to the values given by Eqs. (6.139) and (6.140).



Similarly combining these two equations gives the value of SNR, denoted by ,
required to achieve the specified probabilities when the interference estimate is
perfect:

(6.145)
 
The CFAR loss is then simply the ratio (Levanon, 1988; Hansen and Sawyers,
1980)

(6.146)
 

Figure 6.21 plots Eq. (6.146) for a  of 0.9 and three values of . The
loss is greatest for lower values of  and decreases as expected when the
number of reference cells increases. For small (N < 20) reference windows, the
CFAR loss can be several dB. High losses make values of N less than 10
unacceptable in most cases. Although not shown here, the CFAR loss also
increases with increasing  for a given  and N. Also, although these results
were derived for a Swerling 1 or 2 target, the literature shows that the CFAR
loss is roughly the same for all of the Swerling target fluctuation models and the
nonfluctuating case (Nathanson, 1991).

 FIGURE 6.21   Cell-averaging CFAR loss for Swerling 1/2 target in complex
WGN with .
 



6.5.4   CA CFAR Limitations
The cell-averaging CFAR concept relies on two major assumptions:

      1.  Targets are isolated; specifically, targets are separated by at least the
reference window size, so that no two are ever in the reference window
at the same time.

      2.  All of the reference window interference samples are independent and
identically distributed, and that distribution is the same as that of the
interference component in the cell containing the target; in other words,
the interference is homogeneous.

While useful in many situations, either or both of these conditions are frequently
violated in real-world scenarios. The second assumption is particularly likely
to be untrue when the dominant interference is clutter, i.e., echo from terrain,
rather than thermal noise. In this section the effect on cell-averaging CFAR of
violating these assumptions is discussed, and then some modifications that
combat these effects are described.

Target masking occurs when two or more targets are present such that,
when one target is in the test cell, one or more targets are located among the
reference cells. Assuming that the power of the target in the reference cell
exceeds that of the surrounding interference, its presence will raise the estimate
of the interference power and thus of the CFAR threshold. The target(s) in the
reference window can “mask” the target in the test cell because the increased
threshold will cause a reduction in the probability of detection, i.e., the
detection is more likely to be missed. Equivalently, a higher SNR will be
required to achieve a specified .

Figure 6.22 is an example of target masking. As before, the interference
level is 20 dB, the target in range bin 50 has an SNR of 15 dB, and the threshold
is computed using 20 reference cells and a desired  of 10–3. However, a
second target with an SNR of 20 dB in range bin 58 elevates the estimated
interference power when the first target is in the test cell. This increase in
threshold is sufficient to prevent detection of the first target in this case. On the
other hand, the 15 dB target does not affect the threshold enough to prevent
detection of the second, stronger target.



 FIGURE 6.22   Illustration of target masking. See text for details.
 

Precise analysis of the effect of a target in the reference cells is
conceptually simple but somewhat complicated in practice. However, a
relatively simple approximation that illustrates the effect of an interfering target
can be derived. Consider a single interfering target with power γi that
contaminates only one of the N CFAR reference cells. The mean SNR of this
interferer is . The expected value of the new threshold will be

(6.147)
 
Thus,  is again a multiple of the interference power  as in Eq. (6.129)
but with a multiplier α′ given by

(6.148)
 
The elevated threshold will decrease both the PD and PFA. Using Eq. (6.148) and
Eq. (6.135) in Eq. (6.137) gives an expression for the new value of  in terms
of the original design value of 



(6.149)
 
Note that if  (no interfering target) or N → ∞ (target influence becomes
negligible), then . Figure 6.23a illustrates this behavior for one example,
where  and N is either 20 or 50 cells. The probability of detection
without the interferer for these two cases is about 0.78 and 0.8, respectively.



 FIGURE 6.23   Approximate effect of interfering target on cell-averaging CFAR.
Threshold set for PFA = 10–3: (a) reduction in PD, (b) equivalent masking loss.
 

Another way to characterize the effect of an interfering target is by the
increase in SNR required to maintain the original value of . Let  be the value
of SNR required to attain the original  using the elevated threshold .
Equation (6.137) expressed  in terms of the original value of  and threshold



multiplier α. Approximately the same relationship will determine the detection
probability  attained with the new threshold multiplier α′ and SNR .  will
equal  if

(6.150)
 
Using Eq. (6.148) in Eq. (6.150) leads to

(6.151)
 
Figure 6.23b plots the approximate “target masking loss”  in decibels for the
same conditions as in Fig. 6.23a.

The results given in Eqs. (6.149) and (6.151) are only approximations. A
more careful analysis would mimic the basic CA CFAR analysis of Sec. 6.5.3
by finding the PDF of the threshold in the presence of an interfering target, then
using that PDF to find the expected values of PD and PFA. This approach is
complicated by the fact that the interfering target changes the PDF of the cell
containing it. For instance, if the interferer is nonfluctuating the PDF of the
power in its cell will be a generalized noncentral chi-squared, while all of the
remaining cells will still be exponentially distributed. The PDF of the threshold
will be a mixture of the noncentral chi-squared and exponential PDFs. To avoid
calculating this PDF, the expected value of the threshold was used in the
expressions for the case of no interfering target. This gives a simple
approximation that behaves correctly in the limits of large and small mean
interferer SNR .

Figure 6.24 illustrates a related phenomenon, self-masking by a distributed
target. The interference, detector, and target characteristics are the same as in
Fig. 6.20, with the exception that the physical extent of the target is now greater
than a range bin so that the target signature is spread over three consecutive
cells. Figure 6.24a shows the effect when no guard cells are used. When one of
the three target cells is the test cell, the other two contaminate the interference
estimate, raising the threshold just enough to prevent detection. This effect is the
reason for using guard cells. Their impact is illustrated in Fig. 6.24b, where
three guard cells are used to each side of the test cell. This lengthens the total
CFAR window slightly, but assures that when the test cell is centered on the
target, the adjoining target cells do not contaminate the interference estimate and
the target is now detected.



 FIGURE 6.24   Self-masking and guard cells in CA CFAR: (a) threshold using no
guard cells, (b) threshold using three guard cells to each side of the test cell.
See text for details.
 

If the dominant interference is clutter rather than thermal noise or jamming,
the interference will often be highly heterogeneous. The radar may collect data
over a terrain region that is, for instance, part open field and part forested, or



part land and part water. When the test cell is at or near the boundary between
two clutter regions having different reflectivities, the statistics in the leading and
lagging window will not be the same. Such clutter edges can cause both false
alarms at the edge and masking of targets near the edge and in the lower-
reflectivity region.

Figure 6.25 shows the false alarm effect of a clutter edge. The first 100
bins have a mean interference power of 20 dB. The clutter power rises suddenly
by 10 dB to a mean of 30 dB in the last 100 bins, simulating a change in terrain
type, perhaps from open field to a wooded area. One target is present at bin 50.
Two ideal thresholds corresponding to PFA = 10–3 are shown, one for each of the
two clutter regions. The threshold estimated by the cell-averaging CFAR tracks
each region, but with a transition region in the range of bins 87 through 113. In
this example, the clutter happens to include a high-amplitude fluctuation near the
clutter edge. Because the CFAR threshold does not rise to the correct level for
the new clutter level until several cells after the transition, the clutter spike
crosses the CFAR threshold and a false alarm occurs. However, the target at bin
50 is detected normally.

 FIGURE 6.25   False alarms at a clutter edge.
 

Figure 6.26 illustrates the second effect of clutter edges. The clutter
regions are the same as in Fig. 6.25, but the particular clutter sequence is
different. A target with an SNR of 15 dB is located at bin 95, five bins away
from the clutter edge. The CFAR window uses 10 cells in both the leading and
lagging windows, as well as three guard cells on either side of the test cell, for



a total CFAR window length of 27 cells. Thus, when the test cell is centered
over the target, the leading reference window is mostly filled by clutter from the
high-reflectivity region, elevating the threshold above the target and causing a
missed detection. (Note that this example does not also suffer a clutter-edge
false alarm.)

 FIGURE 6.26   Target masking at a clutter edge. Clutter parameters are the same
as in Fig. 6.25.
 

6.5.5   Extensions to Cell-Averaging CFAR
The performance limitations caused by nonhomogeneous clutter and interfering
targets have led to the development of numerous extensions to the cell-averaging
CFAR concept, each designed to combat one or more of the deleterious effects.
These techniques are often heuristically motivated and can be difficult to
analyze exhaustively due to the many variations in clutter non-homogeneity,
target and interfering target SNR, CFAR window size, and CFAR detection
logic. Additional information on many of the techniques described here is
available in Keel (2010).

One common CFAR extension is the smallest-of cell-averaging CFAR
(SOCA CFAR); the method is also known as the least-of cell-averaging CFAR .
This technique is intended to combat the masking effect caused by an interfering
target among the CFAR reference cells seen in Fig. 6.22. In an N-cell SOCA
approach, the lead and lag windows are averaged separately to create two
independent estimates  and  of the interference mean, each based on N/2
reference cells. The threshold is then computed from the smaller of the two



estimates in a manner similar to Eq. (6.129)

(6.152)
 
If an interfering target is present in one of the two windows it will raise the
interference power estimate in that window. Thus, the lesser of the two
estimates is more likely to be representative of the true interference level and
should be used to set the threshold.

Because the interference power is estimated from N/2 cells instead of N
cells, the threshold multiplier α required for a given design value of  will be
increased. It is tempting to conclude that the threshold multiplier αSO for SOCA
CFAR could be calculated using Eq. (6.135) with N replaced by N/2. A more
careful analysis shows that the required multiplier is the solution of the equation
(Weiss, 1982)

(6.153)
 
This equation must be solved iteratively. As an example, for  and N =
20, αSO = 11.276. In contrast, the CA CFAR multiplier is α = 8.25 for the same
conditions.

Figure 6.27a compares the behavior of conventional CA CFAR and SOCA
CFAR on simulated data containing two closely spaced targets of mean SNR 15
and 20 dB, a 10-dB clutter edge, and a third 15-dB target near the clutter edge.
As before, the lead and lag windows are both 10 samples (thus N = 20) and
there are three guard cells to each side of the test cell. The ideal threshold
shown is based on . The threshold multipliers are α = 8.25 for CA
CFAR and αSO = 11.276 for SOCA CFAR as discussed previously.



 FIGURE 6.27   Comparison of conventional, “smallest-of,” and “greatest of”
cell-averaging CFAR with multiple targets and a clutter edge: (a) CA and
SOCA CFAR, (b) CA and GOCA CFAR.
 

The CA CFAR masks the weaker of the two closely spaced targets and
also fails to detect the target near the clutter edge, but does not exhibit a false
alarm at the clutter edge in this instance. The SOCA threshold, in contrast,



easily allows detection of both targets; the half of the CFAR window
contaminated by the other target is simply ignored by the SOCA logic.
Similarly, the SOCA CFAR detects the target near the clutter edge, again
because the half of the window containing the higher-power clutter is ignored.

Figure 6.27a also shows the principal failing of the SOCA method.
Although the CA CFAR did not exhibit a false alarm at the clutter edge, the
SOCA CFAR does. This is a natural consequence of the SOCA logic. As the
CFAR window crosses a clutter edge, there will be a region in which the test
cell is in the higher interference power region, while one of the lead or lag
windows is filled mostly or entirely with samples of the lower power
interference. The SOCA logic ensures that the threshold is then based on the
lower interference power, significantly raising the probability that the clutter in
the test cell will cross the threshold.

For systems and environments in which closely spaced targets are unlikely
but the clutter is highly nonhomogeneous, clutter-edge false alarms may be of
much more concern than target masking. In this case, the observations above
suggest that a greater-of cell-averaging CFAR  (GOCA CFAR) logic be used.
As with the SOCA technique, the lead and lag windows are averaged
separately, but now the threshold is based on the larger of the two averages:

(6.154)
 
Similar to the SOCA case, the GOCA threshold multiplier is the solution of the
equation (Weiss, 1982)

(6.155)
 
For N = 20 and , αGO = 7.24.

Figure 6.27b illustrates the performance of the GOCA CFAR logic on the
same example used in Fig. 6.27a. The GOCA threshold is now equal to or
higher than the CA CFAR threshold. Not surprisingly, the GOCA logic
successfully avoids the false alarm at the clutter edge. However, the strong
target masks the weaker target. Furthermore, the weaker target even makes
detection of the stronger target more marginal, although in this case the detection
is successful. The GOCA CFAR also misses the target near the clutter edge due
to the masking effect of the elevated clutter. Additional analysis of the GOCA



CFAR for the case of a linear detector is provided in Pace and Taylor (1994).
The SOCA and GOCA CFARs estimate the threshold using only half of the

reference cells. Consequently, they exhibit a higher CFAR loss above than the
conventional CA CFAR. This additional loss is less than 0.3 dB for the GOCA
CFAR over a wide range of parameters (Hansen and Sawyers, 1980). The
additional loss for the SOCA CFAR is greater, especially for small values of N.
It is necessary to use N > 32, approximately, to ensure that the additional loss is
less than 1 dB over a wide range of  values (Weiss, 1982). A mitigating
influence for either approach is that the use of a split window may allow a
larger value of N than would normally be used in a conventional cell-averaging
CFAR. The reason is that the window size in CA CFAR is often limited by
concern over nonhomogeneous clutter. Since it is known that only half the
window will actually be used, a larger value of N can be tolerated.

Still another way to combat the target masking problem is censored or
trimmed mean CFAR (Ritcey, 1986). In these techniques, the M reference cells
(M < N) having the highest power are discarded and the interference power is
estimated from the remaining N – M cells. In some versions of trimmed mean
CFAR both the highest and lowest power reference cells are discarded.
Consider an example where M = 2. If an interfering target is present, but is
confined to only one or two cells (or if two interferers are present, each
confined to one cell), the censoring process will completely eliminate their
elevating effect on the estimate of interference power. There will, however, be
a small additional CFAR loss due to the use of only N – M cells instead of N
cells (Ritcey and Hines, 1989). Proper selection of M requires some knowledge
of the maximum number of interferers to be expected, as well as whether they
will be confined to one cell or will be distributed over multiple cells.
Typically, one-quarter to one-half of the reference window cells are discarded
(Nathanson, 1991). In addition, implementation of the technique requires logic
to rank order the reference cell data, sometimes a significant implementation
consideration at the speeds at which real-time CFAR calculations often must be
done.

Many additional variations on the approaches described previously can be
used. For example, censoring can be combined with any of the CA, SOCA, or
GOCA techniques. A more elaborate approach attempts to examine the behavior
of the interference in the lead and lag windows and then choose an appropriate
CFAR algorithm. One version of these ideas computes the mean and the
variance in each of the lead and lag windows. If the variance in a window
exceeds a certain threshold, it is assumed that the data in that window are not
homogeneous Rayleigh interference, most likely due to target contamination. A
series of logical decisions then determines whether to combine the windows for
a CA CFAR using the data from both windows, use CA CFAR using only one
window of data, or use GOCA or SOCA CFAR (Smith and Varshney, 2000).
For example, if the means differ by less than a specified threshold and the



variances in each window are less than the variance threshold, conventional CA
CFAR is used to set the detection threshold. If instead the means do differ by
more than that threshold, GOCA CFAR is applied. If the variance in one
window exceeds the variance threshold, but in the other window does not, CA
CFAR based only on the low-variance window is applied. If both windows
have variances exceeding the variance threshold, SOCA CFAR is applied.

Another recent attempt to develop a CFAR algorithm that provides good
performance in the presence of clutter edges and target masking while
maintaining performance near to that of CA CFAR in homogeneous clutter is the
switching CFAR  (S-CFAR) (Van Cao, 2004). In this approach, the CFAR
reference window is divided into two groups, not necessarily contiguous: those
cells above a threshold set as a fraction of the test cell value, and those below.
If the number of cells in the low amplitude group exceeds some threshold Nt,
typically set to about one half of the total number N of reference cells, all N
cells are used in a cell-averaging calculation. If the number of low amplitude
cells is less than Nt, the threshold is set based only on the low amplitude cells.
The principal advantage appears to be reduced losses compared to order
statistic CFAR (OS CFAR, described in the next section) due to masking targets
and somewhat improved clutter-edge performance, while avoiding the need for
sorting required by OS CFAR.

Yet another approach that has been proposed to combat masking is the use
of alternate detector laws (i.e., not linear or square-law). By far the most
common is log CFAR, which applies conventional cell-averaging CFAR logic
to the logarithm of the received power samples.16 There appears to be no simple
closed form analysis equivalent to Eqs. (6.124) through (6.129) for determining
the relationship between an average of the log-detected data and the interference
power . However, motivated by considering the logarithm of the threshold
computation for a square law detector seen in Eq. (6.130), the log CFAR
threshold is computed by adding an offset to the averaged logarithmic data:

(6.156)
 

In general, applying a logarithmic transformation to the data compresses its
numerical dynamic range. This was an important implementation advantage in
older systems built using analog or fixed-point digital hardware, but is less of a
consideration with more modern processors. However, averaging the
logarithmic data has the additional advantage that isolated interferers in the
reference window do not have as great an influence on the numerical value of
the estimated interference mean, thus reducing target masking effects. This effect
is clearly shown in Fig. 6.28, which shows the same data set used previously
containing closely spaced targets with 15 and 20 dB signal-to-clutter ratios and



a 10-dB clutter edge. The two targets are easily detected. Unfortunately, log
CFAR exhibits poor performance at clutter edges, in particular an increased
vulnerability to false alarms at clutter edges. In this example, not only does a
false alarm occur at the clutter edge, but the target near the edge is not detected.

 FIGURE 6.28   Comparison of CA CFAR and log CFAR on the same data as Fig.
6.27.
 

No explicit expression is known for finding the required threshold offset
αlog as a function of . Results have been obtained for  and  that can be
solved numerically to find suitable values of the threshold (Novak, 1980). To
create Fig. 6.28, a Monte Carlo simulation was instead used to determine the
required value by trial and error. The result for N = 20 reference cells and 

 is αlog = 11.85 dB.
The CFAR loss of a log CFAR detector can also be estimated using Monte

Carlo simulation techniques (Hansen and Ward, 1972). The log CFAR increases
the CFAR loss relative to the linear detector. In homogenous clutter the number
of log CFAR reference window cells Nlog required to achieve the same CFAR
loss as an N-cell conventional CA CFAR using a linear detector is
approximately:

(6.157)
 
Thus, the use of the log detector increases the required CFAR window size by



about 65 percent to avoid increasing the CFAR loss. Furthermore, for N > 8 the
log CFAR loss in decibels is about 65 percent more than the loss for a CA
CFAR with the same value of N.

6.5.6   Order Statistic CFAR
An alternative to cell-averaging CFAR is the class of rank-based or order
statistic CFARs (OS CFAR). Proposed primarily for combating masking
degradations, OS CFAR retains the one-dimensional or two-dimensional sliding
window structure of CA CFAR, including guard cells if desired, but does away
entirely with averaging of the reference window contents to explicitly estimate
the interference level. Instead, OS CFAR rank orders the reference window data
samples {x1, x2,…, xn} to form a new sequence in ascending numerical order,
denoted by {x(1), x(2), …, x(N)}. The kth element of the ordered list is called the
kth order statistic. For example, the first order statistic is the minimum, the Nth
order statistic is the maximum, and the (N/2)th order statistic is the median of
the data {x1, x2,…, xN}. In OS CFAR, the kth order statistic is selected as
representative of the interference level and a threshold is set as a multiple of
this value:

(6.158)
 
The interference is thus estimated from only one actual data sample, instead of
an average of all of the data samples. Nonetheless, the threshold in fact depends
on all of the data since all of the samples are required to determine which will
be the kth largest.

It will be shown that this algorithm is in fact CFAR (i.e., does not depend

on the interference power ), and the threshold multiplier required to achieve
a specified  will be determined. The analysis follows (Levanon 1988). To
simplify the notation, consider the square-law detected output xi normalized to
its mean, ; this will have an exponential PDF with unit mean. The rank-
ordered set of reference samples {yi} are denoted by {y(i)}. For a given
threshold T, the probability of false alarm will be

(6.159)
 
The average PFA will be computed as

(6.160)
 



where pT(T) is the PDF of the threshold. Because T is proportional to the kth-
ranked reference sample y(k), it is necessary to find the PDF of y(k), the kth
largest of N i.i.d. random variables. The result can be found in many textbooks
and is

(6.161)
 
where Pyi (y) is the cumulative distribution function (CDF) of yi. For complex
WGN, the PDF and CDF of a single square-law detected and normalized
reference sample yi are

(6.162)
 
Using Eq. (6.162) in Eq. (6.161) gives the PDF of the kth ranked sample:

(6.163)
 

(6.164)
 
Inserting this result into Eq. (6.160) gives

(6.165)
 
With the change of variable T′ = T/αOS this becomes the slightly more convenient
form:



(6.166)
 
Utilizing integral 3.312(1) in Gradshteyn and Ryzhik (1980) gives

(6.167)
 
where B(·,·) is the beta function which in turn can be expressed in terms of the
gamma function Γ(·) as shown. For integer arguments, Γ(n) = (n – 1)! and Eq.
(6.167) reduces for integer αos to

(6.168)
 

Figure 6.29 plots  as a function of αOS for two choices of OS windows,
one with N = 20 and one with N = 50. In the first case, the k = 15th order
statistic is chosen to set the threshold, while in the second the k = 37th order
statistic is selected. Plots such as these can be used to determine the threshold
multiplier needed to achieve a specified  for a given OS CFAR window
configuration. For example, with N = 20 and k = 15, a multiplier of αOS = 6.857
gives .



 FIGURE 6.29    versus threshold scale factor αOS in order statistics CFAR.
The selected order statistic is chosen as approximately 0.75N.
 

Figure 6.30 shows the performance of the OS CFAR on the same data set
considered previously using N = 20 again and choosing the k = 15th order
statistic to set the threshold. The use of the ordered statistic instead of a mean
estimate makes the detector almost completely insensitive to masking by closely
spaced targets so long as the number of cells contaminated by interfering targets
does not exceed N – k. In this example, both closely spaced targets are readily
detected. Although they were used in Fig. 6.30 for consistency, guard cells are
less important in an OS CFAR since the rank ordering process will not be
affected by targets spreading outside of the test cell. The effect of the window
length and choice of order statistic k on the behavior at clutter edges are
discussed in (Rohling, 1983). If k ≤ N/2, there will be extensive false alarms at
clutter edges. Thus, k is usually chosen to satisfy N/2 < k < N. Typically, k is on
the order of 0.75N (Nathanson, 1991).



 FIGURE 6.30   Comparison of CA CFAR and OS CFAR on the same data as Fig.
6.27.
 

To determine the OS CFAR loss, it is necessary to determine the SNR
required to obtain a specified  for a given  and compare that result to the
ideal threshold or to CA CFAR in homogeneous interference. By repeating the
analysis above but using the Swerling 1 or Swerling 2 model (Rayleigh
amplitude PDF) for the test cell, it can be shown that the average probability of
detection is also given by Eq. (6.167), but with αOS replaced by (Levanon,
1988)

(6.169)
 
where  is the average SNR of the target. By varying αOS or , curves of 
versus  can be developed and the CFAR loss calculated. An alternative
analysis approach is given by Blake (1988). In the absence of interfering targets,
the OS-CFAR suffers a small additional loss over CA CFAR. The value
depends on both k and N but is typically on the order of 0.3 to 0.5 dB. If
interfering targets are present, the OS CFAR loss increases only very slowly
until the number of interferers exceeds N – k, the number of “ignored” high-rank
cells. In contrast, the loss in CA CFAR increases very rapidly in this case due
to the elevated estimate of the interference power (Blake, 1988). Thus, OS
CFAR losses are lower than CA CFAR losses in the presence of interferers.
Additional results on the performance of OS CFAR, including the effect of



noncoherent integration and its behavior in Weibull clutter, are available in
Shor and Levanon (1991).

6.5.7   Additional CFAR Topics
“Adaptive CFAR” is the name given to a growing class of CFAR algorithms
designed to improve performance in nonhomogeneous clutter.17 Generally, they
dispense with the fixed CFAR window structure (usually with half of the cells
in each of the lead and lag windows). Instead they typically construct a
statistical test to determine if the reference cells span one clutter field or two,
i.e., whether or not the reference cell data are homogeneous. If not
homogeneous, the algorithms estimate not only the clutter statistics in each field,
but at which cell the transition from one to the other occurs (and therefore which
type of clutter is competing with the target in the CUT).

The basic approach to adaptive CFAR for nonhomogeneous clutter was
described in Finn (1986). The algorithm assumes a CFAR window of total
length N cells, including the CUT, that spans two clutter fields, i.e., two regions
with different statistical parameters. The clutter edge is presumed to occur
between samples M and M + 1; however, M is not known. Initially, it is also
assumed that the clutter follows the usual square-law detected, exponential
distribution. Let (M) denote the estimate of  obtained by averaging the M
samples 1 through M forming the first clutter region, and  (M) be the average
obtained from the N – M samples M + 1 through N forming the second region.
The algorithm starts by setting M = 1 and computing  (1), which is the
“average” of only cell #1, and  (1), the average of the remaining N - 1 cells.
This process is repeated for M = 2, …, N = 1. Thus, a pair of sample means 
(M) and  (M) are computed for each of the N – 1 possible transition points
between the two-clutter regions.

The next step is to choose the most likely transition point Mt. The maximum
likelihood estimate of this transition point is the value Mt of M that maximizes
the log-likelihood function (Finn, 1986):

(6.170)
 
Once Mt is identified it is also known if the CUT is in the first or second clutter
region. Standard CA CFAR, using the appropriate mean estimate and the number
of cells with which it is estimated, can then be applied. For example, if the CUT
is in the first region the threshold would be set according to

(6.171)
 



Note that this procedure is effectively SOCA CFAR when the CUT is in the low
clutter region, and GOCA CFAR when it is in the high clutter region (assuming
the transition point is correctly located).

The discussion above does not allow for the possibility that the clutter is
uniform. To address this an additional likelihood test is conducted to compare
ln Λ(Mt) as computed in Eq. (6.170) with M = Mt to the corresponding metric
under the assumption of uniform clutter, . If ln Λ (0)
> ln Λ(Mt) the clutter is assumed homogeneous and conventional CA CFAR is
applied.

When the two-region clutter hypothesis is accepted, the estimate of the
transition point Mt can of course be incorrect. If the target is in fact in the low
clutter region but is incorrectly determined to be in the high clutter region, the
high clutter statistics will be used to set the threshold. There will then be an
increased probability that the high clutter will mask the target. If the target is in
the high clutter region but is incorrectly determined to be in the low clutter
region, the low clutter statistics will be used to set the threshold, which will
then be too low. While the target will have an enhanced probability of detection,
the false alarm probability will rise, possibly dramatically. For this reason, the
adaptive CFAR algorithm is modified to bias the decision in favor of the
hypothesis that the target is in the high clutter region. While this will increase
masking effects somewhat, it avoids the generally more damaging problem of
large increases in the false alarm rate. Details are given by Finn (1986).

Again, many of the extensions to CA CFAR can also be applied to the
adaptive CFAR. It can be applied to log normal or Weibull clutter by computing
both sample means and variances in each region. The data in each region can be
censored prior to estimating the statistics. Order statistic rather than cell-
averaging rules can be used to set the threshold. Many such variations are
available in the literature, as are algorithms building on the basic adaptive
concept but applying different statistical estimators and decision logics.

All of the results discussed in this chapter so far have assumed exponential
power (equivalently, Rayleigh voltage) interference, which is the appropriate
model when the primary interference is WGN, whether the source is low-level
receiver noise or high-level noise jamming. Only one parameter, the mean

power , is required to completely specify the PDF. However, as discussed
in Chap. 2, many types of clutter are best modeled by more complicated PDFs
such as the log-normal or Weibull PDF. Unlike the exponential PDF, these are
two-parameter distributions and estimates of both the mean and variance (or a
related parameter such as skewness) must be estimated in order to characterize
them. Any threshold control mechanism must be based on estimates of both
parameters if it is to exhibit CFAR behavior.

An example of a CFAR algorithm for log-normal clutter is given in
Schleher (1977). The receiver uses a log detector so the detected samples {xi}



are normally distributed. The CFAR structure is a conventional cell-averaging
approach on the log data. The threshold is computed as follows:

(6.172)
 
This CFAR threshold calculation could clearly be combined with many of the
embellishments discussed earlier for CA CFAR, such as SOCA or GOCA rules
or censoring.

Because of the need to estimate two parameters, the CFAR loss is greater
with two parameter distributions than with the exponential distribution and in
fact can be very large, especially for small numbers of reference cells. For
example, with  = 0.9,  = 10–6, and N = 32 reference cells, the CFAR loss
using Eq. (6.172) in log-normal interference is approximately 13 dB (Schleher,
1977). From Fig. 6.21, a conventional CA CFAR in exponential interference
with the same detection statistics and window size has a CFAR loss of just
under 1 dB.

The same calculations are used to set the CFAR threshold in Weibull
clutter, though the specific values of α needed vary from the log-normal case.
Two proposed Weibull detectors, the so-called log-t detector and another based
on maximum likelihood estimates of the Weibull PDF parameters, have been
shown to be equivalent to Eq. (6.172) (Gandhi et al., 1995).

Order statistic CFARs have also been proposed for two-parameter clutter.
One example combines OS CFAR in each of the lead and lag windows with a
greatest-of logic to estimate the interference mean, and then uses the single
parameter Eq. (6.154) to set the threshold. Since the second (skewness)
parameter of the PDF is not estimated implicitly or explicitly, the multiplier α
must be made a function of the skewness, implying in turn that the skewness
parameter must be known to correctly set the threshold. Performance results
again suggest that choosing the order statistic k to be about 0.75N provides the
best performance against interferers and uncertainty in the skewness parameter
(Rifkin, 1994).

In Chap. 5 the technique of clutter mapping for detection of stationary or
slowly moving targets by ground-based, fixed-site radars when the competing
zero-Doppler clutter was not too strong was discussed. The threshold for each
range-angle cell was computed as a multiple of the measured clutter in the same
cell. The clutter measurement was obtained as a simple first-order recursive
filter of the form:



(6.173)
 
where  is the estimate of the clutter reflectivity at time n (n usually indexes
complete radar scans of an area) and x[n] is the currently measured clutter
sample at time n. The factor γ controls the relative weight of the current
measurement versus the preceding measurements. This equation is applied
separately to each range-angle cell of interest. The detection threshold is then
set for each range-angle cell as

(6.174)
 
Note that the threshold for testing for a target on the current scan is based on the
clutter estimate from the previous scan. The current data are not included
because, if the CUT does contain a target, it would distort the clutter
measurement and raise the threshold, creating a self-masking effect. Even with
this precaution, self-masking can cause CFAR losses of several dB if slow-
moving targets are present, so that they persist in a map cell for more than one
scan (Lops and Orsini, 1989). If the target persists in the map cell for a number
of scans approaching the number of scans integrated to form the clutter map,
detectability is essentially lost entirely.

The first-order difference equation (6.173) corresponds to an IIR filter
with the impulse response

(6.175)
 
where u[n] is the unit step function. Consequently, the output of the filter can
also be expressed as a convolution with h[n]:

(6.176)
 
This equation shows that, similar to CA CFAR, the threshold will be based on
an average of clutter measurements, but there are several important differences.
In CA CFAR, clutter samples taken during the same pulse or dwell and from
cells adjoining the CUT in spatial position, Doppler, or both are used to
estimate the clutter level. The clutter must be assumed spatially homogeneous so
that these adjoining cells represent the interference in the CUT accurately. The
various CA CFAR extensions discussed previously are all motivated by real-
world violations of this assumption. In clutter mapping, the threshold is based



on clutter samples taken from the CUT but on previous time intervals. Thus,
spatial homogeneity is not required, but homogeneity in time, i.e., statistical
stationarity, is. Both types of CFAR require that the clutter samples be
uncorrelated (in space or Doppler for CA CFAR, in time for clutter mapping)
for the analyses given here to be valid. Finally, Eq. (6.176) shows that the
threshold is based on an infinite, weighted sum of previous samples rather than
the finite sums of CA CFAR and its variants.

It is also possible to estimate the clutter mapping threshold using a simple
average of a finite number of previous measurements. One version of the
moving target detector (MTD) is said to have used an eight-scan average,
covering about 32 seconds of data (Skolnik, 2001). In this case, the CA CFAR
analyses would apply to the clutter map as well. However, for computational
simplicity the recursive filter of Eq. (6.173) is most often used. The average
probabilities of false alarm and detection when the threshold is computed with
the recursive scheme are (Nitzberg, 1986)

(6.177)
 

(6.178)
 
These formulas are slow to converge in practice; a more rapidly converging
variation is given in Levanon (1988). Again, α can be varied to generate curves
o f  versus  and CFAR loss can then be determined by comparing these
curves to the case where the interference is known exactly. The case γ = 0 in
fact corresponds to the ideal case. For every increase of 0.2 in γ, the CFAR loss
increases approximately 3 dB. A crude approximate formula for the CFAR loss
is (Taylor, 1990)

(6.179)
 

This formula is of limited accuracy, especially for large γ, but may be
useful for rough calculations. Another implementation of the MTD used a
recursive filter as described previously with a feedback coefficient of γ = 7/8
(Nathanson, 1991). A rational value of γ with a denominator that is a power of
two was particularly amenable to the fixed point implementations used in early
versions of the MTD, since the division by the denominator value (eight in this



case) can be implemented by simply right-shifting the binary data.
Some clutter map systems combine multiple range cells at a given azimuth

direction to form a single, larger map cell. This allows the introduction of any
of several standard CFAR techniques to combine the range cells and improve
the map cell clutter estimate. Either cell-averaging or order statistics CFAR can
be applied to the range cells to form the basic clutter power estimate, and the
basic CA or OS approaches can be extended as appropriate for the environment
with any of the techniques discussed previously for conventional CFAR:
censoring, guard cells, smallest-of or greatest-of (SOCA and GOCA) detectors,
log detectors, and two-parameter estimation algorithms (Lops, 1996; Conte and
Lops, 1997).

The CFAR processors discussed so far assume a specific form of the PDF
of the interference in order to determine the value of the threshold (equivalently,
the value of the threshold multiplier α). For instance, the particular form of Eq.
(6.134), and the formula for α in Eq. (6.135) is a result of having assumed an
exponential distribution for the square-law detected interference-only samples.
If noise is the dominant interference source, this is not a significant constraint.
However, for a system operating in a clutter limited environment or in an
environment where the dominant interference varies between clutter of various
distributions, noise, and jamming, a threshold setting algorithm based on a
particular interference PDF may produce large errors in the threshold setting
when another interference PDF dominates. For this reason, threshold-setting
algorithms that do not depend on the particular PDF of the interference are of
interest. Such techniques are called distribution free or non-parametric CFAR
algorithms (DF CFAR).

Historically, DF CFAR has been based most often on a two stage “double-
threshold” approach, in which the first stage threshold converts the raw data
into binary detection/no detection decisions. This decision is repeated over
multiple pulses or scans, and the individual detection decisions for a given
resolution cell are combined using an “M out of N” rule as described in Sec.
6.4. The PDF of the output of the first stage is binomial since the data are binary
at that point, independent of the input PDF. Four variations on this idea are
discussed in Barrett (1987). Two of them, the “double threshold detector” and
the “rank order detector,” use conventional cell-averaging or OS CFAR in the
first stage to set a specific  and therefore require knowledge of the
interference PDF to set the first stage threshold. These are therefore not truly
distribution-free.

The “modified double threshold detector” replaces the deterministically
computed first stage threshold with a feedback circuit that monitors  at the
first stage output and adjusts the threshold to approximate the desired value.
This technique requires large amounts of data to estimate the observed  but
will work for any input distribution. In the rank sum double quantizer, the first
stage does not actually threshold the data, but instead computes the rank of the



test cell compared to the reference cells and passes the rank number, instead of
a binary detection/no detection decision, to the second stage. The second stage
integrates this rank number over multiple pulses or scans, producing a random
variable with a distribution that depends only on the correlation between the
data samples from successive pulses or scans (Barrett, 1987). A two-parameter
cell-averaging CFAR computation is applied to this variable to obtain the final
detection decision.

A more modern approach based on rank order ideas is given in Sarma and
Tufts (2001). Consider a set of N reference samples {yi} and the kth order
statistic for this set, y(k). The PDF for y(k) was given in Eq. (6.163). The
coverage C is defined as the probability that a reference sample yi is greater
than y(k). Note that 0 ≤ C ≤ 1. Since the cumulative distribution function Pyi (y) is
the probability that yi is less than some value y, it follows that

(6.180)
 
and the PDF of C becomes

(6.181)
 
Furthermore, the expected value of C is

(6.182)
 

Now consider a system that uses the kth rank order statistic of the reference
cell data as the threshold value for the CUT. This differs from a conventional
OS CFAR, which computes a threshold as a multiple of the kth rank order
statistic, where the multiplier αOS is a function of the PDF of the interference
data. If instead y(k) is itself the threshold, no multiplier α is required. Under
these conditions, C will be the probability of false alarm. Equations (6.181) and
(6.182) show that the PDF of C, and thus also its expected value , do not
depend on the PDF of the raw data {yi}. Thus, the detector is a distribution-free
CFAR.

A limitation of this DF CFAR is that only certain values of  are
achievable, and they depend on the number N of reference cells.  takes on the
discrete set of values given by Eq. (6.182) as k varies from 1 to N. The
minimum possible value is obtained with k = N and is



(6.183)
 
Equation (6.183) illustrates another limitation of this technique: small values of 

 require large values of N. More realistically, practical limitations on the
reference window size N limit this method to relatively high values of . For a
given value of N, the design value of the probability of false alarm, say ,
must be chosen to be greater than or equal to . Assuming this condition is
satisfied, the rank order to be used as a threshold is the one that produces a
value of  as close to  as possible without exceeding it. That rank is given
by

(6.184)
 

While the false alarm probability does not depend on the PDF of the
interference, the detection probability does. For exponentially distributed
interference and target (Swerling 1 target in complex WGN), the average
probability of detection is (Sarma and Tufts, 2001)

(6.185)
 
As with the other CFAR detectors, Eqs. (6.184) and (6.185) can be used to
determine the CFAR loss of the DF CFAR. The additional loss over a CA
CFAR for the Swerling 1 case is typically less than about 0.4 dB.

6.6   System-Level Control of False Alarms
It has been seen in this chapter that achieving good detection performance (high 

, low ) requires a signal-to-interference ratio on the order of 15 dB or
better at the point of detection. For a given target RCS, the SIR is determined in
part by basic radar system design choices reflected in the radar range equation:
transmitter power, antenna gain, operating frequency, and noise figure.
Furthermore, the fundamental goal of many of the techniques of radar signal
processing discussed in other chapters of this text is to improve the SIR before
the point of detection. Examples include matched filtering, pulse compression,
MTI, pulse Doppler processing, and space-time adaptive processing. Once the
SIR has been maximized, the detector, whether fixed or adaptive threshold, sets
the actual threshold value and thus the false alarm probability. The SIR then
determines the detection probability.



In some cases the detection probability may still be lower than required. In
this event, the threshold may be lowered, increasing  but also increasing .
Additional techniques can then be applied at other stages of the overall system
processing in order to reduce  back to an acceptable level. Several options
are discussed in (Nathanson, 1991); their applicability depends on the particular
system involved. If jamming is present, a sidelobe blanker or sidelobe canceller
can be used to further improve the SIR before the detector (assuming more
advanced techniques such as STAP have not already been applied). After the
detector, a clutter map may be used in some systems to reject false alarms due to
fixed clutter discretes or known radio frequency interference  (RFI) sources. If
valid targets can be expected to extend over more than one range, azimuth, or
Doppler cell, apparent detections that occupy only a single cell can be rejected
as false alarms after the detector, lowering the system . Finally, an apparent
target can be tracked to make sure it recurs over multiple scans; if it does not, it
is rejected as a false alarm. If it does, its kinematics can be tracked over
multiple scans. If the target track violates reasonable bounds on velocity and
acceleration, it can be assumed to be a false alarm, quite possibly due to the
presence of electronic countermeasures, and the track can be rejected. Thus,
control of the overall system false alarm rate can be spread over virtually all
stages of the system.
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Problems
  1.  Consider a detection problem where under hypothesis H0 the PDF of the

signal x is px(x | H0) = α·exp(–x/a), 0 ≤ x ≤ ∞, while under hypothesis H1
the PDF of the signal x is px(x | H1) = β·exp(–x/β), 0 ≤ x ≤ ∞, with β > α.
What are the likelihood ratio and log likelihood ratio for this problem?

  2.  Consider Neyman-Pearson detection of a constant A = 0.5 in uniform (not
Gaussian) white noise. Specifically, the PDF of the noise w[n] is

 
        The measured signal is x[n]. Under hypothesis H0 (noise only), x[n] =

w[n]. Under hypothesis H1, x[n] = A + w[n].
         a.   On one graph, sketch carefully the PDF of x[n] under each hypothesis,

px(x | H0) and px(x | H 1). Label all significant values.
         b.   What is the likelihood ratio Λ(x) (not the log-likelihood ratio or the

likelihood ratio test) for this problem? It may be necessary to express
this in more than one region, i.e. “Λ(x) = expression 1 for α < x < b,”
etc.



         c.   Regardless of the LR found in part (b), suppose the rule  is
chosen as the detection test. Sketch the resulting curves for PFA vs. T
and PD vs. T as T varies from –1.5 to +1.5. Label all important
values.

Problems 3 to 6 are a related group exploring how changes in the values
of m, , and T affect detection and false alarm performance in the real
constant-in-WGN example.

  3.  Consider detection of a real-valued constant in zero-mean real-valued
Gaussian noise. Let the noise variance , the number of samples N = 1,
and the constant m = 4. What is the SNR χ for this case? Sketch the
distributions p(y | H0) and p(y | H1); label appropriate numerical values on
the axes. Write the likelihood ratio and log-likelihood ratio for this
problem. Simplify the expressions.

  4.  Continuing with the same parameters given in the previous problem,
suppose PFA = 0.01 (1 percent) is required. What is the required value of
the threshold T? What is the resulting value of PD? Lookup tables or
MATLAB® can be used to calculate the values of functions such as erf(·),
erfc(·), erf–1(·), or erfc–1(·) that may be needed.

  5.  Suppose m in Prob. 3 is increased so as to double the SNR;  and N = 1
still. What is the new value of m? Sketch and label the distributions p(y |
H0) and p(y | H1) with this new value of m. If the same threshold T found in
Prob. 4 is retained, does PFA change and, if so, what is the new value? If
that same threshold T is retained, does PD change and, if so, what is the
new value?

  6.  Go back to the case of m = 4, but now reduce the noise variance to . N
= 1 still. What is the SNR χ now? Sketch and label the distributions p(y|H0)
and p(y|H1) with this value of m and . If the threshold value used in
Probs. 4 and 5 is still retained, what is the value of PFA? What is the value
of PD?

  7.  Consider detection of a constant in complex Gaussian noise. Let the total
noise variance , the number of samples N = 1, and the constant m = 4.
What is the SNR c for this case? Suppose PFA = 0.01 (1 percent) is
required. What is the required value of the threshold T? What is the
resulting value of PD? Lookup tables or MATLAB® can be used to
calculate the values of functions such as erf(·), erfc(·), erf –1(·), or erfc–1(·)
that may be needed.

  8.  Compute the threshold T and probability of detection PD for the case of a
constant in zero-mean complex Gaussian noise, but now with unknown



phase. Use m = 4, , N = 1, and PFA = 0.01 again. It will be necessary
to numerically evaluate the Marcum Q function QM. MATLAB® can be
used with either the marcumq.m function available in the Signal Processing
Toolbox™ or Communications Systems Toolbox™ or the marcum.m
function available in the “MATLAB Supplements” area of the website
http://www.radarsp.com.

  9.  Use Albersheim’s equation to estimate the single-sample SNR χ1 required
to achieve PFA = 0.01 and PD equal to the same value obtained in the
previous problem. Compare to the actual SNR used in Prob. 8.

10.  Repeat Prob. 9 using Shnidman’s equation in place of Albersheim’s
equation.

11.  Rearrange Albersheim’s equation to derive a set of equations for PFA in
terms of PD, N, and single-pulse SNR in dB, χ1.

12.  Use Shnidman’s equation to estimate the single-pulse SNR χ1 in dB
required to achieve PFA = 10-8 and PD = 0.9 when noncoherently integrating
N = 10 samples. Do this for all four Swerling cases and for the
nonfluctuating case. Figure 6.14 can be used to check the results.

Problems 13 to 16 are a related group comparing the effectiveness of
coherent and noncoherent integration of measurements and showing how
to compute noncoherent integration gain.

13.  Coherently integrating N samples of signal-plus-noise produces an
integration gain of N on a linear scale; that is, if the SNR of a single sample
yi is χ, the SNR of  is Nχ. In Probs. 13 through 16, Albersheim’s
equation will be used to investigate the relative efficiency of noncoherent
integration for one example case. Throughout these problems, assume PD =
0.9 and PFA = 10-6 are required, and that a linear detector is used. Start by
assuming detection is to be based on a single sample, N = 1. Use
Albersheim’s equation to determine the SNR χ1 in dB needed for this
single sample to meet the specifications above.

14.  Now consider noncoherent integration of 100 samples to achieve the same
PD and PFA as in the previous problem. Each individual sample can then
have a lower SNR. Use Albersheim’s equation again to determine the SNR
χnc of each pulse in dB needed to achieve the required detection
performance.

15.  Now consider coherent integration of 100 pulses. What is the SNR χc in dB
required for each pulse such that the coherently integrated SNR will be
equal to the value χ1 found in Prob. 13?

16.  Finally, the noncoherent integration gain is the ratio χ1/χnc. Find α such that

http://www.radarsp.com


χ1/xnc = Nα. What would be the value of α for coherent integration? Which
is more efficient (obtains more gain for the same number of samples
integrated), coherent or noncoherent integration?

17.  Consider 3-out-of-5 (M = 3, N = 5) binary integration. Determine the
required values of the single-trial probabilities PD and PFA such that the
cumulative probabilities are PCFA = 10–8 and PCD = 0.99. A small-
probability approximation can be used to solve for PFA, but finding PD will
require some numerical trial-and-error; the estimate of PD should be
accurate to two decimal places. (Hint: The correct answer lies in the range
0.87 ≤ PD ≤ 0.92.)

18.  A single noncoherently detected sample of a nonfluctuating target in
complex Gaussian noise with power  is to be tested for the presence
of a target. A square-law detector is used. Assuming the interference
power level exactly, what ideal value of threshold T is required to obtain
PFA = 10–4? If the SNR is χ = 10 dB, what is PD? MATLAB® and one of
the computer functions mentioned in Prob. 8 or their equivalent will be
needed to evaluate the Marcum Q function QM.

19.  Now assume that the interference level is not known a priori, so a cell-
averaging CFAR is used to perform the detection test. Choose N = 30
reference cells. What will be the threshold multiplier α such that the
average false alarm probability  remains at 10–4? It turns out that if the
SNR is χ = 10 dB, the value of PD using the ideal threshold in the previous
problem is 0.616. Assuming the SNR is still χ = 10 dB, what will be the
average detection probability  using the CA-CFAR?

20.  Suppose the threshold in a standard (non-CFAR) threshold detector
designed using the Neyman-Pearson approach is chosen to give PFA= 10–6.
If the interference power level increases by 6 dB, what will be the new
value of PFA?

21.  Consider a detector designed to give an average false alarm probability of 
. What is the SNR χ∞ in dB required to achieve  = 0.9 when using

the ideal Neyman-Pearson threshold? What SNR χN in dB is required when
using a cell-averaging CFAR with N = 16 reference cells? What is the
CFAR loss for this case, in dB?

22.  Consider a CA-CFAR with a single interfering target (the “target masking”
problem). Assume the SNR χ of the target of interest in the cell under test
is 15 dB. What is the approximate “target masking loss” in dB if the SNR χi
of the interferer is 10 dB? Repeat for χi = 15 dB. Assume the number of
averaging cells is N = 20. Compute the results numerically and show all
work. Figure 6.23 can be used as an approximate check of the results.

23.  Consider an order statistic CFAR in exponentially-distributed interference



with N = 20 and a threshold scale factor of αOS = 10. Compute the average
false alarm probability PFA for the order statistic k = 15, 16, …, 20.

24.  For the OS-CFAR in the previous problem with k = 15, how many outliers
(e.g., other targets) could be tolerated in the lead and lag windows without
serious degradation of the detection and false alarm performance?

_____________
1 In some detection problems, a third hypothesis is allowed: “don’t know.” Most radar systems, however,
force a choice between “target present” and “target absent” on each detection test.
2 A fourth probability can be defined, that of choosing H0 and thus declaring a target not present when in
fact the test sample is due to interference only. This probability, equal to 1 – PFA, is not normally of direct
interest.
3 The exception occurs if points are added to or subtracted from 1 for which pY (y|H0), py(yH1), or both are
zero. In that case the corresponding probability is unchanged.
4 Some subtleties that can arise if the PDFs are noncontinuous are being ignored. See Johnson and Dudgeon
(1993) for additional detail.
5 A monotone decreasing operation would simply invert the sense of the threshold test.
6 All of the following development is fairly easily generalized for the case when m is negative or is of
unknown sign. It will be seen later that radar detection generally involves working with the magnitude of the
signal, thus it is sufficient to work with a positive value of m.
7 The definitions of Eqs. (6.18) and (6.19) are the same as those used in MATLAB™.
8 The erf–1(·) function will often be used here, even when erfc–1(·) gives a slightly more compact
expression because of the wider availability of erf–1(·) functions than erfc–1(·) in MATLAB® and similar
computational software packages.
9 Here T refers to receiver temperature, not the detection threshold. Which meaning of T is intended should
be clear from context throughout this chapter.
10 An alternative approach called the generalized likelihood ratio test (GLRT), in which the unknown
parameter(s) are replaced by their maximum likelihood estimates, is discussed in many detection theory
texts (e.g., Kay, 1998).
11 For instance, the earlier discussion of unknown signal energy corresponds to choosing A = 1/E.
12 The MATLAB® function gammainc is consistent with this definition.
13 IN–1(x) is the modified Bessel function of the first kind and order N – 1, not to be confused with the
incomplete gamma function I(u, M).
14 Values of N > 100 are outside the range for which Albersheim’s equation claims good accuracy.
Nonetheless, the general trend of the proportionality of Gnc to  does tend to hold for larger N and also
for fluctuating target models.
15 Unless otherwise stated, this same arrangement of lead, lag, and guard cells is used in all examples in this
chapter.
16 The base of the logarithm affects the specific offset needed to set the threshold but is otherwise
unimportant. In Eq. (6.156) it is assumed that the log data are on a decibel scale.
17 This terminology is unfortunate because all CFARs are adaptive in that they estimate the detection
threshold from the measured data. “Adaptive CFARs” are those for which one or more of the parameters
of the estimation algorithm itself are varied depending on data characteristics.



CHAPTER 7
Measurements and Tracking

 

It has been seen in earlier chapters that resolution in range, angle, and Doppler
shift is determined by the temporal and spatial bandwidth and the waveform
duration of the radar; but what about the precision of location in these
dimensions? To clarify the question, consider the notional output from the radar
receiver for a given range bin as a radar system scans in angle past a single,
isolated point target. Assume a high pulse repetition frequency relative to the
antenna scan rate so that the angle samples are closely spaced. In the absence of
noise, one would expect to measure an output voltage proportional to the two-
way antenna voltage pattern, as illustrated in Fig. 7.1a for a sinc-squared two-
way voltage pattern and a linear detector. The angular position of the target can
be determined exactly simply by finding the angle at which the peak output
voltage occurs. Thus, the target is located in angle to a precision much better
than the resolution.



 FIGURE 7.1   Received voltage from an angle scan of a single point target: (a)
no noise, (b) 30 dB signal-to-noise ratio. The inset expands the area around the
boresight angle.
 

Now add receiver noise to the problem. The receiver output will consist of
the sum of the target echo weighted by the antenna pattern and the noise. The
noise will cause the observed peak to occur at an angle other than the true target



location, as seen in Fig. 7.1b; the actual peak in this realization (expanded in the
inset) is at –0.033 Rayleigh widths. The larger the noise variance, the greater
the likely deviation of the measurement from the noise-free case.

Because of the noise, the measured peak value is now a random variable
(RV). If the peak measurement is repeated on noisy data many times, the PDF of
that RV can be estimated. Figure 7.2 shows two histograms for the observed
peak location when complex Gaussian noise at two values of peak SNR is
added to the received signal prior to the detector. The black curves are zero-
mean Gaussian PDFs with the same variance as the simulated data. In Fig. 7.2b,
the SNR is 20 dB lower (a factor of 100× in power) than in 7.2a, resulting in a
wider angle error distribution than in the higher SNR case. In this example, the
variance of the distribution in Fig. 7.2b is 9.54 times that of the distribution in
Fig. 7.2a. This factor is approximately the square root of the 100× change in
SNR.



 FIGURE 7.2   Histogram of angle error using peak power method: (a) 30 dB
SNR at boresight, (b) 10 dB SNR at boresight. Note the wider spread of errors
at lower SNR.
 

Measurement precision limitations due to additive noise are the primary
focus in this chapter, but noise is not the only limitation on measurement
accuracy. Others include sampling density, target reflectivity fluctuations, other



interference sources such as clutter and jamming, and hardware limitations. For
instance, the scanning antenna’s received power would be measured only at
discrete angles determined by the radar’s PRF and the antenna scan rate rather
than on the dense sampling grid used in the preceding example. In a search
mode, there might be only one to two samples per beamwidth and the peak
estimator used here would not be practical. The peak estimator is also a poor
choice because it takes no advantage of multiple samples to average out the
effects of the noise. More practical estimators will be considered shortly.

7.1   Estimators

7.1.1   Estimator Properties
Suppose that one has a vector of N measured data samples x = {xi, i = 0,…, N –
1} that depends on a deterministic but unknown parameter Θ. Θ might be the
actual target angle, time delay (equivalent to range), or Doppler shift. An
estimator f(x) is an algorithm for computing an estimate  of the actual value of
Θ from the data x:

(7.1)
 
If the data is noisy,  will be an RV with its own PDF and moments. Because
the quality of different estimators will vary it is reasonable to ask what
properties characterize a good estimator?

Before answering that question, it is useful to define two important metrics
of estimator quality, accuracy and precision. Figure 7.3 illustrates these two
ideas heuristically with the example of target shooting. The hits on the left target
are centered roughly on the bull’s-eye (center of the target) but are widely
dispersed. Because the average location is near the center of the target, this set
of hits is said to exhibit good accuracy. However, because they are widely
dispersed, they are said to exhibit poor precision. In the middle target, the hits
are tightly clustered but the center of the cluster is far from the bull’s-eye. These
hits are precise but inaccurate. In the target on the right the hits are both tightly
clustered and centered on the bull’s-eye: both precise and accurate.



 FIGURE 7.3   Distinction between precision and accuracy: (a) hits on the target
are accurate but not precise, (b) precise but not accurate, (c) both accurate and
precise.
 

To make these ideas more formal, define the accuracy of an estimate  of a
parameter Θ as the bias of the estimator, that is, the expected value of the
difference between the mean of the estimate and the actual parameter value:

(7.2)
 
The precision is defined as the standard deviation of the estimate:

(7.3)
 
(The overbar also indicates expected value.) In most cases it will be convenient
to work with the variance of  (square of precision), .

Three desirable properties of an estimator are that it be unbiased,
consistent, and minimum variance. The first two of these are defined by the
behaviors

(7.4)
 
The unbiased property states that the estimate matches the true parameter value
“on average.” The consistency property states that as more data is made
available for the estimate, the precision improves and asymptotically
approaches zero (perfect precision). The third property, minimum variance,
expresses the goal that of all possible unbiased estimators, the one having the



minimum variance (finest precision) should be selected. Such an estimator is
called a minimum variance unbiased (MVU) estimator.

As an example of these properties, consider a simple estimation problem.
The data x is N independent observations of a real constant A in additive real
stationary white Gaussian noise (WGN),

(7.5)
 
The goal is to estimate the constant A from the noisy data. In this example A is
the parameter Θ on which the measured data x = [x[0], x[1], …, x[N–1]]T

depends. An obvious estimator is the sample mean:

(7.6)
 
Clearly the estimate is unbiased:

(7.7)
 

Consistency is tested by considering the variance of :

(7.8)
 
Because the noise samples are independent, E{w[m]w[n]} = E{w[m]} ·
E{w[n]}. Because the noise is white the mean of w[n] is necessarily zero.
Therefore, E{w[m]w[n]} equals zero whenever m ≠ n but equals  when m =
n. The latter case occurs N times during the double summation. Equation (7.8)
reduces to



(7.9)
 
so the sample mean estimator is also consistent.

7.1.2   The Cramèr-Rao Lower Bound
Equation (7.9) established the variance of the sample mean estimator, but is it
the estimator with the minimum possible variance? This question is answered
by the famous Cramèr-Rao Lower Bound (CRLB). Denote the joint PDF of x
given Θ as px(x|Θ). The CRLB states that the variance of any unbiased estimate 

 of Θ is lower bounded by

(7.10)
 
An alternate form of the CRLB is also common. If px(x|Θ) is twice differentiable
and obeys some other mild regularity conditions, then it can be shown that

(7.11)
 
The choice between Eq. (7.10) or (7.11) is a matter of convenience. The CRLB
is derived in App. A, which also details its extensions to data dependent on
multiple parameters and to complex data and parameters. The CRLB can be
generalized to biased estimators, but the unbiased case is sufficient here.

Because the sample mean estimator proved to be unbiased, the CRLB can
be applied to evaluate its variance. Identifying Θ = A, the required PDF px(x|Θ)
is

(7.12)
 
Considering the CRLB in the form of Eq. (7.10), the partial derivative with
respect to A of ln{px(x|A)} is



(7.13)
 
The expected value of the square of this quantity is

(7.14)
 
The second line follows because the noise is white so that the expected value of
the cross-products is zero. Finally, using Eq. (7.14) in Eq. (7.10) gives the
CRLB for this problem:

(7.15)
 
which is exactly the variance of the sample mean estimator obtained in Eq.
(7.9). The CRLB guarantees that the sample mean estimator can be used with the
assurance that no other unbiased estimator will have a lower variance. An
unbiased estimator that achieves the CRLB is called an efficient estimator.

The case of a signal in additive white Gaussian noise (AWGN) is
important enough to warrant further attention. Assume the measurement vector x
is composed of N real-valued signal + noise samples:

(7.16)
 
where Θ is the parameter to be estimated and the variance of w[n] is . The
following result is derived in App. A by applying Eq. (7.11) to the PDF for x:



(7.17)
 
Applying this to the constant-in-AWGN example, the parameter Θ = A and the
signal s[n; Θ] = s[n;A] = A also, so ∂s[n;Θ]/∂Θ = ∂A/∂A = 1, again giving the
result of Eq. (7.15).

If the signal and noise are complex-valued and the parameter to be
estimated is real, the CRLB becomes (see App. A)

(7.18)
 
The factor of two in the denominator of Eq. (7.18) is significant. It means that
the real-valued CRLB is not a special case of the complex CRLB. Rather, the
complex CRLB is smaller by a factor of two.

The case where the parameter to be estimated is complex can be handled
by treating it as two real parameters, Θ = ΘR + jΘI. Equation (7.18) establishes
the CRLB for each of the real and imaginary parts. It is easy to show that the
variance of the complex parameter Θ is the sum of the variances of ΘR and ΘI
(see Prob. 9). The CRLB for complex Θ is then the sum of the two component
CRLBs and therefore is also given by Eq. (7.17) or (7.18).

7.1.3   The CRLB and Signal-to-Noise Ratio
A relationship between the CRLB and SNR can be found for the case of a signal
in AWGN. Consider a complex sampled signal s[n] that is dependent on some
real parameter Θ (not necessarily its amplitude) and write it as the product of its
real-valued peak amplitude A and a normalized function  having a peak
magnitude of one,

(7.19)
 
The peak SNR for the noisy signal x[n] = s[n] + w[n] is . Suppose the
parameter of interest, Θ, is not A. Then

(7.20)
 
and Eq. (7.18) becomes



(7.21)
 
The quantity  depends on the signal shape , but for a given signal
it is some scalar k so that Eq. (7.21) is of the form:

(7.22)
 
The second line of Eq. (7.22) would result for the real-valued case beginning
with Eq. (7.17). Equation (7.22) states that the CRLB is inversely proportional
to SNR, and that the constant of proportionality depends on the rate of change of 
 with respect to Θ. A waveform that changes more rapidly with Θ produces a

smaller CRLB.
The case where the parameter of interest is the peak amplitude A must be

handled separately. In this event Θ = A, giving

(7.23)
 
The CRLB is then

(7.24)
 
where the sum term in the denominator of Eq. (7.24) has been recognized as the
energy in , resulting in a CRLB that is one-half the inverse of the energy SNR
based on the normalized signal.1 However, when estimating the amplitude, the
variance relative to the actual amplitude is more likely to be of interest than the
absolute variance. It is easy to see that the CRLB for the normalized amplitude
estimation variance is the same as Eq. (7.24) but with the energy of the
unnormalized signal s. The result is (including the equivalent real-valued result
as well)



(7.25)
 

7.1.4   Maximum Likelihood Estimators
The CRLB establishes the minimum variance of an unbiased estimator. As
discussed in App. A, it is sometimes but not always possible to find the
minimum variance unbiased estimator. If the data can be modeled as a linear
function of the parameters Θ with additive WGN, the MVU estimator can be
found in a straightforward fashion, and is further guaranteed to be efficient. In
other cases one may have to settle for a suboptimal estimator. Kay (1993) gives
a thorough discussion of the hierarchy of techniques and achievable results in
classical estimation.

Maximum likelihood estimation (MLE, also maximum likelihood estimator
or estimate) is by far the most common approach to finding practical estimators,
and for several good reasons:

        •  The MLE can be found for most problems, including many complicated
ones, by a straightforward procedure.

        •  While it is not the MVU estimator in general, as the number of data
samples N → ∞ it becomes asymptotically unbiased and efficient. The
PDF of  also becomes Gaussian.

        •  If an efficient estimator in fact exists, the maximum likelihood procedure
will produce it.

        •  The MLE of a function Φ = g(Θ) of Θ can be found by applying that same
function to .

        •  Finally, various numerical methods exist for finding the MLE when a
closed form expression cannot be obtained.

The MLE of Θ is that estimate  that maximizes the likelihood function for
the problem. The likelihood function is just the PDF of the data x given Θ, but
viewed as a function of Θ with x fixed (see App. A):

(7.26)
 
The maximization is performed only over allowed values of Θ, e.g., Θ ≥ 0 if the
parameter is the power of some signal. Note that maximizing a monotonically



increasing function of the likelihood is the same as maximizing the likelihood
itself. When the data are i.i.d. and the noise is Gaussian it is often the case that
the likelihood function is the product of N scalar PDFs, each containing
exponential terms. Consequently, it is common to maximize the log-likelihood
function because the algebra is greatly simplified in these cases:

(7.27)
 

To illustrate the procedure, consider yet again the real constant in real
additive WGN example with N samples of data. The PDF is an N-dimensional
joint Gaussian, so the likelihood function is

(7.28)
 
The log-likelihood function is

(7.29)
 
Taking its derivative with respect to A and setting the result equal to zero to find
the maximum gives

(7.30)
 
The MLE for this problem is the sample mean estimator. It was seen earlier that
this estimator is unbiased and achieves the CRLB. Thus, the MLE did produce
the efficient estimator for this problem.

7.2   Range, Doppler, and Angle Estimators

7.2.1   Range Estimators

CRLB for Time Delay and Range Estimation



Consider a complex-valued continuous-time signal xi(t) at the input to a radar
receiver that is the sum of an echo of a complex transmitted signal st(t) and
complex additive WGN wr(t) with a power spectral density (PSD) of  W/Hz.
The echoed signal component is delayed by an unknown amount t0 to form the
received signal component sr(t – t0) = αst(t – t0), where α is a complex scalar
whose magnitude represents attenuation due to the radar range equation and
whose phase represents the unknown –4πR/λ radian phase shift. It is assumed
that demodulation has already removed the carrier so that xr(t) is at baseband.
The receiver input signal is therefore xr(t) = sr(t – t0) + wr(t), as shown in Fig.
7.4. The goal is to estimate the unknown real parameter Θ = t0. The result can be
scaled by c/2 to estimate the corresponding target range R0.

 FIGURE 7.4   Receiver model for time delay and range estimation. See text for
details.
 

The pulse st(t), and therefore its scaled echo sr(t – t0), is assumed to be τ
seconds long and effectively bandlimited to β Hz. The radar receiver’s
frequency response is assumed to be a unit-gain bandpass characteristic over
±β/2 Hz. Consequently, the pulse echo component of the output is essentially
identical to the input pulse, while the total matched filter output noise power is 

. This will be the variance of the output noise signal wo(t). The receiver
output signal is therefore xo(t) = sr(t – t0) + wo(t).

The receiver output is sampled at the Nyquist rate of β samples per second
to produce the observed data x[n] = s[n – n0] + w[n], where n0 ≈ t0/Ts and Ts =
1/β is the sampling interval. The maximum time delay of interest is T; this might
be the radar’s PRI, for example. It is assumed that T > 2τ, the duration of a
matched filter output for a single pulse at its input.  is the total number
of samples required to cover the maximum time interval of interest and 

 is the number required to cover the signal duration τ. Let n0 be the first
sample that occurs within the received pulse so that n0Ts ≈ t0. The discrete-time
data is



(7.31)
 
The sampled noise will be white (see App. A). The PSD of the sampled noise
and the variance of w[n] will both be .

Before discussing a specific estimator, consider the CRLB for this
problem. Applying the form for a complex signal in additive complex Gaussian
noise in Eq. (7.18) gives

(7.32)
 
The last step used n0Ts ≈ t0. Recall that the integral of a function f(t) can be
approximated by a sum using the rectangle rule, . Applying
this to Eq. (7.32) and using Ts = 1/β gives the CRLB for time delay estimation in
complex signals as

(7.33)
 

Equation (7.33) can be put in a more useful form that reveals the role of the
waveform bandwidth. The root-mean-square (RMS) bandwidth of s(t) is
defined as

(7.34)
 
The derivative property of Fourier transforms states that the transform of
ds(t)/dt is j2πF · S(F). Combining this with Parseval’s theorem, the numerator
can be replaced by . Therefore



(7.35)
 
where the integral in the denominator is the energy Es of s(t) . Equation (7.33)
can now be rewritten as

(7.36)
 
The first line of Eq. (7.36) shows that the lower bound on time delay estimation
precision (square root of variance) becomes smaller when the mean-square
signal bandwidth or the energy SNR  is increased. The second line scales
the time delay variance by (c/2)2 and defines ΔRrms = c/2βrms, showing that the
precision is proportional to RMS range resolution divided by the square root of
the energy SNR.

The RMS bandwidth is not commonly used in radar signal processing. If it
exists for a given waveform it is proportional to more common metrics such as
the Rayleigh or 3-dB bandwidth. For example, both the Rayleigh and 3-dB
bandwidths of a rectangular spectrum are simply the spectrum width β. It is easy
to compute from Eq. (7.34) that βrms for this spectrum is . The RMS
bandwidth does not exist for a rectangular pulse because the defining integral
Eq. (7.34) does not converge; see Prob. 23.

Practical Range Estimators
The above results establish the minimum variance of a time delay or range
estimator, but they do not show how to actually obtain an estimate, let alone one
that meets the bound. Two approaches that might come to mind based on earlier
chapters are to estimate the time delay by detecting when the leading edge of the
received pulse echo crosses some threshold, or finding the time at which the
peak of the matched filter output occurs. The results of this chapter, however,
suggest starting by seeking the MLE.

The signal model of Eq. (7.31) shows that the appropriate likelihood
function is a zero-mean complex Gaussian for the noise-only samples, and a
nonzero mean complex Gaussian for the signal-plus-noise samples. Because the



noise is i.i.d., the resulting joint likelihood function is

(7.37)
 
Because n0 appears only in the product of exponentials in the last line of Eq.
(7.37), maximizing ℓ(n0 |x) with respect to n0 is equivalent to minimizing the
exponent of that term, which can be rewritten as

(7.38)
 
With the change of variables n′ = n – n0 the sum involving |s|2 is recognized as 

, which does not actually depend on n0. Therefore, minimizing the
exponent of Eq. (7.38) with respect to n0 reduces to maximizing the quantity 

. Because s[n – n0] is zero outside of the summation
interval, the summation is the same as the correlation ,
which is simply the output of the (noncausal) matched filter with impulse
response h[n] = s*[–n] when the input is x[n]. The MLE estimate of n0 becomes

(7.39)
 

Equation (7.39) states that the maximum likelihood estimate of time delay
is obtained by passing the sampled data at the receiver bandpass output through
a filter matched to the received waveform and then finding the sample at which



the real part of the output is maximum. To interpret this result further, recall that
x[n] = s[n – n0] + w[n] and evaluate (7.39) at an estimated delay of :

(7.40)
 
When  equals the true delay n0 this becomes

(7.41)
 
Equation (7.41) shows that at the true time delay, the output will consist of a
real-valued component from the echoed signal, plus the real part of the filtered
noise. This is consistent with the discussion of matched filters for waveforms in
Chap. 4, where it was seen that the peak of the matched filter output occurred at
the time delay of the target echo (increased by the delay TM if a causal version
of the impulse response is used) and that the SNR is maximized at that time.
Thus, in the absence of noise the estimation rule of Eq. (7.39) will correctly
identify the time delay n0. The presence of the noise can perturb the location of
the peak real output, giving rise to the uncertainty in estimating delay quantified
by the CRLB. Nonetheless, when the SNR is reasonably high it is likely that the
matched filter output will be at its maximum or near-maximum at n = n0 and will
be primarily real-valued so that the time delay is estimated with good precision.
When the SNR is not large, other effects dominate as will be seen shortly.

The analysis to this point assumes that the received pulse sr(t) is known
and is used to define the matched filter. In practice, only the transmitted pulse
st(t) will be known, so the matched filter impulse response must be selected as 

. The difference is the complex scale factor α. The magnitude
of α is of no concern because it scales the signal and noise components equally
and will not affect where the maximum occurs. However, the phase of α is the
two-way propagation phase shift –4πR/λ and must be considered uniform
random over [–π,π]. It affects only the signal x[n] in Eq. (7.41). Consequently, it
will rotate the signal component Es of Eq. (7.41) to the unknown non-real value 

 so that the Re{·} operator is no longer appropriate. In practice, Eq.
(7.39) is modified to produce the final time delay estimation rule:



(7.42)
 
Figure 7.5 modifies Fig. 7.4 to illustrate this structure by adding the matched
filter and maximization of the magnitude.

 FIGURE 7.5   Maximum likelihood estimator time delay and range estimation.
 

It was shown in Chap. 4 that the peak SNR at the output of a matched filter
is the input signal energy divided by the input noise PSD, . Equation
(7.36) can therefore be rewritten as

(7.43)
 
Equation (7.43) was obtained assuming that the signals involved were complex-
valued, a case that includes real-valued signals in complex-valued noise. If both
signal and noise are real-valued, then as seen in App. A the CRLB will be twice
the value begun with in Eq. (7.32). In this case Eq. (7.43) is replaced by

(7.44)
 
The complex case is normally of interest in coherent radars.

An equivalent equation applies in discrete-time units. Converted to units of
samples, Eq. (7.43) becomes

(7.45)
 
Using a tilde to distinguish quantities in discrete-time units from those in
continuous-time units, the sampled signal energy, noise PSD, matched filter
output SNR, and RMS bandwidth are related to the corresponding analog
quantities according to



(7.46)
 
Applying these conversions to Eq. (7.45) and considering the equivalent real-
valued case gives

(7.47)
 
which is exactly the same form as Eqs. (7.43) and (7.44).

As an example, consider a complex-valued linear FM pulse with a time-
bandwidth product of βτ= 100. Because the spectrum will be approximately
rectangular,  as noted earlier. The signal is sampled at a very high
rate of 20× the Nyquist bandwidth β, which is necessary if it is to be possible to
measure peak location errors that are a small fraction of the pulse width. The
data record has a total length of T = 2τ seconds (the duration of the matched
filter output). The gray circles in Fig. 7.6 plot the precision (standard deviation)
of the error in the observed peak location,2 normalized to the Rayleigh time
resolution of Δt = 1/β seconds, versus the matched filter output SNR. The
precision is estimated from 1000 random trials. At an SNR of 20 dB the
precision is about 4 percent of the time resolution Δt = 1/β seconds.



 FIGURE 7.6   Behavior of simulated time delay maximum likelihood estimation
precision in comparison to various bounds for a complex LFM pulse in complex
noise. See text for details.
 

Also shown in the figure is the CRLB computed from Eq. (7.43). For SNRs
of 16 dB or larger, the observed precision follows the CRLB very closely, 3

confirming that the matched filter output peak is in fact a minimum variance
estimator for large SNR. However, below 16 dB the estimate is much worse
than suggested by the CRLB. Heuristically, reasonable performance of the MLE
for time delay requires that the matched filter output peak be well above the
filtered noise level. The value of the peak SNR at the output peak location is 

. High values of , say 20 dB or more, ensure that the peak of the
signal component of the matched filter output is well above the filtered noise
peaks so that the peak output, which is the MLE of delay, is in fact at the
location of the signal peak or very close to it with high probability. For low
values of , say 0 dB or less, the signal + noise peak is no larger than the
noise fluctuations, so the peak output is likely to be anywhere in the complete
output signal interval of (0, N – 1) samples or (0, T) seconds with
approximately equal probability. In this event the matched filter output peak
conveys no information. The upper bound on delay estimation variance becomes
simply the a priori (low SNR) bound of N2/12 samples squared, equivalent to 

. This result applies to both real and complex signals. For the
example of Fig. 7.6 where the record length T is only 2τ = 200Δt, the precision 

 is about 58× the LFM time resolution or 58 percent of the pulse length since



βτ = 100. For a record length of 100τ = 10,000Δt the “precision” would be
bounded at 2890× the resolution! The low-SNR error can be limited if a
tracking gate or other a priori knowledge is available to limit the range of
possible time delays.

An early attempt to combine the CRLB performance bound for high SNR
with the a priori upper bound for low SNR to obtain a more complete
description of estimator performance was the “correlator performance estimate”
described in Scarbrough et al. (1983) and attributed to Ianniello (1982). A
number of other estimator bounds have been derived in the literature which also
capture this behavior, extending the CRLB. The Ziv-Zakai bound (ZZB), applied
to time delay estimation in the particular form given in Bell et al. (1997) and
with the definitions used here for SNR and the erfc(·) function, is given by

(7.48)
 
where erfc(·) is the complementary error function in the form defined in Chap. 6
and Γ(·,·) is the incomplete gamma function.4 The ZZB is also shown in Fig.
7.4. It matches the CRLB at high SNR and the a priori upper bound at low SNR
and thus provides a better representation of achievable precision than the CRLB
alone. The Weiss-Weinstein analysis provides another set of bounds that
incorporate the a priori and Cramèr-Rao bounds and also provide tighter
bounds in the transition regions between them (Weiss, 1986).

Comparison of Eq. (7.48) to Eqs. (7.43) and (7.44) and to the discussion
above of the a priori bound shows that Eq. (7.48) can be rewritten as

(7.49)
 
where APB and CRLB are the applicable a priori and Cramèr-Rao bounds,
respectively. The erfc(·) and Γ(·,·) functions provide the weightings that
transition between these two bounds. This observation will be used to quickly
write the ZZB for estimating sinusoid parameters in the next section.

Figure 7.7 compares the CRLB and actual delay estimation precision for
two different waveforms. The gray curve and bound are for a complex-valued



LFM pulse with βτ = 100 as considered above. The black curve and bound are
for a real-valued trapezoidal pulse with an arbitrary but fixed complex phase
shift and 20 percent rise and fall times (see Fig. 7.9a) of the same length. The
RMS bandwidth of the LFM waveform is then 49.1 times that of the trapezoidal
pulse. The noise is complex in both cases. In this case, both are normalized to
the pulse length, making the normalized variance 100× smaller for the LFM
pulse than in Fig. 7.6, but allowing direct comparison of the two waveforms.
The ZZBs are not shown to avoid cluttering the graph. As expected, the
precision achieved with the LFM for a given SNR in the high-SNR region
exceeds that of the trapezoidal pulse by about 50× due to the greater RMS
bandwidth.

 FIGURE 7.7   Comparison of maximum likelihood delay estimation error for a
real trapezoidal pulse and a complex LFM pulse of the same length in complex
noise. The time-bandwidth product of the LFM pulse is 100.
 

Another limiting factor at high SNR that has not yet been considered is the
quantization of the time delay axis. In the SNR regime where it is effective, the
MLE locates the target time delay to sample n0, equivalent to time n0Ts. Even if
n0 is the correct location of the highest amplitude sample of the signal
component at the filter output, the implied time estimate n0Ts can differ from the
actual peak location t0 by up to ±Ts/2. Modeling this difference as an
independent uniformly distributed error source establishes a lower sampling



bound (SB) of 1/12 squared samples or  on the error variance. This will
generally be higher than the CRLB unless the data is highly oversampled or the
estimator is an analog (continuous-time) implementation. Suppose the matched
filter output is oversampled by a factor kos compared to the Nyquist rate so that
Ts = 1/kosβ. The SB on time delay estimation variance for real or complex
signals is then

(7.50)
 
Equating (7.50) with Eq. (7.43) or (7.44) shows the degree of oversampling
needed to achieve the CRLB is  in the real case and 

 in the complex case. For a complex-valued LFM waveform the
required oversampling factor is about 7.4 at an SNR of 20 dB and 23.4 at 30
dB.

Figure 7.8 illustrates this effect for the same complex LFM pulse, MLE,
and normalization to the time resolution used for Fig. 7.6. The matched filter
output is oversampled by a factor kos = 2.5 so that the sampling bound on
precision is 0.116/β = 0.116Ts. The analysis above shows (and the figure
confirms) that the SB dominates the CRLB for χout > 10.1 dB, but as can also be
seen from the figure, in this example the SB does not dominate the ZZB until χout
> 14 dB. For values of SNR in this regime the gray MLE curve labeled “no
interpolation” hews closely to the SB.



 FIGURE 7.8   Effect of sampling rate limitations and interpolation techniques on
high-SNR time delay estimation error. See text for details.
 

Time delay measurement accuracy could be improved by oversampling to
a greater degree, but the rate required to achieve the CRLB at SNRs greater than
about 20 dB can be quite large, as seen above. A common alternative approach
is to interpolate between the samples in the vicinity of a measured peak to refine
the estimated peak location, as discussed in each of Chaps. 3–5 for reducing
straddle errors. For the LFM waveform, the peak of the magnitude of the signal
component at the matched filter output closely approximates a sinc function,
which in turn can be approximated near its peak at t = t0 by a parabola. Denote
the magnitude of the matched filter output as y(t) with a peak occurring at time
t0. The largest sample actually measured is at sample n0 corresponding to time
n0Ts. Denote the value y at that time as y[n0] = y0, and the value of the two
adjacent samples as y[n0 – 1] = y–1 and y[n0 + 1] = y+1. The actual peak is at
location t0 = (n0 + Δn)Ts, where Δn is a fractional sample value between –1 and
+1. It is straightforward but tedious to find the coefficients of a quadratic
equation that passes through the three data points y–1, y0, and y+1 corresponding
to times (n0 – 1)Ts, n0Ts, and (n0 + 1)Ts. This equation can then be differentiated
with respect to Δn and set to zero to find the value of Δn at which the peak
occurs. The resulting estimate of the time delay t0 is

(7.51)
 
The curve marked “quadratic interpolation” in Fig. 7.8 shows the result of
applying this technique to the coarsely sampled data that produced the
“sampling bound” curve. The interpolation provides precision close to the
CRLB up to at least 30 dB with only 2.5× oversampling.

Other interpolation techniques can be used. One example is the centroid of
the apparent peak and its two nearest neighbors, which is given by

(7.52)



 
The result of centroid interpolation is also shown in Fig. 7.7. While it improves
the precision below the sampling bound, it does not approach the CRLB. Still
another is the two-sample estimator, which uses only the peak sample and the
larger of its two nearest neighbors (Macleod, 1998):

(7.53)
 
where sgn(·) is the sign or signum function. The two-sample estimator is
surprisingly accurate on noise-free data but is ineffective on noisy data, as seen
in Fig. 7.8.

There are many additional issues to be considered in using peak
interpolators. For example, parabolic interpolator coefficients should be
modified to obtain the best performance if the data is windowed for range
sidelobe control (which alters the peak shape) or if interpolation is applied to
complex data instead of real data (Agrež, 2002; Lyons, 2011; Jacobsen and
Kootsookos, 2007). In addition, both the quality of interpolation generally and
the relative effectiveness of various interpolators varies widely with
oversampling rate. Another factor is that these techniques are designed for
isolated peaks not contaminated by other nearby peaks. Also, most interpolators
are nonlinear and introduce bias (reduced accuracy) in the estimate, although the
bias is generally small in the high-SNR region where interpolation is useful.
Taken as a whole, interpolation procedures can be effective in improving
precision but must be carefully selected and their details optimized for each
particular data acquisition protocol.

Another common time delay estimator frequently used with approximately
rectangular pulses is a leading edge threshold detector. This is a noncoherent
technique that operates on the magnitude of the receiver output and is suitable
only for high-SNR conditions. Consider a rectangular pulse filtered through a
receiver filter of nominal bandwidth β Hz. The filter output can be
approximated by a trapezoidal pulse with a rise time of tr ≈ 1/β seconds, as
shown in Fig. 7.9a. In a high-SNR environment, time delay could be estimated
by measuring the time at which the received noisy pulse first crosses an
amplitude threshold such as 50 percent of the peak amplitude. The addition of
the filtered noise to the filtered pulse will perturb the time at which the
threshold crossing occurs.



 FIGURE 7.9   Leading edge detection for a trapezoidal pulse. (a) Trapezoidal
pulse with rise time tr = 20% of pulse length τ; threshold is set at 50 percent of
peak noise-free pulse amplitude. (b) Close up of threshold crossing region for
noise-free and noisy pulse.
 

Consider the behavior of the noise-free and noisy output pulses of Fig.
7.9a. The correlation interval of the noise will approximately equal the pulse



rise time tr, which is expressed as a fraction α of the total pulse length, tr = ατ;
in this example, α = 0.2. This shape is the result of convolving a square pulse of
original duration (1 – 2α)τ with a filter having a rectangular impulse response of
width ατ seconds, and therefore a bandwidth of approximately 1/ατ Hz.

Suppose the threshold crossing time in the absence of noise is t0. As
suggested in the expanded view of the region around the amplitude threshold
(here set at 50 percent of peak) in Fig. 7.9b, the slope of the noisy pulse is
similar to that of the noise-free pulse so that the change in threshold crossing
time, δt, is related to the noise amplitude at t0 approximately according to

(7.54)
 
If the bias in the estimate can be assumed small, the mean-square error in the
time delay estimate, E{(δt)2}, can be taken as an estimate of the variance of the
delay error:

(7.55)
 
Equation (7.55) is referred to as the mean-square error  (MSE) bound. The
SNR χout is the peak output voltage SNR , more appropriate than the
waveform energy SNR since a matched filter is not used here.

It is interesting to compare the MSE bound to the general complex signal
CRLB for time delay estimation of Eq. (7.43). It can be shown (see Prob. 22)
that the RMS bandwidth of the trapezoidal pulse is . It follows
that the ratio of the complex CRLB precision to the MSE bound a factor of 

, which varies from 1.47 to 0.41 as α varies from 0.1 (nearly
square pulse) to its maximum of 0.5 (triangular pulse). Thus in some cases, the
CRLB is larger than the MSE bound! (For the value α = 0.2 used in these
examples, the two are nearly equal, with the MSE bound slightly smaller at 96
percent of the CRLB.) Since the CRLB is the minimum variance of any unbiased
estimator, the leading edge estimator must be biased. This can be confirmed by
considering the exact PDF of the threshold crossing time. In the notation used
here, the MSE and bias in estimating t0 can be shown to be (Bar-David and
Anaton, 1981)

(7.56)
 



The MSE matches the earlier heuristic MSE bound of Eq. (7.55). Equation
(7.56) confirms that the estimate is biased and shows that the bias
asymptotically approaches zero at high SNR.

Figure 7.10 shows the precision, normalized to pulse length τ, for a
simulated leading edge estimator with α = 0.1 and the threshold at 50 percent of
the noise-free peak amplitude. The total data record length was 3τ seconds.
Also shown are the a priori bound, the MSE bound of Eq. (7.55), and the CRLB.
The leading edge estimate approaches the MSE bound for SNRs of 20 dB or
more. The MSE bound is below the CRLB for small α as discussed above. Also
shown again in the solid gray line is the MLE for this problem, which
approaches the CRLB but does not achieve the MSE bound.

 FIGURE 7.10   Time delay estimation error for leading-edge detection of a
trapezoidal pulse. Circles indicate leading edge estimate. The solid gray line is
the maximum likelihood estimate. See text for details.
 

One might expect that at low SNR neither the CRLB or MSE bound would
apply because the a priori bound would become dominant. Figure 7.10 shows
that the a priori bound does not control the low-SNR behavior of the leading-
edge estimator. As the SNR decreases below 20 dB, the variance of the leading
edge estimate starts to rise as in earlier examples, but then decreases rapidly.
This behavior occurs because at low SNR the noise alone is likely to cross the
amplitude threshold in the first few moments of the data record, regardless of



the actual pulse position. The “arrival time” is then consistently reported as
very near to beginning of the data. While this estimate is badly biased, it varies
little so the variance becomes small. This behavior can be avoided if the
approximate position of the echo is known from a tracking loop so that such
anomalous results can be ignored. Changing the level of the threshold alters
somewhat the SNR at which the transition to CRLB-limited performance occurs.
A higher threshold moves the “hump” in the data to the left by a few decibels,
for instance. It is clear, however, that this estimator is only suitable for high-
SNR signals.

Another common class of time delay or range estimators are various split-
gate or early-late gate techniques. These attempt to find an estimated delay
such that the energy in a finite window to either side of the estimated delay is
approximately equal. As an example, for a rectangular pulse the matched filter
output is a triangle. If the estimated delay coincides with the center of the
triangle, then the sum of the noisy triangle voltages (or their squares) over one
pulse length to either side is likely to be nearly equal. An analysis of various
implementations of this idea is given in Peebles (1998).

7.2.2   Doppler Signal Estimators

CRLB for Sinusoid Parameters
A general uniformly sampled complex sinusoid s[n] in additive complex WGN
w[n] of power , using normalized cyclical frequency units is of the form

(7.57)
 
where  is the complex amplitude of the sinusoid. This signal is a
good model for the slow-time signal produced by a target with a constant radial
velocity (Doppler shift). Note that the SNR for this problem is .

There are three simultaneous parameters to be estimated: A, f0, and ϕ.
Consequently, finding the CRLB for each requires computing the Fisher
information matrix in the form of Eq. (A.84) in App. A. The (i, j)th element of
the matrix is

(7.58)
 
where Θ is the three-element parameter vector [A, f0, ϕ]T. The derivatives



needed are easily obtained:

(7.59)
 
The (1,1) element of I(Θ) is, from Eq. (7.58),

(7.60)
 
It is easy to see that the (1, 2), (1, 3), (2, 1), and (3, 1) elements are all zero
because of the Re{·} operator in Eq. (7.58) and the fact that the derivatives with
respect to f0 and ϕ are purely imaginary. The remaining elements are easily
found from the derivatives above, giving the complete matrix as

(7.61)
 
The last step uses the identities

(7.62)
 

The CRLB for each parameter is the corresponding diagonal element of I–



1(Θ). The calculation is straightforward, if tedious, and gives the results

(7.63)
 
As usual, the CRLBs for frequency and phase are inversely proportional to
SNR. The CRLB for amplitude is not, but if follows from Eq. (7.62) that the
CRLB for relative amplitude  and is also inversely proportional to
SNR as shown above. The “large N” approximations shown are accurate to
within 10 percent for N ≥ 10 (frequency) and N ≥ 13 (phase). It is interesting to
note that the CRLBs for amplitude and phase decrease asymptotically as 1/N
while that for frequency improves at the much faster rate of 1/N3 as the amount
of data increases.

Two alternative forms for the frequency CRLB merit mention. The
frequency in hertz is F0 = f0/Ts, where Ts is the sampling interval of interest. The
data duration in seconds is NTs, so the expected frequency resolution of the
DTFT in hertz is ΔF = 1/NTs. Applying these in the asymptotic form of Eq.
(7.63) gives

(7.64)
 
The last form makes it clear that the N3 improvement in the frequency estimation
CRLB is due largely to the implied improvement in frequency resolution, which
accounts for an N2 term. The remaining factor of N represents the usual SNR
improvement due to coherent integration that is also seen in the phase and
amplitude CRLBs.

Having multiple simultaneously unknown parameters can result in CRLBs
that are larger than they would be if all but one of the parameters is known. The
interaction between parameters is manifested in nonzero off-diagonal elements
of the Fisher information matrix. For the sinusoidal parameter estimation
problem, it can be seen (see Prob. 30) that if the other two parameters are
known, the CRLB of the remaining unknown parameter is equal to or tighter than
the results of Eq. (7.63). Specifically, the CRLB for amplitude is the same,
while in the limits of large N the CRLBs for frequency and phase are each 4×
smaller.



MLE for Sinusoid Parameters
The next step is to develop the MLE for the sinusoid parameters. This requires
maximizing the likelihood function:

(7.65)
 
with respect to all three parameters. In Eq. (7.65) the complex amplitude  has
been reintroduced for convenience. Equivalently, the exponent term

(7.66)
 
must be minimized.

Begin by minimizing J with respect to  with f0 temporarily
assumed known. The partial derivative with respect to  is (leaving x[n] and
exp(j2πf0n) in complex form)

(7.67)
 
Setting Eq. (7.67) equal to zero leads to

(7.68)
 
and finally, along with a similar development for minimization with respect to 

 (see Prob. 32),



(7.69)
 
where  denotes the estimated value of . Notice that if f0 is indeed known, then
the MLE for  is simply the DTFT of the data evaluated at f0, a very sensible
result.

However, with f0 not known, J must now be minimized with respect to f0.
Expanding the definition of J in Eq. (7.66) gives

(7.70)
 
Recognizing the sums in the two middle terms as  and  [see Eq. (7.69)]
reduces this to

(7.71)
 
The first term of Eq. (7.71) does not depend on f0. Therefore, J is minimized by
maximizing the second term, which is just the magnitude-squared of the DTFT of
the data.5 Again very sensibly,  is found by computing the DTFT of the data
and finding the frequency at which the squared-magnitude of the DTFT is
largest.

To summarize, the MLEs of the amplitude, frequency, and phase of a
complex sinusoid in complex WGN are found by the following sequence of
operations:

      1.  Compute the DTFT X(f) of the data x[n].
      2.   is the frequency at which the peak magnitude of the DTFT occurs,  

.



      3.  The MLE of the complex amplitude is 1/N times X(f) evaluated at , 
. The MLEs  and  of the magnitude and phase are the

magnitude and angle of .

Figures 7.11 to 7.13 illustrate the behavior of the error in the MLEs for
frequency, phase, and relative amplitude, respectively. All three figures are
based on simulations of the DFT-based MLE applied to complex sinusoids of
length M = 40 samples with random frequencies and initial phases. A large DFT
of size K = 1000 was used with the frequency and phase estimates, while K = 80
for the amplitude estimation in order to have a sampling bound high enough to
have an impact within the SNR range shown. As with range estimation, in all
three cases the measurement precision follows the CRLB only at relatively high
SNRs. At low SNR an a priori bound dominates the estimates as the signal
becomes essentially all noise, while at high SNR the precision is limited by a
sampling bound based on sampling density.

 FIGURE 7.11   Behavior of simulated maximum likelihood normalized frequency
estimation error. A K = 1000 point DFT was applied to sinusoids with M = 40
time samples.
 

 



 
FIGURE 7.12   Behavior of simulated maximum likelihood phase estimation
error in radians. A K = 1000 point DFT was applied to sinusoids with M = 40
time samples.
 

 



 
FIGURE 7.13   Behavior of simulated maximum likelihood relative amplitude
estimation error. A K = 80 point DFT was applied to sinusoids with M = 40
time samples.
 

In the low-SNR case the signal peak will be swamped by the noise, so the
MLE for frequency will return simply the location of the peak of the DFT of the
noise. The peak is equally likely to occur anywhere in the normalized frequency
interval [–0.5, +0.5].
Modeling the estimated normalized frequency  as a uniform random variable
over that interval, the a priori bound on its variance is simply 1/12 and the
precision is the square root of this, . Similarly, the phase at the DFT peak
is uniform over the full range [–π, π] so that the a priori bound on phase
precision is .

To establish the a priori bound on amplitude, consider that each sample of
the K-point DFT of x[n] is the sum of M samples of complex WGN with
variance  weighted by the DFT kernel samples exp(–j2πk/K). Because the
magnitudes of those weights are all unity, the DFT samples are also complex
Gaussian with variance . The magnitude of the DFT samples is therefore a
Rayleigh-distributed RV with variance . The MLE scales the DFT
by 1/M so the variance becomes . The MLE is the maximum of the
K DFT samples, so the estimate variance will be the variance of that quantity.
Denote the PDF of the magnitude of a scaled DFT sample as p|X|(|X|) and the
corresponding cumulative distribution function (CDF) as P|X|(|X|). For the scaled
DFT of complex WGN these are

(7.72)
 
Now let z be the maximum of the K samples of the DFT of the M-point input.
The PDF of the maximum of N independent samples of |X| is

(7.73)
 
Equation (7.72) can be used in Eq. (7.73) to compute pz(z). Unfortunately, there
is no simple formula for the variance of z, but it can be computed numerically



from pz(z) to establish the a priori bound on amplitude precision.
For K = M, the DFT samples are uncorrelated. It is easy to show that DFT

samples are correlated, even for a white noise input, when K > M (see Prob.
33). In fact, for K > M the effective number of independent samples remains
approximately equal to M. Consequently, a good estimate of the low-SNR PDF
of the MLE is obtained by choosing N = M in Eq. (7.73) regardless of the size
of K.

The SNR in Figs. 7.11 to 7.13 is that of the input sinusoidal data. The a
priori bounds for all three parameters are controlling for input SNRs below
about –10 dB. Since the integration gain for the DFT of a 40-point sequence is
10 log10(40) = 16 dB, this corresponds to integrated SNRs of about +6 dB for M
= 40.6

When the SNR is sufficiently high and the DFT size is relatively small, the
DFT frequency sampling interval limits the precision of all three parameter
estimates. Most obvious is the sampling bound on frequency estimation
precision. A K-point DFT samples the normalized frequency axis in intervals of
1/K cycles per sample. For large SNR this frequency quantization becomes the
dominant factor. The frequency error is then modeled as a uniform RV over an
interval of width 1/K, so the sampling bound on the precision of the frequency
estimate is simply . This bound is also shown in Fig. 7.11.

The errors in the amplitude and phase estimates at high SNR are induced
by the frequency estimation error. Recall that the DTFT of an M-point sinusoid
like that of Eq. (7.57) with frequency f0 and initial phase ϕ0 in the absence of
noise is

(7.74)
 
When evaluated at the actual frequency f0, X(f0) = MAexp(jϕ0). Dividing by M
and taking the magnitude and phase of X(f0) returns the correct amplitude and
phase of the original sinusoid. However, if the DTFT is evaluated at a
frequency f0 + δf, a different amplitude and phase will be measured. At high
SNR, the range of δf is ±1/2K (one DFT bin). The resulting range of phase
variations is ∓π(M – 1)/2K, and for amplitude is –A[M –
sin(πM/2K)/sin(π/2K)]/M. The phase error is expected to be uniform over its
interval because it arises from a linear mapping of frequency error to phase
error. This is not the case for the amplitude error, but when K is reasonably
large compared to M, the amplitude error can be approximately modeled as
uniformly distributed over its interval. The sampling bounds on phase and
amplitude estimation precision are then  and 

. The precision bound for relative



amplitude is .
The problem of estimating sinusoid frequency and the MLE that resulted is

very similar in nature to that of maximum likelihood estimation of time delay.
Both involve finding the peak of a relatively narrow pulse in noise.
Consequently, the ZZB in the generalized form of Eq. (7.49) can be applied to
this problem as well. The equivalent of χout for the frequency estimation MLE is
Mχ. The Ziv-Zakai bound computed using this change and the CRLBs and a
priori bounds computed above for frequency estimation is plotted on Figs. 7.11
and 7.12. It is not shown in Fig. 7.13 because the particular arguments in the
erfc(·) and Γ(·) weighting functions of Eq. (7.49) do not match well to the
transition between the CRLB and a priori bounds in the amplitude estimation
problem.

As with time delay estimation, interpolation techniques can be used to try
to improve precision beyond the sampling bound at high SNR. In fact, many of
the interpolation techniques have been developed primarily for the purpose of
frequency estimation. Once an improved frequency estimate is obtained, the
same logic used above to establish the sampling bounds can be used to infer
improved phase and amplitude estimates. Figure 7.14 shows the results of
quadratic interpolation for the case M = 40 and K = 120. All three parameters
show significant precision improvements. The two-sample and centroid
interpolation results are not shown because, similar to the time delay case in
Fig. 7.8, they improve precision only slightly. These two interpolators are more
effective for more coarse sampling, e.g., K = M, but even then the quadratic
interpolator produces better results. All of the previously discussed caveats
regarding the effects of windowing, real versus complex data, oversampling
rates, and bias on interpolation apply in sinusoid parameter estimation as well.



 



 
FIGURE 7.14 Improvement in precision using quadratic interpolation. K = 120
point DFT and M = 40. (a) Normalized frequency, (b) phase (radians), (c)
relative amplitude.
 

7.2.3   Angle Estimators
The remaining parameters to be estimated in order to locate a target in three-
dimensional space and Doppler shift are the elevation and azimuth angles. It is
sufficient to consider estimation of one angle; the results apply to both. There
are two fundamental methods for estimating target angle relative to the antenna
orientation in radar. The first uses phase measurements at multiple antenna
phase centers in what is essentially phase interferometry, while the second uses
multiple amplitude measurements in a process known as lobing or lobe
switching. The choice between them depends on the type of antenna available
and the data collection protocol. Some techniques are blends of the two basic
approaches.

Phase-Based Angle Measurement
Consider the horizontally oriented uniform linear array shown in Fig. 7.15. Each
of the gray triangles represents an antenna phase center having its own
independent receiver. These could represent either subarrays or individual
elements of a phased array antenna. The number of phase centers N is assumed
to be at least two. They are separated by a distance d. An electromagnetic plane
wave of wavelength λ (frequency Ω = 2π/λ radians per second) arrives at the



array from an angle of arrival (AOA) of θ radians relative to the array normal.

 FIGURE 7.15   Plane wave impinging on a uniform linear array.
 

Two successive planar phase fronts are shown, spaced by λ meters in the
direction of propagation.

Consider a phase front arriving at phase center #0 at some time t. That
phase front must travel dsinθ meters in the direction of propagation in order to
arrive at phase center #1, and that will take dsinθ/c seconds. If the voltage
signal observed at phase center #0 is of the form , the
signal at phase center #1 will be . More
generally, the signal at the nth phase center will be

(7.75)
 

Now consider the set of N voltage samples obtained by measuring the
voltage at each phase center simultaneously at some time t = t0 and assembling
the results into a column vector y:

(7.76)
 
The spatial phase history vector y is called a spatial snapshot of the signal
arriving at the array. Define the normalized spatial frequency kθ = 2πdsinθ/λ. kθ
is the spatial frequency in radians per meter projected onto the face of the array,



(2π/λ)sinθ, times the array sampling interval (the element spacing d), and has
dimension of radians per sample. The spatial snapshot becomes

(7.77)
 
Equation (7.77) shows that the snapshot is a sampled complex sinusoid with
normalized radian spatial frequency –kθ.

The radar’s operating wavelength λ and the phase center spacing d are
presumably known, so the AOA θ can be determined if kθ can be measured; and
since the snapshot is a sampled sinusoid, the results of the previous section on
frequency estimation can be applied. Specifically, scaling Eq. (7.63) for a
normalized radian frequency instead of the cyclical frequency f0, the CRLB for
estimating kθ given a spatial snapshot with complex AWGN is

(7.78)
 

The CRLB for the AOA can be obtained using the transformation of
parameters rule in Sec. A.3.2 of App. A. Strictly speaking, a generalized
version of this rule is needed for estimation of a transformed vector parameter;
see Kay (1993) for details. However, in this sinusoid estimation problem the
transformation from a CRLB on kθ to one on θ simplifies to the scalar
transformation case given in Eq. (A.71). Defining α = λ/2πd to temporarily
simplify the notation,

(7.79)
 
Combining Eqs. (7.78) and (7.79) gives the CRLB on AOA,

(7.80)
 

Note that the accuracy depends on the AOA. In particular, signals arriving



normal to the array (θ = 0) are estimated with the finest precision, while the
“precision” of the estimate of the AOA of those arriving from the end of the
array (θ = ±π/2) becomes infinite. In this case, there is no difficulty estimating
kθ with the variance given in Eq. (7.78). However, the derivative of the mapping
θ = sin–1 (λkθ/2πd) → ∞ as the argument tends to ±1 so that a finite precision in
kθ becomes arbitrarily large in θ.

In practice, the AOA and therefore the precision cannot become
unbounded. Ignoring signals arriving from behind the antenna, the AOA must be
in the interval [–π/2, +π/2]. The worst-case variance is then π2/12. This is also
the a priori bound for low-SNR angle estimation.

Several substitutions put Eq. (7.80) in a more useful form. First, define the
length of the array D = (N – 1)d. Next, recall that the 3-dB beamwidth in the
direction normal to the face of the array is kλ/D for some k in the range of 0.89
to perhaps 2 or 3, depending on aperture weighting for sidelobe control. For an
electronically scanned array antenna, the 3-dB beam-width in a direction θ from
the array normal then becomes θ3 = kλ/Dcosθ due to projection of the array
length to the shorter effective length Dcosθ in the direction θ. Finally, note that χ
is the SNR at an individual phase center; the coherently integrated SNR will be
χout = Nχ. With these substitutions, Eq. (7.80) becomes

(7.81)
 

This equation shows that the precision (square root of ) in estimating
AOA is a fraction, determined by the integrated SNR, of its angular resolution.
That fraction is independent of AOA. However, it must be remembered that θ3
depends on the angle of arrival. The precision still becomes unbounded in
theory for end-fire AOAs because the beamwidth kλ/Dcosθ becomes unbounded
in theory, but in practice the beamwidth is limited to π radians (2π if allowing
for signals from behind the array) and the estimate is still limited to ±π/2.

Figure 7.16 plots the precision bound relative to the minimum 3-dB
beamwidth (at AOA θ = 0°) for a case where k = 1.34, d = 5λ (implying a
subarrayed antenna), N = 10, and the single-subarray (nonintegrated) SNR = 0
dB so that the integrated SNR is 10 dB. In this case the minimum 3-dB
beamwidth is kλ/(N – 1)d ≈ 30 mrad or 1.7°. For signals arriving within about
±55° of the array normal, the precision is better than two-tenths of the minimum
3 dB beamwidth. The low-SNR precision bound is  radian or 52°.
This is 30.6 times the minimum beamwidth and is well above the range of the
plot.



 FIGURE 7.16   CRLB for relative precision of angle of arrival measured with a
subarrayed antenna. See text for details.
 

If the phase center spacing d > λ/2, the Nyquist spatial sampling criterion
o f Chap. 3 will not be met. This will be the case if each phase center is a
multielement subarray. In this event, |kθ| > π for some range of AOAs, resulting
in aliasing of the array factor portion of the antenna pattern (grating lobes) and
making the estimate of θ ambiguous. For example, if d = 2λ then AOAs of 0°,
±30°, and ±90° result in kθ = 0, ±2π, and ±4π, all of which alias to kθ = 0. If 

, the AOA could be any of those five angles. This concern is eased, if not
eliminated, by the subarray antenna pattern, which attenuates some of the
ambiguous lobes; see Bailey (2010) for more information.

Lobing-Based Angle Measurement
Consider the scenarios shown in Fig. 7.17. The radar antenna is pointed at an
angle θ0 relative to some axis. Now suppose the radar reports a target detection
at some range. It is tempting to assume the angle to the target is θ0 as shown in
Fig. 7.17a, but in fact the target might actually be at some other angle θ0 + δθ as
shown in Fig. 7.17b. It can reasonably be assumed that δθ is in the range of
±θ3/2 so that the target is in the mainbeam and has sufficient SNR to be detected.
Nonetheless, a method is needed to determine the target location within the
main-beam so that the angle can be measured to an accuracy finer than the
beamwidth.



 FIGURE 7.17   Effect of antenna gain pattern on received target echo amplitude:
(a) target on boresight of antenna, (b) target off boresight.
 

This problem can be solved by noting that the target echo strength (power
or voltage) measured in these two situations will not be the same because of the
different gains of the two-way antenna pattern on and off the boresight. Suppose
that once a target is detected at radar pointing angle θ0 the procedure illustrated
in Fig. 7.18 is followed. First, the antenna is steered to one side of the boresight
by some amount Δθ radians and the target echo amplitude is measured again.
The antenna is then steered Δθ radians to the opposite side of the original
boresight and the echo amplitude measured once more. Either mechanical or
electronic steering can be used, as appropriate for the particular antenna. The
offset Δθ should be limited so that the target remains in the mainlobe in most
cases. This issue is discussed in slightly more detail shortly.



 FIGURE 7.18   Sequential lobing concept: (a) new target measurements are taken
with the antenna displaced from the nominal look direction, (b) relative
amplitude of resulting measurements.
 

By examining the pattern of target amplitude versus angle, the direction of
the target relative to the original boresight can be determined. In the example of
Fig. 7.18a, the target is to the left of the original boresight. When the antenna is
shifted counterclockwise, the target is nearer the boresight and is therefore
viewed with a higher antenna gain, resulting in a higher amplitude measurement.
When the antenna is shifted clockwise the antenna bore-sight moves away from
the target, resulting in a lower amplitude measurement. This pattern of
measurements, shown in Fig. 7.18b, indicates that the target must be
counterclockwise from the original look direction. With knowledge of the
antenna pattern, analysis of the relative amplitudes can be used to determine by
how much. It should be clear that if the target were clockwise from the original
boresight the pattern of the two measurements would be reversed, and if it was
exactly on the boresight, the two measurements would produce equal
amplitudes.

This process of making multiple measurements of target strength at offset
angles relative to the nominal pointing angle and analyzing the results to indicate
target angle is called lobing. When the measurements are made sequentially in
time as described above it is called sequential lobing. Alternatively, antennas
can be constructed that form multiple beams at once, providing multiple output
signals corresponding to the original centered beams and to pairs of squinted
beams in two orthogonal angle coordinates. These antennas are called
monopulse antennas because they can form all of the required signals for target
angle measurement on a single pulse. A brief introduction to monopulse
antennas is given in Bailey (2010). A thorough discussion of monopulse radar,
covering a variety of antenna structures and processing methods, is given in
Sherman (1984).

Essentially the same approach can be used for analyzing the bias and
precision of two-beam lobing for both the sequential and monopulse cases. An
important modeling detail is whether the antenna pattern is the same for the
squinted beams and the original beam, differing only in the boresight direction.
This depends on antenna type and scanning mechanism. If squinted beams are
formed by mechanically tilting a conventional antenna, all the beam shapes are
the same. If a phased array antenna is electronically scanned to form squinted
beams, they are not because the pattern broadens as the scan angle from normal
increases. Monopulse antennas typically form identical squinted beams and then
form the unsquinted beam from their sum, so that the unsquinted pattern is not the
same as the squinted patterns. In this analysis it is assumed that the sum pattern



is formed from two identically shaped squinted beams either in a monopulse or
sequential lobing approach. The results obtained will still be generally
applicable to other designs, though some details may change. The reader is
referred to Sherman (1984) and Howard (2008) for much more information on
antenna patterns for lobing systems.

Denote the complex amplitudes of the voltages after demodulation and
matched filtering for a range bin containing a single point target of interest in
each of the two beams of Fig. 7.18a as vL and vR. The symbols L and R refer to
the antenna being shifted counterclockwise (“left” or L) and clockwise (“right”
o r R) by Δθ radians from the nominal pointing angle θ0, respectively. The
nominal pointing direction of the antenna can be set to θ0 = 0 for the time being
without loss of generality.

Ignore for now any effects of noise or target fluctuations. Let G(θ – Δθ) be
the one-way antenna voltage pattern when the beam is squinted Δθ radians
clockwise (right). The gain on the boresight θ = Δθ is normalized to G(0) = 1.
The two-way “right” voltage pattern is then G2(θ – Δθ). Similarly, the two-way
“left” voltage pattern is G2(θ + Δθ). The complex amplitude of the target L and
R echo voltages will be vR = Aexp(jϕ)G2(δθ – Δθ) and vL = Aexp(jϕ)G2(δθ – Δθ)
when the target is located at an angle δθ relative to the original pointing
direction. Another important detail of the modeling is whether for a stationary
non-fluctuating point target in the absence of noise the phases of vL and vR are
identical. The answer depends on the design of the antenna and, in the non-
monopulse case, the scanning mechanism used to form the squinted beams. In
this analysis, it is assumed that they are identical for a single nonfluctuating
point target with no noise. This is the intended result for many designs, although
it is not always realized in practice.

The most common way by far to utilize vL and vR begins by computing the
sum and difference of the received voltages. The left-minus-right difference
signal is

(7.82)
 
Because this depends on the target amplitude and not just its angular location, a
sum signal is also defined as

(7.83)
 
The Δ/Σ ratio is then independent of target amplitude:



(7.84)
 
The arguments (δθ|Δθ) in all three of these voltages emphasizes that they depend
on both the target location relative to the original boresight and the squint angle
used in the lobing measurement system. For brevity, these arguments will
usually be dropped in the remainder of this section.

Figure 7.19 illustrates the antenna lobing patterns involved when the basic
two-way antenna voltage pattern is the sinc2 pattern of Fig. 7.1a. Figure 7.19a
shows the central portion of the L and R patterns when each is shifted by 25
percent of the Rayleigh beamwidth away from the original boresight at θ = 0.
Figure 7.19b shows the difference pattern , while 7.19c shows the sum
pattern . Figure 7.19d is the pattern  of Eq. (7.84).

 FIGURE 7.19   Two-way antenna voltage patterns for sequential lobing: (a)
pattern G2(θ) of Fig. 7.1a shifted left and right by Δθ= 0.25 Rayleigh widths in
each direction, (b)  difference pattern, (c)  sum pattern, (d)
normalized difference pattern . The gray dashed line is a linear



approximation to the central region with slope .
 

Notice that the normalized difference pattern is approximately linear in the
angular region corresponding to the central 40 percent or so of the original
antenna mainlobe. This suggest a simple algorithm for estimating the target angle
δθ relative to the original boresight. For a given antenna, the Δ/Σ pattern 
can be measured and its central portion approximated by a straight line with
slope , , as shown by the gray dashed line in Fig. 7.19d. When a
target is detected, the lobing measurements vL and vR are collected and the
quantity vΔ/Σ computed. The estimated target angular position then becomes

(7.85)
 
where θ0 is the boresight angle of the sum pattern, which is also the axis of odd
symmetry of the difference pattern.

Now suppose that the noise-free values of vL and vR are each contaminated
by i.i.d. complex WGN samples having variance . Because they are the sum
and difference of vL and vR, vΔ and vΣ will each be contaminated with noise
having a variance of . The Δ/Σ ratio voltage will be

(7.86)
 
The second step assumes high SNR so that vΣ >> nΣ. The assumption that the
phases of vL and vR are identical implies that the phases of vΔ and vΣ also have
the same value, so that vΔ/Σ is real. Consequently, the target angle information is
contained entirely in the real part of the Δ/Σ ratio under ideal conditions; the
imaginary part contains only noise. For this reason, the estimation algorithm is
modified to its final form

(7.87)
 
This is the form most commonly used in practice.

While this estimation approach seems reasonable, it is so far only
heuristically based. A more systematic approach would again derive the CRLB
for angle estimation and the MLE given the measurements vL and vR. Begin with
the CRLB. The signals vL and vR will be nonzero mean (due to the target
component) independent complex Gaussians. They will not have the same mean



due to the different L and R antenna weights, but will have the same variance .
The sum and difference voltages vΔ and vΣ will also be nonzero mean complex
Gaussians, but with different means and variance . The target angle δθ is
real, so Eq. (7.18) applies. A slight extension is required since the antenna
patterns for vL and vR differ due to the different squints. The result is

(7.88)
 
Further progress requires assuming a specific antenna pattern.

Derivation of the MLE proves difficult. Several versions of the result for
various assumptions regarding the relative phase of the left and right signals,
whether multiple samples are integrated, and so forth are given in Hofstetter and
DeLong (1969). For the simple case assumed here, the MLE  of δθ is the value
that satisfies

(7.89)
 
i.e., the value of δθ such that the ratio of the left and right squinted patterns at
that angle matches the ratio of the measured left and right voltages. Simple
algebraic manipulations can restate  in terms of sum and difference voltages
and patterns as the value that satisfies

(7.90)
 

The Re{·} operator was again added in the last step because the Δ/Σ
pattern is ideally real, so that in the presence of noise the imaginary part of the
Δ/Σ ratio can be ignored. If the linear approximation to the central portion of the
difference pattern as illustrated in Fig. 7.19d holds, , then 

 and Eq. (7.87) is in fact the maximum likelihood estimate of the
target angle.



Equation (7.89) implies that the target angle could be estimated based on
the ratio of vL and vR rather than the ratio of vΔ and vΣ. This is possible but is
usually avoided because it would involve use of the pattern 

 which is much less linear than , not
symmetric around θ = 0, and not usable over as wide a range of θ. This pattern
is shown in Fig. 7.20 for the same basic sinc2 antenna pattern and ±0.25
beamwidth squint used earlier.

 FIGURE 7.20   Left/right ratio pattern  for same antenna used in Fig. 7.19.
 

The PDF of the ratio voltage vΔ/Σ is needed to determine the mean and bias
of the estimator [Eq. (7.90)]. It has been derived in Kanter (1977), but the
derivation is difficult and does not result in a tractable form. The result shows
that the MLE exhibits a bias of the form . This bias is very small for a
target near θ0 for any SNR, and decreases rapidly with increasing SNR for any
target angle. For SNR values adequate to provide quality tracking it is usually
not significant.

The variance of the MLE is infinite in theory, but a simple approximation
applies for high SNR, the main case of interest. Again suppose that noise-free
values of vΔ and vΣ are each contaminated by i.i.d. complex WGN samples nΔ

and nΣ having variances . The error in the estimate of vΔ/Σ will be

(7.91)



 
In this equation, vΣ represents the measured signal in the absence of noise, so
only the nΔ and nΣ terms are random.

Because the noise components are zero mean, the mean of εΔ/Σ in this
analysis is zero. The variance is

(7.92)
 
where the sum-channel SNR has been defined as . The ideal lobing
angle estimation processor selects the real part of vΔ/Σ. Ideally, this contains all
of the target power but only half of the noise power. The expected variance of
the real part of the error is then

(7.93)
 
This is the lobing bound on the variance of vΔ/Σ. The variance of the angle error
is probably of more direct interest. Using  gives εθ = εΔ/Σ/kΔ/Σ.
Equation (7.93) then becomes the lobing bound on angle precision in radians:

(7.94)
 

Equation (7.94) is the desired result. In the second line, a normalized Δ/Σ
slope km ≡ kΔ/Σθ3 has been introduced. This or a closely similar definition is
used in many common references, so it is included here for convenience of
comparison. Several extensions to Eq. (7.94) to account for unequal L and R
noise powers or correlated noise (both possibly due to jamming) and higher-
order approximations are given in Sherman (1984).

Equation (7.94) is a reasonably good model of the error statistics for high
SNR. However, because of the ratio calculation the error can occasionally
become very large. In the absence of noise vL and vR are in phase, but when
significant noise is present, their relative phase can take on any value. When it



happens that vL and vR are nearly equal in magnitude but close to 180° out of
phase with one another, νΣ can become very small while vΔ does not. The ratio
voltage νΔ/Σ can then become very large, resulting in large outliers well outside
the range ±π/2 for the estimated angle and in turn resulting in large error
variances. This behavior is consistent with the infinite variance of the exact
theoretical PDF mentioned previously.

Unrealistically large angle errors can be essentially eliminated by one of
several techniques, such as clipping the allowed magnitude of νΔ/Σ to some limit
or simply discarding those measurements that exceed a limit. The limit could be
based, for instance, on the sum pattern beamwidth or the width of the linear
region of the Δ/Σ pattern.

Figure 7.21 shows the precision observed in a simulation using Eq. (7.87)
to estimate the target angle with the sinc2 antenna patterns. Figure 7.21a shows
the variation in precision versus SNR when the beams are squinted by ±0.2
Rayleigh beamwidths and the actual target angle is +0.1 Rayleigh beamwidth
from the nominal boresight. Also shown are the lobing bound and CRLB of Eqs.
(7.94) and (7.88), respectively, as well as the a priori bound for a uniform
random phase over the interval ±π/2. Note that the lobing bound is very close to,
but slightly less than, the CRLB. This is possible only because the estimator is
biased.



 FIGURE 7.21   Angle estimation precision using lobing: (a) precision versus
SNR, (b) precision versus target angle. See text for details.
 

Two curves are shown for the simulated precision. The dashed line shows



the results obtained without any clipping of the magnitude of νΔ/Σ, while the gray
dots show the result when it is (very loosely) clipped to a value twenty times
that corresponding to the beam squint angle. This is sufficient to result in
estimated angles that approach the a priori bound at low SNR while giving
much more consistent behavior. Both curves follow the lobing bound and CRLB
closely at high SNR.

In Fig. 7.21b the variation of precision versus target angle and the various
bounds are shown for SNR = 0 dB and 15 dB. For the 0 dB case, the result is
shown both with and without clipping of the νΔ/Σ measurement. The lobing bound
in the 15 dB case is obscured by the data. Again, the lobing bounds are slightly
less than the CRLB, but this figure shows that the difference is greater at larger
target angles and that neither bound is particularly tight at low SNR and larger
angles

There is a tradeoff between precision and width of the linear region around
the bore-sight when choosing the squint angle. Equation (7.94) makes clear the
effect of the Δ/Σ slope on estimate precision. Since kΔ/Σ · θ ≈ νΔ/Σ is less than
one, often significantly so, the dominant term in the angle measurement precision
is , which is inversely proportional to the Δ/Σ slope. Consequently, a
larger slope results in a finer precision for a given SNR. For a given basic
squint antenna pattern G2(θ ± Δθ), the slope increases if the squint angle Δθ is
increased. On the other hand, larger slopes maintain the approximate linearity of

 over a smaller angular region about the boresight. Furthermore, if the squint
angle is too large the sum pattern loses both gain and resolution near the
boresight. The gain reduction decreases χΣ, degrading the precision. All of these
effects are evident in Fig. 7.22, which shows the sum pattern and normalized
difference pattern for various squint angles.



 FIGURE 7.22   Effect of lobing squint angle Δθ on the sum and difference
patterns: (a) normalized difference pattern , (b) sum pattern .
 

The optimum squint depends on the antenna patterns and what is
considered “optimum.” The angle precision near boresight will be finest when
the quantity  is largest. For the sinc2 pattern used here, this occurs for
Δθ = 0.42 Rayleigh beamwidths or about 0.65θ3. The cost of this finest
precision is a relatively narrow linear region of about ±0.15 Rayleigh
beamwidths in the difference pattern.

The error analysis so far has considered only nonfluctuating targets and a
single measurement. In short, if N independent angle measurements are
averaged, the error variance will decline by the factor 1/N. Target fluctuations



make the SNR a random variable. Their effect on the variance depends on the
fluctuation model and whether or not a threshold is used to eliminate lower-
SNR returns; the result can be either an increase or decrease in variance,
depending on threshold setting, for correlated target echoes. For uncorrelated
echoes, the variance approaches the nonfluctuating case with N measurements if
N is sufficiently large. More information on both issues is available in Sherman
(1984).

Angle measurement suffers an important additional source of error known
as glint. Glint occurs when there are multiple point targets in the antenna beam
or with multiple-scatterer targets. Consider two point targets in the tracking
antenna beam at angles θ1 and θ2 relative to boresight. By superposition, the
output of the L and R channels, and therefore of the sum and difference channels,
is just the complex sum of the respective outputs. In the absence of noise, vΣ1
will be in phase with vΔ1 and vΣ2 will be in phase with vΔ2 as discussed
previously. However, vΣ1 and vΣ2 will not be of equal amplitude nor in phase
with one another in general. Write vΣ2 = α · vΣ1 for some complex scalar α = ρ
exp(jϕ). Assuming operation in the linear slope region, vΔ1 = kΔ/ΣνΣ1θ1 and vΔ2 =
kΔ/ΣνΣ2θ2 = αkΔ/ΣνΣ1θ2. The estimated angle becomes

(7.95)
 
Ideally,  always lies between θ1 and θ2, is halfway between them when ρ = 1,
and is closer to the stronger of the two targets for other values of ρ.

It is easy to see from Eq. (7.95) that in fact  or θ2 when ρ → 0 or ∞,
corresponding to target 1 or 2 dominating the other. When ρ = 1, indicating
equal-strength targets,  will be the average of the two angles, (θ1 + θ2)/2.
However, for some values of α it is possible for  to fall outside of the angular
interval defined by θ1 and θ2. The problem occurs when ϕ is close to 180° and ρ
is close to 1 (see Prob. 37). Figure 7.23 shows the estimated angle  when θ1 =
–2° and θ2 = –1°. The two gray dashed lines mark these two angles, so it is
desirable for  to fall between them. The figure confirms that the estimate equals
the average for ρ = 1 and tends to θ1 or θ2 as appropriate when ρ differs from 1
by a large factor, i.e., ρ = 0.1 or 10. However, when ρ is relatively close to 1
and ϕ is close to 180°,  can fall well outside of θ1 and θ2. If the two scatterers
represent two scattering centers on a single target, this means the estimated
AOA will be outside of the extent of the target! The closer ρ is to 1 without
actually equaling it, the larger the error. If ρ = 1.1 in this example,  will be 9°,
a full 10° beyond θ2 and 10.5° from the average.



 FIGURE 7.23   Estimated angle for two unresolved scatterers.
 

Real complex targets have many scattering centers, not just two. Statistical
analyses suggest that a reasonable rule of thumb for the standard deviation of 
due to glint is of the form

(7.96)
 
where θw is the angular width of the target as viewed from the radar and the
scale factor k is variously reported to be between 0.15 and 0.35. If the width of
the target as viewed from the radar is Lw, its angular extent will be θw = Lw/R.
Glint error is therefore a function of range. The combined effect of glint and
noise on the angle precision is obtained by adding the variances or,
equivalently, computing the RMS combination of the two precisions. Because
glint error decreases with range while noise error increases with range due to
declining SNR, their combination tends to produce an optimum range for a given
system where the total error is minimum.

The discussion of angle measurement by lobing has been confined so far to
one dimension, but angle tracking requires estimation of the target location in
two angular dimensions, azimuth and elevation. Monopulse antennas provide
difference outputs in both planes, while sequential lobing antennas can usually
generate offset angles in both planes as well. The processing is the same in each
plane.



Another means of 2D angle tracking is conical scan or conscan. In this
technique, an antenna feed offset from a reflector antenna axis is mechanically
rotated around that axis, producing a squinted beam that continually rotates
around the antenna nominal boresight. This is suggested by Fig. 7.24a, which
shows a series of beam positions at various points in the rotation. Two point
targets are also shown, one on the centerline of the rotating squinted beam and
displaced vertically (conscan rotation angle of 90°), the other much nearer to the
nominal boresight (one-tenth of the centerline radius) and at a conscan rotation
angle of 225°. Analysis of the variation in amplitude and the angular location of
the peak response reveals the location of the target. For example, the upper half
of Fig. 7.24b suggests a target halfway between 80° and 100°, while the lower
half suggests a target close to 220°. Estimating the degree of squint from the
amplitude variation requires use of the two-way voltage antenna pattern (see
Prob. 38).



 FIGURE 7.24   Conical scan: (a) eight beam positions in a continuous conical
scan. The gray dashed line shows the loci of the beam centers, rotating
counterclockwise. Two target locations are shown; (b) relative amplitude of
signals received for each target.
 

More pulses would enable finer precision in both rotation angle and degree
of squint. The number of pulses per rotation is determined by the rotation rate



and the radar PRF; 18 pulses are shown in Fig. 7.24 before the cycle repeats on
the 19th pulse, but real systems may have more or less than this.

The lobing techniques discussed so far are primarily for use in dedicated
tracking radars or tracking modes of multipurpose radars. Scanning search
radars may also utilize angle estimation algorithms as part of the search process.
Consider a rotating search radar. As the beam passes over a target, that target
may be detected in several sequential beam positions as suggested in Fig. 7.25a,
and the resulting relative power measurements P[n] may appear similar to those
in Fig. 7.25b. The centroid of the measurements is

(7.97)
 

 FIGURE 7.25   Centroiding of scanning radar angle measurements: (a) the target
is detected on three successive beam positions, (b) relative power of the signals
received at each position and their centroid.
 

For the measured powers and beam indices shown, CP = 2.16. This value is then
translated into an estimated AOA based on the angular orientation and spacing
of the measurements. Other variations on this basic idea, such as a thresholding
and binary-weighted centroiding techniques having some similarities to the
split-gate range tracking method, are discussed in Blair et al (2010).



7.3   Introduction to Tracking
The result of each measurement of the coordinates of a target in range, angle, or
Doppler shift is an estimate of the true value of the target corrupted due to the
noise in the measurement process. The estimate therefore has an associated
uncertainty. More information can be obtained by collecting a series of
estimates over time and combining them with some (hopefully reasonable)
assumptions about the target’s kinematic motion to provide an improved
estimate of the true coordinates of the target over time. The true coordinates of
the target are called its state. The state is usually considered to include the
velocity and sometimes the acceleration in each spatial coordinate and may also
include other aspects of the target, such as its pose relative to the radar. Usually
the state components will be real-valued. Tracking is the process of developing
the best estimate in some sense of the target state over time based on noisy
measurements.

Several issues in addition to measurement noise make tracking a
challenging problem. False alarms can cause tracks to deviate from the true
target trajectory. Missed detections can allow the uncertainty in the track to
grow. If multiple targets are present in the same vicinity, unresolved
measurements or crossing paths may make it difficult to associate new
measurements with the correct track. In addition, radar naturally measures
position in spherical coordinates relative to the antenna boresight, whereas it is
usually desirable to track a target in Cartesian coordinates relative to the radar
position or a fixed reference frame such as an earth-centered coordinate system.
The nonlinear coupled transformation between the two coordinate systems
complicates processing.

Tracking is a subject that supports many complete texts on its own, so only
a brief treatment of the basic issues is sketched here. Borrowing heavily from
Kay (1993), the fairly simple idea of sequential least-squares estimation (LSE)
is developed first. Next the common α-β filter for radar tracking is presented
heuristically. Both the sequential least squares estimator and the α-β filter will
be seen to share a similar prediction-correction structure. The Kalman filter is
then presented as the optimal sequential least-mean-square estimator for a
dynamically evolving system. While the extensive details required for its
derivation are left to other texts, its structure is seen to be a generalization of the
simpler sequential LSE problem, while the α-β filter is shown to be a special
case.

Two excellent, concise introductory general references for tracking
applied specifically to radar are Blair (2010) and Ehrman (2013). Another good
tutorial text is Mahafza (2008). More in-depth radar-specific treatments are
given in Bar-Shalom and Fortmann (1988) and Blackman (1986).

7.3.1   Sequential Least Squares Estimation



Consider a deterministic one-dimensional data sequence x[n] dependent on
some parameter Θ. Suppose a set of N possibly perturbed observations z[n] of
x[n] is available. The perturbation could be additive noise in the data but could
also be due to other sources such as inaccuracies in the assumed data model.
The least-squares estimate (LSE)  of Θ given z[n] , n = 0, 1, …, N – 1 is
defined as the value of Θ that minimizes

(7.98)
 
ε2 depends on Θ through x[n]. If x[n] = Θ, straigthforward minimization of ε2 by
differentiation with respect to Θ leads to the sample mean as the general LSE
(see Prob. 39).

The linear LSE problem is of special interest. It assumes that the data x are
linearly related to Θ, x[n] = f [n] · Θ for some known system function f [n]
(which could be just a constant). Using this model in Eq. (7.98) and minimizing
ε2 gives (see Prob. 40)

(7.99)
 
with minimum error

(7.100)
 
The last step relies on the fact that the last sum in the second step is identically
zero, as can be verified by substituting  from Eq. (7.99) into the sum.

As a trivial example, consider least squares estimation of a scalar constant
A. Assume f [n] = 1 for all n so that the observations z[n] are just perturbed
measurements of A. Then Θ = A and from Eq. (7.99) the LSE is the sample mean 

.
The procedure described so far is called batch processing. All of the



measurements are collected and then the parameter estimate is generated in a
single calculation. In tracking, new measurements are expected to occur on a
regular basis and it is desirable to generate and update estimates of the target
parameters as data arrives rather than wait until when (if ever) all of the
measurements are collected. A procedure that allows this is sequential least
squares estimation.

Continue the example above of estimating a constant. Let  be the
estimate based on all observations z[n] up to and including time N – 1, 

. Now observe a new measurement z[n]. The new LSE of A
must be

(7.101)
 
The estimate can be computed recursively using either the second or third form
o f Eq. (7.101). The third form is particularly interesting. It shows that the
updated estimate is the previous estimate augmented with a correction term
based on the difference between that previous estimate and the new observation.
The weight accorded the correction term declines with time, since the previous
estimate incorporates more data as time proceeds.

The LSE for this problem can also be updated recursively:

(7.102)
 
The last line takes advantage of the fact that the term  is zero.



The LSE grows with time because as more data is obtained, the number of
squared error terms increases.

No assumptions have yet been made about the nature of the perturbations in
the observations z[n], but going forward it will now be assumed that the
observations are linear functions of the parameter Θ corrupted by additive
WGN, z[n] = f [n] · Θ + w[n]. In particular, z[n] = A + w[n] for the problem of
estimating a constant in noise.

A useful extension to the sequential LSE estimator is to allow weighting of
the data in computing the MSE. Weighting would be appropriate for the
constant-in-WGN model if the noise samples are uncorrelated but may have a
time-varying variance σ2[n]. Choose the weight on the nth term of the MSE
defined in Eq. (7.98) as wn = 1/σ2[n]. This choice places greater weight on the
least noisy measurements. Under these conditions it can be shown that the
variance of the estimate  is

(7.103)
 
The estimate update for this problem is

(7.104)
 
where the gain K[N] is

(7.105)
 
It follows that

(7.106)
 
Finally, the LSE update can be put in the form



(7.107)
 
Equations (7.104) to (7.107) define the sequential LSE for a constant in additive
WGN with non-stationary power. In particular, Eqs. (7.104) and (7.105)
generalize Eq. (7.101), and Eq. (7.107) generalizes (7.102).

To execute this estimator, it is necessary to specify the initial values 
and . The iteration can be initialized by choosing , which is the
MLE of A based on the single measurement. The initial variance estimate is
chosen as , implying that the initial noise power is known.
Equations (7.105), (7.104), and (7.106) are then exercised in that order to
update to time step N = 1, and the process repeated. If no estimate of σ2[0] is
known,  can be set to a “large” value. This in effect states that the
confidence in the initial value  is low so that the estimator places little
weight on it. This will result at N = 1 in K[1] ≈ 1, , and a reduced
variance estimate going forward. Another method is to use the first several
observations in a batch process to develop an estimate of  and  and then
switch to the sequential estimator for subsequent updates.

Figure 7.26 illustrates the behavior of this sequential LSE for A = 10, σ2

σN] = σ2 = 1 for all N, , and . It is easily seen in this case (see
Prob. 41) that K[N] = 1/(N + 1) and  also. Part a of
the figure shows the gain and estimate variance versus the time step N. The
curves overlay one another. Part b shows the estimate  of the actual value A
= 10.



 FIGURE 7.26   Sequential least squares estimation of a constant in additive
WGN with constant variance: (a) estimator gain and variance, (b) estimated
value.
 

Figure 7.27 presents a similar example but with time-varying noise power.
Specifically, the same specific sequence of random noise samples is used,
except that the noise samples are multiplied by 10 (a 100× variance increase)
from time steps 80 to 160 and by  (a 10× variance decrease) from time
steps 240 through 320. Equation (7.105) shows that the sudden increase in noise



variance will decrease the gain, while a decrease in noise variance will
increase the gain. These effects are very evident in Fig. 7.27a. During the period
of low estimator gain, the estimate variance changes very little; essentially, the
new data is being discounted because it is so noisy. From steps 161 to 239 the
noise in the data returns to its original value, the gain increases, and the estimate
variance resumes its decrease. At step 240, the data noise is decreased and the
gain increases to take advantage, allowing the estimate variance to decrease
more rapidly. Figure 7.27b shows the actual estimate. It is clear that the estimate
changes little when the gain is reduced from steps 80 to 160. It follows the data
more actively from 161 to 239, and then again becomes more stable at 240 when
the gain is lowered.



 FIGURE 7.27   Sequential least squares estimation of a constant in additive
WGN with time-varying variance: (a) estimator gain and variance, (b)
estimated value. See text for details.
 

The generalization of the sequential LSE for a P × 1 vector parameter is



(7.108)
 

Here M is the P × P covariance matrix of the estimate . With the notation
change n → N and the equivalences , f → 1, k[n] → K[n], and 

, the similarity between Eqs. (7.108), (7.104), (7.106) is
obvious. Similar to the scalar example above, one simple initialization is to
choose  and M[0] = κI for some large value of κ, effectively discounting
the initial covariance estimate.

7.3.2   The α - β Filter
Track filtering is readily viewed as an estimation problem. The radar makes
noisy coordinate measurements at a series of discrete times tn. The track filter
has two goals: to smooth the measurements to provide an improved estimate of
the coordinates at time n, and to use those smoothed estimates to predict the
target position at the time tn+1 of the next planned measurement. A variety of
filters are commonly used in the radar tracking community: the α-β filter, the α-
β-γ filter, the Kalman filter, and the extended Kalman filter. These are all
closely related to the sequential LSE methods described above. New techniques
such as “particle filters” are continuously emerging.

Two further generalizations of the sequential LSE results given so far are
important in developing effective sequential estimation procedures for track
filtering. The first is that the target model is dynamic, i.e., the target parameters
(position, velocity, etc.) change with time according to a defined model such as
constant-velocity or constant-acceleration motion. A more fundamental
generalization is to model the target parameters at a given time as random
variables with a prior PDF instead of as deterministic quantities. The actual
target parameters over time are then a single realization of a random process
rather than a deterministic time series. This approach allows for uncertainty in
the target model. The goal of the estimator is to minimize the expected value of
squared error between the estimate and the realization, averaged over the joint
PDF of the data and the target parameters. This modeling approach, called
Bayesian estimation, is subtly different from the classical estimation
considered so far. In either viewpoint the data z are random, typically due to
additive noise in the measurements. In classical estimation the target parameters
are not random, while in Bayesian estimation they are. More discussion and
examples of the difference in philosophies are given in Kay (1993).



Before stating the general solution to the sequential Bayesian LSE problem,
consider the problem of tracking a target in a single dimension x with the
simplest commonly used track filter, the α-β filter. The α-β filter is designed for
a constant-velocity target. Denoting the actual target position and velocity at
time n as x[n] and , a true constant-velocity model is

(7.109)
 
where T is the interval between track update times.7 In practice, it is useful to
include a process noise u[n] with variance  that allows for deviations from
perfectly constant-velocity motion due primarily to target maneuvers, but also
for such effects as turbulence or cross-winds affecting an aircraft. Process noise
is not a measurement noise; rather, it is part of the model of the target state
evolution. A typical model is to consider u[n] to be a piecewise-constant
acceleration between each time step. The contribution of a constant acceleration
to the position and velocity then gives the more complete “constant velocity”
model:

(7.110)
 
The available measurements are the observations of only the target position,

(7.111)
 
where w[n] is the measurement noise with variance . The noises u[n] and
w[n] are usually modeled as independent zero mean WGN processes.

Define the following estimated quantities:

Predicted position at time n given all measured data up through
time n – 1. Does not include knowledge of the new measurement
z[n].
Estimated (smoothed or corrected) position at time n given all
measured data up through time n. This is the updated estimate
based on the new information z[n].
Predicted velocity at time n given all measured data up through
time n – 1.
Estimated (smoothed or corrected) velocity at time n given all
measured data up through time n.



The α-β filter equations can be grouped in two stages, the prediction stage and
the innovation stage. The prediction stage uses data through time n – 1 and the
assumed kinematic model to predict the target’s position at time n. The
innovation stage then applies the new measurement z[n] at time n to correct or
smooth the prediction. The equations are

Prediction stage:

 
Correction stage:

(7.112)
 
The constant velocity assumption is evident in the first equation of the
prediction stage. Notice that the first form of the correction equation for 
has the same structure as the sequential LSE of Eq. (7.104) with a constant gain
α taking the role of the more general time-varying gain K[n]. A typical practical
initialization collects the first two measurements, z[0] and z[1], forms

(7.113)
 
and begins iterating Eq. (7.112) at n = 2.

The quantity e[n] is called the residual or the innovation. It represents
new information available as a result of the new measurement z[n]. The second
form of the last two equations makes the role of α and β clear. α controls the
relative weight assigned to new data versus prediction from prior data in
updating the target position. Smaller values of α place more weight on the
prediction and less on the new data and are appropriate when the new data has



higher noise. β plays a similar role for updating velocity, though there is a subtle
difference in the new data term.

Figure 7.28 illustrates the α-β filter in one dimension. The target is
presumed to start at x = 1000 meters at time n = 0 and move in the +x direction
with a constant velocity  m/s for the time steps n = 0, …, 30. For the next
nine steps the target decelerates at a constant rate such that at n = 39 the velocity
reaches zero. The target then remains at x = 2750 meters and  m/s through n
= 69. While the deceleration violates a strict constant-velocity model, it is
permitted by the introduction of acceleration process noise in Eq. (7.110).



 FIGURE 7.28   Target tracking in one dimension with an α-β filter: (a) effect of
varying α on position estimate, (b) effect of varying β. See text for details.
 

The noisy measurements z[n] are shown in Fig. 7.28a by the diamond
shapes and the actual position by the gray line in the background. The
measurement noise is stationary additive WGN with σw = 100 m. The filter was
initialized with  and . The black dashed line is the
smoothed track  obtained with α = 0.15 and β = 0.1, while the solid black
line is the track  obtained by filtering exactly the same data samples with
the same β = 0.1 but α = 0.85. As expected, small values of α de-emphasize the
current measurement in favor of the prediction, producing smoother tracks but
requiring longer to correct deviations. The larger value of a puts more emphasis
on the current measurement, producing a noisier “smoothed” track but correcting
more quickly.

Figure 7.29b shows the effect of β on the position estimate for a fixed α =
0.2. Small values of β put more emphasis on the previous estimate of velocity,
smoothing the velocity estimate more strongly and contributing to a smoother
track. Larger values of β put more emphasis on the velocity estimate based on
the innovation. Combined with a relatively small α, this tends to produce
oscillatory behavior in the position estimate and is generally to be avoided.
Although not shown here, the estimates of velocity become less smooth as β
increases.



 FIGURE 7.29   Comparison of α-β and Kalman filters on same data: (a)
smoothed position estimate, (b) smoothed velocity estimate. See text for details.
 

It is useful to express the α-β filter in a state space representation. Define
the state vector for tracking in one dimension as . The target
kinematic and measurement models of Eqs. (7.110) and (7.111) are then



(7.114)
 
The filter equations [Eq. (7.112)] become

Prediction stage:

 
Correction stage:

(7.115)
 
In these equations, z, u, and w are scalars; x, h, v, , g, and k are P × 1 vectors;
and F is a P × P matrix. Again, the similarity between the first version of the
correction stage in Eq. (7.115) and the correction operation in Eq. (7.108) is
clear.

7.3.3   The Kalman Filter
The new element in the α-β filter as compared to the sequential LSE is the
prediction stage, which allows the state variables to evolve over time according
to the kinematic model instead of being fixed as in the constant-in-WGN
example. However, it is still a fixed-gain filter. The idea of sequential least
squares estimation can be extended to apply to a dynamic model of the target
motion by introducing a time-varying gain that minimizes the MSE at each step.
The result is the Kalman filter (KF). The KF derivation details are beyond the
scope of this text, but for a scalar observation the KF equations are

Kinematic and observation models:



(7.116)
 

Prediction and prediction MSE:

 

Kalman gain:

 

Correction and estimate MSE:

 
In addition to a time-varying gain, notice that the KF also allows for a time-
varying observation noise by allowing h to vary. M is a P × P matrix that
describes the MSE of the predicted and corrected signals. The filter can be
initialized by choosing  and M [0|0] = κI for some large κ, or by using
the same procedure described above for the α-β filter with the additional step of
setting an initial value for M:

(7.117)
 
This choice for M results from noting that the variance of z[n] is  for all n, but
that values of z[n] at different values of n are uncorrelated. Computing the
covariance matrix of  then gives M [1 | 1] as shown.

The scalar observation Kalman filter has a number of interesting
properties. These include

        •  No matrix inversions are required for its execution. This would not be
the case for batch estimation.



        •  The KF is a time-varying linear filter.
        •  The KF provides its own performance metric in the form of the MSE

matrix M[n | n]. Furthermore, its computation does not depend on the
actual observations so it can be precomputed, as can the Kalman gain
k[n]. The availability of M is helpful in gating and association, to be
discussed in the next section.

        •  The KF exhibits the same prediction-correction structure seen in both the
nondynamic sequential estimator and the α-β filter.

        •  If the driving noises u and w are stationary, the KF will asymptotically
approach a steady state in which it becomes a time-invariant linear filter
and can be viewed as a whitening filter.

        •  As will be seen, the α-β filter is an example of a steady-state KF.
        •  The same KF equations apply if the system model is extended to allow

time-varying versions of F, g, and . This makes it possible to adapt to
variable update times, missed updates, and other complications.

The equations above apply to a scalar observation, i.e., a one-dimensional
measurement. Normally a target is tracked in two or three dimensions using
measurements of position in each. The KF can be further generalized to allow
for an M × 1 vector observation z[n] and an R × 1 vector process noise u[n].
The equations are

Kinematic and observation models:

 

Prediction and prediction MSE:

 

Kalman gain:

 

Correction and estimate MSE:



(7.118)
 
F and M are P × P; G is P × R; H is M × P; K is M × P; x and  are P × 1; and
z and w are M × 1. Su and Sw are the R × R and M × M covariance matrices of
the noise processes u and w, which are assumed to each be zero mean
uncorrelated Gaussian, independent of one another. All of the previously listed
properties still apply, except that a matrix inversion is now required to compute
K.

Return now to the scalar observation case of Eq. (7.116). Over time, the
Kalman filter will asymptotically approach a steady-state condition in which the
gain k is constant. The prediction MSE M[n|n – 1] and smoothed estimate MSE
M[n|n] will also approach constants, with the former larger than the latter. The
values of the steady-state gain can be determined in terms of the tracking index
Γ (Kalata, 1984), also called the maneuverability index:

(7.119)
 
Γ is a measure of the target position uncertainty due to the acceleration noise
relative to that due to the measurement noise. It can be shown that for the single-
coordinate case considered here, the steady-state KF gains  obey the
following relationships:

(7.120)
 
These equations can be solved to find the values of kx and  for a given value of
Γ (Blair, 2010):

(7.121)
 

Not surprisingly, the α-β filter is a special case of the Kalman filter,
obtained by choosing the gain vector to be a fixed value k = [α β/T]T. A



common way to choose α and β is to use the steady-state Kalman gains, i.e., α =
kx and .

Figures 7.29 and 7.30 show an example similar to the one of Fig. 7.28.
Both a Kalman filter initialized according to Eq. (7.117) and an α-β filter were
run on the same data samples. The process noise standard deviation was set at 

, where a is the maximum acceleration (–5.5566 m/s2 in this example).
The resulting value is σv = 3.93 m/s2. The values of α = 0.2443 and β = 0.0342
were chosen based on Eq. (7.121).



 FIGURE 7.30   (a) α-β and Kalman filters gains for example of Fig. 7.29: (b)
kalman filter mean-square error estimate for position, M[1,1]. See text for
details.
 

Figure 7.29a compares the smoothed trajectory estimates from the two
filters, while Fig. 7.29b shows the velocity estimates. Both filters track the first
two measurements exactly due to the initialization process. This particular
example was chosen to emphasize the disadvantage of the fixed-gain α-β filter.
The first two samples produce an initial velocity estimate that differs greatly
from the actual target velocity. Consequently, the α-β estimate exhibits very
large position errors over the first 20 time steps. The Kalman filter’s variable
gain recovers much more quickly and exhibits much lower errors. This is also
seen in the velocity estimates, which track the correct values of 50 or zero in the
appropriate regions. However, the KF converges toward the initial velocity of
50 m/s much sooner than does the α-β filter. If another random realization was
used where the first two observations produced an initial velocity estimate
closer to the true value, the results of the two filters would be much more
comparable.

As seen in Fig. 7.30a, by time step 20 the Kalman filter gains have reached
steady state. The fixed gains α and β were chosen to match these steady-state
values, so both filters behave virtually identically from this point on, including
the overshoot and recovery during the target deceleration from time steps 31 to
39. Finally, Fig. 7.30b shows the variation of M[1, 1], which is the KF
computation of the variance of the estimated position, for the first 30 time steps
needed to attain steady-state behavior. Half-integer indices show the value of
the prediction MSE M[n|n – 1], while integer indices are the values of the
smoothed MSE M[n|n]. As expected, the MSE is always increased by the
prediction step, and then decreased by the correction step when new data is
incorporated.

The failure of the KF to respond to the deceleration in steps 31 to 39 more
quickly than the α-β filter can be remedied by a number of techniques that
combine multiple filters designed for different target dynamics. One popular
approach is interacting multiple models (IMM). Multiple model techniques run
multiple track filters in parallel, each with different target dynamics represented
by different process noise variances. At each step, the model yielding the
smallest innovation is used to update the track. IMM is a particular technique in
this class that attempts to assign relative probabilities to each model and blend
their track updates. An introduction to the IMM approach and others is given in
Ehrman (2013).

Just as the choice of α and β plays an important role in the tradeoff of
smoothing and convergence time in the α-β filter, the choice of the process noise



variance  plays a similar role in the Kalman filter. Figure 7.31 illustrates this
effect on the position gain k[1] = kx for an example similar to those preceding.
A s  increases, the steady-state gain rises and the filter converges more
quickly, resulting in less smoothing and more rapid adaptation, the same effect
observed as α is increased in the α-β filter. Selection of the process noise
variance is discussed in Blair (2012).

 FIGURE 7.31   Effect of process noise variance on position gain. See text for
details.
 

A technique called gain scheduling can be applied to improve the
performance of the α-β filter during the startup transient without resorting to the
more complex KF. Let αss and βss be the steady-state values of α and β obtained
from the steady-state KF gains of Eq. (7.121). Similar to the 1/(N + 1) gain of
the least squares estimator of a constant in stationary WGN (Fig. 7.26 and Prob.
42), the gains for least squares estimation of position and velocity for the
constant-velocity target model as a function of the number of data samples n can
be computed and used until the steady-state value is reached (Blair, 2010):

(7.122)
 



Notice that α[n] is approximately proportional to 1/n, similar to the earlier
sequential LSE analysis, while β[n] is approximately proportional to 1/n2.

The Kalman filter is based on a linear model for both the target dynamics
and the sensor observation. As noted in Chap. 1, many radars naturally measure
three-dimensional target position in the modified spherical coordinate system
relative to the radar antenna of range, azimuth angle θ, and elevation angle ϕ.
Some radars, particularly planar phased array systems, measure range and two
positions along the sine space coordinates u and v, where u = cosϕ · cosθ and v
= cosϕ · sinθ are the direction cosines from the antenna center to the target. On
the other hand, targets are usually tracked in a stabilized Cartesian x-y-z system
referenced to the radar system or possibly to a fixed coordinate system such as
earth-centered. Because the transformation from spherical to Cartesian
coordinates is nonlinear, the observation equation, state equation, or both can be
nonlinear.

Consider a two-dimensional example where the radar measures the polar
coordinates of range R and azimuth angle θ. It is desired to track the target in the
Cartesian coordinates x and y, so the state vector is x = [x y]T. At the nth time
step the radar makes noisy measurements:

(7.123)
 
Clearly the measurement vector  cannot be written as a linear function
of the state vector, z = F · x + w, so the KF cannot be applied as described so
far.

What if the target were tracked in the more natural polar coordinates? In
this case the measurement equation will be linear. Assume the target travels at
constant velocity with components vx and vy and ignore any process noise. The
target motion in x-y coordinates satisfies

(7.124)
 
The range becomes

(7.125)
 



The state update equation is now a nonlinear function of R and θ, so again the
KF cannot be applied.

The extended Kalman filter (EKF) is a common technique for dealing with
this problem. The basic idea of the EKF is to linearize a nonlinear state update
equation around the current state estimate, and linearize a nonlinear observation
equation around the current state prediction. The linear KF is then applied to the
resulting approximate system equations. This is a dynamic linearization that
must be repeated at every time step as the state estimates evolve. The EKF has
no optimality properties, but is nonetheless a common technique as well as the
basis for numerous extensions. More information on the EKF is available in the
references cited at the beginning of this section.

Many other approaches have been proposed to address nonlinear Bayesian
estimation problems, including the “unscented” KF, particle filters, nonlinear
recursive filters, batch filtering methods, and numerical solution of the Fokker-
Planck equation. A good overview of their philosophies, advantages, and
disadvantages and a good initial bibliography is given in Daum (2005).

7.3.4   The Tracking Cycle
Track filtering is just one element of the overall target tracking cycle depicted in
Fig. 7.32. The radar produces a new set of detections at every CPI or dwell. A
“detection” generally consists of the estimated position in range, angle, and
possibly velocity; an estimate of the measurement error in each dimension; and a
time stamp. Other metadata may also be included, such as estimated SIR of the
detection. Since more than one target may be detected and tracked at a time, the
first step is to associate detections with existing tracks, i.e., determine which
detections are believed to be due to which targets under track, so that the correct
detection is used to update that track. In dense target scenarios this can be a
daunting task. It will be discussed shortly, after consideration of the other
elements of the tracking cycle.



 FIGURE 7.32   The tracking cycle.
 

Any detections that cannot be associated with existing tracks are
candidates for new targets and are therefore sent to a track initiation process.
An electronically scanned radar will typically transmit a confirmation CPI or
dwell to verify the detection and ensure it is not a false alarm. This is generally
not practical with rotating radars. In either case, an M-of-N logic is applied
over the next N dwells to decide whether to promote a tentative track to a
confirmed track. More sophisticated sequential probability analysis or detection
pattern recognition can also be used for this function (Blackman, 1986). Once a
new track is established, it is entered into the radar database and its initial state
and covariance established using an initialization procedure appropriate for the
track filter that will be used.

The measurement data associated with each track is next passed into the
track filter for that target. The filter first predicts the state at the current
measurement time and then smoothes it using the innovation based on the new
measurement. A track quality score is often maintained for each track based on
the measurement-to-prediction distance for each association, normalized by the
covariance. If the score exceeds a preestablished upper threshold it may
indicate incorrect association or a poor target model. If it falls below a lower
threshold, it may indicate that the target model process noise is too large.

Tracks must eventually be dropped, for instance when a target moves
outside the detection range of the radar. For a single missed detection the track
filter can be used to coast the track by simply performing another update without
the correction step, or recomputing a single update from the last detection using
a longer update time T. In practice, the track filter may be allowed to coast for a
small number of misses. However, failure to associate a new detection with a
track for some minimum number of updates will trigger deletion of the track. A
more sophisticated approach than a hard threshold on the number of misses
would again apply sequential probability techniques or threshold the track
quality metric. When a track is deleted the track database must be updated. A
notification may be sent to the end user consumer of the track data as well.

Before discussing the data association stage, it is useful to introduce the
idea of statistical distance. Figure 7.33 illustrates the statistics of two
measurements that might be associated with a predicted value of x = 30. One has
a mean μx1 = 20 and a standard deviation σx1 = 5, while the other has μx2 = 50
and σx2 = 20. Which is closer to the predicted value and should be used to
smooth the prediction? μx1 is only 10 units away from the prediction while μx2 is
20 units away. However, the first measurement is d1 = μx1/σx1 = 2 standard
deviations away from the prediction while the second is d2 = μx2/σx2 = 1



standard deviation away. Consequently, the likelihood that the predicted value
of 30 could have arisen from the estimated distribution of the first measurement
is much less than the likelihood that it could have arisen from the second. The
second measurement is said to be statistically closer to the track and should
probably be associated with the track.

 FIGURE 7.33   Statistical distance.
 

A generalization of this simple calculation for tracking in multiple
dimensions is the Mahalanobis distance dM[n] applied to the innovation i[n] in
the vector observation KF, given by the calculations:

(7.126)
 
In the scalar observation case this reduces to the heuristic measure used above,
dM[n] = i[n]/[i [n]. Notice that the expression for Si[n] is the denominator of the
Kalman gain calculation in Eq. (7.118). It combines a term Sw[n] for the
covariance of the measurements with the covariance of the state prediction
M[n|n – 1] as observed through H[n].

Another distance measure is the log-likelihood function for the hypothesis
that the prediction and measurement stem from the same object. Assuming



Gaussian statistics, this is given by

(7.127)
 
where the time index n has been temporarily dropped from the notation for
clarity. This measure is said to be more robust against “track stealing” by young
tracks, which tend to exhibit pessimistic (overly large) covariances when only a
few updates have been made (Ehrman, 2013). The determinant term increases Λ
for large covariances, reducing this effect.

Consider an arbitrary covariance matrix S in a multidimensional space.
Suppose the eigenvectors of the P × P covariance matrix S are {ep} with
corresponding eigenvalues {λp}. Assuming Gaussian statistics, these describe a
P-dimensional joint Gaussian PDF. Because S will be symmetric the
eigenvectors will be mutually orthogonal. The surface describing the standard
deviation of the PDF is an ellipsoid having its axes in the directions {ep} with

one-sided lengths . Figure 7.34a illustrates this for P = 2 dimensions.
Figure 7.34b is a notional illustration of the covariance ellipses of a predicted
state and the measurements corresponding to two different detections. The
innovation is the vector connecting the prediction to whichever measurement is
associated with it. The statistical distance between the measurement and a track
prediction depends on the orientation and size of the covariance ellipsoids of
both the measurements and the track prediction. In this notional example, both
measurements are within the 1-σ ellipse of the prediction. The prediction is
within the 1-σ ellipse of z1[n] but not of z2[n]. Consequently, z1[n] is
statistically closer to  than is z2[n]. The Mahalanobis distance
formalizes this calculation.

 FIGURE 7.34   (a) Two dimensional ellipsoid defined by the eigenstructure of a
2D covariance matrix, (b) covariance ellipsoids for measurements and



prediction determine the statistical distance.
 

Statistical distance ideas are important in developing the algorithms for
gating and assignment in the “associate detections” stage of the track cycle.
Different classes of radars operating in different scenarios may have a number
of detections at a given time step that is less than (sometimes much less than),
equal to, or greater than the number of tracks. The first step in determining
which detections will be used to update which tracks (assignment) is usually
gating, which seeks to reject highly implausible pairings so as to reduce the
number of combinations that must be considered in the assignment process.
Gating rejects any pairing for which the measurement exceeds some threshold
distance from the track update, but accepts any measurements within that
distance as potentially valid. Common approaches are spherical, rectangular,
and ellipsoidal gates:

Spherical gate:

 

Rectangular gate:

(7.128)
 

Ellipsoidal gate:

 

In this equation, x, y, and z are the three spatial components of the state vector x;
R is range. The subscripts m and p refer to measured and predicted values.
Gating is often performed hierarchically. The surveillance space can be
partitioned into regions so that a measurement falling in one region need not be
tested against tracks in other regions. Similarly, it may be possible to group
tracks within a region into mutually exclusive partitions, again reducing the
number of comparisons to be made. The next step is often a relatively coarse but
computationally efficient rectangular gating. The radar may gate only in range,
or in all three spatial coordinates. Finally, a tighter ellipsoidal gating may be



applied using either the Mahalonobis distance or the log-likelihood.
The last major step in data association is assignment of the candidate

detections after gating to the tracks. This process begins by constructing a
measurement-to-track cost matrix. The elements of the matrix are some measure
of the statistical cost assigning a particular measurement to a particular track,
usually the negative of the log-likelihood of Eq. (7.127). One of a variety of
algorithms is then used to decide the final assignments based on the cost matrix.
Common algorithms include

        •  Nearest neighbor (NN) Assigns the lowest cost measurement to each
track, independent of the other tracks. As a result, one measurement
could be used to update more than one track in some situations. A
common modification removes each measurement from consideration
when it is assigned to one track so that it cannot also be assigned to
another.

        •  Strongest neighbor (SN) Assigns to each track the validated
measurement with the highest SNR. Like NN, can assign the same
measurement to more than one track unless modified to disallow this.

        •  Global nearest neighbor (GNN) Assigns tracks such that the total cost is
minimized, subject to the constraint that each measurement can be
assigned to only one track (or to no track).

        •  Auction methods These globally optimum methods typically compare a
prediction to the two or more closest measurements at each step. A
bidding process assigns the closest measurement to each track. Costs are
adjusted based on assignments made so far, allowing for reassignment of
some measurements. A popular, computationally efficient version is the
JVC algorithm (Malkoff, 1997).

        •  Probabilistic data association (PDA) Updates tracks with a weighted
average of all candidate measurements. The weights are based on an
estimated probability that a given measurement is the correct one and are
related to the likelihood function.

Figure 7.35a is a notional example of a cost matrix for an environment in
which two tracks are being maintained, but three measurements have passed the
gating stage. The numbers in each cell represent the log-likelihood cost of the
corresponding assignment. The cost matrix includes a column for the possibility
that a track receives no update, and a row for the possibility that a measurement
is assigned to no track. Figure 7.35b shows the results of a simple NN
assignment. In this case, Measurement 1 is assigned to both tracks 1 and 2 at
respective costs of 5 and 10. Measurements 2 and 3 are then assigned to “none,”
i.e., not used, since assignments have already been made to tracks 1 and 2.
These measurements may be used to initiate new tracks. The total cost of the set
of assignments is 5 + 10 + 20 + 20 = 55, but two tracks have been updated with



the same measurement.

 FIGURE 7.35   (a) Track-measurement assignment cost matrix; (b) result of
simple NN assignment, Cost = 55; (c) modified NN assignment, cost = 65; (d)
GNN assignment, cost = 40.
 

A modified NN that avoids this problem removes a measurement from
further consideration once it is assigned to a track. Applying this approach and
starting with track 1 assigns measurement 1 to track 1; measurement 1 is then no
longer eligible for assignment to any other track. No measurement is assigned to
track 2, meaning that it will be coasted to the next measurement update.
Measurement 3 is again not used. The result, shown in Fig. 7.35c, incurs a
higher total cost of 65 but does not assign the same measurement to multiple
tracks. Finally, a GNN algorithm will find the solution shown in Fig. 7.35c
wherein measurement 2 is assigned to track 1, measurement 1 to track 2, and
measurement 3 is again not used. The total cost is 40, lower than the sequential
NN method while still avoiding dual use of measurement 1. The JVC algorithm
would be expected to find the same solution.

Tracking, especially in multi-target scenarios, is a rich area of ongoing
research. When there is little difference in assignment costs, feature-aided
tracking may be used to augment the decision variables with estimates of target
amplitude, pose, or image information such as high range resolution profiles. In
especially dense scenarios, multiple hypothesis tracking methods may be used
to improve track integrity. Introductory comments and references for these
techniques are given in (Ehrman, 2013).
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Problems
  1.  Re-derive the CRLB of Eq. (7.15) for the real-valued constant-in-AWGN

problem starting from the special form of the CRLB for AWGN given in
Eq. (7.17).

  2.  Use the CRLB for transformed parameters (see App. A) and Eq. (7.15) to
determine the CRLB for the signal power A2.

  3.  Since the sample mean was an efficient estimator for a constant A in



additive WGN, it seems plausible that an efficient estimator for A2 might be
the square of the sample mean, . Show that this
estimator is not efficient even though the estimator for A was efficient.
Hint: consider the estimator bias.

  4.  Show that as N → ∞ the estimator of Prob. 3 becomes efficient. Hint: note
that the estimate Â is Gaussian with mean A and variance  and use
known results for the moments of a Gaussian RV.

  5.  Determine whether an alternative power estimator for the real-valued
constant-in-AWGN problem that forms the sample mean of x2[n], 

, is efficient. If not, is it asymptotically efficient?
  6.  Suppose N samples are available of the real-valued signal x[n] =

Acos(2πf0n + ϕ) + w[n], where w[n] is i.i.d. white Gaussian noise with
variance . Starting with Eq. (7.17), find the CRLB for the variance  of

an estimate  of A. Hint #1:  . Hint #2:
Assume f0 ≠ 0 or π/2 and that N is “reasonably large.” In that event it can
be shown that .

  7.  Consider a complex signal x[n] = s[n] + w[n]. w[n] is i.i.d. complex WGN
with variance  is the complex echo series from a Swerling 2 target,
which means that it is also i.i.d. complex Gaussian but with variance .
Write the joint PDF of N samples of x[n]. Use this and Eq. (7.11) to find
the CRLB for estimating the signal power .

  8.  Verify that the same result is obtained for the CRLB as in the previous
problem if the CRLB form of Eq. (7.10) is used instead. Hint: use standard
results for the moments of N(0, σ2) RVs.

  9.  Show that the variance of a complex parameter Θ = ΘR + jΘI is the sum of
the variances of the real and imaginary parts, .

10.  Starting with Eq. (7.17), verify the real-valued signal form (the second line)
of Eq. (7.22).

11.  Consider a signal x[n] = s[n;θ] + w[n] = Arn + w[n], n = 0,…, N – 1. w[n]
is white Gaussian noise with variance . The decay rate r > 0 is known.
All signals and parameters are real-valued. Find the CRLB for estimating
A. Use the geometric sum formula  to put the result in a
closed form.

12.  If r → 1 In the previous problem the data model becomes just a constant A
in AWGN. Show that the CRLB found in that problem approaches the
CRLB for a constant in AWGN in the limit as r → 1.

13.  Find the log-likelihood function for the data in Prob. 11. Use the fact that



the noise is WGN and the signal portion Arn is a nonrandom constant for a
given n to write the PDF of a single sample of x[n]. Then write the joint
PDF of all N samples and take the natural logarithm to get the log-
likelihood function.

14.  Find the maximum likelihood estimator of A in the scenario of Prob. 11. To
do this, find the value  for A that maximizes the log-likelihood function
found in Prob. 13. Put any geometric sums in closed form.

15.  Show that the MLE for A in Prob. 14 is unbiased.
16.  For the same signal model used in Prob. 11, now assume that A is known

but r is not. Find the CRLB for estimating r. Hint: It is not necessary (or
advisable) to convert geometric sums or similar terms to a closed form in
this problem; they can be left in summation form.

17.  Consider the signal model x[n] = A + Bn + w[n], n = 0,…, N – 1. w[n] is
white Gaussian noise with variance . All signals and parameters are
real-valued. Finding A and B amounts to fitting a straight line to the data.
Find the Fisher information matrix for this problem (see Eq. (7.58) or App.
A). The identities of Eq. (7.62) may be helpful.

18.  Find the CRLBs for the slope B and intercept A in the previous problem.
Which parameter estimate improves more rapidly as the amount of data N
is increased? The following identities may be helpful:

 
19.  Suppose N i.i.d. samples are available from a random process described by

the Gaussian PDF

 
        where μ is an unknown parameter. Find the maximum likelihood estimator

of μ.
20.  Find the maximum likelihood estimator for the parameter λ in the

exponential PDF

 
        Discuss how this estimator relates to the mean of the random variable x

having this PDF.



21.  Using the definition of Eq. (7.34), compute the RMS bandwidth of the
following ideal lowpass spectrum S(F):

 
22.  Compute the RMS bandwidth of a trapezoidal pulse defined in the time

domain as follows:

 
        Hint: Use Eq. (7.35) instead of Eq. (7.34). How will time delay estimation

precision vary with the steepness of the pulse edges?
23.  Use the result from the previous problem to show that the RMS bandwidth

of a rectangular pulse is unbounded.
24.  Show that the time delay estimate of Eq. (7.42) is unchanged when an

unknown gain and phase α are added to the data, i.e., x[n] → α x[n].
25.  Consider a coherent (therefore complex-valued signals) radar using an

LFM pulse with a “large” (greater than 100) BT product. What is the
minimum SNR required to achieve a time delay estimation precision of 5
percent of the Rayleigh resolution in time? Figure 7.6 can be used as an
approximate check on the result. If the bandwidth is β = 60 MHz, what is
the range estimation precision in meters?

26.  Suppose the output of the matched filter for a complex time delay MLE is
oversampled by the factor kos = 10. At what output SNR χout will the
sampling bound become the limiting factor in the measurement precision?
Assume the pulse is a large-BT product LFM so that .

27.  A time delay MLE produces a peak value of y0 = 22.47 at sample n0 =14.
The two neighboring output samples are y–1 = 21.42 at sample 13 and y+1 =
16.47 at sample 15. The SNR for this data was χout = 30 dB. The true peak
location in the absence of noise corresponds to sample 13.8. Estimate the
peak location n0 + Δn using each of the techniques in Eqs. (7.51) to (7.53)
and compare.

28.  Verify that the (1, 2) and (1, 3) elements of the multi-parameter complex



sinusoid estimation Fisher information matrix of Eq. (7.58) are zero.
29.  Verify the CRLBs of Eq. (7.63) by explicitly computing the diagonal

elements of the inverse of I(Θ) of Eq. (7.61).
30.  Compute the CRLB for estimation of the frequency of a complex sinusoid in

AWGN when the amplitude and phase are presumed known. Verify that
this CRLB is smaller by a factor of four in the limit of large N than the case
when all three parameters were unknown given in Eq. (7.63).

31.  What are the minimum input SNR values χ in dB required to estimate the
parameters of a complex sinusoid to the following precision? In each case,
give the SNR for N = 40 and N = 400 samples.

        a. Relative amplitude: 10 percent
        b. Normalized frequency: 0.001 cycles per sample
        c. Phase: 0.01 radians (0.573°)
        Some of the results may be approximately checked using Figs. 7.11 to 7.13.

32.  Verify the result given for  in Eq. (7.69).
33.  Suppose w[n] is M samples of a complex white Gaussian noise process

with variance  and W[k] is its K-point DFT. Compute the correlation
E{W[k1]W *[k2]} of two arbitrary DFT samples W[k1] and W[k2] as a
function of M and K. Use the result to show that two different DFT samples
(k1 ≠ k2) are correlated if K > M, and also that they are uncorrelated if K =
M.

34.  Consider angle of arrival estimation with a phased array radar having d =
λ/2 and N = 10 elements. What is the SNR χ required to obtain a precision
of 1° in estimating the AOA when the actual AOA θ = 0° (broadside) and θ
= 45°? Repeat for N = 100 elements.

35.  What is the integrated SNR χout required to obtain a precision of 10 percent
of the 3-dB beamwidth of a phased array radar? What is the equivalent
input SNR χ if the array consists of N = 10 elements, and again for N = 100
elements?

36.  Derive the MLE for lobing-based angle measurement in terms of the Σ and
Δ signals [Eq. (7.90)] from the MLE in terms of the L and R signals [Eq.
(7.89)].

37.  Verifiy that in Eq. (7.95) the angle estimate  as ρ → 0 and  as ρ
→ 0. Develop an expression for  when ϕ = 180° and ρ = 1 + ε and show
that the result can be well outside the range of [θ1, θ2] when ε is small.

38.  Suppose the two-way antenna pattern of a conical scan tracking system is
modeled as a circularly symmetric Gaussian shape, ,
where θ is the angular displacement from the boresight in any direction.



Assume that the conical scan boresight locus is displaced from the center
of the rotation pattern by the 3 dB point of the pattern, which is
approximately θ3 = 0.59θ0 radians off the boresight. Derive an expression
for estimating the angular displacement θt of a target in terms of the
maximum and minimum echo amplitudes during the scan, Gmax and Gmin, and
θ3. Ignore noise and assume that the maximum and minimum response occur
180° apart in the rotation. Consider both θi < θ0 and θi > θ0.

39.  Show that ε2(Θ) is minimized by choosing the estimate  as the sample
mean of the data z[n].

40.  Show that ε2(Θ) of Eq. (7.98) is minimized in the linear model by choosing
the estimate  as the weighted sample mean of the data z[n] given in Eq.
(7.99).

41.  Using the initial conditions stated for Fig. 7.26, verify that the sequential
LSE gain and variance obey K[N] = 1/(N + 1) and .

42.  Using the F, g, and h that define the α-β filter and assuming the process and
observation noise variances are  and , compute the prediction
MSE M[n|n] and Kalman gain k[n] for n = 2, …, 6. Initialize according to
Eq. (7.117) with T = 1. MATLAB® or other computational tools may be
used to aid in the calculation.

43.  With T = 1, what is the tracking index for the previous problem? What will
be the steady-state Kalman gain for the previous problem? Do the
computed gains of the previous problem appear to be converging to this
value?

44.  Suppose two real-valued random variables x1 and x2 are jointly Gaussian
but independent with zero means, , and . What is the covariance
matrix S of the random vector x = [x1 x2]T? Now consider a measured
sample of the random process generating x represented by the vector y = [1
1]T. Because the mean of x = [0 0]T, the innovation is . Find the
distance between y and x (i.e., “length” of i) using the following three
distance measures:

        a. Euclidean
        b. Mahalanobis, dM
        c. Log-likelihood lnΛ [Eq. 7.127)]
        Explain why these take on their particular relative values, i.e., why one is

largest and another smallest.
45.  Consider the track-to-measurement assignments in Fig. 7.35c, which

corresponds to the modified nearest neighbor algorithm where a
measurement is removed from consideration once it is assigned to a track.
Recompute this case beginning by assigning a measurement to track 2 first.
Are the results the same?



_____________
1 Energy SNR was defined in Chap. 4.
2 In this and subsequent plots of estimate variance or precision in this chapter, the quantity plotted is the
variance or standard deviation of the estimate error, rather than of the estimate itself. The result is the same,
but computing and plotting the error variance has some simulation advantages.
3 The measured precision falls below the CRLB for SNR = 29 and 30 dB because the sampling density in
the simulation is too coarse to reliably measure such small variations.
4 The definitions of both functions in this equation are consistent with those used in MATLAB®.
5 This function is often called the periodogram of the data x[n].
6 While the a priori bound is shown for higher SNRs on the frequency and phase plots, it is not shown for
the amplitude precision plot because the calculation required produces unstable results at higher SNRs.
7 Constant update intervals are assumed here, but many of the results can be generalized to nonconstant
update intervals.



CHAPTER 8
Introduction to Synthetic Aperture Imaging

 

When it was first developed, radar had two primary functions, detection and
tracking. To these have been added fine-resolution radar imaging in two and,
more recently, three dimensions. The technique of fine-resolution two-
dimensional radar imaging is called synthetic aperture radar (SAR). SAR is
most often applied to imaging of static ground scenes; thus, the “target” in SAR
operation is the ground clutter. Civilian applications of radar imagery include
cartography, land use analysis, oceanography, forestry, agriculture, natural
disaster assessment, and more (Henderson and Lewis, 1998). Equally numerous
military applications include reconnaissance, surveillance, battle damage
assessment, ground target classification and identification, navigation, and more.
SAR maps are routinely generated from both airborne and spaceborne
platforms, and with resolutions ranging from several tens of meters down to a
few inches.

Figure 8.1a is an example of a SAR image produced in the mid-1990s.
Collected by the Sandia National Laboratories’ Ku band radar, this image
obtains a resolution of 3 m at ranges of tens of kilometers. Figure 8.1b is an
aerial photograph of the same scene; close examination reveals many
similarities as well as many significant differences in the appearance of the
scene at radar and visible wavelengths. Figure 8.2 is another example, a SAR
image of the National Mall area of Washington, DC.



 



 
FIGURE 8.1   Comparison of optical and SAR images of the Albuquerque
airport: (a) Ku band (15 GHz) SAR image, 3-m resolution, (b) aerial
photograph. (Images courtesy of Sandia National Laboratories.)
 

 



 
FIGURE 8.2   Synthetic aperture radar image of the Capitol Mall area in
Washington, DC. (Image courtesy of Sandia National Laboratories.)
 

Despite the impressive quality of the SAR images, a human observer
would likely prefer photographs for purposes of understanding and analyzing the
scene. Though printed here in black and white, the original photograph in Fig.
8.1b is in color, whereas the SAR image is monochrome since SAR measures
only the scalar quantity of reflectivity.1 The photograph has finer resolution than
the SAR image. The SAR image exhibits a granular speckle, often referred to as
“salt-and-pepper” noise, typical of coherent imaging systems (including
holograms, for instance) but absent in the noncoherent optical image. Close
inspection reveals differences in phenomenology that can confound image
analysis. For example, in the bottom center of the photograph there is a large
concrete pad area on which there are three rectangular buildings; the concrete
appears light in color, the buildings dark. In the SAR image the contrast is
reversed and the building outlines are indistinct on the bottom side of the image.
Another example is the painted stripes visible in the photograph at the ends of
the runways (top center and right); these are entirely absent in the SAR image.

Why then is SAR of interest? The answer becomes apparent if the
comparison of Fig. 8.1 is repeated on a cloudy night. The photograph would
become a solid black, since the ground would not be visible through the clouds
and the sun would not be present to provide illumination. The SAR image would
be unchanged because the SAR is an active system that provides its own
illumination, and because microwaves pass through clouds and other weather
with little attenuation. Thus, radar provides a means for surveillance at any time
of day or night and in a much wider range of weather conditions. Figure 8.3
compares two images taken from the space shuttle of the Manhattan and Long



Island areas of New York. Both were taken from an altitude of approximately
233 km in April 1994 at 3:00 A.M., though on different days. The lower image is
a SAR map formed from three bands of radar data collected by the shuttle
imaging radar-C (SIR-C) instrument.2 The upper image is a photograph of the
Manhattan and Long Island areas of New York city. The overlaid polygonal
outline shows the approximate region of the SAR image. The radar image shows
the full outline of Long Island. The photograph only shows those portions of the
island that are well illuminated at 3:00 A.M., which does not include the northern
edges of the island.

 FIGURE 8.3   Comparison of optical (top) and radar (bottom) images of the
Manhattan and Long Island, New York area as viewed from the space shuttle at
3:00 A.M. (Image courtesy NASA/JPL-CalTech.)
 

The history of SAR is described briefly in Sherwin et al. (1962) and Wiley
(1985). The SAR concept was first described and demonstrated by Carl Wiley
of Goodyear Aircraft in 1951. The technique discussed in his patent (Wiley,
1965) would now be categorized as Doppler beam sharpening (DBS) (see Sec.
8.3.1). Since then, SAR has undergone several significant technology



development phases. The late 1950s and early 1960s developed the original
concept and implementations of what is now known as stripmap SAR. In these
pre-Moore’s law days, SAR data were collected on photographic film and
image formation was performed using remarkably elegant optical processing
systems (Cutrona, 1966; Brown and Porcello, 1969; Harger, 1970; Ausherman,
1980; Elachi, 1988). The 1960s saw the development of spotlight SAR,
generally credited to Jack Walker of the Environmental Research Institute of
Michigan (ERIM) (Ausherman et al., 1984).3 In the 1970s, digital processing for
SAR image formation was developed (Kirk, 1975), while the range-Doppler
algorithm (Wu, 1982) significantly improved the attainable resolution and image
size. In the 1970s, David Munson of the University of Illinois published the
connection between spotlight SAR imaging and certain forms of computerized
tomography (“CAT scanning”) (Munson et al., 1983). This observation was the
first of several that significantly expanded the capabilities of SAR algorithms by
moving them beyond the range-Doppler viewpoint adopted in their early
development and adapting techniques from other fields, such as tomography and
seismic prospecting (Munson and Visentin, 1989; Cafforio et al., 1991).

SAR is the first of two advanced radar signal processing techniques to
which this text provides an introductory overview. (The other, space-time
adaptive processing, is the subject of Chap. 9.) Beginning in the mid-1990s, a
number of excellent textbooks on SAR have become available (Curlander and
McDonough, 1991; Carrara et al., 1995; Jakowatz et al., 1996; Soumekh, 1999;
Franceschetti and Lanari, 1999; Cumming and Wong, 2005). Modern, concise
introductory references are provided in the SAR chapters in the Principles of
Modern Radar series (Showman, 2010; Showman, 2013; Cook, 2013;
Richards, 2013). The reader is referred to these for in-depth discussion of SAR
processing. This chapter begins with a heuristic overview of the SAR concept
from two points of view: synthetic antenna apertures, and Doppler resolution.
These are sufficient to derive many of the fundamental equations describing
SAR resolution, coverage, and sampling requirements, and to describe the
nature of the SAR data set. The signal processing required for SAR image
formation is then addressed more directly, describing a basic SAR data model
and introducing three of the most common algorithms for SAR image formation.
Finally, the concept of the interferometric SAR approach to three-dimensional
radar imaging is introduced.

8.1   Introduction to SAR Fundamentals

8.1.1   Cross-Range Resolution in Radar
To be useful, a radar map must provide adequate resolution for its intended use.
Requirements may range from tens of meters to fractions of a meter.



Furthermore, this resolution should be available in both the range and cross-
range dimensions, since there is no reason to prefer one over the other in most
operational scenarios. Finally, the resolution should be maintained throughout
the imaged scene. Sufficient range resolution for radar mapping is relatively
easy to achieve using the pulse compression techniques discussed in Chap. 4.
Comparable cross-range4 resolution, however, is not possible in conventional
operation, often termed real-beam imaging.

Figure 8.4 illustrates cross-range resolution in a real-beam, forward-
looking radar. The antenna scans in azimuth angle. It has an azimuth beamwidth
of θaz radians; thus, at a range R0 the width of the beam is R0θaz meters to a good
approximation. The cross-range dimension is the direction orthogonal to range.
As discussed in Chap. 2, the receiver output for a fixed range as a function of
azimuth scan angle is the range-averaged reflectivity convolved with the two-
way antenna voltage pattern. In Fig. 8.4a, the two scatterers are separated in
cross range by less than one beamwidth, so the receiver output will blur the
response to the two scatterers together (see Fig. 2.26). In Fig. 8.4b, they are
separated by more than the beamwidth so that the receiver output for the
appropriate range bin as a function of scan angle will show two distinct peaks.
By convention, the two scatterers are therefore considered just resolvable if
they are separated by the width of the antenna beam. Assuming narrow azimuth
beamwidths, the cross-range resolution ΔCR is well approximated by

 FIGURE 8.4   Resolution in cross range of two scatterers at the same range: (a)
unresolved in cross range, (b) resolved in cross range.
 



(8.1)
 
The beamwidth θaz in this equation is usually taken as the two-way 3-dB
beamwidth, but it is sometimes taken as the Rayleigh (peak-to-null) or even the
null-to-null beamwidth.

As shown in Chap. 1, the azimuth beamwidth of a conventional antenna is
of the form

(8.2)
 
where Daz is the width of the antenna in the azimuth dimension. The scale factor
k depends on the antenna design. It is as little as 0.89 for an ideal aperture
antenna with uniform illumination, but more often is on the order of 1.2 to 2.0
for practical antenna designs. In general, the lower the antenna sidelobes, the
higher is k. Here it is sufficient to say that k is on the order of one and ignore it
in subsequent calculations for compactness. Combining Eqs. (8.2) and (8.1)
gives the cross-range resolution of a real beam radar as

(8.3)
 

The resolution indicated by Eq. (8.3) is not acceptable for imaging
purposes. Unlike range resolution, the cross-range resolution degrades in
proportion to range instead of being constant through the image. Far more
important, the cross-range resolution is too coarse for useful images. Consider
some typical numbers. An airborne tactical X band radar (10 GHz) with a 1-m
antenna width would achieve a cross-range resolution of 300 m at 10 km range,
or roughly three American football fields. A satellite in low earth orbit (LEO,
for example around 770 km altitude) operating in C band (5 GHz) with a 10-m
antenna would exhibit a cross-range resolution of 4.6 km. These numbers are
too coarse for useful imagery.

Equation (8.3) suggests that cross-range resolution can be improved by
restricting the operating range, using higher frequencies, or using larger
antennas. Considering the airborne example, a change of two orders of
magnitude is required to improve the resolution from 300-m to the 3-m
resolution of Fig. 8.1a. This requires a change to either a 1-THz radar
frequency, limitation to only 100 m operating range, an increase in the antenna
size to 100 m, or some combination of less drastic but still very large changes in



these parameters. Such large changes are impractical. For instance, Fig. 8.5
compares the approximate relative size of a 100-m phased array antenna and a
typical fighter aircraft. It seems unlikely that such a large antenna could be
constructed and flown on that aircraft.

 FIGURE 8.5   Relative size of a fighter aircraft and a phased array antenna large
enough to achieve ΔCR = 3 m at X band and 10 km range.
 

8.1.2   The Synthetic Aperture Viewpoint
In fact, Fig. 8.5 does suggest a way in which fine cross-range resolution could
be achieved. Rather than constructing a large physical phased array antenna to
meet the requirements of Eq. (8.3), consider implementing only a single array
element of the antenna, and then utilizing the platform motion to move that
element through successive element positions to form the complete array. At
each element position a pulse is transmitted and the fast-time data collected.
When the element has traversed the length of the complete array, the data from
each position is coherently combined in the signal processor to create the effect
of a large phased array antenna with elements at each of the positions. The
individual “element” can be the conventional antenna on the platform. In effect,
the usual combining of phased array element signals in microwave hardware is
performed instead in the signal processor. The system thus “synthesizes” a large
phased array antenna aperture by operating a single element from multiple
locations in space; hence the name, “synthetic aperture radar” (in some older
literature, “synthetic array radar”). Put another way, the phased array antenna
data is collected serially, one element at a time, rather than in parallel, all at
once. This process is suggested by Fig. 8.6, which shows an aircraft that has
collected data at four positions along the array; data are still to be collected at
several more positions. While good range resolution is obtained via pulse
compression, the cross range resolution of the fast-time samples is wide and
increases with range. After processing, the data have fine resolution in both
range and cross-range. Because data from multiple pulses are combined to form
the effective fine-resolution beam, the scene being imaged should not change
while the data are collected so that each pulse represents data from the same
scenario. This again emphasizes that SAR is intended primarily for imaging
static scenes.



 FIGURE 8.6   The concept of synthetic aperture operation.
 

In practice the radar does not usually collect data over just a single
synthetic aperture length sufficient to obtain the desired narrow effective
beamwidth. Instead, it operates continuously during flight, producing an ongoing
sequence of fast-time data vectors from different positions along the flight path.
The effective synthetic aperture size DSAR is determined by selecting the number
of spatial positions from which data will be combined to form a narrow
effective beam. The amount of data combined is expressed in terms of DSAR or
equivalently the aperture time Ta, which is related to DSAR by the platform
velocity:

(8.4)
 
By combining a sliding window of data collected over the most recent Ta
seconds or DSAR meters of the flight path, a series of narrow effective beams can
be formed at successive cross-range positions. At each such position the signal
processor forms a set of range bins with fine resolution in both range and cross-
range centered at the cross-range position corresponding to the center of the
synthetic aperture as illustrated in Fig. 8.7.5 This series of range traces forms a
two-dimensional radar image of the scene. So long as the radar remains in this
mode and the signal processor can keep up with the data influx, the system can
generate a continuous strip of imagery, rather like unrolling a long scroll.



 FIGURE 8.7   Forming multiple synthetic apertures by combining sliding subsets
of continuously collected data.
 

The mode of operation implied by Fig. 8.7 is called sidelooking stripmap
SAR. Because the synthetic aperture is formed by the forward motion of the
radar platform, the array face is naturally oriented perpendicular to the flight
path. The effective antenna pattern is then oriented orthogonal to the velocity
vector, a configuration referred to as sidelooking radar. In stripmap SAR, the
physical antenna that serves as the array element is not actively scanned. It is
instead locked into the sidelooking position, and its antenna pattern therefore
moves across the ground as the aircraft flies forward. Conventional phase
steering combined with mechanical steering of the physical antenna can be used
to orient the effective SAR beam at an angle to the velocity vector other than
90°; this is referred to as a squinted SAR. For simplicity, only the sidelooking
case is considered in this chapter.

In a conventional phased array antenna, all elements are present and active
at once on both transmit and receive for each pulse, so the phase center of the
antenna is in the middle of the physical structure for both transmit and receive.
For a synthetic phased array, this is not the case: only one element at a time is
active, so the phase center for transmit and receive moves across the face of the
synthetic aperture as the data are collected. The resulting antenna pattern for a
synthetic array differs somewhat from that of a physical array. To see this,
consider the geometry of Fig. 8.8, which shows a scatterer at a range R and



angle θ from the center of an array. Assuming that R is large compared to the
array size, the range from the nth element is well approximated as

 FIGURE 8.8   Geometry of synthetic array.
 

(8.5)
 
where d is the element spacing. Suppose the signal exp(jΩt) is transmitted from
the nth element. The received echo will be, ignoring scale factors,

(8.6)
 

In synthetic array operation, each element is operated separately and the
outputs combined. The total output is

(8.7)
 
The term in brackets is the array factor of the synthetic array. It determines the
amplitude of the received signal and therefore specifies the two-way voltage
pattern of the antenna. The Rayleigh beamwidth is the angle to the first null,
which occurs when the argument of the sine function in the numerator equals π.
Defining the total aperture size as DSAR = (2M + 1)d, this occurs when



(8.8)
 
In comparison, the array factor of a conventional phased array, given in Eq.
(1.14), gives a Rayleigh beamwidth of θ = λ/D. Thus, the synthetic array has a
beamwidth half that of a conventional array of the same aperture size.

It is now possible to determine the cross-range resolution obtained by the
synthetic array. Combining Eqs. (8.4) and (8.8) gives

(8.9)
 
Equation (8.9) is a fundamental result that relates the amount of data combined,
represented through the aperture time Ta or size DSAR, and the SAR cross-range
resolution. Solving for Ta or DSAR gives the design equation

(8.10)
 
Equation (8.10) also gives the first hint of one of the major complications in
SAR signal processing: the aperture time required to obtain a constant cross-
range resolution is proportional to range, implying that the required processing
is different at different ranges. SAR is a linear process, but is not shift-invariant
in general.

One of the major advantages of SAR operation over a fixed physical
antenna is that the effective aperture size is determined by the amount of data
along the flight path that is combined to form any one pixel in the SAR image.
The cross-range resolution can be changed by changing Ta (equivalently, DSAR)
according to Eq. (8.9). Consequently, a single radar can achieve several
different resolution modes with the same antenna hardware. As an example,
Table 8.1 lists the various resolution modes available in the Canadian
RADARSAT-2 space-borne SAR. Available resolutions vary by a factor of
over 30×, while swath lengths (depth of the image in the range dimension) vary
by 25×. Notice that the range resolution in most, but not all, modes is equal or
nearly equal to the cross-range resolution, a condition referred to here as
“square pixels.” Table 8.1 also shows that finer resolution is generally
associated with shorter swath lengths, implying lesser area coverage rates. The
reason for this will be discussed in Sec. 8.1.4.



  Data from http://www.asc-csa.gc.ca/eng/satellites/radarsat2/inf_data.asp.
 TABLE 8.1   Resolution Modes in RADARSAT-2
 

Equation (8.10) also suggests that arbitrarily fine resolution can be
obtained, at least in principle, by letting Ta or DSAR become large. However, the
maximum practical value of aperture time is limited by the physical antenna on
the platform. Consider Fig. 8.9. When the aircraft is at the position on the left,
the target is just entering the mainbeam of the physical antenna; when the aircraft
is at the position on the right, the target is just exiting the main-beam. For
aircraft positions before or after this interval, the target is not in the physical
antenna mainbeam and the data collected outside of this interval will have no
significant contribution from the target. Consequently, any one scatterer
contributes to the SAR data only over a maximum synthetic aperture size equal
to the travel distance between the two points shown, which equals the width of
the physical antenna beam at the range of interest, namely Rθaz. The
corresponding maximum effective aperture time is Rθaz/v. Inserting this result
into Eq. (8.9) and using Eq. (8.2) (with k = 1) gives a lower bound on
sidelooking strip-map SAR cross-range resolution of

http://www.asc-csa.gc.ca/eng/satellites/radarsat2/inf_data.asp


 FIGURE 8.9   Limitation of the aperture time by the physical antenna beamwidth.
 

(8.11)
 

Equation (8.11) is a remarkable result. It states that the lower bound on
stripmap SAR resolution is independent of range, a desirable result for imaging,
and more importantly, is much smaller than the real-beam resolution of Eq.
(8.3). Considering the same two examples given previously, the lower bound on
cross-range resolution becomes 0.5 m instead of 300 m for the airborne case,
and 5 m instead of 4.6 km for the spaceborne case. (In practice, this resolution
will be degraded by 50 to 100 percent by the use of windows for sidelobe
control in the processing.) Furthermore, the lower bound on cross-range
resolution does not depend on the wavelength. Finally, note that Eq. (8.11)
states that to improve the lower bound on cross-range resolution, the physical
antenna size should be reduced! It is rare that improved performance requires
reducing the antenna size. In SAR, this occurs because a smaller physical
antenna will have a broader beamwidth θaz, allowing a larger maximum
synthetic aperture size. Of course, shrinking the antenna size reduces the gain
and SNR and, as will be seen, also reduces the maximum area imaging rate. The
real implication of Eq. (8.11) is that fine cross-range resolution requires a large
synthetic aperture, not a large physical antenna. Finally, note that in many cases
the lower bound of Eq. (8.11) will be finer than required. In this case, the
aperture time is simply limited to whatever value is required to obtain the
desired resolution, as given by Eq. (8.10).

Resolutions of 1 to 10 m at ranges of 10 to 50 km, cruise velocities of 100



to 200 m/s, and frequencies from 10 to 35 GHz are typical of many operational
airborne SARs, and thus might be considered “mainstream” parameters. Figure
8.10a is a representative plot of aperture time versus radar frequency with ΔCR
as a parameter using Eq. (8.10). While low-frequency, fine-resolution SARs can
demand very long aperture times, for most systems in their mainstream modes Ta
is in the range of a few tenths of a second to 1 or 2 seconds. Much finer
resolutions are possible but require much longer aperture times, e.g. about 10
seconds for 4-inch resolution at 10 GHz. For spaceborne systems, frequencies
are most often in the range of 1 to 5 GHz, with newer systems ranging up to 10
GHz. In LEO a typical velocity and range are about 7500 m/s and 770 km.
Figure 8.10b repeats the calculation of Ta for this scenario. Again, “mainstream”
aperture times are on the order of a few tenths of a second to 1 or 2 seconds.
Finer resolutions of one or two meters are available with longer aperture times
of a few seconds.



 FIGURE 8.10   Aperture time versus cross-range resolution and radar frequency:
(a) airborne platform, υ = 150 m/s and R = 10 km, (b) spaceborne platform in
low earth orbit, υ = 7500 m/s and R = 770 km.
 

While the stripmap resolution lower bound of Eq. (8.11) is finer than
needed in many cases, in some fine-resolution applications it may not be good
enough. The solution is to construct a longer synthetic aperture. To keep a given
scatterer within the physical antenna mainbeam, it then becomes necessary to
abandon the restriction that the antenna is not scanning. As the radar flies the



synthetic aperture, inertial navigation data are used to actively scan the antenna
so as to keep its boresight pointed at the center of a region of interest  (ROI) on
the ground. In so doing, the ability to map a continuous strip is sacrificed for a
finer-resolution map of the ROI. Once enough data have been collected to image
the ROI, the antenna can be re-steered to image another discrete region. This
mode of operation, termed spotlight SAR, is illustrated in Fig. 8.11. Because the
radar essentially rotates around the region being imaged, spotlight SAR
resolution is often expressed in terms of the rotation angle γ of the radar
boresight vector as the platform traverses the synthetic aperture length. Clearly,
Dsar = 2R sin (γ/2) ≈ Rγ for small γ. Using this equivalence in Eq. (8.9) gives the
alternate cross-range resolution expression

 FIGURE 8.11   Spotlight mode SAR operation.
 

(8.12)
 
Figure 8.12 is a 1-m resolution spotlight SAR image of the Pentagon in
Washington, DC, clearly showing remarkable details of the five rings of the
building, individual trees, and the surrounding road network.



 FIGURE 8.12   One-meter resolution spotlight SAR image of the Pentagon.
(Courtesy of Sandia National Laboratories.)
 

8.1.3   Doppler Viewpoint
The fundamental SAR resolution Eq. (8.9) or (8.10) was derived above from a
basic antenna properties point of view. It can also be derived from a Doppler
processing point of view. In fact, this approach is more consistent with the
original conception of SAR and serves as a better starting place for considering
some SAR image formation algorithms. It also allows an easy generalization to
squinted SAR.

Consider two scatterers at range R separated in cross range by ΔCR
meters. The angular separation Δθ of the two scatterers satisfies

(8.13)



 
The small angle approximation is accurate within 1 percent so long as Δθ < 14°.
In Chap. 3 it was seen that two scatterers separated in angle by Δθ radians
around a nominal squint angle ϕ from forward looking have a difference in
Doppler shift of (4υ/λ) sin(Δθ/2) sin ϕ ≈ (2υΔθ/λ) sin ϕ Hz.
Using this result and Eq. (8.13) gives the Doppler difference between two
scatterers separated by ΔCR meters at a squint angle ϕ as

(8.14)
 

These two scatterers could be resolved by Doppler processing of the
slow-time data provided that the Doppler resolution is no larger than ΔFD Hz.
As discussed in Chap. 1 and App. B, frequency resolution is inversely
proportional to signal duration in time, ΔF = 1/T. In this scenario the signal
duration is the aperture time Ta. Thus, two scatterers separated in cross range by
ΔCR meters can just be resolved if Ta = 1/ΔFD. This gives

(8.15)
 
which generalizes Eq. (8.10) to include the squinted case. In the sidelooking
case ϕ = 90° and Eq. (8.15) is identical to Eq. (8.10).

The Doppler viewpoint suggests a starting point for SAR image formation
algorithms. Figure 8.13 illustrates a two-dimensional view6 of a sidelooking
stripmap SAR. A scatterer P is located at range and cross-range coordinates RP

and xP relative to the antenna and is within the physical antenna mainbeam. P is
therefore at an angle θP = atan(xP/RP) ≈ xP/RP, where the approximation is
accurate within 1 percent for θ ≤ 9.9°. This scatterer will produce a Doppler-
shifted echo. Pulse Doppler processing of the slow-time data in the range bin
corresponding to RP will produce a peak in the Doppler spectrum at FDP =
(2υ/λ) cos(ϕP) = (2υ/λ) sin(θP). The squint angle ϕP of the scatterer from the
forward-looking velocity vector has been used in previous chapters but the
angle θP measured from sidelooking is more relevant here. The corresponding
cross-range position xP is approximately RP times the angular offset from
sidelooking



 FIGURE 8.13   Geometry relating cross-range position to Doppler shift.
 

(8.16)
 
Equation (8.16) provides a mapping of the Doppler axis to cross-range position.
Note that the mapping is range-dependent, and therefore different for each range
bin. Some systems having a range swath that is a small fraction of the nominal
range use only a single mapping based on the nominal range at the center of the
imaged swath, since the percentage range change across the image is small.

An image is formed by collecting a fast-time/slow-time data set that covers
the range window of interest and provides an aperture time adequate for the
desired resolution. The Doppler spectrum is computed at each range of interest.
The Doppler axis is then remapped to cross-range position using Eq. (8.16),
resulting in a range/cross-range image. If the same aperture time (slow-time data
set size) is used in each range bin, this particular SAR imaging algorithm is
called Doppler beam sharpening (DBS). If the aperture time is increased
proportional to range so as to maintain constant cross-range resolution, it
becomes a simple form of the range-Doppler algorithm. There are several
effects that limit the scene size and resolution obtainable with this simple
algorithm, primarily the problems of range migration and quadratic phase
errors. Before discussing these, it is useful to consider some additional aspects
of SAR operation.

8.1.4   SAR Coverage and Sampling
To determine the amount of terrain which a radar can image, the size of the
image in two dimensions must be considered. In stripmap SAR, the along-track
extent of the image is unlimited; so long as the radar platform continues



collecting and processing data, the image is extended in cross range. What
determines the swath length (range extent) of the image?

Consider Fig. 8.14, which illustrates a sidelooking SAR scenario viewed
in the along-track direction. The nominal grazing angle is δ radians. Scatterers
outside of the mainbeam elevation beamwidth θel will not produce significant
echoes. Thus, the swath length Ls is upper bounded by the projection of the
elevation beam onto the ground plane. This is the same geometry considered in
discussing the beam-limited resolution cell size in Chap. 2; the maximum swath
length is therefore

 FIGURE 8.14   Illustration of swath length and unambiguous range.
 

(8.17)
 
The swath length can be made less than this by simply collecting fast-time
samples over a more limited extent. In the illustration, the swath length Ls is
indicated by the row of range samples within the elevation beam and is shown
at its maximum extent, Ls = Lmax. Since the radar platform moves forward at υ
meters per second while imaging a swath Ls meters deep, the area coverage rate
is simply

(8.18)
 

A technique called scanSAR can be used to increase area coverage by



increasing the swath length beyond the elevation beamwidth limit, though at the
cost of degraded cross-range resolution. The antenna is periodically switched
between two elevation angles to create two contiguous swaths. Careful attention
to timing is required to avoid leaving gaps in the data in either swath. The
method is described in detail in Cumming and Wong (2005).

To image the full swath Ls with the intended resolution, two conditions
must be met by the received data. The first is that the full pulse echo must be
received from all scatterers within the swath on each pulse. Any eclipsing will
degrade the resolution of the eclipsed scatterers. The second is that clutter from
other ranges must not be allowed to fold over onto the swath of interest. Clutter
outside the mainbeam footprint is usually considered insignificant, so this
requirement applies only over the range footprint of the antenna. Also, it is not
necessary that the radar be unambiguous out to the full range R. Rather, the
requirement is that echoes from the far edge of the mainbeam footprint on one
pulse be received before echoes of the next pulse from the near edge of the
swath of interest.

The eclipsing constraint requires that the time interval from receipt of the
leading edge of the echo from the near edge of the swath to the trailing edge of
the echo from the far edge be less than the time T – τ between pulses when the
receiver is on. At a nominal grazing angle of δ radians the difference in delay
between the swath edges is approximately (2/c)Lscosδ, so the duration of the
data from the swath including the tail of the pulse from the far edge is
(2/c)Lscosδ + τ. The resulting requirement is the first relation in Eq. (8.19). The
ambiguity constraint is tightest when the swath occupies the full range footprint
of the antenna. In that case it requires that the trailing edge of the clutter from the
far edge of the swath not overlap with the leading edge echo from the near end
and the next pulse. This results in the second relation in Eq. (8.19) and is seen to
be slightly more lax than the eclipsing constraint. The shaded bands within the
antenna beam in Fig. 8.14 indicate successive pulses in flight, with a spacing
just large enough to meet this requirement. In many but not all SAR systems the
swath length is much larger than the equivalent length of the pulse, so that either
constraint results in the simplified approximate upper bound on PRF shown in
the third relationship in Eq. (8.19)

Eclipsing constraint:

 

Range ambiguity constraint:



(8.19)
 

Approximation for Ls  cτ/2:

 
Because it is the slow-time sampling rate of the radar, a second constraint

on the PRF is that it exceed the Doppler bandwidth βD, as discussed in Chap. 3.
For the moment, it is not assumed that βD necessarily is the maximum
sidelooking Doppler bandwidth of 2υθaz/λ [Eq. (3.5)]. βD is related to the cross-
range resolution of a sidelooking SAR as follows. A resolution of ΔCR meters
is equivalent to a resolution in time of υ·Δt = ΔCR/υ seconds. In the absence of
weighting for sidelobe control, the time resolution is the inverse of the
processed bandwidth, Δt = 1/βD. The PRF lower bound in terms of cross-range
resolution is therefore

(8.20)
 

Typical sidelooking SAR Doppler bandwidths vary from a few tens of
hertz to a few kilohertz, while typical stripmap range swaths vary from a few
ones of km to 100 km. The combination of these constraints results in SAR PRFs
of several hundred to a few kilohertz in most cases. SAR is therefore a low PRF
radar mode.

Combining the last form of Eq. (8.19) with Eq. (8.20) establishes a range
on the allowable PRF,

(8.21)
 
Equation (8.21) is the basis for several interesting constraint equations in SAR
processing. The first constraint follows directly from Eq. (8.21):

(8.22)
 
Notice that the left-hand side is proportional to the number of range resolution
cells in the swath length, assuming square pixels (ΔCR = ΔR). The quantity c/2υ
is on the order of 20,000 for LEO satellites and the space shuttle and can



become a significant constraint. For airborne SAR, it is much larger at 300,000
to 750,000 and much less likely to constrain the system design. If a system is
already operating near this limit, Eq. (8.22) shows that further improving
resolution requires that the swath length and therefore the area coverage rate
[Eq. (8.17)] must be reduced proportionally. Thus, there is a potential conflict
between fine resolution and large area coverage.

Now suppose that the finest possible sidelooking stripmap resolution is
desired so that the full Doppler bandwidth βD = 2υθaz/λ is processed. As seen
earlier, with θaz = λ/Daz this results in ΔCR = Daz/2. Inserting this value into Eq.
(8.22) and rearranging gives a bound on stripmap swath length:

(8.23)
 
Equation (8.21) shows that for a given platform velocity, the swath length is
limited by the physical antenna width. It also shows that a wider antenna is
needed to achieve a given swath length on a faster platform. This is one major
reason that spaceborne SARs have much wider antennas than airborne SARs.

Using Eq. (8.23) in Eq. (8.18) gives a closely related area coverage rate
constraint of

(8.24)
 
While good SAR resolution encourages antennas that are narrow in the azimuth
dimension [Eq. (8.11)], this equations states that high area coverage rates
encourage wider azimuth antenna extents, again reflecting the conflict between
fine resolution and high area coverage rates mentioned earlier.

Finally, if maximum area coverage is sought by setting the swath length to
the full extent of the antenna range footprint while still maintaining minimum
resolution, Eqs. (8.17) and (8.23) can be combined to derive the inequality:

(8.25)
 
This result specifies a lower bound on the antenna area, not just its width. It
shows that spaceborne SARs must have larger antennas than airborne SARs due
to their much larger velocities and ranges. It also states that lower RFs tend to
require larger antennas.

Equations (8.23) and (8.24) are often referred to as the stripmap SAR
swath constraint and mapping rate constraint equations, while Eq. (8.25) is



called the antenna area constraint. A number of variations and extensions of
these ideas for other cases are described in Freeman et al. (2000).

The previous equations apply to stripmap SAR. It is straightforward to
estimate the mapping rate for spotlight SAR operation as well. From Eq. (8.12),
an image with resolution ΔCR requires that the antenna LOS rotate through
λ/2ΔCR radians. Assuming a straight flight path, the platform must travel
λR/2ΔCR meters; this will require λR/2υΔCR seconds. This is the time required
for one spotlight SAR image. The number of images per unit time, Nspot, is
therefore upper bounded by

(8.26)
 

In SAR, the PRF sets the cross-range sampling interval δx = υT = υ/PRF ≤
ΔCR, representing one pulse per cross-range pixel. Failure to use a high enough
PRF results in cross-range ambiguities in SAR imaging. In order to minimize
this problem, the maximum Doppler bandwidth βD = 2υθaz/λ is typically used as
the lower bound on PRF even if the Doppler bandwidth needed for the desired
cross-range resolution is less. Furthermore, θaz is often interpreted
conservatively as the null-to-null beamwidth, effectively increasing the PRF by
about a factor of two compared to the result obtained if the 3-dB or Rayleigh
beamwidth is used. Choosing a PRF greater than required by Eq. (8.20) tightens
the swath length and area coverage constraints by the same factor.

8.2   Stripmap SAR Data Characteristics
Up to the point where the complex image is finally passed through a detector to
convert it to pixel data suitable for display, the SAR signal processing system is
nominally linear. (It is not shift invariant, as will become clear.) Consequently,
the behavior of the SAR system, including such characteristics as resolution,
sidelobes, and the response to complex multi-scatterer scenes, can be
understood by considering the response to a single isolated point scatterer. In
the nomenclature of linear systems analysis, the data set generated by a single
point scatterer is called the point scatterer response  (PSR) or the SAR system
impulse response. The former term is preferred because the latter term is
generally associated with shift invariant systems.

8.2.1   Stripmap SAR Geometry
Figure 8.15 defines the geometry for sidelooking stripmap SAR data
acquisition. The ground plane, which is the surface to be imaged, is defined by



the x and yg axes. The dimension ys defines the slant range dimension, and the
plane defined by the x and ys axes is called the slant plane. Because the radar
measures delay, this is the more natural plane in which to discuss imaging. Of
course, real terrain varies in height. This aspect is discussed in Sec. 8.6. For the
present, it is assumed that the ground plane scene is two dimensional.

 FIGURE 8.15   Geometry for stripmap SAR data acquisition.
 

Consider a sidelooking radar platform flying at constant altitude h and
velocity υ along the +x direction such that the antenna phase center is located at
coordinates (u = υt, 0, h) at time t. The antenna is therefore above the origin at t
= 0. A scatterer P is located in the ground plane at coordinates (xP, ygP, 0).
Assume the antenna is steered such that P is in the center of the antenna beam
azimuth extent at t = 0. If the aperture time required to achieve the desired
resolution is Ta seconds corresponding to a synthetic aperture size of DSAR

meters, the time interval of interest in imaging P is t ∈ (–Ta/ 2 , Ta/2),
corresponding to platform positions along the x axis (the synthetic aperture) of u
∈ (–DSAR/ 2 , DSAR/2). This geometry implies that if xP = 0 the radar is
sidelooking, while if xP ≠ 0 it is squinted. In Fig. 8.15, a case is shown with the



radar squinted forward.
The range from the radar to P is the Euclidean distance

(8.27)
 
Equation (8.27) shows that in a stripmap SAR the range between the radar and
an arbitrary scatterer varies hyperbolically as the radar moves along the
synthetic aperture. The form of the range variation is invariant to the scatterer’s
along-track position xP, in the sense that the xP dependence of R(u) involves only
the position of the aircraft relative to the scatterer, (u – xP). More explicitly, if
the range variation for a scatterer at xP1 is denoted by R1(u), the range variation
for a scatterer at position xP2 = xP1 + Δx is R2(u) = R1(u – Δx). In contrast, the
range variation does vary with the absolute slant or ground range of the target,
RP or ygP (which appears through RP).

In the analysis of low- to medium-resolution SAR systems it is common to
further simplify Eq. (8.27) by using the series expansion of the square root 

 and keeping only the first two terms, giving

(8.28)
 
This assumption requires |u – xP|/RP  1. Since the maximum value of |u – xP| of
interest is DSAR/2, this is equivalent to stating that the synthetic aperture size is
short compared to the nominal range. Equation (8.28) shows that the range from
the radar to the target varies approximately quadratically as the data set is
collected. Since the received phase of the target echo is shifted from the
transmitted phase by an amount proportional to range, namely ϕ = –(4π/λ)R, if
follows that the absolute phase of the received echoes will also vary
approximately quadratically. In Chap. 4, it was seen that a quadratic phase
function corresponds to linear frequency modulation. LFM is used to obtain fine
resolution in fast time by spreading the waveform bandwidth. Equation (8.28)
shows that the slow-time data from a given scatterer will also have an
approximately quadratic phase modulation that will spread the slow-time
bandwidth and enable fine cross-range resolution. This slow-time modulation is
induced by the changing geometry due to platform motion relative to the imaged
scene.



It is useful to determine the equivalent of the LFM time-bandwidth product
for this cross-range chirp. For a given scatterer position xP, the received phase
will vary with aperture position u as ϕ(u) = –(4π/λ)R(u). The instantaneous
frequency corresponding to this phase modulation is obtained as usual as

(8.29)
 
Since the independent variable u is a spatial coordinate in meters instead of
time in seconds, Kui is a spatial frequency. As u varies over the synthetic
aperture length of DSAR meters, the spatial frequency bandwidth will sweep over
(4π/λRp) DSAR radians per meter = 2DSAR/λRP cycles per meter. Defining the
latter quantity as the spatial bandwidth βu, the “space-bandwidth” product of the
cross-range chirp is

(8.30)
 
Just as matched filtered LFM chirps have a time resolution equal to their
duration divided by their BT product, it should be possible by proper
processing to achieve a cross-range resolution in SAR that is the synthetic
aperture size divided by the space-bandwidth product. Note that dividing DSAR
by Eq. (8.30) does in fact give the result of Eq. (8.9). Also, recall that the BT
product βτ is the radar range equation signal processing gain for fast-time
processing (pulse compression). Similarly, the signal processing gain for slow-
time (SAR) processing will be the slow-time space-bandwidth product βuu. The
overall signal processing gain Gsp in the SNR of a point scatterer will be the
product (βτ)(βuu).

The variation in range to a point scatterer over the synthetic aperture is
called range migration. It can be broken into two components, range walk ΔRw
and range curvature ΔRc. Range walk is the difference between the range to P
at the beginning and end of the synthetic aperture:

(8.31)
 
Note that this is just the change over the aperture time in the linear term in u of



Eq. (8.28). Range curvature is the variation in the quadratic term of R(u), which
has its maximum at either extreme of the aperture position, u = ±DSAR/2, and its
minimum at u = 0:

(8.32)
 
Both the range walk and range curvature depend on DSAR or Ta and RP. If a
constant aperture time is used, range walk and curvature both decrease as 1/RP.
However, if constant cross-range resolution is desired, Ta must increase
proportionally to range. In this case, ΔRw is constant over range for a given xP,
while ΔRc increases in proportion to RP.

Range migration is significant only if it exceeds the range bin size. If so,
echo samples from a single scatterer will start in different range bins on
different pulses, complicating the process of combining them to form a fine-
resolution image. Both range walk and range curvature can be predicted using
only parameters which are known to the radar system: own-ship velocity,
aperture time, and range.

8.2.2   Stripmap SAR Data Set
The fast-time/slow-time complex baseband data set used to form the SAR image
is the two-dimensional SAR phase history. Figure 8.16 is the real part of the
received data from a single point scatterer located at xP = 0, ygP = 10 km. The
data correspond to a 5-GHz radar at an altitude of 5 km. The pulse is an LFM
upchirp of bandwidth β = 10 MHz and duration τ = 5 μs, sampled at a fast-time
rate of 30 Msamples per second. The PRF is 500 Hz and the platform velocity
is 250 m/s. The aperture time is Ta = 13.5 seconds. With these parameters, the
expected resolutions are 15 m in range and only 0.1 m in cross range. While not
very realistic, this example results in a data set with exaggerated curvatures for
illustrating some general characteristics of stripmap SAR data.



 FIGURE 8.16   (a) Real part of the received data from a point scatterer located at
xP = 0, ygP = 10 km, (b) fast-time slice at azimuth position u = 500 m. See text
for radar parameters.
 

Figure 8.16a shows the real part of the complete two-dimensional PSR.
The range curvature is clearly evident. The complicated pattern of the data
within the PSR reflects the changing amplitude of the real part of the chirp



pulse. Each fast-time slice through the data set is simply an echo of the
transmitted chirp. For instance, the slice of data in the thin rectangular box at
azimuth +500 m is shown in part b of the figure; the upchirp is clear. All other
fast-time slices are identical except for their start time and initial phase offset,
determined by the differing ranges to the target from each point along the radar
platform’s synthetic aperture.

Figure 8.17 shows a cross-range slice of the data in Fig. 8.16a, taken at
ground range 10.4 km. Part a shows the real part of the complete cross-range
slice, emphasizing the attenuation caused by the physical antenna pattern at the
edges of the data set, when the point scatterer is near the edge of the antenna
mainbeam. The segment inside the rectangular box is expanded in Fig. 8.17b,
where it can be seen that the motion-induced phase modulation forms a chirp
that passes through zero frequency at u = xP (broadside from the scatterer). Thus,
the PSR is approximately a two-dimensional chirp function.



 FIGURE 8.17   Cross-range slice of Fig. 8.16a at ground range ygP = 10.4 km: (a)
complete slice, (b) central portion of the slice.
 

The size of the PSR data set which must be processed by a stripmap SAR
can be quite large. For a swath length Ls, range resolution ΔR, and pulse time-
bandwidth product βτ, the number of fast-time samples required is



(8.33)
 
This result assumes a fast-time sampling rate equal to the bandwidth β; if
oversampling is used, L increases accordingly. The number of slow-time
samples equals the number of pulses within the aperture time:

(8.34)
 
Notice that this is just the number of cross-range resolution cells in the physical
beamwidth Rθaz. Equation (8.34) assumes that the PRF equals the clutter
bandwidth. Again, if oversampling is used, M increases accordingly.

As an example, consider the SIR-C, which operates at L band with a swath
length of 15 km from an orbital range of 250 km, range and cross-range
resolution of 15 m, and a 17-μs pulse with a 10-MHz bandwidth. The antenna
size is 10 m, suggesting a beamwidth θaz of about 0.03 radians = 1.72°. These
parameters result in L = 1169 fast-time samples per pulse and M = 500 pulses
in the aperture time. This large number of pulses contributing to the image of
each point target differentiates SAR from the much simpler but related pulse
Doppler processing. In pulse Doppler, a CPI is typically a few tens of pulses at
most. Returning to the SIR-C example, (1170)(500) = 585,000 samples
contribute to each point scatterer image. If properly coherently integrated, a
57.7-dB integration gain can be achieved.

8.3   Stripmap SAR Image Formation Algorithms
For a general scene, the stripmap SAR data set is the superposition of a large
number of weighted and shifted replicas of the PSR. Recall that the PSR is, in
general, a function of range but is independent of cross range. The goal of any
SAR image formation algorithm is to compress the PSR of each scatterer into an
impulse-like function with the appropriate location and amplitude, as shown
notionally in Fig. 8.18.



 FIGURE 8.18   The goal of SAR image formation algorithms is to transform the
two-dimensional PSR in (a) into the point target image in (b).
 

A variety of stripmap SAR image formation algorithms exist. They vary in
resolution capability, scene size capability, and computational complexity. In
general, finer resolution, longer standoff range, lower radar frequency, squint
geometries, and greater scene size require more elaborate and computationally



expensive algorithms. In this section, two basic imaging algorithms are
introduced, Doppler beam sharpening and the range-Doppler algorithm. More
advanced techniques such as the range migration algorithm (also called the ω-
k algorithm) and the chirp scaling algorithm are described in detail in Bamler
(1992), Gough and Hawkins (1997), Franceschetti and Lanari (1999), Soumekh
(1999), Cumming and Wong (2005), and Showman (2013).

8.3.1   Doppler Beam Sharpening
Doppler beam sharpening is the original form of SAR envisioned by Wiley
(Wiley, 1965). It uses a constant aperture time for all ranges so that the cross-
range resolution is proportional to range. It is the simplest SAR algorithm, and
is suitable only for relatively coarse resolution imagery. Nonetheless, it
provides a substantial improvement over real beam cross-range resolution and
has relatively low computational requirements.

DBS presumes that the PSR is compressed in the fast time dimension by
conventional pulse compression, whether implemented by direct convolution,
fast convolution, or stretch processing. Ignoring fast-time sidelobes, the fast-
time output of the matched filter for a pulse transmitted from aperture position u
can be approximated as Aexp(jϕ)δD(t – 2R(u)/c), where δD(·) is the continuous-
time Dirac impulse function, the phase ϕ due to the round trip travel is –
(4π/λ)R(u), and the constant A absorbs all amplitude factors. Using Eq. (8.28),
the slow-time phase variation is therefore

(8.35)
 
where the last step assumes that the quadratic (in u) phase term can be
neglected; this assumption will be revisited in Sec. 8.3.2. The subscript P has
been dropped on the coordinates x and R for simplicity. The instantaneous
cross-range spatial frequency Ku is

(8.36)
 
so that

(8.37)



 
Equation (8.37) relates scatterer cross-range position to spatial frequency.
Alternatively, x can be expressed in terms of Doppler (temporal) frequency.
Using u = υt in Eq. (8.35), the Doppler frequency FD in hertz due to a scatterer
at (x, R) is (1/2π)(dϕ/dt), so that

(8.38)
 
a relation that is more natural to the DBS name. This is the same as Eq. (8.16)
presented previously.

The algorithm implied by Eq. (8.38) is diagrammed in Fig. 8.19. It requires
only one discrete Fourier transform per range bin, followed by a rescaling of the
axes to express the result in range/cross-range coordinates. Typically,
windowing for sidelobe suppression would be included in the processing in
both dimensions.

 FIGURE 8.19   Block diagram of Doppler beam sharpening algorithm.
 

Figure 8.20 is the result of applying a simple DBS algorithm to simulated
data from a test array. The magnitude of the DBS image in decibels is shown.
Point scatterers were simulated at all combinations of x and R equal to -1000, 0,
or +1000 m relative to the center of a scene [the central reference point (CRP)]
at a nominal range of 20 km. The position of the radar is above the image, with
range increasing from top to bottom. The aperture time was 40 ms and the
velocity was 150 m/s. The radar frequency was 10 GHz, and an LFM pulse with
β = 3 MHz and τ = 5 μs (βτ = 15) was used at a PRF of 7.5 kHz. Consequently,
the image resolution is ΔR = ΔCR = 50 m. The Doppler frequency axis was
scaled to cross-range position using Eq. (8.38) with R set equal to the nominal
range RCRP = 20 km. Each of the scatterers is well-focused with clearly defined
range and cross-range sidelobes. Scatterers off the center line of x = 0,
however, are imaged as slightly further away from the radar than those on the
center line because of the contribution of x to the total range. In addition, the
columns of scatterers bow inward slightly as range increases. This is because
the spectrum in each range bin was remapped from Doppler frequency to cross-



range position using a scale factor based on the same central range of 20 km.
That factor is too small at longer ranges, and too large at shorter ranges.

 FIGURE 8.20   Magnitude in dB of the DBS image of a test array. See text for
parameters.
 

These geometric distortions are readily corrected after the basic image
formation. The cross-range displacement is corrected by simply updating the
cross-range scale for display of each row with the appropriate range R for each
range bin, instead of using RCRP for all of the range bins. The result of this
operation is shown in Fig. 8.21a. The scatterers are now aligned vertically at
the correct cross-range coordinates of –1, 0, or +1 km. Interpolation is required
to provide samples on a common grid for display. However, the range shift for
scatterers off the center line is still present. This can be corrected by computing
for each cross-range bin the actual range  to that bin, and then shifting
that cross-range column by the difference of R′ – R meters. Interpolation will
again be required to accommodate partial-range bin shifts. Figure 8.21b shows
the result of this operation; the nine scatterers are now accurately centered on
correct coordinates. The curvature of the cross-range sidelobes nicely reflects
the range curvature that was present in the original DBS image and has now
been corrected.



 FIGURE 8.21   Correction of DBS geometric distortion: (a) application of range-
varying cross-range scale factor, (b) application of cross-range-varying range
shift.
 

The DBS algorithm assumes that the echo samples from a given scatterer
remain in the same range bin over the aperture time so that the FFT of the slow-
time data will integrate all of the scatterer samples. This can be assured by



requiring that the range walk ΔRw not exceed some fraction (typically one-half)
of a range bin over the aperture. Using Eq. (8.31), this condition becomes

(8.39)
 
Substituting from Eq. (8.15) for Ta gives the constraint:

(8.40)
 
where the last step assumes “square pixels,” that is, ΔR = ΔCR. Equation (8.40)
is a constraint on the maximum value of x and thus the maximum scene width in
Doppler beam sharpening. The total allowable scene width of 2x is plotted as a
function of resolution and RF in Fig. 8.24.

The resolution performance of DBS is sometimes quantified in a Doppler
beam sharpening ratio (BSR), defined as the ratio of the real-beam cross-range
resolution to the DBS cross-range resolution. Using Eqs. (8.3) and (8.9), the
BSR is

(8.41)
 
where the last step used the relation DSAR = υTa. Thus, the BSR is just twice the
ratio of the synthetic and real aperture sizes. The factor of two reflects the
difference in synthetic and real array patterns discussed in Sec. 8.1.2.

8.3.2   Quadratic Phase Error Effects
The term u2 / 2R was neglected in simplifying Eq. (8.35). Inclusion of this term
adds a quadratic phase component to the slow-time signal. Because the DBS
algorithm associates a frequency component with a cross-range coordinate, the
instantaneous frequency variation implied by the quadratic phase will tend to
smear the cross-range response of the processor. The ideal response of the DBS
processor to a point scatterer is simply the discrete time Fourier transform of a
sinusoid. Figure 8.22a shows the DTFT of the signal y[m] = exp(jϕmax m2/M2), –
M ≤ m ≤ + M, where ϕmax is the peak phase error. This sequence can be viewed
as the product of a quadratic phase sequence and an ideal sinusoid of frequency
zero, that is, a vector of ones. Increasing the maximum value of the quadratic
component attenuates and spreads the mainlobe. This causes a loss of brightness



and resolution, respectively, in the DBS image of a scatterer (Richards, 1993).
As the maximum of the quadratic component approaches π radians, the well-
defined mainlobe/sidelobe structure of the response is breaking down. Figure
8.22b repeats the experiment with a Hamming window applied to the data
before the DTFT. The Hamming window greatly moderates the effects of the
phase error. The gain and resolution variations are reduced, and the general
shape of the response is better maintained. This increased robustness of
response is yet another benefit of windowing data.



 FIGURE 8.22   The effect of quadratic phase error on the DTFT of a 101-point
sinusoid: (a) no window, (b) hamming window.
 

Figure 8.23 plots the loss in peak amplitude and the increase in 3-dB
mainlobe width of the DTFT as the peak quadratic phase increases. The
moderating effect of the Hamming window is again evident. These plots are for
a signal length of 101 samples. The degree of degradation is a mild function of



sequence length. For shorter signals, the degradations are greater; for longer
signals, they are somewhat less. For the example shown, limiting the maximum
quadratic phase error to ϕmax ≤ π/2 limits the loss in amplitude to 1 dB and the
resolution increase to 7 percent, even without a window. This suggests that an
uncompensated quadratic phase component can be ignored so long as it does not
exceed π/2 radians over the aperture time. Tighter limits can be adopted if
higher quality standards are desired.



 FIGURE 8.23   The effect of a quadratic phase component on the DTFT of a 101-
point sinusoid: (a) reduction in peak amplitude, (b) percentage increase in 3-dB
resolution.
 

The assumption that the u2/2R term in Eq. (8.35) can be neglected can now
be revisited. This term contributes a quadratic phase component to ϕ(u). The
maximum value of u of interest is DSAR/2 = υTa/2. Requiring that this phase term



be limited to π/2 gives

(8.42)
 
Using Ta = λR/2υΔCR gives the constraint

(8.43)
 
Thus, the quadratic phase term can be ignored in DBS processing so long as this
constraint is observed. Figure 8.24 plots the constraint of Eq. (8.43) for four
values of range appropriate to airborne radars, as well as the DBS scene size
constraint of Eq. (8.40). Taken together, these two constraints show that while
DBS processing can achieve resolutions much better than real beam systems, it
is most appropriate for imaging relatively large scenes at moderate-to-low
resolution, and is best used at higher radar frequencies.



 FIGURE 8.24   (a) Quadratic phase error constraint, (b) range walk constraint.
 

Figure 8.25a shows a portion of the DBS image for the same target array,
but imaged with a resolution goal of 10 m. The standoff range is now 50 km,
while the radar frequency remains 10 GHz. This scenario meets the range
migration constraint of Eq. (8.40) (Fig. 8.24b), but does not meet the quadratic
phase error constraint of Eq. (8.41) (Fig. 8.24a). The slow-time quadratic phase



term represents a cross-range spatial frequency chirp. Because spatial frequency
maps to cross-range position, the scatterer response is smeared in cross range.
(This is the same effect illustrated in Fig. 8.22.) Range resolution is not
affected.

 FIGURE 8.25   (a) Effect of quadratic phase on DBS image, (b) DBS image with
azimuth dechirp.



 

This smearing can be corrected by compensating the data to remove the
quadratic phase term. The required correction is implemented as a range-bin-
dependent phase multiplication in each slow-time row of the raw data y[l, m]:

(8.44)
 
 where Tf = fast-time sampling interval

T = slow-time sampling interval (pulse repetition interval)
R0 = range corresponding to the first range bin
M = number of slow-time samples

Figure 8.25b shows the effect of this compensation, called azimuth dechirp, on
the same data. The full cross-range resolution is restored.

Because of the short aperture times required for its modest resolution, DBS
is often used in an actively scanning mode, unlike finer-resolution radar imaging
modes (Stimson, 1998). As long as the region of interest stays within the area
illuminated by the mainbeam over the aperture time the scanning is of little
consequence. In keeping with the scanning operation, DBS is often used in
squint mode rather than in a sidelooking configuration. In this event, range walk
becomes large and must be compensated. Additional enhancements to DBS can
also be implemented. For instance, range migration correction can be
implemented to compensate for fractional-bin range curvature, and secondary
range compression can improve focusing of targets at large cross-range
displacements from the line of sight. These extensions are discussed in Schleher
(1991) and Showman (2013).

8.3.3   Range-Doppler Algorithms
As resolution becomes finer, standoff range shorter, or radar frequency lower,
both range curvature and azimuth quadratic phase tend to become more
pronounced. For example, Fig. 8.26 illustrates the amount of range curvature as
a function of cross-range resolution for an L-band (1 GHz) radar at a standoff
range R0 = 50 km and velocity υ = 150 m/s. If it is assumed that the range
resolution is set approximately equal to the cross-range resolution, the range
curvature is completely insignificant when ΔCR = 50 m and is still only about



1/5th of a range bin when ΔCR = 10 m. Augmented DBS algorithms are
effective for these cases. However, when ΔCR is reduced to 3 m the curvature
rises to about five range bins, assuming ΔR = 3 m also. DBS algorithms are
unsuitable in this situation. To achieve well-focused finer-resolution imagery, it
is necessary to develop an algorithm that can address significant range migration
and quadratic phase. The range-Doppler (RD) algorithm is a family of
algorithms in widespread use that offer this capability while maintaining
separable range and cross-range processing and taking advantage of 2D FFT
computational efficiency.

 FIGURE 8.26   Increase in range curvature as cross-range resolution becomes
finer.
 

The RD algorithm assumes that pulse compression is performed first. For a
single point scatterer, the output of the fast-time matched filter (assuming that the
filter delay is removed) for the pulse transmitted from aperture position u is a
narrow peak at time delay 2R(u), surrounded by sidelobes. This can be
approximated by an impulse at that range, δD [t – 2R(u)]. The responses from the
series of pulses follow the range migration curve of Eq. (8.27). The response of
the stripmap SAR system to a scatterer at (x, R) after pulse compression is
therefore (ignoring amplitude factors)



(8.45)
 
The response is parameterized by R but not x because its shape varies with R
but is invariant to x. To derive the range-Doppler algorithm, begin by
expressing R in terms of differential range δR around a nominal standoff range
R0:

(8.46)
 
The last step assumes |δR|  R0, that is, the swath length is small compared to
the standoff range. Define ; then

(8.47)
 
where the last line assumes that | u – x |  R0 (synthetic aperture small compared
to the standoff range). Using Eq. (8.47) in Eq. (8.45) gives the form of the PSR
used in the RD algorithm:

(8.48)
 
Unlike the general PSR, the shape of this form of the PSR is invariant to both x
and R.

While there is a dependence of the PSR shape on R0, the key
characteristics of the RD algorithm is that it uses a single fixed value of R0,
typically the value at the middle of the imaged swath. The resulting PSR of Eq.
(8.48) focuses scatterers at that range essentially perfectly. Scatterers at other



ranges are not focused as well, but if the change in range from R0 is not too large
the degradation is negligible. The maximum allowable range change before
defocusing becomes apparent is quantified by the depth of focus, to be
discussed in the next section.

The image could be formed by performing a two-dimensional convolution
o f h*(–u, –t; R0) with the data set y(u, t) (matched filtering). However, the
processing is usually done in the frequency domain by computing the two-
dimensional Fourier transforms of h (u, t; R0) and y (u, t) , H(Ku, Ω; R0) and
Y(Ku, Ω), and forming the image as

(8.49)
 
To proceed, an expression is needed for the RD SAR system transfer function
H(Ku, Ω; R0). The two-dimensional Fourier transform of h(u, t; R0) is

(8.50)
 
Ku is a spatial frequency in radians per meter and Ω is a temporal frequency in
radians per second. Using Eq. (8.48) and performing the Fourier transform over
the fast-time variable t gives the intermediate result, denoted Ht to indicate
transformation only over t,

(8.51)
 
The slow-time transform can be completed using the principle of stationary
phase (Bamler, 1992; Raney, 1992); the resulting 2D PSR is

(8.52)
 
The last step recognizes that most SAR systems, despite their fine resolution,
are relatively narrowband. The fast-time frequency Ω varies over a limited
range (usually less than 10 percent), so the amplitude factor is relatively



constant.
The range-Doppler algorithm is diagrammed in Fig. 8.27. The major

advantages of the RD algorithm are its ability to process the entire range swath
[provided it is small compared to the standoff range as assumed in Eq. (8.46)],
compensate for both range migration and quadratic phase, and utilize the
computational efficiency of the two-dimensional FFT. Since this version
operates in the spatial frequency/temporal frequency domain, however, it is not
clear why the technique is called the range-Doppler algorithm. In fact, the name
range-Doppler derives from a version of the algorithm obtained by additional
simplifications of Eq. (8.52).

 FIGURE 8.27   Block diagram of range-Doppler algorithm.
 

Using a binomial expansion and assuming 2Ω/c  Ku, the argument of the
complex exponential in H can be simplified as follows:

(8.53)
 
Again, even fine-resolution SAR systems are narrowband in the sense that the
waveform bandwidth ΔΩ is much less than the RF Ω0. Expanding Ω about Ω0
and using ΔΩ  Ω0 further simplifies Eq. (8.53) to



(8.54)
 
To obtain the first expression in the second line, the term (1 + ΔΩ/Ω0)–1 was
expanded in a binomial series and only the first two terms retained. The
simplified transfer function is

(8.55)
 

The approximate transfer function of Eq. (8.55) implies two distinct
operations for performing the RD cross-range compression. For a given cross-
range spatial frequency Ku, the second term is a linear phase in the fast-time
frequency ΔΩ, corresponding to a shift in the fast time dimension of 
seconds. This shift in the data “straightens out” the range curvature in the PSR.
Because the shift is a function of Ku rather than u itself, it must be applied after a
slow-time DFT, that is, to the range-Doppler data. The first phase term
compensates the slow-time quadratic phase modulation of the data, essentially
performing an LFM pulse compression in slow time. Figure 8.28 is a purely
notional illustration of this version of the range-Doppler algorithm, beginning
with the pulse-compressed fast-time/slow-time data matrix in step 1 and
continuing to the compressed point spread response in step 4.



 FIGURE 8.28   Notional illustration of sequence of operations in classic range-
Doppler algorithm.
 

The fast-time shift can be implemented as a frequency domain
multiplication or as an explicit shift and interpolation in the fast-time domain. In
the latter case, the data are operated on in the time domain in one dimension
(fast time, or range) and the frequency domain in the other (spatial frequency, or
Doppler), hence the name “range-Doppler” algorithm.

Figure 8.29 illustrates the performance of the range-Doppler algorithm on
two simulated scenarios using the full RD point spread response of Eq. (8.52).
In Fig. 8.29a, the RD algorithm is applied to a collection of point scatterers in a
50 × 50 m area sensed with an X-band (9.5 GHz) radar from a standoff range of
7.5 km. While the range and cross-range resolutions are only 0.5 m, this
example is relatively unchallenging due to the high RF frequency and long
standoff range compared to the small scene size. All five scatterers are well-
focused, with no visible degradations in the scene. Figure 8.29b is a more
challenging case. Although the resolution is relaxed to 1.0 m in both dimensions,
the image area is larger (100 m by 100 m), the standoff range is shorter (4.1
km), and the RF frequency is lowered to L band (1.5 GHz). All of these factors
except the relaxed resolution increase the variability of the range curvature as a
function of range. Although differences in sidelobe structure are evident, the
scatterer at the center reference range R0 remains well focused. However, the
cross-range resolution of the other scatterers degrades in proportion to their



distance from the scene center.

 FIGURE 8.29   Magnitude in dB of the range-Doppler image of a test array: (a)
X band, long standoff range, small scene size, (b) L band, short standoff range,
larger scene size. See text for parameters. (Images courtesy of Dr. Gregory A.
Showman, GTRI.)
 



8.3.4   Depth of Focus
The exact stripmap PSR of Eq. (8.45) is range dependent. The range-Doppler
algorithm linearizes the PSR about a particular range R0. However, if applied
over a deep enough swath, the variation in the PSR with R will become
significant. Failure to address this variation will result in increasingly poor
focusing at increasing ranges from R0 because of the increasing mismatch
between a scatterer’s actual PSR and the PSR at R0. Advanced algorithms such
as the range-migration algorithm (Bamler, 1992; Gough and Hawkins, 1997)
fully account for the variation in the PSR with range, but are not discussed in
this introduction. Another approach is to break the desired swath into N
subswaths centered on ranges R01, …, R0N. The PSR is updated and the RD
algorithm applied independently in each subswath. The resulting images are
mosaiced together to form the complete image. The swath length over which the
RD algorithm can be applied without significant defocusing is called the depth
of focus (DOF).

The DOF is determined by finding the change in range R0 which will cause
a specified change in range curvature over the aperture time. The tolerable
variation is often taken as λ/8, corresponding to a two-way variation of λ/4 and
thus a phase change of π/2 radians. It was seen in Sec. 8.3.2 that a quadratic
phase error limited to this amount would cause minimal degradation in the DFT
of a sinusoid, a model that is applicable to cross-range matched filtering once
the primary quadratic phase is removed.

Equation (8.32) gave a formula for range curvature. Differentiating with
respect to range gives the change in curvature as nominal range changes; setting
that quantity equal to λ/8 gives the maximum change in range as (see Prob. 20)

(8.56)
 
Since this range change can occur in either direction from R0, the DOF is twice
this:

(8.57)
 

Consider SAR imaging of a scene with a swath depth of 10 km. If imaged
using an X-band (10 GHz) radar with a cross-range resolution of 3 m, the depth
of focus is 2.4 km. To use the RD algorithm, the swath should be broken into at
least four and possibly more subswaths, with the PSR updated for each. If the
scene was imaged with an L-band (1 GHz) radar at 1 m resolution, the depth of



focus is only 240 m, requiring at least 42 subswaths to use the RD algorithm.
The large number of subswaths needed indicates that the RD algorithm is poorly
suited to this scenario and a more advanced algorithm such as range migration
should be used instead. As another example, the scenario of Fig. 8.29a has a
DOF of 63.33 m = ±31.67 m. This exceeds the maximum 20 m range offset from
the scene center to the most distant scatterer, so all scatterers are focused well.
Figure 8.29b has a DOF of 40 = ±20 m, only half the maximum range
displacement of approximately 40 m in that scenario. Scatterers at ranges
greater than 20 m from the scene center are significantly smeared in cross range.

8.4   Spotlight SAR Data Characteristics
The spotlight SAR scenario was illustrated in Fig. 8.11. Many spotlight SAR
systems utilize a linear FM waveform with stretch processing. Assume an LFM
pulse that sweeps from F0 – β/2 to F0 + β/2 Hz in the time interval from –τ/2 to
+τ/2 seconds. Adapting to the notation of this chapter, it was shown in Chap. 4
(Eq. 4.110) that on a pulse taken from aperture position u, an ensemble of
scatterers at ranges δRi = cδti/2 relative to a central range R0 results in a signal
at the stretch mixer output:

(8.58)
 
where t0 = 2R0/c and  is the complex reflectivity of the echo from the ith
scatterer,7 located at range R0 + δRi. Extending this formula to a continuum of
scatterers gives

(8.59)
 
In this equation, w(t) is a rectangular window function that limits the data extent
to that of the reference chirp in the stretch mixer. Specifically

(8.60)
 



Consider the Fourier transform of 

(8.61)
 
Comparing Eq. (8.61) to Eq. (8.59) and using the time limits established by Eq.
(8.60) shows that

(8.62)
 
provided that the residual video phase (RVP) term exp[ jπβ(δt)2/τ] can be
ignored; this condition will be reconsidered later. Equation (8.62) shows that
stretch processing of an LFM waveform has swapped the time and frequency
domains in a sense: the mixer output is a time-domain voltage whose numerical
values trace out the value of the Fourier transform  of the scene reflectivity
versus range, . Put another way, the LFM stretch processor acts as a
spectrum analyzer for the reflectivity distribution.

The range of frequencies evaluated by this spectrum analyzer is determined
by evaluating the argument of  for the maximum and minimum values of t
allowed by the window. Converting to cyclical frequency units, the result is

(8.63)
 
The second line assumes that L3  cτ/2, that is, the swath length is small
compared to the pulse duration. Stretch processing systems are usually designed
such that this is the case. Equation (8.63) states the remarkable result that the
time domain output of the stretch mixer traces out the Fourier transform  of
the range profile  over the frequency interval [F0 – β/2, F0 + β/2]. This is
intuitively satisfying since this is exactly the frequency interval over which the
LFM pulse sweeps.

 can be rescaled into units of spatial frequency in radians per meter via
the transformation F → cKR/4π. Using ΔR = c/2β, the mixer output range
becomes KR ∈ (4 π/λ0) ± (π/ΔR) radians per meter. Figure 8.30 is a notional
illustration of the portion of the range profile spectrum  or  measured on
a single pulse by the stretch processor.



 FIGURE 8.30   Portion of the range profile bandwidth measured by the stretch
processor, in both temporal and spatial frequency units.
 

As discussed in Sec. 2.7.3,  is a transformation of the scatterers in a
two-dimensional scene into the one-dimensional range profile. This concept is
illustrated in Fig. 8.31. The complex reflectivities of all of the scatterers on the
isorange contour corresponding to a delay of t0 + δt0 are weighted by the antenna
pattern and integrated to form the value of the range profile at time t0 + δt0, .
“CRP” again marks the central reference point at range R0 = ct0/2. If the width of
the illuminated area is much less than the nominal range, R0θaz  R0, the lines of
integration become nearly straight. The range averaging then approximates a
projection in the tomographic sense of the two-dimensional scene into a one-
dimensional function.

 FIGURE 8.31   Projection of a two-dimensional scene into a one-dimensional
angle-averaged range profile.



 

Consider the two coordinate systems shown in Fig. 8.32. The (pθ, qe) axes
are rotated by θ radians with respect to the (u, R) axes. The coordinate systems
are related by the equations

 FIGURE 8.32   Coordinate systems for defining a two-dimensional projection.
 

(8.64)
 
A projection of a two-dimensional effective reflectivity scene ρ′(u, R) into a
one-dimensional cross-range-averaged reflectivity range profile  is defined
as

(8.65)
 
The projection-slice theorem  of Fourier analysis then states that the one-
dimensional Fourier transform of the projection is a slice of the two-
dimensional Fourier transform of the original function ρ′(u, R) (Dudgeon and
Mersereau, 1984)

(8.66)
 

Figure 8.33 illustrates the consequences of the LFM/stretch data
acquisition and the projection-slice theorem for spotlight SAR. The scene ρ′(u,
R) on the left represents a patch of terrain, perhaps containing a road, building,
stand of trees, and small lake. The drawing on the right represents the Fourier
transform P′(Ku, KR) of the scene in spatial frequency units. The radar views the
scene from a particular angle. The radar and antenna effectively project the two-
dimensional scene into a one-dimensional function. The LFM waveform and



stretch processing measure a portion of the spectrum of that one-dimensional
function. The projection-slice theorem allows that spectral segment to be
interpreted as a measurement of the two-dimensional Fourier transform of the
scene along the same angle, as shown on the right side of the sketch. Because of
the limited bandwidth of the stretch measurement, only the segment of the total
slice highlighted in a lighter color is actually measured (see Fig. 8.30).

 FIGURE 8.33   Spotlight SAR data acquisition model.
 

As the aircraft flies along the synthetic aperture, it continues to transmit
pulses while steering the antenna to remain aimed at the CRP of the region of
interest. Each successive pulse measures a segment of the spectrum of a
projection of ρ′(u, R) at a new angle and therefore a segment of a slice of P′(Ku,
KR) at that same angle. Over a series of pulses the system therefore collects data
over an annular region of the two-dimensional spectrum of the image. This
model of the spotlight SAR data set is depicted in Fig. 8.34. The extent of the
annulus is 4πβ/c radians per meter = 2β/c cycles per meter in the radial
direction. The spatial range resolution is then (2β/c)–1 = ΔR meters as expected.
The width of the annulus at its center KR = 4π/λ0 is (4π/λ0)γ radians per meter, so
the spatial cross-range resolution is λ/2γ, again as expected. Finally, note that
the spectral data are on a polar, rather than rectangular, grid in (Ku, KR). For this
reason, the data set is referred to as polar format data.



 FIGURE 8.34   Spotlight SAR data acquisition maps an annular region in Fourier
space.
 

An interesting question is the number of projections required to reconstruct
the image; the answer determines the required PRF. Suppose that the final image
p′(u, R) desired is Lu × Ls meters (cross-range × range). To avoid aliasing
artifacts over a region of this size, Nyquist sampling theory requires that
samples of P′(Ku, KR) be no more than 1/Lu cycles per meter = 2π/Lu radians per
meter apart in Ku; similarly, samples should be no more than 1/Ls cycles per
meter = 2 π/Ls radians per meter apart in KR. Consider the Ku dimension. At the
center of the annulus (KR = 4π/λ0), a sample spacing of 2π/Lu corresponds to an
angular spacing between successive slices of λ0/2Lu radians. The number of
slices required to span the total angular extent of the annulus is then

(8.67)
 
which is simply the number of resolution cells in the cross-range extent. The
linear distance traveled by the radar platform between slices and the resulting
PRI are

(8.68)
 
If Lu is set equal to its practical maximum of the illuminated beamwidth R0θaz =
R0λ0/Daz, the platform travel between pulses is Daz/2, the same minimum value
required in stripmap SAR to avoid Doppler ambiguities. As explained earlier, a
higher cross-range sampling rate is often used in stripmap and also in spotlight



SAR to minimize ambiguities.
The minimum number of range samples needed (equivalent to time samples

of the stretch mixer output for each pulse) is the radial extent of the annulus
divided by the sample spacing in KR, which reduces to the number of range cells
in the range extent:

(8.69)
 
Since the stretch mixer output traces out the two-dimensional Fourier transform
slice, the interval 1/LR between samples in KR specifies the time Δt between
samples at the mixer output, using the mapping of time to spatial frequency Ku =
(4πβ/cτ)t:

(8.70)
 

It is important to remember that this spotlight data model assumes an LFM
waveform and a stretch receiver. In addition, two assumptions were made in
deriving the results above. The first is that the RVP term in Eq. (8.59) can be
ignored. The second is that the curvature in the isorange contours can be ignored
in modeling the mixer output  as a projection . Both assumptions are
valid provided the scene size is not too large. The limitation due to isorange
curvature can be shown to be

(8.71)
 
while the limitation due to RVP is

(8.72)
 
Both are derived in Jakowatz (1996, App. B). Figure 8.35 plots these two
constraints for R0 = 10 km, τ = 10 μs, and β/τ = 0.75 MHz/μs. The limit on scene
size due to RVP is very loose; the limit due to isorange curvature is more
constraining in this example.



 FIGURE 8.35   Scene size limitations in the polar format algorithm: (a) limit due
to isorange contour curvature, (b) limit due to residual video phase.
 

8.5   The Polar Format Image Formation Algorithm for
Spotlight SAR

Given the spotlight SAR data model, the basic image formation algorithm is



fairly obvious: inverse Fourier transform the available two-dimensional
spectral region of P′(Ku, KR) to estimate the image p′(u, R). However, a
conventional inverse DFT algorithm assumes the spectral data are on a
rectangular grid in (Ku, KR), while the spotlight data are on a polar grid.
Consequently, an extra step is required to interpolate the data from a polar to a
rectangular grid before the IDFT can be applied. In practice, the data will often
be windowed in both dimensions after interpolation in order to reduce
sidelobes in the final image. The resulting polar format algorithm (PFA) is
diagrammed in Fig. 8.36.

 FIGURE 8.36   Polar format image formation algorithm for spotlight SAR.
 

The key step in the PFA is the polar-to-rectangular interpolation of the
Fourier data. While a two-dimensional interpolation would be theoretically
ideal, separable schemes using successive one-dimensional interpolations in
two different dimensions are generally preferred for simplicity. Two separable
approaches are commonly used. In either approach, a rectangular grid of desired
(Ku, KR) sample locations is first established based on scene size and resolution
considerations. The rectangular region covered by this grid must be contained
within the annular region of available data. The first approach, illustrated in
Fig. 8.37a, appears to be the more commonly used of the two. The complex
polar format spectral data are interpolated along each radial to the keystone
grid depicted in the center of the figure. After this step, the data are evenly
spaced in KR but not in Ku. A second series of one-dimensional interpolations,
now in the Ku dimension, align the samples to the desired grid in Ku. In
principle, the keystone grid could be directly measured by the SAR system by
varying the mixer output sample rate on successive pulses in a carefully
controlled fashion.



 FIGURE 8.37   Two schemes for separable polar-to-rectangular interpolation:
(a) radial-keystone interpolation, (b) angular-range interpolation.
 

The second approach, depicted in Fig. 8.37b, interpolates first along
constant-radius lines to align data on the desired Ku sample locations. The
intermediate grid is then interpolated in the KR dimension to the final rectangular
grid (Munson et al., 1985).

In the radial-keystone scheme, the interpolation is based on a separable
two-dimensional sinc kernel that arises from the bandlimited nature of the data.
Practical implementations window the sinc kernel to both limit sidelobes and
provide a finite-length interpolating kernel in each dimension. Interpolating
kernels typically range from 7th to 11th order, and the total computational load
for polar-to-rectangular interpolation often rivals that of the two-dimensional
inverse FFT used for the final image formation. The angular-range scheme uses
a periodic asinc kernel in the angular interpolation and a sinc kernel in the range
interpolation. A comparison of several of these schemes is given in Munson et
al. (1985). A detailed discussion of the implementation of the radial-keystone
approach is given in Jakowatz et al. (1996, Chap. 3).

At higher radar frequencies the annular region of polar format spectral data
are further from the origin in (Ku, KR) space. If the resolution is relatively coarse
the required bandwidth is also small, so the extent of the annulus in range and
angle is small. In this case the polar grid may be nearly rectangular, in which
case the computationally expensive and quality-limiting polar-to-rectangular
interpolation can be avoided and the image formed with a simple two-
dimensional IFFT. This approach is called the rectangular format algorithm
(RFA). It is essentially the DBS algorithm, but with an inverse FFT required in



the range dimension to transform the stretch receiver output back to the fast-time
domain. Consequently, the constraints to DBS processing apply to the RFA
algorithm as well.

While the polar format algorithm is a commonly used technique in many
operational spotlight SAR systems, other classes of algorithms can be applied to
spotlight image formation. Application of the range migration and chirp scaling
algorithms to spotlight SAR is described in Carrara et al. (1995). Interest is
growing in backprojection methods for both strip-map and spotlight modes
despite their greater computational cost due to their increased flexibility in
addressing nonrectangular data formats, avoidance of interpolations (which are
a major source of image degradations), and ability to form images from non-
rectilinear flight paths. Backprojection methods are discussed in Desai and
Jenkins (1992), Jakowatz et al. (2008), Frey et al. (2009), and Showman
(2013).

8.6   Interferometric SAR
One of the newest developments in synthetic aperture radar is the ability to do
fine-resolution imaging in three dimensions using interferometric techniques,
commonly called IFSAR or InSAR. The basic approach employs two complex
SAR images of a scene formed using two displaced apertures. The apertures
may be physically separate receive apertures on a single antenna structure, often
with a common transmit aperture. Alternatively, IFSAR can be implemented
using images collected from a conventional single aperture system on multiple
passes. A good introductory discussion is Richards (2013).

8.6.1   The Effect of Height on a SAR Image
The output of a SAR image formation algorithm is a complex-valued two-
dimensional image: both an amplitude and phase for each pixel. Conventional
two-dimensional SAR imaging discards the phase of the final image, displaying
only the magnitude information. In IFSAR, the pixel phase data are retained.
Because SAR image formation is a nominally linear process, the complex
amplitude f(x, yg) of a pixel at ground coordinates (x, yg) and elevation of z = 0
can be viewed as the product of four factors:

(8.73)
 
In this equation, ρ is the complex reflectivity of the pixel, the complex
exponential term is the phase shift due to the range to the pixel, G is the complex



gain of the receiver and SAR image formation algorithm, A contains all range
equation factors, and Rf is the range from the aperture phase center to the ground
coordinates (x, yg). The phase of the pixel is therefore

(8.74)
 

Now consider the two scatterers P1 and P2 illustrated in Fig. 8.38. Both
are at ground range yg1 but one is at an elevation z = h0 relative to some
unknown reference plane, while the other is at an elevation z = h0 + Δh. They
are observed from two distinct radar apertures at an altitude z = h0 + Z and
separated horizontally by a baseline B.8 Each aperture independently transmits a
radar waveform, receives the data, and forms a complex SAR image of the
scene; these images are denoted by f(x, yg) and g(x, yg). The baseline should be
orthogonal to the flight path; therefore the direction of the aircraft motion is into
the page.9 The radar range is great enough that the incoming wavefront can be
considered planar. If the depression angle from the middle of the baseline to P1
i s ψ, the difference in range to the two aperture phase centers is well
approximated as B cos ψ. The difference in received phase at the two apertures
then becomes, using Eq. (8.74)

 FIGURE 8.38   Geometry for interferometric height estimation.
 



(8.75)
 
ϕfg is called the interferometric phase difference (IPD).

Now consider scatterer P2, also located at ground range yg1 but elevated
by Δh meters. Because the radar measures time delay and thus slant range, the
echo from P2 will be indistinguishable from that of a scatterer located on the
ground plane at the range where the wavefront impacting P2 also strikes the
ground. As shown in Fig. 8.38, this ground coordinate is approximately:

(8.76)
 
Because SAR images are two dimensional,10 P2 will be incorrectly imaged at
range yg2. The imaging of the elevated scatterer at an incorrect range coordinate
is termed layover because the scatterer appears to have been shifted toward the
radar. As illustrated, the layover is only in the range coordinate. In squinted
operation, layover occurs in both range and cross-range; details are given in
Sullivan (2000) and Jakowatz et al. (1996).

Elevating the scatterer at yg1 to height Δh will also change the depression
angle from the center of the IFSAR baseline to the scatterer. This change can be
found by differentiating Eq. (8.75) with respect to the grazing angle:

(8.77)
 
This equation states that a change in the IPD of Δϕfg implies a change in
depression angle to the scatterer of Δψ radians. To relate this depression angle
change to an elevation change, consider Fig. 8.38 again, which shows that

(8.78)
 
Eliminating yg using a series approximation of the tangent function and assuming
that Δψ is small, Eq. 8.78 can be reduced to

(8.79)
 
Finally, using Eq. (8.79) in Eq. (8.77) gives a measure of the relationship
between the change in the IPD for a given pixel and a change in the scatterer



elevation (Carrara et al., 1995):

(8.80)
 
Equation (8.80) is the basic result of IFSAR.

The IPD ϕfg(x, yg) can be written as

(8.81)
 
Multiplying Eq. (8.81) by the scale factor in Eq. (8.80) gives

(8.82)
 
Thus, given an IPD map ϕfg(x, yg), multiplying by the scale factor of Eq. (8.80)
gives a height map that gives the height variations from pixel-to-pixel but has an
unknown overall offset. That is, the IFSAR technique provides a good measure
of relative height versus spatial location.

Equation (8.82) describes height variations around a given depression
angle ψ, implying a fixed ground plane range. If the terrain is perfectly flat, the
IPD will still vary with range because ψ will vary. The variation of the IPD
with range for flat terrain is called the flat earth phase difference, . This
quantity must be subtracted from the measured IPD before it is scaled to height
in order to obtain height relative to the same reference level at each range.

Because the radar signal processor can only measure the phase of a signal
sample as the arctangent of the ratio of its imaginary and real parts, only the
wrapped IPD ((ϕfg))2π can be measured, where the notation ((·))2π indicates
arithmetic modulo 2π. Consequently, Δϕfg is also measured modulo 2π.

The two SAR images required for IFSAR processing can be generated in
one of two basic ways. In one-pass IFSAR, the approach described above, the
radar platform has two displaced receive apertures so that the data for both
images are collected on a single pass. This approach has the advantages of
operational simplicity, much greater ease of aligning the trajectories of the two
apertures, and no decorrelation of the scene between passes. Two-pass IFSAR
uses a conventional single-receiver SAR system and flies two independent
passes past the scene to be imaged. This approach requires careful offset
alignment of the two flight paths to establish a constant baseline B, which can be
difficult to achieve in airborne systems but is very feasible for orbiting radars.



The chief advantage of two-pass IFSAR is that it can be implemented with
existing conventional single-receiver SAR sensors.

8.6.2   IFSAR Processing Steps
Formation of an IFSAR image involves the following major steps:

        •  Formation of the two individual SAR images, f[l, m] and g[l, m]
        •  Registration of the two images
        •  Formation of the wrapped interferometric phase difference map ((ϕfg[l,

m]))2π
        •  Smoothing of ((ϕfg[l, m]))2π to reduce phase noise
        •  Two-dimensional phase unwrapping to obtain ϕfg[l, m] from ((ϕfg[l,

m]))2π
        •  Scaling of the unwrapped phase map ϕfg[l, m] to obtain the height map

Δh[l, m]
        •  Orthorectification to correct layover based on the height information.

The images are formed using any SAR imaging algorithm appropriate to the
collection scenario. Because the height estimation depends on the difference in
phase of the echo from each pixel at the two apertures, it is important to ensure
that like pixels are compared. The slightly different geometries of the two offset
apertures will result in slight image distortions relative to one another, so an
image registration procedure is used to warp one image to align well with the
other. Many registration procedures have been developed in the image
processing literature. One that is popular in IFSAR uses a series of correlations
between small subimages of each SAR map to develop a warping function. This
concept is illustrated in Fig. 8.39. The actual resampling is typically done with
simple bilinear interpolators. The procedure is described in detail in Jakowatz
et al. (1996). Once the two images are registered, the wrapped phase map is
easily computed as

 FIGURE 8.39   Generation of image pair warping function.



 

(8.83)
 
Local averaging, typically using a 3 × 3, 5 × 5, or 7 × 7 window, is often
applied to the phase map at this point to smooth phase noise at the cost of a loss
of spatial resolution in the phase map and thus ultimately in the height map.

The two-dimensional phase unwrapping step to recover ϕfg[l, m] from
((ϕfg[l, m]))2π is the heart of IFSAR processing. Unlike many two-dimensional
signal processing operations such as FFTs, two-dimensional phase unwrapping
cannot be decomposed into one-dimensional unwrapping operations on the rows
and columns. Two-dimensional phase unwrapping is an active research area. A
brief introduction is given in Richards (2013) and a very thorough discussion is
given in Ghiglia and Pritt (1998). Most unwrapping techniques can be classified
as either path following methods or minimum norm methods; the latter are
often based on fast transform techniques. An example of a minimum norm
algorithm is the discrete cosine transform (DCT) method given in Ghiglia and
Romero (1994). This technique finds an unwrapped phase function such that,
when rewrapped, it minimizes the mean squared error between the gradients of
the rewrapped phase function and the original measured wrapped phase.

The method begins by computing the wrapped gradients in the range (l) and
cross-range (m) dimensions of the raw wrapped phase history data; these are
then combined into a “driving function” d[l, m]:

(8.84)
 
Let D[k,p] be the two-dimensional DCT of the driving function. The estimate of
the unwrapped phase is then obtained as the inverse DCT of a filtered DCT
spectrum:



(8.85)
 
This function is then used in Eq. (8.80) to estimate the terrain height map Δh[l,
m].

As a simple idealized demonstration of this algorithm, consider the
simulated terrain profile of a hill shown in Fig. 8.40. This function was created
as the outer product of two one-dimensional Hann window functions. A
simulation of one-pass IFSAR data collection produces the wrapped
interferometric phase function of Fig. 8.41a. In addition, noise has been added
to a rectangular patch of the phase data to simulate a low-reflectivity or
degraded area. Straightforward application of Eqs. (8.84) and (8.85) produces
the unwrapped interferometric phase map estimate of Fig. 8.41b. The
unwrapping is successful even in the noisy region. When converted back to
terrain height, this phase map accurately reconstructs the hill height profile,
although the height estimate is noisy in the degraded region.

 FIGURE 8.40   Height profile of simulated hill.
 

 



 
FIGURE 8.41   Example of DCT-based two-dimensional phase unwrapping on
“hill” height map with noisy data patch: (a) wrapped phase map ((ϕfg))2π, (b)
estimated unwrapped phase . (Images courtesy of Mr. Will Bonifant.)
 

IFSAR processing produces only relative height variations. Absolute
height can be estimated by a variety of techniques. The most common is simply
the use of surveyed reference points within an image; height relative to this point
is then easily converted to absolute height. Another method, analogous to the use
of multiple PRIs to resolve range and Doppler ambiguities, uses two
interferometric phase maps having different scale factors and therefore different
ambiguity intervals in height. Multiple maps with different scale factors have
been obtained using at least two different methods. In systems having a
waveform bandwidth in excess of that required for the desired range resolution,
the fast-time bandwidth can be split in half, and IFSAR processing completed
separately for each half of the data. The effective center wavelength λ will be
different for the two data sets, giving two different scale factors in Eq. (8.80).
Another technique applicable to radar systems having three or more receive
apertures forms one IFSAR height map using the first and second apertures, and
another using the first and third apertures. The baselines for these two pairs are
different, again giving rise to two different scaling factors in Eq. (8.80).

The last step in IFSAR processing is orthorectification, which corrects the
displacement of image pixels due to layover. For each pixel in the SAR image
f[l, m], the corresponding height pixel Δh[l, m] is used to estimate the layover –
Δh tan ψ present in that pixel. The image is then resampled in the downrange
dimension to shift each pixel by +Δh tan ψ to its correct downrange position.11



Figure 8.42 is an IFSAR image of the football stadium and surrounding
area at the University of Michigan, Ann Arbor. The grayscale is related to
height, with lighter shades representing taller features. The image clearly shows
that the trees above the stadium in the image are taller than those to the left of the
stadium, and that the stadium playing surface is actually below the level of the
surrounding terrain.

 FIGURE 8.42   Interferometric SAR height image of the football stadium area at
the University of Michigan, Ann Arbor. (Image courtesy of General Dynamics
Advanced Information Systems.)
 

An important metric in quantifying IFSAR quality and describing error
sources is the coherence γ[l, m] of the two images f[l, m] and g[l, m].
Coherence is a pixel-by-pixel correlation coefficient. A typical definition is

(8.86)
 
In the absence of errors, |γ| = 1 and arg{γ} = ϕfg at each pixel. The actual value



of coherence is a random variable due to additive noise, scene temporal
decorrelation, baseline decorrelation, and other effects. Generally, coherence
can be factored into a product of terms reflecting different error sources. The
higher the total coherence, the better the IFSAR height estimate quality.
Coherence magnitude values of 0.6 or larger are usually desirable.

The coherence due to thermal noise is given by

(8.87)
 
This equation can be used for both thermal and quantization noise. An SNR of χ
= 10 dB gives a noise coherence of χnoise = 0.91. A second major contributor to
degraded coherence is baseline decorrelation. This refers to the effect of the
slightly different viewing angles of the two sensors on the RCS of a given clutter
cell. It is exactly the same RCS decorrelation effect discussed in connection
with many-scatterer targets in Chap. 2. The angular decorrelation interval of Eq.
(2.62) can be adapted to determine a critical perpendicular baseline Bc⊥ that
would result in complete decorrelation of the two images (see Richards, 2013).
“Perpendicular” refers to the baseline component perpendicular to the line of
sight. The critical perpendicular baseline and the coherence factor that results
from an actual perpendicular baseline B⊥ are

(8.88)
 
It is desirable to design the system so that B⊥  Bc⊥.

Another decorrelation source is temporal decorrelation in two-pass
systems, which is primarily an issue for spaceborne IFSARs. Stable terrain
regions can have decorrelation intervals as observed from satellites of several
days, but forested areas may have coherences on the order of 0.2 due to leaf
motion, while water surfaces decorrelate almost completely in milliseconds.
Atmospheric conditions can also affect IPD coherence. Changes in water vapor
content and distribution can alter propagation delays in the atmosphere between
passes in two-pass systems. Delay changes map directly into phase changes.
Weather such as rain both decreases the echo strength and SNR and increases
the weather clutter interference, affecting both one- and two-pass systems.

The effects of low coherence can be combatted by averaging multiple
looks. Many of the same averaging techniques used to combat speckle can be
employed (see Section 8.7.3), such as subbanding the data and averaging
multiple lower-resolution IFSAR images, or spatial averaging of the IPD as
described earlier.



The relative phase of two SAR images can be used in other ways
(Richards, 2013). IFSAR presumes that there is no change in the imaged scene,
so phase differences are due only to height variations viewed from slightly
different aspect angles. Another application of growing interest is coherent
change detection (CCD). CCD compares two images taken from the same
trajectory at different times, from a few minutes apart to many hours or days
apart. The pixel-by-pixel correlation coefficient will be close to one for pixels
with the same complex reflectivity in both maps, and close to zero for pixels
whose complex reflectivity has changed between the two collections. An image
formed from these correlation coefficients can provide a very sensitive
indicator of activity in an observed area. Finally, terrain motion mapping also
computes correlation coefficients between two images. However, it is assumed
that the reflectivity is unchanged between the two collections, so any complex
image changes are due to changes in the height of the scene. The time lag
between collections may be days to years. Terrain motion mapping has been
used to study such phenomena as glacier movement, land subsidence, volcanic
activity, and seismic activity.

8.7   Other Considerations

8.7.1   Motion Compensation and Autofocus
By assuming the radar platform’s position in the x coordinate is u = υt, it has
been implicitly assumed that the radar platform is flying a straight, level, and
constant velocity path. In practice, this is never quite true. For airborne systems
especially, atmospheric turbulence, minor maneuvers and course corrections,
crosswinds, vibration, antenna gimbal transient motions, and similar effects all
cause deviations of the SAR antenna phase center from this ideal. However, this
assumption is built into the design of the image formation processor, which is
based on Eq. (8.27) or one of its various approximations. To the extent that the
actual R(u) does not follow the model of R(u) used in the processor design, the
actual SAR data will not match the expected PSR. These differences, caused by
deviations from the ideal flight path, manifest themselves as phase errors in the
processing.

Specifically, suppose the transmitted waveform is of the form Aexp(j2πFt)
and the range to some scatterer is R on a particular pulse. Then the received
signal is

(8.89)
 
where A′ absorbs all of the range equation factors. Now suppose that the phase



center of the radar antenna is, for whatever reason, displaced from the intended
path by a distance ε along the line of sight to the scatterer; the received signal
will instead be

(8.90)
 
Because ε is small, the amplitude ratio in Eq. (8.90) will be very nearly unity,
so the primary effect of motion errors is a phase rotation to the data. All of the
fast-time samples for a given pulse are rotated by the same phase factor.

The job of motion compensation is to estimate ε and correct the data by a
simple counter phase rotation:

(8.91)
 
The difficult part is estimating ε to the required accuracy. A displacement of
only λ/4 meters (0.3 inch at X band) corresponds to a two-way range change of
λ/2 meters and therefore a 180° phase reversal. Thus, path deviations must be
estimated to a small fraction of a wavelength to minimize phase error effects.
Two factors ease this challenge somewhat. First, a constant displacement of the
entire flight path has no effect; the same factor is added to the phase of all data
samples, contributing a complex constant with no effect on focusing quality.
Only variations in ε are significant. Second, any one pixel receives
contributions from data only over the aperture time, on the order of a few tenths
of a second to a few seconds in most SAR systems. Path drifts over longer time
periods do not affect image focus.12

Phase errors are frequently categorized as either low- or high-frequency,
based on the variation of the phase error in the slow-time dimension (Lacomme
et al., 2001). Low frequency errors are those that repeat on a time scale greater
than the aperture time so that any periodicity of low frequency errors is not
apparent during formation of an image. High frequency errors are subdivided
into deterministic and noise-like errors. In the former, periodic structure is
evident during the aperture time. Low frequency errors produce net phase tapers
across the aperture, affecting the resolution, gain, and cross-range accuracy of
the PSR. For example, a linear phase taper is equivalent to an uncompensated
Doppler shift and can produce a cross-range displacement of scatterers
according to Eq. (8.38). Examples of the resolution and gain loss effects of
quadratic phase errors were shown in Figs. 8.23 and 8.25a. High-frequency
errors affect primarily the sidelobes of the PSR. Table 8.2 describes the major
effect of the most important phase errors.



 TABLE 8.2   Effects of Various Phase Errors on the SAR Point Spread Response
 

Phase errors are corrected by estimating the displacement ε(u) at each
aperture position u using a position measurement system, and in finer-resolution
systems by also using auto-focus algorithms. Position estimates are developed
using a motion compensation system with some or all of the elements in Fig.
8.43. Data from the aircraft or spacecraft’s inertial navigation system (INS)
provide the first level estimate of deviations from a straight line, constant-
velocity flight path. The INS tracks the platform centroid, not the antenna phase
center. Higher precision systems mount an additional strapdown inertial
measurement unit (IMU) onto the antenna structure (Kennedy, 1988a). The IMU
accounts more accurately for motions of the antenna relative to the airframe;
these relative motions include not only intentional scanning but also vibration
and airframe flexure. Inertial antenna mounts can also be used to stabilize the
antenna as much as possible. Additional independent kinematic estimates such
as radar-derived Doppler velocity estimates and global positioning system
(GPS) data may also be used. In this system, the INS provides an initial attitude
reference to the IMU. IMU data are sent to the radar data processor (RDP),
which corrects for the lever arm displacement between the INS and IMU. The
difference in INS and corrected IMU position estimates is input to the Kalman
transfer alignment filter, whose output is fed back to the IMU to update its
state. The Kalman filter typically has on the order of 20 states. The updated IMU
state is fed to the motion compensation computer, which uses these data to
compute the position error ε and the associated phase correction. The motion
compensation computer typically also computes antenna steering commands to
stabilize the line of sight.



 FIGURE 8.43   Generic motion compensation instrumentation package.
 

A motion compensation error budget can be developed for the various
INS/IMU errors. Table 8.3 is an example of such an analysis (Kennedy, 1988b).
The parameter values used were an aperture time of 2 seconds, velocity of 152
m/s, standoff range of 37 km, gravitational acceleration g = 9.8 m/s2, and a line-
of-sight acceleration A of 3 m/s2. These parameters imply a cross-range
resolution of 1.8 m at 10 GHz. In this example, the total error is 0.67 radian,
well under the π/2 standard suggested earlier. Since the phase error
contributions all scale as , the error margins get tighter as radar frequency
increases and especially as resolution is made finer. Because of its dependence
on range, the velocity error tends to dominate at shorter ranges; at longer ranges
the other error effects become more significant. Another analysis of error
contributions, in terms of longitudinal and latitudinal motions, is given in
Lacomme et al. (2001).



  Source: Kennedy (1988b).
 TABLE 8.3   Motion Compensation Error Budget
 

In addition to estimates of the path deviation ε, motion compensation
systems often provide two additional types of control data. The first is fine
pulse-to-pulse PRI adjustments to provide uniform sample spacing along the
velocity vector, i.e., in the x or u dimension. This technique eliminates the need
to interpolate data in the slow-time dimension to obtain uniform sample spacing
in finer-resolution systems. The second, applicable primarily to squinted SAR
and spotlight SARs, computes the range walk relative to a reference point on the
ground and varies the time delay from the time of pulse transmission to the time
when the A/D converter at the receiver output is triggered to begin fast-time
sampling. The delay is chosen such that the echo from some reference point,
generally in the middle of the imaged scene, always occurs in the same range
bin. This technique, called motion compensation to a point, reduces or
eliminates the computation required for range walk correction. Both techniques
require more complicated receiver control.

8.7.2   Autofocus
In fine-resolution SAR systems, the motion compensation systems discussed
previously often may not provide sufficient phase correction to achieve good
image quality. Autofocus algorithms attempt to estimate residual phase errors
present in the data after motion compensation and compensate them to improve
image quality. A number of techniques have been suggested; see Carrara et al.
(1995) for an overview. Two common and representative methods are the map
drift method and the phase gradient method. The most basic form of the map
drift algorithm is designed specifically to correct quadratic phase errors. The
algorithm divides the SAR data into two portions corresponding to the first and



second halves of the synthetic aperture and forms a lower-resolution image from
each. If quadratic phase error is present, peaks in the images will be shifted
away from their correct locations but in opposite directions. Cross-correlating
the two images produces a peak whose offset from the origin is directly
proportional to the amount of residual quadratic phase error. The full data set is
then phase-corrected with the conjugate of the estimated error and the image
reformed from the modified data. The algorithm is able to correct quadratic
phase errors up to a few tens of radians. Extensions to the map drift algorithm
which divide the data into more than two subapertures are capable of estimating
higher-order polynomial phase error terms.

A very basic analysis of a simple map drift algorithm can be outlined as
follows. Suppose a slow-time phase history sequence y[m] is contaminated with
a quadratic phase error sequence

(8.92)
 
The parameter α is the maximum value of the quadratic phase error, which
occurs at the two ends of y′[m]. Assume for convenience that M is even, and
define the two half-sequences:

(8.93)
 
The phase error in  can be decomposed into a quadratic component that is
symmetric about the midpoint of  and a linear component, which is just the
straight line connecting the first and last sample of the phase curve in . It is
straightforward to show that this linear phase component is

(8.94)
 
The linear phase term of  has an identical quadratic component, but a linear
component of the opposite sign (see Prob. 27). Because each sequence is half of
the original sequence y′[m], their DFTs will be similar in shape. The linear
phase terms, however, will shift the two DTFTs  and  by –α′K/2π and
+α′K/2π samples, respectively, where K is the DFT size. A cross-correlation of 

 and  will therefore produce a peak at lag k0 = α′K/π radians. The
quadratic phase error coefficient α can then be estimated from the spectral
correlation peak as



(8.95)
 
In practice, the estimate is not exact due to nonquadratic terms in the phase error
and noise in the data. A corrected data sequence is then formed as

(8.96)
 
The map drift algorithm is applied iteratively, typically requiring on the order of
three to six iterations. The iteration is stopped when the peak estimated phase
error is less than π/2 (or some other appropriate quality threshold).

Figure 8.44 illustrates the map drift algorithm on a real scene. The original
image in part a of the figure was transformed to a simulated range-compressed
phase history domain by assigning a random phase to each image pixel and then
performing a Fourier transform in the cross-range dimension. A simulated phase
error consisting of a quadratic term with a maximum of 5π radians across the
aperture was applied in the cross-range dimension and the image formed again,
giving the severely blurred image in Fig. 8.44b. Part c of the figure is the result
after applying map drift autofocus to the blurred image; it is visually
indistinguishable from the original. Finally, Fig. 8.44d is the difference image
between the original and the autofocused image. While some correlation
between the difference image and the original is visible on close inspection, the
nearly uniform difference image confirms the quality of the phase error
correction.



 



 
FIGURE 8.44   Illustration of map drift autofocus: (a) original image, (b) image
formed from data with simulated noisy quadratic phase errors, (c) image after
map drift autofocus, (d) error image. (Original image courtesy of Sandia
National Laboratories.)
 

The phase gradient algorithm (PGA) (Carrara et al., 1995; Wahl et al.,



1994) does not assume a polynomial form for the phase error and appears to
offer excellent, robust performance. PGA uses the (blurred) image of the
strongest scatterers in the SAR scene to estimate the actual cross-range phase
function, and then multiplies the data by a compensating phase function. The
algorithm estimates the first derivative of the cross range phase error from a
SAR image that is converted to (Ku, R) units by performing an FFT in cross
range. The phase error derivative is then integrated to get the actual phase error
function, and a correction applied to the data. As with map drift, the phase
gradient algorithm is usually applied iteratively.

A simplified analysis of the PGA algorithm gives some insight into its
operation. PGA assumes that each cross-range row in the complex blurred
image is dominated by the image of a single point scatterer. Consider an
arbitrary range bin and assume that the point scatterer in that range bin is located
at k = k0. The model of the complex image domain data in this range bin is then

(8.97)
 
where w[k] is a random process representing other clutter scatterers. The
dominant scatterer amplitude A and location m0 will vary in different range bins,
but for notational simplicity the dependence on the range bin index l is not
shown. If the cross-range compression algorithm is assumed to be
approximately the Fourier transform of the range-compressed phase history data
implemented using a K-point DFT, the corresponding phase history data y[m]
will be, ignoring the clutter, the inverse DFT of the cross-range image:

(8.98)
 
Equation (8.98) represents the phase history in the absence of phase errors.
When phase errors ϕ[m] are present the data y[m] are modulated by the phase
error modulation function exp{jϕ[m]}:

(8.99)
 
Denote the DFT of the phase error modulation function exp{jϕ[m]} as e[k]. The
DFT of the phase history data including the phase errors is the actual observed
complex cross-range image slice. Applying the modulation property of the DFT
gives



(8.100)
 
Thus, the point target image is degraded into a replica of the DFT of the phase
error function, centered at the point target location. That is, e[k] is the blurring
function in the image domain due to the phase errors. Isolated point targets can
be used to estimate e[k] and therefore the phase error function ϕ[m].

The algorithm begins by finding the peak amplitude of the blurred image
data |f′[k]|; suppose this occurs at k = kp. The cross-range slice is then circularly
shifted left by kp samples, giving the new sequence

(8.101)
 
with corresponding IDFT

(8.102)
 

The next step is to estimate the gradient of the phase of . A simple
maximum likelihood estimator is the first difference (Jakowatz and Wahl,
1993):

(8.103)
 
The phase error itself is estimated by integrating this gradient:

(8.104)
 
The original slow-time phase history is then corrected by compensating it with
the estimated phase:

(8.105)
 
Finally, the deblurred image slice is obtained by transforming back to the image
domain:



(8.106)
 
If  is a good estimate of ϕ[m], the result will be

(8.107)
 
Note that if the blur function e[k] does not have its peak at the origin, kp ≠ k0 and
the corrected image slice will still be shifted by (kp – k0) samples from the
correct position. This does not hurt image quality but does impact geolocation
accuracy.

Since the image has many rows, each degraded by the same actual phase
error function, an independent phase error estimate can be obtained by
processing the data for each range bin separately. The signal-to-noise ratio of
the phase estimate can then be improved by averaging over the range bins.
Reintroducing the range bin index l, the integrated phase gradient estimate is

(8.108)
 
Figure 8.45 illustrates this process on a simple synthetic image. The original
image in part a of the figure is simply a collection of randomly located point
scatterers of varying amplitude and phase in complex white Gaussian noise. A
phase error consisting of quadratic, sinusoidal, and noise terms (see Fig. 8.46)
was applied to the cross-range DFT of these data, and the image-reformed via a
cross range IDFT. The result, seen in part b, is severely blurred in cross-range.
Application of the PGA algorithm produces the corrected image of part c. The
smearing has been completely removed.



 



 
FIGURE 8.45   Illustration of phase gradient algorithm autofocus: (a) synthetic
image, (b) image blurred by non-polynomial phase error, (c) image after 1
iteration of PGA autofocus, (d) error image showing cross-range displacement.
 

 



 
FIGURE 8.46   Actual and estimated phase error for example of Fig. 8.45.
 

Close inspection, however, shows that all of the scatterers have migrated
three pixels to the left. This occurs because for the particular phase error
function ϕ[m] used, the resulting blur function e[k] has its peak at k = 3 rather
than k = 0. Consequently, in the blurred image the peaks of each blurred
scatterer are shifted three pixels right; that is, kp = k0 + 3. This adds a linear
phase term in k corresponding to a +3 pixel shift to the phase function 
estimated by the PGA algorithm. When the phase of the original data is
compensated, a –3 pixel shift results. This effect is clearly seen in the error
image of Fig. 8.45d, which shows paired positive and negative differences three
pixels apart for each scatterer.

The actual phase error function ϕ[m] applied in this example is shown in
Fig. 8.46. The estimated phase error, corrected for the three pixel offset, and the
difference between the two is also shown. Only one iteration of PGA was
needed because this simple simulation matches the algorithm assumptions very
closely. The residual phase error is well within the ±π/2 bounds denoted by the
horizontal lines.

A number of details in any practical implementation have not been
addressed here. As mentioned earlier, the algorithm is typically applied
iteratively. It is often applied to only a subset of the most energetic range bins,
similar to the map drift algorithm. Furthermore, a window is used to select only
a symmetric portion of the cross-range image slice around each peak magnitude



pixel; this reduces the effects of noise and other bright pixels in the line. The
window size is usually selected based on an estimate of the width of the blur
function e[m] and is updated with each iteration. These and other details are
addressed in Jakowatz et al. (1996).

8.7.3   Speckle Reduction
Like any coherent imaging system, SAR produces images contaminated by
“speckle,” an aptly-named multiplicative noise. Speckle is the natural result of
the coherent combination of echoes from many different scatterers to form an
image pixel. If the amplitude distribution of the real and imaginary parts (I and
Q channels) of the received signal is Gaussian and the phase distribution is
uniform, conditions assured by the law of large numbers when many scattering
centers are involved, then the pixel amplitude will be Rayleigh distributed as
shown in Chap. 2. Thus, pixels representing areas with the same average RCS
(mean echo amplitude) can give rise to different pixel amplitudes. These
variations are not due to thermal, quantization, or other noise sources, but are
nonetheless considered “noise” because of their appearance and effect on image
quality.

Speckle is reduced through various forms of filtering and averaging
schemes (Oliver and Quegan, 2004). One of the most effective is noncoherently
integrating multiple uncorrelated images, or looks, of the same scene. This
process reduces the pixel variance, reducing the amplitude variations among
pixels representing the same RCS. Uncorrelated looks can be obtained using
multiple flights past the scene, called passes. Obtaining well-aligned passes is
difficult for airborne systems due to atmospheric turbulence and limited
navigation precision. For spaceborne systems, orbits are well known and well
behaved, but considerable time can pass between repeat passes so that data
acquisition time can be lengthy. In a single pass, transmitter frequency or
multiple polarization channels can be used to obtain uncorrelated looks. Another
method takes advantage of the fact that in many strip-map modes the maximum
aperture time available exceeds that required to meet resolution goals. In this
case the slow-time data can be divided into multiple subapertures, each long
enough to form an image of the proper resolution (Cumming and Wong, 2005).
Images are calculated for each subaperture and combined. Typically, 4 to 10
looks might be used to obtain effective speckle reduction. Figure 8.47a and b
demonstrates the image enhancement obtained by integration of 10 simulated
looks.



 

 
FIGURE 8.47   Speckle reduction: (a) simulated single-look speckled image
derived from Fig. 8.1a, (b) full resolution image obtained by integration of nine
looks, (c) reduced-resolution image obtained with 3 × 3 spatial filtering, (d)
image obtained with 3 × 3 median filter. (Original image courtesy of Sandia
National Laboratories.)
 

If multiple looks are not available, another method averages adjacent
pixels of a fine-resolution image, typically using a 3 × 3 or 5 × 5 window, to
form one lower resolution but reduced-speckle pixel as illustrated in Fig. 8.47c.



Figure 8.47d shows the result of a 3 × 3 median filter applied to a single look
image. This approach sacrifices less resolution than spatial averaging. Other
techniques include a variety of adaptive filters and statistical methods (Oliver
and Quegan, 2004; Richards, 2009).
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Problems
  1.  Compute the sidelooking SAR synthetic aperture size DSAR and aperture time

Ta for cross-range resolutions of 50, 5, and 0.5 m for a 10-GHz airborne
radar at a range of 10 km and a 5-GHz LEO satellite at a range of 770 km.
Assume the aircraft velocity is 100 m/s and the satellite velocity is 7500
m/s.

  2.  Compute the integration angle γ in degrees needed to obtain cross-range
resolutions of 100, 10, and 1 m at RFs of 1 and 10 GHz.

  3.  Compute the maximum swath length Ls for an elevation beamwidths of 10°
at a grazing angle of δ = 30° and ranges of 10 and 50 km.

  4.  Compute the elevation beamwidth in degrees required to obtain a swath
length of 100 km from an altitude of 770 km. Assume a grazing angle of δ =
30° and ignore earth curvature.

  5.  What is the area coverage rate of the radar in problem 4 in km2/h? Assume
υ = 7500 m/s.

  6.  For a spaceborne SAR having υ = 7500 m/s and a grazing angle of δ = 30°,
what is the finest cross-range resolution possible if the swath length
required is 100 km? What is the longest swath length possible if the cross-
range resolution is required to be 1 m? Assume sidelooking stripmap
operation.

  7.  What is the upper bound on the number of images per hour obtainable by a
spotlight SAR with a platform velocity of 50 m/s, an RF of 35 GHz, a
standoff range of 10 km, and a cross-range resolution of 0.25 m? Assume
that 10 percent of the time is used for re-steering the antenna between spots
or other “overhead” operations.

  8.  The series expansion of the square root leading to Eq. (8.28) (and
eventually to the DBS and range-Doppler algorithms) requires |u – xP| 
RP. Interpret “much less than” to mean |u – xP| < RP/100 (a tight standard).
Determine whether a radar on the space shuttle (250 km altitude) having a



resolution of ΔCR = 10 m at an RF of 5 GHz meets this requirement.
Repeat for an airborne radar having a resolution of ΔCR = 0.25 m at an RF
of 16 GHz and a range of 5 km.

  9.  Develop formulas for range walk and range curvature normalized to range
resolution, ΔRw/ΔR and ΔRc/ΔR. Assume “square pixels,” i.e., ΔR = ΔCR.
If the radar resolution is improved by a factors of 10×, by what factors do
the normalized range walk and range curvature increase?

10.  It is desired to use DBS to form an image 10 km on a side with resolution of
3 m. The RF is 10 GHz and the standoff range is 10 km. Considering the
range walk and quadratic phase constraints, can these specifications be
achieved with good focus quality? Assume “square pixels.”

Problems 11 to 17 consider the same airborne sidelooking stripmap SAR
system. For simplicity the problem is treated as two-dimensional rather than
three-dimensional so that the slant plane and the ground plane are the same.
The goal of the SAR is to image a swath extending from 10 to 20 km slant
range from the aircraft; thus the swath length is Ls = 10 km. The resolution
goal in both range and cross range is 1.0 m. The aircraft is flying straight
and level at a constant velocity of 150 m/s. The radar operates at Ku band (16
GHz). The physical antenna beamwidth is θaz = 2°.
11.  Estimate the azimuth size of the physical antenna aperture, Daz, in meters.

Hint: It is not determined by the desired resolution, which may or may not
meet the stripmap constraint that ΔCR ≥ Daz/2; use other information
provided to determine Daz. What pulse bandwidth β is required to obtain
the desired range resolution? (Do not allow for any weighting for range
sidelobe control.)

12.  What is the maximum Doppler bandwidth of the slow-time data? What is
the bound on the PRF due to the Doppler bandwidth? What is the bound on
the PRF due to the swath length?

13.  What is the aperture time Ta required to achieve the desired cross-range
resolution ΔCR at the near edge of the swath? At the far edge? What are the
corresponding synthetic aperture lengths DSAR?

14.  Assume the waveform is an LFM pulse with a time-bandwidth product βτ =
50; its bandwidth β was found in Prob. 11. How many range (fast time)
samples are required to process the full swath length? How many pulses
will be transmitted in an aperture time at the near and far edges? Assume a
PRF equal to the Nyquist rate for the Doppler bandwidth of the data.

15.  What is the range walk for a scatterer within the swath? Does it vary over
the swath? Express the answer in both meters and in range resolution cells.
What is the maximum range curvature for a scatterer within the swath?



Does it occur for scatterers at the near or far edge of the swath? Express
the answer in both meters and in range resolution cells.

16.  What is the depth of focus for this system? Can a single point spread
response (PSR) be used to focus well everywhere in the swath? If not,
what is the minimum number of subswaths needed to achieve good focus
throughout?

17.  Consider Doppler beam sharpening processing (probably not a good choice
for this fine a resolution, but relatively easy for hand calculations).
Suppose that Fourier analysis (an FFT) of the slow time data at range R =
15 km reveals a peak in the spectrum at Ft = 106.7 Hz. What is the cross-
range position xt of the scatterer that caused the peak?

18.  A sidelooking imaging radar system achieves a cross-range resolution of
ΔCR = 1 m. The radar is an L-band (1-GHz) system with an azimuth
antenna width Daz = 3 m. It is mounted on an aircraft that flies at 100 m/s.
The center of the imaged area is at a range of 50 km. Must the radar be
operated in stripmap mode, spotlight mode, or can either be used? Justify
the answer.

19.  Regardless of the answer to the previous problem, assume that spotlight
mode is used. What is the line-of-sight rotation angle γ in degrees required
to achieve the 1 m cross-range resolution? What are the resulting aperture
size DSAR in meters and aperture time Ta in seconds?

20.  Starting with Eq. (8.32) for range curvature, derive Eq. (8.56). Note that RP
in Eq. (8.32) and R0 in Eq. (8.56) represent the same quantity.

21.  Equation (8.62) depends on the RVP term being negligible. Because this is
a quadratic phase term in the integrand, it has negligible effect if π(β/τ)
(δti)2 <π/4 for the maximum absolute value of δti. For a scene of depth Lu
(±Lu/2 around the CRP), this is Lu/c. Derive an upper bound on Lu in terms
of β and τ. Note: The result will not be the same as Eq. (8.72), which
requires further assumptions, but will have some similarities.

22.  Consider a spotlight SAR using the polar format algorithm. The system
operates at Ku band (16 GHz) from a standoff range R0 = 30 km and is
designed for a range and cross-range resolution of 0.2 m. The LFM pulse
sweep rate is α = π(7.5 × 1012) Hz/s. Compute the limits on scene size for
using the PFA algorithm due to isorange curvature and residual video
phase.

23.  Determine the ambiguous terrain height change Δhua for a Ku-band (16-
GHz) IFSAR system at an altitude of Z = 3 km and a nominal grazing angle
of ψ = 20°. The IFSAR baseline is B = 1 m. Δhua is the change in terrain
height that produces a change of 2π in the IPD Δϕfg.



24.  Determine the SNR needed to obtain coherence values ynoise = 0.5, 0.8, and
0.95.

25.  Compute the critical baseline Bc⊥ for a C-band (5 GHz) LEO radar. The
range is R = 770 km, the range resolution is 30 m, and the grazing angle is
ψ = 15°. If the baseline coherence is to be no less than 0.9, what is the
maximum spacing of two parallel orbits that can be used for IFSAR
processing?

26.  Table 8.1 states that a linear phase error term in slow-time results in a
cross-range displacement of the scatterer image. Consider a sidelooking 10
GHz SAR and a scatterer directly abreast of the SAR at a range of 5 km.
Assume the platform velocity is 100 m/s. Suppose that crosswinds cause
the aircraft to drift such that there is a velocity component of +5 m/s along
the LOS toward the imaged scatterer. The scatterer should be imaged as
being at x = 0. Using Doppler beam sharpening as a simple model of the
processing, at what x will the scatterer actually be imaged? Include the
sign of x and state whether the shift is in the direction of the aircraft motion
or its opposite.

27.  Confirm that the slope of the linear phase component of  of Eq. (8.93)
is the negative of the slope of , which can be obtained from Eq. (8.94).

_____________
1“False color” or “pseudocolor” SAR imagery is often produced by combining multiple SAR images of the
same scene collected at different polarizations and/or radar frequencies.
2This image is a grayscale representation of a false color image generated by assigning red to the L band,
horizontal polarization transmit/horizontal polarization receive (“HH”) data; green to the L band horizontal
transmit/vertical receive (HV) data; and blue to the C band HV data.
3Subsequently part of Veridian Corporation, then General Dynamics Corporation, and now Lockheed Martin
Corporation.
4“Cross-range” is the direction orthogonal to the radar range direction, and thus to the radar antenna
boresight. It differs from azimuth in that azimuth specifies an angular displacement relative to the boresight,
while cross range specifies a displacement in an orthogonal Cartesian coordinate. If the radar is sidelooking
and the platform is not crabbed, the cross-range direction is parallel to the platform velocity vector. Thus the
cross-range dimension is sometimes referred to as the along-track dimension.
5Successive synthetic apertures are usually overlapped, with offsets ranging from as little as one pulse
position to 50 percent or more of DSAR. The two data subsets in Fig. 8.7 are shown nonoverlapping for
clarity.
6This is equivalent to viewing the three-dimensional scenario in the slant plane formed by the velocity
vector and the vector traced out by the motion of the antenna boresight along the ground plane.
7  includes range weighting and other range equation factors; see Sec. 2.7.
8 The results here are generalized to include use of a common transmit aperture and two independent
receive apertures in Richards (2013). Both one- and two-transmitter versions of IFSAR are of practical



importance.
9The two apertures could also be displaced vertically, with similar results.
10 SAR images are naturally formed in the slant plane, but are usually projected into the ground plane for
display.
11If operated in squint mode, the image will also have layover in the cross-range dimension, so pixels must
be shifted in both dimensions. See Jakowatz et al. (1996) for details.
12Long term drift may be quite important, however, to image interpretation. Targets or land features
detected in a SAR image may need to be precisely geolocated for targeting or for surveying purposes. It is
then essential to have accurate information on the absolute position of the radar platform.



CHAPTER 9
Introduction to Beamforming and Space-Time

Adaptive Processing
 

In Chap. 3, the concept of the radar datacube was introduced to describe the
data collected in a coherent processing interval. Figure 3.8, repeated in part
here as Fig. 9.1, illustrates the datacube y[l, m, n] with its independent axes of
fast time, slow time, and antenna phase center. The radar signal processing
described up to this point has dealt almost entirely with a fast-time/slow-time
matrix for a single antenna phase center; little use has been made of the third
datacube dimension other than to discuss the array factor of a phased array
antenna pattern in Chap. 1 and the accuracy of angle estimation in Chap. 7.

 FIGURE 9.1   Radar datacube for a single CPI.
 

Just as the temporal sampling of the slow-time axis enables analysis and
processing of signals in a given range bin based on their temporal Doppler
frequency content, the phase center axis enables analysis and processing of
signals within a range bin based on their spatial frequency content, which is
equivalent to the angle of arrival (AOA). In this chapter, a basic introduction to
beamforming and space-time adaptive processing (STAP) is presented.
Beamforming refers to the coherent combination of data from multiple phase
centers to provide selectivity in the AOA, i.e., to form and steer an antenna
beam. STAP combines both spatial and temporal filtering on a moving radar
platform to discriminate targets from both clutter and jamming. Excellent
introductions to adaptive beamforming and STAP are Aalfs (2013) and Melvin



(2013), respectively.

9.1   Spatial Filtering

9.1.1   Beamforming
Consider a monochromatic plane wave with temporal variation Aexp(jΩt)
impinging on a uniform linear one-dimensional array as shown in Fig. 9.2. If the
wave’s AOA relative to the array normal is θ radians, the signal observed at the
nth array element is

 FIGURE 9.2   Wavefront impinging on a uniform linear array.
 

(9.1)
 
where the phase offset ϕ0 accounts for the absolute phase at the n = 0 element.
Now consider the set of samples y[n] formed from the individual array signals,
sampled at a common time t0:

(9.2)
 
Assembling the N element samples into column vector form gives a snapshot of
the array at a fixed time:



(9.3)
 
where kθ ≡ 2πd sin θ/λ is the normalized spatial frequency in radians per sample
as projected into the plane of the array face and as(θ) is the spatial steering
vector. Thus, there is a one-to-one relationship between the AOA of a plane
wave and the spatial frequency across the array face. The range of θ is ±π, so
the range of kθ is ±2πd/λ. It is also useful to define the normalized spatial
frequency in cycles per sample, fθ ≡ kθ/2π. If the phase centers are spaced by d =
λ/2, common for individual elements, the range of kθ is ±π and of fθ is ±0.5. If
phase centers correspond to subarrays their spacing will be larger and the range
of kθ and fθ will be larger.

Conventional nonadaptive beamforming is implemented as a weighted sum
of the element signals, z = hTy,1 where h is a vector of complex weights

(9.4)
 
A special case of interest occurs when h takes the form

(9.5)
 
The symbol  represents the Hadamard (element-by-element) product of two
vectors. If a and b are two N-element column vectors, then

(9.6)
 
Equation (9.5) represents h as the Hadamard product of two factors: a shape
vector w that provides for any weighting for sidelobe control and the conjugate
of a steering vector as(θ) that provides maximum coherent integration for signals
arriving from angle θ.

Suppose the weights are matched to an AOA of θ0; the array is said to be
“steered” to θ0. The response of a beamformer steered to θ0 to an incoming



wavefront at angle θ is

(9.7)
 
The scalar output z(θ) is just the discrete Fourier transform of the weight
sequence {hn}, shifted to a center spatial frequency of  and multiplied by Â.
When all of the weight amplitudes {wn} = 1, this is a standard asinc pattern in
the variable sinθ,

(9.8)
 
More commonly, the weights are chosen to reduce antenna sidelobes at the cost
of degraded resolution and gain in the form of a wider mainbeam. Figure 9.3
illustrates the antenna pattern |z(θ)| for an array steered to θ0 = 30° with N = 11
phase centers, both with and without Hamming weighting. In the latter case, w is
simply a vector of all ones; in the former case, it is a Hamming window
function. The windowed case exhibits the same effects seen in windowing for
sidelobe control in range and Doppler: much lower sidelobes at the cost of
reduced peak gain and loss of resolution due to a wider mainlobe.

 FIGURE 9.3   Antenna pattern with and without Hamming weighting. N = 11



phase centers, steering angle θ0 = 30°.
 

The beamformer output of Eq. (9.8) is a function of sinθ. This is a
consequence of the spatial frequency kθ being proportional to sinθ. A function of
u = sinθ is often said to be a function in sine space, a concept also mentioned
briefly in the section on Kalman filtering in Chap. 7.2 In this chapter, most
figures involving antenna patterns are plotted against θ instead of u. The result
is that the patterns are distorted near θ = ±π by the nonlinear transformation
from u to θ, as seen for instance in Fig. 9.3.

The previous results can be obtained as the matched filter solution to a
spatial filtering problem using the same results developed for Doppler filtering
in Chap. 5. Suppose it is desired to maximize the output z(θ) when the input is a
snapshot of a plane wave having AOA θ, plus white noise. The mathematics are
exactly the same as used for vector matched filtering in Chap. 5 and the same
results can be applied. Specifically,

(9.9)
 
 where SI = covariance matrix of the interference at the N phase center outputs

t = model of the desired target signal vector (i.e., steering vector)
k = arbitrary constant

Recall that  for covariance matrices. If the signal of interest is a
monochromatic plane wave with AOA θ, the target model t is (letting Â = 1
without loss of generality) exactly the spatial steering vector as(θ) defined in
Eq. (9.3). When the interference is independent identically distributed (i.i.d.)
white noise with variance  at each element, . Choosing  gives

(9.10)
 
The filter output is then

(9.11)
 
which shows that the antenna pattern is the DTFT of the data snapshot evaluated
at . If the observed signal y[n] is in fact a snapshot of a plane wave at
AOA θ0, y is of the form of Eq. (9.3) with θ = θ0 and z(θ) is again given by Eq.
(9.7). The peak output occurs when the filter steering vector matches the actual



steering vector of the input, i.e., at z(θ0), and is just N times the amplitude of
y[n]. A plot of z(θ) as a function of AOA θ gives the (unweighted) normalized
antenna gain pattern of Fig. 9.3. The beamformer signal processing gain Gsp is
just this coherent gain N.

While the FFT can be used to efficiently compute the antenna pattern for a
given steering vector t, the FFT output will be in terms of  and must be flipped
to obtain z as a function of kθ. The flipped pattern will be sampled at constant
increments of spatial frequency kθ corresponding to constant increments in sinθ.
Thus, the samples are not spaced uniformly in angle θ. If pattern samples at
constant increments in θ are required, z(θ) must be computed explicitly using
z(θ) = hTy and varying y for each desired value of AOA.

Digital beamforming enables several advantageous capabilities for phased
array antennas. One is the ability to form multiple simultaneous beams on
receive. The same snapshot data y can be weighted with several different
weight vectors h, effectively forming multiple receive beams steered in different
directions. Another major capability is the opportunity to compute the weights
adaptively based on the interference environment characteristics. This makes
possible adaptive nulling of jammers, discussed next. Other enhanced
capabilities are mentioned in Aalfs (2013).

9.1.2   Adaptive Beamforming
The vector matched filter approach leads directly to a means for designing array
weight vectors h that can steer zeros of the antenna pattern, often called nulls, in
specific directions to cancel interference sources. This capability is useful in
combating jammers, which are hostile interfering signal sources that seek to
degrade radar performance by any of a number of mechanisms, such as
degrading the signal-to-interference ratio (SIR) by increasing the noise level, or
creating false detections to overwhelm the radar with false targets. One of the
most common forms of jamming is a simple noise jammer. This device radiates
a relatively high-power waveform at the victim radar from a specific air-,
space-, or ground-based platform. The jammer waveform is a random noise
process that is white over the receiver bandwidth of the victim radar.3 From the
radar’s point of view, the jammer signal is therefore a white noise process
arriving from some specific AOA. A major advantage enjoyed by the jammer in
interfering with target detection is that it must only propagate in one direction,
as opposed to the two-way propagation of the transmitted waveform and target
echo. The jammer signal suffers only a R–2 spreading loss instead of the R–4 loss
of the target signal, making it imperative to try to attenuate the jammer signal on
reception. Forming a beampattern with a null at the jammer’s AOA
accomplishes this.

The antenna pattern that maximizes the output SIR in the presence of both
white noise and jamming is still given by Eq. (9.9); however, the model for the



interference covariance matrix SI must be extended to incorporate a model for
the noise jammer. The temporal variation of the jammer signal Jn(t) received
from AOA θ at each array phase center can be expressed as

(9.12)
 
where  is the jammer power and w(t) is a unit variance zero mean white
random process. A snapshot of the array response to the jammer gives

(9.13)
 
In vector form, this is

(9.14)
 
The covariance matrix of the jammer signals is then

(9.15)
 
SJ is a Hermitian matrix, . It is also positive semidefinite, but has a rank
of only one because the columns are all linearly dependent; in fact, they are all
simple multiples of the first column.

The total interference covariance matrix for the sum of receiver noise and
some number P of mutually uncorrelated jammers is



(9.16)
 
The matched filter output can then be maximized by using the interference model
of Eq. (9.16) in Eq. (9.9).

As an example, consider a case with N = 16 antenna phase centers. Assume
that two jammers are present, one at an AOA of +18° with a jammer-to-signal
ratio (JSR) of +50 dB, and another at –33° and a JSR of +30 dB. The SNR = 0
dB, resulting in a total SIR at the element level (before any beamforming) of –
50.04 dB. Figure 9.4 shows the resulting antenna patterns when the antenna is
steered to 0° (normal to the array face). In part a of the figure, no adaptation
was used; i.e., the beamformer weights were designed using . A standard
asinc pattern results. The two dotted vertical lines indicate the angles of arrival
of the two jammers. Although in the sidelobes, both are on or near sidelobe
peaks and, given their high power, will result in significant jamming energy in
the beamformer output. In part b of the figure, the beamformer weights were
designed using a covariance matrix SI computed via Eq. (9.16). The resulting
pattern places deep nulls at the location of both jammers, effectively canceling
them.



 FIGURE 9.4   Antenna pattern for N = 16 phase centers. Two jammers present at
indicated angles: (a) without adaptation, (b) with adaptation.
 

The SIR achieved by the optimum beamformer can be computed using the
result of Eq. (5.7), namely



(9.17)
 
For the case where the interference is noise only, , , t = Âas(θ),
and since , Eq. (9.17) reduces to

(9.18)
 
Equation (9.18) shows again that a coherent integration gain of Gsp = N is
obtained against white noise using the N-element snapshot, while for a more
general interference environment the gain is the SIR of Eq. (9.17) divided by the
pre-beamforming SIR. For the example of Fig. 9.4 without jammers the
interference is just the noise, so the pre-beamforming SIR is the single-element
SNR . The post-beamforming SIR is 16 = 12.04 dB and the SIR
gain is therefore also Gsp = 12.04 dB. With jammers present the pre-
beamforming SIR is -50.04 dB and the post-beamforming SIR is 15.64 (11.94
dB), so the gain is 61.98 dB. The slight reduction in post-beamforming SIR
(0.36 dB) when the jammers are present occurs because some of the degrees of
freedom (DOF) are consumed canceling the jammers instead of providing
coherent integration gain for the signal.

This variation in peak gain in the direction of the desired target signal t can
be compensated by requiring that hTt = 1, resulting in what is often called a
distortionless beamformer. Using this condition in Eq. (9.9) gives

(9.19)
 
Since κ is simply a scalar, this choice does not affect the shape of the antenna
pattern z(θ) but merely scales it up or down in amplitude so that z(θ0) = 1,
where θ0 is the AOA of the target signal t. This design approach can be
extended to constrain the pattern gain at multiple AOAs; details are given in Van
Trees (2002).

If the interference is white, , the optimum weight vector is a scaled
version of the steering vector, h = κt*. An interesting interpretation of the



optimum adaptive beamformer when the interference is not white starts by
noting that any covariance matrix of interest can be factored in the form SI =
V∙V. That is, V is the “square root” of SI. It is also the case that  and
that SI, V, and their inverses are Hermitian. Using this decomposition and Eq.
(9.9) with κ = 1 gives the beamformer output as

(9.20)
 
The last line shows that the optimum filter output can be interpreted as a
transformed steering vector  applied to similarly transformed data ỹ =
(V–1)∗ y. The fact that the weight vector is just the transformed steering vector in
this formulation suggests that the transformed interference in ỹ should be white.

To see that this is indeed the case, consider the transformed data snapshot
ỹ when the data is interference only. The covariance of ỹ is

(9.21)
 
Equation (9.21) states that transforming the data snapshot with the operator (V–

1)* whitens the interference. The appropriate weight vector is then just a scaled
version of the similarly transformed steering vector as was discovered in Eq.
(9.20). Applying the original optimal weight vector h to the original snapshot is
therefore equivalent to solving a modified problem in which the data is
transformed to whiten the interference and then filtered using the transformed
steering vector.

Computing the adaptive weights requires finding , which is
equivalent to solving the linear system of equations t* = SIh. Various algorithms
exist for doing this in a numerically stable and somewhat efficient matter.
Generally, the computational load is O(P3), where the notation O(∙) means “on
the order of” and P ≡ MN is the order of the system of equations (Arakawa and
Bond, 2008).

How many jammers can be cancelled? For each distinct jammer signal Jp,
the vector matched filter chooses h such that hTJp = 0 (Guerci, 2003). If P
jammers are present this creates P such conditions. The distortionless constraint



hTt = 1 adds a (P + 1)st condition. There are therefore P + 1 equations in the N
unknowns of the filter vector h. A solution will exist so long as P + 1 ≤ N. Thus,
an N-phase center array can cancel up to N – 1 jammers.

If a jammer is located in the mainbeam of the antenna pattern, the adaptive
pattern is seriously degraded. In the previous example, the 3-dB beamwidth is
approximately 6°. If the jammer at –33° is moved instead to –2° and the
distortionless beamformer of Eq. (9.19) is applied the pattern of Fig. 9.5 results.
The two jammers are nulled, but the antenna pattern peak has been shifted from
the target AOA of 0°. The distortionless constraint still guarantees that the
antenna pattern gain is unity at 0°, but the peak is now +5.15 dB and occurs at θ
= 3.3°. In this example, the post-beamforming SIR is reduced to only 3.64 (5.61
dB).

 FIGURE 9.5   Adaptive pattern with one jammer in the mainlobe of the adapted
pattern.
 

The elements of the steering vector and thus of the optimum adaptive
weights depend on the RF through the wavelength λ or the spatial frequency κθ.
The weights that steer the beam to a particular AOA for one RF steer it to a
different AOA for a different RF. Because of this dependence on λ, a single set
of phase weights is incapable of cancelling a jammer over a wide bandwidth. A
very common way to deal with this issue is to use subbanding. This technique,
diagrammed in Fig. 9.6, divides the array spatial data as a function of fast time
into K subbands, each relatively narrowband. A separate steering vector and



adaptive beamformer is computed in each subband according to the effective
value of λ for that band and applied to that data. After cancellation, the subband
data is recombined to restore the full bandwidth with the jammer cancelled.
Because the temporal bandwidth in each subband is 1/K times the full temporal
bandwidth, the fast-time sampling rate can be reduced by the factor K in each
subband. The full sampling rate is restored in the single output channel. This
technique can be implemented quite efficiently using polyphase filter banks
(Harris, 2004). Another approach to wideband cancellation uses fast-time
filtering in each spatial channel (Aalfs, 2013).

 FIGURE 9.6   Subbanding approach for adaptive cancellation of interference in
wideband signals.
 

9.1.3   Adaptive Beamforming with Preprocessing
The discussion so far has applied adaptive interference calculation directly to
the individual array element signals, an approach called element space
processing. Some systems perform fixed conventional beamforming on the
element signals first, and then apply adaptive processing to the individual beam
outputs. This technique is called beamspace processing. Figure 9.3 was an
example of forming a single fixed beam; a bank of such beams would provide
coverage of the entire angle space. Beamspace processing tends to concentrate
each interferer into the output of a small number of beams and can therefore
reduce the dimensionality of the adaptive processing problem. Because of its
cubic dependence on the DOF, this reduction can lead to major savings in
computational load.

Beams are formed as linear combinations of the element signals as shown
in the example of Eq. (9.7). A set of P beams formed from an N-element array
can thus be represented as a P × N transformation matrix T acting on the N × 1
spatial snapshot y to form a new P × 1 vector of beam outputs ỹ (Ward, 1994;
Melvin, 2013):



(9.22)
 
For instance, a set of conventional “DFT beams” at spatial frequencies , ,
…,  can be formed with the transformation matrix:

(9.23)
 
If the  are evenly spaced over the interval (–π, + π), T computes the P-point
DFT of the element snapshot.

To see how to apply adaptive processing to the preprocessed beamspace
data, note that the snapshot y is now replaced with ỹ. This applies to whatever
signals are present at the array face, so the transformation is applied to the
interference as well as the target signals. The new interference covariance
matrix becomes

(9.24)
 
The adaptive weight vector and the filtered output are

(9.25)
 
where  is the transformed target steering vector.

To illustrate this process, a DFT matrix T with P = 16 beams was applied
to the same N = 16 element example used previously. Figure 9.7 shows the
magnitudes of the adaptive weights with and without the beamspace
transformation. No window for sidelobe control was included. Without the
transformation, the weights are all similar in magnitude, suggesting that all of the
data is important to obtaining good cancellation results. With the transformation,
most of the weights are close to zero, suggesting that many channels could be
discarded with little impact on the adapted pattern. Figure 9.8 shows the
adapted pattern with sidelobe jammers when the beamspace weights are



thresholded at 5 percent of their maximum value, corresponding to the dashed
line in Fig. 9.7. This discards three-quarters of the elements in , keeping only
elements 0, 4, 13, and 14. Both in the absence of jammers and when the jammers
are located at +18° and –33°, the resulting adapted antenna patterns are very
close to those formed using the full 16 DOF in Fig. 9.4a and b.

 FIGURE 9.7   Magnitude of adapted weights with sidelobe jammers for element
space and DFT beamspace processing.
 

 



 
FIGURE 9.8   Adapted pattern using a 10-beam DFT fixed beamformer
preprocessor. Compare to Fig. 9.4b.
 

The thresholded beamspace adaptive weight computation requires solving
only a fourth-order system of equations, while the element space version
requires the solution of a 16th-order system. The computational complexity of
the weight vector computation will therefore decrease by a factor of about
(16/4)3 = 64×. The beamspace approach has the extra step of applying the beam
formation preprocessor T, but in many cases the total computational load is still
substantially reduced, especially if T has a structure that can be implemented
efficiently, such as an FFT matrix.

The approach described here can be used with any linear transformation T.
Additional examples include beams uniformly spaced in θ instead of κθ or
approaches that form conventional beams and then combine sums of adjacent
beams to achieve better cancellation. The technique can also be extended to
include windowing for sidelobe control and gain constraints similar to the
distortionless constraint discussed previously.

9.2   Space-Time Signal Environment
In a multi-phase center radar, filtering is possible in both Doppler shift and
angle of arrival. It is therefore important to characterize the data in a given
range bin in terms of Doppler and AOA. Figure 9.9 is a notional sketch of the
general behavior of noise, jamming, clutter, and moving targets in the space-
time environment. Receiver noise has no structure in time or frequency, and
therefore appears as a uniform noise floor throughout the angle-Doppler space.
As described in the previous section, broadband noise jammers are localized in
AOA but spread across the entire Doppler spectrum. This is reflected in Fig.
9.9 as a ridge of energy localized in AOA but spread across all Doppler shifts.
Because the jamming energy is the same at all values of Doppler, discrimination
against jamming must be based primarily on spatial filtering as described in the
previous section.



 FIGURE 9.9   Space-time signal environment.
 

Clutter is more complicated. Assume a platform with velocity υ and a side-
looking radar,4 as shown in Fig. 9.10. The height dimension is neglected for
simplicity. In a given range bin, clutter scatterers anywhere on the isorange
circle corresponding to the range of interest contribute to the total clutter return.
(If the system is range ambiguous, there will be multiple isorange rings
contributing to a given range bin.) A clutter scatterer directly on the radar
boresight is at a squint angle of 90° with respect to the velocity vector; therefore
the Doppler shift for that scatterer is zero. More generally, scatterers at an angle
of θ radians with respect to the antenna boresight will have a Doppler shift of
(2υ/λ)sinθ Hz. Note that there are two such patches that will produce the same
Doppler shift, one in the radar look direction, and one behind it in the
backlobes. The backlobes are often ignored due to low antenna gain in that
direction, but in some systems they must be considered. If the backlobe return is
ignored, there is a one-to-one relationship between AOA and Doppler shift for
clutter:



 FIGURE 9.10   Clutter contributing to the angle-Doppler spectrum.
 

(9.26)
 

or in normalized units

(9.27)
 
where T is the PRI and the notation ((·))1.0 indicates arithmetic modulo 1.0 due
to the use of discrete-time Fourier analysis. Echo from stationary ground clutter
that has a Doppler shift of FD Hz can therefore be presumed to be arriving at an
angle of θ radians with respect to the sidelooking antenna boresight.
Consequently, clutter echoes tend to fall on a diagonal ridge in a Doppler-sin θ
space as diagrammed in Fig. 9.9. The amplitude of ground clutter from different
AOAs is determined by the clutter reflectivity and antenna gain in that direction.
In homogenous clutter it is therefore largest near boresight and lower in the
sidelobes and backlobes of the antenna.

Equation (9.27) can be rewritten as



(9.28)
 
where β ≡ 2υT/d. β is the slope of the clutter ridge when plotted in (kθ, ωD)
coordinates. It also represents the number of times the clutter ridge spans the
range of –π to +π radians per sample (–0.5 to +0.5 cycles per sample) in
normalized Doppler as the AOA varies from –π to +π.

Because FD is proportional to sinθ rather than θ itself, the clutter ridge is a
straight line in Doppler-sinθ space; however, if plotted as a function of θ
instead of sinθ, the ridge curves visibly as the AOA approaches ±180°. This
effect is visible in Fig. 9.11a which is a simulation of the angle-Doppler
spectrum for a medium PRF radar. Two jammers are present, at approximately
–40° and +60°. The clutter ridge is diagonal through the center of the spectrum
but curves noticeably at ±60°. Also, the discrete time Doppler spectrum is
periodic with period equal to the PRF. Thus, if the magnitude of FD of Eq.
(9.26) exceeds PRF/2, the clutter ridge will alias. This effect is seen in Fig.
9.11b that simulates a low PRF angle-Doppler spectrum.



 FIGURE 9.11   Simulation of angle-Doppler spectrum. Amplitude is in dB: (a)
illustration of clutter ridge curvature and two jammers, (b) illustration of clutter
ridge aliasing. (Figure courtesy of Dr. W. L. Melvin, GTRI.)
 

The angle-Doppler characteristics of the echo from a (possibly) moving
point target depend on both the radar platform motion and the target motion.
Assuming the target RCS is small enough that detection is likely only if it is in



the radar mainbeam, the target can be presumed to be within a few degrees of
the radar boresight. The Doppler shift will depend on the total radial velocity. If
the target is stationary and directly on the boresight, the Doppler shift will be
zero and it will fold in with the clutter. However, if the target is moving, it will
separate from the clutter on the Doppler axis as shown in Fig. 9.9. This fact
illustrates a key reason for the interest in space-time processing techniques,
especially for the detection of relatively slow-moving ground targets (“slow
movers”). As seen in Chap. 5, if only Doppler processing is used, the target
Doppler shift must typically exceed the Doppler width of the clutter spectrum to
achieve a signal-to-interference ratio adequate for detection.
If the platform velocity is high or the mainbeam relatively wide, ground clutter
can fill most of the Doppler spectrum, making detection of slow movers very
difficult. Figure 9.9 shows that introducing spatial processing gives a second
dimension in which to separate the target from the clutter. Any Doppler shift of
the target echo causes it to compete with clutter arriving from a different AOA;
the added capability of filtering based on AOA then allows separation of target
and clutter having the same Doppler shift.

9.3   Space-Time Signal Modeling
Space-time adaptive processing applies vector matched filtering to the
combined slow-time/phase center data set in each range bin. It is usually
assumed that pulse compression, if used, has been applied prior to STAP
processing. The two-dimensional slice of the datacube in range bin l0, y[l0, m,
n], is called a space-time snapshot (or just snapshot) of the data. To proceed,
the N × M two-dimensional snapshot is converted to an NM × 1 = P × 1 column
vector by stacking the columns:



(9.29)
 
This process of converting the data from a given range bin to a one-dimensional
vector is illustrated in Fig. 9.12.

 FIGURE 9.12   Mapping of a datacube range bin to a two-dimensional space-
time snapshot and then to a one-dimensional vector.
 

Next, the filter weight vector h must be designed using Eq. (9.9) or (9.19).
The target model vector t = t(fD, θ) must represent the expected signal from a
target at some specific Doppler shift fDt and AOA θt of interest. Define a
temporal steering vector

(9.30)
 
This is simply the model for the slow-time data sequence corresponding to a
target at normalized Doppler frequency fDt. The two-dimensional snapshot of the
data from a target at Doppler fDt and AOA θt would have the temporal variation
o f at(fDt) in each row and the spatial variation of as(θt) in each column. The
snapshot therefore has the form of the outer product of as with at



(9.31)
 
where atm(fDt) is the mth element of at(fDt). When this matrix is vectorized by
stacking the columns, the result is the Kronecker product of the desired spatial
and temporal steering vectors (Guerci, 2002; Melvin, 2013):

(9.32)
 
Next, a model for the P × P covariance matrix SI of the interference is needed.
The interference is the sum of receiver noise (n), jammer (J), and clutter (c)
components. It is assumed that these are all uncorrelated with one another, with
the result that the total interference covariance is the sum of the covariances of
the three components, SI = Sn + SJ + Sc.

Receiver noise, as usual, is assumed to be i.i.d. zero-mean complex
Gaussian at each phase center and time sample so that , a scaled Pth-
order identity matrix. Now consider a single noise jammer signal. The spatial
variation was given in Eq. (9.14). The temporal variation can be modeled as

(9.33)
 
where the  are uncorrelated i.i.d. random variables with equal power .
The covariance of the jammer temporal variation is

(9.34)
 
If the AOA of the jammer is θJ0, the space-time data vector for the jammer
component is

(9.35)
 
and its covariance matrix can be shown to be (Ward, 1994)



(9.36)
 
which is a block-diagonal matrix. If R multiple uncorrelated jammers are
present, SJ is the sum of R terms of the form in Eq. (9.34), each with its own
AOA θJR.

The clutter signal is the sum of contributions from all of the clutter
scatterers within the isorange ring of interest (or multiple rings, if the system is
ambiguous in range). Strictly speaking, this is an integral of the pertinent
scatterers as with the angle-averaged reflectivity of Chap. 2. However, in STAP
the integrated clutter is generally approximated as the sum of Q elemental clutter
patches (see Fig. 9.10), each typically of an angular extent approximately equal
to the radar beamwidth. For clutter patch q, the space-time data vector becomes

(9.37)
 
where  represents the power of the θth clutter patch as determined by the
radar range equation.  is proportional to the antenna gain in the direction of
that patch G(qq). The normalized Doppler shift and AOA of the clutter patch are
related through Eq. (9.27). The total clutter vector is

(9.38)
 
The covariance matrix of the clutter is

(9.39)
 
This is an M × M block matrix, where each “element” of the block matrix is the
N × N cross-covariance of the spatial snapshots from two different PRIs. Sc can
be factored as (Ward, 1994)



(9.40)
 

The discussion of clutter so far assumes that it is uncorrelated in the spatial
dimensions (range and cross-range) but perfectly correlated in slow time. It is
indeed common to model the clutter as uncorrelated in space, assuming that
clutter patches are separated by a distance on the order of a resolution cell.
However, as discussed in Chap. 2 and again in the analysis of Doppler
processing in Chap. 5, the clutter echo from any given ground patch cannot be
reasonably modeled as constant in slow time over the time scale of a coherent
processing interval. Natural clutter exhibits reflectivity fluctuations in time due
to internal clutter motion (ICM, also called intrinsic clutter motion). This is
simply the physical movement of scatterers due to wind or waves. The radar
system itself contributes sources of temporal modulation such as antenna
scanning modulation or pulse-to-pulse instabilities. All of these temporal
reflectivity fluctuations cause a broadening of the clutter power spectrum and
cause decorrelation of the temporal snapshots.

ICM is easily incorporated into the model of Eq. (9.39) by replacing the
temporal snapshot for patch q, , with a modified temporal snapshot that
replaces the constant amplitude  with time-varying amplitudes , where

(9.41)
 
Let Aq be the covariance matrix of the temporal fluctuations αq; Aq is an M × M
Toeplitz matrix. The modified space-time data vector for the qth clutter patch is
then

(9.42)
 
and the clutter covariance matrix becomes

(9.43)
 
An alternative approach for modeling ICM using covariance matrix tapers is
described in Sec. 9.7.

Various models for the temporal correlation of the data are available in the
literature. One that is popular in STAP simulations is the Billingsley model
(Billingsley, 2001). This model assumes that the clutter temporal power
spectrum is the sum of a two-sided exponential function and an impulse at the



origin in Doppler frequency space:

(9.44)
 
where α is the ratio of the DC to AC components, and β is a parameter
dependent primarily on wind conditions.

The corresponding autocorrelation function is

(9.45)
 
Experimental data are available to choose the parameters α and β to fit various
scenarios distinguished by the type of clutter, radar wavelength, weather
conditions, and so forth. Simple autoregressive filters can be used to implement
the model in simulations (Mountcastle, 2004).

9.4   Processing the Space-Time Signal

9.4.1   Optimum Matched Filtering
Optimal space-time processing of the two-dimensional data snapshot consists of
the following steps. For a range bin of interest,

      1.  Form the interference covariance matrix SI. In practice, SI must be
estimated from the radar data, but discussion of this issue is deferred to
Sec. 9.4.4.

      2.  Select a Doppler shift and angle of arrival at which to test for the
presence of a target signal, and form the appropriate target space-time
steering vector t using Eq. (9.32).

      3.  Compute the optimal filter weight h using either Eq. (9.9) or (9.19),
depending on the normalization desired.

      4.  Form the space-time data vector y as illustrated in Fig. 9.12 and
described in Eq. (9.29).

      5.  Apply the weight vector to the data to obtain the test statistic z = z(fD, θ)
= hTy.

The test statistic can then be used for detection or for other purposes such as
angle estimation. If used for detection, typically |z| or |z|2 is computed and
compared to an appropriate threshold computed using the techniques of Chap. 6.



The previous procedure computes the optimum (maximum SIR) test
statistic for a single Doppler frequency and AOA and in a single range bin. It
therefore must be repeated for each Doppler and AOA of interest, and then for
each range bin. Within a given range bin the covariance matrix will remain
constant and can be reused, but steps 2 through 5 must be repeated for each (fD,
θ) combination. SI should ideally be recomputed for each range bin. Because the
product P = MN of the number of pulses in the CPI and the number of phase
centers in the antenna can easily be in the hundreds, the procedure above
implies solving a system of hundreds of linear equations for each Doppler-AOA
point of interest and each range bin.

While the optimum weight vector is given by , in practice it is often
desirable to include windowing of the data to reduce sidelobes as was done in
the spatial beamforming case in Fig. 9.3 and for Doppler processing in Chap. 5.
Combined angle-Doppler weighting can be included by computing the weight
vector as

(9.46)
 
where the windowed target steering vector is

(9.47)
 
a nd wf and wθ are the temporal and spatial weight vectors. That is, the
conventional steering vector t is multiplied by a space-time window vector that
is the Kronecker product of the desired Doppler and angle weighting functions.

9.4.2   STAP Metrics
A common metric used to visualize STAP filtering performance is the adapted
pattern (Ward, 1994). This is simply a two-dimensional plot of |z(fD, θ)|2 = |hTt|2
= hHt*tTh as fD and θ are stepped over a regular grid. If the array has uniformly
spaced phase centers and a constant PRI was used, the adapted pattern can be
computed as the two-dimensional DFT of the weight vector h after it is
remapped to a two-dimensional snapshot form, allowing the use of the FFT to
efficiently compute the pattern.5 However, the angle samples will be evenly
spaced in kθ rather than in θ itself. If it is preferred to display the pattern in
terms of fD and θ, one-dimensional FFTs can be applied to the temporal
dimension of h but the angle dimension samples must be computed individually
using one-dimensional DFTs at the non-uniformly spaced values of kθ that
correspond to uniformly spaced samples of θ.

Figure 9.13 illustrates the adapted pattern for an idealized example.6 The
case considered corresponds to a sidelooking radar at an RF of 675 MHz. The



platform velocity is 50 m/s and the PRF is 200 pulses per second. There are
eight phase centers spaced by λ/2 meters and eight pulses in the CPI so that M =
N = 8. Thus the clutter ridge slope β = 1.5 in this example. Jammers are present
at +30° and –44.43°, corresponding to normalized spatial frequencies of +0.25
and –0.35 cycles/sample. The clutter-to-noise ratio (CNR) is +40 dB, as is the
jammer-to-noise ratio (JNR) for both jammers. Part a of the figure shows the
loci of the jammer and clutter energy in angle-Doppler space. Part b of the
figure shows the resulting adapted pattern when a target is present at an AOA of
0° and a normalized Doppler shift of 0.2 cycles/sample. The adapted pattern
clearly shows vertical nulls at the two jammer AOAs and a three-part diagonal
null corresponding to the clutter ridge. The adapted pattern has a strong peak at
the target location of 0° and 0.2 cycles/sample. Because no windowing was
used in this example, high Doppler and spatial sidelobes are evident as
horizontal and vertical ridges extending from the peak. Figure 9.14 plots
Doppler and spatial cuts through the adapted pattern taken at the target
coordinates, showing the nulls in the spatial pattern at the jammer and clutter
locations and in the Doppler pattern at the clutter ridge location.



 FIGURE 9.13   (a) Clutter and jamming loci for idealized example: (b) adapted
pattern. See text for details.
 

 



 
FIGURE 9.14   Pattern cuts from the adapted pattern of Fig. 9.13: (a) Doppler
pattern, (b) spatial pattern. Both cuts pass through the actual target location; cut
lines are shown in Fig. 9.13b.
 

Another important class of metrics involves SIR when the interference is
noise only and when it is noise plus clutter and/or jamming. Metrics in this class
include SIR and SIR loss, which is the reduction in SIR for the clutter-plus-
jamming case compared to the noise-only case. Each of these is a function of
target angle and Doppler; typically they are plotted as a function of Doppler for
a fixed AOA.

Consider a target that produces an SNR of χt for a single pulse and phase
center, i.e., for a single sample of the two-dimensional snapshot. The optimum
SNR is then

(9.48)
 



The factor MN represents the coherent integration gain achievable by combining
the MN samples of the snapshot. The SIR is, from Eq. (9.17),

(9.49)
 
From Chap. 5, when using the optimum weight vector this becomes just

(9.50)
 
The SIR loss is then defined as

(9.51)
 
If the steering vector used in the STAP filter design exactly matches the target
Doppler and angle, SIRmax is used in Eq. (9.51); however, this definition of LSIR
can be used with suboptimal filter designs as well, in which case Eq. (9.49) is
used as the numerator of LSIR. Note that LSIR is defined here as a number less than
one (negative dB), in keeping with common practice in the STAP literature.

LSIR is a function of Doppler and angle of arrival. It is typically plotted as a
function of Doppler with the array steered in the correct target direction. Figure
9.15 is a plot of LSIR versus Doppler for the interference scenario of Fig. 9.13.
Each point on this curve is obtained by positing a target at the corresponding
Doppler shift and then evaluating Eq. (9.51) using the matched steering vector
for that target Doppler. When the target velocity is far from the clutter ridge, for
example |fD| > 0.3, the loss is minimal, about 0.7 dB at the plot edges. As the
target velocity nears the clutter at zero Doppler the losses increase, reaching
over 50 dB at fD = 0.



 FIGURE 9.15   SIR loss versus Doppler for the scenario of Fig. 9.13.
 

This plot serves as the basis for two additional metrics (Ward, 1994).
Minimum detectable velocity (MDV) is the velocity closest to the clutter notch
at which an acceptable SIR loss is achieved. Minimum detectable Doppler
(MDD) is the corresponding Doppler shift in either absolute or normalized
units. Clearly, MDV is λ/2 times the MDD in hertz or λ/2T times the MDD in
normalized frequency units of cycles/sample. The frequency at which the SIR
loss becomes acceptable is not necessarily symmetric about the clutter notch.
Using normalized frequency units, define the upper and lower MDD as

(9.52)
 
where L0 is the maximum acceptable loss threshold. This definition assumes that
the clutter notch is at fD = 0; it is straightforward to generalize it to clutter
notches at other frequencies. The MDD is then defined as the average of these
two offsets, taking into account the fact that MDD- is negative:

(9.53)
 

The choice of L0 is a system design decision. Based on radar range



equation considerations, L0 = –12 dB would correspond to a 50 percent
reduction in detection range, while L0 = –5 dB would correspond to a 25
percent reduction. In Fig. 9.15, a value of L0 = –3 dB has been selected. In this
example, this choice results in MDD+ = 0.115 and MDD- = –0.112, giving MDD
= 0.1135.

Another metric related to MDD is the usable Doppler space fraction
(UDSF). This is the fraction of the Doppler space over which the SIR loss is
acceptable, that is, LSIR > L0. UDSF is simply expressed in terms of the MDD in
normalized frequency units:

(9.54)
 
In the example of Fig. 9.15, UDSF = 0.773, that is, the SIR loss is considered
acceptable over 77.3 percent of the Doppler spectrum.

As a final example, Fig. 9.16 shows the adapted patterns obtained with the
optimum filter for the two interference environments of Fig. 9.11. In the medium
PRF case, there are now two vertical nulls in the Doppler dimension where the
jammer energy was located. In addition, the STAP processing has implemented
an S-shaped null 7 to follow the clutter ridge and attenuate the clutter energy.
The large response at approximately FD = 400 Hz and θ = 0° is a target that was
not visible in the original data. The two vertical ridges of energy in Doppler and
angle are the sidelobes of the target response. Similarly, the low PRF case
shows the ability of STAP to implement a three-part null to remove aliased
clutter, again revealing a hidden target.



 FIGURE 9.16   Result of optimal STAP processing of data in Fig. 9.11: (a)
medium PRF case with clutter and two jammers, (b) low PRF case with aliased
clutter. (Figure courtesy of Dr. W. L. Melvin, GTRI.)
 

9.4.3   Relation to Displaced Phase Center Antenna Processing
Section 5.7 introduced displaced phased center antenna processing in the
context of slow-moving target indication from a moving radar platform. DPCA



processing combines data from multiple pulses and multiple antenna phase
centers to form a clutter-cancelled output; as such, it appears to be related to
STAP processing. To identify this connection, consider nonadaptive DPCA
processing using two phase centers separated by a distance dpc so that N = 2.
Assume that the DPCA condition is met with a time slip of Ms pulses; that is

(9.55)
 
The space-time snapshot in two-dimensional form is therefore a 2 × M array,
with spatial index n = 0 corresponding to the fore phase center and n =1
corresponding to the aft phase center as shown in the upper portion of Fig. 9.17.

 FIGURE 9.17   Schematic diagram of two-dimensional space-time snapshot for a
DPCA processor, and its decomposition into sub-CPIs.
 

A nonadaptive DPCA processor is constrained to be of the form

(9.56)
 
where yf [m] and ya[m] are the fore and aft phase center outputs, respectively. It
is sufficient to work with a single “sub-CPI”, i.e., an interval of Ms pulses, that
spans the two pulses combined in the DPCA processor. The complete CPI
snapshot is then constructed of a series of M – Ms overlapping sub-CPIs as



shown in the bottom portion of Fig. 9.17 for the case Ms = 2. The weight vector
h1 that implements Eq. (9.56) for a single sub-CPI and the corresponding weight
vector h for the entire CPI are shown in Fig. 9.18 in two-dimensional form.

 FIGURE 9.18 Full-CPI weight vector h and sub-CPI weight vector h1.
 

Viewed as a two-dimensional discrete function, the sub-CPI weight vector
h1 can be written as

(9.57)
 
The adapted pattern is the two-dimensional DTFT of this function:

(9.58)
 
Note that this function has a zero at ωD = kθ/Ms = βkθ, which is exactly the
expression for the clutter ridge in Eq. (9.28). Figure 9.19 shows |H1(fD, kθ)| for
the case Ms = 2. Clearly, the DPCA processor implements a null along the
clutter ridge. Repeating the single sub-CPI DPCA process for the additional
sub-CPIs within the total CPI simply provides coherent integration by a factor of
M – Ms. On the other hand, the constrained form of the weight vector [Eq.
(9.57)] prevents any combining of samples from different phase centers on the
same pulse so that the DPCA processor cannot provide any spatial beamforming
capability. As a result, DPCA processing can cancel the clutter but not jammers.



 FIGURE 9.19   Adapted pattern for nonadaptive DPCA processor with Ms = 2.
 

The model of Eq. (9.58) implicitly assumes an omnidirectional antenna
pattern for each of the antennas or subarrays that form the DPCA phase centers.
A more realistic model that accounts for the subarray patterns can be obtained
by repeating the analysis with the output from each phase center filtered in angle
by the antenna pattern of the antenna or subarray that forms that phase center.
Denoting the fore and aft subarray antenna patterns as Ef (kθ) and Ea(kθ),
respectively, Eq. (9.58) can be generalized to

(9.59)
 
where the last step holds only if Ef(kθ) = Ea(kθ). If the two patterns differ, the
first line of Eq. (9.59) shows that there will not be a null at the clutter ridge
location as desired. This emphasizes the need for carefully matched subarray
patterns in DPCA processing.

Adaptive DPCA improves on these results by applying the vector matched
filtering framework as described in Sec. 5.7.2. The adaptive DPCA processor
is still constrained to a weight vector structure that prohibits combining of phase



center outputs from the same pulse and therefore, like nonadaptive DPCA,
provides no spatial beamforming. In addition, the use of the target model t = [1
0]T provides a result that is optimized “on average” over all target Doppler
frequencies, rather than for any specific target Doppler.

9.4.4   Adaptive Matched Filtering
I n Chap. 6 it was seen that the knowledge of the interference power was
required to set the detection threshold. CFAR techniques were introduced to
estimate the noise level from the radar data. Exactly the same issue exists with
STAP processing, which requires knowledge of the interference covariance
matrix SI to compute the optimal weight vector h and perform the matched
filtering. Again, it is not realistic to assume that SI can be known a priori, so it
must be estimated from the radar data.

The most common approach to STAP when SI is unknown is called the
sample matrix inverse (SMI) method (Ward, 1994). This technique is exactly
analogous to cell-averaging CFAR. Figure 9.20 illustrates a datacube with the
cell under test (CUT) indicated, as well as a number of adjacent range bins. The
data in these reference cells adjacent to the CUT are assumed to consist of
distributed i.i.d. interference having the same statistics as the interference in the
CUT. It is also assumed that the reference cells do not contain any target
signals.8 Consequently, they can be used to compute a sample mean estimate of
SI, denoted ŜI. Specifically, the sample covariance of the data from a single
reference cell is

 FIGURE 9.20   Datacube showing selection of reference cells for estimating the
interference covariance matrix.



 

(9.60)
 
If LS reference cells are used, the estimate of SI is simply

(9.61)
 
Note that filter weight vectors computed using ŜI instead of SI will be
suboptimum because of the imperfect interference estimate.

The reduction in SIR due to the use of ŜI instead of SI is denoted by LCFAR.
It has been shown to be a beta-distributed random variable with expected value
(Reed et al., 1974; Nitzberg, 1984)

(9.62)
 
Note that, as defined, E(LCFAR) will be less than one (negative dB). It is plotted
as a function of Ls/P, the size of the reference window relative to the number of
DOF (snapshot size), in Fig. 9.21. This figure shows that the number of
reference cells must be twice the number of DOF in the processor to limit the
loss due to covariance estimation to 3 dB. To limit the loss to 1 dB requires Ls
> 5P. The conclusion that the reference window size should usually be two to
five times the snapshot size is known as the “Reed-Mallet-Brennan” or RMB
rule. The shape of the curve is a very weak function of P; the example shown is
for P = 256, corresponding for example to a system with N = 8 phase centers
and M = 32 pulses in the CPI. These results apply only when there is no
mismatch between the actual target steering vector and the model vector t used
in the filter design; this also implies no use of windowing for reduced
sidelobes. Generalizations of Eq. (9.62) for mismatched and windowed target
model vectors are discussed in Boroson (1980) and Kelly (1989).



 FIGURE 9.21   RMB estimate of SIR loss due to estimation of covariance matrix
SI for P = 256.
 

Once the covariance matrix has been estimated, the weight vector is
computed in the usual fashion. One particular choice of the scale factor κ of
interest when using a square-law detector is the adaptive matched filter (AMF)
(Kelly, 1986; Chen and Reed, 1991; Robey et al., 1992)

(9.63)
 
Notice the similarity to Eq. (9.19). With this choice, the filter output becomes

(9.64)
 
It can be shown that a threshold test applied to this test statistic exhibits CFAR
behavior. It is also claimed that the AMF is more robust to targets in the training
data than alternative tests such as the generalized likelihood ratio test
(Steinhardt and Guerci, 2004).

The adapted pattern when using the SMI technique is subject to pattern
degradations such as elevated sidelobes and distorted mainbeams, especially
when Ls is relatively small. In addition, the pattern may vary from update to



update, a condition called weight jitter. If Ls < P, then ŜI may also become
nonsingular. A common extension of the basic SMI technique that addresses
these issues is diagonal loading, in which a bias term is added to the diagonal
elements of the estimated covariance matrix (Carlson, 1988):

(9.65)
 

Since diagonal loading adds a factor that has the same structure as the
covariance matrix of white noise, its effect is to increase the apparent noise
floor of the data. The loading factor ε is typically set 10 to 30 dB above the
actual noise level  (Kim et al., 1998). Diagonal loading tends to ensure
nonsingularity of ŜI and reduce distortion of the adapted pattern, but also
reduces the depth of the nulls (Guerci, 2003).

9.5   Reduced-Dimension STAP
It was shown in Sec. 9.1.3 that preprocessing of the element data could be used
to reduce the dimensionality of the adaptive processing equations. The same
technique can be applied to STAP processing. However, reduced-dimension
processing is especially important in STAP because the snapshot dimensionality
can be quite large, possibly in the hundreds. This aggravates two problems.
First, the RMB rule states that the number of reference range bins required to
maintain acceptable losses due to covariance estimation is on the order of 2P to
5P. Consequently, complex systems (many phase centers, long CPIs) can have
long reference windows, with the result that the training data are very unlikely
to be statistically homogeneous as assumed in the SMI algorithm due to terrain
variations. Second, the computational load is of order P3. Reducing the
dimensionality by only a factor of two produces nearly an order of magnitude
reduction in computational load in solving the SMI equations. Increasing it by a
factor of two for better performance (for instance, by reducing straddle losses
or covariance matrix estimation losses) would similarly increase the load by
nearly an order of magnitude.

Because STAP operates on two data dimensions, preprocessing can be
applied in the slow-time dimension, phase center dimension, or both. Figure
9.22 illustrates a taxonomy of reduced dimension STAP techniques based on the
choice of preprocessing options (Ward, 1994). There are many variants of each
general class. As an example, Fig. 9.23 illustrates a particular variant of the
beamspace post-Doppler class of STAP processors. DFTs in both dimensions
are used to form a grid of fixed angle-Doppler bins. For a given target model
vector t, adaptation is performed using only a small number of angle and
Doppler bins around the target AOA and Doppler frequency, analogous to the



earlier example of adaptive beamforming using DFT beamspace preprocessing.
Beamspace post-Doppler architectures can isolate the interference in both angle
and Doppler and substantially reduce the order of the SMI equations. Typical
implementations use three to five bins in each of the Doppler and angle
dimensions, giving nine to 25 total degrees of freedom.

 FIGURE 9.22   Taxonomy of reduced-dimension STAP algorithms. (After Ward,
1994.)
 

 



 
FIGURE 9.23   Structure of a particular beamspace post-Doppler STAP
processor.
 

9.6   Advanced STAP Algorithms and Analysis
Only the most basic STAP algorithm, the SMI approach based on the vector
matched filter, has been introduced in this chapter, and only metrics related to
the adapted pattern and SIR have been used to evaluate its performance. A
deeper understanding of the character of the interference and the behavior of
STAP algorithms requires analysis of the eigenstructure of the signal
environment, a topic beyond the scope of this book but thoroughly covered in
texts devoted to STAP such as (Klemm, 2002; Van Trees, 2002; and Guerci,
2003). The latter includes (p. 112) a taxonomy of modern STAP algorithms
proposed for radar data.

A number of ideas in advanced STAP are based on the realization that the
covariance matrix of neither the clutter or the jammers is full rank. For instance,
the rank of an ideal covariance matrix for J independent jammers is MJ (Guerci,
2003). The rank of the clutter-only covariance matrix under ideal conditions (no
crab, constant velocity) can be estimated as (Brennan and Staudaher, 1992)



(9.66)
 
where β is the clutter ridge slope of Eq. (9.28). Because β is usually in the range
of zero to three, this is well below the full rank P = NM. Thus, both the clutter
and jamming signals can be represented with a relatively few basis vectors in
the P-dimensional signal space. Eigenanalysis provides a convenient means for
decomposing the signal components, defining a reduced-dimension
representation, and analyzing the performance of the resulting algorithms.

This approach leads to algorithms that are fundamentally different from the
SMI approach. Suppose that the combined clutter and jamming covariance
matrix has Q dominant eigenvalues, with the remainder at or near the noise floor
eigenvalue level. The principal components (PC) method forms the adaptive
filter weight vector as a linear combination of the Q eigenvectors corresponding
to the dominant eigenvalues, with weights related to the eigenvalue associated
with each eigenvector used. The PC method and similar subspace projection
techniques can construct high quality adapted patterns without the degradation of
sidelobes that often occurs with SMI techniques when estimated covariance
matrices are used. Furthermore, because the filter vector is derived from only Q
eigenvectors, these algorithms provide another means of dimensionality
reduction. Algorithms based on projecting data into lower-dimensional spaces
are generally called reduced rank STAP techniques (as opposed to the reduced
dimension techniques of Sec. 9.5).

Even with effective rank reduction, the nonstationarity and heterogeneity of
the data due to error effects to be discussed in Sec. 9.7, and more fundamentally
to variations in the physical clutter scene over the reference windows, remain
major limiting factors in STAP performance. Significant research effort has
been focused on knowledge-aided (KA) STAP (Weiner et al., 1998; Guerci,
2002). KA STAP attempts to use auxiliary sources of information to improve
the interference covariance estimate for the cell under test. For example, map
data can be used to identify changes in terrain type, roadways, and other
variations in the characteristics of the clutter in the reference cells.
Preprocessing algorithms can then excise some cells from the covariance matrix
estimation process in an attempt to provide a more homogeneous set of training
data and an estimate of ŜI more consistent with the actual covariance matrix SI
in the cell under test. The high level architecture of one KA STAP system is
shown in Fig. 9.24. The knowledge-aided preprocessing edits or modifies the
data-cube to provide a modified datacube with more homogeneous statistics.
Any of the conventional STAP algorithms can then be applied to cancel the now
better-behaved clutter. In another example, digital terrain elevation data
(DTED) maps can be used along with terrain type maps to predict clutter
characteristics. In-band electromagnetic interference  (EMI) can be identified
using data on known emitters such as television stations and wireless services



that may corrupt portions of the radar frequency band. The EMI can then be
removed by prefiltering of the data in the receiver.

 FIGURE 9.24   Basic architecture of a knowledge-aided STAP processor. (After
Guerci, 2002.)
 

9.7   Limitations to STAP
In Chap. 5 it was seen that the performance of MTI is degraded by several
factors, some internal to the radar system and some external to it. Internal
factors include pulse-to-pulse variability in pulse amplitude, oscillator phase
drifts, I/Q channel errors, and antenna scanning modulation. External factors are
principally internal clutter motion and clutter heterogeneity.

All of these factors also degrade STAP performance, but additional
complications exist due to the multi-phase center radar and the moving platform.
For instance, mismatches will exist among the N channels of the receive array.
These can be classified further as angle-independent mismatches, which are
differences in the frequency responses Hn(Ω) of the channels, and angle-
dependent mismatches. The latter arise from a variety of sources, including
element placement errors, wideband dispersion, and mutual coupling of
elements. Platform motion effects such as misalignment of the array face with
the platform velocity vector due to platform crab angle create additional
degradations. Because adaptive weights are not generally updated every CPI,
changing geometry between the moving platform and stationary or moving
jammers can cause a jammer to move out of the adapted filter null until the
weights are updated again, a phenomenon referred to as the “stale weights”



problem.
All of these effects tend to increase the rank of the interference covariance

matrix, a phenomenon called interference subspace leakage (ISL) because the
expanded rank implies that the size of the subspace required to represent the
interference is increased. The rank increase implies an increase in reference
window size requirements. Many ISL effects can be modeled as covariance
matrix tapers (CMTs) applied to the true covariance matrix. A CMT is a P × P
matrix G that combines with the ideal interference covariance matrix in a
Hadamard product to give a modified and higher-rank covariance matrix:

(9.67)
 
G, in turn, can often be modeled as the Hadamard product of several component
CMTs representing different ISL effects (Guerci, 2003),

(9.68)
 
for some number G of component effects. A one-dimensional example of this in
adaptive beamforming defines an N-element CMT vector as samples of a sinc
function (Mailloux, 1995; Zatman, 1995). Applying this CMT to the estimated
covariance matrix widens the interference notch in the adapted pattern,
providing increased immunity to the stale weight problems caused by changing
jammer AOAs. As another example, in the space-time case it can be shown that
an appropriate CMT for angle-independent channel mismatch is the weighted
sum of a matrix of all ones and an identity matrix (Guerci, 2003). CMTs can
also be used to represent the effects of internal clutter motion. A CMT based on
the Billingsley model, discussed earlier, is obtained by sampling Eq. (9.45):

(9.69)
 
where T is the PRI.

However defined, CMTs can be used in at least two ways. The first uses
the CMT in Eq. (9.67) to improve the model of the interference covariance in
standard STAP algorithms. The second develops new algorithms that take
account of the covariance structure, including the CMT component, to provide
improved performance. Examples are given in Guerci (2003).

As noted earlier, clutter heterogeneity is an especially significant concern
in STAP because of the large reference window size often required. Losses due
to clutter heterogeneity can range from an insignificant 0.1 dB to as much as 16
dB for realistic scenarios (Melvin, 2000). Approaches to combating these
losses include reduced dimension and reduced rank techniques described



previously to limit reference window size, and knowledge-assisted algorithms
to improve the homogeneity of the data used to estimate the clutter covariance in
the cell under test.
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Problems
  1.  Equation (9.8) gave the beamformer response as a function of AOA θ when

the array is steered to angle θ0. Let d = αλ/2 for some integer α. Show that
the magnitude of the pattern z(θ) will have peaks at α different AOAs θ0 in
the interval (–π/2, π/2].



  2.  Verify that the pre-beamforming SIR in the example of Fig. 9.4 is –50.04
dB.

  3.  Consider an adaptive beamformer with N = 2 phase centers in an
interference environment consisting of noise and one jammer. The noise
and jammer powers are  and . The jammer AOA is θJ radians. Define
the noise-to-jammer ratio as . By factoring out the jammer
power, write the total interference covariance matrix in terms of , NJR,
and θJ.

  4.  For the beamformer and interference environment in the previous problem,
compute the optimum matched filter vector h as a function of the target
angle θt. All overall scale factors, for instance those resulting from matrix
inversion, can be ignored. What is the form of h as NJR → 0 (i.e., the
jammer dominates the interference)? Now let the target angle θt → θJ. What
is the form of h in this case? Interpret the result.

  5.  Now assume that NJR → ∞ (noise limited environment) in Problem 4.
Determine the limiting form of h for this case. Interpret the result.

  6.  Suppose the interference covariance matrix for a second-order (N = 2)
adaptive beamformer is

 
        Find the matrix square root V such that SI. = V∙V. Hint: At least one valid

V is of the form:

 
        Use this information to find the values of a and θ. (Systematic ways to find

V without assuming a particular structure for V use the eigenvalues and
eigenvectors of SI or its Cholesky decomposition and are not covered
here.)

  7.  Compute  using the first form of the second line of Eq. (9.21) and show
that it is an identity matrix to verify that applying the transformation V
whitens the interference covariance matrix SI of the previous problem.
MATLAB® or a similar computational tool can be used for the
calculations.

  8.  Sketch the STAP clutter ridge in (kθ, ωD) coordinates assuming the
following system parameters: υ = 150 m/s, T = 1 ms, d = 0.3 m, and F0 = 1



GHz. What is the value of the clutter ridge slope β in this case? Repeat for
d = 0.15 m and T = 0.25 ms. Plot the ridge for the range of kθ
corresponding to AOAs of –π to +π.

  9.  Write out explicitly the target steering vector t of Eq. (9.32) for a small
case with M = 3 pulses and N = 2 phase centers. The target vector should
be steered to an angle of θt = 30° and fD = 0.25 cycles per sample. Assume
d = λ/2.

10.  Consider a small STAP radar system operating at X band (10 GHz) with M
= 4 slowtime samples in the CPI and N = 2 phase centers. The goal is to
compute the optimum matched filter coefficients for detecting a target
directly on boresight of the antenna (θt = 0°) and having a normalized
Doppler shift of fDt = 0.25 cycles per sample.

         a.   What is the temporal steering vector for the target, at? Simplify the
resulting expression (e.g., ejπ = –1).

         b.   What is the spatial steering vector for the target, as? Simplify.
         c.   What is the complete target model vector t?
11.  For the STAP system in the previous problem, assume the interference is

white noise with power  only (no clutter, no jammers). What will be the
optimum beamforming filter coefficient vector h? Do not simplify or
combine constants.

12.  According to the RMB rule, how many range bins should be used in the
STAP system of Prob. 10 to estimate the interference covariance matrix 
so that the mismatch loss is less than 1 dB? Use the exact formula of Eq.
(9.62). How does the exact result compare to the rule-of-thumb estimate?

13.  Verify that for a uniform linear array and constant PRI, computing the
adapted pattern of a STAP processor over a uniform grid in fD and kθ is
equivalent to computing the magnitude squared of the two-dimensional
DFT of the outer product of the weight vector when it is remapped to a
two-dimensional function.

14.  Using MATLAB® or another computational tool, compute the adapted
pattern for the case of noise interference only and the target parameters
from Prob. 10. Let κ = 1 and assume no windows are used for sidelobe
control in either Doppler or angle. Use a two-dimensional DFT of size 30
× 30 or larger to get reasonable detail in the pattern.

15.  Consider the optimum weight vector for the jammer cancellation example of
Prob. 4 for the general case (NJR neither zero nor infinite) as a function of
NJR when θt = θj, i.e. at the null. What is the expected value of the output
power |z|2 when the input is a jammer signal from angle θJ? The jammer
signal can be modeled using Eq. (9.13) or (9.14).



16.  Recompute E{|z|2} for the conditions of Prob. 15, but with a diagonal
loading matrix of  added to the covariance matrix. Is the output power
from the jammer input increased, unchanged, or decreased?

_____________
1 Most STAP literature defines the filter according to z = hHy. The convention z = hTy is retained here for
consistency with the discussion of vector matched filtering in Chap. 5 and the usual definition of convolution
in DSP literature. A consequence is that the forms for h obtained here are the conjugate of the results in
common STAP literature.
2 Not to be confused with the variable u used for cross-range platform position in SAR in Chap. 8.
3 Effective jamming therefore requires knowledge of the victim radar frequency and bandwidth. Unless the
jammer has a priori knowledge of the precise portion of the band used by the radar or can estimate it by
detecting and analyzing the radar signal, it must spread its energy over a bandwidth wider than that actually
used by the radar.
4 These results generalize readily to non-side-looking cases, but for simplicity only the sidelooking case is
considered in this chapter.
5 Note that the DFT will compute the pattern in terms of , not kθ.
6 Figures 9.13 through 9.15 were generated using LL_STAP©, a MATLAB® program for demonstrating
basic STAP patterns developed by Massachusetts Institute of Technology Lincoln laboratory (MIT/LL)
7 The null would follow a straight line in (fD, sinθ) space.
8 If desired, guard cells can be included immediately adjacent to the CUT to prevent target contamination of
the interference estimate.



APPENDIX A
Selected Topics in Probability and Random

Processes
 

A-1.A   Probability Density Functions and Likelihood
Functions

The reader is assumed to be familiar with the concept of the probability density
function (PDF) px(x) for a continuous random variable x. In brief, the PDF
describes the range of values x may possibly take on and the probability that x
falls in a particular interval. Specifically, the probability that x falls in the
interval x1 to x2 is computed as

(A.1)
 
Setting x1 = x0 – Δx/2 and x2 = x0 + Δx/2 and taking the limit as Δx → 0 shows
that the probability that x falls in a narrow interval around the value x0 is

(A.2)
 
This equation shows that the probability that x ≈ x0 is proportional to the PDF
evaluated at x0. Thus the PDF tells us not only the range of x but also the relative
probability of observing a measurement of the random variable near a given
value of x. For example, a uniform PDF over the interval [0,1] dictates that the
random variable described by that PDF will never take on a value less than zero
or greater than one, but that a value in any small interval in between those limits
is equally probable. On the other hand, a zero-mean, unit-variance Gaussian
PDF indicates that the random variable so described could take on any real
value whatsoever. However, values near zero are much more probable than
values greater than +3 or less than –3. The symmetry of the PDF also implies
that positive and negative values are equally probable.

Another specific example of Eq. (A.1) of importance in radar is the
probability that x exceeds some threshold value T, a calculation that arises
frequently in detection theory. This is the probability that x lies between T and
+∞,



(A.3)
 
and is often described as a “right-tail probability” because it is the area under
the right-hand tail of the PDF, from T to +∞.

A possibly less familiar use of the PDF is as a likelihood function, an
interpretation important in estimation theory. Consider a Gaussian random
variable x with mean A and variance σ2, x ~ N(x; A, σ2).1 The PDF is

(A.4)
 
x might model a noisy measurement of a fixed value A. Suppose that Eq. (A.4) is
known to be an appropriate model for the PDF of x, and that the parameter σ2 is
known but A is not. Suppose it is desired to estimate A from a measurement of x.
Consider a plot of the PDF as a function of A for a given known value of σ2 and
an observed value of x, e.g., x = 3. Denoting this “likelihood function” as ℓ(A|σ2,
x = 3) gives

(A.5)
 
Figure A.1a plots ℓ(A|σ2, x = 3) for σ 2 = 1. Again, note this is a function of A,
not of x; the value of x is fixed by the measurement that has been made. This plot
indicates that the most likely value of A, given that x = 3, is A = 3. Figure A.1b
shows why this is the case. It plots px(x), now as a function of x, for two
different values of A. When A = 3, the probability that the measured value of x
will be in a small neighborhood of width Δx around the value 3 is, from Eq.
(A.2), approximately px(3)·Δx = 0.399·Δx· For any other value of A that
probability is less. For instance, when A = 6, the PDF px(x) shifts to the right
and the probability that x is close to 3 will be px(3)·Δx = 0.004432·Δx, nearly
two orders of magnitude lower. Clearly, the estimate of A that will produce the
highest probability of the observation x = 3 is, for this simple problem, A = 3,
the peak of the likelihood function. The estimate of A obtained by choosing the
value that maximizes the likelihood function for a given observed x is called the
maximum likelihood estimate.



 FIGURE A.1   (a) The likelihood function of Eq. (A.5) when the observed x = 3
and σ2 = 1. (b) The PDF of x when A = 3 and A = 5.
 

Any monotonically increasing transformation can be applied to the
likelihood function without changing the value of A which maximizes it. In many
problems of interest, the log-likelihood function ln[ℓ(·|·)] is convenient to work
with. Continuing the above example, the log-likelihood function is



(A.6)
 
Differentiating Eq. (A.6) with respect to A and setting the result equal to zero
quickly gives A = 3 as the maximum likelihood estimate again.

A-2.A   Important Probability Distributions in Radar
Many probability distributions have been used in modeling radar target and
interference signals, and their number and sophistication is constantly increasing
in attempts to better model observed phenomena. This section provides basic
information on some of the most commonly encountered distributions in radar
signal processing. The focus is PDFs most commonly used to represent the
signal power (magnitude-squared), voltage or amplitude (magnitude), and phase
of complex-valued radar receiver output signals. The corresponding
characteristic functions, useful in calculating the distributions of sums of random
variables, are given as well in several cases. The use of these distributions in
radar signal modeling and the many extensions and modifications made for that
purpose are discussed in the appropriate chapters. Most of the results in this
section can be found in Papoulis and Pillai (2001) and Omura and Kailath
(1965).

A.2.1   Power Distributions

Chi-Squared, Exponential, Erlang, and Gamma
Chi-squared distributions have a long history in modeling the power of radar
target and interference signals. For example, versions of the chi-squared PDF
are used for the Swerling target models and the standard model of white noise.
The Erlang PDF is a generalization of the chi-squared PDF, and the gamma PDF
is a generalization of both. The exponential PDF is a special case of the chi-
squared and thus of the gamma and Erlang as well. This section describes the
relationship between these four PDFs.

Consider a random variable x with mean and variance  and . The
common definition of the chi-squared PDF with N degrees of freedom (DOF)
(also called the chi-squared of duo-degree N) is

(A.7)



 
where the notation χ2(x; N) has been defined to indicate that the random variable
x has a χ2 PDF with parameter N. The mean and variance of x are

(A.8)
 
The N-DOF chi-squared PDF arises in radar as the PDF of a random variable x
that is the sum of the squares of N independent zero-mean, unit-variance
Gaussian random variables:

(A.9)
 
where the xi are i.i.d. and xi ~ N(x; 0,1). Of particular interest are the cases N =
2 and N = 4 because of their use in the Swerling target RCS fluctuation models
(see Chap. 2).

It is more useful to consider a slight generalization that allows for an
arbitrary mean. Recall that for a general random variable x, the PDF, mean, and
variance of the new random variable y obtained by the linear transformation y =
ax + b are related to those of x according to

(A.10)
 
If all the xi in Eq. (A.9) have variance σ2 instead of 1, the new sum-of-squares
variable x′ = σ2x so that the PDF of x′ is (dropping the “prime” in the notation)

(A.11)
 
with mean and variance

(A.12)



 
This generalized chi-squared PDF in Eq. (A.11) is a function of two parameters
(N and σ2) rather than just one (N).

Figure A.2a illustrates the chi-squared PDF for various values of N. In this
plot, the variance of the underlying Gaussian random variables has been set to
σ2 = 1/N so that all the PDFs have a common mean . Notice that as N
increases, the PDF becomes more Gaussian in shape, as would be expected for
the sum of a large number of random variables of any distribution.



 FIGURE A.2   The central and noncentral chi-squared families of PDFs: (a)
central chi-squared PDFs with unit mean and varying N, (b) noncentral chi-
squared PDFs with σ2 = 1, N = 10, and varying noncentrality parameters λ.
 

The characteristic function (CF) of a PDF px(x) is defined as



(A.13)
 
The CF is essentially the Fourier transform of the PDF, though with the sign of
the complex exponential chosen opposite from the definition commonly used in
electrical engineering texts. The CF corresponding to the generalized chi-
squared PDF is

(A.14)
 

The exponential PDF with mean γ, Exp(x; γ), is

(A.15)
 
The mean and variance of x are

(A.16)
 
Its characteristic function is

(A.17)
 
The exponential PDF is a special case of the generalized chi-squared with N =
2. This choice reduces it to a single-parameter distribution. In order that the
mean of the exponential variate be γ when N = 2, it is necessary that γ = 2σ2.
Thus, Exp(x;γ) = χ2(x; 2, γ/2).

In radar, the exponential PDF most often arises in connection with the
standard model of noise in a coherent radar receiver. If the I and Q channel
noise processes are assumed to be i.i.d. N(x; 0, σ2), the magnitude-squared of
the complex noise (noise power) is the sum of the I and Q voltages squared and
so will be distributed as χ 2(x; 2, σ2). The Swerling 1 and 2 target fluctuation
models also use the exponential PDF to describe the RCS fluctuations of a target
having many scatterers with none dominant, as discussed in Chap. 2.

The gamma PDF Γ(x; α, β) is a more general distribution that includes the



chi-squared and exponential as special cases, but can fit a wider range of
experimental data. It is

(A.18)
 
where Γ(·) is the usual gamma function. The mean and variance of x are

(A.19)
 
The CF corresponding to the gamma PDF is

(A.20)
 
The generalized chi-squared PDF is related to the gamma PDF as χ2(x; N, σ2) =
Γ(x; N/2, 2σ2). Since Exp(x; γ) = χ2(x; 2, γ/2), it follows also that Exp(x; γ) =
Γ(x; 1, γ).

The Erlang or Erlang-k PDF is sometimes mentioned in radar signal
modeling. It lies between the gamma and generalized chi-squared models in that
it restricts the parameter α of Γ(x; α, β) to an integer value k. The parameter β is
arbitrary but is usually expressed in the form 1/λk for integer k and some λ. With
this choice, the Erlang PDF E(x; k, λ) = Γ(x; k, 1/λk) is

(A.21)
 
Recall that Γ(k) = (k – 1)! for integer k. The mean and variance of x are

(A.22)
 
and the characteristic function is



(A.23)
 

Noncentral Chi-Squared
The χ2(x; N, σ2) distribution is also called the central chi-squared with N
degrees of freedom. The traditional noncentral chi-squared PDF with N degrees
of freedom, , describes the sum of squares of normal random variables
with different, nonzero means but identical unit variances:

(A.24)
 
with the xi ~ N(x; μi, 1). The resulting PDF is

(A.25)
 
where the noncentrality parameter λ is defined as

(A.26)
 
and is the magnitude-squared of the vector of means μ = [μ1 --- μN]T. Ia(·) is the
modified Bessel function of the first kind and order α.

Again, it is useful to slightly generalize this to the case where the xi all
have the same non-unit variance σ2. This is done by scaling the xi by the factor σ
so that now xi ~ N(x;σμi,σ2). The new sum variable and noncentrality parameter
are

(A.27)
 
Applying these scalings to Eq. (A.25) and again dropping the primes from the
notation, the generalized noncentral chi-squared PDF is



(A.28)
 
with mean and variance

(A.29)
 
and characteristic function

(A.30)
 
This PDF reduces to the (central) chi-squared when λ = 0 and approaches a
Gaussian as N → ∞. Figure A.2b illustrates the noncentral chi-squared PDF for
fixed values N = 10 and σ2 = 1 and various values of λ. The nonzero mean of the
noncentral chi-squared PDF allows modeling of signal statistics when the
underlying complex data includes a persistent component.

Weibull and Log-Normal
The Weibull and log-normal distributions are used when longer-“tailed” PDFs
are needed, implying that the phenomenon being modeled has a higher rate of
occurrence of large values than predicted using the distributions above. Such
data is often referred to as being “spiky.” They have become popular for
modeling land and sea clutter returns at shallow grazing angles, especially at
finer resolutions and higher radar frequencies. They are sometimes used to
model fine resolution, high frequency target echoes as well.

One common form of the Weibull PDF is

(A.31)
 
The mean, median xm, and variance of x are



(A.32)
 
The Weibull characteristic function is

(A.33)
 

The parameter α is called the “shape parameter,” while β is the “scale
parameter.” As α varies from 1 to 2, the Weibull varies from an exponential
PDF to a Rayleigh PDF. However, α is not restricted to that range; it can take on
any non-negative value. Figure A.3a illustrates the Weibull PDF with xm = 1 and
several values of the shape parameter.



 FIGURE A.3   The “long-tailed” Weibull and log-normal families of PDFs: (a)
Weibull PDFs with a unit median and varying shape parameters, (b) log-normal
PDFs with unit median and varying values of β2.
 

The log-normal PDF describes a random variable whose logarithm (in any
base) is normally distributed:



(A.34)
 
Its mean, median, and variance are

(A.35)
 
Figure A.3b illustrates the log-normal PDF with xm = 1 and several values of β
2.

Power Distribution for K-Distributed Amplitude
The K distribution is also used for modeling spiky clutter and targets. It is
generally discussed in terms of amplitude (voltage) rather than power in radar
literature, and so the main definition and discussion are deferred to the next
section. Since power x is the square of amplitude y, and y is nonnegative,
applying the transformation  to Eq. (A.49) gives the following
PDF for the power of a random variable with a K-distributed amplitude:

(A.36)
 
The shape and scale parameters a and c are described with the K distribution in
the next section.

A.2.2   Voltage Distributions
Given a random variable x representing the magnitude-squared and thus the
power of a complex-valued voltage, the quantity  represents the amplitude
(magnitude) of the complex voltage. The actual complex voltage cannot be
obtained from the power without also knowing the signal phase. Nonetheless,
the amplitude alone is often of interest, for instance when using a linear detector
instead of a square-law detector in a radar receiver. Using standard results from
random variable theory and noting that the power x is always non-negative, the
PDF of y can be obtained from the PDF of x with the transformation

(A.37)
 
Rayleigh



Applying this result, a signal whose power is described by the exponential PDF
has an amplitude described by the Rayleigh PDF:

(A.38)
 
The mean and variance of y are

(A.39)
 
Its characteristic function is

(A.40)
 
Central Chi
As with the exponential and chi-squared distributions, the generalizations of the
Rayleigh amplitude distribution are the central and noncentral chi distributions.
Using the transformation Eq. (A.37) in Eq. (A.11) gives the central chi
distribution:

(A.41)
 
The mean, mean-square, and variance are

(A.42)
 



Equation (A.41) retains the parameters N and σ2 that emphasize the
connection to the amplitude of the sum of N squared N(x; 0, σ2) variates. As will
be seen in the discussion of the K distribution, the chi PDF is also used to
empirically model variations of the local mean of a nonstationary Rayleigh
process. In this case, there is no particular connection to the sum of squared
Gaussians so the PDF is better expressed in the more neutral form

(A.43)
 
where the substitutions  and a = N/2 have been made. In this form, a is
the shape parameter and b is the scale parameter. The first and second moments
are

(A.44)
 
Noncentral Chi
The noncentral chi distribution is the result of applying Eq. (A.37) to the
noncentral chisquared PDF, and thus represents the PDF of the magnitude (as
opposed to the magnitude-squared) of the sum of N random variables distributed
as N(x;σμi,σ2). Defining the magnitude of the vector of means as , the PDF
is

(A.45)
 
The moments of the noncentral chi PDF do not take a simple form. The mean,
mean-square, and variance are



(A.46)
 
where 1F1(·,·,·) is the confluent hypergeometric function2 and the gamma
function recurrence relation Γ(x + 1) = xΓ(x) was used to get the second form of

. The noncentral chi PDF reduces to the Rayleigh PDF when ν = 0, γ = 2σ 2,
and N = 2.

Rice
The Rice (also called “Rician”) distribution is the amplitude distribution that
corresponds to the generalized noncentral chi-squared power distribution with
N = 2, i.e., it is the noncentral chi with N = 2. The PDF becomes

(A.47)
 
The mean, mean-square, and variance are given by Eq. (A.46) with N = 2:

(A.48)
 
The relations  and Γ(x +1) = xΓ(x) have been used to get the second
form of  in Eq. (A.48). The Rice PDF reduces to the Rayleigh PDF when v = 0.

Weibull and Log-Normal
Applying the transformation of Eq. (A.37) to the Weibull PDF of Eq. (A.31)
shows that the amplitude PDF that corresponds to a Weibull power PDF is also
Weibull but with the parameters modified to α′ = 2α and . The earlier
formulas for the mean, median, variance, and characteristic function can be used
with these new parameters.

Similarly, applying Eq. (A.37) to Eq. (A.34) yields a log-normal
distribution with new parameters α′ = α/2 and β′ = β/2 for the amplitude
corresponding to a log-normal power variate. The mean, median, and variance
of Eq. (A.35) may be used for the amplitude variate with these new values.

K Distribution



The K distribution is a relative newcomer to radar signal modeling. Like the
log-normal and Weibull PDFs, it is most often used to model “spiky” ground or
sea clutter returns, particularly for finer resolution radars. The rationale is that
with these systems, the assumption underlying other PDFs of relatively
homogeneous and stationary clutter scenes containing “many” scatterers per
radar resolution cell becomes invalid; see Watts (1985).

The K distribution is a “compound PDF” composed from two more basic
PDFs. Specifically, the signal amplitude is assumed to follow a Rayleigh PDF
with mean z. However, z is itself modeled as a random variable described by a
central chi distribution with shape and scale parameters a and b. The resulting
PDF for the amplitude y is

(A.49)
 
where Ka–1(·) is the modified Bessel function of the second kind and order a – 1
and . In this equation, py(y|z) is a Rayleigh PDF with mean z and pz(z) is
a central chi PDF. The first and second moments of the K distribution are

(A.50)
 

A.2.3   The Unfortunate Tendency in Radar to Call Power Distributions by
the Name of the Voltage Distribution

It is an unfortunate fact that it is common in the radar community to apply the
correct name for a voltage PDF to the PDF for power that results when the
voltage variable is squared. For example, a random variable representing radar
cross section (RCS) and described by the exponential PDF may be referred to
as a Rayleigh RCS. The reader must be careful to realize that such a reference
probably means Rayleigh voltage, but exponential power. Similarly, a variable
described by a noncentral chi-squared PDF with N = 2 may be referred to as a
Rice variate.

Although not an error, another source of confusion arises when the PDF of
both a voltage variable and its corresponding power variable have the same
general form (though with different parameters). As seen above, this occurs with
Weibull and log-normal variates. When discussing these PDFs, extra caution is
needed to determine whether the variate in question is modeling voltage or
power.



A.2.4   Phase Distributions

Uniform
The uniform PDF U(x; x1, x2) describes a random variable that takes on any
value in an ordered interval (x1, x2) with equal likelihood. It is

(A.51)
 
The mean and variance of x are

(A.52)
 
Its characteristic function is

(A.53)
 

The most common use of the uniform PDF in radar is to describe a
completely random phase that is uniformly distributed over [0, 2π] radians
(equivalently, [–π, π] radians). Another common usage is to describe
quantization error (see App. B).

Tikhonov
The Tikhonov PDF, also called the Von Mises PDF, is given in Van Trees
(1968) as

(A.54)
 
Most often, the moments of the complex variable z = e jx are considered rather
than the moments of x itself. The moments of z are called the circular moments
of x. They are



(A.55)
 
I0(·) and I1(·) are the modified Bessel functions of the first kind and orders zero
and one, respectively. The mean of x itself is the argument of :

(A.56)
 

The Tikhonov distribution provides a family of PDFs suitable for modeling
phase and phase errors that vary from the uniform PDF when α = 0 to, in the
limit, a nonrandom phase of μ as α → ∞. The PDF is defined over the interval
[–π, π] radians, and its integral over that interval is unity, so that it is a strictly
valid PDF for phase. However, the same formula can be used over any interval
of length 2π (e.g., 0 to 2π) because of the periodicity of the cosine function.
Figure A.4 illustrates the Tikhonov PDF for μ = 0 and several different values
of the parameter α.

 FIGURE A.4   The Tikhonov PDF for phase with μ = 0.
 

A-3.A   Estimators and the Cramèr-Rao Lower Bound
Consider an observed signal y(t) that is the sum of a target component s(t) and a
noise component w(t):

(A.57)
 



y(t) is a function of one or more parameters Θi. These might be, for example, the
time delay, amplitude, Doppler shift, or angle of arrival of the target component.
Once a target is detected, estimation of these parameters will usually be the next
goal of the radar. In many cases, the estimated values may serve as inputs to
tracking algorithms. Thus, the quality of these estimates is of great interest.

Suppose y(t) is sampled multiple times (intrapulse and/or over multiple
pulses) to give a vector of N observations,

(A.58)
 
Now define an estimator f of a parameter Θi as some function or procedure that
produces an estimated value  from the data y,

(A.59)
 
Because y is random, the estimate  is itself a random variable and therefore
has a probability density function with a mean and variance. The accuracy of
the estimator is the error in the mean, , also known as the bias. The
precision of the estimator is the standard deviation .

Two desirable properties of an estimator are that it be unbiased and
consistent. These mean that

(A.60)
 
In this text, only unbiased estimators will be considered, and so the issue
becomes how large or small is the variance of the estimate and how it behaves
versus the amount of data N. The derivation of the real, single-parameter CRLB
in this section closely follows (Peebles, 1998). Most of the other results follow
Kay (1993).

A.3.1   The Cramèr-Rao Lower Bound on Estimator Variance
The Cramèr-Rao Lower Bound (CRLB) is a famous and very important result
that establishes the minimum variance of an unbiased estimator. Any particular
unbiased estimator must then have a variance (square of precision) equal to or
greater than the CRLB, and the quality of an unbiased estimator can be judged
by how close its actual variance comes to achieving the CRLB. An estimator
that is unbiased and achieves the CRLB is said to be efficient.

Consider a signal dependent on a single scalar parameter Θ. Denote the N-
dimensional joint PDF of the observations y, given the actual value of Θ, as



py(y|Θ). The assumption of an unbiased estimator requires

(A.61)
 
Using Leibniz’ integral rule to differentiate this equation with respect to Θ gives

(A.62)
 
The second multiple integral equals one because it has just the PDF py(y|Θ) as
the integrand, and the integral of any valid PDF is one. Note also that for any
function g(y,Θ)

(A.63)
 
Using Eq. (A.63) in Eq. (A.62) gives

(A.64)
 
This relationship is the consequence of the unbiased estimator assumption.

The Schwarz inequality in integral form can be applied to Eq. (A.64). The
scalar version was used in discussing the matched filter in Chap. 4. The
multivariable version is

(A.65)
 
with equality if and only if A(y) = αB(y) for some scalar α. Choose

(A.66)
 
to get



(A.67)
 
From Eq. (A.64), the left-hand side of Eq. (A.67) equals one. The first multiple
integral on the right hand side is the estimator variance , while the second
multiple integral is, by definition, E{∂ln{py(y|Θ)}/∂Θ}2. Using these
relationships and rearranging Eq. (A.67) then gives the CRLB:

(A.68)
 

An alternate form of the CRLB is also common. If py(y|Θ) is twice
differentiable and obeys some other mild regularity conditions, it can be shown
that

(A.69)
 
which gives another version of the CRLB:

(A.70)
 
The choice between Eq. (A.68) and Eq. (A.70) is a matter of convenience,
depending on the functional form of ln{ py(y|Θ)}.

The denominator of Eq. (A.70) is called the Fisher information I(Θ) for
the data x. The CRLB is therefore the inverse of I(Θ). The Fisher information
shows that signals whose log-likelihood function has a high curvature with
respect to the parameter Θ will have small values of .

Consideration of I(Θ) leads to an interesting observation about i.i.d.
samples. Suppose N i.i.d. observations yi of an RV dependent on a parameter Θ
are available. For a single observation I(Θ) = –E[∂2 In{py(y|Θ)}/∂Θ2]. Because
the N observations are independent and identically distributed, py(y|Θ)=[py(y|
Θ)]N so that I(Θ) is N times larger, –E[∂2 ln {[py(y|Θ)]N}/∂Θ2] = –NE[∂2 In
{py(y|Θ)}/∂Θ2]. Consequently, the CRLB for N i.i.d. observations is 1/N times
the CRLB for a single observation.



A.3.2   The CRLB for Transformed Parameters
If the CRLB for a particular parameter Θ in some estimation problem is known,
it is easy to find the CRLB for a related parameter Φ = g(Θ) for some function
g. The result is

(A.71)
 
As a trivial example, if the CRLB for estimating time delay t0 is known, the
CRLB for the corresponding range R0 = c·t0/2 is .

It is easily shown that if the estimator for Θ is efficient, it is not the case in
general that the estimator for Φ is also efficient. However, if the transformation
g is affine (a linear transformation followed by a translation), efficiency of the
estimator is maintained. Even in the case of a nonlinear transformation, the
transformed estimator will be asymptotically efficient, i.e., it will become
efficient as N → ∞.

A.3.3   Signals in Additive White Gaussian Noise
The CRLB takes on a special form for the very important case of a signal in
additive white Gaussian noise (AWGN). Assume the measurement vector y is
composed of the N real-valued signal + noise samples

(A.72)
 
where Θ is the real-valued parameter to be estimated and the variance of w[n]
i s . Because the noise is white and Gaussian, the PDF py(y|Θ) is a
multidimensional real-valued Gaussian function

(A.73)
 
so that

(A.74)
 
The first and second partial derivatives of ln{py(y;Θ)} with respect to the
unknown parameter Θ are



(A.75)
 
The expected value of the second partial derivative is

(A.76)
 
This result follows because the term (y[n] – s[n;Θ]) is just the noise w[n],
which is zero mean. Finally, using Eq. (A.76) in Eq. (A.70) gives the CRLB for
a real-valued signal in real white Gaussian noise:

(A.77)
 

The denominator of Eq. (A.77) shows that signals that are more sensitive
to changes in the value of the parameter Θ (large magnitudes of the derivative)
will have smaller values of , suggesting that systems having finer resolution in
a parameter of interest will also exhibit finer precision than coarser-resolution
systems. This point is illustrated more clearly in Chap. 9.

A.3.4   Signals with Multiple Parameters in AWGN
The CRLB can be generalized to describe estimators of multiple simultaneous
scalar parameters by defining a vector parameter Θ. For example, it might be
desirable to simultaneously estimate the amplitude, frequency, and initial phase
of a sinusoid in additive WGN. The Fisher information for a signal x dependent
on a real-valued parameter vector Θ is now the N × N matrix:

(A.78)
 
The vector parameter CRLB then states that the covariance matrix of any
estimate  of Θ must satisfy



(A.79)
 
where the notation “≥ 0” means that the left-hand side is positive semidefinite.
In particular, consideration of the diagonal elements gives

(A.80)
 

If the signal x has a Gaussian PDF with mean vector μ and general
covariance matrix Cx (not necessarily white noise), both possibly dependent on
a real-valued parameter vector Θ, the Fisher information matrix becomes (Kay,
1993, Chap. 3)

(A.81)
 
where

(A.82)
 

Now consider the common additional restriction that the signal is of the
form x = s(Θ) + w with s = [s[0;Θ] s[1;Θ] … s[N – 1;Θ] ] T being real and
deterministic, and w being i.i.d. real-valued Gaussian noise with zero mean and
covariance matrix . Then x is Gaussian with covariance Cx = Cw and
mean μ = s. Furthermore, for most problems of interest Cw and therefore Cx does
not depend on , so that Eq. (A.92) reduces to3



(A.83)
 

A.3.5   Complex Signals and Parameters in AWGN
Similar results can be derived for the case where the signal and noise are
complex-valued and the parameters of interest are real or complex. One way to
derive the needed results defines the derivative of a complex function with
respect to a complex variable. This can be done in more than one way, but all
produce some surprising results. For example, if Θ is a complex variable, the
definition used in Kay (1993) results in ∂(|Θ|2)/∂Θ = Θ* and ∂Θ*/∂Θ = 0.
Another method is to treat complex parameters as two real parameters, ΘR =
Re{Θ} and ΘI = Im{Θ}. This allows the mixture of both real and complex
parameters in Θ and the use of conventional calculus. Either method, used
correctly, produces the same results. The latter approach is used here.

The general CRLB in terms of PDFs given in Eq. (A.68) or (A.70) for the
scalar case and Eqs. (A.78) and (A.80) in the vector case still apply. For a
complex signal dependent on a real parameter vector Θ in complex AWGN the
Fisher information matrix can be shown to be (Kay, 1993, Chap. 15)

(A.84)
 
Because Θ is real, ∂s*[n;Θ]/∂Θi = [∂s[n;Θ]/∂Θi]*. The diagonal elements, which
can be compared to the single parameter real case of Eq. (A.77), are

(A.85)
 
The CRLBs for the individual parameters are still given by Eq. (A.80).

Comparing Eqs. (A.84) and (A.85) to (A.83) shows that the CRLBs for
signals in AWGN have the same general form in the complex case as in the real
case, but are smaller by a factor of two. Thus, the real CRLB is not a special
case of the complex CRLB.

Because a complex parameter Θ is treated as two real parameters ΘR and
ΘI, the results above produce the CRLBs for ΘR and ΘI. However, the CRLB for
Θ is usually the quantity of interest. It is easy to show that , so the



CRLB for Θ is simply the sum of the CRLBs for ΘR and ΘI.

A.3.6   Finding Minimum Variance Estimators
Equations (A.68) or (A.70) give the minimum variance of an unbiased
estimator. Clearly, it would be good to know how to construct an estimator that
achieves this minimum. While this is not always possible, it is possible to see
what form it must take if it exists. The minimum variance will be achieved when
the condition for equality in the Schwarz inequality is met. From Eq. (A.66), this
will occur when

(A.86)
 
so that the estimator takes the form

(A.87)
 
for some α.

This estimator has a serious problem: the estimate  depends on knowing
the actual value Θ of the parameter being estimated! Obviously, if Θ is known,
there is no need to estimate it. In many, but not all cases, this problem can be
solved by judicious choice of the scalar α.

To clarify this issue, consider a minimum variance estimate Â of the mean
A in the constant-plus AWGN example of Sec. 7.1. Using the intermediate result
in Eq. (7.13) so that the dependence on the data xi is explicit in Eq. (A.87) gives

(A.88)
 
Note in passing that the estimate is indeed unbiased for any choice of α:

(A.89)
 
The dependence of Â on A can be removed by choosing , giving the
unbiased minimum variance estimator



(A.90)
 
Note that the required choice of α in fact was the CRLB for this problem. It is
true in general that α = I–1(Θ), the CRLB, so that Eq. (A.87) is more specifically

(A.91)
 
Equation (A.91) can be generalized for the vector parameter case. The minimum
variance estimator must be of the form

(A.92)
 
Equations (A.91) and (A.92) are both necessary and sufficient for the existence
of a minimum variance estimator. Thus, an estimator that satisfies these
equations, however it was found, is efficient.

A-4.A   Random Signals in Linear Systems
A rigorous definition of a random signal is subtle; see Papoulis and Pillai
(2001) for a discussion. For this text, it is adequate to define a random signal as
a continuous or discrete signal x(t) or x[n] whose value at each instant of t or n
is a random variable. If the PDF of that random variable is the same for each
value of t or n, the random signal is stationary. The principal concern here is
the effect of linear shift-invariant (LSI) systems such as filters on the properties
of a random signal. Discrete signal notation will be used, but all the results
translate readily to the continuous case.

A.4.1   Correlation Functions
The mean of a stationary random process x is denoted E{x} , mx, or , as
convenient. The (stochastic) cross-correlation function  of two possibly
complex random signals x[n] and y[n] is defined as

(A.93)
 
The variable k is called the correlation lag. This definition is obviously very
similar to the deterministic autocorrelation function described in App. B, with a
stochastic expectation instead of a deterministic averaging.

The autocorrelation function (ACF) results when y = x, i.e. x is correlated
with itself:



(A.94)
 
The normalized ACF is defined as

(A.95)
 

The ACF has several useful properties. The average power of x is given by
the zero lag:

(A.96)
 
sx has a symmetry property,

(A.97)
 
a “shape property,”

(A.98)
 
and in many cases of interest an asymptotic limit property:

(A.99)
 
The shape property states the ACF always has a maximum at the zero lag; it can
reach the same amplitude at other lags but can never exceed it. It also implies
that the normalized ACF has a maximum value of one at zero lag and is bounded
between ±1 at other lags. An infinite-duration sinusoid is an example of a signal
that matches the maximum autocorrelation amplitude at lags other than zero,
specifically at lags equal to integer multiples of the signal period. The
asymptotic limit property applies only to signals whose samples tend to become
uncorrelated as the time between them (the lag) becomes large. This is true for
most signals of interest, but the infinite-duration sinusoid is an example of a
signal which does not have this behavior. If a signal exhibits this decorrelation
for large lags, the property states that the ACF approaches the square of the
process mean in the limit. For zero mean random processes, this means that the
ACF must decay to zero.



A.4.2   Correlation and Linear Estimation
A frequent problem is estimating a random variable y based on measurements of
another random variable x. An example would be estimation of a random
process at sample n2 based on its value at n1. A common approach is to find the
minimum mean-squared error (MMSE) estimator, which is the estimate ŷ that
minimizes the mean-squared error (MSE)

(A.100)
 
Only real-valued variables are considered for now. It is frequently convenient
to restrict the estimator to be linear so that ŷ is of the form

(A.101)
 
Specifying the estimator is then a matter of specifying the constant a and b.
Linear estimators are convenient because a and b can be found by solving linear
equations and because they will turn out to depend only on the second-order
moments of x and y, whereas more general estimators require knowledge of the
joint PDFs of x and y, information that is less likely to be known.

The MMSE linear estimator can be found by using Eq. (A.101) in Eq.
(A.100) and then setting the derivatives of ξ with respect to a and b equal to
zero so as to find the minimum value of ξ. Since the expectation and partial
derivative operators commute,

(A.102)
 
It is convenient to first solve the second equation for b and then use that result in
the first equation to get a. The result is (using the overbar notation for expected
values)

(A.103)
 
This solution for a is reminiscent of the definition of the normalized correlation
coefficient between two random variables x and y, which is



(A.104)
 
Consequently, a = (σy/σx)ρxy. Combining these results gives the MMSE linear
estimator as

(A.105)
 

It is useful to consider two limiting cases. It can be shown that |ρxy|2≤1
(Hayes, 1996). If x and y are uncorrelated, then ρxy = 0 and . The lack of
correlation implies that knowing x gives no information regarding the value of y,
so the best linear estimate is just to guess the mean value of y. At the opposite
extreme, suppose ρxy = 1, meaning that x is highly correlated with y. In this
event, the best linear estimate of y is obtained by adding the deviation of x from
its mean, scaled by the ratio of standard deviations of x and y, to the mean of y.

An important example occurs when the variables x and y are samples of the
same random process at different times, i.e., x = w[n] and y = w[n + k]. If the
random process is stationary, then σx = σy and ρxy is the normalized
autocorrelation function evaluated at lag m, ρw[k] . Equation (A.105) then
becomes

(A.106)
 

If ρw evaluated at a lag of m samples is zero, the MMSE estimate of w[n +
k] is just the mean of w. If ρw[k] = 1, the MMSE estimate of w[n + k] is w[n].
Thus, a high value of the normalized ACF predicts that the value of the future
sample will be close to that of the current sample. A small value of r does not
indicate that the future value will necessarily be different from the current value,
but rather that it cannot be predicted based on the current value.

A.4.3   Power Spectrum
The power spectral density (PSD) or power spectrum of a random process is
the Fourier transform (DTFT in the discrete case) of the autocorrelation
function:

(A.107)
 



Its properties include

(A.108)
 
The first property follows from Parseval’s theorem and states that average
power of a random process equals the integral of the PSD, which tends to
explain the term PSD. The second property states that the PSD is real-valued,
even if x is complex. The third states that when x is real, the PSD is symmetric
about the origin. The fourth states that it is nonnegative, again consistent with the
idea of a measure of power versus frequency. These last three properties are
also seen in the magnitude-squared of the Fourier transform of a deterministic
signal.

A.4.4   White Noise
White noise is a random signal having the specific ACF (discrete case)

(A.109)
 
where δ[k] is the discrete impulse function. It follows from Eq. (A.107) that the
PSD of white noise is

(A.110)
 
Thus the PSD of white noise is a constant for all frequencies. This fact accounts
for the term “white noise,” in analogy to the idea that white light contains all
visible colors (wavelengths or frequencies) in equal proportion.

White noise is necessarily zero mean. To see this, suppose x has a nonzero
mean mx. Then x could be written as the sum of a zero-mean term  and mx, 

. The autocorrelation would take the form

(A.111)
 
The constant term in sx will result in an impulse 2π|mx|2 δD(ω) in Sx(ω), where
δD(ω) is the continuous-variable Dirac impulse function. The resulting PSD



cannot be a constant for all ω and x cannot be white noise.

A.4.5   The Effect of LSI Systems on Random Signals
Suppose a random signal x[n] is passed through an LSI system characterized by
its impulse response h[n] and frequency response H(ω). How are
characteristics such as the mean or the power spectrum altered?

The output y[n] is given by the convolution sum:

(A.112)
 
The mean of y, my, is

(A.113)
 
If mx is thought of as the “DC value” of x, then the DC value of y is just mx
multiplied by the frequency response at DC.

The ACF of y is

(A.114)
 
Making the change of variables p = m–l gives

(A.115)



 
The output autocorrelation is the stochastic autocorrelation of the input random
signal with the deterministic autocorrelation of the LSI system impulse
response. The relationship between power spectra immediately follows:

(A.116)
 
The power in the output random signal can be found from Eqs. (A.96), (A.108),
and (A.116):

(A.117)
 

The white noise input case is of special interest. If x[n] is a white noise
signal with power  and ACF , the autocorrelation of y[n] will be

(A.118)
 
and the output power will simplify to

(A.119)
 
An important consequence is that if the input to an LSI system is a white random
signal, the output will no longer be white (assuming the system is nontrivial,
h[n] ≠ δ[n]). This is illustrated in the following example.

Suppose h[n] is the impulse response of a four-point averager so that h[n]
= 1 for n = 0, 1, 2, 3 and zero otherwise. Let x[n] be 100 samples of WGN with 

, and pass it through the averaging filter to get y[n]. The normalized
autocorrelation and PSD of the random data are computed at the input and output
of the filter. Since these functions are themselves random because of the random
input, the experiment is repeated 100 times and the various sample ACFs and
PSDs are averaged to get the results shown in Fig. A.5. Part (a) shows the
average input normalized ACF, which well-approximates the ideal unit-
amplitude impulse. Shown in part (b) is the average sample PSD, which well-
approximates the theoretical white-noise spectrum also shown. Part (c) shows
that the average output normalized ACF closely matches the theoretical result,
which is just sh[k]. Finally, part (d) shows that the average output PSD closely
matches the expected result Sh(ω) = |H(ω)|2.



 



 
FIGURE A.5   Effect of four-point averaging filter on 100 samples of white
noise. Averages of 100 sample realizations shown: (a) normalized input
autocorrelation sx[k]. (b) Input PSD Sx(f) and ideal white-noise PSD, (c)
normalized output autocorrelation sy[k] and theoretical result sh[k], (d) output
PSD Sy(f) and theoretical result Sh(f) = |H(f)|2.
 



As another example, continuous-time white noise with a power spectral
density of  passed through a unity gain ideal lowpass filter with a total
bandwidth of B Hz (cutoff frequency of ±B/2 Hz) will have a PSD that is white
only over ±B/2 Hz. The corresponding ACF is

(A.120)
 
where the sinc function is defined as sinc(z) = sin(πz)/πz. The filtered white
noise is still zero mean but is no longer white. However, because it is
bandlimited to B Hz the ACF of the output noise is zero at lags of integer
multiples of 1/B seconds. Consequently, the samples of a discrete-time sequence
obtained by sampling the filtered noise at the Nyquist rate of B samples per
second will be uncorrelated with one another, so that the discrete-time ACF
will be . The sampled noise is therefore white. Oversampling will
result in noise having a sampled sinc function ACF and therefore a PSD that is
bandlimited to some degree on the normalized frequency scale.
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APPENDIX B
Selected Topics in Digital Signal Processing

 

A few basic concepts and signal processing operations appear over and over
again, even if sometimes in disguise, in radar signal processing. In this section,
several frequently encountered concepts and operations are reviewed with
special emphasis on a few aspects not often emphasized in some other
application fields.

cB-1.B   Fourier Transforms
The Fourier transform is as ubiquitous in radar signal processing as in most
other signal processing fields. Frequency domain representations are often used
to separate desired signals from interference; the Doppler shift is a frequency
domain phenomenon of critical importance; and it will be seen that in some
radar systems, especially imaging systems, the collected data is related to the
desired end product by a Fourier transform.

Both continuous and discrete signals are of interest, and therefore Fourier
transforms are required for both. Consider a signal x(u) that is a function of a
continuous variable in one dimension called the signal domain.1 Its Fourier
transform, denoted X(Ω), is given by

(B.1)
 
and is said to be a function in the transform domain. The inverse transform is

(B.2)
 
In Eqs. (B.1) and (B.2), the frequency variable Ω is in radians per unit of u. For
example, if u = t, i.e., u is in units of seconds, then Ω is the usual radian
frequency in units of radians per second; if u is a spatial variable in meters, then
Ω is spatial frequency in units of radians per meter.

An equivalent transform pair using a cyclical frequency variable F = Ω/2π
is

(B.3)
 



(B.4)
 
If the signal domain is time (u = t), then F is in cycles per second, or hertz. Ω
and F will sometimes be referred to as analog frequencies, representing their
correspondence to continuous-variable signals.

There are many excellent textbooks on Fourier transforms and their
properties. Two classics are Papoulis (1987) and Bracewell (1999). Papoulis
uses primarily the radian frequency notation, while Bracewell uses cyclical
frequency.

A useful example in radar is the Fourier transform of a constant-frequency
complex exponential pulse. Define

(B.5)
 
Inserting Eq. (B.5) into the definition Eq. (B.1) gives

(B.6)
 
Applying Euler’s formula gives the result

(B.7)
 
where sinc(z) ≡ sin(πz)/πz is consistent with the MATLAB® definition of the
sinc function. The main portion of this function is shown in Fig. B.1 for F0 = 5
MHz and τ = 1 μs. The peak occurs at F = F0 and has a value of Aτ. It is easy to
see from Eq. (B.7) that the Rayleigh width (peak to first null) is 1/τ Hz. It can be
shown numerically that the 3 dB width is 0.89/τ Hz and that the magnitude of the
largest sidelobe (first negative peak) relative to the mainlobe magnitude is –
13.26 dB.



 FIGURE B.1   The Fourier transform of a 1 μs long, 5 MHz complex exponential
pulse.
 

Conditions on a signal for the existence of its Fourier transform are
discussed in Bracewell (1999). For current purposes, it can be assumed that the
Fourier transform of any signal of interest exists, and that the signal and its
Fourier transform form a unique one-to-one pair.

The Fourier transform for continuous signals is important for some
analyses, particularly those relating to establishing sampling requirements, but
most actual processing will be performed with discrete-variable signals. There
are two classes of Fourier transforms for discrete-variable signals. Directly
analogous to the continuous-variable case is the following transform pair for a
discrete-variable signal x[n]:2

(B.8)
 

(B.9)
 
In this pair, n is the signal index in units of samples and ω is a continuous
frequency variable with units of radians per sample (not radians per second or



radians per meter).3 The frequencies ω and f will sometimes be referred to as
digital frequencies because the corresponding signals are discrete. They are
also called normalized frequencies for reason to be explained in Sec. B.2.

A related Fourier transform pair using a normalized cyclical frequency f =
ω/2π in cycles per sample is given by

(B.10)
 

(B.11)
 
The function X(ω) or X(f) is called the discrete-time Fourier transform
(DTFT) of x[n]. It is readily seen from Eq. (B.8) that X(ω) is continuous in the
frequency variable ω with a period of 2π radians per sample; that is, the DTFT
repeats itself every 2π radians per sample. Consequently, though it is defined
for all ω, normally only the principal period –π ≤ ω < π is discussed and
illustrated. Similarly, X(f) has a period of one cycle per sample and the
principal period is –0.5 ≤ f < 0.5 cycles per sample. The properties of DTFTs
are described in most modern digital signal processing textbooks, for example
Oppenheim and Schafer (2010).

Similar to the continuous-time case, the DTFT of a sampled constant-
frequency complex exponential is of interest. Defining the waveform as

(B.12)
 
a derivation very similar to that leading to Eq. (B.7) gives

(B.13)
 
The result is shown for f0 = 0.285, N = 20, and A = 1 as the solid curve in Fig.
B.2a or b. Examination of Eq. (B.13) and Fig. B.2 shows that this DTFT is very
similar to the sinc function of Eq. (B.7) in appearance, especially around the
mainlobe. The sidelobes do not decay indefinitely because of the requirement
that the DTFT be periodic in frequency. The phase term in Eq. (B.13) arises
because the pulse was not centered on the origin; if N were odd and it was



centered, the phase term would not be present.
While the DTFT is well-suited for mathematical analysis of discrete-time

signals, X(ω) or X(f) are not suitable for computation and manipulation in a
digital processor because they cannot be computed for all of the uncountably
infinite values of the continuous frequency variable ω or f. A finite, discrete set
of frequency values is needed. The discrete Fourier transform (DFT, not to be
confused with the DTFT) is a computable Fourier transform defined for finite-
length discrete-variable signals. The K-point DFT and its inverse for an N-
point signal x[n] are given by4

(B.14)
 

(B.15)
 
Inspection shows that for x[n] of finite duration N samples, X[k] is simply a
sampled version of X(ω) or X(f), with K frequency samples distributed
uniformly across the period [0, 2π) in ω or [0, 1) in f:

(B.16)
 
Because the DTFT is periodic, so is the DFT, with period K samples.

It is usually preferable to plot the spectrum of a signal on a symmetric
scale that places zero frequency in the center. Because of the periodicity of the
DTFT, the DFT samples corresponding to frequencies in the interval f ∈ (0.5,
1] cycles per sample are identical to those in the interval f ∈ (–0.5, 0]. The
upper half of the DFT samples  are therefore often plotted first,
followed by the lower half of the samples.5

Figure B.2 illustrates the difference between the DTFT and the DFT for a
signal consisting of a 20-sample complex exponential pulse with a frequency f =
0.285 cycles per sample. The solid curves are the DTFT of the data over the
interval f ∈ (–0.5, 0.5]. The small circles represent the DFT values, which
have been re-arranged as discussed above. In part (a) of the figure, a K = 20-
point DFT was used, resulting in a sparsely sampled representation of the DTFT
that misses the true peak frequency and amplitude by a significant amount, and
provides only a crude representation of the sidelobe structure. In part (b), a K =
48-point DFT was used. The underlying DTFT is unchanged; it is determined
only by the data x[n]. The larger DFT simply samples it on a denser frequency



grid. A still larger DFT would trace out the details of the DTFT quite
accurately.

 FIGURE B.2   Sampling of the DTFT of a 20-sample complex sinusoid by the
DFT: (a) K = 20-point DFT, (b) K = 48-point DFT.
 



So far three versions of the Fourier transform have been discussed: the
original “analog” Fourier transform, the DTFT, and the DFT. Most readers will
be aware of the fast Fourier transform (FFT). This is not a fourth variation, but
an efficient algorithm for computing the DFT (Oppenheim and Schafer, 2010).
Table B.1 summarizes the relationship between the various forms of the Fourier
transform.

 TABLE B.1   Relationship between Fourier Transform Versions
 

cB-2.B   Sampling, Quantization, and A/D Converters
The subject of this text is digital processing of radar signals. A digital signal is
one that is discretized in two independent ways. Both are necessary to represent
the signal in a digital processor. The first discretization represents the signal as
a function of a discrete, rather than continuous, variable: one discrete variable
for one-dimensional signals, two variables for two-dimensional signals, and so
forth. Most discrete-variable signals of interest here will be obtained by
sampling a continuous-variable physical quantity at selected, usually
equispaced, values of the independent variable. An example is a discrete-time
sampled version of the continuous-time output voltage of an antenna and
receiver, but sampled functions of frequency and spatial position are of concern
as well. A discrete representation is necessary to allow a finite-length signal to
be represented in the processor by a finite number of values.

The second discretization is quantization of the signal’s values. Each
sample of a continuous-varying signal can take on an infinity of possible values.
Quantization maps the continuous amplitude of a signal to one of a finite set of
values so that each sample can be represented in the processor with a finite
number of bits. The number of permissible values is determined by the number



of bits available in the quantized signal representation and the encoding used.
Figure B.3 illustrates the distinction between continuous, sampled, quantized,
and digital (sampled and quantized) signals.

 FIGURE B.3   Relationship between continuous signals, sampling, quantization,
and discrete signals.
 

B.2.1   Sampling
The most fundamental question in developing a sampled-variable representation
is “how many samples are enough”? That is, how should the sampling interval
be chosen? The Nyquist sampling theorem provides the answer. It states that if
the Fourier transform X(F) of a signal x(u) is bandlimited to an interval in the
Fourier domain of total width βF cyclical frequency units (equivalently, βΩ
radian frequency units), then the signal can be recovered from a set of samples
taken at a sampling interval

(B.17)
 
by an appropriate interpolation operation. That is, the sampling rate Fs = 1/Ts
must satisfy the simple relation

(B.18)
 



This formula will be used in this text to establish sampling rates for pulse
echoes, Doppler processing, and phased array antenna element spacing, among
other things.

The Nyquist theorem is easy to derive. Details supporting the following
outline are provided in Oppenheim and Schafer (2010). Start by modeling the
process of sampling x(u) as multiplication by an infinite Dirac impulse train:

(B.19)
 
Ts is the sampling interval in units of u. For instance, if the independent variable
is time, u = t, Ts is in seconds. The sampled signal xs(u) then has the Fourier
transform, in cyclical frequency units, given by

(B.20)
 
where Fs = 1/Ts is the sampling rate. Equation (B.20) illustrates a very
important effect of sampling: infinite replication of the original spectrum, at an
interval of Fs units in cyclical frequency (2πFs in radian units). This Fourier
domain replication occurs any time a signal is subsampled at regular intervals.
Because the forward and inverse Fourier transforms are dual operations, this
also occurs in reverse: if one samples the Fourier domain signal, then the signal
is replicated in the original signal domain.

The fact that sampling in one domain results in replication in the
complementary domain is an important property of Fourier analysis in its own
right, independent of the Nyquist theorem that will follow. It provides the basis
for an alternative to the usual modulation technique of time-domain
multiplication by sinusoids for shifting a signal in the frequency domain and is
used, for instance, for one method of efficient formation of digital in-phase and
quadrature signals described in Chap. 3.

Replication also occurs when “sampling” a discrete-variable signal by
decimation. Consider a signal x[n] with DTFT X(f). Define a decimated signal
by subsampling x[n]:

(B.21)
 
The signal x[n] is said to be decimated by the factor M to produce y[n]. The
DTFT of y[n] is related to that of x[n] according to Oppenheim and Schafer
(2010):



(B.22)
 
The summation is finite because the DTFT already repeats periodically. This is
exactly the same type of scaling and replication of the spectrum seen also in the
sampling of a continuous-variable signal.

Resuming the derivation of the Nyquist theorem, the next step is to relate
the analog and digital signals and their spectra to one another. A discrete-time
signal is formed from the sampled data by the simple assignment

(B.23)
 
The DTFT of x[n], computed using Eq. (B.8) or Eq. (B.10), will be simply
Xs(F) expressed on a “digital” frequency scale:

(B.24)
 
in cyclical units. Comparing Eq. (B.20) with Eq. (B.24) shows that the analog
and digital frequency scales are related according to F = fFs, so that

(B.25)
 

Equation (B.25) provides the basis for converting units between analog
and digital frequencies. The first form, f = F/Fs, is the reason that the digital
frequencies ω and f are often called normalized frequencies: f is the frequency
in hertz normalized to the sampling frequency, while ω is its radian counterpart.
Also, combining Eqs. (B.16) and (B.25) shows that in continuous-variable units,
the K-point DFT frequency sample locations are equivalent to frequencies of
k/KTs = (k/K)Fs cycles per unit (hertz if Ts is in seconds) or 2πk/KTs = 2π(k/K)
Fs radians per unit, where k is the DFT sample index number and ranges from
zero to K – 1.

Figure B.4 illustrates the spectrum replication effect of sampling and the
relation of the resulting DTFT X(f) to the original spectrum X(F). A notional
Fourier transform X(F) is shown in Fig. B.4a. X(F) is not assumed to be
bandlimited or to be centered at F = 0. Because x(u) may be complex-valued,



X(F) also is not assumed to exhibit Hermitian symmetry. Part (b) of the figure
shows the replicated analog spectrum Xs(F), while part (c) is the corresponding
DTFT X(f) or X(ω). Note that X(f) is periodic with a period of 1 and X(ω) with
period 2π as required for spectra of discrete-variable signals.

 FIGURE B.4   Spectrum replication effect of sampling, and relation between
spectra: (a) original non-bandlimited spectrum X(F), (b) spectrum of sampled
signal, Xs(F), (c) DTFT of sampled data, X(F) or X(ω).
 

The Nyquist theorem relies on the fact that a signal and its Fourier
transform form a unique one-to-one pair. Consequently, reconstruction of the
original spectrum X(F) is equivalent to reconstructing x(u). Consideration of
Fig. B.4 makes clear the condition needed to enable recovery of the original
spectrum: the replicas must not overlap. If each spectrum replica is distinct, then
the sampled signal can be passed through a linear shift-invariant system (a
filter) with a frequency response that selects only the original copy of the
spectrum. The output of that system must then be the original signal.

This strategy leads to two conditions, one on the signal and one on the
sampling rate. First, x(u) must be strictly bandlimited to some bandwidth βF in
cyclical frequency units:



(B.26)
 
where Fc is the center of the region of support of X(F). If this is not the case, no
sampling rate will separate the spectrum replicas; they will always overlap.
Assuming x(u) is bandlimited, then the sampling rate must be chosen large
enough to ensure that the spectrum replicas do not overlap. Figure B.5 shows a
notional bandlimited spectrum and the corresponding sampled spectrum Xs(F).
By inspection, the condition needed is Fc + βF/2 < Fc + Fs – βF/2, which gives
the simple result Fs > βF already quoted in Eq. (B.18).

 FIGURE B.5   Illustration of Nyquist sampling requirement for bandlimited
signals: (a) original bandlimited spectrum X(F), (b) spectrum of sampled signal,
Xs(F).
 

If the original x(u) is a baseband signal, meaning its spectrum is centered
at Fc = 0, then the region of support of X(F) is (–βF/2, + βF/2). In this event, Eq.
(B.18) expresses the conventional wisdom that the sampling frequency should
be at least twice the highest frequency component in the signal. However, a
more direct and versatile interpretation of Eq. (B.18) is that the sampling
frequency should be greater than the total spectral width of the signal. This rule
is more easily applied to non-baseband signals.

In outlining the derivation of the Nyquist theorem, no assumption has been
made that x(u) is real-valued. The theorem applies equally well to real or
complex signals. In the case of a complex signal of total spectral width βF Hz,
the Nyquist criterion implies collecting at least βF complex samples per second,
equivalent to 2βF real samples per second.



It was also not assumed that the original signal spectrum was baseband,
i.e., centered at F = 0. The spectrum can be offset to any location on the
frequency axis without changing the required sampling rate; only the bandwidth
matters. However, if the original spectrum is not centered at zero, none of the
replicas will necessarily be centered at zero in the discrete-variable signal’s
spectrum unless appropriate relationships between the sampling frequency,
spectrum bandwidth, and spectrum offset are maintained. In the end, it is usually
desirable to have the information-bearing portion of the spectrum (the gray
shaded part of Fig. B.5a) end up centered at the origin for ease of processing.

The Nyquist theorem is not peculiar to sampling of time domain signals. It
is a consequence of the replication effect of sampling on the Fourier transform
of the sampled signal, and can equally well be applied to sampling of frequency
spectra or spatial signals. For example, when one samples a frequency
spectrum, the corresponding time domain signal is replicated. So long as those
time domain replicas are of finite duration and do not overlap, the original
spectrum can be recovered, meaning that the frequency spectrum is adequately
sampled. This fact was be used in Chap. 3 to establish the minimum DFT size
for computing the Doppler spectrum.

B.2.2   Quantization
Binary representations of numeric data can generally be categorized as either
fixed point or floating point. In fixed-point representations, the b bits of a binary
word are used to represent 2b distinct and evenly spaced numerical values.6 In a
floating-point representation, some number e of the b total bits is used to
represent an exponent, and the remaining m = b – e bits are used to represent the
mantissa. Here, fixed-point representations are of primary interest, as this is the
representation output by most analog-to-digital (A/D) converters.

The numeric value corresponding to each of the 2b possible binary words
in a fixed-point encoding is determined by the arithmetic coding scheme that is
used and the quantization step size Δ. The step size is the change in input value
in volts for each increment or decrement of the binary word value. Thus, the
value of the quantized data sample is simply Δ times the binary number output
by the quantizer.

The two most common encodings are called sign-magnitude encoding and
two’s complement  encoding. In sign-magnitude encoding, the most significant
bit of the binary word represents the sign of the data sample; usually a value of
zero represents a positive number, while a value of one represents a negative
number. The remaining b – 1 bits encode the magnitude of the sample. Thus,
sign-magnitude encoding can represent numbers from (–2b–1 –1)Δ to (+2b–1 –1)Δ.
Note that there are two codes for the value zero, corresponding to +0 and –0.

Two’s complement is a somewhat more complex encoding that has
advantages for the design of digital arithmetic logic. In two’s complement
encoding there is only one code for zero. The extra code value allows the



representation of one more negative number, so the range of values becomes –
2b–1 Δ to (+2b–1 –1)Δ. For any reasonable number of bits b, the difference in
range is not significant. Details are given in Ercegovac and Lang (2003).

The choice of Δ and b is determined by the desired values of signal-to-
quantization noise (SQNR) and dynamic range, and is also constrained by A/D
converter technology. Consider the step size Δ first. Quantization entails
rounding or truncating the analog sample value to one of the allowed quantized
values. The difference between the unquantized and quantized samples is the
quantization error. Although it is a deterministic function of the input data and
A/D converter parameters, the behavior of the quantization error signal is
usually complex enough that it is treated as a random variable uncorrelated from
one sample to the next and independent of the original unquantized signal.
Assuming rounding, the quantization error for each sample can vary between
±Δ/2, and it is commonly assumed that errors anywhere in that range are equally
likely. Thus, the quantization noise process is modeled as a uniform random
process over this range so that the quantization noise power .

To choose Δ, consider an A/D converter with a white noise input of power
. Ideally the noise power at the output of the A/D would be nearly the same as

at the input so that quantization noise could be considered negligible. Let the
step size Δ = α·[n for some α. The increase in noise power at the A/D output due
to quantization noise will be a factor of

(B.27)
 
Figure B.6 plots the increase in decibels versus α. Values of α less than 1.76
produce a noise power increase of 1 dB or less. In practice, α is often chosen to
be in the range of 0.25 to 0.5 to ensure that the receiver noise toggles one or two
least significant bits. This choice ensures that very small signals at or below the
noise level that should be reinforced by coherent integration are not suppressed
instead.



 FIGURE B.6   Effect of the quantization step size on the ratio of output power to
input power for an A/D converter with a noise signal input.
 

This style of analysis is extended considerably in McClellan and Purdy
(1978) to consider the saturation effects that result when Δ is made too small
and the underflow that results when Δ is too large. It remains the case that Δ
should normally be chosen to be around one-quarter to one-half the input noise
standard deviation for good results.

Now consider the choice of b. This is a question of the dynamic range of
the A/D converter. One definition of dynamic range is the ratio of the largest
representable magnitude to the smallest nonzero magnitude. For the two’s
complement case this is, in both linear and decibel units,

(B.28)
 
For the sign-magnitude case DR = 2b–1 –1 ≈ 2b–1 for b more than just a few bits
so that Eq. (B.28) still applies. This result shows that the dynamic range of the
numbers that can be represented at the A/D converter output increases by 6 dB
per bit. A 60-dB dynamic range would require 11 bits.

An alternative view of dynamic range comes from treating the input signal
as a random process with variance . Express the maximum input signal
required to be represented without saturation (overflow) as k[s. For a Gaussian-



distributed input signal k would normally be chosen in the range of 3 to 4 so that
there is only a small probability of saturation. Equating this to the maximum
representable number and recalling that Δ = α[n gives

(B.29)
 
Now define the input signal-to-noise ratio , substitute in Eq. (B.29),
and convert to decibels:

(B.30)
 
Solving for the number of bits gives

(B.31)
 
Equation (B.31) expresses the number of bits needed to quantize a signal with a
given SNR at the quantizer input without significant saturation. For a typical
choice of α = 0.5 and k = 4, the second term in the numerator is 24.08 dB. For α
= 1 and k = 3, it is 15.56 dB. For the first case, representing signals with an
SNR at the input of zero dB requires 4 bits. If the input SNR can be as high as
10 dB, this rises to 6 bits.

It is important to realize that this analysis gives the number of bits required
to represent the signal present at the A/D converter input. It does not take into
account increases in dynamic range due to processing gains achieved by
coherent integration, matched filtering, and DFTs. If a post-A/D conversion
operation achieves a coherent integration gain factor of N, an additional log2N
bits will be required in fixed-point digital arithmetic to represent the operation
result without overflow.

Another metric frequently cited is the SQNR. This is the ratio of the power
in the A/D input signal to that of the quantization noise. For the Gaussian input
signal, the signal power is . Using the first relation in Eq. (B.29) and 
, and converting to dB gives

(B.32)
 



Like the dynamic range, the SQNR also increases by 6 dB per bit.
Once the data are quantized, a choice must be made between implementing

the processing in fixed- or floating-point arithmetic. Generally, floating-point
arithmetic requires more digital logic to implement and is therefore slower and
consumes more power. However, mathematical algorithms are easier to
develop for floating-point arithmetic because numerical overflow and
underflow are much less likely. Early radar digital processors relied mostly on
fixed-point arithmetic, at least in the early processing stages that tend to be more
computationally intensive, because it is faster. Increasing numbers of modern
systems are using floating-point processing because the dramatic increases in
processor power have made it possible to implement the desired algorithms in
real time. When portions of the signal processing require greater speed or
power efficiency than is available in floating point processors, field
programmable gate array (FPGA) technology may sometimes provide a good
alternative.

B.2.3   A/D Conversion Technology
As has been seen, the required sampling rate is determined through the Nyquist
criterion by the instantaneous bandwidth βF of the receiver output as discussed
earlier, perhaps increased by a safety margin of 10 to 20 percent to allow for
the imperfect bandlimiting of real waveforms and antialiasing filters, while the
number of bits b in the digital sample is determined by the maximum dynamic
range and quantization noise requirements of the system. Except in a few
specialized situations, the minimum number of bits required for a signal
sampled at its Nyquist rate is at least 6 and preferably 8, while 12 bits or more
are desired in many applications (Merkel and Wilson, 2003).

In high-resolution radars the resulting sampling rates can be very high,
often tens to hundreds of megasamples per second and in some cases even
reaching rates of gigasamples per second. The use of digital I/Q or digital IF
techniques for non-baseband sampling can increase the required rate relative to
the waveform bandwidth by a factor of 2.5× to 4× (see Chap. 3), further
exacerbating the problem. Many very wideband systems use a specialized linear
FM waveform processing method called stretch processing  (see Chap. 4) to
reduce the analog signal bandwidth prior to A/D conversion, often by an order
of magnitude or more.

In general, the higher the required sampling rates, the fewer the number of
bits available in current A/D converter technology. Figure B.7 summarizes the
state of the art in A/D converters in 2006 (Walden, 2008). The quantity plotted
is the effective number of bits (ENOB) versus sampling rate. ENOB is inferred
from measured SQNRs as described in Walden (1999), which also discusses
many other A/D metrics and limiting factors. This data suggests that A/D
converter wordlengths tend to drop about two to three bits per decade of
sampling rate. However, an ENOB of 8 bits is achievable at rates up to about 1



gigasample per second, and an ENOB of 12 bits is achievable at rates up to
approximately 100 megasamples per second. These are quite adequate for most
radar applications.

 FIGURE B.7   Analog-to-digital converter performance. (Data courtesy of Dr.
Robert Walden and The Aerospace Corporation. Used with permission.)
 

B-3.B   Spatial Frequency
The idea of spatial frequency is an important concept in any study involving
propagating waves, and it will be needed to analyze spatial sampling and space-
time adaptive processing. A simplified intuitive introduction to the concept is
given here. For a more complete discussion, see Johnson and Dudgeon (1993).

Consider a sinusoidal electromagnetic wave propagating in the +x
direction with wavelength λ and velocity c as shown in Fig. B.8. An observer at
a fixed spatial position x0 will see successive crests of the electric field at a
time interval (period) of T = λ/c seconds; thus the temporal frequency of the
wave is the usual F = 1/T = c/λ Hz or 2πc/λ radians per second.



 FIGURE B.8   Propagating electromagnetic wave.
 

A spatial period can also be defined; it is simply the interval between
successive crests in space for a fixed observation time. The spatial period of the
pulse is obviously λ meters. The spatial frequency is therefore 1/λ cycles per
meter or 2π/λ radians per meter. It is common to call the latter quantity the
wavenumber of the pulse and to denote it with the symbol K.7

Because position in space and velocity are three-dimensional vector
quantities in general, so is the wavenumber. For simplicity of illustration,
consider the two-dimensional version of Fig. B.8 shown in Fig. B.9. The pulse,
now propagating at an angle in an x-y plane, still has a wavenumber K = 2π/λ in
the direction of propagation. However, measured in the +x direction, the
wavenumber is Kx = (2π/λ)sinθ, where θ is the angle of incidence of the pulse
measured relative to the +y axis. Similarly, the same signal has a wavenumber
in the y direction of Ky = (2π/λ)cosθ.8 Note that as θ → 0, the wavelength in the
x dimension tends to ∞ so that Kx → 0.



 FIGURE B.9   Propagating electromagnetic wave.
 

The extension to three dimensions of space is straightforward. The total
wavenumber is related to the components in the obvious way

(B.33)
 
and always equals 2π/λ. Note that the temporal frequency remains c/λ Hz
regardless of the direction of propagation.

B-4.B   Correlation
Correlation is an operation that compares one signal against a reference signal
to determine their degree of similarity. Cross-correlation is the correlation of
two different signals; autocorrelation is the correlation of a signal with itself.
Correlation is frequently defined in both a probabilistic sense, as a descriptive
property of random signals, and as a deterministic operation performed on
actual digital signals. If a random process is ergodic, the two interpretations are
closely linked; see Oppenheim and Schafer (2010) or any text on random signals
and processes for an introduction to these concepts. The probabilistic meaning
is discussed in App. A. The deterministic processing operation is of concern



here.
Consider two signals x[n] and y[n] with DTFTs X(f) and Y(f). Their

deterministic cross-correlation is defined as

(B.34)
 
and is denoted sxy[k] = x ⊗ y. If x[n] = y[n] this is the autocorrelation of x[n],
denoted sx[k]. The value sx[k] is called the kth correlation lag. It is
straightforward to show that the deterministic cross-correlation of x[n] and y[n]
is identical to the convolution of x[n] and y*[–n]. The Fourier transform of the
cross-correlation function is called the cross-power spectrum, and is just the
product

(B.35)
 
The Fourier transform of the autocorrelation function (ACF) is usually called
simply the power spectrum or the power spectral density (PSD). Notice that the
power spectrum Sx is the squared-magnitude of the Fourier transform of the
underlying signal x:

(B.36)
 
Thus, the power spectrum is not dependent on the phase of the signal spectrum.

The extension to two-dimensional versions is obvious:

(B.37)
 

(B.38)
 

Graphically, correlation corresponds to overlaying the two constituent
signals; multiplying them sample-by-sample; and adding the results to get a
single value. One of the two signals is then shifted and the process repeated,
creating a series of output values which form the correlation sequence sxy[k].
This is illustrated notionally in Fig. B.10, which shows the cross-correlation of
two functions: x[n], which is nonzero for 0 ≤ n ≤ M – 1, and y[n], nonzero for 0
≤ n ≤ N – 1. Note that sxy[k] will be nonzero only for 1 – N ≤ m ≤ M – 1.



 FIGURE B.10   Computation of the deterministic cross-correlation function
sxy[k].
 

It is sometimes convenient to define the normalized correlation function:

(B.39)
 
Normalized versions of the cross-correlation function, and of the two-
dimensional auto- and cross-correlation functions, are defined similarly.

The properties of correlation functions are described in many standard
texts. Here only two properties of particular importance are presented, without
proof:

(B.40)
 

(B.41)
 
The first property states that the zero lag (k = 0) of an ACF is always the peak
value. In terms of Fig. B.10, this corresponds to the case where the signal is
being correlated with itself and the two replicas are completely overlapping. In
this case Eq. (B.34) specializes to

(B.42)
 
Note that sx[0] is necessarily real, even if x[n] is complex. Furthermore, sx[0] is



the total energy in x[n].
The second property above establishes the Hermitian symmetry of any

auto- or cross-correlation function. From properties of the Fourier transform, it
follows that the power spectrum will have even symmetry if the correlation
function is also real-valued.

Computing the zero autocorrelation lag is a weighted integration of the
signal samples. In coherent integration it is necessary to align the phases of the
signal samples to maximize the coherent sum. This is exactly what happens in
Eq. (B.42). If x[n] is represented in the magnitude-phase form Aejϕ, then
multiplication by x*[n] = Ae–jϕ cancels the phase component so that the products
are all real positive values and therefore add in phase. Thus when performing
an autocorrelation, the zero lag term is the weighted coherent integration of the
signal samples. This observation will be useful in understanding matched
filtering and synthetic aperture imaging.

Figure B.11 illustrates one of the important uses of correlation in radar
signal processing: detecting and locating desired signals in the presence of
noise. The sequence in part (a) of the figure is the sum of a zero mean, unit
variance Gaussian random noise signal with the finite duration pulse y[n] = 2, 9
≤ n ≤ 38 and zero otherwise. The signal-to-noise ratio is 6 dB. While there is
some evidence of the presence of y[n] in the interval 9 ≤ n ≤ 38 in Fig. B.11a, it
does not stand out well above the noise and cannot be located precisely, nor its
amplitude estimated well. However, the cross-correlation of the signal with
y[n] shown in Fig. B.11b displays a clear peak at lag k = 9, indicating the
presence of the signal y[n] in the noisy signal of part (a) and correctly locating
it nine samples from the origin. Thus, correlation can be used to aid in
identification and location of known signals in noise, i.e., as a way to “look for”
a signal of interest in the presence of interference.



 FIGURE B.11   Identifying signals in noise using cross-correlation: (a) signal
consisting of rectangular pulse in noise, (b) result of correlating with reference
rectangular pulse. See text for details.
 

B-5.B   Vector-Matrix Representations and
Eigenanalysis



B.5.1    Basic Definitions and Operations
It will sometimes be convenient to represent a finite length signal as a vector,
rather than in indexed sequence notation. That is, if the signal x[n] is defined for
0 ≤ n ≤ N – 1, it can be denoted in column vector form as

(B.43)
 
where the superscript T denotes the matrix transpose. Signal vectors will
usually be defined as column vectors, and boldface notation will be used to
indicate vectors and matrices.

Many important signal processing operations can be expressed in matrix-
vector form. One of particular importance is calculation of a single output
sample of a finite impulse response (FIR) linear filter. Suppose the filter
impulse response is denoted h[n], 0 ≤ n ≤ L – 1. The filter output is given by the
convolution sum

(B.44)
 
Vector notation can be used to represent the coefficients h[l] by the L-element
column vector h:

(B.45)
 
Now define the L-element vector xn of the L most recent signal samples as

(B.46)
 
Equation (B.44) can then be written as the vector inner product

(B.47)
 
or simply as yn = hTxn. This notation will be convenient in discussing matched
filters and array processing in Chaps. 4 and 9.

Two special product operations on vectors are common in some radar
signal processing. The symbol  represents the Hadamard product, which is the
element-by-element product of two vectors. Specifically, if a and b are two N-
element column vectors, then a  b is the N-element column vector



(B.48)
 
The Kronecker product , denoted by the symbol ⊗, is the replication of one
vector weighted by the elements of the other. If a is an M-element column vector
and b is an N-element column vector, then a ⊗ b is the MN-element column
vector

(B.49)
 

It is frequently necessary to compute the power or energy of various
signals in vector notation. The energy Ex and power Px in a vector x are given
by

(B.50)
 
where the superscript H denotes the Hermitian (conjugate) transpose. The
energy or power in the result of an inner product (filtering) operation y = hTx is

(B.51)
 
Ey and Py are the same because y is scalar (N = 1).

For a random vector w (noise samples, for example), the expected value is
required to get meaningful expressions for energy or power:

(B.52)
 
The power or energy in a filtered noise vector y = hTw then becomes

(B.53)
 
where the covariance matrix Sw has been defined as the outer product9



(B.54)
 
Covariance matrices have numerous useful properties. For example, Sw is
Hermitian, meaning that  [where H is the Hermitian (conjugate transpose)
operator], and Toeplitz (all the elements on a diagonal are identical). The
inverse is also Hermitian, . Some more important properties are
deferred until after a brief discussion of eigenanalysis.

The last form of Eq. (B.53) is an example of a quadratic form of a matrix.
The quadratic form of a Hermitian matrix A with respect to a vector x is the
real-valued scalar quantity:

(B.55)
 
The name arises because QA(x) is a second-order polynomial in the elements of
x.10 If QA(x) > 0 for any x, A is said to be positive definite. If QA(x) ≥ 0, A is
said to be positive semidefinite. Matrices can also be negative definite or
negative semidefinite. A matrix that is none of these is called indefinite.

The signal-to-interference (SIR) ratio for a signal x and interference w is
just Px/Pw = Ex/Ew. If the input to a filter h is the sum of x and w, the SIR of the
output y will be the ratio of the powers in the filtered signal and noise from Eqs.
(B.51) and (B.53), which takes on the often-seen form

(B.56)
 

B.5.2   Basic Eigenanalysis
Consider the following system of linear equations described by an N × N matrix
A:

(B.57)
 
Any vector e which satisfies this equation is called an eigenvector of A and the
scalar λ is called the corresponding eigenvalue. An eigenvector is thus a vector
that is unmodified (to within a scale factor) when operated on by A. It is
frequently the case that eigenvectors are normalized to unity norm, ||e|| = 1.

Rearranging Eq. (B.57) gives



(B.58)
 
For Eq. (B.58) to hold for a nonzero vector e, it must be the case that A–λI = 0
so that in turn

(B.59)
 
The characteristic polynomial p(λ) will be an Nth-order polynomial in λ. Its
roots are the eigenvalues of A.

Following are some useful properties of eigenvalues and eigenvectors,
including a number which apply to Hermitian matrixes and therefore to
covariance matrices. Proofs of these properties can be found in Hayes (1996).

For any matrix A:

        •  Nonzero eigenvectors e i corresponding to distinct eigenvalues λi are
linearly independent.

        •  If the rank of A is M, there will be M nonzero eigenvalues and N – M
eigenvalues with a value of zero.

For a Hermitian matrix A (includes covariance matrices):

        •  The eigenvalues of A are real.
        •  If A is the covariance matrix of a wide-sense stationary process

(normally a reasonable assumption), the eigenvalues are also
nonnegative. Consequently, A is a nonnegative definite matrix.

        •  Eigenvectors corresponding to distinct eigenvalues are orthogonal, e i
Te j

= 0.
        •  (Spectral theorem) A can be decomposed in terms of its eigenvectors

and eigenvalues as

(B.60)
 
            where V is a matrix whose columns are the normalized eigenvectors and

Λ is matrix having the eigenvalues on the diagonal and zero elsewhere.
        •  If B = A + αI, then A and B have the same eigenvectors. The eigenvalues

of B are λi + α, where the λi are the eigenvalues of A. This property is
useful when considering covariances matrices of the sum of a signal
with white noise.



B.5.3   Eigenstructure of Sinusoids in White Noise
Many important problems in radar model the signal as a sum of sinusoids in
random interference. Examples include Doppler processing, adaptive
beamforming, and space-time adaptive processing. Certain important classes of
processing algorithms rely on the structure of the covariance matrix of such
signals. A brief summary of the main results is given here. A much more
complete but still concise discussion is given in Hayes (1996).

Assume a length-N signal x[n] is the sum of a signal component s[n]
consisting of K complex sinusoids, and white noise w[n] of variance :

(B.61)
 
The amplitudes Ai are complex with uncorrelated phases randomly distributed
on [–π, π]. The frequencies ωi and magnitudes |Ai| are nonrandom but unknown.
Given a vector x consisting of N consecutive samples of x[n], the covariance
matrix of x will be the sum of the covariance matrices of s and w,

(B.62)
 
In this equation, I is the N × N identity matrix, ωi = [1 ejωi ej2ωi … ej(N–1)ωi]T, Ω =
[ω0 … ωK–1] is a rank K matrix, and P = diag{P0, P1, …, PK–1} is a diagonal
matrix of the sinusoid powers Pi = | Ai |2. While the ωi vectors will not generally
equal the eigenvectors of Sx, they will lie in the space spanned by those
eigenvectors, which is called the signal subspace. The subspace spanned by the
remaining eigenvectors is called the noise subspace. Because of the last
property of covariance matrices enumerated above, the N – K noise subspace
eigenvalues will equal , while the K signal subspace eigenvalues will equal
the eigenvalues of ΩPΩ plus .

Figure B.12 illustrates these properties for a signal that is the sum of 15
samples of each of five unit-amplitude complex sinusoids with random
normalized frequencies and phases and unit-variance, zero mean complex
Gaussian noise. Thus N = 15 and K = 5. The solid line with round markers
indicates the eigenvalues of the theoretical covariance matrix of Eq. (B.62). The
square markers are the eigenvalues of a covariance matrix estimated by
averaging 1000 sample covariance matrices formed from simulated signals in
noise. The eigenvalues of the simulated data match the theoretical eigenvalues
well. Both show that there are 10 noise eigenvalues with values near one. The
remaining five signal eigenvalues are larger as expected. The associated
eigenvectors define the signal and noise subspaces.



 FIGURE B.12   Example of theoretical (round markers) and simulated (square
markers) signal and noise eigenvalues for five sinusoids plus white noise.
 

B-6.B   Instantaneous Frequency
Consider a real or complex sinusoidal function with an arbitrary phase function
ψ(t), x(t) = Acosψ(t) or x(t) = Aexp[jψ(t)]. The instantaneous frequency of this
waveform is defined as

(B.63)
 
As an example, a conventional constant-frequency sinusoid Acos(2πF0t) has
Fi(t) = F0 Hz, as should be expected. Note that the phase function of a constant-
frequency sinusoid is linear in time.

Instantaneous frequency is sometimes useful in understanding the behavior
of more complex signals. Consider a signal having a quadratic phase function
ψ(t) = αt2 + βt + χ. The instantaneous frequency in radians per second is Ωi(t) =
αt + β. Thus, a quadratic phase sinusoid has a frequency that varies linearly
with time, as in the linear FM “chirp” waveforms of Chap. 4. As a final
example, consider the following sinusoid and its instantaneous frequency:

(B.64)



 
This waveform is a sinusoid whose frequency varies by ±αβ Hz around a
nominal frequency of F0 Hz, with that variation occurring at a rate of β cycles
per second.

B-7.B   Decibels
Many radar parameters are commonly expressed in decibel (dB) units.
Examples include antenna gains, radar cross sections, signal-to-interference
ratios, and sidelobe levels. The advantage of using decibel units is that it
reduces the numerical range of parameters that have very large variations. RCS
is a good example. Average RCS values of interest in radar can range from 10 –5

m2 for insects to over 106 m2 for a large ship such as an aircraft carrier viewed
at certain aspect angles. This range of 11 orders of magnitude becomes a range
of only 110 dB, from –50 dB to +60 dB.

Decibels in radar are a measure of relative power of an electrical signal.
Consider a signal having a power of P watts. The power in decibels is defined
as

(B.65)
 
where Pref is the reference power level. A value PdB in decibels is easily
converted back to a value P in non-decibel units (often called “linear units”) by
inverting Eq. (B.65):

(B.66)
 

The units of dB are often modified to reflect the reference value used. For
instance, if Pref = 1 mW and P = 100 mW, then P might be expressed as 20 dBm,
with the abbreviation dBm interpreted as “decibels relative to 1 milliwatt.”
Another example is dBW for decibels relative to 1 watt. It is often the case,
especially in signal processing, that the absolute units of a signal are not
important, just its numerical value. For this reason, the reference value Pref is
often taken equal to one and the units of the decibel value are left as just dB with
no modifier.

In electrical engineering, signals of interest are often voltages. In
accordance with Ohm’s law, the power of a quantity V in volts is proportional
t o V2. A quantity expressed in volts can be converted between decibel and
linear scales using the relations
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The use of |V|2 instead of just V 2 allows for the possibility that the voltage V is
complex. Note that converting from decibels back to the linear scale can
recover only the magnitude of V. The phase of a complex voltage is lost in the
conversion to decibels, as is the sign of a real-valued voltage. An arbitrary
signal x(t) or x[n], for instance the output of a radar receiver, is usually
considered to be a voltage unless otherwise specified. There are exceptions.
The output of a square-law detector (Chap. 6) would be considered to be in
power units, while the units of the output of a logarithmic detector would be the
logarithm of power.

In addition to signal powers, decibel scales are commonly used in radar to
describe antenna pattern features, filter time- and frequency-domain response
features, and radar cross sections. For example, the power gain at the peak of
the first sidelobe, relative to the peak mainlobe power gain, of an antenna with
an ideal uniform illumination is about 0.047, corresponding to –13.26 dB. This
same value surfaces frequently, for instance as the peak sidelobe level of the
slow-time DTFT of a constant-Doppler target or the peak range sidelobe level
of a matched filter for a linear FM waveform with a high time-bandwidth
product. RCS is defined in terms of the ratio of two values of power density
(see Chap. 2), and so becomes a factor in power calculations in radar range
equations. Because RCS has units of m2, on a decibel scale RCS is often given
units of decibels relative to 1 m2, written dBm. The distinction between the
usage of dBm for dB relative to 1 square meter and dB relative to 1 milliwatt is
usually clear from context.

Expressing parameters in decibels simplifies multiplication, division, and
exponentiation calculations, as shown here:

(B.68)
 
These transformations were of great utility before the age of handheld scientific
calculators and high-speed computers, but are of less importance today.
Nonetheless, it is useful to be familiar with a few key correspondences between
linear and decibel values given in Table B.2.



 TABLE B.2   Linear Equivalences to Selected Decibel Values
 

With this table and the arithmetic properties of decibels one can
approximate the linear value of any parameter given in dB without resorting to a
scientific calculator. For example, the linear equivalent of 7 dB can be
determined as

(B.69)
 
which is quite close to the actual linear value corresponding to 7 dB of 5.0119.
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_____________
1 To unify discussion of sampling in time, frequency, and space and to maintain generality, in this discussion
the signal to be sampled will be referred to as a function in the signal domain, and its Fourier transform as
a function in the Fourier domain.
2 The fairly common convention in digital signal processing texts of enclosing the independent variable in
square brackets when it is discrete, and parentheses when it is continuous, will be followed. Thus x(u) is a
function of a continuous variable, while x[n] is a function of a discrete variable.
3 Another fairly common DSP convention observed here is to use upper case variables to denote analog
frequencies (F or Ω, in hertz or radians per second if the independent variable represents time) and lower
case variables to denote “digital” frequency variables (f or ω). Many DSP texts consider the signal domain
index n to be unitless and therefore units of f or ω to be simply cycles or radians. The preference here is to
consider n to have units of samples so that f and ω have units of cycles per sample or radians per sample.
4 The definitions of Eqs. (B.14) and (B.15) are unusual in that most DSP texts define the DFT with K = N
and introduce the idea of “zero padding” to account for the case where there are more DFT frequency
samples than there are signal samples. The preference here is to distinguish these two numbers in the
definition.
5 The MATLAB® function fftshift exists precisely to perform this rearrangement of the output of the
fft function for plotting convenience.
6 “Nonlinear quantization” using unevenly spaced values of output voltage is common in some applications.
Linear quantization (constant level spacing) is the norm in radar.
7 Most radar and array processing literature uses a lower case k  for spatial frequency. Here upper case K
is used in keeping with the convention to use uppercase letters for analog quantities and lower case for
quantities normalized by a sampling interval.
8 Incidence angle will often be measured with respect to the normal to the y axis, i.e., the x axis, because
this is convenient and conventional in analyzing antenna patterns. If the antenna aperture lies in the y
dimension, then an incidence angle of θ = 0 indicates a wave propagating normal to the aperture, i.e., in the
boresight (x) direction.
9 Strictly speaking, this is the autocorrelation matrix. The covariance matrix is obtained as the
autocorrelation of the interference after the mean is subtracted out; see Hayes (1996) for details. The
interference may almost always be assumed to have zero mean, in which case they are the same. The
covariance terminology seems to be more prevalent in the radar community.
10 Since Q must be real, the second-order terms in the polynomial all appear in magnitude-squared form,
|xi|

2.
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Range skew
Range swaths
Range window
Rank sum double quantizer
Real aperture radar
Real-beam imaging
Receiver
   effective temperature
   superheterodyne
Receiver operating characteristic (ROC)
Receiver output
Reed-Mallett-Brennan (RMB) rule
Reflectivity
   angle-averaged effective
   area clutter
   baseband complex
   effective
   factor
   projections
   range-averaged effective
   volume clutter
Reflectivity factor
Region of interest (ROI)
Replication
Residual video phase. See Spotlight SAR
Resolution:
   3-dB
   cell
   cross-range
   Doppler
   range



   Rayleigh
   velocity
Rice distribution
Root-mean-square (RMS) bandwidth

 S 
Sampling:
   in angle
   array element spacing
   in digital signal processing
   in Doppler frequency
   in fast time
   Nyquist rate
   in slow time
   spatial
Sampling bound (SB)
ScanSAR
Schwarz inequality
Sequential least squares
Sequential lobing
Shnidman’s equation
Shuttle imaging radar–C. See SIR-C radar
Sign-magnitude encoding
Signal processing gain
   in coherent integration
   for coherent pulse burst
   for linear FM waveform
   in moving target indication
   in noncoherent integration
   for phase coded waveforms
   in pulse Doppler processing
   in synthetic aperture radar
Signal subspace
Signal-to-clutter ratio (SCR)
Signal-to-interference ratio (SIR)
Signal-to-noise ratio (SNR)
   CRLB
   peak
   precision
Signal-to-quantization noise ratio (SQNR)
Sinc-squared two-way voltage
Sinusoid frequency



SIR-C radar
Slant plane
Slant range
Slow time
Smallest-of cell-averaging CFAR
   CFAR loss
   clutter edge performance
   target masking performance
   threshold multiplier
Snapshot:
   space-time
   spatial
   temporal
Space-time adaptive processing (STAP)
   adapted pattern
   Billingsley model
   clutter model
   clutter ridge slope
   column stacking
   covariance matrix. See Covariance matrix
   covariance matrix taper (CMT)
   diagonal loading
   interference subspace leakage
   knowledge-aided
   limitations
   metrics
   minimum detectable Doppler (MDD)
   minimum detectable velocity (MDV)
   principle components method
   rank of covariance matrix
   reduced dimension
   reduced rank
   Reed-Mallet-Brennan rule
   relation to DPCA
   sample matrix inverse
   signal model
   signal processing gain
   SIR loss
   subspace projection
   temporal correlation
   test statistic
   usable Doppler space fraction (UDSF)
Spatial Doppler



Spatial frequency
Spatial snapshot
Split-gate technique
Spotlight SAR
   central reference point
   convolution-backprojection
   cross-range resolution
   data characteristics
   limitations to polar format model
   mapping rate
   polar format algorithm. See Polar format algorithm
   polar format data
   projection
   rectangular format algorithm
   residual video phase
   sampling requirements
Squint
Staggered PRF:
   CPI-to-CPI
   pulse canceller frequency response
   pulse-to-pulse
   stagger ratio
   staggers
Stationary point
Steady-state operation
Steering vector:
   space-time
   spatial
   temporal
Stepped chirp waveform, ambiguity function
Stepped frequency waveform
   ambiguity function
   array steering
   definition
   linear
   pulse-by-pulse processing
Stop-and-hop assumption. See Doppler shift
Straddle loss
   definition
   in Doppler
   sampling rate for specified limit
Stretch processing
Stripmap SAR



   ω-κ algorithm
   chirp scaling algorithm
   cross-range chirp
   data characteristics
   data set size
   depth of focus
   geometry
   lower bound on cross-range resolution
   mapping rate
   point scatterer response (PSR)
   range migration algorithm
   space-bandwidth product
   subswaths
Strongest neighbor, cost measurement
Sufficient statistic
Sum signal, in angle tracking
Surface moving target indication (SMTI)
Swath length
Swerling models
Synthetic aperture radar
   antenna area constraint
   aperture time
   autofocus. See Autofocus
   beamwidth of synthetic array
   coverage and sampling
   cross-range resolution. See Resolution
   Doppler beam sharpening. See Doppler beam sharpening
   Doppler viewpoint
   interferometric SAR. See Interferometric SAR
   layover
   looks
   mapping rate
   motion compensation. See Motion compensation
   point scatterer response (PSR). See Stripmap SAR
   quadratic phase errors
   range curvature. See Range migration
   range-Doppler algorithm
   range migration. See Range migration
   range walk. See Range migration
   scanSAR
   sidelooking
   speckle
   speckle reduction



   spotlight. See Spotlight SAR
   squinted SAR
   stripmap. See Stripmap SAR
   swath constraint
   swath length
   synthetic aperture size
Synthetic array radar. See Synthetic aperture radar
System loss factor

 T 
Target masking
Target models:
   fluctuating
        effects on Doppler spectrum
   nonfluctuating
   Swerling. See Swerling models
Target visibility. See Moving target indication, visibility factor
Terrain motion mapping
Threshold detection. See Detection
Time-bandwidth product
Time delay estimation
Time delay measurement
Tracking
   α-ß filter
   association. See Data association
   cost matrix measurement
   cycle
   extended Kalman filter (EKF)
   filters
   gain scheduling
   initiation
   initiation process
   Kalman filter
   least-squares estimate
   in spherical coordinates
   state
Tracking index
Transmit/receive switch
Two-beam lobing
Two’s complement encoding
Two-sample estimator



 U 
Unambiguous range. See Range
Upchirp

 V 
Vector representation

 W 
Walker, Jack
Waveform:
   biphase-coded. See Biphase-coded waveform
   Costas frequency codes
   linear FM (LFM). See Linear FM waveform
   nonlinear FM (NLFM)
   phase coded
   polyphase coded. See Polyphase coded waveform
   pulse burst. See Pulse burst waveform
   simple pulse
   stepped frequency. See Stepped frequency waveform
Wavefront. See Antenna, phase front
Weiss-Weinstein analysis
White noise
Whitening
Wiley, Carl

 Z 
Zero padding
Zero velocity filter
Ziv-Zakai bound (ZZB)
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