Fundamentals of

Radar
Slgnal
Processing

Mark A. Richards




Fundamentals of Radar Signal Processing



Fundamentals of Radar Signal Processing

Mark A. Richards, Ph.D.

Georgia Institute of Technology

Second Edition

i

New York Chicago San Francisco
Athens London Madrid

Mexico City Milan New Delhi
Singapore Sydney Toronto




Copyright © 2014 by McGraw-Hill Education. All rights reserved. Except as permitted under the United
States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by
any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

ISBN: 978-0-07-179833-4

MHID: 0-07-179833-1

e-Book conversion by Cenveo® Publisher Services
Version 1.0

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-179832-7, MHID: 0-
07-179832-3.

McGraw-Hill Education eBooks are available at special quantity discounts to use as premiums and sales
promotions, or for use in corporate training programs. To contact a representative, please visit the Contact
Us page at www.mhprofessional.com.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every
occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the
trademark owner, with no intention of infringement of the trademark. Where such designations appear in
this book, they have been printed with initial caps.

Information has been obtained by McGraw-Hill Education from sources believed to be reliable. However,
because of the possibility of human or mechanical error by our sources, McGraw-Hill Education, or others,
McGraw-Hill Education does not guarantee the accuracy, adequacy, or completeness of any information
and is not responsible for any errors or omissions or the results obtained from the use of such information.

TERMS OF USE

This is a copyrighted work and McGraw-Hill Education and its licensors reserve all rights in and to the
work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and
the right to store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer,
reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or
sublicense the work or any part of it without McGraw-Hill Education’s prior consent. You may use the
work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Y our
right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL EDUCATION AND ITS LICENSORS MAKE
NO GUARANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR
COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING
ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR
OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill Education and its licensors do not warrant or
guarantee that the functions contained in the work will meet your requirements or that its operation will be
uninterrupted or error free. Neither McGraw-Hill Education nor its licensors shall be liable to you or anyone
else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting
therefrom. McGraw-Hill Education has no responsibility for the content of any information accessed through
the work. Under no circumstances shall McGraw-Hill Education and/or its licensors be liable for any
indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability
to use the work, even if any of them has been advised of the possibility of such damages. This limitation of


http://www.mhprofessional.com

liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or
otherwise.



To Theresa, with love and gratitude for all our time together, past and
future. And to Jessica and Benjamin and the first of our newest generation,
Amelia, with pride, joy, and high hopes for the future you all will bring.



About the Author

MARK A. RICHARDS, PH.D., is Principal Research Engineer and Adjunct
Professor, School of Electrical and Computer Engineering (ECE), Georgia
Institute of Technology, and a Fellow of the IEEE cited for contributions to
radar signal processing education. He is engaged in academic and continuing
education teaching and course development in the fields of digital signal
processing and radar signal processing. Previous positions include Chief of the
Radar Systems Division and Head of the Signal Processing Branch in the
Sensors and FElectromagnetic Applications Laboratory of the Georgia Tech
Research Institute, and Program Manager for Advanced Signal Processing at the
U.S. Defense Advanced Research Projects Agency (DARPA).



Contents

Preface

Acknowledgments
Symbols
Acronyms

1 Introduction to Radar Systems and Signal Processing
1.1 History and Applications of Radar

1.2 Basic Radar Functions

1.3 FElements of a Pulsed Radar
1.3.1 Transmitter and Waveform Generator
1.3.2 Antennas
1.3.3 Receivers

1.4 Common Threads in Radar Signal Processing
1.4.1 Signal-to-Interference Ratio and Integration
1.4.2 Resolution
1.4.3 Data Integration and Phase History Modeling
1.4.4 Bandwidth Expansion

1.5 A Preview of Basic Radar Signal Processing
1.5.1 Radar Time Scales
1.5.2 Phenomenology
1.5.3 Signal Conditioning and Interference Suppression
1.5.4 Imaging
1.5.5 Detection
1.5.6 Measurements and Track Filtering

1.6 Radar Literature
1.6.1 Radar Systems and Components
1.6.2 Basic Radar Signal Processing
1.6.3 Advanced Radar Signal Processing
1.6.4 Radar Applications
1.6.5 Current Radar Research

References
Problems

2 Signal Models
2.1 Components of a Radar Signal

2.2 Amplitude
2.2.1 Simple Point Target Radar Range Equation
2.2.2 Distributed Target Forms of the Range Equation
2.2.3 Radar Cross Section
2.2.4 Radar Cross Section for Meteorological Targets




2.2.5 Statistical Description of Radar Cross Section
2.2.6  Target Fluctuation Models
2.2.7 Swerling Models
2.2.8 Effect of Target Fluctuations on Doppler Spectrum
2.3 Clutter
2.3.1 Behavior of 62
2.3.2 _Signal-to-Clutter Ratio
2.3.3 Temporal and Spatial Correlation of Clutter
2.3.4 Compound Models of Radar Cross Section
2.4 Noise Model and Signal-to-Noise Ratio
2.5 Jamming
2.6 Frequency Models: The Doppler Shift
2.6.1 Doppler Shift

2.6.2 The Stop-and-Hop Approximation and Phase History

2.6.3 Measuring Doppler Shift: Spatial Doppler
2.7 _Spatial Models

2.7.1 Coherent Scattering
2.7.2 Variation with Angle
2.7.3 Variation with Range
2.7.4 Noncoherent Scattering
2.7.5 Projections
2.7.6 Multipath
2.8 Spectral Model
2.9 Summary
References
Problems

3 Pulsed Radar Data Acquisition
3.1 Acquiring and Organizing Pulsed Radar Data
3.1.1 One Pulse: Fast Time
3.1.2 Multiple Pulses: Slow Time and the CPI

3.1.3 Doppler and Range Ambiguities
3.1.4 Multiple Channels: The Datacube
3.1.5 Dwells

3.2 Sampling the Doppler Spectrum
3.2.1 The Nyquist Rate in Doppler

3.2.2 Straddle Loss
3.3 Sampling in the Spatial and Angle Dimensions

3.3.1 Spatial Array Sampling
3.3.2 Sampling in Angle
3.4 1/Q Imbalance and Digital I/Q

3.4.1 1/Q Imbalance and Offset
3.4.2 Correcting I/Q Errors




3.4.3 Digital I/Q

References
Problems

4 Radar Waveforms
4.1 Introduction
4.2 The Waveform Matched Filter
4.2.1 The Matched Filter
4.2.2 Matched Filter for the Simple Pulse
4.2.3 All-Range Matched Filtering
4.2.4 Straddle Loss
4.2.5 Range Resolution of the Matched Filter
4.3 Matched Filtering of Moving Targets
4.4 The Ambiguity Function
4.4.1 Definition and Properties of the Ambiguity Function
4.4.2 Ambiguity Function of the Simple Pulse
4.5 The Pulse Burst Waveform
4.5.1 Matched Filter for the Pulse Burst Waveform
4.5.2 Pulse-by-Pulse Processing
4.5.3 Range Ambiguity
4.5.4 Doppler Response of the Pulse Burst Waveform
4.5.5 Ambiguity Function for the Pulse Burst Waveform
4.5.6 The Slow-Time Spectrum and the Periodic Ambiguity
Function
4.6 Frequency-Modulated Pulse Compression Waveforms
4.6.1 Linear Frequency Modulation
4.6.2 The Principle of Stationary Phase
4.6.3 Ambiguity Function of the LFM Waveform
4.6.4 Range-Doppler Coupling
4.6.5 Stretch Processing
4.7 Range Sidelobe Control for FM Waveforms
4.7.1 Matched Filter Frequency Response Shaping
4.7.2 Matched Filter Impulse Response Shaping
4.7.3 Waveform Spectrum Shaping
4.8 The Stepped Frequency Waveform
4.9 The Stepped Chirp Waveform
4.10 Phase-Modulated Pulse Compression Waveforms
4.10.1 Biphase Codes
4.10.2 Polyphase Codes
4.10.3 Mismatched Phase Code Filters
4.11 Costas Frequency Codes
4.12 _Continuous Wave Radar
References




Problems

S Doppler Processing
5.1 Moving Platform Effects on the Doppler Spectrum

5.2 _Moving Target Indication
5.2.1 Pulse Cancellers
5.2.2 Vector Formulation of the Matched Filter
5.2.3 Matched Filters for Clutter Suppression
5.2.4 Blind Speeds and Staggered PRFs
5.2.5 MTI Figures of Merit
5.2.6 Limitations to MTI Performance
5.3 Pulse Doppler Processing
5.3.1 The Discrete-Time Fourier Transform of a Moving Target
5.3.2 Sampling the DTFT: The Discrete Fourier Transform
5.3.3 The DFT of Noise
5.3.4 Pulse Doppler Processing Gain
5.3.5 Matched Filter and Filterbank Interpretations of Pulse
Doppler Processing with the DF T

5.3.6  Fine Doppler Estimation

5.3.7 Modern Spectral Estimation in Pulse Doppler Processing
5.3.8 CPI-to-CPI Stagger and Blind Zone Maps

5.4 Pulse Pair Processing
5.5 Additional Doppler Processing Issues
5.5.1 Combined MTI and Pulse Doppler Processing
5.5.2 Transient Effects
5.5.3 PRF Regimes
5.5.4 Ambiguity Resolution
5.6 Clutter Mapping and the Moving Target Detector
5.6.1 Clutter Mapping
5.6.2 The Moving Target Detector
5.7 _MTI for Moving Platforms: Adaptive Displaced Phase Center
Antenna Processing
5.7.1 The DPCA Concept
5.7.2 Adaptive DPCA
References
Problems

6 Detection Fundamentals
6.1 Radar Detection as Hypothesis Testing

6.1.1 The Neyman-Pearson Detection Rule
6.1.2 The Likelihood Ratio Test

6.2 _Threshold Detection in Coherent Systems
6.2.1 The Gaussian Case for Coherent Receivers




6.2.2 Unknown Parameters and Threshold Detection
6.2.3 Linear and Square-Law Detectors
6.2.4 Other Unknown Parameters
6.3 Threshold Detection of Radar Signals
6.3.1 Coherent, Noncoherent, and Binary Integration
6.3.2 Nonfluctuating Targets
6.3.3 Albersheim’s Equation
6.3.4 Fluctuating Targets

6.3.5 Shnidman’s Equation

6.4 Binary Integration
6.5 Constant False Alarm Rate Detection

6.5.1 The Effect of Unknown Interference Power on False
Alarm Probability
6.5.2 Cell-Averaging CFAR
6.5.3 Analysis of Cell-Averaging CFAR
6.5.4 CA CFAR Limitations
6.5.5 Extensions to Cell-Averaging CFAR
6.5.6 Order Statistic CFAR
6.5.7 Additional CFAR Topics
6.6 System-Level Control of False Alarms
References
Problems

7 _Measurements and Tracking
7.1 Estimators

7.1.1 Estimator Properties
7.1.2 The Cramer-Rao Lower Bound
7.1.3 The CRLB and Signal-to-Noise Ratio
7.1.4  Maximum Likelihood Estimators
7.2 Range, Doppler, and Angle Estimators
7.2.1 Range Estimators
7.2.2 Doppler Signal Estimators
7.2.3 Angle Estimators

7.3 Introduction to Tracking
7.3.1 Sequential [east Squares Estimation

7.3.2 The a —p Filter
7.3.3 The Kalman Filter
7.3.4 The Tracking Cycle
References
Problems

8 Introduction to Synthetic Aperture Imaging
8.1 Introduction to SAR Fundamentals




8.1.1 Cross-Range Resolution in Radar
8.1.2 The Synthetic Aperture Viewpoint
8.1.3 Doppler Viewpoint
8.1.4 SAR Coverage and Sampling

8.2 Stripmap SAR Data Characteristics
8.2.1 Stripmap SAR Geometry
8.2.2 Stripmap SAR Data Set

8.3 Stripmap SAR Image Formation Algorithms
8.3.1 Doppler Beam Sharpening
8.3.2 Quadratic Phase Error Effects
8.3.3 Range-Doppler Algorithms
8.3.4 Depth of Focus
8.4 Spotlight SAR Data Characteristics
8.5 The Polar Format Image Formation Algorithm for Spotlight SAR
8.6 Interferometric SAR
8.6.1 The Effect of Height on a SAR Image
8.6.2 IFSAR Processing Steps
8.7 Other Considerations
8.7.1 Motion Compensation and Autofocus
8.7.2 Autofocus
8.7.3 Speckle Reduction
References
Problems

9 Introduction to Beamforming and Space-Time Adaptive Processing
9.1 Spatial Filtering

9.1.1 Beamforming
9.1.2 Adaptive Beamforming

9.1.3 Adaptive Beamforming with Preprocessing
9.2 Space-Time Signal Environment

9.3 Space-Time Signal Modeling

9.4 Processing the Space-Time Signal

9.4.1 Optimum Matched Filtering
9.4.2 STAP Metrics

9.4.3 Relation to Displaced Phase Center Antenna Processing
9.4.4 Adaptive Matched Filtering
9.5 Reduced-Dimension STAP
9.6 Advanced STAP Algorithms and Analysis
9.7 Limitations to STAP
References
Problems

A_Selected Topics in Probability and Random Processes




B Selected Topics in Digital Signal Processing

Index



Preface

Thhis second edition of Fundamentals of Radar Signal Processing shares with

the first the goal of providing in-depth coverage of fundamental topics in radar
signal processing from a digital signal processing perspective. The techniques
and interpretations of linear systems, filtering, sampling, and Fourier analysis
are used throughout to provide a modern and unified tutorial approach. The
coverage includes a full range of the basic signal processing techniques on
which virtually all modern radar systems rely, including topics such as target
and interference models, matched filtering, waveform design, Doppler
processing, threshold detection, and measurement accuracy. Introductions are
provided to track filtering and the advanced topics of synthetic aperture imaging
and space-time adaptive array processing to provide a bridge to more in-depth
texts on these topics.

The first edition was published in 2005 with the intention of filling what I
perceived to be a void in the technical literature on radar. There existed at that
time a number of excellent books on radar systems in general (e.g., Skolnik,
Edde) that provided an excellent qualitative and descriptive introduction to
radar systems as a whole and could be enthusiastically recommended as first
texts for anyone interested in the topic. Indeed, having worked on speech
enhancement in graduate school, I read the first edition of Skolnik’s
Introduction to Radar Systems when I accepted a job in radar, hoping to avoid
appearing completely ignorant on my first day at the new job. (It didn’t work,
through no fault of Skolnik.) Some of these texts (e.g., Peebles, Mahafza)
provided greater quantitative depth on basic radar systems and some signal
processing topics. At the same time, a number of good quality texts were
available on advanced topics in radar signal processing, principally synthetic
aperture imaging (Jakowatz et al., Carrara et al., Soumekh) and space-time
adaptive processing (Klemm, Guerci). The problem, in my view, was the
existence of a substantial gap between the qualitative systems books and the
quantitative advanced signal processing books. Specifically, I believed the
radar community lacked a current text providing a concise, unified, and modern
treatment of the basic radar signal processing techniques mentioned above on
which these more advanced methods are founded. It was my hope that this book
would fill that gap.

The reception accorded the first edition since its publication has been
gratifying. I have received many very kind and encouraging comments and it has
been adopted for use by a number of universities and companies. I believe it has
largely been successful in meeting its goals. Its success, however, also quickly
brought to light many ways in which the book could be improved.

New books continue to appear, particularly the excellent Principles of



Modern Radar series. 1 believe it remains true today, somewhat to my surprise,
that most radar textbooks generally address either the entire radar system or
very specialized processing topics, and that few attempt to address the full suite
of basic signal processing concepts found in virtually every radar that form the
basis for advanced techniques. That 1s, the gap still exists. The goal of the text
has therefore remained the same. The specific goal of the second edition is to
strengthen that coverage, broaden it slightly, correct and improve the
presentation, and provide additional resources that will increase its usefulness
as a textbook as well as a professional reference.

This book was originally developed and used over several years in
support of two courses at Georgia Tech. It was primarily developed as a
product of ECE 6272, Fundamentals of Radar Signal Processing, a semester-
length first-year graduate course. Elements of this book were also used in
abbreviated and simplified form in the one-week professional education course
of the same name taught periodically through Georgia Tech’s Professional
Education division. Since publication of the first edition, I have continued to use
it for both courses. Through those experiences and just the passage of time I
have learned more, both about the topics and how to convey them, and I have
tried to incorporate that knowledge into the updated text.

There 1s one major change and many minor to moderate ones from the first
edition. The major change is the addition of what is now Chap. 7,
“Measurements and Tracking.” This chapter introduces an important basic topic
missing from the first edition, that of measurement accuracy. The Cramer-Rao
lower bound (CRLB) and maximum likelihood estimation are introduced and
applied to measurements of time delay, frequency, phase, and angle using
common techniques such as matched filtering with peak detection, leading edge
pulse detection, the DFT, and monopulse angle measurement. Also included is
an overview of basic track filtering covering a-f and Kalman filters. This
chapter should have been in the first edition, and I am happy to remedy its
absence now.

Changes to the other portions of the text are more modest. The review of
basic digital signal processing concepts previously inChap. 1 has been
relocated to App. B and expanded slightly. An entirely new App. A has been
added to reference basic information from random variables and random signals
needed for this text, including common probability density functions (PDFs) in
radar; estimators and the CRLB; and the effect of linear shift-invariant systems
on random signals.

Chapter 2 attempts to improve the discussion of fluctuating target models.
The traditional Swerling models do not apply in many situations today, both
because finer-resolution radars require new PDFs and because the “scan-to-
scan” and “pulse-to-pulse” terminology is a poor fit to processing based on
coherent processing intervals (CPIs). However, the analysis strategy remains
valid. I have therefore kept the presentation of the detector design and analysis



strategy based on the Neyman-Pearson criterion largely intact while reducing
reliance on the “scan-to-scan” and “pulse-to-pulse” terminology for discussing
noncoherent integration issues. I have not abandoned these terms completely
because the student still needs to understand them to interpret the literature and
apply it to modern systems. The other change to Chap. 2 is a modest increase in
the discussion of clutter reflectivity.

Chapter 3 has been renamed ‘“Pulsed Radar Data Acquisition” but is
largely unchanged. The discussion of acquiring a datacube for one CPI has been
reorganized a bit to make the sequence clearer. Similarly, Chap. 4 on
waveforms has been expanded only slightly, to add time-domain control of
linear FM sidelobes and brief mentions of the stepped-chirp waveform,
mismatched filters for binary phase codes, and continuous wave radar.

Chapter 5 on Doppler processing has been significantly expanded to
include more explanation of the behavior of the pulse Doppler spectrum in the
presence of range and Doppler ambiguities. A short mention of the pros and
cons of the low, medium, and high PRF regimes has been added. Coverage of
ambiguity resolution has been increased and a discussion of blind zones added.
Also, the discussion of staggered pulse repetition frequencies for moving target
indication has been redone in terms of pulse repetition intervals.

Chapter 6 on basic detection theory and Chap. 7 on constant false alarm
rate (CFAR) thresholding have been combined into the new Chap. 6 but are
otherwise little changed except for corrections and clarifications. Chapter 8 on
synthetic aperture radar has likewise been corrected and clarified, with some
additional information on interferometric SAR added. Finally, Chap. 9 on
adaptive beamforming and space-time adaptive processing has also been
corrected and clarified. The only significant change has been the elimination of
most of the material on computational issues in STAP. (Perhaps a future third
edition will have room for a new chapter that can address computational issues
in all the radar signal processing techniques.) While SAR and adaptive
interference suppression are extremely important in modern radar, the intent of
this text is to introduce the basics and prepare the student to tackle some of the
many fine books that address these topics in depth.

Throughout the text, I attempt to do a better job of identifying and bringing
out common themes that arise again and again in radar signal processing, if
sometimes 1n disguise. These include phase history, coherent integration,
matched filtering, integration gain, and maximum likelihood estimation.

A one-semester course in radar signal processing can cover Chaps. 1
through 7, perhaps also skipping some of the later sections of Chaps. 2 and 3 for
additional time savings. Such a course provides a solid foundation for more
advanced work in detection theory, adaptive array processing, synthetic
aperture imaging, and more advanced radar concepts such as passive and
bistatic systems. A quarter-length course could cover Chaps. 1 through 5 and the
non-CFAR portion of Chap. 6 reasonably thoroughly. In either case, a firm



background in basic continuous and discrete signal processing and an
introductory exposure to random variables and processes are advisable. In this
edition, I have added homework problems to each chapter to improve the
book’s usefulness as an academic text. Solutions to the problems are available
to instructors of courses using the text on request from the publisher.

Since publication of the first edition, I have collected and maintained a
thorough list of every error reported to me by readers or that I have found
myself and made it available on the textbook support website at
http://www.radarsp.com. That website also provides additional support
information such as occasional technical memo supplements on topics related to
this book, and some simple MATLAB ®-based software demos and projects that
I have used in my classes. I have tried in this edition to eliminate all known
errors without introducing new ones. Complete success is certainly impossible,
but I sincerely hope I have mostly succeeded. (Being all new content, Chap. 7
and App. A remain particularly at risk for errors in this edition.) I invite readers
to send any and all errata that they find to me at mrichards@gatech.edu. As
always, I will make available at the website an errata document with all known
errors in this edition.

Mark A. Richards, Ph.D.
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Symbols

The following definitions and relations between symbols are used throughout

this text except as otherwise specifically noted. Some symbols, such as 8, have
more than one usage; their meaning is generally clear from the context.
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®
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[x]

o

Prn

b

Proms

b, =v/c
P By -
X

X1

AN

Convolution operator

Kronecker product operator

Hadamard product operator

Continuous variable x

Discrete variable x

Modulo x

“Is distributed as”

Vector variable

Matrix variable

Matrix or vector transpose

Complex conjugate

Hermitian transpose

Clutter temporal fluctuation vector

Threshold multiplier, “greatest-of” CFAR
Threshold multiplier, log CFAR

Threshold multiplier, “smallest-of” CFAR
Doppler time scaling factor

Bandwidth; standard deviation of interference process
Nonlinear term of nonlinear FM waveform bandwidth
Doppler bandwidth

Linear term of nonlinear FM waveform bandwidth
Noise-equivalent receiver bandwidth

Null-to-null bandwidth

Rayleigh bandwidth

Root-mean-square bandwidth

Normalized velocity

Spatial bandwidth in x, y, and z dimensions
Signal-to-noise ratio

Single sample signal-to-noise ratio

N-sample signal-to-noise ratio
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Ao

Az

o]
6
op(*)

ACR

¢max

N

{(a\b)

Output signal-to-noise ratio
Signal-to-noise ratio with perfect noise level estimate

Lobing antenna sum channel signal-to-noise ratio
Grazing angle

Discrete impulse function

Target angle relative to boresight

Dirac impulse (“delta”) function

Range error

Differential delay

Angular resolution, lobing antenna squint
Change in squint angle

Cross-range resolution

Frequency step size

Doppler frequency resolution

Height displacement

Range resolution

Range relative to central reference point
Range curvature

Range bin spacing

Range walk

Time resolution

Time relative to central reference point delay
I/Q amplitude mismatch

Error in lobing antenna ratio voltage vy,
Elevation angle; phase; baseband received signal phase
Non-baseband received signal phase

3-dB elevation beamwidth

Interferometric phase difference

Maximum quadratic phase error

Subpulse phase in phase-coded waveform
Null-to-null elevation beamwidth

Q channel DC offset; interferogram coherence
Tracking index; gamma function

Volume reflectivity

I channel DC offset; Doppler spectrum oversampling
factor; adaptive filter scale factor

Likelihood function for parameter a given data b



 H > N

T T D
aT f 0w —_~
=

S
S

=]

OO
'S

p =cexpljy] = p

+JPq

Wavelength; eigenvalue

Likelihood ratio

Estimated mean

Azimuth angle; phase; baseband transmitted signal phase
Phase modulation of waveform

Non-baseband transmitted signal phase

Vector of random phases

3-dB azimuth beamwidth

Azimuth beamwidth

Elevation beamwidth

Null-to-null azimuth beamwidth

Effective beamwidth of synthetic aperture radar
Target angle of arrival

Parameter to be estimated

Parameter vector to be estimated

Estimate of ®

Estimate of ®

Complex baseband reflectivity

Baseband reflectivity in-phase (I) component

Baseband reflectivity quadrature-phase (Q) component
Normalized autocorrelation or cross-correlation function
Effective baseband complex reflectivity

Complex non-baseband reflectivity

Non-baseband reflectivity in-phase (I) component
Non-baseband reflectivity quadrature-phase (Q) component

Cross-range averaged effective baseband complex
reflectivity

Range spatial spectrum (Fourier transform of P)
Radar cross section (RCS)

Area reflectivity

Surface roughness

Variance of random variable x

Precision of estimate

Diagonal matrix of clutter powers

Baseband reflectivity amplitude (> 0)
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AF(0), AF(0, ¢)

I@E

Non-baseband reflectivity amplitude (¢ > 0)

Pulse length

Subpulse length in phase coded waveform

Sufficient statistic

Normalized frequency (radians per sample)

Normalized Doppler frequency shift (radians per sample)

Sampling interval in normalized frequency w (samples per
radian)

Frequency (radians per second)
Azimuth rotation rate (radians per second)

Doppler frequency shift (radians per second)

Doppler frequency mismatch (radians per second)
Matched Doppler frequency shift (radians per second)
Baseband reflectivity phase; squint angle
Non-baseband reflectivity phase

Baseband transmitted signal amplitude

Spatial steering vector

Temporal steering vector

Non-baseband transmitted signal amplitude
Ambiguity function

Signal amplitude

Complex ambiguity function

Effective antenna aperture size

Covariance matrix of clutter temporal fluctuations
Complex amplitude of subpulse in phase coded waveform
Phased array antenna array factor

A priori bound

Amplitude

Non-baseband received signal amplitude

Number of bits; interferometric baseline

Length of Barker phase code

Accuracy of estimator

Speed of light

Clutter space-time steering vector for patch ¢
Clutter attenuation

Cramer-Rao lower bound
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£(0, 9)

E(0), E0, 9)
/
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o

ST

LRI

Characteristic function of random variable x; centroid of

signal x
Phased array element spacing

Mahalanobis distance

Phase center spacing

Antenna aperture size

Antenna size, azimuth dimension

Antenna size, elevation dimension

Synthetic aperture size

Degrees of freedom

Dynamic range

Antenna aperture size in x, y, or z dimension

Eigenvector

Energy; energy in signal x

Expected value

Electric field amplitude

Phased array antenna element pattern

Normalized frequency (cycles per sample)

Quantized version of a function f

Normalized Doppler frequency shift (cycles per sample)

Target normalized Doppler frequency shift (cycles per
sample)

Normalized spatial frequency (cycles per sample)

Fourier transform of a function f

Fourier transform operator; track filter state transition
matrix

Frequency (hertz)
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Doppler frequency shift (hertz)
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Impulse response (continuous time)
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Nth-order 1dentity matrix
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Fisher information matrix

Jammer signal
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Tracking filter gain; Kalman filter gain (symbol varies with
dimensionality)

Stagger ratio
Lobing antenna A/X error slope
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Number of fast time samples per pulse

Atmospheric loss factor

Target depth as viewed from the radar

Maximum acceptable signal-to-interference ratio loss

System loss factors; synthetic aperture radar swath length

Signal-to-interference ratio loss

Target width as viewed from the radar

Loss in processing gain

Mean of random variable

Mean of nth element of a random vector

Mean of random vector

Nonrandom portion of mean of random vector random

Number of slow time samples per coherent processing
interval

Tracking mean-square error estimate matrix

Minimum detectable Doppler shift

Minimum detectable positive, negative Doppler shift
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DPCA time slip

Matched filter output noise power

Noise power; number of phase centers

Number of spotlight SAR radial slices

Number of spotlight SAR range samples

Number of spotlight SAR images per unit time
Probability density function for a random variable x
Cumulative density function for a random variable x
Power; degrees of freedom in space-time snapshot
Antenna one-way power pattern
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Periodic ambiguity function

Backscattered power

Binary integrated probability of detection
Binary integrated probability of false alarm
Cumulative probability of detection
Cumulative probability of false alarm
Probability of detection

Expected value of probability of detection
Probability of false alarm

Expected value of probability of false alarm
Probability of miss

Received power; relative power of I/Q mismatch image
Probability of argument occurring
Transmitted power

Processing loss

Pulse repetition frequency (pulses per second)
Quantizer step size

Power density

Quadrature channel

Backscattered power density

Quadrature component, sample k

Marcum Q function

Transmitted power density

Range

Apparent range

Minimum range

True range

Unambiguous range

Unambiguous range using staggered PRIs
Range window, range swath

Estimated standard deviation

Autocorrelation of phase code complex amplitude
sequence

Autocorrelation of a function or random signal f
Cross-correlation of functions or random signals f'and g
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Output of filter matched to single pulse in pulse train

Poﬁerlivz%%)(r)rr{lscattering matrix
Power spectrum of a function or random signal f
Cross-power spectrum of functions or random signals f and

g
Covariance matrix for a random vector x

Transformed covariance matrix
Estimated covariance matrix
Signal-to-interference ratio
Signal-to-quantization noise ratio
Time

Target model vector
Transformed target model vector

Pulse repetition interval; detection threshold; track
measurement update interval

Transformation matrix

Equivalent receiver temperature; detection threshold
Estimated threshold

Estimated threshold, log CFAR

Sampling interval in 6

Aperture time

Average PRI of a set of staggered PRFs

Time of matched filter output peak

pth PRI in set of staggered PRFs

Fast time sampling interval; sampling interval in.s = sin 0
Sum of PRIs corresponding to set of staggered set of PRFs
Time corresponding to swath width

Along-track coordinate of synthetic aperture radar platform
Tracking process noise

Usable Doppler space fraction

Variance of random variable x

Platform velocity

Sum and difference lobing voltages

Lobing antenna ratio voltage

Apparent velocity

Blind speed
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Blind speed using staggered PRIs

Left and right lobing antenna voltages
Unambiguous velocity interval
Tracking measurement noise
Temporal weight vector

Spatial weight vector

Mean of random variable x
Estimated value of random variable x

" Transmitted signal, baseband

Transmitted signal, non-baseband

Baseband transmitted signal in-phase (I) component
Non-baseband transmitted in-phase (I) component
Along-track coordinate of synthetic aperture radar scatterer

Baseband transmitted signal quadrature-phase (Q)
component

Non-baseband transmitted quadrature-phase (Q) component
Subpulse of phase coded waveform
Single pulse of pulse train waveform

Received signal, baseband

Baseband received signal sample vector
Transformed baseband received signal sample vector

Received signal, non-baseband

Baseband received signal in-phase (I) component
Non-baseband received signal in-phase (I) component
Baseband received signal quadrature-phase (Q) component

Non-baseband received signal quadrature-phase (Q)
component

Datacube for one coherent processing interval
Fast time/slow time data matrix for one CPI
Slow time sequence for one CPI

Detected output

Transformed detected output

Meteorological reflectivity; altitude



The following acronyms are used throughout this text.

1D
2D
AC
ACF
A/D
AF
AGC
AMF
AMTI
AOA
AR
ASR
AWGN
BPF
BSR
BT
CA
CA-CFAR
CAT
CCD
CDF
CF
CFAR
CMT
CNR
CRLB
CRP
CRT
CPI
CUT
CwW
D/A

One-Dimensional
Two-Dimensional

Alternating Current
Autocorrelation Function
Analog-to-Digital

Ambiguity Function

Automatic Gain Control
Adaptive Matched Filter
Airborne Moving Target Indication
Angle of Arrival
Autoregressive

Airport Surveillance Radar
Additive White Gaussian Noise
Bandpass Filter

Beam Sharpening Ratio
Time-Bandwidth Product
Clutter Attenuation

Cell-Averaging Constant False Alarm Rate

Computerized Axial Tomography
Coherent Change Detection
Cumulative Distribution Function
Characteristic Function

Constant False Alarm Rate
Covariance Matrix Taper
Clutter-to-Noise Ratio
Cramér-Rao Lower Bound
Central Reference Point

Chinese Remainder Theorem
Coherent Processing Interval
Cell under Test

Continuous Wave
Digital-to-Analog

Acronyms



dB
dBsm
DBS
DC
DCT
DF CFAR
DFT
DOF
DPCA
DSP
DTED
DTFT
EA
ECM
EKF
EM
EMI
ENOB
ERIM
FFT
FIR
FM
FMCW
FSK
GLRT
GMTI

GOCA
CFAR

GPS
GTRI
HF
HPRF

ICM
IDFT
IF

Decibel

Decibels relative to 1 square meter
Doppler Beam Sharpening

Direct Current

Discrete Cosine Transform
Distribution-Free Constant False Alarm Rate
Discrete Fourier Transform

Degrees of Freedom

Displaced Phase Center Antenna
Digital Signal Processing

Digital Terrain Elevation Data

Discrete Time Fourier Transform
Electronic Attack

Electronic Countermeasures

Extended Kalman Filter
Electromagnetic

Electromagnetic Interference

Effective Number of Bits
Environmental Research Institute of Michigan
Fast Fourier Transform

Finite Impulse Response

Frequency Modulation

Frequency Modulated Continuous Wave
Frequency Shift Keying

Generalized Likelihood Ratio Test
Ground Moving Target Indication

Greatest-of Cell-Averaging Constant False Alarm Rate

Global Positioning System

Georgia Tech Research Institute

High Frequency

High Pulse Repetition Frequency

In-Phase

Internal Clutter Motion; Intrinsic Clutter Motion
Inverse Discrete Fourier Transform
Intermediate Frequency
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IFSAR
IR
MM
MU
INS
INSAR
IPD
ISAR
ISL
JNR

LEO
LCM
LFM
LNA
LO
LPF
LPG
LPRF
LRT
LSB
LSE
LSI
LTI
MDD
MDV
MLE

MMSE

MPRF
MSB
MSE
MTD

Iniepshat FauRfEa T B B uted
Interferometric Synthetic Aperture Radar
Infinite Impulse Response

Interacting Multiple Models

Inertial Measurement Unit

Inertial Navigation System
Interferometric Synthetic Aperture Radar
Interferometric Phase Difference

Inverse Synthetic Aperture Radar
Integrated Sidelobe Level, Interference Subspace Leakage
Jammer-to-Noise Ratio
Knowledge-Aided

Kalman Filter

Low Earth Orbit

Least Common Multiple

Linear Frequency Modulation

Low Noise Amplifier

Local Oscillator

Lowpass Filter

Loss in Processing Gain

Low Pulse Repetition Frequency
Likelihood Ratio Test

Least Significant Bit

Least Squares Estimate

Linear Shift-Invariant

Linear Time-Invariant

Minimum Detectable Doppler

Minimum Detectable Velocity

Minimum Likelihood Estimate (or Estimator, or Estimation)

Minimum Mean-Squared Error, Minimum Means-Squared
Estimate

Millimeter Wave

Medium Pulse Repetition Frequency
Most Significant Bit

Mean-Squared Error

Moving Target Detector



MTI
MVU
NASA
NEXRAD
NLFM
NRL
OS CFAR
PAF
PC
PDF
PFA
PGA
PL
PPP
PRF
PRI
PSD
PSL
PSM
PSP
PSR

RCS
RCSR

RMS
ROI
RSS
RV
RVP
SAR
SB
SQNR

S-CFAR

Moving Target Indication
Minimum Variance Unbiased

National Aeronautics and Space Agency
Next Generation Radar

Nonlinear Frequency Modulation
Naval Research Laboratory

Order Statistic Constant False Alarm Rate
Periodic Ambiguity Function
Principal Components

Probability Density Function

Polar Format Algorithm

Phase Gradient Algorithm
Processing Loss

Pulse Pair Processing

Pulse Repetition Frequency

Pulse Repetition Interval

Power Spectrum (or Spectral) Density
Peak Sidelobe Level

Polarization Scattering Matrix
Principle of Stationary Phase

Point Spread Response

Quadrature

Radar Cross Section

Radar Cross Section Reduction
Range-Doppler

Radar Frequency
Reed-Mallet-Brennan
Root-Mean-Square

Region of Interest

Root Sum Square

Random Variable

Residual Video Phase

Synthetic Aperture Radar
Sampling Bound
Signal-to-Quantization Noise Ratio

Switching Constant False Alarm Rate



SCR

Signal-to-Clutter Ratio _
Signal-to-Interference Ratio; Shuttle Imaging Radar

Sample Matrix Inverse
Surface Moving Target Indication
Signal-to-Noise Ratio

Smallest-of Cell-Averaging Constant False Alarm Rate

Stable Local Oscillator
Space-Time Adaptive Processing
Transmit/Receive

Usable Doppler Space Fraction
Ultra-High Frequency

Uniformly Most Powerful

Very High Frequency

White Gaussian Noise

Ziv-Zakai Bound



CHAPTER 1

Introduction to Radar Systems and Signal
Processing

1.1 History and Applications of Radar

The word “radar” was originally an acronym, RADAR, for “radio detection
and ranging.” Today, the technology 1s so common that the word has become a
standard English noun. Many people have direct personal experience with radar
in such applications as measuring fastball speeds or, often to their regret, traffic
control.

The history of radar extends to the early days of modern electromagnetic
theory (Swords, 1986; Skolnik, 2001). In 1886, Hertz demonstrated reflection of
radio waves, and in 1900 Tesla described a concept for electromagnetic
detection and velocity measurement in an interview. In 1903 and 1904, the
German engineer Hiilsmeyer experimented with ship detection by radio wave
reflection, an idea advocated again by Marconi in 1922. In that same year,
Taylor and Young of the U.S. Naval Research Laboratory (NRL) demonstrated
ship detection by radar and in 1930 Hyland, also of NRL, first detected aircraft
(albeit accidentally) by radar, setting off a more substantial investigation that
led to a U.S. patent for what would now be called a continuous wave (CW)
radar in 1934.

The development of radar accelerated and spread in the middle and late
1930s, with largely independent developments in the United States, Britain,
France, Germany, Russia, Italy, and Japan. In the United States, R. M. Page of
NRL began an effort to develop pulsed radar in 1934, with the first successful
demonstrations in 1936. The year 1936 also saw the U.S. Army Signal Corps
begin active radar work, leading in 1938 to its first operational system, the
SCR-268 antiaircraft fire control system, and in 1939 to the SCR-270 early
warning system, the detections of which were tragically ignored at Pearl
Harbor. British development, spurred by the threat of war, began in earnest with
work by Watson-Watt in 1935. The British demonstrated pulsed radar that year,
and by 1938 established the famous Chain Home surveillance radar network that
remained active until the end of World War II. They also built the first airborne
interceptor radar in 1939. In 1940, the United States and Britain began to
exchange information on radar development. Up to this time, most radar work
was conducted at high frequency (HF) andvery high frequency (VHF)
wavelengths; but with the British disclosure of the critical cavity magnetron
microwave power tube and the United States formation of the Radiation
Laboratory at the Massachusetts Institute of Technology, the groundwork was



laid for the successful development of radar at the microwave frequencies that
have predominated ever since.

Each of the other countries mentioned also carried out CW radar
experiments, and each fielded operational radars at some time during the course
of World War II. Efforts in France and Russia were interrupted by German
occupation. On the other hand, Japanese efforts were aided by the capture of
U.S. radars in the Philippines and by the disclosure of German technology. The
Germans themselves deployed a variety of ground-based, shipboard, and
airborne systems. By the end of the war, the value of radar and the advantages of
microwave frequencies and pulsed waveforms were widely recognized.

Early radar development was driven by military necessity, and the military
is still a major user and developer of radar technology. Military applications
include surveillance, navigation, and weapons guidance for ground, sea, air, and
space vehicles. Military radars span the range from huge ballistic missile
defense systems to fist-sized tactical missile seekers.

Radar now enjoys an increasing range of applications. One of the most
common is the police traffic radar used for enforcing speed limits (and
measuring the speed of baseballs and tennis serves). Another is the “color
weather radar” familiar to every viewer of local television news. The latter is
one type of meteorological radar; more sophisticated systems are used for large-
scale weather monitoring and prediction and atmospheric research. Another
radar application that affects many people 1s found in the air traffic control
systems used to guide commercial aircraft both en route and in the vicinity of
airports. Aviation also uses radar for determining altitude and avoiding severe
weather, and may soon use it for imaging runway approaches in poor weather.
Radar is commonly used for collision avoidance and buoy detection by ships,
and is now beginning to serve the same role for the automobile and trucking
industries. Finally, spaceborne (both satellite and space shuttle) and airborne
radar is an important tool in mapping earth topology and environmental
characteristics such as water and ice conditions, forestry conditions, land usage,
and pollution. While this sketch of radar applications is far from exhaustive, it
does indicate the breadth of applications of this remarkable technology.

This text tries to present a thorough, straightforward, and consistent
description of the signal processing aspects of radar technology, focusing
primarily on the more fundamental functions common to most radar systems.
Pulsed radars are emphasized over CW radars, though many of the ideas are
applicable to both. Similarly, monostatic radars, where the transmitter and
receiver antennas are collocated (and in fact are usually the same antenna), are
emphasized over bistatic radars, where they are significantly separated, though
again many of the results apply to both. The reason for this focus is that the
majority of radar systems are monostatic, pulsed designs. Finally, the subject is
approached from a digital signal processing (DSP) viewpoint as much as
practicable, both because most new radar designs rely heavily on digital



processing and because this approach can unify concepts and results often
treated separately.

1.2 Basic Radar Functions

Most uses of radar can be classified as detection, tracking, or imaging. This
text addresses all three, as well as the techniques of signal acquisition and
interference reduction necessary to perform these tasks.

The most fundamental problem in radar is detection of an object or
physical phenomenon. This requires determining whether the receiver output at
a given time represents the echo from a reflecting object or only noise.
Detection decisions are usually made by comparing the amplitude A(¢) of the
receiver output (where ¢ represents time) to a threshold 7(¢), which may be set a
priori in the radar design or may be computed adaptively from the radar data; in
Chap. 6 it will be seen why this detection technique is appropriate. The time
required for a pulse to propagate a distance R and return, thus traveling a total
distance 2R, is just 2R/c; thus, if A(¢) > T(¢) at some time delay ¢, after a pulse is
transmitted, it is assumed that a target is present at range

(1.1)

where c is the speed of light.!

Once an object has been detected, it may be desirable to track its location
or velocity. A monostatic radar naturally measures position in a spherical
coordinate system with its origin at the radar antenna’s phase center, as shown
inFig. 1.1. In this coordinate system, the antenna look direction, sometimes
called the boresight direction, is along the +x axis. The angle 6 is called
azimuth angle, while ¢ 1s called elevation angle. Range R to the object follows
directly from the elapsed time from transmission to detection as just described.
Elevation and azimuth angle ¢ and # are determined from the antenna
orientation, since the target must normally be in the antenna main beam to be
detected. Velocity is estimated by measuring the Doppler shift of the target
echoes. Doppler shift provides only the radial velocity component, but a series
of measurements of position and radial velocity can be used to infer target
dynamics in all three dimensions.



Anlenna

¢  Boresight Direction X

FIGURE 1.1 Spherical coordinate system for radar measurements.

Because most people are familiar with the idea of following the movement
of a “blip” on the radar screen, detection and tracking are the functions most
commonly associated with radar. Increasingly, however, radars are being used
to generate two-dimensional images of an area. Such images can be analyzed for
intelligence and surveillance purposes, for topology mapping, or for analysis of
earth resources issues such as mapping, land use, ice cover analysis,
deforestation monitoring, and so forth. They can also be used for “terrain
following” navigation by correlating measured imagery with stored maps. While
radar images have not achieved the resolution of optical images, the very low
attenuation of electromagnetic waves at microwave frequencies gives radar the
important advantage of “seeing” through clouds, fog, and precipitation very
well. Consequently, imaging radars generate useful imagery when optical
instruments cannot be used at all.

The quality of a radar system is quantified with a variety of figures of
merit, depending on the function being considered. In analyzing detection
performance, the fundamental parameters are the probability of detection P
and the probability of false alarm Pg,. If other system parameters are fixed,
increasing P, always requires accepting a higher P, as well. The achievable
combinations are determined by the signal and interference statistics, especially
the signal-to-interference ratio (SIR). When multiple targets are present in the
radar field of view, additional considerations of resolution and sidelobes arise
in evaluating detection performance. For example, if two targets cannot be
resolved by a radar, they will be registered as a single object. If sidelobes are
high, the echo from one strongly reflecting target may mask the echo from a
nearby but weaker target, so that again only one target is registered when two



are present. Resolution and sidelobes in range are determined by the radar
waveform, while those in angle are determined by the antenna pattern.

In radar tracking, the basic figure of merit is accuracy of range, angle, and
velocity estimation. While resolution presents a crude limit on accuracy, with
appropriate signal processing the achievable accuracy is ultimately limited in
each case by the SIR.

In imaging, the principal figures of merit are spatial resolution and dynamic
range. Spatial resolution determines what size objects can be identified in the
final 1mage, and therefore to what uses the image can be put. For example, a
radar map with 1 km by 1 km resolution would be useful for land use studies,
but useless for military surveillance of airfields or missile sites. Dynamic range
determines image contrast, which also contributes to the amount of information
that can be extracted from an image.

The purpose of signal processing in radar is to improve these figures of
merit. SIR can be improved by pulse integration. Resolution and SIR can be
jointly improved by pulse compression and other waveform design techniques,
such as frequency agility. Accuracy benefits from increased SIR and
interpolation methods. Sidelobe behavior can be improved with the same
windowing techniques used in virtually every application of signal processing.
Each of these topics are discussed in the chapters that follow.

Radar signal processing draws on many of the same techniques and
concepts used in other signal processing areas, from such closely related fields
as communications and sonar to very different applications such as speech and
image processing. Linear filtering and statistical detection theory are central to
radar’s most fundamental task of target detection. Fourier transforms,
implemented using fast Fourier transform (FFT) techniques, are ubiquitous,
being used for everything from fast convolution implementations of matched
filters, to Doppler spectrum estimation, to radar imaging. Modern model-based
spectral estimation and adaptive filtering techniques are used for beamforming
and jammer cancellation. Pattern recognition techniques are wused for
target/clutter discrimination and target identification.

At the same time, radar signal processing has several unique qualities that
differentiate it from most other signal processing fields. Most modern radars are
coherent, meaning that the received signal, once demodulated to baseband, is
complex-valued rather than real-valued. Radar signals have very high dynamic
ranges of several tens of decibels, in some extreme cases approaching 100 dB.
Thus, gain control schemes are common, and sidelobe control is often critical to
avoid having weak signals masked by stronger ones. SIR ratios are often
relatively low. For example, the SIR at the point of detection may be only 10 to
20 dB, while the SIR for a single received pulse prior to signal processing is
frequently less than 0 dB.

Especially important is the fact that, compared to most other DSP
applications, radar signal bandwidths are large. Instantaneous bandwidths for an



individual pulse are frequently on the order of a few megahertz, and in some
fine-resolution? radars may reach several hundred megahertz and even as high as
I GHz. This fact has several implications for digital signal processing. For
example, very fastanalog-to-digital (A/D) converters are required. The
difficulty of designing good converters at multi-megahertz sample rates has
historically slowed the introduction of digital techniques into radar signal
processing. Even now, when digital techniques are common in new designs,
radar word lengths in high-bandwidth systems are usually a relatively short 8§ to
12 bits, rather than the 16 bits common in many other areas. The high data rates
have also historically meant that it has often been necessary to design custom
hardware for the digital processor in order to obtain adequate throughput, that
is, to “keep up with” the onslaught of data. This same problem of providing
adequate throughput has resulted in radar signal processing algorithms being
relatively simple compared to, say, sonar processing techniques. Only in the late
1990s has Moore’s Law? provided enough computing power to host radar
algorithms for a wide range of systems on commercial hardware. Equally
important, this same technological progress has allowed the application of new,
more complex algorithms to radar signals, enabling major improvements in
detection, tracking, and imaging capability.

1.3 Elements of a Pulsed Radar

Figure 1.2 is one possible block diagram of a simple pulsed monostatic radar.
The waveform generator output is the desired pulse waveform. The transmitter
modulates this waveform to the desired radio frequency (RF) and amplifies it
to a useful power level. The transmitter output is routed to the antenna through a
duplexer, also called a circulator or T/R switch (for transmit/receive). The
returning echoes are routed, again by the duplexer, into the radar receiver. The
receiver is usually a superheterodyne design, and often the first stage is a low-
noise RF amplifier. This is followed by one or more stages of modulation of the
received signal to successively lower intermediate frequencies (IFs) and
ultimately to baseband, where the signal is not modulated onto any carrier
frequency. Each modulation is carried out with a mixer and a local oscillator
(LO). The baseband signal is next sent to the signal processor, which performs
some or all of a variety of functions such as pulse compression, matched
filtering, Doppler filtering, integration, and motion compensation. The output of
the signal processor takes various forms, depending on the radar purpose. A
tracking radar would output a stream of detections with measured range and
angle coordinates, while an imaging radar would output a two- or three-
dimensional image. The processor output is sent to the system display, the data
processor, or both as appropriate.



Duplexer

Transmitter pd——— Waveionn
Generator
F Y
Antenna
Low-noise
RF
Amplifier
. Local > -
Mixer < Oscillator Display
. Signal Data
IF Amplifier —p» Processor ! Processor

FIGURE 1.2 Block diagram of a pulsed monostatic radar.

The configuration of Fig. 1.2 is not unique. For example, many systems
perform some of the signal processing functions at IF rather than baseband,
matched filtering, pulse compression, and some forms of Doppler filtering are
very common examples. The list of signal processing functions is redundant as
well. For example, pulse compression and Doppler filtering can both be
considered part of the matched filtering process. Another characteristic which
differs among radars is at what point in the system the analog signal is digitized.
Older systems are, of course, all analog, and many currently operational systems
do not digitize the signal until it is converted to baseband. Thus, any signal
processing performed at IF must be done with analog techniques. Increasingly,
new designs digitize the signal at an IF stage, thus moving the A/D converter
closer to the radar front end and enabling digital processing at IF. Finally, the
distinction between signal processing and data processing is sometimes unclear
or artificial.

In the next few subsections, the major characteristics of these principal
radar subsystems are briefly discussed.

1.3.1 Transmitter and Waveform Generator

The transmitter and waveform generator play a major role in determining the
sensitivity and range resolution of radar. Radar systems have been operated at
frequencies as low as 2 MHz and as high as 220 GHz (Skolnik, 2001); laser
radars operate at frequencies on the order of 10! to 10'° Hz, corresponding to
wavelengths on the order of 0.3 to 30 um (Jelalian, 1992). However, most



radars operate in the microwave frequency region of about 200 MHz to about 95
GHz, with corresponding wavelengths of 0.67 m to 3.16 mm. Table 1.1
summarizes the letter nomenclature used for the common nominal radar bands
(IEEE, 1976). The millimeter wave band is sometimes further decomposed into
approximate subbands of 36 to 46 GHz (Q band), 46 to 56 GHz (V band), and
56 to 100 GHz (W band) (Richards et al., 2010).

Band : Frequencies | Wavelengths
HF | 3-30 MHz | 100-10 m
VHF '30-300 MHz [10-1 m

UHF (300 MHz-1 GHz | 1-30 cm

L '1-2 GHz | 30-15 em

S | 2-4 GHz |15-7.5 cm

C 4-8 GHz 17.5-3.75 cm
X | 8-12 GHz 13.75-2.5 cm
K, | 12-18 GHz 12.5-1.67 cm
K |18-27 GHz 11.67-1.11 cm
K, | 27-40 GHz 11,11 em-7.5 mm
mm | 40-300 GHz | 7.5-1 mm

TABLE 1.1 Letter Nomenclature for Nominal Radar Frequency Bands

Within the HF to K, bands, specific frequencies are allocated by
international agreement to radar operation. In addition, at frequencies above X
band, atmospheric attenuation of electromagnetic waves becomes significant.
Consequently, radar in these bands usually operates at an ‘“‘atmospheric
window” frequency where attenuation is relatively low. Figure 1.3 illustrates
the atmospheric attenuation for one-way propagation over the most common
radar frequency ranges under one set of atmospheric conditions. Most K, band
radars operate near 35 GHz and most W band systems operate near 95 GHz
because of the relatively low atmospheric attenuation at these wavelengths.
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FIGURE 1.3 One-way atmospheric attenuation of electromagnetic waves.
(Source: EW and Radar Systems Engineering Handbook, Naval Air Warfare
Center, Weapons Division, http://ewhdbks.mugu.navy.mil/)

Lower radar frequencies tend to be preferred for longer range surveillance
applications because of the low atmospheric attenuation and high available
powers. Higher frequencies tend to be preferred for finer resolution, shorter
range applications due to the smaller achievable antenna beamwidths for a
given antenna size, higher attenuation, and lower available powers.

Weather conditions can also have a significant effect on radar signal
propagation. Figure 1.4 illustrates the additional one-way loss as a function of
RF frequency for rain rates ranging from a drizzle to a tropical downpour. X-
band frequencies (typically 10 GHz) and below are affected significantly only
by very severe rainfall, while millimeter wave frequencies suffer severe losses
for even light-to-medium rain rates.
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FiGURE 1.4 Effect of different rates of precipitation on one-way atmospheric
attenuation of electromagnetic waves. (Source: EW and Radar Systems
Engineering Handbook, Naval Air Warfare Center, Weapons Division,
http://ewhdbks.mugu.navy.mil/)

Radar transmitters operate at peak powers ranging from milliwatts to in
excess of 10 MW. One of the more powerful existing transmitters is found in the
AN/FPS-108 COBRA DANE radar, which has a peak power of 15.4 MW
(Brookner, 1988). The interval between pulses is called the pulse repetition
interval (PRI), and its inverse is the pulse repetition frequency (PRF). PRF
varies widely but is typically between several hundred pulses per second (pps)
and several tens of thousands of pulses per second. The duty cycle of pulsed
systems is usually relatively low and often well below 1 percent, so that
average powers rarely exceed 10 to 20 kW. COBRA DANE again offers an
extreme example with its average power of 0.92 MW. Pulse lengths are most
often between about 100 ns and 100 ps, though some systems use pulses as short
as a few nanoseconds while others have extremely long pulses, on the order of 1
ms.

It will be seen (Chap. 6) that the detection performance achievable by a
radar improves with the amount of energy in the transmitted waveform. To
maximize detection range, most radar systems try to maximize the transmitted
power. One way to do this is to always operate the transmitter at full power
during a pulse. Thus, radars generally do not use amplitude modulation of the
transmitted pulse. On the other hand, the nominal range resolution AR is
determined by the waveform bandwidth f according to Chap. 4.

AR
28

(1.2)
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For an unmodulated pulse, the bandwidth is inversely proportional to its
duration. To increase waveform bandwidth for a given pulse length without
sacrificing energy, many radars routinely use phase or frequency modulation of
the pulse.

Desirable values of range resolution vary from a few kilometers in long-
range surveillance systems, which tend to operate at lower RFs, to a meter or
less in very fine-resolution imaging systems, which tend to operate at high RFs.
Corresponding waveform bandwidths are on the order of 100 kHz to 1 GHz, and
are typically 1 percent or less of the RF. Few radars achieve 10 percent
bandwidth. Thus, most radar waveforms can be considered narrowband,
bandpass functions.

1.3.2 Antennas

The antenna plays a major role in determining the sensitivity and angular
resolution of the radar. A wide variety of antenna types are used in radar
systems. Some of the more common types are parabolic reflector antennas,
scanning feed antennas, lens antennas, and phased array antennas.

From a signal processing perspective, the most important properties of an
antenna are its gain, beamwidth, and sidelobe levels. Each of these follows
from consideration of the antenna power pattern. The power pattern P(6, ¢)
describes the radiation intensity during transmission in the direction (8, ¢)
relative to the antenna boresight. Aside from scale factors, which are
unimportant for normalized patterns, it is related to the radiated electric field
intensity E(6, ¢), known as the antenna voltage pattern, according to

P(6, ¢) = |E(6, o)’
(1.3)

For a rectangular aperture with an illumination function that is separable in the
two aperture dimensions, P(6, ¢) can be factored as the product of separate one-
dimensional patterns (Stutzman and Thiele, 1998):

P(6, ¢) = Po (6) Pyl )
(1.4)

For most radar scenarios, only the far-field (also called Fraunhofer)
power pattern is of interest. The far-field is conventionally defined to begin at a
range of D?/A or 2D?// for an antenna of aperture size D. Consider the azimuth
(0) pattern of the one-dimensional linear aperture geometry shown in Fig. 1.5.
From a signal processing viewpoint, an important property of aperture antennas
(such as flat plate arrays and parabolic reflectors) is that the electric field
intensity as a function of azimuth £(60) in the far field is just the inverse Fourier
transform of the distribution 4(y) of current across the aperture in the azimuth



plane (Bracewell, 1999; Skolnik, 2001):

+D,, EIU E(0)

3.8

—D_/2 ‘

FIGURE 1.5 Geometry for one-dimensional electric field calculation on a
rectangular aperture.
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(1.5)

where the “frequency” variable 1s (27/4) sinf and is in radians per meter. The
idea of spatial frequency is introduced in App. B.
To be more explicit about this point, defines = sind and { =y/A.
Substituting these definitions in Eq. (1.5) gives
{ D, /24
= | A@DE*aL = E)
" -D, /24

(1.6)

which is clearly of the form of an inverse Fourier transform. (The finite integral
limits are due to the finite support of the aperture.) Because of the definitions of
¢ and s, this transform relates the current distribution as a function of aperture
position normalized by the wavelength to a spatial frequency variable that is
related to the azimuth angle through a nonlinear mapping. It of course follows
that

A(LL)= J E(s)e %5 ds

)

(1.7)

The infinite limits in Eq. (1.7) are misleading, since the variable of integration s



= sind can only range from —1 to +1. Because of this, E(s) is zero outside of this
range ons.

Equation (1.5) 1s a somewhat simplified expression that neglects a range-
dependent overall phase factor and a slight amplitude dependence on range
(Balanis, 2005). This Fourier transform property of antenna patterns will, in
Chap. 2, allow the use of linear system concepts to understand the effects of the
antenna on cross-range resolution and the pulse repetition frequencies needed to
avoid spatial aliasing.

An important special case of Eq. (1.5) occurs when the aperture current
illumination 1s a constant, A(y) = 4,. The normalized far-field voltage pattern is
then the familiar sinc function,

B sin[;r{Dy /A)sin @]
a ;:{Dllr /A)sing

(1.8)

If the aperture current illumination is separable, then the far-field is the product
of two Fourier transforms, one in azimuth (€) and one in elevation (¢).

The magnitude of E£(0) is illustrated in Fig. 1.6, along with the definitions
for two 1mportant figures of merit of an antenna pattern. The angular resolution
of the antenna 1s determined by the width of its mainlobe, and is conventionally
expressed in terms of the 3-dB beamwidth. This can be found by setting
E(6)=1/42 and solving for the argument a = n(D,/4) sinf. The answer can be
found numerically to be o = 1.4, which gives the value of 8 at the —3-dB point
as 6, = 0.4454/D,. The 3-dB beamwidth extends from —6, to +6, and is therefore
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FIGURE 1.6 One-way radiation pattern of a uniformly illuminated aperture. The
3-dB beamwidth and peak sidelobe definitions are illustrated.
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3-dB beamwidth = 8; = 2 sin™ | = ‘ =().89
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A :
radians

(1.9)

Thus, the 3-dB beamwidth is 0.89 divided by the aperture size in wavelengths.
Note that a smaller beamwidth requires a larger aperture or a shorter
wavelength. Typical beamwidths range from as little as a few tenths of a degree
to several degrees for a pencil beam antenna where the beam is made as
narrow as possible in both azimuth and elevation. Some antennas are
deliberately designed to have broad vertical beamwidths of several tens of
degrees for convenience in wide area search; these designs are called fan beam
antennas.

The peak sidelobe of the pattern affects how echoes from one scatterer
affect the detection of neighboring scatterers. For the uniform illumination
pattern, the peak sidelobe is 13.2 dB below the mainlobe peak. This is often
considered too high in radar systems. Antenna sidelobes can be reduced by use
of a nonuniform aperture distribution (Skolnik, 2001), sometimes referred to as
tapering or shading the antenna. In fact, this is no different from the window or
weighting functions used for sidelobe control in other areas of signal processing
such as digital filter design, and peak sidelobes can easily be reduced to around
25 to 40 dB at the expense of an increase in mainlobe width. Lower sidelobes
are possible, but are difficult to achieve due to manufacturing imperfections and
inherent design limitations.

The factor of 0.89 in Eq. (1.9) is often dropped, thus roughly estimating the
3-dB beamwidth of the uniformly illuminated aperture as just A/D, radians. In
fact, this is the 4-dB beamwidth, but since aperture weighting spreads the
mainlobe it is a good rule of thumb.

The antenna power gain G is the ratio of peak radiation intensity from the
antenna to the radiation that would be observed from a lossless, isotropic
(omnidirectional) antenna if both have the same input power. Power gain is
determined by both the antenna pattern and by losses in the antenna. A useful
rule of thumb for a typical antenna is (Stutzman, 1998)

C - 26,000
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7.9 ] _
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(1.10)

Though both higher and lower values are possible, typical radar antennas have
gains from about 10 dB for a broad fan-beam search antenna to approximately
40 dB for a pencil beam that might be used for both search and track.

Effective aperture A, is an important characteristic in describing the
behavior of an antenna being used for reception. If a wave with power density
W W/m? is incident on the antenna, and the power delivered to the antenna load
is P, the effective aperture is defined as the ratio (Balanis, 2005)

P .

A, = W m-

(1.11)

Thus, the effective aperture is the area A, such that, if all of the power incident
on the area was collected and delivered to the load with no loss, it would
account for all of the observed power output of the actual antenna. (Note,
however, that 4, is not the actual physical area of the antenna. It is a fictional
area that accounts for the amount of incident power density captured by the
receiving antenna.) Effective aperture is directly related to antenna directivity,
which in turn is related to antenna gain and efficiency. For most antennas, the
efficiency 1s near unity and the effective aperture and gain are related by
(Balanis, 2005)

(1.12)

Two more useful antenna concepts are the antenna phase front (or wave front)
and phase center (Balanis, 2005; Sherman, 1984). A phase front of a radiating
antenna 1s any surface on which the phase of the field is a constant. In the far-
field, the phase fronts are usually approximately spherical, at least over
localized regions. The phase center of the antenna is the center of curvature of
the phase fronts. Put another way, the phase center is the point at which an
isotropic radiator should be located so that the resulting phase fronts best match
those of the actual antenna. The phase center concept 1s useful because it defines
an effective location of the antenna, which can in turn be used for analyzing
effective path lengths, Doppler shifts, and so forth. For symmetrically
illuminated aperture antennas, the phase center will be centered in the aperture
plane, but may be displaced forward or backward from the actual aperture.
Referring to Fig. 1.5, the phase center would occur at y = 0, but possibly x # 0,
depending on the detailed antenna shape.

Another important type of antenna is the array antenna. An array antenna
is one composed of a collection of individual antennas called array elements.



The elements are typically identical dipoles or other simple antennas with very
broad patterns. Usually, the elements are evenly spaced to form a uniform
linear array as shown in Fig. 1.7. Figure 1.8 illustrates examples of real array

and aperture antennas.
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FIGURE 1.7 Geometry of the uniform linear array antenna.
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FiGURE 1.8 Examples of typical array and aperture antennas. (a) Slotted
phased array in the nose of an F/A-18 aircraft. This antenna is part of the
AN/APG-73 radar system. (b) A Cassegrain reflector antenna. (/mage (a)
courtesy of Raytheon Corp. Image (b) courtesy of Quinstar Corp. Used with
permission.)

The voltage pattern for the linear array is most easily arrived at by



considering the antenna in its receive, rather than transmit mode. Suppose the
leftmost element is taken as a reference point, there are N elements in the array,
and the elements are isotropic (unity gain for all ). The signal in branch z is
weighted with the complex weight a,. For an incoming electric field E,, exp(j€2¢)
at the reference element, the total output voltage E can easily be shown to be
(Stutzman and Thiele, 1998; Skolnik, 2001)

WN-1
[ - ;-Elll.- \ ".{ i
t{a}: ]:.L_I Z l.-erf_?J'- /A nd siné
n=0

(1.13)

This is similar in form to the discrete Fourier transform (DFT) of the weight
sequence {a,}. Like the aperture antenna, the antenna pattern of the linear array
thus involves a Fourier transform, this time of the weight sequence (which
determines the current distribution in the antenna). For the case where all the a,
= 1, the pattern is the familiar “aliased sinc” function, whose magnitude is

sin[N(mwd/A)sinG]
sin[(wrd/A)sing]

[E(6)|=E,
(1.14)

This function is very similar to that of Eq. (1.8) and Fig. 1.6. If the number of
elements N is reasonably large (nine or more) and the product Nd is considered
to be the total aperture size D, the 3-dB beamwidth is 0.894/D, and the first
sidelobe is 13.2 dB below the mainlobe peak; both numbers are the same as
those of the uniformly illuminated aperture antenna. Of course, by varying the
amplitudes of the weights a,, it is possible to reduce the sidelobes at the
expense of a broader mainlobe. The phase center is at the center of the array.

Actual array elements are not isotropic radiators. A simple model often
used as a first-order approximation to a typical element pattern E,(6) is

E.(6) = cosB
(1.15)

The right-hand side of Eq. (1.13) is then called the array factor AF(6), and the
composite radiation pattern becomes

E(6)=AF(6)E, (6)
(1.16)

Because the cosine function is slowly varying in 8, the beamwidth and first
sidelobe level are not greatly changed by including the element pattern for
signals arriving at angles near broadside (near 8 = 0°). The element pattern does
reduce distant sidelobes, thereby reducing sensitivity to waves impinging on the



array from off broadside.

The discussion so far has been phrased in terms of the transmit antenna
pattern (for aperture antennas) or the receive pattern (for arrays), but not both.
The patterns described have been one-way antenna patterns. The reciprocity
theorem guarantees that the receive antenna pattern is identical to the transmit
antenna pattern (Balanis, 2005). Consequently, for a monostatic radar, the two-
way antenna pattern (power or voltage) is just the square of the corresponding
one-way pattern. It also follows that the antenna phase center is the same in both
transmit and receive modes.

1.3.3 Receivers

It was shown in Sec. 1.3.1 that radar signals are usually narrowband, bandpass,
phase- or frequency-modulated functions. This means that the echo waveform
r(t) received from a single scatterer is of the form

r(t)=A(t) sin[€2tf + 6(t)]
(1.17)

where the amplitude modulation 4(¢) represents only the pulse envelope. The
major function of the receiver processing is demodulation of the information
bearing part of the radar signal to baseband, with the goal of measuring 6(¢).
Figure 1.9 illustrates the conventional approach to receiver design used in most
classical radars.
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FIGURE 1.9 Conventional quadrature channel receiver model. In this
illustration, the lower channel is the in-phase (“I”’) channel, and the upper is the
quadrature phase (“Q”) channel.

The received signal is split into two channels. One channel, called the in-
phase or “I”’ channel of the receiver (the lower branch in Fig. 1.9) mixes the
received signal with an oscillator, called the /ocal oscillator (LO), at the radar
frequency. This generates both sum and difference frequency components:

2 sin(C2t) A(t) sin[€2t + 6(t)] = A(t) cos[B(t)] — A(t) cos[282 + B(1)]



(1.18)

The sum term is then removed by the lowpass filter, leaving only the modulation
term A(¢)cos[0(t)]. The other channel, called the quadrature phase or “Q”
channel, mixes the signal with an oscillator having the same frequency but a 90°
phase shift from the I channel oscillator. The Q channel mixer output is

2 cos(L2f) A(f) sin[€2t + 6(1)] = A(t) sin[B(t)] + A(t) sin[2Qt + B(t)]
(1.19)

which, after filtering, leaves the modulation term A(#)sin[8(7)]. If the input (¢) is
written as A(¢)cos[Q¢ + 6(¢)] instead, the upper channel of Fig. 1.9 becomes the
I channel and the lower the Q channel, with outputs A(¢)cos[6(¢)] and
—A(t)sin[O(¢)], respectively. In general, the I channel is the one where the
oscillator function (sine or cosine) is the same as that used in modeling the
signal.

The reason that both the I and Q channels are needed is that either one
alone does not provide sufficient information to determine the phase modulation
6(t) unambiguously. Figure 1.10 illustrates the problem. Consider the case
shown inFig. 1.10a. The signal phase 6(¢) is represented as a solid black
phasor in the complex plane. If only the I channel is implemented in the
receiver, only the cosine of 8(¢) will be measured. In this case, the true phasor
will be indistinguishable from the gray phasor —6(¢). Similarly, if only the Q
channel is implemented so that only the sine of 0(¢) is measured, then the true
phasor will be indistinguishable from the gray phasor of Fig. 1.10b, which
corresponds to 7 — 6(¢). When both the I and Q channels are implemented, the
phasor quadrant is determined unambiguously.? In fact, the signal processor will
normally assign the 1 signal to be the real part of a complex signal and the Q
signal to be the imaginary part, forming a single complex signal

(x, ¥)=(cosf,sind) . _
' (—cosf.sind) (x, v)=(cosd,sind)

) . a(1)

(cos@, —sind)
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FIGURE 1.10 (a) The I channel of the receiver in Fig. 1.9 measures only the
cosine of the phasor 6(¢). (b) The Q channel measures only the sine of the
phasor.

Jai

x(t)=1I{t) + jQlt) = e
(1.20)

Equation (1.20) implies a more convenient way of representing the effect
of an ideal coherent receiver on a transmitted signal. Instead of representing the
transmitted signal by a sine function, an equivalent complex exponential function
is used instead.2 The echo signal of (1.17) is thus replaced by

rit)= A{Uf,;‘lﬁlr+5~q.ﬁ.]
(1.21)

The receiver structure of Fig. 1.9 is then replaced with the simplified model of
Fig. 1.11, where the echo is demodulated by multiplication with a complex
reference oscillator exp(—j€Q¢). This technique of assuming a complex
transmitted signal and corresponding complex demodulator produces exactly the
same result obtained in Eq. (1.20) by explicitly modeling the real-valued signals
and the I and Q channels, but is much simpler and more compact. This complex
exponential analysis approach is used throughout the remainder of the book. It is
important to remember that this is an analysis technique; actual analog hardware
must still operate with real-valued signals only. However, once signals are
digitized, they may be treated explicitly as complex signals in the digital
processor.
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FiGURE 1.11 Simplified transmission and receiver model using complex
exponential signals.

Figure 1.9 implies several requirements on a high-quality receiver design.
For example, the local oscillator and the transmitter frequencies must be
identical. This is usually ensured by having a single stable local oscillator
(STALO) in the radar system that provides a frequency reference for both the
transmitter and the receiver. Furthermore, many types of radar processing
require coherent operation. The IEEE Standard Radar Definitions defines



“coherent signal processing” as “echo integration, filtering, or detection using
amplitude and phase of the signal referred to a coherent oscillator” (emphasis
added) (IEEE, 1982). Coherency is a stronger requirement than frequency
stability. In practice, it means that the transmitted carrier signal must have a
fixed phase reference for several, perhaps many, consecutive pulses. Consider a
pulse transmitted at time ¢, of the form a(z — ¢,) sin[Q(¢ — ¢,) + ¢], where a(¢) is
the pulse shape. In a coherent system, a pulse transmitted at time ¢, will be of the
forma(t —¢,) sin[Q(¢ — ¢,) + ¢]. Note that both pulses have the same argument (¢
—t,) + ¢ for their sine term; only the envelope term changes location on the time
axis. Thus, both sinusoids are referenced to the same absolute starting time and
phase. This is as opposed to the second pulse being of the form a(z — ¢,) sin[€(¢
—t,) + ¢], which is nonzero over the same time interval as the coherent pulse a(¢
—t,) sin[Q(¢ —¢,) + ¢] and has the same frequency, but has a different phase at
any instant in time. Figure 1.12 illustrates the difference visually. In the coherent
case, the two pulses appear as if they were excised from the same continuous,
stable sinusoid; in the noncoherent case, the second pulse is not in phase with
the extension of the first pulse. Because of the phase ambiguity discussed
earlier, coherency also implies a system having both [ and Q channels.
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FiGURE 1.12 Illustration of the concept of a fixed phase reference in coherent
signals. (a) Coherent pulse pair generated from the reference sinusoid. (b)
Reference sinusoid. (¢) Noncoherent pulse pair.

Another requirement is that the I and Q channels have perfectly matched
transfer functions over the signal bandwidth. Thus, the gain through each of the
two signal paths must be identical, as must be the phase delay (electrical length)
of the two channels. Of course, real receivers do not have perfectly matched
channels. The effect of gain and phase imbalances will be considered in Chap.
3. Finally, a related requirement is that the oscillators used to demodulate the I



and Q channels must be exactly in quadrature, that 1s, 90° out of phase with one
another.

In the receiver structure shown in Fig. 1.9, the information-bearing portion
of the signal is demodulated from the carrier frequency to baseband in a single
mixing operation. While convenient for analysis, pulsed radar receivers are
virtually never implemented this way in practice. One reason is that active
electronic devices introduce various types of noise into their output signal, such
as shot noise and thermal noise. One noise component, known as flicker noise
or 1/F noise, has a power spectrum that behaves approximately as /' ! and is
therefore strongest near zero frequency. Since received radar signals are very
weak, they can be corrupted by 1/F noise if they are translated to baseband
before being amplified.

Figure 1.13 shows a more representative superheterodyne receiver
structure. The received signal, which is very weak, is amplified immediately
upon reception using a low-noise amplifier (LNA). The LNA, more than any
other component, determines the noise figure of the overall receiver. It will be
seen in Sec. 2.3 that this is an important factor in determining the radar’s signal-
to-noise ratio (SNR), so good design of the LNA is important. The key feature
of the superheterodyne receiver is that the demodulation to baseband occurs in
two or more stages. First, the signal is modulated to an IF, where it receives
additional amplification. Amplification at IF is easier because of the greater
percentage bandwidth of the signal and the lower cost of IF components
compared to microwave components. In addition, modulation to IF rather than to
baseband incurs a lower conversion loss, improving the receiver sensitivity,
and the extra IF amplification also reduces the effect of flicker noise. Finally,
the amplified signal is demodulated to baseband. Some receivers may use more
than two demodulation stages (so that there are two or more IF frequencies), but
two stages is the most common choice. One final advantage of the
superheterodyne configuration is its adaptability. The same IF stages can be
used with variable RFs simply by tuning the LO so as to track changes in the
transmitted frequency.
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FIGURE 1.13 Structure of a superheterodyne radar receiver.




1.4 Common Threads in Radar Signal Processing
A radar system’s success or failure in detecting, tracking, and imaging objects
or features of interest in the environment 1s affected by various characteristics of
those objects, the environment, and the radar itself, and how they are reflected
in the received signals available for processing. Two of the most basic and
important signal quality metrics are the signal-to-interference ratio and the
resolution. Because of their importance, improving SIR and resolution is the
major goal of most of the basic radar signal processing discussed in this text.
While subsequent chapters discuss a wide variety of signal processing
techniques, there are a few basic ideas that underlie most of them. These include
coherent  and noncoherent integration, target phase history modeling,
bandwidth expansion, and maximum likelihood estimation. The remainder of
this section gives a heuristic definition of SIR and resolution, and then
illustrates the simplest forms of integration, phase history modeling, and
bandwidth expansion and how they affect SIR and resolution. Maximum
likelihood estimation is deferred to Chap. 9 and App. A.

1.4.1 Signal-to-Interference Ratio and Integration
Consider a discrete-time signal x[#] consisting of the sum of a “desired signal”
s[n] and an interfering signal w[n]:

x[rn]= s[n]+wln]
(1.22)

The discussion is identical for continuous time signals. The SIR y of this
signal is the ratio of the power of the desired signal to that of the interference. It
s[n] 1s deterministic, the signal power is usually taken as the peak signal value,
and may therefore occur at a specific time #,. In some deterministic cases, the
average signal power may be used instead. The interference is almost invariably
modeled as a random process, so that its power is the mean-square E{|jw[n]}.
If the interference is zero mean, as is very often the case, then the power also
equals the variance of the interference, 7. If the desired signal is also modeled
as a random process, then its power is also taken to be its mean-square or
variance.

As an example, let s[n] be a complex sinusoid Aexp[jwn] and let w[n] be
complex zero mean white Gaussian noise of variance @=. The SIR of their sum
x[n] 1s

(g%

Ax=

=

(1.23)

In this case, the peak and average signal power are the same. If s[#] is a real-



valued sinusoid Acos[wn] and w[n] is real-valued zero mean white Gaussian
noise of variance 7z, the peak SIR would be the same but the average SIR
would be A%/207 because the average power of a real cosine or sine function of
amplitude 4 1s 4%/2.

A variation is the “energy SIR,” defined as the ratio of the total energy E, =
> |s[n]P in the signal s[n] divided by the average noise power:

Ax =

&

UI[‘
(1.24)

The proportionality between £, and 4 depends on the signal shape. For a
rectangular pulse or a complex exponential of amplitude A and duration N
samples, itis just £, = N - 4% It can be seen in Chap. 6 that when matched filters
are used, the peak SIR at the filter output is the energy SIR of the original signal.

SIR affects detection, tracking, and imaging performance in different ways.
In general, detection performance improves with SIR in the sense that P,
increases for a given P, as SIR increases. For instance, it will be seen in Chap.
6 that for one particular model of the target behavior and detection algorithm, P,
is related to P, according to

By =(Pry J'_m )

(1.25)

which shows that P, — 1 as y — oo for fixed P,,. As another example, the limit
on precision (standard deviation of repeated measurements) due to additive
noise of typical estimators of range, angle, frequency, or phase tends to decrease

as 1/ ; this behavior will be demonstrated in Chap. 9. In radar imaging (Chap.
8), SIR directly affects the contrast or dynamic range (ratio of reflectivity of
brightest to dimmest visible features) of the image. These considerations make it
essential to maximize the SIR of radar data, and many radar signal processing
operations discussed in this text have as their primary goal increasing the SIR.
The ways in which this is done will be discussed along with each technique.

1.4.2 Resolution
The closely related concepts of resolution and a resolution cell will arise
frequently. Two equal-strength scatterers are considered to be resolved if they
produce two separately identifiable signals at the system output, as opposed to
combining into a single undifferentiated output.® The idea of resolution is
applied in range, cross-range, Doppler shift or velocity, and angle of arrival.
Two scatterers can simultaneously be resolved in one dimension, say range, and
be unresolved in another, perhaps velocity.

Figure 1.14 illustrates the concept of resolution, in this case in frequency.



Part (a) of the figure shows a portion of the positive frequency spectrum of the
sum of two unit amplitude cosine functions with zero initial phase, one at 1000
Hz and one at 1500 Hz. This signal could represent the Doppler spectrum of two
moving targets with the same echo strength but different radial velocities. The
observation time is such that the mainlobe of the sinc function contributed by
each has a Rayleigh width (peak to first null width) of 100 Hz. The two vertical
dotted lines mark the two cosine frequencies. There are two distinct, well-
separated peaks in the spectrum. The actual frequency of each peak is perturbed
very slightly from the expected value by the sidelobes of the other sinusoid.
Nonetheless, these two signal components are considered well resolved. Parts
(b) through (d) of the figure repeat this measurement with the frequency spacing
reduced to 100, 75, and 50 Hz. At 100 Hz spacing the two spectral peaks are
still well resolved, though with more perturbation of the apparent frequencies,
but as the separation drops below the Rayleigh width to 75 and then to 50 Hz,
they blur into a single spectral peak. At 50 Hz, they are no longer resolved; the
spectrum measurement does not show two separate signals. At 75 Hz they are
marginally resolved, although a little noise added to the data would make that a
precarious claim. It appears that a separation of about the Rayleigh width or
greater 1s needed for clear resolution of the two frequencies. This demonstration
also suggests that the width of the signature of a single isolated target is the
major determinant of the system’s resolution.
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FIGURE 1.14 Resolution of two sinusoids in frequency, each having a Rayleigh
width of 100 Hz. (@) Well resolved at 500 Hz spacing. () Well resolved at 100
Hz spacing. (c¢) Marginally resolved at 75 Hz spacing. (d) Unresolved at 50 Hz
spacing.

The resolution of a radar in turn determines the size of a resolution cell. A
resolution cell in range, velocity, or angle is the interval in that dimension that
contributes to the echo received by the radar at any one instant. Figure 1.15
illustrates resolution and the resolution interval in the range dimension for a
simple constant-frequency pulse. If a pulse whose leading edge is transmitted at
time ¢ = 0 has duration 7 seconds, then at time 7, the echo of the leading edge of
the pulse will be received from a scatterer at range ct,/2. At the same time,
echoes of the trailing edge of the pulse from a scatterer at range c(z, — 7)/2 are
also received. Any scatterers at intermediate ranges would also contribute to the
voltage at time #,. Thus, scatterers distributed over cz/2 in range contribute
simultaneously to the received voltage. In order to resolve the contributions
from two scatterers into different time samples, they must be spaced by more
than c7/2 meters so that their individual echoes do not overlap in time. The
quantity c7/2 is called the range resolution AR. Similarly, two- and three-
dimensional resolution cells can be defined by considering the simultaneous
resolution in, say, range, azimuth angle, and elevation angle.
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FIGURE 1.15 Geometry for describing conventional pulse range resolution. See
text for explanation.



This description of range resolution applies only to unmodulated, constant
frequency pulses. As will be seen in Chap. 4, pulse modulation combined with
matched filtering can be used to obtain range resolution finer than c7/2.

Angular resolution in the azimuth and elevation dimensions is determined
by the antenna beamwidths in the same planes. Two scatterers at the same range
but different azimuth (or elevation) angles will contribute simultaneously to the
received signal if they are within the antenna mainlobe and thus are both
illuminated at the same time. For the purpose of estimating angular resolution,
the mainlobe width is typically taken to be the 3-dB beamwidth 8; of the
antenna. Thus, the two point scatterers in Fig. 1.16 located at the 3-dB edges of
the beam define the angular resolution of the radar. The figure illustrates the
relation between the angular resolution in radians and the equivalent resolution
in units of distance, which will be called the cross-range resolution to denote
resolution in a dimension orthogonal to range. The arc length at a radius R for an
angle subtending 8, radians is exactly RO;. The cross-range resolution ACR is
the distance between two scatterers located at the 3-dB edges of the beam,
corresponding to the dashed line in Fig. 1.16, and 1s given by

Point Reflectors

Radar

-4 R >

FIGURE 1.16 The angular resolution is determined by the 3-dB antenna
beamwidth 6,.

ACR = 2Rsin| % |~ R,
(1.26)

where the approximation holds when the 3-dB beamwidth is small, which is
usually the case for pencil beam antennas. This result is applicable in either the
azimuth or elevation dimension.

Three details bear mentioning. First, the literature frequently fails to
specify whether one- or two-way 3-dB beamwidth is required or given. The
two-way beamwidth should be used for monostatic radar. Second, note that
cross-range resolution increases linearly with range, whereas range resolution
was a constant. Finally, as with range resolution, it will be seen later (Chap. 8)



that signal processing techniques can be used to improve resolution far beyond
the conventional RO limit and to make it independent of range as well.

The radar resolution cell volume V' is approximately the product of the
total solid angle subtended by the 3-dB antenna mainlobe, converted to units of
area, and the range resolution. For an antenna having an elliptical beam with
azimuth and elevation beamwidths 6, and ¢,, this 1s

AV =r| —2 “ R )
G 72 i

]_\R = IRﬁf-,h d.AR

(1.27)

The approximation in the second line of Eq. (1.27) is 27 percent larger than the
expression in the first line, but is widely used. Note that resolution cell volume
increases with the square of range because of the two-dimensional spreading of
the beam at longer ranges.

1.4.3 Data Integration and Phase History Modeling

A fundamental operation in radar signal processing is integration of samples to
improve the SIR. Both coherent integration and noncoherent integration are of
interest. The former refers to integration of complex (i.e., magnitude and phase)
data, while the latter refers to integration based only on the magnitude (or
possibly the squared or log magnitude) of the data.

Suppose a pulse is transmitted, reflects off a target, and at the appropriate
time the receiver output signal is measured, consisting of a complex echo
amplitude 4e”* corrupted by additive noise w. The noise is assumed to be a
sample of a random process with power 7. The single-pulse SNR is

~ 2
signal power A
J_ = 5 = 2

noise power o,

(1.28)

Now suppose the measurement is repeated N — 1 more times. One expects
to measure the same deterministic echo response, but with an independent noise
sample each time. Form a single measurement z by integrating (summing) the
individual measurements; this sum of complex samples, retaining the phase
information, 1s a coherent integration:

z= {Ae'm + w[n]}

N-1
= NAe" + Z wn)
n=l



(1.29)

The power in the integrated signal component is N°4%. Provided the noise
samples w[n] are independent of one another and zero mean, the power in the
noise component is the sum of the power in the individual noise samples.
Further assuming each has the same power 0=, the total noise power is now Noz,
. The integrated SNR becomes
A
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(1.30)

Coherently integrating N measurements has improved the SNR by a factor
of NV; this increase is called the integration gain. Later chapters show that, as
one would expect, increasing the SNR improves detection and parameter
estimation performance. The cost is the extra time, energy, and computation
required to collect and combine the N pulses of data.

In coherent integration, the signal components added in phase, i.e.,
coherently. This is often described as adding on a voltage basis, since the
amplitude of the integrated signal component increased by a factor of N, with the
result that signal power increased by N?. The noise samples, whose phases
varied randomly, added on a power basis. It is the alignment of the signal
component phases that allowed the signal power to grow faster than the noise
power.

Sometimes the data must be preprocessed to ensure that the signal
component phases align so that a coherent integration gain can be achieved. If
the target had been moving in the previous example, the signal component of the
measurements would have exhibited a Doppler shift, and Eq. (1.29) would
instead become

N
2=V [Ae/?Tfo") | yin])
=0

—

=

(1.31)

for some value of normalized Doppler frequency f,,. The signal power in this
case will depend on the particular Doppler shift, but except in very fortunate
cases will be less than 4> N?. However, if the Doppler shift is known in
advance, the phase progression of the signal component can be compensated
before summing;
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The phase correction aligns the signal component phases so that they add
coherently. The noise phases are still random with respect to one another. Thus,
the integrated signal power is again N*4?, while the integrated noise power is
againNoi, and therefore an integration gain of N is again achieved.
Compensation for the phase progression so that the compensated samples add in
phase is an example of phase history modeling: if the sample-to-sample pattern
of target echo phases can be predicted or estimated (at least to within a constant
overall phase), the data can be modified with a countervailing phase so that the
full coherent integration gain is achieved. Phase history modeling is central to
many radar signal processing functions and is essential for achieving adequate
gains in SNR.

In noncoherent integration, the phases are discarded and some function of
the magnitudes of the measured data samples are added, such as the magnitude,
magnitude-squared, or log-magnitude. If the magnitude-squared 1s chosen, then z
is formed as

‘ Ae” +w[n] r

E i N b

‘ ‘ +2|d'[h’]| +22RE--{A.5= ™ [n])

] r=0

I8 |

“NA+ Y alnl'+ 3 2RelAe® - i)
. - (1.33)

The important fact is that phase information in the received signal samples is
discarded.

The first line of Eq. (1.33) defines noncoherent square-law integration. The
next two lines show that, because of the nonlinear magnitude-squared operation,
z cannot be expressed as the sum of a signal-only part and a noise-only part due
to the presence of the third term involving cross-products between signal and
noise components. A similar situation exists if the magnitude or log-magnitude
is chosen for the noncoherent integration. Consequently, a noncoherent
integration gain cannot be simply defined as it was for the coherent case.

It is possible to define a noncoherent gain implicitly. For example, in
Chap. 6 it will be seen that detection of a constant-amplitude target signal in



complex Gaussian noise with a probability of detection of 0.9 and a probability
of false alarm of 108 requires a single-sample SNR of 14.2 dB (about 26.3 on a
linear scale). The same probabilities can be obtained by integrating the
magnitude of 10 samples each having an individual SNR of only 5.8 dB (3.8 on
a linear scale). The reduction of 8.4 dB (a factor of 26.3/3.8 = 6.9) in the
required single-sample SNR when 10 samples are noncoherently integrated is
the implied noncoherent integration gain.

Noncoherent integration is much more difficult to analyze than coherent
integration, typically requiring derivation of the probability density functions of
the noise-only and signal-plus-noise cases in order to determine the effect on
detection and parameter estimation.

Chapter 6 will show that in many useful cases, the noncoherent integration
gain is approximately N%, where o ranges from about 0.7 or 0.8 for small N to
about 0.5 (VN) for large N, rather than in direct proportion to N. Thus,
noncoherent integration is less efficient than coherent integration. This should
not be surprising, since not all of the signal information is used.

1.4.4 Bandwidth Expansion
The scaling property of Fourier transforms states that ifx(z) has Fourier
transform X(Q) = F{x(¢)}, then

1 _(Q
F{x(ot)) =m}{¥; |

(1.34)

Equation (1.34) states that if the signal x is compressed in the time domain by
the factor a > 1, its Fourier transform is stretched (and scaled) in the frequency
domain by the same factor (Papoulis, 1987). When a < 1, Eq. (1.34) shows that
stretching in the time domain results in compression in the frequency domain.
This reciprocal spreading behavior is illustrated in Fig. 1.17. Part (a) shows a
sinusoidal pulse with a frequency of 10 MHz and a duration of 1 us and its
Fourier transform, which is a sinc function centered on 10 MHz and with a
Rayleigh mainlobe width of 1 MHz, the reciprocal of the 1 us pulse duration. In
part (b) the pulse has the same frequency but only one-quarter the duration. Its
spectrum is still a sinc centered at 10 MHz, but the Rayleigh width is now four
times larger at 4 MHz. The spectrum amplitude is also reduced by a factor of
four. This effect can also be viewed in the opposite direction: if the signal gets
wider in the frequency domain, it must get narrower in the time domain.
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FiGURE 1.17 Illustration of reciprocal spreading property of Fourier
transforms. (@) A sinusoidal pulse and the main portion of its Fourier transform.
(b) A narrower pulse has a wider transform. See text for details.

Combining the reciprocal spreading property of Fourier transforms with
the observation that resolution depends on signal width shows that improving
resolution requires increasing ‘“bandwidth” in the opposite Fourier domain. For
example, improving range resolution for simple pulses requires using shorter
pulses, as was seen in Sec. 1.4.2; butFig. 1.17 shows that a shorter pulse
implies a wider spectrum, i.e., more bandwidth. Conversely, it was also shown
inSec. 1.4.2 that improving resolution in the frequency domain requires a
narrower spectrum mainlobe and thus according to Fig. 1.17, a longer
observation (more “bandwidth”) in the time domain. This behavior holds for
any two functions related by a Fourier transform: finer resolution in one domain
requires wider support in the opposite domain.

Radar designers have developed techniques for increasing the appropriate
bandwidth to obtain improved resolution in various dimensions. For example,
improving resolution in range requires increasing waveform bandwidth, which
has led to the use of wideband phase- and frequency-modulated waveforms in
place of the simple pulse (Chap. 4). Improving cross-range resolution requires
viewing a scene over a wide angular interval to increase cross-range spatial



frequency bandwidth, and leads to the synthetic aperture techniques of Chap. 8.
Improving velocity (equivalently, Doppler) resolution requires a long time
observation and is accomplished with multipulse waveforms. Because the
antenna far-field pattern is the Fourier transform of the aperture current
distribution, improved angular resolution can be obtained with larger apertures,
1.e., bigger antennas.

1.5 A Preview of Basic Radar Signal Processing

There are a number of instances where the design of a component early in the
radar signal processing chain is driven by properties of some later component.
For example, in Chap. 4 it will be seen that the matched filter maximizes SNR;
but it is not until the performance curves for the detectors that follow the
matched filter are derived that it will be seen that maximizing SNR also
optimizes detection performance. Until the detector is considered, it is hard to
see exactly how performance depends on SNR. Having seen the major
components of a typical pulsed coherent radar system, the most common signal
processing operations in the radar signal processing chain are now described
heuristically. By sketching out this preview of the “big picture” from beginning
to end, it may be easier to understand the motivation for and interrelation of
many of the processing operations to be described in later chapters.

Figure 1.18 illustrates one possible sequence of operations in a generic
radar signal processor. The sequence shown is not unique, nor is the set of
operations exhaustive. In addition, the point in the chain at which the signal is
digitized varies in different systems; it might occur as late as the output of the
clutter filtering step. The operations can be generally grouped into signal
conditioning and interference suppression, imaging, detection; and
postprocessing. Radar signal phenomenology must also be considered. In the
next few subsections the basic purpose and operation of each block in this
signal processing chain is described.
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FIGURE 1.18 One example of a generic radar signal processor flow of

operations.

1.5.1 Radar Time Scales
Radar signal processing operations take place on time scales ranging from less
than a nanosecond to tens of seconds or longer, a range of 10 to 12 orders of
magnitude. Different classes or levels of operations tend to operate on

significantly different time

scales. Figure 1.19 illustrates one possible

association of operations and time scale.
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Operations that are applied to data from a single pulse occur on the
shortest time scale, often referred to as fast time because the sample rate,
determined by the instantaneous pulse bandwidth (see Chap. 2), is on the order
of hundreds of kilohertz (kHz) to as much as a few gigahertz in some cases.
Corresponding sampling intervals range from a few microseconds down to a
fraction of a nanosecond, and signal processing operations on these samples
therefore tend to act over similar time intervals. Typical fast time operations are
digital 1/Q signal formation, beamforming, pulse compression or matched
filtering, and sensitivity time control.

The next level up in signal processing operations operates on data from
multiple pulses. The sampling interval between pulses (the PRI) is typically on
the order of tens of microseconds to hundreds of milliseconds, so again
operations that involve multiple pulses occupy similar time scales. Due to the
much slower sampling rate compared to single-pulse operations, such
operations are said to act in slow time. Typical operations include coherent and
noncoherent integration, Doppler processing of all types, synthetic aperture
imaging, and space-time adaptive processing. The idea of slow and fast time
will be revisited in the discussion of the data organizational concept of the
datacube in Chap. 3.

A group of pulses that are to be somehow combined coherently, for



example via Doppler processing or synthetic aperture radar (SAR) imaging,
are said to form a coherent processing interval (CPI). A still higher level of
radar processing acts on data from multiple CPIs and therefore operates on an
even longer time scale often called a dwell and typically lasting milliseconds to
ones or tens of seconds. Operations on this scale include multiple-CPI detection
and ambiguity resolution techniques, multilook SAR imaging, and track filtering.
Some radars may track detected targets for many seconds or minutes using data
from multiple dwells. Track filtering operates in this regime. Finally, some
imaging radars may monitor an area over days, months, or even years.

1.5.2 Phenomenology

To design a successful signal processor, the nature of the signals to be
processed must be understood. Phenomenology refers to the characteristics of
the signals received by the radar. Relevant characteristics include signal power,
frequency, phase, polarization, or angle of arrival; variation in time and spatial
location; and randomness. The received signal phenomenology is determined by
both intrinsic features of the physical object(s) giving rise to the radar echo,
such as their physical size or their orientation and velocity relative to the radar;
and the characteristics of the radar itself such as its transmitted waveform,
polarization, or antenna gain. For example, if more power is transmitted a more
powerful received echo is expected, all other things being equal.

In Chap. 2, models of the behavior of typical measured signals that are
relevant to the design of signal processors are developed. The radar range
equation will give a means of predicting signal power. The Doppler
phenomenon will predict received frequency. It will be seen that the complexity
of the real world gives rise to very complex variations in radar signals; this will
lead to the use of random processes to model the signals, and to particular
probability density functions that match measured behavior well. A (very) brief
overview of the behavior of the variation of ground and sea echo with sensing
geometry and radar characteristics will be given. It will also be shown that
measured signals can be represented as the convolution of the “true” signal
representing the ideal measurement with the radar waveform (in the range
dimension) or its antenna pattern (in the azimuth or elevation dimension, both
also called cross-range dimension). Thus, a combination of random process and
linear systems theory will be used to describe radar signals and to design and
analyze radar signal processors.

1.5.3 Signal Conditioning and Interference Suppression

The first several blocks after the antenna in Fig. 1.18 can be considered as
signal conditioning operations whose purpose is to improve the SIR of the data
prior to detection, parameter measurement, or imaging operations. That is, the
intent of these blocks is to “clean up” the radar data as much as possible. This is
done in general with a combination of fixed and adaptive beamforming, pulse



compression, clutter filtering, and Doppler processing.

Beamforming is applicable when the radar antenna is an array, 1.e., when
there are multiple phase center signals, or channels, available to the signal
processor. Fixed beam-forming is the process of combining the outputs of the
various available phase centers to form a directive gain pattern, similar to that
shown inFig. 1.6. The high-gain mainlobe and low sidelobes selectively
enhance the echo strength from scatterers in the antenna look direction while
suppressing the echoes from scatterers in other directions, typically clutter. The
sidelobes also provide a measure of suppression of jamming signals so long as
the angle of arrival of the jammer is not within the mainlobe of the antenna. By
proper choice of the weights used to combine the channels, the mainlobe of the
beam can be steered to various look directions, and the tradeoff between the
sidelobe level and the mainlobe width (angular resolution) can be varied.

Adaptive beamforming takes this idea a step further. By examining the
correlation properties of the received data across channels, it is possible to
recognize the presence of jamming and clutter entering the antenna pattern
sidelobes and design a set of weights for combining the channels such that the
antenna not only has a high-gain mainlobe and generally low sidelobes, but also
has a null in the antenna pattern at the angle of arrival of the jammer. Much
greater jammer suppression can be obtained in this way. Similarly, it is also
possible to increase clutter suppression by this technique. Space-time adaptive
filtering (STAP) combines adaptive beamforming in both angle and Doppler for
simultancous suppression of clutter and jammer interference. Figure 1.20
illustrates interference suppression using STAP, allowing a previously invisible
target signal to be seen and perhaps detected. The two vertical bands in Fig.
1.20a represent jammer energy, which comes from a fixed angle of arrival but is
usually in the form of relatively wideband noise; thus it is present at all Doppler
frequencies observed by the radar. The diagonal band in Fig. 1.20aq is due to
ground clutter, for which the Doppler shift depends on the angle from the radar
to the ground patch contributing energy. Figure 1.20b shows that the adaptive
filtering has created nulls along the loci of the jammer and clutter energy,
making the target at 0° angle of arrival and 400 Hz Doppler shift apparent.
Adaptive interference suppression will be introduced in Chap. 9.
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FiGURE 1.20 Example of effect of adaptive beamforming. (@) Map of received
signal power as a function of angle of arrival and signal Doppler shift. (b)
Angle-Doppler map after adaptive processing. (Images courtesy of Dr. W. L.
Melvin. Used with permission.)

Pulse compression is a special case of matched filtering. Many radar
system designs strive for both high sensitivity in detecting targets and fine range
resolution (the ability to distinguish closely spaced targets). Upcoming chapters
show that target detectability improves as the transmitted energy increases, and
that range resolution improves as the transmitted waveform’s instantaneous
bandwidth increases. If the radar employs a simple, constant-frequency
rectangular envelope pulse as its transmitted waveform the pulse must be
lengthened to increase the transmitted energy for a given power level. However,
lengthening the pulse also decreases its instantaneous bandwidth, degrading the
range resolution. Thus sensitivity and range resolution appear to be in conflict
with one another.

Pulse compression provides a way out of this dilemma by decoupling the
waveform bandwidth from its duration, thus allowing both to be independently
specified. This is done by abandoning the constant-frequency pulse and instead
designing a modulated waveform. A very common choice is the linear frequency
modulated (linear FM, LFM, or “chirp”) waveform, shown in Fig. 1.21a. The
instantaneous frequency of an LFM pulse is swept over the desired bandwidth
during the pulse duration; the frequency may be swept either up or down, but the
rate of frequency change is constant.
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FIGURE 1.21 (a) Linear FM waveform modulation function, showing an
increasing instantaneous frequency. () Output of the matched filter for the LFM
waveform of (a).

The matched filter is by definition a filter in the radar receiver designed to
maximize the SNR at its output. The impulse response of the filter having this
property turns out to be a replica of the transmitted waveform’s modulation



function that has been reversed in time and conjugated; thus the impulse
response is “matched” to the particular transmitted waveform modulation. Pulse
compression is the process of designing a waveform and its corresponding
matched filter so that the matched filter output in response to the echo from a
single point scatterer concentrates most of its energy in a very short duration,
thus providing good range resolution while still allowing the high transmitted
energy of a long pulse. Figure 1.215 shows the output of the matched filter
corresponding to the LFM pulse of Fig. 1.21a; note that the mainlobe of the
response 1s much narrower than the duration of the original pulse. The concepts
of matched filtering, pulse compression, and waveform design, as well as the
properties of linear FM and other common waveforms, are described in Chap.
4. There it is seen that the 3-dB width of the mainlobe in time is approximately
1/f seconds, where £ is the instantaneous bandwidth of the waveform used. This
width determines the ability of the waveform to resolve targets in range.
Converted to equivalent range units, the range resolution is given by

AR ==
2B

(1.35)

[This is the same as Eq. (1.2) presented earlier. ]

Clutter filtering and Doppler processing are closely related. Both are
techniques for improving the detectability of moving targets by suppressing
interference from clutter echoes, usually from the terrain in the antenna field of
view, based on differences in the Doppler shift of the echoes from the clutter
and from the targets of interest. The techniques differ primarily in whether they
are implemented in the time or frequency domain and in historical usage of the
terminology.

Clutter filtering usually takes the form of moving target indication, or
MTI, which 1s simply pulse-to-pulse highpass filtering of the radar echoes at a
given range to suppress constant components, which are assumed to be due to
nonmoving clutter. Extremely simple, very low-order (most commonly first- or
second-order) digital filters are applied in the time domain to samples taken at a
fixed range but on successive transmitted pulses.

The term “Doppler processing” generally implies the use of the fast
Fourier transform algorithm, or occasionally some other spectral estimation
technique, to explicitly compute the spectrum of the echo data for a fixed range
across multiple pulses. Due to their different Doppler shifts, energy from
moving targets is concentrated in different parts of the spectrum from the clutter
energy, allowing detection and separation of the targets. Doppler processing
obtains more information from the radar signals, such as number and
approximate velocity of moving targets, than does MTI filtering. The cost is
more required radar pulses, thus consuming energy and timeline, and greater



processing complexity. Many systems use both techniques in series. Clutter
filtering and Doppler processing are the subjects of Chap. 5.

1.5.4 Imaging

Most people are familiar with the idea of a radar producing “blips” on a screen
to represent targets, and in fact systems designed to detect and track moving
targets may do exactly that. However, radars can also be designed to compute
fine-resolution images of a scene. Figure 1.22 compares the quality routinely
obtainable in SAR imagery in the mid-1990s to that of an aerial photograph of
the same scene; close examination reveals many similarities and many
significant differences in the appearance of the scene at radar and visible
wavelengths. Not surprisingly, the photograph is easier for a human to interpret
and analyze, since the imaging wavelengths (visible light) and phenomenology
are the same as the human visual system. In contrast, the radar image, while
remarkable, is monochromatic, offers less detail, and exhibits a “speckled”
texture, some seemingly unnatural contrast reversals, and some missing features
such as the runway stripes. Given these drawbacks, why is radar imaging of
interest?

FIGURE 1.22 Comparison of optical and SAR images of the Albuquerque
airport. (a) K, band (15 GHz) SAR image, 3-m resolution. (b) Aerial
photograph. (Images courtesy of Sandia National Laboratories. Used with
permission. )

While radars do not obtain the resolution or image quality of photographic



systems, they have two powerful advantages. First, they can image a scene
through clouds and inclement weather due to the superior propagation of RF
wavelengths. Second, they can image equally well 24 hours a day since they do
not rely on the sun for illumination; they provide their own “light” via the
transmitted pulse. If the example of Fig. 1.21 were repeated in the middle of a
rainy night, the SAR image on the left would not be affected in any noticeable
way, but the optical image on the right would disappear entirely.

To obtain fine-resolution imagery, radars use a combination of high-
bandwidth waveforms to obtain good resolution in the range dimension and the
synthetic aperture radar technique to obtain good resolution in the cross-range
dimension. The desired range resolution is obtained while maintaining adequate
signal energy by using pulse compression waveforms, usually linear FM. A long
pulse that is swept over a large enough bandwidth f and processed using a
matched filter can provide very good range resolution according to Eq. (1.35).
For example, range resolution of 1 m can be obtained with a waveform swept
over 150 MHz. Depending on their applications, modern imaging radars usually
have range resolution of 30 m or better; many systems have 10 m or better
resolution, and some advanced systems have resolution under 1 m.

For a conventional nonimaging radar, referred to as a real aperture radar,
the resolution in cross-range is determined by the width of the antenna beam at
the range of interest and is given by RO, as shown inEq. (1.26). Realistic
antenna beamwidths for narrow-beam antennas are typically 1° to 3°, or about
17 to 52 mrad. Even at a relatively short imaging range of 10 km, the cross-
range resolution that results would be 170 to 520 m, much worse than typical
range resolutions and too coarse to produce useful imagery. This poor cross-
range resolution is overcome by using SAR techniques.

The synthetic aperture technique refers to the concept of synthesizing the
effect of a very large antenna by having the actual physical radar antenna move
in relation to the area being imaged. Thus, SAR is most commonly associated
with moving airborne or space-based radars, rather than with fixed ground-
based radars. Figure 1.23 illustrates the concept. By transmitting pulses at each
indicated location, collecting the range data for each pulse, and properly
processing it together, a SAR system creates the effect of a much larger phased
array antenna being flown along the aircraft flight path. As suggested by Eq.
(1.9) (though some details differ in the SAR case), a very large aperture size
produces a very narrowly focused effective antenna beam, thus making possible
very fine cross-range resolution. The SAR concept is explained more fully in
Chap. 8. A more modern and robust viewpoint based on integrating over a range
of angles is also given there.
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FIGURE 1.23 The concept of synthetic aperture radar.

1.5.5 Detection

The most basic function of a radar signal processor is detection of the presence
of one or more targets of interest. Information about the presence of targets is
contained in the echoes of the radar pulses. These echoes compete with receiver
noise, undesired echoes from clutter signals, and possibly intentional or
unintentional jamming. The signal processor must somehow analyze the total
received signal and determine whether it contains a desirable target echo and, if
so, at what range, angle, and velocity.

Because the complexity of radar signals leads to the use of statistical
models, detection of target echoes in the presence of competing interference
signals is a problem in statistical decision theory. The theory as applied to radar
detection will be developed in Chap. 6. There it will be seen that in most cases
optimal performance can be obtained using threshold detection. In this method,
the magnitude of each complex sample of the radar echo signal, possibly after
signal conditioning and interference suppression, is compared to a precomputed
threshold. If the signal amplitude is below the threshold, it is assumed to be due
to interference signals only. If it is above the threshold, it is assumed that the
stronger signal is due to the presence of a target echo in addition to the
interference, and a detection or “hit” 1s declared. In essence, the detector makes
a decision as to whether the energy in each received signal sample is too large
to likely have resulted from interference alone; if so, it is assumed a target echo
contributed to that sample. Figure 1.24 illustrates the concept. The “clutter +
target” signal might represent the variation in received signal strength versus



range (fast time) for a single transmitted pulse. It crosses the threshold at three
different times, suggesting the presence of three targets at different ranges.
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FiGURE 1.24 [Illustration of threshold detection.

Because they are the result of a statistical process, threshold detection
decisions have a finite probability of being wrong. For example, a noise spike
could cross the threshold, leading to a false target declaration, commonly called
a false alarm. These errors are minimized if the target spikes stand out strongly
from the background interference, i.e., if the SIR is as large as possible. If this is
the case the threshold can be set relatively high, resulting in few false alarms
while still detecting most targets. This fact also accounts for the importance of
matched filtering in radar systems. The matched filter maximizes the SIR, thus
providing the best threshold detection performance. Furthermore, the achievable
SIR increases monotonically with the transmitted pulse energy £, thus
encouraging the use of longer pulses to get more energy on the target. Since
longer simple pulses reduce range resolution, the technique of pulse
compression is also important so that fine resolution can be obtained while
maintaining good detection performance.

The concept of threshold detection can be applied to many different radar
signal processing systems. Figure 1.24 illustrates its application to a fast-time
(range) signal trace, but it can be equally well applied to a signal composed of
measurements at different Doppler frequencies for a fixed range, or in a two-
dimensional form to combined range-Doppler data or to SAR imagery.

There are numerous significant details in implementing threshold detection.
Various detector designs work on the magnitude, squared-magnitude, or even
log-magnitude of the complex signal samples. The threshold is computed from
knowledge of the interference statistics so as to limit false alarms to an
acceptable rate. However, in real systems the interference statistics are rarely
known accurately enough to allow for precomputing a fixed threshold. Instead,



the required threshold is set using interference statistics estimated from the data
itself, a process called constant-false-alarm rate (CFAR) detection. Detection
processing is described in detail in Chap. 6.

1.5.6 Measurements and Track Filtering

Radar systems employ a wide variety of processing operations after the point of
target detection. One of the most common postdetection processing steps, and
one of the three major functions of interest in this text, is tracking of targets, an
essential component of many radar systems. Tracking is comprised of (usually
multiple) measurements of the position of detected targets followed by track
filtering.

The radar signal processor detects the presence of targets using threshold
detection methods. The range, angle, and Doppler resolution cell in which a
target 1s detected provide a coarse estimate of its location in those coordinates.
Once detected, the radar will seek to refine the estimated range by using signal
processing methods to more precisely estimate the time delay after pulse
transmission at which the threshold crossing occurred, the angle of the target
relative to the antenna mainbeam direction, or its radial velocity. Individual
measurements will have some error due to interference, and so provide a noisy
snapshot of the target location and motion at one instant in time.

The term track filtering describes a higher-level, longer time scale process
of integrating a series of such measurements to estimate a complete trajectory of
the target over time. It is often described as data processing rather than signal
processing. Because there may be multiple targets with crossing or closely
spaced trajectories, track filtering must deal with the problems of determining
which measurements to associate with which targets being tracked, and with
correctly resolving nearby and crossing trajectories. A variety of optimal
estimation techniques have been developed to perform track filtering. An
excellent reference in this area is Bar-Shalom (1988).

Figure 1.25 illustrates a series of noisy measurements in one dimension of
the position of two targets and the filtering of that noisy trajectory using an
extremely simple alpha-beta filter, to be discussed in Chap. 9. The position in
the x dimension versus time for each target is shown by the gray lines, so the
two targets are moving at different velocities along the x axis and one passes the
other at around time step 32. The circle and diamond markers indicate the noisy
radar measurements of position for each. The solid black lines are the smoothed
estimates of position produced by the alpha-beta filter. In part (a) of the figure,
the filter correctly associates the measurements with each target when they
cross, so that each smoothed estimate follows the same target over the
observation time. In Fig. 1.25b, the noise variance is higher, causing the filter to
incorrectly swap the tracks around time step 40. This represents an error in
measurement-to-track data association. A variety of techniques are available to
attempt to address this problem; a few are discussed in Chap. 9.



)

]
[
(=]
(=]

— —{H

= Position {m
- =+

I
I
1
I
|
|
-+
|
|
!
|
I
I
*__

- B
]
ol
=
o0
[ =]

0 10 20 30 40 50 60 00 10 20 30
(a) Time Step (B) Time Step

FIGURE 1.25 Track filtering of noisy measurements for two targets in one
dimension using an alpha-beta filter. Markers show individual measurements.
Gray lines are actual position, black lines are filtered position estimates. (a)
Low measurement noise. (b) Tracks incorrectly switch targets in higher
measurement noise.

1.6 Radar Literature

This text covers a middle ground in radar technology. It focuses on basic radar
signal processing from a digital signal processing point of view. It does not
address radar systems, components, or phenomenology in any great depth except
where needed to explain the signal processing aspects; nor does it provide in-
depth coverage of advanced radar signal processing specialties. Fortunately,
there are many excellent radar reference books that address both needs. Good
books appear every year; those listed in the paragraphs that follow are current
as of the year 2013.

1.6.1 Radar Systems and Components

Probably the most classic introductory text to radar systems, now in its third
edition, is by Skolnik (2001). The newest and one of the best “radar 101”
introductions is the new text by Richards et al. (2010), the first of a three-
volume series. The 1990s saw the introduction of several general radar system
textbooks. The text by Edde (1995) also has an associated self-study course.
Peebles (1998) provides a recent, comprehensive introduction, while Mahafza
(2000) provides a number of useful MATLAB® files to aid in simulation and
experimentation. Morris and Harkness (1996) provides a good introduction to
airborne pulsed Doppler systems specifically. A newer discussion of pulsed
Doppler systems is given by Alabaster (2012). An up-to-date survey of a broad
range of traditional and modern radar applications is given in Scheer and
Melvin (2014), showing how many of the techniques discussed in both these
introductory texts and the more specialized ones discussed below are brought
together into complete systems.



1.6.2 Basic Radar Signal Processing

It is this author’s opinion that there are a number of excellent books about radar
systems in general, including coverage of components and system designs, and
several on advanced radar signal processing topics, especially in the area of
synthetic aperture imaging. There have been few books that address the middle
ground of basic radar signal processing, such as pulse compression, Doppler
filtering, and CFAR detection. Such books are needed to provide greater
quantitative depth than is available in the radar systems books without
restricting themselves to in-depth coverage of a single advanced application
area, and this text aims to fill that gap. Nonetheless, there are a few texts that fit
somewhat into this middle area. Nathanson (1991) wrote a classic book, now in
its second edition, that covers radar systems in general but in fact concentrates
on signal processing issues, especially RCS and clutter modeling, waveforms,
MTI, and detection. Probably the closest text in intent to this one is by Levanon
(1988), which provides excellent analyses of many basic signal processing
functions. The new text by Levanon and Mozeson (2004) addresses the
widening variety of radar waveforms in detail. A recent text by Sullivan (2000)
is interesting especially for its introductory coverage of both SAR and space-
time adaptive processing (STAP), thus providing a bridge between basic signal
processing and more advanced texts specializing in SAR and STAP.

1.6.3 Advanced Radar Signal Processing
Two very active areas of advanced radar signal processing research are SAR
imaging and STAP. SAR research extends back to 1951, but only in the 1990s
did open literature textbooks begin to appear in the market. There are now many
good textbooks on SAR. The first comprehensive text was by Curlander and
McDonough (1991). Based on experience gained at the NASA Jet Propulsion
Laboratory, it emphasizes space-based SAR and includes a strong component of
scattering theory as well. Cumming and Wong (2005) is a newer text that also
emphasizes spaced-based SAR. The spotlight SAR mode received considerable
development in the 1990s, and two major groups published competing texts in
the mid-1990s. Carrara, Goodman, and Majewski (1995) represented the work
of the group at the Environmental Research Institute of Michigan (ERIM, now a
part of General Dynamics, Inc.); Jakowatz, Jr., et al. (1996) represented the
work of a group at Sandia National Laboratories, a unit of the U.S. Department
of Energy. Franceschetti and Lanari (1999) provide a compact, unified treatment
of both major modes of SAR imaging, namely stripmap and spotlight. The book
by Soumekh (1999) is the most complete academic reference on synthetic
aperture imaging and includes a number of MATLAB® simulation resources.
STAP, one of the most active radar signal processing research areas, began
in earnest in 1973 and is correspondingly less mature than SAR processing.
Klemm (1998) wrote the first significant open literature text on the subject. Just
as with the Curlander and McDonough book in the SAR community, this book



was the first sign that a series of STAP texts can be expected as that research
topic matures and reaches mainstream use. The book by Guerci (2003) is the
newest primer on this subject at this writing, while Van Trees (2002) prepared
a detailed text that continues his classic series on detection and estimation.
Additionally, there are other texts on more limited forms of adaptive
interference rejection. A good example is the one by Nitzberg (1999), which
discusses several forms of sidelobe cancellers. An excellent new book covering
a wide range of advanced radar signal processing techniques, including such
new topics as multi-input, multi-output radar, and compressive sensing, is the
companion volume to (Richards et al., 2010) by Melvin and Scheer (2013).

1.6.4 Radar Applications

The preceding sections have cited a number of books addressing general radar
applications, such as imaging or pulse Doppler. There are a number of books in
the literature devoted to more specific application areas. The forthcoming text
by Melvin and Scheer (2014) will provide an excellent survey of and
introduction to a wide range of applications in a single text, and will complete
the Principles of Modern Radar series.

1.6.5 Current Radar Research

Current radar research appears in a number of scientific and technical journals.
The most important in the United States are the Institute of Electrical and
Electronics Engineers (IEEE) Transactions on Aerospace and Electronic
Systems, Transactions on Geoscience and Remote Sensing, Transactions on
Signal Processing, and Transactions on Image Processing. Radar-related
material in the latter is generally limited to papers related to SAR processing,
especially interferometric three-dimensional SAR. In the United Kingdom, radar
technology papers are often published in the Institution of Engineering and
Technology (IET) [formerly the Institution of Electrical Engineers (IEE)]
journal /ET Radar, Sonar, and Navigation.
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Problems

1. Compute the range R corresponding to echo delays #, of 1 ns, 1 pus, 1 ms,
and 1 second.

2. Compute the time delays for two-way propagation to targets at distances of
100 km, 100 statute miles, and 100 ft.

3. Radar is routinely used as one means of measuring the distance to objects in
space. For example, it has been used to calculate the orbital parameters
and rate of rotation of the planet Jupiter. The distance from Earth to Jupiter
varies from 588.5 x 10° to 968.1 x 10¢ km. What are the minimum and
maximum time delays in minutes from the time a pulse is transmitted in the
direction of Jupiter until the time the echo is received? If pulses are
transmitted at a rate of 100 pulses per second, how many pulses are in
flight, either on their way to Jupiter or back again, at any given instant?

4. Table 1.1 defines the millimeter wave (MMW) band to extend from 40 to
300 GHz. Only certain frequencies in this band are widely used for radar.
This is partly due to frequency allocation rules (which frequencies are



10.

11.

12.

13.

14.

allotted to which services), but also due to atmospheric propagation.
Based on Fig. 1.3, list two frequencies in the MMW band that might be
preferable for radar use, and two that would not be suitable. Explain.

. Compute the bandwidth £ needed to achieve range resolutions of 1 m, 1 km,

and 100 km. What is the length of a rectangular pulse having this Rayleigh
bandwidth (peak-to-first null width of the Fourier transform) for each
value of resolution?

In terms of D, and A, what is the peak-to-first null beamwidth (called
Rayleigh beamwidth) in radians of the antenna pattern for an aperture
antenna with constant illumination? Give both the general result, and a
small-angle approximation.

How large must a uniformly illuminated aperture antenna be (value of D)) in
terms of wavelengths so that its 3-dB beamwidth is 1°? What is the
estimated gain in decibels of an antenna having azimuth and elevation
beamwidths 8; = ¢, = 1°, based on the approximation in Eq. (1.10)?

Suppose a police “speed gun” radar has a rectangular antenna. It is desired
to have a cross-range resolution ACR of 10 ft at a distance of one-quarter
mile. What is the required antenna width in inches if the radar frequency is
9.4 GHz? Repeat for 34.4 GHz.

Continuing problem 8, what is the actual cross-range resolution in feet at
each RF if the antenna width is 6 1n.?

Starting from Eq. (1.13) and setting a, = 1, derive Eq. (1.14).

What is the maximum 3-dB beamwidth 6, in degrees such that the
approximation for the cross-range resolution, R9,, in the last step of Eq.
(1.26) has an error of no more than 1 percent?

Determine the cross-range resolution ACR in meters at ranges of 10, 100,
and 1000 km for a 3-dB beamwidth 8, = 3°.

Determine the approximate size of a volume resolution cell in cubic meters,
AV, for R =20 km, AR =100 m, and 6, = ¢, = 3°.

Suppose Eq. (1.31) is modified to consider the magnitude-squared of the
signal-plus-noise data:

-
=

N-1 o
= Z ‘Ae*’“““ Do) ]
n=0

Show explicitly that z cannot be expressed as the sum of a signal-only and
a noise-only term.

The remaining problems relate to topics covered in Appendix B.



15. What is the Nyquist sampling rate (minimum rate to avoid aliasing) for the
signal x(#) having the spectrum X(F) shown in the figure below? Sketch a
block diagram of a system for recovering a new signal % from samples of
x(t) taken at the Nyquist rate, such that the spectrum X(£) has the same shape
as X(F), but is centered at /"= 0.

| X(F) |7

-I F(MH=z)

5 25

16. In some cases, the spectrum replication property of sampling can be used as
a substitute for demodulation. Given a signal x,(¢) with the spectrum
shown, what is the lowest sampling rate that will ensure both no aliasing of
the spectrum, and that one of the spectrum replicas is centered at F'= 0?
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17. How many bits are required in an A/D converter to provide a dynamic
range of at least 40 dB? What is the expected SQNR with this number of
bits, assuming k = 3?

18. Numerical values of spatial frequency differ greatly from the usual temporal
frequency values. What is the spatial frequency in cycles per meter for a 1-
GHz electromagnetic wave?

19. What is the instantaneous frequency in hertz of the waveform x(¢) = exp|;
exp(—at)]?
20. Determine a phase function y(7) such that the instantaneous frequency in

hertz of the waveform x(¢) = cos[ w(?)], —t/2 < ¢t < /2 seconds, sweeps
linearly from —f/2 Hz to +4/2 Hz.

21. Suppose signal x, is 30 dB greater in power than signal x,. What is the ratio
of their power in linear units (i.e., not in dB)? What is the ratio of the
corresponding voltages?




1 ¢=2.99792458 x 10® m/s in a vacuum. A value of ¢ =3 x 10% m/s is normally used except where very
high accuracy is required.

2 Systems exhibiting good or poor resolution are commonly referred to as high- or low-resolution systems,
respectively. Since better resolution means a smaller numerical value, in this text the terms “fine”” and
“coarse” are used instead.

3 Gordon Moore’s famous 1965 prediction was that the number of transistors on an integrated circuit would
double every 18 to 24 months. This prediction has held remarkably true for nearly 40 years, enabling the
computing and networking revolutions that began in earnest in the 1980s.

4 This is analogous to the use of the two-argument atan2() function instead of the single-argument atan()
function in many programming languages such as FORTRAN or C.

2 Although these formalizations are not needed for the discussions in this text and are therefore avoided for
simplicity, it is worthwhile to note that the complex signal in Eq. (1.21) is the analytic signal associated with
the real-valued signal of Eq. (1.17). The imaginary part of Eq. (1.21) is the Hilbert transform of the real
part.

8 The effects of unequal signal strength and noise on resolution are considered in (Mir and Wilkinson, 2008).



CHAPTER 2
Signal Models

2.1 Components of a Radar Signal

While a radar transmits a controlled, well-defined signal, the signal measured at
the receiver output in response is the superposition of several major
components, none of them entirely under the control of the designer. The major
components are the target, clutter, noise, and, in some cases, jamming. These
signals are sometimes subdivided further. For instance, clutter can be separated
into ground clutter and weather clutter (such as rain), while jamming can be
separated into active jamming (noise transmitters) and passive jamming (such as
chaff clouds). Signal processing is applied to this composite signal; the goal is
to extract useful information regarding the presence of targets and their
characteristics, or to form a radar image. Noise and jamming are interference
signals; they degrade the ability to detect targets and measure their position and
velocity. Clutter may be interference in some cases, such as when detecting
aircraft, or may be the desired signal itself, as with a ground imaging radar. The
effectiveness of the signal processing is measured by the improvement it
provides in the various figures of merit, such as detection probability, signal-
to-interference ratio (SIR), or angle accuracy.

It was shown inChap. 1 that conventional pulsed radars transmit
narrowband, bandpass signals. Transmitted energy is maximized by restricting
amplitude modulation to on-off pulsing; phase modulation is used to expand the
instantaneous bandwidth when needed to improve resolution. Thus, an
individual transmitted radar pulse can be written as

X(t)= a(t)sin[27Et + 6(1)]
(2.1)

where a(?) is the constant amplitude pulse envelope, F, is the radar carrier
frequency, and 0(7) may be a constant or may represent phase modulation of the
pulse. It will usually be assumed that a(¢) is an ideal, square pulse envelope of
amplitude 4 and duration 7 seconds. The instantaneous power of this signal is
just P, = A%/2. The signal at the receiver output will be a combination of echoes
of ¥f) from targets and clutter, noise, and possibly jamming.

Because the target and clutter components are delayed echoes of the
transmitted pulse, they are also narrowband signals, although their amplitude
and phase modulation will in general be altered, e.g., by propagation loss and
Doppler shift. Receiver noise appears as an additive random signal. Thus, the



received signal resulting from a single pulse echoing from a scatterer at range R,
= ct,/2 can be modeled as

— )+ — ) +dit)]

F(t)=k-a(t — tg)e*™H¢ +n(t)

(2.2)

where n(t) =receiver noise

_echo amplitude factor due to propagation losses and target
reflectivity

@(t) = echo phase modulation due to target interaction

The important parameters of ¥l!) are the delay time #,, the echo component
amplitude & - |a(¢)| and its power relative to the noise component, and the echo
phase modulation function &(¢t —¢,) + @(¢). These characteristics are used to
estimate target range, scattering strength, and radial velocity, suppress jamming
and clutter, form images, and so forth.

The amplitude and phase modulation functions also determine the range
resolution AR of a measurement. For example, AR = c7/2 if 6(¢) is a constant
and *() 1s a simple constant-frequency pulse of length 7 seconds. Resolution in
angle and cross range is determined by the 3-dB width of the antenna pattern in
a nonimaging radar.

In order to design good signal processing algorithms, good models of the
signals to be processed are needed. In this chapter, an understanding of common
radar signal characteristics pertinent to signal processing is developed by
presenting models of the effect of the scattering process on the amplitude, phase,
and frequency properties of radar measurements. While deterministic models
suffice for simple scatterers, it will be seen that complicated real targets require
statistical descriptions of the scattering process.

2.2 Amplitude

2.2.1 Simple Point Target Radar Range Equation

The radar range equation (Richards et al., 2010; Skolnik, 2001) is a
deterministic model that relates received echo power to transmitted power in
terms of a variety of system design parameters. It is a fundamental relation used
for basic system design and analysis. Since the received signals are narrowband
pulses of the form of Eq. (2.2), the received power P, estimated by the range
equation can be directly related to the received pulse amplitude.

To derive the range equation, assume that an isotropic radiating element
transmits a waveform of power P, watts into a lossless medium. Because the
transmission is isotropic and no power is lost in the medium, the power density
at a range R is the total power P, divided by the surface area of a sphere of



radius R, which is

B 3
Isotropic transmitted power density = e R W/m*
(2.3)

Instead of isotropic radiators, real radars use directive antennas to focus the
outgoing energy. As described in Chap. 1, the antenna gain G is the ratio of
maximum power density to isotropic density. Thus, in the direction of maximum
radiation intensity, the power density at range R becomes

RGE W#{m;‘_

Peak transmitted power density =0, =———
: " 4z R

(2.4)

This is the power density incident upon the target if it is aligned with the
antenna’s axis of maximum gain.

When the electromagnetic wave with power density given by Eq. (2.4) is
incident upon a single discrete scattering object, or point target, at range R the
incident energy is scattered in various directions; some of it may also be
absorbed by the scatterer itself. In particular, some of the incident power is
reradiated toward the radar, or backscattered. Imagine that the target collects
all of the energy incident upon a collector of area o square meters and reradiates
it isotropically. The reradiated power is then

EGo

i 7, 1
dr R~°

Backscattered power =F, =
(2.5)

The quantity o is called the radar cross section (RCS) of the target. One
important fact about RCS is that o 1s not equal to the physical cross-sectional
area of the target; it is an equivalent area that can be used to relate incident
power density at the target to the reflected power density that results at the
receiver. RCS will be discussed further in Sec. 2.2.3.
Because RCS is defined under the assumption that the backscattered power
is reradiated isotropically, the density of the backscattered power at a range R
is found by dividing the power of Eq. (2.5) by the surface area of a sphere of
radius R as was done in Eq. (2.3), giving the backscattered power density at the
radar receiver as
Backscattered power density =0, = & W/m?
F TR (4n)’R
(2.6)

If the effective aperture size of the radar antenna is 4, square meters, the total



backscattered power collected by the receiving antenna will be

Received power=PF, = ST W

r {4;:}2R4

2.7)

It was shown in Chap. 1 that the effective aperture of an antenna is related to its
gain and operating wavelength according to 4, = A°G/4z. Thus

__PG*%¢
{4H}3R4
(2.8)

Equation (2.8) describes the power that would be received if an ideal radar
operated in free space and used no signal processing techniques to improve
sensitivity. Various additional loss and gain factors are customarily added to the
formula to account for a variety of additional considerations. For example,
losses incurred in various components such as the duplexers, power dividers,
waveguide, and radome (a protective covering over the antenna), and
propagation effects not found in free space propagation, can be lumped into a
system loss factor L, that reduces the received power. System losses are
typically in the range of 3 to 10 dB but can vary widely. One of the most
important loss factors, particularly at X band and higher frequencies, is
atmospheric attenuation L (R). Unlike system losses, atmospheric losses are a
function of range. If the one-way loss in decibels per kilometer of Fig. 1.3 is
denoted by «a, the loss in decibels for a target at range R meters (not kilometers)
is

L (R)(dB)=2a(R/1000)= &R /500 dB
(2.9)

In linear units, the loss is therefore

LE{R} _ 1[}&3_.-"5'.]0['
(2.10)

Atmospheric loss can be inconsequential at 10 GHz and moderate ranges, or
tens of decibels at 60 GHz and a range of a few kilometers. (This is the reason
why 60 GHz is not a popular radar frequency.) This example also shows that,
like system losses, atmospheric loss is a strong function of radar frequency.
Incorporating atmospheric and system losses in Eq. (2.8) finally gives

p__ BG2% .
" (4m)’RL.L.(R)




(2.11)

Equation (2.11) is one simple form of the radar range equation. It relates
received echo power to fundamental radar system and target parameters such as
transmitted power, operating frequency, and antenna gain; radar cross section;
and range. Because the power of the radar signal is proportional to the square of
the electric field amplitude, the range equation also serves as a model of the
amplitude of the target and clutter components of the signal. Note that all
variables in Eq. (2.11) are in linear units, not decibels, even though several of
the parameters are often specified in decibels; frequent examples include the
atmospheric losses, antenna gain, and RCS. Also note that P, is instantaneous,
not average, received power. Finally, realize that for a scatterer at range R, the
backscattered EM wave will be received with a time delay of 2R/c seconds
after transmission.

As an example, consider an X-band (10-GHz) radar with a peak
transmitted power of 1 kW and a pencil beam antenna with a 1° beamwidth, and
suppose an echo is received from a jumbo jet aircraft with an RCS of 100 m? at
a range of 10 km. The received power can be determined using Eq. (2.11). The
antenna gain can be estimated from Eq. (1.10) to be G = 26,000/(1)(1) = 26,000
= 44 dB. The wavelength is A =c¢/F =3 x 10810 x 10° =3 x 102 m = 3 cm.
Assuming atmospheric and system losses are negligible, the received power is

p_ (1000)(26,000)*(0.03)*(100)

. 3.07x107° W
(47)(10,000)* e

(2.12)

Even though this example is a large target at short range, the received power is
only 3.07 nW, nearly 12 orders of magnitude less than the transmitted power!
Nonetheless, this signal level is adequate for reliable detection in many cases.
This example illustrates the huge dynamic ranges observed in radar between
transmitted and received signal powers.

An important consequence of Eq. (2.11) is that for a point target, the
received power decreases as the fourth power of range from the radar to the
target. Thus, the ability to detect a target of a given radar cross section
decreases rapidly with range. Range can be increased by increasing transmitted
power, but because of the R* dependence, the power must be raised by a factor
of 16 (12 dB) just to double the detection range. Alternatively, the antenna gain
can be increased by a factor of 4 (6 dB), implying an increase in antenna area by
a factor of 4. On the other hand, designers of “stealth” aircraft and other target
vehicles must reduce the RCS o by a factor of 16 in order to halve the range at
which they can be detected by a given radar system.

The range equation is a fundamental radar system design and analysis tool.
More elaborate or specialized versions of the equation can be formulated to



show the effect of other variables, such as pulse length, intermediate frequency
(IF) bandwidth, or signal processing gains. Several such variations are given in
Richards et al. (2010). The range equation also provides the basis for
calibrating a radar system. If the system power, gain, and losses are carefully
characterized, then the expected received power of echoes from test targets of
known RCS can be computed. Calibration tables equating receiver voltage
observed due to those same echoes to incident power density can then be
constructed.

Signal processing techniques can increase the effective received power,
and therefore increase the obtainable range. The effect of each technique on
received power is discussed as they are introduced in later chapters.

2.2.2 Distributed Target Forms of the Range Equation

Not all scattering phenomena can be modeled as a reflection from a single point
scatterer. Ground clutter, for example, is best modeled as distributed scattering
from a surface, while meteorological phenomena such as rain or hail are
modeled as distributed scattering from a three-dimensional volume. The radar
range equation can be rederived in a generalized way that accommodates all
three cases.

Equation (2.3) is still applicable as a starting point. To consider
distributed scatterers, and because the gain of the antenna varies with azimuth
and elevation angle, Eq. (2.4) must be replaced with an equation that accounts
for the effect of the antenna power pattern P(6, ¢) on the power density radiated
in a particular direction (8, ¢):

P.P(8, ¢)

j;ﬁ ki — 3
Q(0,0) 1z R

(2.13)

Assume that the antenna boresight corresponds to @ =¢ = 0. The antenna
boresight is normally the axis of maximum gain so that P(0, 0) = G.

Now consider the scattering from an incremental volume dV located at
range and angle coordinates (R, 6, ¢). Suppose the incremental RCS of the
volume element is do square meters, and that do in general varies with position
in space. The incremental backscattered power from dV is

BP(#,¢)do (R, 8, 0)

dF,(8,¢)= ey

(2.14)

As before, do 1s defined such that it is assumed this power is reradiated
isotropically, and then collected by the antenna effective aperture, adjusted for
the angle of arrival. After substituting for effective aperture and accounting for
losses, this results in an incremental received power of



p _ BP(6,0)27do (R, 6,0)
[ = 3]
F (47)R'L.L,(R)
(2.15)

Again, this power is received 2R/c seconds after transmission. The total
received power is obtained by integrating over all space to obtain a generalized
radar range equation

pA* | P48, 9)
B3 1
(4n)’L, ), R*L,(R)

do(R, 8, ¢)
(2.16)

InEq. (2.16), the volume of integration J' is all of three-dimensional space.
However, the backscattered energy from all ranges does not arrive
simultaneously at the radar. As discussed in Sec. 1.4.2, only scatterers within a
single range resolution cell of extent AR contribute significantly to the radar
receiver output at any given instant. Thus, a more appropriate form of the
generalized radar range equation gives the received power as a function of time,

ZRDW PA? l PX(6, )

¢ ) @n’L ) g RL(®R)

da(R, 8, ¢)

2 | fg =
(2.17)

where AR 1s the range interval of the resolution cell centered at range R, and Q2
represents integration over the angular coordinates.

By integrating power, it is being assumed that the backscatter from each
volume element adds noncoherently rather than coherently. This means that the
power of the composite electromagnetic wave formed from the backscatter of
two or more scattering centers is the sum of the individual powers, as opposed
to the voltage (electric field amplitude) being the sum of the individual
amplitudes, in which case the power would be the square of the voltage sum.
Noncoherent addition occurs when the phases of the individual contributors are
random and uncorrelated with one another, as opposed to the coherent case
when they are in phase. This issue will be revisited in Sec. 2.7.

The general result of Eq. (2.17) is more useful if evaluated for the special
cases of point, volume, and area scatterers. Beginning with the point scatterer,
the differential RCS in the resolution cell volume is represented by a Dirac
impulse function of weight o :

do(R,8,0)=00p(R - Ry, 8 — 6, ¢ —¢y)dV (point scatterer)
(2.18)

Using Eq. (2.18) in Eq. (2.17) gives the range equation for a point target at
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BP(6y, 9o) 0
(4m)* RgL.L,(Ry)

Pt,)= (point target)

(2.19)

If the point scatterer is located on the antenna boresight 6, = ¢, = 0, P(6,, ¢,) =
G and Eq. (2.19) 1s identical to Eq. (2.11).

Next consider the volume scattering case where the RCS seen by the radar
is presumed to be due to a distribution of scatterers evenly distributed
throughout the volume, rather than associated with a single point. In this case, o
is expressed in terms of RCS per cubic meter, or volume reflectivity, denoted
as 77. The units of reflectivity are m?/m* = mr!. The RCS of a differential volume
element dVis then

do =ndV =1 R*dR dQ (volume scatterer)
(2.20)

where d( is a differential solid angle element. The range equation becomes

BA'n_( m{mdu

Pyt e i
r{fo) (4r)°L, R’L_(R)

< AR 2

(2.21)

If it 1s assumed that atmospheric loss is slowly varying over the extent of a
range resolution cell, then L (R) can be replaced by L, (R,), where R, is the
center of the range resolution cell, and removed from the integral. The integral
over range that remains is

Ro+AR/2
[ |-" dR ]= AR AR
\R*) R;j-(AR/2)* R;

Ro— AR/2

(2.22)

provided the range resolution is small compared to the absolute range, which is
usually the case. Using Eq. (2.22) in Eq. (2.21) gives

LA T [ PX6,p)d0

P f| = S |
£l (47) RyL L, (Ry) -

(2.23)
Integration over the angular coordinates requires knowledge of the antenna

pattern. One common approximate model of the mainlobe of many antennas is a
Gaussian function (Sauvageot, 1992). It can be shown that a good approximation



to the integral in Eq. (2.23) over the cross-range variables for the Gaussian case
is (Probert-Jones, 1962)

H PE{H,Q}SingdH do = ISTH;@;
a0

G? = 0.578,0.G>
In2 303

(2.24)

where 6; and ¢, are the 3-dB beamwidths in azimuth and elevation. For first-
order calculations, the much simpler assumption is frequently made that the
antenna power pattern P(0, ¢) is a constant equal to the gain G over the 3-dB

beamwidths and zero elsewhere, so that the integral reduces to G?6,¢,, a value
2.5 dB higher than that of Eq. (2.24). Using this approximation, Eq. (2.23)
reduces to the range equation for volume scatterers:

PG*A*nAR6,0,
(4r)* RZL.L.(R,)

P (t;)= (volume scatterers)

(2.25)

Unlike the point scatterer case described by Eq. (2.11) or (2.19), the received
power in the volume scattering case of Eq. (2.25) decreases only as R? instead
of R* The reason is that the size of the radar resolution cell, which determines
the extent of the scatterers contributing to the received power at any one instant,
increases as R?> due to the spreading of the antenna beam in angle at longer
ranges.

Finally, the area scattering case will be considered. This model i1s used
for the RCS of electromagnetic scattering from the ground, forest, ocean, and
other surfaces. The area scattering case must further be divided into two
subcases depending on whether the range extent of the scatterers contributing to
the echo is limited by the antenna elevation beamwidth or by the range
resolution.

First assume that the scattering surface is represented by a flat plane! and
consider the extent of the mainlobe on the surface. The cross-range extent is
simply R0, where R, 1s the nominal range to the center of the i1lluminated area.
To estimate the down-range extent, consider Fig. 2.1 that shows the boresight
vector intersecting the scattering plane at a grazing angle of o radians. The
extent of the beam “footprint” in the down-range dimension is therefore Ry¢,/sin
o meters. Now suppose a pulse of range resolution AR is transmitted as shown
in Fig. 2.2. Regardless of the antenna footprint, the range extent of scatterers
within the resolution cell, and therefore backscattering energy at any instant, is
AR/coso meters.
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FIGURE 2.1 Projection of elevation beamwidth onto a horizontal plane at a
slant range R, and grazing angle o.
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FIGURE 2.2 Projection of range resolution onto a horizontal plane at a slant
range R, and grazing angle o.

Scatterers will not contribute significantly to the received signal unless



they are both illuminated (so that there is some backscatter) and within the
mainlobe of the antenna (so that their backscatter is not significantly attenuated).
Consequently, the effective downrange extent of the resolution cell is the lesser
of the range resolution and the elevation beamwidth as each is projected onto
the scattering surface. Depending on the relative values of range, range
resolution, and grazing angle, either could be the limiting factor. If the range
resolution limits the effective extent, the resolution cell is said to be pulse
limited; if the mainlobe extent is the limiting factor, it is said to be beam
limited. These two cases are shown in Fig. 2.3. The boundary between the two
cases is obtained by equating the pulse length and elevation beam extents as
projected onto the ground plane to see which is shorter:
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FIGURE 2.3 Relative geometry of antenna footprint and pulse envelope: (a)
beam-limited case and (b) pulse-limited case.

Beam limited: tano =gy

0

Pulse limited:

tano < g,
0

(2.26)

In area scattering the differential RCS is proportional to the differential
area of the scattering surface and can be represented as

do=0"(8)-6p(R —Ry)dA
(2.27)

where ¢° (called “sigma nought”) is the area reflectivity in m?/m? and is
therefore dimensionless. The area reflectivity of many surface types is a
significant function of the grazing angle . The generalized range equation [Eq.

(2.17)] becomes

PA%g"

- | P8, 0)dA
P RILL Ry o’ & ®)

P (t) =

(2.28)

where AA is the illuminated area at range R,,.

If the illuminated area is beam limited, applying the geometry of Fig. 2.3a
to the differential scattering element at range R, shows that the area contributing
to the backscatter at one instant is R’@;0,/sino. Thus, a differential area
contributing to the received power is of the form

Ry

sing

dA = dddo (beam-limited case)

(2.29)

Applying this to Eq. (2.28) and again using the constant-gain approximation to
the antenna 3-dB beamwidth gives the beam-limited range equation for area
scatterers:

PG*A%,0,0"
(4r Y RIL.L (Ry)sind

B (fa)= (area scatterers, beam-limited case)

(2.30)



If the illuminated area is pulse limited, the geometry of Fig. 2.35 shows
that the area contributing to the backscatter at one instant is RO;AR/coso. The
differential contribution is thus

RoA

COS0

dA =

de (pulse-limited case)

(2.31)

The first-order approximation of constant gain over the mainlobe can be used
again, though the integral over ¢ is now limited to the range that covers the
extent of the pulse on the ground. Equation (2.28) becomes

PG*2%*c ARS8,

E(ty)= L -
rfo) (47)*R3L.L (R,)coss

(area scatterers, pulse-limited case)

(2.32)

Note that power varies as R in the beam-limited case because, as with the
volume scattering, the resolution cell size grows in both cross-range and down-
range extent with increasing range. In the pulse-limited case, power varies as R~
3 because the resolution cell extent increases in only the cross-range dimension
with increasing range.

If the range of interest varies by a large amount, there will be significant
variation in the grazing angle ¢ and therefore in both the antenna beam and pulse
footprint extents. For instance, for a radar at a constant altitude # and a slant
range R to the ground, sino =/4/R. As R increases, the beam-limited antenna
footprint area will then increase as R* instead of R? so that the clutter power
would be expected to fall only as R-!. However, ¢ ° may also vary significantly
with grazing angle (see Section 2.3.1). Additional complications occur when R
increases so much that a radar that was beam limited at a relatively short range
and steep grazing angle becomes pulse limited at a longer range and shallower
grazing angle, or the grazing angle falls below the “critical angle”.
Consequently, the received clutter power may fall off at various rates from R!
to R~ or even more rapidly at very shallow angles (Long, 2001; Currie, 2010).

2.2.3 Radar Cross Section

Section 2.2.1 introduced the radar cross section to heuristically account for the
amount of power reradiated by the target back toward the radar transmitter. To
restate the concept, assume that the incident power density at the target is 0, and
the backscattered power density at the transmitter is Q,. If that backscattered
power density resulted from isotropic radiation from the target, it would have to
satisfy

Fy

__} =




(2.33)

for some total backscattered power P,. RCS is the fictional area over which the
transmitted power density O, must be intercepted to collect a total power P, that
would account for the received power desnity. In other words, o must satisfy

R: = UQ.*
(2.34)
Combining Egs. (2.33) and (2.34) gives
_ian2 W
o =4nR )
(2.35)

This definition is usually written in terms of electric field amplitude. Also, in
order to make the definition dependent only on the target characteristics, range
is eliminated by taking the limit as R tends to infinity. Thus, the formal definition
of radar cross section becomes (Knott et al., 1985)

b2
g =4r lim {Rz Q}
|E'|

R

(2.36)

where E? and E’ are the backscattered and transmitted electric field complex
amplitudes, respectively.

The RCS just defined is a single real scalar number. Implicit in the
definition is the use of a single polarization of the transmitted wave and a single
receiver polarization, usually the same as the transmitted polarization.
However, the polarization state of a transverse electromagnetic plane wave is a
two-dimensional vector, and therefore two orthogonal polarization basis
vectors are required to fully describe the wave. The most common basis choices
are linear (horizontal and vertical polarizations) and circular (left and right
rotating polarizations). Furthermore, a general target will modify the
polarization of an incident wave, so that the energy backscattered from, say, the
vertical component of the incident wave may have both vertical and horizontal
components. To account fully for polarization effects, RCS must be generalized
to the polarization scattering matrix (PSM) S, which relates the complex
amplitudes of the incident and backscattered fields. For a radar using a linear
polarization basis this relation is (Knott et al., 1985; Mott, 1986; Holm, 1987)
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Instead of a single real number, the target backscattering characteristics are now

described by four complex numbers. If the radar transmitted and received, say,
only the vertical component, then the RCS ¢ would be related to S by

(2.37)
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(2.38)

Radars can be designed to measure the full complex PSM. Other designs
measure the magnitudes but not the phases of the elements of the PSM, or the
magnitudes of two of the PSM elements. These polarimetric measurements can
be used for a variety of target analysis purposes. However, a discussion of
polarimetric techniques is beyond the scope of this book. Henceforth, it will be
assumed that only a single fixed polarization is transmitted and a single fixed
polarization received, and consequently that RCS is described by a scalar,
rather than matrix, function. The reader is referred to the works by Holm (1987)
and Mott (1986) for discussions of polarimetric radars and polarimetric signal
processing.

Typical values of RCS for targets of interest range from 0.01 m? (-20 dB
with respect to 1 m?, or —20 dBsm) to hundreds of square meters (> +20 dBsm).
Both larger and smaller values are also observed. Table 2.1 lists representative
RCS values for various types of targets.



Target ' RCS, m? ' RCS, dBsm
Conventional unmanned winged missile 0.5 -3
Small single-engine aircraft | 1 | 0
Small fighter aircraft or 4-passenger jet 2 | 3
Large fighter aircraft 6 | 8
Me-.d.i-u m. .l:':!omber or jet airliner | 20 | 13
Large bomber or jet airliner 40 16
Jumbo jet | 100 | 20
Small open boat | 0.02 =Y
Small pleasure boat 2 3
Cabin cruiser 10 10
Large ship at zero grazing angle 10,000+ A0+
Pickup truck | 200 | 23
Automobile | 100 | 20
Bicycle | 2 3
Man 1 0
Bird 0.01 =20
Insect | 0.00001 | -s0

Source: After Skolnik (2001).

TABLE 2.1 Typical RCS Values at Microwave Frequencies

2.2.4 Radar Cross Section for Meteorological Targets
The field of radar meteorology expresses the reflectivity of weather targets such
as rain or snow in terms of a normalized factor called the reflectivity (here
called the volume reflectivity) and usually represented with the symbol Z
(Sauvageot, 1992; Doviak and Zrnic, 1993). Weather targets are an example of
volume clutter. The actual observed echo is the composite backscatter of many
raindrops, suspended water particles, hailstones, or snowflakes in the radar’s
resolution cell.

Suppose the RCS of theith individual scatterer iso; and assume
noncoherent addition. Then the total RCS of a volume V' containing N such
scatterers is Xo; and the volume reflectivity is

(2.39)

Water droplets are often modeled as small conducting spheres. When the



ratio of the sphere radius a to the radar wavelength A 1s small, specifically
2nall = 1, the radar cross section associated with the ith scatterer can be
expressed as

,."4"5| K|2 DE~
0= !
A
(2.40)
where D, is the drop diameter, usually given in millimeters, and

K m: -1

m-+2
(2.41)

with m the complex index of refraction. The index of refraction is a function of
both the temperature and wavelength. However, for wavelengths between 3 and
10 cm [radar frequencies between X band (10 GHz) and C band (3 GHz)] and
temperatures between 0 and 20°C, the value of |K]? is approximately a relatively
constant 0.93 for scatterers composed of water and 0.197 for ice. Substituting
Eq. (2.40) in Eq. (2.39) gives

S K DE‘ 15 K
T=av ; | x.J|‘ Ji.“ : AV : 2 Dy
(2.42)
Now define the quantity
Z=—Y D¢
o)
(2.43)

Z is called the reflectivity factor and is usually expressed in units of mmS/m’.
Due to the large range of values observed for Z, it is commonly expressed on a

decibel scale and denoted as dBZ. Using this definition in Eq. (2.42) gives the
following expression for the observed RCS

(2.44)

Thus, given a measured echo power, the radar range equation can be used to
estimate 7, and then Eq. (2.44) can be used to convert 7 to Z.

Because it is related only to the volume density and size of scatterers,
meteorologists prefer to express radar echo strength in terms of the reflectivity Z



rather than the RCS 7. The value of Z can then be related to the amount of water
in the air or the precipitation rate. A number of models are used to relate the
observed values ofZ to rain rates. These models depend on the type of
precipitation, e.g., snow versus thunderstorm rain versus orographic? rain. A
common model is that of Table 2.2, which shows the six-level equivalence
between observed Z values (in dBZ) and rainfall rates used in the U.S.
NEXRAD national weather radar system. Very similar scales are used in the
commercial “Doppler weather radar” systems familiar to every watcher of
television weather forecasts.

Level | Rain Fall Rate, mm/hr | Reflectivity, dBZ | Category
1 | 0.49102.7 | 18 to <30 | Light mist
2 2.71013.3 30 to <41 | Moderate
3 | 13310273 | 4110 <46 | Heavy

4 27.31048.6 46 to <50 | very heavy
5 | 48.610133.2 | 50t0 <57 | Intense

G | 133.2 and greater 57 and above . Extreme

TABLE 2.2 Correspondence between dBZ Reflectivity and Rain Rate

It is important to note that the dBZ values in Table 2.2 are 10 times the
base 10 logarithm of Z in mm®m?. When Z is given in m%/m’ = m?’, it must be
multiplied by 108 to convert it to units of mm®m?® before converting to a decibel
scale and using Table 2.2.

2.2.5 Statistical Description of Radar Cross Section

The radar cross section of real targets cannot be effectively modeled as a
simple constant. In general, RCS is a complex function of aspect angle,
frequency, and polarization, even for relatively simple scatterers. For example,
the conducting trihedral corner reflector of Fig. 2.4 1s often used as a calibration
target in field measurements. Its RCS when viewed along its axis of symmetry
(looking “into the corner”) can be determined theoretically; it is (Knott et al.,
1985)
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FIGURE 2.4 Square trihedral corner reflector.
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A2

(2.45)

Thus the RCS increases with increasing frequency. On the other hand, at least
one frequency-and aspect-independent scatterer exists. The RCS of a conducting
sphere of radius a is a constant za?, provided a = A. It is independent of aspect
angle because of the spherical symmetry.

A simple example of frequency and aspect dependence is the two-scatterer
“dumbbell” target of Fig. 2.5. If the nominal range R is much greater than the
separation D, the range to the two scatterers 1s approximately

i) = oMb

HFO

FIGURE 2.5 Geometry for determining relative RCS of a “dumbbell” target.

Rl,}:{ﬁ} = R +: %.Sil'lﬁ
(2.46)

If the signal a - exp(j2xFt) is transmitted, the echo from each scatterer will be
proportional to a - exp[j2nF (¢ — 2R, (0))/c]. The voltage ¥!) of the composite



echo is therefore proportional to RCS is proportional to the power of the
composite echo. Taking the squared magnitude of Eq. (2.47) and simplifying
leads to the result

T(t)=a P2 F=2Ry(8)/e) | b 527 F(=2Ry(8)/¢)

i2nF{+=2R/c) [[,— jmFDsing/c | +jx FD&LL‘L{:'_.-“(]

=ae T €

=242 FU2RIE) oo FDsinG / ¢)
(2.47)

a3 2 3 Ao |2
g=4a" CDS{I:PDsinH,ch = 4a‘| cos{;rDsinH,r‘f.H

(2.48)

Equation (2.48) shows that the RCS is a periodic function of both radar
frequency and aspect angle. The larger the scatterer separation in terms of
wavelengths, the more rapidly the RCS varies with angle or frequency. An exact
calculation of the variation in RCS of the dumbbell target is plotted in Fig. 2.6
for the case D = 104 and R = 10,000D. The plot has been normalized so that the
maximum value corresponds to 0 dB. Notice the multilobed structure as the
varying path lengths traversed by the echoes from the two scatterers cause their
echoes to shift between constructive and destructive interference. Also note that
the maxima at aspect angles of 90° and 270° (the two “end fire” cases) are the
broadest, while the maxima at the two “broadside” cases of 0° and 180° are the
narrowest. Figure 2.7 plots the same data in a more traditional polar format.
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when D =104 and R = 10,000D.
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FIGURE 2.7 Polar plot of the data of Fig. 2.6.

The relative RCS of a target with multiple scatterers can be computed as a
function of @ and A using a generalization of Eq. (2.47). Suppose there are N
scatterers, each with its own RCS o, located at ranges R(6) from the radar.
Note that the ranges R; vary with aspect angle 8. The complex voltage of the
echo will be, to within a proportionality constant

..hIT
y(t)= Z d?e-"f”-f‘f“i-*- 2R,(8)/c)
I
i=1

N
e E”IE:: E Z JU{F—AEFR;LHJHE
i=1

|.h|T
R L 4 X AR (a) /A
SRy Jo
=1

(2.49)

Each term in Eq. (2.49) represents the echo from a single scatterer. This
equation highlights an extremely important characteristic of these echoes. In
addition to being scaled by the scatterer reflectivity, each term is also phase-



shifted relative to the carrier by the amount —47R/A radians. As will be seen,
this range-dependent phase shift provides the basis for most fundamental
coherent radar signal processing operations such as Doppler processing,
imaging, and adaptive beamforming. The phase shift is a very sensitive, but also
very ambiguous, indicator of range changes since every 4/2 change in range
produces a 2z change in phase.

The RCS ¢ is proportional to [7". Define

¢ =|y|=

N
iR (a)/A
2 o
i=1

(2.50)

and

-
=

hr

Z V;;[,- jATR;(8)/A
i

i=1

-

(2.51)

RCS variations like those ofFig. 2.6 become very complicated for
complex targets having many scatterers of varying individual RCS. Figure 2.8
shows a “target” consisting of 50 point scatterers randomly distributed within a
rectangle 5 m wide and 10 m long. The RCS of each individual point scatterer is
a constant, g; = 1.0. Figure 2.9 shows the relative RCS, computed at 0.2°
increments using Eq. (2.51), which results when this target is viewed 10 km
from its center at a frequency of 10 GHz. The dynamic range is similar to that of
the simple dumbbell target, but the lobing structure is much more complicated.?

T T T T éj T [:} T T l::}
E 1 i . Q I. I. I. D D - D
p — = - — — — = — T - I::l e
g E(:ﬁ, | | | © : __ I Q: @ To Radar
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E s D (:} ..i::} It:l. .- — . = ;_ . ..\.. D
[iE] J | | | : |
) 1 | | Di I{:::l 1 QD D
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Relative Range (m)

FIGURE 2.8 Random distribution of 50 scatterers used to obtain Fig. 2.9. See
text for additional details.
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FIGURE 2.9 Relative RCS of the complex target of Fig. 2.8 at a range of 10 km
and radar frequency of 10 GHz.

The complicated variation of RCS with radar frequency and target aspect
angle observed for even moderately complex targets leads to the use of a
statistical description for radar cross section (Levanon, 1988; Nathanson, 1991;
Skolnik, 2001). This means that the RCS o of the scatterers within a single
resolution cell is considered to be a random variable with a specified
probability density function (PDF). The mean or median RCS is typically used
for radar range equation calculations, but the full PDF is needed for detection
probability calculations, as will be seen in Chap. 6.

One of a variety of PDFs 1s used to describe the statistical behavior of the
RCS for different targets. Consider first a target consisting of a large number of
individual scatterers (similar to that of Fig. 2.8), each with its own individual
but fixed RCS and randomly distributed in space. Because of its high sensitivity
to small range changes, the phase of the echoes from the various scatterers can
be assumed to be a random variable distributed uniformly on (0, 2z]. Under
these circumstances, the central limit theorem guarantees that the real and
imaginary parts of the composite echo can each be assumed to be independent,
zero mean Gaussian random variables with the same variance, say a? (Papoulis
and Pillai, 2001; Beckmann and Spizzichino, 1963). In this case, the squared-



magnitude ¢ has an exponential PDF:

1 = :
JtE‘KP |:—_ :| ag=0
‘_ 0 o=<0
(2.52)

where @=2a* 1s the mean value of the RCS o. The corresponding amplitude {
has a Rayleigh PDF:

(2.53)

The phase of the complex echo will be uniformly distributed over (0,27].

While the exponential model for RCS is only strictly accurate in the limit
of a very large number of scatterers, in practice it can be a good model for a
target having as few as 10 or 20 significant scatterers. Figure 2.10 compares a
histogram of the RCS values from Fig. 2.9 to an exponential curve of the form of
Eq. (2.52) having the same mean @. Even though only 50 scatterers are used, the
fit of the total RCS histogram to the Rayleigh/exponential distribution is quite
good. This same effect is observed when the randomly distributed scatterers
also have random individual cross sections drawn from the same Gaussian
distribution, a somewhat more general and plausible situation than the fixed-
RCS case.

Relative Probability Density
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FIGURE 2.10 Histogram of RCS data of Fig. 2.9 and exponential PDF with the
same mean.

Instead of an ensemble of equal-strength scatterers, some radar targets are
better modeled as consisting of one or a few dominant scatterers contributing
most of the RCS, modified by the contributions of a number of smaller
scatterers. Many PDFs have been advocated and used to model these targets.
Table 2.3 summarizes several of the more common models for the variability of
RCS with aspect angle and radar frequency for targets with and without
dominant scatterers. The mean value @ of RCS is given for each case in which
the PDF is not written explicitly in terms of @. The variance var(o) is also given
for each case. Other common PDFs not included in Table 2.3 are the non-central
chi-square and K distributions. Additional information on these PDFs and their
relationships, including more conventional forms and in some cases the
characteristic functions, is given in App. A. Additional discussion of some of
these PDFs in the context of clutter modeling is also given in Sec. 2.3.4.



Model Name PDF for RCS &«

Comment

One-Parameter PDFs

Monfluctuating,

[Th= ﬁ;.{ﬁ'—l‘f\
Marcum, Swerling Fa

0, 0or Swerling 5 | varfgi=1 "

Exponential, v lo) = _lﬂp [g]

chi-sguare of a 7

degree 2 varie) = &

Chi-square of s der [—ha:|
F)= —eéxp | ——

degree 4 Fa i

Two-Parameter PDFs

52!&?;:2:? " p, () 1 [ i ]'n_ ; exp [-:rrﬁ ]
=, Ty -~ 4
Weinstock Fimal & i

var{d) =/

Moncentral | 5 s T 2
chi-square of Po ()= (1+aT)exp [—‘" —E'“*-"“']
degree 2

x Iy I:li ..rn'r[.] +a* o/ &) ]

(1+24%) _,
T - e ﬁ"
bk

Weibull pe )= CRa" " exp [-Bo©]

=T+ /OB

Constant echo power, e.g., calibration

sphere or perfectly stationary target

| with no radar or target motion.

Many scatterers, randomby
distributed, none dominant. Used in
Swerling case 1 and 2 models,

Approximation to case of many small
scatterers + one dominant, Used in
Swerling case 3 and 4 models.

Generalization of the two preceding
cases, Weinstock cases correspond
to 0.6 < 2m =4. Higher degrees
correspond to presence of a more
dominant single scatterer,

Exact solution for one dominant
scatterer plus many small ones.
Corresponds to Rice amplitude PDF,
Ratio of dominant RCS to sum of
small RCS is a’. I,(-) is the modified
Bessel function of the first Kind and

order rero.

Empirical fit to many measured tanget
and clutter distributions. Can have
longer “tail” than previous cases.
Mot readily expressible In terms of 7.

var{a)= B2 [T{1+2/0) -1+ 1/C))

Empirical fit to many measured target
and clutter distributions. "Tail" is
longest of previous cases. o is

the median value of o. Mot readily
expressible in terms of &,

Log-normal

pelal= exp [-In* (o /a7, )/25%]

J2msea
F =0, expl 5 /2)
var(o)=o ] exp(s®lexp(s®)-1]

= [exp(s’)-1]

TABLE 2.3 Common Statistical Models for Radar Cross Section

The shape of the PDF of RCS directly affects detection performance, as
will be seen in Chap. 6. Figure 2.11a compares the exponential, fourth-degree
chi-square, second-degree noncentral chi-square, Weibull, and log-normal
density functions when all have an RCS variance of 0.5. The exponential
distribution then necessarily has a mean of 0.5. The fourth-degree chi-square
necessarily has a mean of 1.0, and the parameters of the remaining density
functions have been chosen to give them a mean of 1.0 as well. Figure 2.115
repeats the same data on a semilogarithmic scale so that the behavior of the PDF
“tails” 1s more evident. Note that the Weibull and second-degree non-central
chi-square distributions are very similar for this choice of parameters. The chi-
square is also similar, but has a somewhat less extensive tail to the distribution.



The log-normal has both the narrowest peak and the longest tail of any of the
distributions shown for this choice of parameters. Unlike all of the others, the
exponential does not have a distinct peak near the mean RCS. Each of the others
does have a distinct peak, making them suitable for distributions with one or a
few dominant scatterers.
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FIGURE 2.11 Comparison of five models for the probability density function of
radar cross section: (a) linear scale, (b) log scale. See text for additional
details.

One fundamental difference among the various RCS models of Table 2.3 is



whether the probability density function has one or two free parameters. The
nonfluctuating, exponential, and all chi-square (once the order is stated) are all
one-parameter distributions. The one parameter in the form given earlier is the
mean RCS, @. The non-central chi-square, Weibull, and log-normal are two-
parameter distributions, as 1s the chi-square with variable degree. The
parameters are & and @ for the non-central chi-square, @ and m for the variable-
order chi-square, B and C for the Weibull, and ¢,, and s for the log-normal in the
forms given. For a one-parameter distribution, estimating the mean is sufficient
to characterize the complete PDF. For the two-parameter case estimates of two
parameters, usually the variance and either the mean or median, must be
computed to characterize the PDF. This distinction is important in the design of
automatic detection algorithms in Chap. 6.

Most radar analysis and measurement programs emphasize RCS
measurements, which are proportional to received power. Sometimes ¢, the
corresponding voltage, is of interest, particularly for use in simulations where
Eq. (2.50) is used explicitly to model the composite echo from a multiple
scatterer target. The probability density function for the voltage is then required
in order to properly model the probabilistic variations of the complex sum. The
PDF of [{] is easily derived from the PDF of ¢ using basic results of random
variables (Papoulis and Pillai, 2001). Because RCS is nonnegative, the
transformation?

E=+Jo
(2.54)

from RCS to voltage has only one real solution for ¢, namely ¢ = 2. It then
follows that the PDF of {'is given by

v PelET) Y)
Jt { } r,fL.,-"{ftiF

=2(p,(£%)
(2.55)

Equation (2.55) can be used to write the voltage PDFs by inspection from
Table 2.3. The results, given inTable 2.4, are expressed in terms of the
parameters of the corresponding RCS distribution from Table 2.3. Additional
information is given in App. A.
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RCS Model Name PDF for Voltage Comment
One-Parameter PDFs
Nonfluctuating, prlEY=8p(d- J&) Also nonfluctuating model.
Marcum, Swerling O, I
or Swerling 5 f=+a, varl{)=0
Rayleigh, central oL 2 Corregsponding RCS has
chi of degree 2 F )= ?*’—‘P[— exponential distribution.
I Voltage equivalent of
;:zdz‘ x5, varll)=a(l-n/d Swerling 1 and 2 models.
Central chi of 8t o2 Corresponding RCS has
degres 4 p:(E)= —Er-—-.mp[—"';—] fourth<legree chi-square
distribution. Voltage
= 3 — i equivalent of Swerling
{=30m. var(g)=(1-5x o 3 and 4 models.
Two-Parameter PDFs
Central chi of < =1 e Voltage equivalent of
degree 2m p.lc)= r';'"ﬁ [ TE ] exp[— T:] Weinstock RCS models.,

Rice or Rician,

o 20+ a) [ 2 & z]
Ay T L M
p'@: = exp | —a - it

Yoltage equivalent of

p: ()= J%sr._: exp| -2 ¢/ (o, ) /4]
{=Jo,, exp(s*/8)
var()= a_exp(s’ /Hexpls’ /4)=1]
= fexpls® f)-1]

noncentral noncentral chi-square of
chi-square of — dagree 2. (Fi(x) is the
degree 2 % [y le‘i; v (1+a*V T } confluent hypergeometric
' = function, also called
F_1 | RG .# e Kummer's function,
4:,—-2‘!?;;3'1:1 l'Flll"F" 1;i I
&
var "‘J-:[ o [
{J? 1+a° i
x[,ﬂil 1:a%)- %r"" (15, 1;4131]
Weibull p: f;}: zcﬁ‘::f— I '-'-";F"I_E;h_] Also Weibull, one
_ i parameter changed:
=Tl +1/2CB-* C = IC.
var(O)= BY¥M(1+ 1/C) = T (14 1/2C))
Loganormal Also log-normal, hoth

parameters (s, )
changed: s —»35/2,

o, . Jo.

TABLE 2.4 Voltage Distributions Corresponding to Common Statistical
Models of Radar Cross Section

As has been seen, the RCS of a complex target varies with both transmitted
frequency and aspect angle. Another important characteristic of a target’s
signature is the decorrelation interval in time, frequency, and angle. This is the
change in time, frequency, or angle required to cause the echo amplitude to



decorrelate to a specified degree. If a rigid target such as a building is
illuminated with a series of identical radar pulses and there is no motion
between the radar and target, one expects the same received complex voltage y
from each pulse (ignoring receiver noise). If motion between the two is
allowed, however, the relative path length between the radar and the various
scatterers comprising the target will change, causing the composite echo
amplitude to fluctuate as in Fig. 2.9. Thus, for rigid targets, decorrelation of the
RCS 1s induced by changes in range and aspect angle. On the other hand, if
natural clutter such as the ocean surface or a stand of trees is illuminated, the
signature will decorrelate even if the radar and target do not move relative to
each other. In this case the decorrelation is caused by the “internal motion” of
the clutter, such as the wave motion on the sea surface or the blowing leaves and
limbs of the trees. The rate of decorrelation is influenced by factors external to
the radar such as wind speed. Range or aspect changes also induce
decorrelation of clutter signatures.

Although the behavior of real targets can be quite complex, a useful
estimate of the change in frequency or angle required to decorrelate a target or
clutter patch can be obtained by the following simple argument. Consider a
target consisting of a uniform line array of point scatterers tilted at an angle
with respect to the antenna boresight and separated by Ax from one another, as
shown in Fig. 2.12. Assume an odd number 2M + 1 of scatterers indexed from —
M to +M as shown. The total target extent is then L = (2M + 1)Ax. If the
nominal distance to the radar R, is much larger than the target extent, R, = L,
then the incremental distance an EM plane wave must travel from one scatterer
to the next is Ax - sinf. If the target is illuminated with the waveform Aexp(jQz),
the received signal will be
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(2.56)
To simplify the notation, define
K$=2Hpsinﬁ=2+ﬁ5inﬁ, o=2Ax
C A
(2.57)

K, 1s a spatial frequency in rads/m (see App. B). Then ¥l!) can be considered as
a function ¥(#; Ks) of both¢ and K,. The correlation in the variable K,, which
includes both aspect angle and radar frequency, is of interest. Note that ¥{t; Ks) is
periodic in K, with period 27/a. The deterministic autocorrelation of ¥it: Ks) as a
function of the lag AK, is therefore



s5(AKy)= | T(t; K)T(t; Kq + AK)dK,

mio
.

M M

(- 2Ro/ Z —jaK, 4 —jQ{t - 2Ry/c) z joe(Ky + AK)

{Ae-'“" 2Raic) " B Jlmkr..u] |:;dl_ ol Rg/e) . E?+_-.’|tfchu+;'.I(fa1 ]{fKH
n=-M I=-M

-l

(2.58)

The complex exponential terms outside the summations cancel. Interchanging
integration and summation and collecting terms then gives

I=-M n=-M

M M .-':'_-':-."t‘ o
SF{ﬁK.?}=|1dL|2 E t:,+_-‘-.’|L‘-.I(a,r Z [ J t_’—_.'ffl.l?—leﬂ {?‘KE,]

-

(2.59)

A change of variables K', = aK, makes it clear that the integral has the form of
the inverse discrete-time Fourier transform of a constant spectrum S(K,) = 27/a.
Therefore, the integral is just the discrete impulse function (26/a)d[n — []. Using
this fact reduces Eq. (2.59) to a single summation over / that can be evaluated to

give

27|A[” sinfer(2M + )AK, /2] _ 7|A[* sin[L- AK,]
sinforAK, /2] Ax  sin[Ax-AK,]

s;(AK, )=
(2.60)

The decorrelation interval can now be determined by evaluating Eq. (2.60) to
find the value of AK, which reduces s, to a given level. This value of AK, can
then be converted into equivalent changes in frequency or aspect angle.

One criterion is to choose the value of AK,, corresponding to the first zero
of the correlation function, which occurs when the argument of the numerator

equals 7. The resulting value is the Rayleigh width of the autocorrelation
function. Using Eq. (2.61) and recalling that L = (2M + 1) Ax gives

r=L-AK, :gaKf%
(2.61)

Recall that K, = (27/c)F sinf. The total differential of z is then dK, = (27/c) -
[sind - dF + FcosO - df]. To determine the decorrelation interval in angle for a
fixed radar frequency, set dF = 0 to give dK6 = (2z/c) - Fcosf - db, so that AK,
~ (2n/c) - Fcosf - Af. Similarly, the frequency step required to decorrelate the
target is obtained by fixing the aspect angle 6 so that df = 0, leading to AK, =
(2z/c) - sinf - AF. Combining these relations with Eq. (2.61) then gives the



desired result for the change in angle or frequency required to decorrelate the
echo amplitude:

c : C

A= ————, AF =
2F-Lcos® 2L sin@

(2.62)

Note that L cosf is the projection of the target extent orthogonal to the radar
boresight, while Lsinf is the projection along the radar boresight. Thus, the
decorrelation interval in aspect angle is driven by the width of the target as
viewed from the radar, while the interval in frequency is driven by the depth. A
more general pair of expressions that can be applied to more arbitrary many-
scatterer targets is then

C

=E

C

. AF
IF-IL,;

AB =

(2.63)

where L, and L, are the target width and depth, respectively, as viewed from the
radar.

As an example, consider a target the size of an automobile, about 5 m long.
At L band (1 GHz), the target signature can be expected to decorrelate in (3 X
10%)/(2 x 5 x 10%) = 30 mrad of aspect angle rotation relative to a broadside
view (so the width is 5 m), about 1.7°, while at W band (95 GHz), this is
reduced to only 0.018°. The frequency step required for decorrelation from a
head-on aspect (depth of 5 m) is 30 MHz. This result does not depend on the
nominal transmitted frequency.

As another example, Fig. 2.13a shows the autocorrelation function in
angle for many-scatterer targets similar to that of Fig. 2.8, using only the data
for aspect angles over a range +3°. Each of the two autocorrelation functions
shown is the average of the autocorrelations of 20 different random targets,®
each having 20 randomly placed scatterers in a 5 m by 10 m box. The black
curve is the autocorrelation of the data around a nominal boresight orthogonal to
the 5 m side of the target, while the gray curve is the autocorrelation of the data
viewed from the 10-m side. These look angles correspond to viewing the target
nominally from the right and from the top inFig. 2.8. AtF = 10 GHz, the
expected decorrelation interval in angle when viewed from the right is 0.34°;
while when viewed from the top it is 0.17°. These expected decorrelation
intervals are marked by the vertical dashed lines in Fig. 2.13a. In both cases, the
first minimum of the correlation function occurs the predicted amount of change
in the aspect angle. Figure 2.13b shows the average autocorrelation function in
frequency over 30 similar random targets. The autocorrelation in this simulation
does not have a distinct minimum, but the predicted decorrelation intervals
closely approximate the first zero crossing.
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FIGURE 2.13 Average autocorrelation function for many-scatterer targets: (a)

angle autocorrelation functions, () frequency autocorrelation functions. See text
for details.

Figure 2.9 demonstrated that viewing a complex target from a sufficiently



different aspect angle will decorrelate the RCS, i.e., result in a significantly
different measured value. Figure 2.14 illustrates the ability of frequency agility
to force RCS variations. A 20 scatterer, 5 m by 10 m random target was
observed from a fixed aspect angle of about 54°, making its effective depth
approximately 10sin(54°) = 8.1 m. If the same RF frequency was used for each
pulse, the RCS and thus received power would be exactly the same on each
pulse. However, in this case the RF frequency was increased by 18.5 MHz
[calculated from Eq. (2.63)] from one pulse to the next, starting at 10.0 GHz.
The resulting relative RCS measurements vary by 38 dB, a factor of about 6300.
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FIGURE 2.14 Variation in RCS due to frequency agility for a constant viewing
angle. See text for details.

It will be seen in Chap. 6 that in certain cases detection performance is
improved when successive target measurements are uncorrelated. For this
reason, some radars use a technique -called frequency agility to force
decorrelation of successive measurements (Ray, 1966). In this process, the
radar frequency is increased by AF Hz or more between successive pulses,
where AF is given by Eq. (2.63), ensuring that the target echo decorrelates from
one pulse to the next. Once the desired number of uncorrelated measurements is
obtained, the cycle of increasing frequencies is repeated for the next set of
measurements.

Equation (2.63) is based on a highly simplified target model and an
assumption about what constitutes the correlation interval. A different
definition, for example defining the interval by the point at which the correlation
function first drops to 1/2 or 1/e of its peak, would result in a smaller estimate
of the required change in angle or frequency to decorrelate the target. Also,




many radars operate on the magnitude-squared of the echo amplitude, rather than
the magnitude as has been assumed in this derivation. A square law detector
produces a correlation function proportional to the square of Eq. (2.60)
(Birkmeier and Wallace, 1963). The first zero therefore occurs at the same
value of AK,, and the previous conclusions still apply. However, if a different
definition of the correlation interval is used (such as the 50 percent
decorrelation point), the required change in AK, is less for the square law than
for the linear detector.

2.2.6 Target Fluctuation Models

It is common in radar detection algorithms to make a detection decision based
not on one, but on a set of N noncoherently combined measurements from a
given resolution cell. One way such a set of measurements can arise, and
possibly the original motivation for this model, 1s based on the operation of a
ground-based surveillance radar. Consider a radar with an antenna that rotates
at a constant angular velocity Q radians per second with an azimuth beamwidth
of 8 radians and a pulse repetition frequency of PRF pulses per second (hertz).
Suppose that a target is present at a particular location. The geometry is shown
in Fig. 2.15a. Assume that significant returns are received only when the target
is in the antenna mainlobe. Every complete 360° scan of the antenna results in a
new set of N = (6/Q)PRF mainbeam pulses containing an echo of the target as
the beam scans past. Consequently, it would seem to make sense to integrate the
measurements from the same range bin over N successive pulses in an attempt to
improve signal-to-noise ratio before performing a detection test. Early radars
could only do this noncoherently.

® Target
{ Noncoherently Integrate Same
"* g _ Range-Doppler Bin for Each CPI }_b
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FIGURE 2.15 Sample scenarios for collection of multiple noncoherently related
measurements: (@) rotating surveillance antenna with noncoherent radar, (b)
multiple CPIs with a coherent radar.




This is not the only way a set of related measurements can arise. Many
modern systems are designed to transmit a rapid burst of M pulses at a constant
PREF, often with the antenna staring in a fixed or nearly fixed direction, forming
a coherent processing interval (CPI) of data. As will be seen in Chap. 4, the M-
pulse burst is a common waveform well suited to Doppler measurements and
interference suppression. The radar may then repeat the measurement, collecting
a series of N CPlIs in the same look direction. Successive CPIs may share the
same radar parameters, or the radar may change the PRF, the waveform, or the
RF (frequency agility). The data from the same range bin within a single CPI are
usually combined coherently, for instance to form a Doppler spectrum for that
range bin. However, combining data across CPIs must generally be done
noncoherently. An example would be noncoherent integration of N
measurements of the same range-Doppler resolution cell in the N CPIs as shown
in Fig. 2.15b, prior to testing that cell for the presence of a target.

If the target, the radar, or both are moving during the time a set of N
measurements is collected, a natural question is whether the target RCS during
that time should be considered constant or varying. That 1s, assuming frequency
agility is not used, does the radar-target aspect angle vary so little that the RCS
should be modeled as the same random variable during the entire set of N pulses
or CPIs? Or is the aspect changing so rapidly that the RCS decorrelates from
one pulse or CPI to the next, and so should be modeled as independent random
variables from the appropriate PDF? The answer has a significant impact on
both the procedure and the results for computing detection probabilities, as will
be seen in Chap. 6.

These questions require consideration of the dynamics of the radar-aircraft
encounter in light of the decorrelation interval in angle given in Eq. (2.63). As
an example, consider the crossing encounter of Fig. 2.16a. Aircraft #1 views
aircraft #2 at broadside from a range of 5 km with an X band (10 GHz) radar.
Assume aircraft #2 is traveling at 100 m/s and has a length (width as viewed
from the radar) of 10 m. Assume that aircraft #1 transmits a burst of M = 10
pulses at a 1-kHz PREF. In the resulting 10 ms CPI, aircraft #2 will travel 1 m,
resulting in an angular change with respect to aircraft #1 of approximately
1/5000 = 0.2 mrad. FromEq. (2.63), the decorrelation interval in angle is
expected to be (3 x 10%)/(2-10-10 x 10°) = 1.5 mrad. Because the actual angle
change within a CPI is less than the angular decorrelation interval, one would
expect all the pulses within a CPI to experience essentially the same RCS. Now
suppose that the radar transmits a series of pulse bursts, each one starting 100
ms after the previous burst. The angular change between aircraft #1 and #2 from
one CPI to the next is then 2 mrad, which is greater than the 1.5 mrad
decorrelation interval. Consequently, it is expected that the aircraft RCS during
a given CPI will be uncorrelated with that during other CPIs.
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FIGURE 2.16 Crossing target scenario: (a) encounter geometry, (b) target RCS
for five 10-pulse CPIs. See text for motion and radar details.

Figure 2.16b illustrates these effects using another 10 X 5 m random
complex target model with the radar and motion parameters just described. The
RCS observed for the target on each pulse is plotted for five CPIs. Notice that
the RCS 1s nearly constant within each CPI. The greatest intra-CPI variation is
only about 0.4 dB. Significantly greater variation is seen from one CPI to the
next, with the total range in this example being approximately 9 dB.
Consequently, the full set of five CPIs of data could reasonably be modeled by
drawing one random value of RCS from an exponential PDF to represent each
CPI. The same RCS value is used for all pulses within a CPL. If pulse-to-pulse
frequency agility was used with a frequency step exceeding the 30 MHz dictated
byEqg. (2.63), the RCS of each individual pulse would be expected to be
uncorrelated with all of the other pulses, though still drawn from the exponential
PDF.

Traditionally in radar, when a set of N measurements that are to be
noncoherently combined are completely correlated with one another but are
uncorrelated with a subsequent, new set of N measurements, they are said to
exhibit scan-to-scan decorrelation. When each individual measurement is
uncorrelated with all of the others, they are said to exhibit pulse-to-pulse
decorrelation. This terminology probably originates from scenarios like that of
Fig. 2.15a. The N measurements to be combined are the N pulses obtained from
one scan of the radar past the target. If the target moves slowly enough that the N
pulses from one scan reflect the same RCS value, but fast enough that by the
time the radar scans through a full circle and returns to the target again the next
group of N pulses reflects a different RCS value, then the term *“scan-to-scan



decorrelation” would be very descriptive. If frequency agility were used or
radar-target motion and collection time were such that each pulse exhibits a
different RCS value, the term “pulse-to-pulse decorrelation” would be apt.

The “scan-to-scan” and “pulse-to-pulse” terminology has a long legacy in
performance analysis of radars using noncoherent integration. It is used in much
of the classical literature, but in modern coherent radars it often does not relate
well to the actual data collection and processing methods used. In the CPI-based
data collection protocol of Fig. 2.15b and the related numerical example of Fig.
2.16, the data are correlated from one pulse to the next but are uncorrelated from
one CPI to the next. However, the intra-CPI data will likely be combined
coherently. The noncoherent combination will occur from one CPI to the next,
for instance by noncoherently integrating the same range-Doppler bin from each
CPI. Because the measurements that are actually integrated noncoherently will
be uncorrelated in this example, the appropriate detection analysis results from
the literature would be those for “pulse-to-pulse” decorrelation even though the
actual data are highly correlated from one pulse to the next!

Another example of this confusion can arise when a series of CPls
represents a single short-term “look™ at the target region, often called a dwell,
rather than the result of different passes over the same region from a regular
scan pattern. In the former case the elapsed time may still be short and the target
may not decorrelate between CPIs, while in the latter the timeline would likely
be longer and the target would be more likely to decorrelate. If noncoherent
integration across CPlIs is performed, the data might be best modeled as “scan-
toscan” decorrelation in the former case because the data values from integrated
are expected to be similar, while in the second case they would be different and
the appropriate mathematical results would be those for noncoherently
integrating dissimilar values, namely the classical “pulse-to-pulse” case.

These terminology concerns can become an issue in detection performance
analysis. Many published results use the “scan-to-scan” and “pulse-to-pulse”
decorrelation terminology. In interpreting radar literature for modern radars, the
reader i1s cautioned to consider carefully the correlation properties of the
measurements that will be noncoherently combined for a single detection
decision. The critical point is whether those measurements are expected to be
highly correlated, i.e., all approximately the same random variable, or whether
they are expected to be highly decorrelated (different random variables). If the
measurements are highly correlated, published results on “scan-to-scan”
mathematical models are applicable. If they are uncorrelated, “pulse-to-pulse”
models are applicable. Newer literature is less likely to use the “scan-to-scan”
and “pulse-to-pulse” terminology, obviating this problem over time.

A target fluctuation model is a combination of a PDF describing the RCS
variation with angle, RF, or other important parameters and a decorrelation
model for measurements to be combined noncoherently. Any PDF that models
the RCS distribution for the targets and radar of interest could be used.



Examples include any of the PDFs inTable 2.3. For manmade targets, the
decorrelation model is usually taken as one of the extremes of either the fully
correlated or fully decorrelated models. Analysis carried out using these two
models produces bounding results for detection performance. In reality, the
noncoherently combined measurements will often be partially correlated. Partial
correlation models specified with a pulse-to-pulse correlation coefficient or an
autocorrelation function are sometimes given, though this is more common in
clutter modeling.

2.2.7 Swerling Models
An extensive body of radar detection theory has been built up using the four
Swerling models of target RCS fluctuation and noncoherent integration
(Swerling, 1960; Meyer and Mayer, 1973; Nathanson, 1991; Skolnik, 2001).
They are formed from the four combinations of two choices for the PDF and two
for the correlation properties. The two density functions used are the
exponential and the chi-square of degree 4 (see Table 2.3). The exponential
model describes the behavior of a complex target consisting of many scatterers,
none of which is dominant. The fourth-degree chi-square model targets having
many scatterers of similar strength with one dominant scatterer. Although the
Rice distribution is the exact PDF for this case, the chi-square is an
approximation based on matching the first two moments of the two PDFs (Meyer
and Mayer, 1973). These moments match when the RCS of the dominant
scatterer is 1++2=2.414 times that of the sum of the RCS of the small scatterers,
so the fourth-degree chi-square model fits best for this case. More generally, a
chi-square of degree 2m = 1 + [a?/(1 + 2a)] is a good approximation to a Rice
distribution with a ratio of a*> of the dominant scatterer to the sum of the small
scatterers. However, only the specific case of the fourth-degree chi-square is
considered a Swerling model.

The Swerling models are denoted as “Swerling 1,” “Swerling 2,” and so
forth. Table 2.5 defines the four cases. A nonfluctuating target is sometimes
identified as the “Swerling 0" or “Swerling 5 model.

Correlation of Noncoherently
Integrated Measurements

Probability Density Function of RCS | Correlated Uncorrelated
Rayleigh/exponential Case 1 Case 2
Chi-square, degree 4 Case 3 Case 4

TABLE 2.5 Swerling Models

Figures 2.17 and 2.18 1llustrate the difference in the behavior of two of the




Swerling models. In both cases, the received power from a single point
scatterer having a unit mean Swerling RCS i1s plotted, and in both it 1s assumed
that 10 samples are obtained on each of three scans or CPIs of the radar. Figure
2.17 is a sample Swerling 1 (exponential PDF, fully correlated) series. In
contrast, Fig. 2.18 illustrates a Swerling 4 case (fourth-degree chi-square PDF,
fully decorrelated) in which each individual sample is independent of the
others.
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FIGURE 2.17 Three scans or CPIs, each having 10 samples of a unit mean
Swerling 1 power sequence.
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FIGURE 2.18 Three scans or CPlIs, each having 10 samples of a unit mean
Swerling 4 power sequence.

2.2.8 Effect of Target Fluctuations on Doppler Spectrum

A common operation in radar signal processing is computing the discrete-time
Fourier transform (DTFT) of the data in a particular range bin for one CPI. The
DTFT is a coherent combination of measurements, usually over a sufficiently
short CPI that the target echo RCS and thus amplitude do not decorrelate
significantly. As will be seen in Chap. 4, the series of samples within a CPI for
a constant-velocity target will form a discrete-time sinusoid. Thus, the usual
model for the DTFT of a target is an aliased sinc function [also called an asinc,
dsinc (digital sinc), or Dirichlet function] with its mainlobe centered at the
appropriate frequency and with sidelobes that peak 13.2 dB below the mainlobe
peak and decay at frequencies further from the mainlobe.

In cases where there are significant RCS fluctuations within the CPI, the
amplitude and phase of the target data will vary within the CP], so that the input
to the DTFT is no longer a discrete sinusoid with a constant complex amplitude.
Figure 2.19 illustrates the resulting effect on the DTFT. The gray spectrum is
that of an unwindowed zero-frequency sinusoid, modeling the returns from 20
pulses echoed from a stationary 10 x 5 m simulated many-scatterer target
viewed at a constant aspect angle. The black line is the spectrum of data



observed using the same target and waveform, but with the aspect angle
changing 0.7 mrad per pulse. The total angle change over 20 pulses is then 13.3
mrad, nearly nine times the decorrelation interval of 1.5 mrad. The target echo
amplitude and phase will then both fluctuate significantly, raising the sidelobes
and smearing the target energy over a wider frequency range, effectively
whitening the spectrum significantly.
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FIGURE 2.19 Effect of intra-CPI target fluctuations on Doppler spectrum.

2.3 Clutter

In radar the term cl/utter refers to a component of the received signal due to
echoes from volume or surface scatterers. Such scatterers include the earth’s
surface, both terrain and sea; weather echoes (for example, rain clouds); and
man-made distributed clutter, such as so-called chaff clouds of airborne
scatterers, typically made out of lightweight strips of reflecting material. Clutter
echoes are sometimes interference and sometimes the desired signal. For
instance, synthetic aperture imaging radars are designed to image the earth
surface, thus the terrain clutter is the target in a SAR. For an airborne or space-
borne surveillance radar trying to detect moving vehicles on the ground, clutter
echo from the surrounding terrain is an interference signal.

From a signal processing point of view, the major concern is how to model
clutter echoes. As with man-made targets, clutter is a complex target with many
scatterers per resolution cell so that the echoes are highly sensitive to radar
parameters and encounter geometry. Like complex targets, clutter is therefore
modeled as a random process. In addition to temporal correlation, clutter can



also exhibit spatial correlation: the reflectivity samples from adjacent resolution
cells may be correlated. Two excellent general references on land and sea
clutter phenomenology are Ulaby and Dotson (1989) and Long (2001). A good
brief introduction is Currie (2010).

Clutter echoes differ from target echoes in that they will typically exhibit
different PDFs, temporal and spatial correlation properties, Doppler
characteristics, and power levels. These differences can be exploited to
separate target and clutter signals. Means to do so are the principal concern of
Chaps. 5 and 9. Clutter differs from noise in two major ways: its power
spectrum is not white (i.e., it is correlated interference), and, since it is an echo
of the transmitted signal, the received clutter power is affected by such radar
and scenario parameters as the antenna gain, transmitted power, and the range
from the radar to the terrain. In contrast, noise power is affected by none of
those factors, but is affected by the radar receiver noise figure and bandwidth.

2.3.1 Behavior of ¢°

Area clutter (land and sea surface) reflectivity is characterized by its mean or
median value of radar cross section, 6° (dimensionless), the probability density
function of the reflectivity variations, and their correlation in space and time.
Many of the same PDFs described in Sec. 2.2.5 are applied to modeling o © as
well. Popular examples include the exponential, lognormal, and Weibull
distributions.

The area reflectivity ¢° of terrain observed by the radar is a strong function
of terrain type and condition (e.g., surface roughness and moisture), weather
(wind speed and direction, precipitation), engagement geometry (especially
grazing angle), and radar parameters (wavelength, polarization). Consequently,
selection of a PDF is not sufficient to model clutter. It is also necessary to
model the dependence of ¢° on these parameters. Consider land clutter. Values
of¢® commonly range from —60 to —10 dB. Extensive measurement programs
over the years have collected statistics of land clutter under various conditions
and resulted in many tabulations of ¢° for various terrain types and conditions,
as well as models for the variation of ¢°. Figure 2.20 shows one set of
representative data for the area reflectivity of desert terrain versus radar
frequency and grazing angle. Note thato® generally increases with radar
frequency, and decreases at shallower grazing angles. For a given frequency, the
variation with grazing angle over the range shown is 20 to 25 dB. For a given
grazing angle, the variation across frequency in this example is about 10 dB.
Figure 2.21 is one example of the variation in¢® versus grazing angle for
different terrain types at a fixed frequency, in this case S band. Generally,
reflectivity increase with terrain roughness, from the presumably smoother
desert terrain to the complex, rough urban terrain.
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FIGURE 2.20 Behavior of ¢° of desert terrain versus radar frequency and
grazing angle. (Data from Currie, 2010.)
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FIGURE 2.21 Behavior of ¢° versus terrain type and grazing angle at S band.
(Data from Currie, 2010.)

As seen in those figures, g° varies significantly with grazing angle.
Generally, it decreases rapidly at very low grazing angles, and increases
rapidly at very high grazing angles (radar look direction normal to the clutter
surface), with a milder variation in a middle “plateau region.” Figure 2.22 is a
notional diagram of this behavior. A common model for the behavior of ¢° over
the plateau region is the “constant gamma” model (Long, 2001):
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FIGURE 2.22 General behavior of ¢° with grazing angle for land clutter. (After
Long, 2001.)

o =ysiné

(2.64)

where y is a characteristic of the particular clutter type at the radar frequency
and polarization of interest. This model predicts that ¢° is maximum at normal
incidence and becomes vanishingly small as the grazing angle tends to zero.
However, it does not adequately reflect the degree of change in ¢° often
observed at near-normal or near-zero incidence angles, and additional models
are often used at these two extremes.

Various predictive models for ¢° as a function of important parameters
have been presented in the literature. One well-known example is the Georgia
Tech Research Institute (GTRI) model given by

] _ g -+ B _D
o =A@+ C) exp [W]
]+ ——
A
(2.65)

where g, 1s the RMS surface roughness and the parameters 4, B, C, and D
depend on the clutter type and radar frequency. Sample values for X band are
given in Table 2.6.



Clutter Type
Tall Grass,
Parameter Soll/Sand Grass Crops Trees Urban Wet Snow Dry Snow
A 0.25 0.023 0.006 0.002 2.0 0.0246 0.195
B | 0.83 15 | 15 0.64 1.8 | 1.7 | 1.7
C 00013 | 0.012 | 0.012 0002 | 0.015 | 0.0016 | 0.0016
D | 2.3 | o o 0 0 0 o

Source: Adapted from Currie (2010).
TABLE 2.6 GTRI Land Clutter Model Parameters for X Band

Models of a similar spirit exist for sea clutter ¢°. Important parameters for
sea clutter reflectivity in addition to frequency, grazing angle, and polarization
include wind speed and direction relative to the radar boresight, wave height,
and multipath. Details of one representative model developed at GTRI are given
in Currie (2010).

2.3.2 Signal-to-Clutter Ratio

In many scenarios, the dominant interference is not noise, but clutter.
Consequently, the signal-to-clutter ratio (SCR) is often of more importance
than the signal-to-noise ratio (SNR). The SCR is easily obtained as the ratio of
the received target power, given by Eq. (2.11) to the received clutter power,
given by Eq. (2.25), (2.30), or (2.32) for the volume clutter, beam-limited area
clutter, and pulse-limited area clutter cases, respectively. The resulting
equations are

SCR=— 2 (volume clutter case)
Rn-AR- 650,
ind
= &10 (beam-limited area clutter case)
R9,6:0
= UGC—GEE} (pulse-limited area clutter case)
Ro"-AR-8,

(2.66)

In each case, such system parameters as the transmitted power and the
antenna gain cancel out. This occurs because both the clutter and target signals
are echoes of the radar pulse; increasing power or antenna gain increases the
strength of both types of echoes equally. Thus, the SCR just becomes the ratio of
the target RCS to the total RCS of the contributing clutter.

2.3.3 Temporal and Spatial Correlation of Clutter
Clutter decorrelation in time is induced by internal motion for clutter, such as



tree leaves moving in the wind or waves on the sea surface, and by changes in
radar-target geometry for both clutter and targets. Various investigators have
experimentally characterized the decorrelation characteristics of clutter echoes
due to internal motion, or equivalently, their power spectrum. For example, one
model suggested to estimate the power spectrum of the RCS of foliated trees or
rain uses a cubic spectrum (Currie, 2010):

A

S (F)=——
a(*) 1+ (F/E.)?

(2.67)

The corner frequency F. is a function of the wavelength and either wind
speed (for trees) or rain rate (for rain). Some sample measured values are given
inTable 2.7. A higher corner frequency (wider power spectrum) implies a
shorter decorrelation interval (narrower autocorrelation function). Shorter
decorrelation times render the clutter signals more like white noise and degrade
the effectiveness of some of the clutter suppression techniques of Chap. 5.
Notice that for a given weather condition, the clutter decorrelates more rapidly
at higher radar frequencies. Figure 2.23 plots additional windblown tree clutter
data that also show the decrease in decorrelation time for both increased clutter
motion and increased radar frequency.

Radar Frequency, GHz
Target 10 | 35 | 95
Rain, 5 mm/h | 35 | 80 | 140
Rain, 100 mm/h | 70 120 | 500
Trees, 615 mph wind |9 | 21 | 35

Source: Currie, N. C. “Clutter Characteristics and Effects,” chapter 10 in J. L. Eaves and K. E. Reedy
(eds.), Principles of Modern Radar. Van Nostrand Reinhold, New York, 1987.

TABLE 2.7 Cubic Power Spectrum Corner Frequencies (Hz) for Rain and Tree
Clutter



300

I I | T
| ' | | Wind speed (mph
200 - ———= S It It - _;25 (mph)
| |
ol 1O 23
—_ - B s10
[73]
E
=
=
o
@
o
o
L]
E ——————

120

Radar Frequency (GHz)

FIGURE 2.23 Decorrelation time of windblown tree clutter versus frequency
and wind speed. [Data from Currie (2010)].

Another model frequently used to model generic power spectra is the
Gaussian given by

S5;1F)=Aexp [—ﬂ.‘[ F£ ]

R | B

(2.68)

The Gaussian model is very commonly used in weather radar, and is the basis of
the pulse pair Doppler velocity estimation technique discussed in Chap. 5.

Both the cubic and Gaussian power spectral models can be well matched
by a low-order autoregressive (AR, or all-pole) spectrum model of the form
(Haykin et al., 1982)

(2.69)

Real clutter measured from ground-based radars appears to be well matched
using an order N of only two to four. Other studies of clutter measured by
airborne radars in a landing scenario indicate that orders up to 10 may be
required (Baxa, 1991). The AR clutter spectrum model has the advantage that its
parameters can be computed directly from measured data and adapted in real



time using the Levinson-Durbin or similar algorithms (Kay, 1988). Furthermore,
the AR parameters can be used to construct optimal adaptive clutter suppression
filters, as is seen in Chap. 5. The disadvantage is that the calculations rapidly
become computationally intensive as the model order increases.

Another decorrelation model, more recently developed and popular in
studies of detection of ground targets from moving platforms, is the Billingsley
model. This model represents the correlation properties of windblown tree
clutter and other vegetative cover, said to be the “most pervasive” ground
clutter (Billingsley, 2001). This model assumes that the clutter temporal power
spectrum is the sum of a two-sided decaying exponential function and an
impulse at the origin in Doppler frequency space
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(2.70)

where the parameter @, which established the ratio of the DC to AC
components, is a function of both wind and radar frequency, while £, which
determines the width of the AC power spectral component, is dependent
primarily on wind conditions. The corresponding autocorrelation function is

5 {lr}zglf ek 1 ”ﬂ'}z
T o T o (B + (dmo)

(2.71)

Based on extensive measurements, Billingsley proposed empirical
formulas for a and £:

o = 48,@8 H?—'l.EEEJ—'l.El
(2.72)

A7 =0.1048[logy, w + 0.4147]
(2.73)

where w is the wind speed in statute miles per hour and Fj is the radar carrier
frequency in GHz.

Note that f and therefore the decorrelation time does not depend on radar
frequency, somewhat in conflict with earlier models. Caution 1s needed in
applying Eq. (2.73) due to mixed units. Specifically, w is in statute miles per
hour but £ is in meters per second.

The “DC term” in Egs. (2.70) and (2.71) represents a constant, nonrandom
component of the clutter echo that is sometimes called a “persistent component”




of the received signal. For such a component to exist, both the amplitude and
phase of the reflectivity of the clutter scatterers involved must be constant. Thus,
the DC component is attributable to backscatter from elements such as bare
ground, rocks, and tree trunks. The AC term accounts for back-scatter from
moving elements such as leaves, branches, and blades of grass. Simple
autoregressive filters can be used to implement the model in simulations
(Mountcastle, 2004).

2.3.4 Compound Models of Radar Cross Section

As is seen in Chap. 6, radar detection performance predictions depend strongly
on the details of target and clutter RCS models. Furthermore, it is well known
that RCS statistics vary significantly with a host of factors such as geometry,
resolution, wavelength, and polarization. Consequently, the development of
good statistical RCS models is a very active area of empirical and analytical
research. Following are three brief examples of an extension to the basic
modeling approach described earlier, all motivated by the complexities of
modeling clutter. Because the literature regarding these models is developed
primarily in terms of the echo amplitude (voltage) { instead of RCS ¢ or power,
the remainder of this section also concentrates on amplitude PDFs.

Some amplitude PDFs are physically motivated, especially the Rayleigh
(exponential RCS) model (which follows from a central limit theorem
argument) and the Rice or Rician model (which corresponds to a Rayleigh
model with an additional dominant scattering source). Others, such as the log-
normal or Weibull, have been developed empirically by fitting distributions to
measured data. One attempt to provide a physical justification for a non-
Rayleigh model abandons the single-PDF approach, instead assuming that the
random variable representing echo amplitude can be written as the product of
two independent random variables, { = x - y. The PDF of{ can then be
represented in a Bayesian formulation as

pe (&)= po(x)pep(C]X)
(2.74)

This model has been used to describe sea clutter (Jakeman and Pusey,
1976; Ward, 1981). The random variable x is identified with a slowly
decorrelating component having a voltage distribution following a central chi-
square of degree 2m with m > 2.5. This component is introduced to account for
“bunching” of scatterers due to ocean swell structure and radar geometry, and
represents variation in the mean of the amplitude over time. The distribution
Pa(Clx) 1s assumed to represent the composite of a large number of independent
scatterers. Its amplitude distribution is therefore Rayleigh. The resulting overall
PDF pA¢) can be shown to be the K distribution, which is given by
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where K, |(+) is the modified Bessel function of the second kind and order a—1
and c=bJ7/4 Thus, the product formulation suggests that modulation of a
standard Rayleigh variable by a central chi-distributed geometric term can
account for observed sea clutter distributions. Additional information on the K
distribution is given in App. A.

More recent research has begun to bridge the gap between the physics of
scattering and the apparent success of compound clutter models of the type
promoted by Ward and Jakeman and Pusey. Sangston summarizes the work on
extensions of the “many scatterer” physical model that leads to the Rayleigh
distribution (Sangston, 1994). Specifically, consider the model of Eq. (2.50),
but let the number of scatterers N be a random variable instead of a fixed
constant. This representation is referred to as a number fluctuations model.
Depending on the choice of the statistics of the number N of scatterers
contributing to the return at any given time, this modified version of Eq. (2.50)
can result in K, Weibull, gamma, Nakagami-m, or any of a number of other
distributions in the class of so-called Rayleigh mixtures.

Much of the work in compound RCS models has been performed in the
context of sea clutter analysis, and empirical sea clutter data have often been
observed to exhibit non-Rayleigh statistics such as Weibull, K, and log-normal
distributions. The number fluctuation model 1s intuitively appealing in this case
because it can be related to the physical behavior of waves. Specifically,
scattering theory suggests that the principal scatterers on the ocean surface are
the small capillary waves, as opposed to the large swells. These small
scattering centers tend to cluster near the crest of the swells, with fewer of them
in between. In other words, they are nonuniformly distributed over the sea
surface. Consequently, a radar illuminating the sea will receive echoes from a
variable number N of scatterers as the crests of the swells move into and out of
a given resolution cell. By summing echoes from a variable number of
scatterers, the number fluctuation model predicts the Weibull and K
distributions and provides a link between a phenomenological model of sea
scatter and these empirically observed statistics.

All of the statistical models described in Sec. 2.2.5 apply to the scattering
observed from a single resolution cell. That is, they represent the variations in
RCS observed by measuring the same region of physical space multiple times,
for example by transmitting multiple pulses in the same direction and measuring
the received power at the same delay after each transmission. Another use of the
product model of Eq. (2.74) is to describe the spatial variation of clutter



reflectivity. If the scene being viewed by the radar is nonhomogenous, then the
characteristics of the RCS observed in one resolution cell might vary
significantly from those of another. For example, the dominant clutter observed
by a scanning radar at a coastal site might be an urban area in one look direction
and the sea in another. Another example occurs when scattered rain cells occupy
only part of the scanned region, so that some resolution cells contain rain while
others are clear.

This situation can be modeled by letting the slowly decorrelating term x in
the product model represent spatial variations in the local mean of the received
voltage. If the PDF of x is log-normal with a large variance and the PDF of {
conditioned onx is gamma distributed (which includes Rayleigh as a special
case), then the overall PDF of the product {x has a lognormal distribution
(Lewinski, 1983). Consequently, the product model implies that lognormal
variations of the local mean from one resolution cell to another could account
for the log-normal variation often used to model ground clutter returns. A
similar argument can be used to justify the log-normal model for target RCS by
modeling the variation of RCS with aspect angle as a log-normal process.

2.4 Noise Model and Signal-to-Noise Ratio

The echo signal received from a target or clutter inevitably competes with
noise. There are two sources of noise: that received through the antenna from
external sources, and that generated in the radar receiver itself.

External noise is a strong function of the direction in which the radar
antenna is pointed. The primary contributor is the sun. If the antenna is directed
toward the night sky and there are no interfering microwave sources, the
primary source is galactic (also called cosmic) noise. Internal noise sources
include thermal noise (also called Johnson noise) due to ohmic losses, shot
noise and partition noise due to the quantum nature of electric current, and
flicker noise due to surface leakage effects in conducting and semiconducting
devices (Carlson, 1976).

Of these various sources, thermal noise is normally dominant. The theories
of statistical and quantum mechanics dictate that the thermal noise voltage in an
electronic circuit is a zero-mean Gaussian random process (Curlander and
McDonough, 1991). The mean energy of the random process is k7/2 joules,
where T is the temperature of the noise source in kelvins (absolute temperature)
and £ =1.38 x 1072* J/K is Boltzmann’s constant. The power spectrum S,(F) of
the thermal noise delivered to a matched load is

B hF
a exp(hF/kT)-1

5,(F) W/Hz

(2.76)



where 1 = 6.6254 x 10734 J/s is Plancks constant. If hF/kT = 1, a series
approximation gives exp(hF/kT) = 1 + hF/kT so that Eq. (2.76) reduces to the
white noise spectrum

S, (F)=kT W/Hz
(2.77)

Note that Eq. (2.77), when integrated over frequency, implies infinite
power in the white noise process. In reality, however, the noise is not white
[Eq. (2.76)] and, in any event, it is observed in any real system only over a
finite bandwidth. For frequencies below 100 GHz, the approximation of Eq.
(2.77) requires the equivalent noise temperature 7 (to be defined below) to be
larger than about 50 K, which is almost always the case. Consequently, thermal
noise has a white power spectrum. For many practical systems it is reasonable
to choose the temperature of the system to be the “standard” temperature 7, =
290 K =62.3°F so that kT, = 4 x 102! W/Hz.

In a coherent radar receiver, the noise present at the front end of the system
contributes noise to both the I and Q channels after the quadrature demodulation.
The I and Q channel noises are both zero-mean Gaussian random processes with
equal power. Since the total noise spectral density is k7 W/Hz, the noise density
in each channel individually is £7/2 W/Hz. Furthermore, if the power spectrum
of the input noise is white, then the I and Q noise processes are uncorrelated and
their power spectra are also white. Since the I and Q noise processes are
Gaussian and uncorrelated, it follows that they are also independent (Papoulis
and Pillai, 2001). Finally, since the I and Q signals are independent zero-mean
Gaussian processes, it also follows that the magnitude of the complex signal I +
jQ 1s Rayleigh distributed, the magnitude-squared is exponentially distributed,
and the phase angle tan™! (Q/I) is uniformly distributed over (0, 2x].

The bandwidths of the various components of a receiver vary, but the
narrowest bandwidth is generally approximately equal to the bandwidth of the
transmitted pulse. If the receiver contains any component of narrower bandwidth
signal, energy will be lost, reducing sensitivity. If the most narrowband
component has a bandwidth appreciably wider than the pulse bandwidth, the
signal will have to compete against more noise power than necessary, again
reducing sensitivity. Thus for the purpose of noise power calculation, the
frequency response of the receiver can be approximated as a bandpass filter
centered at the transmit frequency with a bandwidth equal to the waveform
bandwidth.

Real filters do not have perfectly rectangular passbands. For analyzing
noise power the noise-equivalent bandwidth p, of a filter described by the
transfer function H(F) is used. Figure 2.24 illustrates the concept. The noise
equivalent bandwidth is the width an ideal rectangular filter with gain equal to
the peak gain of the actual filter must have so that the area under the two squared



frequency responses are equal. This condition guarantees that given a white
noise input, both filters exhibit the same output noise power. Thus

Actual Filter Power Equivalent Rectangular
Respo nseff{ I Filter Response
= G,
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FIGURE 2.24 [llustration of the concept of noise equivalent bandwidth of a
filter.
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(2.78)

where the receiver power gain G, is defined as the maximum gain of |H(F)].
The total noise power N present at the output of the filter H(F) is then given by

25, (F)dF

N= J':|H+;F}

= KT | |H(F) dF

—kTB,G,
(2.79)

White noise passed through a filter H(F) 1s no longer white, but instead has
the power spectrum |H(F)P. If |H(F)} is approximated as a rectangular filter of
two-sided bandwidth S, Hz, the autocorrelation function of the noise at the filter
output is approximately a sinc function with its first zero at lag 1/f, seconds.
However, it will be seen in Chap. 3 that the receiver output is normally sampled
at intervals of approximately 1/f, seconds. Consequently, the noise component
of the successive receiver output samples are still uncorrelated with one
another.

The power spectral density of white noise at the output of any source or
circuit can be described as the product of Boltzmann’s constant and some
equivalent temperature 7', mimicking the simple formulation of Eq. (2.77).
Source noise power is usually referenced to the input of a system so that the
power gain G, (or loss if G, < 1) of the system must also be taken into account.
That 1s, if the observed output power spectral density (still assumed white over



the receiver bandwidth) at the output of a receiver is some value S,, then an
equivalent temperature 7" of the noise source at its input is defined to be

5
T =4
kG,
(2.80)
so that S, = kTG, and the total noise power is
N=kT'B.G,
(2.81)

The total output noise power at the receiver output is the primary quantity of
interest. In a radar system, the contributors to this noise include the external
noise, the intrinsic k7,5, thermal noise, and additional thermal noise due to
losses in the antenna structure and nonideal receivers. Detailed noise analyses
assign individual equivalent noise temperatures to each stage in the system; a
good introductory description is given in Curlander and McDonough (1991).
When considering the system as a whole, it is common to express the total
output noise power as the sum of the power that would be observed due to the
minimum noise density k7, at the input and a second term that accounts for the
additional noise due to the nonideal system

N= kTI.]IIIrj”G':- -+ kTr’ﬁ.l.‘G:'-
(2.82)

In this equation, G, is now the power gain of the complete receiver system,
including antenna loss effects. The equivalent temperature 7e used to account
for noise above the theoretical minimum is called the effective temperature of
the system.

The noise temperature description of noise power is most useful for low-
noise receivers. An alternative description common in radar is based on the
idea of noise figure F',, which is the ratio of the actual noise power at the output
of a system to the minimum power k7,f,G, (Skolnik, 2001). As with noise
temperatures, various noise figures can be defined to include the effects of just
the receiver, or of the entire antenna and receiver system, and so forth. Here, the
term noise figure used without qualification will mean the noise figure of the
complete receiver system, so that

A
“ "!‘_lr-|l.'ll'|r-]Ir HGE.
(2.83)

Equation (2.83) shows that knowledge of the noise equivalent bandwidth, gain,




and noise figure of the receiver system are sufficient to calculate the output
noise power using N = kT 8 ,F,G,. It also follows from using Eq. (2.82) in Eq.
(2.83) that Te = (F, — 1)T,. Typical noise figures for radars can be as low as 2
or 3 dB, and as high as 10 dB or more. Corresponding effective temperatures
range from about 170 K to over 2600 K.

In Sec. 2.2, the term “radar range equation” was applied to Egs. (2.11),
(2.25), (2.30), and (2.32). These expressions described the echo power
received by the radar given various system and propagation conditions. As will
be seen in Chap. 6, the detection performance of a radar depends not on the
received power per se but on the SNR at the point of detection. Equation (2.83)
can be used to convert the power range equations to SNR range equations.

To illustrate, consider the point target range equation [Eq. (2.11)], which
expresses the power P, of the signal available at the input to the receiver. The
signal power at the output will be P, = G, P, provided the signal bandwidth is
entirely contained within the receiver bandwidth B,. From Eq. (2.83), the output
noise power is N, = kTS F,G,. The SNR is therefore

P
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N,
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(2.84)

The last expression in Eq. (2.84) gives the SNR in terms of transmitter and
receiver characteristics, target RCS, range, and loss factors. Modifications of
Egs. (2.25), (2.30), and (2.32) for volume and area scatterers to express them in
terms of signal to noise ratio are obtained in the same manner by simply
including the quantity £7,f ,F, in their denominators.

Equation (2.84) represents the SNR at the receiver output, but prior to any
signal processing. The point of most of the techniques discussed in this text is to
increase the SNR above that value through signal processing means so as to
obtain better detection, measurement, and imaging results. The impact of signal
processing on the SNR can be modeled by simply adding a signal processing
gain term G, to the range equation:

PG*A%0G,,
~ (4n)’RU*T,B,ELL(R)

n-s

X
(2.85)

In ensuing chapters, G,, will be expressed in terms of the parameters of specific



techniques such as matched filtering and Doppler processing.

Like Eq. (2.11), Eq. (2.85) is also often called the radar range equation. In
the remainder of this text, the term “range equation” or “radar range equation”
usually refers to the SNR form of Eq. (2.85) and its analogues for volume and
area scatterers.

2.5 Jamming
Jamming refers to intentional interference directed at the radar system from a
hostile emitter. Jamming is an example of electronic countermeasures (ECM)
or electronic attack (EA). As noted earlier, the purpose of most radar signal
processing is to improve the SIR of the data so as to improve detection,
tracking, and imaging performance. The purpose of many jamming techniques is
just the opposite: to reduce the SIR so that the radar performance is degraded.
The most basic form of jamming is simple noise jamming. A hostile emitter
directs an amplified noise waveform at the victim radar, essentially increasing
the noise level out of the receiver. If the noise power spectrum fills the entire
radar receiver bandwidth, then the noise out of the receiver will appear like any
other white noise process and is modeled in the same way. More advanced
forms of noise jamming use various amplitude and frequency modulations.
Instead of noise, other jamming techniques use waveforms designed to mimic
target echoes and fool the radar into detecting and tracking nonexistent targets.
Even a limited discussion of ECM is outside the scope of this text, due
both to the breadth of the topic and the limited amount of material publishable in
the open literature. The reader is referred to Lothes et al. (1990) for a good
general reference on jamming signals in radar.

2.6 Frequency Models: The Doppler Shift

2.6.1 Doppler Shift
If the radar and scatterer are not at rest with respect to each other, the frequency
F, of the received echo will differ from the transmitted frequency F, due to the
Doppler effect. Doppler shifts can be used to advantage to detect echoes from
moving targets in the presence of much stronger echoes from clutter or to
drastically improve cross-range resolution. Uncompensated Doppler shifts can
also have harmful effects, particularly a loss of sensitivity for some types of
waveforms. Thus, characterization and measurement of Doppler shifts is an
important topic in radar.

Consider an arbitrary waveformx(¢), pulsed or not, transmitted by a
monostatic radar. The waveform is reflected from a perfectly conducting target
at an arbitrarily time-varying range R(¢). For instance, a constant-range target



would have R(?) equal to a fixed R, meters, while a constant-velocity target
would have R(¢) = R, — vt meters.? It makes no difference whether the radar, the
target, or both are moving such that the range between the two 1s R(?), so it can
be assumed without loss of generality that the radar is stationary and the target is
moving, and that all measurements are made in the frame of reference of the
radar. Under these conditions the received signal can be shown to be (Cooper,
1980; Gray and Addison, 2003)

y(t)=—k-[1—2h(t)] T [2h(t) - {]
(2.86)

where k absorbs all radar range equation amplitude factors and 4(7) is the
function that satisfies

h(t) + 1RUIH}]= t
¢
(2.87)

The dot over A(¢) in Eq. (2.86) denotes the time derivative. The minus sign
(180° phase shift) is required by the boundary conditions at a perfectly
conducting surface. The function 4(¢), which has units of seconds, is the time at
which a wave must have been launched in order to intercept the moving target at
time ¢ and range R(¢). For example, if R(?) 1s a constant R, then A(¢) =t — R,/c.
For instantaneous velocities Rif) that are a small fraction of the speed of
light (virtually always the case as will be discussed shortly), the “quasi-
stationary” assumption is commonly made. This holds that the range change
during the short flight of any particular point in the waveform from the
transmitter to the target is negligible. Then R[/(¢)] = R(¢) so that (Cooper, 1980)
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The last step also uses the assumption Rit)<<c. This result is exact when the
target is stationary, R(t) = R,. Then i(¢) =t-R,/c exactly and ¥{t) =k X[t - 2R, /c]
exactly.

The case of a constant-velocity target is of special interest. Returning to the
exact result of Egs. (2.86) and (2.87), let R(¢) = R,—vt and define S, =v/c. It is
easy to show that
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so that (Gleiser, 1979; DiFranco and Rubin, 2004; Peebles, 1998)
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If the transmitted waveform is a standard RF pulse
x(t)= A(t)explj(2rEt + ¢y)]
(2.91)

where A(?) 1s the pulse envelope, the received echo waveform will be
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(2.92)

Inspection of Eq. (2.92) reveals several characteristics of the received
signal. Its frequency is a, F, Hz. The change in frequency is the Doppler shift
Fp:
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(2.93)

The Doppler shift is positive for approaching targets (v > 0) and negative for
receding targets as expected. The phase of the received signal is decreased by
Ap=— ﬂ radians
(1-5,)A
(2.94)

The waveform is scaled in time by the factor a,. For example, for an
approaching target, «, > 1 and a transmitted pulse is shortened by a factor of a,



on reception; for a receding target it is lengthened by a factor ofa,. The
compression (expansion) of the pulse in time results in an expansion
(contraction) of the pulse bandwidth by the factor @, due to the reciprocal
spreading property of Fourier transforms. Finally, the amplitude of the
waveform is scaled by the factor a, (in addition to the range equation effects), a
consequence of conservation of energy when the time scale is altered.

It is virtually always the case in radar that the ratio |5,| = [v/c| is very small.
For example, a car traveling at 60 mph (26.82 m/s) has a ratio |v/c| 0of 8.94 x 10~
8; an aircraft at Mach 1 (about 340.3 nvs at sea level) has [v/c|=1.13 x 10-%; and
even a low-earth orbit (LEO) satellite with a velocity of 7800 mv/s has |[v/c|=2.6
x 107, Expand each of the terms 1/(1 +£4,) anda, = (1 +4,)/(1 —p,) in a
binomial series and retain terms only to first order in f,:
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(2.95)

Equation (2.90) and the sinusoidal pulse special case of Eq. (2.92) then reduce
to
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(sinusoidal pulse)

(2.96)

The echoed pulse length ' = /a0 = (1 — 2f,)r. This small change in the pulse
envelope duration of 2a,r seconds is insignificant and can be ignored. The
amplitude factor of a = (1 + 2p)) is certainly negligible compared to range
equation effects and can also be ignored. The change in delay from 2R /c to 2(1
+ S,)R,/c represents a percentage change of S, in the delay and is also usually
insignificant, though for a system with fine range resolution at long enough
ranges the error could become a significant fraction of a range resolution cell.
However, f, cannot be neglected in the phase term because the factor of
4rnp R,/ 4 will frequently be a large fraction or even a multiple of 7. With these
three approximations to the envelope term and amplitude, the Doppler shift
effects on the sinusoidal pulse of Eq. (2.96) reduce to
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The key result is that, to an excellent approximation, the pulse echoed from a
constant-velocity target exhibits a Doppler shift of 2vF/c = 2v/A Hz and a phase
shift of —(1 + f,)4n/AR, radians.

The numerical values of Doppler shift are small compared to the RF
frequencies. Table 2.8 gives the magnitude of the Doppler shift corresponding to
a velocity of 1 m/s at various radar frequencies. The Mach 1 aircraft observed
with the L band radar would cause a Doppler shift of only 2.27 kHz in the 1
GHz carrier frequency.

Band Frequency, GHz | Doppler Shift (Hz) forv=1m/s
L 1 6.67

c 6 | 400

X 10 | 66.7

Ks | 35 | 233

w | 95 | 633

TABLE 2.8 Doppler Shift Resulting from a Velocity of 1 m/s

For a monostatic radar and a constant-velocity target, the observed
Doppler shift is proportional to the component of velocity in the direction of the
radar, called the radial velocity. If the angle between the velocity vector
relative to the radar of a target traveling at v meters per second and the vector
from the radar position to the target position (sometimes called the cone angle)
1sy, the radial velocity isv - cosy meters per second. The geometry is
illustrated in two dimensions in Fig. 2.25. The magnitude of the Doppler shift is
maximum when the target is traveling directly toward or away from the radar.
The Doppler shift is zero, regardless of the target velocity, when the target is
crossing orthogonally to the radar boresight.
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FIGURE 2.25 Doppler shift is determined by the radial component of relative
velocity between the target and radar.

Equations (2.86) and (2.87) can be solved for the exact behavior of other
regular patterns of radar-target motion as well. The solution for constant
acceleration is given in Gray and Addison (2003). Even where a closed form
solution for A(¢) is difficult or impossible to find, it can still be developed using
an iterative approximation approach.

2.6.2 The Stop-and-Hop Approximation and Phase History

The quasi-stationary assumption of Eq. (2.88) provides a simplified but very
useful model of reflection of a radar pulse from a target moving relative to the
radar. Applying it to the pulsed waveform A(¢)exp[j(2zFt + ¢,)] and using the
same envelope approximations employed to obtain Eq. (2.97) gives

y(t)=k- A[;r— % \]exp[ j[-Q;rr P,|Fr—w] + @ \ }

c

kAl - 2R ) exp (-2 R J explj (27 Et +@y)]
c J % A /
(2.98)

where R, is the initial range at the time of pulse transmission. Equation (2.98)
states that the echo is received with a time delay corresponding to the range at
the beginning of the pulse transmission but with a phase modulation related to
the time variation in range. This is the “stop” part of the stop-and-hop
assumption common in radar analysis: the envelope of the echo appears as if the
target motion effectively stopped while the pulse was in transit. The “hop”



portion will be discussed shortly.

Equation (2.98) adequately describes not only constant but also time-
varying Doppler frequency shifts. If the target moves relative to the radar at
constant velocity, R(#) = R, — vt

F{r}=k-ﬂ|fr—&\| }| i—RHexp{ 2)'[ }exp[{2rifr+mu}]
\ c !

(2.99)

Equation (2.99) is identical to the second line of Eq. (2.97), with the exception
that the constant phase shift is —4zR// instead of —(1 + ,)4nR,/4 radians. This
difference in the constant phase shift does not affect the magnitude or Doppler
shift of the echo and can be ignored. Thus the analysis approach of Eq. (2.88) is
consistent with the earlier results in all important respects.

For a more interesting example of the use of Eq. (2.88), consider Fig. 2.25
again. Let the radar be located at (x, y) coordinates (x, = 0, y, = 0) with its
antenna aimed in the +y direction, and let the coordinates of the target aircraft
be (x, = vt, y, = R,)). This means that the target aircraft is on the radar boresight
at a range R, at time ¢ = 0 and is crossing orthogonal to the radar line of sight at
a velocity v meters per second. The range between radar and aircraft is

,.’

vt |

R(t)=+[Rg + (vt)* = '1+

oy

T

(2.100)

While it 1s possible to work with Eq. (2.100) directly, it is common to expand
the square root in a power series:

R(t)= R, 1+1[ tr‘J t:f

(2.101)

In evaluating this expression, the range of ¢ that must be considered may be
limited by any of several factors, such as the time the target is within the radar
main beam or the coherent processing interval duration over which pulses will
be collected for subsequent processing.

Assume that the distance traveled by the target within this time of interest is
much less than the nominal range R, so that higher-order terms in (v#/R;) can be
neglected:

R(t)=R, +‘ ;



(2.102)

Equation (2.102) shows that the range is approximately a quadratic function of
time for the crossing target scenario of Fig. 2.25. Using this truncated series in

Eq. (2.98) gives

Ry

y(t)=k- A[ r—&wexp[—fgﬂj |exp[— g'2fr[ Ri : Jrz ]exp{ j2m Bt + )
: C WL P ; v ;

N

(2.103)

All of the terms are the same as in the constant-velocity case of Eq. (2.99)
except for the middle exponential. Recall that instantaneous frequency is
proportional to the time derivative of phase. The quadratic phase function
therefore represents a Doppler frequency shift that varies linearly with time due
to the changing radar-target geometry:

. 3, 2
_F‘n.[f}:ii 2 ; - :_2E_r
- 2r dt \ RgA |

(2.104)

As the target aircraft approaches from the left in Fig. 2.25 (¢ < 0) the
instantaneous Doppler shift is positive. When the aircraft is abreast of the radar
(¢t = 0) the Doppler shift is zero because the radial component of velocity is
zero. Finally, as the aircraft passes by the radar (¢ > 0) the Doppler shift
becomes negative, as would be expected for a receding target. This quadratic
range case 1s important in synthetic aperture radar and will be revisited in Chap.
8.

The exponential term exp(—j4zR(¢)/A) in Eq. (2.98) is called the phase
history of the received signal. This terminology is applied both to the complex
exponential and to just its phase function (—47R(¢)/4). The phase history encodes
the variation of the range between the target and radar during the data collection
time. For the constant-velocity example [Eg. (2.99)], the phase history is a
linear function of time corresponding to a constant frequency sinusoid, i.e., a
constant Doppler shift. For the crossing target example of Eq. (2.103), it is a
quadratic function of time, producing a Doppler shift sinusoid having a
frequency that varies linearly with time. Other radar-target motions will
produce other functional forms for the phase history.

More generally, the term phase history can refer to the variation of phase
(or the corresponding complex exponential) in any dimension of the radar data.
Two other common uses are to describe the fast-time phase function of a
frequency- or phase-modulated waveform or the spatial phase variation across
the face of an array antenna at a fixed time. As will be seen, the phase history is
central to radar signal processing. The design of many important radar signal



processing operations depends critically on accurately modeling or estimating
the phase history of the collected data. Examples include pulse compression,
adaptive interference cancellation, and imaging.

2.6.3 Measuring Doppler Shift: Spatial Doppler

The Doppler shifts observed in radar are too small to be measured from a single
pulse echo in most cases. In Chap. 7 it will be seen that a lower bound on the
standard deviation of the error in measuring the frequency of a complex sinusoid
with unknown amplitude, frequency, and phase using a discrete Fourier
transform (DFT) and an observation of length 7, seconds at an integrated SNR

in the DFT of y is @ =6/272T4, Hz, Applying this to measuring Doppler, this
value must be much less than the Doppler shift if that shift is to be measured

with reasonable precision, leading to a requirement that Lo >> V6/(21) ¥F5  Even
for a rather high Doppler shift of 10 kHz and a very good SNR of 30 dB (y =
1000), T,,, must be much larger than 123 us. To measure the Doppler shift with
a single pulse would therefore require pulse lengths greater than 1 ms, much
longer than the sub-millisecond (usually less than 100 us) pulse lengths typically
used. For a 1-kHz Doppler shift and 20-dB SNR, a pulse longer than 10 ms
would be needed. For this reason, most radars do not measure Doppler shift on
an intrapulse basis, although a few designed for very high speed targets
(satellites and missiles) and using very long pulses can do so.

The long observation time needed can be obtained by using multiple
pulses. Suppose a series of M distinct pulses of duration are transmitted
beginning at times ¢,, = mT, where T is the pulse repetition interval (PRI). The
mth transmitted pulse and received echo (using the quasi-stationary assumption)
are

X,(t)= At —mT) exp [[(2nEt +¢p)]

(2.105)
7, )=k A[ b F o L) } exp { j[br.ﬁ | t— m | L
C
(2.106)
After demodulation, the baseband received signal is
v (B)=k- Al t—m1 - 220 \| exp { _i2%Ret) }
c J A
(2.107)

where £’ includes the exp(—j¢@,) term. Assume each baseband pulse echo is
sampled 2R /c seconds after transmission, corresponding to a range R.. Also



assume a target 1s present within the range bin corresponding to that sample time
for the entire data collection time of mT seconds, meaning that R(#) remains in
the range interval [R.—c7/2, R ].2 The mth sample in this range bin is then

2R,

L

]= k- A[EE[R5 — R(mT)] | exp {— r4—ﬁR| mT + 5 ﬂ
L C J A\ 2 i

¥, | mT +
k. 'S

c

—k -exp[—_f%ﬂ mT + £ty }
= y[m]
(2.108)

The constantk combines k' and the amplitude of the sampled pulse envelope
A(+). The series of sampled echoes y[m] forms the slow-time series of samples
for that range bin, as will be described in Chap. 3.

The “stop” assumption applied in Eq. (2.98), when used across a series of
pulses as in (2.107), is called the stop-and-hop approximation. Relative to the
radar, the target is assumed to “stop” at the time of each pulse transmission at
the corresponding range R(m7) and then “hop” to the range at the next pulse
transmission time, rather than moving continuously.

Consider again a constant velocity target, R(1) =R, — vt. The slow-time
data series becomes

y[m]=k - exp _;i""[ R,—v- [ mT +

2R\
| =)
—k- exp_ —_E%{RD— 2B.R.) } exp [ + ;2T|?J mT }

(2.109)

The first exponential in Eq. (2.109) is a constant phase shift for all of the slow-
time samples y[m] and is of little consequence. The second exponential is a
discrete complex sinusoid with normalized frequency 2v7/4 cycles/sample,
corresponding to the expected Doppler frequency of 2v/4 Hz. Thus, the phase
history obtained from a moving target using a series of pulses provides a way to
measure the Doppler shift with good precision by observing the signal over an
observation time much longer than that of a single pulse.

The manifestation of the target Doppler shift in the slow-time phase history
i1s sometimes referred to as spatial Doppler. This terminology emphasizes the
fact that the Doppler shift is measured not from intrapulse frequency changes,
but rather from the change of phase of the echoes at a given range bin over a
series of pulses. Because of the inability to measure intrapulse Doppler
frequency shifts in most systems, the term “Doppler processing” in radar usually
refers to sensing and processing this spatial Doppler information.



2.7 Spatial Models

Previous sections have dealt with models of Doppler shift and the received
power (both mean value and statistical fluctuations) of radar echoes from a
single resolution cell. In this section, the variation in received complex voltage
or power as a function of the spatial dimensions of range and angle will be
considered. It will be seen that the observed complex voltage can be viewed as
the output of a linear filter with the weighted variation in reflectivity over range
or angle as its input. A similar result holds for power when the reflectivity field
has a random phase variation. These relationships will lay the groundwork for
an analysis of data sampling requirements and range and angle resolution in
subsequent chapters.

2.7.1 Coherent Scattering
Consider a stationary pulsed radar. At time zero it transmits the equivalent
complex signal

%(t) = B x(t) explj(2n Ft + )]
(2.110)

Assume that *(f) has unit amplitude so that the transmitted signal amplitude is

represented by the term VF: . This signal echoes off a differential scatterer of
cross sectiondo(R, 6, ¢) at coordinates (R, 6, ¢). The baseband complex
reflectivity or just reflectivity of the differential scatterer is, from Eq. (2.50),
d{(R, 0, @) exp[jw(R, 0, ¢) so that do =|d(]*. The term involving y accounts for a
possible constant phase shift on reflection at the scatterer surface. The antenna
is assumed to be mechanically scanning? in either or both angle coordinates with
one-way voltage pattern £(6,4) so that at the time of transmission it is steered in
the direction (6,,¢,). Then analogously to Eq. (2.16), the differential received
voltage is

] P

| R.—"I.-
17(6q, 00, 1R, 6, 0) =, |——
aylo, ¢, ;,6,9) \ (47)’R*L,L,(R)

E*(6 —6,,0— o) dL(R,8,0)

><E'J"’{}"’[_?",‘Jr'[R,EEMEF}]I[ 1‘—E |e>;p{f2;rFJ r—E+ 4 }

(2.111)

where E£(0,¢) 1s the one-way antenna voltage pattern. Equation (2.110) can be
simplified by separating the reflectivity terms and the terms which depend on
spatial location and collapsing all of the other system-dependent amplitude

terms into a single constant 4 =vEA/(471°L. The term dl exp(jy) is termed the



baseband complex reflectivity or just reflectivity of the differential scatterer
and will be denoted as dp. Making these substitutions and removing the carrier
term with coherent demodulation leaves only the baseband complex received
voltage dy for the single differential scatterer

dy(6g, ¢, 1;R,8,¢0)=A,dp(R, 8,¢)

EX0-6,06-0,) (. 2R [ 4r )
—_———— x| -— | & -i—R
'\.'I L_d lR} R_ g \ ' J]exl} |-__‘ -Jr A .'|
(2.112)

Equation (2.112) gives the contribution to the received echo voltage of a
differential scatterer element at coordinates (R,0,¢). The total received voltage
is obtained by integrating these differential contributions over all space:

T -

LU i (=)

Y60, 90,.)= | | | dy®o, 00, t:R,6,0)
g=—n/28=-x R=10

(2.113)

Equation (2.113) is a coherent scattering model: the differential scatterers
are assumed to add as complex voltages. This is most appropriate for
reflectivity fields characterized by relatively static configurations of scatterers,
e.g., man-made vehicle and urban areas. The case where the scatterers are not
static 1s considered in Sec. 2.7.4.

Now write dp(R, 6, §) =p(R, 0, ¢) - dV =p(R, 0, §) R> cos¢ dR db d¢ to
obtain

?:..-"2 T 5]
N F

B exp[—j(4r /A)R] l
y(6y, 0o, 1) = A, l i i { L R, 8,¢) %
Yo, @o, 1) JL.® / JJ

f=-—m/2 8=-xg R=0

[E?-q;a 6y, 0—a)x[t-2R ]cosmfR d6 d@}
\ {"
(2.114)

A

Define the effective reflectivity p' to include the attenuation due to atmospheric
loss, the phase rotation due to two-way propagation range, and the cos¢ term of
the differential volume element:

exp[—j(dr/A)R]
vL:(R)

PR, 6, ¢)= P(R, 8, ¢)coso

(2.115)

Applying Eq. (2.115) to Eq. (2.114), the received signal is seen to be similar to




a three-dimensional convolution of the effective reflectivity with a convolution
kernel comprising the antenna two-way voltage pattern in the angle coordinates
and the pulse modulation function in the range coordinate. Specifically,

Y(Bo, B, 1) = A, p’(ct/2,89,80)%, % 5 [E*(=6y, = 9y) X(D)]
(2.116)

where the symbols *, *, and *, denote convolution over the indicated
coordinate. Now assume the antenna pattern is symmetric in the two angular
coordinates, as is often the case; rescale the time variable to units of range; and
replace 6, and ¢, with general angular variables & and ¢. These substitutions
finally give

] 2R A
(6,6, R)= A,p" (R,8,9)* * *, [ EX®,9)x| ~— J
2.117)

Equations (2.116) and (2.117) are stated as approximate convolutions
because of the finite integration limits in the angular variables, which arise due
to the periodicity in angle of the antenna pattern and scene reflectivity. A full
discussion of a spherical convolution-like equation similar to Eq. (2.114),
including development of the Fourier transform relations, is given in Baddour
(2010). Nonetheless, like a linear convolution, Eq. (2.117) computes the output
at a given point in space as a local average of the reflectivity distribution,
weighted by the antenna pattern and waveform. For most antennas and pulses,
these patterns concentrate most of their energy in a relatively small finite region
defined by the mainlobe for the antenna pattern and the pulse duration for the
waveform. Consequently, the output signal can be expected to behave like a true
linear convolution.

The convolutional model ofEq. (2.117) is an important result. Its
significance is that it allows interpretation of the measured data as the result of a
linear filtering process, so that Fourier transform relations between y(60, ¢, R),
p'(R, 0, ¢), E*(0, ¢), and x(#) can be established and applied to model signal
properties, determine sampling rates, and so forth. For example, the range
resolution of the measured reflectivity function is seen to be limited by the pulse
duration. (In Chap. 4 it will be seen that the introduction of matched filtering
will significantly change this statement.) Similarly, for a conventional scanning
radar, the angular resolution will be determined by the antenna beamwidth. (In
Chap. 8 1t will be seen that the introduction of synthetic aperture techniques also
significantly changes this statement.) It also follows from the filtering action of
x(¢) and E*(0, ¢) that the bandwidth of the measured reflectivity function in
range and angle is limited by the bandwidth of the waveform modulation
function and antenna power pattern. This observation will be used in Chap. 3 to




determine the range and angle sampling requirements.

2.7.2 Variation with Angle
Now consider the variation in reflectivity with angle for a fixed range, say R,.
Define the range-averaged effective reflectivity

;3{3,¢;Rﬂ}=[ .Y|:£{R,:,—R}};J‘{R,H,@}f.fR
JR LC

(2R
:[fj;{R;H.r{'D}:E:RT[ — :|
LU AR R=R,

(2.118)

This is the reflectivity variation in angle, taking into account the range averaging
at each angle due to the finite pulse length. Note that in the limit of very fine
range resolution, i.e., if the pulse modulation x(2R/c) — o,(R —R,), then
pe. 0. Ro)— p'(Ry,8,0) that is, the “range-averaged” reflectivity would exactly
equal the effective reflectivity evaluated at the range of interest R,

Applying Eq. (2.118) to Eq. (2.117) gives

Foy |

yO,0;R)=A4, | | EA{-6,E-0)p(C,E; Ry)dL dé

E=—n /2 £ =~

= p(6, 9; Ry)*o %, EX(6, 9)
(2.119)

where again symmetry of the antenna pattern has been assumed in the second
line. Equation (2.119) is a special case of Eq. (2.117) showing that the complex
voltage at the output of a coherent receiver for a fixed range and a scanning
antenna 1s approximately the convolution in the angle dimensions of the range-
averaged effective reflectivity function evaluated at the range R, A1¢.9: R} with
the antenna two-way voltage pattern £2(6, ¢@).

As mentioned earlier, the interpretation of Eq. (2.119) as a linear
convolution is an approximation. Suppose that the elevation angle ¢ is fixed, and
consider only the variation in azimuth angle 6. Because the integration is over a
full 27 radians and the integrand is periodic in 8 with period 2z, the integration
over azimuth is a circular convolution of periodic functions.

This would not appear to be the case if instead 6 is fixed and ¢ varies
because the integrand is over a range of only 7 radians. However, one could
equally well replace Eq. (2.119) as




yO,0;R)=A, | | E-6,E-0)p, &Ryl dé

E=—1 ;:—.?:,-"'2

= p(B, ¢; Ry) =, *,E%(0, 9)
(2.120)

For fixed azimuth, this is now a circular convolution of periodic functions
in elevation. Taken together, the two integrals over the angular variables
implement a two-dimensional weighting and averaging over the (6, ¢) space. So
long as the antenna beamwidths are small compared to 2z, this circular
convolution will closely approximate a linear convolution in the vicinity of (6,
9)-

Figure 2.26 illustrates intuitively in one angle dimension the process
described by Eq. (2.119). Assume that the elevation angle is fixed at ¢ = 0° and
consider only the azimuth variation. An array of ideal point scatterers is
illuminated by a radar that scans in azimuth across the target field. The response
to any one scatterer is maximum when the radar boresight is aimed at that
scatterer; as the radar boresight moves away, the strength of the echo declines
because less energy is directed to the scatterer on transmission, and the antenna
1s also less sensitive to echoes from directions other than the boresight on
reception. For an isolated scatterer, the amplitude of the coherent baseband
received signal (6, 0; R,) at the receiver output will be proportional to £2(8,
0). Thus, a graph of the received signal mimics the antenna two-way azimuth
voltage pattern.
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FIGURE 2.26 When scanning past an array of point scatterers, the receiver



output is a superposition of replicas of the antenna pattern.

Assuming a linear receiver so that superposition applies, the response to
two closely spaced point scatterers is proportional to two replicas of the
antenna pattern, overlapped and added to get a composite response. If the two
scatterers are close enough together, the individual responses are not resolved,
but instead blur together into a single peak as illustrated in Fig. 2.26. The details
of the combined response depend on the relative phase of the two individual
responses; they may combine in or out of phase, yielding significantly different
composites. However, the separation at which scatterers are consistently
resolved regardless of relative phase clearly depends on the antenna pattern
E*(6, 0), and in particular on the mainlobe beamwidth.

Because of the approximately linear convolution relation of Eq. (2.119) the
spatial Fourier transform of the observed signal is approximately the input
spatial Fourier transform multiplied by the Fourier transform of the antenna
pattern. Practical antenna patterns have lowpass spectra. Equation (2.121) gives
the 1deal two-way azimuth voltage patterns for circular and rectangular
apertures of width D (Balanis, 2005):

. [J,(xDsin8/2)]*
E“(@8,0)= iz %m '{f ) } (circular aperture)
mDsing/ A
E? e, 0)= 5111{_;er.5111 g ‘ff' ) } (rectangular aperture)
mDsind/ A

(2.121)

Figure 2.27 plots these patterns on a decibel scale for the case D = 404.
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FIGURE 2.27 Two-way antenna voltage patterns for ideal, uniformly



illuminated circular and rectangular apertures.

The corresponding spatial spectra are shown inFig. 2.28. For the
rectangular aperture, it is a triangle function with a support of twice the aperture
width. The reason is easy to see: the one-way voltage pattern is just the inverse
Fourier transform of the aperture function, which for uniform illumination is a
rectangular pulse of the width of the aperture. When that pattern is squared to get
the two-way pattern, the Fourier transform of the squared pattern is the self-
convolution of the Fourier transform of the unsquared pattern. Thus, the
rectangular aperture function is convolved with itself to give a triangle of twice
the aperture width. The spectrum for the circular aperture has the same width
but is somewhat smoother.
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FIGURE 2.28 Spatial spectra corresponding to the antenna patterns of Fig. 2.27.

The spatial spectra of these idealized, but typical, antenna patterns are
lowpass functions. Thus, the upper frequencies in the spatial spectrum of the
observed data will be strongly attenuated and in fact effectively removed. Since
resolution is proportional to bandwidth, Eq. (2.121) and Fig. 2.28 show that the
antenna pattern reduces resolution because it has a strongly lowpass spatial
spectrum.

2.7.3 Variation with Range

A development similar to that in Sec. 2.7.2 can be carried out to specialize Eq.
(2.117) for the variation of received voltage in the range dimension along the
boresight look direction (6,,4,)..2 First, interchange the order of integration in
Eq. (2.114) so that the outer integral is over range. Next, define the new quantity



P(R; 6y,00)= || E*(©6—6y,0—00)p’ (R, 6,0)d6 do

— IJ’{RI HF {D}:E:H ;kn‘IEE{HI{Q.} |6‘:t-".;|,ﬁ‘l:|:.‘lu
(2.122)

This is the reflectivity variation in range, taking into account the azimuth
and elevation averaging at each range due to the nonideal antenna power pattern.
Note that in the limit as the antenna power pattern tends to the ideal E*(60, ¢) —
Gop(0, @), thenpR;m)—p'(R,6,.0,) that is, the “angle-averaged” reflectivity
exactly equals the effective reflectivity along the antenna look direction, as
expected.

Applying Eq. (2.122) to Eq. (2.117) leaves (Munson and Visentin, 1989)

f-;[fE{_TR; AP ]= A P(R;By,0,) *x { 1[¥j }

JR=0 L€

(2.123)
or an equivalent equation, using time units instead of range units
ol Y.
Y(t; 8,90) = A,p| 360,00 |7, [X()]
=A, [ x(t—t)5 | S 6,0, |t

- F =0 \ 2 7

(2.124)

Equation (2.123) or (2.124) shows that the complex voltage at the output of a
coherent receiver versus time for a given antenna look direction is the
convolution in the range dimension of the angle-averaged effective reflectivity
function in that look direction, #(R;6a. ) with the waveform modulation function

x(?).

2.7.4 Noncoherent Scattering

Equation (2.114) and its approximate form (2.117) assume coherent addition of
individual differential scatterer echoes; that is, the complex amplitude
(magnitude and phase) of the total response is the complex sum of the
differential complex echoes. For distributed area or volume clutter contributing
very large numbers of scatterers with essentially random phases such as rain or
natural ground clutter (grass, trees, water, etc.), it i1s more useful to model the
scatterer reflectivity as having a random phase with either a random or
nonrandom magnitude. The total received signal is then also a random variable,




and the expected value of the received power becomes of interest.
FromEqgs. (2.112) and (2.113), the power of the integrated received
voltage can be written

2 exp[—j(4r /A)R 2 {  92R
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(2.125)

The subscripts “1” and “2” distinguish the spatial variables in the two integrals.

Returning to the expression of the reflectivity distribution p(R, 6, ¢) as the
product of its phase term exp[jy/(R, 6, ¢)] and its amplitude (R, 6, ¢), model
as uniformly distributed over (0, 2z] and white in all three spatial variables,
while { may be random or deterministic; if random, it is statistically
independent of w. The autocorrelation function of p 1s then sp (R, 8, ¢) = |{(R, 6,
)P 0p(R)0(0)0,(¢) and the mean received power becomes

2 2R}
|}HH|;|;¢'U;”| = .. RLE - Onl| "f|f——?_ !—W
v
il i £ 2R\ [
=, R4| E(6—6,,0 - oﬂ}| x | ]L_T,J dv
v
(2.126)
Again assuming a symmetric antenna pattern, this becomes finally
(6, ¢ r}| x ZRHE
f 0 RE R "a -a‘r :
(2.127)

Equation (2.127) 1s the noncoherent equivalent of (2.117). It shows the
received power in the case of noncoherent scattering to be the 3D convolution
of the squared reflectivity, weighted by R2, convolved with the two-way
antenna power pattern and the waveform power envelope. Thus, the received
power still obeys a convolutional model, but with differences in the range

dependence. Similar results are developed for weather clutter in Sec. 4.4 of
Doviak and Zrnic (1993).

2.7.5 Projections



The range-averaged reflectivity A(6.¢; Ra) of Eq. (2.118) and the angle-averaged
reflectivity P(R;: 6. ¢) of Eq. (2.122) are examples of projections. In each case,
the three-dimensional reflectivity is reduced in dimension by integrating over
one or more dimensions. The range-averaged reflectivity was reduced to a two-
dimensional function by integrating over range, while the angle-averaged
reflectivity was reduced to a one-dimensional function by integrating over both
angle coordinates.

The idea of projections, particularly the angle-averaged projection
PiR; 8, 0:), will be important in deriving the polar format spotlight SAR
algorithm in Chap. 8. The projections that will be needed are integrals over
straight lines or planar surfaces. The averaging in Eq. (2.122) is over the
surface of a sphere. However, for small beamwidths only a region of 6, radians
in azimuth and ¢, radians in elevation contributes significantly to the integral,
and at long ranges this limited region is nearly planar.

2.7.6 Multipath

The convolutional model of the measured range profile is based on the
assumption of superposition of backscattered fields and a one-to-one mapping
of echo arrival time to range, t — R = ct/2. The superposition of electric fields
is a valid assumption, but the mapping of time to range may not be. To illustrate,
consider Fig. 2.29, which diagrams two phenomena that violate this assumption.
Figure 2.29a illustrates the problem of multipath, in which echoes from the
same target arrive at the radar receiver via two different paths. The first is the
direct path of total length 2R,,. The second is the “multipath” or “ground bounce”
path with length R, + R, + R, > 2R,.. Though not shown, it is also possible for a
portion of the transmitted wave to arrive at the target via the ground bounce and
be scattered back along both paths, meaning that there may also be an echo with
a time delay corresponding to a two-way path length of 2(R, +R, +R,).
Consequently, one scatterer may produce echoes at three different apparent
ranges 1f multipath is present. Whether these appear as distinct echoes depends
on the relationship between the path length difference and the pulse length. The
ground bounce echoes are often, but not always, significantly attenuated with
respect to the direct path echo. The degree of attenuation depends on the bistatic
scattering characteristics of the surface, the antenna pattern characteristics
(because the multipath bounce is not on the peak of the mainlobe) and the
problem geometry. As the range between target and radar varies, the path length
difference also varies, so that the direct and multipath bounces may alternately
add in and out of phase, provided the path length difference is such that the two
received echoes overlap. Multipath is generally most significant for targets
located at low altitude over a good reflecting surface such as a relatively
smooth terrain or calm ocean and at long range, so that the grazing angles
involved are small.
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FIGURE 2.29 [Illustration of two scattering phenomena which violate the one-to-
one mapping of time to range: (a) multipath, (b) multiple bounce.

Figure 2.295b illustrates the effect of multiple bounce echoes in a situation
involving two scatterers. A portion of the energy reflected from the more distant
scatterer bounces off the nearer scatterer, then reflects a second time off the
distant scatterer and returns to the radar. Obviously additional multiple bounces
are also possible. For the situation sketched, three apparent echoes will again
result, with the third due to a phantom scatterer 2AR behind the second actual
scatterer. As with multipath, the amplitude of multiple bounce echoes often falls
off rapidly, and the same considerations of in- and out-of-phase superposition
apply.

These possible differences in the measured and actual reflectivity
distributions do not mean that range profile measurements are not useful. They
do mean that in situations where significant multipath or multiple bounce
phenomena are possible, the range profiles must be interpreted with care.

2.8 Spectral Model

There is one more interpretation of the received radar signal that proves useful
in subsequent chapters. The preceding two sections have emphasized linear
filtering models of the spatial reflectivity distribution as observed through the
received complex baseband signals. However, it was pointed out previously
that radar cross section is a function of, among many other things, the radar
frequency. Thus, it is useful to investigate the significance of the radar



transmitted frequency F;, on the reflectivity measurements.

To understand the role of transmitted frequency, it is necessary to deal with
the radar signal while it 1s still at the radar frequency F,. If the development
from Eq. (2.110) to Eq. (2.124) is repeated without demodulating the signals to
baseband and the range variation is considered, the RF version of Eq. (2.124)
can be obtained:

V(t; 6y, 00)= A, ‘ x(t—t }p| 5.;.,0@ |e-\(p{ 2rEt')adt’
=0

ot Y )
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(2.128)

Now consider the Fourier transform of ¥{#; o, ¢) with respect to the time (range)
variable ¢. Using simple properties of Fourier transforms gives

2A,
Y(F;6,, 05)=

*X{_F}P[E{F_E‘J}

c

(2.129)
Figure 2.30 provides a pictorial interpretation of this equation under the

assumption that the transmitted waveformx(¢) is a narrowband waveform. In
this case,

Spectrum of Angle- A
Averaged Range Reflectivity

P2

. Pulse Spectrum

X(F) F

>
FIGURE 2.30 Pictorial interpretation of Eq. (2.130), illustrating the spectral
sampling effect of a narrowband radar pulse.
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(2.130)



so that the amplitude of the spectrum of the received pulse, and therefore of the
pulse itself, is proportional to the amplitude of the spectrum of the angle
averaged range profile, evaluated at the transmitted frequency. Since it is the
complex spectrum that appears in Eq. (2.124), both the amplitude and phase of
the returned pulse are affected by the amplitude and phase of the reflectivity
spectral sample. Equation (2.130) shows that a narrowband radar pulse can be
interpreted as measuring a frequency sample of the spectrum of the angle-
averaged reflectivity range variation.

Another case of interest occurs whenx(f) is a wideband pulse of
bandwidth f Hz. For some waveforms such as the linear frequency-modulated
pulse, the magnitude of the spectrum X(F) is approximately a rectangle as shown
i nFig. 2.31. The spectrum of the receiver waveform ¥f:€. %) is then
approximately that of the angle-averaged range profile over the bandwidth of the
pulse, modified by the phase of the pulse spectrum:

Spectrum of Angle- A
Averaged Range Reflectivity

!_—Tufse Spectrum
X(F) F
3

P

|
—pI2 52
FIGURE 2.31 Pictorial interpretation of Eq. (2.131) illustrating the spectral
windowing effect of a wideband radar pulse.
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In other words, the pulse spectrum acts as a window selecting a portion of the
spectrum of the angle-averaged reflectivity. This result will be useful in
understanding the use of linear FM and other modulated waveforms to achieve
fine range resolution in Chap. 4.

2.9 Summary
An understanding of the nature of the signals of interest is prerequisite to the
design of successful signal processing systems. This chapter reviews the most



common signal models used in designing and analyzing radar signal processors.
It has been seen that multiple views of the radar echo are used: its variation in
amplitude, space, time, and frequency, and deterministic and statistical
interpretations of these variations.

Radar signal modeling traditionally focuses most strongly on amplitude
models, that 1s, on radar cross section. RCS i1s viewed as a deterministic
quantity, predictable in principle through the use of Maxwell’s equations if the
scattering 1s modeled accurately enough. The radar range equation in its many
forms (only a very small subset of which has been introduced here) 1s the radar
engineer’s most fundamental tool for estimating received signal amplitude or,
conversely, determining required system characteristics such as transmitted
power or antenna gain.

The radar system is a measuring instrument, used to observe the variation
of RCS in space. Its pulse function (modulation and carrier term) and antenna
power pattern determine its measurement characteristics, which in turn
determine the achievable resolution and required sampling rates. The effect of
the radar measurement system on the spatial variation of observed RCS is well
modeled by the convolution of the combined pulse-and-antenna pattern
measurement kernel with the three-dimensional reflectivity function. This
important observation means that the tools of linear systems analysis can be
brought to bear to help analyze and understand the performance of radar
systems. The carrier frequency, in combination with any Doppler shifts,
determines what portion of the reflectivity frequency spectrum is sampled by the
pulse. This observation reinforces the need for frequency domain analyses of
radar measurements. Linear systems and frequency domain viewpoints are
relied on heavily throughout the remainder of the book.

Even though RCS is a deterministic quantity, its sensitivity to radar
frequency, aspect angle, and range coupled with the complexity of typical
targets results in very complex behavior of observed amplitude measurements.
Statistical models are used to describe this complexity. A variety of statistical
models, comprising both probability density functions and correlation
properties, have gained acceptance for various scenarios and form the basis for
much analysis, particularly in calculations of probabilities of detection and false
alarm, two of the most important radar performance measures.
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Problems

1. Find the received power P, expected from a radar and target having the
following parameters: RF frequency = 95 GHz (W band), transmitted
power = 100 W, antenna beamwidth = 2° in azimuth and 5° in elevation,
system losses = 5 dB, target range = 3 km, target RCS =20 m?. Use Fig.



1.3 and assume operation near sea level to estimate atmospheric losses.
What is the ratio in decibels of the received power to the transmitted
power?

2. By how many dB will the received power be reduced (not the absolute
power received, but the reduction in power) in problem 1 if the weather
changes from clear to a heavy rain of 25 mm/h? Estimate the needed
parameters from Fig. 1.4.

3. Suppose the parameters of a radar are such that the power of the echo from
a particular target is just detectable at a range of 50 mules. If the target RCS
is reduced by 10 dB, what will be the new detection range? By how many
dB must the RCS be reduced to reduce the detection range to 5 miles?

4. According to the Smithsonian Air and Space Museum, the RCS of a B-52
bomber is about 1000 n?, while that of a B-2 stealth bomber is 10° m?. If a
given radar system could detect the B-52 at a range of 100 km, at what
range could the same radar system detect the B-2 stealth bomber? Assume
that atmospheric losses are negligible. If the B-2 flies at 550 mph, how
much warning time would the radar give?

5. The example around Eq. (2.12) in the text calculated a received power P, =
3.07 x 10 W at a range of 10 km. If the radar noise figure is 10 dB and the
receiver noise equivalent bandwidth is 10 MHz, what is the expected
signal-to-noise ratio in dB for the same target and range? Assume the
receiver is at the standard temperature 7, = 290 K.

6. Consider a “millimeter wave (MMW) seeker,” which is a small radar
typically used on a small missile. The RF frequency is 95 GHz and the 3
dB beamwidth is 1° in both azimuth and elevation. The range resolution AR
is 5 m. The grazing angle of the antenna beam with respect to the ground is
20°, and the slant range to the ground, i.e., along the line of sight of the
antenna, is 5 km. The terrain has a reflectivity of ¢° =—10 dB. Is the range
resolution of this system beam limited or pulse limited? What is the
approximate area of the resolution cell on the ground? What is the total
RCS o of the resolution cell?

7. A radar is attempting to detect a point target in the presence of ground
clutter. The parameters of the radar and its environment are such that the
SNR at a range of R = 10 kmis 30 dB, while the clutter-to-noise ratio
(CNR) at the same range 1s 20 dB. The detection performance at this range
1s “clutter limited” because the clutter is the dominant interference.
Assuming pulse-limited clutter interference, at what range will the SNR
and CNR be equal? Equivalently, at what range will the signal-to-clutter
ratio (SCR) equal 1 (0 dB)?

8. Consider the WSR-88D “NEXRAD” weather radar used by the U.S.



10.

1.

12.

National Weather Service. It is an S-band (3 GHz) system with elevation
and azimuth beamwidths of 0.88° and pulse length in its “short pulse” mode
of 7=1.57 ms. Suppose the radar measures the RCS in a region of a rain
storm 50 km away as ¢ = 20 m?. Assume the simplified model of the
resolution cell volume used to get Eq. (2.25), namely AV = (AR)(RO;)(R¢;)
= AR - R?0,¢,. What are the range, azimuth, and elevation resolutions, and
the resolution cell volume A}? What is the volume reflectivity #? Using
Eq. (2.44), compute the value of the meteorological reflectivity factor Z in
mm®/m?’. Using Table 2.2, how hard is it raining? Note: The value of Z that
results from Eq. (2.44) will be in m®/m?® = n?® if wavelength is in meters.
Convert this to units of mm®m?® by multiplying by 10'® before converting to
a decibel scale to get dBZ.

In terms of wavelengths, by how much must the range between the radar and
a scatterer change in order for the received echo phase to change by 180°?
How far is this at RF frequencies of 1 GHz (L band), 10 GHz (X band),
and 95 GHz (MMW band)?

The fourth degree chi-square PDF used to model the case of one dominant
scatterer with many small scatterers is an approximation to the exact model
for this case, which is the non-central chi-square PDF of degree 2. Both
PDFs are listed in Table 2.3 along with the formulas for their variances.
Show that when they both have the same mean &, their variances will also
be the same if the non-central chi-square parameter a =1++2,

Suppose a target was modeled as consisting of one large scatterer and many
small ones, but that the ratio a* of the large scatterer RCS to the sum of the
small scatterer RCS values is 1 (instead of 1++2 as assumed by the fourth-
degree chi-square model). Assuming the means of the two distributions are
the same, what degree 2m should be chosen for the chi-square so as to
match the variance of the non-central chi-square of degree 2 (See Table
2.3.) Repeat for a®> = 10. Note: m does not have to be an integer.

Part of the significance of choosing the probability density function used to
model target RCS (or clutter or other interference) is that the differences in
the “tails” of the PDF can have a significant impact on the probability of
observing relatively large signal values, sometimes called signal “spikes.”
Recall that the probability that a random variable x described by a PDF
p,(x) exceeds some value T is given by

Plx>T)= J . (x)dx
T

Consider a set of RCS data with a mean value (linear scale) of 1.0.
Compute the probability that the RCS o 1s greater than 2 when an
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14.
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17.

18.

19.

20.

21.

exponential PDF is a good model for the RCS statistics, and again when a
fourth-degree chi-square is a good model for the statistics. What is the
ratio of the exponential PDF value to the chi-square PDF value? Repeat for
o> 10.

A ground-based airport surveillance radar has an antenna that rotates at 10
rpm (revolutions per minute). The 3-dB azimuth bandwidth of the antenna
is 3°. Assume the PRF is chosen to give an unambiguous range of 150 km.
How many pulses will be transmitted during the time a given target is
within the antenna mainbeam during a single rotation? (This is the number
of “hits” the radar gets on the target on each rotation.)

Consider a complex target with dimensions of 2 m by 4 m. What is the
maximum change in aspect angle needed to decorrelate the target RCS,
assuming the radar frequency remains fixed at /=3 GHz? Repeat for F'=
35 GHz

For the same target considered in the previous problem, what is the
maximum frequency step needed to decorrelate the target RCS, regardless
of radar-target aspect angle?

A stationary, fixed-frequency radar collects several CPIs of data, each
consisting of several pulses, from a stationary complex target. What is an
appropriate correlation model for this data within a CPI? What is the
appropriate model from one CPI to the next? Justify the answers.

Consider a radar at a fixed height above the ground of 4 m, with the
boresight intercepting the ground at a slant range of R m. Show that in this
scenario, the constant-gamma model for ¢° given by Eq. (2.64) implies that
the received clutter power will be proportional to R if the clutter echo is
beam-limited. What will be the proportionality if ¢° is independent of
grazing angle?

Use the GTRI clutter model of Eq. (2.65) with A =3 cm and the X-band
data in Table 2.6 to compute and plot or sketch on a single graph the
variation in ¢° in dBsm for grass, trees, and urban clutter as the grazing
angle J varies from 10° to 70°. Assume o, = 104.

Show that the GTRI model predicts that ¢° becomes independent of surface
roughness when g, < 104.

Consider the four radar system parameters of antenna azimuth plane size,
antenna elevation plane size, transmitter power, and pulse length. Which of
these affect the signal-to-clutter ratio (SCR) in a beam-limited area clutter
scenario? Repeat for a pulse-limited area clutter scenario. Justify the
answers.

Use the Billingsley clutter model to estimate the time lag required for the



AC term only of the clutter to decorrelate to 10 percent of its power
(maximum correlation value) for wind speeds of 5, 15, and 25 mph.
Assume F, = 1 GHz. Repeat for 10 GHz.

22. At the standard temperature of 7, = 290 K, at what frequency in hertz does
S,(F) of Eq. (2.76) fall to 3 dB below its value at /=0 Hz? It may be
necessary to find the answer numerically, but a small number of terms in
the series approximation to the exponential can be used to develop a good
initial estimate.

23. What is the effective noise temperature in kelvins for a system with a noise
figure of 3 dB? Repeat for 6 dB and 10 dB.

24. Consider an aircraft that has a radial velocity of Mach 2 (about 660 m/s)
away from a stationary L-band (1 GHz) radar. What is the difference in the
magnitude of the Doppler shift calculated from Eq. (2.93) and the
approximation resulting from Eq. (2.97)? Note: On some calculators, the
difference may be too small for the calculator precision. If this is the case,
try using MATLAB® or a similar computational system to calculate the
difference; use format 1ong in MATLAB® to display more decimal
places than the default. The difference can also be estimated by
considering the largest term dropped from the series expansion [Eq.

(2.95)].

25. Suppose two aircraft are flying straight and level at the same altitude. At a
particular instant one is traveling due north at 100 n/s, while the other 1s
flying directly at the first but in the southwesterly direction. What is the
radial velocity between the two aircraft at that instant? What is the Doppler
shift in hertz, including the sign, at that instant?

26. A stationary radar with a rotating antenna (typical of an airport approach
radar, for instance) observes an aircraft moving through its airspace in a
straight line at a speed of 200 mph. The aircraft approaches from the east,
flies directly in front of the radar, and continues to the west. Sketch the
general behavior of the radial velocity of the target relative to the radar as
it flies from east to west through the airspace. Label significant values.

27. Derive an expression for the maximum radial velocity of a constant-radial
velocity target such that the total range migration in a CPI of M pulses
collected with a PRI of 7' seconds is less than the range resolution c7/2.
The answer will be in terms of M, T, and 7. What is this velocity for a
relatively long (for Doppler processing purposes) CPI of 30 pulses at 7=
1 ms and a pulse length of 10 us?

28. In Egs. (2.100) to (2.104) the time-varying range between a moving radar
and a stationary target was computed. A series expansion was used to
approximate the range as a quadratic function (specifically, a parabola),




and then the instantaneous Doppler shift was shown to be a linear function
of time. What kind of conic section curve describes the range variation if
the approximation to the square root is not made? Derive the formula for
the instantaneous Doppler shift in this case.

29. Consider again the series approximation to range referred to in the previous
problem. Find the maximum absolute value of ¢ such that the magnitude of
the dropped fourth-order term in ¢ in the series approximation [see Eq.
(2.101)] 1s less than 10 percent of the magnitude of the retained second-
order term. (This condition is a limit on the amount of data that can be
collected while still using the approximation to the range.) Give the

numerical value of the maximum allowable # when v =100 m/s and R, = 10
km.

30. Suppose the reflectivity distribution p(8, ¢, R) consists of a single isolated
point scatterer at coordinates (6, ¢, R), 1.€., p(0, ¢, R) = p,0,(0 —0)o,(¢p —
#,)0p(R — R,). Determine y(60,, ¢,, R,) of Eq. (2.114). What determines the
shape of this function in the azimuth (¢) dimension for fixed ¢ and #?
Repeat for the elevation and fast time dimensions with the other two
variables fixed.

31. The first zero of the function J,(x) occurs at x = 3.8317. What is the ratio of
the Rayleigh azimuth beamwidth of a circular aperture of diameter D with
uniform illumination to the azimuth beamwidth of a rectangular antenna of
the same width D, also with uniform illumination? Figure 2.27 can be used
as an approximate check on the result.

32. Consider a scatterer at elevation 4 above the ground plane, and an incoming
EM plane wave at a grazing angle of 0 radians. What is the difference in
path lengths between the “single bounce” direct reflection (path #1 in the
adjoining figure) and the “double bounce” multipath reflection (path #2), as
a function of 0 and 4? If 4 = 50 m and the radar slant range resolution is AR
= 20 m, will the double-bounce echo appear in the same range bin as the
single-bounce echo?

33. Continuing with the previous problem, assume the range bin spacing is
greater than the path length difference so that both echoes combine in a



single range bin. Develop a formula for the phase difference between the
two echoes in terms of 9, /, and the wavelength 4. If the amplitudes of the
direct and double-bounce reflections are the same (very unlikely), at what
values of 4 will there be a maximum total signal amplitude? At what values
of & will there be a null in the signal amplitude?

34. oR in the figure below is the maximum path length difference between a
constantrange path of length R over an integration angle 6 and a straight-
line path of equal range R at the center of the integration angle. Find the
maximum integration angle @ such that 6R < A/8. The answer will depend
on R. A path length difference of this amount would lead to an echo phase
change of —-47oR/A = —n/2 radians, often used as an upper bound on the
tolerable phase error in various calculations.

1 This ignores earth curvature effects that are significant in very long range or spaceborne radars. See
Nathanson (1991) or Skolnik (2001) for additional details.

Z A form of rain that occurs when moist air is lifted over an obstacle such as a mountain range, cooling as it
rises and condensing into rainfall.

3 RCS also varies similarly with angle over the full 3D sphere, not just in a 2D plane.

4 An unfortunate tendency in radar terminology is to use the name of the PDF of amplitude when actually
discussing the PDF of power. The most common example is to refer to a “Rayleigh RCS” target, or some
similar term. A target with an exponential PDF for RCS is almost certainly meant when this occurs. Caution
is advised to be certain as to whether a given PDF models amplitude or power.

3 Because the power P of a real sinusoid is related to its amplitude 4 according to P = A%/2 instead of just P
=A% as with a complex sinusoid, some authors present a slightly different form for the voltage distributions.

8 The autocorrelation function for any one many-scatterer target can vary significantly from the results
predicted by this analysis and the average shapes seen in Fig. 2.13; the expected value of the
autocorrelation must be estimated by averaging over many similar targets.

Tltis probably more common to define a constant-velocity target so that positive v corresponds to
increasing range, but the preference here is to define v so that a positive v gives a positive Doppler shift.



8 Movement of a target across multiple range bins during the series of pulses due to high rates of radar-
target motion is known as range migration. It is much more common in imaging radar due to their much
longer observation times, and so is discussed in Chap. 8.

2 The results in this section must be modified for an electronically scanned antenna, for which the antenna
pattern is a function of the scan angles.

10 The analysis can be carried out equally easily for an off-boresight look direction. The only difference is to
substitute an antenna gain value other than the peak gain G.



CHAPTER 3
Pulsed Radar Data Acquisition

A has been seen, radar measures the spatial distribution of reflectivity in the

three-dimensional spherical coordinate system of range, azimuth angle, and
elevation angle. Pulsed radars do this by emitting a series of individual pulses
and recording the received voltage as a function of time, equivalent to range.
Modern pulsed radars use coherent receivers so that the measured voltage is
complex valued. They also record and process the data digitally. As with any
digital data acquisition system, the selection of sampling rates and quantization
strategies are crucial design decisions, affecting signal fidelity, resolution,
aliasing, and noise properties, as well as processor memory and computational
requirements.

3.1 Acquiring and Organizing Pulsed Radar Data

3.1.1 One Pulse: Fast Time

Suppose a radar transmits a single pulse of length  seconds. The leading edge
of the pulse is emitted at time # = 0. As discussed in Chap. 2, the echo power at
the receiver due to clutter and targets will decay with range or time, typically at
rates between R! and R, while the noise power generated within the receiver
will be constant. Figure 3.1 is a notional illustration of this behavior. Depending
on the goals of the particular radar mode of operation, the radar will measure
the received power over some interval in range, say from R, to R,. The interval
R, — R, is called the range swath or the range window R,. The range to the
beginning of the range swath, R,, may be influenced by a number of factors. For
example, for an airborne downlooking radar it might equal the altitude of the
radar, since no clutter echoes could occur at a shorter range. In a ground
imaging mode, it would likely be determined by the range to the nearest edge of
the antenna mainbeam. Similarly, the end of the range swath, R,, might be set in
different radars by the far edge of the mainbeam on the ground, or by the
maximum expected detection range for targets of interest. Another constraint on
R, is the unambiguous range, to be discussed shortly.
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FIGURE 3.1 Signal level versus range, and range swath or window R,,.

In a monostatic radar, the radar receiver must be 1solated from the antenna
during pulse transmission so as to avoid damaging the sensitive receiver circuits
with leakage of the high-power transmitted signal. Consequently, the receiver is
off for the first 7 seconds after pulse transmission begins, so the minimum range
from which a full echo can be received is R, = ¢c/2 m. In practice, R, may be
somewhat larger to allow for the finite switching time needed to reconnect the
receiver to the antenna after pulse transmission, and in some environments to
protect against particularly strong near-in clutter. Any clutter or target scatterer
closer to the radar than R_;, will produce an echo that arrives in part during the
initial 7 seconds after transmission. That portion of the pulse echo will therefore
not be seen at the receiver. A pulse that is not received in whole or part because
it arrives during the time the receiver is isolated is said to be eclipsed.

The received signal 1s demodulated using a coherent receiver as described
in Chap. 1. The resulting complex-valued baseband signal is sampled at a high
rate, typically in the range of hundreds of kilohertz to a few tens of megahertz
and sometimes higher. To implement the desired range swath, sampling begins
at time ¢, = 2R,/c after pulse transmission and ends at time ¢, +7 = 2R,/c + 1.
The additional 7 seconds at the end of the sampling period are needed to capture
the end of the echo of the pulse from the far edge of the swath. The resulting
samples are stored in a digital memory as shown in Fig. 3.2a, where each cube
represents a single baseband sample. A set of L samples from a single
transmitted pulse are referred to as range bins, range gates, range cells, or
fast-time samples.! The phases of these complex samples are the fast-time
phase history of the pulse echo data.
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FIGURE 3.2 Organization of received data: (a) vector of fast-time samples for
one pulse, (b) matrix of fast-time/slow-time samples for one CPIL.

How rapidly should one sample the echo from a single received pulse, i.e.,
what should the spacing of the range bins be? The Nyquist theorem states that
the sampling rate ', should equal or exceed the bandwidth of the received signal
(see App. B). InChap. 2 it was shown that the received signal in the range
dimension can be modeled as the convolution of the range reflectivity function
and the modulation function x(¢) of the transmitted waveform. The spectrum of
the received signal is thus the product of the spectra of the range reflectivity
function and the modulation function. This means that the bandwidth of the
received fast-time signal will be limited by the bandwidth of the transmitted
pulse. Therefore, the Nyquist rate in fast time is simply the bandwidth of the
transmitted pulse.

As shown in App. B, the spectrum of the simple complex exponential pulse
of frequency F,, Hz is a sinc function in the frequency domain centered at F,, Hz.
This spectrum is not strictly bandlimited; however, the 3-dB bandwidth g, is
0.89/t Hz, both the Rayleigh bandwidth . and 4 dB bandwidth §, are 1/7 Hz,
and the null-to-null bandwidth §,, is 2/t Hz. These approximate bandwidth
measures are shown in Fig. 3.3 with F; = 0 for convenience.
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FIGURE 3.3 Four definitions of bandwidth for the spectrum of a simple
rectangular pulse of duration .

Since the sinc spectrum is decidedly not bandlimited, a Nyquist bandwidth
cannot be unambiguously defined for the simple pulse. An approximate
bandwidth can be defined as the two-sided frequency interval beyond which the
spectrum amplitude is “insignificant,” but this approach is not very useful in this
case because of the slow decay of the sinc function. For example, a criterion of
40 dB reduction in the spectrum from its peak gives an approximate Nyquist
bandwidth of about 66 times the 3-dB bandwidth. In radar, 3-dB bandwidths are
commonly used; thus “the bandwidth” of the simple pulse is often defined to be
p; = 0.89/t Hz. More conservative definitions use the Rayleigh bandwidth of 1/7
Hz and the null-to-null bandwidth f,, = 2/t Hz, which encompass 78 percent and
91 percent of the total spectrum energy, respectively. The Rayleigh bandwidth
p. 1s used here to estimate appropriate range sampling rates, i.e., the sampling
rate F, =p,, so the sampling interval in fast time is 7, = 1/F, = 1/4,. The
corresponding range bin spacing is

AR =— " meters
(3.1)

In practice, the fast time signal is often sampled at some margin above the
Nyquist rate. This compensates both for the transition band of receiver
antialiasing filters and for some of the non-bandlimited nature of common pulse
waveforms. Sampling rate margins of 20 to 50 percent are common.

It will be seen in Chap. 4 that pulses are often phase modulated in order to
increase their bandwidth. The pulse spectrum is then no longer a sinc function.



In fact, many phase modulated pulses are designed to have a spectrum that is
approximately constant magnitude (but with complicated phase characteristics)
over some desired bandwidth f, where £ 1s much larger than the simple pulse
bandwidth of approximately 1/z. Thus, an idealized model of the spectrum of the
ideal received phase-modulated radar pulse after translation to baseband is

Aexp[j®(F)] |F| {g
YR =
0 I:

(3.2)

where ®(F) is some phase function. Figure 3.4 shows an example, the
magnitude spectrum of a linear frequency-modulated or “chirp” waveform with
a time-bandwidth product of 100; this waveform is studied in Chap. 4. On the
normalized frequency scale shown, the spectrum is approximately rectangular
with support f €(— 0.5, + 0.5), corresponding to /2 Hz. This case offers a
relatively unambiguous definition of the bandwidth of the pulse (namely, 5 Hz),
making application of the Nyquist criterion to range sampling straightforward.
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FIGURE 3.4 Magnitude of the Fourier transform of a linear FM “chirp”
waveform having a time-bandwidth product of 100.

3.1.2 Multiple Pulses: Slow Time and the CPI

The radar transmits not just a single pulse, but a periodic series of pulses. In
some cases (€.g., a rotating weather or surveillance radar), the pulse series may
be continuously ongoing, but in many cases it is organized into groups of M



pulses. The time between pulses is denoted as the pulse repetition interval
(PRI) or inter-pulse period (IPP) and denoted as 7. Its inverse is the pulse
repetition frequency (PRF).2 The PRF may range from a few hundred pulses
per second (also called, casually, hertz) to tens and sometimes a few hundreds
of kilohertz.

The vectors of L fast-time samples collected for each of the M pulses are
typically organized into a two-dimensional matrix y[/, m] as shown in Fig. 3.2b.
The pulse number dimension is called the s/low time axis. The time required to
collect this data is simply MT seconds. If a coherent series of pulses was used
that time 1s called the coherent processing interval (CPI). The term CPI is used
to refer both to the matrix of data and the time required to collect it. While there
are exceptions, a CPI of data is usually collected using a constant PRI, constant
radar frequency (RF), and the same pulse waveform for all pulses in the CPL

Although the data for a single CPI is collected by columns (pulses), once it
is stored in memory it may be accessed in any fashion. In Fig. 3.2b the fourth
range bin for each pulse is shaded gray. This row of samples in the data matrix
is the slow-time signal for that range bin. These samples represent the echo
received after the same delay from the time of transmission for successive
pulses. Assuming the antenna boresight is not moving significantly from pulse to
pulse, these samples represent the reflectivity from the same range and angle,
1.e., the same region in three-dimensional space, measured with a sampling
interval equal to the pulse repetition interval PRI. The slow-time sampling
frequency is therefore the PRF.

How should the PRF be chosen? The PRF affects, and is affected by, many
aspects of the radar and environment. As was seen in the discussion of spatial
Doppler inChap. 2, the slow-time phase history reflects the Doppler
components in the received signal. One criterion for choosing the PRF is to
avoid aliasing of the spectrum replicas so as to preserve the information in the
Doppler spectrum for subsequent processing such as pulse Doppler target
detection or synthetic aperture imaging. Thus, the Nyquist requirement in slow
time is that the PRF be at least as large as the slow-time signal bandwidth.

A nonzero Doppler bandwidth results from two sources: intrinsic motion
of the scatterers in the area being measured, and motion of the radar platform. If
the area being measured is a target in the conventional sense of a man-made
vehicle or object, its intrinsic motion is simply the motion of the vehicle.2 If it is
clutter, then intrinsic motion can be due to wind blowing the leaves of trees or
blades of grass, waves on the ocean, falling and swirling rain, air-conditioning
fans on tops of buildings, and so forth. For instance, the Doppler power
spectrum corner frequencies in Table 2.7 imply an intrinsic Doppler spread on
the order of 0.5 to 1.0 m/s for rain at X band. The intrinsic Doppler spread of
moving man-made objects can be much larger. Consider an urban clutter scene
where a stationary radar observes automobile traffic with a maximum speed of
55 mph both toward and away from the radar. The radar therefore sees targets



with a velocity spread of 110 mph, or about 50 m/s. For a more extreme
example, consider a moving radar installed on one of two subsonic (200 nvs)
jet aircraft flying in opposite directions. As they approach, the closing rate is
400 m/s; once they pass, they separate at 400 m/s. The change in velocities
observed by the radar on one of the aircraft over time is 800 nv's.

A moving radar can also induce a spread in the Doppler bandwidth of
stationary objects in the beam. This is most relevant in air-to-ground radars.
Figure 3.5 illustrates in two dimensions an approach to estimating the Doppler
bandwidth of a patch of terrain induced by radar platform motion. The 3-dB
radar beamwidth is 6, radians. Recall from Chap. 2 that the Doppler shift for a
radar moving at velocity v with its boresight squinted y radians off the velocity
vector 1s

Boresight

Isorange Contour

llluminated
Ground
Patch
Physical
Beamwidth

Squint Angle v
|

“Direction of Flight

FIGURE 3.5 Geometry for estimating the Doppler bandwidth component due to
radar platform motion.
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(3.3)

Now consider three point scatterers P1, P2, and P3, each at the same range from
the radar. P1 and P3 are at the 3-dB edges of the antenna beam, while P2 is on
boresight. Because all three are at the same range, the received echo at a delay
corresponding to that range is the superposition of the echoes from all three
scatterers. However, each is at a slightly different angle with respect to the
aircraft velocity vector. P2 is on the boresight at the squint angle of y, but P1
and P3 are at y + 0,/2 radians. The difference in the Doppler shift of the echoes
from P1 and P3 is then



2v
Bp = [cos(y —63/2)— cos(y +63/2)]

4o 5 ( H'—‘. )
=—sin| —
A

sinys

(3.4)

Many radar antenna beamwidths are small, typically less than 5°. Applying a
small angle approximation to the sin(6;/2) term in Eq. (3.4) gives a simple
expression for Doppler bandwidth due to platform motion

2060

Pp=— 3 siny Hz
A

(3.5)

As can be seen fromFig. 3.5, Eq. (3.4) or (3.5) assumes the radar is
squinted sufficiently that the main beam does not include the velocity vector, that
is, | w | > 65/2. If the radar is forward looking or nearly so, then the cos(y — 65/2)
termin Eq. (3.4), which represents the largest Doppler shift in the mainbeam, is
replaced by 1. A more complete expression for the platform motion-induced
Doppler bandwidth is therefore

yr | > Hz (squinted)

206,
‘ —=sinyr Hz,
A
o =

W< Hz—3 (forward looking)

‘ E[l—cos{w +6,/2)]  Hz,
A
(3.6)

For example, an L band (1 GHz) side-looking ( = 90°) radar with a beamwidth
of 3° traveling at 100 m/s will induce 5, = 35 Hz, while an X band (10 GHz)
side-looking radar with a 1° beam flying at 200 m/s will induce 5, = 233 Hz.
The same two radars in a forward-looking configuration induce negligible
Doppler bandwidths of only 0.9 Hz and 0.5 Hz, respectively. Thus, while
absolute Doppler shift due to platform motion is highest for a forward-looking
system, the Doppler bandwidth spread is highest for a side-looking system.

In the previous example, the radar was viewing a patch of ground and the
Doppler bandwidth observed by a stationary radar would be 0 Hz. The nonzero
Doppler bandwidth g, is entirely due to the motion of the observing radar, not
to the characteristics of the target scene itself. The total Doppler bandwidth
observed is approximately the sum of the bandwidth induced by platform motion
[Eq. (3.6)] and the intrinsic bandwidth of the scene being measured. The PRF
should be chosen equal to or greater than this value if possible to meet the
Nyquist sampling criterion for the slow-time signal.

Although the Doppler spectrum of the illuminated terrain is both shifted



according to Eq. (3.3) and broadened according to Eq. (3.6) by relative motion
between the terrain and platform, the shift in center frequency is not relevant to
selection of the PRF; only the bandwidth determines the Nyquist rate. Also, note
that antenna patterns are not strictly limited in angular extent, and therefore the
motion-induced Doppler spectrum is not strictly bandlimited to the value based
on the 3-dB bandwidth given in Eq. (3.6). Nonetheless, Eq. (3.6) provides a
good basis for estimating motion-induced bandwidth.

3.1.3 Doppler and Range Ambiguities

For any sampled time signal, the sampling frequency determines the aliasing
interval of the DTFT of that signal. The DTFT of the slow-time signal in a given
range bin is the Doppler spectrum. The PRF is the slow-time sampling rate and
therefore determines the aliasing interval of the Doppler spectrum. For reasons
to be seen in Chap. 5, this interval is called the blind Doppler shift, denoted
F,,. The equivalent radial velocity interval is called the blind velocity v,. They
are given by

Uy, = Lpppaat m/s
2 2T
(3.7)

Because the Doppler or radial velocity spectrum is usually plotted on the
interval [-F),/2, + F),/2) or [-v,/2, +v,/2), the quantities F},,/2 and v,/2 are
sometimes called the unambiguous Doppler or velocity, £, orv,,. Care must
be taken to determine if a stated value refers to the full unambiguous interval F,
or v, or to the frequency (velocity) cutoff point + ¥, or £v,,.

Because the Doppler spectrum measured with a pulse burst waveform is
periodic in frequency, targets having a Doppler shift F,, (radial velocity v)
outside of the unambiguous Doppler or radial velocity interval will be aliased
into that interval. The apparent (aliased) Doppler shift £, or radial velocity v,
will satisfy

V=0, +N-Ty

(3.8)

where the integer n is chosen such that F,, and v, fall in the unambiguous
interval.

As a numerical example, consider a 10-GHz radar viewing a target with a
radial velocity v of +100 m/s. The Doppler shift will be F, = 6.67 kHz. If the
radar collects a CPI of data using a PRF of 3 kHz and obtains the Doppler



spectrum via a DTFT of the slow time signal in the appropriate range bin, the
blind Doppler and velocity intervals are F,, = 3 kHz andv, = 45 mvs,
respectively. The unambiguous Doppler shift and velocity are then 1.5 kHz and
22.5 m/s. The DTFT will be interpreted as covering [-1.5, +1.5) kHz and [-
22.5, +22.5) m/s. The target’s Doppler shift and velocity are outside of these
intervals and will therefore be aliased into them. With n = 2 in Eq. (3.8), it is
seen that the apparent Doppler and velocity are F),, = 0.67 kHz and v, = +10
m/s.

The PRF also sets a limit on the range swath. In particular, the maximum
range from which the end of the echo of one pulse can be received before the
next pulse is transmitted is the unambiguous range R,,. It must satisfy 2R, /c + 1
<7, so

R, =i{T—r}=€—. L—ir
.2 2\ PRF |,
:::i: {:
2 2PRF

(3.9)

The approximation in the second line applies when 7 = 7 and is often cited as
the definition of R,,. The far edge of the sampled range swath (R, in Fig. 3.1)
must be limited to R, m or less so the full pulse echo from a scatterer at R, is
received before the next pulse is transmitted.

In general, it is desirable to be able to choose the PRF to provide the
desired unambiguous range and Doppler bandwidth simultaneously. However,
unambiguous range increases with decreasing PRF, while the blind Doppler
interval increases with increasing PRF. Equations (3.7) and (3.9) can be
combined to make this explicit:
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Because the right-hand side of either version of Eq. (3.10) is a constant for a
given RF, increasing R, requires decreasing F),, or v,. As a result, in many
situations it is not possible to simultaneously obtain the desired unambiguous
velocity interval and unambiguous range with a single PRF.

To illustrate the effect of the PRF on range measurements more fully,
consider the 1dealized signals of Fig. 3.6a. In the first line, a pulse is transmitted
at time ¢ = 0. It is assumed that there are two targets present at ranges R, and R,,
and that the PRF is such that the unambiguous range falls between these two.
The target echoes occur 2R,/c and 2R,/c seconds after transmission, as shown.
Now suppose a second pulse is transmitted at a PRI 7= 2R /c. Assume 7 = T



so that the approximation R, = c7/2 from Eqg. (3.9) can be used for simplicity.
The same target echo profile is repeated, simply delayed by 7 seconds as shown
on the second line. The next line continues this behavior for a third pulse and
any subsequent pulses.
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FIGURE 3.6 Illustration of range ambiguous target returns: (@) pattern of
received data for three pulses, (b) total received signal.

Figure 3.6b shows the resulting total return observed by the radar. In the
first PRI (0 <¢ <T), only one target echo is observed because target #2 is past
the unambiguous range. In the second PRI (7" <¢ < 27) two target echoes are
observed: target #1 from pulse #2, and target #2 from pulse #1. This pattern
repeats in the third and subsequent PRIs until the pulse train ends. If the radar
receives detectable echoes from ranges up to NV times the unambiguous range,
the pattern of returns observed after each pulse will reach steady state in the Nth
PRI. In Fig. 3.6, it reaches steady state in the second PRI.

Once steady state is achieved, each pulse appears to result in two
detections at the apparent ranges R,, and R,, as shown in Fig. 3.6b. For target
#1, the apparent range is the actual range. However, target #2 was beyond R,
and so aliases to the apparent range R,, =R, — R,,,. In general, if the radar is
sensitive enough to detect targets beyond the unambiguous range for a given
PREF, the apparent ranges will be ambiguous. In particular, given a detection at
an apparent range R,, the target’s actual range could be any value R, that
satisfies



R’U = R.‘f + 1 .R.'.'.‘T
G.11)

and 1s within the plausible maximum detection range of the radar. Note that n =
0 for target #1 and n = 1 for target #2 in the example of Fig. 3.6. Techniques to
deal with range and Doppler ambiguities are discussed in Chap. 5.

Figure 3.7 illustrates the structure of the CPI of data that would result from
this example. Suppose the unambiguous range corresponds to seven range bins.?
Assume the ranges to targets #1 and #2 correspond to the sixth and eleventh
range bins. During PRI #1, only the first target is detected, so the first fast-time
column of data has only one detection in range bin #6. Target #2 will alias to
range bin 11— 7 = 4, so the second and subsequent pulses will show detections
in range bins #4 and #6.
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FIGURE 3.7 Steady-state range ambiguous return for the scenario of Fig. 3.6.

This example also illustrates the existence of a start-up transient in
processing when the returns are range ambiguous. If the scenario and PRF are
such that targets can be detected at ranges of at least (NV-1)R,,, but no further than
NR,, (N = 2 in the example), the received signal will not achieve steady state
until the Nth PRI (second PRI in this example).

Range aliasing also affects clutter returns. If the clutter echo power is
above the receiver noise levels at ranges exceeding R, the clutter echoes will
also fold over, so that the clutter competing with targets in the steady state may
actually be the combined clutter of several range ambiguity intervals. Also like
targets, the clutter level versus range in a given PRI will not reach steady state
until multiple pulses have been transmitted if the clutter is range ambiguous. If
the clutter reaches steady state in the Nth PRI, the first N — 1 pulses are often
called clutter fill pulses. Processing of this nonstationary data generally gives
degraded results; it is often better to discard the data from the clutter fill pulses



and use only the data received after steady state is achieved. Conversely, if it is
desired to have a certain number of steady state PRIs for subsequent processing,
the number of pulses is often augmented by the necessary number of clutter fill
pulses.

It is tempting to conclude that range ambiguities could be resolved by
observing whether or not a target detection appears in all of the pulses. A target
detection missing from the first n pulses in a CPI suggests that the actual range is
the apparent range plus n times the unambiguous range. This idea will work if
detection algorithms are applied to the fast time data for each pulse separately
and the SNR is high enough that the probability of missed detections is small.
However, it is rare to use a CPI of data in this manner. More commonly, the
SNR of the single-pulse data is not adequate for reliable detection so that it is
not known whether the target is absent in the first n pulses. Instead, the slow
time data will be coherently or noncoherently integrated in order to obtain an
adequate SNR.

In addition to creating the possibility of range ambiguities, the use of
multiple pulses also aggravates the eclipsing phenomenon. A target at any
integer multiple of the range R,, = cT/2, corresponding to time delays that are
integer multiples of the PRI 7, will produce an echo that arrives as the next
pulse is being transmitted. During this interval, the receiver will again be
isolated, so the target echo will be eclipsed. Targets at other time delays within
the interval (nT —t, nT + 1) for any integer n will be partially eclipsed. Thus,
the pulse burst creates a series of blind zones in range or time delay. Targets in
these blind zones will be difficult or impossible to detect, even when they have
adequate SNR. Techniques to overcome this limitation are discussed in Chap. 3.

3.1.4 Multiple Channels: The Datacube

Some radars, but by no means all, have antennas that provide multiple
simultanecous outputs. The most obvious example is a system using a phased
array antenna with multiple subarrays, each having its own receiver, or even
with one receiver per array element in some cases. Each receiver will generate
a matrix of data like that of Fig. 3.2H for every pulse burst. The complete set of
data y[[, m, n] from all N channels 1s called a datacube and is illustrated in Fig.
3.8. The third dimension is often referred to as the receiver channel or phase
center dimension. Another type of system that generates a datacube uses a
monopulse antenna, common in some types of tracking radars. A monopulse
antenna has three output channels and so generates a datacube having N = 3
layers. Radar data is often explicitly organized in the processor memory in a
datacube format, i.e., as a three-dimensional structure of complex-valued data.
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FIGURE 3.8 Datacube illustrating one CPI of data from a multichannel pulsed
radar.

How large is a datacube? The number of samples in each dimension are
determined by the characteristics of the desired radar measurements. The
number L of range samples is simply the length of the range swath divided by
the range bin spacing, L = R, /AR,. The swath length is determined by mission
requirements, while the range bin spacing is determined primarily by the
waveform bandwidth as seen in Eq. (3.1). Both may vary significantly for the
same radar as it switches between various operating modes with different
search ranges and range resolutions.

One important determinant of the number of pulses M in a CPI is the
desired Doppler resolution (equivalently, velocity resolution). The Doppler
spectrum is the DTFT of the slow-time data. The duration of the slow-time
signal 1s the CPI length of MT seconds. The Doppler resolution will therefore
be on the order of AF, = 1/MT,* giving the required number of pulses as M =
I/AF,T = PRF/AF,. Thus, M depends on the PRF as well as the Doppler
resolution, and can vary widely. In pulse-Doppler processing for basic target
detection and tracking, M 1s frequently a small number of tens of pulses.
However, in fine-resolution imaging it can be hundreds or even thousands of
pulses.

For a multichannel receiver, the number N of channels is more difficult to
characterize. A phased array antenna with a receiver per element may have
hundreds or thousands of phase centers, each constituting a receiver channel. A
subarrayed architecture may have many fewer, perhaps ranging from as little as
three or four to a few tens. A monopulse antenna has three phase centers. The
antenna type, size, and architecture all significantly influence M.

The datacube view of a CPI of data from a multichannel pulsed radar
provides a good conceptual model for understanding most digital radar signal
processing operations. Many of the basic radar signal processing operations
considered in the remainder of this text correspond to processing one-



dimensional subvectors or two-dimensional submatrices of the datacube in
various dimensions. Figure 3.9 illustrates these relationships. The particular
operations depicted are discussed in upcoming chapters. For example, pulse
compression (see Chap. 4) is implemented as a one-dimensional convolution on
a single vector in the fast-time (range) dimension. Pulse compression can be
performed independently on each such range vector for every pulse and receiver
channel.
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FIGURE 3.9 Correspondence between key radar signal processing functions
and operations on the radar datacube.

3.1.5 Dwells
A dwell, sometimes also called the time on target, is another term for a radar
data collection interval. Like the term CPI, a dwell can refer both to a time
interval and to the data collected within that time. It is defined in the IEEE
standard for radar definitions as “a data acquisition interval during which the
data is usually processed together for detection or measurement” (IEEE, 2008).
Consider a rotating radar like that shown in Fig. 2.15a¢ and imagine that the
beamwidth is 3° and the antenna scans at a rate of 60° per second. A point target
would be in the beam for 50 ms during each scan. If the radar has a PRF of 2000
pulses per second, a target would be illuminated with 100 pulses during the
traversal of the mainbeam. Since it is known that the echo of a target, if present,
would be present in 100 successive pulses, it might be sensible to integrate 100
pulses at a time for SNR improvement before performing a detection test. In this
scenario, the dwell time would be the full 50 ms. If only 50 pulses at a time
were integrated, the dwell time would be considered to be 25 ms.

The idea of a dwell is not limited to mechanically scanning radars.
Consider a pulsed Doppler radar with an electronically scanned antenna pointed



in some particular direction. The radar emits a CPI of data consisting of 20
pulses at a 2-kHz PRF. The CPI is then 10 ms. Suppose the radar collects three
such CPIs while illuminating the same region, with 50 ms from the start of one
CPI to the start of the next. The total data collection time of 110 ms from the
beginning of the first CPI to the end of the third would be the dwell time for the
radar in that look direction.

The terms “dwell” and “CPI” are sometimes used synonymously, but the
preceding example illustrates that they are not the same. For a coherent radar
that organizes its data into CPlIs, a dwell can correspond to one or more CPIs.
For rotating and similar mechanically scanned radars, a dwell is usually the
time it takes to scan across a point target.

3.2 Sampling the Doppler Spectrum

Selecting a value for the pulse repetition frequency determines the sampling rate
for the slow-time signal. The frequency spectrum of the slow-time signal is
traditionally called the Doppler spectrum, because the nonzero frequency
components are due to the spatial Doppler effect arising from the relative
motion between the radar and target scene. Doppler processing, which is the
analysis or modification of the information about the target scene contained in
the Doppler spectrum, will be the subject of Chap. 5. Doppler processing will
sometimes be performed directly in the slow-time domain, that is, directly on
the time signal represented by a row of y[l, m]; but frequently the spectrum of
each row will be explicitly calculated. In a digital processor, this must be done
with a discrete Fourier transform (DFT) or other discrete spectral analysis
technique. In this section, it is assumed that the spectrum is computed using
conventional DFT techniques; no nonlinear spectral estimation methods or other
alternatives are considered. The question then arises as to how closely
successive samples of the computed Doppler spectrum should be spaced, i.e.,
what should be the Doppler sampling interval?

3.2.1 The Nyquist Rate in Doppler

The Nyquist criterion concept can be applied to sampling in frequency as well
as the more usual application to sampling in time. The result will be a frequency
sampling rate that is dependent on a “bandwidth” in the time domain.

The Nyquist sampling rate in the frequency domain can be determined by
reviewing the relation between the sampled Doppler spectrum and the slow-
time signal. Let a single finite duration slow-time signal (one row of y[/, m]) be
denoted as y[m], 0 <m <M — 1. The DTFT of y,[m] is (Oppenheim and
Schafer, 2010)

Y(o)= Y yImle’™ we(-n,m)



(3.12)

Y (w) 1s a function of a continuous frequency variable, despite the fact that the
signal y [m] 1s discrete. Furthermore, it is periodic in w with period 2z radians
per sample.

Consider the K-point discrete spectrum Y,[k] formed by sampling Y,(w) at
K evenly spaced points along the interval [0, 27),

27K elo,k-1]

k=Y —
=Y =

(3.13)

Interpret Y,[k] as a K-point DFT. To find the relation between it and the original
signal y [m], compute its inverse DFT:

v [ml=— Z} | 2k ] pI2RmiLh me[0,K-1]

Kl-:f:

B _E Z Y [P‘] 2mpk /K o f2m mk/K
k=0 pe—co
= z lirs[JU]|: 2 'q'?"[-"'-'_PJk,-"K:|
p=—= =0
(3.14)
The inner sum can be evaluated as
s L
%2 J2r(m—pik/K = Z 3 [.FH— Iﬂ_ L}K]
= =
(3.15)

where 0 [-] is the discrete-time unit impulse function.® Substituting Eq. (3.15)
back in Eq. (3.14) gives

[oe]

g ml= >, yIm—gKl  me[0,K-1]

(3.16)

Although a finite length signal y [m] was assumed in the previous analysis, the
result also holds for infinite-length signals.

Equation (3.16) shows that, in the dual of time domain sampling behavior,
sampling the frequency spectrum replicates the signal in the time domain with a
period proportional to the frequency sampling rate. Specifically, if the slow-
time signal spectrum is computed at K frequency points, the time domain signal



obtained by an inverse DFT of those frequency samples is the original slow-
time signal replicated at intervals of K samples. Recall that y /m] 1s confined to
the interval [0, M — 1]. f K> M, y[m — gK] = 0 in the interval of interest [0, K—
1] for all g # 0, so that y [m] = y[m]. This is the usual case where the DFT size
is at least as long as the data sequence size.

The Nyquist rate for sampling in the frequency dimension is now apparent.
If K > M the original slow-time signal y,/m] is not aliased by the frequency
domain sampling operation. Consequently, it can be recovered from the
replicated signal y /m] implied by the sampled spectrum by simply excising the
principal period m € [0, K — 1]. This is the equivalent of the lowpass filter
required to reconstruct a sampled time-domain signal; the time and frequency
domains have simply been reversed in this discussion of sampling in the
frequency domain.

Since K > M, the frequency domain sampling interval w, must satisfy

. < Z—H rad
SM
(3.17)
The corresponding Nyquist sampling rate in the frequency domain is Z
K = M samples per Doppler spectrum period
(3.18)

Thus, the width of the signal’s region of support (i.e., its length or “bandwidth”)
in the time domain of M samples plays the same role for sampling in frequency
as does the width of a signal’s region of support in frequency (its actual
bandwidth) for sampling in time.

In some systems the number of Doppler samples computed is less than the
number of data samples available, i.e., K < M. This can occur if only a limited
number of spectrum samples are required by the system design. In early digital
radar processors, it was more likely motivated by the difficulty of implementing
a larger DFT at radar data rates, a problem mostly obviated by computing
advances enabled by Moore’s law. One way to compute a K-point DFT from an
M-point sequence when K < M is to simply retain only K data samples and
compute their K-point DFT. This is not desirable when there are M > K samples
available for two reasons. First, the DTFT of the K samples used is not the same
as that of the full M-point sequence, so the DFT will give us samples of a
reduced-resolution DTFT. Second, by not using all M available samples, the
signal-to-noise ratio (SNR) of the calculated spectrum is reduced because only
K samples instead of all M available samples are coherently integrated by the
DFT. It is rarely a good idea to discard measured data if the highest possible
measurement quality is desired.

If the Doppler spectrum samples are still to be equal to samples of the



DTFT of y,[m] in this case, Egs. (3.13) to (3.16) imply that it is necessary to

form a new, reduced-length K-point sequence ¥ [m] from the slow-time data
sequence y,[m] by aliasing it according to Eq. (3.16). This operation, depicted
pictorially in Fig. 3.10, is sometimes called data turning. It maximizes the SNR
of the Doppler spectrum samples by using all of the available samples, and is in
fact used in some older operational radars.
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FIGURE 3.10 [llustration of the “zero padding” and “data turning” operations:
(a) original 12-point data sequence, (b) zero-padded to 16 points for use in a
16-point DFT, (c) data turning to create an aliased 8-point sequence shown in
(d) for use in an 8-point DFT.
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3.2.2 Straddle Loss

The previous section established the Nyquist sampling rate in Doppler
frequency. When actually computing the sampled spectrum, whether by the DFT
or other means, one would like to be confident that the sampled spectrum
captures all of the important features of the underlying DTFT. For example, if
the DTFT exhibits significant peaks, it is hoped that one of the spectral samples
will fall on or very near that peak so that the sampled spectrum captures this
feature.

An appropriate signal model to consider this issue is a pure complex
sinusoid, corresponding for example to a target moving at constant velocity
relative to the radar over the observation interval and therefore exhibiting a
constant Doppler shift. Thus, the slow-time signal y [m] is modeled as



y [m]= Ae’*®  me[0,M-1]
(3.19)

where w,, 1s the Doppler frequency shift in normalized radian frequency units.
The DTFT of y [m] is

sinf(w — oy )M/2]
sinf[(w—wp)/2]

Y.(w)=A expl—j( &) (@ -wp)] we(-x,7]

(3.20)

That is, Y,(w) 1s a so-called digital sinc, aliased sinc (asinc), or Dirichlet
function, circularly shifted in the frequency domain so that its peak occurs at w =
@p. An example is shown in Fig. 3.11 for the case w, = /2 (corresponding to f,,
= w, / 2r = 0.25) and M = 20. Significant features of this DTFT include the
peak amplitude and frequency, the mainlobe bandwidth, and the sidelobe
structure. In particular, the M-point DTFT of a pure complex sinusoid of
amplitude 4 has a peak value of M4, with the peak sidelobe about 13.2 dB
below the peak. The 3-dB width of the mainlobe in normalized frequency units
is f; = 0.89/M cycles per sample, the Rayleigh width is 5, = 1/M cycles per
sample, and the null-to-null mainlobe width is 8, = 2/M cycles per sample.
These metrics are illustrated in Fig. 3.11.
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FIGURE 3.11 The magnitude of the DTFT of a sampled pure complex sinusoid
of 20 samples length, normalized frequency 0.25 cycles per sample, and
amplitude 1.

The DFT computes per samples of this spectrum at normalized frequencies
27k/K rads/sample. Figure 3.12 shows the result when K = M and the sinusoid



frequency exactly equals one of the DFT frequencies, that is, w, = 27k,/K for
some k, (k, =5 and K = 20 in this example, corresponding to w, = n/2 rads per
sample). One DFT sample falls on the peak of the asinc function, while all of
the others fall on its zeroes, so that the DFT becomes an impulse function. This
could be viewed as an ideal measurement, since the discrete spectrum indicates
a single sinusoid at the correct frequency and nothing else; but it does not reveal
the mainlobe width or sidelobe structure of the underlying DTFT.
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FIGURE 3.12 The 20-point DFT of a sampled pure complex sinusoid of 20
samples length, normalized frequency 0.25 cycles per sample, and amplitude 1.
The dotted line shows the underlying DTFT of the same data from Fig. 3.11.

More importantly, the good result of Fig. 3.12 depends critically on the
actual sinusoid frequency exactly matching one of the DFT sample frequencies.
If this is not the case, the DFT samples will fall somewhere on the asinc
function other than the peak and zeros. Figure 3.13 shows the result when the
example ofFigs. 3.11 and3.12 is modified by changing the normalized
frequency from 0.25 to 0.275 (equivalently, changing @, to 0.557), exactly
halfway between two DFT sample frequencies. Now a pair of DFT samples
straddle the actual underlying peak of the asinc function, while the other samples
fall near the sidelobe peaks. Even though the underlying asinc function is
identical in shape in both cases, differing only by a half-bin shift on the
frequency axis, the effect on the apparent spectrum measured by the DFT is
dramatic: a broadened and attenuated mainlobe, and the appearance of
significant sidelobes where before there apparently were none.
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FIGURE 3.13 Same as Fig. 3.12 except for a frequency shift of the sinusoid by
one-half DFT bin to a normalized frequency of 0.275 cycles per sample.

Because the DFT sample frequencies straddle the true peak of the
underlying DTFT, the apparent peak amplitude of the spectrum in Fig. 3.13 is
about 13, whereas the peak amplitude of the underlying DTFT (and thus of the
DFT inFig. 3.12) is 20. This reduction in measured peak signal amplitude is
called a straddle loss (because the samples straddle the true peak location).

One obvious way to reduce straddle loss is to sample the Doppler
frequency axis more densely, i.e., to choose the number of spectrum samples K
> M. The resulting samples are more closely spaced so that the maximum
amount by which a sample frequency can miss the peak frequency of the DTFT
is reduced, thus reducing the straddle loss. Figure 3.14 continues the example of
Fig. 3.13, but with the sampling density doubled to 2M samples per Doppler
spectrum period (40 samples in this case), and then to 12.8M samples per
spectrum period (256 samples). Increasing the sample density causes the
apparent spectrum measured by the DFT to begin to resemble the underlying
asinc of the DTFT even at as little as 2M samples per period. At 12.8M
samples per spectrum period, the DFT gives an excellent representation of the
details of the underlying DTFT.
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FIGURE 3.14 Continuation of the example of Fig. 3.13: (a) 40-point DFT of the
20-point sinusoid of normalized frequency 0.275, (b) 256-point DFT of the

Same sequencce.

The off-peak sampling loss (straddle loss) for a sinusoidal signal can be
limited to a specified value, at least for this idealized signal, by appropriate
choice of the spectrum sampling rate K. For example, the loss can be limited to
3 dB or less by choosing K such that the interval 2z/K between samples does
not exceed the 3 dB width of the asinc function. The 3-dB width can be found by
considering just the magnitude of Eq. (3.20) with w = 0 for convenience. The
peak value of the asinc function is MA, thus it is necessary to find the value w;
ofw such that the asinc function has the value MA~2, This is best done
numerically. The answer is a strong function of M for small M but rapidly
approaches an asymptotic value of w; =2.79/M for M > 10. It follows that the 3
dB width of the asinc function is Aw = 5.58/M radians.

The sampling interval for a rate of K samples per period is 2z/K radians.
Equating this to the 3-dB width and solving gives the sampling rate required to
limit off-peak sampling attenuation to 3 dB in the Doppler spectrum in terms of
the Nyquist rate of M samples per Doppler spectrum period,

2T

wd e

Kz M=1.13M samples per Doppler spectrum period

(3.21)

which is 13 percent higher than the Nyquist sampling rate in Doppler. If the off-
peak sampling loss is to be kept significantly less than 3 dB, the Doppler
spectrum must be oversampled still more.

The analysis leading to Eq. (3.21) can be repeated for any specified level
of tolerable straddle loss. Figure 3.15 shows the worst-case straddle loss as a
function of the oversampling factor « (i.e., K = k M) for the case M = 100. Both
undersampled (x < 1) and oversampled (x > 1) cases are shown. The loss is



somewhat less for very short duration sequences (M < 10) but varies little for
larger M.
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FIGURE 3.15 Maximum off-peak Doppler spectrum sampling loss for a
sinusoidal slow-time signal sampled at x M samples per Doppler spectrum
period.

3.3 Sampling in the Spatial and Angle Dimensions

As discussed earlier, two distinct types of spatial sampling are of concern in a
radar system. One type concerns the design of phased array antennas. A phased
array samples the incoming wavefront at the individual array element locations.
Thus, the spacing of these elements must be chosen to adequately sample the
wavefront for any incidence angle. The second concerns beam steering.
Mechanically or electronically steered antennas can change the pointing
direction of their antenna beam. As the beam is scanned to search or map a
region in space, a decision must be made as to how far it is permissible to scan
before another pulse (or burst of pulses) must be emitted by the radar so that the
external environment is adequately sampled. The next two subsections address
these questions.

3.3.1 Spatial Array Sampling

Chapter 1 introduced the concept of spatial frequency and wavenumber.
Consider a uniform linear array with element spacing d, as shown in Fig. 3.16.
The wavenumber (spatial radian frequency) of an RF signal with wavelength A
impinging on the array antenna from a direction of arrival 6 radians off the
normal to the array, as shown in the figure, is
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FIGURE 3.16 Geometry of a uniform linear array antenna.

K, = 2_;; sin# rads/m
A
(3.22)
The equivalent spatial frequency in cyclical units is just
i
E: =75mﬁ cycles/m
' (3.23)

The angle of arrival @ can vary between —90° and +90°, so the spatial frequency
bandwidth becomes
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cycles/m
A

(3.24)

It follows immediately by the Nyquist criterion that the required spatial
sampling interval is

(3.25)

Thus, the elements of the array should be spaced no more than /2 meters apart
to avoid aliasing of spatial frequencies.?

Many practical arrays, particularly large wideband systems, employ more
complicated architectures effectively having two spatial sampling intervals. The
complete antenna array is broken into a relatively small number of subarrays,
each of which is populated with elements obeying the Nyquist spacing of Eq.
(3.25). Since the multielement subarrays are necessarily separated by multiples



ofd, they contribute a term to the complete antenna pattern that does exhibit
spatial aliasing. As a result, the overall antenna pattern can exhibit aliasing in
some circumstances, depending on whether phase or time delay steering is used
for individual elements and across subarrays, the steering direction of the array,
and the bandwidth of the radar waveform. An introduction to these issues is
given in Bailey (2010).

3.3.2 Sampling in Angle

Consider a steerable or scanning antenna, whether mechanically steered
(typically a parabolic dish or slotted flat-plate array, and others) or
electronically steered (phased array), with a 3-dB beamwidth &, radians. Each
pulse transmitted samples the reflectivity of the environment in the direction in
which the antenna is pointed. If a region in angular (elevation and azimuth)
space is to be searched, the question arises: how densely in angle must the
space be sampled? That is, how much can the antenna be steered before another
pulse should be transmitted? Smaller angular sampling intervals provide a
better representation of the search volume, but also require more pulses and
therefore more time to search a given volume. Since the antenna voltage pattern
suppresses returns more than about + 6,/2 radians from the antenna boresight,
one intuitively expects that to adequately sample the reflectivity of the scene
scanned by the antenna, it will be necessary to make a new measurement every
time it scans by some angle on the order of #;. The Nyquist criterion can be
applied to this spatial sampling problem to quantify this expectation.

It was seen in Chap. 2 [Eqg. (2.119)] that the observed reflectivity in angle
for a constant range is the convolution of the range-averaged reflectivity with
the two-way antenna voltage pattern. An equivalent expression in just one angle
dimension for simplicity, say azimuth, is

y(8;Ry)= p(8;Ry)-5 E*(6)

= A, | E*(¢-6)p(;Ry)dE

A
ik

(3.26)

where y(0; R,) 1s the complex coherent receiver output as a function of azimuth
angle 0 at range R,, P®:Ry) is the range-averaged reflectivity evaluated at range
R, and E*(0) is the two-way voltage pattern in the angular dimension 6. It
follows that the Fourier transform in the angle dimension of y is the product of
the Fourier transforms of the antenna pattern and the range-averaged reflectivity.

Taking the pattern of the ideal rectangular aperture as representative, it
was seen in Chap. 1 that the two-way antenna voltage pattern is

2., | sin(mDsinB/A) ;
E{H}_[ r Dsin®/ A }



(3.27)

Defining s = sinf and a = D/A, Eq. (3.27) can be rewritten as

2 sin{was) |
Lo(s)= -
JTO; S

(3.28)

which is a sinc-squared function. It follows immediately that its Fourier
transform is a triangle function in the normalized variable (x/4), where x is the
spatial dimension of the antenna aperture (Bracewell, 1999). This function is
illustrated in Fig. 3.17.
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FIGURE 3.17 Fourier transform of the two-way antenna voltage pattern for an
ideal rectangular antenna aperture with uniform illumination.

Because the Fourier transform of the antenna pattern has a width of 2a, the
Nyquist sampling interval in s must be

gl
> e

(3.29)

Recall thats = sinf. To convert 7, into a sampling interval in @, consider the
differential ds = cosé df, so that df = ds/cosf. Thus, a small interval 7, ins
corresponds approximately to an interval 7, = T./cosé in §. The minimum value
for T, occurs when # = 0 so that 7, = T,. Thus, the sampling interval in angle
becomes (using o = D// for the second step)
N
®“2a 2D
(3.30)

This is the Nyquist sampling interval in angle for a rectangular aperture of size
D with uniform illumination.
As a final step, this result can be expressed in terms of 3-dB beamwidths.



The 3-dB beam-width of an aperture antenna is of the form (Balanis, 2005)

By =k rad

=R

Y
D
(3.31)
For the uniformly illuminated case, k£ = 0.89. Combining Egs. (3.30) and (3.31)
gives
g
"2k
(3.32)

Fork = 0.89, this gives a Nyquist sampling rate of 0.56 times the 3-dB
beamwidth, or 1.8 samples per 3-dB beamwidth. In practice, many systems
sample in angle at approximately one sample per 3-dB beamwidth. The search
space 1s then undersampled in angle, at least according to the Nyquist criterion.

While derived for the uniformly illuminated aperture, these results apply to
all aperture antennas. For a finite aperture of size D, different antenna patterns
(for instance, with lower sidelobes at the expense of a wider mainlobe) are
obtained by changing the aperture illumination function, typically by tapering it
in a manner similar to windowing operations in signal processing. The Fourier
transform of these antenna power patterns will still be the autocorrelation of the
corresponding illumination function. Since the illumination function still has
finite support, its autocorrelation will still be limited to a width of 2a ins, as
shown in Fig. 3.17; only the detailed shape of the function will change. Thus,
Eq. (3.32) applies for any finite aperture antenna. The difference is that the
factor k£ will be different for different illumination functions. Lower sidelobe
antennas will have values of k£ in the range of approximately 1.4 to 2.0, giving
corresponding Nyquist sampling rates on the order of 2.8 to four samples per 3-
dB beamwidth for low sidelobe antennas.

For a rotating radar, the angular sampling rate of Eq. (3.31) implies a
lower bound on PRF. Suppose the rate of rotation is Q, radians per second. In
order that successive pulses be transmitted in directions differing by no more
than the 7}, of (3.31), the PRI and PRF must satisfy

pri< @20 _ @ ppps
Qp 2k,

2kQ,

A
o

(3.33)

Equations (3.33) and (3.9) illustrate a conflict between volume coverage
and search rate in a rotating search radar. For a given antenna design, 6, and &
are fixed. Then, increasing the sweep rate €, will increase the volume search
rate, but will also require an increased PRF; but a higher PRF reduces the




unambiguous range, reducing the volume that can be searched without
ambiguities.

3.4 1/Q Imbalance and Digital 1/Q

In Chap. 1, it was shown that the output of a quadrature receiver given a real-
valued bandpass signal as input is the same as would be obtained by using the
equivalent analytic (one-sided spectrum) complex signal with complex
demodulation by the signal exp(—j€2,¢). In other words, the quadrature receiver
acts to select the upper band of the bandpass signal and shift it to baseband. Any
system that accomplishes this same result can be used to derive the in-phase and
quadrature signals needed for further signal processing.

The quadrature receiver could, in principle, be implemented entirely
digitally. The input signal would be converted to a digital signal after the low-
noise amplifier. The mixing operations would be replaced by multiplications,
and the analog lowpass filters by digital filters. This is not done in practice
because a straightforward implementation would require the A/D converter to
operate at about twice the carrier frequency rather than twice the information
bandwidth of the signal (specifically, 2F, + f rather than just S samples per
second), a technologically unreasonable requirement. On the other hand, the
conventional analog quadrature receiver also has technological limitations, as
mentioned briefly in Chap. 1. Correct operation assumes that the two channels
are perfectly matched in delay and gain across the frequency band of interest,
there are no DC biases in either channel, and the two reference oscillators are
exactly 90° out of phase. In this section, the effect of I/Q imbalances is
investigated, and then two digital I/Q receiver structures that combat imbalance
errors are described.

3.4.1 I/Q Imbalance and Offset

Figure 1.9 describing the conventional quadrature receiver is repeated below as
Fig. 3.18, but with the addition of an amplitude mismatch factor (1 + ¢), a phase
mismatch @, and DC offsets y and x in the in-phase (I) and quadrature (Q)
channels, respectively. Take the I channel as the gain and phase reference
without loss of generality, so the gain and phase errors are placed entirely in the
Q (upper) channel. As shown in the figure, the introduction of these errors is
reflected as an undesired gain and phase shift in the Q channel output, along
with the DC offset in each channel. For processing, the I and Q channel outputs
are combined as usual into a single complex signal, x(¢) =1(t) +j0(¢). In the
absence of mismatch errors, x(¢#) = Aexp[jO(t)]. How are the mismatch errors
manifested in x(¢)?
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FiGURE 3.18 Conventional coherent receiver of Fig. 1.9 with amplitude and
phase mismatch errors and DC offsets.

Inspection of Fig. 3.18 gives

x(t)= AcosB+ 7+ j[A(l1+¢&)sin(6 — @) +x]
= A{[1- j(1+¢)sing]cosf + j(1+ €)cospsin B} + (¥ + jx)
= A(o cost + jBsin€)+ (y + jx)
(3.34)

where the time dependence of () has been dropped to simplify the notation
slightly. Note that the constant & is complex but f is not, and that & = 5 = 1 in the
absence of gain and phase errors, 1.e., if ¢ = ¢ = 0. Using the identities

:ﬂ+ﬁ+ﬂ—ﬁ
2 2
_o+f o-p
== 2
(3.35)
in Eq. (3.34) and collecting terms of equal amplitude gives
x(t) = L (cosB + jsinB) + E ; B (cos6 — jainﬁ‘}}+ (¥ + jK)
—AlZ ; ﬁexp{ﬂﬁ} +— > =8 ——exp(-— jfﬂ}+ (¥ +jKx)
) (3.36)

Equation (3.36) shows that in the presence of amplitude or phase errors, the
complex signal x(¢) will not only contain the desired signal component (with a
slightly modified amplitude) Aexp[jé(¢)], but also an image component with a
different amplitude and a conjugated phase function, as well as a complex DC
term. The image component is an error resulting from the amplitude and phase




mismatches; the DC component is the direct result of the individual channel DC
offsets.

Recall that the phase function exp[j0(¢)] can represent phase modulation of
the radar waveform, the effect of the environment on the waveform (such as a
phase shift due to spatial Doppler), or both. In the case of a spatial Doppler
phase shift, 8 (¢) on the mth pulse will be of the form w,m for some normalized
Doppler radian frequency w,. The image component will then have a phase shift
of the form —w,m. Thus, over a series of M pulses, the mismatches will give
rise to a false signal at the negative of each actual Doppler frequency component
in addition to the desired signal. Furthermore, the DC component is equivalent
to a false signal at a Doppler shift of zero, i.e., clutter or a stationary target.

As another example, suppose 6 (¢) represents the intentional quadratic
phase modulation used to construct a linear FM chirp signal, 8 (¢) = at* (see
Chap. 4 for details). Then the image component will have a phase modulation of
—at?, which represents a linear frequency modulation (FM) signal with a slope
opposite to the transmitted pulse. This signal will not be properly compressed
by the matched filter, instead causing an apparent increase in the noise floor
(Sinsky and Wang, 1974).

To judge the significance of the gain and phase mismatch errors, consider
the ratio P, of the power in the image component relative to that in the desired
component. From Eq. (3.36), this is

" e+ By2f

_ [1-(1+ g)coso]? +[(1 +E]|5i11+;:r]2
[T+(1+ E}CDS@]E +[i1 +E}.|5iru;:r]2

(3.37)

Figure 3.19 illustrates the value of P, as a function of the phase and amplitude
imbalance.
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FIGURE 3.19 Relative power of I/Q mismatch-induced signal image as a
function of amount of phase and amplitude mismatch.

It is also useful to consider simplifications of Eq. (3.37) for the cases of
small amplitude mismatch only and small phase mismatch only. First consider
the case of small amplitude mismatch only (¢ = 1), so that ¢ = 0. Then

_[-@+ef &
" +(1+e)F (2+¢€)

1
(3.38)

Amplitude mismatch is often specified in decibels, as is the relative power of
the 1image signal component. A mismatch of k£ dB implies that 20 log,,(1 +¢) =
k. Substituting this relation in Eq. (3.38) and expressing the result in decibels
gives

P, (dB)=20log,, (10" -1)—6.02  (kindB)
(3.39)

For example, an amplitude mismatch of 0.1 dB gives rise to an image
component 44.7 dB below the desired component of x(¢).
A result similar to Eq. (3.38) holds for the case of small phase mismatch



only, that is, ¢ =0 and ¢ = 1. In this case Eq. (3.37) reduces to

_[1—cos¢]* +sin*¢  1—cos¢
[1+coso] +sin®e 1+ coso

=)

__ 0 ¢
2+497 4
(3.40)

where the second line is obtained using the small angle approximation cos ¢ = 1
— ¢*2. Note that ¢ is in radians. The relative power of the image component in
decibels is then

P,(dB)=20log,(¢)— 6.02
(3.41)

As an example, a phase mismatch of 1° gives an image component
approximately 41.2 dB below the desired response.

3.4.2 Correcting I/Q Errors
As shown in Fig. 3.18, the I and Q signals in the presence of mismatch can be
modeled as

[=AcosB+y Q=A(l+¢e)sin(ff—¢)+x
(3.42)

where the dependence on time ¢ continues to be suppressed to simplify the
notation. The desired in-phase signal / is Acosd, and in the quadrature channel is
Asinf. Is 1t possible to recover the desired outputs from the available
measurements of Eq. (3.42)?

Consider forming a new /"’ and Q' as a linear combination of the measured /
and Q. Specifically, require that I’ = Acosf and Q' = Asinf. Although it is
straightforward to solve the general problem, it is obvious that the DC offsets
should simply be subtracted, and then a linear combination of the zero-offset

data formed
r [ Acosé [an ap [ I ‘ ‘ ¥ )
Q’ - | Asiné - @y @ || Bl L2y
E iy A Acosé
- |y Ay || A(l+e)sin(6—0)

By inspection, a,;, = 1 and a,, = 0. The remaining equation is

(3.43)



J'= Asin# = ay [ + 5,0
= iy Acost +a, Al +&)sin(f—¢)
(3.44)

Applying a trigonometric identity for sin(@ — ¢) and equating terms in sinf and
cosf on both sides of Eq. (3.44) leads to the following solution for a,, and a,,:

(1+¢e)coso
(3.45)
Using Eq. (3.45) in Eq. (3.43) gives the final transformation required
I 1 0 ‘ I “ ‘ Y )
o ltang 1/(1+e)cosé L Q _ K
(3.46)

Once the I/Q errors ¢, @, y, and x are determined, Eq. (3.46) can be used to
compute a new value Q' for the quadrature channel sample for each measured I-
Q sample pair. The difficulty, of course, is in actually determining the errors;
the correction is then easy. The errors are generally estimated by injecting a
known pilot signal, usually a pure sinusoid, into the receiver and observing the
outputs. Details for one specific technique to estimate gain and phase errors are
given in Churchill et al. (1981); that paper also derives limits to mismatch
correction (and thus to image suppression) caused by noise, which introduces
errors into the estimates of ¢ and ¢.

A second method for eliminating I/Q error is based on the idea of
transmitting multiple pulses, stepping the starting phase of each pulse through a
series of evenly spaced values, and then integrating the measured returns. To see
how this technique works, suppose the input signal in Fig. 3.18 is changed to 4
sin [Q¢ + 6 (¢) + k(27/N)] for some fixed integer N and variable integer £; 1.e.,
the pulse is one of a series of N pulses, where the initial phase is increased by
27/N radians on each successive pulse. The extra phase shift propagates to the
output signals

I, = Acos [H{r}+k2f}+y

§
1

Q,=A(l+e) sin[ﬁ'{r} +k 2\::— —@} +K

)
i

(3.47)

fork=0,1, ..., N— 1. The development leading to Eq. (3.36) can be repeated
to obtain the complex signal for this case, which 1s (still suppressing the ¢
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Now coherently integrate the N pulses x, to form a single composite
measurement, applying a counter phase rotation to each to realign their phases:

x(t)=
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(3.49)

The summations in the middle and last terms of Eq. (3.49) can be evaluated in

closed formto give

and

so that

N-1 ' ]
~j4rk/N _ [ N, N=12
;t “]o, N=z3
N-1 [ 1 N=1
—i2rk/N _ | i
gf' | 0, N=22
H=a2 P >3

(3.50)

(3.51)

(3.52)

Thus, as long as at least three pulses are used, the process of rotating the
transmitted phase, compensating the received measurements, and integrating

will suppress both the undesired image component and the DC component!

The algebraic correction technique of Eq. (3.46) is applied to individual
I/Q sample pairs, requiring two real multiplies and three real additions per time
sample (assuming the correction coefficients have been precomputed). The



major advantage of this technique is that it can be applied individually to each
pulse of data. Its major disadvantage is that it requires the transmitter/receiver
control and analog hardware be augmented to allow pilot signal insertion for
determining the correction coefficients. The pilot signal operation is performed
relatively infrequently on the assumption that € and ¢ vary only slowly.

The phase rotation and integration technique of Egs. (3.47) to (3.49), in
contrast, requires integration of at least three pulses with the transmitted phase
adjusted for each pulse. Thus, the technique requires both high-speed transmitter
phase control and more time to complete a measurement since multiple pulses
must be collected. The increase in required time implies also an assumption that
the scene being measured does not vary during the time required for the multiple
pulses; decorrelation of the scene degrades the effectiveness of the technique.
This method also places a heavier load on the signal processor, since the
integration requires N complex multiplies and N — 1 complex additions per time
sample, or a total of 4N real multiplies and 4N — 2 real additions, with N > 3.
However, the integration method has one very important advantage: it does not
require knowledge of any of the errors ¢, ¢, v, and x. It also has the side benefit
that the integration of multiple pulses increases the signal-to-noise ratio of the
final result x(¢). Given these considerations, it is often used in instrumentation
systems at fixed site installations, such as turntable RCS measurement facilities.
In these systems, NV is often on the order of 16 to 64, and may even be as high as
65,536 (64K) in some cases.

Note also that Egs. (3.47) to (3.49) implicitly assume that the phase
modulation 6(¢) is the same for each pulse x,(¢). If 8(¢) represents waveform
modulation (e.g., a linear FM chirp), this will be true; but if (¢) contains a term
representing environmental phase modulation, for example due to Doppler shift,
then the technique assumes that the appropriate component of 8(¢) is the same on
each of the pulses integrated. This is the case for stationary targets (assuming the
radar is also stationary). For constant Doppler targets, the frequency implied by
6(¢) will be the same from pulse to pulse, but the absolute phase will change in
general, so that the target response does not integrate properly. For accelerating
targets, the assumption will fail entirely. The phase rotation and integration
technique is therefore most appropriate for stationary or nearly stationary (over
N PRIs) targets. The algebraic technique does not have this limitation, since it
operates on individual pulses only.

3.4.3 Digital I/Q

Digital I/Q or digital IF is the name given to a collection of techniques that
form the I and Q signals digitally in order to overcome the channel matching
limitations of analog receivers. A number of variations have been described in
the literature. In general, they all share two characteristics. First, they use
analog mixing and filtering to shift the single real-valued input signal to a low
intermediate frequency prior to A/D conversion, greatly relaxing the A/D speed



requirements compared to RF sampling. Furthermore, the intermediate
frequency (IF) 1s chosen so that required complex multiplications by functions
of the form exp(jw,n) reduce to particularly simple forms. Second, they use a
combination of digital filtering and down sampling to obtain a final output
consisting only of the desired sideband of the original spectrum, sampled at or
near the appropriate Nyquist rate of f complex samples per second. Two
approaches are briefly described here.

The first method, which is particularly elegant, is described in (Rader,
1984.) The RF signal is assumed to have a bandpass spectrum with an
information bandwidth of # Hz. Figure 3.20 is a block diagram of the system,
and Fig. 3.21 sketches the signal spectrum at various points in the system. The
first step is an analog frequency shifting operation that translates this spectrum
to a low IF of p Hz. The bandpass filter rejects the double frequency terms
created by the mixer. The spectrum is therefore bandlimited to £4/2 Hz, so the
Nyquist rate is 35 samples per second. However, for reasons that will become
clear shortly a higher sampling rate of 45 samples per second is used, giving a
discrete-time signal with the spectrum shown in Fig. 3.21c.
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FIGURE 3.20 Architecture of Rader’s system for digital generation of in-phase
and quadrature signals. (After Rader, 1984.)
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FIGURE 3.21 Spectra corresponding to successive signals in the digital I/Q
system of Fig. 3.20. (a) Spectrum of bandpass input signal with information
bandwidth 5 Hz, (b) result of translation to an IF frequency also equal to S, (¢)
one period of spectrum on normalized frequency scale after A/D conversion, (d)
only the upper sideband remains after filtering, (e) a replica of the upper
sideband is centered at DC after decimation. (After Rader, 1984.)

Recall that the goal of quadrature demodulation is to select one sideband of
the bandpass signal and translate it to baseband. Assume that the upper sideband
is to be retained. The next step is therefore to filter the real signal [l to
eliminate the lower sideband. Since the resulting spectrum will not be
Hermitian, the output signal must be complex; this is shown in Fig. 3.20 as a
one-input, two-output filter. The required frequency response is clear from the
spectrum diagrams in Fig. 3.21; it is
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This asymmetric filter frequency response corresponds to a complex-valued
impulse response, giving rise to the complex output from the single real input.

While Eq. (3.53) states that the value of H(w) around DC is unconstrained,
in fact it should be close to zero. The filter will then also suppress any DC
component in the signal (not sketched inFig. 3.21) that may have been
introduced by nonideal mixing in the first analog frequency translation. Thus,
this digital I/Q architecture also makes it easier to suppress mixer bias terms.
This would not be possible if the spectrum had been translated to the lowest
possible IF frequency, namely f Hz, since there would then be no region of the
spectrum around DC that did not contain signal components of interest.

A particularly efficient design for realizing the filter H(z) as a pair of low-
order recursive filters is based on the mathematics of phase-splitting networks;
details are given in Rader (1984). However, the particular design of the filters
is not central to the architecture of the approach.

The final step is to translate the remaining spectral sideband, centered at
w, =m/2, to baseband and to reduce the sampling rate from 4/ to the final
Nyquist rate f. This can be accomplished by multiplying the complex filter
output % by the sequence exp(—jzn/2) = (—j)n and then simply discarding three of
every four samples. Because of the special form of the multipliers, the complex
multiplications could be implemented simply with sign changes and
interchanges of real and imaginary parts, rather than with actual complex
multiplications. This 1s a consequence of having selected the original sampling
rate to be 4/ instead of 3p.

However, this multiplication is not shown in Fig. 3.20 because, in fact, it is
not necessary at all. The spectrum of the decimator output y[#] is related to the
spectrum of % according to (Oppenheim and Schafer, 2010)
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Equation (3.54) states that the decimation process causes the spectrum to
replicate at intervals of 7/2 radians. Since the nonzero portion of the spectrum is
bandlimited to 7/2 radians, these replications abut but do not alias; furthermore,
since the spectrum prior to decimation is centered atw = /2, one of the




replications (k = 3, specifically) is centered at w = 2z radians. The periodicity
of the spectrum of a discrete-time signal therefore guarantees that there is a
replica centered at w = 0 as well; this replica i1s the final desired spectrum.
Thus, the real and imaginary outputs of the decimator are the desired I and Q
signals. Another digital I/Q system that uses the spectrum replicating properties
of decimation to advantage is described in Rice and Wu (1982).

The success of the decimation operation in eliminating the need for a final
complex frequency translation depended on the proper relationship between the
bandwidth and center frequency of the signal, and the decimation factor. This is
the major reason for choosing the IF to be f instead of f/2 (or some other
permissible value), and the sampling frequency as 44 instead of 34 (or some
other value).

Rader’s digital I/Q architecture has reduced the number of analog signal
channels from two to one, making the issues of oscillator quadrature and gain
and phase matching completely moot, while also providing a natural opportunity
to filter out DC biases introduced by the remaining analog mixer. Furthermore,
the two A/D converters required at the output of the conventional quadrature
receiver to enable subsequent digital processing have been reduced to one.
There are two major costs to these improvements. The first is an increase by a
factor of four in the A/D converter speed requirement, from f samples per
second for conventional baseband sampling to 45 samples per second for
Rader’s system; this may be difficult at radar signal bandwidths. The second i1s
the introduction of the need for high-rate digital filtering, which is
computationally expensive (although Rader’s efficient filter design lessens this
cost).

Figures 3.22 and 3.23 sketch the processor conceptual architecture and the
relevant signals of the second digital I/Q architecture (Shaw and Pohlig, 1995).
In this case, analog frequency translation is used to shift the signal spectrum to a
lower IF than used by Rader, namely 0.625/. The signal is then A/D converted
at a rate of 2.58 samples per second, resulting in the signal {#] having a
spectrum centered atw = 7/2 as shown inFig. 3.23. An explicit complex
modulation by exp(+jzn/2) = j" then shifts one of the sidebands, in this case the
lower one, to baseband, resulting in the spectrum shown in Fig. 3.23d. Clearly
x[#] 1s complex as a result of this complex modulation.
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FIGURE 3.22 Conceptual architecture of Lincoln Laboratory system for digital



generation of in-phase and quadrature signals. (After Shaw and Pohlig, 1995.)
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FIGURE 3.23 Spectra corresponding to successive signals in the digital I/Q
system of Fig. 3.22. (a) Spectrum of bandpass input signal with information
bandwidth of § Hz, (b) result of translation to an IF frequency of 0.6255, (¢) one
period of spectrum on normalized frequency scale after A/D conversion, (d)
digital complex modulation centers the lower sideband at DC, (e) only the
lower sideband remains after lowpass filtering, (f) decimation by two reduces

the sampling rate to 1.255. (After Shaw and Pohlig, 1995.)

The next step is to lowpass filter ¥I#] to remove the upper sideband,
leaving only the baseband portion of the spectrum. A 16-point finite impulse



response (FIR) digital filter is used for this task in Shaw and Pohligh (1995).
Once the lowpass filtering is completed, the spectrum is nonzero only for w €
(0.4 n, +0.47). The sampling rate 1s then reduced by a factor of two by
discarding every other output sample. The final result is the desired digital I and
Q signals, sampled at a rate of 1.25/ samples per second.

As with Rader’s system, the computational complexity is actually reduced
by taking advantage of the properties of decimation and FIR filters. The
decimation i1s performed immediately after the A/D conversion by splitting the
data into even- and odd-numbered sample streams. The complex modulation by
j", which implies both sign changes and real/imaginary interchanges, then
reduces only to sign changes on every other sample in each channel, and the 16-
point FIR filters are replaced with 8-point FIR filters in each channel without
any reduction in filtering quality.

A significant advantage of this system over Rader’s is that the A/D
converter must operate at only 2.5 times the signal information bandwidth,
rather than four times the bandwidth. This 1s an important savings at high radar
bandwidths. There are three disadvantages. The first is that the lower IF and
sampling rate require sharper transitions in the digital filter, therefore increasing
the filter order necessary to achieve a given stopband suppression and thus the
computational complexity of the filter. The second is the requirement for an
explicit multiplication by jn. Although this reduces to switching and sign
changes, it nonetheless represents extra processing. Third, the final sampling
rate exceeds the signal Nyquist rate by 25 percent, whereas in Rader’s system it
equaled the Nyquist rate. This increases the computational load by 25 percent
over the minimum necessary throughout the remainder of the digital processing.
This may not be a problem in practice. Sampling rates are usually set somewhat
above Nyquist rates anyway to provide a margin of safety, since real signals are
never perfectly bandlimited.

Two other details merit mention. It may appear that modulating the
sideband to baseband before filtering eliminates the possibility of using the
digital filter to suppress DC bias errors from the analog mixer. However, that
same modulation will move any DC term contributed by the mixer to w = 7/2,
where it can still be removed by the lowpass filter. Finally, in the Rader system
the I and Q signals were derived from the upper sideband of the original
bandpass signal, while in the Shaw and Pohlig system the lower sideband was
used. Because the original signal was real valued, its spectrum was Hermitian,
and consequently the spectra of the complex outputs of the two systems, say
Y (w) and Y,(w), are related according to Y,(w) = Y;" (—w) so that y,/n] =y,"[n].
Thus the 1 outputs of the two systems are (ideally) identical, while the Q outputs
differ in sign. Clearly, either system could be modified to use the opposite
sideband.
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Problems

1. Compute the minimum range for a radar using pulse lengths of 1 ns, 1 ps,
and 1 ms.

2. A radar transmits a series of 10 ps long pulses at a PRI of 100 ps.
Determine the maximum and minimum target range such that at least a
portion of the echo from one pulse will arrive back at the receiver during
the transmission of the next pulse. Targets in this range interval will be
completely or partially eclipsed. What target range produces a completely
eclipsed echo?

3. Suppose a radar has a pulse length of 100 ns. What is the Rayleigh



10.

11.

bandwidth of the pulse spectrum, in Hz? What is the 3 dB bandwidth in
Hz?

. Consider two signals: a square pulse x,(¢) of length 7 seconds, and a

triangle x,(7) of length 27 seconds obtained by convolving the square pulse
with itself, x,() = x,(¢) * x,(¢). What is the relationship between the two
spectra X,(F) and X,(F)? Determine the relationship between the 3-dB
bandwidths of X,(F) and X,(F). How does this compare to the relationship
between the Rayleigh bandwidths of X,(F) and X,(F)?

. Consider two RF pulses at frequencies of 5.0 GHz and 5.01 GHz. Assume

two pulses are resolvable in frequency if their center frequencies are
separated by at least the Rayleigh resolution of the individual pulses. What
1s the minimum pulse length required so that the two pulses could be
resolved in frequency?

A finite pulse train waveform is composed of 20 pulses, each of 10 ps
length and separated by a PRI of 1 ms. What is the coherent processing
interval for this waveform?

Consider an X-band (10 GHz) radar on a aircraft traveling at 100 m/s.
Assume the 3-dB azimuth beamwidth of the antenna 1s 3°. Compute the
Doppler shift £, of a scatterer on the antenna boresight and the Doppler
bandwidth /5, across the beam for squint angles of = 0°, 30°, 60°, and
90°.

Consider a radar with a PRF of 5 kHz. What is the maximum unambiguous
range, R, of this radar in km? If a target is located at a range of 50 miles,
how many pulses will the radar have transmitted before the first echo from
the target arrives? What will be the apparent range of the target in
kilometers?

Assuming a sidelooking radar (y = 90°) and Nyquist sampling in slow
time, determine the relationship between the maximum unambiguous range
R, and the antenna beamwidth 6. Ignore eclipsing. Using 6, = A/D,_,
determine the relationship between R,,, and the antenna azimuth dimension
D

az*

Suppose a target is at a range of 10 km from a C-band (5 GHz) radar and
has a radial velocity of +50 m/s with respect to the radar. Determine
whether the target is ambiguous in range and velocity, and the apparent
range and velocity R, and v, for PRFs of 1, 10, and 100 kHz. The
unambiguous velocity interval is considered to be [-v,,/2, +v,,/2].

Suppose a C-band (5 GHz) radar has a fast-time sampling rate of 2M
samples per second and a PRF of 5000 pulses per second. A CPI of data is
to be collected that will cover a range interval of 30 km and support
velocity resolution of 10 m/s. What are the dimensions of the data matrix



12.

13.

14.

15.

16.

17.

18.

for one CPI of data?

There is sometimes a concern as to whether a target will stay in the same
range bin while during the time it takes to collect a CPI of data. Sometimes
this 1s an issue, but often it is not. Using the PRF and number of pulses in
the CPI from the previous problem, what is the total duration of the CPI in
seconds? Consider a target moving at 100 nv/s (about 224 mph). How far
does the target move during one CPI, and how does that compare to the
range bin size? What is the minimum target velocity in m/s such that the
target would move more than one range bin in range during the CPI?

Suppose N samples of time-domain data are collected at a sampling rate of
F, samples per second. The K-point DFT of the data is computed.
Depending on the relative values of K and N, zero padding or data turning
is used as required. Develop a formula for the spacing of the DFT bins in
hertz.

Consider a sequence of 20 slow-time data samples collected at a PRF of 2
kHz. If a 1000-point DFT of this sequence is computed, what is the spacing
between DFT frequency samples in hertz?

Derive a condition on the DFT size K similar to that of Eq. (3.21) for a
maximum straddle loss of 1 dB. The result will depend on the value of M.
Instead of solving the appropriate equations numerically, use the first two
terms of the Taylor series for sin(x) to get a closed-form result. Figure 3.15
can be used as an approximate check on the result for the case M = 100.

Consider a search radar at 1 GHz (L band) with a rotating D = 10 m dish
antenna. Suppose the beamwidth is 8; = 2°. What is the antenna parameter &
in Eq. (3.31)? What is the Nyquist sampling rate in degrees for this
antenna? If the antenna rotates at a rate of one revolution every 6 seconds,
what is the PRF required to achieve this angular sampling rate?

Compute the relative power ratio P, in the image component of the output of
an I/Q receiver when there is a simultaneous mismatch of 0.1 dB in gain
and 1° in phase. Express the answer in dB. Use Fig. 3.19 to check the
answer.

Consider a digital I/Q architecture similar to Rader’s. Starting with the
original signal spectrum of Fig. 3.21a, assume that the signal is
demodulated from the original center frequency F| to an IF of f Hz. What
will be the minimum required sampling rate F, of the real-valued data?
Assuming this value for F, and also that the sampling rate is reduced to the
minimum possible without aliasing in the last step, sketch the complete set
of spectra from the original analog spectrum X(F) to the final discrete time
spectrum Y(w), similar to Fig. 3.21. Also show the required frequency
response H(w) of the digital filter, assuming the upper sideband is the one



that 1s retained. Discuss the spectrum recentering step in going from the
equivalent of Fig. 3.21d to the equivalent of Fig. 3.21e: can demodulation
by decimation be used and, if not, why not? If multiplication by complex
exponentials is used, do the multipliers assume a simplified form?
Summarize the pros and cons of this system versus Rader’s system.

1 The terms resolution bins and resolution cells are also sometimes used synonymously with range bins,
and in many cases are synonymous; but the sampling interval in range does not always equal the range
resolution, so caution should be used in interpreting the latter two terms.

Z In this text, the abbreviations “PRF” and “PRI” are used both as acronyms and as mathematical variables.
When used as an acronym, they are not italicized (PRF, PRI); when used as mathematical variables, they
are italicized (PRF, PRI).

3 Note that the velocity of portions of a vehicle may differ from the nominal velocity of the vehicle as a
whole. The Doppler frequency corresponding to the nominal velocity is frequently termed the skin return.
However, the lug nuts on the wheels on a wheeled vehicle have velocities ranging from zero to twice the
nominal velocity of the vehicle. Some laser radars even attempt to measure the Doppler shifts due to vehicle
vibration. The spectrum of Doppler shifts from different portions of a vehicle is sometimes called a
microDoppler spectrum.

4 Seven range bins is unrealistically few in most situations, but is used here for ease of illustration.

2 The precise value depends on the definition of mainlobe width that is used, and whether or not weighting
for sidelobe control is employed.

8 Not to be confused with the “Dirac delta” impulse function d () used in continuous-time analysis.

z Using a DFT size K that is strictly greater than the number of time samples M is often referred to as zero
padding. This term is a relic of traditional software for computing the fast Fourier transform, which often
returned the vector of frequency samples in the same variable used to input the time samples. When K > M,
the input vector was “padded” to the required length of K by adding K—M zeros at the end. The term has
nothing to do with the mathematics of the DFT.

8 Straddle loss is also called scallop loss by some authors, e.g., Harris (1978).

2 This same result is often derived in antenna literature by requiring that the antenna pattern not contain
grating lobes, which are replicas of the antenna pattern caused by sampling of the aperture of a phased
array antenna by the elements.



CHAPTER 4

Radar Waveforms

4.1 Introduction
A radar transmits a waveform typically modeled as

X(t)=a(t)sin[Qt +6(t)]
4.1)

The term Q in the argument of the sine function is the carrier radar frequency
(RF) 1n radians per second. The term a(?) represents amplitude modulation of
the RF carrier; in a pulsed radar, this is typically just a rectangular function that
pulses the waveform on and off. The term 6(¢) models any phase or frequency
modulation of the carrier. It can be zero, a nonzero constant, or a nontrivial
function. The overbar on *(f) denotes that the signal is on a carrier, i.e., it has not
yet been demodulated. Figure 4.1 illustrates three example waveform types
common in pulsed radar. The simple pulse is simply a constant-amplitude burst
at the RF frequency. The frequency of the linear frequency modulated (LFM)
pulse increases at a constant rate during the time the pulse is on. LFM pulses can
also have decreasing frequency during the pulse. The third example is a binary
phase-coded pulse. In this waveform, the frequency is constant but the absolute
phase of the waveform changes from zero to 7 radians several times within the
pulse. That is, the value of (¢) changes between the constants zero and 7 at
specific times within the pulse.
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FIGURE 4.1 Examples of common pulsed radar waveforms: (a) simple pulse,
(b) linear frequency modulated (LFM) pulse, (c¢) binary phase-coded pulse.

As discussed in Chap. 1, the real-valued waveform of Eq. (4.1) is more
conveniently modeled by its complex equivalent
j._’.{_fj . mnﬂj[ﬂﬂéi ]|
(4.2)

The portion of *i*} other than the carrier term, or equivalently the complex

baseband signal after demodulation, is called the complex envelope of the
waveform
x(t)= a(t)e™"

(4.3)

It is this function that describes the amplitude and phase or frequency
modulation applied to the RF carrier and is considered to be “the waveform™ in
this chapter.

Radar waveforms can be characterized in several ways. Perhaps first is
whether the waveform is continuous wave (CW) or pulsed; sometimes
variations such as “interrupted CW” are defined as well. Pulsed waveforms can
be defined based on a single pulse, or “the waveform” can be considered to be
a multipulse burst. Both pulsed and CW waveforms can be further categorized
based on the presence or absence of frequency or phase modulation. If present,



the modulation may be intrapulse (applied to individual pulses), interpulse
(applied across the pulses of a multipulse waveform), or both. Phase
modulation can be biphase (two possible states) or polyphase (more than two
phase states); frequency modulation can be linear or nonlinear. Intrapulse
amplitude modulation may be used, but usually is not.

The choice of waveform directly determines or is a major contributor to
several fundamental radar system performance metrics. These include the
signal-to-noise ratio (SNR) y, the range resolution AR, the Doppler (velocity)
resolution AF,, (Av), ambiguities in range and Doppler, range and Doppler
sidelobes, and range-Doppler coupling. These metrics are determined by such
waveform attributes as the pulse duration, bandwidth, amplitude, and phase or
frequency modulation. While all of these metrics are discussed, the primary
emphasis is on SNR, range resolution, and Doppler resolution because these are
the most fundamental drivers in choosing the waveform. As an example, the
simple pulse of Fig. 4.1a has a duration of 7 seconds and an amplitude of 4
volts. The SNR will prove to be proportional to the waveform energy, which is
the product A’c of its power and duration. The range resolution of c7/2 is
proportional to the pulse duration. It will be shown shortly that both the
waveform bandwidth and the Doppler resolution of the simple pulse are
inversely proportional to the pulse length.

Two classic references on radar waveforms are Cook and Bernfeld (1993)
and Rihaczek (1996). Most radar system books cover the fundamentals of radar
waveforms (e.g., Nathanson, 1991; Peebles, 1998). A complete modern
reference on radar waveforms is Levanon and Mozeson (2004), while good
brief surveys of basic and advanced waveforms are in Keel (2010) and Keel
and Baden (2012), respectively. In addition to covering the mainstream
waveforms such as pulse bursts and LFM, this text covers the many
developments in phase codes in recent decades. Another new text that focuses
more on advanced waveforms and emerging applications 1s Gini et al. (2012).

4.2 The Waveform Matched Filter

4.2.1 The Matched Filter
So far, it has been implicitly assumed that the overall frequency response of the
radar receiver is a bandpass characteristic with a bandwidth equal to or greater
than that of the transmitted signal. Equivalently, once the carrier is demodulated
out, the effective frequency response is a lowpass filter with a bandwidth equal
to that of the complex envelope. It will be shown in Chap. 6 that detection
performance improves with increasing SNR. Thus, it is reasonable to ask what
overall receiver frequency response H(€2) will maximize the SNR.

To answer this question, note that the spectrum of the receiver output, y(¢),



will be N(Q) = H(Q)X(Q), where X(Q) is the spectrum of the waveform (and
thus, except for a phase shift due to an overall delay, of a received target echo).
Consider maximizing the SNR at a specific time 7,,, The power of the signal
component of the output at that instant is

-

| ¥(Toy) |2 = %L X(Q)H(€)e™™ de)
(4.4)

To determine the output noise power, consider the case where the interference
is white noise with power spectral density 7:W/Hz, The noise power spectral
density at the output of the receiver will be @«lH(@)| W/Hz The total output
noise power is then

ol 7 2
"= 2m ) |HQ)[ dQ
(4.5)
and the SNR measured at time 7, 1s
| ¥(Ty) i "[.sz’f}jj X(Q)H Q)T dil‘
.f]',".' - {ﬁiﬁfzﬂ-}jj)_. | H{Ll}f 40
(4.6)

Clearly, y depends on the receiver frequency response. The choice of H(Q2)
that will maximize y can be determined via the Schwarz inequality. One of many
forms of the Schwarz inequality is
i [J | A(©)

UA{EJ!}B{!.J.‘ )dQ)

2aal{ [|B@ aal

(4.7)

with equality if and only if B(QQ) =a A*(Q), witha any arbitrary constant.
Applying Eq. (4.7) to the numerator of Eq. (4.6) give the upper bound on SNR
as

{1{,{2;{-}3 I-m X{Ll}f.fﬁﬂﬁ ‘2 dﬂj_w |H{£l} : dQl

(02/2m)[” |H©Q)|" d

X =
(4.8)

The SNR is maximized when



H(Q)=aX*(Q)e "™ or

hit)=ox*(T,,—1)
(4.9)

This particular choice of the receiver filter frequency or impulse response is
called the matched filter, because the response is “matched” to the signal
waveform. Thus, the waveform and the receiver filter needed to maximize the
output SNR are a matched pair. If the radar changes waveforms, it must also
change the receiver filter response in order to stay in a matched condition. The
impulse response of the matched filter is obtained by time-reversing and
conjugating the complex waveform. The gain constant a is often set equal to
unity; it has no impact on the achievable SNR, as seen later in this chapter. The
time 7,, at which the SNR is maximized is arbitrary. However, 7,, >7 is
required for A(¢) to be causal.

Given an input signal x'(¢) consisting of both target and noise components,
the output of the matched filter is given by the convolution

o

y(t)= | ¥(s)h(t—s)ds

=g J_ x'(s)x* (s + Ty —t)ds
(4.10)

The second line of Eq. (4.10) 1s recognized as the cross-correlation of the
target-plus-noise signal x'(¢) with the transmitted waveform x(¢), evaluated at
lag T, — ¢t. Thus, the matched filter implements a correlator with the transmitted
waveform as the reference signal.

It is useful to determine the maximum value of SNR achieved by the
matched filter. Using H(Q) = aX*(Q) exp(—jQT,,) in Eq. (4.6)

-
Fy

‘ ( 1/2x }J:a X(Q)[ox XF (Q) o J2Ty ] E,,"”T.»{ 40
;{ =

(02/2m)[ " |oX* (@)e | 42

‘{1 /2m) | | X(Q) zdur

-

of og/2x | “dQ

X(Q2)

240

]_ ]
= b X !2
2o, I- | (£2)

i

(4.11)

The energy in the signal x(?) is
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(4.12)

where the second step follows from Parseval’s relation. Using Eq. (4.12) in Eq.
(4.11) gives

1 e 2 E
T | |X(] do=—

w i

;{‘:

(4.13)

Equation (4.13) states the remarkable result that the maximum achievable SNR
depends only on the energy of the waveform and not on other details such as its
modulation. Two waveforms having the same energy will produce the same
maximum SNR, provided each is processed through its own matched filter.
Although it is the ratio of the peak signal component power to the noise
power, the SNR of Eq. (4.13) is called the energy SNR because the peak signal
power at the matched filter output equals the energy of the transmitted signal. To
see this, note that the peak signal component at the matched filter output is given

by Eq. (4.10) witht=T,,

Y(Ty)= ) x(s) oex™(s) ds = o.E
(4.14)

Also, the duration of the signal component of the matched filter output is exactly
27 seconds, since it is the convolution of the 7-second pulse with the z-second
matched filter impulse response.

The previous results can be generalized to develop a filter that maximizes
output signal-to-interference ratio (SIR) when the interference power spectrum
is not white. In radar, this is useful for example in cases where the dominant
interference is clutter, which generally has a colored power spectrum. The
result can be expressed as a two-stage filtering operation. The first stage is a
whitening filter that converts the interference power spectrum to a flat spectrum
(and also modifies the signal spectrum in the process); the second stage is then a
conventional matched filter as described earlier, but designed for the now-
modified signal spectrum. Details are given by Kay (1998).

4.2.2 Matched Filter for the Simple Pulse
To illustrate the previous ideas, consider a simple pulse of duration 7:

JL O<t<r
X(t)= _
\ (0, otherwise

(4.15)



The corresponding matched filter impulse response is

hty=ox™(Ty;—t)

J’n-, Ty—1<t<Ty

\ 0, otherwise

(4.16)

where 7),, >t for causality. Because x(¢) is a much simpler function than its
Fourier transform (a sinc function), it is easier to work with the correlation
interpretation of Eq. (4.10) to compute the output. Figure 4.2 illustrates the two
terms in the integrand, helping to establish the regions of integration. Part a of
the figure shows that

aX™ (8 +Tyy —1)

I_I"ﬁf 'D I—I:‘I"'.r T

‘ ax” (s +Ty—t)

x(s)
ﬂ !_Tﬁf T I—]’-M-i-r
(b)

FIGURE 4.2 Convolution of simple pulse and its matched filter: (a) 7,,— 1<t <

D, f L T.:"rI =

Y(E) =1 p-Tate
‘, ) (Wer)ds, Ty—t=t=<Ty

(4.17)

while part b is useful in identifying the next two regions
jr (W)(et)ds, Ty <t<Ty+71
y(t)= =Ty
0, t=>Ty+rt

(4.18)



The result is

[a[r—{TM—r}], Ty~T 2L 2T

yt)=o[(Ty +1)-t], TyEteTytx

0, otherwise

(4.19)

This result is illustrated in Fig. 4.3. The matched filter output is a triangle
function of duration 27 seconds with its peak at¢ =T, as expected. The peak
value 1s at; since the energy of the unit amplitude pulse is just z, the peak value
equals aF as predicted.

L

0 Tyy-r Ty Ty +t

FIGURE 4.3 Matched filter output for a simple pulse.

The noise power at the output of the matched filter is
o2 (=
n,=—"=
2r J-m

H(Q)|* d

= Ui, J: | ht) |‘ dt (Parseval’s relation)

= r:Tf |ﬂf|2 T
(4.20)

The SNR is therefore

|ﬂ~:ir|2 i € e

B
L
(28

Cozlefr op o
(4.21)

consistent with Eq. (4.13). Note that the gain a has no effect on the SNR.

4.2.3 All-Range Matched Filtering

The matched filter was designed to maximize the output SNR at a particular time
instant 7),. This raises several questions. How should 7}, be chosen, and how
can the range of a target be related to the resulting output? What happens if the



received signal contains echoes from multiple targets at different ranges?

Start by choosing 7,, =17, the minimum value that results in a causal
matched filter. Now suppose the input to the matched filter is the echo from a
target at an unknown range R,, corresponding to a time delay ¢, = 2R,/c. The
signal component of the output of the matched filter will be

y(t)= J-i:r{s— to)orx® (s+1—t)ds
(4.22)

This 1s just the correlation of the received, delayed echo and the matched filter
impulse response. The output waveform will again be a triangle with its peak at
correlation lag zero. This occurs whens —¢, =s +t —¢, ort =¢, + 7. The
matched filter output will appear as in Fig. 4.4. The peak will occur at time 7,
=1, +1, corresponding to the actual delay to the target plus the delay of the
causal matched filter. The target range can be easily determined from

observation of the matched filter output as R, = c(Z,., — 7)/2.
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FIGURE 4.4 Output of the matched filter for a target at range R, = ct,/2.

This discussion shows that the matched filter parameter 7, can be chosen
arbitrarily (typically as T, = 7). Once T, is known, the range of a target can be
determined by detecting the time at which a peak occurs at the matched filter
output, subtracting 7, to get the delay to the target and back, and converting to
units of range. Thus, a single choice of 7}, allows detection of targets at all
ranges. One simply samples the matched filter output at a series of fast-time
sample instants #,; if a peak occurs at time ¢, it corresponds to a target at range
c(t, —T,)/2. If the received signal contains echoes from multiple targets at
different ranges, by superposition the matched filter output will contain multiple
copies of the single-pulse triangle response, one centered at the time delay (plus
filter delay) of each of the various targets.

4.2.4 Straddle Loss

In modern practice, matched filtering is carried out digitally so that y(7) is
sampled at some fast-time sampling rate F, = 1/7,. Typically F, equals or is
slightly greater than the waveform bandwidth 5. The range sample spacing is



then cT,/2 meters. In general, targets do not arrange themselves precisely at
ranges corresponding to the range samples. The receiver then will not sample
the matched filter output precisely at its peak. The result is a reduction in the
measured signal amplitude and therefore an SNR loss.

This is exactly the issue of straddle loss that was discussed in Chap. 3 with
regard to the DFT of frequency domain data. In either case, the finite sampling
rate allows the processor to “miss” the peak response, whether it is the matched
filter output in fast time or the spectrum of a slow-time signal. Straddle loss also
arises in angular sampling with scanning antennas. In any of these cases it can be
reduced with higher sampling rates or various interpolation methods.
Consideration of these methods is deferred to the discussion of pulse Doppler
analysis 1n Chap. 5 and the analyses of time delay, frequency, and angle
estimation in Chap. 7. All of the methods there can be applied to the fast-time
straddle loss for the various waveforms in this chapter.

4.2.5 Range Resolution of the Matched Filter

By determining the range separation that would result in nonoverlapping echoes,
it was shown in Chap. 1 that the range resolution achieved by a simple pulse of
duration 7 seconds is ct/2 meters. When a matched filter is used, the output due
to each scatterer is now 27 seconds long, but is also triangular rather than
rectangular in shape. Does the longer matched filter output result in a larger
value of range resolution?

Before considering this question, it is useful to recall that the demodulated
echo from a scatterer at range R, meters has not only a delay of ¢, = 2R,/c
seconds, but also an overall phase shift of exp[j(—47/A)R,] radians.! A change of
only /4 in range will cause a change of 180° in the received echo phase. Two
overlapping target responses may therefore add either constructively or
destructively in phase, and small deviations in their spacing can result in large
changes in the composite response. Consider two targets at ranges cf,/2 and
cty/2 + c1/2 and assume 7 is such that the two matched filter responses add in
phase. Then the composite response at the matched filter output is a flat-topped
trapezoid as shown in Fig. 4.5a. Clearly, if the separation between the two
scatterers increases, a dip will begin to develop in the composite response,
even when the separation is such that they remain in phase. If the separation
decreases, the in-phase response will still be a trapezoid, but with a higher peak
and a shorter flat region as the responses overlap more. Because any increase in
separation will result in a dip between the two responses, the separation of ¢z/2
meters is still considered to be the range resolution of the matched filter output.
Thus, using a matched filter does not degrade the range resolution. To reinforce
this further, recall that the definition of the Rayleigh resolution is the peak-to-
first null distance. Inspection of Fig. 4.3 shows that c7/2 is also the Rayleigh
resolution of the simple pulse matched filter output.
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FiGURE 4.5 Composite matched filter response due to two scatterers separated
by c7/2 meters: (a) target responses in phase, (b) target responses 180° out of
phase.

Scatterers that are closer together than the Rayleigh resolution may still be
resolved if the spacing is such that the individual responses add out of phase.
Figure 4.5b illustrates the case where the two responses differ in phase by 180°.
Destructive interference in the region of overlap causes a deep null in the
composite response. However, this null is very sensitive to the fine spacing of
the scatterers and cannot be relied on to resolve two targets.

4.3 Matched Filtering of Moving Targets

Suppose a simple pulse is transmitted, x(¢#) = 1, 0 <¢ <7, and it echoes from a
target moving toward the radar with a radial velocity of v meters per second.
After demodulation, the received waveform (ignoring the overall time delay)
will be x'(1) =x(t)exp(jQyt), with Q, = 4xv/i. Because the echo is different
fromx(7), a filter matched to x(¢#) will not be matched to x'(¢). If the target
velocity is known, the matched filter for x'(¢) can be constructed:
h(t)=orx'* (—t) = ax™* (—t)e 7
(4.23)

The frequency response of this matched filter is
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= X*(Q-Qp)
(4.24)

Thus, the matched filter for x'(¢) can be obtained by simply shifting the center
frequency of the matched filter for x(7) to the expected Doppler shift.

A more interesting situation occurs when the velocity is not known in
advance so that the receiver filter is not matched to the target Doppler shift.
More generally, suppose the filter is matched to some Doppler shift Q2; radians
per second but the actual Doppler shift of the echo is Q,. Choosing T}, = 0 for
simplicity, the matched filter output will be zero for |7 | > 7. For 0 <¢ <t the
response is

y(t)= ﬂr:jlT exp( jQps)expl—j€2;(s—t)] ds
(4.25)

If the filter is in fact matched to the actual Doppler shift, Q. = Q,,, the output
becomes

y(t) = o exp( j.f.zﬂr}jf{l} ds

=gett(r—t), 0<t<t

(4.26)
The analysis is similar for negative ¢, —t < ¢ < 0. The complete result is
e’ (t—|t]), -—-T<t<t
e il |
| 0 c:-then«.—*iseJ
(4.27)

Thus, | y(7) | is the usual triangular function, peaking as expected at ¢t = 0.
If there 1s a Doppler mismatch, Q. # Q,,, the response at the expected peak
time t =0 1s

Y(t)oo = @ |, exp(j€2ps) exp(—j€,s) ds

= anG exp[+j(Qp —€,)s]ds

= (€, —C2)s
iy DA B

0
(4.28)



Defining Q.= Q, — Q

| y(0)|=

200 8in(€2 4,7 /2)
(i
(4.29)

Equation (4.29) is plotted in Fig. 4.6. The first zero of this sinc function occurs
at Fyr = 1/t Hz.2 Relatively small Doppler mismatches (F = 1/7) will cause
only slight reductions in the matched filter output peak amplitude. Large
mismatches, however, can cause very substantial reductions.
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FIGURE 4.6 Effect of Doppler mismatch on matched filter response at expected
peak time.

The effect of Doppler mismatch can be either good or bad. If targets are
moving and the velocities are unknown, mismatch will cause reductions in
observed peaks and, if severe enough, may prevent detection. The signal
processor must either estimate the target Doppler so that the matched filter can
be adjusted or construct matched filters for a number of different possible
Doppler frequencies and observe the output of each to search for targets. On the
other hand, if the goal is to be selective in responding only to targets of a
particular Doppler shift, it is desirable to have a matched filter that suppresses
targets at other Doppler shifts.

FromFig 4.6, it is clear that the Rayleigh resolution of the Doppler
mismatch response is 1/7 Hz. The resolution in velocity is therefore 4/27 meters



per second. For typical pulse lengths, these are fairly large values. For example,
a 10 us pulse would exhibit a Rayleigh resolution in Doppler of 100 kHz, or in
velocity at X band (10 GHz) of 1500 m/s. Many systems do not observe such
high Doppler shifts, so Doppler mismatch effects are insignificant and targets
cannot be resolved in Doppler on a single pulse. If finer Doppler resolution is
desired, a very long pulse may be needed. For example, velocity resolution of 1
m/s at X band requires a 15-ms pulse. The range resolution is then a very poor
2250 km. This conflict between good range resolution and good Doppler
resolution can be resolved using a pulse burst waveform, which will be
addressed in Sec. 4.5.

4.4 The Ambiguity Function

4.4.1 Definition and Properties of the Ambiguity Function

In the preceding sections, the matched filter response for the simple pulse
waveform has been analyzed to show its behavior both in time and in response
to Doppler mismatches. The ambiguity function (AF) is an analytical tool for
waveform design and analysis that succinctly characterizes the behavior of a
waveform paired with its matched filter. The AF is useful for examining
resolution, sidelobe behavior, and ambiguities in both range and Doppler for a
given waveform, as well as phenomena such as range-Doppler coupling
(introduced in Sec. 4.6.4).

Consider the output of a matched filter for a waveform x(#) when the input
i1s a Doppler-shifted response x(¢)exp(j2nF,t). Also assume that the filter has
unit gain (a = 1) and is designed to peak at 7}, = 0; this merely means that the
time axis at the filter output is relative to the expected peak output time for the
range of the target. The filter output will be

yit;Fp)= J: x(s)exp(j2r Fys)x™ (s—t) ds
= A(t, Fp)
(4.30)

which is defined as the complex ambiguity function A(t, Fp). An equivalent
definition can be given in terms of the signal spectrum by applying basic Fourier
transform properties:

A(t, Fp)= | X*(F)X(F— Fp)exp(j2r Ft) dF
(4.31)

The ambiguity function? is defined as the magnitude of A(¢, F)),



Alt, Fy)=| At, Fyp)
(4.32)

It is a function of two variables: the time delay relative to the expected matched
filter peak output, and the mismatch between that Doppler shift for which the
filter was designed, and that which is actually received. For example, the AF
evaluated at time ¢t = 0 corresponds to the output of the actual matched filter at
time t = 2R,/c +t for a target at range R,. The particular form of the AF is
determined entirely by the complex waveform x(¢).

Three properties of the ambiguity function are of immediate interest. The
first states that if the waveform has energy E, then

|A(t, Fp)| <| A0, 0)| =E
(4.33)

Thus, when the filter is matched in Doppler to the echo and is sampled at a
delay corresponding to the target range, the response will be maximum. If the
filter is not matched or is sampled at a different delay, then the response will be
less than or equal to (usually less than) the maximum. The second property
states that total area under any ambiguity function is constant and is given by

| [ |A¢, By)|? dt dF, =E?
(4.34)

This conservation of energy statement implies that, in the design of waveforms,
one cannot remove energy from one portion of the ambiguity surface without
placing it somewhere else; it can only be moved around on the ambiguity
surface. The third property is a symmetry relation:

A(t, Fp) = A(-t,— Fp)
(4.35)

In order to prove the first property, start with the square of Eq. (4.32)
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|7 x(s)x* (s~ tyexp(j2rFps) ds

(4.36)
Applying the Schwartz inequality to Eq. (4.36) yields
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Each integral is just the energy E in x(¢), so that

)
Tacp?

| A(t, Fp)

(4.38)

The equality holds only ifx(s) =x(s — t)exp(—j2zFs) for all s, which occurs if
and only if ¢ = F, = 0. Making these substitutions in Eq. (4.38) gives the equality

in Eq. (4.33).
The proof of the second property starts by defining the complex conjugate

of the complex ambiguity function, where

i

A"t Fp)= | x*(s) x (s—t)exp(—j2m Fps) ds

. J X(F)X* (F - Ep)exp(—j2nEt) dF
(4.39)

The squared magnitude of the ambiguity function can then be written as
|A(t, Bp)|* = At, Ep)A* (£, Ep)

= J_ J_A x(s)x™ (s—t)X(F)X* (F - Fy)explj2n(F,s — Ft)] ds dF
(4.40)

The total energy in the ambiguity surface is
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Alt, Ep)

2 dt dF,, = 2i 71707 T xe)x (s-HX(F)X ¥ (F-Fy)

",I'I' — ¥ o ¥ —G E —p

xexplj2n(Fys—Ft)] ds dF dt dF,
(4.41)

Isolating those terms integrated over¢ and F),, yields the following two
relationships:

L]

|__x*(s—t)exp(~j2nFt) dt = exp(~j27F 5)X™ (F)
(4.42)

J'W X*(F —Fp)exp(j2nFps) dFy, = exp(j2nF s)x™ (s)

—)

(4.43)

Substituting these into Eq. (4.41) yields
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(4.44)

The first integral on the right-hand side of Eq. (4.44) is just the energy E of the
pulse measured in the time domain; the second is, by Parseval’s theorem, also
the energy. Thus

P

. L

dFp

(4.45)

The symmetry property can be proved by substituting — and —F), for ¢# and
Fp, respectively, in the definition in Eq. (4.30)

A(-t,-E)= J_: x(s)exp(—j2mFys)x™ (s +t) ds

(4.46)
Now make the change of variables s'=s + ¢ to get
Alb=F )= L x(s' — bexp(— j2rEp (s’ — H)x*(s") ds’
= exp(]j ZrFDr}J x(s"—t)exp(—j2rFps Nxt(s)ds’
= exp(j2rnFpt)A*(t, Fp)
(4.47)

Since A(t, Fp,) =|A(t, F,)|, Eq. (4.35) follows immediately.

It is reasonable to ask what would be an ideal ambiguity function. The
answer varies depending on the intent of the system design, but a commonly
cited goal i1s the “thumbtack” ambiguity function of Fig. 4.7, which features a
single central peak with the remaining energy spread uniformly throughout the
delay-Doppler plane. The narrow central peak implies good resolution in both
range and Doppler. The lack of any secondary peak implies that there will be no
range or Doppler ambiguities. The uniform plateau suggests low and uniform
sidelobes, minimizing target masking effects. All of these features are beneficial
for a system designed to make fine-resolution measurements of targets in range
and Doppler or to perform radar imaging. On the other hand, a waveform
intended to be used for target search might be preferred to be more tolerant of
Doppler mismatch so that the Doppler shift of targets whose velocity is not yet
known does not prevent their detection due to a weak response at the matched
filter output. Thus, what is “ideal” in the way of an ambiguity function depends
on the use to which the waveform will be put.
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FIGURE 4.7 “Thumbtack” ambiguity function.

4.4.2 Ambiguity Function of the Simple Pulse
As a first example of an ambiguity function, consider a simple pulse centered on
the origin and normalized to have unit energy (E = 1) for convenience

i -7 T
wlf) =y
=E 25
(4.48)
Applying Eq. (4.30) gives for >0
) /2 1 .
A(t, Fp)= l ?exp{__gZ.rrFDs} ds
—r‘:*l'2+t
_explj2nFyt/2]-exp [j2nFy(—1/2+1)]
B rj2rE,
2nEpts2 | - (7t
L ) o 2xE e T
t2nFy " [~ [} |33 ﬂ
; & 1
ooyl P | Db
e}xP[ JeTt D[Z 2]} J
(4.49)
The ambiguity function for # > 0 is the magnitude of Eq. (4.49)
; sin(mFy(t—t))
Alt, Fp)=|Alt, By)|= ' , 0<t<
Ve fo) | { D}| 7,4 35 ‘
(4.50)

Repeating the derivation for # < 0 gives a similar result, but with the quantity (z
— t) replaced by (7 + ¢). The complete AF of the simple pulse is therefore



At Ey) sm[xiit;—mn‘
D
. l—m.] sin[z Fpr(1-|t|/1)] .
T nhyt(1-|t|/1)

(4.51)

Equation (4.51) is plotted in Fig. 4.8 in a three-dimensional surface plot
and inFig. 4.9 as a contour plot, which is often easier to interpret and is
therefore used in most cases in the remainder of this chapter. The AF for a
simple pulse is a triangular ridge oriented along the delay axis. Doppler
mismatches on the order of 1/r Hz or more drastically reduce and spread the
matched filter output peak, as was shown previously.
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FIGURE 4.8 Ambiguity function of a unit-energy simple pulse of length .
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FIGURE 4.9 Contour plot of the simple pulse ambiguity function of Fig. 4.8.

The zero-Doppler response A(z, 0) gives the matched filter output when
there is no Doppler mismatch. SettingF, = 0 inEg. (4.51) and using
L’Hopital’s rule to resolve the indeterminate form gives

H{T—|t|}CDS[HFD{T—|f|}]
T

A(t,0)=
FDZD
=r—_|r|; —T<t<T

T

(4.52)

Similarly, the zero-delay cut A(0, F)) gives the output of the matched filter at the

expected peak time # = 0 as a function of Doppler mismatch. Using ¢ = 0 in Eq.
(4.51) immediately gives

sin(m k)

A0, Fy) =
% p) by

(4.53)

Equations (4.52) and (4.53) are the expected triangle and sinc functions derived
previously. They are illustrated in Fig. 4.10.
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FIGURE 4.10 (a) Zero-Doppler cut of simple pulse AF, (b) zero-delay cut.
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A Doppler mismatch not only reduces the peak amplitude but, if severe
enough, completely alters the shape of the range response of the matched filter.
Figure 4.11 shows the effect of varying degrees of Doppler mismatch on the
matched filter range response. These curves should be compared to Fig. 4.10a.
A mismatch of 0.31/7 Hz results in a reduction of about 16 percent in the peak



amplitude, but the peak remains at the correct time delay. A larger shift, for
example 0.94/7, not only reduces the maximum output amplitude by 65 percent
but eliminates the central peak altogether. By the time the mismatch is several
times 1/z, the response becomes completely unstructured. Note that a mismatch
of n/t Hz means that there will be n cycles of the Doppler frequency during the
pulse duration z. Also recall that for typical pulse lengths, 1/7 is a large Doppler
shift, so that the simple pulse still ranks as a relatively Doppler-tolerant
waveform. For instance, ift = 10 ps, a Doppler shift of 0.31/7 is 31 kHz,
corresponding at an RF of 10 GHz to a velocity of 465 nmv/s, or 1040 mph. Even
with this very large Doppler mismatch, the simple pulse matched filter output
retains its basic shape, correct peak location, and suffers only the 16 percent
(1.5 dB) amplitude loss.
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FiGURE 4.11 Effect of Doppler mismatch on the range response of the matched
filter for the simple pulse.

4.5 The Pulse Burst Waveform

The flip side of the Doppler tolerance of the simple pulse described in the
preceding example is that its Doppler resolution is very poor. If the designer
wants the radar system to respond to targets only at certain velocities and reject
targets at nearby velocities, the simple pulse is not adequate as a waveform.
Better frequency resolution requires a longer observation time. The pulse burst
waveform is one way to meet this requirement. It is defined as



M-1
x(t)= ) x,(t—mT)
m=0

(4.54)

where x,(¢) = single pulse of length z
M =number of pulses in the burst
T =pulse repetition interval

While the constituent pulse x,(¢) can be any single-pulse waveform, for the
moment only the simple pulse will be considered. Figure 4.12 illustrates this
waveform. The solid line forming the envelope of the sinusoidal pulses is the
actual baseband waveformx(¢). The train of RF pulses that results when it is
impressed upon a carrier is denoted as usual as ¥}, The total duration M7
(which includes the dead time after the last pulse) is the coherent processing
interval (CPI).

Pulse 0 Pulse 1 Pulse 2 Pulse M -1

FIGURE 4.12 Pulse burst waveform and the resulting train of RF pulses.

4.5.1 Matched Filter for the Pulse Burst Waveform
The matched filter for the pulse burst is (with a =1 and 7}, = 0)

M-1
Wt)=x"(—t)= Y x;(—t—mT)
m=0
(4.55)

and the matched filter output, given an echo from a range corresponding to a
time delay ¢, 1s therefore

= M1 | [M=1
JZ Xp(s—fg— mT}U Y xi(s—t- nT}lﬂ’s

i — ‘ m=0 J | n=0 J
M-1M-1. ... |
=2 2| _x,(s—tg—mT)x;(s—t—nT)ds

m=0 n=0

yit)=

(4.56)

The inner integral is the matched filter output for the constituent simple pulse.



Lett, = 0 for simplicity; the results can be adjusted for any other delay ¢, by
shift invariance. Renaming the simple pulse matched filter output from Eq.

(4.19) as 5,(1), Eq. (4.56) becomes

M-1M-1 M-1M-1
yit)= z E s,(—t—(m—m)T)= Z 2 sj{r—{ﬂ—m}T}
m=0 n=0 m=0 n=0

(4.57)

where the symmetry of s,(¢) has been used in the last step. Equation (4.57) states
that the matched filter output is a superposition of shifted copies of s (¢). The
double summation can be simplified by noting that all terms that have the same
value of (n —m) are identical and can be combined. There are M combinations
of m and n such that m — n = 0, namely, all those where m = n. There are M — 1
cases where m —n = +1 and another M — 1 cases where m —n = —1. Continuing
in this vein gives

M-1

yit)y= Y (M—|m|)s;(t—mT)

m=—(M-1)

(4.58)

The matched filter output for the pulse burst waveform is simply a sum of scaled
and shifted replicas of the output of the filter matched to a single constituent
pulse.

Since the constituent pulse x,(¢) is of duration z, 5,(¢) 1s of duration 2z. If 7
> 27 as is usually the case, none of the replicas ofs,(f) overlap one another.
Figure 4.13 illustrates a pulse burst waveform and the corresponding matched
filter output for this case and M = 3. The peak output occurs at ¢t = 7;, = 0:
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FIGURE 4.13 (a) Pulse burst waveform, M = 3, (b) matched filter output.

M-1 M—1
y(0)= z (M —|m)s, (—mT)= Z (M~ |m])s,(mT)
m=—(M-1) ' = (M-1)
=Ms,(0)=ME,=E
(4.59)

where the last step uses s,(mT) = 0 when 7' > 7. In this equation E, is the energy
in the single pulse x (), while E is the energy in the entire M-pulse waveform.
Note that the peak response is M times that achieved with a single pulse of the
same amplitude. Recall the radar range equation signal processing gain factor
G,, of Eq. (2.85). The increase in the matched filter output peak for the pulse
burst waveform represents a coherent signal processing gain of a factor G,, = M
that will improve the SNR compared to a single-pulse waveform, aiding
detection probability and measurement precision.

4.5.2 Pulse-by-Pulse Processing
The structure of Eq. (4.58) suggests that it is not necessary to construct an
explicit matched filter for the entire pulse burst waveform x(¢), but rather that
the matched filter can be implemented by filtering the data from each individual
pulse with the single-pulse matched filter and then combining those outputs. This
process, called pulse-by-pulse processing, uses separable two-dimensional
processing in fast time and slow time. It provides a much more convenient
implementation and is consistent with how pulse burst waveforms are processed
in real systems.

Define the matched filter impulse response for the individual pulse in the
burst, assuming 7;,= 0

h,(t)=x, (—t)
(4.60)

The output from this filter for the mth transmitted pulse, assuming a target at
some delay ¢, is

Ymlb)= 'Tp“_ bpis mT ) hp“)

= sf,:{r— t—mT)=s,(~t+& +mT), Osm<M-1
(4.61)

Assume that the echo from the individual pulse matched filter for the first pulse
(m = 0) 1s sampled at ¢ =¢,; that value will be y,(z/) =sp(0). Now sample the
filter response to each succeeding pulse at the same delay after its transmission



(i.e., sample the same range bin for each pulse). The filter output for pulse m is
sampled at¢ =, + mT, giving y, (¢, + mT) = s5,(0) again.

If the sample taken at time ¢/ after pulse transmission is associated with
range bin /, the M samples so obtained form a discrete constant-valued sequence
y[l, m] =sp(0), 0 <m <M — 1. The discrete-time causal matched filter in the
slow-time (m) dimension for such a sequence is A[m] = ay*[M — 1 — m]; with a
= 1/5,(0), A[m] = 1 for 0 <m <M — 1. The output of this discrete-time matched
filter is

M-1

z[m]="> yll, rih[m—r]
r=0

Y yll, rl(1), 0sm<M-1
r=0
M-1
S yllr(D), M-1<m<2(M-1)
L r=m—M+1

(4.62)

The peak output will occur when the two functions in the summand completely
overlap, which requires m = M — 1; then

M-1
AM-1]= ¥ ylI, = Ms,(0)= ME, = E
r=0

(4.63)

Equation (4.63) indicates that in pulse-by-pulse processing, matched filtering of
the slow-time sequence from a given range bin reduces to coherently integrating
the slow-time samples in each range bin, and the resulting peak output is
identical to that obtained with a whole-waveform continuous matched filter of
Eq. (4.55). Figure 4.14 illustrates the row of slow-time samples that are
integrated (after matched filtering of the single pulse in fast time) to complete
the matched filtering process for the pulse burst. This operation is performed
independently for each range bin.
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FIGURE 4.14 Slow-time sequence to be integrated for matched filtering of a
pulse burst waveform.

4.5.3 Range Ambiguity

Evaluating the pulse burst matched filter output at # = 0 gave the peak output for
a target at the time delay ¢, under consideration. Normally ¢, < 7" and if a peak is
observed it will be interpreted as implying the presence of a target at range R, =
ct,/2 m. However, suppose the data instead contain echoes from a target an
additional 7 seconds of delay further away. The received waveform will be
unchanged except for a delay of 7 seconds and a reduced amplitude according to
the range equation. The amplitude reduction is not pertinent to the discussion
and 1s ignored. By shift invariance, the matched filter output of Eq. (4.58) will
also be delayed by 7' seconds

M-1
y(t)= Y, (M~—|m|)s;[t—(m+DT]

m=—{AM-1)

(4.64)

Now when the matched filter output is evaluated at # = 0 the result is

M-1
y(0)= > (M —{m]|)s; [=(m+ 1)T]
m=—i M-1 ]

(4.65)

In this expression (and continuing to assume 7' > 27) only the m = —1 term is
nonzero, so that

y(0)= (M—1)s,(0)= (M—1)E,
(4.66)

This equation shows that the output at the sample time is reduced from ME), to
(M — 1)E,. The situation is illustrated inFig. 4.15 from both the whole-
waveform matched filter and pulse-by-pulse viewpoints. From the former
viewpoint, a local peak of the matched filter output is sampled, but the global
peak is missed because the filter is “tuned” for the wrong delay. The result,
while not zero, is a reduced-amplitude sample, reducing SNR. From the latter
viewpoint, the echo appears in onlyM — 1 of the M slow-time samples
integrated because it first returns after the sampling window following
transmission of the second pulse rather than the first.
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FIGURE 4.15 Pulse burst matched filtering when target is range ambiguous by
one PRI: (a) whole-waveform matched filter output. Compare to Fig. 4.13b. (b)
Slow-time data in pulse-by-pulse processing viewpoint. Compare to Fig. 4.14.

This behavior creates two problems. The reduced amplitude of the target
component of the matched filter output reduces the SNR and thus the probability
of detecting the target. Assuming the reduced-amplitude response does prove
large enough to be detected, the processor will assume the target is at delay ¢,
when in fact it is at¢, + 7. This phenomenon whereby there is more than one
possible range that can be associated with a detection is called a range
ambiguity. First discussed in Chap. 3, it is a characteristic of pulse burst
waveforms. It is not readily apparent if a peak at the matched filter output is due
to a target at the implied range or at that range plus a multiple of the
unambiguous range R, = c¢T/2 meters.

As will be seen in Chap. 5, it is common in some radars to operate at a
PRF for which the unambiguous range is less than the maximum detection range,
so methods are needed to counter these two problems. Range ambiguities can be
resolved using multiple pulse burst waveforms at different PRFs as discussed in
Chap. 5. The reduction in matched filter output amplitude and SNR for range-
ambiguous targets 1s countered by noting that it occurs because the pulse burst
echo is not fully overlapped with the matched filter reference pulse burst at the
output sampling time when the target time delay#, > 7. The solution to this
problem is to extend the transmitted waveform. Suppose the radar can be



expected to detect targets at ranges up to P - R,. Extend the transmitted
waveform from M to M + P — 1 pulses. The receiver matched filter remains the
same M-pulse waveform. Still using ¢, = 0 and 7, = 0, the matched filter output
will be the waveform shown in Fig. 4.16a. It indicates that the full integrated
target power of MA*t = ME, will be obtained for a target at the delay 7, (zero
in the figure) for which the matched filter is tuned, but also for targets at the
ambiguous delays 7,, + pT, p =0, ..., P — 1. Evaluating the matched filter output
for delays T}, between zero and 7 allows full-SNR matched filtering of targets
at delays up to 7, + (P — 1)T, corresponding to ranges up to P - R, as desired.
The pulse-by-pulse viewpoint is shown in Fig. 4.16b. A target in the Pth delay
interval, (P — 1)T <t¢, < PT, will produce a response in the appropriate range
bin in the Pth and later slow time samples. By integrating only samples P
through M + P — 1 in each range bin the design integration gain of M can be
achieved for all targets up to ranges P - R,,.
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FIGURE 4.16 Effect of extending the transmitted waveform with additional

pulses when P range ambiguities can occur: (a) whole-waveform matched filter
output. (b) slow-time data in pulse-by-pulse processing viewpoint.

M+FP-1

Another 1ssue arises with pulse burst waveforms and clutter echoes.



Suppose the radar can be expected to receive significant clutter returns at ranges
up to P - ¢, and consider the clutter component of the slow-time signal for a
given range bin in the pulse-by-pulse processing viewpoint. When the range bin
of interest is sampled at delay#, <T after the first pulse is transmitted, only
clutter echoes from the corresponding range ct/2 will be sampled at the
receiver. When the range bin is sampled again after the second pulse, the clutter
component will include echoes from the second pulse and range ct,/2 as well as
from the first pulse and range c¢/2(¢, + 7). These two contributions represent
echo from two physically different patches of clutter scatterers. The first slow-
time sample, which includes echoes from only the nearer patch, may differ
significantly in power and statistical behavior from the second slow-time
sample, which includes echoes from both. The Pth and subsequent slow-time
samples will contain contributions from all P contributing range intervals and
therefore exhibit the consistent clutter power levels and statistical behavior
needed for effective clutter filtering and target detection. Extending the
transmitted waveform to M + P — 1 pulses as above therefore allows collection
of M steady-state clutter measurements. In Chap. 5 these additional pulses will
be called “clutter fill” pulses. The firstP — 1 slow-time samples will be
discarded in each range bin and only the remaining M samples will be used in
clutter filtering, coherent integration, and detection processing.

4.5.4 Doppler Response of the Pulse Burst Waveform

To consider the effect of a Doppler mismatch on the pulse burst waveform and
its matched filter, consider a target moving toward the radar at velocity v meters
per second so that its range is R, — v¢ meters at time ¢. Assume that the “stop-
and-hop” approximation is valid and that the target motion does not exceed one
range bin over the CPI, that is, MvT < c7/2; this ensures that all echoes from a
given target appear in the same range bin over the course of a CPL The
demodulated echoes will have a phase shift of —(42/A)R(¢) = —(4x/A)(R, — vt).
Adopting the pulse-by-pulse processing viewpoint and absorbing the phase
exp(—j4nR,/A) due to the nominal range R, into the overall gain, the individual
matched filtered outputs for each pulse become

Yu(E)=x,(t—mT)*h,(t)

fidmo/A)mT - -
= pl4mo/dn pr{—r +mT), 0<m<M-1

(4.67)
The corresponding slow-time sequence is
yll, m]=y,,(mT)=e/4A"Ts @), 0<m<M-1

=" E, (wp=4rvT/A)
(4.68)



Integrating the slow-time samples gives

M-1 M-1

Z yll, ml=E, Z eleom = Y[1, wp)
m=0 ? =0
" sinfwp /2] e 20

(4.69)

Equation (4.69) gives the system response to the pulse burst waveform in an
arbitrary range bin / as a function of the normalized Doppler mismatch w,.

This is the familiar asinc function. Figure 4.17 shows the central portion of
the magnitude of this function. The zeros occur at intervals of 1/M cycles per
sample in normalized frequency; thus, the Rayleigh resolution in Doppler 1s 1/M
cycles per sample or 1/MT Hz. MT is the duration of the entire pulse burst
waveform. The Doppler resolution is therefore determined by the duration of the
entire waveform instead of the duration of a single pulse. In this manner, the
pulse burst waveform achieves much better Doppler resolution than a single
pulse of the same duration while maintaining the same range resolution. The cost
is the time and energy required to transmit and receive M pulses instead of one
and the computational load of integrating M samples in each range bin.
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FIGURE 4.17 Central portion of the Doppler mismatch response of the slow-
time signal using a pulse burst waveform.

Integrating the slow-time samples of the pulse burst echo corresponds to
implementing a matched filter in slow time for a signal with zero Doppler shift;



in this case the expected slow-time signal is simply a constant. A matched filter
for a Doppler-shifted pulse burst can be implemented by continuing to use the
single-pulse matched filter in fast time and constructing the appropriate slow-
time matched filter for the signal expected for a given Doppler shifi.

Suppose the normalized Doppler shift of interest is @,, radians per sample.
The expected slow-time signal is then of the form Aexp(jw,m). After
conjugation and time-reversal the slow-time matched filter coefficients will be
h[m] = exp(+jwp,m). Consider the response of this filter when the actual
Doppler shift of the signal is w. The matched filter peak output occurs when the
impulse response and data sequence are fully overlapped, giving

M-1

Y[l 0;0p)= D e "yl m]

m=0
M-1 M-1

s Z m;.r L jom Z — flar—arp
— r'J L I_J
m=0

m=0

[ M-1"
] J{m—mD}}

E Sil‘![{_m —wp) M,.-"Z] it [_
sinf(w —wp)/2]
(4.70)

which is identical to Eq. (4.69) except that the peak of the asinc function has
been shifted to o = w,, radians per sample.

Note that the first line of Eq. (4.70) is simply the discrete time Fourier
transform of the slow-time data sequence. Thus, a matched filter for a pulse
burst waveform and a Doppler shift of @, radians can be implemented with a
single-pulse matched filter in fast time and a DTFT in slow time, evaluated at
wp. If o, 1s a discrete Fourier transform frequency, i.e., of the form 27k/K for
some integers k& and K, the slow-time matched filter can be implemented with a
DFT calculation. It follows that a K-point DFT of the data y[/, m] in the slow-
time dimension simultaneously computes the output of K-matched filters, one at
each of the DFT frequencies. These frequencies correspond to Doppler shifts of
F, = k/KT hertz or radial velocities v, = Ak/2KT meters per second, £k = 0,..., K
— 1. The fast Fourier transform (FFT) algorithm then allows very efficient
search of the data for targets at various Doppler shifts by simply applying an
FFT to each slow-time row of the data matrix.

4.5.5 Ambiguity Function for the Pulse Burst Waveform
Inserting the definition of the pulse burst waveform of Eq. (4.54) into the
definition of the complex ambiguity function of Eq. (4.30) gives



M-1 V(¢ M=1
Alt, FD}— [ Z X,(s—mT) | z x; {4— —HT] /2™ g
Ahon=0
M-1M-1 . .
=3y | :r.,{s—IHT}J’;{s—r—HT}ﬂ-"‘”FDS ds
m=0 n=0" ’
4.71)
Substitute s’ =s —mT
M-1 M-1
A(t, Ep)= Z g 28 EpHT Z J X,(80x, (st —nT+ mT)e! 20 dg'
m=0 re=0
(4.72)

If the complex ambiguity function of the single simple pulse x,(¢) is denoted as
A (&, Fp), the integral in Eq. (4.72) is 4 St +(n—m)T, Fp). Thus

M-1 M-1
At Fp)=Y ¥ty A (t—(m—mT, Fp)
m=[ n=0

(4.73)

The double sum inEq. (4.73) is somewhat difficult to deal with.
Obviously, all combinations of m and n having the same difference m — n result
in the same summand in the second sum, but the dependence of the exponential
term on m only prevents straightforward combining of all such terms. Defining
n' = m — n, it can be shown by simply enumerating all of the combinations that
the double summation of some function f'[m, n] can be written (Rihaczek, 1996)

M-1M-1 0 Mrpl M-1 M1
z. 2 flm, n]= z - flm, m—n']+ 2 flm+n',m]
m=0 n=0 w=—{M-1) m=0 =1 m=0
(4.74)
Applying the decomposition of Eq. (4.74) to Eq. (4.73) gives
2 1] p i"r'I—n’|—1 o
At Fp)= ), At-n'T, ) gl <t
n=—iM-1) =0
M M-|w|-1
+Z ﬂ*"’TFf’"’TAr,,U n'T, Fy) Z il
1'= m=0
(4.75)

The geometric series that appears in both halves of the right-hand side of this
equation sums to



M|

Y R _ expl i Ep (M- | ~1)T1 22 M )T)
m=0 sin(z FpT')

(4.76)

Using this result in Eq. (4.75) and combining the two remaining sums over n’
into one while renaming the index of summation as m gives

M-1 ;
i jxFp(M-1+m) tFp (M —|m|)T)

A(t. Ey)= A (t— T, Ey)e/ o M-2tmT sin(mF,
(t, Fp) ”‘I:_[EH_“ plt—mT, Fp)e SnET)

(4.77)

Equation (4.77) expresses the complex ambiguity function of the coherent pulse
train in terms of the complex ambiguity function of its constituent simple pulses
and the PRI

Recall that the support in the delay axis of/fp(t, Fp)is lff <. T > 2,
which is almost always the case, the replications of 4, in Eq. (4.77) will not
overlap and the magnitude of the sum of the terms as m varies will be equal to
the sum of the magnitude of the individual terms. The ambiguity function of the
pulse burst waveform can then be written as

M-1
Alt,Ep)= Y A(t—-mT, Fy)
m=—(M-1)

sin[w Fp(M—|m|)T]
sin(mFyT)

‘ (E=>21)
(4.78)

To understand this ambiguity function, it is convenient to first look at the
zero Doppler and zero delay responses. The zero Doppler response is obtained
by setting /', = 0 in Eq. (4.78) and recalling that 4,(z, 0) = 1 —|¢)/z :

M-1

3 {ﬁfl—|m|}[ -

|r— mT | ‘J
A(t, 0) = m=—(m-1) T J

|r—mT|<:r

10, elsewhere

(4.79)

Equation (4.79) describes the triangular output of the single-pulse matched
filter, repeated every T seconds and weighted by an overall triangular function
M — |m|. Figure 4.18 illustrates this function for the case M = 5 and 7' = 47. The
ambiguity function has been normalized by the signal energy E so that it has a
maximum value of 1.0. Note that, as with any waveform, the maximum of the AF
occurs at¢# = 0 and the duration 1s twice the total waveform duration (2MT in
this case). The local peaks every 7" seconds represent the range ambiguities
discussed previously inSec. 4.5.3 and illustrated inFig. 4.15a. If the
transmitted waveform were extended by P pulses while the reference waveform




remained M pulses long as discussed above, there would be P consecutive
spikes with the full amplitude of 1.0, similar to Fig. 4.16a.
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FIGURE 4.18 Zero-Doppler cut of the ambiguity function of a pulse burst. M =
5 pulses, T'= 4.

The zero delay cut is obtained by setting # = 0 in Eq. (4.78) and recalling
that 4,(0, F,) = [sin(zFpt)/ 7k pr/(assuming a unit energy simple pulse), giving

sin(mrFy7)
rhpt

A(0, Fy)=

sin(m FyMT )
sin(rFpT)

(4.80)

The response is an asinc function with a first zero at F, = 1/MT Hz,
repeating with a period of 1/7 Hz. This basic behavior is weighted by a more
slowly varying true sinc function with its first zero at 1/z Hz. This structure is
evident in Fig. 4.19, which shows a portion of the zero delay cut for the same
case with M =5 and T' = 47. The 1/T spacing of the principal peaks in the zero-
delay response is the blind Doppler shift first defined in Chap. 3.
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FIGURE 4.19 Zero-delay cut of the pulse burst ambiguity function with M =5
and 7 = 4r.

Figure 4.20 is a contour plot of a portion of the complete ambiguity
function for this waveform. Note the broadening of the response peaks in
Doppler when sampling at the range-ambiguous delays such as 47 and 8z
(corresponding to + 0.2 and + 0.4 on the normalized delay scale of the contour
plot). This phenomenon is caused by the (M — |m|) term in the asinc term of Eq.
(4.78) and reflects the fact that at these range-ambiguous delays fewer than M
pulses are contributing to the matched filter local output peak. The reduced
observation time results in degraded Doppler resolution. Again, if the
transmitted waveform were extended by P pulses, there would be P consecutive
range peaks which retained the full Doppler resolution. This plot also illustrates
the breakup of the well-defined peaks in delay when the Doppler mismatch
reaches 1 / 7 hertz (corresponding to 20 on the normalized Doppler scale of the

plot).
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FIGURE 4.20 A portion of the ambiguity function for the pulse burst waveform
with M =5 and T = 4z. Positive frequencies only shown.

Figure 4.21 is a diagram of the structure of the central peak of the pulse
burst ambiguity function and the first repeated peaks in Doppler and range. This
figure summarizes how the various waveform parameters determine the
resolution in range and Doppler, the range ambiguity interval, and the blind
Doppler interval. The individual pulse length 7 is chosen to achieve the desired
range resolution (c7/2 meters). The pulse repetition interval 7' sets the ambiguity
interval in range (c7/2 meters) and the blind interval in Doppler (1/T Hz).
Finally, once the PRI is chosen, the number of pulses in the burst determines the
Doppler resolution (1/MT Hz).
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FIGURE 4.21 Relationship between pulse burst waveform parameters and
range and Doppler resolution and ambiguities.

4.5.6 The Slow-Time Spectrum and the Periodic Ambiguity Function

It would seem that the DTFT Y[/, w)) of the slow-time sequence y[/, m] should
be related to the variation of the complex ambiguity function A(¢, F,) in
Doppler. The slow-time sequence y[/, m] is obtained by sampling the output of
the simple pulse matched filter output s,(¢) at the same delay after transmission
on each pulse. If the target motion across the CPI is small compared to the range
resolution (i.e., the target moves only a small fraction of a range bin during the
CPI), the amplitude of the sample taken on each pulse will be the same. This
amplitude will be the maximum value s,(0) if the sampling time exactly
corresponds to the target range; if the sampling time differs from that
corresponding to the target range by Az seconds the measured amplitude on each
pulse will be s, (Af). Thus, the slow-time sequence in a given range bin will
have constant amplitude but the ambiguity function of the waveform will
determine that amplitude based on the alignment of the target range and the range
bin sampling times.

If there is relative motion between the radar and target, there will be a
sample-to-sample decrease in the phase of the slow-time samples of the form —
4zmvT/A. If the target is within the first unambiguous range interval the target
echo will be present in all M slow-time samples for the appropriate range bin
and the magnitude of the DTFT will have the |sin(zF,MT)/sin(xF,T)|form seen
in Eq. (4.80). However, the|sin(zFy7)/nF priterm of the AF Doppler response
due to the individual pulse shape will not be observed in the DTFT; rather, this
term will weight the overall amplitude of the DTFT. Finally, if the target range



exceeds R, the target echo will not be present in all of the slow-time samples
and the Doppler resolution will degrade in Y [/, w,) in the same manner it did in
A(t, Fp).

When the transmitted pulse burst waveform is extended by P pulses to
provide full integration gain of a factor of M for targets extending over P range
ambiguities, the matched filter output maintains its full maximum peak value of
ME, over the P range ambiguities (delay interval 0 to (P — 1)T) of interest as
shown in Fig. 4.16a. The same result over only that delay interval could be
obtained by at least two equivalent calculations: correlation of an M-pulse
transmitted waveform with an infinitely extended reference, evaluated over [0,
(P — 1T], or circular correlation of an M-pulse waveform with an M-pulse
reference. The periodic ambiguity function (PAF) is a modification of the
complex AF of Eq. (4.30) that, when applied to a pulse burst waveform,
produces the full-gain AF over this delay interval. A typical definition is
(Levanon, 2010; Levanon and Mozeson, 2004)

- MT
PA(t, Fp)= ‘ JD x(s)exp(j2mFys)x” (s—t)ds

. OELEET
(4.81)

A significant property of the PAF is its relation to the AF of the single
constituent pulse in the pulse burst when 7> 2z:2

sin(r Fy MT)
sin(m FpT')

PA(t, Fy)= A, (t,Fp)  0<t<P.T

(4.82)

That 1s, the PAF is the AF of the single pulse multiplied by the DTFT of a
discrete M-sample pulse. This is exactly the DTFT Y [/, w,) that will result
from the pulse-by-pulse processing approach as described above.

4.6 Frequency-Modulated Pulse Compression

Waveforms
A simple pulse has only two parameters, its amplitude 4 and its duration z. The
range resolution ct/2 is directly proportional to z; better resolution requires a
shorter pulse. Most modern radars operate with the transmitter in saturation.
That is, any time the pulse is on, its amplitude is kept at the maximum value of
A; amplitude modulation other than on/off switching is not used. The energy in
the pulse is then 4%z. This mode of operation maximizes the pulse energy, which
is then also directly proportional to 7. As will be seen in Chaps. 6 and 7,
increasing pulse energy improves detection and estimation performance. Thus,
improving resolution requires a shorter pulse, while improving detection and



estimation performance requires a longer pulse. The two metrics are coupled in
this unfortunate way because there is effectively only one free parameter 7 in the
design of the simple pulse waveform.

Pulse compression waveforms decouple energy and resolution. Recall that
a simple pulse has a Rayleigh bandwidth f = 1/7 Hz and a Rayleigh resolution in
time at the matched filter output of 7 seconds. Thus, the time-bandwidth product
(BT product) of the simple pulse is 7(1/7) = 1. A pulse compression waveform,
in contrast, has a bandwidth f that is much greater than 1/z. Equivalently, it has a
duration 7 much greater than that of a simple pulse with the same bandwidth, 7 =
1/p. Either condition is equivalent to stating that a pulse compression waveform
has a BT product fr much greater than one.

Pulse compression waveforms are obtained by adding frequency or phase
modulation to a simple pulse. There are a vast number of pulse compression
waveforms in the literature. In this text, only the most commonly used types will
be described. These include linear frequency modulation, biphase codes, and
certain polyphase codes. Nonlinear FM will also be briefly introduced. Many
other waveforms are described in Levanon and Mozeson (2004) and Keel and
Baden (2012).

4.6.1 Linear Frequency Modulation
A linear frequency modulated waveform is defined by

p rz'

— O<t<r
T

I

x(F) = {:os|f.;r

(4.83)

The complex equivalent is

(4.84)

The instantaneous frequency in hertz of this waveform is the time derivative of
the phase function
E(t)= A oy Er hertz

2m dt T
(4.85)

This function 1s shown in Fig. 4.22, assuming S > 0. F(¢) sweeps linearly across
a total bandwidth of f Hz during the z-second pulse duration. The waveform x(¢)
[Eq. (4.83), or the real part of Eq. (4.84)] is shown in Fig. 4.23 for fz = 50. The
LFM waveform is often called a chirp waveform in analogy to the sound of an
acoustic sinusoid with a linearly changing frequency. When f is positive the
pulse is an upchirp; if f is negative it is a downchirp. The BT product of the



LFM pulse is simply fz; pr = 1 if the LFM pulse is to qualify as a pulse
compression waveform.
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FIGURE 4.22 Instantaneous frequency of an LFM pulse.
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FIGURE 4.23 Real-valued LFM upchirp waveform, BT product Sz = 50.

Figure 4.24 shows the magnitude spectrum of the LFM waveform for a
relatively low BT product case (f7 = 10), and again for a higher BT product
case (fr = 100). For low BT the spectrum is relatively poorly defined. As the
BT product increases the spectrum takes on a more rectangular shape. This is
intuitively reasonable: because the sweep is linear, the waveform spreads its
energy uniformly across the spectrum.
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FIGURE 4.24 Magnitude spectrum of an LFM waveform: (a) fr =10, (b) fr=
100.

Figure 4.25 shows the output of the matched filter for the same two chirp
waveforms. The dotted line superimposed on the output waveform is the output
of a matched filter for a simple pulse of the same duration. As always, the total
duration of the matched filter output is 27 seconds. In both cases, the LFM
waveform results in a matched filter output with a Rayleigh resolution much
narrower than 7. In fact, the Rayleigh resolution is very nearly 1/f in each case
(this will be confirmed shortly), an improvement over the simple pulse by a
factor of the time-bandwidth product fz.
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Simple and LFM pulses of the same amplitude and duration will have the
same peak power at the matched filter output and achieve the same output SNR
in accordance with Eq. (4.13). However, for an LFM pulse and a simple pulse
of the same amplitude to have the same fast-time Rayleigh resolution at the
output of their matched filters, the simple pulse must be shorter than the LFM
pulse by the factor fz. The energy in the simple pulse and the SNR achieved are
then also less by the factor of fz. In other words, the LFM waveform with



proper matched filtering achieves a signal processing gain of G, = fr compared
to a simple pulse of the same Rayleigh resolution.

Unlike the simple pulse case, the matched filter output for the LFM pulse
exhibits a sidelobe structure. Figure 4.26 expands the central portion of Fig.
4.25bh, showing the distinctly sinc-like mainlobe and first few sidelobes. This
should not be surprising: the waveform spectrum X(F) (Fig. 4.24b) is
approximately a rectangle of width f# Hz. Consequently, the spectrum of the
matched filter output, |[X(F)P, will also be approximately a rectangle of width /.
The time-domain output of the matched filter is therefore expected to be
approximately a sinc function with a Rayleigh resolution of 1/f seconds.
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FIGURE 4.26 Expanded view of central portion of Fig. 4.255h.

To summarize, the LFM waveform enables separate control of pulse
energy (through its duration) and range resolution (through its swept bandwidth).
The possibility of pulse compression is created by the use of matched filters.
The output of the matched filter is not a replica of the transmitted waveform x(¢),
but of its autocorrelation functions,(f). Therefore, if a waveform can be
designed that has a long duration but a narrowly concentrated autocorrelation,
both good range resolution and good energy can be obtained simultaneously.
This 1n turn is accomplished by modulating a long pulse to spread its bandwidth
beyond the usual 1/z7. Since the spectrum of the autocorrelation function is just
the squared magnitude of the waveform spectrum, a spectrum spread over f Hz
will tend to produce a filter output with most of its energy concentrated in a
mainlobe of about 1/ seconds duration. The linear FM pulse is the first
example of such a waveform, but phase coded waveforms will provide more
examples of this approach.



4.6.2 The Principle of Stationary Phase

The Fourier transform of Eq. (4.84) is a relatively complicated result involving
the sine integral Si(F) (Rihaczek, 1996). A very useful and much simpler
approximation can be derived using the principle of stationary phase (PSP), an
advanced technique in Fourier analysis. The PSP is useful for approximate
evaluation of integrals with highly oscillatory integrands; thus, it applies
particularly well to Fourier transforms. Write x(¢) in amplitude and phase form,
x(t) = A(¢) exp[jO(1)], and consider its Fourier transform

X(Q)= | T A(p)e e gt

b~ IR S e
x(t)

(4.86)

Define the phase ¢(¢, Q) of the Fourier integral as the combination of the signal
phase and the Fourier kernel phase

X{ )= J:” “jl{f}t”'—g I:”E’_ it i J-_+w Idl“}{r.i[&(.*,‘n—ﬁ.*] At
= | A at
(4.87)

Of course, the exact Fourier transform is known for many signals having
relatively simple phase functions 7(¢). The PSP is most useful when the signal
phase function and thus the total integral phase ¢(¢, Q) is continuous but
nonlinear or otherwise complicated.

Define a stationary point of the integrand as a value of ¢ = ¢, such that the
first time derivative of the integral phase ¢'(¢,, ) = 0. Then the PSP
approximation to the spectrum is (Born and Wolf, 1959; Papoulis and Pillai,
2002; Raney, 1992)

|'— _2\'. —irid il CH)
X(Q)= | I A e o
. VO (0, Q) o)

(4.88)

where ¢'(¢,, Q) is the second time derivative of ¢(z, Q) evaluated atz = ¢,. If
there are multiple stationary points the spectrum is the sum of such terms for
each stationary point. Equation (4.88) states that the magnitude of the spectrum
at a given frequency € is proportional to the amplitude of the signal envelope at
the time that the stationary point occurs and, more importantly, is inversely
proportional to the square root of the rate of change of the frequency ¢'(¢,, Q) at
that time. The PSP also implies that only the stationary points significantly
influence X(Q).

The PSP can be applied to estimate the spectrum of the LFM waveform.




The waveform is defined as

i 1. g2t 1g )2 B
x(t)= A(t)e!™ , A(t)= , O=mw—
0, otherwise T

(4.89)

Thus

X()=| " x(#)e ™ gt = J*' A(B)e/ ) gy

— =%

(4.90)

The integrand phase and its derivatives are then
o(t, Q)= at? —Qt
o'(t, Q)= 20t — Q

o"(t, Q) =201
(4.91)

The stationary points are found by setting ¢'(¢, Q) = 0 and solving for ¢. In this
case, there 1s only one stationary point:

)]
ﬂ:{ﬂ'r{rn;gl}:ﬂ;n :i
20

(4.92)
Inserting Eq. (4.92) into Eq. (4.88) gives
=
X(Q) = Alty)e/o D
1‘\|¢‘ “(tg. HJ‘
III e _J;-MA | [ama?_af uu.u?_aj]
1\ 2o \ 20: )
s }w{:{,— rhiﬂl ] — 5 e
' (4.93)

Recalling the finite support of the signal envelope A(?), the term A(Q/2a)
becomes (using o = 7f/7)
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(4.94)
The final result is
: I'E —jr/d - fda . .'Irj ) - f J{j |
| S e Ll B, £ chs LY =
X(@)=j [~ , ZE[_Z,JEQE-FZHLZ,J
(4.95)

Figure 4.27 compares this approximation with the exact spectrum when ft
= 100. Equation (4.95) estimates thatX(Q2)|is constant over the range ££/2 Hz
and 1s zero outside of this range. This 1s both intuitively satisfying, since this 1s
exactly the range over which the instantaneous frequency of the LFM pulse
sweeps, and consistent with the increasingly rectangular shape of the exact
spectrum observed in Fig. 4.23 as the BT product increases. The PSP result also
gives an estimate of the phase of the spectrum which, like the temporal phase of
the waveform x(7), is seen to be quadratic in frequency.
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FIGURE 4.27 Comparison of actual magnitude spectrum and PSP
approximation for an LFM pulse with fz = 100.

4.6.3 Ambiguity Function of the LFM Waveform
The ambiguity function of an LFM pulse can be obtained by direct calculation,



similar to the simple pulse, but with a good deal more tedium. An easier way is
to introduce the “chirp property” of the ambiguity function and then apply it to
the LFM case. Suppose that a waveform x(¢) has an ambiguity function A(¢, F).
Create a modified waveform x'(¢) by modulating x(¢) with a linear FM complex
chirp and compute its complex ambiguity function

xX'(t) = x(t)e'™ kot

A'(t, Fp)= J_;x'{s}x’:“ (s—t)e’*"0° ds

o

0 i '2."'1' L — T —t St j2mFns
:J x(s)e™ T ¥ (s—t)e TPV Pirgidnbps g
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—jmptt T [ P tiT)s
> Jfte J Y{SI}TH{S—_{}{?} .I._FD‘i'lﬁ.'" ! [1’5

_ oI 4 [ % I |
T
(4.96)

Taking the magnitude of A'(¢, F,)) gives the ambiguity function of the chirp signal
in terms of the ambiguity function of the original signal without the chirp

At Ey)=Alt, B+ i)
T )
(4.97)
Equation (4.97) states that adding a chirp modulation to a signal skews its

ambiguity function in the delay-Doppler plane. Applying this property to the
simple pulse AF [Eq. (4.51)] gives the AF of the LFM waveform

At Ep)=| 1—% |

sin[r(F, + pt/t)r(1-|t| /T)]
m(Fp+ pt/T)r(1-|t| /)

. Ll
r fe ]

[/
Lo |

=[" I_M‘] sin[r(Fot+ Bt)(1-|t] /1)
T )| m(FpTt+pt)l-|t]|/T)

(4.98)

Figure 4.28 is a contour plot of the AF of an LFM pulse of duration z = 10 us
and swept bandwidth f = 1 MHz; thus, the BT product is 10. The AF retains the
triangular ridge of the simple pulse but is now skewed in the delay-Doppler

plane as predicted by Eq. (4.97).
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FIGURE 4.28 Contour plot of the ambiguity function of an LFM waveform with
pr=10.

The zero-Doppler cut of the LFM ambiguity function is the matched filter
output when there is no Doppler mismatch:

sin[zpt(1—|t| /)]

—TKtET
(4.99)

This function was illustrated for BT products of both 10 and 100 in Fig. 4.25.
The Rayleigh resolution of the LFM pulse is obtained by examination of Eq.
(4.99). The peak of A(z, 0) occurs at¢ = 0. The first zero occurs when the
argument of the numerator equals z, which occurs when p¢(1-¢|/r) = 1. For
positive ¢, this becomes

e
T

= P_tt+r/B=0

pt—

(4.100)

The roots of this equation are t=(rxyt'—41/8)/2=1(1+\1-4/B7)/2_ Since the
argument of the square root in the last expression is less than one, taking the
negative sign gives the positive root closest to zero and thus the Rayleigh
resolution in time. This result can be simplified with the following series



expansion of the square root

dl—'-fz]—g—'q; —---::-1—;; Gl =
T f P |
t=t|1-[1-=||== (Br>1
2{ [ Br ﬂ p =)

(4.101)

Thus, the Rayleigh resolution in time 1s approximately 1/ seconds,
corresponding to a Rayleigh range resolution AR of

AR=-- m
2f3
(4.102)
The zero-delay response is
sin(mwFy7)
A, Fp)=|————=
- p) nkpt

(4.103)

which is simply a standard sinc function. The Doppler resolution of the LFM
pulse is the same as that of a simple pulse, namely

(4.104)

Equation (4.103) shows that, like the simple pulse, the Doppler resolution of an
LFM pulse is inversely proportional to the pulse length. Furthermore, the energy
in the LFM pulse is still 4%z, directly proportional to the pulse length. Equation
(4.102) shows that, unlike the simple pulse, the range resolution is inversely
proportional to the swept bandwidth. The LFM waveform has two parameters,
bandwidth and duration, which can now be used to independently control pulse
energy and range resolution. The pulse length is chosen (along with the pulse
amplitude A4) to set the desired energy, while the swept bandwidth is chosen to
obtain the desired range resolution.

The expression ¢/2f for range resolution is quite general. For instance, the
Rayleigh bandwidth of a simple pulse is f = 1/t Hz; using this in ¢/2f gives AR
= c1/2 as before. While bandwidth and pulse length are directly related in the
simple pulse, modulation of the LFM waveform has decoupled them. If fz > 1
for the LFM pulse the range resolution will be better than that of a simple pulse
of the same duration by the factor fr. Alternatively, the range resolution of a
simple pulse of length 7 can be matched by an LFM pulse that is longer (and thus




higher energy, given the same transmitted power) by the factor fz.

4.6.4 Range-Doppler Coupling

The skew in the ambiguity function for the LFM pulse gives rise to an interesting
phenomenon. Consider the AF of Eq. (4.98). The peak of this sinc-like function
will occur when

B tF,
Ei—0 f=—=D
L = B

(4.105)

That 1s, when there is a Doppler mismatch the peak of the matched filter output
will not occur at# = 0 as desired. Instead, it will be shifted by an amount
proportional to the Doppler shift. Because the target range will be estimated
based on the time of occurrence of this peak, a Doppler mismatch will induce an
error in measuring range. The corresponding range error will be
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The amplitude of the peak will also be reduced by the factor (1 —t[/z) = (1 —
F,/p). Figure 4.29 illustrates the skewed ridge of the LFM ambiguity function
and the relationship between Doppler shift and range measurement error.

A
Doppler
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FIGURE 4.29 Illustration of the effect of range-Doppler coupling on apparent
target range.

While an incorrect range measurement is certainly undesirable, range-
Doppler coupling is a useful phenomenon in some systems. A simple pulse with
durationt will have a Doppler Rayleigh resolution of 1/t Hz; targets with
Doppler mismatches approaching this value or larger will produce a greatly



attenuated output from the matched filter and will likely go undetected. An LFM
pulse of the same duration will still produce a significant output peak for a much
broader range of Doppler shifts, even though the peak will be mislocated in
range. Nonetheless, the target will be more likely to be detected. The LFM
waveform is said to be more Doppler tolerant than the simple pulse. This
makes it a good choice for surveillance applications because a relatively large
range of Doppler shifts can be searched with an LFM pulse. The range error can
be eliminated, at least for isolated targets, by repeating the measurements with
an LFM pulse of the opposite slope, e.g., an upchirp followed by a downchirp.
In this case the sign of the range error will be reversed. Averaging the two
measurements will give the true range and also allow determination of the
Doppler shift.

4.6.5 Stretch Processing

LFM waveforms are often the waveform of choice for exceptionally wideband
radar systems where the swept bandwidth f may be hundreds of megahertz or
even exceed 1 GHz. Digital processing can be difficult to implement in such
systems because the high instantaneous bandwidth of the waveform requires
equally high sampling rates in the A/D converter. It is difficult to obtain high-
quality A/D converters at these rates with wordlengths longer than perhaps 8
bits with current technology; wordlengths at 1 GHz are expected to reach only
about 11 bits by 2020 (Jonsson, 2010). In addition, the sheer number of samples
generated can be stressing for the signal processor.

Stretch processing 1s a specialized technique for matched filtering of
wideband LFM waveforms. It is also called deramp processing, deramp on
receive, dechirp, and one-pass processing. It is essentially the same as the
processing used with linear frequency-modulated continuous wave (FMCW)
radar. Stretch processing is most appropriate for applications seeking very fine
range resolution over relatively short range intervals (called range windows or
range swaths).

Figure 4.30 shows the scenario for analyzing stretch processing. The
central reference point (CRP) is in the middle of the range window of interest
at a range of R, meters, corresponding to a time delay of ¢, seconds. Consider a
scatterer at range R, and time delay ¢, = ¢, + ot,. The problem will be analyzed
in terms of differential range or delay relative to the CRP, denoted JR, and o¢,,.
The transmitted waveform is the LFM pulse of Eq. (4.84). The echo from the
scatterer, with the carrier frequency included, is
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FIGURE 4.30 Scenario for stretch processing analysis.
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where p is proportional to the scatterer reflectivity. This echo is processed with
the modified coherent receiver in complex equivalent form shown in Fig. 4.31.
The unique aspects of this stretch receiver are the reference oscillator and the
Fourier transform. The oscillator contains a conventional term exp(—jQt) to
remove the carrier. However, it also contains a replica of the transmitted chirp,
referenced to the time delay ¢, c