


FUNDAMENTAL PHYSICAL CONSTANTS
CONSTANT SYMBOL VALUE

speed of light in vacuum c 2.998 x 108 ~ 3 x 108 m/s

gravitational constant G 6.67 x 10-11 N·m2/kg2

Boltzmann's constant K 1.38 x 10-23 J/K

elementary charge e 1.60 x 10-19 C

permittivity of free space EO 8.85 x 10-12::::: 3JJr x 10-9 F/m

permeability of free space /-to 4n x 10-7 Him

electron mass me 9.11 x 10-31 kg

proton mass mp 1.67 x 10-27 kg

Planck's constant h 6.63 x 10-34 J·s

intrinsic impedance of free space r]() 376.7 ~ 120n n

MAXWELL'S EQUATIONS
Gauss's law V·D = a;

Faraday's law
aB

VxE=-- at

Gauss's law for magnetism

Ampere's law
an

VxH=J+- at

MULTIPLE & SUBMULTIPLE PREFIXES
PREFIX SYMBOL MAGNITUDE PREFIX SYMBOL MAGNITUDE

exa E 1018 milli m 10-3

peta P 1015 micro J1 10-6

tera T 1012 nano n 10-9

giga G 109 pico P 10-12

mega M 106 femto f 10-15

kilo k 103 atto a 10-18



W hen this book in draft form, each student was asked to write a brief statement describing his or her

understanding of what role electromagnetics plays in science, technology, and society. The following

statement, submitted by Mr. Schaldenbrand, was selected for inclusion here:

Electromagnetics has done more than just help science. Since we have such advanced

communications, our understanding of other nations and nationalities has increased exponentially.

This understanding has led and will lead the governments of the world to work towards global peace.

The more knowledge we have about different cultures, the less foreign these cultures will seem. A

global kinship will result, and the by-product will be harmony. Understanding is the first step, and

communication is the means. Electromagnetics holds the key to this communication, and therefore

is an important subject for not only science, but also the sake of humanity.

Mike Schaldenbrand, 1994

The University of Michigan



SOME USEFUL VECTOR IDENTITIES

A . B = A B cos eA B Scalar (or dot) product

A x B = nAB sin8AB Vector (or cross) product. it normal to plane containing A and B

A . (B x C) = B . (C x A) = C . (A x B)

A x (B x C) = B(A . C) - C(A x B)

V(U + V) = VU + VV

VevV) = UVV + VVU

v . (A + B) = V . A + V . B

V . evA) = UV· A + A· VU

V x (U A) = UV x A + VU x A

V x (A + B) = V x A + V x B

V· (A x B) = B· (V x A) - A . (V x B)

V . (V x A) = 0

VxVV=O

V x V x A = V(V . A) - V2A

/ (V . A) dv = fA. ds
V 5

Divergence theorem (s encloses V)

/ (V x A) . ds = fA. dl
s c

Stukes's theorem (S bounded by C)
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Preface to 6/e

Building on the core content and style of its predecessor,
this sixth edition (6/e) of Applied Electromagnetics introduces
new features designed to help students develop a deeper
understandi ng of electromagnetic concepts and appl ications.
Prominent among them is a set of 42 CD simulation modules
that allow the user to interactively analyze and design
transrnission line circuits; generate spatial patterns of the
electric and magnetic fields induced by charges and currents;
visualize in 2-D and 3-D space how the gradient, divergence,
and curl operate on spatial functions; observe the temporal and
spatial waveforms of plane waves propagating in loss less and
lossy media; calculate and display field distributions inside
a rectangular waveguide; and generate radiation patterns for
linear antennas and parabolic dishes. These are valuable
learning tools; we encourage students to use them and urge
instructors to incorporate them into their lecture materials and
homework assignments.

Additionally, by printing this new edition in full color, graphs
and illustrations now more efficiently convey core concepts,
and by expanding the scope of topics of the Technology Briefs,
additional bridges between electromagnetic fundamentals and
their counLless engineering and scientific applications are
established. In summary:

New to this edition

• A set of 42 CD-interactive simulation modules

• New/updated Technology Briefs

• Full-color figures and images

• New/updated end-of-chapter problems

• Updated bibliography

Acknowledgments

As authors, we were blessed to have worked on this book
with the best team of professionals: Richard Carnes, Leland
Pierce, Janice Richards, Rose Kernan, and Paul Mailhot. We are
exceedingly grateful for their superb support and unwavering
dedication to the project.

We enjoyed working on this book. We hope you enjoy
learning from it.

FAWWAZ T. ULABY

ERIC MICHIELSSEN

UMBERTO RAVAIOLJ



6 PREFACE

Excerpts From the Preface to the Fifth
Edition

CONTENT
The book begins by building a bridge between what should be
familiar to a third-year electrical engineering student and the
electromagnetics (EM) material covered in the book. Prior
to enrolling in an EM course. a typical student will have
taken one or more courses in circuits. He or she should
be familiar with circuit analysis, Ohm's law, Kirchhoff's
current and voltage laws, and related topics. Transmission
lines constitute a natural bridge between electric circuits
and e1ectromagnetics. Without having to deal with vectors
or fields, the student uses already familiar concepts to

learn about wave motion, the reflection and transmission
of power, phasors. impedance matching, and many of the
properties of wave propagation in a guided structure. All of
these newly learned concepts will prove invaluable later (in
Chapters 7 through 9) and will facilitate the learning of how
plane waves propagate in free space and in material media.
Transmission lines are covered in Chapter 2, which is preceded
in Chapter I with reviews of complex numbers and phasor
analysis.

The next part of the book, contained in Chapters 3 through 5,
covers vector analysis, electrostatics, and magnetostatics. The
electrostatics chapter begins with Maxwell's equations for the
time-varying case, which are then specialized to electrostatics
and magnetostatics, thereby providing the student with an

Suggested Syllabi

Two-Semester Syllabus One-Semester Syllabus
6 credits (42 contact hours per semester) 4 credits (56 contact hours)

Chapter Sections Hours Sections Hours

1 Introduction: All 4 All 4
Waves and Phasors

2 Transmission Lines All 12 2-1 to 2-8 and 2-11 8

3 Vector Analysis All 8 All 8

4 Electrostatics All 8 4-1 to 4-10 6

5 Magnetostatics All 7 5-1 to 5-5 and 5-7 to 5-8 5

Exams 3 2
Total for first semester 42

6 Maxwell's Equations All 6 6-1 to 6-3, and 6-6 3
for Time-Varying Fields

7 Plane-wave Propagation All 7 7-1 to 7-4, and 7-6 6

8 Wave Reflection All 9 8-1 to 8-3, and 8-6 7
and Transmission

9 Radiation and Antennas All 10 9-1 to 9-6 6

10 Satellite Communication All 5 None -

Systems and Radar Sensors

Exams 3 I

Total for second semester 40 Total 56
Extra Hours 2 0
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overall framework for what is to come and showing him or
her why electrostatics and magnetostatics are special cases of
the more general time-varying case.

Chapter 6 deals with time-varying fields and sets the
stage for the material in Chapters 7 through 9. Chapter 7
covers plane-wave propagation in dielectric and conducting
media, and Chapter 8 covers reflection and transmission at
discontinuous boundaries and introduces the student to fiber
optics, waveguides and resonators.

In Chapter 9, the student is introduced to the principles of
radiation by currents flowing in wires, such as dipoles, as well as
~oradiation by apertures, such as a horn antenna or an opening
in an opaque screen illuminated by a light source.

To give the student a taste ofthe wide-ranging applications of
electromagnetics in today's technological society, Chapter 10
concludes the book with overview presentations of two system
examples: satellite communication systems and radar sensors.

The material in this book was written for a two-semester
sequence of six credits, but it is possible to trim it down to
generate a syllabus for a one-semester four-credit course. The
accompanying table provides syllabi for each of these two
options.

MESSAGE TO THE STUDENT

The interactive CD-ROM accompanying this book was
developed with you, the student, in mind. Take the time to use it
in conjunction with the material in the textbook. The multiple-
window feature of electronic displays makes it possible to
design interactive modules with "help" buttons to guide the
student through the solution of a problem when needed. Video
animations can show you how fields and waves propagate in
time and space, how the beam of an antenna array can be made
to scan electronically, and examples of how current is induced
in a circuit under the influence of a changing magnetic field.
The CD-ROM is a useful resource for self-study. Use it!

ACKNOWLEDGMENTS

My sincere gratitude goes to Roger DeRoo, Richard Carnes and
Jim Ryan. I am indebted to Roger DeRoo for his painstaking
review of several drafts of the manuscript. Richard Carnes
is unquestionably the best technical typist I have ever worked
with; his mastery of IbTEX,coupled with his attention to detail,
made it possible to arrange the material in a clear and smooth
format. The artwork was done by Jim Ryan, who skillfully
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professional looking and esthetically pleasing. I am also
grateful to the following graduate students for reading through
parts or all of the manuscript and for helping me with the
solutions manual: Bryan Hauck, Yanni Kouskoulas, and Paul
Siqueira.

Special thanks are due to the reviewers for their valuable
comments and suggestions. They include Constantine Balanis
of Arizona State University, Harold Mott of the University of
Alabama. David Pozar ofthe University of Massachusetts, S. N.
Prasad of Bradley University, Robert Bond of New Mexico
Institute of Technology, Mark Robinson of the University of
Colorado at Colorado Springs, and Raj Mittra of the University
of Illinois. I appreciate the dedicated efforts of the staff at
Prentice Hall and I am grateful for their help in shepherding
this project through the publication process in a very timely
manner. l also would like to thank Mr. Ralph Pescatore for
copy-editing the manuscript.

FAWWAZ T ULAllY
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Upon learning the material presented in this chapter, you should
be able to:

1. Describe the basic properties of electric and magnetic
forces.

2. Ascribe mathematical formulations to sinusoidal waves
traveling in both lossless and lossy media.

3. Apply complex algebra in rectangular and polar forms.

4. Apply the phasor-dornain technique to analyze circuits
driven by sinusoidal sources.
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Entrance polarizer

LCD display

Figure 1·1: 2-D LCD array.

Overview

Liquid crystal displays have become integral parts of many
electronic consumer products, ranging from alarm clocks and
cell phones to laptop computers and television systems. LCD
technology relies on special electrical and optical properties
of a class of materials known as liquid crystals, which are
neither pure solids or pure liquids, but rather a hybrid of both.
The molecular structure of these materials is such that when
light travels through them, the polarization of the emerging
light depends on whether a voltage exists across the material.
Consequently, when no voltage is applied, the exit surface
appears bright. and conversely. when a voltage of a certain level
is applied across the LCD material. no light passes through it.
resulting in a dark pixel. In-between voltages translate into
a range of grey levels. By controlling the voltages across
individual pixels in a two-dimensional array. a complete image
can be displayed (Fig. 1-1). Color displays are composed
of three subpixels with red, green, and blue filters. The
polarization behavior of light in a LCD is a prime example of
how electromagnetics is at the heart of electrical and computer
engineering.

The subject of this book is applied electromagnetics (EM),
which encompasses the study of both static and dynamic electric

and magnetic phenomena and their engineering applications.
Primary emphasis is placed on the fundamental properties
of dynamic (time-varying) electromagnetic fields because
of their greater relevance to practical problems in many
applications, including wireless and optical communications,
radar. bioelectromagnetics. and high-speed microelectronics.
We shall study wave propagation in guided media. such as
coaxial transmission lines, optical fibers. and waveguides; wave
reflection and transmission at interfaces between dissimilar
media: radiation by antennas. and several other related topics.
The concluding chapter illustrates a few aspects of applied EM
through an examination of design considerations associated
with the use and operation of radar sensors and satellite
communication systems.

We begin this chapter with a chronology of the history of
electricity and magnetism. Next, we introduce the fundamental
electric and magnetic field quantities of electromagnetics, as
well as their relationships to each other and to the electric
charges and currents that generate them. These relationships
constitute the underpinnings of the study of electromagnetic
phenomena. Then, in preparation for the material presented in
Chapter 2. we provide short reviews of three topics: traveling
waves, complex numbers, and phasors, all useful in solving
time-harmonic problems.
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1-1 Historical Timeline

The history of EM may be divided into two overlapping eras.
In the classical era, the fundamental laws of electricity and
magnetism were discovered and formulated. Building on these
formulations, the modem era of the past 100 years ushered in
the birth of the field of applied EM, the topic of this book.

1-1.1 EM in the Classical Era

Chronology I-I provides a timeline for the development of
electromagnetic theory in the classical era. It highlights those
discoveries and inventions that have impacted the historical
development of EM in a very significant way, even though the
selected discoveries represent only a small fraction of those
responsible for our current understanding of electromagnetics.
Aswe proceed through the book. some of the names highlighted
inChronology I-I, such as those of Coulomb and Faraday. will
reappear later as we discuss the laws and formulations named
after them.

The attractive force of magnetite was reported by the Greeks
some 2800 years ago. It was also a Greek. Thales of Miletus,
who first wrote about what we now call static electricity: he
described how rubbing amber caused it to develop a force that
could pick up light objects such as feathers. The term "electric"
first appeared in print around 1600 in a treatise on the (electric)
force generated by friction. authored by the physician to Queen
Elizabeth I, William Gilbert.

About a century later, in 1733, Charles-Francois du Fay
introduced the notion that electricity involves two types of
"fluids," one "positive" and the other "negative." and that
like-fluids repel and opposite-fluids attract. His notion of a
fluid is what we today call electric charge. The invention
of the capacitor in 1745. originally called the Leyden jar,
made it possible to store significant amounts of electric charge
in a single device. A few years later, in 1752, Benjamin
Franklin demonstrated that lightning is a form of electricity.
He transferred electric charge from a cloud to a Leyden jar
via a silk kite flown in a thunderstorm. The collective 18th
century knowledge about electricity was integrated in 1785 by
Charles-Augustin de Coulomb, in the form of a mathematical
formulation characterizing the electrical force between two
charges in terms of their strengths and polarities and the distance
between them.

The year 1800 is noted for the development of the first
electric battery byAlessandro Volta, and 1820 was a banner year
for discoveries about how electric currents induce magnetism.
This knowledge was put to good use by Joseph Henry, who
developed one of the earliest electromagnets and de (direct
current) electric motors. Shortly thereafter, Michael Faraday
built the first electric generator (the converse of the electric
motor). Faraday, in essence. demonstrated that a changing
magnetic field induces an electric field (and hence a voltage).
The converse relation, namely that a changing electric field
induces a magnetic field, was first proposed by James Clerk
Maxwell in 1864 and then incorporated into his four (now)
famous equations in 1873. Maxwell's equations represent the
foundation of classical electromagnetic theory.

Maxwell's theory, which predicted the existence of
electromagnetic waves, was not fully accepted by the scientific
community at that time, not until verified experimentally by
means of radio waves by Heinrich Hertz in the 1880s. X-rays.
another member of the EM family, were discovered in 1895 by
Wilhelm Rontgen. In the same decade, Nikola Tesla was the
first to develop the ac motor, considered a major advance over
its predecessor, the de motor.

Despite the advances made in the 19th century in our
understanding of electricity and magnetism and how to put
them to practical use, it was not until 1897 that the fundamental
carrier of electric charge. the electron, was identified and its
properties quantified by Joseph Thomson. The ability to
eject electrons from a material by shining electromagnetic
energy, such as light, on it is known as the photoelectric effect.
To explain this effect. Albert Einstein adopted the quantum
concept of energy that had been advanced a few years earlier
(1900) by Max Planck in his formulation of the quantum theory
of matter. By so doing, Einstein symbolizes the bridge between
the classical and modern eras of electromagnetics.

1-1.2 EM in the Modem Era

Electromagnetics plays a role in the design and operation
of every conceivable electronic device. including the diode.
transistor, integrated circuit, laser, display screen, bar-code
reader, cell phone, and microwave oven, just to name a few.
Given the breadth and diversity of these applications (Fig. 1-2).
it is far more difficult to construct a meaningful timeline for the
modern era than for the classical era. That said, one can develop
timelines for specific technologies and link their milestone
innovations to EM. Chronologies 1-2 and 1-3 present timelines
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Global Positioning System (GPS)

Radar

Cell

Electromagnetic sensors

Telecommun ication

-:»

Ultrasound transducer

Ablation catheter
'/

Liver
Ultrasound

Microwave ablation for
liver cancer treatment

Fi !!;lI re 1-2: Elcctmmagnerics is at the heart or numerous systems and applications.
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Table 1·1: Fundamental SI units.

Dimension Unit Symbol

Length meter m
Mass kilogram kg
Time second s
Electric Current ampere A
Temperature kelvin K
Amount of substance mole mol

for the development of telecommunications and computers,
technologies that have become integral parts of today's societal
infrastructure. Some of the entries in these chronologies refer
to specific inventions, such as the telegraph, the transistor, and
the laser. The operational principles and capabilities of some
of these technologies are highlighted in special sections called
Technology Briefs. scattered throughout the book.

1-2 Dimensions, Units, and Notation

The International System of Units, abbreviated SI after its
French name Systeme lnternationale, is the standard system
used in today's scientific literature for expressing the units of
physical quantities. Length is a dimension and meter is the unit
by which it is expressed relative to a reference standard. The SI
system is based on the units for the sixfundamental dimensions
listed in Table 1-1. The units for all other dimensions are
regarded as secondary because they are based on, and can be
expressed in terms of, the six fundamental units. Appendix A
contains a list of quantities used in this book, together with their
symbols, units, and abbreviations.

For quantities ranging in value between 10-18 and 1018, a
set of prefixes, arranged in steps of 103, are commonly used to
denote multiples and submultiples of units. These prefixes, all
of which were derived from Greek, Latin, Spanish, and Danish
terms, are listed in Table 1-2. A length of 5 x 10-9 m, for
example, may be written as 5 nm.

In EM we work with scalar and vector quantities. In this
book we use a medium-weight italic font for symbols denoting
scalar quantities, such as R for resistance, and a boldface roman
font for symbols denoting vectors, such as E for the electric
field vector. A vector consists of a magnitude (scalar) and a
direction, with the direction usually denoted by a unit vector.
For example,

E=xE, (1.1 )

Table 1-2: Multiple and submultiple prefixes.

Prefix Symbol Magnitude

exa E 1018

peta P 1015

tera T 1012

giga G 109

mega M 106

kilo k 103

milli m 10-3

miero II 10-6

nano 11 10-9

pieo P 10-12

femto f 10-15

aUo a 10-18

where E is the magnitude of E and x is its direction. A symbol
denoting a unit vector is printed in boldface with a circumflex
() above it.

Throughout this book, we make extensive use of phasor
representation in solving problems involving electromagnetic
quantities that vary sinusoidally in time. Letters denoting
phasor quantities are printed with a tilde (-) over the letter.
Thus, E is the phasor electric field vector corresponding to
the instantaneous electric field vector E(t). This notation is
discussed in more detail in Section 1-7.

Notation Summary

• Scalar quantity: medium-weight italic, such as C
for capacitance.

• Units: medium-weight roman, as in Vim for volts
per meter.

• Vector quantities: boldface roman, such as E for
electric field vector

• Unit vectors: boldface roman with circumflex (~)
over the letter, as in x.

• Phasors: a tilde (~) over the letter; E is the phasor
counterpart of t~ sinusoidally time-varying scalar
field E(t), and E is the phasor counterpart of the
sinusoidally time-varying vector field E(t).
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Chronology 1-1: TIMELINE FOR ELECTROMAGNETICS IN THE CLASSICAL ERA

Electromagnetics in the Classical Era

ca. 900
BC

ca. 600
BC

Legend has it that while walking across a field in northern
Greece, a shepherd named Magnus experiences a pull
on the iron nails in his sandals by the black rock he is
standing on. The region was later named Magnesia and
the rock became known as magnetite [a form of iron with
permanent magnetism].

Greek philosopher Thales
describes how amber, after being
rubbed with cat fur, can pick up
feathers [static electricity].

ca. 1000 Magnetic compass used as a
navigational device.

1600 William Gilbert (English) coins the term electric after the
Greek word for amber [elektron), and observes that a
compass needle points north-south because the Earth
acts as a bar magnet.

1671

1733

1745

lsaac Newton (English) demonstrates that white light is a
mixture of all the colors.

Charles-Fran~ois du Fay (French) discovers that
electric charges are of two forms, and that like charges
repel and unlike charges attract.

Pieter van Muss(henbroek (Dutch) invents the Leyden
jar, the first electrical capacitor.

1752 Benjamin Franklin
(American) invents
the lightning rod and
demonstrates that
lightning is electricity.

1785 Charles-Augustin
de Coulomb (French)
demonstrates that the
electrical force between
charges is proportional to
the inverse of the square
of the d istanee between
them.

1800 Alessandro Volta (Italian)
develops the first electric
battery.

1820 Hans Christian Oersted
(Danish) demonstrates the
interconnection between
electricity and magnetism
through his discovery that
an electric current in a
wire causes a compass
needle to orient itself
perpendicular to
the wire.

1820 Andre-Marie Ampere (French)
notes that parallel currents in
wires attract each other and
opposite currents repel.

1820 Jean-Baptiste Biot (French)
and Felix Savart (French)
develop the Biot-Savart law
relating the magnetic field
induced by a wire segment
to the current flowing through it.
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Chronology ir: TIME LINE FOR ELECTROMAGNETICS IN THE CLASSICAL ERA (contrnuedl

1827

Electromagnetics in the Classical Era

Georg Simon Ohm (German) formulates Ohm's law
relating electric potential to current and resistance.

Joseph Henry (American) introduces the concept of
inductance, and builds one of the earliest dc electric motors.
He also assisted Samuel Morse in the development
ofthe telegraph.

1827

1831 Michael Faraday (English)
discovers that a changing
magnetic flux can induce
an electromotive force.

1835 Carl Friedrich Gauss (German) formulates Gauss's law
relating the electric flux flowing through an enclosed
surface to the enclosed electric charge.

Gauss' Law for Electricity ;

1873 James Clerk Maxwell
(Scottish) publishes his
Treatise on Electricity and
Magnetism in which he unites
the discoveries of Coulomb,
Oersted, Ampere, Faraday,
and others into four elegantly
constructed mathematical
equations, now known as
Maxwell's Equations.

1887 Heinrich Hertz
(German) builds
a system that
can generate
electromagnetic
waves (at radio
frequencies) and
detect them.

1888 Nikola Tesla
(Croatian-American)
invents the ac
(alternating
current) electric
motor.

1895 Wilhelm Rontgen (German)
discovers X-rays. One of
his first X-ray images was
of the bones in his wife's
hands. [1901 Nobel prize
in physics.J

Joseph John Thomson (English) discovers the electron
and measures its charge-to-mass ratio. [1906 Nobel prize
in physics.]

Albert Einstein (German-American) explains the
photoelectric effect discovered earlier by Hertz in 1887.
[1921 Nobel prize in physics.l

1897

1905
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Chronology 1-2: TIMELINE FOR TELECOMMUNICATIONS

Telecommunications

1825

1837

1872

1876

1887

1887

1893

William Sturgeon
(English) develops
the multiturn
electromagnet.

Samuel Morse
(American) patents the
electromag netic teleg raph,
using a code of dots and
dashes to represent letters
and numbers.

Thomas Edison (American)
patents the electric
typewriter.

Alexander Bell (Scottish-
American) invents the
telephone, the rotary dial
becomes available in 1890,
and by 1900, telephone
systems are installed in
many communities.

Heinrich Hertz (German)
generates radio waves and
demonstrates that they
share the same properties
as light.

Emil Berliner (American) invents the flat gramophone
disc, or record.

Valdemar Poulsen
(Danish) invents the
first magnetic sound
recorder using steel
wire as recording
medium.

1896 Guglielmo Marconi (Italian)
files his first of many patents
on wireless transmission
by radio. In 1901, he
demonstrates radio telegraphy
across the Atlantic Ocean.
[1909 Nobel prize in physics,
shared with Karl Braun
(German).]

Karl Braun (German) invents the cathode ray tube (CRT).
[1909 Nobel prize with Marconi.]

1902 Reginald Fessenden (American) invents amplitude
modulation for telephone transmission. In 1906, he
introduces AM radio broadcasting of speech and music
on Christmas Eve.

1897

1912 Lee De Forest
(American)
develops the triode
tube amplifier for
wireless telegraphy.
Also in 1912, the
wireless distress
call issued by the
Titanic was heard
58 miles away by
the ocean liner
Carpathia, which
managed to rescue
705 Titanic passengers
3.5 hours later.

1919 Edwin Armstong (American) invents the
superheterodyne radio receiver.

1920 Birth of commercial radio broadcasting; Westinghouse
Corporation establishes radio station KDKA in Pittsburgh,
Pennsylvania.
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Chronology 1 2 TIMELINE FOR TEl [COMMUNICATIONS (contmucd:

1923

1926

1932

1933

1935

1938

1947

Telecommunications

Vladimir Zworykin
(Russian-American)
invents television. In
1926, John Baird (Scottish)
transmits TV images
over telephone wires
from London to Glasgow.
Regular TV broadcasting
began in Germany (1935),
England (1936), and the
United States (1939).

Transatlantic telephone service between London and
New York.

First microwave telephone link, installed (by Marconi)
between Vatican City and the Pope's summer residence.

Edwin Armstrong (American) invents frequency
modulation (FM) for radio transmission.

Robert Watson-Watt
(Scottish) invents radar.

H. A. Reeves (American)
invents pulse code
modulation (PCM).

William Shockley,
Walter Brattain, and
John Bardeen (all
Americans) invent the
junction transistor at Bell
Labs. [1956 Nobel prize
in physics.)

1955 Pager is introduced as a radio communication product in
hospitals and factories.

1955 Narinder Kapany (Indian-American) demonstrates the
optical fiber as a low-loss, light-transmission medium.

1958 Jack Kilby (American) builds first integrated circuit (lC) on
germanium and, independently, Robert Noyce (American)
builds first IC on silicon.

1960 Echo, the first passive
communication satellite is
launched, and successfully
reflects radio signals back
to Earth. In 1963, the first
communication satellite is
placed in geosynchronous orbit.

1969 ARPANET is established by the u.s. Department of
Defense, to evolve later into the Internet.

1979 Japan builds the first
cellular telephone network:
• 1983 cellular phone networks start in the United States.
• 1990 electronic beepers become common.
• 1995 cell phones become widely available.
• 2002 cell phone supports video and Internet.

1984 Worldwide Internet becomes operational.

1988 First transatlantic optical fiber cable between the Ll.S.
and Europe.

1997 Mars Pathfinder sends images to Earth.

2004 Wireless communication supported by many airports,
university campuses, and other facilities.
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Chronology 1-3: TIMELINE FOR COMPUTER TECHNOLOGY

Konrad Zuse (German) develops the first proqrarnmable
digital computer, using binary arithmetic and electric
relays.

1945 John Mauchly and J. Pres per Eckert develop the
ENIAC,the first a.l-electronk computer.

Computer Technology

ca 1100 Abacus is the earliest known calculating device.
BC

1941

1614 John Napier (Scottish) develops the logarithm system.

1642 Blaise Pascal
(French) builds
the first addinr,
rnachine using

1950multiple dials.

1956

1671 Gottfried von Leibniz (German) builds calculator that can
do both addition and multiplication.

1820 Charles Xavier Thomas de Colmar (French) builds the 1958
Arithmometer, the first mass-produced calculator.

1885 Dorr Felt (American) invents and markets a key-operated 1960

adding machine (and adds a printer in 1889).

1930 Vannevar Bush (American) develops the differential analyzer,
an analog computer for solving differential equations.

1964

1965

Yoshiro Nakama (Japanese) patents the floppy disk as a
magnetic medium for storing data.

John Backus (American)
develops FORTRAN,the
first major programming
language.

rORTRAN PROGRAM rOR

PRINTING ATABLE Of CUR[S

0051=1,64

I(.UBf. I"I"'I

PAINT 2, I, KUBf
1 r-ORMAT(lH,tlI7)

, CONTINU[

STOP
Bell l.abs develops the modem.

Digital Equipment Corporation
introduces the first
rni-iirornputer, the PDP-l,
to be followed with the
PDP-8 in 1965.

IBM's 360 mainframe
becomes the standard
computer for major
businesses.

John Kemeny and
Thomas Kurtz
(both American)
develop the BASIC
computer language.

PRINT
FORCounter = 1 TO Items

PRINT USINGu##."; Counter;
LOCATE,ltemColumn
PRINT Item$(Counter);
LOCATE,PriceColumn

PRINT Price$(Counter)
NEXT Counter
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Chronology 1 3: TlMELINE FOR COMPUTER TECHNOLOGY (continued)

Computer Technology

1968 Douglas Engelbart (American) demonstrates a
word-processor system, the mouse pointing device
and the use of "wrndows."

1971 Texas tnstrument s introduces the pocket
calculator.

1971 Ted Hoff (American) invents the Intel
4004, the first computer microproc essor.

1976 IBM introduces the laser printer.

1976 Apple Computer 51'115Apple I
in kit form, followed by
the fully assembled
Apple II in 1977 and the
Macintosh in 1984.

1980 Microsoft introduces the
MS-DOS computer disk
operating system.
Microsoft Windows
is marketed in 1985.

1981 IRM introduces
the Pc.

1989 Tim Berners-Lee (British) invents the World Wid1' Wpb by
introducing a networked hypertext system.

1991 Internet connects to 600,000 hosts in more than 100
countries.

1995 Sun Micrmy'tPn" introduces the JdVd programming
language.

Why Sun thinks Hot Java will give you a lift
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1996 Sabeer Bhatia (Indian-American) and Jack Smith
(American) launch HOIIl1"il, the first
webmail service.

1997 I[3rv1s [Jeep Glue computer defeats World Chess
Champion Garry Kasparov.

1997 P,,11l1Pilot becomes widely available.
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1-3 The Nature of Electromagnetism

Our physical universe is governed by four fundamental forces
of nature:

• The nuclear force, which is the strongest of the four, but
its range is limited to subatomic scales, such as nuclei.

• The electromagnetic force, which exists between all
charged particles. It is the dominant force in microscopic
systems, such as atoms and molecules, and its strength is
on the order of 10-2 that of the nuclear force.

• The weak-interaction force, whose strength is only 10-14

that of the nuclear force. Its primary role is in interactions
involving certain radioactive elementary particles.

• The gravitational force is the weakest of all four forces,
having a strength on the order of 10-41 that of the
nuclear force. However, it often is the dominant force
in macroscopic systems, such as the solar system.

This book focuses on the electromagnetic force and its
consequences. Even though the electromagnetic force operates
at the atomic scale, its effects can be transmitted in the
form of electromagnetic waves that can propagate through
both free space and material media. The purpose of this
section is to provide an overview of the basic framework
of electromagnetism, which consists of certain fundamental
laws governing the electric and magnetic fields induced by
static and moving electric charges, the relations between the
electric and magnetic fields, and how these fields interact with
matter. As a precursor, however, we will take advantage of our
familiarity with the gravitational force by describing some of
its properties because they provide a useful analogue to those
of the electromagnetic force.

1-3.1 The Gravitational Force: A Useful
Analogue

According to Newton's law of gravity, the gravitational
force F g21 acting on mass m: due to a mass m 1 at a distance
R12 from m: (Fig. 1-3) is given by

(N). ( 1.2)

where G is the universal gravitational constant, R 12 is a unit
vector that points from III 1 to ni2, and the unit for force

Figure 1-3: Gravitational forces between two masses.

is newton (N). The negative sign in Eg. (1.2) accounts for
the fact that the gravitational force is attractive. Conversely,
Fg12 = -FglJ,whereFgI2 is the force acting on mass nil due to
the gravitational pull of mass ni2. Note that the first subscript
of F g denotes the mass experiencing the force and the second
subscript denotes the source of the force.

The force of gravitation acts at a distance.

The two objects do not have to be in direct contact for each to
experience the pull by the other. This phenomenon of action
at a distance has led to the concept of fields. An object of
mass m 1 induces a gravitational field'll t (Fig. 1-4) that does
not physically emanate from the object, yet its influence exists
at every point in space such that if another object of mass nil

were to exist at a distance R 12 from the object of mass m 1 then
the object of mass m i would experience a force acting on it

" t I\ t I -~

"" \!; "----~e~--/1 t \' - Gravitational
./ "field", 1, ,

It'
I • '"

Figure 1-4: Gravitational field", 1 induced by a mass III I.



1-3 THE NATURE OF ELECTROMAGNETISM 27

equal to

(1.3)

where

(Nlkg). ( 1.4)

In Eq. (1.4) R is a unit vector that points in the radial direction
away from object m I,and therefore - R points toward mi. The
force due to 'If 1 acting on a mass m2, for example, is obtained
from the combination ofEqs. (1.3) and (1.4) with R = R12 and
R = R12. The field concept may be generalized by defining the
gravitational field 'If at any point in space such that, when a test
mass m is placed at that point, the force F s acting on it is related
to \fI by

Fg
\.r- _T- .

m
( 1.5)

The force Fg may be due to a single mass or a collection of
many masses.

1-3.2 Electric Fields

The electromagnetic force consists of an electrical component
Fe and a magnetic component Fm. The electrical force Fe
is similar to the gravitational force, but with two major
differences. First, the source of the electrical field is electric
charge, not mass. Second, even though both types of fields
vary inversely as the square of the distance from their respective
sources, electric charges may have positive or negative polarity,
resulting in a force that may be attractive or repulsive.

We know from atomic physics that all matter contains a
mixture of neutrons, positively charged protons, and negatively
charged electrons, with the fundamental quantity of charge
being that of a single electron, usually denoted by the
letter e. The unit by which electric charge is measured is
the coulomb (C), named in honor of the eighteenth-century
French scientist Charles Augustin de Coulomb (1736-1806).
The magnitude of e is

The charge of a single electron is qc = -e and that of a proton
is equal in magnitude but opposite in polarity: qp = e.

Figure 1·5: Electric forces on two positive point charges in free
space.

Coulomb's experiments demonstrated that:

(1) two like charges repel one another, whereas two
charges of opposite polarity attract.

(2) the force acts along the line joining the charges. and

(3) its strength is proportional to the product of
the magnitudes of the two charges and inversely
proportional to the square of the distance between
them.

These properties constitute what today is called Coulomb's law,
which can be expressed mathematically as

(1.7)

where Fe21 is the electrical force acting on charge qi due
to charge ql when both are in free space (vacuum), RI2 is
the distance between the two charges, RI2 is a unit vector
pointing from charge q; to charge qi (Fig.l-5), and EO is a
universal constant called the electrical permittivity of free space
[EO = 8.854 x 10-12 farad per meter (F/m)]. The two charges
are assumed to be isolated from all other charges. The force Fe,"

acting on charge 41 due to charge 42 is equal to force F e~1 in
magnitude, but opposite in direction: Fe'2 = -Fe""

The expression given by Eq. 0.7) for the electrical force is
analogous to that given by Eq. (1.2) for the gravitational force,
and we can extend the analogy further by defining the existence
of an electric field intensity E due to any charge q as

(1.8) I
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where R is the distance between the charge and the observation
point. and R is the radial unit vector pointing away from the
charge. Figure 1-6 depicts the electric-field lines due to a
positive charge. For reasons that will become apparent in later
chapters. the unit for E is volt per meter (V1m).

If any point charge q' is present in an electric field E (due
to other charges). the point charge will experience a force
acting Oil it equal to Fe = q'E.

Electric charge exhibits two important properties. The first
is encapsulated by the law of conservation of electric charge.
which states that the (net) electric charge can neither he
created nor destroyed. If a volume contains I1p protons and
I1c electrons. then its total charge is

(C). ( 1.9)

Even if some of the protons were to combine with an equal
number of electrons to produce neutrons or other elementary
particles, the net charge q remains unchanged. In matter, the
quantum mechanical laws governing the behavior of the protons
inside the atom's nucleus and the electrons outside it do not
allow them to combine.

The second important property of electric charge is embodied
by the principle of linear superposition, which states that the
total vector electric field at a point in space due to a system of
point charges is equal to the vector sum of the electric fields at
thatpointdueto the individual charges. This seemingly simple
concept will allow us in future chapters to compute the electric
field due to complex distributions of charge without having to

+
" t /1 ~

", \t/ /x'8/--..- +q ----
/ . ~ _ Electric

.¥ /'" I! \ field lines

I ~ \
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Figure 1·6: Electric field E due to charge q.

be concerned with the forces acting on each individual charge
due to the fields by all of the other charges.

The expression given by Eq. ( 1.8) describes the field induced
by an electric charge residing in free space. Let us now consider
what happens when we place a positive point charge in a
material composed of atoms. In the absence of the point charge,
the material is electrically neutral. with each atom having a
positively charged nucleus surrounded by a cloud of electrons of
equal but opposite polarity. Hence, at any point in the material
not occupied by an atom the electric field E is zero. Upon
placing a point charge in the material, as shown in Fig. 1-7, the
atoms experience forces that cause them to become distorted.
The center of symmetry of the electron cloud is altered with
respect to the nucleus, with one pole of the atom becoming
positively charged relative to the other pole. Such a polarized
atom is called an electric dipole, and the distortion process is
called polarization. The degree of polarization depends on the
distance between the atom and the isolated point charge, and
the orientation of the dipole is such that the axis connecting
its two poles is directed toward the point charge. as illustrated
schematically in Fig. 1-7. The net result of this polarization
process is that the electric fields of the dipoles of the atoms
(or molecules) tend to counteract the field due to the point
charge. Consequently. the electric field at any point in the
material is different from the field that would have been induced
by the point charge in the absence of the material. To extend
Eq. (1.8) from the free-space case to any medium. we replace the
permittivity of free space E.·o with 5, where 5 is the permittivity
of the material in which the electric field is measured and is

Figure 1-7: Polarization of the atoms of a dielectric material
by a positive charge q.
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therefore characteristic of that particular material. Thus,

(VIm). ( 1.10)

Often, S is expressed in the form

(F/m), (1.11)

where Sr is a dimensionless quantity called the relative
permittivity or dielectric constant of the material. For vacuum,
e; = I; for air near Earth's surface, Sr = 1.0006; and the values
of Sr for materials that we will have occasion to use in this book
are tabulated in Appendix B.

In addition to the electric field intensity E, we will often find
it convenient to also use a related quantity called the electric
flux density D, given by

(1.12) I
with unit of coulomb per square meter (C/m2). These two
electric quantities, E and D, constitute one of two fundamental
pairs of electromagnetic fields. The second pair consists of the
magnetic fields discussed next.

1-3.3 Magnetic Fields

As early as 800 B.c., the Greeks discovered that certain kinds
of stones exhibit a force that attracts pieces of iron. These
stones are now called magnetite (Fe304) and the phenomenon
they exhibit is known as magnetism. In the thirteenth century,
French scientists discovered that when a needle was placed on
the surface of a spherical natural magnet, the needle oriented
itself along different directions for different locations on the
magnet. By mapping the directions indicated by the needle, it
was determined that the magnetic force formed magnetic-field
lines that encircled the sphere and appeared to pass through two
points diametrically opposite to each other. These points, called
the north and south poles of the magnet, were found to exist
for every magnet, regardless of its shape. The magnetic-field
pattern of a bar magnet is displayed in Fig. 1-8. It was also
observed that like poles of different magnets repel each other
and unlike poles attract each other. This attraction-repulsion
property is similar to the electric force between electric charges,
except for one important difference: electric charges can
be isolated, but magnetic poles always exist in pairs. If a
permanent magnet is cut into small pieces, no matter how small
each piece is, it will always have a north and a south pole.

Figure 1-8: Pattern of magnetic field lines around a bar magnet.

The magnetic lines surrounding a magnet represent the
magnetic flux density B. A magnetic field not only exists
around permanent magnets but can also be created by electric
current. This connection between electricity and magnetism
was discovered in 1819 by the Danish scientist Hans Oersted
(1777-1851), who found that an electric current in a wire caused
a compass needle placed in its vicinity to deflect and that the
needle turned so that its direction was always perpendicular to
the wire and to the radial line connecting the wire to the needle.
From these observations, he deduced that the current-carrying
wire induced a magnetic field that formed closed circular loops
around the wire (Fig. 1-9). Shortly after Oersted's discovery,
French scientists Jean Baptiste Biot and Felix Savart developed
an expression that relates the magnetic flux density B at a
point in space to the current I in the conductor. Application
of their formulation, known today as the Biot-Savart law, to
the situation depicted in Fig. 1-9 for a very long wire residing
in free space leads to the result that the magneticflux density B
induced by a constant current ! flowing in the z-direction is
given by

B =. {-to!
2nr

(T). (1.13)

where r is the radial distance from the current and ~ is an
azimuthal unit vector expressing the fact that the magnetic
field direction is tangential to the circle surrounding the current
(Fig. 1-9). The magnetic field is measured in tesla (T), named
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x

Figure 1-9: The magnetic field induced by a steady current
flowing in the z-direction.

in honor of Nikola Tesla (1856-1943). a Croatian-American
electrical engineer whose work on transformers made it possible
to transport electricity over long wires without too much loss.
The quantity /10 is called the magnetic permeability of free
space [/10 = 4n x 10-7 henry per meter (Hzrnj], and it is
analogous to the electrical permittivity EO. In fact, as we will
see in Chapter 2, the product of t:o and Ilo specifies c, the
velocity of light in free space:

Ie ~ -. 1__ = 3 x 1.08

JiiOiO

We noted in Section 1-3.2 that when an electric charge q' is
subjected to an electric field E. it experiences an electric force
Fe = q'E. Similarly, if a charge q' resides in the presence
of a magnetic flux density B. it will experience a magnetic
force Fm- but only if the charge is in motion and its velocity u
is in a direction not parallel (or anti-parallel) to B. In fact, as we
will learn in more detail in Chapter 5, Fm points in a direction
perpendicular to both Band u.

To extend Eq. (1.13) to a medium other than free space,
/10 should be replaced with /1, the magnetic permeability of
the material in which B is being observed. The majority of
natural materials are nonmagnetic, meaning that they exhibit
a magnetic permeability /1 = /10. For ferromagnetic materials,
such as iron and nickel, 11 can be much larger than /10. The

magnetic permeability /1 accounts for magnetization properties
of a material. In analogy with Eq. (1.11), 11 of a particular
material can be defined as

11 = flrl1() (Him). (1.15)

where Ilr is a dimensionless quantity called the relative
magnetic permeability of the material. The values of flr

for commonly used ferromagnetic materials are given in
Appendix B.

We stated earlier that E and D constitute one of two pairs
of electromagnetic field quantities. The second pair is Band
the magnetic field intensity H, which are related to each other
through 11:

(1.16) I

1-3.4 Static and Dynamic Fields

In EM, the time variable t , or more precisely if and how
electric and magnetic quantities vary with time, is of crucial
importance. Before we elaborate further on the significance
of this statement. it will prove useful to define the following
time-related adjectives unambiguously:

• static-describes a quantity that does not change with
time. The term de (direct current) is often used as a
synonym for static to describe not only currents, but other
electromagnetic quantities as well.

• dynamic-refers to a quantity that does vary with time,
but conveys no specific information about the character of
the variation.

• waveform-refers to a plot of the magnitude profile of a
quantity as a function of time.

• periodic-a quantity is periodic if its waveform repeats
itself at a regular interval, namely its period T. Examples
include the sinusoid and the square wave. By application
of the Fourier series analysis technique. any periodic
waveform can be expressed as the sum of an infinite series
of sinusoids.

• sinusoidal-also called ac (alternating current), describes
a quantity that varies sinusoidally (or cosinusoidally) with
time.
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Branch Condition

Table 1-3: The three branches of electromagnetics,

Field Quantities (Units)

Electrostatics Stationary charges
(aq/'dt = 0)

Electric field intensity E (VIm)
Electric flux density D (C/m2)

D = d<:

Magoetostatics Steady currents
(aI/at = 0)

Magnetic flux density B (n
Magnetic field intensity H (AIm)

B = IlH

Time-varying currents
(01/ot'l=O)

Dynamics
(Time-varying fields)

In view of these terms, let us now examine the relationship
between the electric field E and the magnetic flux density B.
Because E is governed by the charge q and B is governed by
1= dq ldt . one might expect that E and B must be somehow
related to each other. They mayor may not be interrelated.
depending on whether I is static or dynamic.

Let us start by examining the dc case in which I remains
constant with time. Consider a small section of a beam of
charged particles. all moving at a constant velocity. The moving
charges constitute a dc current. The electric field due to that
section of the beam is determined by the total charge q contained
in it. The magnetic field does not depend on q, but rather on
the rate of charge (current) flowing through that section. Few
charges moving very fast can constitute the same current as
many charges moving slowly. In these two cases the induced
magnetic field will be the same because the current I is the same,
but the induced electric field will be quite different because the
numbers of charges are not the same.

Electrostatics and magnetostatics refer to the study of EM
under the specific, respective conditions of stationary charges
and de currents. They represent two independent branches,
so characterized because the induced electric and magnetic
fields do not couple to each other. Dynamics, the third
and more general branch of electromagnetics, involves time-
varyingfields induced by time-varying sources, that is, currents
and associated charge densities. If the current associated with
the beam of moving charged particles varies with time, then the
amount of charge present in a given section of the beam also
varies with time. and vice versa. As we will see in Chapter 6,
the electric and magnetic fields become coupled to each other in
that case. In fact, a time-varying electric field will generate a

E. D. B. and H
(E. D) coupled to (B. H)

time-varying magnetic field, and vice versa. Table 1-3provides
a summary of the three branches of electromagnetics.

The electric and magnetic properties of materials are
characterized by the parameters E and /1, respectively. A third
fundamental parameter is also needed, the conductivity of a
material a, which is measured in siemens per meter (S/m).
The conductivity characterizes the ease with which charges
(electrons) can move freely in a material. If a = 0, the charges
do not move more than atomic distances and the material is said
to be a perfect dielectric. Conversely, if a = 00, the charges
can move very freely throughout the material. which is then
called a perfect conductor. The parameters E, /1. and a are
often referred to as the constitutive parameters of a material
(Table 1-4). A medium is said to be homogeneous if its
constitutive parameters are constant throughout the medium.

Review Question 1-1: What are the four fundamental
forces of nature and what are their relative strengths?

Review Question 1-2: What is Coulomb's law? State its
properties.

Review Question 1-3: What are the two important
properties of electric charge?

Review Question 1-4: What do the electrical permittivity
and magnetic permeability of a material account for'?

Review Question 1-5: What are the three branches and
associated conditions of electromagnetics?
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Table 1-4: Constitutive parameters of materials.

Parameter Units Free-space Value

Electrical permittivity P F/m Po = 8.854 x 10-12 (F/m)

I
::::::- x 10-9 (F/m)

36rr

Magnetic permeability It HIm flO = 4rr x 10-7 (HIm)

Conductivity (1

1-4 Traveling Waves

Waves are a natural consequence of many physical processes:
waves manifest themselves as ripples on the surfaces of
oceans and lakes; sound waves constitute pressure disturbances
that travel through air; mechanical waves modulate stretched
strings; and electromagnetic waves carry electric and magnetic
fields through free space and material media as microwaves,
light, and X-rays. All these various types of waves exhibit a
number of common properties, including:

• Moving waves carry energy.

• Waves have velocity. It takes time for a wave to travel from
one point to another. Electromagnetic waves in vacuum
travel at a speed of 3 x 10M mis, and sound waves in air
travel at a speed approximately a million times slower,
specifically 330 mls.

• MallY waves exhibit a property called linearity. Waves
that do not affect the passage of other waves are called
linear because they can pass right through each other. The
total of two linear waves is simply the sum of the two
waves as they would exist separately. Electromagnetic
waves are linear, as are sound waves. When two people
speak to one another, the sound waves they generate do
not interact with one another, but simply pass through
each other. Water waves are approximately linear; the
expanding circles of ripples caused by two pebbles thrown
into two locations on a lake surface do not affect each other.
Although the interaction of the two circles may exhibit a
complicated pattern, it is simply the linear superposition
of two independent expanding circles.

Waves are of two types: transient waves caused by sudden
disturbances and continuous periodic waves generated by a
repetitive source. We will encounter both types of waves in this

S/m o

book, but most of our discussion will deal with the propagation
of continuous waves that vary sinusoidally with time.

An essential feature of a propagating wave is that it is
a self-sustaining disturbance of the medium through which
it travels. If this disturbance varies as a function of one
space variable, such as the vertical displacement of the string
shown in Fig. 1-10, we call the wave one-dimensional. The
vertical displacement varies with time and with the location
along the length of the string. Even though the string
rises up into a second dimension, the wave is only one-
dimensional because the disturbance varies with only one
space variable. A two-dimensional wave propagates out

-u

Figure 1-10: A one-dimensional wave traveling on a string.
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Two-dimensional wave

\

(a) Circular waves (b) Plane and cylindrical waves

SPh\,,' wavefront

I
(c) Spherical wave

Figure 1-11: Examples of two-dimensional and three-dimensional waves: (a) circular waves on a pond, (b) a plane light wave exciting a
cylindrical light wave through the use of a long narrow slit in an opaque screen, and (c) a sliced section of a spherical wave.

across a surface, like the ripples on a pond [Fig. 1-11(a)],
and its disturbance can be described by two space variables.
And by extension, a three-dimensional wave propagates
through a volume and its disturbance may be a function
of all three space variables. Three-dimensional waves may
take on many different shapes; they include plane waves,
cylindrical waves, and spherical waves. A plane wave is
characterized by a disturbance that at a given point in time
has uniform properties across an infinite plane perpendicular
to its direction of propagation [Fig. 1-II(b)]. Similarly,
for cylindrical and spherical waves, the disturbances are
uniform across cylindrical and spherical surfaces [Figs. I-II (b)
and (c)].

In the material that follows, we will examine some of
the basic properties of waves by developing mathematical
formulations that describe their functional dependence on time
and space variables. To keep the presentation simple, we
will limit our discussion to sinusoidally varying waves whose
disturbances are functions of only one space variable, and
we defer the discussion of more complicated waves to later
chapters.

1-4.1 Sinusoidal Waves in a Lossless Medium

Regardless of the mechanism responsible for generating them,
all linear waves can be described mathematically in common
terms.

A medium is said to be lossless if it does not attenuate the
amplitude of the wave traveling within it or on its surface.

By way of an example, let us consider a wave traveling on a
lake surface, and let us assume for the time being that frictional
forces can be ignored, thereby allowing a wave generated on
the water surface to travel indefinitely with no loss in energy.
If y denotes the height of the water surface relative to the mean
height (undisturbed condition) and x denotes the distance of
wave travel, the functional dependence of y on time t and the
spatial coordinate x has the general form

-where A is the amplitude of the wave, T is its time period,
A is its spatial wavelength, and 4>0is a reference phase. The
quantity y(x, r) can also be expressed in the form

y(x,t) = Acos4>(x,t) (m), (1.18)

where

(
27ft 27fx )4>(x,t)= T-T+4>o (rad), ( 1.19)
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( 1.22)

y(x, 0)
At t= 0

(a) y(x, t) versus x at t = 0

yeO, t)
Atx=O

(b) y(x, t) versus t at x = 0

Figure 1-12: Plots of y(x. t) = A cos (~ - 2~x) as a
function of (a) x at t = 0 and (b) t at x = O.

The angle 1>(x, t) is called the phase of the wave. and it should
not be confused with the reference phase 1>0. which is constant
with respect to both time and space. Phase is measured by the
same units as angles, that is, radians (rad) or degrees. with 2JT
radians = 3600

•

Let us first analyze the simple case when 1>0 = 0:

(
2JTt 2JTX)

y(x.t) = A cos T -T (m). (1.20)

The plots in Fig. 1-12 show the variation of y(x. t) with x at
t = 0 and with t at x = O. The wave pattern repeats itself at a
spatial period A along x and at a temporal period T along t.

If we take time snapshots of the water surface. the height
profile y (x, t) would exhibit the sinusoidal patterns shown in
Fig. 1-13. In all three profiles, which correspond to three
different values of t, the spacing between peaks is equal to
the wavelength A. even though the patterns are shifted relative
to one another because they correspond to different observation
times. Because the pattern advances along the +x-direction at
progressively increasing values of t , y(x, t) is called a wave
traveling in the +x-direction, If we track a given point on the

y(x, 0)

p

(a) t = 0

y(x, T14)
~lIp
I
I
IP

y(x, T12)

\
\
\
\ (b)t=Tl4
\
I
I

P

-A
(c) t= TI2

Figure 1-13: Plots of .v(x, r) = A cos (2;'1 - 2lX) as a

function of x at (a) f = 0, (b) t = T /4. and (c) f = T /2.
Note that the wave moves in the +x-direction with a velocity
up='J./T.

wave, such as the peak P, and follow it in time, we can measure
the phase velocity of the wave. At the peaks of the wave pattern,
the phase ¢(x, t) is equal to zero or multiples of 2JT radians.
Thus,

2JTt 2JT x
1>(x.t)=---=2nJT, n=0,1,2 •... (1.21)

T A

Had we chosen any other fixed height of the wave, say Yo,
and monitored its movement as a function of t and x, this again
would have been equivalent to setting the phase 1>(r , t) constant
such that

(
2JTt 2JTX)

y(x. t) = Yo = A cos T -T '
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or

2m 2rrx I (VO)T -T = cos - 'A = constant. (1.23 )

The apparent velocity of that fixed height is obtained by taking
the time derivative of Eq. (1.23),

2rr 2rr dx
----=0
T A dt '

( 1.24)

which gives the phase velocity up as

The phase velocity, also called the propagation velocity. is
the velocity of the wave pattern as it moves across the water
surface. The water itself mostly moves up and down; when the
wavemoves from one point to another. the water does not move
physically along with it.

Thefrequency of a sinusoidal wave, f. is the reciprocal of
its time period T:

Combining the preceding two equations yields

The wave frequency f. which is measured in cycles per
second, has been assigned the unit (Hz), named in honor of the
German physicist Heinrich Hertz (1857-1894), who pioneered
the development of radio waves.

Using Eq. (1.26), Eq. (1.20) can be rewritten in a more
compact form as

Y(X,1) = A cos (2rrft - 2; X) = A cos(wt - f3x), 0.28)

where w is the angular velocity of the wave and 13is its phase
constant (or wavenumber), defined as

In terms of these two quantities,

co
up = [): = - .

13
(1.30)

So far, we have examined the behavior of a wave traveling in the
-l-x-direction. To describe a wave traveling in the -x-direction,
we reverse the sign of x in Eq. (1.28):

y(X, t) = A cos(wt + f3x). (1.31 )

The direction of wave propagation is easily determined bv
inspecting the signs of the t and x terms in the expression
for the phase cp(x,t) given by Eq. (1.19): if one of the
signs is positive and the other is negative, then the wave
is traveling in the positive x -direction, and if both signs are
positive or both are negative. then the wave is traveling in
the negative x-direction. The constant phase reference t:Po
has no influence on either the speed or the direction of wave
propagation.

We now examine the role of the phase reference <Po given
previously in Eq. (1.17). If CPo is not zero, then Eq. (1.28)
should be written as

y(x, t) = A cos(wt - f3x + ¢(). ( 1.32)

A plot of y(x, t) as a function of x at a specified t or as
a function of t at a specified x will be shifted in space or
time. respectively, relative to a plot with <Po = 0 by an amount
proportional to rPo. This is illustrated by the plots shown in
Fig. 1-14. We observe that when ¢() is positive, y(l) reaches
its peak value, or any other specified value. sooner than when
rPo = O. Thus. the wave with t:Po = rr /4 is said to lead the wave
with ¢() = 0 by a phase lead of n /4; and similarly, the wave
with t:Po = -rr /4 is said to lag the wave with ¢o = 0 by a phase
lag of rr /4. A wave function with a negative CPotakes longer to
reach a given value of y(t). such as its peak. than the zero-phase
reference function.

When its value is positive, CPo signifies a phase lead in time,
and when it is negative, it signifies a phase lag.



Exercise 1-2: The wave shown in red in Fig. E 1.2 is given
by v = Scos 2rrt /8. Ofthe following four equations: £(z, r) = 10 cos(rr x 107 t + rrz] 15 + tt /6) (Vim).
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y Reference wave (90 = 0)

A L Lag~ behind reference wave

-A

Figure 1-14: Plots of y(O. r) = 11 cos [(2:rI/T) + q>oi for three different values of the reference phase q>o.

Exercise 1-1: Consider the red wave shown in Fig. E1.1.
What is the wave's (a) amplitude, (b) wavelength, and (c)
frequency, given that its phase velocity is 6 m/s?

(a) which equation applies to the green wave? (b) which
equation applies to the blue wave?

v (volts)

v (volts)

6
4
2
o f--+--\---I-+--+----+-+---+--+---\~ x (em)

-2
--4

-6 Figure EI.2

Figure 1<:1.1

Answer: (a) #2, (b) #4.

Answer: (a) A = 6 V, (b) A = 4 ern, (c) f = ISO Hz. Exercise 1-3: The electric field of a traveling
electromagnetic wave is given by

(1) v = Scos(2rrt/8 - rr/4),

(2) v = S cos(2rrt /8 + rr /4),

(3) v = -Scos(2rrt/8 - rr/4),

(4) v = Ssin2rrt/8,

Determine (a) the direction of wave propagation, (b) the
wave frequency f, (c) its wavelength A, and (d) its phase
velocity up.

Answer: (a) -z-direction, (b) f = S MHz, (c)
A = 30 m, (d) up = I.S X 108 m/s.
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CD Module 1.1 Sinusoidal Waveforms Learn how the
shape of the waveform is related to the amplitude,
frequency, and reference phase angle of a sinusoidal
wave.

Module 1.1 SlnuIDld.a WlIYefo,....

The waveform shown in red is a reference wave given by y = Scos4nt:
amplitude = 5 volts, f = 2 Hz, and (Jo = o.

Input for blue wave
Amplitude A = Is.o [volts [

For comparison, you can generate and display in blue a waveform given
y = Acos(2nft+(Jo)

by specifying its attributes in the Input Panel.

Sinusoidal Waves in a Lossy Medium The wave amplitude is now Ae-ax, and not just A. Figure 1-15
shows a plot of y(x, t) as a function of x att = 0 for A = \0 m,
)."= 2 m, a = 0.2 Np/m, and 4>0 = O. Note that the envelope
of the wave pattern decreases as e-ax.

wave is traveling in the x-direction in a lossy medium,
·•••••l'''.'u•.••..will decrease as «=. This factor is called the

""ilUUwnfactor, and a is called the attenuation constant of
medium and its unit is neper per meter (Np/m). Thus, in

y(x, t) = Ae-ax cos(wt - f3x + 4>0).

The real unit of a is (lim); the neper (Np) part is
a dimensionless, artificial adjective traditionally used as a
reminder that the unit (Np/m) refers to the attenuation constant
of the medium, a. A similar practice is applied to the phase
constant f3 by assigning it the unit (rad/m) instead of just (I/m).

(1.33)
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Wave envelope
1Oe-02

< /

---~ -- ---

y(x)

10m

5m

-5 m

-10m

Figure 1·15: Plot of y(x) = (lOe-O.2x cos zrr ) meters. Note that the envelope is bounded between the curve given by lOe-O.2x and its
mirror image.

Review Question 1-6: How can you tell if a wave
is traveling in the positive x-direction or the negative
x-direction?

Review Question 1·7: How does the envelope of the wave
pattern vary with distance in (a) a lossless medium and
(b) a lossy medium?

Review Question 1-8: Why does a negative value of ¢o
signify a phase lag?

Example 1-1: Sound Wave in Water

An acoustic wave traveling in the x-direction in a fluid (liquid
or gas) is characterized by a differential pressure p(x, t). The
unit for pressure is newton per square meter (N/m2). Find an
expression for ptx , t) for a sinusoidal sound wave traveling in
the positive x-direction in water, given that the wave frequency
is I kHz, the velocity of sound in water is 1.5 krnls, the wave
amplitude is 10 N/m2, and p(x, 1) was observed to be at its
maximum value at t = 0 and x = 0.25 m. Treat water as a
loss less medium.

Solution: According to the general form given by Eq. (I. I7)
for a wave traveling in the positive x-direction,

(
21T: 21T: )

p(x,t)=A cos T"t-Tx+¢o

The amplitude A = 10 N/m2, T = Ilf = 10-3 s, and from
lip = fA,

A = up

f
1.5 x ]03

103

= 1.5 m.

Hence,

p(x, t) = ]0cos (21T: x ]03t - 4: x + ¢o) (N/m2).

Since at t = 0 and x = 0.25 m, p(0.25,0) = 10 N/m2, we
have

10 = lOcos (-;1T: 0.25 + ¢o)
= 10 cos (-31T: + ¢o) ,
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which yields the result (¢o - it /3) = cos-l (l), or ¢o = tt /3.
Hence,

pt», t) = lOcos (2rr x 103t - 4rr x +~) (N/m2).
3 3

Example 1-2: Power Loss

A laser beam of light propagating through the atmosphere is
characterized by an electric field given by

(Vim),

where x is the distance from the source in meters. The
attenuation is due to absorption by atmospheric gases.
Determine:

(a) the direction of wave travel,

(b) (b) the wave velocity, and

(e) the wave amplitude at a distance of 200 m.

Solution: (a) Since the coefficients of t and x in the argument
of the cosine function have opposite signs, the wave must be
traveling in the -l-x-direction.

(b)

w
up = 73

3 x 1015

107

= 3 x 1O~ m/s,

which is equal to c, the velocity of light in free space.

(e) At x = 200 m, the amplitude of E(x, t) is

150e-o.0.h200 = 0.37 (Vim).

Exercise 1-4: Consider the red wave shown in Fig. E1.4.
What is the wave's (a) amplitude (at x = 0), (b)
wavelength, and (c) attenuation constant?

lJ (volts)
(2.8,4.23)

Figure E1.4

Answer: (a) S V, (b) S.6 ern, (c) a = 0.06 Np/cm.

Exercise 1-5: The red wave shown in Fig. EI.S is given
by v = 5 cos 4rrx (V). What expression is applicable to
(a) the blue wave and (b) the green wave?

v (volts)

Figure Et.5

Answer: (a) v = Se-O.7x cos4rrx (V),
(b) v = Se - 3.2x cos 4rr x (V).

Exercise 1-6: An electromagnetic wave is propagating
in the z-direction in a lossy medium with attenuation
constant a = O.S Np/m. If the wave's electric-field
amplitude is 100 V1m at z = 0, how far can the wave
travel before its amplitude will have been reduced to (a)
10 VIm, (b) 1 VIm, (c) 1 JJ...V/m?

Answer: (a) 4.6 m, (b) 9.2 m, (c) 37 m.
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•• CD Module 1.2 Traveling Waves Learn how the shape of
a traveling wave is related to its frequency and wavelength,
and to the attenuation constant of the medium.

Module 1.2

• CD Module 1.3 Phase LeadlLag Examine sinusoid-
al waveforms with different values of the reference
phase constant ¢O.

The traveling wave shown In red Is gIVen by y = 5cos(TTt-TlX) volts
Thus. itS frequency is 0.5 Hz. its wilVelength is zcm, and its reference
phase angle ~o = 0, with t = 0 denned as the time the animation is started.

[em)WiMlenglU,= 2.0

a '-- , 'II't:Rl!: ~.For companson, you can generate and display in green a waveform gIVen by
y = 5e·axCOS(2n1t-~TTXf.l,) volts

1-5 The Electromagnetic Spectrum

Visible light belongs to a family of waves arranged according
to frequency and wavelength along a continuum called the
electromagnetic spectrum (Fig. 1-16). Other members of this
family include gamma rays, X rays, infrared waves, and radio
waves. Generically, they all are called EM waves because they
share the following fundamental properties:

• A monochromatic (single frequency) EM wave consists
of electric and magnetic fields that oscillate at the same
frequency f.

• The phase velocity of an EM wave propagating in vacuum
is a universal constant given by the velocity of light c,
defined earlier by Eq. (1.14).

(NpIanJ

• In vacuum, the wavelength A of an EM wave is related to
its oscillation frequency f by

Whereas all monochromatic EM waves share these properties.
each is distinguished by its own wavelength A, or equivalently
by its own oscillation frequency f .

The visible part of the EM spectrum shown in Fig. 1-16
covers a very narrow wavelength range extending between
A = 0.4 /-Lm (violet) and A = 0.7 /-Lm (red). As we move
progressively toward shorter wavelengths, we encounter the
ultraviolet, X-ray, and gamma-ray bands, each so named
because of historical reasons associated with the discovery
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Figure 1-16: The electromagnetic spectrum.

of waves with those wavelengths. On the other side of the
visible spectrum lie the infrared band and then the microwave
part of the radio region. Because of the link between A and
f given by Eq. (1.34), each of these spectral ranges may be
specified in terms of its wavelength range or its frequency
range. In practice, however, a wave is specified in terms of
its wavelength A if A < I rnm, which encompasses all parts
of the EM spectrum except for the radio region, and the wave
is specified in terms of its frequency f if A > 1 mm (i.e., in
the radio region). A wavelength of I mm corresponds to a
frequency of 3 x 1011 Hz = 300 GHz in free space,

The radio spectrum consists of several individual bands, as
shown in the chart of Fig. 1-17. Each band covers one decade
of the radio spectrum and has a letter designation based on a
nomenclature defined by the International Telecommunication
Union. Waves of different frequencies have different
applications because they are excited by different mechanisms,
and the properties of an EM wave propagating in a material may
vary considerably from one band to another.

Although no precise definition exists for the extent of the
microwave band, it is conventionally regarded to cover the full
ranges of the UHF, SHE and EHF bands. The EHF band is
sometimes referred to as the millimeter-wave band because the

wavelength range covered by this band extends from 1 mm
(300 GHz) to 1 cm (30 GHz).

Review Question 1-9: What are the three fundamental
properties of EM waves?

Review Question 1-10: What is the range offrequencies
covered by the microwave band?

Review Question 1-11: What is the wavelength range of
the visible spectrum? What are some of the applications
of the infrared band?

1-6 Review of Complex Numbers

Any complex number z can be expressed in rectangular form
as

7=X+)Y, (1.35)

where x and yare the real (9'tc) and imaginary (Jm) parts of z;
respectively, and j =R. That is,

x = 9'te(z). y = Jm(z). ( 1.36)
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Jm(z)
x = [z] cos ()
y = [z] sin 0

[z] =tj x2 + y2

()= tarr ' (vlx)

y

Figure 1·18: Relation between rectangular and polar
representations of a complex number z = x + jy = Izle)iJ.

Alternatively, Z may be cast in polar form as

( 1.37)

where [z] is the magnitude of z, e is its phase angle, and L1!.
is a useful shorthand representation for ejf!. Applying Euler's
identity,

(1.38) I
we can convert z from polar form, as in Eq. (1.37), into
rectangular form,

Z = Izle)O = [zl cos e + jl7.lsinH. (1.39)

This leads to the relations

y = IzlsmB,

e = tan-I (y/x).

(lAO)

(1.41)

x = Izlcose,

Izi = -;J x2 + y2 ,

The two forms are illustrated graphically in Fig. 1-18. When
using Eq. (1.41), care should be taken to ensure that e is in the
proper quadrant. Also note that, since [z] is a positive quantity,
only the positive root in Eq. (1.41) is applicable. This is denoted
by the + sign above the square-root sign.

The complex conjugate of z; denoted with a star superscript
(or asterisk), is obtained by replacing j (wherever it appears)
with - j, so that

(1.42)

The magnitude [z] is equal to the positive square root of the
product of 7.and its complex conjugate:

liZ! = tfZ"i*,. (1.43) I
We now highlight some of the properties of complex algebra
that will be encountered in future chapters.

Equality: If two complex numbers Zl and Z2 are given by

Zl = Xl + jYI = IZIIe)Ii].

Z2 = X2 + jY2 = IZ2Iejo",

( 1.44)

(l.45 )

then Zl = 7.2ifand only if XI = .1.'2and v, = Y2 or, equivalently,
IZ11= IZ21and 81 = 82.

Addition:

Multiplication:

7.17.2= (XI + jY])(X2 + jY2)

= (.1.'1.1.'2- YI)'2) + j(XIY2 + xlyj}.

or

ZIZ2 = IZlle
jiJ

] . IZ21e
j02

= 17.lllzllej(il] +i!")

= IZlllz21[c05(81 + (2) + j sin(81 + 82)].

Division: For Z2 I- 0,

ZI Xl + jYl

z2 Xl + jY2

(XI+j)'I) (X2-jY2)

(X2+jY2) (Xz-jY2)

(XIX2 + )'1)'2) + j(X2)'1 - XIY2)
~ ~Xi +)'2'

or

IZllejiJl

IZ21ejlh

= ~ej(Ii]-O~)

IZ21
ILl I

= - [COS({jl - 8~)+ J' sin({jl - e? )].Izzi - -

(1.46)

( 1.47a)

( 1.47b)

( 1.48a)

( 1.48b)
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TECHNOLOGY BRIEF 1: LED LIGHTING

Technology Brief 1: LED Lighting

After lighting our homes, buildings, and streets for over 100 years, the incandescent light bulb created by Thomas
Edison (1879) will soon become a relic of the past. Many countries have taken steps to phase it out and replace it with
a much more energy efficient alternative: the light emitting diode (LED).

Light Sources

The three dominant sources of electric light are the incandescent, fluorescent, and LED light bulbs (Fig. TF1-1). We
will examine each briefly.

Incandescent Light Bulb:

Incandescence is the emission of light from a hot object due to its temperature. By passing electric current through
a thin tungsten filament, which basically is a resistor, the filament's temperature rises to a very high level, causing
the filament to glow and emit visible light. The intensity and shape of the emitted spectrum depends on the filament's
temperature. A typical example is shown by the green curve in Fig. TF1-2. The tungsten spectrum is similar in shape
to that of sunlight (yellow curve in Fig. TF1-2), particularly in the blue and green parts of the spectrum (400-550 nm).
Despite the relatively strong (compared with sunlight) yellow light emitted by incandescent sources, the quasi-white
light they produce has a quality that the human eye finds rather comfortable. The incandescent light bulb is significantly
less expensive to manufacture than the fluorescent and LED light bulbs, but it is far inferior with regard to energy
efficacy and operational lifetime (see comparison section below). Of the energy supplied to an incandescent light bulb,
only about 2% is converted into light, with the remainder wasted as heat! In fact, the incandescent light bulb is the
weakest link in the overall conversion sequence from coal to light (Fig. TF1-3).

Fluorescent Light Bulb:

Fluoresce means to emit radiation in consequence to incident radiation of a shorter wavelength. By passing a stream
of electrons between two electrodes at the ends of a tube [Fig. TF1-1 (b)] containing mercury gas (or the noble gases

Figure TF1·1: (a) Incandescent light bulb; (b) fluorescent mercury vapor lamp; (c) white LED.
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Figure TF1-2: Spectra of common sources of visible light.

, argon, and xenon) at very low pressure, the electrons collide with the mercury atoms, causing them to excite
own electrons to higher energy levels. When the excited electrons return to the ground state, they emit photons

Power plant
£, = 0.35

Transmission lines
£2 = 0.92

Light
£3 = 0.024

Overall efficiency for conversion of chemical energy to light energy is
£, x £2 X £3 = 0.35 x 0.92 x 0.024 = 0.8%

Figure TF1-3: Lighting efficiency. (Source: National Research Council, 2009.)
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Photon \ ;!Photon

I IDleS Electrons

+ v

Figure TF1-4: Photons are emitted when electrons
combine with holes.

at specific wavelengths, mostly in the ultraviolet part of the spectrum. Consequently, the spectrum of a mercury lamp
is concentrated into narrow lines, as shown by the blue curve in Fig. TF1-2. To broaden the mercury spectrum into
one that resembles that of white light, the inside surface of the fluorescent light tube is coated with phosphor particles
[such as yttrium aluminum garnet (YAG) doped with cerium]. The particles absorb the UV energy and then reradiate it
as a broad spectrum extending from blue to red; hence the name fluorescent.

Light Emitting Diode:

The LED contained inside the polymer jacket in Fig. TF1·1 (c) is a p-n junction diode fabricated on a semiconductor chip.
When a voltage is applied in a forward-biased direction across the diode (Fig. TF1-4), current flows through the junction
and some of the streaming electrons are captured by positive charges (holes). Associated with each electron-hole
recombining act is the release of energy in the form of a photon. The wavelength of the emitted photon depends on
the diode's semiconductor material. The materials most commonly used are aluminum gallium arsenide (AIGaAs) to
generate red light, indium gallium nitride (InGaN) to generate blue light, and aluminum gallium phosphide (AIGaP) to
generate green light. In each case, the emitted energy is confined to a narrow spectral band.

Two basic techniques are available for generating white light with LEOs: (a) RGB and (b) blue/conversion. The
RGB approach involves the use of three monochromatic LEOs whose primary colors (red, green, and blue) are mixed
to generate an approximation of a white-light spectrum. An example is shown in Fig. TF1-S. The advantage of this
approach is that the relative intensities of the three LEOs can be controlled independently, thereby making it possible
to "tune" the shape of the overall spectrum so as to generate an esthetically pleasing color of "white." The major
shortcoming of the RGB technique is cost; manufacturing three LEOs instead of just one.

With the blue LED/phosphor conversion technique, a blue LED is used with phosphor powder particles suspended
in the epoxy resin that encapsulates it. The blue light emitted by the LED is absorbed by the phosphor particles and
then reemitted as a broad spectrum (Fig. TF1-6). To generate high intensity light, several LEOs are clustered into a
single enclosure.
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Wavelength (nm)

Figure TFl-5: The addition of spectra from three
monochromatic LEOs.

Wavelength (micrometers)

Figure TFl-6: Phosphor-based white LED emission
spectrum.

Luminous efficacy (LE) is a measure of how much light in lumens is produced by a light source for each watt of
electricity consumed by it. Of the three types of light bulbs we discussed, the incandescent light bulb is by far the
most inefficient and its useful lifespan is the shortest (Fig. TF1-7). For a typical household scenario, the 1O-year cost,
including electricity and replacement cost, is several times smaller for the LED than the alternatives.

Parameter Type of Light Bulh

Incandescent Fluorescent White LED

Circa 2010 Circa 2025

Luminous Efficacy
-12 -40 -70 -150(lumens/W)

Useful Lifetime
-1000 -20,000 -60.000 -100,000(hours)

Purchase Price -$1.50 -$5 -$10 -S5

Estimated Cost -$410 -$110 -SIOO -S40
over 10 Years

Figure TFl-7: Even though the initial purchase price of a white LED is several times greater
than that of the incandescent light bulb, the total 1O-year cost of using the LED is only one-
fourth of the incandescent's (in 2010). and expected to decrease to one-tenth by 2025.
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Powers: For any positive integer n,

z" = (Izlejil)"

= Izl"ejnO = Izlll(cosne + j sinne), (1.49)

ZI/2 = ±lzri/2ejli/2

= ±lzI1/2[cos(e/2) + j sinCe/2)].

Useful Relations:

-1 = ejrr = e - jit = 1L!.!!!r'.,

j = ejrr/2 = l~,

=) = _ejrr/2 = e-jrr/2 = II-90°,

fJ = (ejrr/2)1/2 = ±ejrr/4 = ±(~ j) ,

A = ±e-jrr/4 = ±(l - j) .
v'2

Example 1~3: Working with Complex Numbers

Given two complex numbers

v = 3 - j4,

1= -(2 + j3).

( 1.50)

(1.51 )

0.52)

(1.53 )

0.54)

(a) Express V and I in polar form, and find (b) V I, (c) V 1*,
(d) V/I,and(e).Jj.

Solution:

Ca) IV I = \i"V"V*
= \/"'(3<""""----;j4-'-;:)--"'C3<""""+""---'-j4--'-'-)= t/9 + 16 = 5,

ev = tan-l (-4/3) = -53.1°,
V = IVlejliv = 5e-j53.10 = 5(-53.1°,

III = t/22 + 32 = ifi3 = 3.61.

Since I = (-2 - j3) is in the third quadrant in the complex
plane [Fig. 1-19],

el = 1800 + tan-1 G) = 236.3°,

I = 3.61 /236.3° .

Jm

Figure 1-19: Complex numbers V and I in the complex plane
(Example 1-3).

(b) VI =5e-j53.lo x 3.61ej236.3°

= 18.03ej(236.3°-53.IO) = 18.03ejI83.2°.

(e) V!*=5e-j53.1o x 3.6Ie-j236.3°

= 18.03e- j289.4" = 18.03ej7o.6°.

V 5e-j53.10

(d) I - 3.61ej236.3°

= 1.3ge- j289.4° = 1.3gej70.6°.

(e) -Ji = J3.6Iej236.30

= ±J3.6T ej236.3° /2 = ± 1.90ejI18.15°.

Exercise 1-7: Express the following complex functions
in polar form:

Zl = (4 - j3)2,

Z2 = (4 - j3)1/2.

Answer: Zl = 25/-73.7° , Z2 = ±.J5 1_18.4° . (See~)

Exercise 1-8: Show that.j2J = ±(1 + j). (Seee )
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•. CD Module 1.4 Complex Numbers Use this module to
improve your two-way rectangular/polar conversion of
complex numbers.

Izl = 3.905

e = 140.194'

1-7 Review of Phasors

Phasor analysis is a useful mathematical tool for solving
problems involving linear systems in which the excitation is a
periodic time function. Many engineering problems are cast
in the form of linear inregro-differential equations. If the
excitation, more commonly known as the forcing function,
varies sinusoidally with time, the use of phasor notation to
represent time-dependent variables allows us to convert the
linear integro-differential equation into a linear equation with
no sinusoidal functions, thereby simplifying the method of
solution. After solving for the desired variable. such as the
voltage or current in a circuit. conversion from the phasor
domain back to the time domain provides the desired result.

The phasor technique can also be used for analyzing
linear systems when the forcing function is any arbitrary
(nonsinusoidal) periodic time function, such as a square wave
or a sequence of pulses. By expanding the forcing function
into a Fourier series of sinusoidal components, we can solve
for the desired variable using phasor analysis for each Fourier

component of the forcing function separately. According to
the principle of superposition. the sum of the solutions due
to all of the Fourier components gives the same result as one
would obtain had the problem been solved entirely in the time
domain without the aid of the Fourier representation. The
obvious advantage of the phasor-Fourier approach is simplicity.
Moreover. in the case of nonperiodic source functions. such as a
single pulse, the functions can be expressed as Fourier integrals.
and a similar application of the principle of superposition can
be used as well.

The simple RC circuit shown in Fig. 1-20 contains a
sinusoidally time-varying voltage source given by

vs(t) = Vo sin(luf + ¢OJ, 0.55)

where Vo is the amplitude. lV is the angular frequency, and ¢o
is a reference phase. Application of Kirchhoff's voltage law
gives the following loop equation:

R ;(t) + ~ f ;(t) dt = vs(t) (time domain). (1.56)
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c

Figure 1·20: RC circuit connected to a voltage source v,(t).

Our objective is to obtain an expression for the current i (t). We
can do this by solving Eq. (1.56) in the time domain, which is
somewhat cumbersome because the forcing function v,(/) is a
sinusoid. Alternatively, we can take advantage of the phasor-
domain solution technique as follows.

1-7.1 Solution Procedure

Step I: Adopt a cosine reference

To establish a phase reference for all time-varying currents and
voltages in the circuit, the forcing function is expressed as a
cosine (if not already in that form). In the present example,

Us (t) = Vo sin (wt + <Po) = Vo cos (~ - cot - <Po)

=Vocos(wt+<po-~), (1.57)

where we used the properties sin x = cos(rr /2 - x) and
cos(-x) = cosx.

Step 2: Express time-dependent variables as phasors

Any cosinusoidally time-varying function z(t) can be expressed
as

( 1.58)

where Z is a time-independent function called the phasor of
the instantaneous function z(f). To distinguish instantaneous
quantities from their phasor counterparts, a tilde (-) is added
over the letter denoting a phasor. The voltage Vs (t) given by
Eq. (1.57) can be cast in the form

Vs(t) = IRe [Voej((o/+¢o-rr/2)] = IRe [Voej(¢O-rr/2)ejiOl]

= lJte [V,ejw
/ J, ( 1.59)

where Vs consists of the expression inside the square bracket
that multiplies ej(,)/ ,

(1.60)

The phasor \1" corresponding to the time function Vs(l).

contains amplitude and phase information but is independent
of the time variable t. Next we define the unknown variable
i(t) in terms of a phasor I,

(1.61)

and if the equation we are trying to solve contains derivatives
or integrals, we use the following two properties:

di d [ -' ] [d -' ]- = - IJtc(leiUJT) =IRc -(leilO
/)

dt dt dt

= IRe[jwlejwT], ( 1.62)

and

/ i dt = / IRe(le
jwt) dt = IRe (/ iejiOl dt)

=IReC~ ejW
). (1.63)

Thus, differentiation of the time function i(t) is equivalent
to multiplication of its phasor 1 by jw, and integration is
equivalent to division by jco.

Step 3: Recast the dUlerential1 integral equation in phasor
form

Upon using Eqs. (1.59), (1.61), and (1.63) in Eq. (1.56), we
have

(1.64)

Combining all three terms under the same real-part (IRe)
operator leads to

( 1.65a)

Had we adopted a sine reference-instead of a cosine
reference-to define sinusoidal functions, the preceding
treatment would have led to the result

Jm{[(R+ j~c)T-v,]ej(ot}=o. (1.65b)
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Since both the real and imaginary parts of the expression inside
the curly brackets are zero, the expression itself must be zero.
Moreover, since ejwt =1= 0, it follows that

The time factor ejwi has disappeared because it was contained in
all three terms. Equation (1.66) is the phasor-domain equivalent
of Eq. 0.56).

Step 4: Solve the phasor-domain equation

From Eq. (1.66) the phasor current i is given by

Vs
1=-----

R + 1/{jwC)
(1.67)

Before we apply the next step, we need to convert the right-
hand side of Eq. (1.67) into the form loejl! with 10 being a real
quantity. Thus,

I = \I, ej(cfJo-If/2) [ jwC ]
o 1+ jwRC

= Voej(<PO-If/2) [ uJCe
jIf

/

2
]

\/1 + w2 R2C2 eNI

~=\I,=o=w:;;:C:::::::;;:~j (<po-<pll~ e,
~1 + w2R2C2

( 1.68)

where we have used the identity j = ejIf
/
2. The phase angle

associated with (1 + jwRC) is 1>1 = tan-1(wRC) and lies in
the first quadrant of the complex plane.

Step 5: Find the instantaneous value

To tind i (f), we simply apply Eq. 0.61). That is, we multiply
the phasor j given by Eq. (1.68) by ej(ot and then take the real
part:

i(t) = I)tc [iejwt ]

= I)tc [ VowC ei(tPo-<Pde}wt]
\/1 + w2R2C2
VowC

+ cos(wt + 1>0 - 1>1).
\/1 + w2 R2C2

0.69)

In summary, we converted all time-varying quantmes into
the phasor domain, solved for the phasor j of the desired

Table 1-5: Time-domain sinusoidal functions z(t) and their cosine-
reference phasor-domain counterparts Z, where z(t) = 9-tc [Zeiwt l-

z(t)

A coswt

A cos(wt + <PO)

< A cos(wt + fix + ¢OJ
Ae-cl'X cos(wt + fix + ¢u)

A sinwt
A sin(o)t + ¢OJ

d
-(z(t»
dt

d
-[ACOS(WI +¢oll
dt

f z(t) tit

f A sin(wt + ¢o) dt

.••••••. A

..•••••. Aej¢O

..•••••. Ae} ({ix+tPo)

..•••••. A e -ax ej ({Jx+<pu)

.••••••. Ae-jrr/2

.••••••. Aei (<PO-If 12)

..•••••. jwZ

..•••••. jwAej¢n

1 ~-2
jtlJ

....!.... Aej (¢O-IT /2)

jw

instantaneous current i(t), and then converted back to the time
domain to obtain an expression for i(I). Table 1-5 provides
a summary of some time-domain functions and their phasor-
domain equivalents.

Example 1-4: RL Circuit

The voltage source of the circuit shown in Fig. 1-21 is given by

0.70)

i R= 6 Q--
(V).

L = 0.2 mH

Figure 1-21: RL circuit (Example 1-4).
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Obtain an expression for the voltage across the inductor.

Solution: The voltage loop equation of the R L circuit is

di
Ri + L dt = vs(t). (1.71 )

Before converting Eq. (1.71) into the phasordomain, we express
Eq. (L.70) in terms of a cosine reference:

Vs (t) = 5 sin (4 x 104t ~ 30°)

= 5 cos (4 X 104
/ ~ 120°) (V). (1.72)

The coefficient of t specifies the angular frequency as
co = 4 x 104 (rad/s), Per the second entry in Table 1-5, The
voltage phasor corresponding to vs(t) is

V~=5e-j120° (V).

and the phasor equation corresponding to Eq. (1.71) is

R 1 + jwLl = V,. (1.73)

Solving for the current phasor T, we have

V,
1=---

R + i»t.
5e-jI20"

6 + j4 x 104 x 2 x 10-4

_ j 120"
5e _ -jI73.IO

'S, I~ - 0.5elOe1•·· '
(A).=---

6 + j8

The voltage phasor across the inductor is related to T by

- -VI. = jwLl

= j4 x 104 x 2 x 10-4 x O.5e-j173·1°

= 4ej(90Q-173.IOj = 4e-j83.1" (V),

and the corresponding instantaneous voltage Vl,(t) is therefore

vL,(t) = 91e [VLejwt]

= 91e [4e- )83.1° ej4x I04(]

= 4 cos(4 x 104t - 83.1°) (V).

Review Question 1-12: Why is the phasor technique
useful? When is it used? Describe the process.

Review Question 1-13: How is the phasor technique used
when the forcing function is a non-sinusoidal periodic
waveform, such as a train of pulses?

Exercise 1-9: A series R L circuit is connected to a voltage
source given by vs(t) = 150coswt (V). Find (a) the
phasor current i, and (b) the instantaneous current i(t)
for R = 400 n, L = 3 mH, and w = 105 radls.

Answer: (a) I = 150/(R + jwL) = 0.3/-36.9° (A), (b)
i(t) = O.3cos(wr - 36.9°) (A). (See e)

Exercise 1-10: A phasor voltage is given by V = j5 V.
Find v(t).

Answer: vet) = 5cos(wt + Jr 12) = -5 sin cot
(See .)

(V).

1-7.2 Traveling Waves in the Phasor Domain

According toTable 1-5, if we set cPo = 0, its third entry becomes

A cos(wt + f3x) ...••.• Ae}jJx. ( 1.74)

From the discussion associated with Eq. (1.31), we concluded
that A cos(wt + f3x) describes a wave traveling in the negative
x-direction.

In the phasor domain, a wave qf amplitude A traveling in
the positive x-direction in a lossless medium with phase
constant f3 is given b» the negative exponential Ae- jfJx, and
conversely; a wave traveling in the negative x-direction is
given by AeJjlx. Thus, the sign of x ill the exponential is
opposite to the direction of travel.
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Technology Brief 2: Solar Cells

A solar cell is a photovoltaic device that converts solar energy into electricity. The conversion process relies on the
photovoltaic effect, which was first reported by 19-year-old Alexandre-Edmond Becquerel in 1839 when he observed
that a platinum electrode produced a small current if exposed to light. The photovoltaic effect is often confused with
the photoelectric effect, they are interrelated, but not identical (Fig. TF2-1).

The photoelectric effect explains the mechanism responsible for why an electron is ejected by a material in
consequence to a photon incident upon its surface [Fig. TF2-1 (a)]. For this to happen, the photon energy E (which is
governed by its wavelength through E = he/A, with II being Planck's constant and c the velocity of light) has to exceed
the binding energy with which the electron is held by the material. For his 1905 quantum-mechanical model of the
photoelectric effect, Albert Einstein was awarded the 1921 Nobel Prize in physics.

Whereas a single material is sufficient for the photoelectric effect to occur, at least two adjoining materials with different
electronic properties (to form a junction that can support a voltage across it) are needed to establish a photovoltaic
currentthrough an external load [Fig. TF2-1 (b)]. Thus, the two effects are governed by the same quantum-mechanical
rules associated with how photon energy can be used to liberate electrons away from their hosts, but the followup step
of what happens to the liberated electrons is different in the two cases.

Photon\

Photon\.

n-type

Metal

(a) Photoelectric circe! (b) Photovoltaic effect

Figure TF2-1: Comparison of photoelectric effect with the photovoltaic effect.

The PV Cell

photovoltaic (PV) cells are made of semiconductor materials. The basic structure of a PV cell consists of a p-n
luncrlG'nconnected to a load (Fig. TF2-2).

Typically, the n-type layer is made of silicon doped with a material that creates an abundance of negatively charged
atoms, and the p-type layer also is made of silicon but doped with a different material that creates an abundance of

(atoms with missing electrons). The combination of the two layers induces an electric field across the junction,
when an incident photon liberates an electron, the electron is swept under the influence of the electric field through
n-Iayer and out to the external circuit connected to the load.

The conversion efficiency of a PV cell depends on several factors, including the fraction of the incident light that
absorbed by the semiconductor material, as opposed to getting reflected by the n-type front surface or transmitted

to the back conducting electrode. To minimize the reflected component, an antireflective coating usually is
iftC!.",rt"",.. between the upper glass cover and the n-type layer (Fig. TF2-2).
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Antireflective coating Glass cover

Front conducting electrode

n-type layer
(silicon)

p-n junction

Back conducting electrode

Figure TF2-2: Basic structure of a photovoltaic cell.

The PV cell shown in Fig. TF2-2 is called a single-junction cell because it contains only one p-n junction. The
semiconductor material is characterized by a quantity called its band gap energy, which is the amount of energy
needed to free an electron away from its host atom. Hence, for that to occur, the wavelength of the incident photon
(which, in turn, defines its energy) has to be such that the photon's energy exceeds the band gap of the material. Solar
energy extends over a broad spectrum, so only a fraction of the solar spectrum (photons with energies greater than the
band gap) is absorbed by a Single-junction material. To overcome this limitation, multiple p-n layers can be cascaded
together to form a multi junction PV device (Fig. TF2-3). The cells usually are arranged such that the top cell has the
highest band gap energy, thereby capturing the high-energy (short-wavelength) photons, followed by the cell with the
next lower band gap, and so on. The multijunction technique offers an improvement in conversion efficiency of 2-4
times over that of the single-junction cell. However, the fabrication cost is significantly greater as well.

Modules, Arrays, and Systems

A photovoltaic module consists of multiple PV cells connected together so as to supply electrical power at a specified
voltage level, such as 12 or 24 V. The combination of multiple modules generates a PV srray(Fig. TF2-4). The amount
of generated power depends on the intensity of the intercepted sunlight, the total area of the module or array, and the
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conversion efficiencies of the individual cells. If the PV energy source is to serve multiple functions, it will need to be
integrated into an energy management system that includes a dc to ac current converter and batteries to store energy
for later use (Fig. TF2-S).

InGaP
InGaAs

Ge

Figure TF2-3: In a multijunction PV device, different layers absorb different parts of the light spectrum.

PYarray

Figure TF2-4: PV celis, modules, and arrays.

de to ac
inverter

Figure TF2-5: Components of a large-scale photovoltaic
system.
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Chapter 1 Relationships

Electric field due to charge q in free space
E=R q

4;rsoR2

Magnetic field due to current 1 in free space
, f.1.01B=.~

2;rr

Plane wave y(x, t) = Ae-ax cos(wt - (]x + <Po)
• a = 0 in lossless medium
• phase velocity up = .fA = ~
.w=2;r.f; (3=2;r/A
• 1>0 = phase reference

CHAPTER HIGHLIGHTS

• Electromagnetics is the study of electric and magnetic
phenomena and their engineering applications.

• The International System of Units consists of the six
fundamental dimensions listed in Table 1-1. The units
of all other physical quantities can be expressed in terms
of the six fundamental units.

• The four fundamental forces of nature are the nuclear,
weak-interaction, electromagnetic, and gravitational
forces.

• The source of the electric field quantities E and D
is the electric charge q. In a material, E
and D are related by D = sE, where e is the
electrical permittivity of the material. In free space,
e = £0 ~ (I/36;r) x 10-9 (F/m).

• The source of the magnetic field quantrues Band
H is the electric current I. In a material, B
and H are related by B = f.1.H, where fL is the

Complex numbers

• Euler's identity

ejO = cose + j sinO
• Rectangular-polar relations

x = [z] cosO, y = [z] sine,

Phasor-domain equivalents

Table 1-5

magnetic permeability of the medium. In free space,
u. = fLo = 4;r x 10-7 (HIm).

• Electromagnetics consists of three branches: (I)
electrostatics, which pertains to stationary charges,
(2) magnetostatics, which pertains to de currents. and
(3) electrodynamics, which pertains to time-varying
currents.

• A traveling wave is characterized by a spatial
wavelength A, a time period T, and a phase velocity
up = A/T.

• An electromagnetic (EM) wave consists of oscillating
electric and magnetic field intensities and travels in free
space at the velocity of light c = 1/"JSOiIO. The EM
spectrum encompasses gamma rays, X-rays, visible
light, infrared waves, and radio waves.

• Phasor analysis is a useful mathematical tool for solving
problems involving time-periodic sources.



PROBLEMS 57

GLOSSARY OF IMPORTANT TERMS

Provide definitions or explain the meaning of the following terms:

angular velocity w
attenuation constant a
attenuation factor
Biot-Savart law
complex conjugate
complex number
conductivity o
constitutive parameters
continuous periodic wave
Coulomb's law
dielectric constant
dynamic
electric dipole
electric field intensity E
electric flux density D
electric polarization
electrical force
electrical permittivity E

electrodynamics
electrostatics

EM spectrum
Euler's identity
forcing function
fundamental dimensions
instantaneous function
law of conservation of electric charge
LCD
liquid crystal
lossless or lossy medium
magnetic field intensity H
magnetic flux density B
magnetic force
magnetic permeability Jl
magnetostatics
microwave band
monochromatic
nonmagnetic materials
perfect conductor
perfect dielectric
periodic

PROBLEMS

phase
phase constant (wave number) f3
phase lag and lead
phase velocity (propagation

velocity) up

phasor
plane wave
principle of linear superposition
reference phase CPo
relative permittivity or dielectric

constant Er

SI system of units
static
transient wave
velocity of light c
wave amplitude
wave frequency f
wave period T
waveform
wavelength A

Section 1-3: Traveling Waves

observed that a given crest, or maximum, travels 300 em in lOs,
what is the wavelength?

&M. 1.4 A wave traveling along a string is given by

*1.1 A 2-kHz sound wave traveling in the x-direction in air was
observed to have a differential pressure p(x, t) = 10 N/m2 at
x = ° and t = 50 11S. If the reference phase of pt x : t) is 36°,
find a complete expression for p(x, t). The velocity of sound
in air is 330 mls.

1.2 For the pressure wave described in Example 1-1, plot the
following:

(a) p(x, t) versus x at t = 0,

(b) p(x, t) versus t at x = O.
Be sure to use appropriate scales for x and t so that each of your
plots covers at least two cycles.

*1.3 A harmonic wave traveling along a string is generated by
an oscillator that completes 180 vibrations per minute. If it is

*Answer(s) available in Appendix D.

y(x, t) = 2 sine4m + lOrrx) (em),

where x is the distance along the string in meters and y is the
vertical displacement. Determine: (a) the direction of wave
travel, (b) the reference phase CPo, (c) the frequency, (d) the
wavelength, and (e) the phase velocity.

1.5 Two waves, YI (t) and Y2(t), have identical amplitudes
and oscillate at the same frequency. but .1"2 (t) leads )'1 (t) by a
phase angle of 6(Y If

Y1 (t) = 4cos(2rr x 103t),

write the expression appropriate for Y2 (t) and plot both
functions over the time span from 0 to 2 ms,

'¢' Solution available on CD.
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* 1.6 The height of an ocean wave is described by the function

.v (x . t) = 1.5 sin(O.51 - O.6x) (m).

Determine the phase velocity and wavelength, and then sketch
.vex, t) at f = 2s over the range from x = 0 to x = 2A.

-if:' 1.7 A wave traveling along a string in the +x-direction is
given by

.vI (x, t) = A cos(wt - fix),

where x = 0 is the end of the string. which is tied rigidly to
a wall, as shown in Fig. P1.7. When wave )'1 ex. t) arrives at
the wall. a reflected wave )'2 (x. t) is generated. Hence, at any
location on the string, the vertical displacement )', is the sum
of the incident and reflected waves:

Ys(x, t) =)'1 (x, t) + .n(.r. t).

(a) Write an expression for )'2(X, f), keeping in mind its
direction of travel and the fact that the end of the string
cannot move.

(b) Generate plots of y}(x,t), n(x,t) and Ys(x,t) versus
x over the range -2A::: x ::: 0 at cot = it /4 and at
0)/ = n /2.

y

Incident wave

'---~-x
X=o

Figure P1.7: Waveon a string tied to a wall at x = 0
(Problem 1.7).

* 1.8 Two waves on a string are given by the following
functions:

Yi (X, t) = 4 cos(20t - 30x)

Y2(X, t) = -4cos(20f + 30x)

(ern)

(em)

where x is in centimeters. The waves are said to interfere
constructively when their superposition ly,1 = IYl + Y21 is a
maximum, and they interfere destructively when ly,1 is a
rmrumum.

(a) What are the directions of propagation of waves .\'1 (x. t)
and Y2(X. t)?

(b) At t = (rr /50) s, at what location x do the two waves
interfere constructively, and what is the corresponding
value of IYsl?

(e) At 1= (rr/50) s, at what location x do the two waves
interfere destructively. and what is the corresponding value
oflYsl?

1.9 Give expressions for y(x. t) for a sinusoidal wave
traveling along a string in the negative x-direction. given that
Ym(lx = 40 em, A = 30 ern, f = 10 Hz, and

(a) y (x, 0) = 0 atr = O.
(b) y(x,O) = 0 at x = 3.75 em.

* 1.10 An oscillator that generates a sinusoidal wave on a string
completes 20 vibrations in 50 s. The wave peak is observed to
travel a distance of 2.8 m along the string in 5 s. What is the
wavelength?

1.11 The vertical displacement of a string is given by the
harmonic function:

y(x, t) = 2cos(l6rrt - 20rrx) (m).

where x is the horizontal distance along the string in meters.
Suppose a tiny particle were attached to the string at x = 5 cm.
Obtain an expression for the vertical velocity of the particle as
a function of time.

*1.12 Given two waves characterized by

Y I (t) = 3 cos cot •

n(t) = 3 sin(wt + 36°).

Does .V2(t) lead or lag Yl (r ) and by what phase angle?

1.13 The voltage of an electromagnetic wave traveling on a
transmission line is given by

u(z. t) = 5e-lu sin(4rr x 10'), - 20rr z) (V).

where z is the distance in meters from the generator.

(a) Find the frequency, wavelength. and phase velocity of the
wave.

(b) At 7. = 2 m, the amplitude of the wave was measured to
be 2 V. Find 0'.
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*1.14 A certain electromagnetic wave traveling in seawater was
observed to have an amplitude of98.02 (V1m) at a depth of 10m,
and an amplitude of 81.87 (V1m) at a depth of 100m. What is
the attenuation constant of seawater?

1.15 A laser beam traveling through fog was observed to have
an intensity of I (j.lW/m2) at a distance of 2 m from the laser
gun and an intensity of 0.2 (j.lW/m2) at a distance of 3 m. Given
that the intensity of an electromagnetic wave is proportional to
the square of its electric-field amplitude, find the attenuation
constant ex of fog.

Section 1-5: Complex Numbers

1.16 Evaluate each of the following complex numbers and
express the result in rectangular form:

(a) ZI = 8ejrr/3

(b) Z2 = v'3 ej3rr/4

(e) Z3 = 2e-j;r/2

(d) 74 = j3

(e) Z5 = r'
(f) 7-6 = (I - j)3

(g) Z7 = (I - j)1/2

*1.17 Complex numbers ZI and Z2 are given by

7.1 = 3 - j2,

Z2 = -4 + j3.

1.19 If Z = -2 + j4, determine the following quantities in
polar form:

(a) 1/1.'
(b) z3

(e) 11.'12

(d) Jm{z}

(e) Jm{z*}

* 1.20 Find complex numbers t = ZI +Z2 and S = ZI - 1.'2, both
in polar form, for each of the following pairs:

(a) zi = 2 + j3 and Z2 = I - j2

(b) Zl = 3 and Z2 = - j3

(e) ZI = 3/30° and 1.'2 = 3/-300

"" (d) 7.1 = 3[IOC and 7.2 = 3/-150'

1.21 Complex numbers ZI and .7.'2 are given by

Z) = 51-60° •

Z2 = 4/45° .

(a) Determine the product z) 1.'2 in polar form.

(b) Determine the product zlzi in polar form.

'11' (e) Determine the ratio ZI /7.2 in polar form.

(d) Determine the ratio 7.t /1.'i in polar form.

(e) Determine..(il in polar form.

* 1.22 If Z = 3 - j5, find the value of In(z).
(a) Express Z) and 1.'2 in polar form.

(b) Find 11.') I by first applying Eq. (1.41) and then by applying
Eq. (1.43). ~ 1.24

(e) Determine the product ZI 1.'2 in polar form.

(d) Determine the ratio 1.'1 /7.2 in polar form.

(e) Determine zi in polar form.

1.18 Complex numbers z) and Z2 are given by

Z) = -3 + j2,

7.2 = I - j2.

Determine (a) ZIZ2. (b) zJ/zi, (c) zf, and (d) Z)zt. all in polar
form.

1.23 If 1.' = 3 - j4, find the value of e",

If 1.' = 3ej;r /6, find the value of e':

Section 1-6: Phasors

* 1.25 A I . bvo tage source given y

(V)

is connected to a series RC load as shown in Fig. 1-20. If
R = I MQ and C = 200 pF. obtain an expression for vc(t), the
voltage across the capacitor.
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1.26 Find the phasors of the following time functions:

(a) v(t) = 9cos(wt - rr/3) (V)

(h) v(t) = 12sin(wt + rr/4) (V)

(e) i(x, t) = 5e-3x sinew! + x /6) (A)

.""(d) i(t) = -2cosCwt + 3rr/4) (A)

(e) i(t)=4sin(wt+rr/3)+3cos(wt-rr/6) (A)

* 1.27 Find the instantaneous time sinusoidal
corresponding to the following phasors:
(a) V = -5ej7r/3 (V)

(h) V = )6e-jrr/4 (V)

(e) I = (6 + )8) (A)
'" (d) j = -3 +)2 (A)

(e) I = j (A)

(f) i = 2ejrr/6 (A)

functions

1.28 A series RLC circuit is connected to a generator with a
voltage Vs (t) = Vocos(wt + it /3) (V).

(a) Write the voltage loop equation in terms of the current i(t),
R, L, C, and vs(t).

(h) Obtain the corresponding phasor-domain equation.

(e) Solve th~ equation to obtain an expression for the phasor
current I.

~ 1.29 The voltage source of the circuit shown in Fig. PI .29 is
given by

Obtain an expression for idt), the current flowing through the
inductor.

i-- A

L

R1 = 20 Q, R2 = 30 Q, L = 0.4 mH

Figure P1.29: Circuit for Problem 1.29.



c H A p T E R

2
Transmission Lines

Chapter Contents

2·1
2·2
2·3
2·4
2·5
2·6
2·7
2·8
2·9
2·10
2·11
2·12

General Considerations, 62
Lumped-Element Model, 65
Transmission-Line Equations, 69
Wave Propagation on a Transmission Line, 70
The Microstrip Line, 75
The Lossless Transmission Line, 79
Wave Impedance of the Lossless Line. 89
Special Cases of the Lossless Line. 94
Power Flow on a Lossless Transmission Line, 99
The Smith Chart. 101
Impedance Matching. 114
Transients on Transmission Lines. 124
Chapter 2 Relationships, 133
Chapter Highlights, 134
Glossary of Important Terms, 135
Problems, 135

Objectives

Upon learning the material presented in this chapter. you should
be able to:

l. Calculate the line parameters, characteristic impedance,
and propagation constant of coaxial, two- wire. paraJlel-
plate, and microstrip transmission lines.

2. Determine the reflection coefficient at the load-end of
the transmission line, the standing wave pattern, and the
locations of voltage and current maxima and minima.

3. Calculate the amount of power transferred from the
generator to the load through the transmission line.

4. Use the Smith chart to perform transmission-line
calculations.

5. Analyze the response of a transmission line to a voltage
pulse.
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,----------1
1 Zg 1
1

Transmission line

B

1------1
1

A

Sending-end
port

1 1
I J

Generator circuit
A'

Receiving-end
port

B' 1
•. .J

Load circuit

Figure 2-1: A transmission line is a two-port network connecting a generator circuit at the sending end to a load at the receiving end.

2-1 General Considerations
In most electrical engineering curricula, the study of
e1ectromagnetics is preceded by one or more courses on
electrical circuits. In this book, we use this background to
build a bridge between circuit theory and electromagnetic
theory. The bridge is provided by transmission lines, the
topic of this chapter. By modeling transmission lines in the
form of equivalent circuits, we can use Kirchhoff's voltage and
current laws to develop wave equations whose solutions provide
an understanding of wave propagation, standing waves, and
power transfer. Familiarity with these concepts facilitates the
presentation of material in later chapters.

Although the notion oitransmission lines may encompass all
structures and media that serve to transfer energy or information
between two points, including nerve fibers in the human body
and fluids and solids that support the propagation of mechanical
pressure waves, this chapter focuses on transmission lines
that guide electromagnetic signals. Such transmission lines
include telephone wires, coaxial cables carrying audio and
video information to TV sets or digital data to computer
monitors, microstrips printed on microwave circuit boards, and
optical fibers carrying light waves for the transmission of data
at very high rates.

Fundamentally, a transmission line is a two-port network,
with each port consisting of two terminals, as illustrated in
Fig. 2-1. One of the ports, the line's sending end, is connected
to a source (also called the generator). The other port, the line's
receiving end, is connected to a load. The source connected
to the transmission line's sending end may be any circuit
generating an output voltage, such as a radar transmitter, an
amplifier, or a computer terminal operating in transmission
mode. From circuit theory, a dc source can be represented by a
Thevenin-equivalentgeneratfJrcircuit consisting of a generator

voltage Vg in series with a generator resistance Rg. In the
case of alternating-current (ae) signals, the generator circuit is
represented by a voltage phasor Vg and an impedance Zg, as
shown in Fig. 2-1.

The load circuit, or simply the load, may be an antenna in
the case of radar, a computer terminal operating in the receiving
mode, the input terminals of an amplifier, or any output circuit
whose input terminals can be represented by an equivalent load
impedance ZL.

2-1.1 The Role of Wavelength

In low-frequency circuits, circuit elements usually are
interconnected using simple wires. In the circuit shown in
Fig. 2-2, for example, the generator is connected to a simple
RC load via a pair of wires. In view of our definition in the
preceding paragraphs of what constitutes a transmission line,
we pose the following question: Is the pair of wires between

A B

+

t
V,4A'

l

+
t

VBB'

l
Transmission line

A' B'

Figure 2-2: Generator connected to an RC circuit through a
transmission line of length I.
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terminals AA' and terminals B B' a transmission line? If so,
under what set of circumstances should we explicitly treat the
pair of wires as a transmission line? After all, we usually solve
for the current in the circuit and the voltage across its elements
without regard for the wires connecting them. The answer to
the first question is yes; indeed the pair of wires constitutes a
transmission line. The answer to the second question depends
on the length of the line I and the frequency f of the signal
provided by the generator. [As we will see later. the determining
factor is the ratio of the length I to the wavelength A of the
wave propagating on the transmission line between the source
and load terminals A A' and B B', respectively.] If the generator
voltage is cosinusoidal in time, then the voltage across the input
terminals AA' is

V,"A' = Vg(t) = Vo cos tot (V). (2.1 )

where w = Znf is the angular frequency, and if we assume that
the current flowing through the wires travels at the speed oflight,
c = 3 x 10K m/s, then the voltage across the output terminals
B B' will have to be delayed in time relative to that across AA'
by the travel delay-time lie. Thus, assuming no ohmic losses
in the transmission line and ignoring other transmission line
effects discussed later in this chapter,

VBWU) = VAA'(t -lie)

= Vo cos Iw(t - I Ie) I
= Vo cos(wt - ifJo). (2.2)

with

wi1>0=-
c

(rad). (2.3)

Thus. the time delay associated with the length of the
line I manifests itself as a constant phase shift ifJo in
the argument of the cosine. Let us compare VB B' to
VAt\' at t = 0 for an ultralow-frequency electronic circuit
operating at a frequency f = I kHz. For a typical wire
length I = 5 ern, Eqs. (2.1) and (2.2) give VAA' = Vo and
VBB' = Vo cos(2lCIllc) = 0.999999999998 Vo. Hence, for all
practical purposes, the presence of the transmission line may
be ignored and terminal AA' may be treated as identical with
BB' so far as its voltage is concerned. On the other hand,
had the line been a 20-km long telephone cable carrying a
I-kHz voice signal, then the same calculation would have led to
VBW = 0.91 Yo, a deviation of 9%. The determining factor is
the magnitude of ifJo = wi [c. From Eq. (1.27), the velocity of

propagation up of a traveling wave is related to the oscillation
frequency f and the wavelength A by

lip = fA (m/s).

In the present case. lip = c. Hence, the phase delay

ifJo = wi = 2lCII = 2lC~ radians. (2.4)
c (' A

When 1/ A is very small. transmission-line effects may be
ignored. but when I IA 2: 0.0 I. it may be necessary to
account not only for the phase shift due to the time delay,
but also for the presence o] reflected signals that may have
been bounced back by the load toward the generator.

Power loss on the line and dispersive effects may need to
be considered as well. A dispersive transmission line is one
on which the wave velocity is not constant as a function of
the frequency f. This means that the shape of a rectangular
pulse. which through Fourier analysis can be decomposed
into many sinusoidal waves of different frequencies. will be
distorted as it travels down the line because its different
frequency components will not propagate at the same velocity
(Fig. 2-3). Preservation of pulse shape is very important in high-
speed data transmission. not only between terminals, but also

JUUl- - JUUl
Dispersionless line

JUUl- - JVlJ'L
Short dispersive line

JUUl-
Long dispersive line

Figure 2-3: A dispersionless line does not distort signals
passing through it regardless of its length. whereas a dispersive
line distorts the shape of the input pulses because the different
frequency components propagate at different velocities. The
degree of distortion is proportional to the length of the dispersive
line.
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M

(a) Coaxial line

Dielectric spacing

(b) Two-wire line (c) Parallel-plate line

Metal strip conductor

(d) Strip line

Dielectric spacing

(e) Microstrip line

TEM Transmission Lines

(1) Coplanar waveguide

M

(g) Rectangular waveguide

~oncentric
dielectric
layers

Higher-Order Transmission Lines

(h) Optical fiber

Figure 2-4: A few examples of transverse electromagnetic (TEM) and higher-order transmission lines.

across transmission line segments fabricated within high-speed
integrated circuits. At 10 GHz, for example. the wavelength is
A = 3 cm in air but only on the order of I ern in a semiconductor
material. Hence, even lengths between devices on the order of
millimeters become significant, and their presence has to be
accounted for in the design of the circuit.

2-1.2 Propagation Modes

A few examples of common types of transmission lines are
shown in Fig. 2-4. Transmission lines may be classified into
two basic types:

• Transverse electromagnetic (TEM) transmission lines:
Waves propagating along these lines are characterized by
electric and magnetic fields that are entirely transverse
to the direction of propagation. Such an orthogonal
configuration is called a TEM mode. A good example is
the coaxial line shown in Fig. 2-5: the electric field is in the
radial direction between the inner and outer conductors.
while the magnetic field circles the inner conductor, and
neither has a component along the line axis (the direction of
wave propagation). Other TEM transmission lines include
the two-wire line and the parallel-plate line, both shown in
Fig. 2-4. Although the fields present on a microstrip line
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- - - Magnetic field lines

-- Electrie field lines

Load

Coaxial line

Generator
Cross section

Figure 2-5: In a coaxial line. the electric field is in the radial direction between the inner and outer conductors. and the magnetic field forms
circles around the inner conductor.

do not adhere to the exact definition of a TEM mode. the
nontransverse field components are sufficiently small (in
comparison to the transverse components) to be ignored.
thereby allowing the inclusion of microstrip lines in the
TEM class. A common feature among TEM lines is that
they consist of two parallel conducting surfaces.

• Higher-order transmission lines: Waves propagating
along these lines have at least one significant field
component in the direction of propagation. Hollow
conducting waveguides. dielectric rods. and optical fibers
belong to this class of lines (Chapter 8).

Only TEM-mode transmission lines will be treated in this
chapter. This is because they are more commonly used in
practice and, fortunately, less mathematical rigor is required for
treating them than is required for lines that support higher-order
modes. We start our treatment by representing the transmission
line in terms of a lumped-element circuit model. and then we
apply Kirchhoff's voltage and current laws to derive a pair of
equations governing their behavior known as the telegrapher's
equations. By combining these equations, we obtain wave
equations for the voltage and current at any point on the line.
Solution of the wave equations for the sinusoidal steady-state
case leads to a set offormulas that can be used for solving a wide
range of practical problems. In the latter part of this chapter
we introduce a graphical tool known as the Smith chart, which
facilitates the solution of transmission-line problems without
having to perform laborious calculations involving complex
numbers.

2-2 Lumped-Element Model

When we draw a schematic of an electronic circuit, we use
specific symbols to represent resistors, capacitors. inductors.
diodes, and the like. In each case, the symbol represents the
functionality of the device. rather than its shape. size or other
attributes. We shall do the same for transmission lines .

A transmission line will be represented by a parallel-wire
configuration IFig. 2-6(at], regardless of its specific shape
or constitutive parameters.

Thus. Fig. 2-6(a) may represent a coaxial line. a two-wire line.
or any other TEM line.

Drawing again on our familiarity with electronic circuits.
when we analyze a circuit containing a transistor. we mimic the
functionality of the transistor by an equivalent circuit composed
of sources. resistors, and capacitors. We will apply the same
approach to the transmission line by orienting the line along
the z-direction, subdividing it into differential sections each
of length f).z IFig. 2-6(b)] and then representing each section
by an equivalent circuit. as illustrated in Fig. 2-6(c). This
representation. often called the lumped-element circuit model.
consists of four basic elements. with values that henceforth will
be called the transmission line parameters. These are:

• R': The combined resistance of both conductors per unit
length. in Q/m.

• L': The combined inductance of both conductors per unit
length, in Him.
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(a) Parallel-wire representation

R' /),z L' /),z R' /),z L' Ilz

(b) Differential sections each /),z long

R'Ilz L'/),zR'/),z L'/),z

--------/),z-------- --------/),z--------

(c) Each section is represented by an equivalent circuit

C'/),z

--------/),z-------- --------/),z--------

Figure 2·6: Regardlessof its cross-sectional shape, a TEM transmission line is represented by the parallel-wire configuration shown in (a).
To obtain equations relating voltages and currents, the line is subdivided into small differential sections (b), each of which is then represented
by an equivalent circuit (e) .

• G': The conductance of the insulation medium between the
two conductors per unit length, in Szrn, and

• C I: The capacitance of the two conductors per unit length, in
F/m.

Whereas the four line parameters are characterized by different
formulas for different types of transmission lines, the equivalent
model represented by Fig. 2-6(c) is equally applicable to all
TEM transmission lines. The prime superscript is used as a
reminder that the line parameters are differential quantities
whose units are per unit length.

Expressions for the line parameters R', L', G1, and C I are
given in Table 2-\ for the three types of TEM transmission
lines diagrammed in parts (a) through (c) of Fig. 2-4. For
each of these lines, the expressions are functions of two
sets of parameters: (I) geometric parameters defining the

cross-sectional dimensions of the given line and (2) the
electromagnetic constitutive parameters of the conducting and
insulating materials. The pertinent geometric parameters are:

• Coaxial line f Fig. 2-4(a)/:

a = outer radius of inner conductor, m
b = inner radius of outer conductor, m

• Two-wire line [Fig. 2-4(17)1:

d = diameter of each wire. m
D = spacing between wires' centers, m

• Parallel-plate line [Fig. 2-4(c)J:

w = width of each plate, m
h = thickness of insulation between plates. m
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Table 2-1: Transmission-line parameters R', L', G', and C' for three types of lines.

Parameter Coaxial Two-Wire Parallel- Plate Unit

R' Rs (~+ ~) 2Rs 2R,
Q/m

2n a b nd w

L'
iJ.

;. In [(D/d) + J(D/tI)2 - I]
iJ.II

Him-In(b/a)
2n w

G' 2na na aw
Slm

In(h/a) In [(D/d) + JW/d)2 - 1] II

C'
2nE nE EW

Flm
In(h/a) In [(D/d) + J(D/d)2 - I] II

Notes: (I) Refer to Fig. 2-4 for definitions of dimensions. (2) u, E, and a pertain to the insulating
material between the conductors. (3) Rs = In!iJ.c!ae. (4) iJ.e and ae pertain to the conductors.
(5) If (D /d)2 » I, then In [(D/d) + J(D/d)2 - I] :::::In(2D /d).

surface of the outer conductor. The line resistance R' accounts
for the combined resistance per unit length of the inner and
outer conductors. The expression for R' is derived in Chapter 7
and is given by Eq. (7.96) as

Thepertinent constitutive parameters apply to all three lines
and consist of two groups: (J) P.e and (1c are the magnetic
permeability and electrical conductivity of the conductors.
and (2) e. u, and (1 are the electrical permittivity. magnetic
permeability. and electrical conductivity of the insulation
material separating them.

Appendix B contains tabulated values for these constitutive
parameters for various materials. For the purposes of the
present chapter, we need not concern ourselves with the
derivations leading to the expressions in Table 2-1. The
techniques necessary for computing R', L', G', and C I for the
general case of an arbitrary two-conductor configuration will
be presented in later chapters.

The lumped-element model shown in Fig. 2-6(c) reflects the
physical phenomena associated with the currents and voltages
on any TEM transmission line. It consists of two in-series
elements, R' and L', and two shunt elements, G' and C '. To
explain the lumped-element model. consider a small section of a
coaxial line, as shown in Fig. 2-7. The line consists of inner and
outer conductors of radii a and b separated by a material with
permittivity e, permeability 11, and conductivity (1. The two
metal conductors are made of a material with conductivity (1e

and permeability Ile. When a voltage source is connected across
the terminals connected to the two conductors at the sending end
of the line, currents will flow through the conductors, primarily
along the outer surface of the inner conductor and the inner

, n, (I I)R =- -+-
2iT a b

(coax line) (Q/m) , (2.5)

Figure 2-7: Cross-section of a coaxial line with inner conductor
of radius a and outer conductor of radius h. The conductors
have magnetic permeability iJ.e, and conductivity ac, and the
spacing material between the conductors has permittivity E,

permeability u, and conductivity a.
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where R" which represents the surface resistance of the
conductors, is given by Eq. (7.92a)

_J¥fII
CR,- --
ac

(Q). (2.6)

The surface resistance depends not only on the material
properties of the conductors (ae and /1d, but on the frequency .f
of the wave traveling on the line as well.

For aperfect conductor with O'c= 00 ora high-conductivity
material such that (fILc/ac)« 1, R, approaches zero, and
so does R'.

Next, let us examine the line inductance L', which accounts
for the joint inductance of both conductors. Application of
Ampere's law in Chapter 5 to the definition of inductance leads
to the following expression [Eq, (5.99)] for the inductance per
unit length of a coaxial line:

I /1 (b)L = -In -
2JT a

(coax line) (Him). (2.7)

The line conductance G' accounts for current flow between
the outer and inner conductors, made possible by the
conductivity a of the insulator. It is precisely because the
current flow is from one conductor to the other that G' appears as
a shunt element in the lumped-element model. For the coaxial
line, the conductance per unit length is given by Eq. (4.76) as

I 2JTa
G=-.-

In(b/a)
(coax line) (S/m). (2.8)

If the material separating the inner and outer conductors is
a perfect dielectric with a = 0, then G' = O.

The last line parameter on our list is the line capacitance C ',
When equal and opposite charges are placed on any two
noncontacting conductors, a voltage difference will develop
between them. Capacitance is defined as the ratio of the charge
to the voltage difference. For the coaxial line, the capacitance
per unit length is given by Eq. (4.117) as

, 2JTE
C =--

In(b/a)
(coax line) (F/m). (2.9)

All TEM transmission lines share the following useful
relations:

I L'C' = f.£€ .

and

If the insulating medium between the conductors is air, the
transmission line is called an air line (e.g., coaxial air line or
two-wire air line). For an air line, E = EO = 8.854 X 10-12

Flm, /1 = 110 = 4n x 10-7 Him, 0' = 0, and G' = O.

Review Question 2-1: What is a transmission line? When
should transmission-line effects be considered, and when
may they be ignored?

Review Question 2-2: What is the difference between
dispersive and nondispersive transmission lines? What is
the practical significance of dispersion?

Review Question 2-3: What constitutes a TEM
transmission line?

Review Question 2-4: What purpose does the lumped-
element circuit model serve'! How are the line
parameters R', L', G', and C I related to the physical
and electromagnetic constitutive properties of the
transmission line?

Exercise 2-1: Use Table 2-1 to evaluate the line
parameters of a two-wire air line with wires of radius
1 mrn, separated by a distance of 2 cm. The wires may be
treated as perfect conductors with ae = 00.

Answer: R' = 0, L' = 1.20 (pJ-IIm),
C' = 9.29 (pF/m). (See ~)

G'=O,

Exercise 2-2: Calculate the transmission line parameters
at 1 MHz for a coaxial air line with inner and outer
conductor diameters of 0.6 em and 1.2 em, respectively.
The conductors are made of copper (see Appendix B for
/1e and ac of copper).

Answer: R' = 2.07 X 10-2 (Wm), L' = 0.14 (/1H1m),
G' = 0, C' = 80.3 (pF/m). (See '5')
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2-3 Transmission-Line Equations

A transmission line usually connects a source on one end to
a load on the other. Before considering the complete circuit,
however, we will develop general equations that describe the
voltage across and current carried by the transmission line
as a function of time t and spatial position z, Using the
lumped-element model of Fig. 2-6(c), we begin by considering
a differential length I1z as shown in Fig. 2-8. The quantities
v(z. t) and; V. t) denote the instantaneous voltage and current
at the left end of the differential section (node N), and similarly
v(z+ I1z. t) and; (z+ I1z, t) denote the same quantities at node
(N + I), located at the right end of the section. Application of
Kirchhoff's voltage law accounts for the voltage drop across
the series resistance R'l1z and inductance L'l1z:

v(z. t) - R'l1z ;(z. t)

, ili(7.t)
- L 117 - v(z + I1z. t) = O.

ilt
(2.12)

Upon dividing all terms by I1z and rearranging them, we obtain

[
V(z+I1Z.t)-V(z.t)] t , ,iJ;(z.t)

- = R t{z. t) + L --- .
I1z at

(2.13)
In the limit as 117 -+ 0, Eq. (2.13) becomes a differential
equation:

(2.14)aU(z,t) R"( ) L,ai(z,t)- = 'zt+ ---az . , at'

Node
N ;(z, t)

+ -
;(z + Ac,t)~-.~--------~--~+

1
0<[' t)

---------Ac-------.
Figure 2·8: Equivalentcircuit of a two-conductor transmission
lineof differential length t::.z.

Similarly, Kirchhoff's current law accounts for current drawn
from the upper line at node (N + I) by the parallel conductance
G' 117 and capacitance C' I1z:

iV. t) - c' s» u(z + I1z. t)

, iiv(z + I1z, I)
-C I1z -;(Z+117.t)=O.

iit
(2.15)

Upon dividing all terms by I1z and taking the limit I1z -+ O.
Eq. (2.15) becomes a second-order differential equation:

(2.16)ai(z, t) G' ( ) C ,au(z, t)----az- = U z,t + at'

The first-order differential equations (2.14) and (2.16) are the
time-domain forms of the transmission line equations, also
known as the telegrapher's equations.

Except for the last section of this chapter, our primary interest
will be in sinusoidal steady-state conditions. To that end. we
shall make use of phasors with a cosine reference. as outlined
in Section 1-7. Thus. we define

utz , t) = 91c[ V(Z) ejw'l.

iV, t) = 91e[i(z) ejw,].

(2.17a)

(2.17b)

- -where V (7) and I (z) are the phasor counterparts of vIz. 1) and
i(z. I), respectively, each of which may be real or complex.
Upon substituting Eqs. (2.17a) and (2.17b) into Eqs. (2.14) and
(2.16), and utilizing the property given by Eq. (1.62) that il/ at
in the time domain is equivalent to multiplication by jto in the
phasor domain, we obtain the following pair of equations:

dV(z) , , ---- = (R + jwL) I(z),
dz

(2.18a)

di(z) , , ---;;;- = (G + jWC ) V(z). (2. I8b)

These are the telegrapher's equations ill phasor form.
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2-4 Wave Propagation on a Transmission
Line

The two first-order coupled equations (2. 1Sa) and (2.1Sb) can be
combined to give two second-order uncoupled wave equations,
one for V(z) and anotherfor i(z). The wave equation for V(z)
is derived by first differentiating both sides ofEq. (2.1 Sa) with
respect to z, resulting in

d2V(z) ,., di(z)
--- = (R + JwL )-- .

dz2 dz
(2.19)

Then, upon substituting Eq. (2.ISb) for di(z)/dz, Eq. (2.19)
becomes

~V(z) -
--2- - (R' + jwL')(G' + jwC') V(z) = 0, (2.20)

dz

or

where

Application of the same steps to Eqs. (2.lSa) and (2.1Sb) in
reverse order leads to

The second-order differential equations (2.21) and (2.23) are
called wave equations for V(z) and i(z), respectively, and y
is called the complex propagation constant of the transmission
line. As such, y consists of a real part CL, called the attenuation
constant of the line with units of Np/m, and an imaginary part
{J, called the phase constant of the line with units of rad/m.

I--z

Figure 2-9: In general, a transmission line can support two
traveling waves, an incident wave [with voltage and current
amplitudes (Vo+'lit») traveling along the +z-direction (towards
the load) and a reflected wave [with (VO' 10)]traveling along
the =z-direction (towards the source).

Thus,
y = CL + j{J (2.24)

with

In Eqs. (2.25a) and (2.25b), we choose the square-root solutions
that give positive values for CL and {J. For passive transmission
lines, CL is either zero or positive. Most transmission lines, and
all those considered in this chapter, are of the passive type. The
gain region of a laser is an example of an active transmission
line with a negative CL.

The wave equations (2.21) and (2.23) have traveling wave
solutions of the following form:

V(z) = Vo+e-Yz + Vo-eYz

i(z) = lite-YZ + 10eYz

(V),

(A).

(2.26a)

(2.26b)

As will be shown later, the e-Yz term represents a wave
propagating in the +z-direction while the eYz term represents
a wave propagating in the -z-direction (Fig. 2-9). Verification
that these are indeed valid solutions is easily accomplished
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by substituting the expressions given by Eqs. (2.26a) and
(2.26b). as well as their second derivatives, into Eqs. (2.21)
and (2.23). In their present form. the solutions given by
Eqs. (2.26a) and (2.26b) contain four unknowns, the wave
amplitudes (Vo+' I;) of the +z propagating wave and (Vo-' Ie)~
of the -z propagating wave. We can easily relate the current
wave amplitudes. 10+ and 10-, to the voltage wave amplitudes,
Vo+and Vo- by using Eq. (2.26a) in Eq. (2.18a) and then solving
for the current fez) to get the result

fez) = Y [y+ e-YZ - Y- eYZ].
R' + jwL' 0 0

(2.27)

Comparison of each term with the corresponding term in
Eq. (2.26b) leads us to conclude that

y+ -v;
~ = Zo = __0_.
1+ t:o 0

(2.28)

where

is called the characteristic impedance of the line.

It should be noted that 20 is equal to the ratio of the voltage
amplitude to the current amplitude for each of the traveling
waves individually (with an additional minus sign in the
case of the -z propagating wave), but it is not equal to
the ratio of the total voltage if (z) to the total current i(z),
unless one of the two waves is absent.

It seems reasonable that the voltage-to-current ratios of the
two waves Vo+/ I; and Vo- /10-, are both related to the same
quantity. namely Zoo but it is not immediately obvious as to why
one of the ratios is the negative of the other. The explanation,
which is available in more detail in Chapter 7, is based on
a directional rule that specifies the relationships between the
directions of the electric and magnetic fields of a TEM wave and
its direction of propagation. On a transmission line, the voltage

is related to the electric field E and the current is related to the
magnetic field H. To satisfy the directional rule, reversing the
direction of propagation requires reversal of the direction (or
polarity) of 1 relative to V. Hence, Vo- / 10 = - Vo+/ I(i .

In terms of Zoo Eq. (2.27) can be cast in the form

(2.30)

According to Eq. (2.29). the characteristic impedance Zo is
determined by the angular frequency w of the wave traveling
along the line and the four line parameters (R', L', G', and C '),
These. in turn. are determined by the line geometry and its
constitutive parameters. Consequently, the combination of
Eqs. (2.26a) and (2.30) now contains only two unknowns,
namely l'<t and Vo-' as opposed to four.

In later sections. we will apply boundary conditions at
the source and load ends of the transmission line to obtain
expressions for the remaining wave amplitudes Vo+ and Vo-'
In general, each will be a complex quantity characterized by a
magnitude and a phase angle:

v.+ Iv.+ I j¢+o = 0 e ,

11- IV.-I N-Yo = 0 e .

(2.31 a)

(2.3Ib)

After substituting these definitions in Eq. (2.26a) and using
Eq. (2.24) to decompose y into its real and imaginary parts.
we can convert back to the time domain to obtain an expression
for u(z. 1), the instantaneous voltage on the line:

u(z. t) = ry:te(V(z)ejwt)

= ry:te [(Vo+ e-Yz + Vo- eYZ) ejw/]

= ry:tc[lVo+lej¢+ ejw/e-(a+jf1Jz

+ lVo-lejr ejw/ e(a+ jfj)Z]

= I Vo+le-az cos(wt - (3z + cp+)

+ 1V()le"z cos(wt + {3z + cp-). (2.32)
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From our review of waves in Section 1-4, we recognize the
first term in Eq. (2.32) as a wave traveling in the -l-z-direction
(the coefficients of t and z have opposite signs) and the second
term as a wave traveling in the -z-direction (the coefficients of
t and z are both positive). Both waves propagate with a phase
velocity up given by Eq. (1.30):

w
up = fA = ~ . (2.33)

Because the wave is guided by the transmission line, A often
is called the guide wavelength. The factor e-017

: accounts for
the attenuation of the +7. propagating wave, and the factor eaz

accounts for the attenuation of the -7. propagating wave.

The presence o] two waves on the line propagating in
opposite directions produces a standing wave.

To gain a physical understanding of what that means, we
shall first examine the relatively simple but important case
of a loss less line (a = 0) and then extend the results to the
more general case of a lossy transmission line (a "=F 0). In
fact, we shall devote the next several sections to the study of
lossless transmission lines because in practice many lines can
be designed to exhibit very low-loss characteristics.

Example 2-1: Air Line

An air line is a transmission line in which air separates the
two conductors, which renders G' = 0 because a = O. In
addition, assume that the conductors are made of a material
with high conductivity so that R' ~ O. For an air line with
a characteristic impedance of 50 n and a phase constant of
20 rad/m at 700 MHz, find the line inductance L' and the line
capacitance C '.

Solution: The following quantities are given:

Zo = 50 n, f3 = 20 rad/m,

f = 700 MHz = 7 x 108 Hz.

With R' = G' = 0, Eqs. (2.25b) and (2.29) reduce to

f3 =Jm [J(jwL')(jWC I)]
= Jm (jwJL1C') = wJuc',

_ r;;;;u _ fL'
Zo - y --;;;;c' - Y C' .

The ratio of f3 to Zo is

.L = wC'
Zo '

or

c,=L
wZo

20
2n x 7 x 108 x 50

= 9.09 X 10-11 (F/m) = 90.9 (pF/m).

From Zo = Ju/C " it follows that

L' = Z5C'
= (50)2 x 90.9 X 10-12

= 2.27 X 10-7 (HIm) = 227 (nH/m).

Exercise 2-3: Verify that Eq. (2.26a) indeed provides a
solution to the wave equation (2.21). (Seee )

Exercise 2·4: A two-wire air line has the following
line parameters: R' = 0.404 (mn/m), L' = 2.0 (flHlm),
G' = 0, and C' = 5.56 (pF/m). For operation at 5 kHz,
determine (a) the attenuation constant a, (b) the phase
constant f3, (c) the phase velocity up, and (d) the
characteristic impedance Zoo (See "8»

Answer: (a) a = 3.37 x 10-7 (Np/m), (b) f3 = 1.05 x
10-4 (rad/m), (c) up = 3.0 x 108 (rn/s), (d)
Zo = (600 - j1.9) Q = 600/-0.18° Q.
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~ CD Module 2.1 Two-Wire Line The input data specifies
the geometric and electrical parameters of a two-
wire transmission line. The output includes the
calculated values for the line parameters, characteristic
impedance Zo, and attenuation and phase constants, as
well as plots of Zo as a function of d and D.

Module 2.1 Two-Wire Line

Substrate
Er = 2.3
cr= 0.0

Wires
CTe = 5.797E7 [Slm]

Input

Wire Diameter d = 1.7794 [mm]

Rangel L.:I ~~~~~~~~~i...:...J~ I
Centers distance D = 8.793 [mm)

Rangel 1••..~--"- ••...•.•••••..••••••-""' ••.•...•~~~ .......•.......•~ 1
[ Hz}Frequency f = 1.0E9

Rangel •••.1 ~_~= ~ ~1
Er o (Slm] ac [Slm]

2.3 0.0 5.797E7

Update I

Setect: Impedance IJS. Distance D LiJ

output
Structure Data
d = 1.7794
D = 8.793

[mm)
Imm)

f = 1.0 10Hz)

DId = 4.94155

Zo = 180.440373 - j 0.046476

C' = 28.016183
L" = 912,171211
R < = 2.952465
G" = 0.0

[Q]

[pF/m]
[ nH/m]
[Q/m]
[S/m]

~o = 0.3 [m)
A=0.1978 [m]

in vacuum
in guide

a = 0.008181
~ = 31.763075

[Np/m]
[radJm 1
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"" CD Module 2.2 Coaxial Cable Except for changing the
geometric parameters to those of a coaxial transmission
line, this module offers the same output information as
Module 2.1.

Module 2.2 Coaxial Cable

(J = 0.0 81m
[I = 2.3

2b

f = 5.38 [GHz)

Input

Inner radius a =
...

[mm)3.034

Rangel 14 • 1

Shield radius b = 14.7579 [mm)

Rangel I· ~ 1

Rangel

E r
2.3

Frequency f = 5.38E9 IHz]

I· ~1
G {S/m] crc [Slm]

5.797E70.0

Update I

Select Impedance VS. Radius b .•.

Output

Structure Data
a = 3.034 [mm)
b = 14.7579 [mm)

bla = 4.86417

Zo = 62.584306 - j 0.0035419
C' = 80.775048

[Q)

[pF/m I
[nH/m)
[Q/m)
[Slm)

L' = 316.37933
R' = 1.210519
G' = 0.0

A.o = 5.5762 [ em )
A = 3.6768 [em)

in vacuum
in guide

a = 0.009671
~ = 170.88534

[Np/m)
[rad/m)
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2-5 The Lossless Microstrip Line
Because its geometry is well suited for fabrication on printed
circuit boards. the microstrip line is the most common
interconnect configuration used in RF and microwave circuits.
It consists of a narrow, very thin strip of copper (or other good
conductor) printed on a dielectric substrate overlaying a ground
plane [Fig. 2-1O(a)]. The presence of charges of opposite
polarity on its two conducting surfaces gives rise to electric
field lines between them [Fig. 2-1Otb) I. Also, the flow of current
through the conductors (when part of a closed circuit) generates
magnetic field loops around them, as illustrated in Fig. 2-1O(b)
for the narrow strip. Even though the patterns of E and Bare
not everywhere perfectly orthogonal, they are approximately
so in the region between the conductors, which is where the
E and B fields are concentrated the most. Accordingly, the
microstrip line is considered a quasi-TEM transmission line,
which allows us to describe its voltages and currents in terms
of the one-dimensional TEM model of Section 2-4, namely
Eqs. (2.26) through (2.33).

The microstrip line has two geometric parameters, the width
of the elevated strip, w, and the thickness (height) of the
dielectric layer, h. We will ignore the thickness of the
conducting strip because it has a negligible influence on the
propagation properties of the microstrip line, so long as the
strip thickness is much smaller than the width w. which is
almost always the case in practice. Also, we will assume
that the substrate material is a perfect dielectric with a = 0
and the metal strip and ground plane are perfect conductors
with ac :::::00. These two assumptions simplify the analysis
considerably without incurring significant error. Finally, we set
JL = flo, which is always true for the dielectric material used
in the fabrication of microstrip lines. These assumptions and
simplifications reduce the number of geometric and material
parameters to three, namely 111, h, and s.

Electric field lines always start on the conductor carrying
positive charges and end on the conductor carrying negative
charges. For the coaxial, two-wire, and parallel-plate lines
shown in the upper part of Fig. 2-4, the field lines are confined
to the region between the conductors. A characteristic attribute
of such transmission lines is that the phase velocity of a wave
traveling along anyone of them is given by

('

up = --.Fr (2.34)

wherec is the velocity of light in free space and Ef is the relative
permittivity of the dielectric medium between the conductors.

Conducting ground plane (Pc, O"c) )

(a) Longitudinal view

(b) Cross-sectional view with E and B field lines

(c) Microwave circuit

Figure 2-10: Microstrip line: (a) longitudinal view, (b)
cross-sectional view. and (c) circuit example. (Courtesy of
Prof. Gabriel Rebeiz, U. California at San Diego.)

Tnthe microstrip line, even though most of the electric field
lines connecting the strip to the ground plane do pass directly
through the dielectric substrate, a few go through both the air
region above the strip and the dielectric layer [Fig. 2-1O(b)].
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This nonuniform mixture can be accounted for by defining an
effective relative permittivity Seff such that the phase velocity
is given by an expression that resembles Eq. (2.34), namely

C
lip = --.

~
(2.35)

Methods for calculating the propagation properties of the
microstrip line are quite complicated and beyond the scope
of this text. However, it is possible to use curve-fit
approximations to rigorous solutions to arrive at the following
set of expressions:"

er +l (sr-I)( IO)-Xr
Scff = -- + -- I+ -

2 2 s
(2.36)

where s is the width-to-thickness ratio,

w
s =-h . (2.37)

and x and yare intermediate variables given by

[
cr - 0.9 ]0.05

x = 0.56
e, + 3

(
S4 + 3.7 x 10-4,\.2)

v = I + 0.02 In --4:-----
• S + 0.43

+ 0.05In(l + 1.7 x 1O-4s3).

(2.38a)

(2.38b)

The characteristic impedance of the microstrip line is given by

60 I [6 + (2rr - 6)e-
1 RIZO = -- n + 1 + - .J€ctI S .1'2

(2.39)

'd. H. Schrader. Microstrip Circuit Analysis, Prentice Hall. 1995. pp. 31-
32.

z, (n)

150
Microstrip

s = wlh
w = strip width

100 h = substrate thickness

50 cr'" 2.5

0
2 4 6 8 10

s

Figure 2-11: Plots of Zo as a function of s for various types of
dielectric materials.

with

t = CO.~,67r·75
Figure 2-1 I displays plots of Zo as a function of s for various
types of dielectric materials.

The corresponding line and propagation parameters are given
by

(2.40)

R' =0 (because ac = 00), (2.4la)

G'=O (because a = 0), (2.41 b)

C' = J€ctI
Zoe'

(2.41c)

L' = Z5C'. (2.4ld)

(because R' = G' = 0). (2.41 e)

w
f3 = -ftclr .

c
(2.4 If)

The preceding expressions allow us to compute the values
of Zo and the other propagation parameters when given values
for Cr, h, and w. This is exactly what is needed in order to
analyze a circuit containing a microstrip transmission line. To
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perform the reverse process, namely to design a microstrip line
by selecting values for its wand h such that their ratio yields
the required value of Zo (to satisfy design specifications), we
need to express s in terms of Zoo The expression for Zo
given by Eq. (2.39) is rather complicated. so inverting it to
obtain an expression for s in terms of Zo is rather difficult. An
alternative option is to generate a family of curves similar to
those displayed in Fig. 2-11 and to use them to estimate s for
a specified value of Zoo A logical extension of the graphical
approach is to generate curve-fit expressions that provide high-
accuracy estimates of s. The error associated with the following
formulas is less than 2%:

(a) For Zo :s (44 - 2fT) Q,

W 2 {s = - = - (q - I) - In(2q - 1)
h 7f

fr - 1[ 0.52] }+ -- In(q - I) + 0.29- -
2sr Sr

(2.42a)

with

60n2
q=--

ZoFr '
(2.42b)

and

(b) for Zo ~ (44 - 2sr) n,

w 8eP
s = - = --:::---

h e2p -2 ' (2.43a)

with

(2.43b)

The above expressions presume that Sr, the relative
permittivity of the dielectric substrate. has already been
specified. For typical substrate materials including Duroid,
Teflon, silicon. and sapphire, Sr ranges between 2 and IS.

Example 2-2: Microstrip Line

A 50-Q microstrip line uses a 0.5-mm-thick sapphire substrate
with Er = 9. What is the width of its copper strip?

Solution: Since Zo = 50 > 44 - 18 = 32, we should use
Eq. (2.43):

z, (fr-I)( 0.12)p = x - + -- 0.23 + -
60 Er + 1 Er

= /9 + 1 x 50 + (9 - I) (0.23 + 0.12)
2 ~ 9+1 9

= 2.06,
1lJ

S =-
h
8eP

ell' -2
8e2.06

e4.12 - 2
= 1.056.

Hence,

w =sh

= 1.056 x 0.5 mm

= 0.53 mm.

To check our calculations, we will use s = 1.056 to calculate
Zo to verify that the value we obtained is indeed equal or close
to 50 Q. With B, = 9, Eqs. (2.36) to (2.40) yield

x = 0.55.

Y = 0.99,
t = 12.51,

feff = 6.11,

Zo = 49.93 Q.

The calculated value of Zo is, for all practical purposes, equal
to the value specified in the problem statement.
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<¢' CD Module 2.3 Lossless Microstrip Line The output pa-
nel lists the values of the transmission line parameters and
displays the variation of Zo and ceff with hand w.

Module 2.3 Lossiess Microstrip line Select Permittivity VS. Strip Width .••

output

Structure Data
w = 1 .276 [mm]
h = 0.635 [mm] wI'! = 2.009

~(' =9.8
0-=0

f = 1.794 [OHz]

Input

Strip width w = 1.276 Imm]

Rangel I. ) f.:.J ~ I
Substrate thickness h = 0.635 [mm]

Rangel ,L..--""' •..•••••...........:.~ ......•••........•••........•••.........••.•.......••.•~;",.,J,

Frequency f = 1.794E9 [Hz.]

Rangel •.••14--""'-= .••••.........•••••== ~ ~1
E r

9.B

Update

Zo = 33.324
(eff = 7.074

Up = 1.128
A = 0.063

[Q]

[108 m/s]
[m]

c·· = 266.037
L' = 295.433
R' == 0
0' == 0

[pF/m]
[nH/m]
[Q/m]
[S/m]

a == 0
p == 99.932

[Np/m]
[rad/m]
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2-6 The Lossless Transmission Line:
General Considerations

According to the preceding section, a transmission line is fully
characterized by two fundamental parameters, its propagation
constant y and characteristic impedance Zu, both of which are
specified by the angular frequency wand the line parameters
R', L', G', and C '. In many practical situations, the
transmission line can be designed to exhibit low ohmic losses
by selecting conductors with very high conductivities and
dielectric materials (separating the conductors) with negligible
conductivities. As a result, R' and G' assume very small values
such that R' «WL' and G' «wC I. These conditions allow
us to set R' = G' ~ 0 in Eq. (2.22), which yields

y = ex + jf3 = jwJ L'C I • (2.44)

which in turn implies that

(lossless line),

(lossless line). (2.45)
a=O
fJ = wJuc I

For the characteristic impedance, application of the lossless line
conditions to Eq. (2.29) leads to

(lossless line), (2.46)

which now is a real number. Using the lossless line expression
for f3 IEq. (2.45»). we obtain the following expressions for the
guide wavelength A and the phase velocity up:

A _ 2rr _ 2rr
- f3 - wJL'C' .

w I
lip = 73 = JL'C"

(2.47)

(2.48)

Upon using Eq. (2.10), Eqs. (2.45) and (2.48) may be rewritten
as

(2.49)

(2.50)

fJ = w.,fiii (radlm) ,

1
up = -- (m/s),

~

where It and E are, respectively, the magnetic permeability
and electrical permittivity of the insulating material separating
the conductors. Materials used for this purpose are usually
characterized by a permeability I-lu = 4rr x 10-7 Him (the
permeability offree space). The permittivity E is often specified
in terms of the relative permittivity Er defined as

(2.51 )

where p.o = 8.854 x 10-12 Flm ~ (l/36rr) x 10-9 Flm is the
permittivity offree space (vacuum). Hence, Eq. (2.50) becomes

I lIe
up= =---. -=-

JI-lOErEO ~ Fr Fr'
where c = II JI-lOEU = 3 x IOH rnIs is the velocity of light in
free space. If the insulating material between the conductors
is air, then e, = 1 and up = c. In view of Eq. (2.51) and
the relationship between A and lip given by Eq. (2.33), the
wavelength is given by

(2.52)

Up ciAo
A = - = - - = - , (2.53)f f.,fEr .,fEr

where AO = c] f is the wavelength in air corresponding to a
frequency f. Note that, because both up and A depend on p.r. the
choice of the type of insulating material used in a transmission
line is dictated not only by its mechanical properties, but by its
electrical properties as well.

According to Eq. (2.52), if s; of the insulating material is
independent of f (which usually is the case for commonly used
TEM lines), the same independence applies to lip.

If sinusoidal waves of different frequencies travel 011 a
transmission line with the same phase velocity. the line is
called nondispersive.

This is an important feature to consider when digital data are
transmitted in the form of pulses. A rectangular pulse or a
series of pulses is composed of many Fourier components with
different frequencies. If the phase velocity is the same for all
frequency components (or at least for the dominant ones), then
the pulse's shape does not change as it travels down the line.
In contrast, the shape of a pulse propagating in a dispersive
medium becomes progressively distorted, and the pulse length
increases (stretches out) as a function of the distance traveled
in the medium (Fig. 2-3), thereby imposing a limitation on
the maximum data rate (which is related to the length of the
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individual pulses and the spacing between adjacent pulses)
that can be transmitted through the medium without loss of
information.

Table 2-2 provides a list of the expressions for y, up, and
Zo [or the general case of a lossy line and for several types of
losslcss lines. The expressions for the lossless lines are based
on the equations for t:' and C' given in Table 2-1.

Exercise 2-5: For a lossless transrrussion line,
A = 20.7 cm at 1 GHz. Find cr of the insulating material.

Answer: Er = 2.1. (See 4)

Exercise 2-6: A lossless transmission line uses a dielectric
insulating material with Cr = 4. If its line capacitance is
C' = 10 (pF/m), find (a) the phase velocity up, (b) the line
inductance L', and (c) the characteristic impedance Zoo

Answer: (a) up = 1.5 x 108 (rn/s),
(b) L' = 4.45 (JlWm), (c) Zo = 667.1 n. (See ~)

2-6.1 Voltage Reflection Coefficient

With y = Jfl for the lossless line. Eqs. (2.26a) and (2.30) for
the total voltage and current become

(2.54a)

(2.54b)

These expressions contain two unknowns. Vo+ and Vo-'
According to Section 1-7.2, an exponential factor of the form
e" jfJL is associated with a wave traveling in the positive z-
direction, from the source (sending end) to the load (receiving
end). Accordingly, we will refer to it as the incident wave, with
Vt;- as its voltage amplitude. Similarly, the term containing
Vo-ejfJz represents arejlected wave with voltage amplitude Vo-'
traveling along the negative z-direction, from the load to the
source.

To determine Vo+and Vo-' we need to consider the lossless
transmission line in the context of the complete circuit,
including a generator circuit at its input terminals and a load
at its output terminals, as shown in Fig. 2-12. The line, of
length I, is terminated in an arbitrary load impedance ZL.
For convenience, the reference of the spatial coordinate z
is chosen such that z = 0 corresponds to the location of the

Transmission line

Generator
I

z= -I

Load
~z

z=O
d~r---------------~

d=! d=O

Figure 2-12: Transmission line of length I connected on one
end to a generator circuit and on the other end to a load ZL.
The load is located at z = 0 and the generator terminals are at
z = -I. Coordinate d is defined as d = -z.

load. At the sending end, at z = -I, the line is connected to a
sinusoidal voltage source with phasor voltage Vg and internal
impedance Zg. Since z points from the generator to the load,
positive values of z correspond to locations beyond the load,
and therefore are irrelevant to our circuit. In future sections, we
will find it more convenient to work with a spatial dimension
that also starts at the load, but whose direction is opposite of z.
We shall call it the distance from the load d and define it as
d = -r Z; as shown in Fig. 2-12.

The phasorvoltage across the load. VL, and the phasorcurrcnt
through it, fL, are related by the load impedance ZL as .

(2.55)

The voltage VL is the total voltage on the line if (z ) given by
Eq. (2.54a), and fL is the total current icz) given by Eq. (2.54b).
both evaluated at z = 0:

(2.56a)

(2.56b)

Using these expressions in Eq. (2.55), we obtain

(2.57)
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Table 2-2: Characteristic parameters of transmission lines.

Propagation
Constant

Y = ex + jf:J

Phase
Velocity

up

Characteristic
Impedance

Zo

IIp=wlfJ 20 =
(R' + jwL')
(G' + jwC')

General case Y = J(R' + jwL')(G' + jwC')

Lossless ex = 0, f:J= w..,fFrll'
(R' = G' = 0)

Lossless coaxial ex = 0, f:J= wFrlc

Lossless (Jl = 0, fJ = wFrIl'
two-wire

ex = 0, f:J= wFrIl' IIp=cly/e; Zo=(120JT/Fr)(lrlw)

Notes: ( I) 11 = 110. e = f'rf'O. C = II JIlOf'O. and J 1101 f'0 ::::::(I20JT) Q. where f'r is the relative permittivity of
insulating material. (2) For coaxial line. 1I and b are radii of inner and outer conductors. (3) For two-wire line.
d = wire diameter and D = separation between wire centers. (4) For parallel-plate line. w = width of plate and
h = separation between the plates.

Lossless
parallel-plate

Solving for V(l gives

V- = (ZL - zo) V+.
o ZL + Zo 0

The ratio of the amplitudes of the reflected and incident
voltage waves at the load is known as the voltage reflection
coefficient r.

(2.58)

From Eq. (2.58), it follows that

r = Vo- = ZL - ZoVi ZL+Zo
ZL/Zo-l

=

ZL-l
= ZL+ 1 (dimensionless), (2.59)

where
ZL

z\ = - (2.60). Zo

Up = clFr Zo = JL'IC'

lip = c] Fr Zo = (60I..,fFr) In(bla)

lip = c] Fr Zo = (1201 Fr)
·lnI(Dld) + J(Dld)2 - I]

Zo:::::: (120IJEr)ln(2Dld),
if D» d

is the normalized load impedance. In many transmission line
problems. we can streamline the necessary computation by
normalizing all impedances in the circuit to the characteristic
impedance Zo. Normalized impedances are denoted by
lowercase letters.

In view of Eq. (2.28), the ratio of the current amplitudes is

t: v-
~ = -~ = -r. (2.61)

10 Vo

We note that whereas the ratio oj the voltage amplitudes is
equal to r. the ratio of the current amplitudes is equal to - I".

The reflection coefficient r is governed by a single parameter.
the normalized load impedance 7L. As indicated by Eq. (2.46),
Zo of a lossless line is a real number. However, ZL is in general
a complex quantity, as in the case of a series R L circuit, for
example, for which ZL = R + joil.. Hence, in general r is
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complex also and given by

I r = Illej9
" (2.62) I

where I r I is the magnitude of rand (}r is its phase angle. Note
that tr I ::s 1.

A load is said to he matched to the line if ZL = Zo
because then there will he no reflection by the load (T = 0
and Vo- = 0).

On the other hand, when the load is an open circuit (ZL = (0).

r = 1 and Vo- = Vo+,and when it is a short circuit (ZL = 0),
I' = -I and Vo- = - Vo+(Table 2-3).

Example 2-3: Reflection Coefficient
of a Series RC Load

A 100-Q transmission line is connected to a load consisting
of a 50-Q resistor in series with a lO-pF capacitor. Find the
reflection coefficient at the load for a 100-MHz signal.

Solution: The following quantities are given (Fig. 2-13):

CL = 10 pF = 10-11 F,

Zo= 100Q, f = 100 MHz = J08 Hz.

The normalized load impedance is

ZL RL - .i /(wCd
ZL=-=

Zo Zo

= -I ~-O (50 - ) -2;r-X-lO--:S.,-1-x-I-O---:-:-II )

= (0.5 - ) 1.59) Q.

Transmission line A
o

Zo = 100 n

A'

Figure 2-13: sc load (Example 2-3).

From Eq. (2.59), the voltage reflection coefficient is

ZL - I
r=--

ZL + I
0.5 - )1.59 - I
0.5 - jl.59 + I

-0.5 - )1.59
1.5 - j 1.59

-1.67e.l72.6° _ ,1193°
-=2-. 1:-:9:-e--""7J4u6'""".7;;:""0- -0.7 6e

This result may be converted into the form of Eq. (2.62) by
replacing the minus sign with e:j 180

0

• Thus,

r = 0.76ejI19.3° e-jlSOO = 0.76e-j60.7° = 0.76/-607° .

Of

[I"]=0.76,

Example 2-4: Iri for Purely Reactive Load

Show that Ir I = I for a lossless line connected to a purely
reactive load.

Solution: The load impedance of a purely reactive load is

ZL = JXL.

From Eq. (2.59), the reflection coefficient is

ZL - Zo
F = --::-

ZL + Zo

)XL - Zo
=

)XL + z,
_j Z2 + X2 e=!"

o L =_e-j2IJ,

/Z2 + X2 ejeo L

where e = tan-I XL/Zoo Hence

[I"] = I - e-j2°1 = [(e-j2e)(e-j21J)*]1/2 = 1.

=
-(Zo - )Xt>
(Zo + jXd

Exercise 2-7: A 50-Q lossless transrmssion line is
terminated in a load with impedance ZL = (30- j200) Q.
Calculate the voltage reflection coefficient at the load.

Answer: r = 0.93/-27.5° . (See ~)

Exercise 2-8: A 150-Q loss less line is terminated in a
capacitor with impedance ZL = - j30 Q. Calculate r.
Answer: r = 1/-157.4° . (See '8')
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Table 2-3: Magnitude and phase of the reflection coefficient for various types of loads. In general, ZL = ZL/ Zo = (R + j X)/ Zo = r + j x ,
where r = Rj Zo and x = X/ Zo are the real and imaginary parts of the normalized load impedance ZL, respectively.

Load
Reflection Coefficient r = WlejOr

11'1 Or

[

~ ~] 1/2(r - l)~ +x~

(r + 1)2 +x2nZL = (r + jxlZo

nzo

:a(short)

---0
z, (open)
---0

~jX=jWL

-:;-::i..Z . X - j..:::.....:::0 ) = we

o (no reflection)

_I ( x) _I ( x )tan - -tan --
r -I r + I

irrelevant

± 1800 (phase opposition)

o (in-phase)

±180° - 2tan-1 x

±180° +2tan-1 x

2-6.2 Standing Waves
Using the relation Vo- = fl.'it in Eqs. (2.54a) and (2.54b)
yields

(2.63a)

(2.63b)

These expressions now contain only one, yet to be determined,
unknown, Vo+. Before we proceed to solve for Vo+,however, let
us examine the physical meaning underlying these expressions.
We begin by deriving an expression for 1\I(z)l, the magnitude
of V (z). Upon using Eq. (2.62) in (2.63a) and applying
the relation 1\I(z)1 =l\1(z) \I*(z)]1/2, where \I*(z) is the
complex conjugate of V (z), we have

. [(Vo+)*CeitJz + Ifie-j&ee-j/lZ)]}'/2
= 1V0+1[I + 1f12 + If ICej(2tJz+f1,)+e-i(2tJz+l:Je)f/

2

[ ]
1/2

= 1V0+1 1 + 1112+ 21f1 cos(2{3z + er) , (2.64)

where we have used the identity

eix +e-jx = 2cosx (2.65)

for any real quantity x. To express the magnitude of V as a
function of d instead of z, we replace z with -d on the right-
hand side ofEq. (2.64):

~ [2 ] 1/2lV(d)1 = 1V0+1 I + [I"] + 21f1 cos(2{3d - er) . (2.66)

By applyingthe same steps to Eq. (2.63b), a similar expression
can be derived for Ii Cd) I, the magnitude of the current i(d):

.ll(d)1 = lVo+1[I + 1f12 - 21f1 cos(2{3d - er)]1/2. (2.67)
Zo

The variations of IV(d)1 and li(d)1 as a function of d, the
position on the line relative to the load (at d = 0), are illustrated
in Fig. 2-14 for a line with 1V0+I = I Y, If I = 0.3, ar = 30°,
and Zo = 50 Q. The sinusoidal patterns are called standing
waves, and are caused by the interference of the two traveling
waves. The maximum value of the standing-wave pattern of
IV (d) I corresponds to the position on the line at which the
incident and reflected waves are in-phase 12{3d- er = 2nn: in
Eq. (2.66)] and therefore add constructively to give a value
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Voltage

IVlrnax

IVimin

d
A

1.4 V
1.2
1.0
O.~
0.6
0.4
0.2~-+------~---,~--~~----~O

13). A ti,,,,, I.
14 '2 '"4
I (a) I V(d)1 versus d

Current'
II(z) I

30 rnA
I~max - 25

20
Inrnin 15

max 10
5

d 0
Ie 3..1 I. X

4 2 "4
(b) 1i(d)1 versus d

Figure 2-14: Standing-wave pattern for (a) IV(d)1 and
(b) Ii(d) I for a lossless transmission line of characteristic
impedance 20 = 50 Q. terminated in a load with a
reflection coefficient r = 0.3ePoo. The magnitude of the
incident wave I Vo+1 = I V. The standing-wave ratio is
S = IVlmax/lVlmin = 1.3/0.7 = 1.86.

eg,ual to (1 + If I) 1V0+I = 1.3 V. The mtnimum value of
IV (d) I occurs when the two waves interfere destructively,
which occurs when the incident and reflected waves are
in phase-opposition [2f.ld - 8r = (2n + 1)7rI. In this case,
IV(d)1 = (I -1f1)1V0+1 = 0.7 V.

Whereas the repetition period is Ie for the incident and
reflected waves considered individually, the repetition
period of the standing-wave pattern is A/2.

The standing-wave yattern describes the spatial variation of
the magnitude of V (d) as a function of d. If one were to
observe the variation of the instantaneous voltage as a function
of time at location d = dmax in Fig. 2-14, that variation would
be as cos cot and would have an amplitude equal to 1.3 V 1i.e.,

IVcd)1

Matched line Id------------------------~IVol
oI. 3;.

4
I.

2
(a) ZL = Zo

I.

"4

Short-circuited line
I A/2 I I V(d)1

~~2IVO+1

It 3;" Ie A. 0
4 2 "4
(b) ZL = 0 (short circuit)

Open-circuited line _
I A/2 I IV(d)1

1~2IVO+

3..1 Ie Ie
42"4
(c) ZL =X; (open circuit)

o

Figure 2-15: Voltage standing-wave patterns for (a) a matched
load. (b) a short-circuited line. and (c) an open-circuited line.

vCr) would oscillate between -1.3 V and +1.3 V]. Similarly,
the instantaneous voltage v(d, t) at any location d will be
sinusoidal with amplitude equal to I V(d)1 atthatd. CD Module
2.4 provides a highly recommended simulation tool for gaining
better understanding of the standing-wave patterns for V (d)

and !(d) and the dynamic behavior of v(d, t) and i (d, t).
Close inspection of the voltage and current standing-wave

patterns shown in Fig. 2-14 reveals that the two patterns are in
phase opposition (when one is at a maximum, the other is at a
minimum, and vice versa). This is a consequence of the fact that
the third term in Eq. (2.66) is preceded by a plus sign, whereas
the third term in Eq. (2.67) is preceded by a minus sign.

The standing-wave patterns shown in Fig. 2-14 are for a
typical situation with r = 0.3 ej30o. The peak-to-peak variation
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of the pattern (IV Iminto IV Imax)depends on Irl, which can vary
between 0 and I. For the special case of a matched line with
ZL = Zo, we have [I"] = 0 and IV(d)1 = 1V0+1for all values
of d. as shown in Fig. 2-15(a).

With no rejfected Ivave present, there will be no interference
and no standing waves.

The other end of the Ir I scale. at Ir I = I. corresponds to
when the load is a short circuit (F = -I) or an open circuit
(F = I). The standing-wave patterns for those two cases are
shown in Figs. 2-15(b) and (c): both exhibit maxima of 21V0+I
and minima equal to zero, but the two patterns are spatially
shifted relative to each other by a distance of A/4. A purely
reactive load (capacitor or inductor) also satisfies the condition

• [F] = I, but Or is generally neither zero nor 1800 (Table 2-3).
Exercise 2-9 examines the standing-wave pattern for a lossless
line terminated in an inductor.

Now let us examine the maximum and minimum values of
the voltage magnitude. From Eq. (2.66), IV (d)1 is a maximum
when the argument of the cosine function is equal to zero or
a multiple of 2rr. Let us denote dmax as the distance from the
load at which IV (d) I is a maximum. It then follows that

- - + 'lV(d)1 = IVlmax = 1V0 III + 1111. (2.68)

when

(2.69)

with 11= 0 or a positive integer. Solving Eq. (2.69) for dmax.
we have

(2.70)

d _ Br+2mr _ OrA nA
max - 2{3 - 4;71" + 2 '

if Or < 0,
if Br ::: 0,{

n = 1,2, .
n = 0,1, 2, .

where we have used fJ = 2rr /A. The phase angle of the
voltage reflection coefficient. Or. is bounded between -rr
and n radians. If Or ::: O, the first voltage maximum
occurs at dmax = OrA/4rr, corresponding to n = 0, but if
(jr < O. the first physically meaningful maximum occurs at
dmax = (OrA/4rr) + A/2. corresponding to 11= I. Negative
values of dmax correspond to locations past the end of the line
and therefore have no physical significance.

Similarly, the minima of IV (d) I occur at distances dmin for
which the argument of the cosine function in Eq. (2.66) is equal
to (211+ ljzr, which gives the result

- +IVlmin = lVo III - Ifll.

when (2fJdmin - Or) = (211+ I)rr. (2.71)

with -rr:5 Or :5 zr. The first minimum corresponds to
II = O. The spacing between a maximum dmaxand the adjacent
minimum dmin is A/4. Hence, the first minimum occurs at

(2.72)d . _ { dmax + ')./4, if dmax < ')./4,
nun - dmax - ')./4, if dmax ::: ')./4.

As was mentioned earlier, the locations on the line
corresponding to voltage maxima also correspond to current
minima, and vice versa .

The ratio of IV Imaxto IV Imin is called the voltage standing-
wave ratio 5, which from Eqs. (2.68) and (2.71) is given by

(2.73)s=~= l+lfI
IVlrnin 1 - Ifl

(dimensionless),

This quantity, which often is referred to by its acronym,
VSWR. or the shorter acronym SWR. provides a measure of
the mismatch between the load and the transmission line; for
a matched load with r = O. we get 5 = I, and for a line with
11'1= I. 5 = x.

Review Question 2-5: The attenuation constant ex
represents ohmic losses. In view of the model given in
Fig. 2-6(c), what should R' and G' be in order to have no
losses? Verify your expectation through the expression
for a given by Eq. (2.25a).

Review Question 2-6: How is the wavelength A of the
wave traveling on the transmission line related to the free-
space wavelength ),o?

RevIew Question 2-7: When is a load matched to a
transmission line? Why is it important'?

Review Question 2-8: What is a standing-wave pattern?
Why is its period A/2 and not A?

Review Question 2-9: What is the separation between the
location of a voltage maximum and the adjacent current
maximum on the line?
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CD Module 2.4 Transmission Line Simulator Upon
specifying the requisite input data-including the load
impedance at d = 0 and the generator voltage and
impedance at d = I, this module provides a wealth
of output information ahout the voltage and current

waveforms along the transmission line. You can view plots of
the standing wave patterns for voltage and current. the time
and spatial variations of the instantaneous voltage v(d. t) and
current i(d. t), and other related quantities.

Options: Set Input I OutputTransmission Line Simulator

SetUne
Length units: a (i. J

Low Loss Approximation

Ch~'.ct.ristje
Zo = 50.0 0Impedane.

Frequency f = 10E9 Hz
RelatiVll! Er = 1.0Permittivity

line Length I = 1.0 i.

Update

Exercise 2-9: Use CD Module 2.4
to generate the voltage and current
standing-wave patterns for a 50-n line of
length 1.5A, terminated in an inductance
with ZL = jl40 n.
Answer: See Module 2.4 display.

output Transmission Une Data 1

c....... d -0.193 A. -57.9mm

Impedance Zed) -27.537763-;135606n
[Q I -30.695608 L -0.4578 red

ZL= 11000 h I 00 I0
(; Impedance r Admillance

I Update II
Admittance Y(d) - 0.029226 +; 0.014392
IS] - 0.032578 L 0.4576 red

Reflection rd •. 025141712-j0218116191
Coefficient = 0.33333333 L ·2.42531 red

= 0.33333333 L .138.96·Set Generetor --~----.---
Valage

V, = 11.0 I+j 10.0 Iv IV]

Z, = 1100.0 I+j 10.0 10
Current
(A]

I Power Flow
ImW]

Ii(d) - 0.175267 + I 0234137
- 0.29247 L 0.9282 red

fed) - 0.001753 + I 0.009365
- 0.llO9528 L 1.3858 r.cl

_ul.u Tnns.sslon LiM SkaulD, I Opbono: V.,. PIal. (phasors) •

,.

',~::~1r\/\~'oor~~~.:»: ~.~ .z., ,,,--+
I ,

Stan<11OpWave Patlem ·IV I & III
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Example 2-5: Standing-Wave Ratio

A 50-Q transmission line is terminated in a load with
ZL = (100 + j50) Q. Find the voltage reflection coefficient
and the voltage standing-wave ratio.

Solution: From Eq. (2.59), r is given by

ZL - 1
r=--

ZL + I
(2 + j 1) - I

=
(2 + j I) + 1

1 + j I
3 + j 1

Converting the numerator and denominator to polar form yields

1.414ej45C

r = 3.162ejI8.40

= 0.45ej26.6°.

Using the definition for S given by Eq. (2.73). we have

s=~
1- Ifl
1 + 0.45
1 - 0.45

= 2.6.

Example 2-6: Measuring ZJ>

A slotted-line probe is an instrument used to measure the
unknown impedance of a load, ZL. A coaxial slotted line
contains a narrow longitudinal slit in the outer conductor. A
small probe inserted in the slit can be used to sample the
magnitude of the electric field and, hence, the magnitude I V (d) I
of the voltage on the line (Fig. 2-16). By moving the probe along
the length of the slotted line, it is possible to measure I V [max and
IV Imin and the distances from the load at which they occur. Use
of Eq. (2.73) then provides the voltage standing-wave ratio S.
Measurements with a Zo = 50-Q slotted line terminated in an
unknown load impedance determined that S = 3. The distance
between successive voltage minima was found to be 30 em, and
the first voltage minimum was located at 12 em from the load.
Determine the load impedance ZL.

Sliding probe

/ Probe tip Slit

Figure 2-16: Slotted coaxial line (Example 2-6).

Solution: The following quantities are given:

Zo=50Q,

S = 3,

dmin = 12 ern.

Since the distance between successive voltage minima is A/2,

A = 2 x 0.3 = 0.6 m,

and
2n 2n IOn

13------- A - 0.6 - 3 (rad/m).

From Eq, (2.73), solving for [I"] in terms of 5 gives

5-1
Ifl- S + I

3-1

3 + 1
=0.5.

Next, we use the condition given by Eq. (2.71) to find 8r:

2f3dmin - 8r = tt , for n = 0 (first minimum),

which gives

8r = 2f3dmin - tt

IOn
= 2 x - x 0.12 - tt

3
= -0.2n (rad)

= -36°.
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Hence,

r = Wlejli,

= O,5e- j36°

= 0.405 - jO.294.

Solving Eq. (2.59) for ZL, we have

[
I + r]ZL=ZO --I-r

[
I + 0.405 - jO.294]

=50
I - 0.405 + jO.294

= (85 - j67) Q.

Exercise 2-10: If r = 0.5/-60° and A = 24 em, find the
locations of the voltage maximum and minimum nearest
to the load.

Answer: dmax = 10 em, dmin = 4 cm. (See")

Exercise 2-11: A 140-Q lossless line is terminated in a
load impedance ZL = (280+ j 182) Q. If A = 72 em, find
(a) the reflection coefficient I', (b) the voltage standing-
wave ratio S, (c) the locations of voltage maxima, and (d)
the locations of voltage minima.

Answer: (a) r = 0.5~, (b) S = 3.0,
(c) dmax = 2.9 em + nA/2, (d) dmin = 20.9 cm + nA/2,
where n = 0, I, 2, .... (See ~)

2-7 Wave Impedance of the Lossless Line

The standing-wave patterns indicate that on a mismatched line
the voltage and current magnitudes are oscillatory with position
along the line and in phase opposition with each other. Hence,
the voltage to current ratio, called the wave impedance Zed),
must vary with position also. Using Eqs. (2.63a) and (2.63b)

with z = -d,

where we define

as thephase-shifted voltage reflection coefficient, meaning that
rd has the same magnitude as I", but the phase of rd is shifted
by 2fJd relative to that of r.

Z (d) is the ratio of the total voltage (incident- and reflected-
wave voltages] to the total current at any point d on the line.
in contrast with the characteristic impedance of the line Zo,
which relates the voltage lind current of each of the Mo
waves individually (Zo = Vo+I It = - Vo- I 10- ).

In the circuit of Fig. 2-17(a), at terminals 88' at an arbitrary
location d on the line, Zed) is the wave impedance of the line
when "looking" to the right, i.e., towards the load. Application
of the equivalence principle allows us to replace the segment to
the right of terminals 88' with a lumped impedance of value
Z (d), as depicted in Fig. 2-17(b). From the standpoint of
the input circuit to the left of terminals 88', the two circuit
configurations are electrically identical.

Of particular interest in many transmission-line problems is
the input impedance at the source end of the line, at d = I,
which is given by

[
I + r,]

Zin = Z(l) = Zo -- .I-r, (2.76)

with
r, = re-j2/3' = Iflej(lir-2IllJ. (2.77)

By replacing r with Eq. (2.59) and using the relations

ejll' = cos fJl + j sin fJl, (2.78a)

e-jll' = cosfJl- j sinfJl, (2.78b)
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A B C.'..

Z(d)- Zo
A' B'.'..
I

d=1 d 0
(a) Actual circuit

+
vg~,

B

~ .:..
(b) Equivalent circuit

Figure 2-17: The segment to the right of terminals 88' can be
replaced with a discrete impedance equal to the wave impedance
Zed).

Eq, (2.76) can be written in terms of 7.L as

z = z (ZL COSPI + j sin PI)
In 0 RI' 'RIcos,... + lZLsID,...

= Zo ( ZL + j tan PI )l+iZLtanPI' (2.79)

From the standpoint of the generator circuit, the transmission
line can be replaced with an impedance Zin, as shown In
Fig. 2-18. The phasor voltage across Zin is given by

- VgZin
Vi = liZin = (2.80)z, + z.,

Simultaneously, from the standpoint of the transmission line,
thevoltage across it at the input of the line is given by Eq. (2.63a)
withz = -I:

(2.81 )

Equating Eq. (2.80) to Eq. (2.81) and then solving for Vo+ leads
to

Transmission line

Zo

Generator Load1--------
z =-1
d=1

*
Z=O
d=O

Figure 2-18: At the generator end, the terminated transmission
line can be replaced with the input impedance of the line Lin.

This completes the solution of the transmission-line wave
equations, given by Eqs. (2.21) and (2.23), forthe special case
of a lossless transmission line. We started out with the general
solutions given by Eq. (2.26), which included four unknown
amplitudes, Vo+-, V(l' I(t. and '0' We then determined that
Zo = Vo+/ 1ft = - Vo- /10-, thereby reducing the unknowns to
the two voltage amplitudes only. Upon applying the boundary
condition at the load, we were able to relate Vo- to ~;+-
through I', and, finally, by applying the boundary condition
at the source, we obtained an expression for Vo+.

Example 2-7: Complete Solution for v(z, t)

and i(z, t)

A 1.05-GHz generator circuit with series impedance Zg = 10 Q
and voltage source given by

Vg(t) = IOsin(wt + 30°) (V)

is connected to a load ZL = (100 + j50) Q through a 50-Q.
67-cm long lossless transmission line. The phase velocity of
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the line is 0.7c, where c is the velocity of light in a vacuum.
Find v(z, t) and it z; t) on the line.

Solution: From the relationship up = AI. we find the
wavelength

A = up

I
0.7 x 3 x 108

1.05 x 109

=0.2m.

and

27T
f31 = - I

A
27T

= - x 0.67
0.2

=6.77T =0.77T = 126°.

where we have subtracted multiples of 27T.
reflection coefficient at the load is

The voltage

ZL - Zor=~--
ZL + Zu
(l00 + )50) - 50
(100 + )50) + 50

= 0.45ej26.6° .

With reference to Fig. 2-18, the input impedance of the line,
given by Eq. (2.76), is

z., = Zo ( 1 + ri)
I-ri

= Z (1 +re-
12fJl

)
o 1 _ re-]2fJl

(

I + 0.45ej26.6° e:j252° ) .
=50266° -)'120 =(21.9+)17.4)r2.1 - 0.45eJ . e J-.

Rewriting the expression for the generator voltage with the
cosine reference, we have

Vg(t) = 10 sin(wt + 30°)

= IOcos(90° - cot - 30°)

= 10 cos(wt - 60°)

= 9ie[1Oe-j60° eJwr 1= 9ie[Vgejwt] (V).

Hence, the phasor voltage Vg is given by

Vg = 10 e: 160
0

= 10/-600 (V).

Application of Eq. (2.82) gives

+ (VgZin) ( 1 )
Vo = z, + z., e1fJi + re-jfJi

= [10e-
j600

(21.9 + ) 17.4) 1
10 + 21.9 + j 17.4

Using Eq. (2.63a) with z = -d, the phasor voltage on the line
IS

V(d) = Vo+(eJfjd + re-Jfid)

= 1O.2el 159° (elfid + 0.45ei26.6° «:IN).

and the corresponding instantaneous voltage v(d, t) is

v(d, t) = 9ie[V(d) eiwt]

= 10.2 cos(wt + f3d + 159°)

+ 4.55 cos(wt - f3d + 185.6°) (V).

Similarly, Eq. (2.63b) leads to

fed) = 0.20eiI59" (elfi" _ 0.45ej26.6° e-j/3d),

itd, t) = 0.20cos(wt + f3d + 159°)

+ 0.091 COS(wl- f3d + 185.6°) (A).
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4\ CD Module 2.5 Wave and Input Impedance The wave
impedance, Z (d) = V (d) II(d), exhibits a cyclical pattern
as a function of position along the line. This module
displays plots of the real and imaginary parts of Zed),
specifies the locations of the voltage maximum and
minimum nearest to the load, and provides other related
information.

Module 2.5 Wave and

C16sor

Impedance
[Q]

Admittance
[51

d = 0.618 [ A1
[mm]= 185.343

Z(d) ='1.85 - j 5.089
= 12.897 L -0.4056 rad

Y(d)= 0.071 + j 0.031
= 0.078 L 0.4056 rad

r, =-0.605-jO.132
= 0.62 L -2.927 rad
= 0.62 L -167.698 0

Voltage Standing INave Ratio
~=4.266

Reflection·
Coefficient

Location of First Voltage Maximum & Minimum
d (max) = 0.365 A = 115.469 [mm)
d (min) = 0.135 A = 40.469 [mm)

[mm)
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Technology Brief 3: Microwave Ovens
Percy Spencer, while working for Raytheon in the 1940s on the design and construction of magnetrons for radar,
observed that a chocolate bar that had unintentionally been exposed to microwaves had melted in his pocket. The
process of cooking by microwave was patented in 1946 and by the 1970s, microwave ovens had become standard
household items.

Microwave Absorption
A microwave is an electromagnetic wave whose frequency lies in the 300 MHz-300 GHz range (see Fig. 1-16.) When
a material containing water is exposed to microwaves, the water molecule reacts by rotating itself so as to align its own
electric dipole along the direction of the oscillating electric field of the microwave. The rapid vibration motion creates
heat in the material, resulting in the conversion of microwave energy into thermal energy. The absorption coefficient
of water, at f), exhibits a microwave spectrum that depends on the temperature of the water and the concentration
of dissolved salts and sugars present in it. If the frequency I is chosen such that atf ) is high, the water-containing
material will absorb much of the microwave energy passing through it and convert it to heat. However, it also means
that most of the energy will be absorbed by a thin surface layer of the material, with not much energy remaining to heat
deeper layers. The penetration depth op of a material, defined as op = 1/2a, is a measure of how deep the power carried
by an EM wave can penetrate into the material. Approximately 95% of the microwave energy incident upon a material
is absorbed by the surface layer of thickness 30p• Figure TF3-1 displays calculated spectra of op for pure water and
two materials with different water contents. The frequency most commonly used in microwave ovens is 2.54 GHz. The
magnitude of op at 2.54 GHz varies between ~ 2 cm for pure water and 8 cm for a material with a water content of only
20%. This is a practical range for cooking food in a microwave oven; at much lower frequencies, the food is not a good
absorber of energy (in addition to the fact that the design of the magnetron and the oven cavity become problematic),
and at much higher frequencies, the microwave energy will cook the food very unevenly (mostly the surface layer).

H()' iL_~:~~F:~_=:~j,--==:M:,c::ro~\\~.a~\~~,o~\~el~lt~re~q~u~~.n~CY;(~2~'5~4~(i~H=Z~)~:;~
ood 'With 50'!>.

Q 'Wilt I

II~::
234

Frequency (iHz)

50

40

C
'",:;c. 30
..cz;
C
c:
.S:e 20
~
1Jc,

T- 20'C

5

Figure TF3-1: Penetration depth as a function of frequency (1-5 GHz) for pure water and two foods with different
water contents.
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Whereas microwaves are readily absorbed by water, fats, and sugars, they can penetrate through most ceramics,
glass, or plastics without loss of energy, thereby imparting little or no heat to those materials.

Oven Operation
To generate high-power microwaves ("-' 700 watts) the microwave oven uses a magnetron tube, which requires the
application of a voltage on the order of 4000 volts. The typical household voltage of 115 volts is increased to the required
voltage level through a high-voltage transformer. The microwave energy generated by the magnetron is transferred
into a cooking chamber designed to contain the microwaves within it through the use of metal surfaces and safety
Interlock switches. Microwaves are reflected by metal surfaces, so they can bounce around the interior of the chamber
or be absorbed by the food, but not escape to the outside. If the oven door is made of a glass panel, a metal screen
or a layer of conductive mesh is attached to it to ensure the necessary shielding; microwaves cannot pass through the
metal screen if the mesh width is much smaller than the wavelength of the microwave (A ~ 12 cm at 2.5 GHz). In the
chamber, the microwave energy establishes a standing-wave pattern, which leads to an uneven distribution. This is
mitigated by using a rotating metal stirrer that disperses the microwave energy to different parts of the chamber.

(a) Cavity

Over lamp

Magnetron filament
terminals

Controller
(hidden
behind
bracket)

I

Interlock switches High voltage transformer

(b) Typical microwave oven electronics bay. [Photo courtesy of John Gallawa (rnicrotechrgigallawa.corn).]

Figure TF3-2: (a) Microwave oven cavity and (b) electronics bay.
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2-8 Special Cases of the Lossless Line
We often encounter situations involving lossless transmission
lines with particular terminations or lines whose lengths lead to
particularly useful line properties. We shall now consider some
of these special cases.

2-8.1 Short-Circuited Line

The transmission line shown in Fig. 2-19(a) is terminated in
a short circuit, ZL = O. Consequently, the voltage reflection
coefficient defined by Eq. (2.59) is r = -I, and the voltage
standing-wave ratio given by Eq, (2.73) is S = 00. With
7 = -d and r = -I in Eqs,(2.63a) and (2.63b), and r = -I
in Eq. (2.74), the voltage, current, and wave impedance on a
short-circuited lossless transmission line are given by

V,dd) = Vo+lej/Jd - e-ifi"j = 2jVo+ sinf3d,

- VO+'f'< I 'fJd 2Vo+/scCd) = ~[eJ'" + e-} ] = -- cosf3d.
Zo Zo

. V,dd) .
Z,c(d) = -~-- = J Zo tan f3d.

Isc (d)

The voltage V~dd) is zero at the load (d = 0), as it should befor
a short circuit, and its amplitude varies as sin f3d. In contrast,
the current i,dd) is a maximum at the load and it varies as
cos (id. Both quantities are displayed in Fig. 2-19 as a function
of d.

Denoting Zr.~as the input impedance of a short-circuited
line of length I,

(2.83a)

(2.83b)

(2.83c)

zst _V')C(I) -' Z· ta .f31 (2,.84.)
ill -l

sc
(l) - Joan· ,.

A plot of Z~;/jZo versus I is shown in Fig. 2-19(d). For the
short-circuited line, if its length is less than ),,/4. irs impedance
is equivalent to that of an inductor. and if it is between A/4 and
A/2, it is equivalent to that of a capacitor.

In genera!, the input impedance Zill of a line terminated in
an arbitrary load has a real part, called the input resistance Rill'

and an imaginary part, called the input reactance Xin:

(2.85)

In the case of the short-circuited Iossless line, the input
impedance is purely reactive (Rin = 0). If tan f3l ::. 0, the

Zf;: - z, ~:,~
d-4------------------------~1

o(a)

(c)

I___ Impedance I, :

(d)

Figure 2-19: Transmission line terminated in a short circuit: (a)
schematic representation. (b) normalized voltage on the line. (c)
normalized current. and (d) normalized input impedance.

line appears inductive to the source, acting like an equivalent
inductor Leq whose impedance equals Zi;;. Thus,

jwLeq = j Zo tan (if, (2.86)if tan f3! ::. 0,
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or
z, tan f3l

Leq = ---
W

(H). (2.87)

The rrumrnum line length l that would result in an input
impedance Z;; equivalent to that of an inductor with
inductance Leq is

1 -I (WLcq)I = -tan --f3 z, (m). (2.88)

Similarly, if tan f31 :'S 0, the input impedance is capacitive,
in which case the line acts like an equivalent capacitor with
capacitance Ceq such that

I .
-.-- = jZotanf3l,
jwCeq

if tan f31 :'S 0, (2.89)

or
1

Ceq = - Zow tan f31

Since I is a positive number, the shortest length [ for
which tan f31 :'S 0 corresponds to the range lr /2 :'S f3l :'S n .
Hence, the minimum line length I that would result in an
input impedance Zr; equivalent to that of a capacitor of
capacitance Ceq is

(F). (2.90)

l=~[lr-tan-I( I)]
f3 wCeqZo

(m). (2.91)

These results imply that, through proper choice of the length
of a short-circuited line, we can make them into equivalent
capacitors and inductors of any desired reactance.

Such a practice is indeed common in the design of microwave
circuits and high-speed integrated circuits, because making an
actual capacitor or inductor often is much more difficult than
fabricating a shorted microstrip transmission line on a circuit
board.

Example 2-8: Equivalent Reactive Elements
l_........ . .

Choose the length of a shorted 50-Q lossless transmission line
(Fig. 2-20) such that its input impedance at 2.25 GHz is identical
to that of a capacitor with capacitance Ceq = 4 pF. The wave
velocity on the line is 0.75c.

Solution: We are given

up = 0.75c = 0.75 x 3 x 108 = 2.25 x 108 mis,

Zo = 50 Q,

f = 2.25 GHz = 2.25 x 109 Hz,

Ceq = 4 pF = 4 x 10-12 F.

The phase constant is

Zn Zst ] 2lr x 2.25 X 109

f3 = - = - = = 62.8
A up 2.25 X 108

From Eq. (2.89), it follows that

1
tanf31 = ----

ZowCeq

(rad/m).

50 X 2lr x 2.25 x ]09 x 4 x 10-12

= -0.354.

The tangent function is negative when its argument is in the
second or fourth quadrants. The solution for the second
quadrant is

f311 = 2.8 rad
2.8 2.8

or iJ = - = -- =4.46cm
f3 62.8 '

and the solution for the fourth quadrant is

5.94
f3h = 5.94 rad or 12 = - = 9.46 ern.

62.8

1------ ------

zli - = 7< ] ~~~~;t

*sc ~z __ l_
Zin-J c-· CJW eq

Figure 2·20: Shorted line as equivalent capacitor (Example
2-8).
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With ZL = 00, as illustrated in Fig. 2-21(a), we have r = I,
S = 00, and the voltage, current, and input impedance are given
by d--+---~r----+----~----+

We also could have obtained the value of 11 by applying
Eq. (2.91). The length 12 is greater than 11 by exactly A/2.
In fact, any length I = 4.46 cm + nAIl, where n is a positive
integer, is also a solution.

2-8.2 Open-Circuited Line

\loc(d) = Vo+[ej,8d + e-j,8d] = lVo+ cosf3d,

- v+ ljV.+
loc(d) = ~[eJ,8d - e-J,8d] = __ 0_ sin Bd,

Zo z,

(2.9la)

(2.92b)

Voc(l) .
Z~ = -_-- = -JZocotfjI. (2.93)

Ioc(l)

Plots of these quantities are displayed in Fig. 2-21.

2-8.3 Application of Short-Circuit! Open-Circuit
Technique

A network analyzer is a radio-frequency (RF) instrument
capable of measuring the impedance of any load connected
to its input terminal. When used to measure (1) Z~, the input
impedance of a lossless line terminated in a short circuit, and
(2) Z~c, the input impedance of the line when terminated in an
open circuit, the combination of the two measurements can be
used to determine the characteristic impedance of the line Zo
and its phase constant f3. Indeed, the product ofthe expressions
given by Eqs. (2.84) and (2.93) gives

(2.94)

and the ratio of the same expressions leads to

(2.95)~tan,Bl = V~.

z~c_
d~+-------------------~
(a) I

(b)

d--~--~r----#----~----~
(c)

l--+---~~---+----~----+
(d)

Figure 2-21: Transmission line terminated in an open circuit:
(a) schematic representation, (b) normalized voltage on the line,
(c) normalized current, and (d) normalized input impedance.

Because of the T{ phase ambiguity associated with the tangent
function, the length I should be less than or equal to A/2 to
provide an unambiguous result.
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Example 2-9: Measuring Zo and fJ

Find Zo and fJ of a 57-cm-Iong lossless transmission line
whose input impedance was measured as Z~ = j40.42 n
when terminated in a short circuit and as Z::;: = - j 121.24 n
when terminated in an open circuit. From other measurements,
we know that the line is between 3 and 3.25 wavelengths long.

Solution: From Eqs, (2.94) and (2.95),

Zo= + Z~ Z~c=J(j40.42)(-j121.24)=70n,

tan f31 =

Since 1 is between 3.1..and 3.25.1..,fJI = (27r1/.1..) is between 67r
radians and (137r/2) radians. This places fJI in the first quadrant
(0 to tt /2) radians. Hence, the only acceptable solution for
tanfJf = JT7J is f31 = 7r/6 radians. This value, however,
does not include the 27r multiples associated with the integer A
multiples of I. Hence, the true value of fJI is

n
fJI = 67r + "6 = 19.4 (rad),

in which case

19.4
f3 = - = 34

0.57
(rad/m).

Lines of Length' = nA/2
If I = nA/2, where 11 is an integer,

tanf31 = tan [(27r/A) (11.1../2)] = tan nrr = O.

Consequently, Eq. (2.79) reduces to

forI = n)../2, (2.96) I
whichmeans that a half-wavelength line (or any integer multiple

A/2) does not modify the load impedance.

Quarter- Wavelength Transformer

case of interest is when the length of the line is a
(or .1../4+ nA/2, where n = 0 or a positive

integer), corresponding to f31 = (27r/A)(A/4) = 7r/2. From
Eq. (2.79), the input impedance becomes

for I = )../4 + n)../2. (2.97)
Z2

Z - 0
in - ZL'

The utility of such a quarter-wave transformer is illustrated by
Example 2-10.

Example 2-10: 1./4 Transformer

A 50-n lossless transmission line is to be matched to a resistive
load impedance with ZL = 100 n via a quarter-wave section
as shown in Fig. 2-22, thereby eliminating reflections along
the feedline. Find the required characteristic impedance of the
quarter-wave transformer.

Feedlinc A
;.14 transformer

ZOI= 50n Zin-

o------OA'
1---).14---

Figure 2-22: Configuration for Example 2-10.

Solution: To eliminate reflections at terminal AA', the input
impedance Zin looking into the quarter-wave line should be
equal to ZOI,the characteristic impedance of the feedline. Thus,
z., = 50 n. From Eq. (2.97),

or
Z02 = JZin ZL = v'50 x 100 = 70.7 n.

Whereas this eliminates reflections on the feedline, it does
not eliminate them on the A/4line. However, since the lines
are lossless, all the power incident on AA' will end up getting
transferred into the load ZL.
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Table 2-4: Properties of standing waves on a lossless transmission line.

Voltage Maximum ~ +
IVlmax = 1V0 III + rrl]

Voltage Minimum ~ +
IVlmin = lVo III - tru

Positions of voltage maxima (also positions
BrA IlA

n = 0.1. 2....dmax = 4 + -::;-.
of current minima) Jr: ~

d"", ~ I BrA
if 0 .:::Br .::: tt-

Position of first maximum (also position of 4Jr:
first current minimum) BrA A

if - n .:::Br .:::0
4Jr: + 2'

Positions of voltage minima (also positions
BrA (2n + I)A

n =0.1,2 •...dmin = 4Jr: + 4 '
of current maxima)

Position of first minimum (also position of A ( Br)dmin =.4 1+-;
first current maximum)

Input Impedance ( ZJ. + j tan,B1 ) C + r{)Zin = Zo = Zo --
l+jZLtan,B1 I-r{

Positions at which Zin is real at voltage maxima and minima

Zin at voltage maxima z., = Zo C + rr I )
1- [I"]

Zin at voltage minima C -Irl)Z· -Z
In - 0 T+IIl

Zin of short-circuited line Z~ = j Zo tan,Bf

Zin of open-circuited line Z~ = - jZo cot,Bl

Zin of line of length I = nA/2 Zin = ZL. n = 0, 1,2, ...

Zin of line of length l = ).,/4 + IIA/2 Zin = Z5/ZL, 11= 0, 1.2, ...

Zin of matched line ZiJl = Zo

1V0+I = amplitude of incident wave; r = [F leFI, with -Jr: < Br < Jr; Br in radians; f{ = r e" j2fJ1.

In this example, ZL is purely resistive. To apply the ),,/4
transformer technique to match a transmission line to a load
with a complex impedance, a slightly more elaborate procedure
is required (Section 2-11).

2-8.6 Matched Transmission Line: ZL = Zo

For a matched lossless transmission line with ZL = Zo, (I) the
input impedance Zin = Zo for all locations d on the line, (2)
r = 0, and (3) all the incident power is delivered to the load,
regardless of the line length I. A summary of the properties of
standing waves is given in Table 2-4.
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Review Question 2-10: What is the difference
between the characteristic impedance Zo and the input
impedance Zin? When are they the same'!

Review Question 2-11: What is a quarter-wave
transformer? How can it be used?

Review Question 2-12: A loss less transmission line of
length I is terminated in a short circuit. If I < 1./4. is the
input impedance inductive or capacitive?

Review Question 2-13: What is the input impedance of
an infinitely long line?

Review Question 2-14: If the input impedance of a
lossless line is inductive when terminated, in a short
circuit. will it be inductive or capacitive when the line
is terminated in an open circuit?

Exercise 2-12: A 50-n lossless transmission line uses
an insulating material with er = 2.25. When terminated
in an open circuit. how long should the line be for its
input impedance to be equivalent to a lO-pF capacitor at
50 MHz?

Answer: I = 5.68 cm. (See -e-)

exercise 2-13: A 300-n feedline is to be con-
nected to a 3-m long. IS0-n line terminated in a
lso-n resistor. Both lines are loss less and use air as
the insulating material, and the operating frequency is
50 MHz. Determine (a) the input impedance of the
3-m long line. (b) the voltage standing-wave ratio on the
feedline, and (c) the characteristic impedance of a quarter-
wave transformer were it to be used between the two lines
in order to achieve S = I on the feedline. (See "8' )

Answer: (a) Zin = 150 n, (b) S = 2. (c) Zo = 212.1 n.

2-9 Power Flow on a Lossless
Transmission Line

Our discussion thus far has focused on the voltage and current
attributes of waves propagating on a transmission line. Now
we shall examine the flow of power carried by the incident and
reflected waves. We begin by reintroducing Eqs. (2.63a) and

(2.63b) with 7, = -d:

V(d) = V(~(ejt$d + re-j/3d).

iu, = Vo+ (ej/3d _ re-J/3d).
Zo

(2.98a)

(2.98b)

In these expressions. the first terms represent the incident-
wave voltage and current, and the terms involving r represent
the reflected-wave voltage and current. The time-domain
expressions for the voltage and current at location d from the
load are obtained by transforming Eq. (2.98) to the time domain:

v(d,t) =~cIVej""l

= ~e[1 V(~lej(P+ (ej/3d + IflejiJre-ifld)ej(v/]

= lVo+I Icos(wt + f3d + ¢+)

+ [F] cos(wt - f3d + ¢+ + er)]. (2.99a)

\Y.+ I
iid.r) = _o-ICOS(lvt + f3d + ¢+)

Zo

-lflcos(wt-f3d+¢++er)l. (2.99b)

where we used the relations Vo+ = lVo+lej<r and r = Ir lej!!, ,

both introduced earlier as Eqs. (2.31 a) and (2.62), respectively.

2-9.1 Instantaneous Power

The instantaneous power carried by the transmission line is
equal to the product of v(d, 1) and itd . t):

P(d.1) = utd, 1) itd, t)

= lV(tl[cos(lvt + f3d + ¢+)

+ [I"] COS(wl- f3d + ¢+ + t1r)1

W+Ix _o-Icos(wt + f3d + ¢+)
Zo

- [I"] cos(wt - f3d + ¢+ + 8r)]

\Y.+ 12
= -O-lcos2(wt + f3d + ¢+)

Zo

- 1f12cos2(wt - f3d + ¢+ + t1r)1 (W).
(2.100)
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Per our earlier discussion in connection with Eq. (1.31), if the
signs preceding wt and Bd in the argument of the cosine term are
both positive or both negative, then the cosine term represents
a wave traveling in the negative d-direction. Since d points
from the load to the generator, the first term in Eq. (2.100)
represents the instantaneous incident power traveling towards
the load. This is the power that would be delivered to the load
in the absence of wave reflection (when I' = 0). Because f3d
is preceded by a minus sign in the argument of the cosine
of the second term in Eq. (2.100), that term represents the
instantaneous reflected power traveling in the +d-direction,
away from the load. Accordingly, we label these two power
components

(2.10 Ib)

Using the trigonometric identity

cos2
X =!(I + cos 2x),

the expressions in Eq. (2.10 I) can be rewritten as

1\1:+12
P'Ld . t) = _lfI2_0 -[I + cos(2wt - 2f3d

2Zo

(2.102b)

We note that in each case, the instantaneous power consists of
a de (non-time-varying) term and an ac term that oscillates at
an angular frequency of 2w.

The power oscillates at twice the rate of the voltage or
current.

2-9.2 Time-Average Power

From a practical standpoint, we usually are more interested
in the time-average power flowing along the transmission
line, Pav<d) , than in the instantaneous power Ptd . t). To

compute Paved), we can use a time-domain approach or
a computationally simpler phasor-domain approach. For
completeness, we will consider both.

Time-Domain Approach

The time-average power is equal to the instantaneous power
averaged over one time period T = II! = 2rrlw. For the
incident wave, its time-average power is

T 2rr/(ll. I!. w !P~v(d) = T Pl(d, t) dt = 2rr
o 0

pi(d.t)dt. (2.\03)

Upon inserting Eq. (2.102a) into Eq. (2.103) and performing
the integration, we obtain

(W). (2.104)

which is identical with the de term of pi (d, t) given by
Eq. (2.1 02a). A similar treatment for the reflected wave gives

The average reflected power is equal to the average incident
power, diminished by a multiplicative factor of If 12.

Note that the expressions for Ply and P~v are independent
of d, which means that the time-average powers carried by
the incident and reflected waves do not change as they travel
along the transmission line. This is as expected, because the
transmission line is lossless.

The net average power flowing towards (and then absorbed
by) the load shown in Fig. 2-23 is

(W). (2.106)
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Transmission line

1
d= I

1
d=O

Figure 2-23: The time-average power reflected by a load
connected to a lossless transmission line is equal to the incident
power multiplied by W12.

Phasor-Domain Approach

For any propagating wave with voltage and current phasors V
and 1. a useful formula for computing the time-average power
IS

where 1* is the complex conjugate of 1. Application of this
formula to Eqs. (2.98a) and (2.98b) gives

+ ryte [lfle- j(2,l1d-li,) - Iflej(2,l1d-li,) II

IV.+I'
= _0 _ ([I -1f12]

2Zo

+ IfI[cos(2tJd - Or) - cos(2tJd - Or) II
1 v.+12

= 2~0 [I -1f121. (2.108)

which is identical to Eq, (2.106).

Exercise 2-14: For a 50-0 lossless transmission line
terminated in a load impedance ZL = (100 + j50) 0,
determine the fraction of the average incident power
reflected by the load.

Answer: 20%. (See")

Exercise 2-15: For the line of Exercise 2.14, what is the
magnitude of the average reflected power if 1Vo+1= 1 V?

Answer: P:v = 2 (mW). (See 4')

Review Question 2-15: According to Eq. (2.102b), the
instantaneous value of the reflected power depends on
the phase of the reflection coefficient Or, but the average
reflected power given by Eq. (2.105) does not. Explain.

Review Question 2-16: What is the average power
delivered by a lossless transmission line to a reactive load?

Review Question 2-17: What fraction of the incident
power is delivered to a matched load?

Review Question 2-18: Verify that

T

If') (27rt ) 1T cos- T + tJd + ¢ dt = 2" .
o

regardless of the values of d and cp, so long as neither is a
function of t.

2-10 The Smith Chart

The Smith chart, developed by P. H. Smith in 1939. is a widely
used graphical tool for analyzing and designing transmission-
line circuits. Even though it was originally intended to facilitate
calculations involving complex impedances, the Smith chart has
become an important avenue for comparing and characterizing
the performance of microwave circuits. As the material in this
and the next section will demonstrate, use of the Smith chart not
only avoids tedious manipulations of complex numbers, but it
also allows an engineer to design impedance-matching circuits
with relative ease.
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f·I
Or = 90°

Short-circuit
load

0.3 0.5 0.7

-1

Figure 2·24: The complex r plane. Point A is at rA = 0.3 + jO.4 = 0.5ej53°, and point B is at r B = -0.5 - jO.2 = 0.54ei202°. The
unit circle corresponds to If I = I. At point C,r = I, corresponding to an open-circuit load, and at point D, r = - I, corresponding to a
short circuit.

2-10.1 Parametric Equations equivalently,

The reflection coefficient I' is, in general, a complex quantity
composed of a magnitude II'I and a phase angle 8r or,
equivalently, a real part fr and an imaginary part fi, and

(2.109)
8rA = tan-I (0.4/0.3) = 53°.

Similarly, point B represents F B = -0.5 - jO.2,
or If B I= 0.54 and Orn = 202° (or, equivalently,
Orn = (360° - 202°) = -158°).

where

fr = [I"] cos8r•

fi = [I"] sinOr.

(2.1 lOa)

(2.1 lOb) When both fr and fi are negative, Or is in the third quadrant
in the fr-fi plane. Thus, when using 8r= tan-1 (fi/ fr) to
compute Hr. it may be necessary to add or subtract 1800 to
obtain the correct value of Hr.

The Smith chart lies in the complex I'-plane. In Fig. 2-24,
point A represents a reflection coefficient fA = 0.3 + jO.4 or,
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The unit circle shown in Fig. 2-24 corresponds to WI = 1.
Because Ir I ~ I for a transmission line terminated with a
passive load, only that part of the fr-rj plane that lies within
the unit circle is useful to us; hence, future drawings will be
limited to the domain contained within the unit circle.

Impedances on a Smith chart are represented by their values
normalized to Zo, the line's characteristic impedance. From

ZL - I
ZL + I

(2.111 )

the inverse relation is

The normalized load impedance ZL is, in general, a complex
quantity composed of a normalized load resistance rL and a
normalized load reactance XL:

(2.113)

Using Eqs, (2.109) and (2.113) in Eq. (2.112), we have

(2.114)

which can be manipulated to obtain explicit expressions for
'L and XL in terms of Frand n. This is accomplished by
multiplying the numerator and denominator of the right-hand
sideofEq. (2.114) by the complex conjugate of the denominator
and then separating the result into real and imaginary parts.
These steps lead to

1 - f2 - f2
r 1 (2.115a)

'L= (l-fr)2+f?,

zr,
(2.1l5b)

Equation (2.115a) implies that there exist many combinations of
for fr and fj that yield the same value forthe normalized

resistance 'L. For example, (I",, rj) = (0.33.0) gives
= 2, as does (rr. rj) = (0.5,0.29), as well as an infinite

of other combinations. Tn fact, if we were to plot

in the fr-fj plane all possible combinations of I', and fj
corresponding to 'L = 2, we would obtain the circle labeled
'L = 2 in Fig. 2-25. Similar circles can be obtained for other
values ot n.. After some algebraic manipulations, Eq. (2.115a)
can be rearranged into the following parametric equation for
the circle in the I'r-fj plane corresponding to a given value
of rL:

(2.116)

The standard equation for a circle in the x-y plane with center
at (xQ, YO) and radius a is

(2.117)

Comparison of Eq. (2.116) with Eq. (2.117) shows that the rL

circle is centered at rr = rL!( 1+ 'L) and rj = 0, and its radius
is I!( I+rd. It therefore follows that all rL -circles pass through
the point Crr, fj) = (I. 0). The largest circle shown in Fig. 2-25
is for 'L = 0, which is also the unit circle corresponding to
Ir I = I. This is to be expected, because when rL = 0, II' I = I
regardless of the magnitude of XL.

A similar manipulation of the expression for XL given by
Eg. (2.115b) leads to

( 1)2 (1)2(rr - 1)2 + rj - - = -
XL XL

(2.118)

which is the equation of a circle of radius (I !XL) centered
at (rr, fj) = (1, l!xd. The XL circles in the fr-rj plane
are quite different from those for constant rL. To start with,
the normalized reactance XL may assume both positive and
negative values, whereas the normalized resistance cannot be
negative (negative resistances cannot be realized in passive
circuits). Hence, Eq. (2.118) represents two families of circles,
one for positive values of XL and another for negative ones.
Furthermore, as shown in Fig. 2-25, only part of a given circle
falls within the bounds of the If I = I unit circle.

The families of circles of the two parametric equations given
by Eqs. (2.116) and (2.118) plotted for selected values ot rt

and XL constitute the Smith chart shown in Fig. 2-26. The Smith
chart provides a graphical evaluation ofEqs. (2.115a and b) and
their inverses. For example, point P in Fig. 2-26 represents a
normalized load impedance ZL = 2 - j 1, which corresponds
to a voltage reflection coefficient r = 0.45 exp( - j 26.6°). The
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r·1

Figure 2-25: Families of 'L and XL circles within the domain WI ::s 1.

magnitude [I"] = 0.45 is obtained by dividing the length of the
line between the center of the Smith chart and the point P by the
length of the line between the center of the Smith chart and the
edge of the unit circle (the radius of the unit circle corresponds
to [I"] = I). The perimeter of the Smith chart contains three
concentric scales. The innermost scale is labeled angle of
reflection coefficient in degrees. This is the scale for (Jr. As
indicated in Fig. 2-26. 8r = -26.6° (-0.46 rad) for point P.
The meanings and uses of the other two scales are discussed
next.

Exercise 2-16: Use the Smith chart to find the
values of r corresponding to the following normalized
load impedances: (a) ZL = 2 + jO, (b) ZL = 1 - j I,
(c) ZL = 0.5 - j2, (d) ZL = - j3, (e) ZL = 0 (short
circuit), (f) ZL = 00 (open circuit), (g) ZL = 1 (matched
load).

Answer: (a) r = 0.33, (b) r = 0.45/-63.40 ,

(c) r = 0.83/-50.9°, (d) r = 11-36.9°, (e) r = -1,
(f) r = 1, (g) r = O. (See-e)
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Outermost scale:
wavelengths toward
generator

Inner scale:

wavelengths
toward load

=.9ZL~2-jl
Figure 2-26: Point P represents a normalized load impedance ZL = 2 - j I. The reflection coefficient has a magnitude
[I"]= 0 P/ 0 R = 0.45 and an angle Or = -26.6°. Point R is an arbitrary point on the rt. = 0 circle (which also is the WI = I circle).

Wave Impedance is the phase-shifted voltage reflection coefficient. The form of
Eq. (2.119) is identical with that for ZL given by Eq. (2.112):

I+r
zr'=l_r' (2.121 )

From Eq. (2.74), the normalized wave impedance looking
toward the load at a distance d from the load is

Zed) 1+ r"
zed) = -- = -- ,z, 1 - r" (2.119)

This similarity in form suggests that if r is transformed into
rd, ZL gets transformed into zed). On the Smith chart, the
transformation from r to rd is achieved by maintaining Ir I
constant and decreasing its phase fJr by 2f3d, which corresponds
to a clockwise rotation (on the Smith chart) over an angle
of 2fJd radians. A complete rotation around the Smith chart(2.120)
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corresponds to a phase change of 2IT in r. The length d
corresponding to this phase change satisfies

2IT
2f3d = 2 - d = 2IT.

)"
(2.122)

from which it follows that d = A/2. The outermost scale
around the perimeter of the Smith chart (Fig. 2-26), called
the wavelengths toward generator (WTG) scale, has been
constructed to denote movement on the transmission' line
toward the generator, in units of the wavelength)". That
is, d is measured in wavelengths, and one complete rotation
corresponds tod = A/2. In some transmission-line problems, it
may be necessary to move from some point on the transmission
line toward a point closer to the load, in which case the phase
of r must be increased, which corresponds to rotation in the
counterclockwise direction. For convenience, the Smith chart
contains a third scale around its perimeter (in between the Or
scale and the WTG scale) for accommodating such an operation.
It is called the wavelengths toward load (WTL) scale.

To illustrate how the Smith chart is used to find Zed),
consider a 50-n loss less transmission line terminated in a load
impedance ZL = (l00 - j50) n. Our objective is to find Z(d)
at a distance d = 0.1 A from the load. The normalized load
impedance is ZL = ZLI ZO = 2 - j I, and is marked by point A
on the Smith chart in Fig. 2-27. On the WTG scale, point A
is located at 0.287A. Next, we construct a circle centered
at (I",, ri) = (0,0) and passing through point A. Since the
center of the Smith chart is the intersection point of the r rand
ri axes, all points on this circle have the same value of [T].
This cOllstant-1f1 circle is also a constant-Swk circle. This
follows from the relation between the voltage standing-wave
ratio (SWR) and WI. namely

s = 1+ Ifl .
I -jr I

(2.123)

Thus, a constant value of WI corresponds to a constant value
of S. and vice versa. As was stated earlier, to transform 7.L.

to zed), we need to maintain Ir I constant, which means staying
on the SWR circle. while decreasing the phase of r by 2f3d
radians. This is equivalent to moving a distance d = O.IA
toward the generator on the WTG scale. Since point A is
located at 0.287A on the WTG scale. zed) is found by moving to
location 0.287A + 0.1)" = 0.387A on the WTG scale. A radial
line through this new position on the WTG scale intersects the
SWR circle at point B. This point represents ztd), and its
value is z(d) = 0.6 - jO.66. Finally, we unnormalize z(d) by

multiplying it by Zo = 50 n to get Zed) = (30 - j33) n. This
result can be verified analytically using Eq. (2.119). The points
between points A and B on the SWR circle represent different
locations along the transmission line.

If a line is of length I, its input impedance is Zin = Zo z(/).
with 1.'(1) determined by rotating a distance I from the load along
the WTG scale.

Exercise 2-17: Use the Smith chart to find the normalized
input impedance of a lossless line of length I terminated in
a normalized load impedance zt for each of the following
combinations: (a) I = 0.25>..,zt = 1 + jO, (b) I = 0.5>",
4.. = 1+ jl, (c) 1=0.3>", zt = I - jl, (d) 1=1.2)",
zt = 0.5 - jO.5, (e) I = 0.1)", zt = 0 (short circuit),
(f) I = 0.4>.., ZL = j3, (g) I = 0.2>", zt = 00 (open
circuit).

Answer: (a) Zin = 1 + jO, (b) Zin= 1+ jJ,
(c) Zin= 0.76 + jO.84, (d) Zin= 0.59 + jO.66,
(e) Zin= 0+ jO.73, (f) Zin= 0+ jO.72, (g) Zin= 0- jO.32.
(See ,f!f,)

2-10.3 SWR, Voltage Maxima and Minima

Consider a load with ZL= 2 + .i I. Figure 2-28 shows a Smith
chart with a SWR circle drawn through point A, representing ZL.

The SWR circle intersects the real (fr) axis at two points"
labeled Pmax and Pmin. At both points ri = 0 and r = rr.
Also. on the real axis, the imaginary part of the load impedance
XL = O. From the definition of I",

4. - I
r=--,

LL + I
(2.124)

it follows that points Pmaxand Pmincorrespond to

, ro - I
I =rr=--

ro + 1
(for ri = 0). (2.125)

where ro is the value of rL where the SWR circle intersects
the rr-axis. Point Pmin corresponds to ro < 1 and Pmax
corresponds to ro > I. Rewriting Eq. (2.123) for If I in terms
of S, we have

S-I
[F] = --.

5+1
(2.126)
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O.lA

ZL = 2-jlz(d)--

O.387A

Figure 2·27: Point A represents a normalized load ZL = 2 - j I at 0.287)..on the WTG scale. Point B represents the line input at d = O.lA
from the load. At B, z(d) = 0.6 - jO.66.

S-Ir =--
r S + 1 .

Thesimilarity in form ofEqs. (2.125) and (2.127) suggests that
Sequals the value of the normalized resistance roo By definition
S:::: 1, and at point Pmax, ro> 1, which further satisfies the
similarity condition. In Fig. 2-28, ro = 2.6 at Pmax; hence
S= 2.6.

Sis numerically equal to the value otr« at Pmax• the point at
which the SWR circle intersects the real r axis to the right
(?f the chart's center.

For point Pmax, [I"] = r., hence

(2.127)

Points Pmin and Pmax also represent loc~tions on the line
at which the magnitude of the voltage I V I is a minimum
and a maximum, respectively. This is easily demonstrated
by considering Eq. (2.120) for rd. At point Pmax, the total
phase of rd- that is, (8r - 2{3d), equals zero or -2nn (with
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Distance to voltage
maximum from load

ro = 2.6

Distance to voltage
minimum fr0111 load

ZL = 2 +jl

dmin = O.287A
, 'd'I I max I

, d'-'I~min-I

Figure 2-28: Point A represents a normalized load with ZL = 2+ j I. The standing wave ratio is S = 2.6 (at Pmax), the distance between the
load and the first voltage maximum is dlllax = (0.25 - 0.213)), = 0.037)., and the distance between the load and the first voltage minimum
is dmin = (0.037 + 0.25)), = 0.287)..

n being a positive integer), which is the condition corresponding
to IVlmax, as indicated by Eq. (2.69). Similarly, at Pmin the
total phase of rd equals -(2n + 1)7T, which is the condition

for IVlmin. Thus, for the transmission line represented by the
SWR circle shown in Fig. 2-28, the distance between the load
and the nearest voltage maximum is dmax = 0.037)., obtained
by moving clockwise from the load at point A to point Pm3x, and

the distance to the nearest voltage minimum is dmin = 0.287A,
corresponding to the clockwise rotation from A to Pmin. Since
the location of IVlmax corresponds to that of Ihnin and the
location of IVlmin corresponds to that of Illmax, the Smith chart
provides a convenient way to determine the distances from the
load to all maxima and minima on the line (recall that the
standing-wave pattern has a repetition period of A/2).



2-10 THE SMITH CHART 109

2-10.4 Impedance to Admittance Transformations

In solving certain types of transmission line problems, it is
often more convenient to work with admittances than with
impedances. Any impedance Z is in general a complex quantity
consisting of a resistance R and a reactance X:

Z = R + jX (Q). (2.128)

The admittance Y is the reciprocal of Z:

1 R - jX
Y - - - = ----,,------=-

Z R + jX R2 + X2
(S). (2.129)

The real part of Y is called the conductance G, and the
imaginary part of Y is called the susceptance B. That is,

Y = G + jB (S). (2.130)

Comparison of Eq. (2.130) with Eq. (2.129) reveals that

R
G=----::;---:;-

R2 + X2
-X

B = ----,,------,,-
R2 + X2

(S), (2.13la)

(S). (2.13lb)

A normalized impedance z is defined as the ratio of Z to Zo, the
characteristic impedance of the line. The same concept applies
to the definition of the normalized admittance y; that is,

Y G B
v= - = -+j- =g+jb
. Yo Yo Yo

(dimensionless). (2.132)

where Yo = 1/ Zo is the characteristic admittance of the line
and

G
g = - = GZo

Yo
B

h= - = BZo
Yo

(dimensionless). (2.133a)

(dimensionless). (2.133b)

The lowercase quantities g and b represent the normalized
conductance and normalized susceptance of y, respectively.
Of course. the normalized admittance y is the reciprocal of the
normalized impedance z,

Y Zo
v=-=-=-.
. Yo Z z

(2.134)

Accordingly. using Eq. (2.121). the normalized load admit-
tance YL is given by

(dimensionless). (2.135)
1 1- r

YL=-=--
ZL l+r

Now let us consider the normalized wave impedance z(d) at
a distance d = A/4 from the load. Using Eq. (2.119) with
2f3d = 4rrd/";.= 4rrA/4A= n gives

I+ r«: j;r I- r
z(d = ";./4) = - -- - YL

I-re-j;r - I+r - .. (2.136)

Rotation by A/4 011 the SWR circle transforms z into y. and
vice versa.

In Fig. 2-29. the points representing ZL and YL are diametrically
opposite to each other on the SWR circle. In fact. such a
transformation on the Smith chart can be used to determine
any normalized admittance from its corresponding normalized
impedance. and vice versa.

The Smith chart can be used with normalized impedances
or with normalized admittances. As an impedance chart. the
Smith chart consists of TL and XL circles, the resistance and
reactance of a normalized load impedance ZL. respectively.
When used as an admittance chart, the TL circles become gL

circles and the XL circles become bL circles, where gL and hL
are the conductance and susceptance of the normalized load
admittance YL, respectively.
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A 50-Q lossless transmission line of length 3.3)" is terminated
by a load impedance ZL = (25 + )50) Q. Use the Smith
chart to find (a) the voltage reflection coefficient, (b) the
voltage standing-wave ratio, (c) the distances ofthe first voltage
maximum and first voltage minimum from the load, (d) the input
impedance of the line, and (e) the input admittance of the line.

ZL =
Zo

25 + j50 .
50 = 0.5 + } I,

Figure 2-29: Point A represents a normalized load ZL = 0.6 + ) 1.4. Its corresponding normalized admittance is YL = 0.25 - )0.6, and
it is at point B.

Example 2-11; Smith Chart Calculations Solution: (a) The normalized load impedance is

which is marked as point A on the Smith chart in Fig. 2-30. A
radial line is drawn from the center of the chart at point 0
through point A to the outer perimeter of the chart. The
line crosses the scale labeled "angle of reflection coefficient
in degrees" at (jr = 83°. Next, measurements are made to
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Location
oflf1min

O.135A

.,..~m

Location
of I f1max

1-3.3).-1

"';1 i :9'L~05 +jl
, 'd,
I I max I

, d'-'I-min-I

Figure 2-30: Solution for Example 2-11. Point A represents a normalized load ZL = 0.5 + j I at 0.135), on the WTG scale. At A. Or = 83°
and [I"] = OAjOO' = 0.62. At B, the standing-wave ratio is S = 4.26. The distance from A to B gives dmax = 0.115), and from A to C
gives dmin = 0.365).. Point D represents the normalized input impedance Zin = 0.28 - jOAO, and point E represents the normalized input
admittance Yin = 1. IS + j 1.7.
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determine lengths OA and 00', of the lines between 0 and A
and between points 0 and 0', respectively, where 0' is an
arbitrary point on the rL = 0 circle. The length 00' is equal
to the radius of the If I = I circle. The magnitude of r is then
obtained from If I = 0 A/ 0 0' = 0.62. Hence,

T = O.621?W . (2.137)

(b) The SWR circle passing through point A crosses the I', axis
at points Band C. The value of rL at point B is 4.26, from
which it follows that

s = 4.26.

(c) The first voltage maximum is at point B on the SWR
circle, which is at location 0.251.. on the WTG scale. The load,
represented by point A, is at 0.1351.. on the WTG scale. Hence,
the distance between the load and the first voltage maximum is

dmax = (0.25 - 0.135»), = O.IISA.

The first voltage minimum is at point C. Moving on the WTG
scale between points A and C gives

dmin = (O.S - 0.135)1.. = 0.3651..,

which is 0.251.. past dmax.

(d) The line is 3.3).. long; subtracting multiples of 0.51.. leaves
O.3A. From the load at O.135A on the WTG scale, the input
of the line is at (0.135 + 0.3»).. = 00435)". This is labeled as
point D on the SWR circle, and the normalized impedance is

Zin = 0.28 - jOo4O,

which yields

Zin = ZinZO = (0.28 - j0040)50 = (14 - j20) O.

(e) The normalized input admittance Yin is found by moving
0.25)" on the Smith chart to the image point of Zin across the
circle, labeled point E on the SWR circle. The coordinates of
point E give

Yin = 1.15 + j1.7,

and the corresponding input admittance is

v"Y v· In

in = Yin 10 = Zo =
1.15 + jl.7 .

50 = (0.023 + JO.034) S.

Example 2·12: Determining ZL

Using the Smith Chart

This problem is similar to Example 2-6, except that now we
demonstrate its solution using the Smith chart.

Given that the voltage standing-wave ratio S = 3 on a
50-0 line, that the first voltage minimum occurs at 5 ern from
the load, and that the distance between successive minima is
20 cm, find the load impedance.

Solution: The distance between successive minima equals
),,/2. Hence, A = 40 cm. In wavelength units, the first voltage
minimum is at

5
dmin = 40 = O.12S)".

Point A on the Smith chart in Fig. 2-31 corresponds to S = 3.
Using a compass, the constant S circle is drawn through point A.
Point B corresponds to locations of voltage minima. Upon
moving 0.1251.. from point B toward the load on the WTL scale
(counterclockwise), we arrive at point C. which represents the
location of the load. The normalized load impedance at point C
IS

ZL = 0.6 - jO.8.

Multiplying by Zo = 500, we obtain

h = 50(0.6 - jO.8) = (30 - j40) O.
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Voltage min

Figure 2-31: Solution for Example 2-12. Point A denotes that S = 3. point B represents the location of the voltage minimum, and point C
represents the load at 0.125), on the WTL scale from point B. At C, zL = 0.6 - jO.S.

Review Question 2-19: The outer perimeter of the Smith
chart represents what value of WI? Which point on the
Smith chart represents a matched load?

Review Question 2-20: What is an SWR circle? What
quantities are constant for all points on an SWR circle?

Review Question 2-21: What line length corresponds to
one complete rotation around the Smith chart? Why?

Review Question 2-22: Which points on the SWR circle
correspond to locations of voltage maxima and minima on
the line and why?

Review Question 2-23: Given a normalized
impedance ZL, how do you use the Smith chart to find the
corresponding normalized admittance YL = 1/ ZJ... ?
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~ SWRClrcle
~ snow curves
P Full Chart

~ CUrsor lines
r y(d}

The transmission line is said to be matched to the load when
its characteristic impedance Zo = ZL. in which case waves
traveling on the line towards the load are not reflected back
to the source.

• CD Module 2.6 Interactive Smith Chart Locate the load
on the Smith chart; display the corresponding reflection
coefficient and SWR circle; "move" to a new location at
a distance d from the load, and read the wave impedance
Z(d) and phase-shifted reflection coefficient rd; perform
impedance to admittance transformations and vice versa;
and use all of these tools to solve transmission-line
problems via the Smith chart.

2-11 Impedance Matching

A transmission line usually connects a generator circuit at one
end to a load at the other. The load may be an antenna,
a computer terminal, or any circuit with an equivalent input
impedance ZL.

r Tangent SWR Circle
SWR= 5.8284

P Voltage Maximum ••••
d(max) = 0.0625 A

r Voltage MinImUm
d(mln) = 0.31 25 x

~ Show r r. Load r CUrsor

• zL ~1.0+j2.0
fL =0.70710678 L45.o"

• z (d) = 0.604963 - j 1 .504591
fd D 0.70710678 L -61.56·

• y(d)- 0.230043 + j 0.572137

,.. d-O.148A
2 ~ d • 1.8591123 rad = 106.56"

r- 0.51. - d • 0.352l.
211 (0.51. - d) ,.

= 4.42J.4 tad = 253.44"

I Sit line . nU~date I
z, = SO.O In]

UPdateLSet Load

Zr.= 50.0
0GJ£tff;).i~tR¥:1\flt~&~!

+ j 100.0

ry

Since the primary use of a transmission line is to transfer power
or transmit coded signals (such as digital data), a matched load
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ensures that all of the power delivered to the transmission line by
the source is transferred to the load (and no echoes are relayed
back to the source).

The simplest solution to matching a load to a transmission
line is to design the load circuit such that its impedance
ZL = Zoo Unfortunately. this may not be possible in practice
because the load circuit may have to satisfy other requirements.
An alternative solution is to place an impedance-matching
network between the load and the transmission line as
illustrated in Fig. 2-32.

The purpose o] the matching network is to eliminate
reflections at terminals M M' for waves incident from the
source. Even though multiple reflections may occur between
AA' and M M', only aforward traveling wa\'(:'exists 011 the
feedline.

Within the matching network. reflections can occur at both
terminals (AA' and M M'). creating a standing-wave pattern.
but the net result (of all of the multiple reflections within the
matching network) is that the wave incident from the source
experiences no reflection when it reaches terminals M M'. This
is achieved by designing the matching network to exhibit an
impedance equal to Zo at M M' when looking into the network
from the transmission line side. If the network is lossless, then
all the power going into it will end up in the load. Matching
networks may consist of lumped elements (to minimize ohmic
losses only capacitors and inductors are used) or of sections of
transmission lines with appropriate lengths and terminations.

The matching network. which is intended to match a load
impedance ZL = RI. + j XL to a loss less transmission line with
characteristic impedance Zo, may be inserted either in-series
(between the load and the feedline) as in Fig. 2-33(a) and (b) or
in-parallel [Fig. 2-33(c) to (e l]. In either case, the network has

MFeedline

Zo

M'
Generator

Figure 2-32: The functionof a matchingnetworkis to transform
the load impedance ZL such that the input impedance Zin
looking into the network is equal to Zo of the transmission line.

to transform the real part of the load impedance from RL (at
the load) to Zo at M M' in Fig. 2-32 and transform the reactive
part from XL (at the load) to zero at M M'. To achieve these
two transformations. the matching network must have at least
two degrees of freedom (that is, two adjustable parameters).

If X I. = 0, the problem reduces to a single transformation.
in which case matching can be realized by inserting a
quarter-wavelength transformer (Section 2-8.5) next to the
load [Fig. 2-33(a»). For the general case where XI. -10, a
/",/4 transformer can still be designed to provide the desired
matching, but it has to be inserted at a distance dmax or dmin

from the load [Fig. 2-33(b»). where dmax and dmin are the
distances to voltage maxima and minima, respectively. The
design procedure is outlined in CD Module 2.7. The in-parallel
insertion networks shown in Fig. 2-33(c)-(e) are the subject of
Examples 2-13 and 2-14.

2-11.1 Lumped-Element Matching
In the arrangement shown in Fig. 2-34. the matching network
consists of a single lumped element. either a capacitor or an
inductor, connected in parallel with the line at a distance d from
the load. Parallel connections call for working in the admittance
domain. Hence, the load is denoted by an admittance YI. and
the line has characteristic admittance Yo. The shunt element
has admittance Y,. At M M', Yd is the admittance due to
the transmission-line segment to the right of M M', and Yin

(referenced at a point just to the left of M M') is equal to the
sum of Yd and Y,:

(2.138)

In general Yd is complex and Y, is purely imaginary because it
represents a reactive element. Hence. Eq. (2.138) can be written
as

Yin = (Cd + jBd) + js,
= Cd + j(Bd + Bs). (2.139)

When all quantities are normalized to Yo, Eq. (2.139) becomes

(2.140)

To achieve a matched condition at M M', it is necessary that
Yin = I + jO, which translates into two specific conditions.
namely

gd = 1 (real-part condition), (2.14Ia)

bs = -bd (imaginary-part condition). (2.141b)
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Fecdline M
j.l4 transformer A

M'....------------<l....---'-----0
(a) In-series j.l4 transformer inserted at AA'

Z(d)

Feedline

ZOI
B'M',...------,------0 o~--------<r---'

A'

(b) In-series ,1/4 transformer inserted at d = dmax or d = dmin

Feedllne

Zo

A

Zo
---dl---

(c) In-parallel insertion of capacitor at distance d,

Feedline

Zo

A

Zo
---d2----

(d) In-parallel insertion of inductor at distance d:

Feedlinc

Zo

(c) In-parallel insertion of a short-circuited stub

Figure 2-33: Five examples of in-series and in-parallel matching networks.

The real-part condition is realized through the choice of d, the
distance from the load to the shunt element, and the imaginary-
part condition is realized through the choice of the lumped

Fcedline

Yo

Shunt element
(a) Transmission-line circuit

Load

element (capacitor or inductor) and its value. These two choices
are the two degrees of freedom needed in order to match the
load to the feedline.

Feedlinc M

(b) Equivalent circuit

Figure 2-34: Inserting a reactive element with admittance Y, at M M' modifies Yd to Yin.
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Example 2-13: Lumped Element

A load impedance 2L = 25 - j50 Q is connected to a 50-Q
transmission line. Insert a shunt element to eliminate reflections
towards the sending end of the line. Specify the insert location d
(in wavelengths). the type of element. and its value. given that
f = 100 MHz.

(a) Analytical Solution: The normalized load admittance is

20 ( I ). - - -50
) L - 2L - 25 - j 50

= 0.4 + jO.8.

Upon replacing ZL with IIYL in Eq. (2.124), the reflection
coefficient at the load becomes

r = 1 - YL = I - (0.4 + jO.8) = 0.62e-.i82.9°.
I + YL 1 + (0.4 + jO.8)

Equation (2.119) provides an expression for the input
impedance at any location d from the end of the line. If we
invert the expression to convert it to admittance, we obtain the
following expression for Yd. the admittance of the line to the
right of M M' in Fig. 2-34(a):

1 - If le.i(Or-2/ldl

1 + Ifle.i(6'r-2/ld)

1 - Iflejl1'
1 + Iflejfi' '

Yd =

(2.142)

where
f)' = 8r - 2f3d. (2.143)

Multiplying the numerator and denominator of this expression
by the complex conjugate of its denominator leads to

( I - IfleFi') (I + Ifle-jR')
Yd= 1+lflejO' 1+lfle-jW

1-1f12 . 21flsinf)'
= I + 1f12 + 21f1 cos e' - J 1 + 1f12 + 21f1 cos e" .

(2.144)

Hence, the real and imaginary components of Yd are

1- 1f12
gd = ----::------

I + If 12+ 21f Icos 8' .

-2WI sin8'
bd - ------=:------

- 1+ 1f12 +21fIcos&'

(2.145a)

(2.145b)

To satisfy the first condition ofEq. (2.141 a), we need to choose d
[which is embedded in the definition fore' given by Eq. (2.143) I
such that

1 - 1f12
-----=:------ = I
1+ 1f12 + 21f1 cos f)' '

which leads to the solution

cos8' = +]f"], (2.146)

Since cos fj' is negative. 8' can be in either the second or third
quadrant. Given that WI = 0.62, we obtain

Each value of 8' offers a possible solution for d. We shall label
them dl and d2.

Solution for dl [Fig. 2-35(al]

With 8; =-128.3°=-2.240 rad, Or=-82.9°=-1.446 rad,
and f3 = 2rr IA. solving Eq. (2.143) for d gives

J... I

d, = - (&r- 81)
4rr

A
= - (-1.446 + 2.240) = 0.063A.

4rr

Next. to satisfy the second condition in Eq, (2.141), we need
to determine b., such that b., = -hd. Using Eq, (2.145b), we
obtain

2111sin8'
h'l = -----,,--..,-----

I+ If 12+ 21f Icos e'
2 x 0.62 sin(-128.3°)

1 + 0.622 + 2 x 0.62 cos( -128.3°) = -1.58.

The corresponding impedance of the lumped element is

1 I 20 20 j 20
2"'1 = - = -- = - = -- = - =j31.62Q.

Y'I Y'I Yo jh.1'J - j 1.58 1.58

Since the value of 2.\'1 is positive, the element to be inserted
should be an inductor and its value should be

31.62 31.62
L = -- = = 50 nH.

co 2rr x 108

The results of this solution have been incorporated into the
circuit of Fig. 2-35(a).
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Feedline

Yd
J

d[ = 0.063i,
I Feedline

YL = (0.4 +jO.8) YOYo

d2 = 0.207).

Yo YL = (0.4 +jO.8)Yo

(a) First solution (b) Second solution

Figure 2-35: Solutions for Example 2-13.

Solution for d2 [Fig. 2-3S(b)]

Repeating the procedure for fi~ = 128.3° leads to

A
d2 = - (-1.447 - 2.239) = -0.293,l,..

4n

A negative value for el2 is physically meaningless because that
would place it to the right of the load, but since we know that
impedances repeat themselves every ),,/2, we simply need to
add )../2 to the solution:

dz (physically realizable) = -0.293).. + 0.51..= 0.20n.

The associated value for b, is +1.58. Hence

ZS2 = -)31.62 n,

which is the impedance of a capacitor with

1c= -- =50pF.
31.62w

Figure 2-3S(b) displays the circuit solution for d2 and C.

(b) Smith Chart Solution:

The normalized load impedance is

ZL 25-)50
ZL = - = = 0.5 - ) 1.

Zo 50

which is represented by point A on the Smith chart of Fig. 2-36.
Next, we draw the constant S circle through point A. As alluded
to earlier, to perform the matching task, it is easier to work
with admittances than with impedances. The normalized load

admittance YL is represented by point B, obtained by rotating
point A over 0.25)", or equivalently by drawing a line from
point A through the chart center to the image of point A on the
S circle. The value of YL at B is

YL = 0.4 + )0.8,

and it is located at position 0.115), on the WTG scale. In the
admittance domain, the rL circles become gL circles, and the
XL circles become bL circles. To achieve matching, we need to
move from the load toward the generator a distance d such that
the normalized input admittance va of the line terminated in the
load (Fig. 2-34) has a real part of 1. This condition is satisfied
by either of the two matching points C and D on the Smith
charts of Figs. 2-36 and 2-37, respectively, corresponding to
intersections of the S circle with the ItL = 1 circle. Points C
and D represent two possible solutions for the distance d in
Fig. 2-34(a).

Solution for Point C (Fig. 2-36): At C,

)'d = 1 + )1.58,

which is located at 0.178)" on the WTG scale. The distance
between points Band C is

d i = (0.178 - 0.115»).. = 0.063)".

Looking from the generator toward the parallel combination
of the line connected to the load and the shunt element, the
normalized input admittance at terminals M M' is

Yin = Ys + Yd,
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o.usz
Load jq,

First intersection of
gL = 1 circle with SWR circle.
At C, Yd, = 1 +jl.5S.

Admittance of
short circuit stub
(Example 2-14)

Load ZL

Figure 2-36: Solution for point C of Examples 2-13 and 2-14. Point A is the normalized load with zi, = 0.5- j I; point B is YL = 0.4 + JO.8.
Point C is the intersection of the SWR circle with the gL = I circle. The distance from B to C is d) = 0.063;\.. The length of the shorted
stub (E to F) is I) = 0.09), (Example 2-14).

where Ys is the normalized input admittance of the shunt
element. To match the feed line to the parallel combination,
we need Yin = I + jO. ThUS.

This is the same result obtained earlier in the analytical solution,
which led to choosing an inductor L = 50 nH.

Solution for Point D (Fig. 2-37): At point D,

)'d = 1 - j1.58,

and the distance between points Band D is

dz = (0.322 - 0.115»), = 0.20n.

1 + jO = )'s + 1 + j 1.58,

or
Ys= - jl.58.



Admittance of
short circuit stub
(Example 2-14)
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Load jj,

Second intersection of
gL = I circle with SWR circle.
At D,Yd

2
= I - jl.58.

Figure 2-37: Solution for point [) of Examples 2-13 and 2-14. Point D is the second point of intersection of the SWR circle and the .1(1. = I
circle. The distance B to D gives d: = 0.20n, and the distance E to G gives 12 = 0.410)" (Example 2-14).

length I connected in parallel with the other two lines at M M'.
This second line is called a stub. and it is usually terminated in
either a short or open circuit. and hence its input impedance and
admittance are purely reactive. The stub shown in Fig. 2-38(a)
has a short-circuit termination.

The needed normalized admittance of the reactive element
is Ys = +j 1.58, which, as shown earlier. corresponds to a
capacitor C = 50 pF.

2-11.2 Single-Stub Matching

The single-stub matching network shown in Fig. 2-38(a)
consists of two transmission line sections, one of length d
connecting the load to the feedline at M M' and another of

The required two degrees of freedom are provided by the
length I of the stub and the distance d from the load to the
stub position.
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MI---d---Feedline

Shorted
stub

Yo Yo

Load

(a) Transmission line circuit

MFeedllne

(b) Equivalent circuit

Figure 2-38: Single-stub matching network.

Because at M M' the stub is added in parallel to the line (which
is why it is called a shunt stub). it is easier to work with
admittances than with impedances. The matching procedure
consists of two steps. In the first step. the distance d is selected
so as to transform the load admittance YL = 1/ZL into an
admittance of the form Yd = Yo + } B. when looking toward
the load at M M'. Then, in the second step, the length I of
the stub line is selected so that its input admittance Y, at M M'
is equal to -} B. The parallel sum of the two admittances at
M M' yields Yo. the characteristic admittance of the line. The
procedure is illustrated by Example 2-14.

Example 2-14: Single-Stub Matching

Repeat Example 2-13, but use a shorted stub (instead
of a lumped clement) to match the load impedance
ZL = (25 - }50) Q to the 50-Q transmission line.

Solution: In Example 2-13. we demonstrated that the load
can be matched to the line via either of two solutions:

(I) d 1 = 0.063A, and Y'l = }b.'I = - j 1.58,

(2) d: = 0.20n. and YS2 = j b"2 = } 1.58.

The locations of the insertion points, at distances d, and d2.
remain the same, but now our task is to select corresponding
lengths 11 and 12 of shorted stubs that present the required
admittances at their inputs.

To determine 11. we use the Smith chart in Fig. 2-36. The
normalized admittance of a short circuit is - joo, which is
represented by point E on the Smith chart, with position O.25A
on the WTG scale. A normalized input admittance of - j 1.58
is located at point F, with position 0.34A on the WTG scale.
Hence,

11 = (0.34 - 0.25)A = 0.09A.

Similarly. )'S2 = j 1.58 is represented by point G with position
O.16A on the WTG scale of the Smith chart in Fig. 2-37.
Rotating from point E to point G involves a rotation of 0.25A
plus an additional rotation of 0.16A or

12 = (0.25 + 0.16)A = O.4JA.

Review Question 2-24: To match an arbitrary load
impedance to a lossless transmission line through a
matching network. what is the required minimum number
of degrees of freedom that the network should provide?

Review Question 2-25: In the case of the single-stub
matching network, what are the two degrees of freedom?

Review Question 2-26: When a transmission line is
matched to a load through a single-stub matching network,
no waves will be reflected toward the generator. What
happens to the waves reflected by the load and by the
shorted stub when they arrive at terminals M M' in
Fig.2-38'!
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""CD Module 2.7 Quarter- Wavelength Transformer This
module allows you to go through a multi-step procedure
to design a quarter-wavelength transmission line that,
when inserted at the appropriate location on the original
line, presents a matched load to the feedline.

Move to the input of the transformer.
Here the line impedance is matched:

• Zl z 2.0+]1.6
rl = 0.53494 L 29.92213'

® Vl = 0.30488 -} 0.2439

• zed) : 0.535.}0.0
red) = 0.30293 L -18().0·• y(d) = 1.86916 +l 0.0

lin = lOl = 50.00

Note that the normalized Impedance
on the Smith chart is not 1.0 because
it is still normalized with Z02. r d=O.OA

r D.H - d= D.H
213d = 0.0 rad - 0.00

213(0.5 A - d) = 6.2832 rad = 360.0"
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• CD Module 2.8 Discrete Element Matching For each of
two possible solutions. the module guides the user through
a procedure to match the feedline to the load by inserting
a capacitor or an inductor at an appropriate location along
the line.

To cancel the imaginary part of the line
admittance we add a shunt inductance:

• ZL = 2.0+j 1.6
rL ,. 0.55494 L 29.92213"

@) YL . 0.30488 - j 0.2439

• zed) = f.O+jO.O
red) = 0.0 L 0.0'• y(d) • 1.0+jO.0

y 1 = (j w L1r' = - j 0.02668 S (actual)

L1 = 5.96458 x 10-9 H

y1 = - j 1.33417 (normalized)
(" d,. 0.2130-
(" 0.511- d = 0.286U

2j3 d = 2.6813 rad = 153.628]0

2P (0.5 ~ - d) = 3.6019 rad = 206.3713°
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~ CD Module 2.9 Single-Stub Thning Instead of inserting a
lumped element to match the feedline to the load, this
module determines the length of a shorted stub that can
accomplish the same goal.

To cancel the imaginary part of the
line admittance we add a stub with:

2.0 + j 1.6
0.'!J494 L 29.922130

Y L • 0.30488 - j 0.2439
Z(d)"' 1.0 + j 0.0
red) = 0.0 L 0.0·
y(d)"' 1.O+jO.O

Length: 11 = 0.1024 A
Admittance:

y 1 = - j 0.02668 S (actual)

y1 = - j 1.33417 (normalized)
2P d "' 2.6813 red = 153.6287"
2P (0.5 A- d)"' 3.6019 rad"' 206.3713"

2-12 Transients on Transmission Lines
chips, circuits, and computer networks. For such signals,
we need to examine the transient transmission line response
instead.Thus far, our treatment of wave propagation on transmission

lines has focused on the analysis of single-frequency,
time-harmonic signals under steady-state conditions. The
impedance-matching and Smith chart techniques we developed,
while useful for a wide range of applications, are inappropriate
for dealing with digital or wideband signals that exist in digital

The transient response qf a voltage pulse on a transmission
line is a time record of its back and forth travel between the
sending and receiving ends of the line. taking into account
all the multiple reflections (echoes) at both ends.
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Vet) V(t)

vor--....•

r

(a) Pulse of duration r

VI (t) = Vo u( t)Voi---------------

1 ------

Figure 2-39: A rectangular pulse V (t) of duration T can be represented as the sum of two step functions of opposite polarities displaced
by r relative to each other.

Let us start by considering the case of a single rectangular
pulse of amplitude Vo and duration r , as shown in Fig. 2-39(a).
The amplitude of the pulse is zero prior to t = 0, Vo over
the interval 0 < t < r, and zero afterwards. The pulse can be
described mathematically as the sum of two unit step functions:

v (t) = VI (t) + V2 (t)

= Vo u(t) - Vo u(t - r). (2.147)

where the unit step function u (x) is

U(X)={:) for x > 0,
for x < O.

(2.148)

The first component, VI (t) = Vo u (t), represents a de voltage of
amplitude Vo that is switched on at 1 = 0 and retains that value
indefinitely. and the second component. V2 (1) = - Vo U (1 - r ),
represents a de voltage of amplitude - Vuthat is switched on at
t = r and remains that way indefinitely. As can be seen from
Fig. 2-39(b). the sum VI (1) + V2(t) is equal to Vo forO < t < r
and equal to zero for 1 > r. This representation of a pulse in
terms of two step functions allows us to analyze the transient
behavior of the pulse on a transmission line as the superposition
of two de signals. Hence, if we can develop basic tools for
describing the transient behavior of a single step function, we
can apply the same tools for each of the two components of the
pulse and then add the results to obtain the response to V(r ).

2-12.1 Transient Response

The circuit shown in Fig. 2-40(a) consists of a generator,
composed of a de voltage source Vg and a series resistance Rg,

connected to a lossless transmission line of length I and

characteristic impedance Zoo The line is terminated in a purely
resistive load RL at z = I. Note that whereas in previous
sections, L = 0 was defined as the location of the load, now it
is more convenient to define it as the location of the source.

The switch between the generator circuit and the transmission
line is closed at t = O. The instant the switch is closed. the
transmission line appears to the generator circuit as a load with
impedance Zo. This is because, in the absence of a signal
on the line. the input impedance of the line is unaffected by

R (=0
~_ Transmission line

Vgi ~ Zo ]Rt
1--------1--

z=O z=/

(a) Transmission-line circuit

(b) Equivalent circuit at t = 0+

Figure 2-40: At t = 0+, immediately after closing the switch in
the circuit in (a), the circuit can be represented by the equivalent
circuit in (b).
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the load impedance RL. The circuit representing the initial
condition is shown in Fig. 2-40(b). The initial current I~
and corresponding initial voltage vt at the sending end of the
transmission line are given by

+ VgI) = ----"-
Rg + Zo

+ + VgZOV) = I) Zo = -"'-----
Rg + Zo

(2.149a)

(2.149b)

The combination of vt and I~ constitutes a wave that travels
along the line with velocity up = 1/.JIiS, immediately after the
switch is closed. The plus-sign superscript denotes the fact that
the wave is traveling in the +z-direction, The transient response
of the wave is shown in Fig. 2-41 at each of three instances in
time for a circuit with Rg = 4Zo and RL = 2Zo. The first
response is at time t) = T /2, where T = I/up is the time it
takes the wave to travel the full length of the line. By time tl,

the wave has traveled half-way down the line; consequently,
the voltage on the first half of the line is equal to vt, while the
voltage on the second half is still zero [Fig, 2-41(a)]. At t = T,
the wave reaches the load at z = I, and because RL f= Zo, the
mismatch generates a reflected wave with amplitude

(2.150)

where
RL - Zo

rL=---
RL+ZO

is the reflection coefficient of the load. For the specific case
illustrated in Fig. 2-41, RL = 2Zo, which leads to rL = 1/3.
After this first reflection, the voltage on the line consists of
the sum of two waves, the initial wave vt and the reflected
wave V)-. The voltage on the transmission line at t: = 3T /2 is
shown in Fig. 2-41(b); V(z, 3T /2) equals Vj+ on the first half
of the line (0 ::: z < 1/2), and (vt + Vj-) on the second half
(1/2 S z::: I).

At t = 2T, the reflected wave V)- arrives at the sending
end of the line. If Rg f= Zo, the mismatch at the sending end
generates a reflection at z = 0 in the form of a wave with voltage
amplitude V/ given by

(2.151)

(2.152)

where
_ Rg - Zorg-----"---

Rg+Zo
(2.153)

is the reflection coefficient of the generator resistance Rg• For
Rg = 4Zo. we have r g = 0.6. As time progresses after t = 2T,
the wave V2+ travels down the line toward the load and adds
to the previously established voltage on the line. Hence, at
ts = 5T /2, the total voltage on the first half of the line is

V(z, 5T /2) = vt + V)- + V2+

= (l + I't. + rLrg)Vt

(0 s z < 1/2), (2.154a)

while on the second half of the line the voltage is only

V(z, 5T /2) = vt + V)-

(1/2::: Z S I). (2. 154b)

The voltage distribution is shown in Fig. 2-41(c).
So far, we have examined the transient response of only

the voltage wave V(z, t). The associated transient response
of the current I(z, t) is shown in Figs. 2-41 (d)-(f). The
current behaves similarly to the voltage V(z, t), except for
one important difference. Whereas at either end of the line
the reflected voltage is related to the incident voltage by
the reflection coefficient at that end, the reflected current is
related to the incident current by the negative of the reflection
coefficient. This property of wave reflection is expressed by
Eq. (2.61). Accordingly,

II = -rd~,

r; = -rgil = rgrIJ~,

(2.155a)

(2.155b)

and so on.

The multiple-reflection process continues indefinitely, and
the ultimate value that V (z, t) reaches as t approaches +00

is the same at all locations on the transmission line.

It is given by

V:x;=vt + Vj- + V2++ V2- + V3++ V)- + ...

=V)+[l+rL+rLrg+rlrg+rlr~+rLr~+ .. ·1

= vt[(l +rd(l +rLrg+rlri+"')]

(2.156)

where x = rL r g. The series inside the square bracket is the
geometric series of the function

I 2--=I+x+x + ...
I-x

for [x] < 1. (2.157)
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V(z, Tl2) V(z.3T12) V(z.5T12)
(VI+ + VI-) l(Vt + VI- + V2+)(Vt + VI-)

V + /V\) .II(VI) V V r-~~- I

vt vt -IT\ vt vt =fGVI-- VI- = fLVI+

-Z - Z

0 112 0 112 0 112

(a) V(z) at I = TI2 (b) V(z) at f = 3T12 (c) V(z) at f = 5TI2

I(z. T12) Iiz, 3Tl2) l(z,5TI2)

1(11-) (It)
11-=-rL/t

+ - +

(It +/1-\ ',
(II + II + 12 )

11- II- II-
II I I-

z z z
0 112 0 112 0 112 I

(d) I(z) at t = Tl2 (e) l(z)att=3T/2 (f) 1(=) at f = 5TI2

Figure 2-41: Voltage and current distributions on a lossless transmission line at II = T /2,12 = 31'/2. and 13 = 5T /2. due to a unit step
voltage applied to a circuit with Rg = 4Zo and RL = 2Zo. The corresponding reflection coefficients are rL = 1/3 and rg = 3/5.

Hence, Eq. (2.156) can be rewritten in the compact form

V - V+ 1+ fL
oc - I 1- rLrg . (2.158)

Upon replacing vt, rL, and r, with Eqs. (2.149b), (2.151).
and (2.153). and simplifying the resulting expression. we obtain

(2.159)

2-12.2 Bounce Diagrams
Keeping track of the voltage and current waves as they bounce
back and forth on the line is a rather tedious process. The
bounce diagram is a graphical presentation that allows us
to accomplish the same goal. but with relative ease. The
horizontal axes in Figs. 2-42(a) and (b) represent position
along the transmission line. while the vertical axes denote
time. Figures 2-42(a) and (b) pertain to V(z. t) and I(z. f).

respectively. The bounce diagram in Fig. 2-42(a) consists
of a zigzag line indicating the progress of the voltage wave
on the line. The incident wave vt starts at L = I = 0 and
travels in the -l-z-direction until it reaches the load at z = I
at time I = T. At the very top of the bounce diagram.
the reflection coefficients are indicated by r = rg at the
generator end and by r = rL at the load end. At the
end of the first straight-line segment of the zigzag line. a
second line is drawn to represent the reflected voltage wave
Vl- = rL vt. The amplitude of each new straight-line segment

The voltage Vex; is called the steady-state voltage on the line.
and its expression is exactly what we should expect on the basis
of de analysis of the circuit in Fig. 2-40(a). wherein we treat
the transmission line as simply a connecting wire between the
generator circuit and the load. The corresponding steady-state
current is

100 = Voo = Vg . (2.160)
RL Rg+RL
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vt

r=rg
z=o
t = 0

V

1/2 3114

I

112r=[L
.....::::--+---+--+----, z = I

r =-rg 114
z=O
t= 0

r+-r,
.....:::::--+---+---t---, z = I

3114114

5T

T T

3T 3T

1(1/4,4T)V(l14,4T) 5T

(a) Voltage bounce diagram (b) Current bounce diagram

V(l14, t) (l -r. -r.r, +rgr[+r~r()Vt
(I + r L +r gr L + r gr () vt /

(1 + rL + r, rL)Vt \

T
4

3T 5T15T 4T 17T
4 4

T 7T 2T 9T
4 4

(c) Voltage versus time at z = 114

Figure 2-42: Bounce diagrams for (a) voltage and (b) current. In (c), the voltage variation with time at z = 1/4 for a circuit with rg = 3/5
and rL = 1/3 is deduced from the vertical dashed line at l/4 in (a).

equals the product of the amplitude of the preceding straight-
line segment and the reflection coefficient at that end of
the line. The bounce diagram for the current I (z, t) in
Fig. 2-42(b) adheres to the same principle except for the
reversal of the signs of rL and r g at the top of the bounce
diagram,

Using the bounce diagram, the total voltage (or current) at
any point ZI and time tl can be determined by drawing a vertical
line through point ZI, then adding the voltages (or currents) of
all the zigzag segments intersected by that line between t = 0
and t = 11. To find the voltage at Z = 1/4 and T = 4T, for
example, we draw a dashed vertical line in Fig. 2-42(a) through
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z = 1/4 and we extend it from t = 0 to t = 4T. The dashed
line intersects four line segments. The total voltage at z = 1/4
and t = 4T therefore is

The time variation of V(z, t) at a specific location z can be
obtained by plotting the values of V(z. t) along the (dashed)
vertical line passing through z. Figure 2-42(c) shows the
variation of V as a function of time at 7 = 1/4 for a circuit
with rg = 3/5 and rL = 1/3.

The transmission-line circuit of Fig. 2-43(a) is excited by a
rectangular pulse of duration T = I ns that starts at t = O.
Establish the waveform of the voltage response at the load,
given that the pulse amplitude is 5 V, the phase velocity is c,
and the length of the line is 0.6 m.

The one-way propagation time is

I 0.6
T = - = = 2 ns.

c 3 x 108

The reflection coefficients at the load and the sending end are

RL-ZO ISO-SOrL = = -----,- = 0.5.
RI. + Zo ISO+ 50
Rg - Zorg = .......!:.--

Rg +Zo

12.5 - 50
= -0.6.

12.5 + 50

By Eq. (2.147), the pulse is treated as the sum of two step
functions, one that starts at t = 0 with an amplitude VIO = 5 V
and a second one that starts at t = I ns with an amplitude
V20 = -5 V. Except for the time delay of I ns and the
sign reversal of all voltage values, the two step functions will
generate identical bounce diagrams, as shown in Fig. 2-43(b).

the first step function, the initial voltage is given by

V
I
+ = VOl z, = _5 _x_5_0_ = 4 V.

Rg+Zo 12.5+50

the information displayed in the bounce diagram, it
to generate the voltage response shown in

-2V

-4 V

(a) Pulse circuit

fg =-0.6
z = 0 114
t= 0
I ns

2 ns

3 ns
4 ns

//2 3/14
fL =0.5

z=/

II ns

12 ns

Ins

2 ns

3 ns
4 ns

5 ns

6 ns
7 ns

8 ns

9 ns

10 ns
II ns

12 ns
t

5 ns

6 ns
7 ns

8 ns

9 ns ~~~
10 ns

-- First step function
- - - - - Second step function

(b) Bounce diagram

VL (V)

6V
4V

2V 0.54 V
H--+--+-+-+-t--+-+--+--+--+-+- t (ns)

12345
-1.8 V

(c) Voltage waveform at the load

Figure 2-43: Example 2-15.

Example 2-16: Time-Domain Reflectometer

A time-domain reflectometer (TDR) is an instrument used to
locate faults on a transmission line. Consider, for example. a
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V(O, t)

Orop in level caused
by reflection from fault

6V+----~
3V

L- _

° 121JS

(a) Observed voltage at the sending end

(b) The fault at z = d is represented by a
fault resistance Rf

Figure 2-44: Time-domain reflectorneter of Example 2-16.

long underground or undersea cable that gets damaged at some
distance d from the sending end of the line. The damage may
alter the electrical properties or the shape of the cable, causing it
to exhibit at the fault location an impedance Ru. A TOR sends
a step voltage down the line. and by observing the voltage at
the sending end as a function of time, it is possible to determine
the location of the fault and its severity.

If the voltage waveform shown in Fig. 2-44(a) is seen on
an oscilloscope connected to the input of a 75-Q matched
transmission line, determine (a) the generator voltage, (b) the
location of the fault, and (c) the fault shunt resistance. The
line's insulating material is Teflon with Er = 2.1.

Solution: (a) Since the line is properly matched,
Rg = RL = Zoo In Fig. 2-44(b), the fault located a distance d
from the sending end is represented by a shunt resistance Ri,
For a matched line, Eq. (2.149b) gives

V+ _ VgZO VgZO Vg
1 - Rg + Zo = 2Zo = '2

According to Fig. 2-44(a), vt = 6 V. Hence,

Vg = 2 vt = 12 V.

(b) The propagation velocity on the line is

c 3 x 108
lip = - = = 2.07 x 108 mls.Fr J2.f

~or a fault at a distance d. the round-trip time delay of the echo
IS

2d
l!!t = -.

up

From Fig. 2-44(a), l!!t = 1211S. Hence.

l!!t 12 x 10-6
if = 2' up = 2 x 2.07 x 108 = 1, 242 m.

(e) The change in level of V (0. t) shown in Fig. 2-44(a)
represents V)-. Thus,

V]- = frVt = -3 Y,

or -3r, = 6 = -0.5,

where fr is the reflection coefficient due to the fault load Ru
that appears at L = d.

From Eq. (2.59).

Ri: - Zo
fr = ----

Ru + Zo .

which leads to Ru = 25 Q. This fault load is composed of the
fault shunt resistance Rf and the characteristic impedance Zo
of the line to the right of the fault:

I I I
-=-+-
Ru Rr Zo'

so the shunt resistance must be 37.5 Q.

Review Question 2-27: What is transient analysis used
for?

Review Question 2-28: The transient analysis presented
in this section was for a step voltage. How does one use
it for analyzing the response to a pulse?

Review Question 2-29: What is the difference between
the bounce diagram for voltage and the bounce diagram
for current?
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Technology Brief 4: EM Cancer Zappers

From laser eye surgery to 3-~ X-ray imaging, EM sources and sensors have been used as medical diagnostic and
treatment tools for many decades. Future advances in information processing and other relevant technologies will
undoubtedly lead to greater performance and utility of EM devices, as well as the introduction of entirely new types
of devices. This technology brief introduces two recent EM technologies that are still in their infancy, but are fast
developing into serious techniques for the surgical treatment of cancer tumors.

Microwave Ablation
In medicine, ablation is defined as the "surgical removal of body tissue," usually through the direct application of
chemical or thermal therapies. Microwave ablation applies the same heat-conversion process used in a microwave
oven (see Technology Brief 3), but instead of using microwave energy to cook food, it is used to destroy cancerous
tumors by exposing them to a focused beam of microwaves. The technique can be used percutaneously (through
the skin), laparoscopically (via an incision), or intra-operatively (open surgical access). Guided by an imaging
system, such as a CT scanner or an ultrasound imager, the surgeon can localize the tumor and then insert a thin
coaxial transmission line ('" 1.5 mm in diameter) directly through the body to position the tip of the transmission line
(a probe-like antenna) inside the tumor (Fig. TF4-1). The transmission line is connected to a generator capable of
delivering 60 W of power at 915 MHz (Fig. TF4-2).

The rise in temperature of the tumor is related to the amount of microwave energy it receives, which is equal to the
product of the generator's power level and the duration of the ablation treatment. Microwave ablation is a promising
new technique for the treatment of liver, lung, and adrenal tumors.

Ablation catheter (transmission line)
"/

Ultrasound transducer

Figure TF4-1: Microwave ablation for liver cancer treatment.

FigureTF4-2: Photograph of the setup for a percutaneous
microwave ablation procedure in which three single
microwave applicators are connected to three microwave
generators. (Courtesy of RadioGraphies, October 2005,
pp. 569-583.)
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2 Thf' voltage waves
reflect off the ends of the
transmission line. The waVf> near
the switch Inverts (red) its polarity
chanqes-c-when it reflects. because th<lt end is shorted. when the tnverrcd and
noninverted waves crash into each other at the load, a pulse of vcltaqe results.

up transient waves.

High- ..••oltagc source-.

3 When the
tr ailinq fadges

of the waves
finally meet, the
pulse ends

FigureTF4-3: High-voltage nanosecond pulse delivered to tumor cells via a transmission line. The cells to be shocked
by the pulse sit in a break in one of the transmission-line conductors. (Courtesy of IEEE Spectrum, August 2006.)

High-Power Nanosecond Pulses
Bioelectrics is an emerging field focused on the study of how electric fields behave in biological systems. Of particular
recent interest is to understand how living cells might respond to the application of extremely short pulses (on the
order of nanoseconds (10-9 s), and even as short as picoseconds (10-12 s) with exceptionally high voltage and current
amplitudes. The motivation is to treat cancerous cells by zapping them with high-power pulses. The pulse power is
delivered to the cell via a transmission line, as illustrated in Fig. TF4-3. Note that the pulse is about 200 ns long, and
its voltage and current amplitudes are approximately 3,000 V and 60 A, respectively. Thus, the peak power level is
about 180,000 W! However, the total energy carried by the pulse is only (1.8 x 105) x (2 x 10-7) = 0.0036 Joules.
Despite the low energy content, the very high voltage appears to be very effective in destroying malignant tumors (in
mice, so far), with no regrowth (Fig. TF4-4).

Figure TF4-4: A skin tumor in a mouse before (top) and 16 days after (bottom) treatment
with nanoseconds-long pulses of voltage. (Courtesy of IEEE Spectrum, August 2006.)
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• CD Module 2.10 Transient Response For a lossless line
terminated in a resistive load, the module simulates the
dynamic response, at any location on the line, to either a
step or pulse waveform sent by the generator.

Chapter 2 Relationships

TEM Transmission Lines
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Chapter 2 Relationships (continued)

Lossless Line
1
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ru
20 = Y C'

CHAPTER HIGHLIGHTS

• A transmission line is a two-port network connecting a
generatorto a load. EM waves traveling on the line may
experience ohmic power losses, dispersive effects, and
reflections at the generator and load ends of the line.
These transmission-line effects may be ignored if the
line length is much shorter than A.

• TEM transmission lines consist of two conductors
that can support the propagation of transverse
electromagnetic waves characterized by electric and
magnetic fields that are transverse to the direction
of propagation. TEM lines may be represented
by a lumped-element model consisting of four line
parameters (RI. LI, GI, and C I) whose values are
specified by the specific line geometry, the constitutive
parameters of the conductors and of the insulating
material between them, and the angular frequency or.

• Wave propagation on a transmission line, which
is represented by the phasor voltage V (z) and
associated current 1(z), is governed by the propagation
constant ofthe line, y = a + Jf3, and its characteristic
impedance Zoo Both y and Zo are specified by wand
the four line parameters.

• If RI = GI = 0, the line becomes lossless (a = 0). A
lossless line is generally nondispersive, meaning that
the phase velocity of a wave is independent of the
frequency.

• In general, a line supports two waves, an incident wave
supplied by the generator and another wave reflected

by the load. The sum of the two waves generates
a standing-wave pattern with a period of A/2. The
voltage standing-wave ratio S, which is equal to the
ratio of the maximum to minimum voltage magnitude
on the line, varies between 1 for a matched load
(ZL = Zo) and 00 for a line terminated in an open
circuit, a short circuit, or a purely reactive load.

• The input impedance of a line terminated in a short
circuit or open circuit is purely reactive. This
property can be used to design equivalent inductors and
capacitors.

• The fraction of the incident power delivered to the load
by a lossless line is equal to (l - If 12).

• The Smith chart is a useful graphical tool for
analyzing transmission line problems and for designing
impedance-matching networks.

• Matching networks are placed between the load and the
feed transmission line for the purpose of eliminating
reflections toward the generator. A matching network
may consist of lumped elements in the form of
capacitors and/or inductors, or it may consist of sections
of transmission lines with appropriate lengths and
terminations.

• Transient analysis of pulses on transmission lines can be
performed using a bounce-diagram graphical technique
that tracks reflections at both the load and generator
ends of the transmission line.
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GLOSSARY OF IMPORTANT TERMS

Provide definitions or explain the meaning of the following terms:

admittance Y
air line
attenuation constant a
bounce diagram
characteristic impedance Zo
coaxial line
complex propagation constant y
conductance G
current maxima and minima
dispersive transmission line
distortionless line
effective relative permittivity ecff

guide wavelength A
higher-order transmission lines
impedance matching
in-phase
input impedance Zin

load impedance ZL
lossless line
lumped-element model

PROBLEMS

Sections 2-1 to 2-4: Transmission-Line Model

matched transmission line
matching network
microstrip line
normalized impedance
normalized load reactance XL
normalized load resistance 'L

open-circuited line
optical fiber
parallel-plate line
perfect conductor
perfect dielectric
phase constant fJ
phase opposition
phase-shifted reflection coefficient rd

quarter-wave transformer
short-circuited line
single-stub matching
slotted line
Smith chart
standing wave

2.1 A transmission line of length I connects a load to a
sinusoidal voltage source with an oscillation frequency f.
Assuming that the velocity of wave propagation on the line
is c, for which of the following situations is it reasonable to
ignore the presence of the transmission line in the solution of
the circuit:

*(a) 1= 20 ern, f = 20 kHz

(b) I = 50 krn, f = 60 Hz

*(c) I = 20 ern, f = 600 MHz

(d) I = I mm, f = 100GHz

*2.2 A two-wire copper transmission line is embedded in a
dielectric material with E'r = 2.6 and ()"= 2 X ]()-6 S/m. Its
wires are separated by 3 em and their radii are I mm each.

*Answerts) available in Appendix D.

standing-wave pattern
surface resistance Rs
susceptance B
SWRcircle
telegrapher's equations
TEM transmission lines
time-average power Pay
transient response
transmission-line parameters
two-wire line
unit circle
voltage maxima and minima
voltage reflection coefficient r
voltage standing-wave ratio (VSWR

or SWR) S
wave equations
wave impedance Zed)
waveguide
WTGandWTL

*(a) Calculate the line parameters R', L'. G', and C' at 2 GHz.

(b) Compare your results with those based on CD Module 2.1.
Include a printout of the screen display.

2.3 Show that the transmission-line model shown in Fig. P2.3
yields the same telegrapher's equations given by Eqs. (2.14) and
(2.16).

L'J1z
-2- i(z+ J1z.t)

'----.....::..-0+

t
v(z+ J1z,t)

!

R'J1z
-2-

--------J1z--------

Figure P2.3: Transmission-line model for Problem 2.3.
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*2.4 A I-GHz parallel-plate transmission line consists of 1.2-
ern-wide copper strips separated by a 0.15-cm-thick layer
of polystyrene. Appendix B gives Ile = 110 = 4n x 10-7

(HIm) and ac = 5.8 x ){)7 (S/m) for copper, and Er = 2.6 for
polystyrene. Use Table 2-1 to determine the line parameters
of the transmission line. Assume that fl = flo and a :::::::0 for
polystyrene.

o!S" 2.5 For the parallel-plate transmission line of Problem 2.4,
the line parameters are given by: R' = I Q/m, L' = 167 nHlm,
G' = O. and C' = 172 pF/m. Find ct. 13,up. and Zo at I GHz.

2.6 A coaxial line with inner and outer conductor diameters
of 0.5 ern and I ern, respectively, is filled with an insulating
material with Er = 4.5 and a = ){)-3 S/m. The conductors are
made of copper.

* (a) Calculate the line parameters at 1 GHz.
(b) Compare your results with those based on CD Module 2.2.

Include a printout of the screen display.

2.1 Find ct. f3. lip, and 20 for the two-wire line of Problem 2.2.
Compare results with those based on CD Module 2.1. Include
a printout of the screen display.

*2.8 Find o , f3. up, and 20 for the coaxial line of Problem
2.6. Verify your results by applying CD Module 2.2. Include a
printout of the screen display.

Section 2-5: Microstrip

*2.9 A loss less microstrip line uses a l-rnm-wide conducting
strip over a l-cm-thick substrate with Er = 2.5. Determine the
line parameters, Ecff, Zo, and 13 at 10 GHz. Compare your
results with those obtained by using CD Module 2.3. Include
a printout of the screen display.

2.10 Use CD Module 2.3 to design a 100-Q microstrip
transmission line. The substrate thickness is 1.8 mm and its
Er = 2.3. Select the strip width w, and determine the guide
wavelength A at f = 5 GHz. Include a printout of the screen
display.

*2.] 1 A 50-Q microstrip line uses a 0.6-mm alumina substrate
with Er = 9. Use CD Module 2.3 to determine the required
strip width w. Include a printout of the screen display.

2.12 Generate a plot of Zo as a function of strip width w,
over the range from 0.05 mm to 5 mm, for a microstrip line
fabricated on a 0.7-mm-thick substrate with Er = 9.8.

'" Solution available on CD.

Section 2-6: Lossless Line

2.13 In addition to not dissipating power, a lossless
line has two important features: ( I) it is dispersion less
(up is independent of frequency); and (2) its characteristic
impedance Zo is purely real. Sometimes, it is not possible to
design a transmission line such that R' «wL' and C' «wC "
but it is possible to choose the dimensions of the line and its
material properties so as to satisfy the condition

R'C' = i/c' (distortionless line).

Such a line is called a distortionless line, because despite
the fact that it is not loss less, it nonetheless possesses the
previously mentioned features of the lossless line. Show that
for a distortionless line,

!L'z, = V C'.

*2.14 For a distortion less line (see Problem 2.13) with
Zo = 50 Q, a = 20 (mNp/m). and up = 2.5 X lOll (rn/s), find
the line parameters and A at 100 MHz.

2.15 Find a and Zo of a distortionless line whose R' = 2 Q/m
and G' = 2 x 10-4 S/m.

-$< 2.16 A transmission line operating at 125 MHz has
Zo = 40 Q, a = 0.02 (Np/rn), and f3 = 0.75 rad/m. Find the
line parameters R', L', C', and C '.

2.11 Using a slotted line. the voltage on a lossless
transmission line was found to have a maximum magnitude of
1.5V and a minimum magnitude of 0.6 V. Find the magnitude
of the load's reflection coefficient.

*2.18 Polyethylene with e, = 2.25 is used as the insulating
material in a lossless coaxial line with a characteristic
impedance of 50 Q. The radius of the inner conductor is 1.2mm.
(a) What is the radius of the outer conductor?

(b) What is the phase velocity of the line?

2.19 A 50-Q lossless transmission line is terminated in a load
with impedance ZL = (30 - j50) Q. The wavelength is 8 ern.
Determine:
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(a) The reflection coefficient at the load.

(b) The standing-wave ratio on the line.

(e) The position of the voltage maximum nearest the load.

(d) The position of the current maximum nearest the load.

(e) Verify quantities in parts (a)-(d) using CD Module 2.4.
Include a printout of the screen display.

2.20 A 300-Q loss less air transmission line is connected to a
complex load composed of a resistor in series with an inductor,
as shown in Fig. P2.20. At 5 MHz, determine: (a) I", (b) S,
(c) location of voltage maximum nearest to the load, and (d)
location of current maximum nearest to the load.

Zo= 3000

L=0.02 mH

R=6000

Figure P2,20: Circuit for Problem 2.20.

On a 150-Q loss less transmission line, the following
observations were noted: distance of first voltage minimum
from the load = 3 ern; distance of first voltage maximum from
the load = 9 em: S = 3. Find ZL.

2.22 Using a slotted line, the following results were obtained:
distance of first minimum from the load = 4 ern; distance of
second minimum from the load = 14 ern; voltage standing-
wave ratio = 1.5. If the line is lossless and Zo = 50 Q, find the
load impedance.

*2.23 A load with impedance Zt. = (25 - j50) Q is to be
connected to a lossless transmission line with characteristic
impedance Zo, with Zo chosen such that the standing-wave
ratio is the smallest possible. What should Zo be?

2.24 A 50-Q lossless line terminated in a purely resistive load
has a voltage standing-wave ratio of 3. Find all possible values
of ZL.

2.25 Apply CD Module 2.4 to generate plots of the voltage
standing-wave pattern for a 50-Q line terminated in a load
impedance Zt. = (100 - j50) Q. Set Vg = I V, Zg = 50 Q,

Sr = 2.25, I = 40 ern, and f = 1GHz. Also determine S, dmax•

and dmin.

*2.26 A 50-Q lossless transmission line is connected to a load
composed of a 75-Q resistor in series with a capacitor of
unknown capacitance (Fig. P2.26). If at 10MHz the voltage
standing wave ratio on the line was measured to be 3. determine
the capacitance C.

Zo = 50 0

C=')

oo--------~o~-y-~ . .
Figure P2.26: Circuit for Problem 2.26.

Section 2-7: Wave and Input Impedance

*2.27 At an operating frequency of 300 MHz. a lossless 50-Q
air-spaced transmission line 2.5 m in length is terminated with
an impedance ZL = (40 + j20) Q. Find the input impedance.

2.28 A lossless transmission line of electrical length
I = 0.35'\ is terminated in a load impedance as shown in
Fig. P2.28. Find r, S, and z.; Verify your results using CD
Modules 2.4 or 2.5. Include a printout of the screen's output
display.

---I = 0.35..i.---

ZL = (60 +j30) 0Zo= 1000

Figure P2.28: Circuit for Problem 2.28.

2.29 Show that the input impedance of a quarter-wavelength-
long lossless line terminated in a short circuit appears as an open
circuit.
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2.30 Show that at the position where the magnitude of the
voltage on the line is a maximum, the input impedance is purely
real.

*2.31 A voltage generator with

I'g(t) = 5 cos(2][ x 109f) V

and internal impedance Zg = 50 !J is connected to a 50-!J
lossless air-spaced transmission line. The line length is
5 ern and the line is terminated in a load with impedance
ZL = (I 00 ~ j 100) !J. Determine:

fa) r at the load.

(b) Zin at the input to the transmission line.

(e) The input voltage V; and input current ii.
(d) The quantities in (a)-(c) using CD Modules 2.4 or 2.5.

2.32 A 6-m section of 150-!J lossless line is driven by a source
with

and Zg = 150!J. If the line, which has a relative permittivity
Er = 2.25, is terminated in a load ZL = (150 ~ j50) Q,

determine:

(a) A on the line.

(b) The reflection coefficient at the load.

(e) The input impedance.

(d) The input voltage v;.
(e) The time-domain input voltage Vi(f).

(f) Quantities in (a) to (d) using CD Modules 2.4 or 2.5.

*2.33 Two half-wave dipole antennas, each with an impedance
of75 Q, are connected in parallel through a pair of transmission
lines, and the combination is connected to a feed transmission
line, as shown in Fig. P2.33.

75Q
(Antenna)

75 Q
(Antenna)

Figure P2.33: Circuit for Problem 2.33.

All lines are 50 !J and lossless,
(a) Calculate Zinl' the input impedance of the antenna-

terminated line, at the parallel juncture.

(b) Combine Zinl and Zin2 in parallel to obtain Z; .. the
effective load impedance of the feedline.

(e) Calculate Zin of the feedline.

.M 2.34 A 50-!J lossless line is terminated in a load impedance
ZL = (30 ~ j20) Q.

Zo= son ZL = (30 -./20) o

(a)

Zo = 50 n ZL = (30 -./20) nR

(b)

Figure P2.34: Circuit for Problem 2.34.
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(a) Calculate rand S.

(b) It has been proposed that by placing an appropriately
selected resistor across the line at a distance dmax from
the load las shown in Fig. P2.34(b)j, where dmax is the
distance from the load of a voltage maximum. then it is
possible to render Z, = Zoo thereby eliminating reflection
back to the end. Show that the proposed approach is valid
and find the value of the shunt resistance.

2.35 For the lossless transmission line circuit shown in
Fig. P2.3S, determine the equivalent series lumped-element
circuit at 400 MHz at the input to the line. The line has a
characteristic impedance of SO Q and the insulating layer has
e, = 2.2S.

Zo= 50 Q 75 Q

l-l.2m-1

Figure P2.35: Circuit for Problem 2.35.

Section 2-R: Special Cases

2.36 At an operating frequency of 300 MHz, it is desired to
use a section of a loss less 50-Q transmission line terminated
ina short circuit to construct an equivalent load with reactance
X = 40 Q. If the phase velocity of the line is 0.75c. what is
the shortest possible line length that would exhibit the desired
reactance at its input'? Verify your result using CD Module 2.5.

A lossless transmission line is terminated in a short
circuit. How long (in wavelengths) should the line be for it
to appear as an open circuit at its input terminals?

2.38 The input impedance of a 31-cm-long lossless transmis-
sion line of unknown characteristic impedance was measured
at I MHz. With the line terminated in a short circuit, the
measurement yielded an input impedance equivalent to an
inductor with inductance of 0.064 J,lH, and when the line was

ircuited, the measurement yielded an input impedance
to a capacitor with capacitance of 40 pF. Find Zo of

line. the phase velocity, and the relative permittivity of the
ng material.

*2.39 A 7S-Q resistive load is preceded by a ).../4 section
of a 50-Q lossless line, which itself is preceded by another
).../4 section of a 100-Q line. What is the input impedance?
Compare your result with that obtained through two successive
applications of CD Module 2.5.

2.40 A 100-MHz FM broadcast station uses a 300-Q
transmission line between the transmitter and a tower-mounted
half-wave dipole antenna. The antenna impedance is 73 Q.
You are asked to design a quarter-wave transformer to match
the antenna to the line.

(a) Determine the electrical length and characteristic
impedance of the quarter-wave section.

(b) If the quarter-wave section is a two-wire line with
D = 2.5 em, and the wires are embedded in polystyrene
with Er = 2.6. determine the physical length of the quarter-
wave section and the radius of the two wire conductors.

2.41 A 50-Q loss less line of length I = 0.375)... connects a
300-MHz generator with Vg = 300 V and Zg = 50 Q to a
load ZL. Determine the time-domain current through the load
for:

(a) ZL = (50 - j50) Q

(b) ZL = 50 Q

(c) ZL = 0 (short circuit)
For (a). verify your results by deducing the information you
need from the output products generated by CD Module 2.4.

Section 2-9: Power Flow on Lossless Line

* -2.42 A generator with Vg= 300 V and Zg = 50 Q is
connected to a load ZL = 75 Q through a 50-Q loss less line
of length I = 0.15)....

(a) Compute Zin. the input impedance of the line at the
generator end.- -(b) Compute t, and Vi.

(c) Compute the time-average power delivered to the line.
I --*Pin = 291cl ViIi ).

(d) Compute VL. /;,' and the time-average power delivered to
the load, PL = ~91cl VL~~]. How does Pin compare to PL?
Explain.

(e) Compute the time-average power delivered by the
generator, Pg, and the time-average power dissipated in
Zg. Is conservation of power satisfied?
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son ---AI2---

A

Line 1

B

Generator

ZL1 = 75 n
(Antenna I)

ZL, = 75 n
(Antenna 2)

Figure P2.43: Antenna contiguration for Problem 2.43.

2.43 If the two-antenna con1l.guration shown in Fig. P2.43 is
connected to a generator with Vg = 250 Y and Zg = 50 Q, how
much average power is delivered to each antenna?

*2.44 For the circuit shown in Fig. P2.44, calculate the average
incident power, the average reflected power, and the average
power transmitted into the infinite 100-Q line. The 1./2 line
is lossless and the infinitely long line is slightly lossy. (Hint:
The input impedance of an infinitely long line is equal to its
characteristic impedance so long as a :f::. 0.)

son I-AI2-1

Zo = 50 n :z, = 100 n _ co

. I t
P~v-I-Pav

I

P1v-1

Figure P2.44: Circuit for Problem 2.44.

~ 2.45 The circuit shown in Fig. P2.45 consists of a
100-Q lossless transmission line terminated in a load with
ZI. = (50 + j 1(0) Q. If the peak value of the load voltage
was measured to be I vt I = 12 y, determine:

(a) the time-average power dissipated in the load,

(b) the time-average power incident on the line,

(c) the time-average power reflected by the load.

ZL = (50 +jlOO) nz, = 100 n

Figure P2.45: Circuit for Problem 2.45.



PROBLEMS 141

2.54 Repeat Problem 2.53 using CD Module 2.6.

*2.55 A lossless 50-[2 transmission line is terminated in a short
circuit. Use the Smith chart to determine:

(a) The input impedance at a distance 2.3}..from the load.

(b) The distance from the load at which the input admittance
is Yin= - jO.04 S.

2.56 Repeat Problem 2.55 using CD Module 2.6.

2.57 Use the Smith chart to find jj, if 7.L = 1.5 - jO.7.

2.58 A lossless 100-[2 transmission line 3}"/8 in length is
terminated in an unknown impedance. If the input impedance
is lin = - j2.5 [2:

*(a) Use the Smith chart to find lL.

(b) Verify your results using CD Module 2.6.

2.59 A 75-[2 lossless line is 0.6}.. long. If S = 1.8 and
fir = -60°. use the Smith chart to find [I'[, ZL, and Zin.

2.60 Repeat Problem 2.59 using CD Module 2.6.

ZL = (75 - )50) n *2.61 Using a slotted line on a 50-[2 air-spaced lossless lin.,:,the
following measurements were obtained: S = 1.6 and I V [max

occurred only at 10 cm and 24 em from the load. Use the Smith
chart to find ZL.

2.46 An antenna with a load impedance

Zt = (75 + j25) [2

is connected to a transmitter through a 50-[2 lossless
transmission line. If under matched conditions (50-[2 load)
the transmitter can deliver 20 W to the load. how much power
can it deliver to the antenna'! Assume that Zg = Zoo

Section 2-10: Smith Chart

2.47 Use the Smith chart to find the reflection coefficient
corresponding to a load impedance of
(a) Zt = 3Zo•

(b) ZL = (2 - j2)Zo.

(e) ZL = - j2Zo,
(d) Zt = 0 (short circuit).

2.48 Repeat Problem 2.47 using CD Module 2.6.

2.49 Use the Smith chart to find the normalized load
impedance corresponding to a reflection coefficient of

(a) r = 0.5.
(b) r = 0.5L!>![,.

(e) r = -I.
(d) r = 0.3/-30',

(e) r = O,

(0 r = j.

2.50 Use the Smith chart to determine the input impedance
lin of the two-line configuration shown in Fig. P2.50.

III = 3..1/8
1

12 = 5),/8
C B IA

lin _ ZOI = 100 n Z02 = 50 n

Figure P2.50: Circuit for Problem 2.50.

2.51 Repeat Problem 2.50 using CD Module 2.6.

*2.52 On a lossless transmission line terminated in a load
ZL = 100 Q. the standing-wave ratio was measured to be 2.5.
Use the Smith ehart to find the two possible values of Zo.

2.53 A loss less 50-[2 transmission line is terminated in a load
with ZL = (50 + j25) [2. Use the Smith chart to find the
following:

(a) The reflection coefficient r.
(b) The standing-wave ratio.

(e) The input impedance at 0.35). from the load.

(d) The input admittance at 0.35), from the load.

(e) The shortest line length for which the input impedance is
purely resistive.

(f) The position of the first voltage maximum from the load.

2.62 At an operating frequency of 5 GHz. a 50-Q loss less
coaxial line with insulating material having a relative
permittivity e, = 2.25 is terminated in an antenna with an
impedance ZL = 150 Q. Use the Smith chart to find lin. The
line length is 30 cm.
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Section 2-11: Impedance Matching

*2.63 A 50-Q lossless line 0.6,1..long is terminated in a load
with ZL = (50 + j25) Q. At 0.3,1..from the load, a resistor with
resistance R = 30 Q is connected as shown in Fig. P2.63. Use
the Smith chart to find 2in.

2in _ 20=50n 30n 20 = 50 n

---0.3}.--- ---0.3/. ---

2L = (50 +)25) n

Figure P2.63: Circuit for Problem 2.63.

~ 2.64 Use CD Module 2.7 to design a quarter-wavelength
transformer to match a load with 21. = (100 - j2oo) Q to a
50-Q line.

2.65 Use CD Module 2.7 to design a quarter-wavelength
transformer to match a load with 21. = (50 + .i 10) Q to a
100-Q line.

2.66 A 200-Q transmission line is to be matched to a computer
terminal with 2L = (50 - j25) Q by inserting an appropriate
reactance in parallel with the line. If f = 8oo MHz and e, = 4.
determine the location nearest to the load at which inserting:
(a) A capacitor can achieve the required matching, and the

value of the capacitor.
(b) An inductor can achieve the required matching. and the

value of the inductor.

2.67 Repeat Problem 2.66 using CD Module 2.8.

2.68 A 50-Q loss less line is to be matched to an antenna with
21. = (75 - j20) Q using a shorted stub. Use the Smith chart
to determine the stub length and distance between the antenna
and stub.

*2.69 Repeat Problem 2.68 for a load with
ZL = (loo + j50) Q.

2.70 Repeat Problem 2.68 using CD Module 2.9.

2.71 Repeat Problem 2.69 using CD Module 2.9.

2.72 Determine 2in of the feed line shown in Fig. P2.72. All
lines are lossless with 20 = 50 Q.

2\ = (50 +j50) n
./)

\))t-

1-0.3A-I/

Z2 = (50 -)50) n

Figure P2.12: Network for Problem 2.72.

*2.73 Repeat Problem 2.72 for the case where all three
transmission lines are ,1../4in length.

2.74 A 25-Q antenna is connected to a 75-Q lossless
transmission line. Reflections back toward the generator can
be eliminated by placing a shunt impedance Z at a distance I
from the load (Fig. P2.74). Determine the values of 2 and I.

1 = '!

B A

20 = 75 n 2=? 2L = 25 n

Figure P2.74: Circuit for Problem 2.74.

Section 2-12: Transients on Transmission Lines

J(Y 2.75 Generate a bounce diagram for the voltage V(;:, t) for
a I-m-Iong loss less line characterized by Zo = 50 Q and
up = 2e/3 (where c is the velocity of light) if the line is fed
by a step voltage applied at t = 0 by a generator circuit with
Vg = 60 V and Rg = 100 Q. The line is terminated in a load
RL = 25 Q. Use the bounce diagram to plot Vet) at a point
midway along the length of the line from t = 0 to t = 25 ns.
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2.76 Repeat Problem 2.75 for the current I (z, 1) on the line.

2.77 In response to a step voltage, the voltage waveform
shown in Fig. P2.77 was observed at the sending end of a
lossless transmission line with Rg = 50 Q, Zu = 50 Q, and
er = 2.25. Determine the following:
(a) The generator voltage.
(b) The length of the line.
(e) The load impedance.

V(O, t)

5V+-----..,

•••••---3V

f
o 6 fls

Figure P2.77: Voltage waveform for Problems 2.77 and 2.79.

*2.78 In response to a step voltage, the voltage waveform
shown in Fig. P2.78 was observed at the sending end of a shorted
line with Zo = 50 Q and Er = 4. Determine Vg• Rg, and the
line length.

V(O, t)

12V+----.

3V •....•.----.
0.75 V

o 71'S 141'S

Figure P2.78: Voltage waveform of Problem 2.78.

2.79 Suppose the voltage waveform shown in Fig. P2.77
was observed at the sending end of a 50-Q transmission line
in response to a step voltage introduced by a generator with
Vg = 15 V and an unknown series resistance Rg. The line is
I krn in length, its velocity of propagation is I x lORmis, and
it is terminated in a load RI. = 100 Q.

(a) Determine Rg.

(b) Explain why the drop in level of V (0. t) at t = 6 I1S cannot
be due to reflection from the load.

(e) Determine the shunt resistance Rr and location ofthe fault
responsible for the observed waveform.

2.80 A generator circuit with Vg = 200V and Rg = 25 Q was
used to excite a 75-Q lossless line with a rectangular pulse of
duration r = 0.4 lIS. The line is 200 m long, its up = 2 X lOR
mis, and it is terminated in a load RL = 125 Q.

(a) Synthesize the voltage pulse exciting the line as the sum
of two step functions, VgI (t) and Vg2 (r ).

(b) For each voltage step function, generate a bounce diagram
for the voltage on the line.

(e) Use the bounce diagrams to plot the total voltage at the
sending end of the line.

2.81 For the circuit of Problem 2.80, generate a bounce
diagram for the current and plot its time history at the middle
of the line.

*2.82 In response to a step voltage, the voltage waveform
shown in Fig. P2.82 was observed at the midpoint of a losslcss
transmission line with Zo = 50 Q and up = 2 x 108 m/s.
Determine: (a) the length ofthe line, (b) 2J" (c) Rg, and (d) Vg.

V(//2, t)

12 V ----r----.

15 21

Figure P2.82: Circuit for Problem 2.X2.
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Objectives

Upon learning the material presented in this chapter, you should
be able to:

1. Use vector algebra in Cartesian, cylindrical, and spherical
coordinate systems.

2. Transform vectors between the three primary coordinate
systems.

3. Calculate the gradient of a scalar function and the
divergence and curl of a vector function in any of the three
primary coordinate systems.

4. Apply the divergence theorem and Stokes's theorem.
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Overview
In our examination of wave propagation on a transmission
line in Chapter 2, the primary quantities we worked with were
voltage, current, impedance, and power. Each of these is a
scalar quantity, meaning that it can be completely specified by
its magnitude, if it is a positive real number, or by its magnitude
and phase angle if it is a negative or a complex number Ia
negative number has a positive magnitude and a phase angle
of n (rad) I. This chapter is concerned with vectors. A vector
has a magnitude and a direction. The speed of an object is a
scalar, whereas its velocity is a vector.

Starting in the next chapter and throughout the succeeding
chapters in the book, the primary electromagnetic quantities
we will deal with are the electric and magnetic fields, E
and H. These, and many other related quantities, are vectors.
Vector analysis provides the mathematical tools necessary for
expressing and manipulating vector quantities in an efficient and
convenient manner. To specify a vector in three-dimensional
space, it is necessary to specify its components along each of the
three directions. Several types of coordinate systems are used
in the study of vector quantities, the most common being the
Cartesian (or rectangular), cylindrical, and spherical systems.
A particular coordinate system is usually chosen to best suit the
geometry of the problem under consideration.

Vector algebra governs the laws of addition, subtraction, and
"multiplication" of vectors. The rules of vector algebra and
vector representation in each of the aforementioned orthogonal
coordinate systems (including vector transformation between
them) are two of the three major topics treated in this chapter.
The third topic is vector calculus, which encompasses the
laws of differentiation and integration of vectors, the use of
special vector operators (gradient, divergence, and curl), and
the application of certain theorems that are particularly useful
in the study of electromagnetics, most notably the divergence
and Stokes's theorems.

3-1 Basic Laws of Vector Algebra
A vector is a mathematical object that resembles an arrow.
Vector A in Fig. 3-1 has magnitude (or length) A = IAI and
unit vector a:

A = alAI = aA. (3.1 )

The unit vector a has a magnitude of one (Ial = I), and points
from A's tailor anchor to its head or tip. From Eq. (3.1),

, A A
a=-=-.

IAI A
(3.2)

a
\--\1

Figure 3·1: Vector A = itA has magnitude A = IAI and points
in the direction of unit vector ii = AI A.

In the Cartesian (or rectangular) coordinate system shown
in Fig. 3-2(a), the x, y, and L coordinate axes extend along
directions of the three mutually perpendicular unit vectors X, y,
and i,also called base vectors. The vector A in Fig. 3-2(b) may

z

3

2

z
~';- ••..---+-~y

2 3

x
(a) Base vectors

z

x
(b) Components of A

Figure 3-2: Cartesian coordinate system: (a) base vectors X,y,
and i. and (b) components of vector A.
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be decomposed as

A = xA, +yAy +zA". (3.3)

where Ax, A,.. and A" are A's scalar components along the
X-. y-, and z-axes, respectively. The component Az is equal to
the perpendicular projection of A onto the z-axis, and similar
definitions apply to Ax and A v- Application of the Pythagorean
theorem, first to the right triangle in the x-y plane to express
the hypotenuse A,. in terms of Ax and Ay. and then again to the
vertical right triangle with sides AI' and AI' and hypotenuse A,
yields the following expression for the magnitude of A:

(3.4)

Since A is a nonnegative scalar. only the positive root applies.
From Eq. (3.2), the unit vector a is

_ A xAx + yA, +zA/a= - = .
A JA~+A~+A3

(3.5)

Occasionally. we shall use the shorthand notation
A = (Ar• A,.. Az) to denote a vector with components
At. A,. and A" in a Cartesian coordinate system.

3-1.1 Equality of Two Vectors

Two vectors A and B are equal if they have equal magnitudes
and identical unit vectors. Thus, if

A = aA = xA, + yAy + zA/.
B = bB = xB, + yBy + zBL•

(3.6a)

0.6b)

then A = B if and only if A = B and a = b, which requires
that Ax = Bx. Ay = By. and AI' = B".

Equality of two vectors does not necessarily imply that
they are identical; in Cartesian coordinates. two displaced
parallel vectors of equal magnitude and pointing in the same
direction are equal. but they are identical only if they lie 011

top of one another:

3-1.2 Vector Addition and Subtraction

The sum of two vectors A and B is a vector
C = x Cx + y C, + z C", given by

C=A+B
= (xA, + yA\' + zAz) + (xBx + yBy + zBL)

= x(Ax + Bx) + y(Ay + B,) + z(AL + Bz)

=xCr+YCy+zCz. 0.7)

Hence. vector addition is commutative:

C =A+B = B+A. (3.8)

Graphically, vector addition can be accomplished by either the
parallelogram or the head-to-tail rule (Fig. 3-3). Vector C is
the diagonal of the parallelogram with sides A and B. With the
head-to-tail rule, we may either add A to B or B to A. When A
is added to B. it is re-positioned so that its tail starts at the tip
of B. while keeping its length and direction unchanged. The
sum vector C starts at the tail of B and ends at the tip of A.

Subtraction of vector B from vector A is equivalent to the
addition of A to negative B. Thus,

D=A-B
=A+(-B)
= x(Ax - B,) + yeA)' - By) + z(AL - BL). (3.9)

Graphically, the same rules used for vector addition are also
applicable to vector subtraction; the only difference is that the
arrowhead of (- B) is drawn on the opposite end of the line
segment representing the vector B (i.e .. the tail and head are
interchanged).

A

(a) Parallelogram rule (b) Head-to-tail rule

Figure 3·3: Vector addition by (a) the parallelogram rule and
(b) the head-to-tail rule.
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3-1.3 Position and Distance Vectors

The position vector of a point P in space is the vector from the
origin to P. Assuming points PI and P2 are at (x I. YI , ZI) and
(X2, Y2, Z2) in Fig. 3-4, their position vectors are

~ ~ " A

RI = OPI = XXI +YYI +ZZI,

~
R2 = 0 P2 = XX2 + YY2 + Zz2.

(3. lOa)

(3. lOb)

where point 0 is the origin. The distance vector from PI to P2
is defined as

~
R12 = PIP2

= R2 - RI

= X(X2 - x d + Y(Y2 - YI) + Z(Z2 - LI). (3.11 )

and the distance d between PI and P2 equals the magnitude
ofRl2:

d = IRl21

= [(X2 - X1)2 + (Y2 - YI)2 + (Z2 - LJ}2]1/2. (3.12)

Note that the first and second subscripts of RI2 denote the
locations of its tail and head, respectively (Fig. 3-4).

z

Y2
1 ;

- - - - _I;

;
;

I ;
1 ;------------'"

x

-->
Figure 3-4: Distance vector R 12 = PI P2 = R2 - R [. where R 1
and R2 are the position vectors of points PI and P2, respectively.

3-1.4 Vector Multiplication

There exist three types of products in vector calculus: the simple
product, the scalar (or dot) product. and the vector (or cross)
product.

Simple Product

The multiplication of a vector by a scalar is called a simple
product. The product of the vector A = aA by a scalar k results
in a vector B with magnitude B = k A and direction the same
as A. That is, b = a. In Cartesian coordinates,

B = kA = akA = x(kAx) + y(kA,) + z(kA,J

= x B; + Y B, + z Bz. (3.13)

Scalar or Dol Product

The scalar (or dot) product of two co-anchored vectors A
and B, denoted A· B and pronounced "A dot B," is defined
geometrically as the product of the magnitude of A and the
scalar component of B along A, or vice versa. Thus,

I A·B = ABcos8AB. (3.l4) I
where eAR is the angle between A and B (Fig. 3-5) measured
from the tail of A to the tail of B. Angle eAR is assumed to be
in the range 0 ::::eA B :::: 180°. The scalar product of A and B
yields a scalar whose magnitude is less than or equal to the
products of their magnitudes (equality holds when eAB = 0)
and whose sign is positive if 0 < e!tEl < 90° and negative if
90° < eAR < 180°. WheneAB = 90°,AandBareorthogonal,
and their dot product is zero. The quantity A cos eAH is the
scalar component of A along B. Similarly B cos eHA is the
scalar component of B along A.

B

B
••

(a)

Figure 3-5: The angle eA B is the angle between A and B.
measured from A to B between vector tails. The dot product
is positive if 0::: (:lAB < 90°, as in (a), and it is negative if
90° < eAR::: 180°, as in (b).
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The dot product obeys both the commutative and distributive
properties of multiplication.

That is.

A . B = B . A (commutative property), (3.15a)

A ·(B + C) = A· B +A· C (distributive property).

(3.ISb)

The commutative property follows from Eq. (3.14) and the fact
that eA B = e B A. The distributive property expresses the fact
that the scalar component of the sum of two vectors along a
third one equals the sum of their respective scalar components.

The dot product of a vector with itself gives

(3.16)

which implies that

A = IA I = ytA . A . (3.17)

Also, eAR can be determined from

(3.18)

Since the base vectors X, y, and z are each orthogonal to the
other two, it follows that

(3.19a)

(3.19b)i .Y = y .i = z . i = O.

If A = (A,. AI" Az) and B = (Bx. BI" Bz), then

A· B = (xA., + yAy + zAz) ·(xB, + yBy + ZBL)' (3.20)

Use of Eqs. 0.19a) and 0.19b) in Eq. (3.20) leads to

(3.21 )

Vector or Cross Product

The vector (or cross) product of two vectors A and B, denoted
A x B and pronounced "A cross B," yields a vector defined as

I A x B = n AB sinOAB. (3.22) I
where n is a unit vector normal to the plane containing A and B
[Fig. 3-6(a) I. The magnitude of the cross product, AB I sin AA Ill,

A x 8 = itABsin f1AB

(a) Cross product

A

(b) Right-hand rule

Figure 3-6: Cross product A x B points in the direction n. which
is perpendicular to the plane containing A and B and defined by
the right-hand rule.

equals the area of the parallelogram defined by the two vectors.
The direction of n is governed by the following right-hand rule
[Fig. 3-6(b)]: it points in the direction of the right thumb when
the fingers rotate from A to 8 through the angle f) A B. Note that.
since n is perpendicular to the plane containing A and B, A x B
is perpendicular to both vectors A and B.

The cross product is anticommutative and distributive.

That is,

A x B = -B x A (anticommutative ). (3.23a)

The anticommutative property follows from the application of
the right-hand rule to determine n. The distributive property
follows from the fact that the area of the parallelogram formed
by A and (8 + C) equals the sum of those formed by (A and 8)
and (A and C):

A x (8 + C) = A x B + A x C (distributive). (3.23b)
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The cross product of a vector with itself vanishes. That is.

A x A = O. (3.24)

From the definition of the cross product given by Eq. (3.22),
it is easy to verify that the base vectors i, y, and z of the
Cartesian coordinate system obey the following right-hand
cyclic relations:

(3.25)1y x z=x e :

Note the cyclic order (xyzxyz ... ). Also,

(3.26) 1

If A = (Ax. A,-, A,J and B = (Bx. By. BL), then use of
Eqs. (3.25) and (3.26) leads to

A x B = (iA, + yAy + zAz) x (iB, + yBy + zBz)

= i(A,.BL - AzBI') + y(AzBx - A,B,,:)

(3.27)

The cyclical form of the result given by Eq. (3.27) allows us to
express the cross product in the form of a determinant:

i Y Z
AxB= Ax Ay Az (3.28)

Bx By Bz

Example 3·1: Vectors and Angles

In Cartesian coordinates, vector A points from the origin to
point p] = (2.3,3), and vector B is directed from P, to point
P2 = (L -2, 2). Find
(a) vector A, its magnitude A, and unit vector a,
(b) the angle between A and the v-axis,
(c) vector B,
(d) the angle eA B between A and B, and
(e) the perpendicular distance from the origin to vector B.

Solution: (a) Vector A is given by the position vector of
PI = (2,3,3) as shown in Fig. 3-7. Thus,

A = x2 + y3 + Z3.

A = IAI = J22 + 32 + 32 = m ,
a= ~ = (x2+Y3+Z3)/m.

z

3

3.-#---'---t-----,+-I~y....
,

I ,

- - - - _I'
x

Figure 3-7: Geometry of Example 3-1.

(b) The angle {3between A and the y-axis is obtained from

A . Y = IAIIYI cos {3 = A cos {3,

or

(
A. y) ( 3 )(3= cos-I A = C05-] .J22 = 50.2°.

(e)

B = x(l - 2) + y( -2 - 3) + z(2 - 3) = -i - y5 - z.

(d)

eAB = cos-I [I~I'I:I] = cos-1 [(-~1~3)]
= 145.1°.

(e) The perpendicular distance between the origin and vector B
--+

is the distance I 0 P3 I shown in Fig. 3-7. From right triangle
OP]P3,

--+
I 0 P3 I = IAI sin(l80° - eAB)

= 51 sin(l80° -145.1°) = 2.68.
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Exercise 3-1: Find the distance vector between
PI = (l , 2, 3) and P2 = (-I, - 2, 3) in Cartesian coor-
dinates.

Answer:

Exerc ise 3-2: Find the angle ()A B between vectors A and B
of Example 3-1 from the cross product between them.

Answer: BAB = 145.1°. (Seee.)

Exercise 3-3: Find the angle between vector B of
Example 3-1 and the z-axis.

Answer: 101.10. (See <!IF)

Exercise 3-4: Vectors A and B lie in the y-z plane and
both have the same magnitude of2 (Fig. E3.4). Determine
(a) A . B and (b) A x B.

z

B

x

A~--------y2

Figure E3.4

Answer: (a) A· B = -2; (b) A x B = X3.46. (See 'I'})

Exercise 3-5: If A . B = A . C, does it follow that B = C?

Answer: No. (See ~)

3-1.5 Scalar and Vector Triple Products

When three vectors are multiplied, not all combinations of dot
and cross products are meaningful. For example, the product

A x (B· C)

does not make sense because B . C is a scalar, and the cross
product of the vector A with a scalar is not defined under the

rules of vector algebra. Other than the product of the form
ACB . C), the only two meaningful products of three vectors are
the scalar triple product and the vector triple product.

Scalar Triple Product

The dot product of a vector with the cross product of two other
vectors is called a scalar triple product, so named because the
result is a scalar. A scalar triple product obeys the following
cyclic order:

(3.29) I

The equalities hold as long as the cyclic order (A BC ABC ... )
is preserved. The scalar triple product of vectors
A = (Ax. Ay, Az), B = (Bx, B~. B,J, and C = (ex. C,, C)
can be expressed in the form of a 3 x 3 determinant:

Ax Av Az
A ·(B xC) = Bx By Bz (3.30)

ex c, L';,

The validity of Eqs. (3.29) and (3.30) can be verified by
expanding A, B, and C in component form and carrying out
the multiplications.

Vector Triple Product

The vector triple product involves the cross product of a vector
with the cross product of two others, such as

A x (B x C). (3.31)

Since each cross product yields a vector, the result of a vector
triple product is also a vector. The vector triple product does
not obey the associative law. That is,

A x (B x C) f: (A x B) x C, (3.32)

which means that it is important to specify which cross
multiplication is to be performed first. By expanding the vectors
A, B, and C in component form, it can be shown that

which is known as the "bac-cab" rule.
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Example 3-2: Vector Triple Product

Given A = x - y + z2, B = Y + z, and C = -x2 + z3, find
(A x B) x C and compare it with A x (B x C).

Solution:

x y Z
AxB= I -1 2 = -X3 - y +z

0 I

and

x y Z
(A x B) x C = -3 -I = -x3 + y7 - z2.

-2 0 3

A similar procedure gives A x (B x C) = x2 + y4 + z. The
fact that the results of two vector triple products are different
demonstrates the inequality stated in Eq. (3.32).

Review Question 3-1: When are two vectors equal and
when are they identical?

Review Question 3-2: When is the position vector of a
point identical to the distance vector between two points?

Review Question 3-3: If A· B = 0, what is eAB?

Review Question 3-4: If A x B = 0, what is eAB?

Review Question 3-5: IsA(B . C) a vector triple product?

Review Question 3-6: If A . B = A . C. does it follow that
B =C?

3-2 Orthogonal Coordinate Systems

A three-dimensional coordinate system allows us to uniquely
specify locations of points in space and the magnitudes and
directions of vectors. Coordinate systems may be orthogonal
or nonorthogonal.

An orthogonal coordinate system is one in which coordi-
nates are measured along locally mutually perpendicular
axes.

Nonorthogonal systems are very specialized and seldom used
in solving practical problems. Many orthogonal coordinate
systems have been devised. but the most commonly used are

• the Cartesian (also called rectangular).

• the cylindrical, and

• the spherical coordinate system.

Why do we need more than one coordinate system'? Whereas
a point in space has the same location and an object has
the same shape regardless of which coordinate system is
used to describe them, the solution of a practical problem
can be greatly facilitated by the choice of a coordinate
system that best fits the geometry under consideration. The
following subsections examine the properties of each of the
aforementioned orthogonal systems. and Section 3-3 describes
how a point or vector may be transformed from one system to
another.

3-2.1 Cartesian Coordinates
The Cartesian coordinate system was introduced in Section 3-1
to illustrate the laws of vector algebra. Instead of repeating
these laws for the Cartesian system, we summarize them in
Table 3-1. Differential calculus involves the use of differential
lengths. areas, and volumes. In Cartesian coordinates a
differential length vector (Fig. 3-R) is expressed as

dl = x dl, + Y dl; + z dl , = x dx + Y dy + z d z; (3.34)

where dl, = dx is a differential length along x, and similar
interpretations apply to dl, = dy and dl, = dz.

A differential area vector ds is a vector with magnitude cis
equal to the product of two differential lengths (such as dl;
and dlz), and direction specified by a unit vector along the third
direction (such as x), Thus. for a differential area vector in the
y-z plane,

ds, = x dl ; dl , = x dy dz (y-z plane), (3.35a)

with the subscript on ds denoting its direction. Similarly,

ds•.= Y dx dz

ds, = z dx dy

(x-z plane).

(x-y plane).

(3.35b)

(3.35c)

A differential volume equals the product of all three differential
lengths:

dV = dx dy d z, (3.36)
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Table 3-1: Summary of vector relations.

Cartesian Cylindrical Spherical
Coordinates Coordinates Coordinates

Coordinate variables x,y,z r, ¢, Z R,e,¢

Vector representation A = xAx + yAy + zAz rAr +$Aq, + zAz RAN +9AII +$A<I>

Magnitude of A [A[= :/ A2 + A~ + A2 :/A2 + A2 + A2 :/A2 +A2+A2x } z , q, z R II q,
------+

rq + ZZI, RRI,Position vector OPI = XX1+YYI+ZzI,
for P = (XI, YI, zj ) for P = (rl, ¢l, 71) for P = (RI, el, ¢l)

Base vectors properties x'x=Y'Y=z'z= I r·r=,·,=z·z= 1 R·R=9·9=.·$= I

x'Y=Y'z=z'x=O r'cp="z=z'r=O R·9=9·$=.·R=O
xxy=z r x $ = z Rx9=$
yxz=x ~xz=r 9x~=R
zxx=y zxr=~ ~xR=9

Dot product A·B= AxBx + AvBy + AzBz A,B, + Aq,Bq, + AzBz ARBR + AeBo + Aq,Bq,

x Y z r ~ z R 9 ~
Cross product AxB= Ax Ay Az Ar Aq, Az AR Ae Aq,

Bx By Bz Br B¢ Bz BR Be B<I>

Differential length dl= xdx+ydy+zdz r dr +.r d¢ + z d z R dR +9R de +$Rsine d¢

Differential surface areas dsx = x d y dz ds; = rr d¢ dz dSR = RR2 sin e de d¢
dsy = y dx d z dS<l>=~ dr d z dS(j = 9R sine dR d¢
ds, = z dx dy dsz = zr dr d¢ dsrp=~R dR de

Differential volume dV = dx dy d z r dr d¢ dz R2 sin e' dR de d¢
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z ds, = i dx dy

dz

ds, = y dx dz

ds, = i dydz

/

x

Figure 3-8: Differential length, area, and volume in Cartesian
coordinates.

3-2,2 Cylindrical Coordinates

The cylindrical coordinate system is useful for solving
problems involving structures with cylindrical symmetry, such
as calculating the capacitance per unit length of a coaxial
transmission line. In the cylindrical coordinate system, the
location of a point in space is defined by three variables, r ,
ef>, and z (Fig. 3-9). The coordinate r is the radial distance
in the x-y plane, ¢ is the azimuth angle measured from the
positive x-axis, and z is as previously defined in the Cartesian
coordinate system. Their ranges are 0 ::: r -coc, 0 :::¢ < Ln ,
and -00 < z < 00. Point P(rl, ¢I, z,) in Fig. 3-9 is located
at the intersection of three surfaces. These are the cylindrical
surface defined by r = r" the vertical half-plane defined by
ef> = ¢, (which extends outwardly from the z-axis), and the
horizontal plane defined by z = ZI.

The mutually perpendicular base vectors are r .•. and z,
with rpointing away from the origin along r, • pointing ill a
direction tangential to the cylindrical surface. and z pointing
along the vertical. Unlike the Cartesian system, in which the
base vectors x, y. and z are independent of the location of P,
in the cylindrical system both rand. are functions of </>.

The base unit vectors obey the following right-hand cyclic
relations:

and like all unit vectors, r, r = •.• = z . z = I, and
r x r = • x • = z x Z = O.

In cylindrical coordinates, a vector is expressed as

(3.38)

where Ar, Aet>,and A7 are the components of A along the r-, +-,
and z-directions. The magnitude of A is obtained by applying
Eq. 0.17), which gives

~;-:---:- ./ ~ ~ ,
IAI= vA'A= \lA~+A;;'+A;;. (3.39)

---+
The position vector 0 P shown in Fig. 3-9 has components
along rand z only. Thus,

(3.40)

The dependence of'R, on ¢I is implicit through the dependence
of ron ¢I. Hence, when using Eq. (3.40) to denote the position
vector of point P = (rl, ¢,. ZI), it is necessary to specify that
r is at e}.

Figure 3-10 shows a differential volume element in
cylindrical coordinates. The differential lengths along r, +,
and z are

dl, = dr. diet>= r dd», dlz = dz, (3.41 )

Note that the differential length along + is r d¢, not just d¢,
The differential length £IIin cylindrical coordinates is given by

£II= r dl, ++ dIet>+ z dl, = r dr ++r d¢ + z dz. (3.42)
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z

,
" " "

Z=ZI plane

r = rl cylinder

I
I

:-- <P = cpr plane

x

Figure 3-9: Point P(r], ¢r, zj ) in cylindrical coordinates; rl is the radial distance from the origin in the x-y plane, ¢] is the angle in the
x-y plane measured from the x-axis toward the y-axis, and Zl is the vertical distance from the x-y plane.

dz dsz = z r dr d1>

As was stated previously for the Cartesian coordinate system,
the product of any pair of differential lengths is equal to the
magnitude of a vector differential surface area with a surface
normal pointing along the direction of the third coordinate.
Thus,

Z

dV = dl; dl,p dlz = r dr d¢ dz. (3.44)

ds~~= ~ drdz
ds; = r dl,p dl , = ir d¢ dz (¢-z cylindrical surface),

(3.43a)

- -ds", = ¢I dl; di, = ¢I dr dz (r-z plane),

ds, = Z dl, dl", = zr dr d¢ (r-¢ plane).

(3.43b)

(3.43c)

The differential volume is the product of the three differential
lengths,

Figure 3-10: Differential areas and volume in cylindrical
coordinates.

The preceding properties of the cylindrical coordinate system
are summarized in Table 3-1.
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Example 3-3: Distance Vector in Cylindrical

Coordinates

Find an expression for the unit vector of vector A shown in
Fig. 3-11 in cylindrical coordinates.

z

PI = (0, 0, h)

Figure 3-11: Geometry of Example 3-3.

Solution: In triangle 0 PI P2,

Hence,

= rro - zh,

, A
a=-

IAI
fro - ill

JrJ + Il~

We note that the expression for A is independent of ¢o. That
is,all vectors from point PI to any point on the circle defined by
r = ro in the x-y plane are equal in the cylindrical coordinate
system. The ambiguity can be eliminated by specifying that A

through a point whose ¢ = ¢o.

Example 3-4: Cylindrical Area

Find the area of a cylindrical surface described by r = 5,
300:s ¢:s 60°, and 0 :sz:s 3 (Fig. 3-12).

z

x

Figure 3-12: Cylindrical surface of Example 3-4.

Solution: The prescribed surface is shown in Fig. 3-12. Use
of Eq. (3.43a) for a surface element with constant r gives

S=r

60°f d¢

I
J[ f3

= 5¢
J[ /6 1

3
Z o

5][

2

Note that ¢ had to be converted to radians before evaluating the
integration limits.

Exercise 3-6: A circular cylinder of radius r = 5 em
is concentric with the z-axis and extends between
z = -3 ern and z = 3 cm. Use Eq. (3.44) to find the
cylinder's volume.

Answer: 471.2 ern". (See '3')
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.• CD Module 3.1 Points and Vectors Examine the relation-
ships between Cartesian coordinates (x, y) and cylindrical
coordinates (r, f/J) for points and vectors.

Select location or P:
(" cartesian r. ~

r = 3125

Add vector V and select display options
r. C8rIesian r ~aI

Vx = -1 483

Display Options
display

p x = -2.848 Y = 1 318 P"
r = 3138 0= 155.16· P

V V.=-1.483 Vy = 2.793 P"
Vr = 2.519 V. =-1.912 ~
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3-2.3 Spherical Coordinates
In the spherical coordinate system, the location of a point
in space is uniquely specified by the variables R, e, and ¢
(Fig. 3-13). The range coordinate R, which measures the
distance from the origin to the point, describes a sphere of
radius R centered at the origin. The zenith angle e is measured
from the positive z-axis and it describes a conical surface with
its apex at the origin, and the azimuth angle ¢ is the same
as in cylindrical coordinates. The ranges of R, e, and ¢ are
0::: R < 00, 0::: e :::it , and 0::: ¢ < 2Jr. The base vectors
it, 9, and ~ obey the following right-hand cyclic relations:

A vector with components AR, Ag, and A", is written as

(3,46)

and its magnitude is

(3,47)

The position vector of point P = (R 1.el. ¢I) is simply

(3,48)

z

Figure 3·13: Point Pi R«, el. <PI) in spherical coordinates.

z

R sin a dq,

x

Figure 3-14: Differential volume in spherical coordinates.

while keeping in mind that R is implicitly dependent on el
and e},

A~ shown in Fig. 3-14, the differential lengths along it. O.
and ell are

(3,49)

Hence. the expressions for the vector differential length £11, the
vector differential surface ds. and the differential volume dV
are

dl = R dlR +9 dIe +~ dlq,

= R d R + 9R de +~R sin e d¢,

dSR = it dIg dl", = RR2 sin () de d¢

(e-¢ spherical surface).

dso = 0 dlR dl", = OR sin fj d R d¢

(R--¢ conical surface).

(3.S0a)

(3.S0b)

(3.SOC)

(3.S0d)

(3.50e)

A A

ds", = ell dlR dIg =eIlR dR de (R-8 plane).

dV = dl « dla dt", = R2 sine dR de dd».

These relations are summarized in Table 3-1.
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Technology Brief 5: Global Positioning System

The Global Positioning System (GPS), initially developed in the 1980s by the U.S. Department of Defense as a
navigation tool for military use, has evolved into a system with numerous civilian applications, including vehicle tracking,
aircraft navigation, map displays in automobiles and hand-held cell phones (Fig. TFS-1), and topographic mapping.
The overall GPS comprises three segments. The space segment consists of 24 satellites (Fig. TF5-2), each circling
Earth every 12 hours at an orbital altitude of about 12,000 miles and transmitting continuous coded time signals. All
satellite transmitters broadcast coded messages at two specific frequencies: 1.57542 GHz and 1.22760 GHz. The
user segment consists of hand-held or vehicle-mounted receivers that determine their own locations by receiving and
processing multiple satellite signals. The third segment is a network of five ground stations, distributed around the
world, that monitor the satellites and provide them with updates on their precise orbital information. GPS provides a
location inaccuracy of about 30 m, both horizontally and vertically, but it can be improved to within 1 m by differential
GPS. (See final section.)

Figure TFS-2: GPS nominal satellite constellation.
Four satellites in each plane. 20,200 km altitudes, 55'
inclination.

Figure TFS-1: iPhone map feature.

Principle of Operation

The triangulation technique allows the determination of the location (xo . .I'll. 711) of any object in 3-D space from
knowledge of the distances dl, d2, and £13 between that object and three other independent points in space of known
locations (XI, .rl. 7.1) to (.\'3. -",1. 7.1). In GPS, the distances are established by measuring the times it takes the signals to
travel from the satellites to the GPS receivers, and then multiplying them by the speed of light c = 3 x 108 m/s. Time
synchronization is achieved by using atomic clocks. The satellites use very precise clocks, accurate to 3 nanoseconds
(3 x 10-<) s), but receivers use less accurate, inexpensive, ordinary quartz clocks. Consequently, the receiver clock may
have an unknown time offset error t« relative to the satellite clocks. To correct for the time error of a GPS receiver, a
Signal from a fourth satellite is needed.

The GPS receiver of the automobile in (Fig. TFS-3) is at distances d, to dJ, from the GPS satellites. Each satellite
sends a message identifying its orbital coordinates (XI • .\'1. LI ) for satellite 1, and so on for the other satellites, together
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with a binary-coded sequence common to all satellites. The GPS receiver generates the same binary sequence, and
by comparing its code with the one received from satellite 1, it determines the time tl corresponding to travel time over
the distance dl. A similar process applies to satellites 2 to 4, leading to four equations:

d~ = (.tl - .to)2 + Cn - .\"0)2 + (ZI - LO)2 = C [(II + fo)12•

di = (X2 - xO)2 + (.\'2 - ."0)2 + (Z2 - /{)2 = c [(12 + fo)12 •
.,. ') ., ., ,

£15 = (.q - xo)- + (y~ - Yo)- + (7.3 - zo)- = c [U3 + toW.

dl = (X4 - xo)2 + (Y4 - ."0)2 + (7.4 - Lo)2 = c [(t4 + to)12.

The four satellites report their coordinates (XI • .\'1. LI) to (X4 • ."4. 74) to the GPS receiver, and the time delays tl to 14

are measured directly by it. The unknowns are (xo. Yo. zo), the coordinates of the GPS receiver, and the time offset of
its clock to. Simultaneous solution of the four equations provides the desired location information.

Differential GPS
The 30-m GPS position inaccuracy is attributed to several factors, including time-delay errors (due to the difference
between the speed of light and the actual signal speed in the troposphere) that depend on the receiver's location on
Earth, delays due to signal reflections by tall buildings, and satellites' locations misreporting errors. Differential GPS, or
DGPS, uses a stationary reference receiver at a location with known coordinates. By calculating the difference between
its location on the basis of the GPS estimate and its true location, the reference receiver establishes coordinate
correction factors and transmits them to all DGPS receivers in the area. Application of the correction information
usually reduces the location inaccuracy down to about 1 m.

SAT2
(·':2. Y2. '::2)

Time delay

FlgureTF5-3: Automobile GPS receiver at location (.I'll. -'II. 7(0).
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Example 3-5: Surface Area In Spherical Coordinates

The spherical strip shown in Fig. 3-15 is a section of a sphere
of radius 3 em, Find the area of the strip.

z

x

Figure 3-15: Spherical strip of Example 3-5.

Solution: Use of Eq. (3.50b) for the area of an elemental
spherical area with constant radius R gives

60° 2;r

S=R2 f sin e' dO f dcp
11=30" </>=0

60"
=9(-COSOll

30"

cpl2:r
o

= 18JT(cos30° - cos 6(f) = 20.7 crrr'.

Example 3-6: Charge In a Sphere

A sphere of radius 2 em contains a volume charge density p;
given by

Find the total charge Q contained in the sphere.

Solution:

Q = f p; dV

V

2;r ;r 2x J()-~

= f f f (4cos20)R2 sinO dR ae dcp
</>=011=0 R=O

_ 32 -6 f2Jr( cos3 H) IJr--xlO ---
330 o

dcp

2.iT

=~ x 10-6 f dcp
o

= 12SJT X 10-6 = 44.68
9

Note that the limits on R were converted to meters prior to
evaluating the integral on R.

3-3 Transformations between Coordinate
Systems

The position of a given point in space of course does not depend
on the choice of coordinate system. That is, its location is the
same irrespective of which specific coordinate system is used
to represent it. The same is true for vectors. Nevertheless,
certain coordinate systems may be more useful than others in
solving a given problem, so it is essential that we have the tools
to "translate" the problem from one system to another. In this
section, we shall establish the relations between the variables
(x.)" z) of the Cartesian system. (r. cp, z) of the cylindrical
system, and (R. O. cp) of the spherical system. These relations
will then be used to transform expressions for vectors expressed
in anyone of the three systems into expressions applicable in
the other two.

3-3.1 Cartesian to Cylindrical Transformations

Point P in Fig. 3-16 has Cartesian coordinates (x. y, z) and
cylindrical coordinates (r, cp. 7.). Both systems share the
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z

IP = (x, y. z)
IZ
I

_? _ !. I/x= rcoscpY
'-------v----"

y = r sin (p
x

Figure 3-16: Interrelationships between Cartesian coordinates
(x. y. z) and cylindrical coordinates (r, 1jJ, z).

coordinate L, and the relations between the other two pairs of
coordinates can be obtained from the geometry in Fig. 3-16.
They are

¢ = tan-1
(~). (3.51 )

and the inverse relations are

x = r cos d», y = r sin e. (3.52)

Next, with the help of Fig. 3-17, which shows the directions of
the unit vectors X, y, r, and ~ in the x-y plane, we obtain the
following relations:

r· x = cos¢,

~.x = -sin¢,

r·y=sin¢,

~. y = cos¢.

(3.53a)

(3.53b)

x

Figure3-17: interrelationships between base vectors (x. y) and
(r, .).

To express r in terms of x and y, we write r as

0.54)

where a and h are unknown transformation coefficients. The
dot product r . x gives

r· x = x· xa + y. xh = a. (3.55)

Comparison of Eq. (3.55) with Eq, (3.53a) yields a = cos ¢.
Similarly, application of the dot product r· y to Eq. (3.54) gives
b = sin ¢. Hence,

I r = icos¢ + ysin¢.

Repetition of the procedure for ~ leads to

I.= -i sin 41+ ycos¢. (3.56b) I
The third base vector i is the same in both coordinate systems.
By solving Eqs. (3.56a) and (3.56b) simultaneously for x and y,
we obtain the following inverse relations:

i =rcos 41- • sin ¢.

y = hin¢ ++cos¢.

..

(3.57a)

(357b)

The relations given by Eqs, (3.56) to (3.57) are not only useful
for transforming the base vectors (x, y) into (r. ~), and vice
versa, they can also be used to transform the components
of a vector expressed in either coordinate system into its
corresponding components expressed in the other system.
For example. a vector A = xAx + yAy + zA" in Cartesian
coordinates can be described by A = rAr + «liAp + iA/. in
cylindrical coordinates by applying Eqs, (3.56a) and (3.56b).
That is,

(3.58a)

(3.58b)

and. conversely.

Ax = Ai COs¢ - Ai/J sin¢,

Ay = Ar sini/J + A¢cos¢.

(3.S9a)

(3.S9b)

The transformation relations given in this and the following two
subsections are summarized in Table 3-2.
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Table 3-2: Coordinate transformation relations.

Transformation Coordinate Variables Unit Vectors Vector Components

Cartesian to r= t'X2+y2 r = XCOS¢ + ysin¢ Ar = Ax cos ¢ + Ay sin ¢
cylindrical ¢ = tan-I(ylx) ~ = -xsin¢ + ycos¢ AcfJ = -Axsin¢+Aycos¢

Z=Z z=z Az = Az~-.

Cylindrical to x = rcos¢ x = r cos ¢ - ~ sin ¢ Ax = Ar cos ¢ - AcfJsin ¢
Cartesian y = rsin¢ y=rsin¢++cos¢ Ay = Ar sin¢ + AcfJCOs¢

7=7 z=Z Az = Az

Cartesian to R= y/x2 + y2 + 72 R=xsinecos4> AR = AI sinecos¢
spherical + y sin e sin ¢ + Zcos e + Ay sinesin¢ + Az cos e

e = tan-ll1x2 + y2/z] 9 = xcosBcos¢ Ali = AxcosBcos4>
+ y cos B sin ¢ - z sin B + Ay cos e sin ¢ - Az sin e

4>= tan "! (ylx) + = -xsin¢ + ycos¢ Ad> = -Ax sin¢ + Ay cos¢

Spherical to x = R sin e cos ¢ x=Rsinecos4> Ax = ANSinecos¢
Cartesian + 8 cos e cos ¢ - $ sin ¢ + Ae cos e cos ¢ - AcfJsin 4>

y = R sin () sin ¢ y = R sin () sin ¢ A\' = A R sin () sin 4>
+ 9cos8 sin ¢ + $cos ¢ + Ae cos 8 sin ¢ + AcfJcos 4>

7 = R cos e z = RcosB - 8sinB Az = AR cos e - Au sin e
Cylindrical to R= 1r2+ z2 R = r sin e + z cos e AN = Ar sine + Azcos()

spherical () = tan-I (rlz) 8 = rcos () - z sin () Ali = Ar cos () - Az sin ()
¢=4> $=$ Act>= Act>

Spherical to r = Rsin8 r = R sin () + 8 cos () Ar = A R sin () + Ali cos ()
cylindrical ¢=¢ 4j)=4j) AcfJ = AcfJ

z = Rcos8 z = R cos () - 8 sin 8 Az = AR cos e' - Ali sine

The cylindrical components of vector A = rAr ++Act> + zAz
can be determined by applying Eqs. (3.58a) and (3.58b):

Example 3-7: Cartesian to Cylindrical Transformations

Given point PI = (3, -4, 3) and vector A = x2 - y3 + z4,
defined in Cartesian coordinates, express PI and A in cylindrical
coordinates and evaluate A at PI.

Solution: For point PI, x = 3, Y = -4, and z = 3. Using
Eq. (3.51), we have

r = ix2 + y2 = 5, ¢ = tan-I!: = -53.1° = 306.9°,
x

and z remains unchanged. Hence, PI = (5,306.9°,3) in
cylindrical coordinates.

Ar = Ax cos¢ + Ay sin e = 2cos¢ - 3 sin e;

AcfJ = - Ax sin ¢ + A,. cos ¢ = - 2 sin ¢ - 3 cos ¢,

Az =4.

Hence,

A = r(2cos¢ - 3sin¢) - +(2sin¢ + 3cos¢) + z4.

At point P, ¢ = 306.9°, which gives

A = •.3.60 - +0.20 + z4.
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z

o

x = r cos 1>

x

Figure3-18: Interrelationships between (x. y, z) and (R, e, cp).

3-3.2 Cartesian to Spherical Transformations

From Fig. 3-18, we obtain the following relations between the
Cartesian coordinates (x , y, z) and the spherical coordinates
(R, e, ¢):

(3.60a)

_ [\lX2 + V2]e = tan 1 '.
z

(3.60b)

(V)rp = tan-I ~ . (3.60c)

The converse relations are

x = R sin e cos rp,
y = Rsinesinrp,

z = R cos e.

(3.6Ia)

(3.61b)

(3.6\c)

The unit vector R lies in the r-.l plane. Hence, it can be
expressed as a linear combination of rand z as follows:

R = ia + ib, (3.62)

where a and b are transformation coefficients. Since rand z
are mutually perpendicular,

R·r=a,

R·.l=h.

(3.63a)

(3.63b)

From Fig. 3-18, the angle between Rand r is the complement
of e and that between Rand z is e. Hence, a = R . I' = sin e
and b = R . z = cos e. Upon inserting these expressions for a
and b in Eq. (3.62) and replacing I' with Eq. (3.56a), we have

I R= i sin 0 cos cp + ysin e sin cp +:icos O. (3.64a) I

A similar procedure can be followed to obtain the following
expression for 9:

Ie = ieosO eoscp + ycose sin¢ - zsin e. (3.64b) I

Finally ~ is given by Eq. (3.S6b) as

I.= -isin¢ + Yeoscp. (3.64c) I
Equations (3.64a) through (3.64c) can be solved simultaneously
to give the following expressions for (x. y . .l) in terms of
(R, e, ~):

x = R sine costfJ + 9cosO coscp - +sin¢, (3.65a)

y = RsinO sin e + 9cosO sin¢ + +eostfJ, (3.65b)

:i = Reose - 9sine. (3.65c)

Equations (3.64a) to (3.65c) can also be used to transform
Cartesian components (Ax. Ay, Az) of vector A into their
spherical counterparts (A R. Ali. A,p), and vice versa, by
replacing (x, y, z. R, 9,~) with (Ar• Ay• Az, AR. Ag. A,p).
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Example 3-8: Cartesian to Spherical Transformation

Express vector A = x(x + y) + yCv - x) + zz in spherical
coordinates.

Solution: Using the transformation relation for AR given in
Table 3-2, we have

AR = Ax sin 8 cos ¢ + A" sin e sin ¢ + Az cos e
= (x + y) sin e cos ¢ + (y - x) sin e sin ¢ + Z cos e.

Using the expressions for x. y. and z given by Eq. (3.61c), we
have

AR = (Rsinecos¢ + Rsinesin¢)sin8cos¢

+ (R sin 8 sin ¢ - R sin e cos ¢) sin e sin ¢ + R cos2 e
= R sin2 e (cos2 ¢ + sin2 ¢) + R cos2 o
= Rsin2e + Rcos2e = R.

Similarly,

Ae = (x + y) cos 8 cos ¢ + (v - x) cos e sin ¢ - z sin e,

A¢ = -(x + y) sin¢ + (y - x)cos¢,

and following the procedure used with AR. we obtain

Ae =0.

A¢ = -R sine.

Hence.

3-3.3 Cylindrical to Spherical Transformations

Transformations between cylindrical and spherical coordinates
can be realized by combining the transformation relations
of the preceding two subsections. The results are given in
Table 3-2.

3-3.4 Distance between Two Points

In Cartesian coordinates, the distance d between two points
PI = (Xl, Yl , ZI) and P2 = (X2. }'2, Z2) is given by Eq. (3.12)
as

Upon using Eq. (3.52) to convert the Cartesian coordinates of
PI and P2 into their cylindrical equivalents, we have

A similar transformation using Eqs. (3.61a-c) leads to an
expression for d in terms of the spherical coordinates of PI
and Pz:

Review Question 3-7: Why do we use more than one
coordinate system?

Review Question 3-8: Why is it that the base vectors
(x, y, z) are independent of the location of a point, but f-
and. are not?

Review Question 3-9: What are the cyclic relations for the
base vectors in (a) Cartesian coordinates, (b) cylindrical
coordinates, and (c) spherical coordinates?

Review Question 3-10: How is the position vector of
a point in cylindrical coordinates related to its position
vector in spherical coordinates?
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Exercise 3-7: Point P = (2.J3. rc/3, -2) is given
in cylindrical coordinates. Express P in spherical
coordinates.

Answer: P = (4. 2rc/3. rc/3). (See 'B')

Exercise 3-8: Transform vector

A = i(x +y) +Y(y - x) +zz

from Cartesian to cylindrical coordinates.

Answer: A = ir - ~r + zz. (See 'B')

3-4 Gradient of a Scalar Field

When dealing with a scalar physical quantity whose magnitude
depends on a single variable, such as the temperature T as
a function of height z; the rate of change of T with height
can be described by the derivative dT/dz. However, if T is
also a function of x and y. its spatial rate of change becomes
more difficult to describe because we now have to deal with
three separate variables. The differential change in T along x,
y, and z can be described in terms of the partial derivatives
of T with respect to the three coordinate variables. but it is not
immediately obvious as to how we should combine the three
partial derivatives so as to describe the spatial rate of change
of T along a specified direction. Furthermore. many of the
quantities we deal with in electromagnetics are vectors. and
therefore both their magnitudes and directions may vary with
spatial position. To this end. we introduce three fundamental
operators to describe the differential spatial variations of scalars
and vectors; these are the gradient, divergence, and curl
operators. The gradient operator applies to scalar fields and
is the subject of the present section. The other two operators,
which apply to vector fields, are discussed in succeeding
sections.

Suppose that 1'1 = T (x , y, z) is the temperature at
point PI = (x. y. z) In some region of space, and
Tl = T(x +dx , y +dy. z +dz) is the temperature at a
nearby point P; = (x+dx, .v+dy. z+dz) (Fig. 3-19). The
differential distances d x; d y, and d z are the components of the
differential distance vector dl. That is,

dl = x dx + Y dy + z d z, 0.69)

z P2 = (x + dx, y + dy, z + dz)

)---------------- ..• y

x

Figure 3-19: Differential distance vector dl between points Pj
and Pl.

From differential calculus, the temperature difference between
points P, and Pl, dT = T: - Ti ; is

aT aT aT
dT = - dx + - d v + - d z.ax ay' az (3.70)

Because dx = x· dl, dy = Y . dl, and d z = z· dl. Eq. (3.70)
can be rewritten as

.aT .aT .aT
d.T = x- ·dl +y- ·dl +z- ·dl

ax av ilz

[
aT 'IT aT]= i-+y-(-+z- ·£11.

ax ay az
(3.71 )

The vector inside the square brackets in Eq. 0.71) relates the
change in temperature dT to a vector change in direction dl.
This vector is called the gradient of T. or grad I' for short, and
denoted V T:

d
~aT .aT • aT

VT = gra T = x- +y- +Z-. (3.72)ax ay az

Equation (3.71) can then be expressed as

dT = VT ·dl. (3.73)

The symbol V is called the del or gradient operator and is
defined as

(Cartesian). (3.74)n ~a .0 ~a
v =x- +y- +z-ax oy Jz
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Whereas the gradient operator itself has no physical
meaning. it attains a physical meaning once it operates on
a scalar quantity. and the result of the operation is a vector
with magnitude equal to the maximum rate of change of
the physical quantity per unit distance and pointing in the
direction of maximum increase.

With dl = a,cll. where a, is the unit vector of ell. the directional
derivative of T along a, is

We can find the difference (T2 - TI). where TI = T (Xl • .\"1. /1 )

and T2 = T(X2. )'2. /2) are the values of T at points
PI = (XI. )'1. zJ) and P2 = (X2. Y2 . .12) not necessarily in-
finitesimally dose to one another. by integrating both sides of
Eq. (3.73). Thus.

r-
T2 - TI =IV T . ell.

PI

(3.76)

Example 3-9: Directional Derivative

Find the directional derivative of T = x2 + y2z along direction
x2 + y3 - z2 and evaluate it at (I. -I. 2).

Solution: First. we find the gradient of T:

(
A iJ A il Ail) ? ?VT = x- +y- +z- (.c + "-.I)

ilx ay iJz .

= x2x + y2yz + z.'.2.
We denote Ias the given direction.

I = x2 + y3 - z2.

Its unit vector is

A I x2 + y3 - z2 x2 + y3 - z2a,--- -- III - ../22 + 32 + 22 - ffi
Application of Eq. (3.75) gives

dT A A A A? (X2 + y3 - Z2)- = VT· a, = (x2x + y2rz + zr-)·
dl .. ffi

4x + 6yz - 2y2

ffi

At (I, -\. 2).

dTI
dl (1.-1.2)

4-12-2 -10
ffi -ffi'

3-4.1 Gradient Operator in Cylindrical
and Spherical Coordinates

Even though Eq. (3.73) was derived using Cartesian
coordinates. it should have counterparts in other coordinate
systems. To convert Eq. (3.72) into cylindrical coordinates
(r. ep. z ), we start by restating the coordinate relations

vtan e = :.....
X

0.77)

From differential calculus.

iJT iJT ilr er iJep iJT oz
-=--+--+--.
ax or iJx oep ax az ax

(3.78)

Since z is orthogonal to x and azjax = O. the last term in
Eq. (3.78) vanishes. From the coordinate relations given by
Eq. (3.77). it follows that

ilr x:-- = ? ? = cos ep,
rlx Jx- + y-

aep I.
-- = -- sin e.ax r

(3.79a)

(3.79b)

Hence,
st sr sin ep et
- = cosep-.- - ----.
ax iJr r iJep

(3.80)

This expression can be used to replace the coefficient of x in
Eq. (3.72), and a similar procedure can be followed to obtain
an expression for aT jay in terms of rand ep. If, in addition. we
use the relations x = rcosep-+sinepandY = rsinep++cosep
Ifrom Eqs. (3.57a) and (3.57b)l. then Eq. (3.72) becomes

et A 1 sr er
VT = r- +.-- +z-.

ilr r aep iJz
(3.81)
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Hence, the gradient operator in cylindrical coordinates can be
expressed as

A similar procedure leads to the following expression for the
gradient in spherical coordinates:

3-4.2 Properties of the Gradient Operator

For any two scalar functions V and V, the following relations
apply:

(I)

(2)
(3)

vev + V) = vv + VV,
V(VV)=VVV+vvv,

(3.S4a)
(3.S4b)
(3.S4c)VVn = nV,,-l VV, for any n.

Calculating the Gradient

Find the gradient of each of the following scalar functions and
then evaluate it at the given point.
(a) VI = 24Vocos(nYI3)sin (2nzI3) at (3,2, I) in Carte-

sian coordinates,
(b) V2 = Voe-2r sin 3¢ at (1, n12, 3) in cylindrical coordi-

nates,
(c) V3 = Vo (a] R) cos 2e at (2a, 0, n) in spherical coordi-

nates.

Solution: (a) Using Eq. (3.74) for V,

_ a VI _ a VI _a VI
VVI=X-+Y-+Z-ax ily az

nv bz nv bz
=-y8nVo sin .r., sin -+zI6nVocos -" cos-

3 3 3 3

[
tt v 2n z tt v 2n z ]

= Sn Vo -y sin :3sin -3- +z2 cos :3cos -3- .

At (3, 2, I),

[

_ 2 2n _ 2 2n ]
VVI =8nVo -ysin 3 +z2cos 3

= nVo [-y6 + z4].

(b) The function V2 is expressed in terms of cylindrical
variables. Hence, we need to use Eq. (3.82) for \7:

At (1, n12. 3), r = I and ¢ = n12. Hence.

VV2 = [-1'2sin 3; + +3 cos 3;] Voe-2

= r2Voe-2

= rO.27Vo.

(c) As V3 is expressed in spherical coordinates, we apply
Eg. (3.83) to v,,\:

(_ a - I a - I a) (a)VV3= R-+6--+cIl--- Vo - cos2e
iJ R R ae R sin e a¢ R

- Voa -2Voa
=-R-·- cos2fJ-6-- sin 2fJR2 R2

, - Voa
=-[R cos 2e +62 sin 2e] R2 -

At (2a, 0, zr ), R = 2a and e = 0, which yields

- VoVV, = -R-.
- 4a



168 CHAPTER 3 VECTOR ANALYSIS

Exercise 3-9: Given V = x2y + xy2 + xz2, (a) find the
gradient of V, and (b) evaluate it at (1, -1 , 2).

Answer: (a) V'V = x(2xy+i+z2)+y(x2+2xy)+z2xz,
(b)V'Vlo._1.2J =x3-y+z4. (See e-)

Exercise 3-10: Find the directional derivative of
V = r z2 cos 2¢ along the direction of A = i'2 - z and
evaluate it at (I, J[ 12, 2).

Answer: (dVldf)lo.7T/2.2J = -4/~. (See s~,)

Exercise 3-11: The power density radiated by a star
[Fig. E3.11 (a)] decreases radially as S(R) = Sol R2,
where R is the radial distance from the star and So is a
constant. Recalling that the gradient of a scalar function
denotes the maximum rate of change of that function per
unit distance and the direction of the gradient is along
the direction of maximum increase, generate an arrow
representation of V'S.

(a)

(b)

Figure £3.11

Answer: V'S = -R2SoIR3 [Fig. 3.11(b)]. (See .,,)

Exercise 3-12: The graph in Fig. E3.12(a) depicts a gentle
change in atmospheric temperature from Ti over the sea
to T2 over land. The temperature profile is described by
the function

where x is measured in kilometers and x = a is the sea-
land boundary. (a) In which direction does 'liT point and
(b) at what value of x is it a maximum?

T

Sea Land

(a)

VT

Sea Land

(b)

Figure E3.12

Answer: (a) +x; (b) at x = O.

T2 - Tl
T(x) = T1 + ---

e-X + 1

• aT
VT=x-

iJx

A e-X(T2-Td
= x ----,-------:;:-

(e-X + 1)2
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CD Module 3.2 Gradient
Select a scalar function f i», y, z), evaluate its gradient,
and display both in an appropriate 2-D plane.

Modllle3.2 Gradient

Input

Select a function: f(x.y) = Cos[X·yJ
Function' 1(l(.Y) = Cos[x'YI
Its sign aside. in which direction does tne gradient of

I(x.YJ = Cos(x·y) pOint?
r i
r y
r hi.p x-v

Select Plot Type:
r.- 20 arrow plot
r 2D Iiek:1IIne plot

\7(cos(x-y))= id[C0&cX-Yll + id(CO~X-Yll + id[COMHll

-1. = - isln(x-y) + iSln(x-Yl

= -Sln(x-y)( i-i)
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3-5 Divergence of a Vector Field

From our brief introduction of Coulomb's law in Chapter 1. we
know that an isolated, positive point charge q induces an electric
field E in the space around it, with the direction of E being
outward away from the charge. Also, the strength (magnitude)
of E is proportional to q and decreases with distance R from
the charge as 1/R2. In a graphical presentation, a vector field
is usually represented by field lines, as shown in Fig. 3-20. The
arrowhead denotes the direction of the field at the point where
the field line is drawn, and the length of the line provides a
qualitative depiction of the field's magnitude.

At a surface boundary. flux density is defined as the amount
of outward flux crossing a unit surface ds:

E· ds E· ii ds
Flux density of E = -- = = E . Ii.

Idsl ds
(3.85)

where it is the normal to ds. The totalflux outwardly crossing a
closed surface S, such as the enclosed surface of the imaginary
sphere outlined in Fig. 3-20, is

Total flux = f E . ds.

s
(3.86)

Let us now consider the case of a differential rectangular
parallelepiped, such as a cube, whose edges align with the
Cartesian axes shown in Fig. 3-21. The edges are of lengths t..x
along x, t..y along y, and t..z along z. A vector field E(x, y, z)

Imaginary
spherical
surface

+
•

Figure 3-20: Flux lines of the electric field E due to a positive
charge q.

E

yJ-x
z

Figure 3-21: Flux lines of a vector field E passing
through a differential rectangular parallelepiped of volume
Llv = Llx Lly Llz.

exists in the region of space containing the parallelepiped, and
we wish to determine the flux of E through its total surface S.
Since S includes six faces, we need to sum up the fluxes through
all of them, and by definition the flux through any face is the
outward flux from the volume t..V through that face.

Let E be defined as

(3.87)

The area of Face I in Fig. 3-21 is t..y Az, and its unit vector
01 = -x. Hence, the outward flux FI through Face I is

F, = f E· 01 ds
Face I

= f (xEx+YEy+zEz)·(-x)dydz
Face I

:::::::-Ex (I) t..y t..z, (3.88)

where ExC 1) is the value of Ex at the center of Face 1.
Approximating Ex over Face I by its value at the center is
justified by the assumption that the differential volume under
consideration is very small.
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Similarly, the flux out of Face 2 (with ih = x) is

(3.89)

where £.1(2) is the value of E( at the center of Face 2. Over
a differential separation ~x between the centers of Face I and
Face 2. Ed 2) is related to E( (I ) by

es,
£.1(2) = E((I) +dX ~x. (3.90)

where we have ignored higher-order terms involving (~x)2 and
higher powers because their contributions are negligibly small
when ~x is very small. Substituting Eq. (3.90) into Eq. (3.89)
gives

[ aEx]F2 = E((\) + ilx ~x ~y ~L.

The sum of the fluxes out of Face I and Face 2 is obtained by
adding Eqs. (3.88) and (3.91).

(3.91 )

(3.92a)

Repeating the same procedure to each of the other face pairs
leads to

iJE\"
F3 + F4 = ay ~X ~y ~z.

ilEz
Fs + F6 = - ~x ~ \' ~L.. az .

(3.92b)

(3.92c)

The sum of fluxes F\ through h gives the total flux through
surface S of the parallelepiped:

1 (ee, iJE, iJ£z)
E·ds= -+-+-ax ily ilL

S

= (div E) ~V. (3.93)

where ~ V = ~x ~y ~L and div E is a scalar function called
the divergence of E. specified in Cartesian coordinates as

. aE, dE\" aEz
div E = - + -' + - .ax ay ilL

(3.94)

By shrinking the volume ~ V to zero, }t'edefine the divergence
ofE at a point as the net outward flux per unit volume over
a closed incremental surface.

Thus. from Eq, (3.93), we have

. {; . Is E ·ds
div E = lim

.6.v....•0 ~V (3.95)

where S encloses the elemental volume ~ V. Instead of denoting
the divergence of E by div E. it is common practice to denote
it as V . E. That is,

for a vector E in Cartesian coordinates.

From the definition of the divergence oiE given by Eq. (3.95),
field E has positive divergence if the net flux (Jut (d' surface S
is positive, which may he "viewed" as if volume ~ V contains
a source offield lines. If the divergence is negative, ~ V may
be viewed as containing a sink of field lines because the net
flux is into ~ V. For a uniform field E, the same amount of
flux enters ~ Vas leaves it; hence, its divergence is zero and
the field is said to be divergenceless.

The divergence is a differential operator. it always operates on
vectors, and the result of its operation is a scalar. This is in
contrast with the gradient operator. which always operates on
scalars and results in a vector. Expressions for the divergence
of a vector in cylindrical and spherical coordinates are provided
on the inside back cover of this book.

The divergence operator is distributive. That is, for any pair
of vectors E\ and E2.

(3.97)

If V . E = O. the vector field E is called divergenceless.
The result given by Eq. (3.93) for a differential volume l'.V

can be extended to relate the volume integral of V . E over any
volume V to the flux of E through the closed surface S that
bounds V. That is,

This relationship. known as the divergence theorem, is used
extensively in electromagnetics,
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Example 3-11: Calculating the Divergence

Determine the divergence of each of the following vector fields
and then evaluate them at the indicated points:

(a) E = x3x2 + y2L + ix2z at (2, -2,0);

Solution:

(JEt (JE,. iJE,
(a) V·E=-+-' +-.-ax ilv aL

iJ J' a iJ 1
= -:-(3x-) + ~(2z) + -:-(x-z)ilx (Jv ilz
= 6x + 0 +x2 '
= x2 + 6x.

At(2.-2.0). V.EI,. = 16.
(~.-2.())

(b) From the expression given on the inside of the back cover of
the book for the divergence of a vector in spherical coordinates.
it follows that

I a 1 I il .
V·E = --(WER) + ---(Eo smR)

R2 ilR R sine <Hi
1 il£¢+---R sin 0 arp

I .a . 3 " I iJ ( ([3 sin.2 0 )= -R-2 -a-R (a cos e) + -R-si-n-&iJO ---R---C2-

2a3 cos 0
=0 - ---,;--

R3

2a3 cos &
R3

AtR=a/2and&=0. V'EI =-16.
(a/2.0.JT )

Exercise 3-13: Given A = e-2y (x sin 2x +y cos 2x), find
V ·A.

Answer: V· A = 0. (See ~)

Exercise 3-14: GivenA = rr cosrp ++r sin rp+Z3z, find
V·A at (2, 0,3).

Answer: V· A = 6. (See -e-)

Exercise 3-15: If E = RAR in spherical coordinates,
calculate the flux of E through a spherical surface of
radius a, centered at the origin.

Answer: f E . ds = 4n Aa3. (See "»

S

Exercise 3-16: Verify the divergence theorem by
calculating the volume integral of the divergence of the
field E of Exercise 3.15 over the volume bounded by the
surface of radius a.

Exercise 3-17: The arrow representation in Fig. E3.17
represents the vector field A = x x - y y. At a given point
in space, A has a positive divergence V . A if the net
flux flowing outward through the surface of an imaginary
infinitesimal volume centered at that point is positive, V· A
is negative if the net flux is into the volume, and V .A = 0
if the same amount of flux enters into the volume as leaves
it. Determine V . A everywhere in the x-y plane.

/ I / /10 Y \ \ \ ~
//11 \\\".
//11 v v >, >,
/' "" / , ~ ,,'-.. <,-- ..- •.. .. .•.. ..•. -- --x

-10 10- •... •.. "- ,. A "" -<, " ,, f /' /' ./'

"- " \ \ f / /' -:

<, '\ \ \ r I I /
-. \ \ ~10 1 !//

Figure £3.17

Answer: V· A = 0 everywhere. (See ,"')
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Technology Brief 6: X-Ray Computed Tomography

Tomography is derived from the Greek words tome (meaning section or slice) and graphia (meaning writing). Computed
tomography, also known as CT scan or CAT scan (for computed axial tomography), refers to a technique capable of
generating 3-D images of X-ray attenuation (absorption) properties of an object. This is in contrast to the traditional,
X-ray technique that produces only a 2-D profile of the object (Fig. TF6-1). CT was invented in 1972 by British electrical
engineer Godfrey Hounsfield and independently by Allan Cormack, a South African-born American physicist. The
two inventors shared the 1979 Nobel Prize in Physiology or Medicine. Among diagnostiC imaging techniques, CT
has the decided advantage in having the sensitivity to image body parts on a wide range of densities, from soft tissue
to blood vessels and bones.

Figure TF6-1: 2-D X-ray image. (Courtesy of General
Electric.)

Principle of Operation

In the system shown in Fig. TF6-2, the X-ray source and detector array are contained inside a circular structure through
which the patient is moved along a conveyor belt. A CAT scan technician can monitor the reconstructed images to
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insure that they do not contain artifacts such as streaks or blurry sections caused by movement on the part of the
patient during the measurement process.

A CT scanner uses an X-ray source with a narrow slit that generates a fan-beam, wide enough to encompass the
extent of the body, but only a few millimeters in thickness [Fig. TF6-3(a)]. Instead of recording the attenuated X-ray
beam on film, it is captured by an array of some 700 detectors. The X-ray source and the detector array are mounted
on a circular frame that rotates in steps of a fraction of a degree over a full 3600 circle around the patient, each time
recording an X-ray attenuation profile from a different angular perspective. Typically, 1,000 such profiles are recorded
per each thin traverse slice of anatomy. In today's technology, this process is completed in less than 1 second. To
image an entire part of the body, such as the chest or head, the process is repeated over multiple slices (layers), which
typically takes about 10 seconds to complete.

Figure TF6-2: CT scanner. (Courtesy of General Electric.)

Image Reconstruction

For each anatomical slice, the CT scanner generates on the order of 7 x 105 measurements (1,000 angular orientations
x 700 detector channels). Each measurement represents the integrated path attenuation for the narrow beam between
the X-ray source and the detector [Fig. TF6-3(b)], and each volume element (voxel) contributes to 1,000 such
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measurement beams. Commercial CT machines use a technique called filtered back-projection to "reconstruct"
an image of the attenuation rate of each voxel in the anatomical slice and, by extension, for each voxel in the entire
body organ. This is accomplished through the application of a sophisticated matrix inversion process. A sample CT
image of the brain is shown in Fig. TF6-3(c).

(a) CT scanner

(b) Detector measures integrated attenuation
along anatomical path (c) CT image of a normal brain

Figure TF6-3: Basic elements of a CT scanner.
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"S' CD Module 3.3 Divergence
Select a vector function v(x, y, z), evaluate its divergence,
and display both in an appropriate 2-D plane.

1.0

-1,0

-1.0 05 1.0

Select a runcnorr v(x.y) as eecnc field due to 2 point charges ~

Function: v(x,Y) is the elecrtc field due to a positivecharge at
(0,0,0) (point 1) and a negative one at (0.5,0.5,0) (point 2)

The divergence of the electric Ileid due to a positive charge at
the origin and a negative one at(0.5,O.5,O) ...,r.; has a source at the origin and a sink at(0.5.0.5.0)
r has a source at (05,0.5,0.) and a sink at the origin

Plat v and '<J. v in the:

r x-y plane
r. x-y plane
c: x-z plane
c x-zplane
r y-z ptane
r y-zplane

(arrows lor v . colors for '<J V)
(field lines for v . colors for '<J V)
(arrows far v . colors lor '<J. v)
(field lines far v , colors lor 'V. V)
(arrows lor v. colors for '<J. v)
(field lines lor v . colors far '<J . v)

"l·v = Y(x,y;Z) - Y(x-D.S,y-O.5,z-OS}

3-6 Curl of a Vector Field

So far we have defined and discussed two of the three
fundamental operators used in vector analysis, the gradient of a
scalar and the divergence of a vector. Now we introduce the curl
operator, The curl of a vector field B describes its rotational
property, or circulation. The circulation of B is defined as the
line integral of B around a closed contour C;

Circulation = f B . dl.

c
(3.99)

To gain a physical understanding of this definition, we consider
two examples. The first example is for a uniform field

B = xBo, whose field lines are as depicted in Fig. 3-22(a). For
the rectangular contour abed shown in the figure. we have

h c

Circulation = f xBo' x dx + f xBo' Y dy
(/ b

d a

+ f xBo' X dx + f xBo' Y dy
c d

= Bo ~x - Bo LlX = 0, (3.100)

where ~x = b - a = c - d and, because x . y = 0, the second
and fourth integrals are zero. According to Eq. (3.100), the
circulation of a uniform field is zero.
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a d--f-Contou

Lix Lix

I' cl
B

y

rC

x
(a) Uniform field

z

_____Current /

(b) Azimuthal field

Figure 3-22: Circulation is zero for the uniform field in (a), but
it is not zero for the azimuthal field in (b).

Next, we consider the magnetic flux density B induced by
an infinite wire carrying a de current I. If the current is in
free space and it is oriented along the z-direction, then, from
Eg. (1.13),

(3.101)

where iJ..O is the permeability of free space and r is the radial
distance from the current in the x-y plane. The direction of B

is along the azimuth unit vector cjI. The field lines of Bare
concentric circles around the current, as shown in Fig. 3-22(b).
For a circular contour C of radius r centered at the origin in the
x-y plane, the differential length vector dl = ~r dd», and the
circulation of B is

Circulation =!B . dl

c
2;r

f'110I '= ~- '~r d¢ = 110T.
2rrr

o
(3.102)

In this case. the circulation is not zero. However. had the
contour C been in the X-7. or y-z planes. dl would not have
had a cjI component, and the integral would have yielded a zero
circulation. Clearly, the circulation of B depends on the choice
of contour and the direction in which it is traversed. To describe
the circulation of a tornado, for example, we would like to
choose our contour such that the circulation of the wind field
is maximum, and we would like the circulation to have both a
magnitude and a direction, with the direction being toward the
tornado's vortex. The curl operator embodies these properties.
The curl of a vector field B, denoted curl B or \l x B, is defined
as

\l x B =curlB

= .lim _I [it Ii. B .dlJ (3.103)
. Lls .••.O!:!.S j •

C max

Thus, curl B is the circulation of B per unit area, with
the area !:!.S (if the contour C being oriented such that the
circulation is maximum.

The direction of curl B is it, the unit normal of tJ.s, defined
according to the right-hand rule: with the four fingers of the
right hand following the contour direction £II, the thumb points
along it (Fig. 3-23). When we use the notation \l x B to denote
curl B, it should not be interpreted as the cross product of \l
and B.
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ds = ti ds

Figure 3-23: The direction of the unit vector Ii is along the
thumb when the other four fingers of the right hand follow dl.

For a vector B specified in Cartesian coordinates as

B = xB, + yB, + iBi" (3.104)

it can be shown. through a rather lengthy derivation. that
Eq. (3.103) leads to

" (0 Bz iJ Br ) " (0 B, 0B/ )VxB=x -.---.- +y -.---.-
iJy az az ax

" (ilBr OB,)+z -----ax av

x y z
0 0 a
ax ay a7:

(3.105)

B, By Bz

Expressions for V x B are given on the inside back cover of the
book for the three orthogonal coordinate systems considered in
this chapter.

3-6.1 Vector Identities Involving the Curl

For any two vectors A and B and scalar V.

(I) V x (A + B) = V x A + V x B. 0.106a)

(2) V ·(V x A) = O. (3.106b)

(3) V x (VV) = O. O.106c)

Stokes's theorem converts the surface integral of the curl of
a vector over an open surface S into (J line integral o{ the
vector along the contour C bounding the surface S.

For the geometry shown in Fig. 3-23, Stokes's theorem states

f (V X B) . ds = f B . dl

s c
(Stokes's theorem),

(3.107)

Its validity follows from the definition of V x B given by
Eq. (3.103). If V x B = O. the field B is said to be conservative
or irrotational because its circulation, represented by the right-
hand side of Eq. (3.107). is zero, irrespective of the contour
chosen.

Example 3-12: Verification of Stokes's Theorem

For vector field B = icos¢/r. verify Stokes's theorem
for a segment of a cylindrical surface defined by r = 2.
n /3 ::: ¢ :::7r /2. and 0 ::: z :::3 (Fig. 3-24).

z

Figure 3-24: Geometry of Example 3-12.
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Solution: Stokes's theorem states that

I (V x B) . ds = f B .dl.
s c

Left-hand side: With B having only a component
B" = cos ¢/ r, use of the expression for V x B in cy1indrical
coordinates from the inside back cover of the book gives

V x B = r (~(IBz _ (IB</» +~ (aBr _ aBz)
r a¢ az az ar
I ( a sn )+ z- -(rB</» __ r
r ar a¢

= r~~ (COS¢) _ ~~ (COS¢)
r iJ¢ r !lr r

,sin ¢ ,cos¢
= -r-~- + «11-.,- .

r- r-

The integral of V x B over the specified surface Sis

I(V x B) ·ds

s
:l tt /2

I I (_rSin¢ +~cos¢).rrde/>dz
r2 r2

z=O</>=rr!3

3 IT /2

= I I -Si: e/>de/>d z

o ;(/3

3 3
2r 4

Right-hand side: The surface S is bounded by contour
C = abed shown in Fig. 3-24. The direction of C is chosen so
that it is compatible with the surface normal r by the right-hand
rule. Hence,

h cf B . dl = I Ba/>' dl +I B/>e' dl
C a 11

d a

+I Bcd' dl +I Bda . dl,
c d

where Bo/>, Bhe, Bcc/, and Bda are the field B along segments
ab, be, cd, and da, respectively. Over segment ab, the
dot product of Bah = Z (cose/» /2 and dl = ~r d¢ is zero,
and the same is true for segment cd. Over segment be,
¢ = n/2; hence, Bhe = z(cosn/2)/2 = O. For the last
segment, Bda = z(cos tt /3)/2 = z/4 and dl = z d z, Hence,

af B . dl = I (z ~) . z d z
C d

o

= I~d z
3

3
4'

which is the same as the result obtained by evaluating the
left-hand side of Stokes's equation.

Exercise 3-18: Find V x A at (2,0,3) in cylindrical
coordinates for the vector field

A = rl0e-2r cos e/>+ zJO sin e/>.

Answer: (See~)

A (
,JOcose/> zlOe-2r. )1

V x = r + sine
r r (2,0.3)

= r5.

Exercise 3-19: Find V x A at (3,:r /6, 0) in spherical
coordinates for the vector field A = 912 sin e.
Answer: (See. )

.i. 12 sin e 1
VxA='I'--

R (3,rr/6.0)

=«112.
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.",.CD Module 3.4 Curl Select a vector vex, y), evaluate its
curl, and display both in the x-y plane.

,'\.
<,<,~"
••....... ""

"'\.,-
\ \ \ " -
Itt 1-1.0 I I

-0.5 0.5 10-1.0

Cur1

I~"

'i/xy = i f{X.'1l

f(xy) = d(sin(nx)) - ~
, dx r1y

= TTCOS{nx) - TTCOS(rry)

Select a function v(x.y) = xnat Sln(.y) + yhat Sin(lIX)

Function: Yex.y) = xsin{TTYl + ysln(nxl

'i/xv{x.Yl = xsinenyl + ySin{TTX) isro
., p i rrrcosrrrq- TTCos{nyll
r i (TTCOS{nx) + TTCos(nyll

r. v(x,Y) (arrows) and f(x.'1) (cotors)
r v(x,Y) (lines) andf(x,y) (COlors)

3-7 Laplacian Operator
In later chapters, we will sometimes deal with problems
involving multiple combinations of operations on scalars
and vectors. A frequently encountered combination is the
divergence of the gradient of a scalar. For a scalar function V
defined in Cartesian coordinates, its gradient is

.av .av .avvV=x-+y-+z-ax ay az
=xAx +yAy +zAz =A, (3.108)

where we defined a vector A with components Ax = oV lax,
Ay = av lay, and Az = av loz. The divergence of VV is

aAx aAv aAzV·(VV)=V·A=-+-' +-
ox ay az

a2v a2v a2v
= ax2 + ay2 + OZ2 . (3.109)

For convenience, V ·(VV) is called the Laplacian of V and is
denoted by V2V (the symbol V2 is pronounced "del square").
That is,

As we can see from Eq. (3.110), the Laplacian of a scalar
function is a scalar. Expressions for V2 V in cylindrical and
spherical coordinates are given on the inside back cover of the
book.

The Laplacian of a scalar can be used to define the Laplacian
of a vector. For a vector E specified in Cartesian coordinates as

(3.111)
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the Laplacian of E is

0.1(2)

Thus, in Cartesian coordinates the Laplacian of a vector is a
vector whose components are equal to the Laplacians of the
vector components. Through direct substitution, it can be
shown that

Review Question 3-11: What do the magnitude and
direction of the gradient of a scalar quantity represent?

Review Question 3-12: Prove the validity of Eq. (3.84c)
in Cartesian coordinates.

Review Question 3-13: What is the physical meaning of
the divergence of a vector field?

Review Question 3-14: If a vector field is solenoidal at
a given point in space, does it necessarily follow that the
vector field is zero at that point? Explain.

Review Question 3-15: What is the meaning of the
transformation provided by the divergence theorem?

Review Question 3-16: How is the curl of a vector field
at a point related to the circulation of the vector field?

Review Question 3-17: What is the meaning of the
transformation provided by Stokes's theorem'?

Review Question 3-18: When is a vector field
"conservative"?

Chapter 3 Relationships

Distance Between Two Points

d = [(X2 - x])2 + (Y2 - Yt)2 + (Z2 - z])2]1/2

d = [ri+rf - 2rtr2cos(¢2-¢d+(Z2-zd2]1/2

d = {R~ + Rf - 2RIR2[cos82 cosel
+ sin el sin 82COS(¢2_ ,pI)]} 1/2

Coordinate Systems Table 3-1

Coordinate Transformations Table 3-2

Vector Products

A . B = A B cos 8A B

A x B = Ii AB sineAB

A ·(B x C) = B ·(C x A) = C ·(A x B)

A x (B x C) = B(A . C) - C(A . B)

Divergence Theorem

J 'i7. E dV = f E . ds
v s

Vector Operators
~BT ~BT .sr

'i7T = x~ + y~ + z~
ax By Bz
aE, es; se,

'i7·E=-+-· +-ax ay ilz

~ (0 Bz a B I' ) ~ (a s, aBz )'i7xB=x ---" +y ---
By az az ax

~ (aBI' aBx)+z _. --
ilx ay

a2v a2v a2v
'i72v=-+-+-ax2 oy2 Bz2

(see back cover for cylindrical
and spherical coordinates)

Stokes's Theorem

J ('i7x B).ds = f B.dl
s c



182 CHAPTER 3 VECTOR ANALYSIS

CHAPTER HIGHLIGHTS

• Vector algebra governs the laws of addition, subtrac-
tion, and multiplication of vectors, and vector calculus
encompasses the laws of differentiation and integration
of vectors.

• In a right-handed orthogonal coordinate system, the
three base vectors are mutually perpendicular to each
other at any point in space, and the cyclic relations
governing the cross products of the base vectors obey
the right-hand rule.

• The dot product of two vectors produces a scalar,
whereas the cross product of two vectors produces
another vector.

• A vector expressed in a given coordinate system can be
expressed in another coordinate system through the use
of transformation relations linking the two coordinate
systems.

• The fundamental differential functions in vector
calculus are the gradient, the divergence, and the curl.

• The gradient of a scalar function is a vector whose
magnitude is equal to the maximum rate of increasing
change of the scalar function per unit distance, and its
direction is along the direction of maximum increase.

• The divergence of a vector field is a measure of the net
outward flux per unit volume through a closed surface
surrounding the unit volume.

• The divergence theorem transforms the volume integral
of the divergence of a vector field into a surface integral
of the field's flux through a closed surface surrounding
the volume.

• The curl of a vector field is a measure of the circulation
of the vector field per unit area Ss, with the orientation
of !!.s chosen such that the circulation is maximum.

• Stokes's theorem transforms the surface integral of the
curl of a vector field into a line integral of the field over
a contour that bounds the surface.

• The Laplacian of a scalar function is defined as the
divergence of the gradient of that function.

GLOSSARY OF IMPORTANT TERMS

Provide definitions or explain the meaning of the following terms:

azimuth angle
base vectors
Cartesian coordinate system
circulation of a vector
conservative field
cross product
curl operator
cylindrical coordinate system
differential area vector
differential length vector
differential volume
directional derivative
distance vector

divergenceless
divergence operator
divergence theorem
dot product
field lines
flux density
flux lines
gradient operator
irrotational field
Laplacian operator
magnitude
orthogonal coordinate system
position vector

radial distance r
range R
right-hand rule
scalar product
scalar quantity
simple product
solenoidal field
spherical coordinate system
Stokes's theorem
unit vector
vector product
vector quantity
zenith angle
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PROBLEMS

Section 3-1: Vector Algebra

*3.1 Vector A starts at point (1. -1. -3) and ends at point
(2. -1,0). Find a unit vector in the direction of A.

3.2 Given vectors A = x2 - y3 + z, B = x2 - Y + z3. and
C = x4+y2- z2. show that C is perpendicular to both A and B.

*3.3 In Cartesian coordinates, the three corners of a triangle
are PI = (0.4,4), P2 = (4. -4, 4), and P3 = (2.2, -4). Find
the area of the triangle.

3.4 Given A = x2 - y3 + zl and B = xBx + y2 + ZB7:

(a) Find B, and B7 if A is parallel to B.

(b) Find a relation between B, and Bz if A is perpendicular
toB.

3.5 Given vectors A = x + y2 - Z3, B = x2 - y4, and
C = y2 - z4, find

tea) A and a,
(b) the component of B along C,

(e) (;lAC,

(d) A x C,

*(e) A ·(B x C),

(f) A x (B x C),

(g) Xx B, and

*(h) (A x y). z.
3.6 Given vectors A = x2 - Y + z3 and B = x3 - z2, find
a vector C whose magnitude is 9 and whose direction is
perpendicular to both A and B.

*3.7 Given A = x(x +2y) -Yev+3z)+z(3x - y), determine
a unit vector parallel to A at point P = (I. -1.2).

3.8 By expansion in Cartesian coordinates, prove:

(a) The relation for the scalar triple product given by
Eq. (3.29).

(b) The relation for the vector triple product given by
Eq. (3.33).

*Answerts) available in Appendix D.

~ 3.9 Find an expression for the unit vector directed toward the
origin from an arbitrary point on the line described by x = I
andz = -3.

3.10 Find an expression for the uni t vector directed toward the
point P located on the z-axis at a height h above the x-y plane
from an arbitrary point Q = (x. y, -5) in the plane z = -5.

*3.11 Find a unit vector parallel to either direction of the line
described by

2x + z = 4.

3.12 Two lines in the x-y plane are described by the following
expressions:

Line I
Line 2

x + 2y =-6
3x + 4y = 8

Use vector algebra to find the smaller angle between the lines
at their intersection point.

*3.13 A given line is described by

x + 2y = 4.

Vector A starts at the origin and ends at point P on the line such
that A is orthogonal to the line. Find an expression for A.

3.14 Show that, given two vectors A and B.

(a) The vector C defined as the vector component of B in the
direction of A is given by

A(B·A)
C='(B.t)= .a a IAI2'

where it is the unit vector of A.

(b) The vector D defined as the vector component of B
perpendicular to A is given by

A(B ·A)
D = B - IAI2

*3.15 A certain plane is described by

2x+3y+4z=16.

Find the unit vector normal to the surface in the direction away
from the origin.

~ Solution available on CD.
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3.16 Given B = x(z - 3y) + y(2x - 3z) - z(x + v), find a
unit vector parallel to B at point P = (1,0, -I).

~ 3.17 Find a vector G whose magnitude is 4 and whose
direction is perpendicular to both vectors E and F, where
E = x + y 2 - z 2 and F = Y 3 - z 6.

3.18 A given line is described by the equation:

y =x -I.

Vector A starts at point PI = (0,2) and ends at point P~on the
line, at which A is orthogonal to the line. Find an expression
forA.

~ 3.19 Vector field E is given by

A A 12 A

E = R 5Rcosf} - 9- sinecose{> ++3 sine{>.
R

Determine the component of E tangential to the spherical
surface R = 2 at point P = (2, 30°,60°).

3.20 When sketching or demonstrating the spatial variation
of a vector field, we often use arrows, as in Fig. P3.20, wherein
the length of the arrow is made to be proportional to the strength
of the field and the direction of the arrow is the same as that of
the field's. The sketch shown in Fig. P3.20, which represents
the vector field E = rr, consists of arrows pointing radially
away from the origin and their lengths increasing linearly in
proportion to their distance away from the origin. Using this
arrow representation, sketch each of the following vector fields:

(a) EI = -xY

••• (b) E2 = yx

(e) E) = Xx + yY
(d) E4 = Xx + y2y

~ (e) E5 = +r
(I) E6 = r sin e{>

y

E E-. /-, /-, /

" ,II
x

jI' •••
/ '"

/ -,
/ -.

E E

Figure P3.20: Arrow representation for vector field E = r r
(problem 3.20).

3.21 Use arrows to sketch each of the following vector fields:

(a) EI = xx - h
(b) E~=-+
(e) E3 = y(1/x)
(d) E4 = rcose{>

Sections 3-2 and 3-3: Coordinate Systems

*3.22 Convert the coordinates of the following points from
Cartesian to cylindrical and spherical coordinates:

<t- (a) PI = (1, 2, 0)

(b) P2 = (0.0,2)
(e) P, = (I, 1,3)

(d) P4 = (-2,2, -2)

~ 3.23 Convert the coordinates of the following points from
cylindrical to Cartesian coordinates:

(a) PI = (2, n/4, -3)
(b) P2 = (3,0, -2)

(e) P3 = (4, n. 5)
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*3.24 Convert the coordinates of the following points from
spherical to cylindrical coordinates:

(a) PI = (5. O. 0)

(b) P2 = (5,0, n)

(e) P3 = (3, n /2,0)

3.25 Use the appropriate expression for the differential
surface area ds to determine the area of each of the following
surfaces:

(a) r = 3; 0:::: ¢:::: n/3; -2:::::t:::: 2
(b) 2:::: r i: 5; n/2:::: ¢:::: zr ; z = 0
(e) 2:::: r ::::5; ¢ = n/4; -2:::: z:::: 2

• (d) R = 2; 0:::: () ::::n /3; 0:::: ¢ ::::n
(e) 0:::: R ::::5; o = it /3; 0:::: ¢ ::::2n

Also sketch the outline of each surface.

*3.26 Find the volumes described by

(a) 2:::: r ::::5; n/2:::: ¢:::: zr ; 0:::: z:::: 2, and
(b) 0::::R::::5; 0:si9:Sn/3; O:s¢:s2n.

Also sketch the outline of each volume.

3.27 A section of a sphere is described by 0:::: R ::::2,
o ::::() :s 90°. and 30° ::::¢ :s 90°. Find the following:

(a) The surface area of the spherical section.

(b) The enclosed volume.
Also sketch the outline of the section.

*3.28 A vector field is given in cylindrical coordinates by

Point P = (2. it ; 3) is located on the surface of the cylinder
described by r = 2. At point P, find:

(a) The vector component of E perpendicular to the cylinder.

(h) The vector component of E tangential to the cylinder.

3.29 At a given point in space, vectors A and B are given in
spherical coordinates by

A=R4+lh-+.

B = -R2 +cj)3.

Find:

(a) The scalar component. or projection, of B in the direction
ofA.

(b) The vector component of B in the direction of A.

(e) The vector component of B perpendicular to A.

*3.30 Given vectors

A = r(cos¢ + 3z) - +(2r + 4 sin ¢) + z(r - 2z).

B = -rsin¢ + zcos¢,

find

(a) ()AB at (2, n /2,0).

(b) A unit vector perpendicular to both A and B at (2, n /3, 1).

3.31 Find the distance between the following pairs of points:

(a) PI = (1. 2. 3) and P2 = (-2. -3, -2) in Cartesian
coordinates.

(h) P3 = (I. x /4.3) and P4 = (3. n /4.4) in cylindrical
coord inates.

(e) P5 = (4. n /2, 0) and P6 = (3, it , 0) in spherical coordi-
nates.

*3.32 Determine the distance between the following pairs of
points:

(a) PI = (I, 1.2) and P2 = (0.2,3)

(b) P3 = (2. n/3, 1) and P4 = (4. n/2, 3)

(e) Ps = (3, tt , n/2) and P6 = (4, n/2, zr )

.t"< 3.33 Transform the vector

into cylindrical coordinates and then evaluate it at
P = (2. n /2, tt /2).

3.34 Transform the following vectors into cylindrical coordi-
nates and then evaluate them at the indicated points:

(a)A=x(x+y) at PI =(1.2,3)

(b) B = x(y - x) + y(x - y) at P2 = (1. O. 2)

(c) C=xy2/(x2+y2)_yx2/(x2+y2)+z4 at
P3 = (1,-I, 2)

- ' 'J(d) D = R sin () + 9 cos () + cj)cos- ¢ at P4 = (2, tt /2, n /4)
- - A J(e) E=Rcos¢+9sin4>+cj)sin-() atP5=(3.n/2,n)
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*3.35 Transform the following vectors into spherical coordi-
nates and then evaluate them at the indicated points:
(a) A = xy2 + yxz + z4 at PI = (1, -I, 2)
(b) B = y(x2 + y2 + z2) - z(x2 + y2) at P2 = (-1,0,2)

"" (e) C=rcosifJ-~sinifJ+zcosifJsinifJat
P3 = (2, 1T/4.2)

(d) D = xy2/(x2 + i) - yx2/(x2 + i) + z4 at
P4=(l,-1,2)

Sections 3-4 to 3-7: Gradient. Divergence.
and Curl Operators

3.36 Find the gradient of the following scalar functions:
(a) T = 3/(x2 + ;;0:2)

(b) V = x-,,2z4

(e) U=zcosifJ/(l+,.2)

"" (d) W = e:" sin8
(e) S = 4x2e-z + y3
(f) N = ,.2 cos2 ifJ

(g) M = R cos 8 sin ifJ

3.37 For each of the following scalar fields, obtain an
analytical solution for VT and generate a corresponding arrow
representation.
(a) T = lO+x,for-IO:sx:s 10
(b) T = x2, for -1O:s x :s 10
(e) T = 100+xy, for -10:s x:s 10
(d) T = x2y2, for -10 :s x, y :::::10

(e) T = 20 + x + v, for - 10 :s .r , y :s 10
(f) T= I +sin(rrx/3),for-10:::::x::::: 10
(g) T = I + COS(1TX 13), for -10 :s x :s 10

. {o<r<1O
(h) T = 15 + r cos e, for 0 ~ ifJ-; Zst .

rn r 15 ~ c {o<r<1O= +rcos-ifJ,lor 0~ifJ-;21T.

*3.38 The gradient of a scalar function T is given by

VT = ze-2z.

If T = 10 at z = 0, find T(z).

3.39 Follow a procedure similar to that leading to Eq. (3.82)
to derive the expression given by Eq. (3.83) for V in spherical
coordinates.

*3.40 For the scalar function V = xy2 - z2, determine
its directional derivative along the direction of vector
A = (x - yz) and then evaluate it at P = (1, -1,4).

,JfJfr 3.41 Evaluate the line integral of E = xx - y y along the
segment PI to Pz of the circular path shown in Fig. P3.41.

y

PI = (0, 3)

----~------~----------~ x
P2 = (-3, 0)

Figure P3.41: Problem 3.41.

3.42 For the scalar function T = ~e-r/5 cos ifJ. determine
its directional derivative along the radial direction r and then
evaluate it at P = (2.1T/4. 3).

*3.43 For the scalar function U = * sin2 8, determine its
directional derivative along the range direction R and then
evaluate it at P = (5. 1T/4, 1T/2).

3.44 Each of the following vector fields is displayed in
Fig. P3.44 in the form of a vector representation. Determine
V . A analytically and then compare the result with your
expectations on the basis of the displayed pattern.

(a) A = -xcosx sin y + ysinx cosy, for -1T :::::x. y :s 1T

·tttttt
.• " 1 t t t .~•..
...#"lt~ •..,...

y
+HHH·1/'~~1~~"-
"'I/'~+~"'"
.•.... ",.."." ...•....•....•

...............•.• ~•...•...

.• ,.,. ~ + I 1/''''

+.,.\~t~11/'

•...•.. "tJlA ....•....•.
..."~tl" ...•.•
" ~ t ttl ,- X

-11: I/' ~. ~ \ .,..•...•..I/'~+\" ..•.
•..•...rJl •..•...•....•.

'1t ~~"'i
""1 t ~" •...•.....•A~t'~1:o--

--.-•..,t~ ...•....•.
.•...•."\tl''''
.•.."\tt11'
·tttttt-t

...•. ...• ".,... _-
, .,. \ + I I/' •••.•••

"~~fl~I/'''''
HH H +.

Figure P3.44(a)
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(b) A = ~x sin 2y + Y cos 2x, for +tt ::::x, y ::::rr (e) A = XX, for -10 ::::x ::::10

y
t t • • + • • t • * + • . t t
I~-'\''''~~""\'-~I/?~~~~ ...•? ?-~~~~?/
I~""\~"'~ ~-~\~-~I
t t • • + + • t t· * + * . t t
"-/,//-' '-/,//-",,-///-, ,-///-,'
,,-/,//-, ,-",//-" x

~~-'\~-~/-~\,-~,/?~~~~ ...•? ?..•.~~~-?/
I/-'\'-~ ~-~\~-/I
t t . * + * . t t· * + • • t t,,-/,//-, ,-/,//-,'
"-///+-, ,-///-,',,-///-, ,-///-"
tt·H+·t?r t·'H·tt

-10 Y .•.
~ -- - -~ - - - - -+

~ -- +- - ...• -+

~ - - - - -+-- - .•. ..•. -+-- - - ...• ---- -- - - ..•. -+- -- - ... ..•. -+-- - - ..•. -+ --:t&- - -- - - ...• -+ --ill- -- - ... ..•. ----- - - ..•. -+- -- - - ..•. -+- -- - ... - -+- -- - ... ..•. -+- ..- +- - ....- -+- -- - ... ..•. -+- ..- - - ..•. -+- ..- ~10 - ...• -+

Figure P3,44(b) Figurc P3,44(e)

(f) A=xxy2.for~]()::::x.y:::: 10(c) A = ~x x y + Y y2. for ~ 10 ::::.r , y :::: 10

~ ~ ~ ~ 10 Y ~ ~ ~ ~

,/ / I

1 I l' ,/

t J! :/

-10

Figure P3,44(c)

-10

Figure P3,44(t)

(g) A=xxy2+yx2y,for~IO::::x.y:::: 10(d) A = ~xcosx + y sin v, for ~rr ::::x. y:::: rr

y

~~~~t,~~ ~~,t~~~~
?~~ft~" "'tf~~?
//Ift'" "'tll////Itt\" "\ttl//
//llt'" "'tll//
?~~ft~" "~tf~~?

•....""tJ'~.",-x
~~~~+.r~~r.'~~~~~~~~ ••// //.+~~~~
~~\\+'I/ /I'+\\~~
~~\\+'/~ ~II+\\~~
~~\\+'I/ /I'+\\~~~~~~+.// //.+~~~~

Figurc P3,44(d) Figure P3,44(g)
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(h) A = x sin C~) + ysin C~'),for -10:s x, y:s 10 ~,
1/

-10 10
~ \, ~

I \
/

Figure P3.44(j)

3.45 Vector field E is characterized by the following
properties: (a) E points along R; (b) the magnitude of E is a
function of only the distance frum the origin; (c) E vanishes at
the origin; and (d) V . E = 12, everywhere. Find an expression
for E that satisfies these properties .

. " {o<r<IO
(I) A = r r +.rcosq" for 0 ~ q,S llr.

10 Y

\ i t t t 1 }!t t t t
\ \ ~ f t f !
\ \ \ ~ t I I !

-1 0,,-. .. -._//
...........+--- .,. ..•. ----
-/ I \. ,--

......-,/ I \ '-..~
-10

Figure P3.44(i)

*3.46 For the vector field E = xrz - hz2 - ixy, verify the
divergence theorem by computing:

(a) The total outward flux flowing through the surface of a
cube centered at the origin and with sides equal to 2 units
each and parallel to the Cartesian axes.

(b) The integral of V . E over the cube's volume.

3.47 For the vector field E = rlOe-r - z3z, verify the
divergence theorem for the cylindrical region enclosed by
r = 2. z = O. and z = 4.

*3.48 A vector field D = frJ exists in the region between two
concentric cylindrical surfaces defined by r = 1 and r = 2, with
both cylinders extending between z = 0 and z = 5. Verify the
divergence theorem by evaluating

• ,1 '1 .. {o<r<1OU) A = rr- +.r- smq" tor 0 ~ q,S 2n.

(a) f D· ds.
s

(b) f V· D dV .

V

3.49 For the vector field D = R3R2, evaluate both sides of
the divergence theorem for the region enclosed between the
spherical shells defined by R = I and R = 2.
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•• 3.50 For the vector field E = Xx.1' - y(x2 + 2.1'2), calculate

(a) f E· dl around the triangular contour shown in P3.50(a).

c

(b) f (V x E) . ds over the area of the triangle.

s

y y

~L:Lx
1

(a)
I
(b)

2

Figure P3.50: Contours for (a) Problem 3.50 and (b)
Problem 3.51.

3.51 Repeat Problem 3.50 for the contour shown in 3.50(b).

*3.52 Verify Stokes's theorem for the vector field

B = (rrcos¢ +~sin¢)

by evaluating

(a) f B· dl over the semicircular contour shown III

C
Fig. P3.52(a).

(b) f (V x B)· ds over the surface of the semicircle.

s

y

:kLx
I 2

(b)

2

~-_~~_-":!--xo
(a)

Figure P3.52: Contour paths for (a) Problem 3.52 and (b)
Problem 3.53.

3.53 Repeat Problem 3.52 for the contour shown in
Fig. P3.52(b).

3.54 Verify Stokes's theorem for the vector field
A = R cos Ii +~sin Ii by evaluating it on the hemisphere
of unit radius.

f'J" 3.55 Verify Stokes's theorem for the vector field
B = (r cos ¢ + ~ sin ¢) by evaluating:

(a) f B . dl over the path comprising a quarter section of a

c
circle, as shown in Fig. P3.55, and

(b) f (V x B) . ds over the surface of the quarter section.

s

y

(0,3)

--....L..--__t*"----- X
(-3,0) L3

Figure P3.55: Problem 3.55.

*3.56 Determine if each of the following vector fields is
solenoidal, conservative, or both:

(a) A = ix2 - y2xy

(b) B = ix2 - yY2 + z2z

(e) C = r(sin¢)/r2 +~(cos¢)/r2

(d) D = ft/R

(e) E = r (3 - l~r) + zz

(f) F = (x)' + yx)/(x2 + )"2)

(g) G = i(x2 + z2) - y(y2 + x2) - z(y2 + z2)

(h) H = R(Re-R)
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.t"'> 3.57 Find the Laplacian of the following scalar functions:

(a) V = 4xy2 z3

(b) V = xy + yz + zx

(e) V = 3/(x2 + y2)

(d) V = 5e-r cos 1>
(e) V = lOe-R sin ()

3.58 Find the Laplacian of the following scalar functions:

(a) VI = lOr3 sin 21>

(b) V2 = (2/R2)cos8sin1>
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Upon learning the material presented in this chapter, you should
be able to:

1. Evaluate the electric field and electric potential due to any
distribution of electric charges.

2. Apply Gauss's law.

3. Calculate the resistance R of any shaped object. given the
electric field at every point in its volume.

4. Describe the operational principles of resistive and
capacitive sensors.

S. Calculate the capacitance of two-conductor configura-
tions.
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4-1 Max well's Equations

The modern theory of electromagnetism is based on a set of
four fundamental relations known as Maxwell's equations:

V'·D=Pv,
aB

V'xE=-- at'
V' ·B=O,

(4.1a)

(4.1b)

(4.1c)

(4.1d)

Here E and D are the electric field intensity and electric
flux density, interrelated by D = EE where E is the electrical
permittivity; Hand B are the magnetic field intensity and
magnetic flux density, interrelated by B = {tH where (t is the
magnetic permeability; PI' is the electric charge density per unit
volume; and J is the current density per unit area. The fields and
fluxes E, D, B, H were introduced in Section 1-3, and PI' and J
will be discussed in Section 4-2. Maxwell's equations hold
in any material, including free space (vacuum). In general,
all the above quantities may depend on spatial location and
time t. In the interest of readability, we will not. however,
explicitly reference these dependencies [as in E(x, y. z ; t)]
except when the context calls for it. By formulating these
equations, published in a classic treatise in 1873, James
Clerk Maxwell established the first unified theory of electricity
and magnetism. His equations, deduced from experimental
observations reported by Coulomb, Gauss, Ampere, Faraday,
and others, not only encapsulate the connection between the
electric field and electric charge and between the magnetic
field and electric current, but also capture the bilateral coupling
between electric and magnetic fields and fluxes. Together with
some auxiliary relations, Maxwell's equations comprise the
fundamental tenets of electromagnetic theory.

Under static conditions, none of the quantities appearing in
Maxwell's equations are functions of time (Le., a/at = 0). This
happens when all charges are permanently fixed in space,
or, (f they move, they do so at a steady rate so that PI' and
J are constant ill time. Under these circumstances, the time
derivatives of Band D in Eqs. (4.lb) and (4.1d) vanish, and
Maxwell's equations reduce to

Electrostatics

(4.2a)

(4.2b)

Magnetostatics

Maxwell's four equations separate into two uncoupled pairs,
with the first pair involving only the electric field and flux E
and D and the second pair involving only the magnetic field and
flux Hand B.

Electric and magnetic fields become decoupled under static
conditions.

This allows us to study electricity and magnetism as two
distinct and separate phenomena, as long as the spatia)
distributions of charge and current flow remain constant in
time. We refer to the study of electric and magnetic phenomena
under static conditions as electrostatics and magnetostatics,
respectively. Electrostatics is the subject of the present
chapter, and in Chapter 5 we learn about magnetostatics.
The experience gained through studying electrostatic and
magnetostatic phenomena will prove invaluable in tackling the
more involved material in subsequent chapters, which deal with
time-varying fields, charge densities, and currents.

We study electrostatics not only as a prelude to the
study of time-varying fields, but also because it is an
important field in its own right. Many electronic devices and
systems are based on the principles of electrostatics. They
include x-ray machines, oscilloscopes, ink-jet electrostatic
printers, liquid crystal displays, copy machines, micro-electro-
mechanical switches, and accelerometers, and many solid-
state-based control devices. Electrostatic principles also
guide the design of medical diagnostic sensors, such as the
electrocardiogram, which records the heart's pumping pattern,
and the electroencephalogram, which records brain activity, as
well as the development of numerous industrial applications.

4-2 Charge and Current Distributions

In electromagnetics, we encounter various forms of electric
charge distributions. When put in motion, these charge
distributions constitute current distributions. Charges and
currents may be distributed over a volume of space, across a
surface, or along a line.
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4-2.1 Charge Densities

At the atomic scale, the charge distribution in a material
is discrete, meaning that charge exists only where electrons
and nuclei are and nowhere else. In electromagnetics, we
usually are interested in studying phenomena at a much
larger scale, typically three or more orders of magnitude
greater than the spacing between adjacent atoms. At such a
macroscopic scale, we can disregard the discontinuous nature
of the charge distribution and treat the net charge contained
in an elemental volume Ll V as if it were uniformly distributed
within. Accordingly, we define the volume charge density p,
as

dq
dV

(4.4). Llq
p" = 11m -

/'; V-->O Ll V

where Llq is the charge contained in LlV. in general, p; depends
on spatial location (x, y, z) and t; thus, Pv = PvC!;, y, z, t).

Physically, Pv represents the average charge per unit volume
for a volume Ll V centered at (x, y, z), with Ll V being large
enough to contain a large number of atoms, yet small enough
to be regarded as a point at the macroscopic scale under
consideration. The variation of Pv with spatial location is called
its spatial distribution, or simply its distribution. The total
charge contained in volume V is

Q =!Pv dV
V

(C). (4.5)

In some cases, particularly when dealing with conductors,
electric charge may be distributed across the surface of a
material, in which case the quantity of interest is the surface
charge density p" defined as

dq
£Is

. Llq
Ps = hm -

/,;-,-->0 Lls (4.6)

where Llq is the charge present across an elemental surface
area Lls. Similarly, if the charge is, for all practical purposes,
confined to a line. which need not be straight, we characterize
its distribution in terms of the line charge density Pr, defined
as

. Llq dq
PI = lJ~o M = dt (Clm). (4.7)

Example 4-1: Line Charge Distribution

Calculate the total charge Q contained in a cylindrical tube
oriented along the z-axis as shown in Fig. 4-I(a). The line

z

IDcm __ Line charge PI

IB-------.,~y

x
(a) Line charge distribution

z

Surface charge Ps

x
(b) Surface charge distribution

Figure 4-1: Charge distributions for Examples 4-1 and 4-2.

charge density is Pi = 2z. where z is the distance in meters
from the bottom end ofthe tube. The tube length is 10 em.

Solution: The total charge Q is

0.1 0.1

! ! 21°.1
-,Q = Pe dz = 2z (/:L = z () = 10 - C.

° ()

Example 4-2: Surface Charge Distribution

The circular disk of electric charge shown in Fig. 4-1 (b) is
characterized by an azimuthally symmetric surface charge
density that increases linearly with r from zero at the center
to 6 C/m2 at r = 3 ern, Find the total charge present on the disk
surface.
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Solution: Since Ps is symmetrical with respect to the azimuth
angle if>, it depends only on r and is given by

6r ~
Ps = ., = 2 x IO-r. 3 x 10--

where r is in meters. In polar coordinates. an elemental area
is ds = r dr dif>, and for the disk shown in Fig. 4-I(b), the
limits of integration are from 0 to 2IT (rad) for if>and from 0 to
3 X 10-2 rn for r. Hence,

Q = f Ps ds
s
2rr 3x 10-2

= f f (2 x 102r)r dr dif>

1/>=0 r=O

1 13x 10"., r:= 2IT X 2 x IW - = 11.31
3 0

(mC).

ExercIse 4-1: A square plate residing in the x-y plane
is situated in the space defined by -3 m ::s x ::s 3m and
- 3 m ::s y ::s 3 m. Find the total charge on the plate if the
surface charge density is Ps = 4y2 (IlC/m2).

Answer: Q = 0.432 (mC). (See ~)

Exercise 4-2: A thick spherical shell centered at the origin
extends between R = 2 cm and R = 3 em. If the volume
charge density is Pv = 3R X 10-4 (C/m3), find the total
charge contained in the shell.

Answer: Q = 0.61 (nC). (See -'It-)

4-2.2 Current Density

Consider a tube with volume charge density p; [Fig. 4-2(a)].
The charges in the tube move with velocity u along the tube axis.
Over a period /'>.1, the charges move a distance /'>./ = u Sr.
The amount of charge that crosses the tube's cross-sectional
surface /'>..1" in time /'>.t is therefore

/'>.q' = p; /'>. V = Pv /'>.[ /'>.s' = P\,U Ss' /'>.t. (4.8)

Sq' = pvu /).s' /).t

I-M-l

(a)

Sq = Pvu . /).s /).t
=Pvu /)..1' /).t cos H

(b)

Figure 4-2: Charges with velocity u moving through a cross
section t..s' in (a) and t..s in (b) .

Now consider the more general case where the charges are
flowing through a surface /'>.,1" with normal it not necessarily
parallel to u [Fig. 4-2(b)). In this case. the amount of charge /).q
flowing through /).S is

/'>.q = p,u' /'>.5 Sr, (4.9)

where /'>.5 = n /'>.sand the corresponding total current flowing
in the tube is

/'>.q
/'>.1 = t;t = PvU' /'>.5 = J. /'>.5, (4.10)

where
(A1m2) (4.11) I

is defined as the current density in ampere per square meter.
Generalizing to an arbitrary surface S, the total current flowing
through it is

(A). (4.12)

When a current is due to the actual movement of electrically
charged matter, it is called a convection current, and J is
called a convection current density.
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A wind-driven charged cloud, for example, gives rise to
a convection current. In some cases, the charged matter
constituting the convection current consists solely of charged
particles, such as the electron beam of a scanning electron
microscope or the ion beam of a plasma propulsion system.

When a current is due to the movement of charged particles
relative to their host material, J is called a conduction current
density. In a metal wire, for example, there are equal amounts
of positive charges (in atomic nuclei) and negative charges (in
the electron shells of the atoms). None of the positive charges
and few of the negative charges can move; only those electrons
in the outermost electron shells of the atoms can be pushed from
one atom to the next if a voltage is applied across the ends of
the wire.

This movement of electrons from atom to atom constitutes
a conduction current. The electrons that emerge from the
wire are not necessarily the same electrons that entered the
wire at the other end.

Conduction current, which is discussed in more detail in
Section 4-6, obeys Ohm's law, whereas convection current does
not.

Review Question 4-1: What happens to Maxwell's
equations under static conditions?

Review Question 4-2: How is the current density J related
to the volume charge density Pv?

Review Question 4-3: What is the difference between
convection and conduction currents?

4-3 Coulomb's Law
One of the primary goals of this chapter is to develop dexterity
in applying the expressions for the electric field intensity E
and associated electric flux density D induced by a specified
distribution of charge. Our discussion will be limited to
electrostatic fields induced by stationary charge densities.

We begin by reviewing the expression for the electric
field introduced in Section 1-3.2 on the basis of the results
of Coulomb's experiments on the electrical force between
charged bodies. Coulomb's law, which was first introduced
for electrical charges in air and later generalized to material
media, implies that:

E

/I'\..
/ . ,

/ , "

Figure 4-3: Electric-field lines due to a charge q.

(1) An isolated charge q induces an electric Held E at every
point in space, and at any specific point P, E is given by

(Vim), (4.13)

where R is a unit vector pointing from q to P (Fig. 4-3),
R is the distance between them. and E is the electrical
permittivity of the medium containing the observation
point P.

(2) In the presence of an electric field E at a given point in
space, which may be due to a single charge or a distribution
of charges, the force acting on a test charge q' when placed
at P, is

F=q'E (N). (4.14)

With F measured in newtons (N) and q' in coulombs (C), the
unit of E is (N/C), which will be shown later in Section 4-5 to
be the same as volt per meter (V/m).

For a material with electrical permittivity E. the electric field
quantities D and E are related by

D=EE (4.15)

with
(4.16)

where

EO = R.S5 X 10-12 ~ (1/36;rr) x 10-9 (F/m)

is the electrical permittivity of free space, and Er = E/EO is
called the relative permittivity (or dielectric constant) of the
material. For most materials and under a wide range of
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E

x

Figure 4-4: The electric field E at P due to two charges is equal
to the vector sum of E I and E~.

conditions, E is independent of both the magnitude and direction
ofE las implied by Eq. (4.15)1.

If E is independent of the magnitude of E. then the material
is said to be linear because D and E are related linearly,
and (fit is independent of the direction of E. the material is
said to be isotropic.

Materials usually do not exhibit nonlinear permittivity behavior
except when the amplitude of E is very high (at levels
approaching dielectric breakdown conditions discussed later in
Section 4-7), and anisotropy is present only in certain materials
with peculiar crystalline structures. Hence, except for unique
materials under very special circumstances, the quantities D
and E are effectively redundant; for a material with known E,

knowledge of either D or E is sufficient to specify the other in
that material.

4-3. t Electric Field due to Multiple Point Charges

The expression given by Eq. (4.13) for the field E due to a single
point charge can be extended to multiple charges. We begin by
considering two point charges. ql and qi with position vectors
RI and R2 (measured from the origin in Fig. 4-4). The electric
field E is to be evaluated at a point P with position vector R.
At P; the electric field EI due to ql alone is given by Eq. (4.13)

with R, the distance between q I and P, replaced with IR - R II
and the unit vector R replaced with (R - Rtl/lR - RII. Thus,

ql(R-RI)EI = ------::-
4JrEIR - RJl3

(Vim). (4.17a)

Similarly, the electric field at P due to q: alone is

(Vim). (4.17b)

The electricjield obeys the principle oflinear superposition.

Hence, the total electric field E at P due to ql and Cl2 is

E = EI + E2

= _1_ [ql(R - R]) + q2(R - R2)].
4JrE IR - RJI' IR - R213

(4.18)

Generalizing the preceding result to the case of N point charges,
the electric field E at point P with position vector R due to
charges (j I ' q2, ... , q N located at points with position vectors
RI, R2, .... RN, equals the vector sum of the electric fields
induced by all the individual charges. or

(VIm). (4.19)
1 ~ qi(R- R;)

E = -41Z'-e !-- .;;;...IR..,------Ri-.1'="""3
1=1

Example 4-3: Electric Field Due to Two Point Charges

Two point charges with ClI = 2 X 10-5 C and
q: = -4 x 10-5 C are located in free space at points
with Cartesian coordinates (1.3, -I) and (-3. I. -2),
respectively. Find (a) the electric field E at (3. I. -2) and (b)
the force on a 8 x 10-5 C charge located at that point. All
distances are in meters.

Solution: (a) From Eq. (4.18), the electric field E with E = 80

(free space) is

I [ (R - Rd (R - R2) ]E= -- (jl +q~ ---7

4JrEo IR-RJl3 - IR-R213

The vectors RI. R2, and Rare

(Vim).

RI=x+y3-z,

R2 = -x3 + y - z2,

R = X3 + y - z2.
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Hence,

I [2(X2 - 5'2 - z) 4(X6)] -5E=-- --- x 10
4JrEo 27 216

x - 5'4 - z2 ,
--=---- x 10-'

108JrEo
(VIm).

(b)

-5 X - 5'4 - z2 -'i
F = q,E = 8 x 10 . x x 10 -

. I08JrEo

x2 - 5'8 - z4 x 10-10

27JrEO
(N).

Exercise 4-3: Four charges of 10 JLC each are located in
free space at points with Cartesian coordinates (-3,0,0),
(3,0,0), (0, -3,0), and (0,3,0). Find the force on a
20-JLC charge located at (0,0,4). All distances are in
meters.

Answer: F = zO.23 N. (See <11»

Exercise 4-4: Two identical charges are located on the
x-axis at x = 3 and x = 7. At what point in space is the
net electric field zero?

Answer: At point (5, 0, 0). (See ~)

Exercise 4-5: In a hydrogen atom the electron and proton
are separated by an average distance of 5.3 x 10-11 m.
Find the magnitude of the electrical force Fe between
the two particles. and compare it with the gravitational
force Fg between them.

Answer: Fe = 8.2 x 10-8 N. and Fg = 3.6 x 10-47 N.
(See '3»

4-3.2 Electric Field due to a Charge Distribution

We now extend the results obtained for the field due to discrete
point charges to continuous charge distributions. Consider a
volume V' that contains a distribution of electric charge with
volume charge density Pv. which may vary spatially within V'
(Fig. 4-5). The differential electric field at a point P due to

dE

Figure 4-5: Electric fielddue to a volume charge distribution.

a differential amount of charge dq = p" dV' contained in a
differential volume dV' is

., dq _, p; dV'
dE=R ---, =R ---, .

4JrER'- 4JrFR'-
(4.20)

where R' is the vector from the differential volume dv ' to
point P. Applying the principle of linear superposition. the
total electric field E is obtained by integrating the fields due to
all differential charges in V'. Thus.

E = JdE = _1_ Ji' PvdV'
4Jr£ RI2

V' V'
(volume distribution). (4.21a)

It is important to note that. in general. both R' and R' vary as a
function of position over the integration volume V'.

If the charge is distributed across a surface 5' with surface
charge density Ps, then dq = Ps ds'; and if it is distributed
along a line l' with a line charge density Pf. then dq = Pi dl',
Accordingly. the electric fields due to surface and line charge
distributions are

E = _1_ J i' Ps ds' (surface distribution),
41rE RI2

5'

(4.21b)

E = _1_ J i' Pi dl' (line distribution).
41rE R,2

I'

(4.2Ic)
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z

x
(a)

z

x
(b)

Figure 4·6: Ring of charge with line density Pt. (a) The
field dEl due to infinitesimal segment I and (b) the fields dEl
and dE2 due to segments at diametrically opposite locations
(Example 4-4).

Example 4·4: Electric Field of a Ring of Charge

A ring of charge of radius b is characterized by a uniform line
charge density of positive polarity Pt. The ring resides in free
space and is positioned in the x-y plane as shown in Fig. 4-6.
Determine the electric field intensity E at a point P = (0,0, h)
along the axis of the ring at a distance h from its center.

Solution: We start by considering the electric field generated
by a differential ring segment with cylindrical coordinates
(h. ¢, 0) in Fig. 4-6(a). The segment has length dl = b d¢ and
contains charge dq = Pc dl = Ptb d¢. The distance vector R;
from segment I to point P = (0.0, h) is

R'I = =ib + zh.

from which it follows that

The electric field at P = (0, 0, h) due to the charge in segment I
therefore is

I A'Pedl
dEl = -4- R) --

7TEO R,2
)

pfh (-rb+zh)
1 2 1j1 dd».47TEO (b- + II )- -

The field dEl has component d Ei, along -r and compo-
nent d E, z along z. From symmetry considerations, the
field dE2 generated by differential segment 2 in Fig. 4-6(b),
which is located diametrically opposite to segment 1, is
identical to dE) except that the r-component of dE2 is opposite
that of dE1. Hence, the r-components in the sum cancel and
the z-contributions add. The sum of the two contributions is

(4.22)

Since for every ring segment in the semicircle defined over the
azimuthal range 0 ::::¢ ::::T{ (the right-hand half of the circular
ring) there is a corresponding segment located diametrically
opposite at (¢ + T{), we can obtain the total field generated by
the ring by integrating Eq. (4.22) over a semicircle as

A pthh
= z 2Eo(b2 + h2)3/2

A h
= Z 47TEO(b2 + h2)3/2 Q, (4.23)

where Q = 27Tbpt is the total charge on the ring.
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Example 4-5: Electric Field of a Circular Disk of Charge

Find the electric field at point P with Cartesian coordinates
(0,0,11) due to a circular disk of radius a and uniform charge
density Ps residing in the x-y plane (Fig. 4-7). Also, evaluate E
due to an infinite sheet of charge density Ps by letting a ---+ 00.

Solution: Building on the expression obtained in Example
4-4 for the on-axis electric field due to a circular ring of charge,
we can determine the field due to the circular disk by treating
the disk as a set of concentric rings. A ring of radius r
and width dr has an area ds = 2:rrr dr and contains charge
dq = Ps ds = 2:rrpsr dr. Upon using this expression in
Eq. (4.23) and also replacing b with r, we obtain the following
expression for the field due to the ring:

A h
dE = z ~ 2~/1 (2:rrpsr dr).

4:rr80(r- + h ) ~

E
P = (0, 0, h)

h

x

Figure 4-7: Circular disk of charge with surface charge
density Ps. The electric field at P = (0. D. II) points along the
z-direction (Example 4-5).

The total field at P is obtained by integrating the expression
over the limits I' = 0 to I' = a:

(4.24)

with the plus sign for h > ° (P above the disk) and the minus
sign when h < ° (P below the disk).

For an infinite sheet of charge with a = 00,

(infinite sheet of charge). (4.25)

We note that for an infinite sheet of charge E is the same at all
points above the x-y plane, and a similar statement applies for
points below the x-y plane.

Review Question 4-4: When characterizing the electrical
permittivity of a material. what do the terms linear and
isotropic mean?

Review Question 4-5: If the electric field is zero at a
given point in space, does this imply the absence of electric
charges?

Review Question 4-6: State the principle of linear
superposition as it applies to the electric field due to a
distribution of electric charge.

Exercise 4-6: An infinite sheet with uniform surface
charge density Ps is located at z = 0 (x-y plane), and
another infinite sheet with density -Ps is located at
z = 2 m, both in free space. Determine E everywhere.

Answer: E = ° for z < 0; E = iPs/EO for
o < z < 2 m; and E = ° for z > 2 m. (See ~)
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4-4 Gauss's Law

In this section, we will use Maxwell's equations to confirm the
expressions for the electric field implied by Coulomb's law,
and propose alternative techniques for evaluating electric fields
induced by electric charge. To that end, we restate Eq. (4.1 a):

V·D=py

(Differential form of Gauss's law),

(4.26)

often referred to as the differential form of Gauss's law. The
adjective "differential" refers to the fact that the divergence
operation involves spatial derivatives. As we will see shortly,
Eq. (4.26) can be converted to an integral form. When solving
electromagnetic problems, we often go back and forth between
equations in differential and integral form, depending on which
of the two happens to be the more applicable or convenient
to use. To convert Eq. (4.26) into integral form, we multiply
both sides by dV and evaluate their integrals over an arbitrary
volume V: f V·DdV= f p,dV= Q.

V v
(4.27)

Here, Q is the total charge enclosed in V. The divergence
theorem, given by Eq. (3.98), states that the volume integral of
the divergence of any vector over a volume V equals the total
outward flux of that vector through the surface S enclosing V.
Thus. for the vector D,

f V· D dV = f D .ds.
v s

(4.28)

Comparison of Eq. (4.27) with Eq. (4.28) leads to

The integral form of Gauss '05 law is illustrated diagrammati-
cally in Fig. 4-8; for each differential surface element ds,
D .ds is the electric field flux flowing outward (?t" V
through ds, and the total flux through surface 5 equals the
enclosed charge Q. The surface 5 is called a Gaussian
surface.

D·ds

Figure 4·8: The integral form of Gauss's law states that the
outward flux of D through a surface is proportional to the
enclosed charge Q.

Gaussian surface

Figure 4·9: Electric field D due to point charge q.

The integral form of Gauss's law can be applied to
determine D due to a single isolated point charge q by enclosing
the latter with a closed, spherical, Gaussian surface S of
arbitrary radius R centered at q (Fig. 4-9). From symmetry
considerations and assuming that q is positive, the direction
ofD must be radially outward along the unit vector R, and DR,
the magnitude of D, must be the same at all points on S. Thus,
at any point on 5,

D=RDR.

and ds = R ds, Applying Gauss's law gives

fD.dS= fRDR'RdS
s s

= f DR ds = DR(4rr R2) = q.

s

(4.30)

(4.31)
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Solving for DR and then inserting the result in Eq. (4.30) gives
the following expression for the electric field E induced by an
isolated point charge in a medium with permittivity E:

D , q
E=-=R--

E 4JrER2
(Vim). (4.32)

This is identical with Eq, (4.13) obtained from Coulomb's
law; after all, Maxwell's equations incorporate Coulomb's law.
For this simple case of an isolated point charge, it does not
matter whether Coulomb's law or Gauss's law is used to obtain
the expression for E. However, it does matter as to which
approach we follow when we deal with multiple point charges
or continuous charge distributions. Even though Coulomb's
law can be used to find E for any specified distribution of charge,
Gauss's law is easier to apply than Coulomb's law, but its utility
is limited to symmetrical charge distributions.

Gauss's 1mI', as given by Eq. (4.29), provides a convenient
methodfor determining the flux density D when the charge
distribution possesses symmetry properties that allow us to
infer the variations oj" the magnitude and direction of D
as a function of spatial location, thereby facilitating the
integration oJD over a cleverly chosen Gaussian surface.

Because at every point on the surface the direction of ds is
along its outward normal, only the normal component ofD at the
surface contributes to the integral in Eq. (4.29). To successfully
apply Gauss's law, the surface S should be chosen such that,
from symmetry considerations, across each subsurface of S,
D is constant in magnitude and its direction is either normal or
purely tangential to the subsurface. These aspects are illustrated
in Example 4-6.

Example 4-6: Electric Field of an Infinite Line Charge

Use Gauss's law to obtain an expression for Edue to an infinitely
long line with uniform charge density Pt that resides along the
z-axis in free space.

Solution: Since the charge density along the line is uniform,
infinite in extent and residing along the z-axis, symmetry
considerations dictate that D is in the radial r-direction and
cannot depend on ifJ or z. Thus, D =r Dr. Therefore, we
construct a finite cylindrical Gaussian surface of radius rand
height h, concentric around the line of charge (Fig. 4-10). The
total charge contained within the cylinder is Q = Pth. Since
D is along i', the top and bottom surfaces of the cylinder do

z
__ uniform line

charge Pi'
r,')

t

- - , ~- Gaussian surface,..

Figure 4·10: Gaussian surface around an infinitely long line of
charge (Example 4-6).

not contribute to the surface integral on the left-hand side of
Eq. (4.29); that is, only the curved surface contributes to the
integral. Hence,

II 2rrf f i'Dr·frdifJdz=pth
z=04>=O

or

which yields

E= D =r Dr =r~ (4.33)
. . eO eO 271' sor

(infinite line charge);

Note that Eq. (4.33) is applicable for any infinite line of charge,
regardless of its location and direction, as long as f is properly
defined as the radial distance vector from the line charge to the
observation point (i.e., r is perpendicular to the line of charge).

Review Question 4·7: Explain Gauss's law. Under what
circumstances is it useful?

Review Question 4-8: How should one choose a Gaussian
surface?



202 CHAPTER 4 ELECTROSTATICS

Exercise 4-7: Two infinite lines, each carrying a uniform
charge density Pi, reside in free space parallel to the z-
axis at x = I and x = -I. Determine E at an arbitrary
point along the y-axis.

Answer: E=YPtYI[rreo(y2+J)]. (See e-)

Exercise 4-8: A thin spherical shell of radius a carries
a uniform surface charge density Ps. Use Gauss's law to
determine E everywhere in free space.

Answer: E = 0 for R < a;
E = Rpsa2 I(e R2) for R > a. (See e-)

ExercIse 4-9: A spherical volume of radius a contains a
uniform volume charge density PV' Use Gauss's law to
determine D for (a) R ::: a and (b) R 2: a.

Answer: (a) D = RPvRI3,
(b) D = RPva3/(3R2). (See ~)

4-5 Electric Scalar Potential

The operation of an electric circuit usually is described in terms
of the currents flowing through its branches and the voltages at
its nodes. The voltage difference V between two points in
a circuit represents the amount of work. or potential energy,
required to move a unit charge from one to the other.

The term "voltage" is short for "voltage potential" lind
synonymous with electric potential.

Even though when analyzing a circuit we may not consider the
electric fields present in the circuit. it is in fact the existence
of these fields that gives rise to voltage differences across
circuit elements such as resistors or capacitors. The relationship
between the electric field E and the electric potential V is the
subject of this section.

4-5.1 Electric Potential as a Function of Electric
Field

We begin by considering the simple case of a positive charge q
in a uniform electric field E = -yE, in the -.v-direction
(Fig. 4-11). The presence of the field E exerts a force Fe = q E

y
Fext

lE lE 01. t t
Fe

x

Figure 4·11: Work done in moving a charge q a distance d."
against the electric field E is d W = q E dy.

on the charge in the - v-direction. To move the charge along
the +v-direction (against the force Fe). we need to provide
an external force Fex! to counteract Fe, which requires the
expenditure of energy. To move '1 without acceleration (at
constant speed), the net force acting on the charge must be
zero. which means that F ex! + Fe = 0, or

Fcx! = =F; = -'lE. (4.34)

The work done. or energy expended, in moving any object a
vector differential distance dl while exerting a force Fcx! is

d W = Fex! . dl = -'1 E . dl (1). (4.35)

Work, or energy, is measured in joules (J). If the charge is
moved a distance dv along y, then

dW = -q( -YE)· Ydy = qE dy, (4.36)

The differential electric potential energy d W per unit charge
is called the differential electric potential (or differential
voltage) d V. That is,

dW
dV = - = -E·dl

'1
(J/C or V). (4.37)

The unit of V is the volt (V), with I V = I J/C, and since V
is measured in volts. the electric field is expressed in volts per
meter (V1m).
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Figure 4·12: In electrostatics, the potential difference between
P2 and PI is the same irrespective of the path used for calculating
the line integral of the electric field between them.

The potential difference corresponding to moving a point
charge from point PI to point P2 (Fig. 4-12) is obtained by
integrating Eq, (4.37) along any path between them. That is,

(4.38)

or

(4.39)

where VI and V2 are the electric potentials at points PI and P2,
respectively. The result of the line integral on the right-hand
side of Eq, (4.39) is independent of the specific integration
path that connects points PI and P2. This follows immediately
from the law of conservation of energy. To illustrate with an
example, consider a particle in Earth's gravitational field. If
the particle is raised from a height h I above Earth's surface
to height h i- the particle gains potential energy in an amount
proportional to (h2 - hi). If, instead, we were to first raise the
particle from height hi to a height h3 greater than h i. thereby
giving it potential energy proportional to (h3 - hi), and then
let it drop back to height h2 by expending an energy amount
proportional to (h3 - bz). its net gain in potential energy would
again be proportional to (h2-h I)' The same principle applies to
the electric potential energy Wand to the potential difference

(V2 - VI). The voltage difference between two nodes in an
electric circuit has the same value regardless of which path in
the circuit we follow between the nodes. Moreover, Kirchhoff's
voltage law states that the net voltage drop around a closed loop
is zero. If we go from PI to P2 by path I in Fig. 4-12 and then
return from P2 to PI by path 2, the right-hand side ofEq. (4.39)
becomes a closed contour and the left-hand side vanishes. In
fact, the line integral of the electrostatic field E around any
closed contour C is zero:

A vector field whose line integral along any closed path is
zero is called a conservative or an irrotational field. Hence,
the electrostatic field E is conservative.

As we will see later in Chapter 6, if E is a time-varying function,
it is no longer conservative, and its line integral along a closed
path is not necessarily zero.

The conservative property of the electrostatic field can be
deduced from Maxwell's second equation, Eq. (4.1b). If
a/at = 0, then

\7 x E = O. (4.41 )

If we take the surface integral of \7 x E over an open surface S
and then apply Stokes's theorem expressed by Eq. (3.107) to
convert the surface integral into a line integral, we obtain

f (\7 x E) .ds = f E . dl = 0,

S C

(4.42)

where C is a closed contour surrounding S. Thus, Eq. (4.41) is
the differential-form equivalent of Eq, (4.40).

We now define what we mean by the electric potential V at
a point in space. Before we do so, however, let us revisit our
electric-circuit analogue. Just as a node in a circuit cannot be
assigned an absolute voltage, a point in space cannot have an
absolute electric potentiaL The voltage of a node in a circuit
is measured relative to that of a conveniently chosen reference
point to which we have assigned a voltage of zero, which we call
ground. The same principle applies to the electric potential V.
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Usually (but not always). the reference point is chosen to be
at infinity. That is. in Eq. (4.39) we assume that VI = 0 when
PI is at infinity, and therefore the electric potential V at any
point Pis

(V). (4.43)
p

V=-JE.dl
00

4-5.2 Electric Potential Due to Point Charges

The electric field due to a point charge q located at the origin
is given by Eq. (4.32) as

(Vim). (4.44 )

The field is radially directed and decays quadratically with the
distance R from the observer to the charge.

As was stated earlier, the choice of integration path between
the end points in Eq. (4.43) is arbitrary. Hence. we can
conveniently choose the path to be along the radial direction R,
in which case dl = R d Rand

/(

j(' q ) , qV=- R-- 'RdR=--
4nER2 4nER

(V). (4.45)

If the charge q is at a location other than the origin. say at
position vector R I. then V at observation position vector R
becomes

(V). (4.46)

where IR - RII is the distance between the observation point
and the location of the charge q. The principle of superposition
applied previously to the electric field E also applies to the
electric potential V. Hence. for N discrete point charges
ql. ql.···. q,y residing at position vcctors Rj , R2, .... R,y, the
electric potential is

(V). (4.47)
N

v- _1 '" qi
- 41rs (;;j IR - Ri J

4-5.3 Electric Potential Due to Continuous
Distributions

To obtain expressions for the electric potential V due to
continuous charge distributions over a volume V'. across a
surface S', or along a line I', we (I) replace qi in Eq. (4.47)
with P\' av', Ps ds'; and Pi dl', respectively; (2) convert the
summation into an integration; and (3) define R' = IR - R, I as
the distance between the integration point and the observation
point. These steps lead to the following expressions:

v = _1_ J Pv dV' (volume distribution), (4.48a)
41r8 R'

v'
I J Ps ,V=- -ds

41r8 R'
S'

(surface distribution), (4.48b)

v = _1_ J Pl dl' (line distribution).
41r8 . R'

r
(4.48c)

4-5.4 Electric Field as a Function of Electric
Potential

In Section 4-5.1, we expressed V in terms of a line integral
over E. Now we explore the inverse relationship by re-
examining Eq. (4.37):

£IV = -E·dl. (4.49)

For a scalar function V, Eq. (3.73) gives

£IV = VV· £II. (4.50)

where VV is the gradient of V. Comparison ofEq. (4.49) with
Eg. (4.50) leads to

IE = -VV. (4.51)I
This differential relationship between V and E allows us to
determine E for any charge distribution bvfirst calculating
V and then taking the negative gradient of V to find E.
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The expressions for V, given by Eqs. (4.47) to (4.48c), involve
scalar sums and scalar integrals, and as such are usually
much easier to evaluate than the vector sums and integrals
in the expressions for E derived in Section 4-3 on the basis
of Coulomb's law. Thus, even though the electric potential
approach for finding E is a two-step process, it is conceptually
and computationally simpler to apply than the direct method
based on Coulomb's law.

Example 4-7: Electric Field of an Electric Dipole

An electric dipole consists of two point charges of equal
magnitude but opposite polarity, separated by a distance d
[Fig.4-13(a)J. Determine V and E at any point P, given that
P is at a distance R »d from the dipole center, and the dipole
resides in free space.

Solution: To simplify the derivation, we align the dipole
along the z-axis and center it at the origin [Fig. 4-13(a)]. For
the two charges shown in Fig. 4-13(a). application ofEq. (4.47)
gives

Since d « R, the lines labeled RI and R2 in Fig. 4-13(a)
are approximately parallel to each other, in which case the
following approximations apply:

Hence,
qd cos e

V------;o-
- 4JTEoR2

(4.52)

To generalize this result to an arbitrarily oriented dipole, note
that the numerator of Eq. (4.52) can be expressed as the dot
product of qd (where d is the distance vector from -q to +q)
and the unit vector R pointing from the center of the dipole
toward the observation point P. That is,

qd cos e = qd . R = p . R. (4.53)

x
(a) Electric dipole

(b) Electric-field pattern

Figure 4-13: Electric dipole with dipole moment p = qd
(Example 4-7).

where p = qd is called the dipole moment. Using Eq, (4.53)
in Eq. (4.52) then gives

(electric dipole). (4.54)P'RV=--.".
4rr80R2

In spherical coordinates, Eq. (4.51) is given by

E = -V'V

= _ (R 0 V a ~ ilV ~ _1_ iJ V )
oR + R ae +. R sin e il¢ ,

(4.55)
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where we have used the expression for V V in spherical
coordinates given on the inside back cover of the book. Upon
taking the derivatives ofthe expression for V given by Eq. (4.52)
with respect to Rand e and then substituting the results in
Eq. (4.55), we obtain

qd .. ~ ~
E = .. :I. (R 2 cos e +e sin (j) (VIm). (4.56)

41rEoR

We stress that the expressions for V and E given by Eqs. (4.54)
and (4.56) apply only when R »d. To compute V and E at
points in the vicinity of the two dipole charges, it is necessary
to perform all calculations without resorting to the far-distance
approximations that led to Eq. (4.52). Such an exact calculation
for E leads to the field pattern shown in Fig. 4-13(b).

4-5.5 Poisson's Equation

With D = I':E, the differential form of Gauss's law given by
Eq. (4.26) may be cast as

V. E = Pv .
I':

(4.57)

Inserting Eq. (4.51) in Eq. (4.57) gives

PvV· (VV) = -- .
I':

(4.58)

Given Eq. (3.110) for the Laplacian of a scalar function V,

ry il2V il2V a2v
V-V = V· (VV) = -- + -. - + -. ,

ilx2 iJy2 az2 (4.59)

Eq. (4.58) can be cast in the abbreviated form

(Poisson's equation).. ..(4. 6O} I

This is known as Poisson's equation. For a volume V I

containing a volume charge density distribution Pv. the solution
for V derived previously and expressed by Eq. (4.48a) as

v = _1- f p, dV I

47T S R'
V'

(4.61 )

satisfies Eq. (4.60). Ifthe medium under consideration contains
no charges. Eq. (4.60) reduces to

(Laplace's equation); (4.62) I

and it is then referred to as Laplace's equation. Poisson's and
Laplace's equations are useful for determining the electrostatic
potential V in regions with boundaries on which V is known.
such as the region between the plates of a capacitor with a
specified voltage difference across it.

Review Question 4-9: What is a conservative field?

Review Question 4-10: Why is the electric potential at a
point in space always defined relative to the potential at
some reference point?

Review Question 4-11: Explain why Eq. (4.40) is a
mathematical statement of Kirchhoff's voltage law.

Review Question 4-12: Why is it usually easier to
compute V for a given charge distribution and then find E
using E = - VV than to compute E directly by applying
Coulomb's law?

Review Question 4-13: What is an electric dipole?

Exercise 4-10: Determine the electric potential at the
origin due to four 20-t,t,C charges residing in free space
at the comers of a 2 m x 2 m square centered about the
origin in the x-y plane.

Answer: V = ,J2 x 1O-5/(1rSO) (V). (See ~)

Exercise 4-11: A spherical shell of radius a has a uniform
surface charge density Ps. Determine (a) the electric
potential and (b) the electric field, both at the center of
the shell.

Answer: (a) V = psa/s (V), (b) E = O. (See ~.)
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~. CD Module 4.1 Fields due to Charges For any group of
point charges. this module calculates and displays the
electric field E and potential V across a 2-D grid. The
user can specify the locations. magnitudes and polarities
of the charges.

Module 4.1 fields due to

lnstructlons I Input

\ \ \ , .". -
\ \

"- - - - -176 e

t ••... - - I- , I
/ - - - - r- place charge

\ I .••. ..•. ..•. r: change Charge value
r: remove charge..•. '\ , .•..• ...• .••.
r move charge.••. •.... •.... ...• r. shOw vOltage and...• \ '\ •.•.. •....

electric fiekl at cursor:

...• \ \ '\ •.•..
v= 904884E-1 vons...• - I ••... - I • \ \ '\ •.•..
E= 4.55233E-3 Vim \

...•
" I , / I \ \ \ '\

\ .•..• ...• \ • t \ \ \ \ \ Plots

\ '\ •.•.. •.... •.•.. \ \ \ \ \ \ \ \ more

\ \ \ '\ \ \ \ \ \ \ \ \ \ r Potential flel<! • lines

p Equipolenliallines
\ \ \ \ \ \ \ \ \ \ \ \ \ P ElectrIC field ~ less
\ \ \ \ \ \ \ \ \ \ \ \ \ lines

\ \ \ \ \ \ \ \ \ \ \ \ \
~

4

4-6 Conductors
The electromagnetic constitutive parameters of a material
medium are its electrical permittivity E, magnetic permeabil-
ity /1. and conductivity (J. A material is said to be homogeneous
if its constitutive parameters do not vary from point to point, and
isotropic if they are independent of direction. Most materials
are isotropic, but some crystals are not. Throughout this book,
all materials are assumed to be homogeneous and isotropic.
This section is concerned with (J, Section 4-7 examines E. and
discussion of J{ is deferred to Chapter 5_

The conductivity of a material is a measure of how easily
electrons can travel through the materia/under the influence
4all externally applied electric field.

Materials are classified as conductors (metals) or dielectrics
(insulators) according to the magnitudes of their conductivities.
A conductor has a large number of loosely attached electrons in
the outermost shells of its atoms. In the absence of an external
electric field. these free electrons move in random directions
and with varying speeds. Their random motion produces zero
average current through the conductor. Upon applying an
external electric field. however. the electrons migrate from one
atom to the next in the direction opposite that of the external
field. Their movement gives rise to a conduction current

(A/m2) (Ohm's law), (4.63)1
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where a is the material's conductivity with units of siemen per
meter (Szm).

In yet other materials. called dielectrics, the electrons
are tightly bound to the atoms. so much so that it is very
difficult to detach them under the influence of an electric
field. Consequently, no significant conduction current can flow
through them.

A perfect dielectric is a material with a = O. In contrast.
a perfect conductor is a material with a = 00. Some
materials. called superconductors. exhibit such a behavior.

The conductivity a of most metals is in the range from 106 to
107 S/m. compared with 10-10 to 10-17 Slm for good insulators
(Table 4-1). A class of materials called semiconductors allow
for conduction currents even though their conductivities are
much smaller than those of metals. The conductivity of pure
germanium, for example. is 2.2 S/m. Tabulated values of a at
room temperature (20°C) are given in Appendix B for some
common materials, and a subset is reproduced in Table 4-1.

The conductivity of a material depends on several factors,
including temperature and the presence of impurities. In
general, a of metals increases with decreasing temperature and
most superconductors operate in the neighborhood of absolute
zero.

Review Question 4-14: What are the electromagnetic
constitutive parameters of a material medium?

Review Question 4-15: What classifies a material as a
conductor, a semiconductor, or a dielectric? What is a
superconductor?

Review Question 4-16: What is the conductivity of a
perfect dielectric'?

4-6.1 Drift Velocity

The drift velocity lie of electrons in a conducting material is
related to the externally applied electric field E through

(rn/s), (4.64a)

where lie is a material property call the electron mobility with
units of (m2N·s). In a semiconductor, current flow is due to
the movement of both electrons and holes, and since holes are

Table 4-1: Conductivity of some common materials at 20°e.

Material Conductivity. a (S/m)

Conductors
Silver
Copper
Gold
Aluminum
Iron
Mercury
Carbon

Semiconductors
Pure germanium
Pure silicon

Insulators
Glass
Paraffin
Mica
Fused quartz

6.2 x 107

5.8 x 107

4.1 x 107

3.5 x 107

107

106
3 x 104

2.2
4.4 x 10-4

10-12

10-15

10-15
10-17

positive-charge carriers, the hole drift velocity u, is in the same
direction as E.

(rn/s), (4.64b)

where Ilh is the hole mobility. The mobility accounts for the
effective mass of a charged particle and the average distance
over which the applied electric field can accelerate it before it
is stopped by colliding with an atom and then starts accelerating
all over again. From Eq. (4.11). the current density in a
medium containing a volume density p, of charges moving
with velocity u is J = p,u. In the most general case. the
current density consists of a component J~ due to electrons
and a component Jh due to holes. Thus, the total conduction
current dellSity is

(4.65)

where Pve = -Nee and Pvh = Nhe. with Ne and Nh being the
number of free electrons and the number of free holes per unit
volume, and e = 1.6 x 10-19 C is the absolute charge of a single
hole or electron. Use of Eqs. (4.64a) and (4.64b) gives

=aE, (4.66)
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and its unit is siemens per meter (S/m). For a good conductor,
NhlLh « Nelle, and Eq. (4.67a) reduces to (e)

I = fA

where the quantity inside the parentheses is defined as the
conductivity of the material, a. Thus,

(1 = -PveJLe = NeJLee (Slm)

(conductor). (4.67b)

ln viewofEq. (4.66), in a perfect dielectric with a = 0, J = 0
regardless of E, and in a perfect conductor with a = 00,

E = Jla = 0 regardless of J.

That is,

Perfect dielectric: J = O.

Perfect conductor: E = O.

Because a is on the order of 106 S/m for most metals, such as
silver, copper, gold, and aluminum (Table 4-1), it is common
practice to set E = 0 in metal conductors.

A perfect conductor is an equipotential medium, meaning
that the electric potential is the same at every point in the
conductor. This property follows from the fact that V2I, the
voltage difference between two points in the conductor equals
the line integral ofE between them, as indicated by Eq. (4.39),
and since E = 0 everywhere in the perfect conductor, the
voltage difference V21 = O. The fact that the conductor is an
equipotential medium, however, does not necessarily imply that
the potential difference between the conductor and some other
conductor is zero. Each conductor is an equipotential medium,
but the presence of different distributions of charges on their
two surfaces can generate a potential difference between them.

Example 4-8: Conduction Current In a Copper Wire

A 2-mm-diameter copper wire with conductivity of
5.8 x 107 S/m and electron mobility of 0.0032 (mlIY·s)
is subjected to an electric field of 20 (mY/m). Find (a) the
volume charge density of the free electrons, (b) the current
density, (c) the current flowing in the wire, (d) the electron
drift velocity, and (e) the volume density of the free electrons.

Solution:

(a)

Pvc = -~ = - 5.8 X 10
7 = -1.81 X 1010 (C/m3).

/1e 0.0032

(b)

J = a E = 5.8 x 107 x 20 X 10-3 = 1.16 X 106 (Alm2).

(
ITd

2
) 6 (IT X 4 x 10-

6
)= J 4 = 1.16 x to 4 = 3.64 A.

(d)

lie = -/1cE = -0.0032 x 20 x 10-3 = -6.4 X 10-5 m/s.

The minus sign indicates that u, is in the opposite direction
ofE.

(e)

Pve 1.81 x \010 29, 3
N; = -- = 19 = 1.13 x 10 electrons/m'.e 1.6 x 10-

Exercise 4-12: Determine the density of free electrons in
aluminum, given that its conductivity is 3.5 x 107 (S/m)
and its electron mobility is 0.0015 (m2/Y . s).
Answer: Ne = 1.46 x 1029 electrons/m", (See -&)

Exercise 4-13: The current flowing through a lOO-m-long
conducting wire of uniform cross section has a density of
3 x 105 (Alm2). Find the voltage drop along the length
of the wire if the wire material has a conductivity of
2 x 107 (S/m).

Answer: V = 1.5 Y. (See'S»

4-6.2 Resistance

To demonstrate the utility of the point form of Ohm's law, we
shall apply it to derive an expression for the resistance R of a
conductor of length I and uniform cross section A, as shown
in Fig. 4-14. The conductor axis is along the .c-direction and
extends between points x, and xj, with I = X2 -XI. A voltage V
applied across the conductor terminals establishes an electric
field E = xEr: the direction of E is from the point with higher
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2 J

A
+ -

v
Figure 4·14: Linear resistor of cross section A and length I
connected to a de voltage source V.

potential (point I in Fig. 4-14) to the point with lower potential
(point 2). The relation between V and E, is obtained by
applying Eq. (4.39):

.\1

V = VI - V2 = - f E· dl

·Ii

= - fiE,. i dl = E,I (V). (4.68)

Using Eq. (4.63), the current flowing through the cross
section A at X2 is

J = f J.ds = f erE·ds = a ExA
t\ A

(A). (4.69)

From R = V/ J, the ratio of Eq. (4.68) to Eq. (4.69) gives

I
R=-

aA
(Q). (4.70)

We now generalize our result for R to any resistor of arbitrary
shape by noting that the voltage V across the resistor is equal to
the line integral of E over a path I between two specified points
and the current J is equal to the flux of J through the surface S

Figure 4·15: Coaxial cable of Example 4-9.

of the resistor. Thus,

(4.71)

The reciprocal of R is called the conductance G, and the unit
of G is (Q-I), or siemens (S). For the linear resistor,

I aA
G=-=-

R I
(4.72)(S).

Example 4-9: Conductance of Coaxial Cable

The radii of the inner and outer conductors of a coaxial cable
of length I are a and b, respectively (Fig. 4-15). The insulation
material has conductivity a . Obtain an expression for G', the
conductance per unit length of the insulation layer.

Solution: Let J be the total current flowing radially (along r)
from the inner conductor to the outer conductor through the
insulation material. At any radial distance r from the axis of
the center conductor, the area through which the current flows
is A = 2rrrl. Hence,

,I , J
J=r-=r--.

A 2rr rl
(4.73)

and from J = o E,
, J

E=r--
Ln o rl

(4.74)

In a resistor, the current flows from higher electric potential
to lower potential. Hence, if J is in the r-direction. the inner
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conductor must be at a higher potential than the outer conductor.
Accordingly, the voltage difference between the conductors is

fa fil I r·rdr
VI =- E·dl=- -- ---

an Zn a! r
b b

1 (b)---In -
- Zn a! a'

(4.75)

The conductance per unit length is then

I Zn oG'= G
I

(S/m). (4.76)= ---
Rl Vab! In(b/a)

4-6.3 Joule's Law

We now consider the power dissipated in a conducting medium
in the presence of an electrostatic field E. The medium
contains free electrons and holes with volume charge densities
Pvc and Pvh, respectively. The electron and hole charge
contained in an elemental volume .6.V is qe = Pve .6.V and
qh = Pvh .6.V, respectively. The electric forces acting on qe
and qh are Fe = qcE = P"cE L',. V and F, = qhE = PvhE .6.V.
The work (energy) expended by the electric field in moving qc
a differential distance .6.le and moving qh a distance .6.1h is

(4.77)

Power P, measured in watts (W), is defined as the time rate of
change of energy. The power corresponding to .6.W is

.6. W .6.Ie .6.lh
.6. P = - = Fe . - + }'h . -.6.( .6.( .6.(

= Fe' u, + Fh . u,

= (p"cE· u, + PvhE· Uh) .6.V

= E· J .6.V, (4.78)

where Ue = .6.le/.6.t and Uh = .6.lh/.6.( are the electron and hole
drift velocities, respectively. Equation (4.65) was used in the
last step ofthe derivation leading to Eq. (4.7g). For a volume V.
the total dissipated power is

(W)(Jou]e's law), (4.79)P = !E'JdV
v

and in view ofEq. (4.63),

P =!alEI2 dV
V

(W). (4.80)

Equation (4.79) is a mathematical statement of louie's law.
For the resistor example considered earlier, lEI = E, and its
volume is V = I A. Separating the volume integral in Eq. (4.80)
into a product of a surface integral over A and a line integral
over I. we have

P = f alEI2 dV = f a E, ds f E, dl
V A I

= (a ExA)(E,l) = IV (W). (4.81)

where use was made of Eq. (4.68) for the voltage V and
Eq. (4.69) for the current I. With V = 1R. we obtain the
familiar expression

(W). (4.82)

Review Question 4-17: What is the fundamental
difference between an insulator, a semiconductor. and a
conductor'?

Review Question 4-18: Show that the power dissipated in
the coaxial cable of Fig. 4-15 is P = 121n(h /a)/(2lTeJ I) .

Exercise 4-14: A 50-m-Iong copper wire has a circular
cross section with radius r = 2 cm. Given that the
conductivity of copper is 5.8 x 107 S/m, determine (a) the
resistance R of the wire and (b) the power dissipated in
the wire if the voltage across its length is 1.5 mV.

Answer: (a) R = 6.9 X 1O~4 Q, (b) P = 3.3 mW.
(See ~)

Exercise 4-15: Repeat part (b) of Exercise 4.14 by
applying Eq. (4.80). (See e)
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Technology Brief 7: Resistive Sensors

An electrical sensor is a device capable of responding to an applied stimulus by generating an electrical signal
whose voltage, current, or some other attribute is related to the intensity of the stimulus. The family of possible stimuli
encompasses a wide array of physical, chemical, and biological quantities, including temperature, pressure, position,
distance, motion, velocity, acceleration, concentration (of a gas or liquid), blood flow, etc. The sensing process relies on
measuring resistance, capacitance, inductance, induced electromotive force (emf), oscillation frequency or time delay,
among others. Sensors are integral to the operation of just about every instrument that uses electronic systems, from
automobiles and airplanes to computers and cell phones (Fig. TF7-1). This technology brief covers resistive sensors.
Capacitive, inductive, and emf sensors are covered separately (here and in later chapters).

About 30 electric/electronic systems and
more than 100
sensors

OTR COl AAC RCU PTS LWR ECT ESP ZV ABC TPM ABS

System Abbrev. Sensors System Abbrev. Sensors
Distronic DTR 3 Common-rail diesel injection CDI 11
Electronic controlled transmission ECT 9 Automatic air condition AAC 11
Roof control unit RCU 7 Active body control ABC 12
Antilock braking system ABS 4 TIre pressure monitoring TPM 11
Central locking system ZV Elektron. stability program ESP 14
Dyn. beam levelling LWR 6 Parktron« system PTS 12

FigureTF7-1: Most cars use on the order of 100 sensors. (Courtesy Mercedes-Benz.)

Piezoresistivity

According to Eq. (4.70), the resistance of a cylindrical resistor or wire conductor is given by R = I /(J A, where I is
the cylinder's length, A is its cross-sectional area, and a is the conductivity of its material. Stretching the wire
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by an applied external force causes I to increase and A to decrease. Consequently, R increases (Fig. TF7-2).
Conversely, compressing the wire causes R to decrease. The Greek word piezein means to press, from which the
term piezoresistivity is derived. This should not be confused with piezoelectricity, which is an emf effect. (See EMF
Sensors in Technology Brief 12.)

Stretching
F-IiIIIiIIIIIO~-F

Compression-------&-------. Foree (N)

F=O

Figure TF7-2: Piezoresistance varies with applied force.

The relationship between the resistance R of a piezoresistor and the applied force F can be modeled by the
approximate linear equation

( CiF)R = Ro I + Au .

where Ru is the unstressed resistance (@ F = 0), Ao is the unstressed cross-sectional area of the resistor, and a is
the piezoresistive coefficient of the resistor material. The force F is positive if it is causing the resistor to stretch and
negative if it is compressing it.

An elastic resistive sensor is well suited for measuring the deformation z of a surface (Fig. TF7-3), which can be
related to the pressure applied on the surface; and if L is recorded as a function of time, it is possible to derive the
velocity and acceleration of the surface's motion. To realize high longitudinal piezoresistive sensitivity (the ratio of the
normalized change in resistance, /),R/ Ro, to the corresponding change in length, /),1/1(1, caused by the applied force),
the piezoresistor is often designed as a serpentine-shaped wire [Fig. TF7-4(a)] bonded on a flexible plastic substrate
and glued onto the surface whose deformation is to be monitored. Copper and nickel alloys are commonly used for
making the sensor wires, although in some applications silicon is used instead [Fig. TF7-4(b)], since it has a very high
piezoresistive sensitivity. By connecting the piezoresistor to a Wheatstone bridge circuit (Fig. TF7-5) in which the other
three resistors are all identical in value and equal to Ro, the resistance of the piezoresistor when no external force is
present, the voltage output becomes directly proportional to the normalized resistance change: !1R/ Ro.
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Film
'\

IE)Flat

StretchedF=O
Ohmic

Figure TF7-3: Piezoresistor films.

Metal wire

(a) Serpentine wire (b) Silicon piezoresistor

Figure TF7-4: Metal and silicon piezoresistors.

Vo

+
Vo

YOU! = Vo (f..R)
4 Ro

Figure TF7-5: Wheatstone bridge circuit with piezoresistor.
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4-7 Dielectrics

The fundamental difference between a conductor and a
dielectric is that electrons in the outermost atomic shells of
a conductor are only weakly tied to atoms and hence can freely
migrate through the material, whereas in a dielectric they are
strongly bound to the atom. In the absence of an electric
field, the electrons in so-called nonpolar molecules form a
symmetrical cloud around the nucleus, with the center of the
cloud coinciding with the nucleus IFig. 4-16(a)]. The electric
field generated by the positively charged nucleus attracts and
holds the electron cloud around it, and the mutual repulsion of
the electron clouds of adjacent atoms shapes its form. When a
conductor is subjected to an externally applied electric field,
the most loosely bound electrons in each atom can jump
from one atom to the next. thereby setting up an electric
current. In a dielectric, however, an externally applied electric
field E cannot effect mass migration of charges since none are
able to move freely. Instead. E will polarize the atoms or
molecules in the material by moving the center of the electron
cloud away from the nucleus [Fig. 4-16(b)l. The polarized
atom or molecule may be represented by an electric dipole

8Electron

-
A/' Nucleustom

(a) External Eext = 0

Nucleus
E

1

E

1
Center of electron cloud

(b) External Eex' t 0 (c) Electric dipole

Figure 4·16: In the absence of an external electric field E. the
center of the electron cloud is co-located with the center of the
nucleus, but when a field is applied. the two centers are separated
by a distance d.

Positive surface charge
E E E

Polarized molecule
E E

Negative surface charge

Figure 4·17: A dielectric medium polarized by an external
electric field K

consisting of charges +4 in the nucleus and -q at the center
of the electron cloud [Fig. 4-16(c)]. Each such dipole sets
up a small electric field, pointing from the positively charged
nucleus to the center of the equally but negatively charged
electron cloud. This induced electric field. called epolarization
field, generally is weaker than and opposite in direction to. E.
Consequently, the net electric field present in the dielectric
material is smaller than E. At the microscopic level, each
dipole exhibits a dipole moment similar to that described in
Example 4-7. Within a block of dielectric material subject to
a uniform external field, the dipoles align themselves linearly,
as shown in Fig. 4-17. Along the upper and lower edges of the
material. the dipole arrangement exhibits positive and negative
surface charge densities, respectively.

It is important to stress that this description applies to only
nonpolar molecules. which do not have permanent dipole
moments. Nonpolar molecules become polarized only when an
external electric field is applied. and when the field is removed.
the molecules return to their original unpolarized state.

In polar materials, such as water, the molecules possess built-
in permanent dipole moments that are randomly oriented in
the absence of an applied electric field. and owing to their
random orientations. the dipoles of polar materials produce
no net macroscopic dipole moment (at the macroscopic scale.
each point in the material represents a small volume containing
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Table 4-2: Relative permittivity (dielectric constant) and dielectric strength of common materials.

Material Relative Permittivity. Sr Dielectric Strength. F:d, (MY/m)

Air (at sea level) 1.0006 3
Petroleum oil 2.1 12
Polystyrene 2.6 20
Glass 4.5-10 25-40
Quartz 3.8-5 30
Bakelite 5 20
Mica 5.4-6 200

S = 6'r6'O and 1'0 = R.R54 x 10- 12 F/m.

thousands of molecules). Under the influence of an applied
field, the permanent dipoles tend to align themselves along the
direction of the electric field. in a manner similar to that shown
in Fig. 4-17 for nonpolar materials.

4-7.1 Polarization Field

Whereas in free space D = EoE, the presence of microscopic
dipoles in a dielectric material alters that relationship to

D = EoE + P, (4.83 )

where P, called the electric polarization field, accounts for
the polarization properties of the material. The polarization
field is produced by the electric field E and depends on the
material properties. A dielectric medium is said to be linear
if the magnitude of the induced polarization field P is directly
proportional to the magnitude of E, and isotropic if P and E are
in the same direction. Some crystals allow more polarization to
take place along certain directions. such as the crystal axes, than
along others. In such anisotropic dielectrics. E and P may have
different directions. A medium is said to be homogeneous if its
constitutive parameters (E. /1, and a are constant throughout
the medium. Our present treatment will be limited to media
that are linear, isotropic, and homogeneous. For such media P
is directly proportional to E and is expressed as

(4.84)

where Xe is called the electric susceptibility of the material.
Inserting Eq. (4.84) into Eq. (4.83), we have

D = EoE + EOXcE

= 1'0(1 + Xe)E = EE, (4.85)

which defines the permittivity I' of the material as

I' = 1'00 + Xc)· (4.86)

It is often convenient to characterize the permittivity of a
material relative to that of free space, EO; this is accommodated
by the relative permittivity Br = I' / EO. Values of s, are listed in
Table 4-2 for a few common materials, and a longer list is given
in Appendix B. In free space Br = I, andfor most conductors
Er :::::: I. The dielectric constant of air is approximately 1.0006
at sea level, and decreases toward unity with increasing
altitude. Except in some special circumstances, such as when
calculating electromagnetic wave refraction (bending) through
the atmosphere over long distances, air can be treated as if it
were free space.

4-7.2 Dielectric Breakdown

The preceding dielectric-polarization model presumes that the
magnitude of E does not exceed a certain critical value, known
as the dielectric strength Eds of the material, beyond which
electrons will detach from the molecules and accelerate through
the material in the form of a conduction current. When this
happens, sparking can occur, and the dielectric material can
sustain permanent damage due to electron collisions with the
molecular structure. This abrupt change in behavior is called
dielectric breakdown.

The dielectric strength Eds is the largest magnitude ~fE that
the material can sustain without breakdown.

Dielectric breakdown can occur in gases, liquids, and
solids. The dielectric strength Eds depends on the material
composition, as well as other factors such as temperature and



4-H ELECTRIC BOUNDARY CONDITIONS 217

humidity. For air Eds is roughly 3 (MY/m); for glass 25 to 40
(MY/m); and for mica 200 (MY/m) (see Table 4-2).

A charged thundercloud at electric potential V relative to the
ground induces an electric field E = V/d in the air beneath it,
where d is the height of the cloud base above the ground. If
V is sufficiently large so that E exceeds the dielectric strength
of air, ionization occurs and a lightning discharge follows. The
breakdown voltage Vhr of a parallel-plate capacitor is discussed
in Example 4-11.

Review Question 4-19: What is a polar material? A
nonpolar material?

RevIew Question 4-20: Do D and E always point in the
same direction'! If not, when do they not?

Review Question 4-21: What happens when dielectric
breakdown occurs?

4-8 Electric Boundary Conditions

A vector field is said to be spatially continuous if it does
not exhibit abrupt changes in either magnitude or direction
as a function of position. Even though the electric field
may be continuous in adjoining dissimilar media, it may well
be discontinuous at the boundary between them. Boundary
conditions specify how the components of fields tangential and
normal to an interface between two media relate across the
interface Here we derive a general set of boundary conditions
for E, D, and J, applicable at the interface between any
two dissimilar media. be they two dielectrics or a conductor
and a dielectric. Of course, any of the dielectrics may
be free space. Even though these boundary conditions are
derived assuming electrostatic conditions, they remain valid
for time-varying electric fields as well. Figure 4- I S shows an
interface between medium I with permittivity e t and medium 2
with permittivity £2. In the general case. the interface may
contain a surface charge density p, (unrelated to the dielectric
polarization charge density).

To derive the boundary conditions for the tangential
components of E and D, we consider the closed rectangular loop
abcda shown in Fig. 4-IS and apply the conservative property
of the electric field expressed by Eq. (4.40). which states that
the line integral of the electrostatic field around a closed path is

always zero. By letting I:lh -+ 0, the contributions to the line
integral by segments be and da vanish. Hence,

b d

fE.dl= !Et.itdl+ !E2.i2dl=0.
Cur

(4.87)

where it and i2 are unit vectors along segments ab and cd, and
EI and E2 are the electric fields in media I and 2. Next. we
decompose EI and E2 into components tangential and normal
to the boundary (Fig. 4-IX).

(4.SSa)

(4.X8b)

Noting that i, = -iz. it follows that

(4.S9)

In otht;r words, t~e component of E I along i, equals that of Ez
along ii, for all it tangential to the boundary. Hence,

(VIm). (4.90) I
Thus, the tangential component o] the electric field is
continuous across the boundary between any two media.

Upon decomposing DI and D2 into tangential and normal
components [in the manner of Eq. (4.XH)1 and noting that
DIt = £1 Elt and DZt = E2EZto the boundary condition on the
tangential component of the electric flux density is

(4.91)

Next we apply Gauss's law, as expressed by Eq. (4.29), to
determine boundary conditions on the normal components of
E and D. According to Gauss's law, the total outward flux
of D through the three surfaces of the small cylinder shown in
Fig. 4-18 must equal the total charge enclosed in the cylinder.
By letting the cylinder's height Sh -+ 0, the contribution to
the total flux through the side surface goes to zero. Also,
even if each of the two media happens to contain free charge
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Medium 2
&2

Medium I
&1

J... !J.h
L-__ ..;.....-~...2"

c d
---111-

t:.h
2"

Figure 4-18: Interface between two dielectric media.

densities. the only charge remaining in the collapsed cylinder
is that distributed on the boundary. Thus. Q = p, ~s. and

f n- ds = f 01' 02 ds + f 02' 01 ds
S top bottom

= p, ~S. (4.92)

where 01 and 02 are the outward normal unit vectors of the
bottom and top surfaces. respectively. It is important to
remember that the normal unit vector at the surface of any
medium is always defined to be in the outward direction away
from that medium. Since 01 = -Oz. Eq. (4.92) simplifies to

(Clm2). (4.93) I
If Din and D2n denote as the normal components of Dj and 02
along 02. we have

I Din - I>m = Ps CClm2). (4.94) I
The normal component o] D changes abruptly at a charged
boundary between two different media in (Ill amount equal
to the surface charge density.

The corresponding boundary condition for E is

or equivalently

In summary. (I) the conservative property of E.

yo x E = 0 .•••. f E . dl = O.

c
(4.96)

led to the result that E has a continuous tangential component
across a boundary. and (2) the divergence property of D.

yo. D = p; .•••. f O· ds = Q.
s

(4.97)

led to the result that the normal component of D changes by Ps
across the boundary. A summary of the conditions that apply
at the boundary between different types of media is given in
Table 4-3.

Example 4-10: Application of Boundary CondItions

The x-y plane is a charge-free boundary separating two
dielectric media with permittivities E'J and fl. as shown
in Fig. 4-19. If the electric field in medium I is
EI = XElx + yEll' + se.; find (a) the electric field E2 in
medium 2 and (b) the angles 81 and 82.
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Table 4-3: Boundary conditions for the electric fields.

Field Component Any Two Media
Medium 1 Medium 2

Dielectric EI Conductor

Tangential E Elt = E21 Ell = E21 = 0

Tangential D Dlt/q = D2t!"2 DII = D2t =0

Normal E E) Eln - E2E2n = Ps Eln = Psi,,) E2n =0

Normal D Din - D2n = Ps Din = Ps D2n =0

Notes: (I) Ps is the surface charge density at the boundary; (2) normal components of
EI, Dj , E2, and Dz are along "2, the outward normal unit vector of medium 2.

z

Figure 4-19: Application of boundary conditions at the
interface between two dielectric media (Example 4-10).

Solution: (a) Let Ez = XE2.t + y Ely + iE2z. Our task is to
find the components of E2 in terms of the given components
of EI. The normal to the boundary is z. Hence, the x and y
components of the fields are tangential to the boundary and
the z components are normal to the boundary. At a charge-
free interface, the tangential components of E and the normal
components of D are continuous. Consequently,

E2x = Elx,

and
or

Hence,
(4.98)

(b) The tangential components of EI and E2 are

E)I = j Efx + Efy and E21 = j Eix + Eiy' The angles 8)

and (h are then given by

Ell jErx+Efy
tan81 = - = ..!......------

Elz Elz

E21 j Eix + E~ytan (h = - = ..:.....----
- E2z E2z

and the two angles are related by

tanfh
tanel

(4.99)

Exercise 4-16: Find E I in Fig. 4-19 if E2 = x2 - y3 + i3
(Vim), EI = 2Eo, E2 = 8EQ, and the boundary is charge
free.

Answer: E) = x2 - y3 + il2 (V1m). (See ~)

Exercise 4-17: Repeat Exercise 4.16 for a boundary with
surface charge density Ps = 3.54 X 10-11 (C/m2).

Answer: EJ = x2 - y3 + zl4 (Vim). (See ~)
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~ CD Module 4.2 Charges in Adjacent Dielectrics In two
adjoining half-planes with selectable permittivities, the
user can place point charges anywhere in space and select
their magnitudes and polarities. The module then displays
E, V, and the equipotential contours of V.

charge= 5 e

(0- place Charge

r change cnarge value

r remove charge

r move charge

r show vOltage and

electriC field at cursor:

y= 0 Volts

E= 0 Vim

I 1 \ \
ta

I I , '-
I I I I I I \ \ \ \ \ \ \ Plots.~
I I I I I I I \ \ \ \ , \ \ , more

~ Potential field ~ IirleS
I I I I I I \ \ \ \ , \ \ \

P Equipolenliallines. U
I I I I I I \ , \ \ \ \ \ \ P ElectriC field ~ less

I I I I I I \ \ \ \ \ \ \ \ IirleS

I I I I I I \ \ \ \ \ \ \ \ Reset I
x(nm)
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4-8.1 Dielectric-Conductor Boundary

Consider the case when medium I is a dielectric and medium 2
is a perfect conductor. Because in a perfect conductor, electric
fields and fluxes vanish, it follows that E2 = D2 = 0, which
implies that components of E2 and D2 tangential and normal
to the interface are zero. Consequently, from Eq. (4.90) and
Eq. (4.94), the fields in the dielectric medium, at the boundary
with the conductor, satisfy

Elt = Dlt = 0, (4.100a)

(4.100b)Din = slEln = Ps·

These two boundary conditions can be combined into

where it is a unit vector directed normally outward from the
conducting surface.

EJ

Conducting slab-

The electricfield lines point directly awayfrom the conductor
surface when Ps is positive and directly toward the conductor
surface when Ps is negative.

Figure 4-20 shows an infinitely long conducting slab placed
in a uniform electric field Ei. The media above and below the
slab have permittivity SI. Because EI points away from the
upper surface, it induces a positive charge density Ps = S IIEI I
on the upper slab surface, On the bottom surface, El points
toward the surface, and therefore the induced charge density is
- p«. The presence of these surface charges induces an electric
field E, in the conductor, resulting in a total field E = EI +Ej.
To satisfy the condition that E must be everywhere zero in the
conductor, E, must equal -EI.

If we place a metallic sphere in an electrostatic field
(Fig. 4-21), positive and negative charges will accumulate on
the upper and lower hemispheres, respectively. The presence of
the sphere causes the field lines to bend to satisfy the condition
expressed by Eq. (4.101): that is, E is always normal to a
conductor boundary.

Figure 4-20: When a conducting slab is placed in an external electric field EI, charges that accumulate on the conductor surfaces induce
an internal electric field E, = -E I. Consequently. the total field inside the conductor is zero.
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(electrostatics) .

Figure 4·21: Metal sphere placed in an external electric field Eo.

4-8.2 Conductor-Conductor Boundary

We now examine the general case of the boundary between
two media neither of which is a perfect dielectric or a perfect
conductor (Fig. 4-22). Medium I has permittivity FI and
conductivity al. medium 2 has F2 and ai, and the interface
between them holds a surface charge density p,. For the electric
fields. Eqs. (4.90) and (4.95b) give

(4.102)

Since we are dealing with conducting media. the electric fields
give rise to current densities J I = al EI and J2 = a21':2. Hence

lIn Ji«
F I - - E2 - = p,.

al a2

Medium I
&\,0'\

Medium 2
~1..t1'2

(4.103)

Figure 4-22: Boundary between two conducting media.

The tangential current components J It and J2t represent
currents flowing in the two media in a direction parallel to the
boundary. and hence there is no transfer of charge between
them. This is not the case for the normal components. If
1In "1= Ji«. then a different amount of charge arrives at the
boundary than leaves it. Hence. p, cannot remain constant
in time. which violates the condition of electrostatics requiring
all fields and charges to remain constant. Consequently. the
normal component of J has to be continuous across the
boundary between two different media under electrostatic
conditions. Upon setting Ji« = Ji« in Eq. (4.103), we have

(81 82)
Jln - - - = Ps

0'\ 0'2

Review Question 4-22: What are the boundary conditions
for the electric field at a conductor-dielectric boundary?

Review Question 4-23: Under electrostatic conditions.
we require Jv« = Ji« at the boundary between two
conductors. Why?

(4.104)
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• CD Module 4.3 Charges above a Conducting Plane
When electric charges are placed in a dielectric medium
adjoining a conducting plane, some of the conductor's
electric charges move to its surface boundary, thereby
satisfying the boundary conditions outlined in Table 4-3.
This module displays E and V everywhere and Ps along
the dielectric-conductor boundary.

Plane

Input

charge= 5 e

!._Q.!
r place charge
r: change charge value

r: rerno\Ie charge

r IllO'Ie Charge
•• shoW 1IOIIage,etec:tr1t field.

and charge densIy at cursor:

v = -5.73409E-1 VOlts

E = 4.90222E-2 Vhn

p= OEO C/m2

Plots

more
~ PotenIiaI field A IDes

~ EqUipoten1lalInes:

~ Elecbil: field - less
~ Charge density Ines

~
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place Charge

r change charge value

r: remove charge

r move Charge

r show VoHage, electric fiekl,

and charge density at WISOr.

v = 0 Volts

E = 0 Vim

p= 0 elm2

Plots

more
P' Potentlal field ; lines

p Equipotential lines' ]
r Electric field ~ less

P Charge density lines

Reset

v +

(CN or F), (4,105)

'&: CD Module 4.4 Charges near a Conducting Sphere
This module is similar to Module 4.3, except that now the
conducting body is a sphere of selectable size.

4-9 Capacitance
When separated by an insulating (dielectric) medium, any
two conducting bodies, regardless of their shapes and sizes,
form a capacitor. If a de voltage source is connected across
them (Fig. 4-23) the surfaces of the conductors connected to
the positive and negative source terminals will accumulate
charges +Q and charge -Q, respectively.

When a conductor has excess charge. it distributes the
charge on its surface in such a manner as to maintain a
zero electric field everywhere within the conductor, thereby
ensuring that the electric potential is the same at every point
in the conductor.

The capacitance of a two-conductor configuration is defined as

Figure 4-23: A de voltage source connected to a capacitor
composed of two conducting bodies.
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where V is the potential (voltage) difference between the
conductors. Capacitance is measured in farads (F). which is
equivalent to coulombs per volt (ety).

The presence of free charges on the conductors' surfaces
gives rise to an electric field E (Fig. 4-23) with field lines
originating on the positive charges and terminating on the
negative ones. Since the tangential component of E always
vanishes at a conductor's surface, E is always perpendicular to
the conducting surfaces. The normal component of E at any
point on the surface of either conductor is given by

E 'E Psn = n· =-
F

(at conductor surface), (4.106)

where p; is the surface charge density at that point. fi is the
outward normal unit vector at the same location, and F is the
permittivity of the dielectric medium separating the conductors.
The charge Q is equal to the integral of p, over surface S
(Fig. 4-23):

Q= f Psds= f £ft·Eds= f FE·ds,
S 5 S

(4.107)

where use was made of Eq. (4.106). The voltage V is related
to E by Eq. (4.39):

Pi

V = VI2 = - f E· ell.

Pi

(4.108)

where points PI and P2 are any two arbitrary points on
conductors 1 and 2. respectively. Substituting Eqs. (4.107) and
(4.108) into Eq. (4.105) gives

(4.109)
leE.ds

C = ~s-::-_
- fE.dl

(F),

where f is the integration path from conductor 2 to conductor I.
To avoid making sign errors when applying Eq. (4.109), it is
important to remember that surface S is the +Q surface and
PI is on S. (Alternatively, if you compute C and it comes
out negative, just change its sign.) Because E appears in both
the numerator and denominator of Eq. (4.109), the value of C
obtained for any specific capacitor configuration is always
independent of E's magnitude. In fact, C depends only on the

capacitor geometry (sizes, shapes and relative positions of the
two conductors) and the permittivity of the insulating material.

If the material between the conductors is not a perfect
dielectric (i.e., if it has a small conductivity a), then current
can flow through the material between the conductors, and the
material will exhibit a resistance R. The general expression
for R for a resistor of arbitrary shape is given by Eq. (4.71):

-f E ·d)
R=-.,::.--,I--

fO'E'dS
s

(Q). (4.110)

For a medium with uniform 0' and F, the product ofEqs, (4.109)
and (4.110) gives

This simple relation allows us to find R if C is known, or vice
versa.

Example 4-11: Capacitance and Breakdown Voltage of

Parallel-Plate Capacitor

Obtain an expression for the capacitance C of a parallel-plate
capaci tor comprised of two parallel plates each of surface area A
and separated by a distance d. The capacitor is filled with
a dielectric material with permittivity F. Also. determine the
breakdown voltage if d = 1 em and the dielectric material is
quartz.

Solution: In Fig. 4-24, we place the lower plate of the
capacitorin thex-y plane and the upper plate in the plane 7 = d.
Because of the applied voltage difference V, charges + Q and
- Q accumulate on the top and bottom capacitor plates. If
the plate dimensions are much larger than the separation d ,
then these charges distribute themselves quasi-uniformly across
the plates. giving rise to a quasi-uniform field between them
pointing in the -z-direction. In addition, «fringing field will
exist near the capacitor edges, but its effects may be ignored
because the bulk of the electric field exists between the plates.
The charge density on the upper plate is Ps = Q/ A. Hence, in
the dielectric medium

E = -ui,
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Figure 4-24: A de voltage source connected to a parallel-plate capacitor (Example 4-11).

and from Eq. (4.106), the magnitude of E at the conductor-
dielectric boundary is E = Ps/c = Q/cA. From Eq, (4.108),
the voltage difference is

d d

V=- f E·dl=- f(-iE).idZ=Ed.
o 0

and the capacitance is

(4.112)

(4.113) I
where use was made of the relation E = Q / cA.

From V = Ed, as given by Eq. (4.112), V = Vbr when
E = Ed" the dielectric strength of the material. According to
Table 4-2, Eds = 30 (MV/m) for quartz. Hence, the breakdown
voltage is

Vbr = Edsd = 30 x 106
X 10-2 = 3 X 105 V.

Example 4-12: Capacitance Per Unit Length of Coaxial

Line

Obtain an expression for the capacitance of the coaxial line
shown in Fig. 4-25.

Solution: For a given voltage V across the capacitor, charges
+Q and - Q will accumulate on the surfaces of the outer and
inner conductors, respectively. We assume that these charges
are uniformly distributed along the length and circumference
of the conductors with surface charge density p~ = Q /2rr hi

on the outer conductor and p~' = -Q/2rrat on the inner one.
Ignoring fringing fields near the ends of the coaxial line, we
can construct a cylindrical Gaussian surface in the dielectric
in between the conductors, with radius r such that a < r < b.
Symmetry implies that the E-field is identical at all points on
this surface, directed radially inward. From Gauss's law, it
follows that the field magnitude equals the absolute value of
the total charge enclosed, divided by the surface area. That is

E=-I-~.
2rr erl

The potential difference V between the outer and inner
conductors is

(4.114)

b b

V = -fE.dl = -f (-I-~)' (i-ctr)
2]( crt

a a

Q (h)---In -
- Zn e! a'

(4.115)

The capacitance C is then given by

and the capacitance per unit length of the coaxial line is

! C Zn e
C -----

- ( - InCh/a)
(F/m). (4.117)
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Inner conductor

Figure 4-25: Coaxial capacitor filled with insulating material of permittivity E (Example 4-12).

Review Question 4-24: How is the capacitance of a
two-conductor structure related to the resistance of the
insulating material between the conductors?

Review Question 4-25: What are fringing fields and when
may they be ignored?

4-10 Electrostatic Potential Energy

A source connected to a capacitor expends energy in charging
up the capacitor. If the capacitor plates are made of a good
conductor with effectively zero resistance and if the dielectric
separating the two plates has negligible conductivity, then no
real current can flow through the dielectric, and no ohmic
losses occur anywhere in the capacitor. Where then does the
energy expended in charging up the capacitor go? The energy
ends up getting stored in the dielectric medium in the form of
electrostatic potential energy. The amount of stored energy We
is related to Q, C, and V.

Suppose we were to charge up a capacitor by ramping up the
voltage across it from u = 0 to u = V. During the process,
charge +q accumulates on one conductor, and -q on the other.
In effect, a charge q has been transferred from one of the
conductors to the other. The voltage v across the capacitor
is related to q by

q
v= C. (4.118)

From the definition of v, the amount of work dWc required
to transfer an additional incremental charge dq from one
conductor to the other is

q
dWe = v dq = C dq. (4.119)

If we transfer a total charge Q between the conductors of an
initially uncharged capacitor, then the total amount of work
performed is

(1). (4.120)

Using C = Q/ V, where V is the final voltage, We also can be
expressed as

(J). (4.121) I
The capacitance of the parallel-plate capacitor discussed in
Example 4-11 is given by Eq. (4.113) as C = eAt d, where
A is the surface area of each of its plates and d is the separation
between them. Also, the voltage V across the capacitor is
related to the magnitude of the electric field, E in the dielectric
by V = Ed. Using these two expressions in Eq. (4.121) gives

I sA 2 I 2 1 2We = ') -(Ed) = ') e Ii (Ad) = ') sE V,~ d - ~ (4.122)

where V = Ad is the volume of the capacitor. This expression
affirms the assertion made at the beginning of this section,
namely that the energy expended in charging up the capacitor
is being stored in the electric field in between its conductors.
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Technology Brief 8: Supercapacitors as Batteries
As recent additions to the language of electronics, the names supercapacitor, ultracapacitor, and nanocapacitor
suggest that they represent devices that are somehow different from or superior to traditional capacitors. Are these
just fancy names attached to traditional capacitors by manufacturers, or are we talking about a really different type of
capacitor? The three aforementioned names refer to variations on an energy storage device known by the technical
name electrochemical double-layer capacitor (EDLC), in which energy storage is realized by a hybrid process
(Fig. TF8-1) that incorporates features from both the traditional electrostatic capacitor and the electrochemical voltaic
battery. For the purposes of this technology brief, we will refer to this relatively new device as simply a supercapacitor.
The battery is far superior to the traditional capacitor with regard to energy storage, but a capacitor can be charged
and discharged much more rapidly than a battery. As a hybrid technology, the supercapacitor offers features that are
intermediate between those of the battery and the traditional capacitor. The supercapacitor is now used to support
a wide range of applications, from motor startups in large engines (trucks, locomotives, submarines, etc.) to flash
lights in digital cameras, and its use is rapidly extending into consumer electronics (cell phones, MP3 players, laptop
computers) and electric cars (Fig. TF8-2).

Capacitor Energy Storage Limitations
Energy density W' is often measured in watt-hours per kg (Wh/kg), with I Wh = 3.6 x 103 Joules. Thus, the energy
capacity of a device is normalized to its mass. For batteries, Wi extends between about 30 Wh/kg for a lead-acid battery
to as high as 150 Wh/kg for a lithium-ion battery. In contrast, W' rarely exceeds 0.02 Wh/kg for a traditional capacitor.
Let us examine what limits the value of Wi for the capacitor by considering a small parallel-plate capacitor with plate
area A and separation between plates d. For simplicity, we assign the capacitor a voltage rating of 1 V (maximum
anticipated voltage across the capacitor). Our goal is to maximize the energy density W'. For a parallel-plate capacitor
C = E' Aid, where E' is the permittivity of the insulating material. Using Eq. (4.121) leads to

W I ~ E'AV2
Wi = ~ = - cV~ = -- (J/kg).

m 2m 2md

Figure TF8-1: Cross-sectional view of an electrochemical double-layer capacitor
(EDLC). otherwise known as a supercapacitor. (Courtesy of Ultracapacitor.org.)
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Figure TFB-2: Examples of systems that use supercapacitors.
(Courtesy of Railway Gazette International: BMW: NASA: Applied
Innovative Technologies.)

where III is the mass of the conducting plates and the insulating material contained in the capacitor. To keep the
analysis simple, we will assume that the plates can be made so thin as to ignore their masses relative to the mass of
the insulating material. If the material's density is fl (kg/m'), then III = p Ad and

(J/kg).

To maximize W', we need to select d to be the smallest possible, but we also have to be aware of the constraint
associated with dielectric breakdown. To avoid sparking between the capacitor's two plates, the electric field strength
should not exceed L,b, the dielectric strength of the insulating material. Among the various types of materials commonly
used in capacitors, mica has one of the highest values of F"" nearly :2x lOx Vim. Breakdown voltage \'br is related
to Ed, by Vhr = 1:'lb/1, so given that the capacitor is to have a voltage rating of 1 V, let us choose Vbr to be 2 V, thereby
allowing a 50% safety margin. With Vbr = :2V and EJ, = :2x lOx Vim, it follows that the smallest value d should have is
10 x m, or 10 nm. For mica, 1-:::::: 6pu and f! = 3 X 10\ kg/mI. Ignoring for the moment the practical issues associated
with building a capacitor with a spacing of only 10 nm between conductors, the expression for energy density leads to
Wi ::-::9() J/kg. Converting H" to Wh/kg (by dividing by 3.6 x 10·' J/Wh) gives

IV' = 2.5 x 1() 2 (Wh/kg).

thereby demonstrating the energy storage limitation of traditional capacitors.

Energy Storage Comparison
The table in the upper part of Fig. TF8-3 displays typical values or ranges of values for each of five attributes commonly
used to characterize the performance of energy storage devices. In addition to the energy density w, they include
the power density pi, the charge and discharge rates, and the number of charge/discharge cycles that the device can
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withstand before deteriorating in performance. For most energy storage devices, the discharge rate usually is shorter
than the charge rate, but for the purpose of the present discussion we will treat them as equal. As a first-order
approximation, the discharge rate is related to pi and Wi by

W'
T=-.pi

We note from the information given in Fig. TF8-3 that supercapacitors are capable of storing 100 to 1000 times more
energy than a traditional capacitor, but 10 times less than a battery, and they can discharge their stored energy in
a matter of seconds, compared with hours for a battery. Moreover, the supercapacitor's cycle life is on the order of
1 million, compared with only 1000 for a rechargeable battery. Because of these features, the supercapacitor has
greatly expanded the scope and use of capacitors in electronic circuits and systems.

Feature Traditional Capacitor Supercapacitor Battery

Future Developments
The upper right-hand corner of Fig. TF8-3 represents the ideal energy storage device with W' ::::100-1000 Wh/kg and
pi:::: 103-104 W/kg. The corresponding discharge rate is T:::: 10-100 ms. Current research aims to extend the
capabilities of batteries and supercapacitors in the direction of this prized domain of the energy-power space.

Energy Storage Devices

Energy density Wi (Wh/kg)
Power density P' (W/kg)
Charge and discharge rate T
Cycle life N;

'"v 10-2
1,000 to 10,000

103 see
00

1 to 10
1,000 to 5,000

"" 1 see to 1 min
,....,106

5 to 150
10 to 500

'V 1 to 5 hrs
rv 10:1

\000

Fuel cells

100

Batteries t
10

Traditional
capacitors

0.01 +----------.------.--------.....,
10 \00 \000 10,000

Power density P' (W/kg)

Figure TF8·3: Comparison of energy storage devices.
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The electrostatic energy density We is defined as the
electrostatic potential energy We per unit volume:

I We= ~e =18£2 (J/m3). (4.123) I

Even though this expression was derived for a parallel-
plate capacitor, it is equally valid for any dielectric medium
containing an electric field E. including vacuum. Furthermore,
for any volume V. the total electrostatic potential energy stored
in it is If JWC=:2 EE-dV

v

(1). (4.124)

Returning to the parallel-plate capacitor, the oppositely
charged plates arc attracted to each other by an electrical force F.
The force acting on any system of charges may be obtained
from energy considerations. In the discussion that follows. we
will show how F can be determined from We. the electrostatic
energy stored in the system by virtue of the presence of electric
charges.

If two conductors comprising a capacitor are allowed to move
closer to each other under the influence of the electrical force F
by a differential distance dl, while maintaining the charges
on the plates constant, then the mechanical work done by the
charged capacitor is

dW=F·dl. (4.125)

The mechanical work is provided by expending electrostatic
energy. Hence, dW equals the loss of energy stored in the
dielectric insulating material of the capacitor, or

dW = -dWc. (4.126)

From Eq. (3.73), d We may be written in terms of the gradient
of We as

dWe = VWe' dl. (4.127)

In view of Eq. (4.126), comparison of Eqs. (4.125) and (4.127)
leads to

(N). (4.128) I

To apply Eq. (4.12H) to the parallel-plate capacitor, we
rewrite Eq. (4.120) in the form

1 Q2 Q2z
W-----

c - 2 C - 2eA ' (4.129)

where we replaced d with the variable z. representing the
vertical spacing between the conducting plates. Use of
Eg. (4.129) in Eg. (4.128) gives

A a (Q2
L ) A ( Q2 )F = - V We = -z ~ -- = -z -,,- ,

rlz 2EA ~EA
(4.130)

and since Q = eA E, F can also be expressed as

A EAE2
F=-z--

2
(parallel-plate capacitor). (4.131)

Review Question 4-26: To bring a charge q from infinity
to a given point in space, a certain amount of work W is
expended. Where does the energy corresponding to W
go?

Review Question 4-27: When a voltage source is
connected across a capacitor. what is the direction of the
electrical force acting on its two conducting surfaces?

Exercise 4·18: The radii of the inner and outer conductors
of a coaxial cable are 2 em and 5 ern, respectively,
and the insulating material between them has a relative
permittivity of 4. The charge density on the outer
conductor is PC = 10-4 (C/m). Use the expression for E
derived in Example 4-12 to calculate the total energy

. stored in a 20-cm length of the cable.

Answer: We = 4.1 J. (See <"1')

4-11 Image Method

Consider a point charge Q at a distance d above an infinite,
perfectly conducting plate [Fig. 4-26(a)]. We want to determine
V and E at any point in the space above the plate, as well as
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Electric field
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(a) Charge Q above grounded plane

•
-Q

(b) Equivalent configuration

Figure 4-26: By image theory, a charge Q above a grounded perfectly conducting plane is equivalent to Q and its image - Q with the
ground plane removed.

v=o

(a) Charge distributions above ground plane

if •
~ t" V=O
- - - - - - -' - - - - - ~

~'~
(b) Equivalent distributions

Figure 4-27: Charge distributions above a conducting plane and their image-method equivalents.

the surface charge distribution on the plate. Three different
methods for finding E have been introduced in this chapter
The first method, based on Coulomb's law, requires knowledge
of the magnitudes and locations of all the charges. In the
present case, the charge Q induces an unknown and nonuniform
distribution of charge on the plate. Hence, we cannot utilize
Coulomb's method. The second method, based on Gauss's
law, is equally difficult to use because it is not clear how to
construct a Gaussian surface across which E is only tangential
or normal. The third method is based on evaluating the electric
field using E = -VV after solving Poisson's or Laplace's
equation for V subject to the available boundary conditions,
but it is mathematically involved.

Alternatively, the problem at hand can be solved using image
theory.

Any given charge configuration above an infinite, perfectly
conducting plane is electrically equivalent to the combi-

nation of the given charge configuration and its image
configuration, with the conducting plane removed.

The image-method equivalent of the charge Q above a
conducting plane is shown in the right-hand section of Fig. 4-26.
It consists of the charge Q itself and an image charge -Q
at a distance 2d from Q, with nothing else between them.
The electric field due to the two isolated charges can now
be easily found at any point (x, y, z) by applying Coulomb's
method, as demonstrated by Example 4-13. By symmetry,
the combination of the two charges will always produce a
potential V = 0 at every point in the plane previously occupied
by the conducting surface. If the charge resides in the
presence of more than one grounded plane, it is necessary
to establish its images relative to each of the planes and
then to establish images of each of those images against
the remaining planes. The process is continued until the
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condition V = 0 is satisfied everywhere on all grounded
planes. The image method applies not only to point charges,
but also to distributions of charge. such as the line and
volume distributions depicted in Fig. 4-27. Once E has been
determined, the charge induced on the plate can be found
from

p, = (n . E)£o. (4.132)

where n IS the normal unit vector to the plate
[Fig. 4-26(a)].

Example 4-13: Image Method for Charge Above
Conducting Plane

Use image theory to determine E at an arbitrary point
p = (r , y. z) in the region 7 > 0 due to a charge Q in free space
at a distance d above a grounded conducting plate residing in
the z = 0 plane.

Solution: In Fig. 4-28. charge Q is at (0.0, d) and its
image - Q is at (0.0, -d). From Eq. (4.19), the electric field
at point P = (x, y, 7) due to the two charges is given by

E __ 1_ (QRl + -QR2)
- 4JTEo Ri R~

Q [ Xx + yy + z(z - d)
= 4JT EO Ix2 + y2 + (7 - d)2IJ/2

xx + yy + z(z + d) ]
[x2 + y2 + (z + d)2]3/2

for z .:::o.

p = (x,y, z)t

- - - - - - - -z = ° plane

-Q = (0, 0, -d) -

Figure 4-28: Application of the image method for finding E at
point P (Example 4-13).

Exercise 4-19: Use the result of Example 4-13 to find the
surface charge density Ps on the surface of the conducting
plane.

Answer: Ps = -Qd/[2JT(x2 + y2 + d2)3/2]. (See >&)

Review Question 4-28: What is the fundamental premise
of the image method?

Review Question 4-29: Given a charge distribution, what
are the various approaches described in this chapter for
computing the electric field E at a given point in space?

Chapter 4 Relationships
Maxwell's Equations for Electrostatics

Name Differential Form Integral Form

Gauss's law '\j·D=pv fD.dS=Q
S

Kirchhoff's law '\j x E = 0 f E . dl = 0

C

Continued on page 269
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Technology Brief 9: Capacitive Sensors
To sense is to respond to a stimulus. (See Technology Brief 7 on resistive sensors.) A capacitor can function as a
sensor if the stimulus changes the capacitor's geometry-usually the spacing between its conductive elements-or
the effective dielectric properties of the insulating material situated between them. Capacitive sensors are used in a
multitude of applications. A few examples follow.

Fluid Gauge
The two metal electrodes in Fig. TF9-1 (a), usually rods or plates, form a capacitor whose capacitance is directly
proportional to the permittivity of the material between them. If the fluid section is of height hf and the height of the
empty space above it is (h - hd, then the overall capacitance is equivalent to two capacitors in parallel, or

, hf (h - hd( = Cf + Ca = EfW - + Ca W ---
d d

where w is the electrode plate width, d is the spacing between electrodes, and Ef and Ca are the permittivities of the
fluid and air, respectively. Rearranging the expression as a linear equation yields

C = kh» + Co.

To capacitive bridge circuit

,-- __ C

Air ---+--

Fluid --it--

Tank

-d

(a) Fluid tank

r
h - hr

1 +
hf /)g '\"

!
(b) Bridge circuit with 150 kHz ac source

Figure TF9-1: Fluid gauge and associated bridge circuit, with Co being the capacitance that an empty tank would have
and C the capacitance of the tank under test.
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Silicon substrate Electrodes

/

:=: 1"=,,,1"="11,11

Figure TF9-2: Interdigital capacitor used as a humidity
sensor.

where the constant k = (EI - Ea)w/d and Co = Fawh/d is the capacitance of the tank when totally empty. Using the
linear equation, the fluid height can be determined by measuring C with a bridge circuit [Fig. TF9-1(b)). The output
voltage Y.1Ut assumes a functional form that depends on vg, Co, and the fluid height h «,

Humidity Sensor

Thin-film metal electrodes shaped in an interdigitized pattern (to enhance the ratio A/d) are fabricated on a silicon
substrate (Fig. TF9-2). The spacing between digits is typically on the order of 0.2 11m. The effective permittivity of
the material separating the electrodes varies with the relative humidity of the surrounding environment. Hence, the
capacitor becomes a humidity sensor.

Pressure Sensor

A flexible metal diaphragm separates an oil-filled chamber with reference pressure Po from a second chamber exposed
to the gas or fluid whose pressure P is to be measured by the sensor [Fig. TF9-3(a)). The membrane is sandwiched,
but electrically isolated, between two conductive parallel surfaces, forming two capacitors in series [Fig. TF9-3(b)).
When P > Po, the membrane bends in the direction of the lower plate. Consequently, d, increases and d: decreases
and, in turn, CI decreases and C2 increases [Fig. TF9-3(c)]. The converse happens when P < Po. With the use of a
capacitance bridge circuit, such as the one in Fig. TF9-1(b), the sensor can be calibrated to measure the pressure P
with good precision.

Noncontact Sensors

Precision positioning is a critical ingredient in semiconductor device fabrication, as well as in the operation and control
of many mechanical systems. Noncontact capacitive sensors are used to sense the position of silicon wafers during
the deposition, etching, and cutting processes, without coming in direct contact with the wafers. They are also used to
sense and control robot arms in equipment manufacturing and to position hard disc drives, photocopier rollers, printing
presses, and other similar systems.
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Fluid

Flexible
metallic
membrane

2

(a) Pressure sensor

Plate d
1

1 .10 C1
Membrane -------2 2I__ .d.2__ 3 3 T C2

C1 =C2

(b) C1 = C2

- Bridge circuit

Plate
P=Po

Plate 1

Membrane~2

Plate 2 3
P>Po

1.10
2IC1

3TC2

CI <C2
(c) Cl < C2

- Bridge circuit

Figure TF9-3: Pressure sensor responds to deflection of metallic membrane.
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The concentric plate capacitor in Fig. TF9-4 consists of two metal plates, sharing the same plane, but electrically
isolated from each other by an insulating material. When connected to a voltage source, charges of opposite polarity
form on the two plates, resulting in the creation of electric-field lines between them. The same principle applies to
the adjacent-plates capacitor in Fig. TF9-5. In both cases, the capacitance is determined by the shapes and sizes
of the conductive elements and by the effective permittivity of the dielectric medium containing the electric field lines
between them. Often, the capacitor surface is covered by a thin film of nonconductive material, the purpose of which is
to keep the plate surfaces clean and dust free. The introduction of an external object into the proximity of the capacitor
[Fig. TF9-5(b)] changes the effective permittivity of the medium, perturbs the electric field lines, and modifies the charge
distribution on the plates. This, in turn, changes the value of the capacitance as would be measured by a capacitance
meter or bridge circuit. Hence, the capacitor becomes a proximity sensor, and its sensitivity depends, in part, on
how different the permittivity of the external object is from that of the unperturbed medium and on whether it is or is
not made of a conductive material.

External object
Conductive plates

....•. -- ...•., ..•.•. -- ... ",','" =-»c,
,'1' ( )~L...\'_.....•

_ ~o

,,~:::::::~," ",
I:: r.
"I' 1::. C:f. en

c

Insulator (a) Adjacent-plates
capacitor

(b) Perturbation
field

FigureTF9-4: Concentric-plate capacitor.
Figure TF9-5: (a) Adjacent-plates capacitor; (b)
perturbation field.

Fingerprint Imager

An interesting extension of noncontact capacitive sensors is the development of a fingerprint imager consisting of a
two-dimensional array of capacitive sensor cells, constructed to record an electrical representation of a fingerprint
(Fig. TF9-6). Each sensor cell is composed of an adjacent-plates capacitor connected to a capacitance measurement
circuit (Fig. TF9-7). The entire surface of the imager is covered by a thin layer of nonconductive oxide. When the finger
is placed on the oxide surface, it perturbs the field lines of the individual sensor cells to varying degrees, depending on
the distance between the ridges and valleys of the finger's surface from the sensor cells. Given that the dimensions of
an individual sensor are on the order of 65 filn on the side, the imager is capable of recording a fingerprint image at a
resolution corresponding to 400 dots per inch or better.
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Figure TF9-6: Elements of a fingerprint matching system. (Courtesy of IEEE Spectrum.)

2 metal plates

Figure TF9-7: Fingerprint representation. (Courtesy of Dr. M. Tartagni,
University of Bologna, Italy.)
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Chapter 4 Relationships (continued)

Current density J = p"u

v-v = .E:
e

Poisson's equation

Laplace's equation v2V =0

- f E'dl
R - -;;<-<-1 --

- iuE'dS

Table 4-3

lsE'dS
C - s- - !E'dl

Resistance

Boundary conditions

Capacitance

RC relation
e

RC= -a-

t £?We = 'i£ -Energy density

Electric Field

Point charge

CHAPTER HIGHLIGHTS

• Maxwell's equations are the fundamental tenets of
electromagnetic theory.

• Under static conditions, Maxwell's equations separate
into two uncoupled pairs, with one pair pertaining to
electrostatics and the other to magnetostatics.

• Coulomb's law provides an explicit expression for the
electric field due to a specified charge distribution.

• Gauss's law states that the total electric field flux
through a closed surface is equal to the net charge
enclosed by the surface.

• The electrostatic field E at a point is related to the
electric potential V at that point by E = - V V, with
V often being referenced to zero at infinity.

• Because most metals have conductivities on the order
of 106 (S/m), they are treated in practice as perfect

Many point charges
N

E __ 1_ qi(R - Ri)

- 4rr£ L IR - Ril3
1=1

1 f AI p; dV'E-- R--
- 4rr£ R'2

V'
1 f AI Ps ds'E=~ R~-

4rr e R/2
S'

E - _1_ f ft' Pe dl'
J - 4rre R,2

{'

E A Ps=z-
2£0

E= D =1' Dr =r~
£0 eo 2rr£or

Volume distribution

Surface distribution

Line distribution

Infinite sheet of charge

Infinite line of charge

Dipole

Relation to V E=-VV

conductors. By the same token, insulators with
conductivities smaller than 1O~10 (S/m) often are
treated as perfect dielectrics.

• Boundary conditions at the interface between two
materials specify the relations between the normal and
tangential components of D, E, and J in one of the
materials to the corresponding components in the other.

• The capacitance of a two-conductor body and resistance
of the medium between them can be computed from
knowledge of the electric field in that medium.

• The electrostatic energy density stored in a dielectric
medium is We = ~E £2 (J/m3).

• When a charge configuration exists above an infinite,
perfectly conducting plane, the induced field E is the
same as that due to the configuration itself and its image
with the conducting plane removed.
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Joule's law
Kirchhoff's voltage law
Laplace's equation
linear material
Ohm's law
perfect conductor
perfect dielectric
permittivity e
Poisson's equation
polarization vector P
relative permittivity e,
semiconductor
static condition
superconductor
volume, surface, and line charge

densities

(a) P, = PsO cos <p (C/m1)

(h) Ps = PsO sin2 ¢ (C/m2)

'8' (c) o, = psoe-r (C/m2)

(d) Ps = psoe-r sin2 <p (C/m2)

where Pso is a constant.

'8' Solution available on CD.

GLOSSARY OF IMPORTANT TERMS

Provide definitions or explain the meaning of the following terms:

boundary conditions
capacitance C
charge density
conductance G
conduction current
conductivity a
conductor
conservative field
constitutive parameters
convection current
Coulomb's law
current density J
dielectric breakdown voltage Vbr

dielectric material
dielectric strength Eds
dipole moment p
electric dipole

PROBLEMS

electric field intensity E
electric flux density D
electric potential V
electric susceptibility Xe
electron drift velocity lie

electron mobility JLe
electrostatic energy density We

electrostatic potential energy We
electrostatics
equipotential
Gaussian surface
Gauss's law
hole drift velocity Uh

hole mobility JLh

homogeneous material
image method
isotropic material

Sections 4-2: Charge and Current Distributions

*4.1 A cube 2 m on a side is located in the first octant in
a Cartesian coordinate system. with one of its corners at the
origin. Find the total charge contained in the cube if the charge
density is given by p; = xy2e-27. (mC/m3).

4.2 Find the total charge contained in a cylindrical volume
defined by, S 2 m and 0 S z S 3 m if p; = 20,z (mC/m3).

*4.3 Find the total charge contained in a cone defined by
R S 2 m and 0 S (J S rr/4, given that
p; = IOR2 cos2 (J (mC/m3).

4.4 If the line charge density is given by PI = 24)'2 (mC/m),
find the total charge distributed on the y-axis from y = -5 to
y = 5.

*Answer(s) available in Appendix D.

4.5 Find the total charge on a circular disk defined by r S a
and z = 0 if:

4.6 If J = y4x z (AJm2), find the current I flowing through a
square with corners at (0,0,0), (2, 0, 0), (2. 0, 2), and (0. O. 2).

* . ~4.7 If J = R5/ R (AJm-). find I through the surface R = 5 m.
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4.8 An electron beam shaped like a circular cylinder of radius
1'0 carries a charge density given by

where Po is a positive constant and the beam's axis is coincident
with the z-axis,

(a) Determine the total charge contained in length L of the
beam.

(b) If the electrons are moving in the -l-z-direction with
uniform speed u , determine the magnitude and direction
of the current crossing the z-plane,

'14.9 A circular beam of charge of radius a consists of electrons
moving with a constant speed u along the -l-z-direction. The
beam's axis is coincident with the z-axis and the electron charge
density is given by

ry

p; = =cr:

where c is a constant and I' is the radial distance from the axis
of the beam.

(a) Determine the charge density per unit length.

(b) Determine the current crossing the z-plane.

4.10 A line of charge of uniform density Pi occupies a
semicircle ofradius b as shown in Fig. P4.1O. Use the material
presented in Example 4-4 to determine the electric field at the
origin.

z
,,

Figure P4.IO: Problem 4.10.

Section 4-3: Coulomb's Law

*4.11 A square with sides of 2 m has a charge of 40 I1C at each
of its four corners. Determine the electric field at a point 5 m
above the center of the square.

~ 4.12 Three point charges, each with q = 3 nC, are located at
the corners of a triangle in the x-y plane, with one corner at
the origin, another at (2 em, 0, 0), and the third at (0.2 ern, 0).
Find the force acting on the charge located at the origin.

*4.13 Charge q] = 4 MC is located at (I em, I em, 0) and
charge q2 is located at (0,0,4 em). What should q: be so that
Eat (0,2 ern, 0) has no y-component?

4.14 A line of charge with uniform density PI = 8 (MC/m)
exists in air along the z-axis between z = 0 and 7 = Scm.
Find E at (0,10 crn.O).

*4.15 Electric charge is distributed along an arc located in
the x-y plane and defined by I' = 2 cm and 0 :::::</> ::::: J[ /4. If
Pf = 5 (MC/m), find E at (0. O. z) and then evaluate it at:

(a) The origin.

(b) z = Scm

(e) z = -5 ern

4.16 A line of charge with uniform density PI extends between
z = -L/2 and z = L/2 along the z-axis. Apply Coulomb's
law to obtain an expression for the electric field at any point
P = (r, ¢' 0) on the x-y plane. Show that your result reduces
to the expression given by (4.33) as the length L is extended to
infinity.

*4.17 Repeat Example 4-5 for the circular disk of charge of
radi us a, but in the present case, assume the surface charge
density to vary with I' as

where PsO is a constant.

4.18 Multiple charges at different locations are said to be in
equilibrium if the force acting on anyone of them is identical
in magnitude and direction to the force acting on any of the
others. Suppose we have two negative charges, one located at
the origin and carrying charge -ge, and the other located on the
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positive x-axis at a distance d from the first one and carrying
charge -36e. Determine the location, polarity and magnitude
of a third charge whose placement would bring the entire system
into equilibrium.

Section 4-4: Gauss's Law

*4.19 Three infinite lines of charge, all parallel to the z-axis,
are located at the three comers of the kite-shaped arrangement
shown in Fig. P4.19. If the two right triangles are symmetrical
and of equal corresponding sides, show that the electric field is
zero at the origin.

y

,,

, -2Pf.. .. .. .. .. .. .. ..
QlPI,,,,

,,,,,,,
Pl~

'\
'\

'\
'\

'\ ,
'\

'\
'\ ,

'\ ,
'\ ,

'\ ,
----------------~~------------~x

Figure P4.19: Kite-shaped arrangment of line charges for
Problem 4.19.

4.20 Three infinite lines of charge, PI, = 3 (nC/m),
Ph = -3 (nC/m), and PI) = 3 (nC/m), are all parallel to the
z-axis. If they pass through the respective points (0, -b),
(0,0), and (0. b) in the x-y plane, find the electric field at
(a. 0. 0). Evaluate your result for a = 2 em and b = 1 ern,

4.21 A horizontal strip lying in the x-y plane is of width d
in the y-direction and infinitely long in the x-direction. If the
strip is in air and has a uniform charge distribution Ps, use
Coulomb's law to obtain an explicit expression for the electric
field at a point P located at a distance h above the centerline
of the strip. Extend your result to the special case where d is
infinite and compare it with Eq. (4.25).

4.22 Given the electric flux density

D = x2(x + y) + y(3x - 2)') (C/m2),

determine

(a) p; by applying Eq. (4.26).

(b) The total charge Q enclosed in a cube 2 mon a side, located
in the first octant with three of its sides coincident with the
.r-, y-, and z-axes and one of its comers at the origin.

(e) The total charge Q in the cube, obtained by applying
Eq. (4.29).

*4.23 Repeat Problem 4.22 for D = Xx)'3 z3 (C/m2).

4.24 Charge Q I is uniformly distributed over a thin spherical
shell of radius G, and charge Q2 is uniformly distributed over a
second spherical shell of radius b, with b > a. Apply Gauss's
law to find E in the regions R < a, G < R < b, and R > b .

*4.25 The electric flux density inside a dielectric sphere of
radius a centered at the origin is given by

D = RPoR

where Po is a constant. Find the total charge inside the sphere.

4.26 In a certain region of space, the charge density is given
in cylindrical coordinates by the function:

Apply Gauss's law to find D.

*4.27 An infinitely long cylindrical shell extending between
r = I m and r = 3 m contains a uniform charge density PvO.

Apply Gauss's law to find D in all regions.

4.28 If the charge density increases linearly with distance
from the origin such that p; = ° at the origin and Pv = 4 C/m3

at R = 2 m, find the corresponding variation of D.
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4.29 A spherical shell with outer radius b surrounds a charge-
free cavity of radius a < b (Fig. P4.29). If the shell contains a
charge density given by

PvO
Pv = - R2 ' a ~ R ~ h,

where PvO is a positive constant, determine D in all regions.

~,.".-- •..•..•..•. ....

\
\

\ I
I\

I

4.33 Show that the electric potential difference V12 between
two points in air at radial distances rl and ri from an
infinite line of charge with density Pl along the z-axis is
VI2 = (pe/2JTfo)ln(r2/rl).

*4.34 Find the electric potential V at a location a distance b
from the origin in the x-y plane due to a line charge with charge
density Pe and of length l, The line charge is coincident with
the z-axis and extends from z = -1/2 to z = 1/2.

4.35 For the electric dipole shown in Fig. 4-13, d = I em and
lEI = 4 (mV/m) at R = 1 m and () = 0°. Find E at R = 2 m
and () = 90°.

4.36 For each of the distributions of the electric potential V
shown in Fig. P4.36, sketch the corresponding distribution of E
(in all cases, the vertical axis is in volts and the horizontal axis
is in meters).

v

Figure P4.29: Problem 4.29.

•.• - _ - ••• 30

(a)

Section 4-5: Electric Potential

4.30 A square in the x~y plane in free space has a point charge
of +Q at corner (a/2, a/2), the same at comer (a/2. -a/2),
and a point charge of - Q at each of the other two corners.

(a) Find the electric potential at any point P along the x-axis.

(b) Evaluate V at x = a/2.

4.31 The circular disk of radius a shown in Fig. 4-7 has
uniform charge density Ps across its surface.

(a) Obtain an expression for the electric potential V at a point
P = (0, 0, z) on the z-axis.

(b) Use your result to find E and then evaluate it for z = h.
Compare your final expression with (4.24), which was
obtained on the basis of Coulomb's law.

*4.32 A circular ring of charge of radius a lies in the x~ y plane
and is centered at the origin. Assume also that the ring is in air
and carries a uniform density Pt.
(a) Show that the electrical potential at (0.0, z) is given by

V = pta/[2eo(a2 + z2)1/2].

(b) Find the corresponding electric field E.

-30
v

(b)

v

(e)

Figure P4.36: Electric potential distributions of Problem 4.36.
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"S, 4.37 Two infinite lines of charge, both parallel to the z-axis,
lie in the x-z plane, one with density Pe and located at
x = a and the other with density - Pi and located at x = -(j

(Fig. 4-13). Obtain an expression for the electric potential
V (x, y) at a point P = (x. y) relative to the potential at the
origin.

(-a, 0) (a, 0)

Figure P4.37: Problem 4.37.

4.38 Given the electric field

• 18
E = R R2 (Vim)

find the electric potential of point A with respect to point B
where A is at +2 m and 8 at -4 rn, both on the z-axis.

*4.39 An infinitely long line of charge with uniform density
PI = 9 (nClm) lies in the x-y plane parallel to the v-axis at
x = 2 m. Find the potential V,H3 at point A(3 m, 0, 4 m)
in Cartesian coordinates with respect to point 8(0,0,0) by
applying the result of Problem 4.33.

4.40 The x-y plane contains a uniform sheet of charge with
PSI = 0.2 (nC/m2). A second sheet with PS2 = -0.2 (nC/m2)
occupies the plane z = 6 m. Find VAB, VEC, and VAC for
A(O, 0, 6 m), 8(0.0,0), and C(O, -2 rn, 2 m).

Section 4-6: Conductors

*4.41 A cylindrical bar of silicon has a radius of 4 mm and
a length of 8 ern. If a voltage of 5 V is applied between the
ends of the bar and Jle = 0.13 (m2/V·s), Jlh = 0.05 (ml/V.s),
Ne = 1.5x 1016 electrons/rn ', and Nh = Ne, find the following:
(a) The conductivity of silicon.
(b) The current I flowing in the bar.

(e) The drift velocities De and Dh.

(d) The resistance of the bar.

(e) The power dissipated in the bar.

4.42 Repeat Problem 4.41 for a bar of germanium with
Jle = 0.4 (m2/V·s), Jlh = 0.2 (m2/V·s), and
N; = N« = 2.4 x 1019 electrons or holes/m '.

4.43 A IOO-m-long conductor of uniform cross-section has a
voltage drop of 4 V between its ends. If the density of the current
flowing through it is 1.4 x 106 (A/m2), identify the material of
the conductor.

4.44 A coaxial resistor of length I consists of two concentric
cylinders. The inner cylinder has radius a and is made
of a material with conductivity rrj , and the outer cylinder,
extending between r = a and r = b, is made of a material with
conductivity a2. If the two ends of the resistor are capped with
conducting plates, show that the resistance between the two
ends is R = 1/lrr(lTla2 + a2(b2 - a2»].

*4.45 Apply the result of Problem 4.44 to find the resistance
of a 20-cm-long hollow cylinder (Fig. P4.45) made of carbon
with a = 3 x 104 (S/m).

Figure P4.45: Cross-section of hollow cylinder of
Problem 4.45.

4.46 A 2 x JO-3-mm-thick square sheet of aluminum has
5 ern x 5 cm faces. Find the following:

(a) The resistance between opposite edges on a square face.

(b) The resistance between the two square faces. (See
Appendix B for the electrical constants of materials.)

~. 4.47 A cylinder-shaped carbon resistor is 8 em in length and
its circular cross section has a diameter d = I mm,

(a) Determine the resistance R.

(b) To reduce its resistance by 40%, the carbon resistor is
coated with a layer of copper of thickness t. Use the result
of Problem 4.44 to determine t.
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Section 4-8: Boundary Conditions

*4.48 With reference to Fig. 4-19, find EI if fl = 2fo,
62 = 18so, Ez = x3 - y2 + i2 (V/m), and the boundary has a
surface charge density Ps = 3.54 X 10-11 (C/m2). What angle
does Ez make with the z-axis?

4.49 An infinitely long conducting cylinder of radius a has
a surface charge density Ps. The cylinder is surrounded by a
dielectric medium with Sr = 4 and contains no free charges.
If the tangential component of the electric field in the region
r ::::a is given by E, = -~ cos? ¢/ r2, find Ps.

4.50 If E = !l150 (VIm) at the surface of a 5-cm conducting
sphere centered at the origin, what is the total charge Q on the
sphere's surface?

Figure P4.51 shows three planar dielectric slabs of equal
thickness but with different dielectric constants. If Eo in air
makes an angle of 45° with respect to the z-axis, find the angle
of E in each of the other layers.

z

Eo

Co (air)

Figure P4.51: Dielectric slabs in Problem 4.51.

Sections 4-9 and 4-10: Capacitance and Electrical Energy

4.52 Determine the force of attraction in a parallel-plate
capacitor with A = 5 cm2, d = 2 ern, and Sr = 4 if the voltage
across it is 50 V.

*4.53 Dielectric breakdown occurs in a material whenever
the magnitude of the field E exceeds the dielectric strength
anywhere in that material. In the coaxial capacitor of
Example 4-12,

(a) At what value of r is IE I maximum'?

(b) What is the breakdown voltage if a = 1ern, b = 2 em, and
the dielectric material is mica with e, = 6?

4.54 An electron with charge Qe = -1.6 x 10-19 C and mass
me = 9.1 x 10-31 kg is injected at a point adjacent to the
negatively charged plate in the region between the plates of
an air-filled parallel-plate capacitor with separation of I em
and rectangular plates each 10 crrr' in area (Fig. P4.54). If the
voltage across the capacitor is 10 V, find the following:

(a) The force acting on the electron.

(b) The acceleration of the electron.

(c) The time it takes the electron to reach the positively
charged plate, assuming that it starts from rest.

1----1 cm----f

.------fQe-
~----------~II:~+~--------~

Vo = 10 V

Figure P4.54: Electron between charged plates of
Problem 4.54.

*4.55 In a dielectric medium with Sr = 4, the electric field is
given by

E = x(x2 + 2z) + yx2
- iCy + z ) (Vim)

Calculate the electrostatic energy stored in the region
-1 m ::: x ::: 1m, 0::: y ::: 2 m, and 0 ::: z ::: 3 m.
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4.56 Figure P4.56(a) depicts a capacitor consisting of two
parallel, conducting plates separated by a distance d. The space
between the plates contains two adjacent dielectrics, one with
permittivity Cl and surface area A 1 and another with C2 and A2.
The objective of this problem is to show that the capacitance C
of the configuration shown in Fig. P4.56(a) is equivalent to two
capacitances in parallel, as illustrated in Fig. P4.56(b), with

(4.133)

where

(4.134)

(4.135)

To this end, proceed as follows:
(a) Find the electric fields EJ and E2 in the two dielectric

layers.
(b) Calculate the energy stored in each section and use the

result to calculate C1 and C2.
(c) Use the total energy stored in the capacitor to obtain an

expression for C. Show that (4.133) is indeed a valid
result.

T
d

1
(a)

(b)

Figure P4.56: (a) Capacitor with parallel dielectric section,
and (b) equivalent circuit.

4.57 Use the result of Problem 4.56 to determine the
capacitance for each of the following configurations:

•• (a) Conducting plates are on top and bottom faces of the
rectangular structure in Fig. P4.57(a).

(b) Conducting plates are on front and back faces of the
structure in Fig. P4.57(a).

(e) Conducting plates are on top and bottom faces of the
cylindrical structure in Fig. P4.57(b).

3cm

(a)
r) =2mm

ri =4mm
r3 =8 mm

2cm

(b)

Figure P4.57: Dielectric sections for Problems 4.57 and 4.59.

T
2cm

1
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4.58 The capacitor shown in Fig. P4.58 consists of two
parallel dielectric layers. Use energy considerations to show
that the equivalent capacitance of the overall capacitor, C,
is equal to the series combination of the capacitances of the
individual layers, CI and C2. namely

C = CIC2

C] +C2
(4.136)

where

(a) Let VI and V2 be the electric potentials across the
upper and lower dielectrics, respectively. What are the
corresponding electric fields E I and £2? By applying the
appropriate boundary condition at the interface between
the two dielectrics, obtain explicit expressions for E, and
£2 in terms of E], E2. V. and the indicated dimensions of
the capacitor.

+
v

(a)

(b)

Figure P4.58: (a) Capacitor with parallel dielectric layers. and
(b) equivalent circuit (Problem 4.58).

(b) Calculate the energy stored in each of the dielectric layers
and then use the sum to obtain an expression for C.

(e) Show that C is given by Eq. (4.136).

4.59 Use the expressions given in Problem 4.58 to determine
the capacitance for the configurations in Fig. P4.57(a) when the
conducting plates are placed on the right and left faces of the
structure.

~ 4.60 A coaxial capacitor consists of two concentric.
conducting. cylindrical surfaces, one of radius a and another of
radius b, as shown in Fig. P4.60. The insulating layer separating
the two conducting surfaces is divided equally into two semi-
cylindrical sections. one filled with dielectric E I and the other
filled with dielectric f2.

(a) Develop an expression for C in terms of the length I and
the given quantities.

(b) Evaluate the value of C for a = 2 mm, b = 6 mm.
frJ = 2, fr2 = 4, and I = 4 cm.

I

r ••••.•--:---i- ...- ....~
, I I.....': J::D-

.••-... I
I

Figure P4.60: Problem 4.60.
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Section 4-12: Image Method

4.61 With reference to Fig. P4.61, charge Q is located at a
distance d above a grounded half-plane located in the x-y plane
and at a distance d from another grounded half-plane in the x-z
plane. Use the image method to

(a) Establish the magnitudes, polarities, and locations of the
images of charge Q with respect to each of the two ground
planes (as if each is infinite in extent).

(b) Find the electric potential and electric field at an arbitrary
point P = (0, y, z).

z

·P=(O,y,z)

d - - -. Q = (0, d, d)
I
I

d

Figure P4.61: Charge Q next to two perpendicular, grounded,
conducting half-planes .

.1."< 4.62 Conducting wires above a conducting plane carry
currents I, and 12 in the directions shown in Fig. P4.62. Keeping
in mind that the direction of a current is defined in terms of the
movement of positive charges, what are the directions of the
image currents corresponding to I, and h?

(a) (b)

Figure P4.62: Currents above a conducting plane
(Problem 4.62).

4.63 Use the image method to find the capacitance per unit
length of an infinitely long conducting cylinder of radius a
situated at a distance d from a parallel conducting plane, as
shown in Fig. P4.63.

~ v=O

Figure P4,63: Conducting cylinder above a conducting plane
(Problem 4.63).
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Upon learning the material presented in this chapter, you should
be able to:

1. Calculate the magnetic force on a current-carrying wire
placed in a magnetic field and the torque exerted on a
current loop.

2. Apply the Biot-Savart law to calculate the magnetic field
due to current distributions.

3. Apply Ampere's law to configurations with appropriate
symmetry.

4. Explain magnetic hysteresis in ferromagnetic materials.
5. Calculate the inductance of a solenoid, a coaxial

transmission line, or other configurations.
6. Relate the magnetic energy stored in a region to the

magnetic field distribution in that region.
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Overview

This chapter on magnetostatics parallels the preceding one
on electrostatics. Stationary charges produce static electric
fields, and steady (i.e., non-time varying) currents produce
static magnetic fields. When alar = 0, the magnetic fields in
a medium with magnetic permeability J1 are governed by the
second pair of Max well's equations [Eqs, (4.3a and b)]:

v ·B;'O,

VxH=J.

(5,la)

CUb)

where J is the current density. The magnetic flux density Band
the magnetic field intensity H are related by

B = J1H. (5.2)

When exanunmg electric fields in a dielectric medium in
Chapter 4. we noted that the relation D = fE is valid only
when the medium is linear and isotropic. These properties,
which hold true for most materials, allow us to treat the
permittivity E as a constant, scalar quantity, independent of
both the magnitude and the direction of E. A similar statement
applies to the relation given by Eq. (5.2). With the exception of
ferromagnetic materials, for which the relationship between B
and H is nonlinear. most materials are characterized by constant
penneabilities.

Furthermore, J1 = fLO for most dielectrics and metals
(excluding ferromagnetic materials).

The objective of this chapter is to develop an understanding of
the relationship between steady currents and the magnetic flux
B and field H due to various types of current distributions and
in various types of media, and to introduce a number of related
quantities, such as the magnetic vector potential A, the magnetic
energy density Wm, and the inductance of a conducting
structure. L. The parallelism that exists between these
magnetostatic quantities and their electrostatic counterparts is
elucidated in Table 5-1.

5-1 Magnetic Forces and Torques

The electric field E at a point in space was defined as the electric
force Fe per unit charge acting on a charged test particle placed

Table 5-1: Attributes of electrostatics and magnetostatics.

Attribute Electrostatics Magnetostatics

Sources Stationary charges Pv Steady currents J

Fields and Fluxes Eand D Hand B

Constitutive e anda f.l
parameter(s)

Governing equations
• Differential form V'·D=pv V'·B=O

V'xE=O V'xH=J

• Integral form 1:D·ds = Q 1.B· ds = 0
S s
1~E· dl = () 1: H· dl = I

C

Potential Scalar V, with Vector A. with
E = -V'V B=V'xA

Energy density We = !cE2 I ~Wm = 'J.l1H-

Force on charge q Fe =qE Fm=quxB

Circuit element(s) C and R L

at that point. We now define the magnetic flux density B at a
point in space in terms of the magnetic force F m that acts on a
charged test particle moving with velocity u through that point.
Experiments revealed that a particle of charge q moving with
velocity u in a magnetic field experiences a magnetic force Fm

given by
Fm=quxB (N). (5.3)

Accordingly. the strength of B is measured in newtons/(C -rn/s),
also called the tesla (T). For a positively charged particle, the
direction of Fill is that of the cross product u x B, which is
perpendicular to the plane containing u and B and governed
by the right-hand rule. If q is negative, the direction of Fm is
reversed (Fig. 5-1). The magnitude of Fm is given by

(5.4)

where () is the angIe between u and B. We note that Fill is
maximum when u is perpendicular to B (0 = 90°), and zero
when u is parallel to B «1= 0 or 18(n.
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(a)

Fm = quB sin f)

R

(b)

Figure 5·1: The direction of the magnetic force exerted on a
charged particle moving in a magnetic field is (a) perpendicular
to both Band u and (b) depends on the charge polarity (positive
or negative).

If a charged particle resides in the presence of both an electric
field E and a magnetic field B, then the total electromagnetic
force acting on it is

I F = Fe + Fm = qE+ qu X B == q(E + u X B). (5.5) I
The force expressed by Eq. (5.5) is known as the Lorentz force.
Electric and magnetic forces exhibit a number of important
differences:

1. Whereas the electric force is always in the direction of the
electric field, the magnetic force is always perpendicular
to the magnetic field.

2. Whereas the electric force acts on a charged particle
whether or not it is moving, the magnetic force acts on
it only when it is in motion.

3. Whereas the electric force expends energy in displacing a
charged particle, the magnetic force does no work when a
particle is displaced.

This last statement requires further elaboration. Because the
magnetic force F m is always perpendicular to D, F m • D = O.
Hence, the work performed when a particle is displaced by a
differential distance dl = Ddt is

dW = Fm ·dl = (Fm -u) dt = O. (5.6)

Since no work is done. a magnetic field cannot change the
kinetic energy of a charged particle; the magnetic jield can
change the direction of motion of a charged particle. but not
its speed.

Exercise 5-1: An electron moving in the positive
.r-direction perpendicular to a magnetic field is deflected
in the negative z-direction. What is the direction of the
magnetic field?

Answer: Positive y-direction. (See "if • .)

Exercise 5-2; A proton moving with a speed of
2 x 106 m/s through a magnetic field with magnetic flux
density of 2.5 T experiences a magnetic force of magnitude

. 4 x 10-!3 N. What is the angle between the magnetic field
and the proton's velocity?

Answer: (j = 30° or 150°. (See ~)

Exercise 5-3: A charged particle with velocity u is moving
in a medium with uniform fields E = i.E and B = Y B.
What should 0 be so that the particle experiences no net
force?

Answer: u = zE [B, (0 may also have an arbitrary
y-component uy). (See ~)
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o\t' CD Module 5.1 Electron Motion in Static Fields
This module demonstrates the Lorentz force on an electron
moving under the influence of an electric field alone, a
magnetic field alone. or both acting simultaneously.

I\~ It Module 5.1

.~ Electron Motion in static Fields,~\ ~~ I \ Input r.-
\ / if Xo ~ 0.0 [m] Yo = 00 [m I

'~ \ Jr \1" .... 'I
"

'J
u.o= 1.0x106m/s ~o=10xl05mIS~\..\ I 1-' . ' .. II I- , 1,,~ / , .1 Electron

~~
·/~ mass~9.1093S188'10·31 [Vgj

charge ~, 1.60~17646 x t 0.19 [C j..••;t!1 / E,=017[V!m) Ey = 1.0 !V 1m}r ~--..•..~ L' 'J
"

",. Hz= 4.0 [Aim] {i' closed boundar,

~,I ". .1 I- , r open boundary., I' ~,. I [- '.I Tw!:-: ':;1.8:"'

[__'_._.__'l L t = 1 :~, ! :e, ' 1s I

(1 ~'"" , MaXimum recommended time step

.."",..,' l:l t = 2.863 x 10,9 151

I- .. -, ,t I Instructions ij.,,, - An jmatio n spu:l ..--- t = 3.848 X 10,6 [ S )

1<lnetJc Energy = 2.262 x 10-20 [J I
I u(l) 1= 2.228 x 105 [ mls J

x=O.Ol7711m y = -0.087234 m

I
....•..

@ ~ I~ ElectriC Forc.e W IS; 1
•••.••••••.• Magnetic Force 'IV = r. (- r

5-1.1 Magnetic Force on a Current-Carrying
Conductor

A current flowing through a conducting wire consists of
charged particles drifting through the material of the wire.
Consequently, when a current-carrying wire is placed in a
magnetic field, it will experience a force equal to the sum of the
magnetic forces acting on the charged particles moving within
it Consider, for example, the arrangement shown in Fig. 5-2
in which a vertical wire oriented along the z-direction is placed
in a magnetic field B (produced by a magnet) oriented along
the -x-direction (into the page). With no current flowing in

the wire, Fill = 0 and the wire maintains its vertical orientation
[Fig. 5-2(a»), bur when a current is introduced in the wire, the
wire deflects to the left (-y-direction) if the current direction
is upward (+i-direction), and to the right (+y-direction) if the
current direction is downward (-i-direction). The directions
of these deflections are in accordance with the cross product
given by Eq. (5.3).

To quantify the relationship between Fill and the current I
flowing in a wire, let us consider a small segment of the
wire of cross-sectional area A and differential length dl, with
the direction of dl denoting the direction of the current.
Without loss of generality, we assume that the charge carriers
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B B
e e ® e e ® ®

e ® e e ® o e
® e ® e e ® ®

® e e e ® ® ®
J= 0 tJ

(a) (b)

B z
® e ® +,® e ®

e e e
e e ®

(c)

Figure 5-2: When a slightly flexible vertical wire is placed in a
magnetic field directed into the page (as denotedby the crosses).
it is (a) not deflected when the current through it is zero. (b)
deflected to the left when I is upward. and (c) deflected to the
right when / is downward.

constituting the current J are exclusively electrons, which is
always a valid assumption for a good conductor. If the wire
contains a free-electron charge density Pve = - Nee, where Nc
is the number of moving electrons per unit volume, then the total
amount of moving charge contained in an elemental volume of
the wire is

dQ = PvcA dl = -NeeA dl, (S.7)

and the corresponding magnetic force acting on d Q in the
presence of a magnetic field B is

dFm = dQ De X B = -NeeA dl De X B, (S.8a)

where De is the drift velocity ofthe electrons. Since the direction
of a current is defined as the direction of flow of posi tive charges,
the electron drift velocity De is parallel to dl, but opposite in

direction. Thus, dl De = -dl Ue and Eq. (S.8a) becomes

(S.8b)

From Eqs. (4.11) and (4.12), the current J flowing through
a cross-sectional area A due to electrons with density
Pve = -Nee, moving with velocity -Ue• is J = Pvc(-uc)A =
(-Nee)( -ue)A = NeeAue. Hence, Eq. (S.Sb) may be written
in the compact form

dFm = I dl X B (N). (S.9)

For a closed circuit of contour C carrying a current J. the total
magnetic force is

If the closed wire shown in Fig. S-3(a) resides in a uniform
external magnetic field B, then B can be taken outside the
integral in Eq. (S.lO), in which case

(S.11 )

This result, which is a consequence ()f the fact that the
vector sum of the infinitesimal vectors dl over a closed path
equals zero, states that the total magneticforce on any closed
current loop in a uniform magnetic field is zero.

In the study of magneto statics, al1 currents flow through
closed paths. To understand why, consider the curved wire
in Fig. 5-3(b) carrying a current J from point a to point h. In
doing so, negative charges accumulate at a, and positive ones
at b. The time-varying nature of these charges violates the static
assumptions underlying Eqs. (S-1 a and b).

If we are interested in the magnetic force exerted on a wire
segment I [Fig. S-3(b)] residing in a uniform magnetic field
(while realizing that it is part of a closed current loop), we can
integrate Eq. (5.9) to obtain

(S.12)
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c

R

(a)

(b)

Figure 5-3: In a uniform magnetic field. (a) the net force
on a closed current loop is zero because the integral of the
displacement vector til over a closed contour is zero. and (b)
the force on a line segment is proportional to the vector between
the end point (Fm = It x 8).

where l is the vector directed from a to b [Fig. 5-3(b)). The
integral of dl from a to b has the same value irrespective of the
path taken between a and b. For a closed loop, points a and b
become the same point, in which case l = 0 and Fm = O.

Example 5-1: Force on a Semicircular Conductor

The semicircular conductor shown in Fig. 5-4 lies in the x-y
plane and carries a current I. The closed circuit is exposed to a
uniform magnetic field B = Y Bo. Determine (a) the magnetic
force F1 on the straight section of the wire and (b) the force F2

on the curved section.

y

8

Figure 5-4: Semicircular conductor in a uniform field
(Example 5-1).

Solution: (a)To evaluate F1, consider that the straight section
of the circuit is of length 2r and its current flows along the
+x-direction. Application of Eq. (5.12) with l = x 2r gives

Fl = x(2lr) x yBo = z21rBo (N).

(b) To evaluate F2. consider a segment of differential length dl
on the curved part of the circle. The direction of dl is chosen to
coincide with the direction of the current. Since dl and B are
both in the x-y plane, their cross product dl x B points in the
negative z-direction. and the magnitude of dl x B is proportional
to sin 4>, where 4> is the angle between dl and B. Moreover, the
magnitude of dl is dl = r d¢. Hence,

x

F2 = 1 f dl x B
1/1=0

]f

= -Z/ f rBosin¢ d4>= -s u-s; (N).

1/1=0

We note that F 2 = - F I, implying that no net force acts on the
closed loop.
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Review Question 5-1: What are the major differences
between the behaviors of the electric force Fe and the
magnetic force F m ?

Review Question 5-2: The ends of a IO-cm-long wire
carrying a constant current 1 are anchored at two points
on the x-axis, x = 0 and x = 6 cm. If the wire lies in
the x-y plane in a magnetic field B = Y Bo, which of the
followi ng arrangements produces a greater magnetic force
on the wire: (a) wire is V-shaped with corners at (0,0),
(3,4). and (6,0), (b) wire is an open rectangle with corners
at (0, 0), (0, 2), (6. 2), and (6,0).

Exercise 5-4: A horizontal wire with a mass per unit
length of 0.2 kg/m carries a current of 4 A in the
+x-direction. If the wire is placed in a uniform magnetic
flux density B. what should the direction and minimum
magnitude of B be in order to magnetically lift the wire
vertically upward? [Hint: The acceleration due to gravity
is g = -z9.8 mls2.]

Answer: B = Y0.49 T. (See ~)

5-1.2 Magnetic Torque on a Current-Carrying
Loop

When a force is applied on a rigid body that can pivot about a
fixed axis, the body will, in general, react by rotating about that
axis. The angular acceleration depends on the cross product of
the applied force vector F and the distance vector d, measured
from a point on the rotation axis (such that d is perpendicular to
the axis) to the point of application of F (Fig. 5-5). The length
of d is called the moment arm, and the cross product

T=dxF (N·m) (S.13)

is called the torque. The unit for T is the same as that for work
or energy, even though torque does not represent either. The
force F applied on the disk shown in Fig. 5-5 lies in the x-y
plane and makes an angle e with d. Hence,

T = zrFsine, (S.14)

where [d] = r , the radius of the disk, and F = IFI. From
Eq. (S.14) we observe that a torque along the positive

y
•••

.......z

F

Figure 5-5: The force F acting on a circular disk that can pivot
along the z-axis generates a torque T = d x F that causes the
disk to rotate.

z-direction corresponds to a tendency for the cylinder to
rotate counterclockwise and, conversely, a torque along the
-z-direction corresponds to clockwise rotation.

These directions are governed by the following right-hand
rule: when the thumb of the right hand points along the
direction of the torque, thefour fingers indicate the direction
that the torque tries to rotate the body.

We will now consider the magnetic torque exerted on a
conducting loop under the influence of magnetic forces. We
begin with the simple case where the magnetic field B is in the
plane of the loop, and then we will extend the analysis to the
more general case where B makes an angle 8 with the surface
normal of the loop.

(a) Magnetic Field in the Plane of the Loop

The rectangular conducting loop shown in Fig. S-6(a) is
constructed from rigid wire and carries a current I. The loop
lies in the x-y plane and is allowed to pivot about the axis
shown. Under the influence of an externally generated uniform
magnetic field B = iBo, arms I and 3 of the loop are subjected
to forces F I and F 3. given by

FI = 1 (-yh) x (iBo) = zl b B«, (S.ISa)

and

(S.15b)

These results are based on the application of Eq. (5.12). No
magnetic force is exerted on either arm 2 or 4 because B is
parallel to the direction of the current flowing in those arms.
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Figure 5-6: Rectangular loop pivoted along the y-axis: (a) front
view and (b) bottom view. The combination of forces FJ and
F.~on the loop generates a torque that tends to rotate the loop in
a clockwise direction as shown in (b).

A bottom view of the loop, depicted in Fig. 5-6(b), reveals that
forces FJ and F3 produce a torque about the origin 0, causing
the loop to rotate in a clockwise direction. The moment ann is
a /2 for both forces, but d J and d3 are in opposite directions,
resulting in a total magnetic torque of

T = d, X FJ + d3 X F3

= (-x~) x (zlhBu) + (x~) x (-Z1bBo)

=yfahBo=y/ABo, (5.16)

where A = ab is the area of the loop. The right-hand rule tells
us that the sense of rotation is clockwise. The result given by
Eq. (5.16) is valid only when the magnetic field B is parallel to
the plane of the loop. As soon as the loop starts to rotate, the
torque T decreases, and at the end of one quarter of a complete
rotation, the torque becomes zero, as discussed next.

(b) Magnetic Field Perpendicular to the Axis of a Rectangular
Loop

For the situation represented by Fig. 5-7, where B = xBo. the
field is still perpendicular to the loop's axis of rotation. but
because its direction may be at any angle fJ with respect to
the loop's surface normal n, we may now have nonzero forces
on all four arms of the rectangular loop. However, forces F2
and F4 are equal in magnitude and opposite in direction and
are along the rotation axis: hence, the net torque contributed
by their combination is zero. The directions of the currents in
arms I and 3 are always perpendicular to B regardless of the
magnitude of e. Hence, FJ and F3 have the same expressions
given previously by Eqs. (5.15a and b), and for 0 ::5e ::5 If /2
their moment arms are of magnitude (a /2) sin e, as illustrated
in Fig. 5-7(b). Consequently, the magnitude of the net torque
exerted by the magnetic field about the axis of rotation is the
same as that given by Eq. (5.16), but modified by sin 8:

T = 1ABosine. (5.17)

According to Eq. (5.17), the torque is maximum when the
magnetic field is parallel to the plane of the loop (8 = 90°)
and zero when the field is perpendicular to the plane of the loop
(8 = 0). If the loop consists of N turns, each contributing a
torque given by Eq. (5.17). then the total torque is

T = NIABosinfi. (5.18)

The quantity N 1A is called the magnetic moment m of the
loop. Now, consider the vector

Im=iNIA=nffl (5.19) I
where Ii is the surface normal of the loop and governed by the
following right-hand rule: when the four fingers of the right
hand advance ill the direction of the current I, the direction
of the thumb specifies the direction of n. In terms of m. the
torque vector T can be written as

(N·m). (5.20) I
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z
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(a)

1m(magnetic
moment)

(b)

Figure 5-7: Rectangular loop in a uniform magnetic field with
flux density B whose direction is perpendicular to the rotation
axis of the loop. but makes an angle e with the loop's surface
normal n.

Even though the derivation leading to Eq. (5.20) was obtained
for B perpendicular to the axis of rotation of a rectangular loop,
the expression is valid for any orientation of B and for a loop
of any shape.

Review Question 5-3: How is the direction of the
magnetic moment of a loop defined?

Review Question 5-4: If one of two wires of equal length
is formed into a closed square loop and the other into a
closed circular loop, and if both wires are carrying equal
currents and both loops have their planes parallel to a
uniform magnetic field. which loop would experience the
greater torque?

Exercise 5-5: A square coil of lOOturns and O.S-m-Iong
sides is in a region with a uniform magnetic flux density
of 0.2 T. If the maximum magnetic torque exerted on the
coil is 4 x 10-2 (N·m), what is the current flowing in the
coil?

Answer: I = 8 rnA. (See e)

5-2 The Biot-Savart Law

In the preceding section, we elected to use the magnetic flux
density B to denote the presence of a magnetic field in a given
region of space. We will now work with the magnetic field
intensity H instead. We do this in part to remind the reader
that for most materials the flux and field are linearly related by
B = flH, and therefore knowledge of one implies knowledge
of the other (assuming that u. is known).

Through his experiments on the deflection of compass
needles by current-carrying wires, Hans Oersted established
that currents induce magnetic fields that form closed loops
around the wires (see Section 1-3.3). Building upon Oersted's
results, Jean Biot and Felix Savart arrived at an expression
that relates the magnetic field H at any point in space to the
current I that generates H. The Biot-Savart law states that the
differential magnetic field dH generated by a steady current I
flowing through a differential length vector dl is

I dl x R
dH=- ---

4JT R2
(Azrn), (5.21 )

where R = RR is the distance vector between dl and the
observation point P shown in Fig. 5-8. The SI unit for H
is ampere-rn/rrr' = (Alm). It is important to remember that
Eq. (5.21) assumes that dl is along the direction of the current I
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(dH out of the page)

P0dH,,
,'R

P®dH
(dH into the page)

Figure 5·S: Magnetic field dH generated by a current element
I dl. The direction of the Held induced at point P is opposite to
that induced at point r'.

and the unit vector R points from the current element to the
observation point. According to Eq. (5.21), dH varies as R-2,

which is similar to the distance dependence of the electric field
induced by an electric charge. However, unlike the electric
field vector E, whose direction is along the distance vector R
joining the charge to the observation point, the magnetic field H
is orthogonal to the plane containing the direction of the current
element dl and the distance vector R. At point P in Fig. 5-8,
the direction of dH is out of the page, whereas at point pi the
direction of dH is into the page.

To determine the total magnetic field H due to a conductor
of finite size, we need to sum up the contributions due to all the
current elements making up the conductor. Hence, the Biot-
Savart law becomes

H If dl. x R
=411' ~

I

(AIm), (5.22)

where I is the line path along which I exists,

5-2.1 Magnetic Field due to Surface and Volume
Current Distributions

The Biot-Savart law may also be ex.pressed in terms of
distributed current sources (Fig. 5-9) such as the volume
current density J, measured in (A/m2), or the surface current
density Js, measured in (A/m). The surface current density J,

s
(a) Volume current density J in A/m2

(b) Surface current density Js in Aim

Figure 5-9: (a) The total current crossing the cross section S of
the cylinder is I = f5 J. ds. (b) The total current flowing across
the surface of the conductor is f = .rr .r, dl .

applies to currents that flow on the surfaces of conductors in
the form of sheets of effectively zero thickness. When current
sources are specified in terms of J, over a surface S or in terms
of J over a volume V, we can use the equivalence given by

I dl .•..• J, ds •••. J dV (5.23)

to express the Biot-Savart law as

H=4~f Js;/l ds
s

H=4~f J;2RdV

V

(surface current), (5.24a)

(volume current), (5.24b)

Example 5-2: Magnetic Field of a Linear Conductor

A free-standing linear conductor of length I carries a current I
along the z-axis as shown in Fig. 5-10. Determine the magnetic
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z

(a)

z

(b)

p

Figure 5-10: Linear conductor of length I carrying a current I.
(a) The field dH at point P due to incremental current element
ell. (b) Limiting angles 81 and H2, each measured between
vector I dl and the vector connecting the end of the conductor
associated with that angle to point P (Example 5-2).

flux density B at a point P located at a distance r in the x-y
plane.

Solution: From Fig. S-1O, the differential length vector
dl = z dz. Hence, dl x R = d z (z x R) = ~sin e dz, where

~ is the azimuth direction and e is the angle between III and R.
Application of Eq. (S.22) gives

I
H=-

4n

z=I/2, 1/2

1 dl x R - ' ~ 1sin o
R2 -«II4n 7 d z: (S.2S)

z=-1/2 -1/2

Both Rand e are dependent on the integration variable z; but
the radial distance r is not. For convenience, we will convert
the integration variable from 7. to 8 by using the transformations

R = r csc s. (S.26a)

(S.26b)

(5.26c)

z = -reote.

dz=rcsc2e de.

Upon inserting Eqs. (S.26a) and (5.26c) into Eq. (5.2S), we have

Ih" ?
, I 1sin e r esc- 8 de

H=«II-
4n r2 esc? e

91

, I 1112
=«11- sinede

4nr
III

(5.27)

where.eq ande2arethelimitinganglesatz = -1/2andz = 1/2,
respectively. From the right triangle in Fig. S-IO(b), it follows
that

1/2
COSej = ,

Jr2 + (1/2)2
(S.2Xa)

-1/2
cos e? = - cos 8) = ---;=::;c===~

- Jr2 + (1/2)2
(5.28b)

Hence,

(T). (S.29)

For an infinitely long wire with I » r , Eq. (S.29) reduces to

(infinitely long wire). (5.30)
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"5' CD Module 5.2 Magnetic Fields due to Line Sources
You can place z-directed linear currents anywhere in the
display plane (x-y plane), select their magnitudes and
directions. and then observe the spatial pattern of the
induced magnetic flux B(x, v).

Module 15.2 Fields due to Line Sources
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The result given by Eq. (5.30) is a very useful expression
to keep ill mind. It states that ill the neighborhood (~ra
linear conductor carrying a current I, the induced magnetic
field forms concentric circles around the wire (Fig. 5- J J).
and its intensity is directly proportional to I and inversely
proportional to the distance r.

Example 5-3: Magnetic Field of a CIrcular Loop

A circular loop of radius a carries a steady current I. Determine
the magnetic field H at a point on the axis of the loop.

Solution: Let us place the loop in the x-y plane (Fig. 5-12).
Our task is to obtain an expression for H at point P = (0. O. z).

\
t

Input

line source = 5.0 A

(0 place line source

r Change current value

r remove line source

r move line source

r snow magnetic 1IeId

at cursor

B= Aim

Reset

Magnetic field _
••••••.• ..L..c.JL.--"" B

R

B

Figure 5-11: Magnetic field surrounding a long. linear current-
carrying conductor.
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We start by noting that any element dl on the circular loop is
perpendicular to the distance vector R, and that all elements
around the loop are at the same distance R from P, with
R = Ja2 + z2. From Eq. (5.21), the magnitude of dH due
to current element dl is

I _ I dl
d H = -- Idl x RI = 1 '

4n R2 4n(a- + z2)
(5.31 )

and the direction of dH is perpendicular to the plane containing
Rand dl. dH is in the r-z plane (Fig. 5-12). and therefore it has
components d HI' and d Hz. If we consider element cll', located
diametrically opposite to dl, we observe that the z-cornponents
of the magnetic fields due to cll and ell' add because they are
in the same direction, but their r-components cancel because
they are in opposite directions. Hence, the net magnetic field
is along z only. That is,

_ _ _ I cos (i
dH=zdHz=zdHcos{i=z ., ,dl. (5.32)

4n(a- + z~)

For a fixed point P = (0. O. z) on the axis of the loop, all
quantities in Eq. (5.32) are constant, except for dl. Hence.

z

r
I

r
r

-1
Figure 5-12: Circular loop carrying a current I (Example5-3).

integrating Eq. (5.32) over a circle of radius a gives

- I cos o f - 1cos oH = z " d! = z 2 2 (2na). (5.33)
4n(a~+z-) 4n(a +z)

Upon using the relation cos {i = (// «(/2 + z2) 1/2, we obtain

(AIm). (5.34)

At the center of the loop (z = 0), Eq. (5.34) reduces to

_ I
H=z-

20
(at z = 0). (5.35)

and at points very far away from the loop such that z2 » 02,

Eq. (5.34) simplifies to

(at [z] »a). (5.36)

5-2.2 Magnetic Field of a Magnetic Dipole

In view of the definition given by Eq. (5.19) for the magnetic
moment m of a current loop, a single-tum loop situated in
the x-y plane (Fig. 5-12) has magnetic moment m = zm with
m = Ina:'. Consequently, Eq. (5.36) may be expressed as

(at [z] » 0). (5.37)

This expression applies to a point P far away from the loop
and on its axis. Had we solved for H at any distant point
P = (R, e, ¢) in a spherical coordinate system. with R the
distance between the center of the loop and point P, we would
have obtained the expression

m A A

H= 4Jl'R3 (R2cos8 +8sin8)

(for R »a). (5.38)

for R' »a. A current loop with dimensions much smaller than
the distance between the loop and the observation point is called
a magnetic dipole. This is because the pattern of its magnetic
field lines is similar to that of a permanent magnet, as well as
to the pattern of the electric field lines of the electric dipole
(Fig. 5-13).
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(a) Electric dipole (b) Magnetic dipole (c) Bar magnet

Figure 5·13: Patterns of (a) the electric field of an electric dipole. (b) the magnetic field of a magnetic dipole. and (c) the magnetic field of
a bar magnet. Far away from the sources. the field patterns are similar in all three cases.

Review Question 5-5: Two infinitely long parallel wires
carry currents of equal magnitude. What is the resultant
magnetic field due to the two wires at a point midway
between the wires, compared with the magnetic field due
to one of them alone, if the currents are (a) in the same
direction and (b) in opposite directions?

Review Question 5-6: Devise a right-hand rule for the
direction of the magnetic field due to a linear current-
carrying conductor.

Review Question 5·7: What is a magnetic dipole?
Describe its magnetic field distribution.

Exercise 5-6: A semi-infinite linear conductor extends
between z = 0 and z = 00 along the z-axis, If the current
I in the conductor flows along the positive z-direction, find
H at a point in the x-y plane at a radial distance r from
the conductor.

~ I
Answer: H =+- (Nm). (See .• )

4rrr
Exercise 5-7: A wire carrying a current of 4 A is formed
into a circular loop. If the magnetic field at the center of
the loop is 20 Nm, what is the radius of the loop if the
loop has (a) only one tum and (b) 10 turns?

Answer: (a) a = 10 em, (b) a = 1 m. (See")

Exercise 5-8: A wire is formed into a square loop and
placed in the x-y plane with its center at the origin and
each of its sides parallel to either the x- or y-axes. Each
side is 40 em in length, and the wire carries a current of
5 A whose direction is clockwise when the loop is viewed
from above. Calculate the magnetic field at the center of
the loop.

~ 41 ~
Answer: H = -z r;:; = -z11.25 Nm. (See'S»

v2rrl

5-2.3 Magnetic Force Between Two Parallel
Conductors

In Section 5-l.1 we examined the magnetic force Fm that acts
on a current-carrying conductor when placed in an external
magnetic field. The current in the conductor, however, also
generates its own magnetic field. Hence. if two current-
carrying conductors are placed in each other's vicinity, each
will exert a magnetic force on the other. Let us consider
two very long (or effectively infinitely long), straight, free-
standing, parallel wires separated by a distance d and carrying
currents II and lz in the z-direction (Fig. 5-14) at y = -d /2
and y = d /2, respectively. We denote by 81 the magnetic field
due to current II, defined at the location of the wire carrying
current l: and, conversely, by 82 the field due to h at the
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z

Figure 5-14: Magnetic forces on parallel current-carrying
conductors.

location of the wire carrying current II. From Eq. (5.30), with
I =II, r =d, and. =-xat the location of l i- the field 81 is

, IIO II
81 = -x --.

2rrd
(5.39)

The force F 2 exerted on a length I of wire 12 due to its presence
in field 81 may be obtained by applying Eq. (5.12):

II' ( ') flO II= ~z x -x --
~ 2rrd

, fLo/llll
= -y

Zn d
(5.40)

and the corresponding force per unit length is

I F2 ,fLo/1/2
F~=-=-y--.

~ I 2nd

A similar analysis performed for the force per unit length
exerted on the wire carrying II leads to

(5.41 )

(5.42)

Thus. two parallel wires carrying currents in the same
direction attract each other with equal.force. If the currents
are in opposite directions. the wires would repel one another
with equalforce.

5-3 Maxwell's Magnetostatic Equations

Thus far. we have introduced the Biot-Savart law for finding the
magnetic flux density 8 and field H due to any distribution of
electric currents in free space, and we examined how magnetic
fields can exert magnetic forces on moving charged particles
and current-carrying conductors. We will now examine two
additional important properties of magnetostatic fields.

5-3.1 Gauss's Law for Magnetism

In Chapter 4 we \earned that the net outward flux of the electric
flux density D through a closed surface equals the enclosed
net charge Q. We referred to this property as Gauss's law (for
electricity), and expressed it mathematically in differential and
integral forms as

v .D = p; •••• f D .ds = Q.

s
(5.43)

Conversion from differential to integral form was accomplished
by applying the divergence theorem to a volume V that
is enclosed by a surface S and contains a total charge
Q = l» J\ dV (Section 4-4).

The magnetostatic counterpart of Eq. (5.43), often called
Gauss's law for magnetism, is

!B.dS=O.
s

The differential form is one of Maxwell's four equations, and
the integral form is obtained with the help of the divergence
theorem. Note that the right-hand side of Gauss's law
for magnetism is zero, reflecting the fact that the magnetic
equivalence of an electric point charge does not exist in nature.

The hypothetical magnetic analogue to an electric point
charge is called a magnetic monopole. Magnetic
monopoles. however. always occur in pairs (that is, as
dipoles).

No matter how many times a permanent magnet is subdivided,
each new piece will always have a north and a south pole, even
if the process were to be continued down to the atomic level.
Consequently, there is no magnetic equivalence to an electric
charge q or charge density p.,
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Technology Brief 10: Electromagnets

William Sturgeon developed the first practical electromagnet in the 1820s. Today, the principle of the electromagnet
is used in motors, relay switches in read/write heads for hard disks and tape drives, loud speakers, magnetic levitation,
and many other applications.

Basic Principle

Electromagnets can be constructed in various shapes, including the linear solenoid and horseshoe geometries
depicted in Fig. TF10-1. In both cases, when an electric current flows through the insulated wire coiled around the
central core, it induces a magnetic field with lines resembling those generated by a bar magnet. The strength of the
magnetic field is proportional to the current, the number of turns, and the magnetic permeability of the core material.
By using a ferromagnetic core, the field strength can be increased by several orders of magnitude, depending on
the purity of the iron material. When subjected to a magnetic field, ferromagnetic materials, such as iron or nickel, get
magnetized and act like magnets themselves.

Switch

~

Insulated wire

(a) Solenoid

Iron core

~ Iron core

s --- N---B--..--..
Magnetic field

B B

(b) Horseshoe electromagnet

Figure TF1 0-1: Solenoid and horseshoe magnets.
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Magnetic Relays

A magnetic relay is a switch or circuit breaker that can be activated into the "ON" and "OFF" positions magnetically.
One example is the low-power reed relay used in telephone equipment, which consists of two flat nickel-iron blades
separated by a small gap (Fig. TF1 0-2). The blades are shaped in such a way that in the absence of an external force,
they remain apart and unconnected (OFF position). Electrical contact between the blades (ON position) is realized by
applying a magnetic field along their length. The field, induced by a current flowing in the wire coiled around the glass
envelope, causes the two blades to assume opposite magnetic polarities, thereby forcing them to attract together and
close out the gap.

Glass e
ri~-

l1\'elopc~
I J JJ I I

~
S N

~ Electronic circuit I
Figure TF10-2: Microreed relay (size exaggerated for
illustration purposes),

The Doorbell

In a doorbell circuit (Fig. TF10-3), the doorbell button is a switch; pushing and holding it down serves to connect
the circuit to the household ac source through an appropriate step-down transformer. The current from the source
flows through the electromagnet, via a contact arm with only one end anchored in place (and the other movable), and
onward to the switch. The magnetic field generated by the current flowing in the windings of the electromagnet pulls
the unanchored end of the contact arm (which has an iron bar on it) closer in, in the direction of the electromagnet,
thereby losing connection with the metal contact and severing current flow in the circuit. With no magnetic field to pull
on the contact arm, it snaps back into its earlier position, re-establishing the current in the circuit. This back and forth
cycle is repeated many times per second, so long as the doorbell button continues to be pushed down, and with every
cycle, the clapper arm attached to the contact arm hits the metal bell and generates a ringing sound.
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The Loudspeaker

By using a combination of a stationary, permanent magnet, and a movable electromagnet, the electromagnet/speaker-
cone of the loudspeaker (Fig. TF1 0-4) can be made to move back and forth in response to the electrical signal exciting the
electromagnet. The vibrating movement of the cone generates sound waves with the same distribution of frequencies
as contained in the spectrum of the electrical signal.

Magnetic Levitation

Magnetically levitated trains [Fig. TF1 O·S(a)]. called maglevs for short, can achieve speeds as high as 500 km/hr,
primarily because there is no friction between the train and the track. The train basically floats at a height of 1 or more
centimeters above the track, made possible by magnetic levitation [Fig. TF1 0-5(b)]. The train carries superconducting
electromagnets that induce currents in coils built into the guide rails alongside the train. The magnetic interaction
between the train's superconducting electromagnets and the guide-rail coils serves not only to levitate the train, but
also to propel it along the track.

Bell

Magnetic field

Contact arm

(

ac source

Button
Transformer

Figure TF1 0-3: Basic elements of a doorbell.
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Audio signal

Electrical signal

Figure TF1 0-4: The basic structure of a speaker.

Levitation
and

Compressor unit in car-mounted
helium refrigeration system

Auxiliary supporting gear

shield

(a) Maglev train (b) Internal workings of the Maglev train

Figure TF10-5: Magnetic trains. (Courtesy Shanghai.com.)
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, ,
- - Closed imaginary ,
<; surface ~

(a) Electric dipole (b) Bar magnet

Figure 5-15: Whereas (a) the net electric flux through a dosed
surface surrounding a charge is not zero, (b) the net magnetic
flux through a closed surface surrounding one of the poles of a
magnet is zero,

Formally, the name "Gauss's law" refers to the electric case,
even when no specific reference to electricity is indicated. The
property described by Eq. (5.44) has been called "the law of
nonexistence of isolated monopoles," "the law of conservation
of magnetic flux," and "Gauss's law for magnetism," among
others, We prefer the last of the three cited names because
it reminds us of the parallelism, as well as the differences.
between the electric and magnetic laws of nature.

The difference between Gauss's law for electricity and its
magnetic counterpart can be elucidated in terms of field lines.
Electric field lines originate from positive electric charges
and terminate on negative ones. Hence. for the electric field
lines of the electric dipole shown in Fig. 5-15(a), the electric
flux through a closed surface surrounding one of the charges
is nonzero. In contrast. magnetic field lines always form
continuous closed loops. As we saw in Section 5-2. the
magnetic field lines due to currents do not begin or end at any
point: this is true for the linear conductor of Fig. 5-11 and the
circular loop of Fig. 5-12, as well as for any current distribution.
It is also true for a bar magnet [Fig. 5-15(b)]. Because the
magnetic field lines forrn closed loops, the net magnetic flux
through any closed surface surrounding the south pole of the
magnet (or through any other closed surface) is always zero,
regardless of its shape.

5-3.2 Ampere's Law

In Chapter 4 we learned that the electrostatic field is
conservative, meaning that its line integral along a closed
contour always vanishes. This property of the electrostatic field
was expressed in differential and integral forms as

v x E = 0 ++ f E . .u = O.

c
(5.45 )

Conversion of the differential to integral form was accom-
plished by applying Stokes's theorem to a surface S with
contour C.

The magnetostatic counterpart of Eq. (5.45), known as
Ampere's law, is

VxH=J •.• fH.dl=,.
c

(5.46)

where I is the total current passing through S. The differential
form again is one of Max well's equations. and the integral form
is obtained by integrating both sides of Eq. (5.46) over an open
surface S. f (V x H) . ds = f J. ds.

s s
and then invoking Stokes's theorem with I = .r J. ds.

(5.47)

The sign convention for the direction of the contour path C ill

Ampere's law is taken so that I and H satisfy the right-hand
rule defined earlier in connection with the Biot-Savart law.
That is, if the direction of I is aligned with the direction of the
thumb of the right hand, then the direction of the contour C
should be chosen along that of the other four fingers.

In words, Ampere's circuital law states that the line integral
of H around a closed path is equal to the current traversing
the surface bounded by that path. To apply Ampere's law, the
current must flow through a closed path. By way of illustration,
for both configurations shown in Figs. 5-16(a) and (b), the line
integral ofH is equal to the current I, even though the paths have
very different shapes and the magnitude of H is not uniform
along the path of configuration (b). By the same token, because
path (c) in Fig. 5-16 does not enclose the current J. the line
integral ofH along it vanishes, even though H is not zero along
the path.

When we examined Gauss's law in Section 4-4, we
discovered that in practice its usefulness for calculating the
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~H

H~

H

H
(a) (b)

H

H

0'

(c)

Figure 5-16: Ampere's law states that the line integral of H
around a closed contour C is equal to the current traversing the
surface bounded by the contour. This is true for contours (a)
and (b), but the line integral of H is zero for the contour in (c)
because the current / (denoted by the symbol 0) is not enclosed
by the contour C.

electric flux density D is limited to charge distributions that
possess a certain degree of symmetry and that the calculation
procedure is subject to the proper choice of a Gaussian surface
enclosing the charges. A similar restriction applies to Ampere's
law: its usefulness is limited to symmetric current distributions
that allow the choice of convenient Amperian contours around
them, as illustrated by Examples 5-4 to 5-6.

Example 5-4: Magnetic Field of a Long Wire

A long (practically infinite) straight wire of radius a carries
a steady current' that is uniformly distributed over its cross
section. Determine the magnetic field H a distance, from the
wire axis for (a) r :::a (inside the wire) and (b) r ::::a (outside
the wire).

Solution: (a) We choose I to be along the -l-z-direction
[Fig. 5-17(a)]. To determine HI = H at a distance, = '1 :::a,
we choose the Amperian contour C I to be a circular path of
radius, =" [Fig.5-17(b)]. In this case, Ampere's law takes

Contour C; ~
for'2:::a ...- -

...

(a) Cylindrical wire

y

- - ~
,
\

I
I,

..... ...--_ .•
(b) Wire cross section

H(r)

HCa) = .L:
27ra

L---~a~------------------~~r
(c)

Figure 5-17: Infinitely long wire of radius a carrying a uniform
current / along the +z-direction: (a) general configuration
showing contours C, and C2; (b) cross-sectional view; and (c)
a plot of H versus r (Example 5-4).

the form f HI ·dll = 'I,

C,
(5.48)
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where I I is the fraction of the total current I flowing through CI.

From symmetry, HI must be constant in magnitude and parallel
to the contour at any point along the path. Furthermore,
to satisfy the right-hand rule and given that I is along the
z-direction, HI must be in the +¢-direction. Hence,
HI = +HI, dll = +rl d¢, and the left-hand side of Eq. (5.48)
becomes

2:7f HI ·dll = f HI(+'+)rl d¢ = 2rrrlHI.
CI 0

The current II flowing through the area enclosed by CI is equal
to the total current I multiplied by the ratio of the area enclosed
by CI to the total cross-sectional area of the wire:

(
rrrf) (rl)2II = -, 1= - 1.
n a- 0

Equating both sides of Eq. (5.48) and then solving for HI yields

(for rj :::a). (5.49a)

(b) For r = ri ::::a, we c?oose path Cz: which encloses all the
current I. Hence, Hz = ~H2, dlz = ~r: dd», and

f Hz· dh = 2rrr2H2 = I.
ez

which yields

(for r: ::::0). (5.49b)

Ignoring the subscript 2, we observe that Eq. (5.49b) provides
the same expression for B = l10H as Eq. (5.30). which was
derived on the basis of the Biot-Savart law.

The variation of the magnitude of H as a function of r is
plotted in Fig. 5-17(c); H increases linearly between r = 0 and
r = a (inside the conductor), and then decreases as 1/ r for
r > 0 (outside the conductor).

Exercise 5-9: A current I flows in the inner conductor of a
long coaxial cable and returns through the outer conductor.
What is the magnetic field in the region outside the coaxial
cable and why?

Answer: H = 0 outside the coaxial cable because the
net current enclosed by an Amperian contour enclosing
the cable is zero.

Exercise 5-10: The metal niobium becomes a
superconductor with zero electrical resistance when it is
cooled to below 9 K. but its superconductive behavior
ceases when the magnetic flux density at its surface
exceeds 0.12 T. Determine the maximum current that
a O.I-mm-diameter niobium wire can carry and remain
superconductive.

Answer: I = 30 A. (See ~)

Example 5-5: Magnetic Field inside a Toroidal Coil

A toroidal coil (also called a torus or toroid) is a doughnut-
shaped structure (called the core) wrapped in closely spaced
turns of wire (Fig. 5-18). For clarity, we show the turns in the
figure as spaced far apart, but in practice they are wound in

1

Amperian contour

FigureS-IS: Toroidal coil with inner radius a and outer radius h.
The wire loops usually are much more closely spaced than
shown in the figure (Example 5-5).
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a closely spaced arrangement to form approximately circular
loops. The toroid is used to magnetically couple multiple
circuits and to measure the magnetic properties of materials,
as illustrated later in Fig. 5-30. For a toroid with N turns
carrying a current I, determine the magnetic field H in each
of the following three regions: r < a, a < r < b, and r > b,
all in the azimuthal symmetry plane of the toroid.

Solution: From symmetry, it is dear that H is uniform in
the azimuthal direction. If we construct a circular Amperian
contour with center at the origin and radius r < a, there will
be no current flowing through the surface of the contour, and
therefore H = 0 for r < a. Similarly, for an Amperian contour
with radius r > b, the net current flowing through its surface is
zero because an equal number of current coils cross the surface
in both directions; hence, H = 0 in the region exterior to the
toroidal coil.

For the region inside the core, we construct a path of radius r
(Fig. 5-18). For each loop, we know from Example 5-3 that the
field H at the center of the loop poi nts along the axis of the loop,
which in this case is the ¢-direction, and in view of the direction
of the current I shown in Fig. 5-18, the right-hand rule tells us
that H must be in the -¢-direction. Hence, H = -,H. The
total current crossing the surface of the contour with radius r

is N I and its direction is into the page. According to the right-
hand rule associated with Ampere's law, the current is positive
if it crosses the surface of the contour in the direction of the
four fingers of the right hand when the thumb is pointing along
the direction of the contour C. Hence, the current through
the surface spanned by the contour is - N I. Application of
Ampere's law then gives

2;rf H .dl = f (-~H) .~r d¢ = - 2n r H = - N I.
e 0

Hence, H = N 1/(2nr) and

, , N 1
H=-,H = -,-

2nr
(fora < r < h). (5.50)

Example 5-6: MagnetiC Field of an Infinite Current Sheet

The x-y plane contains an infinite current sheet with surface
current density Js = Xis (Fig. 5-19). Find the magnetic field H
everywhere in space.

z

Amperian 11_-4--

contour I-I'---~- - - - - - -- -:~;~.~E;.~...~._.~~_~.~__r :J:~~!~----LJ...•~.+~--Y
J, (out of the page)

Figure 5-19: A thin current sheet in the x-y plane carrying a
surface current density Js = xis (Example 5-6).

Solution: From symmetry considerations and the right-hand
rule, for :L > 0 and z < 0 H must be in the directions shown
in the figure. That is,

{
-yH

H= yH
for z > 0,
for z < O.

To evaluate the line integral in Ampere's law, we choose a
rectangular Arnperian path around the sheet, with dimensions
I and w (Fig. 5-19). Recalling that is represents current per
unit length along the y-direction, the total current crossing
the surface of the rectangular loop is I = lsi. Hence,
applying Ampere's law over the loop, while noting that H is
perpendicular to the paths of length w, we have

f H· dl = 2Hl = lsi,

c

from which we obtain the result

I
A t,

-y -
H= 2

A isy-
2

for z > 0,
(5.51 )

for z < O.
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Review Question 5-8: What are the fundamental
differences between electric and magnetic fields?

Review Question 5-9: If the line integral of H over a
closed contour is zero, does it follow that H = 0 at every
point on the contour? If not, what then does it imply?

Review Question 5-10: Compare the utility of applying
the Biot-Savart law versus applying Ampere's law for
computing the magnetic field due to current-carrying
conductors.

Review Question 5-11: What is a toroid? What is the
magnetic field outside the toroid?

5-4 Vector Magnetic Potential

In our treatment of electrostatic fields in Chapter 4, we defined
the electrostatic potential V as the line integral of the electric
field E, and found that V and E are related by E = - V V.
This relationship proved useful not only in relating electric
field distributions in circuit elements (such as resistors and
capacitors) to the voltages across them, but also to determine
E for a given charge distribution by first computing V using
Eq. (4.48). We will now explore a similar approach in
connection with the magnetic flux density B.

According to Eq, (5.44), V . B = O. We wish to define B in
terms of a magnetic potential with the constraint that such a
definition guarantees that the divergence of B is always zero.
This can be realized by taking advantage of the vector identity
given by Eq. (3.I06b), which states that, for any vector A,

V ·(V x A) = O. (5.52)

Hence. by introducing the vector magnetic potential A such
that

(WbIm2). (5.53) I
we are guaranteed that V· B = O. The SI unit for B is the
tesla (T). An equivalent unit is webers per square meter
(Wb/m2). Consequently, the SI unit for A is (Wb/m).

With B = flU, the differential form of Ampere's law given
by Eq. (5.46) can be written as

V x B = fLJ. (5.54)

If we substitute Eq. (5.53) into Eq. (5.54), we obtain

V x (V x A) = fLJ. (5.55)

For any vector A, the Laplacian of A obeys the vector identity
given by Eq. (3.113), that is,

V2A = V(V . A) - V x (V x A), (5.56)

where. by definition, V2A in Cartesian coordinates is

(5.57)

Combining Eq. (5.55) with Eq. (5.56) gives

V(V ·A) - V2A = fLJ. (5.58)

This equation contains a term involving V . A. It turns out
that we have a fair amount of latitude in specifying a value
or a mathematical form for V .A, without conflicting with the
requirement represented by Eq. (5.53). The simplest among
these allowed restrictions on A is

V·A=O. (5.59)

Using this choice in Eq, (5.58) leads to the vector Poisson's
equation

I V2A = -ILJ· (5.60) I
Using the definition for V2A given by Eq. (5.57), the vector
Poisson's equation can be decomposed into three scalar
Poisson's equations:

(5.6Ia)

(5.6Ib)

(5.61c)

"V- Ay = -fLly.

V2 Az = -fLlL'

In electrostatics, Poisson's equation for the scalar potential V
is given by Eq, (4.60) as

(5.62)

and its solution for a volume charge distribution p; occupying
a volume V I was given by Eq, (4.61) as

V = _1-/ PvdV'.
4rre R'

v'

(5.63)
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Poisson's equations for Ax. Av, and Az are mathematically
identical in form to Eq. (S.62). Hence, for a current density J
with x-component J, distributed over a volume V', the solution
for Eq. (S.6Ia) is

A- = !!:..- / J.r sv'
.r 4rr R'

v'

(Wb/m). (S.64)

Similar solutions can be written for A y in terms of J,. and for
A7 in terms of Jz. The three solutions can be combined into a
vector equation:

In view ofEq. (5.23), if the current distribution is specified over
a surface 5'. then J dV' should be replaced with J, ds' and V'
should be replaced with S'; and. similarly, for a line distribution,
J av should be replaced with I dl' and the integration should
be performed over the associated path I'.

The vector magnetic potential provides a third approach
for computing the magnetic field due to current-carrying
conductors, in addition to the methods suggested by the Biot-
Savart and Ampere laws. For a specified current distribution,
Eq. (S.6S) can be used to find A. and then Eq. (S.S3) can
be used to find B. Except for simple current distributions
with symmetrical geometries that lend themselves to the
application of Ampere's law, in practice we often use the
approaches provided by the Biot-Savart law and the vector
magnetic potential, and among these two the latter often is
more convenient to apply because it is easier to perform the
integration in Eq, (5.65) than that in Eq. (5.22).

The magnetic flux <P linking a surface S is defined as the
total magnetic flux density passing through it. or

<P = / B· ds
s

(Wb). (S.66)

If we insert Eq. (5.53) into Eq, (5.66) and then invoke Stokes's
theorem, we obtain

<P = / (\7 x A) . ds = fA. dl

5 C

(Wb), (5.67)

where C is the contour bounding the surface S. Thus, <P can
be determined by either Eq. (S.66) or Eq. (5.67), whichever is
easier to integrate for the specific problem under consideration.

5-5 Magnetic Properties of Materials

Because of the similarity between the pattern of the magnetic
field lines generated by a current loop and those exhibited by
a permanent magnet, the loop can be regarded as a magnetic
dipole with north and south poles (Section 5-2.2 and Fig. 5-13).
The magnetic moment m of a loop of area A has magnitude
m = I A and a direction normal to the plane of the loop (in
accordance with the right-hand rule). Magnetization in a
material is due to atomic scale current loops associated with: (I)
orbital motions of the electrons and protons around and inside
the nucleus and (2) electron spin. The magnetic moment due
to proton motion typically is three orders of magnitude smaller
than that of the electrons, and therefore the total orbital and spin
magnetic moment of an atom is dominated by the sum of the
magnetic moments of its electrons.

The magnetic behavior of a material is governed b» the
interaction o] the magnetic dipole moments of its atoms
with an external magneticfield. The nature of the behavior
depends on the crystalline structure of the material and is
used as a basis for classifying materials as diamagnetic,
paramagnetic, or ferromagnetic.

The atoms of a diamagnetic material have no permanent
magnetic moments. In contrast, both paramagnetic and
ferromagnetic materials have atoms with permanent magnetic
dipole moments, albeit with very different organizational
structures.

5-5.1 Electron Orbital and Spin Magnetic
Moments

This section presents a semi-classical, intuitive model of the
atom, which provides quantitative insight into the origin of
electron magnetic moments. An electron with charge of -e
moving at constant speed u in a circular orbit of radius r
[Fig. S-20(a)] completes one revolution in time T = Ln r]«.
This circular motion of the electron constitutes a tiny loop with
current I given by

e etl
1=-- = --.

T 2rrr
(5.68)
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- - - -- -L. -------
(a) Orbiting electron (b) Spinning electron

Figure 5-20: An electron generates (a) an orbital magnetic
moment m., as it rotates around the nucleus and (b) a spin
magnetic moment m, as it spins about its own axis.

The magnitude of the associated orbital magnetic moment m,
is

( eu) ,In" = I A = --- (rr r ")
Ln r

eur (e)----- - L- 2 - 2mc e- (5.69)

where Lc = m-ur is the angular momentum of the electron
and me is its mass. According to quantum physics, the
orbital angular momentum is quantized; specifically, Lc is
always some integer multiple of fj = h/2rr, where h is Planck's
constant. That is, l.; = 0, h, 211, . . . . Consequently, the
smallest nonzero magnitude of the orbital magnetic moment
of an electron is

ell
(5.70)/1l" = ---.

2me
Despite the fact that all materials contain electrons that exhibit
magnetic dipole moments, most are effectively nonmagnetic.
This is because, in the absence of an external magnetic field,
the atoms of most materials are oriented randomly, as a result of
which they exhibit a zero or very small net magnetic moment.

In addition to the magnetic moment due to its orbital motion,
an electron has an intrinsic spin magnetic moment Ill, due
to its spinning motion about its own axis [Fig. 5-20(b)]. The
magnitude of Ills predicted by quantum theory is

en
In, = ---,

2me
(5.71 )

which is equal to the minimum orbital magnetic moment mo.
The electrons of an atom with an even number of electrons
usually exist in pairs, with the members of a pair having opposite
spin directions, thereby canceling each others' spin magnetic

moments. If the number of electrons is odd, the atom will
have a net nonzero spin magnetic moment due to its unpaired
electron.

5-5.2 Magnetic Permeability

In Chapter 4, we learned that the relationship D = poE,
between the electric flux and field in free space, is modified to
D = poE+ P in a dielectric material. Likewise, the relationship
B = /loH in free space is modified to

B = 110H + 110M = 110(8 + M), (5.72)

where the magnetization vector M is defined as the vector sum
of the magnetic dipole moments of the atoms contained in a
unit volume of the material. Scale factors aside, the roles and
interpretations of B, H, and M in Eq. (5.72) mirror those of D,
E, and P in Eq. (4.83). Moreover, just as in most dielectrics P
and E are linearly related, in most magnetic materials

M = XmH, (5.73)

where Xm is a dimensionless quantity called the magnetic
susceptibility of the material. For diamagnetic and
paramagnetic materials, Xm is a temperature-dependent
constant, resulting in a linear relationship between M and H.
This is not the case for ferromagnetic substances; the
relationship between M and H not only is nonlinear, but also
depends on the "history" of the material. as explained in the
next section.

Keeping this fact in mind, we can combine Eqs. (5.72) and
(5.73) to get

B = 110(8 + XmH) = 110(1 + Xm)H, (5.74)

or
B = /18, (5.75)

where 11, the magnetic permeability of the material, relates
to Xm as

I f,L = f,Lo(l + Xm) (5.76) I(HI1ll).

Often it is convenient to define the magnetic properties of a
material in terms of the relative permeability I1r:
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Table 5-2: Properties of magnetic materials.

Diamagnetism Paramagnetism Ferromagnetism

Permanent magnetic No Yes. but weak Yes. and strong
dipole moment

Primary magnetization Electron orbital Electron spin Magnetized
mechanism magnetic moment magnetic moment domains

Direction of induced Opposite Same Hysteresis
magnetic field (sec Fig. 5-22)
(relative to external field)

Common substances Bismuth. copper. diamond. Aluminum. calcium. Iron,
gold. lead. mercury. silver. chromium. magnesium. nickel.

silicon niobium. platinum, cobalt
tungsten

Typical value of X m ~ _10-5 ~ 10-5 IXm I » I and hysteretic
Typical value of /1r ~I ~I I/lrl » I and hysteretic

A material usually is classified as diamagnetic, paramagnetic.
or ferromagnetic on the basis of the value of its Xm (Table 5-2).
Diamagnetic materials have negative susceptibilities whereas
paramagnetic materials have positive ones. However. the
absolute magnitude of Xm is on the order of 10-5 for both
classes of materials, which for most applications allows us to
ignore Xm relative to I in Eq. (5.77).

ThIlS, Mr ~ I or /1 ~ MoJor diamagnetic and paramagnetic
substances. which include dielectric materials and most
metals. In contrast. IILrl » 1[orferromagnetic materials;
I/lr I ofpurified iron. for example. is on the order oJ2 x 105.

Ferromagnetic materials are discussed next.

Exercise 5-11: The magnetic vector M is the vector
sum of the magnetic moments of all the atoms contained
in a unit volume (I m3). If a certain type of iron with
8.5 x 1028 atoms/nr' contributes one electron per atom
to align its spin magnetic moment along the direction of
the applied field, find (a) the spin magnetic moment of
a single electron, given that me = 9.1 X 10-31 (kg) and
Ii. = 1.06 x 10-34 (l's), and (b) the magnitude ofM.

Answer: (a)m.; = 9.3 x 10-24 (A.m2),

(b) M = 7.9 X 105 (AIm). (See )

5-5.3 Magnetic Hysteresis of Ferromagnetic
Materials

Ferromagnetic materials, which include iron, nickel. and cobalt.
exhibit unique magnetic properties due to the fact that their
magnetic moments tend to readily align along the direction of
an external magnetic field. Moreover, such materials remain
partially magnetized even after the external field is removed.
Because of these peculiar properties. ferromagnetic materials
are used in the fabrication of permanent magnets.

A key to understanding the properties of ferromagnetic
materials is the notion of magnetized domains. microscopic
regions (on the order of )()-IO m'') within which the magnetic
moments of all atoms (typically on the order of 1019 atoms) are
permanently aligned with each other. This alignment. which
occurs in all ferromagnetic materials, is due to strong coupling
forces between the magnetic dipole moments constituting an
individual domain. In the absence of an external magnetic field.
the domains take on random orientations relative to each other
[Fig. 5-21 (a)], resulting in zero net magnetization. The domain
walls forming the boundaries between adjacent domains consist
of thin transition regions. When an unmagnetized sample of
a ferromagnetic material is placed in an external magnetic
field, the domains will partially align with the external field,
as illustrated in Fig. 5-2I(b). A quantitative understanding
of how the domains form and how they behave under the
influence of an external magnetic field requires a heavy dose
of quantum mechanics. and is outside the scope of the present
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(a) Unmagnetized domains

--- -- --- -- ----- --- -- --- ----- -- --- -- ----- --- ~ --- ----- -- --- -- ----- --- -- --- ----- -- --- -- ---
(b) Magnetized domains

Figure 5-21: Comparison of (a) unmagnetized and (b)

magnetizeddomains in a ferromagneticmaterial.

treatment. Hence, we will confine our discussion to a qualitative
description of the magnetization process and its implications.

The magnetization behavior of a ferromagnetic material is
described in terms of its B-H magnetization curve, where
Band H refer to the amplitudes of the B flux and H field
in the material. Suppose that we start with an unmagnetized

B

Figure 5-22: Typical hysteresis curve for a ferromagnetic
material.

B B

(a) Hard material (b) Soft material

Figure 5-23: Comparison of hysteresis curves for (a) a hard
ferromagnetic material and (b) a soft ferromagnetic material.

sample of iron, denoted by point 0 in Fig. 5-22. When we
increase H continuously by, for example, increasing the current
passing through a wire wound around the sample, B increases
also along the B-H curve from point 0 to point A I, at which
nearly all the domains have become aligned with H. Point AI
represents a saturation condition. If we then decrease H from its
value at point A 1 back to zero (by reducing the current through
the wire), the magnetization curve follows the path from Al
to A2. At point A2, the external field H is zero (owing to
the fact that the current through the wire is zero), but the flux
density B in the material is not. The magnitude of B at A2 is
called the residual flux density Br. The iron material is now
magnetized and ready to be used as a permanent magnet owing
to the fact that a large fraction of its magnetized domains have
remained aligned. Reversing the direction of H and increasing
its intensity causes B to decrease from B; at point A2 to zero
at point A3, and if the intensity of H is increased further
while maintaining its direction, the magnetization moves to
the saturation condition at point A4. Finally, as H is made
to return to zero and is then increased again in the positive
direction, the curve follows the path from A4 to AI. This
process is called magnetic hysteresis. Hysteresis means "lag
behind." The existence of a hysteresis loop implies that the
magnetization process in ferromagnetic materials depends not
only on the magnetic field H, but also on the magnetic history
of the material. The shape and extent of the hysteresis loop
depend on the properties of the ferromagnetic material and
the peak-to-peak range over which H is made to vary. Hard
ferromagnetic materials are characterized by wide hysteresis
loops [Fig. 5-23(a)]. They cannot be easily demagnetized by
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an external magnetic field because they have a large residual
magnetization Br. Hard ferromagnetic materials are used in the
fabrication of permanent magnets for motors and generators.
SoP ferromagnetic materials have narrow hysteresis loops
[Fig. 5-23(b)], and hence can be more easily magnetized and
demagnetized. To demagnetize any ferromagnetic material, the
material is subjected to several hysteresis cycles while gradually
decreasing the peak-to-peak range of the applied field.

Review Question 5-12: What are the three types of
magnetic materials and what are typical values of their
relative permeabilities?

Review Question 5-13: What causes magnetic hysteresis
in ferromagnetic materials'?

Review Question 5-14: What does a magnetization
curve describe'? What is the difference between the
magnetization curves of hard and soft ferromagnetic
materials'?

5-6 Magnetic Boundary Conditions

In Chapter 4, we derived a set of boundary conditions
that describes how, at the boundary between two dissimilar
contiguous media, the electric flux and field D and E in the first
medium relate to those in the second medium. We will now
derive a similar set of boundary conditions for the magnetic
flux and field Band H. By applying Gauss's law to a pill box
that straddles the boundary, we determined that the difference
between the normal components of the electric flux densities in
two media equals the surface charge density Ps. That is,

f D . ds = Q •••. I Din - D2n = Ps·1
s

(5.78)

By analogy, application of Gauss's law for magnetism, as
expressed by Eq. (5.44), leads to the conclusion that

f B . ds = 0 •••. I BIn = B2n·1
S

(5.79)

Thus the normal component of B is continuous across the
boundary between two adjacent media.

Because BI = 111HI and B2 = 112H2 for linear, isotropic
media, the boundary condition for H corresponding to
Eq. (5.79) is

Comparison of Eqs. (5.78) and (5.79) reveals a striking
difference between the behavior of the magnetic and electric
fluxes across a boundary: whereas the normal component of B
is continuous across the boundary, the normal component
of D is not (unless p, = 0). The reverse applies to the
tangential components of the electric and magnetic fields E
and H: whereas the tangential component of E is continuous
across the boundary, the tangential component of H is not
(unless the surface current density J, = 0), To obtain the
boundary condition for the tangential component of H, we
follow the same basic procedure used in Chapter 4 to establish
the boundary condition for the tangential component ofE. With
reference to Fig. 5-24, we apply Ampere's law IEq. (5.47)] to
a closed rectangu lar path with sides of lengths !1! and .6. h , and
then let .6.h ~ 0, to obtain

b dfH.dl= f HI' i, dE+ f H2' i2d£ = I.

e "

(5.81)

where 1 is the net current crossing the surface of the loop in the
direction specified by the right-hand rule (I is in the direction
of the thumb when the fingers of the right hand extend in the
direction ofthe loop C). As we let!1h of the loop approach zero,
the surface of the loop approaches a thin line of length !11. The
total current flowing through this thin line is 1 = i, .6.1, where
is is the magnitude of the component of the surface current
density J, normal to the loop. That is, J; = J, ,", where"
is the normal to the loop. In view of these considerations,
Eq. (5.81) becomes

(HI - H2)' t, !11 = J,'" .6./. (5.82)

The vector il can be expressed as i, = " x "2, where" and"2 are the normals to the loop and to the surface of medium 2
(Fig. 5-24), respectively. Using this relation in Eq. (5.82), and
then applying the vector identity A· (B x C) = B ·(C x A) leads
to

0'["2 X (HI - H2)1 = Js :D.
Since Eq. (5.83) is valid for any". it follows that

(5.83)

102 X (HI-H2)=Js• (5.84) I
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Figure 5-24: Boundary between medium I with 11·) and medium 2 with /12.

This equation implies that the tangential components of H
parallel to J, are continuous across the interface. whereas those
orthogonal to J, are discontinuous in the amount of Js.

Surface currents can exist only on the surfaces of perfect
conductors and superconductors. Hence, at the interface
between media with finite conductivities, J, = 0 and

I Hit = H2t. (5.85) I

Exercise 5-12: With reference to Fig. 5-24, determine the
angle between HI and ih = z if H2 = (x3 + z2) (Nm),
JLr) = 2, and IlIJ. = 8, and Js = O.

Answer: () = 20.6°. (See .~ )

5-7 Inductance

An inductor is the magnetic analogue of an electric capacitor.
Just as a capacitor can store energy in the electric field in
the medium between its conducting surfaces. an inductor can
store energy in the magnetic field near its current-carrying
conductors. A typical inductor consists of multiple turns of
wire helically coiled around a cylindrical core [Fig. 5-25(a)].
Such a structure is called a solenoid. Its core may be air filled or
may contain a magnetic material with magnetic permeability u,
If the wire carries a current I and the turns are closely spaced,
the solenoid will produce a relatively uniform magnetic field
within its interior with magnetic field lines resembling those of
the permanent magnet [Fig. 5-25(b)].

(a) Loosely wound
solenoid

(b) Tightly wound
solenoid

Figure 5-25: Magnetic field lines of (a) a loosely wound
solenoid and (b) a tightly wound solenoid.

5-7.1 Magnetic Field in a Solenoid

As a prelude to our discussion of inductance we will derive
an expression for the magnetic flux density B in the interior
region of a tightly wound solenoid. The solenoid is of length I
and radius a, and comprises N turns carrying current l. The
number of turns per unit length is n = N / I. and the fact that the
turns are tightly wound implies that the pitch of a single tum
is small compared with the solenoid's radius. Even though the
turns are slightly helical in shape. we can treat them as circular
loops (Fig. 5-26). Let us start by considering the magnetic
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z

-a-!

Figure 5-26: Solenoid cross section showing geometry for
calculating H at a point P on the solenoid axis.

flux density B at point P on the axis of the solenoid. In
Example 5-3, we derived the following expression for the
magnetic field H along the axis of a circular loop of radius a, a
distance 7 away from its center:

(5.86)

where I' is the current carried by the loop. If we treat an
incremental length d z of the solenoid as an equivalent loop
composed of 11 d z turns carrying a current I ' = In d z, then
the induced field at point P is

, unl (12
dB = fl dH = z ) 1 1/1 dz.

2(a- + z~)· -
(5.87)

The total field Bat P is obtained by integrating the contributions
from the entire length of the solenoid. This is facilitated by
expressing the variable 7 in terms of the angle 8, as seen from
P to a point on the solenoid rim. That is.

7 = atane,

a2 + 7.2 = a2 + a2 tan2 8 = a2 sec2 8,

dz = a sec2 8 de.

(5.88a)

(5.88b)

(5.88c)

Upon substituting the last two expressions in Eq. (5.87) and
integrating from 8] to 82, we have

- un I . e . )= z 2 (sin 2 - sme] . (5.89)

If the solenoid length I is much larger than its radius a, then
for points P away from the solenoid's ends, 8] ~ -900 and
(h ~ 90°. in which case Eq. (5.89) reduces to

A .. zJ.l<Nl
B~zJ.l<nl=---

I

Even though Eq. (5.90) was derived for the field B at the
midpoint of the solenoid. it is approximately valid everywhere
in the solenoid's interior, except near the ends.

We now return to a discussion of inductance, which includes
the notion of self-inductance, representing the magnetic flux
linkage of a coil or circuit with itself, and mutual inductance,
which invol ves the magnetic flux linkage in a circuit due to the
magnetic field generated by a current in another one. Usually,
when the term inductance is used, the intended reference is to
self-inductance.

Exercise 5-13: Use Eq. (5.89) to obtain an expression for
B at a point on the axis of a very long solenoid but situated
at its end "points. How does B at the end points compare
to B at the midpoint of the solenoid?

Answer: B = i(flN I/2l) at the end points, which is
. half as large as B at the midpoint. (See ~)

5-7.2 Self-Inductance

From Eq. (5.66), the magnetic flux <f> linking a surface S is

(Wb). (5.91) I
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In a solenoid characterized by an approximately uniform
magnetic field throughout its cross-section given by Eq. (5.90),
the flux linking a single loop is

/,( N), Net> = z f1 T / . z ds = f1 T /S.

s
(5.92)

where S is the cross-sectional area of the loop. Magnetic flux
linkage A is defined as the total magnetic flux linking a given
circuit or conducting structure. If the structure consists of a
single conductor with multiple loops, as in the case of the
solenoid, A equals the flux linking all loops of the structure.
For a solenoid with N turns.

N2
A = Net> = Ji -/ S

I
(Wb). (5.93 )

If, on the other hand, the structure consists of two separate
conductors. as in the case of the parallel-wire and coaxial
transmission lines shown in Fig. 5-27, the flux linkage A
associated with a length I of either line refers to the flux et>
through a closed surface between the two conductors, such as
the shaded areas in Fig. 5-27. In reality, there is also some
magnetic flux that passes through the conductors themselves,
but it may be ignored by assuming that currents flow only on
the surfaces of the conductors, in which case the magnetic
field inside the conductors vanishes. This assumption is
justified by the fact that our interest in calculating A is for
the purpose of determining the inductance of a given structure,
and inductance is of interest primarily in the ac case (i.e., time-
varying currents, voltages, and fields). As we will see later
in Section 7-5. the current flowing in a conductor under ac
conditions is concentrated within a very thin layer on the skin
of the conductor.

For the parallel-wire transmission line, ac currents flow on
the outer surfaces of the wires, and for the coaxial line, the
current flows on the outer surface of the inner conductor and
on the inner surface of the outer one (the current-carrying
surfaces are those adjacent to the electric and magnetic jields
present in the region between the conductors).

The self-inductance of any conducting structure is defined as
the ratio of the magnetic flux linkage A to the current / flowing
through the structure:

y

(a) Parallel-wire transmission line

/ ~~:-:-:~::::::-::- .. -=-=.. --:--r t

____.._~~~tf 1/

(b) Coaxial transmission line

Figure 5-27: To compute the inductance per unit length of
a two-conductor transmission line, we need to determine the
magnetic flux through the area S between the conductors.

The SI unit for inductance is the henry (H), which is equivalent
to webers per ampere (Wb/A).

For a solenoid. use of Eq. (5.93) gives

and for two-conductor configurations similar to those of
Fig. 5-27.
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Figure 5-28: Cross-sectional view of coaxial transmission line
(Example 5-7).

Example 5-7: Inductance of a Coaxial Transmission
Line

Develop an expression for the inductance per unit length of
a coaxial transmission line with inner and outer conductors
of radii a and b (Fig. 5-28) and an insulating material of
permeability /L.

Solution: The magnetic field generated by the current I in
the inner conductor, throughout the region with permeability /L
between the two conductors is given by Eq, (5.30) as

~ /LI
B=cjl-

Zn r '
(5.97)

where r is the radial distance from the axis of the coaxial line.
Consider a transmission-line segment of length I as shown in
Fig. 5-28. Because B is perpendicular to the planar surface S
between the conductors, the flux through S is

b b

4> = If B dr = If I·Ll dr = /L
ll

In (~) .
Zstr Zn a

(5.98)

a (/

Using Eq, (5.96), the inductance per unit length of the coaxial
transmission line is

Figure 5-29: Magnetic field lines generated by current II in
loop I linking surface 52 of loop 2.

5-7.3 Mutual Inductance

Magnetic coupling between two different conducting structures
is described in terms of the mutual inductance between them.
For simplicity, consider the case of two multiturn closed loops
with surfaces SI and S2. Current 11 flows through the first loop
(Fig. 5-29) and no current flows through the second one. The
magnetic field B1 generated by h results in a flux 4>12 through
loop 2, given by

(5.100)

and ifloop 2 consists of N2 turns all coupled by B1 in exactly the
same way, then the total magnetic flux linkage through loop 2
is

AI2 = N24>12 = N2 J B1 . ds.

52

(5.101)

The mutual inductance associated with this magnetic coupling
is given by
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Figure 5-30: Toroidal coil with two windings used as a
transformer.

Mutual inductance is important in transformers (as discussed
in Chapter 6) wherein the windings of two or more circuits
share a common magnetic core, as illustrated by the toroidal
arrangement shown in Fig. 5-30.

Review Question 5-15: What is the magnetic field like in
the interior of a long solenoid?

Review Question 5-16: What is the difference between
self-inductance and mutual inductance'!

Review Question 5-17: How is the inductance of a
solenoid related to its number of turns N?

5-8 Magnetic Energy

When we introduced electrostatic energy in Section 4-10, we
did so by examining what happens to the energy expended
in charging up a capacitor from zero voltage to some final
voltage V. We introduce the concept of magnetic energy
by considering an inductor with inductance L connected to a
current source. Suppose that we were to increase the current i
flowing through the inductor from zero to a final value I. From
circuit theory, we know that the instantaneous voltage v across
the inductor is given by v = L di f dt . We will derive this
relationship from Maxwell's equations in Chapter 6, thereby
justifying the use of the i-v relationship for the inductor.
Power p equals the product of v and i , and the time integral of

power is work, or energy. Hence, the total energy in joules (1)
expended in building up a current I in the inductor is

I

Wm = / p dt = / iv dt = L / i di

o
= t,U2 (J). (5.103)

We call this the magnetic energy stored in the inductor.
To justify this association, consider the solenoid inductor.

Its inductance is given by Eq. (5.95) as L = /-lN2S1 l, and the
magnitude of the magnetic flux density in its interior is given by
Eq. (5.90) as B = /-IN I I l, implying that 1 = BII(f1N). Using
these expressions for L and I in Eq. (5.103), we obtain

(5.104)

where V = I S is the volume of the interior of the solenoid and
H = BI/-l. The expression for Wm suggests that the energy
expended in building up the current in the inductor is stored in
the magnetic field with magnetic energy density WIll' defined
as the magnetic energy Will per unit volume,

(5.105)1

Even though this expression was derived Ior a solenoid, it
remains validfor any medium witb a magnetic field H.

Furthermore, for any volume V containing a material with
permeability f1 (including free space with permeability /10),
the total magnetic energy stored in a magnetic field H is

(J). (5.106)

Example 5-8: MagnetiC Energy in a Coaxial Cable

Derive an expression for the magnetic energy stored in a coaxial
cable of length I and inner and outer radii a and h. The current
flowing through the cable is 1 and its insulation material has
permeability u,
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Solution: From Eq. (5.97), the magnitude of the magnetic
field in the insulating material is

B I
H=-=-,

ti 2rrr

where r is the radial distance from the center of the inner
conductor (Fig. 5-28). The magnetic energy stored in the
coaxial cable therefore is

If') til2 f IWm = - «n- dV = -2 J elV.
2 8rr r=

v v

Since H is a function of r only, we choose dV to be a
cylindrical shell of length I, radius r , and thickness dr along
the radial direction. Thus, dV = 2rrri dr and

~ b

til- f IWm = -~ J .2rrri dr
8rr- r :

(/

= ti
12

, In (~)
4rr a

I ~
= - LJ-

2
(1).

with L given by Eq. (5.99).

Chapter 5 Relationships

Maxwell's Magnetostatics Equations

Gauss's Law for Magnetism

V . B = 0 ..•••. f B . ds = 0

s
Ampere's Law

V x H = J -++ f H . dt. = I

c
Lorentz Force on Charge q

F=q(E+u x B)

Magnetic Force on Wire

Fm = If dl x B (N)

c
Magnetic Torque on Loop

T=mxB

m=nNIA

Biot-Savart Law

H=~fdIXR
4rr R2

I

(Aim)

Magnetic Field

Circular Loop

B =. JJ..ol
2rrr

Ta2
H = z --:;--~...",

2(a2 + z2)3/2

Infinitely Long Wire

Solenoid
~ Z u.N I

B:::::: z unl =--
I

Vector Magnetic Potential

B = vx A (Wb/m2)

Vector Poisson's Equation

V2A = -tiJ

Inductance

L = ~ = ~ = ~f B· ds
s

Magnetic Energy Density

(H)

(Aim)
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Technology Brief 11: Inductive Sensors

Secondary coils

Magnetic coupling between different coils forms the basis of several different types of inductive sensors. Applications
include the measurement of position and displacement (with submillimeter resolution) in device fabrication processes,
proximity detection of conductive objects, and other related applications.

Linear Variable Differential Transformer (LVDT)

An LVDT comprises a primary coil connected to an ac source (typically a sine wave at a frequency in the 1-10 kHz
range) and a pair of secondary coils, all sharing a common ferromagnetic core (Fig. TF11-1). The magnetic core
serves to couple the magnetic flux generated by the primary coil into the two secondaries, thereby inducing an output
voltage across each of them. The secondary coils are connected in opposition, so that when the core is positioned at
the magnetic center of the LVDT, the individual output signals of the secondaries cancel each other out, producing a
null output voltage. The core is connected to the outside world via a nonmagnetic rod. When the rod moves the core
away from the magnetic center, the magnetic fluxes induced in the secondary coils are no longer equal, resulting in
a nonzero output voltage. The LVDT is called a "linear" transformer because the amplitude of the output voltage is a
linear function of displacement over a wide operating range (Fig. TFll-2).

Push rod
• •

- Vout +

Figure TF11-1: Linear variable differential transformer (LVDT) circuit.
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-10 -5 o 5 10
Distance Traveled

Figure TF11-2: Amplitude and phase responses as
a function of the distance by which the magnetic core
is moved away from the center position.

The cutaway view of the LVDT model in Fig. TF11-3 depicts a configuration in which all three coils-with the primary
straddled by the secondaries-are wound around a glass tube that contains the magnetic core and attached rod.
Sample applications are illustrated in Fig. TF11-4.

Stainless steel housing

Rod

Figure TF11-3: Cutaway view of LVDT.
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LVDT III
Float 1

Figure TF11-4: LVDT for measuring beam deflection and as a fluid-level gauge.

Eddy-Current Proximity Sensor
The transformer principle can be applied to build a proximity sensor in which the output voltage of the secondary coil
becomes a sensitive indicator of the presence of a conductive object in its immediate vicinity (Fig. TF11-5). When an
object is placed in front of the secondary coil, the magnetic field of the coil induces eddy (circular) currents in the object,
which generate magnetic fields of their own having a direction that opposes the magnetic field of the secondary coil.
The reduction in magnetic flux causes a drop in output voltage, with the magnitude of the change being dependent on
the conductive properties of the object and its distance from the sensor.

x xx x x xx x x x

o 0 0 0o 0 0 0o 0 0 0

Primary coil

_ Vuut +

x xx x x xx x x x

o 0 0 0o 0 0 0o 0 0 0

Sensing coil

Eddy currents

Conductive object

FigureTF11-5: Eddy-current proximity sensor.
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CHAPTER HIGHLIGHTS

• The magnetic force acting on a charged particle q
moving with a velocity u in a region containing a
magnetic flux density B is Fm = qu x B.

• Materials are classified as diamagnetic, paramagnetic,
or ferromagnetic, depending on their crystalline
structure and the behavior under the influence of an
external magnetic field.

• The total electromagnetic force, known as the Lorentz
force, acting on amoving charge in the presence of both
electric and magnetic fields is F = q(E + u x B).

• Diamagnetic and paramagnetic materials exhibit a
linear behavior between Band H, with fl :::: flo for both.

• Ferromagnetic materials exhibit a nonlinear hysteretic
behavior between Band H and, for some, /L may be as
large as 105 flo.

• Magnetic forces acting on current loops can generate
magnetic torques.

• The magnetic field intensity induced by a current
element is defined by the Biot-Savart law. • At the boundary between two different media,

the normal component of B is continuous, and
the tangential components of H are related by
H2! - Hit = ls, where ls is the surface current density
flowing in a direction orthogonal to Hit and H2!.

• The inductance of a circuit is defined as the ratio of
magnetic flux linking the circuit to the current flowing
through it.

• Magnetic energy density is given by Wm = ~flH2.

• Gauss's law for magnetism states that the net magnetic
flux flowing out of any closed surface is zero.

• Ampere's law states that the line integral of H over a
closed contour is equal to the net current crossing the
surface bounded by the contour.

• The vector magnetic potential A is related to B by
B = V xA.

GLOSSARY OF IMPORTANT TERMS

Provide definitions or explain the meaning of the following terms:

magnetization vector M
magnetized domains
moment arm d
orbital and spin magnetic moments
paramagnetic
solenoid
surface current density J,
toroid
toroidal coil
torque T
vector Poisson's equation

Ampere'S law
Amperian contour
Biot-Savart law
current density (volume) J
diamagnetic
ferromagnetic
Gauss's law for magnetism
hard and soft ferromagnetic materials
inductance (self- and mutual)
Lorentz force F
magnetic dipole

magnetic energy Wm

magnetic energy density Wm

magnetic flux cl>
magnetic flux density B
magnetic flux linkage A
magnetic force F m

magnetic hysteresis
magnetic moment m
magnetic potential A
magnetic susceptibility Xm
magnetization curve
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PROBLEMS
Section 5-1: Magnetic Forces and Torques

*5.1 An electron with a speed of 8 x 106 m/s is projected
along the positive x-direction into a medium containing a
uniform magnetic flux density B = (x4 - z3) T. Given
that e = 1.6 x 10-19 C and the mass of an electron is
me = 9.1 x 10-31 kg, determine the initial acceleration vector
of the electron (at the moment it is projected into the medium).

5.2 When a particle with charge q and mass m is introduced
into a medium with a uniform field B such that the initial
velocity of the particle u is perpendicular to B (Fig. PS.2), the
magnetic force exerted on the particle causes it to move in a
circle of radius a. By equating Fm to the centripetal force on
the particle, determine 1I in terms of q, m, u, and B.

q

®

q ®
q

® ® ® ® ®
Figure PS.2: Particle of charge q projected with velocity u

into a medium with a uniform field B perpendicular to u
(Problem 5.2).

*5.3 The circuit shown in Fig. PS.3 uses two identical springs
to support a 10-cm-long horizontal wire with a mass of 20 g. In
the absence of a magnetic field, the weight of the wire causes
the springs to stretch a distance of 0.2 em each. When a
uniform magnetic field is turned on in the region containing
the horizontal wire, the springs are observed to stretch an
additional 0.5 ern each. What is the intensity of the magnetic
flux density B? The force equation for a spring is F = kd,
where k is the spring constant and d is the distance it has been
stretched.

*Answens) available in Appendix D.

4W 12 V

/Springs"-....

o 0Bo o
o 10 0 01

-IOcm-
o

Figure PS.3: Configuration of Problem 5.3.

5.4 The rectangular loop shown in Fig. P5.4 consists of 20
closely wrapped turns and is hinged along the z-axis. The
plane of the loop makes an angle of 30° with the y-axis, and
the current in the windings is 0.5 A. What is the magnitude
of the torque exerted on the loop in the presence of a uniform
field B = Y 2.4 T? When viewed from above, is the expected
direction of rotation clockwise or counterclockwise?

z

tr /20 turns0.4 m

1 y

~
0.2m

x
"I

Figure PS.4: Hinged rectangular loop of Problem 5.4.
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4: 5.5 In a cylindrical coordinate system, a 2-m-long straight
wire carrying a current of 5 A in the positive z-direction is
located at r = 4 em, ¢ = rr/2, and -J m S z S I m.
(a) If B = r 0.2 cos ¢ (T), what is the magnetic force acting

on the wire?
(b) How much work is required to rotate the wire once about

the z-axis in the negative ¢-direction (while maintaining
r = 4 ern)?

(c) At what angle ¢ is the force a maximum?

5.6 A 20-tum rectangular coil with sides I = 30 em and
w = 10 em is placed in the y-z plane as shown in Fig. P5.6.

(a) If the coil, which carries a current I = 10 A. is in the
presence of a magnetic flux density

B = 2 x IO-2(x + y2) (T).

determine the torque acting on the coil.

(b) At what angle ¢ is the torque zero?

(e) At what angle ¢ is the torque maximum? Determine its
value.

z

I

---
.••., I

~t- .;...i ----I~y

n

x

Figure P5.6: Rectangular coil of Problem 5.6.

Section 5-2: The Biot-Savart Law

*5.7 An 8 em x 12 em rectangular loop of wire is situated in
the x-y plane with the center of the loop at the origin and its

$' Solution available on CD.

long sides parallel to the x-axis. The loop has a current of 50 A
flowing clockwise (when viewed from above). Determine the
magnetic field at the center of the loop.

S.S Use the approach outlined in Example 5-2 to develop an
expression for the magnetic field Hat an arbitrary poi nt P due to
the linear conductor defined by the geometry shown in Fig. P5.8.
If the conductor extends between z\ = 3 m and 22 = 7 m and
carries a current I = 15 A, find H at P = (2, ¢, 0).

z

,,,,,,,,,,
- - ,-------:-:=.~

r P = (r, qJ, z)

Figure P5.8: Current-carrying linear conductor of
Problem 5.8.

*5.9 The loop shown in Fig. P5.9 consists of radial lines and
segments of circles whose centers are at point P. Determine
the magnetic field H at P in terms of a, b, e, and I.

Figure P5.9: Configuration of Problem 5.9.

5.10 An infinitely long, thin conducting sheet defined over
the space 0 S x S wand -00 S y S 00 is carrying a current
with a uniform surface current density J, = yS (Aim). Obtain
an expression for the magnetic field at point P = (0,0, z) in
Cartesian coordinates.

*5.11 An infinitely long wire carrying a 2S-A current in the
positive x-direction is placed along the x-axis in the vicinity of
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a 20-turn circular loop located in the x-y plane (Fig. P5.ll). If
the magnetic field at the center of the loop is zero, what is the
direction and magnitude of the current flowing in the loop?

d=2m

----:....--------1 •...----- •.x

Figure PS.ll: Circular loop next to a linear current
(Problem 5.11).

5.12 Two infinitely long. parallel wires are carrying 6-A
currents in opposite directions. Determine the magnetic flux
density at point P in Fig. P5.12.

P
-e
O.5m

Figure PS.12: Arrangement for Problem 5.12.

*5.13 A long. East-West-oriented power cable carrying an
unknown current 1 is at a height of 8 m above the Earth's
surface. If the magnetic flux density recorded by a magnetic-
field meter placed at the surface is 15 J..LT when the current is
flowing through the cable and 20 J..LT when the current is zero.
what is the magnitude of I?

5.14 Two parallel, circular loops carrying a current of 40 A
each are arranged as shown in Fig. P5.14. The first loop is

situated in the x-y plane with its center at the origin, and the
second loop's center is at z = 2 m. If the two loops have the
same radius a = 3 m, determine the magnetic field at:

(a) z =0

(h) z = I m

(c) z = 2 m

z

x

Figure PS.14: Parallel circular loops of Problem 5.14.

5.15 A circular loop of radius a carrying current II is located
in the x-y plane as shown in Fig. P5.15. In addition, an
infinitely long wire carrying current 12 in a direction parallel
with the z-axis is located at y = Yo.

z n parallel to z

P=(O, 0, h)

x

Figure PS.lS: Problem 5.15.

(a) Determine H at P = (0,0, h).

(b) Evaluate H for a = 3 em, YO = \0 cm, h = 4 em,
II = lOA, and 12 = 20 A.
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*5.16 The long, straight conductor shown in Fig. P5.161ies in
the plane of the rectangular loop at a distance d = 0.1 m. The
loop has dimensions a = 0.2 m and b = 0.5 rn, and the currents
are II = 20 A and 12 = 30 A. Determine the net magnetic force
acting on the loop.

b= 0.5 m

H!III 1...-1 --------'

U d= 0.1 m ---a-=-0-.2-m---

Figure P5.16: Current loop next to a conducting wire
(Problem 5.16).

5.17 In the arrangement shown in Fig. P5.17, each of the two
long, parallel conductors carries a current I, is supported by
S-cm-Iong strings, and has a mass per unit length of l.2 g/cm.
Due to the repulsive force acting on the conductors, the angle ()
between the supporting strings is 10°. Determine the magnitude
of I and the relative directions of the currents in the two
conductors.

z

x

Figure PS.17: Parallel conductors supported by strings
(Problem 5.17).

*5.18 An infinitely long, thin conducting sheet of width w
along the x -direction lies in the x - y plane and carries a current I
in the - y-direction. Determine the following:

(a) The magnetic field at a point P midway between the edges
of the sheet and at a height h above it (Fig. P5.IS).

(b) The force per unit length exerted on an infinitely long wire
passing through point P and parallel to the sheet if the
current through the wire is equal in magnitude but opposite
in direction to that carried by the sheet.

f

T ~p
f

h /11· . . .. 0 ·d
I w '1

Figure P5.18: A linear current source above a current sheet
(Problem 5.18).

5.19 Three long, parallel wires are arranged as shown in
Fig. PS.19. Determine the force per unit length acting on the
wire carrying h

T <i>l,-IOA

2m It ~2m-013~IOA

2m

_I G)l,-IOA

Figure P5.19: Three parallel wires of Problem 5.19.
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*5.20 A square loop placed as shown in Fig. P5.20 has 2-m
sides and carries a current 11 = 5A. If a straight, long conductor
carrying a current 12 = lOA is introduced and pJacedjust above
the midpoints of two of the loop's sides, determine the net force
acting on the loop.

z

x

Figure PS.20: Long wire carrying current 12, just above a
square loop carrying 11 (Problem 5.20).

Section 5-3: Maxwell's Magnetostatic Equations

5.21 Current I flows along the positive z-direction in the inner
conductor of a long coaxial cable and returns through the outer
conductor. The inner conductor has radius a, and the inner and
outer radii of the outer conductor are band c, respectively.

(a) Determine the magnetic field in each of the following
regions: O:s r :s G, G:S r :s b, b:s r :s c, and r ::: c,

(b) Plot the magnitude of H as a function of r over the range
from r = 0 to r = 10em,given that 1 = 10A, a = 2 ern,
h = 4 ern, and c = 5 cm.

*5.22 A long cylindrical conductor whose axis is coincident
with the z-axis has a radius a and carries a current characterized
by a current density J = Zlol r, where Jo is a constant and
r is the radial distance from the cylinder's axis. Obtain an
expression for the magnetic field H for

(a) 0 :s r :s a
(b) r > a

5.23 Repeat Problem 5.22 for a current density J = iJoe-r.

*5.24 In a certain conducting region, the magnetic field is given
in cylindrical coordinates by

H = ~~11 - (1 + 3r)e-3rl
r

Find the current density J.

5.25 A cylindrical conductor whose axis is coincident with
the z-axis has an internal magnetic field given by

, 2 4
H=+-[I-(4r+l)e-rj

r
(Aim) for r :s G,

where a is the conductor's radius. If a = 5 em, what is the total
current flowing in the conductor'?

Section 5-4: Vector Magnetic Potential

5.26 With reference to Fig. 5-10:

(a) Derive an expression for the vector magnetic potential A
at a point P located at a distance r from the wire in the
x-y plane.

(b) Derive B from A. Show that your result is identical with
the expression given by Eq. (5.29), which was derived by
applying the Biot-Savart law.

*5.27 In a given region of space, the vector magnetic potential
is given by A = i5 cos 7T y + z(2 + sin 7T x) (Wb/m),
(a) Determine B.
(b) Use Eq, (5.66) to calculate the magnetic flux passing

through a square loop with O.25-m-long edges if the loop
is in the x-y plane, its center is at the origin, and its edges
are parallel to the x- and v-axes,

(e) Calculate <t> again using Eq. (5.67).

5.28 A uniform current density given by

J = ilo

gives rise to a vector magnetic potential

A ,p>'oJo( 2+ 2)=-z-- X v4 . (Wb/m).

(a) Apply the vector Poisson's equation to confirm the above
statement.

(b) Use the expression for A to find H.
(e) Use the expression for J in conjunction with Ampere's law

to find H. Compare your result with that obtained in part
(b).
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*5.29 A thin current element extending between z = - L /2
and z = L/2 carries a current / along +z through a circular
cross-section of radius a.
(a) Find A at a point P located very far from the origin (assume

R is so much larger than L that point P may be considered
to be at approximately the same distance from every point
along the current element).

(b) Determine the corresponding H.

Section 5-5: Magnetic Properties of Materials

5.30 In the model of the hydrogen atom proposed by Bohr
in 1913, the electron moves around the nucleus at a speed of
2 x 106 m/s in a circular orbit of radius 5 x 10-11 m. What is the
magnitude of the magnetic moment generated by the electron's
motion?

*5.31 [ron contains 8.5 x \028 atoms/rrr'. At saturation, the
alignment of the electrons' spin magnetic moments in iron can
contribute 1.5 T to the total magnetic flux density B. If the spin
magnetic moment of a single electron is 9.27 x 10-24 (A.m2),

how many electrons per atom contribute to the saturated field?

Section 5-6: Magnetic Boundary Conditions

5.32 The x-y plane separates two magnetic media with
magnetic permeabilities {L I and fl,2 (Fig. P5.32). If there is
no surface current at the interface and the magnetic field in
medium 1 is

find:
(a) H2.

(b) 81 andfh.
(e) Evaluate H2, (;II, and 82 for Hi, = 2 (Azm), Hi; = 0,

Hlz = 4 (Nm), fl,1 = (Lo, and fl,2 = 4.{L()

z

Figure PS.32: Adjacent magnetic media (Problem 5.32).

*5.33 Given that a current sheet with surface current density
Js = i 8 (A/m) exists at y = 0, the interface between two
magnetic media, and HI = Z11 (Nm) in medium I (y > 0),
determine H2 in medium 2 (y < 0).

5.34 In Fig. P5.34, the plane defined by x - y = I
separates medium 1 of permeability {L I from medium 2 of
permeability {L2. If no surface current exists on the boundary
and

(T),

find B2 and then evaluate your result for {LI = 5{L2.

Hint: Start by deriving the equation for the unit vector normal
to the given plane.

y

Medium I
PI

Figure PS.34: Magnetic media separated by the plane
x - y = 1 (Problem 5.34).

"5'- 5.35 The plane boundary defined by z = 0 separates air from
a block of iron. If B I = i4 - y6 + z8 in air (z ;:. 0), find B2 in
iron (z ::::0), given that (L = 5000tL() for iron.

5.36 Show that if no surface current densities exist at the
parallel interfaces shown in P5.36, the relationship between (;14

and 81 is independent of tL2.
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Figure P5.36: Three magnetic media with parallel interfaces
(Problem 5.36).

Sections 5-7 and 5-8: Inductance and Magnetic Energy

*5.37 Obtain an expression for the self-inductance per unit
length for the parallel wire transmission line of Fig. 5-27(a)
in terms of a, d, and /.1, where a is the radius of the wires.
d is the axis-to-axis distance between the wires, and 11 is the
permeability of the medium in which they reside.

5.38 A solenoid with a length of 20 cm and a radius of
5 cm consists of 400 turns and carries a current of 12 A. If
z = 0 represents the midpoint of the solenoid, generate a plot
for \H(z)\ as a function of z along the axis of the solenoid for
the range -20 cm.::: z .:::20 em in I-cm steps.

*5.39 In terms of the de current I. how much magnetic energy
is stored in the insulating medium of a 3-m-long, air-filled
section of a coaxial transmission line, given that the radius of
the inner conductor is 5 cm and the inner radius of the outer
conductor is 10 ern?

5.40 The rectangular loop shown in Fig. P5.40 is coplanar
with the long, straight wire carrying the current I = 20 A.
Determine the magnetic flux through the loop.

z

20A 30cm

-20cm-\
A------------y

x

Figure P5.40: Loop and wire arrangement for Problem 5.40.

5.41 Determine the mutual inductance between the circular
loop and the linear current shown in Fig. P5.41.

y

d

Figure PS.41: Linear conductor with current II next to a
circular loop of radius a at distance d (Problem 5.41).
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Objectives

Upon learning the material presented in this chapter, you should
be able to:

1. Apply Faraday's law to compute the voltage induced by a
stationary coil placed in a time-varying magnetic field or
moving in a medium containing a magnetic field.

2. Describe the operation of the electromagnetic generator.

3. Calculate the displacement current associated with a time-
varying electric field.

4. Calculate the rate at which charge dissipates in a material
with known E and a.



and dynamic fields. The same is true for the third equation,
Gauss's law for magnetism. By contrast. the second and
fourth equations-Faraday' s and Ampere's laws. are of a totall y
different nature. Faraday's law expresses the fact that a time-
varying magnetic field gives rise to an electric field. Conversely.
Ampere's law states that a time-varying electric field must be
accompanied by a magnetic field.

Some statements in this and succeeding chapters contradict
conclusions reached in Chapter 4 and 5 as those pertained to
the special case of static charges and dc currents. The behavior
of dynamic fields reduces to that of static ones when a lilt is set
to zero.

We begin this chapter by examining Faraday's and Ampere's
laws and some of their practical applications. We will then
combine Maxwell's equations to obtain relations among the
charge and current sources, p; and J. the scalar and vector
potentials. V and A, and the electromagnetic fields, E. D.
H, and S, for the most general time-varying case and for the
specific case of sinusoidal-time variations.
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Dynamic Fields

Electric charges induce electric fields and electric currents
induce magnetic fields. As long as the charge and current
distributions remain constant in time, so will the fields they
induce. If the charges and currents vary in time, the electric and
magnetic fields will vary accordingly. Moreover, the electric
and magnetic fields will couple and travel through space in
the form of electromagnetic waves. Examples of such waves
include light, x-rays, infrared, gamma rays, and radio waves
(see Fig. 1-16).

To study time-varying electromagnetic phenomena, we
need to consider the entire set of Maxwell's equations
simultaneously. These equations, first introduced in the
opening section of Chapter 4. are given in both differential
and integral form in Table 6-1. In the static case (a/at = 0)
we use the first pair of Maxwell's equations to study electric
phenomena (Chapter 4) and the second pair to study magnetic
phenomena (Chapter 5). In the dynamic case (iJ/ilt i= 0), the
coupling that exists between the electric and magnetic fields,
as expressed by the second and fourth equations in Table 6-1,
prevents such decomposition. The first equation represents
Gauss's law for electricity. and it is equally valid for static

6-1 Faraday's Law
The close connection between electricity and magnetism was
established by Oersted, who demonstrated that a wire carrying

Table 6-1: Maxwell's equations.

Reference Differential Form Integral Form

Gauss's law '\7·D = p; I D·ds= Q (6.1)

s

Faraday's law
iJB I f '/B'\7x E=-- E·dl = - ~ ·ds (6.2)*
ill 01

C S

Gauss's law for magnetism '\7·B=O I B·ds= 0 (6.3)

s

Ampere's law
an I H·dl = f (J + ~I~) ·ds'\7xH=J+- (6.4)
01

C S
"For a stationary surface S.
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Galvanometer Battery

Figure 6·1: The galvanometer (predecessor of the ammeter)
shows a deflection whenever the magnetic flux passing through
the square loop changes with time.

an electric current exerts a force on a compass needle and that
the needle always turns so as to point in the +-direction when the
current is along the z-direction. The force acting on the compass
needle is due to the magnetic field produced by the current in
the wire. Following this discovery. Faraday hypothesized that
if a current produces a magnetic field, then the converse should
also be true: a magnetic field should produce a current in a wire.
To test his hypothesis, he conducted numerous experiments
in his laboratory in London over a period of about 10 years,
all aimed at making magnetic fields induce currents in wires.
Similar work was being carried out by Henry in Albany, New
York. Wires were placed next to permanent magnets or current-
carrying loops of all different sizes, but no currents were ever
detected. Eventually. these experiments led to the discovery by
both Faraday and Henry that:

Magnetic fields can produce an electric current in a closed
loop. but only if the magnetic flux linking the surface area of
the loop changes with time. The key to the induction process
is change.

To elucidate the induction process. consider the arrangement
shown in Fig. 6-1. A conducting loop connected to a
galvanometer, a sensitive instrument used in the 1800s to detect
current flow, is placed next to a conducting coil connected to

a battery. The current in the coil produces a magnetic field B
whose lines pass through the loop. In Section 5-4, we defined
the magnetic flux <t> passing through a loop as the integral of
the normal component of the magnetic flux density over the
surface area of the loop. S. or

Under stationary conditions, the de current in the coil produces
a constant magnetic field B, which in turn produces a constant
flux through the loop. When the flux is constant, no current
is detected by the galvanometer. However, when the battery
is disconnected, thereby interrupting the flow of current in
the coil. the magnetic field drops to zero. and the consequent
change in magnetic flux causes a momentary deflection of
the galvanometer needle. When the battery is reconnected,
the galvanometer again exhibits a momentary deflection, but
in the opposite direction. Thus, current is induced in the
loop when the magnetic flux changes. and the direction of
the current depends on whether the flux increases (when the
battery is being connected) or decreases (when the battery is
being disconnected). It was further discovered that current can
also flow in the loop while the battery is connected to the coil
if the loop turns or moves closer to, or away from, the coil.
The physical movement of the loop changes the amount of flux
linking its surface S, even though the field B due to the coil has
not changed.

A galvanometer is a predecessor of the voltmeter and
ammeter. When a galvanometer detects the flow of current
through the coil, it means that a voltage has been induced
across the galvanometer terminals. This voltage is called
the electromotive force (emf), Vcmf, and the process is called
electromagnetic induction. The emf induced in a closed
conducting loop of N turns is given by

V
cmf

= -N d<t>= -N !!... f B· ds
dt dt

s
(V). (6.6)

Even though the results leading to Eq. (6.6) were also
discovered independently by Henry. Eq. (6.6) is attributed to
Faraday and known as Faraday's law. The significance of the
negative sign in Eq. (6.6) will be explained in the next section.



is, V~~lr = V12, where V12 is the open-circuit voltage across the
open ends of the loop. Under de conditions, V~~lf = O. For the
loop shown in Fig. 6-2(a) and the associated definition for V~~f
given by Eq. (6.8), the direction of ds, the loop's differential
surface normal, can be chosen to be either upward or downward.
The two choices are associated with opposite designations of
the polarities of terminals I and 2 in Fig. 6-2(a).
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We note that the derivative in Eq. (6.6) is a total time
derivative that operates on the magnetic field B. as well as
the differential surface area ds. Accordingly. an emf can
be generated in a closed conducting loop under any of the
following three conditions:

1. A time-varying magnetic field linking a stationary loop;
the induced emf is then called the transformer em}: vct~lf'

2. A moving loop with a time-varying surface area (relative to
the normal component of B) in a static field B; the induced
emf is then called the motional emf. Vc'::,f'

3. A moving loop in a time-varying field B.

The total emf is given by

(6.7)

with Ve'::lf = 0 if the loop is stationary [case (1) J and Vel~lf = 0
ifB is static [case (2)]. For case (3), both terms are important.
Each of the three cases will be examined separately in the
following sections.

6-2 Stationary Loop in a Time-Varying
Magnetic Field

The stationary, single-turn, conducting, circular loop with
contour C and surface area S shown in Fig. 6-2(a) is exposed
to a time-varying magnetic field B(t). As stated earlier. the
emf induced when S is stationary and the field is time-varying
is called the transformer emf and is denoted Vel~nf' Since the
loop is stationary, d f dt in Eq. (6.6) now operates on Btr) only.
Hence,

where the full derivative df dt has been moved inside the
integral and changed into a partial derivative afat to signify
that it operates on B only. The transformer emf is the voltage
difference that would appear across the small opening between
terminals I and 2, even in the absence of the resistor R. That

The connection between the direction of ds and the polarity
ofV~:~lf is governed by the following right-hand rule: ijds
points along the thumb of the right hand, then the direction
of the contour C indicated by the [ourfingers is such that it
always passes across the opening from the positive terminal
of V~~nr to the negative terminal.

Changing B(t)

f 1 1
(a) Loop in a changing B field

R,

R

2

(b) Equivalent circuit

Figure 6-2: (a) Stationary circular loop in a changing magnetic
field Btr ), and (b) its equivalent circuit.
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If the loop has an internal resistance Ri, the circuit in
Fig. 6-2(a) can be represented by the equivalent circuit shown
in Fig. 6-2(b), in which case the current I flowing through the
circuit is given by

(6.9)

For good conductors, R, usually is very small, and it may be
ignored in comparison with practical values of R.

The polarity of V;~fand hence the direction of I is governed
by Lenz's law, which states that the current in the loop is
always in a direction that opposes the change of magnetic
flux <1>(1) that produced I.

The current I induces a magnetic field of its own, Bind, with
a corresponding flux <I>illd. The direction of Bind is governed
by the right-hand rule; if I is in a clockwise direction, then
Bind points downward through S and, conversely, if I is in a
counterclockwise direction, then Bind points upward through S.
If the original field B(t) is increasing, which means that
d<I>/dt > 0, then according to Lenz's law, I has to be in
the direction shown in Fig. 6-2(a) in order for Bind to be in
opposition to B(t). Consequently, terminal 2 would be at a
higher potential than terminal I,and vct~f would have a negative
value. However, if B(t) were to remain in the same direction
but decrease in magnitude, then d <I>/ d t would become negative,
the current would have to reverse direction, and its induced field
Bind would be in the same direction as B(t) so as to oppose the
change (decrease) of B(t). In that case, vet~f would be positive.

II is important to remember that Bind serves to oppose the
change in B(t). and not necessarily B(t) itself.

Despite the presence of the small opening between terminals
I and 2 of the loop in Fig. 6-2(a), we shall treat the loop as a
closed path with contour C. We do this in order to establish
the link between B and the electric field E associated with the
induced emf, V~nf. Also, at any point along the loop, the
field E is related to the current I flowing through the loop.
For contour C, V~~fis related to E by

V~~f= f E· dl.
c

(6.10)

For N = I (a loop with one turn), equating Eqs. (6.8) and (6.10)
gives

f liJB
E·dl = - - ·dsat '

c s
(6.11 )

which is the integral form of Faraday's law given in Table 6-1.
We should keep in mind that the direction of the contour C and
the direction of ds are related by the right-hand rule.

By applying Stokes's theorem to the left-hand side of
Eq. (6.11), we have

I rv x E) . ds = - I~~.ds,
s s

(6.12)

and in order for the two integrals to be equal for all possible
choices of S, their integrands must be equal, which gives

This differential form of Faraday 's law states that a time-varying
magnetic field induces an electric field E whose curl is equal
to the negative of the time derivative of B. Even though the
derivation \eading to Faraday's law started out by considering
the field associated with a physical circuit, Eq. (6.13) applies
at any point in space, whether or not a physical circuit exists at
that point.

Example 6-1: Inductor In a Changing Magnetic Field

An inductor is formed by winding N turns of a thin conducting
wire into a circular loop of radius o. The inductor loop is in
the x-y plane with its center at the origin, and connected to a
resistor R, as shown in Fig. 6-3. In the presence of a magnetic
field B = Bo(y2 +2:3)sin cot , where w is the angular frequency,
find
(a) the magnetic flux linking a single turn of the inductor,



For N = 10, a = 0.1 m, w = 103 rad/s, and Bo = 0.2 T,
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z

Figure 6·3: Circular loop with N turns in the x-y plane. The
magnetic field is B = BO(y2 + z3) sin tot (Example 6-1).

(b) the transformer emf, given that N = 10, Bo = 0.2 T,
a = 10 em, and co = 103 rad/s,

(c) the polarity of V;~r at t = 0, and
(d) the induced current in the circuit for R = I kQ (assume

the wire resistance to be much smaller than R).

Solution: (a) The magnetic flux linking each tum of the
inductor is

<l>= j B· ds

s

= j[BO(Y2+Z3)SinM].ZdS

S

= 3][(12 Bo sin wt.

(b) To tind V~~nf'we can apply Eq. (6.8) or we can apply
the general expression given by Eq. (6.6) directly. The latter
approach gives

lr d<l>
Vemf = -N dt

dry.= --(3][ Nu: Bo SIn wt)
dt

= -3][N(va2Bocoswt.

V::;'f = -188.5cos I03t (V).

(e) Att = 0, d<l>/dt > 0 and V::;'r = -188.5 V. Since the flux
is increasing, the current I must be in the direction shown in
Fig. 6-3 in order to satisfy Lenz's law. Consequently, terminal 2
is at a higher potential than terminal I and

= - I 88.5 (V).

(d) The current I is given by

1 = V2 - Vj
R

188.5 ~
= J()"3 cos 10' t

= 0.19cos 103t (A).

Exercise 6-1: For the loop shown in Fig. 6-3, what is V:mf
ifB = yBOcoswt?

Answer: Ve~f = 0 because B is orthogonal to the loop's
surface normal ds. (See ~)

Exercise 6-2: Suppose that the loop of Example 6-1 is
replaced with a lO-tum square loop centered at the origin
and having 20-cm sides oriented parallel to the x- and
y-axes. If B = zBox2 cos J03t and Bo = JOOT, find the
current in the circuit.

Answer: I = -133 sin 103t (rnA). (See ~)
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'6' CD Module 6.1 Circular Loop in Time-varying Magnetic Field
Faraday's law of induction is demonstrated by simulating
the current induced in a loop in response to the change in
magnetic flux flowing through it.

Example 6-2: Lenz's Law

Determine voltages VI and V2 across the 2-Q and 4-Q resistors
shown in Fig. 6-4. The loop is located in the x-y plane, its area
is 4 m2, the magnetic flux density is B = -zO.3t (T), and the
internal resistance of the wire may be ignored.

Solution: The flux flowing through the loop is

eI> = f B· ds = f (-zO.3t)· z ds
s s

= -0.3t x 4 = -1.2t (Wb),

and the corresponding transformer emf is

tr del>
Vemf = -- = 1.2 (V).

dt

The circular wire loop shawn in the figure is connected
to a simple circuit composed of a resistor R L in senes
with a current meter. The tlrne-varvtnq magnetic
flux linking the surface of the loop Induces a Vemf.
and hence a current throughR. The purpose of this
demo is to illustrate, in the form of a stow- motion
video, how the current I varies with time, in bath
magnitude and direction. when B(t)=BoCOS«>I

Note that I(t! is a maximum when the slope of B(I) is
a maximum, which occurs when B itself is zero The
direction or II!! is dictated by t.enz's Law

Design: Janice Richards

I

® ® ®
y

Lx+ ®
40 V2

®
B Area =4 m2

® ® ®

Figure 6-4: Circuit for Example 6-2.
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Since the magnetic flux through the loop is along the
-L-direction (into the page) and increases in magnitude with
time t. Lenz's law states that the induced current I should be in
a direction such that the magnetic flux density Bind it induces
counteracts the direction of change of eI>. Hence. I has to be
in the direction shown in the circuit because the corresponding
Bind is along the -l-z-direction in the region inside the loop area.
This. in turn, means that VI and V2 are positive voltages.

The total voltage of 1.2 V is distributed across two resistors
in series. Consequently,

1=
RI + R2
1.2

= -- = 0.2 A.
2+4

and

VI =IRI =0.2x2=0.4V.

V2 = I R2 = 0.2 x 4 = 0.8 V.

Review Question 6-1: Explain Faraday's law and the
implication of Lenz's law.

Review Question 6-2: Under what circumstances is the
net voltage around a closed loop equal to zero?

Review Question 6-3: Suppose the magnetic flux density
linking the loop of Fig. 6-4 (Example 6-2) is given by
B = -zO.3e-1 (T). What would the direction of the
current be. relative to that shown in Fig. 6-4, for t ~ O'!

6-3 The Ideal Transformer

The transformer shown in Fig. 6-5(a) consists of two coils
wound around a common magnetic core. The primary coil has
NI turns and is connected to an ac voltage source VI(t J. The
secondary coil has N2 turns and is connected to a load resistor
RL. In an ideal transformer the core has infinite permeability
(p. = (0), and the magnetic flux is confined within the core.

- - - - ~I ~ --

"'- __ -._ I

<J> ---

(a)

\
I

•... ....•••.._ I

<J> ---

(b)

Figure 6-5: In a transformer. the directions of II and 12 are
such that the flux <t> generated by one of them is opposite to that
generated by the other. The direction of the secondary winding
in (b) is opposite to that in (a). and so are the direction of 12 and
the polarity of V2.

The directions of the currentsjlowing in the two coils, II and
h are defined such that, when I, and I]. are both positive,
the flux generated by 12 is opposite to that generated by I,.
The transformer gets its namefrom the fact that it transforms
currents, voltages, and impedances between its primary and
secondary circuits, and vice versa.

On the primary side of the transformer, the voltage source
VI generates current II in the primary coil, which establishes
a flux eI> in the magnetic core. The flux eI> and voltage VI are
related by Faraday's law:

(6.14)

A similar relation holds true on the secondary side:

del>
V~= -N~ -.- - dt (6.15)
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:~
Figure 6-6: Equivalent circuit for the primary side of the
transformer.

The combination of Eqs. (6.14) and (6.15) gives

(6.16)VI Nt- -
V2 Ni

In an ideal lossless transformer, all the instantaneous power
supplied by the source connected to the primary coil is delivered
to the load on the secondary side. Thus, no power is lost in the
core, and

(6.17)

Since PI = II VI and P2 = l: V2, and in view ofEq. (6.16), we
have

11 N2..........=-- (6:18)

Thus, whereas the ratio of the voltages given by Eq. (6.16)
is proportional to the corresponding turns ratio, the ratio of
the currents is equal to the inverse of the turns ratio. If
Nil N2 = 0.1, V2 of the secondary circuit would be 10 times
VI of the primary circuit, but h would be only 11/10.

The transformer shown in Fig. 6-5(b) is identical to that
in Fig. 6-5(a) except for the direction of the windings of the
secondary coil. Because of this change, the direction of 12
and the polarity of V2 in Fig. 6-5(b) are the reverse of those in
Fig. 6-5(a).

The voltage and current in the secondary circuit in Fig. 6-5(a)
are related by V2 = 12RL. To the input circuit, the transformer
may be represented by an equivalent input resistance Rin, as
shown in Fig. 6-6, defined as

(6.19)

R0 0 0 0 B

T
I Y0 0 0 0 t.u

I 0 0

1 u

0 0
'-Magnetic field line

Movi~g 0 0 0 0
(out of the page)

Wife

Figure 6-7: Conducting wire movingwith velocity u in a static
magnetic field.

Use of Eqs. (6.16) and (6.18) gives

(6.20)

When the load is an impedance ZL and VI is a sinusoidal source,
the phasor-domain equivalent of Eq. (6.20) is

(6.21)

6-4 Moving Conductor in a Static
Magnetic Field

Consider a wire oflength I moving across a static magnetic field
B = zBo with constant velocity u, as shown in Fig. 6-7. The
conducting wire contains free electrons. From Eq. (5.3), the
magnetic force Fro acting on a particle with charge q moving
with velocity u in a magnetic field B is

Fill = q(u x B). (6.22)
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0
y

1 I
0 i.

+
I R ve~r 0

1 2 0- Magnetic field B

x=o
0

I· Xo

Figure 6-8: Sliding bar with velocity u in a magnetic field that increases linearly with x; that is, B = zBOx (Example 6-3).

This magnetic force is equivalent to the electrical force that
would be exerted on the particle by the electric field Em given
by

FIll
Em = - =UX B.

q
(6.23)

The field Em generated by the motion of the charged particle
is called a motional electric field and is in the direction
perpendicular to the plane containing u and B. For the wire
shown in Fig. 6-7, Em is along -yo The magnetic force acting
on the (negatively charged) electrons in the wire causes them to
drift in the direction of -Em; that is, toward the wire end labeled
1 in Fig. 6-7. This, in tum, induces a voltage difference between
ends 1 and 2, with end 2 being at the higher potential. The
induced voltage is called a motional emf, Vc~f' and is defined
as the line integral of Em between ends 2 and I of the wire,

I I

Ve~'f = V12 = f Em . dl = f (u X B) . dl.
2 2

(6.24)

For the conducting wire, u x B = xu X iBo = -yuBo and
dl = Y dl. Hence,

(6.25)

In general, if any segment of a closed circuit with contour C
moves with a velocity u across a static magnetic field B, then
the induced motional emf is given by

Only those segments of the circuit that cross magnetic field
lines contribute to Ve%f'

Example 6-3: Sliding Bar

The rectangular loop shown in Fig. 6-8 has a constant width I,
but its length xo increases with time as a conducting bar slides
with uniform velocity u in a static magnetic field B = zBox.
Note that B increases linearly with x. The bar starts from x = 0
at t = D. Find the motional emf between terminals 1 and 2 and
the current I flowing through the resistor R. Assume that the
loop resistance R, « R.

Solution: This problem can be solved by using the motional
emf expression given by Eq. (6.26) or by applying the general
formula of Faraday's law. We will show that the two approaches
yield the same result.
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The sliding bar, being the only part of the circuit that crosses
the lines of the field B, is the only part of contour 2341 that
contributes to Vc~f' Hence, at x = xo. for example,

4

Vcr::,f = Vl2 = V43 = I (u x B) . dl
3

4

=I (xu x zBoxo) . y dl = -uBoxol.
3

The length of the loop is related to u by Xu = ut . Hence,

(V). (6.27)

Since B is static. V:~'f = 0 and Vernf = V:n,r only. To verify
that the same result can be obtained by the general formof
Faraday's law. we evaluate the flux <l>through the surface of
the loop. Thus,

<l>=i:ds

s

=I (iBox) . z dx dy

s
Xu

I Bolx6
= Bol x dx =--2 .

o
(6.28)

Substituting xo = ut in Eq. (6.28) and then evaluating the
negative of the derivative of the flux with respect to time gives

(V).

(6.29)
which is identical with Eq. (6.27). Since Vl2 is negative. the
current I = Bou21t / R flows in the direction shown in Fig. 6-8.

z

u

R
••..O.5m-.!

Figure 6·9: Moving loop of Example 6-4.

Example 6-4: Moving Loop

The rectangular loop shown in Fig. 6-9 is situated in the
x-y plane and moves away from the origin with velocity
u = y5 (m/s) in a magnetic field given by

B(y) = iO.2e-O.lv (T).

If R = 5 Q, find the current I at the instant that the loop sides
are at YI = 2 m and )'2 = 2.5 m. The loop resistance may be
ignored.

Solution: Since u x B is along X.voltages are induced across
only the sides oriented along x, namely the sides linking points
I and 2. and points 3 and 4. Had B been uniform. the induced
voltages would have been the same and the net voltage across
the resistor would have been zero. In the present case, however.
B decreases exponentially with y, thereby assuming a different
value over side 1-2 than over side 3-4. Side 1-2 is at YI = 2 m,
and the corresponding magnetic field is

Be\']) = iO.2e-O.1Y1 = zO.2e-O.2 (T).

The induced voltage VI2 is then given by

I

VI2 = Ilu x B(ydl·dl
2

-[/2

= f (y5 x iO.2e-O.2) • x dx

1/2

= _e-O.2{ = _2e-U.2 = -1.637 (V).



of the rod in the presence of the field B induces a motional emf
given by
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z

B0 ®B
1= 10 At

r u Metal rod

B0
Wire

®B t I1 2

B0
10 cm-<"~lf.o.~~-30 em -~-'~I

®B

Figure 6-10: Moving rod of Example 6-5.

Similarly,

V43 = -u B(Y2) L= -5 x 0.2e-O.25 x 2

= -1.558 (V).

Consequently, the current is in the direction shown in the figure
and its magnitude is

I = V43 - V12 = 0.079 = 15.8 (rnA).
R 5

Example 6-5: Moving Rod Next to a Wire

The wire shown in Fig. 6-10 carries a current I = 10 A. A
3D-cm-long metal rod moves with a constant velocity u = z5
mls. Find V12.

Solution: The current I induces a magnetic field

~ /.101
B=+-,

2J1"r .

where r is the radial distance from the wire and the direction
of + is into the page on the rod side of the wire. The movement

!O em

VI2 = f (u X B) . dl
40 em

10 em

f (~ i.. /.101) ~ d
= z 5 X 'I' 2J1" r . r r

40 em

5/.101
2J1"

!O emf d:
40 em

= _5 X 4J1" X 10-7 X 10 X In (~)
2J1" 40

= 13.9 (/.1V).

Review Question 6-4: Suppose that no friction is involved
in sliding the conducting bar of Fig. 6-8 and that the
horizontal arms of the circuit are very long. Hence, if the
bar is given an initial push, it should continue moving at
a constant velocity, and its movement generates electrical
energy in the form of an induced emf, indefinitely. Is
this a valid argument? If not, why not'! How can we
generate electrical energy without having to supply an
equal amount of energy by other means?

Review Question 6-5: Is the current flowing in the rod
of Fig. 6-10 a steady current? Examine the force on a
charge q at ends I and 2 and compare.

Exercise 6-3: For the moving loop of Fig. 6-9, find I
when the loop sides are at Yt = 4 m and Y2 = 4.5 m. Also,
reverse the direction of motion such that u = -y5 (m/s),

Answer: 1 = -13 (rnA). (See~)

Exercise 6-4: Suppose that we tum the loop of Fig. 6-9
so that its surface is parallel to the x-z plane. What would
I be in that case?

Answer: 1 = O. (See ~)
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+
V(t)

~'i'-
,,\OJ

Axis of rotation

(a) ac motor

R
"o

,," OJ

\Axis of rotation

(b) ac generator

Figure 6-11: Principles of the ac motor and the ac generator.
In (a) the magnetic torque on the wires causes the loop to rotate,
and in (b) the rotating loop generates an emf.

6-5 The Electromagnetic Generator

The electromagnetic generator is the converse of the
electromagnetic motor. The principles of operation of both
instruments may be explained with the help of Fig. 6-1 I. A
permanent magnet is used to produce a static magnetic field
B in the slot between its two poles. When a current is passed
through the conducting loop, as depicted in Fig. 6-11 (a), the
current flows in opposite directions in segments 1-2 and 3-4 of

z

B

y

~Iip
Loop surface
normal

x

Figure 6-12: A loop rotating in a magnetic field induces an emf.

the loop. The induced magnetic forces on the two segments are
also opposite, resulting in a torque that causes the loop to rotate
about its axis. Thus, in a motor, electrical energy supplied by a
voltage source is converted into mechanical energy in the form
of a rotating loop, which can be coupled to pulleys, gears, or
other movable objects.

If, instead of passing a current through the loop to make
it turn, the loop is made to rotate by an external force, the
movement of the loop in the magnetic field will produce a
motional emf, Ve~f' as shown in Fig. 6-11 (b). Hence, the
motor has become a generator, and mechanical energy is being
converted into electrical energy.

Let us examine the operation of the electromagnetic
generator in more detail using the coordinate system shown
in Fig. 6-12. The magnetic field is

B = 7oRo, (6.30)

and the axis of rotation of the conducting loop is along the
x-axis. Segments 1-2 and 3-4 of the loop are of length I each,
and both cross the magnetic flux lines as the loop rotates. The
other two segments are each of width w, and neither crosses the
B lines when the loop rotates. Hence, only segments 1-2 and
3-4 contribute to the generation of the motional emf, Vc~~f'



This same result can also be obtained by applying the general
form of Faraday's law given by Eq. (6.6). The flux linking the
surface of the loop is
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As the loop rotates with an angular velocity ta about its own
axis, segment 1-2 moves with velocity u given by

~ w
u=nwI' (6.31 )

where D, the surface normal to the loop, makes an angle a with
the z-axis. Hence,

D xi = xsina. (6.32)

Segment 3-4 moves with velocity -u. Application of
Eq. (6.26), consistent with our choice of D, gives

I 3

Ver::,r = VI4 = f (u x B) . dl + f (u x B) . dl
2 4

1/2

= f [(DW~) x iBo] ·xdx
-1/2

-1/2

+ f [(-DW~) x IBo] ·xdx.
1/2

(6.33)

Using Eq. (6.32) in Eq. (6.33), we obtain the result

Ver::,r = wlwBo sin a = AwBo sin a. (6.34)

where A = uil is the surface area of the loop. The angle a is
related to io by

a = cot + Co, (6.35)

where Co is a constant determined by initial conditions. For
example, if a = 0 at t = 0, then Co = O. In general,

Ver::,r = AwBo sin(wt + Co) (V). (6.36)

<I>= f B· ds = f zBo' D ds
s s

= BoAcosa

= BoA cos(wt + Co), (6.37)

and

d<l> d
Vernf = -~ = --[BoAcos(wt + Co)]

dt dt
= AwBo sin(wt + Co), (6.38)

which is identical with the result given by Eq. (6.36).

The voltage induced by the rotating loop is sinusoidal in
time with an angular frequency w equal to that of the
rotating loop, and its amplitude is equal to the product of
the surface area of the loop, the magnitude of the magnetic
field generated b.vthe magnet, and the angular frequency w.

Review Question 6-6: Contrast the operation of an ac
motor with that of an ac generator.

Review Question 6-7: The rotating loop of Fig. 6-12 had
a single turn. What would be the emf generated by a loop
with 10 turns?

Review Question 6-8: The magnetic flux linking the loop
shown in Fig. 6-12 is maximum when ex = 0 (loop in x-y
plane), and yet according to Eq. (6.34), the induced emf
is zero when a = O. Conversely, when a = 90°, the flux
linking the loop is zero, but Ve~f is at a maximum. Is this
consistent with your expectations? Why?
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•• CD Module 6.2 Rotating Wire Loop in Constant Magnetic Field
The principle of the electromagnetic generator is
demonstrated by a rectangular loop rotating in the
presence of a magnetic field.

Module

6-6 Moving Conductor in a
Time-Varying Magnetic Field

B

Vemf is also given by the general expression of Faraday's law:

For the general case of a single-tum conducting loop moving in
a time-varying magnetic field, the induced emf is the sum of a
transformer component and a motional component. Thus, the
sum of Eqs. (6.8) and (6.26) gives

A rectangular wire loop of area A rotates at an
angular frequency (U In a constant magnetic flux
density B O. The purpose of the demo is to Illustrate
how the current vanes in time relative to the 100p'S
posmon.

Note the cirecnon of the current and its magnitude.
as Indicated by its brightness.

Design Janice Richards

Vcmf = V:~f + Ve~f

= f E·dl
c

JaB J
= - at .ds + j (u x B) . dl.

s c

In fact, it can be shown mathematically that the right-hand side
of Eq. (6.39) is equivalent to the right-hand side of Eq. (6.40).
For a particular problem, the choice between using Eq. (6.39)
or Eq. (6.40) is usually made on the basis of which is the easier
to apply. In either case, for an N -turn loop, the right-hand sides
of Eqs. (6.39) and (6.40) should be multiplied by N.

(6.39)
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Technology Brief 12: EMF Sensors

An electromotive force (emf) sensor is a device that can generate an induced voltage in response to an external
stimulus. Three types of emf sensors are profiled in this technical brief: the piezoelectric transducer, the Faraday
magnetic flux sensor, and the thermocouple.

Piezoelectric Transducers

Piezoelectricity refers to the property of certain crystals, such as quartz, to become electrically polarized when the
crystal is subjected to mechanical pressure, thereby exhibiting a voltage across it. The crystal consists of polar
domains represented by equivalent dipoles (Fig. TF12-1). Under the absence of an external force, the polar domains
are randomly oriented throughout the material, but when compressive or tensile (stretching) stress is applied to the
crystal, the polar domains align themselves along one of the principal axes of the crystal, leading to a net polarization
(electric charge) at the crystal surfaces. Compression and stretching generate voltages of opposite polarity. The
piezoelectriC effect (piezein means to press or squeeze in Greek) was discovered by the Curie brothers, Pierre
and Paul-Jacques, in 1880, and a year later, Lippmann predicted the converse property, namely that, if subjected
to an electric field, the crystal would change in shape. Thus, the piezoelectric effect is a reversible (bidirectional)
electromechanical process. Piezoelectric crystals are used in microphones to convert mechanical vibrations (of the
crystal surface) caused by acoustic waves into a corresponding electrical signal, and the converse process is used
in loudspeakers to convert electrical Signals into sound. In addition to having stiffness values comparable to that of
steel, some piezoelectric materials exhibit very high sensitivity to the force applied upon them, with excellent linearity
over a wide dynamic range. They can be used to measure surface deformations as small as nanometers (10-9 m),
making them particularly attractive as positioning sensors in scanning tunneling microscopes. As accelerometers,
they can measure acceleration levels as low as 10-4 g to as high as 100 g (where g is the acceleration due to gravity).
Piezoelectric crystals and ceramics are used in Cigarette lighters and gas grills as spark generators, in clocks and
electronic circuitry as precision oscillators, in medical ultrasound diagnostic equipment as transducers (Fig. TF12-2),
and in numerous other applications.

~--1 Vcmf=O
1<; T L Dipole

1/ -0
y" + I--. ./

Vcmr> 0

F = 0 L...- ---'

(a) No force (b) Compressed crystal (c) Stretched crystal

FigureTF12-1: Response of a piezoelectric crystal to an applied force.
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Case

Epoxy
potting

Piezoelectric
element

Figure TF12-2: The ultrasonic transducer uses piezoelectric crystals.

Faraday Magnetic Flux Sensor

According to Faraday's law [Eq. (6.6)], the emf voltage induced across the terminals of a conducting loop is directly
proportional to the time rate of change of the magnetic flux passing through the loop. For the configuration in Fig.TF12-3,

Vemf = -u Bol.

Conducting loop-,
+

x-
li-

Figure TF12-3: In a Faraday accelerometer, the induced
emf is directly proportional to the velocity of the loop (into
and out of the magnet's cavity).
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where u = dx f dt is the velocity of the loop (into and out of the magnet's cavity), with the direction of u defined as
positive when the loop is moving inward into the cavity, Bo is the magnetic field of the magnet, and I is the loop width.
With Bo and I being constant, the variation of Vcmf(t) with time t becomes a direct indicator of the time variation of u(t).
The time derivative of u (t) provides the acceleration a (t).

Thermocouple

In 1821, Thomas Seebeck discovered that when a junction made of two different conducting materials, such as bismuth
and copper, is heated, it generates a thermally induced emf, which we now call the Seebeck potential \I, (Fig. TF12-4).
When connected to a resistor, a current will flow through the resistor, given by I = Vs/ R.

Cold reference junction
Measurement

junction
Copper

,-----,
I

Bismuth

, J'

Figure TF12-4: Principle of the thermocouple.

This feature was advanced by A. C. Becquerel in 1826 as a means to measure the unknown temperature T2 of a
junction relative to a temperature TJ of a (cold) reference junction. Today, such a generator of thermoelectricity is
called a thermocouple. Initially, an ice bath was used to maintain TJat ooe, but in today's temperature sensor designs,
an artificial cold junction is used instead. The artificial junction is an electric circuit that generates a potential equal to
that expected from a reference junction at temperature Ti.
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Example 6-6: Electromagnetic Generator

Find the induced voltage when the rotating loop of the
electromagnetic generator of Section 6-5 is in a magnetic field
B = zBo cos on, Assume that ex = 0 at t = O.

Solution: The flux <l> is given by Eq. (6.37) with Bo replaced
with Bo cos tot . Thus,

<l> = BoA cos/ on .

and

a<l>
Vcmf =-- at

a
= --;- (BoA cos2 tot )

elt

= 2BoAwcoswtsinwt = BoAw sin 2wl.

6-7 Displacement Current

Ampere's law in differential form is given by

an
VxH=J+- at

(Ampere's law). (6.41 )

Integrating both sides of Eq. (6.41) over an arbitrary open
surface 5 with contour C, we have

f (V x H) . ds = f J .ds + f ~~.ds.
s s s

(6.42)

The surface integral of J equals the conduction current Ie
flowing through 5, and the surface integral of V x H can be
converted into a line integral of H over the contour C bounding
C by invoking Stokes's theorem. Hence,

f H . dl = Ie +f ~~.ds (Ampere's Jaw). (6.43)
c s

The second term on the right-hand side of Eq. (6.43) of course
has the same unit (amperes) as the current Ie, and because it is
proportional to the time derivative of the electric flux density 0,

which is also called the electric displacement, it is called the
displacement current Id. That is,

Id = IJd ·ds=I~~-ds, (6.44)
s s

where Jd = aD/at represents a displacement current density.
In view ofEq. (6.44),

f H·dl = t,+ ld = I.
c

(6.45)

where I is the total current. In electrostatics, aD/at = 0 and
therefore ld = 0 and I = le. The concept of displacement
current was first introduced in 1873 by James Clerk Maxwell
when he formulated the unified theory of electricity and
magnetism under time-varying conditions.

The parallel-plate capacitor is commonly used as an example
to illustrate the physical meaning of the displacement current
ld. The simple circuit shown in Fig. 6-13 consists of a capacitor
and an ac source with voltage V,(t) given by

(V). (6.46)

According to Eq. (6.45), the total current flowing through any
surface consists, in general, of a conduction current lc and
a displacement current ld. Let us find Ie and ld through
each of the following two imaginary surfaces: (I) the cross
section of the conducting wire, 51. and (2) the cross section
of the capacitor S2 (Fig. 6-13). We denote the conduction
and displacement currents in the wire as lie and lid and those
through the capacitor as he and li«.

In the perfectly conducting wire, 0 = E= 0; hence,
Eq. (6.44) gives lid = O. As for lie. we know from circuit
theory that it is related to the voltage across the capacitor Vc by

dVc d
lie = C - = C - (Vocoswt) = -CVowsinwt, (6.47)

dt dt

where we used the fact that Vc = V,(t). With lid = 0, the total
current in the wire is simply II = l vc = -CVowsinwt.

In the perfect dielectric with permittivity e between the
capacitor plates. a = O. Hence,/2c = 0 because no conduction
current exists there. To determine Iz«. we need to apply
Eq. (6.44). From Example 4-11, the electric field E in the
dielectric spacing is related to the voltage Vc across its plates
by

• Vc • Vo
E = Y d = Y d cos tot , (6.48)
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Imaginary
surface 51

\
Imaginary
surface 52

Figure 6·13: The displacement current f2d in the insulating material of the capacitor is equal to the conducting current lie in the wire.

where d is the spacing between the plates and y is the direction
from the higher-potential plate toward the lower-potential plate
at t = O. The displacement current 12u is obtained by applying
Eq. (6.44) with ds = y ds:

faD
12d = - ·dsat

s

f [a (' e Vo ) ] ,= at Y d cos cot '(y ds)
A

cA= - - Vow sin wt = -C Vow sin tot ,
d

(6.49)

where we used the relation C = cA/d for the capacitance of
the parallel-plate capacitor with plate area A. The expression
for h« in the dielectric region between the conducting plates
is identical with that given by Eq. (6.47) for the conduction
current lie in the wire. The fact that these two currents are
equal ensures the continuity of total current flow through the
circuit.

Even though the displacement current does not transport
free charges, it nonetheless behaves like a real current.

In the capacitor example, we treated the wire as a perfect
conductor, and we assumed that the space between the capacitor
plates was filled with a perfect dielectric. If the wire has a finite
conductivity aI\', then D in the wire would not be zero, and
therefore the current II would consist of a conduction current
Ilc as well as a displacement current lid; that is, II = lie + lid.

By the same token, if the dielectric spacing material has a

nonzero conductivity ad, then free charges would flow between
the two plates, and 12e would not be zero. In that case, the total
current flowing through the capacitor would be l: = he + hd.
No matter the circumstances. the total capacitor current remains
equal to the total current in the wire. That is, II = 12.

Example 6·7: DIsplacement Current Density

The conduction current flowing through a wire with conductiv-
ity (1 = 2 X 107 Sim and relative permittivity Sf = I is given
by Ie = 2 sin cot (rnA), If co = 10<)rad/s, find the displacement
current.

Solution: The conduction current Ie = J A = (1 E A, where
A is the cross section of the wire. Hence,

t; 2 X 10-3 sin cot
E = a A = 2 X 107 A

x 10-10
---- sin cot (Vim).

A

Application ofEq. (6.44), with D = 8E, leads to

Id = idA
aE

=sA-at
a (I x 10-10

. )
= FA - A sin corat
= eco x 10-10 cos t»t = 0.885 x 10-12 cos cot (A),
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Table 6-2: Boundary conditions for the electric and magnetic fields.

Field Components General Form Medium 1 Medium 2 Medium 1 Medium 2
Dielectric Dielectric Dielectric Conductor

Tangential E li2 x (EI - E2) = 0 Elt = E2t Elt = E2t = 0

Normal 0 li2 ·(01 - Dz) = Ps Din - DZn = Ps Din = Ps D2n =0

Tangential H liz x (H I - H2) = Js Hit = H2t Hit = is HZt = 0

Normal 8 li2 . (8 I - 82) = 0 Bin = B2n Bin = B2n = 0

Notes: (1) Ps is the surface charge density at the boundary; (2) Js is the surface current density at the boundary; (3) normal
components of all fields are along liz. the outward unit vector of medium 2; (4) Ell = E21 implies that the tangential
components are equal in magnitude and parallel in direction: (5) direction ofJ, is orthogonal to (H, - H2).

where we used w = 109 rad/s and E = EO = 8.85 x 10-12 F/m.
Note that Ie and Id are in phase quadrature (900 phase shift
between them). Also, Id is about nine orders of magnitude
smaller than l.; which is why the displacement current usually
is ignored in good conductors.

Exercise 6-5: A poor conductor is characterized by a
conductivity (J = 100 (S/m) and permittivity 8 = 480.

At what angular frequency w is the amplitude of the
conduction current density J equal to the amplitude of
the displacement current density Jd?

Answer: w = 2.82 x i012 (rad/s). (See <e»

6-8 Boundary Conditions for
Electromagneti cs

In Chapters 4 and 5 we applied the integral form of Maxwell's
equations under static conditions to obtain boundary conditions
applicable to the tangential and normal components ofE, D, B,
and H on interfaces between contiguous media (Section 4-8
for E and D and in Section 5-6 for B and H). In the dynamic
case, Maxwell's equations (Table 6-1) include two new terms
not accounted for in electrostatics and magnetostatics. namely,
aB/at in Faraday's law and aD/at in Ampere's law.

Nevertheless, the boundary conditions derived previously
for electrostatic and magnetostatic fields remain valid for
time-varying fields as well.

This is because, if we were to apply the procedures outlined in
the above-referenced sections for time-varying fields, we would
find that both of the aforementioned terms vanish as the areas
of the rectangular loops in Figs. 4-18 and 5-24 are made to
approach zero.

The combined set of electromagnetic boundary conditions is
summarized in Table 6-2.

Review Question 6-9: When conduction current flows
through a material, a certain number of charges enter the
material on one end and an equal number leave on the
other end. What's the situation like for the displacement
current through a perfect dielectric?

Review Question 6-10: Verify that the integral form of
Ampere's law given by Eq. (6.43) leads to the boundary
condition that the tangential component of H is continuous
across the boundary between two dielectric media.

6-9 Charge-Current Continuity Relation

Under static conditions, the charge density p" and the current
density J at a given point in a material are totally independent of
one another. This is no longer true in the time-varying case. To
show the connection between p; and J, we start by considering
an arbitrary volume Vbounded by a closed surface S (Fig. 6-14).
The net positive charge contained in V is Q. Since, according
to the law of conservation of electric charge (Section 1-3.2),
charge can neither be created nor destroyed, the only way Q
can increase is as a result of a net inward flow of positive charge
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Charge density p,

J

J

Figure 6-14: The total current flowing out of a volume V is equal
to the flux of the current density J through the surface S, which
in tum is equal to the rate of decrease of the charge enclosed
inV.

into the volume V. By the same token, for Q to decrease there
has to be a net outward flow of charge from V. The inward and
outward flow of charge constitute currents flowing across the
surface S into and out of V, respectively. We define I as the net
current flowing across S out of V. Accordingly, I is equal to
the negative rate of change of Q:

I = - d Q = _!!... f p av
dt dt ' ,

V

(6.50)

where p; is the volume charge density in V. According to
Eq. (4.12), the current I is also defined as the outward flux of
the current density J through the surface S. Hence,

f J .ds = - :t f p; dV.
s V

(6.51 )

By applying the divergence theorem given by Eq. (3.98), we
can convert the surface integral of J into a volume integral of
its divergence V . J, which then gives

(6.52)

For a stationary volume V, the time derivative operates on p;
only. Hence, we can move it inside the integral and ex.press it
as a partial derivative of p.:

f f op;
V, J dV = - -. dV.at

V V

(6.53)

Figure 6-15: Kirchhoff's current law states that the algebraic
sum of all the currents flowing out of a junction is zero.

In order for the volume integrals on both sides of Eq. (6.53) to
be equal for any volume V, their integrands have to be equal at
every point within V. Hence,

1V· J= -if, (6.54>1

which is known as the charge-current continuity relation, or
simply the charge continuity equation.

If the volume charge density within an elemental volume ~ V
(such as a small cylinder) is not a function of time (Le.,
opv lat = 0), it means that the net current flowing out of I'l V is
zero or, equivalently, that the current flowing into ~ V is equal
to the current flowing out of it. In this case, Eq. (6.54) implies

V·J=O, (6.55)

and its integral-form equivalent [from Eq. (6.51)1 is

(6.56)f J. ds = 0 (Kirchhoff·scurrentlaw).
s

Let us examine the meaning of Eq. (6.56) by considering
a junction (or node) connecting two or more branches in an
electric circuit. No matter how small, the junction has a
volume V enclosed by a surface S. The junction shown in
Fig. 6-15 has been drawn as a cube, and its dimensions have
been artificially enlarged to facilitate the present discussion.
The junction has six faces (surfaces), which collectively
constitute the surface S associated with the closed-surface
integration given by Eq. (6.56). For each face, the integration
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represents the current flowing out through that face. Thus,
Eq. (6.56) can be cast as

(Kirchhoff's current law), (6.57)

where I, is the current flowing outward through the ith
face. For the junction of Fig. 6-15, Eq. (6.57) translates
into (II + l: + 13) = O. In its general form, Eq. (6.57) is an
expression of Kirchhoff's current law, which states that in an
electric circuit the sum of all the currents flowing out of a
junction is zero.

6-10 Free-Charge Dissipation in a
Conductor

We stated earlier that current flow in a conductor is realized by
the movement of loosely attached electrons under the influence
of an externally applied electric field. These electrons, however,
are not excess charges; their charge is balanced by an equal
amount of positive charge in the atoms' nuclei. In other words,
the conductor material is electrically neutral, and the net charge
density in the conductor is zero (Pv = 0). What happens then if
an excess free charge q is introduced at some interior point in a
conductor? The excess charge will give rise to an electric field,
which will force the charges of the host material nearest to the
excess charge to rearrange their locations, which in tum cause
other charges to move, and so on. The process will continue
until neutrality is reestablished in the conductor material and a
charge equal to q resides on the conductor's surface.

How fast does the excess charge dissipate? To answer this
question, let us introduce a volume charge density Pva at the
interior of a conductor and then find out the rate at which it
decays down to zero. From Eq. (6.54), the continuity equation
is given by

'V . J = _ dPy .
at (6.58)

In a conductor, the point form of Ohm's law, given by Eq. (4.63),
states that J = aE. Hence,

iJpv
a'V·E=--.at (6.59)

Next, we use Eq. (6.1), 'V. E = Py/E, to obtain the partial
differential equation

dPv a- + -Pv =0.at E
(6.60)

Given that Pv = Pya at t = 0, the solution of Eq. (6.60) is

(6.61 )

where Tr = ef a is called the relaxation time constant. We
see from Eq. (6.61) that the initial excess charge Pv() decays
exponentially at a rate Tr• At t = r-, the initial charge Pvo

will have decayed to I/e:::::: 37% of its initial value, and at
t = 3'r, it will have decayed to e-3 :::::: 5% of its initial value
at t = O. For copper, with E :::::: EO = 8.854 x 10-12 Flm and
a = 5.8 x 107 Slm, Tr = 1.53 x 10-19 s. Thus, the charge
dissipation process in a conductor is extremely fast. In contrast,
the decay rate is very slow in a good insulator. For a material
like mica with E = 6Eo and a = 10-15 Slm, Tr = 5.31 x 104 s,
or approximately 14.8 hours.

Review Question 6-11: Explain how the charge
continuity equation leads to Kirchhoff's current law.

Review Question 6-12: How long is the relaxation time
constant for charge dissipation in a perfect conductor? In
a perfect dielectric?

Exercise 6-6: Determine (a) the relaxation time constant
and (b) the time it takes for a charge density to decay to
1% of its initial value in quartz, given that Sr = 5 and
(1 = 10-17 S/m.

Answer: (a) 'r = 51.2 days, (b) 236 days. (See ~)

6-11 Electromagnetic Potentials

Our discussion of Faraday's and Ampere's laws revealed
two aspects of the link between time-varying electric and
magnetic fields. We will now examine the implications of this
interconnection on the electric scalar potential V and the vector
magnetic potential A.

In the static case, Faraday's law reduces to

'VxE=O (static case). (6.62)

which states that the electrostatic field E is conservative.
According to the rules of vector calculus, if a vector field E
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is conservative, it can be expressed as the gradient of a scalar.
Hence, in Chapter 4 we defined E as

E= -VV (electrostatics ). (6.63)

In the dynamic case, Faraday's law is

aB
Vx E=--.

i1t
(6.64)

In view of the relation B = V x A. Eq. (6.64) can be expressed
as

il
VxE=--(VxA),

ilt
(6.65)

which can be rewritten as

(
ilA)v x E+- =0at (dynamic case). (6.66)

Let us for the moment define

I iJA
E=E+-~ .

ill
(6.67)

Using this definition. Eq. (6.66) becomes

V X E' = O. (6.68)

Following the same logic that led to Eq, (6.63) from Eq. (6.62),
we define

E' = -VV. (6.69)

Upon substituting Eq. (6.67) for E' in Eq. (6.69) and then
solving for E. we have

(dynamic case). (6.70) I
Equation (6.70) reduces to Eq. (6.63) in the static case.

When the scalar potential V and the vector potential A are
known, E can be obtained from Eq. (6.70), and B can be
obtained from

Next we examine the relations between the potentials, V and A,
and their sources, the charge and current distributions p; and J.
in the time-varying case.

Charge
distribution Pv

~V'

x

Figure 6-16: Electric potential V (R) due to a charge
distribution Pv over a volume V'.

6-11.1 Retarded Potentials

Consider the situation depicted in Fig. 6-16. A charge
distribution p" exists over a volume V' embedded in a perfect
dielectric with permittivity F:. Were this a static charge
distribution. then from Eq. (4.48a). the electric potential V (R)

at an observation point in space specified by the position
vector R would be

VCR) = _1- f p,,(Rj) av.
4JTF: R'

v'

(6.72)

where R, denotes the position vector of an elemental volume
~ V' containing charge density Pv(Rj). and R' = IR - R, I is the
distance between !1V' and the observation point. If the charge
distribution is time-varying, we may be tempted to rewrite
Eq. (6.72) for the dynamic case as

VCR t) = _1- f Pv(Ri. t) dV'
• 4JTF: R' •

v'

(6.73)

but such a form does not account for "reaction time." If VI is
the potential due to a certain distribution p, I. and if p; I were
to suddenly change to Pv2. it will take a finite amount of time
before VI a distance R' away changes to V2. In other words.
V (R. t) cannot change instantaneously. The delay time is equal
to t' = R' fup, where up is the velocity of propagation in the
medium between the charge distribution and the observation
point. Thus, V (R. t) at time t corresponds to p; at an earlier
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time, that is, (t - tl). Hence, Eq. (6.73) should be rewritten as

(V),

(6.74)

and VCR, t) is appropriately called the retarded scalar
potential. If the propagation medium is vacuum, up is equal to
the velocity of light c.

Similarly, the retarded vector potential A(R, t) is related to
the distribution of current density J by

(6.75)

This expression is obtained by extending the expression for the
magnetostatic vector potential A(R) given by Eq. (5.65) to the
time-varying case.

6-11.2 Time-Harmonic Potentials

The expressions given by Eqs. (6.74) and (6.75) forthe retarded
scalar and vector potentials are valid under both static and
dynamic conditions and for any type of time dependence of the
source functions Pv and J. Because V and A depend linearly
on p, and J, and as E and B depend linearly on V and A,
the relationships interconnecting all these quantities obey the
rules oflinear systems. When analyzing linear systems, we can
take advantage of sinusoidal-time functions to determine the
system's response to a source with arbitrary time dependence.
As was noted in Section 1-7, if the time dependence is described
by a (nonsinusoidal) periodic time function, it can always be
expanded into a Fourier series of sinusoidal components, and
if the time function is nonperiodic, it can be represented by a
Fourier integral. In either case, if the response of the linear
system is known for all steady-state sinusoidal excitations, the
principle of superposition can be used to determine its response
to an excitation with arbitrary time dependence. Thus, the
sinusoidal response of the system constitutes a fundamental
building block that can be used to determine the response due
to a source described by an arbitrary function of time. The term
time harmonic is often used in this context as a synonym for
"steady-state sinusoidal time dependence."

In this subsection, we will derive expressions for the scalar
and vector potentials due to time-harmonic sources. Suppose
that pARj, t) is a sinusoidal-time function with angular
frequency w, given by

(6.76)

Phasor analysis, which was first introduced in Section 1-7 and
then used extensively in Chapter 2 to study wave propagation on
transmission lines, is a useful tool for analyzing time-harmonic
scenarios. A time harmonic charge distribution Pv(Rj, t) is
related to its phasor p,(Rj) as

(6.77)

Comparison of Eqs. (6.76) and (6.77) shows that in the present
case p, (Ri) = p; (Rj) eN.

Next, we express the retarded charge density
Pv(Ri, t - RI jup) in phasor form by replacing t with
(I - R' jup) in Eq. (6.77):

Pv(Rj, t - R' jUr) = 91c [Pv(Rj) ejW(t-R'jlJP)]

= 91£ [Pv(Rj) e: j,oR 'jUpejW!]

= 91£ [PARi) «:jkR' ejUJt] , (6.78)

where
w

k=-
up

is called the wavenumber or phase constant of the propagation
medium. (In general, the phase constant is denoted by the
symbol "B", but for lossless dielectric media, it is commonly
denoted by the symbol "k" and called the wavenumber.)
Similarly, we define the phasor V (R) of the time function
VCR, t) according to

(6.79)

V (R. t) = 91c [V (R) ejwt] .

Using Eqs. (6.78) and (6.80) in Eq. (6.74) gives

9te [V(R)ejwt] =

(6.80)

9te [_1 f
4JT£

v'

(6.81 )
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Example 6-8: Relating E to H
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By equating the quantities inside the square brackets on both
sides of Eq. (6.81) and cancelling the common ej"" factor, we
obtain the phasor-dornain expression

1 f -(R) -jkR'
V(R) = - Pv i e dV' (V). (6.82)

41f£ R'
v'

For any given charge distribution. Eq. (6.82) can be used to
compute V (R), and then the resultant expression can be used
in Eq. (6.80) to find V (R, n. Similarly, the expression for
A(R, 1) given by Eq. (6.75) can be transformed into

(6.83)

with

- . -jkR'
A(R) = ; f J{Ri) ;, dV', (6.84)

v'

where J(Ri) is the phasor function corresponding to J(Ri. r).

The magnetic field phasor H corresponding to A is given by

~ I ~
H = - \l x A.

J.1
(6.85)

Recalling that differentiation in the time domain is equivalent to
multiplication by jia in the phasor domain, in a nonconducting
medium (J = 0), Ampere's law given by Eq. (6.41) becomes

(6.86) I

Hence, &,ivena time-harmonic current-density distribution with
phasor J, Eqs. (6.84) to (6.86) can be used successively to
determine both E and H. The phasor vectors E and H also
are related by the phasor form of Faraday's law:

VxE=-jw~ii
,.",1-
H=--VxE.. jwp, (6.87)

In a nonconducting medium with 8 = 1680 and J.1 = J.10, the
electric field intensity of an electromagnetic wave is

E(z, t) = x IOsin(10lOt - kz) (Vim). (6.88)

Determine the associated magnetic field intensity H and find
the value of k.

Solution: We begin by finding the phasor E(z) of Etz, 1).
Since Erz. t) is given as a sine function and phasors are defined
in this book with reference to the cosine function. we rewrite
Eq. (6.88) as

E(z, t) = X IOcos(lOlOr - kz - n/2)

= 'Rc [E(Z) ejUJI
] ,

(Vim)

(6.89)

with t» = 1010 (rad/s) and

(6.90)

To find both H(z) and k, we wiIJ perform a "circle": we will
use the given exp~ssion for E(z) in Faraday's I~ to find H(z);
then we will use H(z)in Ampere's law to find E(~),which we
will then compare with the original expression for E(z);and the
comparison will yield the value of k. Application of Eq. (6.87)
gives

~ 1 ~
H(z)=--.-\lxE

JWJ.1

y Z
a/ay a/az

o 0

x
a/ax

_ j lOe- jkz

1 [, a jkz ]= --. - y -;-(-jlOe- )
JWJ.1 i)z

, . 10k -}kz= -YJ-e
WJ.1

(6.91 )
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So far, we have used Eq. (6.90) for E(z) to find H(z), but k
remains unknown. To find k, we use H(z) in Eq, (6.86) to find
E(z):

- 1 -E(z) = -. - V' x 8
jcoe

_ 1 [ , a ( . 10k _ jkZ)]-- -x- -)-e
jcoe oz w/-t

'. IOk2 -,kz
=-x) --e

w2/-t£
(6.92)

Equating Eqs. (6.90) and (6.92) leads to

or

k=w.j!I£
= 4wv'/-toco

4w 4 x 1010
= - = = 133

c 3 x 108
(rad/m). (6.93)

With k known, the instantaneous magnetic field intensity is then
given by

H(z, t) = me [H(Z) ejUJl
]

ru [ '. 10k -j'kz j'wl]=ne -y) -e e
w/-t

= y 0.11 sine JOIOt - 133z) (A/m). (6.94)

We note that k has the same expression as the phase constant
of a lossless transmission line [Eq. (2.49) J.

Exercise 6-7: The magnetic field intensity of an
electromagnetic wave propagating in a lossless medium
with e = 9£0 and f..L = f..LO is

8(z, t) = xO.3 cos(108t - kz + tt /4)

Find E(z, t) and k.

Answer: E(z, t) = -y 37.7 cos(108t-z+Jr/4)(V/m);
k = 1 (rad/m). (See ~)

(Arm),

Chapter 6 Relationships

Faraday's Law

det> d f tr m
V. f = -- = -- B· ds = V mf + V mfem dt dt e e

S

Transformer

tr f aBV =-N -·dsemf at
s

(N loops)

Motional

Ve~f = feu x B) ·d}

c

Charge-Current Continuity

0pv
V'J=--at

EM Potentials

aA
E=-VV-- atB=V'xA

Current Density

Conduction Jc =aE
aD

Jd=-atDisplacement

Conductor Charge Dissipation

pAt) = pvoe-(a/e)t = pvoe-t/r,



• The charge continuity equation is a mathematical
statement of the law of conservation of electric charge.
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CHAPTER HIGHLIGHTS

• Faraday's law states that a voltage is induced across
the terminals of a loop if the magnetic flux linking its
surface changes with time.

• In an ideal transformer, the ratios of the primary
to secondary voltages, currents, and impedances are
governed by the turns ratio.

• Displacement current accounts for the "apparent" flow
of charges through a dielectric. In reality, charges
of opposite polarity accumulate along the two ends
of a dielectric, giving the appearance of current flow
through it.

• Boundary conditions for the electromagnetic fields at
the interface between two different media are the same
for both static and dynamic conditions.

• Excess charges in the interior of a good conductor
dissipate very quickly; through a rearrangement
process, the excess charge is transferred to the surface
of the conductor.

• In the dynamic case, the electric field E is related to
both the scalar electric potential V and the magnetic
vector potential A.

• The retarded scalar and vector potentials at a given
observation point take into account the finite time
required for propagation between their sources, the
charge and current distributions, and the location of
the observation point.

GLOSSARY OF IMPORTANT TERMS

Provide definitions or explain the meaning of the following terms:

charge continuity equation
charge dissipation
displacement current Id
electromagnetic induction
electromotive force Vemf

Faraday's law
Kirchhoff's current law
Lenz's law
motional emf Ve~f

relaxation time constant

PROBLEMS

Sections 6-1 to 6-6: Faraday's Law and its Applications

*6.1 The switch in the bottom loop of Fig. P6.1 is closed at
f = 0 and then opened at a later time II. What is the direction
of the current I in the top loop (clockwise or counterclockwise)
at each of these two times'?

* . .. .Answer(s) available in Appendix D.

retarded potential
transformer emf V~~lf

wavenumber k

R2~------~~~------~
~==:::::::::II

~~=_tl __ ;''YIIN~1~I
Rl

Figure P6.1: Loops of Problem 6.1.
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6.2 The loop in Fig. P6.2 is in the x-y plane and
~ = zBp sin cot with 80 positive. What is the direction of J
(cjI or -cjl) at:

(a) t = 0
(b) cot = n /4
(e) cot = rr/2

z

Figure P6.2: Loop of Problem 6.2.

*6.3 A coil consists of 100 turns of wire wrapped around a
square frame of sides 0.25 m. The coil is centered at the origin
with each of its sides parallel to the x- or y-axis. Find the
induced emf across the open-circuited ends of the coil if the
magnetic field is given by
(a) B = z 20e-3f (T)

(b) B = z20cosx cos 103[ (T)
(e) B = z 20 cos x sin 2y cos 103[ (T)

6.4 A stationary conducting loop with an internal resistance
of 0.5 Q is placed in a time-varying magnetic field. When the
loop is closed, a current of 5 A flows through it. What will the
current be if the loop is opened to create a small gap and a 2-Q
resistor is connected across its open ends'?

*6.5 A circular-loop TY antenna with 0.02-m2 area is in the
presence of a uniform-amplitude 300-MHz signal. When
oriented for maximum response, the loop develops an emf with
a peak value of 30 (mY). What is the peak magnitude of B of
the incident wave?

6.6 The square loop shown in Fig. P6.6 is coplanar with a
long, straight wire carrying a current

J (t) = 5 cos(2rr x 104t) (A).

(a) Determine the emf induced across a small gap created in
the loop.

(b) Determine the direction and magnitude of the current that
would flow through a 4-r2 resistor connected across the
gap. The loop has an internal resistance of 1 Q.

z

/(1) T
10 em

1

f--10 em-J

5cm

x

~----------------------~y

Figure P6.6: Loop coplanar with long wire (Problem 6.6).

*6.7 The rectangular conducting loop shown in Fig. P6.7
rotates at 6,000 revolutions per minute in a uniform magnetic
flux density given by

B =y50 (mT).

Determine the current induced in the loop if its internal
resistance is 0.5 r2.

z

x

Figure P6.7: Rotating loop in a magnetic field (Problem 6.7).

"I;< Solution available Oil CD.



6.11 The loop shown in P6.11 moves away from a wire
carrying a current 11 = 10 A at a constant velocity u = Y7.5
(m/s). If R = 10 Q and the direction of 12 is as defined in the
figure, find 12 as a function of YO, the distance between the wire
and the loop. Ignore the internal resistance of the loop.
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$'\. 6.8 The transformer shown in Fig. P6.S consists of a long
wire coincident with the z-axis carrying a current 1 = 10 cos on,
coupling magnetic energy to a toroidal coil situated in the x-y
plane and centered at the origin. The toroidal core uses iron
material with relative permeability Mr, around which 100 turns
of a tightly wound coil serves to induce a voltage Vemf. as shown
in the figure.

z

Figure P6.8: Problem 6.S.

(a) Develop an expression for Vemf.

(b) Calculate Velllf for f = 60 Hz, J1r = 4000, a = 5 em,
b = 6 cm, C = 2 cm, and 10 = 50 A.

6.9 A rectangular conducting loop 5 ern x 10 em with a small
air gap in one of its sides is spinning at 7200 revolutions per
minute. If the field B is normal to the loop axis and its magnitude
is 6 x 10-6 T, what is the peak voltage induced across the air gap?

*6.10 A 50-em-long metal rod rotates about the z-axis at 90
revolutions per minute, with end Ifixed at the origin as shown in
Fig. P6.1 O. Determine the induced emf Vl2 ifB = 1. 2 X 10-4 T.

--80...'
;

I

o

x

\

0' .... o

Figure P6.10: Rotating rod of Problem 6.10.

z
l-lOcm-1

R

I, = 10 A I u

20 em l:

1 u

R

Yo

Figure P6.11: Moving loop of Problem 6.11.

6.12 The electromagnetic generator shown in Fig. 6-12 is
connected to an electric bulb with a resistance of 150 Q. If the
loop area is 0.1 m2 and it rotates at 3,600 revolutions per minute
in a uniform magnetic flux density Bo = 0.4 T, determine the
amplitude of the current generated in the light bulb.

*6.13 The circular, conducting, disk shown in P6.13 lies in the
x-y plane and rotates with uniform angular velocity co about
the z-axis. The disk is of radius a and is present in a uniform
magnetic flux density 8 = zBo. Obtain an expression for the
emf induced at the rim relative to the center of the disk.

x

Figure P6.13: Rotating circular disk in a magnetic field
(Problem 6.13).
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Section 6-7: Displacement Current

6.14 The plates of a parallel-plate capacitor have areas of
10 cm2 each and are separated by 2 em. The capacitor is filled
with a dielectric material with e = 4Eo, and the voltage across it
is given by V (t) = 30 cos 2n: x 106t (V). Find the displacement
current.

*6.15 A coaxial capacitor oflength I = 6 em uses an insulating
dielectric material with Er = 9. The radii of the cylindrical
conductors are 0.5 ern and I cm. If the voltage applied across
the capacitor is

V(t) = 50sin(l20n:t) (V),

what is the displacement current?

6.16 The parallel-plate capacitor shown in Fig. P6.l6 is filled
with a lossy dielectric material of relative permittivity Er and
conductivity IJ. The separation between the plates is d and each
plate is of area A. The capacitor is connected to a time-varying
voltage source V (r).

(a) Obtain an expression for Ie, the conduction current flowing
between the plates inside the capacitor, in terms of the
given quantities.

(b) Obtain an expression for ld, the displacement current
flowing inside the capacitor.

(c) Based on your expressions for parts (a) and (b), give an
equivalent-circuit representation for the capacitor.

I

T
d

1
+

Vet) e. (1

Figure P6.16: Parallel-plate capacitor containing a lossy
dielectric material (Problem 6. (6).

(d) Evaluate the values of the circuit elements for
A = 4 crrr'. d = 0.5 ern, Er = 4, IJ = 2.5 (S/m),
and Vet) = IOcos(3n: x 103t) (V).

*6.17 In wet soil, characterized by (1 = 10-2 (S/m), Jir = 1,
and e, = 36, at what frequency is the conduction current density
equal in magnitude to the displacement current density?

6.18 An electromagnetic wave propagating in seawater has
an electric field with a time variation given by E = zEo cos tot,
If the permittivity of water is 81£0 and its conductivity is 4
(S/m), find the ratio of the magnitudes of the conduction current
density to displacement current density at each of the following
frequencies:

(a) I kHz.

(b) I MHz.

(c) I GHz.

(d) 100 GHz.

Sections 6-9 and 6-10: Continuity Equation and Charge
Dissipation

6.19 At t = 0, charge density PvO was introduced into the
interior of a material with a relative permittivity Er = 9. If at
t = 1 JiS the charge density has dissipated down to 10-3 pya,
what is the conductivity of the material?

*6.20 If the current density in a conducting medium is given
by

J(x, y, z: t) = (xz - y3l + i2x) cos ox.

determine the corresponding charge distribution pvC>::. y, z: 1).

6.21 In a certain medium, the direction of current density J
points in the radial direction in cylindrical coordinates and its
magnitude is independent of both ¢ and z. Determine J, given
that the charge density in the medium is

Pv = Par cos w{ (C/m3).

6.22 If we were to characterize how good a material is as an
insulator by its resistance to dissipating charge, which of the
foIlowing two materials is the better insulator'?

Dry Soil:
Fresh Water:

a = 10-4 (S/m)
(1 = 10-3 (S/m)

Er = 2.5,
Er = 80,
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Sections 6-11: Electromagnetic Potentials

6.23 The electric field of an electromagnetic wave propagat-
ing in air is given by

E(z,1) = i4cos(6 x lOSt - 2z)

+ y3 sin(6 x 108t - 2z) (VIm).

Find the associated magnetic field Htz , t).

*6.24 The magnetic field in a dielectric material with s = 4t:o.
11 = /10, and a = 0 is given by

Hty, t) = i5cos(2JT x J07t + ky) (AIm).

Find k and the associated electric field E.

6.25 Given an electric field

E = xEosinaycos(wt - kz),

where Eo, a, ca, and k are constants, find H.

*6.26 The electric field radiated by a short dipole antenna is
given in spherical coordinates by

E(R, e; t) =

, 2 X 10-2a R sin e cos(6JT x 108t - 2JT R) (VIm).

Find H(R, o. t).

6.27 A Hertzian dipole is a short conducting wire carrying
an approximately constant current over its length I. If such a
dipole is placed along the z-axis with its midpoint at the origin,
and if the current flowing through it is i(t) = 10 cos tot, find the
following:

(a) The retarded vector potential A( R, e, ¢) at an observation
point Q(R, e, ¢) in a spherical coordinate system.

(b) The magnetic field phasor H(R. e. ¢).

Assume I to be sufficiently small so that the observation point
is approximately equidistant to all points on the dipole; that is.
assume R' :::::R.

6.28 In free space, the magnetic field is given by

, 36 9
H = • =-- cos(6 x 10 t - kz)

r
(mAIm).

(a) Determine k.
(b) Determine E.

(c) Determine Ja.

6.29 The magnetic field in a given dielectric medium is given
by

H = y6cos2zsin(2 x 107t - O.lx) (AIm),

where x and z are in meters. Determine:
(a) E,

(b) the displacement current density Jd. and

(c) the charge density p\'o
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Objectives

Upon learning the material presented in this chapter, you should
be able to:

1. Describe mathematically the electric and magnetic fields
of TEM waves.

2. Describe the polarization properties of an EM wave.

3. Relate the propagation parameters of a wave to the
constitutive parameters of the medium.

4. Characterize the flow of current in conductors and use it
to calculate the resistance of a coaxial cable.

5. Calculate the rate of power carried by an EM wave, in both
loss less and lossy media.
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Unbounded EM Waves

It was established in Chapter 6 that a time-varying electric
field produces a magnetic field and, conversely, a time-varying
magnetic field produces an electric field. This cyclic pattern
often results in electromagnetic (EM) waves propagating
through free space and in material media. When a wave
propagates through a homogeneous medium without interacting
with obstacles or material interfaces. it is said to be unbounded.
Light waves emitted by the sun and radio transmissions by
antennas are good examples. Unbounded waves may propagate
in both lossless and lossy media. Waves propagating in a
lossless medium (e.g .. air and perfect dielectrics) are similar to
those on a lossless transmission line in that they do not attenuate.
When propagating in a lossy medium (material with nonzero
conductivity, such as water). part of the power carried by an EM
wave gets converted into heat. A wave produced by a localized
source. such as an antenna. expands outwardly in the form of
a spherical wm'e. as depicted in Fig. 7-1(a). Even though an
antenna may radiate more energy along some directions than
along others. the spherical wave travels at the same speed
in all directions. To an observer very far away from the
source, however, the wavefront of the spherical wave appears
approximately planar, as if it were part of a uniform plane
wave with identical properties at all points in the plane tangent
to the wavefront [Fig, 7-1(h)]. Plane-waves are easily described
using a Cartesian coordinate system. which is mathematically
easier to work with than the spherical coordinate system needed
to describe spherical waves.

When a wave propagates along a material structure. it is said
to be guided. Earth's surface and ionosphere constitute parallel
boundaries of a natural structure capable of guiding short-wave
radio transmissions in the HF band' (3 to 30 MHz); indeed,
the ionosphere is a good reflector at these frequencies. thereby
allowing the waves to zigzag between the two boundaries
(Fig. 7-2). When we discussed wave propagation on a
transmission line in Chapter 2, we dealt with voltages and
currents. For a transmission-line circuit such as that shown
in Fig. 7-3, the ac voltage source excites an incident wave that
travels down the coaxial line toward the load, and unless the
load is matched to the line, part (or all) of the incident wave
is reflected back toward the generator. At any point on the
line, the instantaneous total voltage v(.z. t) is the sum of the
incident and reflected waves, both of which vary sinusoidally
with time. Associated with the voltage difference between the
inner and outer conductors of the coaxial line is a radial electric

'See Fig. 1-17.

Spherical

~:t~~~~n1g t / wavefront

'\ .. ~~-,""./
I ~ "

I I ,,~-, \ \

I I \ I 1

~ 1 I ";--

\ \, "1 I, .. ~
, ' I

/,:"-~"..",-r ~
(a) Spherical wave

Uniform plane wave ___

/
" \,

\, , \

.. / , \
\

\ \ Aperture\, \ L,
\ I~:I I- I, I- /' Observer
I ,

..', ,
I

,.. I I
I..,

(b) Plane-wave approximation

Figure 7-1: Waves radiated by an EM source. such as a light
bulb or an antenna. have spherical wavefronts. as in (a); to a
distant observer. however, the wavefront across the observer's
aperture appears approximately planar, as in (b).

field Etz. t) that exists in the dielectric material between the
conductors, and since v{z, 1) varies sinusoidally with time. so
does E(z.1). Furthermore, the current flowing through the
inner conductor induces an azimuthal magnetic field Htz, 1)

in the dielectric material surrounding it. These coupled fields.
E(.z.1) and Htz. 1), constitute an electromagnetic wave. Thus.
we can model wave propagation on a transmission line either
in terms of the voltages across the line and the currents in its
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Ionosphere

Figure 7-2: The atmospheric layer bounded by the ionosphere
at the top and Earth's surface at the bottom forms a guiding
structure for the propagation of radio waves in the HF band.

RL

Figure 7-3: A guided electromagnetic wave traveling in a
coaxial transmission line consists of time-varying electric and
magnetic fields in the dielectric medium between the inner and
outer conductors.

conductors, or in terms of the electric and magnetic fields in the
dielectric medium between the conductors.

In this chapter we focus our attention on wave propagation
in unbounded media. Unbounded waves have many practical
applications in science and engineering, We will consider
both lossless and lossy media, Even though strictly speaking
uniform plane waves cannot exist, we will study them in
this chapter to develop a physical understanding of wave
propagation in lossless and lossy media. In Chapter 8 we will
examine how waves, both planar and spherical, are reflected by,
and transmitted through, boundaries between dissimilar media.
The processes of radiation and reception of waves by antennas
are treated in Chapter 9.

7-1 Time-Harmonic Fields

Time-varying electric and magnetic fields (E, D, B, and H)
and their sources (the charge density Pv and current density J)
generally depend on the spatial coordinates (x. y, z) and

the time variable t. However, if their time variation is
sinusoidal with angular frequency UJ, then these quantities
can be represented by a phasor that depends on (x, y, z)
only. The vector phasor R(x, y, z) and the instantaneous field
E(x, y, z: t) it describes are related as

E(x, y, z; t) = me [R(x, y, z) ejwtJ. (7.1)

Similar definitions apply to D, B, and H, as well as to Pv
and J. For a linear, isotropic, and homogeneous medium
with electrical permittivity E, magnetic permeability /-L, and
conductivity (T, Maxwell's equations (6.1) to (6.4) assume the
following form in the phasor domain:

(7.2a)

(7.2b)

(7.2c)

(7.2d)

v ·E= pv/e,
V x E= -jw/LH,

V 'H=O,

V x ii=J+ jUJeE.

To derive these equations we have used D = BE and B = /-LH,
and the fact that for time-harmonic quantities, differentiation
in the time domain corresponds to multiplication by jUJ in the
phasor domain. These equations are the starting point for the
subject matter treated in this chapter.

7-1.1 Complex Permittivity

In a medium with conductivity a, the conduction current
density J is related to E by J = aE. Assuming no other current
flows in the medium, Eq. 0.2d) may be written as

~ ~ ~
V x H = J + jwt:E

- ( a)-= (a + jwE)E = jUJ E - ': E. 0.3)

By defining the complex permittivity Ec as

(7.4) I
Eq. 0.3) can be rewritten as

- -V x H = jUJt:cE. (7.5)

Taking the divergence of both sides of Eq. (7.5), and recalling
that the divergence of the curl of any vector field vanishes (i.e.,
V· V x H = 0), it follows that V . (j UJEc E) = 0, or v· E = o.
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Comparing this with Eq. (7.2a) implies that Pv = O. Upon
replacing Eq. (7.2d) with Eq. (7.5) and setting Pv = 0 in
Eq. (7.2a), Maxwell's equations become

(7.6a)

(7.6b)

(7.tic)

(7.6d)

V·E=O,

V X E= - jlUlL8:,

V ·8:=0,
V x 8: = jCt>8cE.

The complex permittivity ec given by Eq. (7.4) is often written
in terms of a real part e' and an imaginary part e", Thus,

.a , ."ec = e - j - = e - je ,
w

(7.7)

with

e' = e. (7.8a)

(7.8b)" aE =-.
w

For a lossless medium with a = 0, it follows that e" = 0 and
ec = e' = e.

7-1.2 Wave Equations
~ ~

Next, we will derive wave equations for ~ and I!.and then solve
them to obtain explicit expressions for E and H as a function
of the spatial variables (x, y, z). To this end, we start by taking
the curl of both sides of Eq. (7.6b) to get

- -V x (V x E) = - jw{J..(V x H). (7.9)

Upon substituting Eq. (7.6d) into Eq. (7.9) we obtain

- - 2-V x (V x E) = -jW{J..(jwecE) = W {J..£cE. (7.\0)

From Eq. (3.113), we know that the curl of the curl of E is

(7.11)

where V2E is the Laplacian of E, which in Cartesian
coordinates is given by

2- (a2 a2 a2 ) -V E- - - - E- a2+,,2+a2 .x IJy Z
(7.12)

In view of Eq. (7.6a), the use of Eq. (7.11) in Eq. (7.10) gives

(7.13)

which is known as the homogeneous wave equation/or E. By
defining the propagation constant y as

(7.14)

Eq. (7.13) can be written as

To derive Eq. (7.15), we took the curl of both sides of
Eq. (7.6b) and then ~e used Eq. (7.6d) to eliminate Hand
obtain an equation in E only. If we reverse the process, that is,
if we start by taking the curl of both sides ofEq. (7.6d) and then
use Eq. (7.6b) to eliminate E, we obtain a wave equation for H:

- -Since the wave equations for E and H are of the same form, so
are their solutions.

7-2 Plane-Wave Propagation in Lossless
Media

The properties of an electromagnetic wave, such as its
phase velocity up and wavelength A, depend on the angular
frequency wand the medium's three constitutive parameters:
e, {J.., and a. If the medium is nonconducting (a = 0), the
wave does not suffer any attenuation as it travels and hence the
medium is said to be lossless. Because in a lossless medium
ec = e, Eq. (7.14) becomes

(7.17)

For lossless media, it is customary to define the wavenumber k
as

In view of Eq. (7.17), y2 = -k2 and Eq. (7.15) becomes

(7.19)
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7-2.1 Uniform Plane Waves

For an electric field phasor decomposed in its Cartesian
components as

(7.20)

substitution of Eq. (7.12) into Eq. (7.19) gives

(

a2 a2 (2) ~ ~ _~ + ~ + ~ (iE, +yE" +zE;,Jax~ dv- az~ .

? - - -+ k-(iEr + yEv + zEz) = O. 0.21)

To satisfy Eq. (7.21), each vector component on the left-hand
side of the equation must vanish. Hence,

(
iJ2 a2 a2 7) _

ax2 + ay2 + az2 + k: Ex = 0,

and similar expressions apply to Ey and E".

0.22)

A uniform plane wave is characterized by electric and
magnetic fields that have uniform properties at all points
across an infinite plane.

If this happens to be the x-y plane, then E and H do not
vary with x and y. Hence. JEx/ax = 0 and JEx/ay = 0, and
Eq. (7.22) reduces to

(7.23 )

Similar expressio!ls applt to Ey, H" and ii; Ihe re~aining
components of E and H are zero; that is, Ez = Hz = O.
To show that Ez = O. let us consider the z-component of
Eq. (7.6d),

A (aH\' aHx) A. -

z iJx - ay = zjwE:Ez.

Since aHv/ax = aH.rliJy = 0, it follows that Ez = O. A
similar ex~mination involving Eg. (7.6b) reveals that Hz = o.

(7.24)

This means that a plane wave has no electric- or magnetic-
field components along its direction ofpropagation.

For the phasor quantity Ex. the general solution of the
ordinary differential equation given by Eq. (7.23) is

Ex(z) = E~(z) + E;(z) = E;oe-jkz + E~oejkz. (7.25)

where E:rJ and E~o are constants to be determined from
boundary conditions. The solution given by Eq. (7.25) is
similar in form to the solution for the phasor voltage V (z)
given by Eq. (2.54a) for the lossless transmission line. The first
term in Eq. (7.25), containing the negative exponential e:=.
represents a wave with amplitude £;0 traveling in the
+z-direction. Likewise, the second term (with ejkz) represents
a wave with amplitude E.~) traveling in the -z-direction.
Assume for the time being that if only has a component along x
(i.e .• E) = 0) and that Ex is associated with a wave traveling in
the -l-z-direction only (i.e., £~o = 0). Under these conditions,

0.26)

To find the magnetic field Hassociated with this wave. we apply
Eg. (7.6b) with E., = Ez = 0:

i S' z
a a a

V'xE= ayax az
E+V:) 0 0,

(7.27)

For a uniform plane wave traveling in the -l-z-direcrion,

iJE~(z)/iJx = aE~(z)/ay = O.

Hence, Eq. (7.27) gives

HI' =0, (7.28a)

1 aEt(z)
HI' = -.- -"----

. - jWf.I az

~ 1 aEt(z)
H,,= -.- =0.

-jWf.I ay

Use of Eq. (7.26) in Eq. (7.28b) gives

0.28b)

(7.28c)

H~( ) - ~E+ -jkz - H+ -jkz
v Z - roe - \'oe ,. Wf.I· .

where H)~ is the amplitude of H,(z) and is given by

+ k +H"o = -ErO'. Wf.I

(7.29)

(7.30)

For a wave traveling from the source toward the load on a
transmission line, the amplitudes of its voltage and current
phasors, Vo+and It, are related by the characteristic impedance
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x

E

y

Figure 7-4: A transverse electromagnetic (TEM) wave
propagating in the direction k = Z. For all TEM waves. k is
parallel to E x H.

of the line, Zo. A similar connection exists between the electric
and magnetic fields of an electromagnetic wave. The intrinsic
impedance of a lossless medium is defined as

(0), (7.31)

where we used the expression for k given by Eq. (7.18).
In view of Eq. (7.31), the electric and magnetic fields of a
--z-propagating plane wave with E-field along x are:

~E( ) - -E~+(') - -E+ -jkLz - X x Z - x xoe .

- _ E+,. (z) _ E;t) jk»
H(z) = Y-' - = Y-'-' e" ~ ..

11 11

The electric and magnetic fields are perpendicular to each other,
and both are perpendicular to the direction of wave travel
(Fig. 7-4). This wave is said to be transverse electromagnetic
(TEM). Other examples ofTEM waves include waves traveling
on coaxial transmission lines (E is along r, 8 is along +, and
the direction of travel is along z) and spherical waves radiated
by antennas.

In the general case, E~o is a complex quantity with magnitude
1E~01and phase angle ¢+. That is.

(7.32a)

(7.32b)

(7.33)

The instantaneous electric and magnetic fields therefore arc

E(z, t) = 9{c [E(Z) ejlVf
]

= xlE~)1cos(wt - kz + ¢+) (V/m) , (7.34a)

and

H(z, t) = 9{c [U(.7.) ejoJ/]

IE+ 1
= y~ cos(wt - kz + ¢+) (A/m).

'7

Because E(z.1) and Hrz, t) exhibit the same functional
dependence on z and t, they are said to be in-phase; when the
amplitude of one of them reaches a maximum, the amplitude
of the other docs so too. The fact that E and U are in-phase is
characteristic of waves propagating in lossless media. From the
material on wave motion presented in Section 1-4, we deduce
that the phase velocity of the wave is

(7.34b)

(mls), (7.35)I

and its wavelength is

(m). (7.36)I
In vacuum, e = £:0 and 11 = 110, and the phase velocity up and
the intrinsic impedance 11given by Eq. (7.31) are

(7.37)

(7.38)(Q),

where c is the velocity of light and 110 is called the intrinsic
impedance of free space.

Example 7-1: EM Plane Wave in Air

This example is analogous to the "Sound Wave in Water"
problem given by Example I-I.

The electric field of a I-MHz plane wave traveling in the
+z-direction in air points along the x-direction. If this field
reaches a peak value of 1.2n (mV/m) at t = 0 and z = 50 m,
obtain expressions for E(z, t) and Htz, t), and then plot them
as a function of z at t = O.

Solution: At f = I MHz, the wavelength in air is

c 3 x lOR
A = - = = 300 mf I x lOt. '
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x

I.2n (mY/m) ....s-.
E '<.

H

[

Figure 7·5: Spatial variations of It: and H at t = 0 for the plane
waveof Example 7-1.

and the corresponding wavenumber is k = (2rr /300) (rad/m).
The general expression for an x-directed electric field traveling
in the -l-z-direction is given by Eq. (7.34a) as

[(z, t) = xlE~ol cos(u)t - kz + 4>+)

= x 1.2rr cos (2rr x 106( _ 2rr z + 4>+) (mY/m).
300

The field E( 7., l) is maximum when the argument of the cosine
function equals zero or a multiple of2rr. At t = 0 and 7. = 50 m,
this condition yields

Zn x 50 +
- 300 + 4> = 0 or

Hence,

, ( 6 2rr 7. rr)Etz. t) = x 1.2rr cos 2rr x 10 ( - -- + -
300 3

(mY/m).

and from Eq. (7.34b) we have

, Et«, t)
Htz.r) = y--

I)()

= Y lOcos (2rr x 106/ _ 2rrz +~)
30n 3

where we have used the approximation I)() :::: 120rr (Q).
At t = O.

, (2rr 7. rr)E(z. 0) = x 1.2rr cos - - -
300 3

(mY/m).

, (2rrZ rr)H(z, 0) = y lOcos - - -
300 3

(llA/m).

Plots of Erz, 0) and Hrz, 0) as a function of 07. are shown in
Fig. 7-5.

7-2.2 General Relation Between E and H

It can be shown that. for any uniform plane wav~ traveling in
an arbitrary direction denoted by the unit vector k, the electric
and magnetic field phasors E and Ii are related as

The following right-hand rule applies: when we rotate the
four fingers of the right handfrom the direction of E toward
that of H. the thumb points in the direction of wave travel. k.

The relations given by Eqs. (7.39a and b) are valid not only for
lossless media, but for lossy ones as well. As we will .ee later"rn
Section 7-4, the expression for I) of a lossy medium is different
from that given by Eq. (7.31 ). As long as the expression used for
I) is appropriate for the medium in which the wave is traveling,
the relations given by Eqs. (7.39a and b) always hold.

Let us apply Eq. (7.39a) t~ the wave $iven !ry Eq. (7.32a).
The direction of propagation k = z and E = x s; (z). Hence.

- I, - I - '£+ (z)
H = -k x E = -(z x x) E~(z) = y_X_ ,

'/ '/ '/

which is the same as the result given by Eq. (7.32b). For a wave
traveling in the -z-direction with electric field given by

(7.40)

(7.41)

application of Eq. (7.39a) gives

- I , ,- , '£-(z) ,E-() 'kH = -(-z x x) E~(z) = _y _x_ = _y _,_X e! 7.
I) ,\ I) I)

(7.42)
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yHence, in this case, II points in the negative y-direction.
In general, a uniform plane wave traveling in the

+z-dl!ection may have both x- and v-components. in which
case E is given by

E- • E-+ .. • f.~+. )= X " (L) + Y <v (7: , (7.43a)

and the associated magnetic field is

(7.43h)

Application of Eq. (7.39a) gives

-+ -- 1. - A E, (7) A Et(L)H = - z x E = -x _. - + Y _. - .
n rJ 1/

0.44)

By equating Eq. (7.43b) to Eq. (7.44), we have

(7.45 )

These results are illustrated in Fig. 7-6. The wave may
be considered the sum of two waves. one with electric and
magnetic components (E.t . H:-). and another with components
(Et. H:-). In general. a TEM wave may have an electric field
in any direction in the plane orthogonal to the direction of wave
travel. and the associated magnetic field is also in the same
plane and its direction is dictated by Eq. (7.39a).

Review Question 7·': What is a uniform plane
wave? Describe its properties. both physically and
mathematically. Under what conditions is it appropriate
to treat a spherical wave as a plane wave'?

Review Question 7·2: Since E and II are governed by
wave equations of the same forrn jEqs. (7.15) and (7.16)1,
does it follow that E = II? Explain.

Review Question 7-3: If a TEM wave is traveling in the
y-direction, can its electric field have components along
X.y. and z? Explain.

------------ E

H,'

Fil.:ure 7-6: The wave (E. H) is equivalent to the sum of two
waves. one with fields (Et. Hf) and another with (E;. H:-).
with both traveling in the +z-direction,

Exercise 7·': A IO-MHz uniform plane wave is traveling
in a nonmagnetic medium with /-L = /-LO and e; = 9.
Find (a) the phase velocity, (b) the wavenumber. (c) the
wavelength in the medium. and (d) the intrinsic impedance
of the medium.

Answer: (a) up = I x 108 m/s, (b) k = O.21T rad/m, (c)
A = 10 rn, (d) rJ= 125.67 n. (See m.)

Exercise 7·2: The electric field phasor of a uniform plane
wave traveling in a loss less medium with an intrinsic
impedance of 188.5 n is given by E = z lOe-j4JTY

(mV/m). Determine (a) the associated magnetic field
phasor and (b) the instantaneous expression for E(y, t)
if the medium is nonmagnetic (Ji = Jio).

Answer: (a) II = X53e-j4JTY (/-LAlm),
(b) E(y, I) = Z IOcos(61T x lO8t - 41TY) (mV/m).
(See 't)

Exercise 7-3: If the magnetic field phasor of a plane
wave traveling in a medium with intrinsic impedance
rJ= 100 n is given by Ii= (y 10 + z20)e- j4x (mAIm).
find the associated electric field phasor.

Answer: E = (-z + y 2)e- j4x (Vim). (See o!S')

Exercise 7-4: Repeat Exercise 7.3 for a magnetic field
given by Ii= Y(lOe-j3x - 20ej3x) (mAim).

Answer: E = -z(e- j3x + 2ej3x) (Vim). (See -e )
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Technology Brief 13: RFID Systems

In 1973, two separate patents were issued in the United States for Radio Frequency Identification (RFIO) concepts.
The first, granted to Mario Cardullo, was for an active RFID tag with rewritable memory. An active tag has a power
source (such as a battery) of its own, whereas a passive RFID tag does not. The second patent was granted to Charles
Walton who proposed the use of a passive tag for keyless entry (unlocking a door without a key). Shortly thereafter a
passive RFIO tag was developed for tracking cattle (Fig. TF13-1), and then the technology rapidly expanded into many
commercial enterprises, from tracking vehicles and consumer products to supply chain management and automobile
anti-theft systems.

FlgureTF13-1: Passive RFID tags were developed in the
1970s for tracking cows.

RFID System Overview

In an RFIO system, communication occurs between a reader-which actually is a transceiver-and a tag (Fig. TF13-2).
When interrogated by the reader, a tag responds with information about its identity, as well as other relevant information
depending on the specific application. The tag is, in essence, a transponder commanded by the reader. The
functionality and associated capabilities of the RFIO tag depend on two important attributes: (a) whether the tag
is of the active or passive type, and (b) the tag's operating frequency. Usually the RFIO tag remains dormant (asleep)
until activated by an electromagnetic signal radiated by the reader's antenna. The magnetic field of the EM signal
induces a current in the coil contained in the tag's circuit (Fig. TF13-3). For a passive tag, the induced current has to
be sufficient to generate the power necessary to activate the chip as well as to transmit the response to the reader.
Consequently, passive RFIO systems are limited to short read ranges (between reader and tag) on the order of 30 cm
to 3 m, depending on the system's frequency band (as discussed later). The obvious advantage of active RFIO systems
is that they can operate over greater distances and do not require reception of a signal from the reader's antenna to
get activated. However, active tags are significantly more expensive to fabricate than their passive cousins.

RFID Frequency Bands

Table TT13-1 provides a comparison among the four frequency bands commonly used for RFIO systems. Generally
speaking, the higher-frequency tags can operate over longer read ranges and can carry higher data rates, but they are
more expensive to fabricate.
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Once activated by the signal from the
tag reader (which acts as both a
transmitter and a receiver), the RFID
tag responds by transmitting the
identifying serial number programmed
into its electronic chip.

Tag reader
- _ .

The reader forwards the
data it received from the
RFIDtag to a database
that can then match the
tag's identifying serial
number to an authorized
account and debit that
account.

Chip

Figure TF13-2: How an RFID system works is illustrated through this EZ-Pass example. (Tag courtesy of
Texas Instruments.)

RFID reader

Antenna Antenna

Tag

FigureTF13-3: Simplified diagram for how the RFID reader communicates with the tag. At the two lower carrier frequencies
commonly used for RFID communication, namely 125 kHz and 13.56 MHz, coil inductors act as magnetic antennas. In
systems designed to operate at higher frequencies (900 MHz and 2.54 GHz). dipole antennas are used instead.

Table TT13-1: Comparison of RFID frequency bands.

Band LF HF UHF Microwave

RFID frequency 125-134 kHz 13.56 MHz 865-956 MHz 2.45 GHz

Read range ::: 0.5 m ::: 1.5 m :::5m ::: 10 m
Data rate 1 kbit/s 25 kbitls 30 kbitls 100 kbitls

Typical • Animal ID • Smart cards • Supply chain • Vehicle toll collection
applications • Automobile key/antitheft • Article surveillance management • Railroad car monitoring

• Access control • Airline baggage tracking • Logistics
• Library book tracking
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~. CD Module 7.1 Plane Wave Observe a plane wave prop-
agating along the z-direction; note the temporal and
spatial variations of E and H, and examine how the wave
properties change as a function of the values selected for
the wave parameters-frequency and E-field amplitude
and phase-and the medium's constitutive parameters
(s, II, a).

Module 7.1 Plane Wave

lEAl'" 1.0 lv imJ
LEA = 0.01 rad]
IHAI '2.65258 .10.3 IAlml
LH" - O.Olrodl

7-3 Wave Polarization

Thepolarization of a uniform plane wave describes the locus
traced by the tip of the E vector (in the plane orthogonal to
the direction of propagation) at a given point in space as a
function of time.

In the most general case, the locus of the tip of E is an ellipse,
and the wave is said to be elliptically polarized. Under certain
conditions, the ellipse may degenerate into a circle or a straight
line, in which case the polarization state is called circular or
linear, respectively.

It was shown in Section 7-2 that the z-components of the
electric and magnetic fields of a z-propagating plane wave are
both zero. Hence, in the most general case, the electric field

InpuUOutpul I Pnase Planes I Instructions _"PutJ

W jPhasorsl frequency f = 1.0E9 Hz

Condudl¥ly U= 00 SJm

Retative Permttivily C = 1.0r

ReIoIjy.~ Il,= 1.0

E-1~ld Ampfilude (z-OJ ED= 10 Vim

E·f"'" PhMe (z-O) ~ = 0.0 rad

Length Ilioployed I = 10

IAI & IBIV'*1dows An!a= 10 m'

-I I Update 11

Output Wave Properties

IE, J = 1.Q IV Irn]
LE, = -6283191 rad]
IHal - 2.6525B x 10.3 IA'm]

LHa - -6,283191 nod]

waveLength 1. • 30.0 I CI11]

PI1aseVelocltv lip - 3,0 Jt 10B [Jh Is I
P~riod T.1.Dx10--i[s)
kr4>edance .f lhe Me<bn IQ]

~ =376.99111B+]0.0
-376,991"6 LO.Dred
-376.991118 LO.Co

Penetration (SKin) Depth

Os - 00
Pha'se and AJtenuDtion Constaris

p - 20.9-4395 [ m ]
~ ·0.0 IN.lm]

tJ!wt.=O,Q

The material Is:VIiIICUI,.Il1 reerteet cieJed:r1c'l

phasor 1E(z) of a -l-z-propagating plane wave may consist of an
x-component, xix (z), and a y-component, y £y(z), or

with

- -jkf.E,(z) = Eroe .

where Exo and Eyo are the amplitudes of £x(z) and £y(z),
respectively. For the sake of simplicity, the plus sign superscript

(7.46)

(7.47a)

(7.47b)
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has been suppressed; the negative sign in e: jk z is sufficient to
remind us that the wave is traveling in the positive z-direction.

The two amplitudes Ero and Eyo are. in general, complex
quantities, each characterized by a magnitude and a phase angle.
The phase of a wave is defined relative to a reference state, such
as z = 0 and t = 0 or any other combination of z and t. As will
become clear from the discussion that follows, the polarization
of the wave described by Eqs. (7.46) and (7.47) depends on
the phase of Ero relative to that of Exo, but not on the absolute
phases of E,o and Eyo. Hence, for convenience. we will assign
Exo a phase of zero and denote the phase of Eyo, relative to that
of E,o. as 8. Thus, 8 is the phase difference between the y- and
x-components of E. Accordingly. we define Exo and Eyo as

Exo = ax. (7.48a)

(7.48b)8Eyo = aye! ,

where ax = IExol ::: 0 and ay = IEyol ::: 0 are the magnitudes
of Ero and E,.o, respectively. Thus, by definition, a, and ar

may not assume negative values. Using Eqs. (7 .48a) and (7 .48b)
in Eqs. (7.47a) and (7.47b), the total electric field phasor is

E- , ',j8 -jk/_(z) = (xa, + yart)e , (7.49)

and the corresponding instantaneous field is

E(L, t) = 9te [E(L) ejw/ ]

= xax cos(wt - kz)

+ yar cos(wt - kz + 8). (7.50)

When characterizing an electric field at a given point in space,
two of its attributes that are of particular interest are its
magnitude and direction. The magnitude of E(L. t) is

2 2 Ij2IE(z. t)1 = [E,(z, t) + Ey(z, t)]

1 ?= [a.~cos-(U)t - kL)

? ? Ij?+ a;. cos-(wt - k : + 8)] ". (7.51)

The electric field Etz, 1) has components along the x- and
v-directions. At a specific position z, the direction of E(L, t) is
characterized by its inclination angle 1{!, defined with respect
to the x-axis and given by

I (Ed7o,t»)1{!(70. 1) = tan -. .
Ex(L,1)

(7.52)

In the general case, both the intensity of E(z, t) and its direction
are functions of z and t. Next, we examine some special cases.

7-3.1 Linear Polarization

A wave is said to be linearly polarized if for a fixed z, the
tip lifE(z. t) traces a straight line segment as a function of
time. This happens when Ex(z, t) and Ey(z. t) are in-phase
(i.e., 8 = 0) or out-of-phase (8 = n ).

Under these conditions Eq. (7.50) simplifies to

E(O, 1) = (xa, + yay) cos(wt - kL)

E(O, t) = (xax - yay) cos(wt - k7o)
(in-phase), (7.53a)

(out -of-phase).
(7.53b)

Let us examine the out-of-phase case. The field's magnitude is

IE(L. 1)1 = [a; + a;]lj21 cos(O)t - kL)I. (7.54a)

and the inclination angle is

(out -of-phase). (7.54b)

We note that 1/1 is independent of both z and t. Figure 7-7
displays the line segment traced by the tip of Eat z = 0 over a
half of a cycle. The trace would be the same at any other value

? ? Ij?of z as well. At z = 0 and t = 0, IE(O, 0)1 = [a; + a~l -.
The length of the vector representing E(O, t) decreases to zero
at tot = n /2. The vector then reverses direction and increases
in magnitude to [a} + a~ll /2 in the second quadrant of the x-y
plane at wt = tt . Since ijJ is independent of both z and t . E(z, t)
maintains a direction along the line making an angle 1{! with the
x-axis, while oscillating back and forth across the origin.
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E,~- ••z

Figure 7-7: Linearly polarized wave traveling III the
-l-z-direction (out of the page).

If a,· = 0, then 1jf = 00 or 1800
, and the wave is x-polarized;

conversely, if ax = 0, then 1jf = 900 or -900
, and the wave is

y-polarized.

7-3.2 Circular Polarization

We now consider the special case when the magni tudes of the x-
and y-components of E(z) are equal, and the phase difference
li = ±Jl' /2. For reasons that will become evident shortly, the
wave polarization is called left-hand circular when li = Jl'/2,
and right-hand circular when li = -7r /2.

(a) Left-Hand Circular (LHC) Polarization

For ax = ay = a and li = x /2, Eqs. (7.49) and (7.50) become

E(z) = (xa + Yae.irr/2)e-jkz

= a(x + jY)e-jkz, (7.55a)

E(z, t) = 91e [E(Z) ej(v/ ]

= xa cos(wt - kz) + ya cos(wt - kz + n /2)

= xa cos(wt - kz) - ya sin(wt - kz). (7.55b)

The corresponding field magnitude and inclination angle are

[
2 2] 1/2IE(z, t)1 = Ex(z, I) + Ey(z, I)

= [a2 cos2(wt - kz) + a2 sin2(wt - kz)]1/2

=a, (7.56a)

and

1 [E\,(Z,I)]
1jf(z, t) = tan- . (

Ex z, t)

-I [-a sin (WI -kZ)]= tan
a cos(wt - kz)

= -(Wf - kz). (7.56b)

We observe that the magnitude of E is independent of both
z and t , whereas 1/1 depends on both variables. These
functional dependencies are the converse of those for the linear
polarization case.

At z = 0, Eq. (7.56b) gives 1/1 = -wI; the negative sign
implies that the inclination angle decreases as time increases.
As illustrated in Fig. 7-8(a), the tip of E(t) traces a circle in
the x-y plane and rotates in a clockwise direction as a function
of time (when viewing the wave approaching). Such a wave is
called left-hand circularly polarized because, when the thumb
of the left hand points along the direction of propagation (the
z-direction in this case), the other four fingers point in the
direction of rotation of E.

(b) Right-Hand Circular (RHC) Polarization

For ax = ay = a and li = -Jl' /2, we have

IE(z, 1)1 = a, 1/1 = (WI - kz). (7.57)

The trace of E(O, t) as a function of t is shown in Fig. 7-8(b).
For RHC polarization, the fingers of the right hand point
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Figure 7-8: Circularly polarized plane waves propagating in
the +z-direction (out of the page).

in the direction of rotation of E when the thumb is along
the propagation direction. Figure 7-9 depicts a right-hand
circularly polarized wave radiated by a helical antenna.

Polarization handedness is defined in terms of the rotation
(~fE as afunction of time ill a fixed plane orthogonal to the
direction of propagation. which is opposite of the direction
of rotation (~fE as a function (d' distance at a fixed point in
time.

Example 7-2: RHC Polarized Wave

An RHC polarized plane wave with electric field magnitude
of 3 (mV/m) is traveling in the -l-y-direction in a dielectric

z

Transmitting

~rnn'

Left screw sense
10 space

Right sense of rotation
in plane

Figure 7-9: Right-hand circularly polarized wave radiated by a
helical antenna.

x

.. •..,
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I Y
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Figure 7-10: Right-hand circularly polarized wave of
Example 7-2.

medium with 10' = 4E'o, /1 = /10, and a = O. If the frequency
is 100 MHz, obtain expressions for E(y. t) and H(y. t).

Solution: Since the wave is traveling in the +v-direction. its
field must have components along the x- and z-directions, The
rotation of Etv, t) is depicted in Fig. 7-10. where y is out of the
page. By comparison with the RHC polarized wave shown in
Fig. 7-8(b), we assign the z-component of E(y) a phase angle
of zero and the .r-component a phase shift of 8 = -Jr /2. Both
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components have magnitudes of a = 3 (mV/m). Hence,

E(y) = xEx + zEL
=xae-jrrj2e-jky +zae-jky

(
A. + ')3 .-J'kv= -xl z e ' (mV/m),

and application of (7.39a) gives

~ 1 ~
H(y) = - Y x E(y)

rJ

= ~ y x (-xj + z)3e-Jky
rJ

(mAim).

With w = Zit] = 2Jr x 108 (rad/s), the wavenumber k is

w.,ft;
k=--

c

4= -Jr
3

(rad/m) ,

and the intrinsic impedance rJ is

rJO
rJ=- .,ft;

120Jr
-A
= 60Jr (Q).

The instantaneous fields E(y, t) and H(y, t) are

E(y, t) = 9te [E(V) ejU){]

= 9te [(-Xi + z)3e-jk,\'ejM]

= 3[xsin(wt - ky) + zcos(wt - ky)] (mV/m)

and

H(y, t) = 9te [H(Y) ejM]

= 9\e [~(Zj +x)e-jkYejWI]

I A •= 20Jr [xcos(wt - ky) - zsin(wt - ky)] (mAim).

7-3.3 Elliptical Polarization

Plane waves that are not linearly or circularly polarized are
elliptically polarized. That is, the tip of E(z, t) traces an ellipse
in the plane perpendicular to the direction of propagation. The
shape of the ellipse and the field's handedness (left-hand or
right-hand) are determined by the values of (ay/a,) and the
phase difference S.

The polarization ellipse shown in Fig. 7-11 has its major
axis with length as along the s-direction and its minor axis
with length a'l along the I)-direction. The rotation angle y is
defined as the angle between the major axis of the ellipse and a
reference direction, chosen here to be the .r-axis, with y being
bounded within the range -Jr /2 :::::y :::::7l' /2. The shape of the
ellipse and its handedness are characterized by the ellipticity
angle X, defined as

ary I
tan X = ±- = ±- ,

as R
(7.58)

y Ellipticity angle

Polarization ellipse

Figure 7-11: Polarization ellipse in the x-y plane, with the
wave traveling in the z-direction (out of the page).



342 CHAPTER 7 PLANE-WAVE PROPAGATION

/. y- -90' -45' 0' 45" 90'
!

0 0 0 0 045 Left circular polarization

22.5 Left elliptical polarization 0 0 0
o Linear polarization /

-22.5 Right elliptical polarization 0 0 0
-45' Right circular polarization 0 0 0 0 0

Figure 7-12: Polarization states for various combinations of the polarization angles (y. X) for a wave traveling out of the page.

with the plus sign corresponding to left-handed rotation and the
minus sign corresponding to right-handed rotation. The limits
for X are -IT /4 ::s X ::s IT/4. The quantity R = 01; /0,/ is called
the axial ratio of the polarization ellipse. and it varies between
I for circular polarization and ex; for linear polarization. The
polarization angles y and X are related to the wave parameters
a" a,. and 8 by"

tan 2y = (tan 21/10)cos <5 (-IT /2 ::s y ::s IT/2),

sin 2X = (sin 21/10) sin 8 (-IT /4 ::s X ::s IT/4).

(7.59a)

(7.59b)

where 1/10is an auxiliary angle defined by

(I,
tan 1/10= -'-

Ox
(7.60)

Sketches of the polarization ellipse are shown in Fig. 7-12 for
various combinations of the angles (y. X). The ellipse reduces

'From M. Born and E. Wolf. Principles of Optics. New York: Macmillan.
1965. p. 27.

to a circle for X = ±45° and to a line for X = O. Positive
values of x, corresponding to sin 8 > 0, are associated with
left-handed rotation, and negative values of X, corresponding
to sin /) < 0, are associated with right-handed rotation.

Since the magnitudes at and a; are, by definition,
nonnegative numbers, the ratio a,.jox may vary between zero
for an x-polarized linear polarization and 00 for a v-polarized
linear polarization. Consequently. the angle 1/10is limited to the
range ° ::s 1/10::s 90°. Application of Eq. (7.59a) leads to two
possible solutions for the value of y, both of which fall within
the defined range from -IT /2 to IT/2. The correct choice is
governed by the following rule:

y > 0 if cos <5 > O.

y < 0 if cos 8 < O.

In summary, the sign of the rotation angle y is the same as
the sign of cos 8 and the sign of the ellipticity angle X is the
same as the sign of sin 8.



7-3 WAVE POLARIZATION 343

Example 7-3: Polarization State

Determine the polarization state of a plane wave with electric
field

E(z, t) = x3cos(wt - kz + 30°)

- Y 4 sinew! - kz + 45°) (mV/m).

Solution: We begin by converting the second term to a cosine
reference,

E = x 3 cos(wt - kz + 30°)

- y4cos(wt - kz + 45° - 90°)

= x 3 cos(wt - kz + 30°) - Y 4 cos(wt - kz - 45°).

The corresponding field phasor £(z) is

E(z) = x 3e- jk r ej30° _ y 4e- jk z e" j45
C

= x 3e- jk» ej30° + y 4e- jk» e" j45° ej 1800

=x3e-jkzej30° +y4e-jk7ejI35°,

where we have replaced the negative sign of the second term
with ej 180

0

in order to have positive amplitudes for both terms,
thereby allowing us to use the definitions given in Section 7-3.3.
According to the expression for E(z), the phase angles of the x-
and y-components are Ox = 30° and Oy = 135°, giving a phase
difference 0 = Oy - Ox = 1350

- 30° = 105°. The auxiliary
angle 1fr0is obtained from

1fr0= tan-I (Oy)
ax

From Eq. (7.59a),

tan 2y = (tan 21fr0)cos 0

= tan 106.2° cos \05°

=0.89,

which gives two solutions for y, namely y = 20.8° and
y = -69.2°. Since cos 0 < 0, the correct value of y is -69.2°.
From Eq. (7.59b),

sin 2X = (sin 21/10) sin 0

= sin 106.2° sin \05°

= 0.93 or X = 34.0°.

The magnitude of X indicates that the wave is elliptically
polarized and its positive polarity specifies its rotation as left
handed.

Review Question 7-4: An elliptically polarized wave is
characterized by amplitudes ax and Oy and by the phase
difference O. Ifax and a, are both nonzero, what should
o be in order for the polarization state to reduce to linear
polarization?

Review Question 7-5: Which of the following two
descriptions defines an RHC polarized wave: A wave
incident upon an observer is RHC polarized if its electric
field appears to the observer to rotate in a counterclockwise
direction (a) as a function of time in a fixed plane
perpendicular to the direction of wave travel or (b) as a
function of travel distance at a fixed time t?

Exercise 7-5: The electric field of a plane wave is given
by

E(z, t) = x3 cos(wt-kz) +y4cos(wt-kz) (VIm).

Determine (a) the polarization state, (b) the modulus of E,
and (c) the auxiliary angle.

Answer: (a) Linear, (b) lEI = 5 cos(wt -kz)(V/m), (c)
1fro = 53.1°. (Seee.)

Exercise 7-6: If the electric field phasor of a TEM wave is
given by £ = (y - zj)e-jkX, determine the polarization
state.

Answer: RHC polarization. (See OQ.)
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• CD Modules 7.2 & 7.3 Polarization I & Polarization II
Upon specifying the amplitudes and phases of the x- and
y-components of E, the user can observe the trace of E in

the x-y plane (Module 7.2) as well as the 3-D profile of the E
vector over a specified length span (Module 7.3).

Module 7.2 Polarization I

I t= OOT (J f "" QO

ModUle 7.3

Q t d.11Ik.
.BllelJ

A

\
o

I E. I - LO !v 1m]
LE. - O.Otnod]
Ifyl - 1.0 [V 1m I
LEy - O.O{llId I

Frequency , =~ [ Hz I
Relative Pennitlivlty Er =~

RefMlve PenneabHitr"Pr=~
Reference Amptitude Eo=~ [ V I m I
Reference 9I1•••• Cz~OI' =~ I rad J
LenqthDIsplayed I =ro-' [A 1

A
B

OUtput
W.velength A - 30.0 [an]

Phase Velodtyup - 3.0 x 10. (m IS]

Period T - 1.0 x 10.jj (51

Impedance of the Medium [0 1
1\ - 316.991118

Phase Conlhnt
II = 20.94395

Z8 = 1.0 ). = 30.0 ! em ]
I E. I ~ 1.0 [ V 1m]

LE, - -/;.28319! TlId]
IEy I- 1.0 [ V { m I

LEy - -11.28319 [<lOG]

UNEAR POLARIZATION
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Technology Brief 14: Liquid Crystal Display (LCD)

LCOs are used in digital clocks, cellular phones, desktop and laptop computers, and some televisions and other
electronic systems. They offer a decided advantage over former display technologies, such as cathode ray tubes, in
that they are much lighter and thinner and consume a lot less power to operate. LCD technology relies on special
electrical and optical properties of a class of materials known as liquid crystals, first discovered in the 1880s by botanist
Friedrich Reinitzer.

Physical Principle

Liquid crystals are neither a pure solid nor a pure liquid, but rather a hybrid of both. One particular variety of interest
is the twisted nematic liquid crystal whose rod-shaped molecules have a natural tendency to assume a twisted spiral
structure when the material is sandwiched between finely grooved glass substrates with orthogonal orientations
(Fig. TF14-1). Note that the molecules in contact with the grooved surfaces align themselves in parallel along the
grooves, from a y-orientation at the entrance substrate into an x-orientation at the exit substrate. The molecular spiral
causes the crystal to behave like a wave polarizer, unpolarized light incident upon the entrance substrate follows the
orientation of the spiral, emerging through the exit substrate with its polarization (direction of electric field) parallel to
the groove's direction, which in Fig. TF14-1 is along the x-direction. Thus, of the x- and y-components of the incident
light, only the v-component is allowed to pass through the v-polarized filter, but as a consequence of the spiral action
facilitated by the liquid crystal's molecules, the light that emerges from the LCD structure is x-polarized.

LCD Structure

A single-pixel LCD structure is shown in Fig. TF14-2 for the OFF and ON states, with OFF corresponding to a bright-
looking pixel and ON to a dark-looking pixel. The sandwiched liquid-crystal layer (typically on the order of 5microns
in thickness, or 1120 of the width of a human hair) is straddled by a pair of optical filters with orthogonal polarizations.
When no voltage is applied across the crystal layer [Fig. TF14-2(a)], incoming unpolarized light gets polarized as it
passes through the entrance polarizer, then rotates by 90° as it follows the molecular spiral, and finally emerges from
the exit polarizer, giving the exited surface a bright appearance. A useful feature of nematic liquid crystals is that their
spiral untwists [Fig. TF14-2(b)] under the influence of an electric field (induced by a voltage difference across the layer).
The degree of untwisting depends on the strength of the electric field. With no spiral to rotate the wave polarization as
the light travels through the crystal, the light polarization will be orthogonal to that of the exit polarizer, allowing no light
to pass through it. Hence, the pixel will exhibit a dark appearance.
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Figure TF14-1: The rod-shaped molecules of a liquid
crystal sandwiched between grooved substrates with
orthogonal orientations causes the electric field of the light
passing through it to rotate by 90°.

Two-Dimensional Array

By extending the concept to a two-dimensional array of pixels and devising a scheme to control the voltage across
each pixel individually (usually by using a thin-film transistor), a complete image can be displayed as illustrated in
Fig. TF14-3. For color displays, each pixel is made up of three subpixels with complementary color filters (red, green,
and blue).
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Figure TF14-2: Single-pixel LCD.
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SPill

1

LCD display



348 CHAPTER 7 PLANE-WAVE PROPAGATION

7-4 Plane-Wave Propagation in Lossy
Media

To examine wave propagation in a lossy (conducting) medium,
we return to the wave equation given by Eq. (7.15),

(7.61 )

with
(7.62)

where E' = E and E" = a [co. Since y is complex, we express
it as

y = a + jf3, (7.63)

where a is the medium's attenuation constant and 13 its phase
constant. By replacing y with (a+ jf3) in Eq. (7.62), we obtain

(a + jf3)2 = (a2 - 132) + j2af3
.., , .? "

= =O)" flE + }(V- flE . (7.64)

The rules of complex algebra require the real and imaginary
parts on one side of an equation to equal the real and imaginary
parts on the other side. Hence,

2 ~ 1 Ia - 13- = -W-liE ,

2af3 = W
2
/LE".

(7.65a)

(7.65b)

Solving these two equations for a and f3 gives

(Np/m) ,] J
I/2

1+ (~:r-1{
us' [a=w "2

(7.66a)

(rad/m).

(7.66b)

For a uniform plane wave with electric field E = x Ex(z)

traveling along the z-direction, the wave equation given by
Eg. (7.61) reduces to

2 -d Ex(z) 2 ----,----;;~,---- y E.rCz) = o.
d z-

The general solution of the wave equation given by Eq. (7.67)
comprises two waves, one traveling in the +z-direction and

(7.67)

another traveling in the +z-direction, Assuming only the
former is present, the solution of the wave equation leads to

E(z) = xEr(z) = xExoe-Y7 = xE,oe-Ci7.e-jf!7.. (7.68)

The associated magnetic_field H c~n be determined by
'!Pplyi~g ES' (7.2b): V x E = -jwflH, or using Eq. (7.39a):
H = (k x E)I1]e, where 1]e is the intrinsic impedance of the
lossy medium. Both approaches give

- - Ey(z) E,·o ."
H( ) - A H ( ) _ A.' _ A . -uZ -.II'7.

Z - Y I' Z - Y -- - Y -e e .
. 1]c 1]e

(7.69)

where

(Q). (7.70)

We noted earlier that in a lossless medium, E(z. 1) is in phase
with H(z,1). This property no longer holds true in a lossy
medium because 1]e is complex. This fact will be demonstrated
in Example 7-4.

From Eq. (7,68), the magnitude of Er(z) is given by

IE- . I IE -Ci7,-if!7.1 IE I ,-CiZ,,(z) = roe t· = rO t . (7.71)

which decreases exponentially wi.!,hz a!..a rate dictated by the
attenuation constant a. Since HI = Ed11e, the magnitude
of ify also decreases as e-CiL• As the field attenuates, part
of the energy carried by the electromagnetic wave is converted
into heat due to conduction in the medium. As the wave travels
through a distance z = Os with

(m), (7.72) I
the wave magnitude decreases by a factor of e-I :::::: 0.37
(Fig. 7-13). At depth z = 385, the field magnitude is less than
5% of its initial value, and at z = 50s, it is less than 1%.

This distance os. called the skin depth of the medium.
characterizes how deep an electromagnetic wave can
penetrate into a conducting medium.

In a perfect dielectric, a = 0 and E" = 0; use of Eq. (7.66a)
yields a = 0 and therefore 8s = 00. Thus, in free space, a plane
wave can propagate indefinitely with no loss in magnitude. On
the other extreme, in a perfect conductor, a = 00 and use of
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Figure 7-13: Attenuation of the magnitude of Ex (z) with
distance z. The skin depth 8s is the value of z at which
IE.dz)I/IExol =e-1,orz=8s = I/D'.

Eq. (7.66a) leads to a = 00 and hence Os = O. If the outer
conductor of acoaxial cable is designed to be several skin depths
thick, it prevents energy inside the cable from leaking outward
and shields against penetration of electromagnetic energy from
external sources into the cable.

The expressions given by Eqs. (7.66a), (7.66b), and (7.70)
for a, /3, and '7e are valid for any linear, isotropic, and
homogeneous medium. For a perfect dielectric (a = 0), these
expressions reduce to those for the lossless case (Section 7-2),
wherein a = 0, f3 = k = (v-JiIE, and '7e = '7. For a lossy
medium, the ratio £"/£' = a/wE, which appears in all these
expressions, plays an important role in classifying how lossy
the medium is. When e" / s' « 1, the medium is considered
a low-loss dielectric, and when e' / £' » I, it is considered a
good conductor. In practice, the medium may be regarded
as a low-loss dielectric if £" / e' < 10-2, as a good conductor if
e' / e' > 102

• and as a quasi-conductor if 10-2 ::: £"/£' ::: 102.

For low-loss dielectrics and good conductors, the expressions
given by Eq. (7.66) can be significantly simplified, as shown
next.

7-4.1 Low-Loss Dielectric
From Eq. (7.62), the general expression for y is

( E") 1/2
y = jwj;ii 1 - j-;; (7.73)

For [r] « I, the function (I - x)1/2 can be approximated
by the first two terms of its binomial series; that is,
(1 - x) 1/2 :::::::I - x /2. By applying this approximation to

Eq. (7.73) for a low-loss dielectric with x = j£"/s' and
s" / e' « 1, we obtain

( £")Y :::::::jwj;ii I - j- .
2£'

(7.74)

The real and imaginary parts of Eq. (7.74) are

a :::= w;/I ff,= i/f- (Np/m), (7.75a)

f3 :::= w.fijii =w...;'"iW (radlm). (7.75b)

We note that the expression for f3 is the same as that for the
wavenumber k of a loss less medium. Applying the binomial
approximation (1 - x)-1/2 :::::::(l + x/2) to Eq. (7.70) leads to

'ie::::::: rE.(1 + j~) = rE.(1 + j~).V -;; 2£' V e 2w£
(7.76a)

In practice, because £"/s' = a /w£ < 10-2, the second term in
Eq. (7.76a) often is ignored. Thus,

n« :::= /f- j (7.76b)

which is the same as Eq. (7.31) for the lossless case.

7-4.2 Good Conductor

When £"/£' > 100, Eqs. (7.66a), (7.66b), and (7.70) can be
approximated as

(radim) •

.CiI (1 + ..)J1rffL ·(1·+· .)...«
Tic ~ V rill. = . J -;;-= . J ;;

(7.77c)

In Eq. (7.77c), we used the relation given by Eq. 0.53):
v'J = (I + j) /./i. For a perfect conductor with a = 00,

these expressions yield a = f3 = 00, and 1)e= O. A perfect
conductor is equivalent to a short circuit in a transmission line
equivalent.
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Table 7-1: Expressions for a, p, '1c, Itp. and)" for various types of media.

Lossless Low-loss Good
Any Medium Medium Medium Conductor Units

(0 = 0) (E"IE'« I) (E"iE'» I)

w [";' [ Jra= 1+ (~:r - 1 0 ~ff J][fIIa (Np/rn)
2 E

W [";' [ Jrfl= 1+(~;r+1 w.,fiIf. w.,fiIf. J][fllo (rad/m)

!¥, ( .E"r
J/2

~ ff a
r}e = 1-)- (I + j)- (n)

e' 0

tip = wlf3 1/.,fiIf. 1/.,fiIf. .J4][f/Jw (rn/s)

)..= 2][ I fl = Itplf IIp!.f tlp/f tlplf (m)

Notes: E' = E; E" = a [oi; in free space, E = EO, /1 = /10; in practice, a material is considered a low-loss medium
if e" / [;' = o jtoe < 0.01 and a good conducting medium if E" / r:;'> 100.

Expressions for the propagation parameters in various types
of media are summarized in Table 7-1.

Example 7-4: Plane Wave in Seawater

A uniform plane wave is traveling in seawater. Assume that the
x-y plane resides just below the sea surface and the wave travels
in the +z-direction into the water. The constitutive parameters
of seawater are lOr = 80, J1r = 1, and a = 4 S/m. If the
magnetic fieldatz = Ois H(O, t) = Y IOOcos(2rr x 1Q3t+15°)
(mAim),
(a) obtain expressions for E(z, t) and Hrz, t), and
(b) determine the depth at which the magnitude of E is 1% of

its value at z = O.

Solution: (a) Since H is along y and the propagation direction
is z, E must be along x. Hence, the general expressions for the
phasor fields are

E(z) = xExoe-aze-jjJz,

H-() A ExO -az -jfJzz=y-e e .
"fie

(7.78a)

(7.78b)

To determine a., f3, and "fIc for seawater, we begin by evaluating
the ratio £"1£'. From the argument of the cosine function of
H(O, f), we deduce that w = 2rr x ]03 (rad/s), and therefore
f = I kHz. Hence,

a 4a
=

e' W£ WErSO 2rr x ]03 x 80 x (l0-9/36rr)

=9x105.

This qualifies seawater as a good conductor at 1 kHz and allows
us to use the good-conductor expressions given in Table 7-1:

a.=~

= J n x 103 X 4rr x 10-7 x 4

= 0.126 (Np/m),

f3 = a. = 0.126 (rad/m).
a.

"fie = (l + j)-
a

= (hejrr /4) 0.126 = O.044ejrr /4
4

(7.79a)

(7.79b)

(Q). (7.79c)



7-4 PLANE-WAVE PROPAGATION IN LOSSY MEDIA 351

As no explicit information has been given about the electric
field amplitude Exo, we should assume it to be complex; that
is, Exo = IExoleJ¢o. The wave's instantaneous electric and
magnetic fields are given by

E(z, t) = 9lr [xIExoleJ¢oe-aze-Jf!zeJwt]

= xIExole-0.126z cos(2rr x \03t - 0.126z + 4>0)

O.80a)

(Aim). (7.80b)

At z = 0,

H(O,t) =Y22.5IExolcos(2rr x \03t+4>0-45°) (Nm).
(7.81 )

By comparing Eq. (7.81) with the expression given in the
problem statement,

(mAim).

we deduce that

22.51Exol = 100 x \0-3

or

IExol = 4.44 (mV/m),

and

or

Hence. the final expressions for E(z, t) and Htz, t) are

E(z,1) = x4.44e-O.126z cos(2rr x \03t - 0.126z + 60°)

(mV/m), O.82a)

H(z, t) = y \oOe-O.126zcos(2rr x \03t - 0.126z + 15°)

(mNm). O.82b)

(b) The depth at which the amplitude of E has decreased to 1%
of its initial value at z = 0 is obtained from

0.01 = e-O.126z

or
In(O.01)

z = = 36.55 m ~ 37 m.
-0.126

Exercise 7-7: The constitutive parameters of copper are
Jl = Jlo = 4rr x 10-7 (Wm), E = EO:::: (l/36rr) x 10-9
(F/m), and CT = 5.8 x 107 (S/m). Assuming that
these parameters are frequency independent. over what
frequency range of the electromagnetic spectrum (see
Fig. 1-16) is copper a good conductor?

Answer: f < 1.04 x 1016 Hz, which includes the radio,
infrared, visible, and part of the ultraviolet regions of the
EM spectrum. (See .• )

Exercise 7-8: Over what frequency range may dry soil,
with Er = 3, Jlr = 1, and CT = 10-4 (S/m), be regarded
as a low-loss dielectric?

Answer: f > 60 MHz. (See 4)

Exercise 7-9: For a wave traveling in a medium with a
skin depth 8s, what is the amplitude of E at a distance
of 38s compared with its initial value?

Answer: e-3 ~ 0.05 or 5%. (See "t)
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'Ii> CD Module 7.4 Wave Attenuation Observe the profile of
a plane wave propagating in a lossy medium. Determine
the skin depth, the propagation parameters, and the
intrinsic impedance of the medium.

E<amplos I Ge"erallnpu! 1 Insfrudions

W Envelope W Show Ss
Module 7.4 Wan Attenuation

It onr <Nt 0" 1
E.phasor Ma.gn~udeI' ·1.11111,

Reset 1

0' 1=5.0"
:.''81''':'

•• 1 z

7-5 Current Flow in a Good Conductor
When a de voltage source is connected across the ends of a con-
ducting wire, the current flowing through the wire is uniformly
distributed over its cross section. That is, the current density J is
the same along the axis of the wire and along its outer perimeter
[Fig. 7-14(a)]. This is not true in the ac case. As we will see
shortly, a time-varying current density is maximum along the
perimeter of the wire and decreases exponentially as a function
of distance toward the axis of the wire [Fig. 7-l4(b)j. In fact,
at very high frequencies most of the current flows in a thin
layer near the wire surface, and if the wire material is a perfect
conductor, the current flows entirely on the surface of the wire.

Before analyzing a wire with circular cross section, let us
consider the simpler geometry of a semi-infinite conducting
solid, as shown in Fig. 7-l5(a). The solid's planar interface
with a perfect dielectric is the x-y plane. If at z = 0- (just
above the surface), an x-polarized electric field with E = xEo
exists in the dielectric, a similarly polarized field will be induced
in the conducting medium and propagate as a plane wave along

Ib~

Example 1 I Sligh1ly Loss}

E [z= 0)= 10.0IV! m] or= 0.001 ISlml

/=100 MHz <,=90

E<ample 2 I Moderately Lossy

E (z= 0)= 100lYlmi <1= O.OIISlml

r= 10.0 MHz E, = 9.0

Exam!)lel I Highly Lossy

E (z= 0)= 10.01Ylml or= 1.01SI rn]

r= 10.0 MHz

z

z=oo,,=oo Iml

1= 6.0 A = 59.70513 I m I

~s = 16073" = 15.9941 I m I

Phasors
IE(Z11=100 IVlm]

LE(z) = OO{radl

IH(z) I = 8.03616 x lD'~ IAlm]

LH (z) = -0.0987 [rad]

Average Power Density
S •• [z) = 3.99852 x 1D·1 (WI 01')

-J-

Figure 7-14: Current density J in a conducting wire is (a)
uniform across its cross section in the de case, but (b) in the
ac case. J is highest along the wire's perimeter.

(a) de case
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(a) Exponentially decaying 1.(z)

Jo ==: F.:L}:;';_=_~_o:.r_
---+- II I- ,--'I

-1- --

00 Z

(b) Equivalent Jo over skin depth Os

Figure 7-15: Exponential decay of current density Yx (z) with
z in a solid conductor. The total current flowing through (a)
a section of width w extending between z = 0 and z = 00 is
equivalent to (b) a constant current density 10 flowing through
a section of depth (is.

the +z-direction. As a consequence of the boundary condition
mandating continuity of the tangential component of E across
the boundary between any two contiguous media, the electric
field at z = 0+ (just below the boundary) will be E(O) = XED
also. The EM fields at any depth z in the conductor are then
given by

(7.83a)

(7.83b)

From J = aE, the current flows in the x-direction, and its
density is

j(z) = x J.~(z), (7.84)

with

(7.85)

where Jo = a Eo is the amplitude of the current density at
the surface. In terms of the skin depth Os = 1/0' defined by
Eq. (7.72) and using the fact that in a good conductor a = f3 as
expressed by Eq. (7.77b), Eq. (7.85) can be written as

(7.86)

The current flowing through a rectangular strip of width w
along the y-direction and extending between zero and 00 in the
z-direction is

00

1= w f 1x(z) dz

o
00

= UJ f Joe-(l+j)z/o, dz = Jowos
(l+J)

o
(A). (7.87)

The numerator of Eq. (7.87) is reminiscent of a uniform current
density Jo flowing~ through a thin surface of width wand
depth Os. Because Jx(z) decreases exponentially with depth z;
a conductor of finite thickness d can be considered electrically
equivalent to one of infinite depth as long as d exceeds a few
skin depths. Indeed, if d = 30s [instead of 00 in the integral of
Eq. (7.87)J, the error incurred in using the result on the right-
hand side ofEq. (7.87) is less than 5%; and if d = 50s, the error
is less than 1%.

The voltage across a length I at the surface [Fig. 7-15(b)] is
given by

~ Jo
V = Eol = -I.

a
(7.88)

Hence, the impedance of a slab of width w, length I, and depth
d = 00 (or, in practice, d > 50s) is

V 1+ j I
Z="",=-- -

laos w
(Q). (7.89)

It is customary to represent Z as

1
Z = Z, -,

w
(7.90)

where Zs, the internal or surface impedance of the conductor,
is defined as the impedance Z for a length I = 1m and a width
w = Im. Thus,
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Since the reactive part of Z, is positive, Z; can be defined as

with

n, = a~, = J;r~1l

L, = W~8s = iJ Jr~a

(n). (7.92a)

(H). (7.92b)

where we used the relation 8, = I/O' :::::1/JJrf Ila given by
Eq. (7.77a). In terms of the surface resistance Rs, the ac
resistance of a slab of width II} and length I is

I I
R = R, - =--

. w a8sw
(n). (7.93)

The expression for the ac resistance R is equivalent to the de
resistance of a plane conductor of length I and cross section
A = 8,w.

The results obtained for the planar conductor will now be
extended to the coaxial cable shown in Fig. 7-16(a). If the
conductors are made of copper with a = 5.8 x 107 S/m, the
skin depth at 1MHz is 8, = I /J;r fila = O'{l66mrn, and since
8, varies as 1/./1, it becomes smaller at higher frequencies. As
long as the inner conductor's radius a is greater than 58" or
0.33 mm at I MHz, its "depth" may be regarded as infinite. A

Inner conductor

(a) Coaxial cable

(b) Equivalent inner conductor

Figure 7-16: The inner conductor of the coaxial cable in (a)
is represented in (b) by a planar conductor of width Zn a and
depth Os' as if its skin has been cut along its length on the bottom
side and then unfurled into a planar geometry.

similar criterion applies to the thickness of the outer conductor.
To compute the resistance of the inner conductor, note that the
current is concentrated near its outer surface and approximately
equivalent to a uniform current flowing through a thin layer
of depth 8s and circumference Ln a, In other words, the
inner conductor's resistance is nearly the same as that of a
planar conductor of depth 8, and width w = 2;r a, as shown
in Fig. 7-16(b). The corresponding resistance per unit length is
obtained by setting II} = 2Jrll and dividing by I in Eq. (7.93):

R' _ !!. _ R,
I - I - Ztt a (n/m). (7.94)

Similarly. for the outer conductor, the current is concentrated
within a thin layer of depth 8, on the inside surface of the
conductor adjacent to the insulating medium between the two
conductors, which is where the EM fields exist. The resistance
per unit length for the outer conductor with radius b is

R' _ Rs
1- --
- 2;rb

(n/m), (7.95)

and the coaxial cable's total ac resistance per unit length is

(7.96), I , Rs (1 1)
R = RI + R2 = - - + -2", a b

(OIm).

This expression was used in Chapter 2 for characterizing the
resistance per unit length of a coaxial transmission line.

Review Question 7·6: How does f3 of a low-loss dielectric
medium compare to that of a lossless medium'?

Review Question 7·7: In a good conductor, does the
phase of H lead or lag that of E and by how much?

Review Question 7·8: Attenuation means that a wave
loses energy as it propagates in a lossy medium. What
happens to the lost energy'?

Review Question 7·9: Is a conducting medium dispersive
or dispersionless? Explain.

Review Question 7·10: Compare the flow of current
through a wire in the de and ac cases. Compare the
corresponding de and ac resistances of the wire.
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7-6 Electromagnetic Power Density

This section deals with the flow of power carried by an
electromagnetic wave. For any wave with an electric field E
and magnetic field H, the Poynting vector S is defined as

S=ExH (7.97)

The unit ofS is (VIm) x (AIm) = (W/m2), and the direction ofS
is along the wave's direction of propagation. Thus, S represents
the power per unit area (or power density) carried by the wave.
If the wave is incident upon an aperture of area A with outward
surface unit vector fi as shown in Fig. 7-17. then the total power
that flows through or is intercepted by the aperture is

P=fS.iidA
A

(W). (7.98)

For a uniform plane wave propagating in a direction Ii that
makes an angle e with fi, P = SA cos e, where S = lSI.

Except for the fact that the units of S are per unit area,
Eq. (7.97) is the vector analogue of the scalar expression for
the instantaneous power P (z, r) flowing through a transmission
line,

P(z, t) = v(z, f) i(z, f), (7.99)

where v(z, t) and i (z , t) are the instantaneous voltage and
current on the line.

Since both E and H are functions of time, so is the Poynting
vector S. In practice, however, the quantity of greater interest
is the average power density of the wave, Say. which is the
time-average value of S:

(W/m2). (7.100) I

S

k

Figure 7·17: EM power flow through an aperture.

This expression may be regarded as the electromagnetic
equivalent of Eq. (2.107) for the time-average power carried
by a transmission line, namely

I [~ ~ ]Pav(Z) = 2 ryte V(z) I*(z) • (7.101)

~ ~
where V(z) and I(z) are the phasors corresponding to v(z. t)
and i(z. r ), respectively.

7-6.1 Plane Wave in a Lossless Medium

Recall that the general expression for the electric field of a
uniform plane wave with arbitrary polarization traveling in the
+z-direction is

E(z) = x E\"(z) + y Ey(z)

= (x Exo + Y Eyo)e-jh, (7.102)

where, in the general case, Exo and Ey() may be complex
quantities. The magnitude of E is

(7.103)

The phasor magnetic field associated with E is obtained by
applying Eq. (7.39a):

H(z) = (xij, + y fiy)e-}kz

_ I A ~ _ I A A _ - jk z
--zxE--(-xEvo+yE,())e . (7.104)

11 11 .

The wave can be considered as the sum of two waves, one
comprising fields (Ex. fil) and another comprising fields
(Ey. fix). Use ofEqs. (7.1'02) and (7.104) in Eq. (7.100) leads
to

which states that power flows in the z-direction with average
power d~nsitx equal to~he l,um of the average power densities
of the (E\". Hv) and (E«, Hx) waves. Note that, because Say
depends onlyon 11 and'IEI, waves characterized by different
polarizations carry the same amount of average power as long
as their electric fields have the same magnitudes.
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.••. ----- ..•.
Example 7-5: Solar Power

If solar illumination is characterized by a power density of
I kW/m2 on Earth's surface, find (a) the total power radiated
by the sun, (b) the total power intercepted by Earth, and (c) the
electric field of the power density incident upon Earth's surface,
assuming that all the solar illumination is at a single frequency.
The radius of Earth 's orbit around the sun, Rs, is approximately
1.5 x 108 km, and Earth's mean radius Re is 6,380 km.

Solution: (a) Assuming that the sun radiates isotropically
(equally in all directions), the total power it radiates is Sa\' A,ph,
where Asph is the area of a spherical shell of radius R,
[Fig. 7-18(a)]. Thus,

P,un = Sav(47tR~) = I x 103 X 47t x (1.5 X 1(11)2

= 2.8 X 1026 W.

(b) With reference to Fig. 7-18(b), the power intercepted by
Earth's cross section Ae = 1TR; is

Pint = Sav(1TR;) = I X 103
X 7t x (6.38 X 106

)2

= 1.28 X 1017 W.

(e) The power density Say is related to the magnitude of the
electric field 1EI = Eo by

where 1]0 = 377 (Q) for air. Hence,

Eo = .j21]0Sav = ,/2 x 377 x 103 = 870 (VIm).

7-6.2 Plane Wave in a Lossy Medium

The expressions given by Eqs. (7.68) and (7.69) characterize
the electric and magnetic fields of an x-polarized plane
wave propagating along the z-direction in a lossy medium
with propagation constant y = IX + jf3. By extending these
expressions to the more general case of a wave with components
along both x and y, we have

E(z) = x Ex(z) + y Ey(z)

= (x E,o + y El'o)e-rX7e-i/lL,

- 1 A A -CtZ -jIlT.H(z) = -(-x Evo+ y Exo)e e ,
I]e -

(7.J06a)

(7. J06b)

s .•. .•. .•.

,
.•• I

.•. "
" S ,"

/..•...-.-~,'
Area of Earth
spherical surface

2
A,ph = 47rRs

(a) Radiated solar power

(b) Earth intercepted power

Figure 7-18: Solar radiation intercepted by (a) a spherical
surface of radius Rs, and (b) Earth's surface (Example 7-5).

where ttc is the intrinsic impedance of the lossy medium.
Application of Eq. (7.100) gives

(7.107)

By expressing I]e in polar form as

(7.108)
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Eq. (7.107) can be rewritten as
Table 7-2: Power ratios in natural numbers and in decibels.

~ ~ ~ ~Ie ~where IE(O)!' = [IExol-+lEvol-] +is the magnitude of Erz)
at 7. = O.

Whereas the fields E(J:) and "(7) decay with 7.as e='. the
power density Sa\' decreases as e-2f17

.

When a wave propagates through a distance 7. = Ds = I/O',
the magnitudes of its electric and magnetic fields decrease to
e-I ;::,;37% of their initial values. and its average power density
decreases to e-2 ;::,; 14% of its initial value.

7-6.3 Decibel Scale for Power Ratios
The unit for power P is watts (W). In many engineering
problems. the quantity of interest is the ratio of two power
levels. PI and P2, such as the incident and reflected powers
on a transmission line. and often the ratio PI / P2 may vary
over several orders of magnitude. The decibel (dB) scale is
logarithmic, thereby providing a convenient representation of
the power ratio, particularly when numerical values of PI / P2
are plotted against some variable of interest. If

PI
G = P2' (7.110)

then

G [dB) = 1010gG = 1010g(:~)

Table 7-2 provides a comparison between values of G and
the corresponding values of G [dB]. Even though decibels
are defined for power ratios, they can sometimes be used to
represent other quantities. For example, if PI = VI

2/ R is the
power dissipated in a resistor R with voltage VI across it at
time fl' and P2 = Vl/ R is the power dissipated in the same
resistor at time ti. then

(dB). (7.111 )

G [dB) = 10 log (!})
P2

(
V2/R)= 1010g _I~-
Vi/R

= 20 log (~~)

= 2010g(g) = g [dB], (7.112)

G G [dB]
lOX !Ox dB

4 6dB

2 3 dB

I OdB

0.5 -3dB

0.25 -6dB

0.1 -!OdB

10-3 -30 dB

where g = VI/ V2 is the voltage ratio. Note that for voltage
(or current) ratios the scale/actor is 20 rather than 10, which
results in G [dB] = g [dB].

The attenuation rate, representing the rate of decrease of the
magnitude of Say(z) as a function of propagation distance, is
defined as

A = 10 log [Sav(z)]
Sav(O)

= 10Iog(e-2f1z)

= -20O'z log e

= -8.68O'z = -0' [dB/mJ7- (dB). (7.113)

where
0' [dB/m) = 8.680' [Np/m]. (7.114)

We also note that, since Sav(z) is directly proportional to
IE(z)12,

[
IE(Z)1

2
] [IE(Z)I]

A = IOlog IE(0)12 = 20 log IE(O)I (dB).

(7.115)

Example 7-6: Power Received by a Submarine Antenna

A submarine at a depth of 200 m below the sea surface
uses a wire antenna to receive signal transmissions at I kHz.
Determine the power density incident upon the submarine
antenna due to the EM wave of Example 7-4.
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Solution: From Example 7-4, IE(O)I = IE,ol = 4.44
(mV/m), U' = 0.126 (Np/rn), and I'/e = 0.044/45° (Q).
Application of Eq. (7.109) gives

= Z 0.16e-O.252L

At z = 200 rn, the incident power density is

Sal' =z(0.16 X 1O-3e-o.252X20o)
= 2.1 X 10-26 (W/m2).

Exercise 7-10: Convert the following values of the power
ratio G to decibels: (a) 2.3, (b) 4 x 103, (e) 3 X 10-2.

Answer: (a) 3.6dB, (b) 36dB, (e) -15.2 dB. (See ~)

Exercise 7-11: Find the voltage ratio g corresponding
to the following decibel values of the power ratio G:
(a) 23 dB, (b) -14 dB, (c) -3.6 dB.

Answer: (a) 14.13, (b) 0.2, (c) 0.66. (See (,,)

Chapter 7 Relationships

Complex Permittivity

Se = E' - je"
E' = E

E"
a

Lossless Medium

k=w~

'fJ =!¥ (Q)

W 1
up = k = ffi

A = 2rr = up
k f

(m/s)

(m)

Wave Polarization

- 1 ~ -H=-kxE
'fJ

E= -l'/kxH

Maxwell's Equations for Time-Harmonic Fields

\7·E=O

\7 x E = -jwJ,LH

\7·H=O

\7 x H = jWEcE

Lossy Medium

I [ ]}1/2
J,LE' S" 2

a=w 2" 1+(7)-1

I [ ]}1/2
fJ.S' E" 2

f3=W 2" 1+(7) +1

(Np/m)

(rad/m)

(Q)

1
8s =-

a
(m)

Power Density

1 [- -*]Say = '29'te Ex H (W/m2)
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CHAPTER HIGHLIGHTS

• A spherical wave radiated by a source becomes
approximately a uniform plane wave at large distances
from the source.

• The electric and magnetic fields of a transverse
electromagnetic (TEM) wave are orthogonal to each
other, and both are perpendicular to the direction of
wave traveL

• The magnitudes of the electric and magnetic fields of
a TEM wave are related by the intrinsic impedance of
the medium.

• Wave polarization describes the shape of the locus of the
tip of the Evector at a given point in space as a function
of time. The polarization state, which may be linear,

circular, or elliptical, is governed by the ratio of the
magnitudes of and the difference in phase between the
two orthogonal components of the electric field vector.

• Media are classified as lossless, low-loss, quasi-
conducting, or good conducting on the basis of the ratio
elf [e' = a [coe.

• Unlike the de case, wherein the current flowing through
a wire is distributed uniformly across its cross section,
in the ac case most of the current is concentrated along
the outer perimeter of the wire.

• Power density carried by a plane EM wave traveling in
an unbounded medium is akin to the power carried by
the voltage/current wave on a transmission line.

GLOSSARY OF IMPORTANT TERMS

Provide definitions or explain the meaning of the following terms:

attenuation constant ex
attenuation rate A
auxiliary angle 0/0
average power density Sav
axial ratio
circular polarization
complex permittivity ee
de and ac resistances
elliptical polarization
ellipticity angle X
good conductor
guided wave
homogeneous wave equation

in-phase
inclination angle
internal or surface impedance
intrinsic impedance rJ
LHC and RHC polarizations
linear polarization
lossy medium
low-loss dielectric
out-of-phase
phase constant f3
phase velocity
polarization state
Poynting vector S

propagation constant y
quasi-conductor
rotation angle y
skin depth Os
spherical wave
surface resistance Rs
TEM wave
unbounded
unbounded wave
uniform plane wave
wave polarization
wavefront
wavenumber k

PROBLEMS
Section 7-2: Propagation in Lossless Media

*7.1 The magnetic field of a wave propagating through a certain
nonmagnetic material is given by

H = z30cos(lO~t - 0.5y) (mAim).

*Answer(s) available in Appendix D.

Find the following:

(a) The direction of wave propagation.

(b) The phase velocity.

(e) The wavelength in the material.

(d) The relative permittivity of the material.

(e) The electric field phasor.
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7.2 Write general expressions for the electric and magnetic
fields of a I-GHz sinusoidal plane wave traveling in the
-l-y-direction in a lossless nonmagnetic medium with relative
permittivity Cr = 9. The electric field is polarized along the
x-direction, its peak value is 6 V1m, and its intensity is 4 V1m
at t = 0 and y = 2 ern.

*7.3 The electric field phasor of a uniform plane wave is given
by E = Y lOejo.27 (V1m). If the phase velocity of the wave is
1.5 x lOR mls and the relative permeability of the medium is
/J..r= 2.4, find the following:
(a) The wavelength.
(b) The frequency f of the wave.
(e) The relative permittivity of the medium.
(d) The magnetic field Hrz, z),

7.4 The electric field of a plane wave propagating in a
nonmagnetic material is given by

E = [y 3 sinor x 107t - 0.2rrx)

+ z4 cosor x 107 t - 0.2rr x)] (VIm).

Determine
(a) The wavelength.
(b) Cr.

(e) H.

*7.5 A wave radiated by a source in air is incident upon a soil
surface, whereupon a part of the wave is transmitted into the
soil medium. If the wavelength of the wave is 60 em in air and
20 ern in the soil medium, what is the soil's relative permittivity?
Assume the soil to be a very low-loss medium.

7.6 The electric field of a plane wave propagating in a lossless,
nonmagnetic, dielectric material with cr = 2.56 is given by

E = y20cos(6rr x 109t - kz) (VIm).

Determine:
(a) f, up, A, k ; and n,
(b) The magnetic field H.

~ 7.7 A 60-MHz plane wave traveling in the -x-direction in
dry soil with relative permittivity Er = 4 has an electric field
polarized along the z-direction. Assuming dry soil to be
approximately lossless, and given that the magnetic field has
a peak value of 10 (mAIm) and that its value was measured
to be 7 (mAIm) at t = 0 and x = -0.75 m, develop complete
expressions for the wave's electric and magnetic fields.

-'3>Solution available on CD.

Section 7-3: Wave Polarization

*7.8 An RHC-polarized wave with a modulus of 2 (VIm) is
traveling in free space in the negative z-direction. Write the
expression for the wave's electric field vector, given that the
wavelength is 6 cm.

7.9 For a wave characterized by the electric field

Erz, t) = xax cos(wt - kz) + yay cos(wt - k z + 8).

identify the polarization state, determine the polarization angles
(y, X), and sketch the locus ofE(O, t) for each of the following
cases:

(a) a,· = 3 Vim, ay = 4 Vim, and 8 = O.

(b) ax = 3 VIm, av = 4 Vim, and 8 = 180°.

(e) ax = 3 VIm, ay = 3 VIm, and 8 = 45°.

(d) a, = 3 VIm, ay = 4 VIm, and 8 = -135°.

*7.10 The electric field of a uniform plane wave propagating
in free space is given by

E = (x + jy)30e-jnz/6 (Vim).

Specify the modulus and direction of the electric field intensity
at the z = 0 plane at t = 0, 5, and 10 ns.

7.11 A linearly polarized plane wave of the form
E = x axe- jkz can be expressed as the sum of an RHC
polarized wave with magnitude aR, and an LHC polarized
wave with magnitude al.. Prove this statement by finding
expressions for aR and aL in terms of ax .

*7.12 The electric field of an elliptically polarized plane wave
is given by

E(z, t) = [-x 10 sinew! - kz - 60°)

+ Y 30 cos(wt - kz)] (VIm).

Determine the following:

(a) The polarization angles (y, X).

(b) The direction of rotation.
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7.13 Compare the polarization states of each of the following
pairs of plane waves:

(a) Wave I: E, = x 2 cos(wt - kz) + y 2 sin(wt - kz).
Wave 2: E2 = x 2 cos(wt + kz) + y 2 sin«(vt + kz).

(b) Wave I: E, = x 2 cos(wt - kz) - y 2 sin(wt - kz).
Wave 2: E2 = x 2 cos«(vt + kz) - Y 2 sin(wt + kz).

7.14 Plot the locus of E(O, t) for a plane wave with

E(z, t) = x sin(wt + kz) + Y 2 cos(wt + kz).

Determine the polarization state from your plot.

Sections 7-4: Propagation in a Lossy Medium

7.15 For each of the following combinations of parameters,
determine if the material is a low-loss dielectric, a quasi-
conductor, or a good conductor, and then calculate IX, {J, A,
up, and 'Ie:
(a) Glass with u. = 1, Cr = 5, and a = 10-12 Sim at 100Hz.

(b) Animal tissue with f.lr = I, cr = 12, and a = 0.3 Sim at
IDa MHz.

(e) Wood with f.lr = I, cr = 3, and a = 10-4 Sim at 1 kHz.

7.16 Dry soil is characterized by cr = 2.5, f.lf = I, and
a = 10-4 (S/m). At each of the following frequencies,
determine if dry soil may be considered a good conductor, a
quasi-conductor, or a low-loss dielectric, and then calculate IX,

fl, A, f.lp. and n..
(a) 60 Hz

(b) I kHz

(e) I MHz

(d) 1 GHz

*7.17 In a medium characterized by cr = 9. f.lr = 1, and
a = 0.1 Slm, determine the phase angle by which the magnetic
field leads the electric field at 100 MHz.

7.18 Generate a plot for the skin depth 8, versus frequency
for seawater for the range from 1 kHz to 10 GHz (use log-log
scales). The constitutive parameters of seawater are f.lf = I,
Cf = 80, and a = 4 S/m.

7.19 Ignoring reflection at the air-soil boundary, if the
amplitude of a 3-GHz incident wave is 10 V1m at the surface of
a wet soil medium, at what depth will it be down to I mV/m?
Wet soil is characterized by f.lr = I, cr = 9, and a = 5 x 10-4

S/m.

*7.20 The skin depth of a certain nonmagnetic conducting
material is 3 11m at 20Hz. Determine the phase velocity in
the material.

7.21 Based on wave attenuation and reflection measurements
conducted at 1 MHz, it was determined that the intrinsic
impedance of a certain medium is 28.1/45° (!.1) and the skin
depth is 2 m. Determine the following:

(a) The conductivity of the material.

(b) The wavelength in the medium.

(e) The phase velocity.

*7.22 The electric field of a plane wave propagating in a
nonmagnetic medium is given by

E = z 25e -30x cos(2rr x 109t - 40x) (Vim).

Obtain the corresponding expression for H.

sri' 7.23 At 2 GHz, the conductivity of meat is on the order of
1 (S/m). When a material is placed inside a microwave oven
and the field is activated, the presence of the electromagnetic
fields in the conducting material causes energy dissipation in
the material in the form of heat.

(a) Develop an expression for the time-average power per
rnrrr' dissipated in a material of conductivity a if the peak
electric field in the material is Eo.

(b) Evaluate the result for an electric field Eo = 4 x 104 (V1m).

Section 7-5: Current Flow in Conductors

7.24 In a nonmagnetic, lossy, dielectric medium, a 300-MHz
plane wave is characterized by the magnetic field phasor

(Aim).

Obtain time-domain expressions for the electric and magnetic
field vectors.

*7.25 A rectangular copper block is 30 em in height (along z).
In response to a wave incident upon the block from above.
a current is induced in the block in the positive x-direction,
Determine the ratio of the ac resistance of the block to its de
resistance at 1 kHz. The relevant properties of copper are given
in Appendix B.
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7.26 The inner and outer conductors of a coaxial cable have
radii of 0.5 ern and 1em, respectively. The conductors are made
of copper with t:r = I. fLr = I, and (J = 5.8 X 107 Slm, and
the outer conductor is 0.5 mm thick. At 10 MHz:

(a) Are the conductors thick enough to be considered infinitely
thick as far as the flow of current through them is
concerned?

(b) Determine the surface resistance Rs.

(e) Determine the ac resistance per unit length of the cable.

Section 7-6: EM Power Density

*7.27 The magnetic field of a plane wave traveling in air is
given by H = x 50 sin(2n x ]07 t - ky) (mAIm). Determine
the average power density carried by the wave.

~ 7.28 A wave traveling in a nonmagnetic medium with f:r = 9
is characterized by an electric field given by

E=ly3cos(n x ]07t+kx)

-z2cos(n x ]07t+kx)] (VIm).

Determine the direction of wave travel and average power
density carried by the wave.

*7.29 The electric-field phasor of a uniform plane wave
traveling downward in water is given by

(Vim).

where z is the downward direction and z = 0 is the water
surface. If (J = 4 Slm,

(a) Obtain an expression for the average power density.

(b) Determine the attenuation rate.

(e) Determine the depth at which the power density has been
reduced by 40 dB.

7.30 The amplitudes of an elliptically polarized plane wave
traveling in a lossless, nonmagnetic medium with t:r = 4 are
Hyo = 3 (mAIm) and HLo = 4 (mAIm). Determine the average
power flowing through an aperture in the y-z plane if its area
is 20 m2•

*7.31 A wave traveling in a lossless, nonmagnetic medium has
an electric field amplitude of 24.56 V1m and an average power
density of 2.4 W1m2• Determine the phase velocity of the wave.

7.32 At microwave frequencies, the power density considered
safe for human exposure is 1 (mw/cm-). A radar radiates a wave
with an electric field amplitude E that decays with distance as
E(R) = (3.000/ R) (Vim), where R is the distance in meters.
What is the radius of the unsafe region?

.is' 7.33 Consider the imaginary rectangular box shown in
Fig. P7.33.

(a) Determine the net power flux p(t) entering the box due to
a plane wave in air given by

E = x Eo cos(wt - ky) (Vim).

(b) Determine the net time-average power entering the box.

z

L----E----/1
" 1 " 1a" 1 "

" " 1"I "I
(- - - ~ - - - - - - - 1
1 1 1

1 1 1

) - - - - - - -I ---1~ Y
" I"

" 1 "

/

1 :" ~,,"

x

1

('I

1

Figure P7.33: Imaginary rectangular box of Problems 7.33 and
7.34.

*7.34 Repeat Problem 7.33 for a wave traveling in a lossy
medium in which

E = x 100e-20y cos(2n x 109( - 40y) (Vim).

H = -zO.64e-20y cos(2n x \O9( - 40v - 36.85°)

(Aim).

The box has dimensions a = 1ern, b = 2 em, and c = 0.5 em.
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7.35 Given a wave with

E = x Eo cos(wt - kz),

calculate:

(a) The time-average electric energy density

T T1! I! 2(weLv = - We dt = - t:E dt.
T 2T

o 0

(b) The time-average magnetic energy density

T TI! I! 2(wmhv = - Wm dt = - VB dt.
T 2T

o 0

(c) Show that (weLv = (wmhv.

.~. 7.36 A team of scientists is designing a radar as a probe for
measuring the depth of the ice layer over the antarctic land mass.
In order to measure a detectable echo due to the reflection by
the ice-rock boundary, the thickness of the ice sheet should
not exceed three skin depths. If e; = 3 and t:~= 10-2 for ice
and if the maximum anticipated ice thickness in the area under
exploration is 1.2 km, what frequency range is useable with the
radar?
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Objectives

Upon learning the material presented in this chapter, you should
be able to:

1. Characterize the reflection and transmission behavior of
plane waves incident upon plane boundaries, for both
normal and oblique incidence.

2. Calculate the transmission properties of optical fibers,

3. Characterize wave propagation in a rectangular wave-
guide.

4. Determine the behavior of resonant modes inside a
rectangular cavity.
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EM Waves at Boundaries

Figure 8-1 depicts the propagation path traveled by a signal
transmitted by a shipboard antenna and received by an antenna
on a submerged submarine. Starting from the transmitter
(denoted Tx in Fig. 8-1), the signal travels along a transmission
line to the transmitting antenna. The relationship between the
transmitter (generator) output power, Pt, and the power supplied
to the antenna is governed by the transmission-line equations
of Chapter 2. If the transmission line is approximately lossless
and properly matched to the transmitting antenna, then all of P,
is delivered to the antenna. If the antenna itself is loss less too, it
will convert all of the power P, in the guided wave provided by
the transmission line into a spherical wave radiated outward into
space. The radiation process is the subject of Chapter 9. From
point I, which denotes the location of the shipboard antenna, to
point 2, which denotes the point of incidence of the wave onto
the water's surface, the signal's behavior is governed by the
equations characterizing wave propagation in lossless media,
covered in Chapter 7. As the wave impinges upon the air-
water boundary, part of it is reflected by the surface while
another part gets transmitted across the boundary into the water.
The transmitted wave is refracted, wherein its propagation
direction moves closer toward the vertical, compared with that
of the incident wave. Reflection and transmission processes are
treated in this chapter. Wave travel from point 3, representing
a point just below the water surface, to point 4. which

Transmitter

Figure 8-1: Signal path between a shipboard transmitter (Tx)
and a submarine receiver (Rx),

denotes the location of the submarine antenna, is subject to
the laws of wave propagation in lossy media, also treated in
Chapter 7. Finally, some of the power carried by the wave
traveling in water towards the submarine is intercepted by the
receiving antenna. The received power, Pr, is then delivered to
the receiver via a transmission line. The receiving properties
of antennas are covered in Chapter 9. In summary, then,
each wave-related aspect of the transmission process depicted
in Fig. 8-1, starting with the transmitter and ending with the
receiver, is treated in this book.

This chapter begins by examining the reflection and
transmission properties of plane waves incident upon planar
boundaries and concludes with sections on waveguides and
cavity resonators. Applications discussed along the way include
fiber and laser optics.

8-1 Wave Reflection and Transmission at
Normal Incidence

We know from Chapter 2 that. when a guided wave encounters
a junction between two transmission lines with different
characteristic impedances, the incident wave is partly reflected
back toward the source and partly transmitted across the
junction onto the other line. The same happens to a uniform
plane wave when it encounters a boundary between two material
half-spaces with different characteristic impedances. In fact.
the situation depicted in Fig. 8-2(b) has an exact analogue in the
transmission-line configuration of Fig. 8-2(a). The boundary
conditions governing the relationships between the electric and
magnetic fields in Fig. 8-2(b) map one to one onto those we
developed in Chapter 2 for the voltages and currents on the
transmission line.

For convenience, we divide our treatment of wave reflection
by, and transmission through, planar boundaries into two
parts: in this section we confine our discussion to the normal-
incidence case depicted in Fig. 8-3(a), and in Sections 8-2 to 8-4
we examine the more general oblique-incidence case depicted
in Fig. 8-3(b). We will show the basis for the analogy between
the transmission-line and plane-wave configurations so that we
may use transmission-line equivalent models, tools (e.g., Smith
chart), and techniques (e.g .. quarter-wavelength matching) to
expeditiously solve plane wave problems.

Before proceeding, however. we should explain the notion
of rays and wavefronts, and the relationship between them.
as both will be used throughout this chapter to represent
electromagnetic waves. A ray is a line representing the direction
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Transmission line I

Incident wave

Reflected wave

;:;=0

(a) Boundary between transmission lines

Incident plane wave

Reflected plane wave

Medium 1
111

Medium 2
'12

z=o
(b) Boundary between different media

Figure 8·2: Discontinuity between two different transmission
lines is analogous to that between two dissimilar media.

Incident wave

Reflected wave

Medium 1
111

(a) Normal incidence

of flow of electromagnetic energy carried by a wave~ and
therefore it is parallel to the propagation unit vector k. A
wavefront is a surface across which the phase of a wave is
constant; it is perpendicular to the wavevector k. Hence. rays
are perpendicularto wavefronts. The ray representation of wave
incidence. reflection, and transmission shown in Fig. 8-3(b)
is equivalent to the wavefront representation depicted in
Fig. 8-3( c). The two representations are complimentary; the ray
representation is easier to use in graphical illustrations. whereas
the wavefront representation provides greater physical insight
into what happens to a wave when it encounters a discontinuous
boundary. Both representations will be used in forthcoming
discussions.

8-1.1 Boundary between Lossless Media

A planar boundary located at z = 0 [Fig. 8-4(a)] separates
two lossless, homogeneous. dielectric media. Medium I has
permittivity £1 and permeability /11 and fills the half-space
z S O. Medium 2 has permittivity £2 and permeability u: and
fills the half-space L ~ O. An .r-polarized plane wave, with
electric and magnetic fields (Ei, Hi) propagates in medium I
along direction ki = z toward medium 2. Reflection and
transmission at the boundary at z = 0 result in a reflected
wave, with electric and magnetic fields (E", H'}, traveling
along direction kr = -z in medium 1, and a transmitted wave,

Medium 1
111

(b) Ray representation of
oblique incidence

Medium I
111

(c) Wavefront representation of
oblique incidence

Figure 8-3: Ray representation of wave reflection and transmission at (a) normal incidence and (b) oblique incidence. and (c) wavefront
representation of oblique incidenec.
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Ei

H'Jr.."

z=o
(a) Boundary between dielectric media

ZOI

Infinite linez=o
(b) Transmission-line analogue

Figure 8-4: The two dielectric media separated by the x-y
plane in (a)can be representedby the transmission-lineanalogue
in (b).

with electric and magnetic fields (El, at), traveling along
direction kl = z in medium 2. On the basis of the formulations
developed in Sections 7-2 and 7-3 for plane waves, the three
waves are described in phasor form by:

Incident Wave

E-i( ) _ 'Ei -}klzz - x oe , (8.1 a)
........j ,

H-,'() • E (z) • Ell -,'klzz=zx--=y-e' .
111 111

(8.1 b)

Reflected Wave

Er (z) = xEoe}klz,

- • Er
(z) • Eo ;k z

W(z) = (-z) x -- = -y - e- I,.

111 IJI

(8.2a)

(8.2b)

Transmitted Wave

E-l( ) _ 'Et -}k2ZZ - x oe ,
~l . t~ E (z) Eo 'kHI( ) - • - • - J 2ZZ -zx---y-e .

1J2 1J2

(8.3a) ~ - Eb + Eo =Eb,El (0) =E2(0) or (8. lOa)

- - Ei) Eo Et
(8.3b) HI (0) =H2(0) or --- 0 (8. lOb)

111 111 1J2

The quantities Eb, Eo, and Eb are, respectively, the amplitudes
of the incident, reflected, and transmitted electric fields at
z = 0 (the boundary between the two media). The wavenumber
and intrinsic impedance of medium I are kl = wJlI1S1 and
111= ..//-li/El ,and those for medium 2 are k: = WJ/-l2E2 and
112= J/-l2/E2 .

The amplitude Eb is imposed by the source responsible for
generating the incident wave, and therefore is assumed known.
Our goal is to relate Eb and Et) to Eb. We do so by applying
boundary conditions for the total electric and magnetic fields
at z = O. According to Table 6-2, the tangential component of
the total electric field is always continuous across a boundary
between two contiguous media, and in the absence of current
sources at the boundary, the same is true for the total magnetic
field. In the present case, the electric and magnetic fields ofthe
incident, reflected, and transmitted waves are all tangential to
the boundary.

The total electric field EI (z) in medium I is the sum of the
electric fields of the incident and reflected waves, and a similar
statement applies to the magnetic field HI (Z). Hence,

Medium J

EI (z) = Ei(z) + Er(z)

= x(Ebe-jkl/. + Eoe}k1z),

HI (7) = Hi(z) + Hf(z)

= y ~ (Ebe-jk1z - Ebe}k1z).
IJI

(8.4a)

(8.4b)

With only the transmitted wave present in medium 2, the total
fields are

Medium 2

Ez(z) = Et(z) = xEbe-ik2Z,

- ~ Eb 'kH2(Z) = H'(z) = y -e-) 27.
112

(8.9a)

(8.9b)

At the boundary (z = 0), the tangential components of the
electric and magnetic fields are continuous. Hence,



368 CHAPTER 8 WAVE REFLECTION AND TRANSMISSION

Solving these equations for Eo and E~ in terms of Eo gives

Eo = (T12 - TIl) Eo = rE~,
Tl2 + lJI

(8.11 a)

I (2m) Ei E'iEo = ·0 = r "0'
Tl2 + TIl

(X. I I b)

where

r= E? = 112 -1]1 (normaHncidence), (8.12a)
Eb 112+t71

The quantities rand r are called the reflection and
transmission coefficients. For lossless dielectric media, IJ I

and Tl2 are real; consequently, both rand r are real also.
As we will see in Section 8-1.4, the expressions given by
Eqs. (8.12a) and (8.12b) are equally applicable when the media
are conductive, even though in that case III and Tl2 will be
complex, and hence rand r may be complex as well. From
Eqs. (8.12a) and (8.12b), it is easily shown that rand rare
interrelated as

(8.13) I

For nonmagnetic media,

110
TIl = --,Fr:

1)0
Tl2 = --,..;s;;

where TlO is the intrinsic impedance of free space, in which case
Eq. (8.12a) may be expressed as

8-1.2 Transmission-Line Analogue

The transmission-line configuration shown in Fig. 8-4(b)
consists of a lossless transmission line with characteristic
impedance ZOI, connected at z = 0 to an infinitely long lossless
transmission line with characteristic impedance Z02. The input
impedance of an infinitely long line is equal to its characteristic
impedance. Hence, at z = 0, the voltage reflection coefficient
(looking toward the boundary from the vantage point of the first
line) is

r = Z02 - ZOI

Z02 + ZOI

which is identical in form to Eq. (8.12a). The analogy between
plane waves and waves on transmission lines does not end
here. To demonstrate the analogy further, equations pertinent
to the study of both cases are summarized in Table 8-1.

Table 8-1: Analogy between plane-wave equations for normal incidence and transmission-line equations, both under lossless conditions.

Plane Wave [Fig. 8-4(a)] Transmission Line [Fig. 8-4(b)]

El (z) = xEo(e-jkp: + rejkJ Z) (8.5a) Vl(z) = Vo+(e-j{:lp~ + fej{:lJZ) (8.5b)

- Eb'k 'k - VO+'{:I '{:IHI(z)=y-(e-} JZ_re1'JZ) (8.6a) 11(7)=-· (e-) JZ_reJJz) (8.6b)
1)1 ZOt

E2(Z) = XTE~e- jk2i' (8.7a) V2 (z) = T Vo+«: j{:l2z (8.7b)

_ Ei - VO+'{:IH2(z) = YT ....Q «:}k2Z (8.8a) 12(Z) = T - e-.1 22 (8.8b)
1)2 ZU2

I' = (1J2 - 1)1)/(1J2 + 1)1) r = (Z02 - ZOI )/(Z02 + ZOI)

T=I+r T=l+f

k1 = IV.jI.Li8l , k2 = W.j/J..2£2 fit = w.jl.Li8l , fi2 = W.jP2£2

1)1 = ..fiiITSl . 1)2 = .j112/£2 ZOI and Z02 depend on
transmission-line parameters
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Comparison of the two columns shows that there is a one-to-
one correspondence between the transmission-line quantities
(Y, I, fl. Zo) and the plane-wave quantities (if. ii.k. r]). This
correspondence allows us to use the techniques developed in
Chapter 2, including the Smith-chart method for calculating
impedance transformations, to solve plane-wave propagation
problems.

The simultaneous presence of incident and reflected waves
in medium I [Fig. 8-4(a) J gives rise to a standing-wave pattern.
By analogy with the transmission-line case, the standing-wave
ratio in medium I is defined as

(8.15)

If the two media have equal impedances (r]1 = m), then r = 0
and S = I, and if medium 2 is a perfect conductor with in = 0
(which is equivalent to a short-circuited transmission line), then
r = -I and S = 00. The distance from the boundary to where
the magnitude of the electric field intensity in medium 1 is a
maximum, denoted [max, is described by the same expression
as that given by Eq. (2.70) for the voltage maxima on a
transmission line, namely

-z = 1 = Br + 2mr = BrAI + nAI
max 2kl 4;rr 2'

{
n = 1,2, , ifer < 0, (8.16)
n = 0, 1. 2, , if Or ~ 0,

where A I = Zn / kl and Or is the phase angle of r (i.e.,
r = If leA, and Or is bounded in the range -If < (If :s If).

The expression for [max is valid not only when the two media
are lossless dielectrics, but also when medium I is a low-loss
dielectric. Moreover, medium 2 may be either a dielectric or a
conductor. When both media are lossless dielectrics, Or = 0 if
tt: > r]1 and (lr = If if r]2 < r]1·

The spacing between adjacent maxima is A 1/2, and the
spacing between a maximum and the nearest minimum is A I/4.
The electric-field minima occur at

(8. t 7)lmin = { lmax +AI/4, if lmax < Al/4,
lmax - At/4, if lmax ~ A)/4.

8-1.3 Power Flow in Lossless Media

Medium I in Fig. 8-4(a) is host to the incident and reflected
waves, which together comprise the total electric and magnetic
fields EI (z) and HI (z) given by Eqs. (8.11a) and (8.12a) of
Table 8-1. Using Eq. (7.100), the net average power density
flowing in medium I is

I - -*Savi (7) = 291e[EI (7) x HI (z)]

= 191e[ xEb(e-jk,z + rejk1z)

x y Elt (eiklL _ r*e-ikIL)]
r]1

IEilry
=z _0_ (I -1f12),

2r]1
(8.18)

which is analogous to Eq. (2.106) for the lossless transmission-
line case. The first and second terms inside the bracket in
Eq. (8.18) represent the average power density of the incident
and reflected waves, respectively. Thus,

(8.19a)

with

(8.19b)

(8.19c)

Even though r is purely real when both media are lossless
dielectrics, we chose to treat it as complex, thereby providing
in Eq. (8.19c) an expression that is also valid when medium 2
is conducting.

The average power density of the transmitted wave in
medium 2 is

I - -*Sav2(7) = 291e[E2(z) x H2(z)]

= ~91e [xrEbe-jk2Z x yr* Eb* ejk2Z]
- r]2

lEi 12
=zlrl2 _0_.

2r]2
(8.20)
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Through the use of Eqs. (8.12a) and (8.12b), it can be easily
shown that for lossless media

(lossless media), .(Se2l)

which leads to

SaVI = Save·

This result is expected from considerations of power
conservation.

Example 8-1: Radar Radome Design

A IO-GHz aircraft radar uses a narrow-beam scanning antenna
mounted on a gimbal behind a dielectric radorne, as shown in
Fig. 8-5. Even though the radome shape is far from planar, it is
approximately planar over the narrow extent of the radar beam.
If the radome material is a lossless dielectric with e, = 9 and
J1r = I. choose its thickness d such that the radome appears
transparent to the radar beam. Structural integrity requires d to
be greater than 2.3 ern.

Solution: Figure 8-6(a) shows a small section of the radome
on an expanded scale. The incident wave can be approximated
as a plane wave propagating in medium I (air) with intrinsic
impedance riO. Medium 2 (the radome) is of thickness d and
intrinsic impedance /}r, and medium :3 (air) is semi-infinite with
intrinsic impedance 170. Figure 8-6(b) shows an equivalent
transmission-line model with z = 0 selected to coincide with
the outside surface of the radorne, and the load impedance
ZL = 1)0 represents the input impedance of the semi-infinite
medium to the right of the radome.

Antenna beam

~
Antenna Dielectric

radome
d

Figure 8·5: Antenna beam "looking" through an aircraft
radome of thickness d (Example 8-1).

For the radome to "appear" transparent to the incident wave,
the reflection coefficient must be zero at z = -d, thereby
guaranteeing total transmission of the incident power into
medium 3. Since ZL = 170 in Fig. 8-6(b), no reflection will take
place at z = -d if Zin = /}o, which can be realized by choosing
d = I1A2/2 [see Section 2-8.41, where A2 is the wavelength in
medium 2 and n is a positive integer. At 10 GHz, the wavelength
in air is AO= c/ f = 3 cm, while in the radome material it is

AO 3 em
A~ = -- = -- = 1 cm.~ Fr 3

Hence, by choosing d = 5A2/2 = 2.5 ern, the radome will be
non-reflecting and structurally stable.

Incident wave

Medium 3 (air)

170

Radome Transmitted wave

Medium I (air)

170

Medium 2
1'Ir

, ,
z = -d z= 0

(a)

Line I
Linc2 ,

z = -d z = 0

(b)

Figure 8-6: (a) Planar section of the radome of Fig. 8-5 at an
expanded scale and (b) its transmission-line equivalent model
(Example 8-1).
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Example 8-2: Yellow Light Incident upon a Glass
Surface

A beam of yellow light with wavelength 0.6 JLm is normally
incident in air upon a glass surface. If the surface is situated
in the plane z = 0 and the relative permittivity of glass is 2.25,
determine:
(3) the locations of the electric field maxima in medium I(air),
(b) the standing-wave ratio, and
(c) the fraction of the incident power transmitted into the glass

medium.

Solution: (3) We begin by determining the values of 1}1, 1}2,

and r:

1}1 = fFH =t! ::::120rr (Q),

(ii2 (iiO I 120rr
1}2 = Y -;; = y -;;; . Fr ::::v'2.2s = SOrr (Q),

r = 1]2 - 1} I 80rr - 120rr
1}2 + 1}1 = 80rr + 120rr = -0.2.

Hence, If I= 0.2 and er = tt . From Eq. (8.16), the electric-
field magnitude is maximum at

erAI Al
[max = -- +n-

4rr 2
Al AI

= - +n -
4 2

(n = 0, \,2 .... )

with AI = 0.6 JLm.

(b)
s = 1 + Ifl = 1+0.2 _

I - WI 1 _ 0.2 - 1.5.

(c) The fraction of the incident power transmitted into the
glass medium is equal to the ratio of the transmitted power
density, given by Eq. (8.20), to the incident power density,
Siv = IEbI2/2111:

In view ofEq. (8.21),

~iV2 = I - 1f12 = 1 - (0.2)2 = 0.96, or 96%.
av

8-1.4 Boundary between Lossy Media

In Section 8-1.1 we considered a plane wave in a lossless
medium incident normally on a planar boundary of another \oss-
less medium. We will now generalize our expressions to lossy
media. In a medium with constitutive parameters (s, JL, a), the
propagation constant y = ct+ jf3 and the intrinsic impedance TIc

are both complex. General expressions for a, f3, and TIc are
given by Eqs. (7.66a), (7.66b), and (7.70), respectively, and
approximate expressions are given in Table 7-1 for the special
cases of low-loss media and good conductors. If media 1
and 2 have constitutive parameters (E\, JL1,0'1) and (E2, JL2, 0'2)
IFig. 8-7], then expressions for the electric and magnetic fields
in media I and 2 can be obtained from Eqs. (8.5) through (8.8)
of Table 8-1 by replacing jk with y and TI with TIc. Thus,

Medium 1

EI (z) = xEi(e-Y1L + reYI7),

_ Ei
HI (z) = y --2.(e-Ylz - reYP'),

Ilel

(8.22a)

(S.22b)

Ei

H;Lk;
Er

r..JH'
I1c.l

Medium 1 (cJ, Ph 0"1)

(a) Boundary between dielectric media

Infinite line

z= 0
(b) Transmission-line analogue

Figure 8·7: Normal incidence at a planar boundary between
two lossy media.
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Medium 2

E2(Z) = h Ehe-Y2Z, (X.23a)
_ Ei
H2(z) = YT ~ e-}';!J. (X.23b)

1)c~

I' = l1c2 - l1ct , (8,24a)
l1cz + 'leI

Because Ilcl and 'l«: are, in general. complex, rand T. may be
complex as well.

Example 8-3: Normal Incidence on a Metal Surface

A I-GHz x-polarized plane wave traveling in the -l-z-direction
is incident from air upon a copper surface. The air-to-copper
interface is at z = 0 and copper has Er = I, f.1r = I, and
(J = 5.8 x 107 S/m. If the amplitude of the electric field of
the incident wave is 12 (mv/m), obtain expressions for the
instantaneous electric and magnetic fields in the air medium.
Assume the metal surface to be several skin depths deep.

Solution: In medium I (air). a = 0,

W 27T X 109 207T
/3-kl - - - --- - c - 3 X 108 - 3 (rad/m),

1)1 = 1)0 = 377 (Q),
2;rr

A = - =0.3m.
kl

At f = I GHz, copper is an excellent conductor because

5.8 x 107 9
-::---.,-::-;;--,-:---;;--:-::-:---:-= I x 10 »1.
27T x 109 x (10-9 1367T)

Use of Eq. (7.77c) gives

1)e> = (1 + j)j7TfJ1
- (J

_ I . [7T x 109
X 47T x 10-7]1/2

- ( + J) 5.8 x 107

= 8.25(1 + j) (mQ).

Since Ilcl is so small compared to 1)0 = 377 (Q) for air, the
copper surface acts, in effect, like a short circuit. Hence,

r = 1)cl - 1)0 :::::: -1.
1)cl + 1)0

Upon setting r = -I in Eqs. (8.5) and (8.6) of Table 8-1. we
obtain

EJ{z) = xEh(e-jk,z - eiklL)

= -xj2Ehsinkl7.,

- Eb 'kkHI(z)=y-(e-J IZ+eJlz)
1)1

Ei
= y2 2 coskl7..

1)1

(8.25a)

(8.25b)

With Eb = 12 (mY1m), the instantaneous fields associated with
these phasors are

EI (7., t) = 9te[EI (z) ejUJI
]

= X 2Ei) sin k, z sin cot

= x24sin(20;rrzI3) sin(2;rr x 10<)1) (mY/m).

HI (z. t) = 9tclHI (z) ejW( J
Ei

= y2 2 cos ej z coswt
1)1

=y64cos(20;rrzI3)cos(2;rr x 109t) (J1A/m).

Plots of the magnitude of EI (z. t) and HI (z , t) are shown in
Fig. 8-8 as a function of negative 7. for various values of cot .
The wave patterns exhibit a repetition period of A/2, and E and
H are in phase quadrature (900 phase shift) in both space and
time. This behavior is identical with that for voltage and current
waves on a shorted transmission line.
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(

wI = n
~ .., ~., ~

I ~
I ~

1 I ~ 1
1 I , 1
II ,I

II
I

I
I

I
~ ,.. '...

Figure 8·8: Wave patterns for fields EI (z, t) and HI (z. t) of
Example 8-3.

Review Question 8·1: What boundary conditions were
used in the derivations of the expressions for rand t:'!

Review Question 8-2: Tn the radar radome design of
Example 8-1, all the incident energy in medium 1 ends up
getting transmitted into medium 3, and vice versa. Does
this imply that no reflections take place within medium 2?
Explain.

Review Question 8-3: Explain on the basis of boundary
conditions why it is necessary that r = -1 at the boundary
between a dielectric and a perfect conductor.

Exercise 8-1: To eliminate reflections of normally
incident plane waves, a dielectric slab of thickness d
and relative permittivity cr2 is to be inserted between two
semi-infinite media with relative permittivities crl = 1and
cr3 = 16. Use the quarter-wave transformer technique to
select d and crz. Assume f = 3 GHz.

Answer: Br2 = 4 and d = (1.25 + 2.5n) (em). with
n =0, 1.2 •.... (Seee-)

Exercise 8-2: Express the normal-incidence reflection
coefficient at the boundary between two nonmagnetic,
conducting media in terms of their complex permittivities.

Answer: For incidence in medium I (BI, /to, O'd onto
medium 2 (B2, f..Lo,0'2),

~-Fzr= ,~+Fz
with cel = (Bl - jUllw) and eC2 = (£2 - jU2/w). (See 4,.)

Exercise 8-3: Obtain expressions for the average power
densities in media 1 and 2 for the fields described by
Eqs. (8.22a) through (8.23b), assuming medium I is
slightly lossy with I1c[ approximately real.

Answer: (See ~)

8-2 Snell's Laws

In the preceding sections we examined reflection and
transmission of plane waves that are normally incident upon
a planar interface between two different media. We now
consider the obJique-i ncidence case depicted in Fig. 8-9, and for
simplicity we assume all media to be lossless. The z = 0 plane
forms the boundary between media 1 and 2 with constitutive
parameters (B). f..L1) and (£2, /t2), respectively. The two lines
in Fig. 8-9 with direction k; represent rays drawn normal to t~e
wavefront of the incident wave, and those along directions k,
and kt are similarly associated with the reflected and transmitted
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Reflected wave

Incident wave
Medium 1 (cJ, til)

Figure 8-9: Wave reflection and refraction at a planar boundary
between different media.

waves. The angles of incidence. reflection. and transmission
(or refraction). defined with respect to the normal to the
boundary (the z-axis), are Hi. Hr, and Ht. respectively. These
three angles are interrelated by Snell's laws. which we will
derive shortly by considering the propagation of the wavefronts
of the three waves. Rays of the incident wave intersect the
boundary at 0 and 0'. Here Ai 0 represents a constant-phase
wavefront of the incident wave. Likewise. Ar 0' and At 0'
are constant-phase wavefronts of the reflected and transmitted
waves. respectively (Fig. 8-9). The incident and reflected
waves propagate in medium I with the same phase velocity
up, = 1/ JIll'Tt. while the transmitted wave in medium 2
propagates with a velocity up" = 1/ J112E2. The time it takes
for the incident wave to travel from Ai to 0' is the same as
the time it takes for the reflected wave to travel from 0 to A"
and also the time it takes the transmitted wave to travel from 0
to At. Since time equals distance divided by velocity. it follows
that

(8.26)
up, up, "P2

From the geometries of the three right triangles in Fig. 8-9, we
deduce that

AiO' = OO'Sinei.

OAr = OO'sinHr•

OAt = OO'sinet.

(8.27a)

(8.27b)

(8.27c)

Use of these expressions in Eq. (8.26) leads to

9j = Or (Snell's law of reflection), (8.28a)

sinOt = "Ill = JILISI
sin 9i uPl J1.2S2

(Snell's law of refraction). (8.28b)

Snell's law of reflection states that the angle of reflection
equals the angle of incidence, and Snell's law of refraction
provides a relation between sin Ht and sin Hi ill terms of the
ratio (~f the phase velocities.

The index of refraction of a medium, 11, is defined as the ratio
of the phase velocity in free space (i.e., the speed of light c) to
the phase velocity in the medium. Thus,

In view of Eq. (8.29), Eq. (8.28b) may be rewritten as

(8.30)

For nonmagnetic materials. Ilr, = 11r2 = I. in which case

(for J1.1 = J1.2). (8.31)
'.'

Usually, materials with higher densities have higher permittiv-
ities. Air. with Ilr = Er = I,has an index of refraction 110 = I.
Since for nonmagnetic materials n = Fr. a material is often
referred to as more dense than another material if it has a
greater index of refraction.

At normal incidence (ei = 0), Eq. (8.31) gives Ht = 0, as
expected. At oblique incidence At < Hi when 112 > 11 J and
(I, > ei when 112 < 11 J. That is. if a wave is incident on a more
dense medium [Fig. 8-1O(a)], the transmitted wave refracts
inwardly (toward the z-axis), and the opposite is true if a wave
is incident on a less dense medium [Fig. 8-l0(b)]. A case of
particular interest is when Ot = x /2. as shown in Fig. 8- lO(c);
in this case, the refracted wave flows along the surface and no
energy is transmitted into medium 2. The value of the angle



8-2 SNELL'S LAWS

Inward refraction Outward refraction
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No transmission

Figure 8-10: Snell's laws state that er = ei and
sinet = (nl/n2)sinej. Refraction is (a) inward if III < 112

and (b) outward if 11\ > 112; and (c) the refraction angle is 90°
if n 1 > 112 and ej is equal to or greater than the critical angle
ee = sin-l(1I2Inl)'

of incidence ei corresponding to et = n /2 is called the critical
angle ec and is obtained from Eq. (8.30) as

If ei exceeds ec, the incident wave is totally reflected, and the
refracted wave becomes a nonuniform surface wave that travels
along the boundary between the two media. This wave behavior
is called total internal reflection.

Example 8-4: Light Beam Passing through a Slab

A dielectric slab with index of refraction n2 is surrounded by a
medium with index of refraction n I, as shown in Fig. 8-1 I. If

Figure8-11: The exit angle e3 is equal to the incidence angle e]
if the dielectric slab has parallel boundaries and is surrounded
by media with the same index of refraction on both sides
(Example 8-4).

ei < ec, show that the emerging beam is parallel to the incident
beam.

Solution: At the slab's upper surface, Snell's law gives

• II Ill. ()
Sill "2 = - Sill 1

n2

and, similarly, at the slab's lower surface,

(8.33)

. () n2. e n2. e
Sill 3 = - Sill 2 = - SIn 2.

n3 nl
(8.34)

Substituting Eq. (8.33) into Eq. (8.34) gives

Hence, ()3 = el. The slab displaces the beam's position, butthe
beam's direction remains unchanged.

Exercise 8-4: In the visible part of the electromagnetic
spectrum, the index of refraction of water is 1.33. What is
the critical angle for light waves generated by an upward-
looking underwater light source?

Answer: (}c = 48.8°. (See .)

exercise 8-5: If the light source of Exercise 8-4 is situated
at a depth of 1 m below the water surface and if its beam
is isotropic (radiates in a11directions), how large a circle
would it illuminate when observed from above?

Answer: Circle's diameter = 2.28 m. (See ~)
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(a) Optical fiber (b) Successive internal reflections

Figure 8-12: Waves can be guided along optical fibers as long as thc reflection angles exceed the critical angle for total internal reflection.

8-3 Fiber Optics
By successive total internal reflections, as illustrated in
Fig. 8-12(a), light can be guided through thin dielectric rods
made of glass or transparent plastic, known as optical fibers.
Because the light is confined to traveling within the rod, the only
loss in power is due to reflections at the sending and receiving
ends of the fiber and absorption by the fiber material (because
it is not a perfect dielectric). Optical fibers are useful for the
transmission of wide-band signals as well as many imaging
applications.

An optical fiber usually consists of a cylindrical fiber core
with an index of refraction lIf, surrounded by another cylinder of
lower index of refraction, ne, called the cladding [Fig. 8-12(b)].
The cladding layer serves to optically isolate the fiber when a
large number of fibers are packed in close proximity, thereby
avoiding leakage of light from one tiber into another. To ensure
total internal reflection, the incident angle (h in the tiber core
must be equal to, or greater than, the critical angle Be for a
wave in the fiber medium (with lid incident upon the cladding
medium (with lie). From Eq. (8.32a), we have

. ne
sm{}c = -

nf
(8.35)

To meet the total reflection requirement B3 ::: (Je,it is necessary
that sin (J3 ::: tiel tIr. The angle B2 is the complement of angle B3;
hence cos f}z = sin B3. The necessary condition therefore may
be written as ne

COS(J2::: - .
nf

Moreover, (h is related to the incidence angle on the face of the
fiber, Bi,by Snell's law:

(8.36)

. {} tIo. B
SIll 2 = - sin i,

tIf
(8.37)

where 110 is the index of refraction of the medium surrounding
the fiber (tIo = 1 for air and tIo = 1.33 if the fiber is in water),
or

2 1/2

COS(J2= [1- (:~) sin
2
(Ji]

Using Eq. (8.38) on the left-hand side of Eq. (8.36) and then

(8.38)

solving for sin {}igives

I ~ ? l/~sin{}i ~ - (n; - n~) =.
tIo

(8.39)

The acceptance angle {}a is defined as the maximum value
of {}ifor which the condition of total internal reflection remains
satisfied:

The angle 8a is equal to half the angle of the acceptance cone of
the tiber. Any ray of light incident upon the face of the core fiber
at an incidence angle within the acceptance cone can propagate
down the core. This means that there can be a large number of
ray paths, called modes, by which light energy can travel in the
core. Rays characterized by large angles (Jitravel longer paths
than rays that propagate along the axis of the fiber, as illustrated
by the three modes shown in Fig. 8-13. Consequently, different
modes have different transit times between the two ends of the
tiber. This property of optical fibers is called modal dispersion
and has the undesirable effect of changing the shape of pulses
used for the transmission of digital data. When a rectangular
pulse of light incident upon the face of the fiber gets broken
up into many modes and the different modes do not arrive at
the other end of the fiber at the same time, the pulse shape gets
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Core

I-T-J
..•..f\f\f\

fr-l

High-order mode Low-order mode Axial mode

Figure 8-13: Distortion of rectangular pulses caused by modal dispersion in optical fibers.

distorted, both in shape and length. In the example shown in
Fig. 8-13, the narrow rectangular pulses at the input side of the
optical fiber are of width Ti separated by a time duration T.
After propagating through the fiber core, modal dispersion
causes the pulses to look more like spread-out sine waves with
spread-out temporal width r , If the output pulses spread out so
much that r > T, the output signals will smear out, making it
impossible to decipher the transmitted message from the output
signal. Hence, to ensure that the transmitted pulses remain
distinguishable at the output side of the fiber, it is necessary
that r be shorter than T. As a safety margin, it is common
practice to require that T ::: 2<.

The spread-out width r is equal to the time delay St between
the arrival of the slowest ray and the fastest ray. The slowest ray
is the one traveling the longest distance and corresponds to the
ray incident upon the input face of the fiber at the acceptance
angle f)~. From the geometry in Fig. 8-12(b) and Eq. (8.36),
this ray corresponds to cos 82 = nclnf. For an optical fiber of
length I. the length ofthe path traveled by such a ray is

I nf
lmax = -- = I - •

coslh nc
(8.41)

and its travel time in the fiber at velocity up = c] nf is

{max lllf
tmax = - = - . (8.42)

Up Cllc

The minimum time of travel is realized by the axial ray and is
given by

I I
tmin = - = - Ilf·

up c

The total time delay is therefore

(8.43 )

r = t!"t = tmax - tmin = lnr (~)
C Ilc - I

(s). (8.44)

As we stated before, to retrieve the desired information from the
transmitted signals, it is advisable that T, the interpulse period
of the input train of pulses, be no shorter than 2r , This, in turn,
means that the data rate (in bits per second), or equivalently the
number of pulses per second, that can be transmitted through
the fiber is limited to

I 1 cnc
fp = T = 2r = -21-Il-f-(n-f---llc-)

(bits/s). (8.45)

Example 8·5: Transmission Data Rate on Optical Fibers

A l-km-long optical fiber (in air) is made of a fiber core with
an index of refraction of 1.52 and a cladding with an index of
refraction of 1.49. Determine
(a) the acceptance angle ea, and
(b) the maximum usable data rate of signals that can be

transmitted through the fiber.

Solution: (a) From Eq. (8.40),

sin8a = ~(n; - n~)1/2 = [(1.52)2 - (1.49)2][/2 = 0.3,
no

which corresponds to ea = 17.5°.

(b) From Eq. (8.45),

cncip=----
2lnf(nr - Ilc)

3 x 108 x 1.49
= = 4.9 (Mb/s).

2 x to3 x 1.52(1.52 - 1.49)
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Technology Brief 15: Lasers

• Laser

Lasers are used in CD and DVD players, bar-code readers, eye surgery, and multitudes of other systems and
applications (Fig. TF15-1). A laser-acronym for Light Amplification by Stimulated Emission of Radiation-is a source of
monochromatic (single wavelength), coherent (uniform wavefront), narrow-beam light, in contrast with other sources
of light (such as the sun or a light bulb) which usually encompass waves of many different wavelengths with random
phase (incoherent). A laser source generating microwaves is called a maser. The first maser was built in 1953 by
Charles Townes and the first laser was constructed in 1960 by Theodore Maiman.

• Coil imator lens

• Beam splitter

•
Laser ~__.. .1..; .

'11

• Diffraction
qratinq

Figure TF15-1: A few examples of laser applications, (Courtesy endgadget: Myvisiontest; U. S. Air Force: CDR info.

Basic Principles

Despite its complex quantum-mechanical structure, an atom can be conveniently modeled as a nucleus (containing
protons and neutrons) surrounded by a cloud of electrons. Associated with the atom or molecule of any given material
is a specific set of quantized (discrete) energy states (orbits) that the electrons can occupy. Supply of energy (in
the form of heat, exposure to intense light, or other means) by an external source can cause an electron to move
from a lower energy state to a higher energy (excited) state. Exciting the atoms is called pumping because it leads
to increasing the population of electrons in higher states [Fig. TF15-2(a)]. Spontaneous emission of a photon (light
energy) occurs when the electron in the excited state moves to a lower state [Fig. TF1S-2(b)], and stimulated emission
[Fig. TF1S-2(c)] happens when an emitted photon "entices" an electron in an excited state of another atom to move to
a lower state, thereby emitting a second photon of identical energy, wavelength, and wavefront (phase).
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(a) Pumping electron to excited state

Photon Original photon

~
~
Stimulated photon

Photon
~

(b) Spontaneous emission (c) Stimulated emission

Figure TF15-2: Electron excitation and photon emission.

Principle of Operation

Highly amplified stimulated emission is called lasing. The lasing medium can be solid, liquid, or gas. Laser operation is
illustrated in Fig. TF15-3 for a ruby crystal surrounded by a flash tube (similar to a camera flash). A perfectly reflecting
mirror is placed on one end of the crystal and a partially reflecting mirror on the other end. Light from the flash tube
excites the atoms; some undergo spontaneous emission, generating photons that cause others to undergo stimulated
emission; photons moving along the axis of the crystal will bounce back and forth between the mirrors, causing additional
stimulated emission (i.e., amplification), with only a fraction of the photons exiting through the partially reflecting mirror.
Because all of the stimulated photons are identical, the light wave generated by the laser is of a single wavelength.

Perfectly reflecting
mirror

Wavelength (Color) of Emitted Light

Excitation energy
(e.g.. flash tube)

• Partially reflecting
mirror••I. Laser light•

Amplifying medium

Figure TF15-3: Laser schematic.

The atom of any given material has unique energy states. The difference in energy between the excited high energy
state and the stable lower energy state determines the wavelength of the emitted photons (EM wave). Through proper
choice of lasing material, monochromatic waves can be generated with wavelengths in the ultraviolet, visible, infrared
or microwave bands.
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Exercise 8-6: If the index of refraction of the cladding
material in Example 8-5 is increased to 1.50, what would
be the new maximum usable data rate?

Answer: 7.4 (Mb/s). (See ~)

8-4 Wave Reflection and Transmission at
Oblique Incidence

In this section we will develop a rigorous theory of reflection
and refraction of plane waves obliquely incident upon planar
boundaries between different media. Our discussion will
parallel that in Section 8-1 for the normal-incidence case and
go beyond that in Section 8-2 on Snell's laws. which yielded
information on only the angles of reflection and refraction,

For normal incidence. the reflection and transmission
coefficients rand r at a boundary between two media are
independent of the polarization of the incident wave, as both
the electric and magnetic fields of a normally incident plane
wave are tangential to the boundary regardless of the wave
polarization. This is not the case for obliquely incident waves
travelling at an angle (Ii f= 0 with respect to the normal to the
interface. In what follows, the plane of incidence is defined
as the plane containing the normal to the boundary and the
direction of propagation of the incident wave. A wave of
arbitrary polarization may be described as the superposition
of two orthogonally polarized waves. one with its electric
field parallel to the plane of incidence (parallel polarization)
and the other with its electric field perpendicular to the
plane of incidence (perpendicular polarization). These two
polarization configurations arc shown in Fig. 8-14, in which
the plane of incidence is coincident with the x-z plane.
Polarization with E perpendicular to the plane of incidence is
also called transverse electric (TE) polarization because E is
perpendicular to the plane of incidence. and that with E parallel
to the plane of incidence is called transverse magnetic (TM)
polarization because in this case it is the magnetic field that is
perpendicular to the plane of incidence.

For the general case of a wave with an arbitrary polarization,
it is common practice to decompose the incident wave
(Ei, Hi) into a perpendicularly polarized component (E~ , H~)

and a parallel polarized component (Eil' H\I)' Then, after
determining the reflected waves (E~. H~) and (Ell' HII) due
to the two incident components. the reflected waves are added

x

==0
(a) Perpendicular polarization

x

Medium I
(f:h,ul)

.:=0
(b) Parallel polarization

Figure 8-14: The plane of incidence is the plane containing
the direction of wave travel. ki. and the surface normal to the
boundary. In the present case the plane of incidence containing
ki and z coincides with the plane of the paper. A wave is
(a) perpendicularly polarized when its electric lield vector is
perpendicular to the plant: of incidence and (h) parallel polarized
when its electric field vector lies in the plane of incidence.

together to give the total reflected wave (E'', H") corresponding
to the original incident wave. A similar process can be used to
determine the total transmitted wave (EI. Ht).
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8-4.1 Perpendicular Polarization
Figure 8-15 shows a perpendicularly polarized incident plane
wave propagating along the xi-direction in dielectric medium 1.
The electric field phasor E~points al£,ng the y-direction, and
the associated ma~etic field phasor H~ is along t~e )'i-axis.
The directions of E~ and H~ are such that E~ x H~ points
along the propagation direction Xi. The electric and magnetic
fields of such a plane wave are given by

Ei _y~Ei e-jklxi
.L -.LO '

-. r.0 'kH~ = Yi -- e-} 'IXi,

1]1

where E~o is the amplitude of the electric field phasor at
Xi = 0, and kl = w~ and 171 = .JiiITEJ are the wave
number and intrinsic impedance of medium 1. From Fig. 8- [5.
the distance Xi and the unit vector Yimay be expressed in terms
of the (x. y, z) global coordinate system as

(8.46a)

(8.46b)

Xi = x Sinei + ZCOSei,

Yi= -XCOSei +zsinej.

(S.47a)

(8.47b)

Substituting Eqs, (S.47a) and (S.47b) into Egs. (S.46a) and
(8.46b) gives

Incident Wave

Ei _y~Ei e-jk1(xsinli,+zcoseil
.L - .LO '

H~= (-XCOS8i + zsin8i)

Eix ---.:!:Q e - J A dx sine,+z cosBel

171

With the aid of the directional relationships given in Fig. 8-15
for the reflected and transmitted waves, these fields are given
by

(S.48a)

(S.48b)

Reflected Wave

_ yAEr e-jkl(xsinli,-zcose,)
- .LO ' (S.49a)

x E~(J e" jk, (x sine,-zeos e,),
171

(8.49b)

Transmitted Wave

Ei = yE~oe-jk2X'

_ y~Et e-jh(xsinli,+zcosl!,)
- .LO ' (S.49c)

Hi = Yt E~l.O e: ikxx.
1/2

= (-X cos at + z sin at)

x E~o e-Jk2(X~me,+7.cos9,)

1/2
(8.49d)

where ar and a1 are the reflection and transmission angles
shown in Fig. 8-15, and k2 and 172 are the wavenumber and
intrinsic impedance of medium 2. Our goal is to describe
the reflected and transmitted fields in terms of the parameters
that characterize the incident wave, namely the incidence
angle Aiand the amplitude E~o' The four expressions given
by Eqs. (8.49a) through (8.49d) contain four unknowns: E~o'
E~o' 8r, and et. Even though angles ar and at are related to ai
by Snell's laws (Eqs, (S.2Sa) and (8.28b», here we choose to
treat them as unknown for the time being, because we intend
to show that Snell's laws can also be derived by applying
field boundary conditions at z = O. The total electric field
in medium I is the sum of the incident and reflected electric
fields: Ei = E~+ E~; and a similar statement holds true
for the total magnetic field in medium I: Hi = H~+H~.
~ound~y conditions state that the tangential components of
E and H must each be continuous across the boundary between
the two media. Field components tangential to the boundary
extend along x and y. Since the electric fields in media 1 and 2
have y-components only, the boundary condition for E is

(8.50)

Upon using Eqs. (8.4Sa), (S.49a), and (S.49c) in Eq. (8.50) and
then setting z = 0, we have
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x

z

z=o
Figure 8-15: Perpendicularly polarized plane wave incident at an angle ej upon a planar boundary.

Since the magnetic fields in media I and 2 have no
y-components, the boundary condition for Iiis

(8.52)

or

_ E~o COSei e-jklxsinO, + E~o coser e-jk\xsinO,
1'/1 1'/1

= _ Eio cOSet e-jk2xsinO,
1'/2

(8.53)

To satisfy Eqs. (8.51) and (8.53) for all possible values of x
(i.e., all along the boundary), it follows that the arguments of
all three exponentials must be equal. That is,

(8.54)

which is known as the phase-matching condition. The first
equality in Eq. (8.54) leads to

while the second equality leads to

The results expressed by Eqs. (8.55) and (8.56) are identical
with those derived previously in Section 8-2 through
consideration of the ray path traversed by the incident, reflected,
and transmitted wavefronts.
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In view of Eq. (8.54), the boundary conditions given by
Eqs. (8.51) and (8.53) reduce to

£~O + E~o = E~o'

cos OJ j r cos (it t
--(-£1.0 + EH) = --- E1.o·

~l ~2

(8.57a)

(8.57b)

These two equations can be solved simultaneously to yield
the following expressions for the reflection and transmission
coefficients in the perpendicular polarization case:

These two coefficients, which formally are known as
the Fresnel reflection and transmission coefficients for
perpendicular polarization, are related by

1 •. L=1 +f'l.. (859)1

If medium 2 is a perfect conductor (~2 = 0), Eqs. (8.58a)
and (8.58b) reduce to r1. = -I and T1. = 0, respectively,
which means that the incident wave is totally reflected by the
conducting medium.

For nonmagnetic dielectrics with f..i] = 112 = 110 and with
the help of Eq. (8.56), the expression for r 1. can be written as

(8.60)

Since (.S2!S[) = (n2!nd2, this expression can also be written
in terms of the indices of refraction III and 112.

Example 8-6: Wave Incident Obliquely on a Soil Surface

Using the coordinate system of Fig. 8·15, a plane wave radiated
by a distant antenna is incident in air upon a plane soil surface
located at z = O. The electric field of the incident wave is given
by

Ej = ylOOcos(wt -rrx - 1.73rrz) (Vim), (8.61 )

and the soil medium may be assumed to be a lossless dielectric
with a relative permittivity of 4.
(a) Determine k\, ka. and the incidence angle Bj.
(b) Obtain expressions for the total electric fields in air and in

the soil.
(e) Determine the average power density carried by the wave

traveling in soil.

Solution: (a) We begin by converting Eq. (8.61) into phasor
form, akin to the expression given by Eq. (8.46a):

(8.62)(Vim),

where Xj is the axis along which the wave is traveling, and

k\xj = n x + 1.73rr z. (8.63)

Using Eq. (8.47a), we have

(8.64)

Hence,

k, sinOj = it ,

kl cosBj = 1.73rr,

which together give

k, = Jrr2 + (1.73rr)2 = 2rr

Bj= tan-I (_rr_) = 30°.
1.73rr

(rad/rn),
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The wavelength in medium I (air) is

2n
Al = - = 1m

kl '

and the wavelength in medium 2 (soil) is

Al 1
A2 = -- = - =0.5m.

.jEr; J4

The corresponding wave number in medium 2 is

(rad/m).

Since Ej is along y, it is perpendicularly polarized (y is
perpendicular to the plane of incidence containing the surface
normal z and the propagation direction Xj).

(b) Given that 8i = 30°, the transmission angle 8t is obtained
with the help of Eq. (8.56):

. kl 'In
sm8t = - sin8i = - sin 30° = 0.25

k2 4n

or

8t = 14S.

With CI = co and C2 = cr2cO = 4co, the reflection and
transmission coefficients for perpendicular polarization are
determined with the help of Eqs. (8.59) and (8.60),

cos 81 - ../ (c2/cd - sin2 8ir.l = = -0.38,
COSel + ../(c2/c1) - sin28j

T.l = 1 + r.l = 0.62.

Using Eqs. (8.48a) and (8.49a) with E~o = 100 VIm and
OJ = Or, the total electric field in medium I is

E1=E~+E~
= YE~oe-jkl(.tsin(:l,+zcOSl:li)

+ yr E~oe-.ikl (x sinOi-zcosB;)

= YIOOe-J(rrx+1.73rrz) _ Y38e-j(rrx-1.73rrz),

and the corresponding instantaneous electric field in medium 1
is

El(x,z,t) = 9le[ElejQJf
]

= YlIOOcos(wt - nx - l.73nz)

- 38cos(wt - nx + 1.73nz)] (VIm).

In medium 2, using Eq. (8.49c) with Eio = T.lE~o gives

Ei, = yr E~oe- j k2 (x sinB,+z cosBtl

= Y62e-j(rrx+3.87rrz)

and, correspondingly,

EjJx, z, t) = 9le [Ei,ejwt]

= y62 cos(wt - n x - 3.87n z) (VIm).

(e) In medium 2, 172 = 170/.jEr;:::::: 120n / v'4 = 60n (Q). and
the average power density carried by the wave is

lEt 12 (62)2Siv = ~ = = 10.2
2172 2 x 60n

8-4.2 Parallel Polarization

If we interchange the roles played by E and H in the
perpendicular polarization scenario covered in the preceding
subsection, while keeping in mind the requirement that E x H
must point in the direction of propagation for each of the
incident, reflected, and transmitted waves, we end up with the
parallel polarization scenario shown in Fig. 8-16. Now the
electric fields lie in the plane of incidence, while the associated
magnetic fields are perpendicular to the plane of incidence.
With reference to the directions indicated in Fig. 8-16, the fields
of the incident, reflected, and transmitted waves are given by

Incident Wave
E1 - y' Ei e-jklxi11- i 110

= (x cos 8i - zsin8i)Elloe-jkl(XSin8,+ZCOS8i), (8.65a)

Hi = y EIIO e-jk,Xi = y EIIO e-jkilxsin8i+zcoSOi) (8.65b)
II 171 171 '
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x

Figure 8·16: Parallel polarized plane wave incident at an
angle ei upon a planar boundary.

Reflected Wave

E,r - y" e: e-jk1x,II - r 110

= (icoser + zsiner)E!ioe-ikl(xsin8,-zcosHr), (8.65c)

ill = _y E~o e-jklxr
II 1Jl

= _y Elio e-jkl(xsinli,-zcosH,),
1Jl

(8.65d)

Transmitted Wave

EI - y" El e" jk2Xt11- I 110

= (i cos fit - zsin8t)Elloe-jkz(xsinOt+zcoSOt),

HI =y EIIO e-jkzx, =y E~o e-jk2(xsinIH>,cosOt).

11 rJ2 1J2

(8.65e)

(8.65f)

By matching the tangential components of E and H in
both media at z = 0, we again obtain the relations defining
Snell's laws, as well as the following expressions for the
Fresnel reflection and transmission coefficients for parallel
polarization:

The preceding expressions can be shown to yield the relation

cosBi
I'll = (I + ['II) -n . (8.67)

cos 171

We noted earlier in connection with the perpendicular-
polarization case that, when the second medium is a perfect
conductor with 1J2 = 0, the incident wave gets totally reflected
at the boundary. The same is true for the parallel polarization
case; setting 1]2 = 0 in Eqs. (8.66a) and (8.66b) gives ['11 =-1
and Til = O.

For nonmagnetic materials, Eq. (8.66a) becomes

To illustrate the angular variations of the magnitudes of r.l

and r11, Fig. 8-17 shows plots for waves incident in air onto
three different types of dielectric surfaces: dry soil (Er = 3), wet
soil (Er = 25), and water (s, = 81). For each of the surfaces,
(I) r.l = rll at normal incidence (ej = 0), as expected,
(2) If 1.1 = If Iii = I at grazing incidence (ej = 90°), and
(3) rll goes to zero at an angle called the Brewster angle in
Fig. 8-17. Had the materials been magnetic too (Ill =1= 1l2), it
would have been possible for r.l to vanish at some angle as
well. However, for nonmagnetic materials, the Brewster angle
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lfllo.6 Wet soil
(c;r=25)or

0.2

10 20 30 40

(OB dry soil) (OB wet soil)
Incidence angle OJ (degrees)

Figure 8-17: Plots for [F1- I and [F IIIas a functionof Hj for a dry
soil surface. a wet-soil surface. and a water surface. For each
surface. ifill = 0 at the Brewster angle.

exists only for parallel polarization. and its value depends on the
ratio (F.2/ EI). as we will see shortly. At the Brewster angle, the
parallel-polarized component of the incident wave is totally
transmitted into medium 2.

8-4.3 Brewster Angle

The Brewster angle OB is defined as the incidence angle Hi

at which the Fresnel reflection coefficient r = o.

Perpendicular Polarization

For perpendicular polarization, the Brewster angle flB1- can be
obtained by setting the numerator of the expression for r1-,

given by Eq. (8.58a), equal to zero. This happens when

(8.69)

By (I) squaring both sides of Eq. (8.69), (2) using Eq. (8.56),
(3) solving for Hi, and then denoting ej as H81-, we obtain

I- {f.1IE2/112F.Il

1-(111/112)2
rs.x»

Because the denominator of Eq. (8.70) goes to zero when
111= 112, 11a1- does not exist for nonmagnetic materials.

Parallel Polarization

For parallel polarization, the Brewster angle f}BII at which
rll = Ocan be found by setting the numerator of rll ,Eq. (8.66a),
equal to zero. The result is identical to Eq. (8.70), but with 11

and E interchanged. That is.

I - (E 111-2/£2111)

1-(£1/<'2)2
(8.71)

For nonmagnetic materials,

Os" = sin-I

(for III = 1l2). (8.12)

The Brewster angle is also called the polarizing angle. This is
because, if a wave composed of both perpendicular and parallel
polarization components is incident upon a nonmagnetic
surface at the Brewster angle eBII, the parallel polarized
component is totally transmitted into the second medium. and
only the perpendicularly polarized component is reflected by the
surface. Natural light. including sunlight and light generated
by most manufactured sources, is unpolarized because the
direction of the electric field of the light waves varies randomly
in angle over the plane perpendicular to the direction of
propagation. Thus, on average half of the intensity of natural
light is perpendicularly polarized and the other half is parallel
polarized. When unpolarized light is incident upon a surface at
the Brewster angle, the reflected wave is strictly perpendicularly
polarized. Hence. the surface acts as a polarizer.
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Review Question 8-4: Can total internal reflection take
place for a wave incident from medium I (with n I) onto
medium 2 (with n2) when /12 > /1]?

Review Question 8-5: What is the difference between the
boundary conditions applied in Section 8-1.1 for normal
incidence and those applied in Section 8-4.1 for oblique
incidence with perpendicular polarization?

Review Question 8-6: Why is the Brewster angle also
called the polarizing angle?

Review Question 8-7: At the boundary, the vector sum
of the tangential components of the incident and reflected
electric fields has to equal the tangential component of
the transmitted electric field. For £rl = I and £r2 = 16,
determine the Brewster angle and then verify the validity
of the preceding statement by sketching to scale the
tangential components of the three electric fields at the
Brewster angle.

Exercise 8-7: A wave in air is incident upon a soil surface
at OJ = 50°. If soil has Cr = 4 and Mr = 1, determine r~,
rj , rll' and <II. (See ~)

Answer: r .L = -0.48, <~ = 0.52, rll = -0.16,
<II= 0.58.

Exercise 8·8: Determine the Brewster angle for the
boundary of Exercise 8.7.

Answer: OB = 63.4°. (See e)

Exercise 8·9: Show that the incident, reflected,
and transmitted electric and magnetic fields given by
Eqs. (8.65a) through (8.65f) all have the same exponential
phase function along the x-direction.

Answer: With the help ofEqs. (8.55) and (8.56), all six
fields are shown to vary as e" jkp: sin (Ii. (See 4)

8-5 Reflectivity and Transmissivity

The reflection and transmission coefficients derived earlier are
ratios of the reflected and transmitted electric field amplitudes
to the amplitude of the incident electric field. We now examine

Figure 8-18: Reflection and transmission of an incident circular
beam illuminating a spot of size A on the interface.

power ratios, starting with the perpendicular polarization case.
Figure 8-18 shows a circular beam of electromagnetic energy
incident upon the boundary between two contiguous, lossless
media. The area of the spot illuminated by the beam is A, and
the incident, reflected, and transmitted beams have electric-
field amplitudes E~o' E~o' and Eiu' respectively. The
average power densities carried by the incident, reflected, and
transmitted beams are

(8.73a)

(8.73b)

(8.73c)

where 111 and 172 are the intrinsic impedances of media 1
and 2, respectively. The cross-sectional areas of the incident,
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reflected. and transmitted beams are

Ai = A COSOi,

Ar = AcosOr•

At = AcosOt.

(8.74a)

(8.74b)

(8.74c)

and the corresponding average powers carried by the beams are

. 2
i j IE~olP.l = S.lAi = -- A cos OJ.

2111

Pr s. A IE~LOI2 A 0.l = .L r = -2- cos r.
111

Pt st IE~LOI2 A 0
L = .lAt = -2-- cos t-

112

(8.75a)

(8.75b)

(8.75c)

The reflectivity R (also called reflectance in optics) is defined as
the ratio of the reflected to the incident power. The reflectivity
for perpendicular polarization is then

(8.76)

where we used the fact that Or = ft., in accordance with Snell's
law of reflection. The ratio of the reflected to incident electric
field amplitudes, IE~o/ E~ol, is equal to the magnitude of the
reflection coefficient r.l. Hence,

and. similarly. for parallel polarization

~1~~~~X::'>.1~~:~~',~~:,:·'~{~~~~~
~:~i~~~~~~~.:~,s" ~ , ,~~-~ ~:,": " ',:, "_ -: ,~:: >;;~ii

The transmissivity T (or transmittance in optics) is defined as
the ratio of the transmitted power to incident power:

The incident. reflected. and transmitted waves do not have
to obey any such laws as conservation of electric field.
conservation of magnetic field. or conservation of power
density. but they do have to obey the law of conservation of
power.

In fact, in many cases the transmitted electric field is larger
than the incident electric field. Conservation of power requires
that the incident power equals the sum of the reflected and
transmitted powers. That is, for perpendicular polarization,

(8.80)

or

lEt 12+ ----='=L. A cos Ot.
2112

Use ofEqs. (8.76). (8.79a), and (8.79b) leads to

R.l+h=l.

RII + Til = 1,

(8.81)

(8.82a)

(8.82b)

or

Figure 8-19 shows plots for (RII. Til) as a function of Oi for an
air-glass interface. Note that the sum of RII and Til is always
equal to 1. as mandated by Eq. (8.82b). We also note that. at
the Brewster angle Os. RII = 0 and Til = 1.

Table 8-2 provides a summary of the general expressions for
r. T. R, and T for both normal and oblique incidence.
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Table 8·2: Expressions for I", T, R, and T for wave incidence from a medium with intrinsic impedance 1)1onto a medium with intrinsic
impedance 1)2.Angles &j and 8\ are the angles of incidence and transmission, respectively.

Normal Incidence Perpendicular Parallel
Property 8j = 8t = 0 Polarization Polarization

Reflection coefficient r = 1)2-1)1 r J. =
112COS8i-1)1 cOSet 1)2 cosBt - 1)1COSBi

112+ 1)1 112cos ei + 1)1cos 8t fll = 112COSet+ 111COSej

Transmission coefficient
21)2 21)2cos ej 21)2cos ei

r=--- TJ. =
Til = 1)2COSet+1)1 cos Hi112+ 1)1 1)2cos ei + 1)1cos el

Relation of r to r T=l+r TJ.=l+rJ.
COSej

Til = (1 + rll) --
COSet

Reflectivity R = 1f12 RJ. = If J.12 RII = If II12

Transmissivity T=ldG~)
2 1)1cos et 2 1)1cOSet

TJ. = IT.1.1 --- TII=ITIII --
112cos ej 112cos ej

Relation of R to T T = 1- R T.1.= I- R.1. Til = 1 - RII

Notes: (I) sin e( = JI-t 1el / 1-t2e2 sin Hi; (2) 1)1- .J I-t1/B1; (3) 1)2= .Jl-t2/B2; (4) for nonmagnetic media, "1)2/1)1- n l/n2·

Solution: From Eq. (8.56),

. n 1 • 0 I. 60° 0 17SIn at = - sm i = - SIn =.
n2 5

or
at = 10°.

WithE2/el = nVni = (5)2 = 25, the reflection coefficient for
parallel polarization follows from Eq. (8.68) as

OJ (degrees) -(E2/E])cosaj + J(8218» - sin2ajr II = ----'----'-----;=======:::;;==-
(82Iel) cos aj + J (e2/EI) - sin2 OJ

-25 cos 60° + J25 - sin2 60°
----r======:;;===- = -0.435.
25 cos 60° + J25 - sin2 60°

Figure 8-19: Angular plots for (RII' Til) for an air-glass
interface.

I EX81T1ple 8-7: Beam of Light

A 5-W beam of light with circular cross section is incident in air
upon the plane boundary of a dielectric medium with index of
refraction of 5. If the angle of incidence is 60° and the incident
wave is parallel polarized, determine the transmission angle and
the powers contained in the reflected and transmitted beams.

The reflected and transmitted powers therefore are

PI1 = Plilfll1
2 = 5(0.435)2 = 0.95 W,

PI1 = Pli - PI! = 5 - 0.95 = 4.05 W.
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Technology Brief 16: Bar-Code Readers

A bar code consists of a sequence of parallel bars of certain widths, usually printed in black against a white background,
configured to represent a particular binary code of information about a product and its manufacturer. Laser scanners
can read the code and transfer the information to a computer, a cash register, or a display screen. For both stationary
scanners built into checkout counters at grocery stores and handheld units that can be pointed at the bar-coded object
like a gun, the basic operation of a bar-code reader is the same.

Basic Operation

The scanner uses a laser beam of light pointed at a multifaceted rotating mirror, spinning at a high speed on the order
of 6,000 revolutions per minute (Fig. TF16-1). The rotating mirror creates a fan beam to illuminate the bar code on
the object. Moreover, by exposing the laser light to its many facets, it deflects the beam into many different directions,
allowing the object to be scanned over a wide range of positions and orientations. The goal is to have one of those
directions be such that the beam reflected by the bar code ends up traveling in the direction of, and captured by, the
light detector (sensor), which will read the coded sequence (white bars reflect laser light and black ones do not) and

Central store
computer

Barcode

Glass filter

Rotating mirror
(6.000 rpm)

Figure TF16-1: Elements of a bar-code reader.
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convert it into a binary sequence of ones and zeros (Fig. TF16-2). To eliminate interference by ambient lights, a
glass filter is used as shown in Fig. TF16-1 to block out all light except for a narrow wavelength band centered at the
wavelength of the laser light.

Electrical Signal ~

Digitalcode ~
10110100010001000110010

FigureTF16-2: Bar code contained in reflected laser beam.
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~ CD Module 8.1 Oblique Incidence Upon specifying the
frequency, polarization and incidence angle of a plane
wave incident upon a planar boundary between two
loss less media, this module displays vector information
and plots of the reflection and transmission coefficients as
a function of incidence angle.

~ CD Module 8.2 Oblique Incidence on Lossy Medium
This module extends the capabilities of Module 8.1 to
situations in which medium 2 is lossy.

II Module 8.1
r. pk.tr rP\olt Ir(!)1 8tc:t,ic: FI*I - Ft,ftediofI Cotme ••• ~

ObUque incidence vector Diagrams ~
r- f'k)csu,..otng'olW ••••

Q
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~
r

~
~

It

Hf, Ht 0.0

"/ e It 0.00 AJ'QMof InCldenc~ 9QOO,:.-

" y " E} z Input Output Refraction Behavior ~
f : 10ES Hz I Update I InCldo!ortA.n~ Pf'fr.!lCh:mA.ng6e

&i-SOS- e, -169163'"
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EI"dIlCF~ltj

~f:;: 10 ",= 1 0
kl Me~um 1 lIo<lum2 Tr....,."..ion Coefflc.e1I t =040)1 -ro o

Polartlation. ... "biddenl Transverse Field' f,ta9fY.1ICFlelc
Ref1ediOn Coe1(1CItrt r ,,0::094 +J 00r_ c,' H r. In 0 r- Out e Trlf'lllml"iOr1 Coefficient t-,2094+IOO

I(
- ..---

Pcwe-FlaI<t r. Electric 'MaQntIc
Refledldy R .004:1855

Hn _2 'ptotR.T " plot r .:t r plot r. Tr_lTII •• vty T ·0.956145..-...1 ..-..... -----_. -------_.-
E;, (,,=8.0 Angt.oIlncidence. 6O.S· Tot~TIM'5n'l!SSlor j,~1e '"8R "l ~';~.10

t:. 1 = 1 0 {Eire-.vster~nglt"

\'r1=1G ",Zz1.0
, ,

Tot. R.fIec:tion Angle 8
t
• L..Inde1ined

r : 1.0 GHz . , , (Crt"" ""'-'1

8-6 Waveguides

Earlier in Chapter 2, we considered two families of transmission
lines. namely those that support transverse-electromagnetic
(TEM) modes, and those that do not. Transmission lines
belonging to the TEM family (Fig. 2-4), including coaxial,
two-wire, and parallel-plate lines. support E and H fields
that are orthogonal to the direction of propagation. Fields
supported by lines in the other group. often called higher-order
transmission lines. may have E or H orthogonal tothe direction
of propagation k, but not both simultaneously. Thus, at least
one component of E or H is along Ii.

If E is transverse to k hut H is not, we call it a transverse
electric (TE) mode, and if" is transverse to k hut E is not,
we call it a transverse magnetic (TM) mode.

Among all higher-order transmission lines, the two most
commonly used are the optical fiber and the metal waveguide.
As noted in Section 8-3, a wave is guided along an optical fiber
through successive zigzags by taking advantage oftotal internal
reflection at the boundary between the (inner) core and the
(outer) cladding IFig. 8-20(a) J. Another way to achieve internal
reflection at the core's boundary is to have its surface coated by
a conducting material. Under the proper conditions, on which
we shall elaborate later, a wave excited in the interior of a hollow
conducting pipe, such as the circular or rectangular waveguides
shown in Figs. 8-20(b) and (c), will undergo a process similar
to that of successive internal reflection in an optical fiber,
resulting in propagation down the pipe. Most waveguide
applications call for air-filled guides, but in some cases, the
waveguide may be filled with a dielectric material so as to alter
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(a) Optical fiber

Hollow or

(b) Circular waveguide

Metal Hollow or

(c) Rectangular waveguide

Figure 8-20: Wave travel by successive reflections in (a)
an optical fiber. (b) a circular metal waveguide. and (c) a
rectangular metal waveguide.

its propagation velocity or impedance, or it may be vacuum-
pumped to eliminate air molecules so as to prevent voltage
breakdown, thereby increasing its power-handling capabilities.

Figure 8-21 illustrates how a coaxial cable can be connected
to a rectangular waveguide. With its outer conductor connected
to the metallic waveguide enclosure, the coaxial cable's inner

Waveguide
/

Coaxial line

(a) Coax-to-waveguide coupler

Electric field

y = b .--..,.----..,.---:-:---r-----++ • t+ EM wave
" \ : : : /\./'-+--

y = 0 L----\~':r.--/-'------- ------..z
(b) Cross-secti onal view at x = al2

Figure 8-21: The inner conductor of a coaxial cable can excite
an EM wave in the waveguide.

conductor protrudes through a tiny hole into the waveguide's
interior (without touching the conducting surface). Time-
varying electric field lines extending between the protruding
inner conductor and the inside surface of the guide provide the
excitation necessary to transfer a signal from the coaxial line to
the guide. Conversely, the center conductor can act like a probe,
coupling a signal from the waveguide to the coaxial cable.

For guided transmission at frequencies below 30 GHz, the
coaxial cable is by far the most widely used transmission line.
At higher frequencies, however, the coaxial cable has a number
of limitations: (a) in order for it to propagate only TEM modes,
the cable's inner and outer conductors have to be reduced
in size to satisfy a certain size-to-wavelength requirement,
making it more difficult to fabricate, (b) the smaller cross
section reduces the cable's power-handling capacity (limited by
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Figure 8·22: Waveguide coordinate system.

dielectric breakdown), and (c) the attenuation due to dielectric
losses increases with frequency. For all of these reasons, metal
waveguides have been used as an alternative to coaxial lines
for many radar and communication applications that operate
at frequencies in the 5-100 GHz range, particularly those
requiring the transmission of high levels of radio-frequency
(RF) power. Even though waveguides with circular and
elliptical cross-sections have been used in some microwave
systems, the rectangular shape has been the more prevalent
geometry.

8-7 General Relations for E and H

The purpose of the next two sections is to derive expressions for
E and H for the TE and TM modes in a rectangular waveguide,
and to examine their wave properties. We will choose the
coordinate system shown in Fig. 8-22, in which propagation
occurs along i. For TE modes, the electric field is transverse to
the direction of propagation. Hence, E may have components
along x and y, but not along i. In contrast, H will have a
z-directed component and may have components along either
x or y, or both. The converse is true for TM modes.

Our solution procedure will consist of four steps:

(I) Maxwell's equations will be manipulated to develop
general expressions for the phasor-domain transverse field
components Ex, Ey, ii.. and ii, in terms of Ez and Hz.
When specialized to the TE case, these expressions will
become functions of Hz only, and the converse is true for
the TM case.

(2) The homogeneous wave equations given by Eqs. (7.15)
and (7.16) will ~ solved to obtain valid solutions for g~
(TM case) and Hz (TE case) in a waveguide.

(3) lhe ~pnzsions d~ived in step I will then be used to find
E" E)" n., and HI"

(4) The solution obtained in step 3 will be analyzed to
determine the phase velocity and other properties of the
TE and TM waves.

The intent of the present section is to realize the stated goals
of step I. We begin with a general form for the E and H fields
in the phasor domain:

E = x Ex + y ii, + i E 7..

H = x ii, + y H)' + i Hz.
(8.84a)

(8.84b)

In general, all six components of E and H may depend on
(x, v, z), and while we do not yet know how they functionally
depend on (x, y), our prior experience suggests that E and H
of a wave traveling along the +z-direcrion should exhibit a
dependence on 7. of the form e: jflz. where f3 is a yet-to-be-
determined phase constant. Hence, we adopt the form

(8.85)

where e:,(x. y) describes the dependence of ii,«. y. z) on
(x, y) only. The form of Eq. (8.85) can be used for all other
components of E and H as well. Thus,

(8.86a)

(8.86b)

The notation is intended to clarify that, ill contrast to Eand H,
which vary with (x. )'. 7.), the lower case e and h vary with
(x. v) only.

In a lossless, source-free medium (such as the inside of a
waveguide) characterized by permittivity E and permeability J1
(and conductivity (T = 0), Maxwell's curl equations are given
by Eqs. (7.2b and d) with J = 0,

v x E= -jwJ1u'

V x H = jWEE.

(8.87a)

(8.87b)
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Upon inserting Eqs. (8.86a and b) into Eqs. (8.87a and b), and
recalling that each of the curl equations actually consists of
three separate equations-one for each of the unit vectors X, y,
and z, we obtain the following relationships:

Bez . ~ .-- + Jf3e\ = - JWJ1hx'ay .
. ~ Bez .-

-.lf3e, - ax = - JWJ1hl"

aev ae, .-
-::;-'-- -::;-= - JWJ1hz,
ux uy

3hz . - .--a + jbh ; = .IWEe.\,y .

. ~ Bhz . ~
- .lf3h, - -a = JWEer,x .

B!J, ahx . _-' - - = .IWEez·
ax ay

(8.88a)

(8.88b)

(8.88c)

(8.88d)

(8.88e)

(S.S8t)

Equations (8.88a-f) incorporate the fact that differentiation
with respect to z is equivalent to multiplication by - Jf3.
By manipulating these equations algebraically, we can obtain
expressions for the x and y components of E and H in terms of
their z components, namely

(8.8%)

(8.89b)

(8.89c)

(8. 89d)

Here

(8.90)

and k is the unbounded-medium wavenumber defined earlier
as

k=w,fili. (8.91 )

For reasons that will become clear later (in Section 8-8), the
constant kc is called the cutoff wavenu'!!ber. In view of
Eqs, (8.89a-d), the x and y components of E and H can now be
found readily, so long as we have mathematical expressions for
'if/. and ii.. For the TE mode, 'ifz = 0, so all we need to know
is ii, and the converse is true for the TM case.

8-8 TM Modes in Rectangular
Waveguide

In the preceding section we developed expressions for Ex, E \',
ii; and ii..all in terms of 'if/. and H/.. Since H/. = Ofor the TNt
mode, our'task reduces to obtaining a valid solution for E; Our
starting point will be the homogeneous wave equation for E.
For a lossless medium characterized by an unbounded-medium
wavenumber k, the wave equation is given by Eq. (7.19) as

(8.92)

To satisfy Eq. (8.92), each of its x, y, and z components has to
be satisfied independently. Its z component is given by:

(8.93)

By adopting the mathematical form given by Eq. (8.85), namely

(8.94)

Eq. (8.93) reduces to

(8.95)

where k~ is as defined by Eq. (8.90).
The form of the partial differential equation (separate,

uncoupled derivatives with respect to x and y) allows us to
assume a product solution of the form

e/.(x, y) = X(x) Y(y). (8.96)
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Substituting Eq. (8.96) into Eq. (8.95), followed with dividing
all terms by X(x) Y(y), leads to:

I d2X I d2y ,- --, + - --, + k~ = O.
X dx= Y dy-

(8.97)

To satisfy Eq. (8.97), each of the first two terms has to equal a
constant. Hence, we define separation constants k, and k\' such
that

(8.98a)

(8.98b)

and

k2 - k2 + k2
c -.r v (8.99)

Before proposing solutions for Eqs. (8.98a and b). we should
consider the constraints that the solutions must meet. The
electric field Ez is parallel to all four walls of the waveguide.
Since E ~ 0 in the conducting walls, the boundary conditions
require E" in the waveguide cavity to go to zero as x
approaches 0 and a, and as y approaches 0 and b (Fig. 8-22).
To satisfy these boundary conditions, sinusoidal solutions are
chosen for X(x) and Y(y) as follows:

ez = X(x) Y(y)

= (A cos kxx + B sin k,x)(C cos ky,V + D sin kyY).
(8.100)

These forms for X (x) and Y (y) definitely satisfy the differential
equations given by Eqs. (8.98a and b). The boundary conditions
for e" are:

t,= o,
ez = 0,

at x = 0 and a.

at y = 0 and b.

(8.lOla)

(8.lOlb)

Satisfying ez = 0 at x = 0 requires that we set A = 0, and
similarly, satisfying ez = 0 at y = 0 requires C = O. Satisfying
e" = 0 at x = a requires

m7r
kx=-,

a
111= I. 2, 3, ... (8.102a)

and similarly, satisfying ez = 0 at Y = b requires

117r
k; -b' 11 = 1,2,3 .... (8.102b)

Consequently.

if., = e"e-.ifJz
. (m7rx) . (I17rY)= EoSin -- Sin --

a b
-jfJze . (8.103)

where Eo = B D is the amplitude of the wave in the guide.
Keeping in mindJhat j]~ = 0 for the TM mode, the transverse
components of E and H can now be obtained by applying
Eq. (8.103) to (8.89a-d),

~ - if3 (m7r) (ln7rX) . (Il7rV)E, = -T- - Eo cos -- Sin --'
~ a a b

-jf3Le ,

(8.I04a)

~ -jf3 (1l7r) (m7rX) (I17rV)Ey = -2- -- Eo sin -- cos --'
k, b a b

- jfJze ,

(8.I04b)

- jWE (1l7r) (m7rx) (Il7rY)H, = ~ - Eosin -- cos --'
~ b a b

(8.I04c)

H- _ -jWE (m7r) E (m7rx) " (Il7rY) e-jfJz.
\' - --2- -- OCOS -- Sin --
. ~ a a b

(8.I04d)

Each combination of the integers In and n represents a viable
solution, ora mode, denoted TMmll• Associated with each mn
mode are specific field distributions for the region inside the
guide. Figure 8-23 depicts the E and H field lines for the TM 11

mode across two different cross sections of the guide.
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(a) Cross-sectional planes

y

E field b t

~\t-lj2··\
rrltl\\~

H field

x
~

a o
(b) Field lines for front view

J'
~ H field into page E field

bdt':l:g~li~
o~:l:plllr.f=~

61 H field out of page

(c) Field lines for side view

Figure 8-23: TM II electric and magnetic field lines across two
cross-sectional planes.

According to Eqs. (8.103) and (8.104), a rectangular
waveguide with cross section (a x b) can support the
propagation of waves with many different, but discrete, field
configurations specified by the integers m and n. The only
quantity in the fields' expressions that we have yet to determine
is the propagation constant 13, contained in the exponential
e: jtJ7.. By combining Eqs. (8.90). (8.99), and (8.102), we
obtain the following expression for 13:

(TE and TM).

(8.105)

Even though the expression for 13 was derived for TM modes,
it is equally applicable to TE modes.

The exponential e- jtJ7 describes a wave traveling in the
-l-z-direction. provided that 13 is real. which corresponds to
k > kc. If k < kc• f3 becomes imaginary: 13 = - ja with ex
real, in which case e: jtJz = e-(:1/. yielding evanescent waves
characterized by amplitudes that decay rapidly with z due to
the attenuation function e-(oU. Corresponding to each mode
(m, n), there is a cutoff frequency 1;1111 at which f3 = O. By
setting f3 = 0 in Eq. (8.105) and then solving for f, we have

~ . UPo J(m )2. . (n)2Jmn=- . - + -
2a b

where urn = 1/ ~ is the phase velocity of a TEM wave in an
unbounded medium with constitutive parameters 8 and u,

A Ivave, in a given mode, can propagate through the guide
only if its frequency f > fmll' as only then f3 = real.

The mode with the lowest cutoff frequency is known as the
dominant mode. The dominant mode is TMII among TM
modes and TEIO among TE modes (whose solution is given in
Section 8-8). Whereas a value of zero for til or n is allowed
for TE mod~', it is not for TM modes (because if either m
or n is zero, E" in Eq. (8.103) becomes zero and all other field
components will vanish as well).
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By combining Eqs. (8.105) and (8.106), we can express f3 in Solution: (a) By comparison with the expression for H, given
terms of Jilin, by Eq. (8.104d), we deduce that the argument of x is (mn ja)

and the argument of y is tnst jb). Hence,

f3 = u:11-(17)2

., (TE and TM) (8.107)

The phase velocity of a TE or TM wave in a waveguide is

(8.108)

w UpO
up. = - = . .' (TE and TM)

fJ Jl-(fmrllf)~

The transverse electric field consists of components Ex
and ii., given by Eqs. (8.I04a and b). For a wave traveling in
the +z-direction, the magnetic field associated with Ex is ill'
[according to the light hand rule given by Eq. (7 .39a)]. and
similarly, the magnetic field associated with E\. is - H(. The
ratios, obtained by employing Eq. (8.104), constitute the wave
impedance in the guide,

Ex E\' f3TJ 1- (ff'Il1I1)2ZTM = -=- = - ~ = - = 1/n, H; k
(8.109)

where 11 = .j/i['[ is the intrinsic impedance of the dielectric
material filling the guide.

Example 8·8: Mode Properties

A TM wave propagating in a dielectric-filled waveguide of
unknown permittivity has a magnetic field with y-cornponent
given by

H; = 6 cos(25rrx) sine lOOrry)

x sine J.5rr x 1OlOt - 109rrz) (mAim).

If the guide dimensions are a = 2b = 4 ern, determine: (a) the
mode numbers, (b) the relative permittivity of the material in
the guide, (c) the phase velocity, and (d) obtain an expression
for E,.

which yield III = I and II = 2. Therefore, the mode is TM12.

(b) The second sine function in the expression for H; represents
sin(wt - (jz), which means that

w = l.5rr x 1010 (rad/s), or f = 7.5 GHz.

fJ = 109rr (rad/m).

By rewriting Eq. (8.105) so as to obtain an expression for
Er = £/£0 in terms of the other quantities, we have

_ c
2 [2 (mrr)2 .: )2JEr - - f3 + - + - .

w2 £I b

where c is the velocity of light. Inserting the available values,

(e)

w l.5rr x 1010 8
up = - = = l.38 x 10 m/s.

{j I09rr

which is slower than the speed of light. However, as will
be explained later in Section 8-10, the phase velocity in a
waveguide may exceed c, but the velocity with which energy is
carried down the guide is the group velocity ug, which is never
greater than c.
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(d) From Eq. (8.109),

ZTM = 1J,j I - (fJ2/ /)2

Application ofEq. (8.106) yields [v: = 5.15 GHz for the TM 12

mode. Using that in the expression for ZTM, in additon to
f = 7.5 GHz and 1J = .JiiJE = <JJ10/EO)/ Fr = 377/ v'9 =
125.67 n, gives

ZTM = 91.3 n.
Hence,

Ex ZTMHv

91.3 x 6cos(25nx) sin(lOOny)

x sin(1.5n x IDIOt - I09nz)

0.55 cos(25n x) sin(lOOny)

x sin(1.5n x IDIOt - 109nL)

(mV/m)

(VIm).

Review Question 8-8: What are the primary limitations
of coaxial cables at frequencies higher than 30 GHz?

Review Question 8-9: Can a TE mode have a zero
magnetic field along the direction of propagation?

Review Question 8-10: What is the rationale for choosing
a solution for ez that involves sine and cosine functions'?

Review Question 8-11: What is an evanescent wave'?

Exercise 8-10: For a square waveguide with a = b, what
is the value of the ratio Ex/Ey for the TMll mode?

Answer: tan(ny /a)/ tannr x f a),

Exercise 8-11: What is the cutoff frequency for the
dominant TM mode in a waveguide filled with a
material with £r = 4? The waveguide dimensions are
a = 2b = 5cm.

Answer: For TM\ J, It \ = 3.35 GHz.

Exercise 8-12: What is the magnitude of the phase
velocity of a TE or TM mode at f = fmn ?

Answer: up = 00 ! [See explanation in Section 8-10.]

8-9 TE Modes in Rectangular Waveguide

In the TM case, for which the wave has no magnetic field
component along the z-direction (i.e., Hz = 0), we started
our treatment in the preceding section by obtaining a solution
for ii., and then we used it to derive expressions for the
tangential components of E and H. For the TE case, the same
basic procedure can be applied, except for reversing the roles
of ii, and Hz. Such a process leads to:

~ jWJ1 (lin) (mnx) . (/lny)E = -- -- Ho cos -- Sill --
x kl; b a b

-j(3ze ,

(8.1 lOa)

~ -jWJ1 (mn) . (lnnx) (nny)EI' = -- - HOSIll -- cos --
" k~ a a b

-j(3ze ,

(8.1 lOb)

~" jfi (mn) .' (mnx) . (flny) e-j(3z,H, = -, - Hosill -- cos --
kc a a b

(8.ll0e)

~ jfi (/In) (mnx) . (nny)Hy = 2 - Ho cos -- Sill --
kc b a b

-jfJze ,

- (mn X) (I1n \') "f3Hz = Hocos -a- cos b e-} z.

(8.IIOd)

(8.llOe)

and, of course, Ez = O. The expressions for fmn, fi, and
up given earlier by Eqs. (8.106), (8.107), and (8.108) remain
unchanged. However. because not all the fields vanish if m or
n assume a value of zero, the lowest order TE mode is TE 10 if
a > b, or TEol if a < b. It is customary to assign a to be the
longer dimension, in which case the TE 10 mode is the de-facto
dominant mode.

Another difference between the TE and TM modes relates to
the expression for the wave impedance. For TE,

(8.111 )
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Table 8-3: Wave properties for TE and TM modes in a rectangular waveguide with dimensions a x h. filled with a dielectric material with
constitutive parameters e and /J.. The TEM case. shown for reference. pertains to plane-wave propagation in an unbounded medium.

Rectangular Waveguides Plane Wave

TE Modes TMModes TEM Mode

if = ~ (mr) /I, cos(mrrX)sin(~) e : jf!z E.==!I!-(mrr)E cos("/JrX)sin(~) e:jf!z Ex = Exue- jf!L.\ k;: b 0 (/ b .\ k;: a U 1I h

E. = -j':(tl (IIIrr) /I, sin ("/JrX) cos (/rry) e-jf!z E . = =!I!- ('/Jr) E sin (m:rx ) cos (~) e:jf!z E E -jf!L
.' kc a 0 (/ b .\ k;: b 0 (/ b Y = yoe

E7 =0 EL = Eusin(m;X)sin(II~\') e-j{lz ii, =0
- - - - - -H, = -E •.IZTE Hx = -EyIZTM H.~= -EyITJ

ii, = Ex I ZTE
- - -HI = EdZTM n, = ExlTJ

- () (II)!"I) e" jf!z Hz =0 Hz =0Hz = Ho cos m;x cos h

ZTE = TJIJI - (fclf)2 ZTM = TJJI - (.fdf)2 'I = JIi7S
Properties Common to TE and TM Modes

Ie = U;, j(:f + Gf Ie = not applicable

fJ = kJI - (.f~/f)2 k=w..jiIE

up = ~ = upol J I - (fclf)2 upo = 11..jiIE

For a hollow rectangular waveguide with dimensions a = 3 em
and b = 2 ern, determine the cutoff frequencies for all modes,
up to 20 GHz. Over what frequency range will the guide support
the propagation of a single dominant mode'!

I
o

A summary of the expressions for the various wave attributes of
TE and TM modes is given in Table 8-3. By way of reference,
a corresponding expressions for the TEM mode on a coaxial
transmission line are included as well.

Example 8·9: Cutoff Frequencies

Solution: A hollow guide has J1. = J1.oand E = EO. Hence,
UP!1 = II Jj1'ii£O = c. Application of Eq. (8.106) gives the
cutoff frequencies shown in Fig. 8-24. which start at 5 GHz
for the TElO mode. To avoid all other modes, the frequency of
operation should be restricted to the 5-7.5 GHz range.

Figure 8·24: Cutoff frequencies for TE and TM modes in a
hollow rectangular waveguide with a = 3 em and b = 2 ern
(Example 8-9).
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Gaussian pulse

\
High-frequency
earner

\ \

(a)

»>: Amplitude-
modulated

~mfO""

(b)

Figure 8-25: The amplitude-modulated high-frequency
waveform in (b) is the product of the Gaussian-shaped pulse
with the sinusoidal high-frequency carrier in (a).

8-10 Propagation Velocities

When a wave is used to carry a message through a medium
or along a transmission line, information is encoded into the
wave's amplitude. frequency. or phase. A simple example is
shown in Fig. 8-25. in which a high-frequency sinusoidal wave
of frequency f is amplitude-modulated by a low-frequency
Gaussian pulse. The waveform in (b) is the result of multiplying
the Gaussian pulse shape in (a) by the carrier waveform.

By Fourier analysis. the waveform in (b) is equivalent to
the superposition of a group of sinusoidal waves with specific
amplitudes and frequencies. Exact equivalence may require
a large. or infinite. number of frequency components, but
in practice, it is often possible to represent the modulated
waveform, to a fairly high degree of fidelity, with a wave group
that extends over a relatively narrow bandwidth surrounding
the high-frequency carrier f. The velocity with which the
envelope-or equivalently the wave group-travels through

the medium is called the group velocity ug. As such, Ug is
the velocity of the energy carried by the wave-group, and of
the information encoded in it. Depending on whether or not
the propagation medium is dispersive, lIg mayor may not be
equal to the phase velocity up. In Section 2-1.1, we described a
"dispersive transmission line as one on which the phase velocity
is not a constant as a function of frequency." a consequence
of which is that the shape of a pulse transmitted through it
will get progressively distorted as it moves down the line.
A rectangular waveguide constitutes a dispersive transmission
line because the phase velocity of a TE orTM mode propagating
through it is a strong function of frequency [per Eq, (8. J08)],
particularly at frequencies close to the cutoff frequency Imn.
As we will see shortly, if I » IIIIII' the TE and TM modes
become approximately TEM in character. not only in terms of
the directional arrangement of the electric and magnetic fields.
but also in terms of the frequency dependence of the phase
velocity.

We now will examine lip and IIg in more detail. The phase
velocity, defined as the velocity of the sinusoidal pattern of the
wave, is given by

eo
up = 7i . (8.112)

while the group velocity tlg is given by

I
Ilg = dlildw . (8.113)

Even though we will not derive Eq. (8.113) in this book, it is
nevertheless important that we understand its properties for TE
and TM modes in a metal waveguide. Using the expression
for Ii given by Eq. (8.107),

Ug= ~ = UPoJI- {fmnlf)2, (8.114)

where, as before, tiro is the phase velocity in an unbounded
dielectric medium. In view of Eq. (8.108) for the phase
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w (rad/s)

flO

fJ (rad/m)

Figure 8-26: w-f3 diagram for TE and TM modes in a hollow
rectangularwaveguide. The straight line pertains topropagation
in an unbounded mediumor on a TEM transmission line.

velocity uP'

Above cutoff (f > Imn), up ~ upo and ug :::::uPO' As 1 -+ 00,

or more precisely as (f1ll1l / f) -+ 0, TE and TM modes approach
the TEM case, for which up = ug = upo'

A useful graphical tool for describing the propagation
properties of a medium or transmission line is the w-f3 diagram.
In Fig. 8-26, the straight line starting at the origin represents the
w-f3 relationship for a TEM wave propagating in an unbounded
medium (or on a TEM transmission line). The TEM line
provides a reference to which the w-f3 curves of the TEfTM
modes can be compared. At a given location on the w-f3line or
curve, the ratio of the value of w to that of fJ deftnes up = w / fJ,
whereas it is the slope dw/df3 of the curve at that point that
defines the group velocity ug. For the TEM line, the ratio and the
slope have identical values (hence, tip = ug), and the line starts
atw = O. In contrast, the curve for each of the indicated TEfTM
modes starts at a cutoff frequency specific to that mode, below
which the waveguide cannot support the propagation of a wave

in that mode. At frequencies close to cutoff, up and ug assume
very different values; in fact, at cutoff tip = 00 and ug = O. On
the other end of the frequency spectrum, at frequencies much
higher than 111111, the w-f3 curves of the TEfTM modes approach
the TEM line. We should note that for TE and TM modes, up

may easily exceed the speed of light, but tlg will not, and since
it is ug that represents the actual transport of energy, Einstein's
assertion that there is an upper bound on the speed of physical
phenomena, is not violated.

So far, we have described the fields in the guide, but we
have yet to interpret them in terms of plane waves that zigzag
along the guide through successive reflections. To do just that,
consider the simple case of a TEIO mode. For m = I and
n = 0, the only non-zero component of the electric field given
by Eq. (8.1 10) is if",

~ WJ.1 (JT) (JTX) 'I<E" = - j-) - Ho sin - e-)vz., 4 a a
(8.116)

Using the identity sin e = (ejf! - e-jf! )/2j for any argument e,
we obtain

~ (Wf.J..JT Ho ) 'I isrx ] 'jJE; = J (e-}7rX a _ ern lJ)e-) Z

, 2kca

= Eb(e-jfj(/+JL\!fjlJ) _ e-jfj(7-:rx/fja))

= Eb(e- jfj/ - e-JjJz'\ (8.117)

where we have consolidated the quantities multiplying the two
exponential terms into the constant Eb. The first exponential
term represents a wave with propagation constant f3 traveling
in the Z' -direction, where

1 JTX
z =z+-.

f3a
(S.118a)

and the second term represents a wave travelling in the
Z" -direction, with

II JTX
Z = Z - -.

f3a
(8. I 19b)

From the diagram shown in Fig. 8-27(a), it is evident that the
z'·direction is at an angle 8' relative to z, and the z"-direction is
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x
z' = x sin (}'+ z cos ()'

z" = -x sin ()" + z cos ()"

From Eq. (8.118a), z' = ~~+ z.
Hence, ()' = tan - 1 (7f /[ja).

From Eq. (8.118b), z" = - ~~+ z.
Hence, e" = -tan-1(7f/(JIl).

(a) z' and z" propagation directions

a

11p = Hpa / sin 8'-
z

z"
(b) TEM waves

Figure 8-27: The TElO mode can be constructed as the sum of
two TEM waves.

at an angle err = -()'. This means that the electric field E\" (and
its associated magnetic field II) of the TElu mode is composed
of two TEM waves, as shown in Fig. 8-27(b), both traveling
in the -t-z-direction by zigzagging between the opposite walls
of the waveguide. Along the zigzag directions (7' and z"), the
phase velocity of the individual wave components is upo' but
the phase velocity of the combination of the two waves along 7.

IS lip.

Example 8-10: Zigzag Angle

For the TEIU mode, express the zigzag angle e' in terms of the
ratio (f/flU) , and then evaluate it at f = flO and for f » flO.

Solution: From Fig. 8-27,

t _I ( If )elo = tan --.
f3lOa

where the subscript 10 has been added as a reminder that
the expression applies to the TEIO mode specifically. For
m = I and 11 = 0, Eq. (8.106) reduces to Ito = ura/2a. After
replacing f3 with the expression given by Eq. (8.107) and
replacing a with lIpo/2flO, we obtain

, I [ 1 ]() - tan-
lU- J(fIf]()2 - 1 .

At f = fs«: e;u = 90°. which means that the wave bounces
back and forth at normal incidence between the two side walls
of the waveguide, making no progress in the z-direction. At
the other end of the frequency spectrum, when f »flO, e;o
approaches 0 and the wave becomes TEM-like as it travels
straight down the guide.

Review Question 8-12: For TE waves, the dominant
mode is TEIO, but for TM the dominant mode is TMI1.
Why is it not TM]()?

Review Question 8-13: Why is it acceptable for lip to
exceed the speed of light c, but not so for lIg?

Exercise 8-13: What do the wave impedances forTE and
TM look like as I approaches Imll?
Answer: At I = Imn, ZTE looks like an open circuit,
and ZTM looks like a short circuit.

Exercise 8-14: What are the values for (a) up, (b) Ug, and
(c) the zigzag angle « at f = 2/10 for a TEIO mode in a
hollow waveguide?

Answer: (a) up = l.ISc, (b) ug = 0.87c, (c) ()' = 30°.
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Rectan

Upon specifying the waveguide dimensions, the fre-
quency j. and the mode type (TF or TM) and number, this
module provides infornuuion about the wave impedance,
cutoff frequency, and other wave attributes. It also di splays
the electric and magnetic field distributions inside the
guide.

ide
Mode Properties

,....Cl) Module ~tJRectangular \Ya,·eguidl·
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8-11 Cavity Resonators
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Wave vector components
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k, = 157 079';3
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[nl"l
[111·'1

[m·'1

III

A rectangular waveguide has metal walls on four sides. When
the two remaining sides are terminated with conducting walls,
the waveguide becomes a cavity. By designing cavities to
1"1'.I1I/1(1le at specific frequencies, they can be used as circuit
elements in microwave oscillators. amplifiers. and bandpass
filters.

The rectangular cavity shown in Fig. 8-28«1). with
dimensions (0 x h x d). is connected to two coaxial cables
that feed and extract signals into and from the cavity via
input and output probes. As a bandpass filter. the function
of a resonant cavity is to block all spectral components of the

Mode Selector ..•. TE

y

E.,. t: Ev ,. I E10tl ' So

o

input signal except for those with frequencies that fall within
a narrow band surrounding a specific center frequency .If), the
cavity's resonant frequency. Comparison of the spectrum in
Fig. 8-28(b), which describes the range of frequencies that
might be contained in a typical input signal. with the narrow
output spectrum in Fig. 8-28(c) demonstrates the f lrering action
imparted by the cavity.

In a rcctangulur waveguide. the fields constitute standing
waves along the x- and v-dircctions. and a propagating wave
along Z. The terms TE and TM were defined relative to the
propagation direction: TE meant that E was entirely transverse
to /., and TM meant that H had no component along r;
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Hollow or dielectric-filled resonant cavity

y

z

,,,,
Output
signal-x '

a o

Input signal
(a) Resonant cavity

fo
(b) Input spectrum

------- A

---- .4//2

fo
(c) Output spectrum

Figure 8-28: A resonant cavity supports a very narrow
bandwidth around its resonant frequency fo.

In a cavity, there is no unique propagation direction, as no
fields propagate. Instead, standing waves exist along all three
directions. Hence, the terms TE and TM need to be modified
by defining the fields relative to one of the three rectangular
axes. For the sake of consistency, we will continue to define

the transverse direction to be any direction contained in the
plane whose normal is i

The TE mode in the rectangular waveguide consists of a
single propagating wave whose Hz component is given by
Eq. (8.110e) as

(8.119)

where the phase factor e-J/37. signifies propagation along +7..
Because the cavity has conducting walls at both z = 0 and
z = d, it will contain two such waves, one with amplitude Ho
traveling along +7., and another with amplitude Ho- traveling
along -7.. Hence,

- "/3 '/3 (m7tx) (n7tY)Hz = (Hoe-J
Z + HoeJ 7)COS -a- cos b .

(8.120)
Boundary conditions require the normal component of H to be
zero at a conducting boundary. Consequently, Hz must be zero
at z = 0 and z = d. To satisfy these conditions, it is necessary
that H() = -Ho and f3d = pit , with P = 1,2,3, ...• in which
case Eq. (8.120) becomes

Hz = -2jHocos (m;x) cos C:Y) sin (P;Z). (8.121)

Given that if Z = 0 for the TE modes. all of the other components
of E and H can be derived readily through the application of
the relationships given by Eq. (8.89). A similar procedure can
also be used to characterize cavity modes for the TM case.

8-] ] .1 Resonant Frequency

The consequence of the quantization condition imposed on f3,
namely f3 = pst / d with p assuming only integer values, is that
for any specific set of integer values of (m, n, p), the wave
inside the cavity can exist at only a single resonant frequency.
imllp, whose value has to satisfy Eq. (8.lD5). The resulting
expression for fmllp is
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ForTE, the indices m and n start at 0, but p starts at I. The exact
opposite applies to TM. By way of an example, the resonant
frequency for a TEIOI mode in a hollow cavity with dimensions
a = 2 ern, b = 3 em, and d = 4 ern is flOl = 8.38 GHz.

8-11.2 Quality Factor

In the ideal case, if a group of frequencies is introduced into the
cavity to excite a certain TE or TM mode, only the frequency
component at exactly j;""p of that mode will survive, and all
others will attenuate. If a probe is used to couple a sample
of the resonant wave out of the cavity, the output signal will
be a monochromatic sinusoidal wave at /'11111" In practice, the
cavity exhibits a frequency response similar to that shown in
Fig. 8-28(c), which is very narrow, but not a perfect spike.
The bandwidth /',.f of the cavity is defined as the frequency
range between the two frequencies (on either side of /'Iltll')
at which the amplitude is 11./2 of the maximum amplitude
(at fl1ll1l')' The normalized bandwidth, defined as /',..f/fmlll" is
approximately equal to the reciprocal of the quality factor Q
of the cavity,

(8.123)

The qualityjactor is defined in terms of the ratio of the energy
stored iII the cavity volume to the energy dissipated in the
cavity walls through conduction.

For an ideal cavity with perfectly conducting walls, no energy
loss is incurred, as a result of which Q is infinite and /',..f :::::::O.
Metals have very high, but not infinite, conductivities, so a real
cavity with metal walls will store most of the energy coupled
into it in its volume, but it will also lose some of it to heat
conduction. A typical value for Q is on the order of 10,000,
which is much higher than can be realized with lumped RLC
circuits.

Example 8-11 : Q of a Resonant Cavity

The quality factor for a hollow resonant cavity operating in the
TEIOI mode is

I abd(a2 + d2)

Q = 8s [a3(d + 2b) + d3(a + 2b)]
(8.124)

where Os = I! Jnfl1lnp/10(Tc is the skin depth and ac is the
conductivity of the conducting walls. Design a cubic cavity

with a TEIOI resonant frequency of 12.6 GHz and evaluate its
bandwidth. The cavity walls are made of copper.

Solution: For a = b = d, m = I, n = 0, p = I, and
uPIl = c = 3 X 108 m/s, Eq. (8.122) simplifies to

3.)2 X 108

flol = 2a
(Hz),

which, for /IOI = 12.6 GHz, gives

a = 1.68 ern.

At flOI = 12.6 GHz, the skin depth for copper (with
ac = 5.8 x 107 S/m) is

- [n x 12.6 x 109 x 4n x 10-7 x 5.8 x 107]1/2

= 5.89 x 10-7 m.

Upon setting a = b = din Eq. (8.124), the expression for Q of
a cubic cavity becomes

a
Q=-

30s

1.68 x 10-2
= 3 x 5.89 X 10-7 :::::::9,500.

Hence, the cavity bandwidth is

/',.f :::::::flO I

Q
12.6 X 109

9,500
:::::::1.3 MHz.
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Chapter 8 Relationships

Normal Incidence

r = E& = rJ2 - 171
Eo rJ2 + 171

_ Eb _ 2112r - --,...- ---'----Eo 1']2+1']1

T=I+f

..;e;; - .j£;;
T = (if fJ-l = fJ-2)..;e;; + .j£;;

Brewster Angle

lJsll= sin-I 1 = tan-I rei
1+ (£1/£2) Y;;

Waveguides

~= JW2fJ-£ _ (~)2 _ C;)2

t.; = U; J(:f + G)2
Snell's Laws

W uJlQ
up = - = ~~ Jl - (fmll/f)-

2
UpUg = Up!j

Oblique Incidence

Perpendicular Polarization

E~o 112cos ej - 1']1 cos etf.l = -.- = ""-------'----
E~o 1']2cos ej + 111cos et

E~LO 2rJ2 cos ej
T.l = -.- =

E~o 172cos ej + 1']I cos et

ZTE = 17
Jl - (fmn/ /)2

ZTM = 1'] 1 - (17 Y
Resonant Cavity

Parallel Polarization

E"O 1']2cos et - 1']1cos ej
fll=-' =------

EilO 1']2cos et + 111cos ej

E[IO 2rJ2 cos ej
rll=-j =

EIIO rJ2 cos et + 111cos ej

upoJ(m)2 (n)2 (P)2Imnp = 2 -;;+ b + d
Q ~ Imnp

!11
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CHAPTER HIGHLIGHTS

• The relations describing the reflection and transmission
behavior of a plane EM wave at the boundary
between two different media are the consequence of
satisfying the conditions of continuity of the tangential
components of E and H across the boundary.

• Snell's laws state that Bj = Br and

sinBt = (1lI!112) sinBj.

For nonmagnetic materials, the Brewster angle exists
for parallel polarization only.

• Any plane wave incident on a plane boundary can be
synthesized as the sum of a perpendicularly polarized
wave and a parallel polarized wave.

• Transmission-line equivalent models can be used to
characterize wave propagation, reflection by, and
transmission through boundaries between different
media.

For media such that 112 < Ill, the incident wave is
reflected totalJy by the boundary when Bj ::: Be, where
Be is the critical angle given by Be = sin -[ (112/ Il[).

• By successive multiple reflections, light can be guided
through optical fibers. The maximum data rate of
digital pulses that can be transmitted along optical fibers
is dictated by modal dispersion.

• At the Brewster angle for a given polarization, the
incident wave is transmitted totally across the boundary.

• Waves can travel through a metal waveguide in the form
of transverse electric (TE) and transverse magnetic
(TM) modes. For each mode, the waveguide has a
cutoff frequency below which a wave cannot propagate.

• A cavity resonator can support standing waves at
specific resonant frequencies.

GLOSSARY OF IMPORTANT TERMS

Provide definitions or explain the meaning of the following terms:

index of refraction n
modal dispersion
modes
optical fibers
parallel polarization
perpendicular polarization
phase-matching condition
plane of incidence
polarizing angle
quality factor Q
reflection coefficient r
reflectivity (reflectance) R
refraction angle
resonant cavity

(1)- f3 diagram
acceptance angle Ba
angles of incidence, reflection, and

transmission
Brewster angle BB
cladding
critical angle ec
cutoff frequency fmn
cutoff wavenumber ke
dominant mode
evanescent wave
fiber core
grazing incidence
group velocity U g

resonant frequency
Snell's laws
standing-wave ratio S
surface wave
total internal reflection
transmission coefficient r
transmissivity (transmittance) T
transverse electric (TE) polarization
transverse magnetic (TM)

polarization
unbounded-medium wavenumber
unpolarized
wavefront
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PROBLEMS
Section 8-1: Reflection and Transmission at Normal Incidence

*8.1 A plane wave in air with an electric field amplitude of
20 V1m is incident normally upon the surface of a lossless,
nonmagnetic medium with Sr = 25. Determine the following:
(a) The reflection and transmission coefficients.

(b) The standing-wave ratio in the air medium.

(c) The average power densities of the incident, reflected, and
transmitted waves.

8.2 A plane wave traveling in medium I with Ert = 2.25 is
normally incident upon medium 2 with Er2 = 4. Both media are
made of nonmagnetic, non-conducting materials. If the electric
field of the incident wave is given by

(Vim).

(a) Obtain time-domain expressions for the electric and
magnetic fields in each of the two media.

(b) Determine the average power densities of the incident,
reflected and transmitted waves.

~. 8.3 A plane wave traveling in a medium with cr] = 9 is
normally incident upon a second medium with 8r2 = 4. Both
media are made of nonmagnetic, non-conducting materials. If
the magnetic field of the incident plane wave is given by

(Nm).

(a) Obtain time-domain expressions for the electric and
magnetic fields in each of the two media.

(b) Determine the average power densities of the incident,
reflected, and transmitted waves.

8.4 A 200-MHz, left-hand circularly polarized plane wave
with an electric field modulus of 5 Vim is normally incident
in air upon a dielectric medium with £r = 4, and occupies the
region defined by z ::::O.

(a) Write an expression for the electric field phasor of the
incident wave, given that the field is a positive maximum
at 7. = 0 and I = O.

(b) Calculate the reflection and transmission coefficients.

*Answer(s) available in Appendix D.
'i':~Solution available on CD.

(c) Write expressions for the electric field phasors of the
reflected wave, the transmitted wave, and the total field
in the region z S O.

(d) Determine the percentages of the incident average power
reflected by the boundary and transmitted into the second
medium.

*8.5 Repeat Problem 8.4, but replace the dielectric medium
with a poor conductor characterized by er = 2.25, Itt = I, and
a = 10-4 S/m.

8.6 A 50-MHz plane wave with electric field amplitude of
50 Vim is normally incident in air onto a semi-infinite, perfect
dielectric medium with 8r = 36. Determine the following:

(a) r
(b) The average power densities of the incident and reflected

waves.

(c) The distance in the air medium from the boundary to the
nearest minimum of the electric field intensity, lEI.

*8.7 What is the maximum amplitude of the total electric field
in the air medium of Problem 8.6, and at what nearest distance
from the boundary does it occur?

8.8 Repeat Problem 8.6, but replace the dielectric medium
with a conductor with £r = I, Itr = I, and a = 2.78 x 10-3
S/m.

*8.9 The three regions shown in Fig. P8.9 contain perfect
dielectrics. For a wave in medium 1, incident normally upon the
boundary at z = =d, what combination of erz and d produces
no reflection? Express your answers in terms of ert' £r3 and the
oscillation frequency of the wave, I.

I-d-I

Medium I Medium 2

z =-d z=o

Figure P8.9: Dielectric layers for Problems 8.9 to 8.11.
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8.10 For the configuration shown in Fig. P8.9, use
transmission-line equations (or the Smith chart) to calculate
the input impedance at 7. = -d for Eq = I. Er~ = 9. Er3 = 4,
d = 1.2 m. and f = 50 MHz. Also determine the fraction of
the incident average power density reflected by the structure.
Assume all media are loss less and nonmagnetic.

*8.11 Repeat Problem 8.10, but interchange ErJ and Fr3.

8.12 Orange light ofwavclength 0.61 Jim in air enters a block
of glass with Fr = 1.44. What color would it appear to a sensor
embedded in the glass? The wavelength ranges of colors are
violet (0.39 to 0.45 Jim). blue (0.45 to 0.49 Ifm). green (0.49 to
0.58 11m). yellow (0.58 to 0.60 Jim). orange (0.60 to 0.62 11m),
and red (0.62 to 0.78 Jim).

*8.13 A plane wave of unknown frequency is normally incident
in air upon the surface of a perfect conductor. Using an electric-
field meter. it was determi ned that the total electric field in the air
medium is always zero when measured at a distance of2 m from
the conductor surface. Moreover, no such nulls were observed
at distances closer to the conductor. What is the frequency of
the incident wave'?

~ 8.14 Consider a thin film of soap in air under illumination
by yellow light with A = 0.6 Jim in vacuum. If the film is
treated as a planar dielectric slab with Er = 1.72, surrounded
on both sides by air, what film thickness would produce strong
reflection of the yellow light at normal incidence'?

*8.15 A 5-MHz plane wave with electric field amplitude of
10 (V1m) is normally incident in air onto the plane surface
of a semi-infinite conducting material with Er = 4. Jir = I,
and a = 100 (S/m). Determine the average power dissipated
(lost) per unit cross-sectional area in a 2-mm penetration of the
conducting medium.

8.16 A O.5-MHz antenna carried by an airplane flying over
the ocean surface generates a wave that approaches the water
surface in the form of a normally incident plane wave with
an electric-field amplitude of 3.000 (V1m). Seawater is
characterized by Er = 72, ILr = I, and a = 4 (S/m). The plane
is trying to communicate a message to a submarine submerged
at a depth d below the water surface. If the submarine's receiver
requires a minimum signal amplitude of 0.01 (JiV/m), what is
the maximum depth d to which successful communication is
still possible?

Sections X-2 and X-3: Snell's Laws and Fiber Optics

*8.17 A light ray is incident on a prism in air at an angle e as
shown in Fig. P8.17. The ray is refracted at the first surface
and again at the second surface. In terms of the apex angle ¢ of
the prism and its index of refraction 11, determine the smallest
value of () for which the ray will emerge from the other side.
Find this minimum e for 11 = 1.4 and ¢ = 60°.

Figure P8.17: Prism of Problem 8.17.

8.18 For some types of glass, the index of refraction varies
with wavelength. A prism made of a material with

4
/I = 1. 7 1 - - AO

30
(AO in 11m).

where Ao is the wavelength in vacuum, was used to disperse
white light as shown in Fig. P8.18. The white light is incident
at an angle of 50°. the wavelength AO of red light is 0.7 Ji m. and
that of violet light is 0.4 Jim. Determine the angular dispersion
in degrees.

Angular dispersion

\

Figure P8.18: Prism of Problem 8.18.
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*8.19 The two prisms in Fig. P8.19 are made of glass with
n = 1.5. What fraction of the power density carried by the ray
incident upon the top prism emerges from the bottom prism?
Neglect multiple internal reflections.

Figure P8.19: Periscope prisms of Problem 8.19.

8.20 A parallel-polarized plane wave is incident from air at
an angle 8i = 30° onto a pair of dielectric layers as shown in
Fig. P8.20.

(a) Determine the angles of transmission 82, 83. and 84.

(b) Determine the lateral distance d.

T
5cm

t
5cm

1

Air

fJr = I
Cr= 6.25

fir = I
Cr = 2.25

I
I
I 104
I I
,-d-I

Air

Figure P8.20: Problem P8.20.

8.21 A light ray incident at 45° passes through two dielectric
materials with the indices of refraction and thicknesses given
in Fig. P8.21. If the ray strikes the surface of the first dielectric
at a height of 2 ern, at what height will it strike the screen?

T
2cm
1

Screen

n=1

3cm 4cm 5cm

Figure P8.21: Light incident on a screen through a
multi-layered dielectric (Problem 8.21).

*8.22 Figure P8.22 depicts a beaker containing a block of glass
on the bottom and water over it. The glass block contains a small
air bubble at an unknown depth below the water surface. When
viewed from above at an angle of 60°. the air bubble appears at
a depth of 6.81 cm. What is the true depth of the air bubble?

-~ ...... I
.....•.•...

.•.••.•..•.•.•.•.•.• 6.81 elm

A
.. .::: •••

pparent position I

of air bubble

,.

10 cm
Water
n = 1.33

Glass
n= 1.6

Air bubble ...•..•.•..:•
Figure P8.22: Apparent position of the air bubble in

Problem 8.22.
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8.23 A glass semicylinder with n = 1.5 is positioned such
that its flat face is horizontal, as shown in Fig. P8.23, and its
horizontal surface supports a drop of oil. as also shown. When
light is directed radially toward the oil, total internal reflection
occurs if fJ exceeds 53°. What is the index of refraction of the
oil?

/OildroP

~
ngJass

Figure P8.23: Oil drop on the /lat surface of a glass
semicylinder (Problem 8.23).

*8.24 A penny lies at the bottom of a water fountain at a depth
of 30 ern. Determine the diameter of a piece of paper which,
if placed to float on the surface ofthe water directly above the
penny, would totally obscure the penny from view. Treat the
penny as a point and assume that n = 1.33 for water.

8.2S Suppose that the optical fiber of Example 8-5 is
submerged in water (with n = 1.33) instead of air. Determine
fJa and fp in that case.

*8.26 Equation (8.45) was derived for the case where the light
incident upon the sending end of the optical fiber extends over
the entire acceptance cone shown in Fig. 8-l2(b). Suppose
the incident light is constrained to a narrower range extending
between normal incidence and 8', where 8' < Ga.
(a) Obtain an expression for the maximum data rate fp in

terms of 8'.
(b) Evaluate fp for the fiber of Example 8-5 when 8' = 5°.

Sections 8-4 and 8-5: Reflection and Transmission
at Oblique Incidence

8.27 A plane wave in air with

lEi = y20e-J(3x+4z) (VIm)

is incident upon the planar surface of a dielectric material, with
Er = 4, occupying the half-space z ::::O. Determine:

(a) The polarization of the incident wave.

(b) The angle of incidence.

(c) The time-domain expressions for the reflected electric and
magnetic fields.

(d) The time-domain expressions for the transmitted electric
and magnetic fields.

(e) The average power density carried by the wave in the
dielectric medium.

8.28 Repeat Problem 8.27 for a wave in air with

(AIm)

incident upon the planar boundary of a dielectric medium
(z ::::0) with Er = 9.

8.29 A plane wave in air with

lEi = (x9 - y4 - z6)e-J(2x+3z) (VIm)

is incident upon the planar surface of a dielectric material, with
Er = 2.25, occupying the half-space z ::::O. Determine

(a) The incidence angle fJi.

(b) The frequency of the wave.
-r

(c) The field E of the reflected wave.

(d) The field lEt of the wave transmitted into the dielectric
medium.

(e) The average power density carried by the wave into the
dielectric medium.

8.30 Natural light is randomly polarized, which means that,
on average, half the light energy is polarized along any
given direction (in the plane orthogonal to the direction of
propagation) and the other half of the energy is polarized
along the direction orthogonal to the first polarization direction.
Hence, when treating natural light incident upon a planar
boundary, we can consider half of its energy to be in the form of
parallel-polarized waves and the other half as perpendicularly
polarized waves. Determine the fraction of the incident power
reflected by the planar surface of a piece of glass with n = 1.5
when illuminated by natural light at 70°.

*8.31 A parallel-polarized plane wave is incident from air onto
a dielectric medium with Br = 9 at the Brewster angle. What is
the refraction angle?
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• 8.32 A perpendicularly polarized wave in air is obliquely
incident upon a planar glass-air interface at an incidence angle
of 30°. The wave frequency is 600 THz (I THz = 1012 Hz),
which corresponds to green light, and the index of refraction of
the glass is 1.6. If the electric field amplitude of the incident
wave is 50 V1m, determine the following:

(a) The reflection and transmission coefficients.

(b) The instantaneous expressions for E and H in the glass
medium.

8.33 Show that the reflection coefficient r.L can be written in
the following form:

8.34 Show that for nonmagnetic media, the reflection
coefficient rll can be written in the following form:

tan(et - Hj)
rll = tan(t9t + OJ)

*8.35 A parallel-polarized beam of light with an electric field
amplitude of 10 (VIm) is incident in air on polystyrene with
I1r = 1 and e, = 2.6. If the incidence angle at the air-
polystyrene planar boundary is 50°. determine the following:

(a) The reflectivity and transmissivity.

(b) The power carried by the incident. reflected, and
transmitted beams if the spot on the boundary illuminated
by the incident beam is I m2 in area.

8.36 A 50-MHz right-hand circularly polarized plane wave
with an electric field modulus of 30 V1m is normally incident
in air upon a dielectric medium with e, = 9 and occupying the
region defined by z ~ O.

(a) Write an expression for the electric field phasor of the
incident wave. given that the field is a positive max.imum
at z = 0 and t = O.

(b) Calculate the reflection and transmission coefficients.

(e) Write expressions for the electric field phasors of the
reflected wave. the transmitted wave. and the total field
in the region z .s O.

(d) Determine the percentages of the incident average power
reflected by the boundary and transmitted into the second
medium.

8.37 Consider a flat 5-mm-thick slab of glass with er = 2.56.

(a) If a beam of green light (Au = 0.52 11m) is normally
incident upon one ofthe sides of the slab, what percentage
of the incident power is reflected back by the glass?

(b) To eliminate reflections. it is desired to add a thin layer
of antireflection coating material on each side of the
glass. If you are at liberty to specify the thickness of the
antireflection material as well as its relative permittivity,
what would these specifications be?

Sections ~-6 to 8-11: Waveguides and Resonators

8.38 Derive Eq. (8.89b).

*8.39 A hollow rectangular waveguide is to be used to transmit
signals at a carrier frequency of 6 GHz. Choose its dimensions
so that the cutoff frequency of the dominant TE mode is lower
than the carrier by 25'k and that of the next mode is at least
25% higher than the carrier.

8.40 A TE wave propagating in a dielectric-filled waveguide
of unknown permittivity has dimensions a = 5 em and
b = 3 em. If the x-component of its electric field is given by

E; = -36cos(40nx) sin(lOOny)

. sin(2.4n x 1010t - 52.9n z). (VIm)

determine:
(a) the mode number,

(b) ef of the material in the guide,

(e) the cutotf frequency, and

(d) the expression for Hr.

8.41 A waveguide filled with a material whose Cr = 2.25 has
dimensions a = 2 cm and b = 1.4 cm. If the guide is to transmit
10.5-GHz signals, what possible modes can be used for the
transmission?

8.42 For a rectangular waveguide operating in the TEJOmode,
obtain ex.pressions for the surface charge density p.~and surface
current density 1- on each of the four walls of the guide.

*8.43 A waveguide, with dimensions a = I cm and
b = 0.7 em, is to be used at 20 GHz. Determine the
wave impedance for the dominant mode when

(a) the guide is empty, and

(b) the guide is filled with polyethylene (whose l'r = 2.25).
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8.44 A narrow rectangular pulse superimposed on a carrier
with a frequency of 9.5 GHz was used to excite all possible
modes in a hollow guide with a = 3 ern and b = 2.0 ern. If
the guide is 100m in length, how long will it take each of the
excited modes to arrive at the receiving end?

*8.45 If the zigzag angle ()' is 25° for the TEJO mode, what
would it be for the TE20 mode?

8.46 Measurement of the TEIOJ frequency response of an air-
filled cubic cavity revealed that its Q is 4802. If its volume
is 64 rnm ', what material are its sides made of? [Hint: See
Appendix 8.]

*8.47 A hollow cavity made of aluminum has dimensions
a = 4 cm and d = 3 cm. Calculate Q of the TEIOJ mode for
(a) b = 2 ern, and

(b) b = 3 cm.
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Objectives
Upon learning the material presented in this chapter, you should
be able to:

1. Calculate the electric and magnetic fields of waves radiated
by a dipole antenna.

2. Characterize the radiation of an antenna in terms of its
radiation pattern, directivity. beamwidth, and radiation
resistance.

3. Apply the Friis transmission formula to a free-space
communication system.

4. Calculate the electric and magnetic fields of waves radiated
by aperture antennas.

5. Calculate the radiation pattern of multi-element antenna
arrays.



416 CHAPTER 9 RADIATION AND ANTENNAS

Overview

An antenna is a transducer that converts a guided wave
propagating on a transmission line into an electromagnetic wave
propagating in an unbounded medium (usually free space). or
vice versa. Figure 9-1 shows how a wave is launched by a
hornlike antenna. with the hom acting as the transition segment
between the waveguide and free space.

Antennas are made in various shapes and sizes (Fig. 9-2) and
are used in radio and television broadcasting and reception.
radio-wave communication systems, cellular telephones. radar
systems, and anticollision automobile sensors. among many
other applications. The radiation and impedance properties
of an antenna are governed by its shape. size. and material
properties. The dimensions of an antenna are usually measured
in units of A of the wave it is launching or receiving; a I-m-Iong

Electric field lines <;
of radiated wave •........•.

Transmission line -'\.J---'
Generator Guided EM wave

Transition
region

Wave launched
into free space

(a) Transmission mode

\ I

Antenna

~))Rec---' -
Detect.or Guided EM wave~

or receiver Transition
region '" -' '-'

Incident
wave

(b) Reception mode

Figure 9-1: Antenna as a transducer between a guided
electromagnetic wave and a free-space wave. for both
transmission and reception.

dipole antenna operating at a wavelength A = 2 m exhibits the
same properties as a I-cm-long dipole operating at A = 2 cm.
Hence. in most of our discussions in this chapter. we will refer
to antenna dimensions in wavelength units.

Reciprocity

The directional function characterizing the relative distribution
of power radiated by an antenna is known as the antenna
radiationpattern. or simply the antenna pattern. An isotropic
antenna is a hypothetical antenna that radiates equally in all
directions. and it is often used as a reference radiator when
describing the radiation properties of real antennas.

Most antennas are reciprocal devices. exhibiting the same
radiation pattern for transmission as for reception.

Reciprocity means that. if in the transmission mode a given
antenna transmits in direction A 100 times the power it transmits
in direction B. then when used in the reception mode it will be
100 times more sensitive to electromagnetic radiation incident
from direction A than from B. All the antennas shown in
Fig. 9-2 obey the reciprocity law. but not all antennas are
reciprocal devices. Reciprocity may not hold for some solid-
state antennas composed of nonlinear semiconductors or ferrite
materials. Such nonreciprocal antennas are beyond the scope of
this chapter. and hence reciprocity will be assumed throughout.
The reciprocity property is very convenient because it allows
us to compute the radiation pattern of an antenna in the
transmission mode. even when the antenna is intended to
operate as a receiver.

To fully characterize an antenna. one needs to study its
radiation properties and impedance. The radiation properties
include its directional radiation pattern and the associated
polarization state ofthe radiated wave when the antenna is used
in the transmission mode. also called the antenna polarization.

Being a reciprocal device. an antenna. when operating in
the receiving mode. can extract from an incident wave only
that component of the wave whose electric field matches the
antenna polarization state.

The second aspect. the antenna impedance. pertains to the
transfer of power from a generator to the antenna when the
antenna is used as a transmitter and. conversely, the transfer of
power from the antenna to a load when the antenna is used
as a receiver. as will be discussed later in Section 9-5. It
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(a) Thin dipole (b) Biconical dipole (c) Loop

~
Circ~plate"Udlr m
reflector

(d) Helix (e) Log-periodic

Dielectric
substrate

Phase shifters

(f) Parabolic dish
reflector

(g) Horn

Ground metal
plane

(h) Microstrip (i) Antenna array

Figure 9-2: Various types of antennas.

should be noted that throughout our discussions in this chapter
it will be assumed that the antenna is properly matched to the
transmission line connected to its terminals, thereby avoiding
reflections and their associated problems.

Radiation Sources

Radiation sources fall into two categories: currents and
aperture fields. The dipole and loop antennas [Fig. 9-2(a)
and (c)] are examples of current sources; the time-varying
currents flowing in the conducting wires give rise to the
radiated electromagnetic fields. A horn antenna [Fig. 9-2(g)]
is an example of the second group because the electric
and magnetic fields across the hom's aperture serve as
the sources of the radiated fields. The aperture fields
are themselves induced by time-varying currents on the
surfaces of the horn's walls, and therefore ultimately all
radiation is due to time-varying currents. The choice of
currents or apertures as the sources is merely a computational
convenience arising from the structure of the antenna. We
will examine the radiation processes associated with both types
of sources.

Far-Field Region

The wave radiated by a point source is spherical in nature, with
the wavefront expanding outward at a rate equal to the phase
velocity lip (or the velocity of light c if the medium is free
space). If R, the distance between the transmitting antenna
and the receiving antenna, is sufficiently large such that the
wavefront across the receiving aperture may be considered
planar (Fig. 9-3), then the receiving aperture is said to be
in the far-field (or far-zone) region of the transmitting point
source. This region is of particular significance because
for most applications, the location of the observation point
is indeed in the far-field region of the antenna. The far-
field plane-wave approximation allows the use of certain
mathematical approximations that simplify the computation
of the radiated field and, conversely, provide convenient
techniques for synthesizing the appropriate antenna structure
that would give rise to the desired far-field antenna pattern.

Antenna Arrays

When multiple antennas operate together, the combination is
called an antenna array [Fig. 9-2(i)], and the array as a whole



4lH CHAPTER 9 RADIATION AND ANTENNAS

Figure 9-3: Far-field plane-wave approximation.

behaves as if it were a single antenna. By controlling the
magnitude and phase of the signal feeding each antenna, it
is possible to shape the radiation pattern of the array and to
electronically steer the direction of the beam electronically.
These topics are treated in Sections 9-9 to 9-1 I.

9-1 The Hertzian Dipole

By regarding a linear antenna as consisting of a large number
of infinitesimally short conducting elements. each of which is
so short that current may be considered uniform over its length,
the field of the entire antenna may be obtained by integrating
the fields from all these differential antennas, with the proper
magnitudes and phases taken into account. We shall first
examine the radiation properties of such a differential antenna,
known as a Hertzian dipole, and then in Section 9-3 we will
extend the results to compute the fields radiated by a half-wave
dipole, which is commonly used as a standard antenna for many
applications.

A Hertzian dipole is a thin, linear conductor whose length'
is very short compared with the wavelength A: I should not
exceed ),,/50.

The wire, which is oriented along the z-direction (Fig. 9-4),
carries a sinusoidally varying current given by

(A), (9.1 )

z

Q = (R, 0, 9)

x .•
Figure 9-4: Short dipole placed at the origin of a spherical
coordinate system.

where Ill.- is the current amplitude. From Eq. (9.1), the phasor
current 1 = 10. Even though the current has to go to zero at the
two ends of the dipole, we shall treat it as constant across its
entire length.

The customary approach for finding the electric and magnetic
fields at a point Q in space (Fig. 9-4) due to radiation by
a current source is through the retarded vector potential A.
From Eq, (6.84), the phasor retarded vector potential A(R) at a
distance vec~)r R from a volume V' containing a phasorcurrent
distribution J is given by

- - 'kR'
A(R) = 110 f Je J sv'4;r R' .

v'
(9.2)

where 110 is the magnetic permeability of free space (because
the observation point is in air) and k = co / c = 2;r / A is the
~avenumber. For the dipole, the current density is simply
J = z(/o/s), where .I" is the cross-sectional area of the dipole
wire. Also, dV' = s d z and the limits of integration are from
7. = -//2 to 7. = //2. In Fig. 9-4, the distance R' between the
observation point and a given point along the dipole is not the
same as the distance to its center, R, but because we are dealing
with a very short dipole, we can set R' :::::R. Hence,

kR 1/2
- 110 (,-.I f'A=- -- zlodz4;r R

-1/2

.110 (e-jkR
)=z-lol -- .4;r R

(9.3)
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~DiTection (e, 0/)

I

(}= 1800

Figure 9-5: Spherical coordinate system.

The function (e - j k RIR) is called the spherical propagation
factor. It accounts for the II R decay of the magnitude with
distance as well as the phase change represented by e" jkR.

The direction of A is the same as that of the current (z-direction),
Because our objective is to characterize the directional

character of the radiated power at a fixed distance R from
the antenna, antenna pattern plots are presented in a spherical
coordinate system (Fig. 9-5). Its variables, R, e, and cP, are
called tberange, zenith angle, and azimuth angle, respectively.
To this end, we need to write A in terms of its spherical
coordinate components, which is realized [with the help of
Eq. (3.65c) I by expressing z in terms of spherical coordinates:

z = R cos e - {j sin e. (9.4)

Upon substituting Eq. (9.4) into Eq. (9.3), we obtain

~ A A fLolol (e-jkR)A = (Rcos e' - asine) -- ---
4lf R

(9.5)

with

~ J1olol (e-jkR)AR = --cose --
4lf R'

~ fLO 101 . (e-jkR)Ae = --- sin e --
4rr R'

(9.6a)

(9.6b)

A¢ =0.

With the spherical components of A known, the next step is
straightforward; we simply apply the free-space relationships
given by Eqs. (6.85) and (6.86),

~ 1 ~
H= -v x A,

fLo

- I -E= --V x H,
jwco

(9.7a)

(9.7b)

to obtain the expressions

~ lo/k2kR [ j 1]H¢=--e-J -+-- sine
4rr kR (kR)2 •

~ 2lolk2 -jkR [I j]
ER = ~ lJoe (kR)2 - (kR)3 cos e',

(9.8a)

(9.Sb)

~ lolk2 -kR [ j I j] .Eo = -- lJoe J - + -- - -- Sill e
4lf k R (kR)2 (kR)3 '

(9.8c)

where lJ() = J fLo Ico ::::::120rr (Q) is the intrinsic impedance of
free space. The remaining components (ij R, He, and E¢) are
everywhere zero. Figure 9-6 depicts the electric field lines of
the wave radiated by the short dipole.

9-1.1 Far-Field Approximation

As was stated earlier, in most antenna applications, we are
primarily interested in the radiation pattern of the antenna at
great distances from the source. For the electrical dipole, this
corresponds to distances R such that R » A or, equivalently,
kR = 2rr RIA» 1. This condition allows us to neglect the
terms varying as Ij(kR)2 and I/(kR)3 in Eqs. (9.8a) to (9.8c)
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Dipole

Figure 9-6: Electric field lines surrounding an oscillating dipole at a given instant.

in favor of the terms varying as I Ik R, which yields the far-field
expressions

and ER is negligible. At the observation point Q (Fig. 9-4),
the wave now appears similar to a uniform plane wave with its
electric and magnetic fields in-phase, related by the intrinsic
impedance of the medium 1)0, and their directions orthogonal

to each other and to the direction of propagation (Ih Both
fields are proportional to sin e and independent of rp (which is
expected from symmetry considerations).

9-1.2 Power Density

Given it and ii the time-average Poynting vector of the
radiated wave, which is also called the power density, can be
obtained by applying Eq. (7.100); that is,
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For the short dipole, use of Eqs. (9.9a) and (9.9b) yields

s; = R S (R, e), (9.11 )

with

The directional pattern of any antenna is described in terms of
the normalized radiation intensity F(e, ¢), defined as the ratio
of the power density S(R. e, ¢) at a specified range R to Smax,

the maximum value of S(R. a, ¢) at the same range,

F(e, ¢) = S(R. e. ¢)
Smax

(dimensionless). (9.13 )

For the Hertzian dipole, the sin2 e dependence in Eq. (9.12)
indicates that the radiation is maximum in the broadside

z

Dipole

-c

0.5)< •.•
•..

•.• O2 = 135°

(a) Elevation pattern

y

(b) Azimuth pattern

Figure 9-7: Radiation patterns of a short dipole.

direction (e = JT/2), corresponding to the azimuth plane, and
is given by

(9.14)

where use was made of the relations k = 2JT / A and /}o ::::: 1201T.
We observe that Smax is directly proportional to 16 and /2 (with
I measured in wavelengths), and that it decreases with distance
as 1/R2.

From the definition of the normalized radiation intensity
given by Eq. (9.13), it follows that

F(8, ¢) = F(e) = sin2 a. (9.15)

Plots of F(e) are shown in Fig. 9-7 in both the elevation plane
(the a-plane) and the azimuth plane (¢-plane).

No en erg}' is radiated by the short dipole along the direction
of the dipole axis and maximum radiation (F = I) occurs
in the broadside direction (8 = 900

). Since F(B) is
independent of ¢, the pattern is doughnut-shaped in B-¢
space.

Review Question 9-1: Most antennas are reciprocal
devices. What does that mean?

Review Question 9-2: What is the radiated wave like in
the far-field region of the antenna?

Review Question 9-3: In a Hertzian dipole, what is the
underlying assumption about the current flowing through
the wire?

Review Question 9-4: Outline the basic steps used to
relate the current in a wire to the radiated power density.

Exercise 9-1: A l-m-Iong dipole is excited by a 5-MHz
current with an amplitude of 5 A. At a distance of 2 km,
what is the power density radiated by the antenna along
its broadside direction?

Answer: So = 8.2 X 10-8 W/m2• (See '!)



422 CHAPTER 9 RADIATION AND ANTENNAS

.t;, CD Module 9.1 Hertzian Dipole (I «A) For a short
dipole oriented along the z-axis, this module displays the
field distributions for E and H in both the horizontal and
vertical planes. It can also animate the radiation process
and current flow through the dipole.

Module 9.1
Hertzian

slower I. ~ 1 faster

~rot step = 20

~CJ.)~t == ====,°=10
II I· • 1

y

r: He - HeFF [error]

Instructions I Plot Range

Plot Range = 2.0 " r Electric Field

t: Horizontal Plane r. Vertical Plane

r Current Animation

r. Magnetic Field

r He [exact solution]

r. HeFF [far-field approx.]

9-2 Antenna Radiation Characteristics By virtue (~rreciprocity, a receiving antenna has the same
directional antenna pattern as the pattern thai it exhibits
when operated in the transmission mode,

An antenna pattern describes the far-field directional properties
of an antenna when measured at a fixed distance from the
antenna. In general, the antenna pattern is a three-dimensional
plot that displays the strength of the radiated field or power
density as a function of direction, with direction being specified
by the zenith angle 8 and the azimuth angle cp.

Consider a transmitting antenna placed at the origin of the
observation sphere shown in Fig, 9-8. The differential power
radiated by the antenna through an elemental area dAis

d Prad = Sa, . dA = Sav ' R d A = S d A (W). (9.16)
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z R sin H dcp

""~-.L~ /R ae
dA = R2 sin B dB d¢

=R2dQ

x

Figure 9-8: Definition of solid angle dQ = sin e de def>.

where S is the radial component of the time-average Poynting
vector Sav. In the far-field region of any antenna, Sav is always
in the radial direction. In a spherical coordinate system,

(9.17)

and the solid angle dO. associated with d A, defined as the
subtended area divided by R2, is given by

Note that, whereas a planar angle is measured in radians and
the angular measure of a complete circle is 2n (rad), a solid
angle is measured in steradians (sr), and the angular measure
fora spherical surface is 0. = (4n R2)j R2 = 4n (sr), The solid
angle of a hemisphere is 2n (sr).

Using the relation dA = R2 dO., d Prad can be rewritten as

dPrad = R2 S(R. e, ¢) dO.. (9.19)

The total power radiated by an antenna through a spherical
surface at a fixed distance R is obtained by integrating Eq. (9.19)
over that surface:

2,.,. ,.,.

Prad = R2 f f S(R, e, ¢) sin 8 d8 d¢

4>=00=0

2Jl" n

= R2Smax f f F(8, ¢) sin e' de d¢
</>=00=0

= R2 Smax ff F(8, ¢) dO.
4,.,.

(W), (9.20)

where F(8, ¢) is the normalized radiation intensity defined by
Eq. (9.13). The 4n symbol under the integral sign is used as an
abbreviation for the indicated limits on 8 and ¢. Formally, Prad

is called the total radiated power.

9-2.1 Antenna Pattern

Each specific combination of the zenith angle 8 and the azimuth
angle ¢ denotes a specific direction in the spherical coordinate
system of Fig. 9-8. The normalized radiation intensity F(8, ¢)
characterizes the directional pattern of the energy radiated by
an antenna, and a plot of F(8. ¢) as a function of both e and ¢
constitutes a three-dimensional pattern, an example of which is
shown in Fig. 9-9.

Often, it is of interest to characterize the variation of F(e, ¢)
in the form of two-dimensional plots in specific planes in the
spherical coordinate system. The two planes most commonly
specified for this purpose are the elevation and azimuth planes.
The elevation plane, also called the e-plane, is a plane
corresponding to a constant value of ¢. For example, ¢ = 0
defines the x-z plane and ¢ = 90° defines the y-z plane, both
of which are elevation planes (Fig. 9-8). A plot of F(8, ¢)
versus e in either of these planes constitutes a two-dimensional
pattern in the elevation plane. This is not to imply, however,
that the elevation-plane pattern is necessarily the same in all
elevation planes.

The azimuth plane, also called the ¢-plane, is specified by
(}= 90° and corresponds to the x-y plane. The elevation and
azimuth planes are often called the two principal planes of the
spherical coordinate system.
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o
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e~-1O
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c.g -15~
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Figure 9-9: Three-dimensional pattern of a narrow-beam
antenna.

Some antennas exhibit highly directive patterns with narrow
beams, in which case it is often convenient to plot the antenna
pattern on a decibel scale by expressing F in decibels:

F (dB) = 10 log F.

As an example, the antenna pattern shown in Fig. 9-IO(a) is
plotted on a decibel scale in polar coordinates, with intensity
as the radial variable. This format permits a convenient visual
interpretation of the directional distribution of the radiation
lobes.

Another format commonly used for inspecting the pattern
of a narrow-beam antenna is the rectangular display shown in
Fig. 9-1O(b), which permits the pattern to be easily expanded by
changing the scale of the horizontal axis. These plots represent
the variation in only one plane in the observation sphere, the
¢ = 0 plane. Unless the pattern is symmetrical in ¢, additional
patterns are required to define the overall variation of F (8, ¢)
with 8 and ¢.

Strictly speaking, the polar angle () is always posrtive,
being defined over the range from 0° (z-direction) to 1800

(-z-direction), and yet the (:i-axis in Fig. 9-10(b) is shown
to have both positive and negative values. This is not a
contradiction, but rather a different form of plotting antenna
patterns. The right-hand half of the plot represents the variation
of F (dB) with e as (:iis increased in a clockwise direction in the
x-z plane [see inset in Fig. 9-IO(b)], corresponding to ¢ = 0,
whereas the left-hand half of the plot represents the variation
of F (dB) with e as e is increased in a counterclockwise
direction at ¢ = 1800

• Thus, a negative e value simply denotes
that the direction (e, ¢) is in the left-hand half of the x-z
plane.

The pattern shown in Fig. 9-1O(a) indicates that the
antenna is fairly directive, since most of the energy
is radiated through a narrow sector called the main
lobe. In addition to the main lobe, the pattern exhibits
several side lobes and back lobes as well. For most
applications, these extra lobes are considered undesirable
because they represent wasted energy for transmitting
antennas and potential interference directions for receiving
antennas.

9-2.2 Beam Dimensions

For an antenna with a single main lobe, the pattern solid angle
Qp describes the equivalent width of the main lobe of the
antenna pattern (Fig. 9-11). It is defined as the integral of the
normalized radiation intensity F«(}, ¢) over a sphere:

For an isotropic antenna with F (0. ¢) = 1 in all directions,
Qp = 41T (sr).

The pattern solid angle characterizes the directional
properties of the three-dimensional radiation pattern. To
characterize the width of the main lobe in a given plane, the term
used is beam width. The half-power beamwidth, or simply the
beamwidth {3,is defined as the angular width of the main lobe
between the two angles at which the magnitude of F(e, ¢) is
equal to half of its peak value (or - 3 dB on a decibel scale). For
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Figure 9-10: Representative plots of the normalized radiation pattern of a microwave antenna in (a) polar form and (b) rectangular form.
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example, for the pattern displayed in Fig. 9-\ O(b), fl is given
by

(9.22)

where 8[ and 82 are the half-power angles at which
F(8.0) = 0.5 (with 82 denoting the larger value and 8[
denoting the smaller one, as shown in the figure). If the pattern
is symmetrical and the peak value of F(8, ¢) is at 8 = 0,
then f3 = 282. For the short-dipole pattern shown earlier in
Fig. 9-7(a), F (8) is maximum at 8 = 900,82 is at 135°, and 81
is at 450

• Hence, f3 = 1350
- 45° = 900

• The beamwidth f3
is also known as the 3-dB beamwidth. In addition to the half-
power beamwidth, other beam dimensions may be of interest
for certain applications, such as the null beam width f3null, which
is the angular width between the first nulls on the two sides of
the peak [Fig. 9-1O(b)].

9-2.3 Antenna Directivity

The directivity D of an antenna is defined as the ratio of
its maximum normalized radiation intensity, Fmax (which by
definition is equal to I), to the average value of F(8, ¢) over
all directions (4n space):

Fmax
D=-r;

4~ ff F(8, ¢) dQ
4lT

(dimensionless ). (9.23)
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F(D,1')

F= I within
the cone

(a) Actual pattern (b) Equivalent solid angle

Figure 9-11: The pattern solid angle r.lp defines an equivalent
cone over which all the radiation of the actual antenna is
concentrated with uniform intensity equal to the maximum of
the ac tual pattern.

Here Qp is the pattern solid angle defined by Eq. (9.21). Thus,
the narrower Qp of an antenna pattern is, the greater is the
directivity. For an isotropic antenna, Qp = 4JT; hence, its
directivity Diso = I.

By using Eq. (9.20) in Eq. (9.23), D can be expressed as

4JT R2Smax
D=----

Prad

Smax

Say '
(9.24)

where Say = Prad/(4JT R2) is the average value of the radiated
power density and is equal to the total power radiated by the
antenna, Prad, divided by the surface area of a sphere of radi us R.

Since Say = Siso, where Siso is the power density radiated by
an isotropic antenna, D represents the ratio of the maximum
power density radiated by the antenna to the power demit)'
radiated by an isotropic antenna, both measured at the same
range R and excited by the same amount of input power.

Usually, D is expressed in decibels:" D (dB) = 10 log D,

*A note of caution: Even though we often express certain dimensionless
quantities in decibels, we should always convert their decibel values to natural
values before using them in the relations given in this chapter.

z

x

Figure 9-12: The solid angle of a unidirectional radiation
pattern is approximately equal to the product of the half-power
beamwidths in the two principal planes: that is, Qp :::::f3xz{3yz.

For an antenna with a single main lobe pointing in the
z-direction as shown in Fig. 9-12, Qp may be approximated
as the product of the half-power bearnwidths fix;: and i3y z (in
radians):

(9.25 )

and therefore

Although approximate, this relation provides a useful method
for estimating the antenna directivity from measurements of the
beam widths in the two orthogonal planes whose intersection is
the axis of the main lobe,

Example 9-1: Antenna Radiation Properties

Determine (a) the direction of maximum radiation, (b) pattern
solid angle, (c) directivity, and (d) half-power beamwidth
in the y-z plane for an antenna that radiates only into the
upper hemisphere with normalized radiation intensity given by
F((J, 1» =cos2e.
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z

F(e) = cos? e

x

Figure 9·13: Polar plot of FU-}) = cos2 e.

Solution: The statement that the antenna radiates through
only the upper hemisphere is equivalent to

I cos2 e for 0 < e < rr/2
F(e, </» = F(e) = and 0::::: </> s 2rr,

a elsewhere.

(a) The function F(e) = cos- (} is independent of </> and is
maximum when e = 0°. A polar plot of F(e) is shown in
Fig. 9-13.

(b) From Eq. (9.21), the pattern solid angle Qp is given by

Qp = JJ rio. </» dQ

4JT

2JT

= f ~d</>= 2rr
3 3

o
(sr).

(c) Application of Eq. (9.23) gives

4rr ( 3 )
D = Q

p
= 4rr 2rr = 6,

which corresponds to D (dB) = 1010g6 = 7.78 dB.

(d) The half-power beam width f3 is obtained by setting
F(e) = 0.5. That is,

F(e) = cos2 e = 0.5,

which gives the half-power angles el = -450 and e2 = 450
•

Hence,

Example 9-2: Directivity of a Hertzian Dipole

Calculate the directivity of a Hertzian dipole.

Solution: Application ofEq. (9.23) with F(e) = sin2 e [from
Eq. (9.15)] gives

4rr
D=~--------------JJ F(e, </» sine de d</>

4JT

4rr 4rr
= = -- = 1~5,

2JT JT 8rr /3f f sin3 e de d</>
.p=OIi=O

or, equivalently, 1.76 dB.

9-2.4 Antenna Gain

Of the total power PI (transmitter power) supplied to the
antenna. a part, Prad, is radiated out into space, and the
remainder, Ploss. is dissipated as heat in the antenna structure.
The radiation efficiency; is defined as the ratio of Prad to PI:

The gain of an antenna is defined as

4rr R2Smax
G=---

PI
(9.28)



428 CHAPTER 9 RADIATION AND ANTENNAS

which is similar in form to the expression given by Eq. (9.24)
for the directivity D except that it is referenced to the input
power supplied to the antenna, Pt, rather than to the radiated
power Prado In view of Eq. (9.27),

(dimensionless). (9.29) I
The gain accounts for ohmic losses in the antenna

material, whereas the directivity does not. For a lossless
antenna. ~ = 1, and G = D.

9-2.5 Radiation Resistance

To a transmission line connected between a generator supplying
power P, on one end and an antenna on the other end, the
antenna is merely a load with input impedance Zin. If the
line is lossless and properly matched to the antenna, all of Pt is
transferred to the antenna. In general. Zin consists of a resistive
component Rin and a reactive component Xin:

(9.30)

The resistive component is defined as equivalent to a resistor Rin

that would consume an average power Pt when the amplitude
of the ac current flowing through it is 10,

(9.31)

Since P; = Prad + Ploss, it follows that Rin can be defined as the
sum of a radiation resistance Rrad and a loss resistance Rio",

(9.32)

with

Prad = ~ lJ Rrad•

Plo" = ~ IJ RIo",

(9.33a)

(9.33b)

where 10 is the amplitude of the sinusoidal current exciting the
antenna. As defined earlier. the radiation efficiency is the ratio
of Prad to Pt. or

The radiation resistance Rrad can be calculated by integrating
the far-field power density over a sphere to obtain Prad and then
equating the result to Eq. (9.33a).

Example 9-3: Radiation Resistance and Efficiency of a

Hertzlan Dipole

A 4-cm-long center-fed dipole is used as an antenna at 75
MHz. The antenna wire is made of copper and has a radius
(I = 0.4 mm. From Eqs. (7.92a) and (7.94), the loss resistance
of a circular wire of length 1 is given by

I J7rfflCR =---loss 2 •
it a Ue

(9.35)

where Ile and Uc are the magnetic permeability and conductivity
of the wire, respectively. Calculate the radiation resistance and
the radiation efficiency of the dipole antenna.

Solution: At 75 MHz,

c 3 x 1O~
A= f = 7.5 X 107 =4m.

The length to wavelength ratio is II A = 4 cm/4 m = lO-2.
Hence. this is a short dipole. From Eq. (9.24).

(9.36)

For the Hertzian dipole, Smax is given by Eq. (9.14), and from
Example 9-2 we established that D = 1.5. Hence,

47rR2 I57r/(~ (/)2 2 2 (1)2P, d = -- X -- - = 407r 10 -
ra 1.5 R2)" )" (9.37)

Equating this result to Eq. (9.33a) and then solving for the
radiation resistance Rrad leads to

(9.38) I
For II).. = 10-2, Rrdd = 0.08 Q.

Next, we determine the loss resistance RIo,,' For
copper, Appendix B gives fle ::::::flu = 47r x 10-7 HIm and
Ue = 5.8 x \07 S/m. Hence,

1 J 7rJlleR. -- --I"" - 2it a Uc

= 4 x \0-2 (7r x 75 x 106 x 47r x 10-7)1/2
27r x 4 X 10-4 5.8 x \07

= 0.036 Q.
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Therefore, the radiation efficiency is

Rrad 0.08~ = = = 0.69.
Read + e-; 0.08 + 0.036

Thus, the dipole is 69% efficient.

Review Question 9-5: What does the pattern solid angle
represent?

Review Question 9-6: What is the magnitude of the
directivity of an isotropic antenna'!

Review Question 9-7: What physical and material
properties affect the radiation efficiency of a fixed-length
Hertzian dipole antenna?

Exercise 9-2: An antenna has a conical radiation pattern
with a normalized radiation intensity F(e) = 1 for e
between 0° and 45° and zero for e between 45° and 1800

•

The pattern is independent of the azimuth angle cpo Find
(a) the pattern solid angle and (b) the directivity.

Answer: (a) Qp = 1.84 sr, (b) D = 6.83 or, equiva-
lently, 8.3 dB. (See $»

Exercise 9-3: The maximum power density radiated by
a short dipole at a distance of 1 km is 60 (nW/m2). If
fo = lOA, find the radiation resistance.

Answer: Rrad = 10 mQ. (See .J(t<)

9-3 Half- Wave Dipole Antenna
In Section 9-1 we developed expressions for the electric
and magnetic fields radiated by a Hertzian dipole of length
I « )...We shall now use these expressions as building blocks to
obtain expressions for the fields radiated by a half-wave dipole
antenna, so named because its length I = ),,/2. As shown in
Fig. 9-14, the half-wave dipole consists of a thin wire fed at its
center by a generator connected to the antenna terminals via a
transmission line. The current flowing through the wire has a
symmetrical distribution with respect to the center of the dipole,
and the current is zero at its ends. Mathematically, i(z ) is given
by

i(t) = 10 coswtcoskz = 9'te [/ocoskzejW/
], (9.39a)

whose phasor is

I(z) = locoskz, -A/4 ::::z ::::)./4 , (9.39b)

and k = 2lf/A. Equation (9.9a) gives an expression for Ee,
the far field radiated by a Hertzian dipole of length / when
excited by a current 10. Let us adapt that expression to an
infinitesimal dipole segment of length dz, excited by a current
1(7.) and located at a distance s from the observation point Q
[Fig. 9-14(b)J. Thus,

~ . jkrlO ~
dER(Z) = -- 1(7.) dz

. 4lf (
e-jb) .
-- SlOe"

s
(9.4Da)

and the associated magnetic field is

1
/= ).12

1

- d E&(7.)
dH",(z) = --.

I}O
(9.40b)

Current distrubution
fez) = 10 cos kz
~,/

....

Transmission
line

t i(t)

,,
\

t i(t)
I

I
Dipole----
antenna

(a)

1
/ = ..i12

L~-'/2
(b)

Figure 9-14: Center-fed half-wave dipole.
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The far field due to radiation by the entire antenna is obtained
by integrating the fields from all of the Hertzian dipoles making
up the antenna:

i,/4

E!! = / dE!!.
/=-A/4

(9.4l)

Before we calculate this integral. we shall make the following
two approximations. The first relates to the magnitude part
of the spherical propagation factor, 1/.1'. In Fig. 9-14(b), the
distance s between the current element and the observation
point Q is considered so large in comparison with the length of
the dipole that the difference between .I' and R may be neglected
in terms of its effect on I/s. Hence, we may set 1/.1' ~ I/R,
and by the same argument we set Os ~ fJ. The error t!. between
sand R is a maximum when the observation point is along the
z-axis and it is equal to 'A/4 (corresponding to half of the antenna
length). If R » ie, this error will have an insignificant effect
on 1/.1'. The second approximation is associated with the phase
factor e-Jks. An error in distance t!. corresponds to an error in
phase k /). = (27T /'A)('A/4) = 7T /2. As a rule of thumb, a phase
error greater than 7T /8 is considered unacceptable because it
may lead to a significant error in the computed value of the
field Eo. Hence, the approximation s ~ R is too crude for the
phase factor and cannot be used. A more tolerable option is to
use the parallel-ray approximation given by

.I' ~ R - z cos e, (9.42)

as illustrated in Fig. 9-14(b).
Substituting Eq. (9.42) fors in the phase factor of Eq. (9.40a)

and replacing s with Rand es with 0 elsewhere in the expression,
we obtain

- jk110 -d Ei, = -- 1(7) d z
. 47T (

-JkR)T sin f} ejkL cos Ii . (9.43)

After (\) inserting Eg. (9.43) into Eq. (9.41), (2) using the
expression for J(z) given by Eq. (9.39b), and (3) carrying out
the integration, the following expressions are obtained:

£9 = j6010 (COS[(:i~~ COSO]}(e-~kR), (9.44a)

- £9
H9=-·

110
(9.44b)

The corresponding time-average power density is

- ,
S(R, 0) = IE!!I-

2110

_15/(~ {COS2[(7T/2)COSe]}
- 7T R2 sin2 e

{
COS2[(7T/2)COSO] }

= Su . 1
SIll-e

(9.45)

Examination ofEq. (9.45) reveals that S(R, OJ is maximum at
fJ = 7r/2, and its value is

Sma, = So

15/(?

Hence, the normalized radiation intensity is

(9.46)

The radiation pattern of the half-wave dipole exhibits roughly
the same doughnutlike shape shown earlier in Fig. 9-7 for the
short dipole. Its directivity is slightly larger (1.64 compared
with 1.5 for the short dipole), but its radiation resistance is
73 Q (as will be shown later in Section 9-3.2), which is orders
of magnitude larger than that oj a short dipole.

9-3. I Directivity of ).,/2 Dipole

To evaluate both the directivity D and the radiation resistance
Rrad of the half-wave dipole, we first need to calculate the total
radiated power Prad by applying Eq. (9.20):

Prad = R2 .ff S(R, e) dQ

4",

, 2", ;or 1

15/0//{COS[(7r/2)cose]}- .= -- sin e' de d¢.
n sin fJ

o 0
(9.47)
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The integration over cjJ is equal to 2iT, and numerical evaluation
of the integration over () gives the value 1.22. Consequently,

Prad = 36.616 (W). (9.48)

From Eq. (9.45), we found that Smax = 15/J l(iT R2). Using
this in Eq. (9.24) gives the following result for the directivity
D of the half-wave dipole:

_ 4iTR2 Smax _ 4iTR2 (15/J) _
D - - --2 --, -1.64,

Prad 36.6/0 n R-
(9.49)

or, equivalently, 2.15 dB.

9-3.2 Radiation Resistance of 'A/2 Dipole

From Eq. (9.33a),

2Pmd 2 x 36.616
Rmd = -2- = 2 ::::::73 Q.

10 10
(9.50)

As was noted earlier in Example 9-3, because the radiation
resistance of a Hertzian dipole is comparable in magnitude to
that of its loss resistance Rloss, its radiation efficiency ~ is rather
small. For the 4-cm-Iong dipole of Example 9-3, Rrad = 0.08 Q
(at 75 MHz) and Rloss = 0.036 Q. If we keep the frequency the
same and increase the length of the dipole to 2 m (A = 4 m at
f = 75 MHz), Rmd becomes 73 Q and Rloss increases to 1.8 Q.
The radiation efficiency increases from 69% for the short dipole
to 98% for the half-wave dipole. More significant is the fact
that it is practically impossible to match a transmission line to
an antenna with a resistance on the order of 0.1 Q, while it is
quite easy to do so when Rrad = 73 Q.

Moreover, since Rloss« Rrad for the half-wave dipole,
Rin ::::::Rrad and Eq. (9.30) becomes

(9.51 )

Deriving an expression for Xin for the half-wave dipole is fairly
complicated and beyond the scope of this book. However, it is
significant to note that Xin is a strong function of l IA, and that it
decreases from 42 Q atl IA = 0.5 to zero atl/A = 0.48, whereas
Rrad remains approximately unchanged. Hence, by reducing
the length of the half-wave dipole by 4%, Zin becomes purely
real and equal to 73 Q, thereby making it possible to match the
dipole to a 75-Q transmission line without resorting to the use
of a matching network.

9-3.3 Quarter- Wave Monopole Antenna

When placed over a conducting ground plane, a quarter-
wave monopole antenna excited by a source at its base
[Fig. 9- J S(a)/ exhibits the same radiation pattern in the
region above the ground plane as a half-wave dipole infree
space.

T
).14

l
Conducting
plane

I

II
(a)

I t "-Image

(b)

Figure 9-15: A quarter-wave monopole above a conducting
plane is equivalent to a full half-wave dipole in free space.
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This is because, from image theory (Section 4-11), the
conducting plane can be replaced with the image of the )../4
monopole, as illustrated in Fig. 9-15(b). Thus, the )../4
monopole will radiate an electric field identical to that given
by Eq. (9.44a), and its normalized radiation intensity is given
by Eq. (9.46); but the radiation is limited to the upper half-
space defined by 0 ~ e ~ IT /2. Hence, a monopole radiates
only half as much power as the dipole. Consequently. for a
)../4 monopole, Prad = 18.315 and its radiation resistance is
Rrad = 36.5 n.

The approach used with the quarter-wave monopole is also
valid for any vertical wire antenna placed above a conducting
plane, including a Hertzian monopole.

Review Question 9-8: What is the physical length of
a half-wave dipole operating at (a) I MHz (in the AM
broadcast band), (b) 100 MHz (FM broadcast band), and
(c) 10 GHz (microwave band)?

RevIew Question 9·9: How does the radiation pattern
of a half-wave dipole compare with that of a Hertzian
dipole'! How do their directivities, radiation resistances,
and radiation efficiencies compare?

Review Question 9-10: How does the radiation efficiency
of a quarter-wave monopole compare with that of a half-
wave dipole, assuming that both are made of the same
material and have the same cross section?

Exercise 9-4: For the half-wave dipole antenna, evaluate
F(B) versus e to determine the half-power beamwidth in
the elevation plane (the plane containing the dipole axis).

Answer: f3 = 78°. (See""')

Exercise 9-5: If the maximum power density radiated by
a half-wave dipole is 50 J1W/m2 at a range of 1 krn, what
is the current amplitude lo?

Answer: 10 = 3.24 A. (See 'f.')

(a) 1= A./2

... I(z)..• ..•,
\
I

......I(z)
..•,

\

I

,..• ..•,
\

.-.-.-
'"

..•

..• ,,
\
I

(b) /=) (c) 1 = 3;)2

Figure 9·16; Current distribution for three center-fed dipoles.

9-4 Dipole of Arbitrary Length

So far, we examined the radiation properties of the Hertzian
and half-wave dipoles. We will now consider the more general
case of a linear dipole of arbitrary length I, relative to A. For a
center-fed dipole, as depicted in Fig. 9-16, the currents flowing
through its two halves are symmetrical and must go to zero at
its ends. Hence, the current phasor I(z) can be expressed as a
sine function with an argument that goes to zero at 7. = ±1/2:

/(z) =

1
/0 sin [k (1/2 - z)],

/0 sin Ik (1/2 + zj},

for 0 ~ Z :5 1/2.

for -I /2 ~ z < 0,
(9.52)

where 10 is the current amplitude. The procedure for calculating
the electric and magnetic fields and the associated power density
of the wave radiated by such an antenna is basically the
same as that used previously in connection with the half-wave
dipole antenna. The only difference is the current distribution
1(7.). If we insert the expression for I(z) given by Eq. (9.52)
into Eq. (9.43), we obtain the following expression for the
differential electric field d Eo of the wave radiated by an
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elemental length dz at location z along the dipole:

'k 1 ( -ikR)dE- } 170 0 e : . () J'kzcose d
B = -- -- sm e z

4lT R

x [Sin [k (112 - z)] ,

sin Ik (1/2 + z)],

forO:::: z:::: 112,

for -112 ::::z < O.

(9.53)

The total field radiated by the dipole is

1/2

Eo = / dEe
-1/2

1/2 0

= / dEB + / dEo
o -1/2

jk17010 (e-JkR) .=-- -- sin e'
4Jr R

1
1/2

X i: sin[k(l12 - z)] dz

+ J eJkZCOSOSin[k(l12+Z)ldzj.

-1/2

(9.54)

If we apply Euler's identity to express ejkz cos fI as
cos(kz cos A) + j sin(kz cos (j), we can integrate the two
integrals and obtain the result

_ . (e - j kR) [cos (~ cos A) - cos (~ ) ]
Eo = }60/0 -- . . (9.55)

R sin e
The corresponding time-average power density radiated by the
dipole antenna is given by

see) = IEel2 = 15/J [cos (¥ cose) - cos (¥)]2
2170 lT R2 sin ()

(9.56)
where we have used the relations 170:::::: 120Jr (n) and
k = 2Jr/A. For 1= A/2, Eq. (9.56) reduces to the expression
given by Eq, (9.45) for the half-wave dipole. Plots of
the normalized radiation intensity, F(e) = S(R, e)1Smax, are

z

(a) l= )j2

z

(b) 1= A

z

(c) /=3AI2

Figure 9-17: Radiation patterns of dipoles with lengths of ),,/2,
A, and 3.1../2.

shown in Fig. 9-17 for dipoles oflengths A/2. A, and 3A/2. The
dipoles with I = A 12 and I = A have similar radiation patterns
with maxima along e = 90°, but the half-power beamwidth of
the wavelength-long dipole is narrower than that of the half-
wave dipole. and Smax = 601~ l(lT R2) for the wavelength-long
dipole, which is four times that for the half-wave dipole. The
pattern of the dipole with length I = 3A/2 exhibits a structure
with multiple lobes, and its direction of maximum radiation is
not along () = 90°.
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Technology Brief 17: Health Risks of EM Fields

Can the use of cell phones cause cancer? Does exposure to the electromagnetic fields (EMFs) associated with
power lines pose health risks to humans? Are we endangered by EMFs generated by home appliances, telephones,
electrical wiring, and the myriad of electronic gadgets we use every day (Fig. TF17-1)? Despite reports in some of
the popular media alleging a causative relationship between low-level EMFs and many diseases, according to reports
by governmental and professional boards in the U.S. and Europe, the answer is: NO, we are not at risk, so long as
manufacturers adhere to the approved governmental standards for maximum permissible exposure (MPE) levels.
With regard to cell phones, the official reports caution that their conclusions are limited to phone use of less than 10
years, since data for longer-term use is not yet available.

FigureTF17-1: Electromagnetic fields are emitted by power lines, cell
phones, TV towers, and many other electronic circuits and devices.

Physiological Effects of EMFs

The energy carried by a photon with an EM frequency f is given by E = hf, where h is Planck's constant. The mode of
interaction between a photon passing through a material and the material's atoms or molecules is very much dependent
on f. If f is greater than about 1015 Hz (which falls in the ultraviolet (UV) band of the EM spectrum), the photon's energy
is sufficient to free an electron and remove it completely, thereby ionizing the affected atom or molecule. Consequently,
the energy carried by such EM waves is called ionizing radiation, in contrast with non-ionizing radiation
(Fig. TF17-2) whose photons may be able to cause an electron to move to a higher energy level, but not eject it
from its host atom or molecule.

Assessing health risks associated with exposure to EMFs is complicated by the number of variables involved, which
include: (1) the frequency I, (2) the intensities of the electric and magnetic fields, (3) the exposure duration, whether
continuous or discontinuous, and whether pulsed or uniform, and (4) the specific part of the body that is getting exposed.
We know that intense laser illumination can cause corneal burn, high-level X-rays can damage living tissue and cause
cancer and, in fact, any form of EM energy can be dangerous if the exposure level and/or duration exceed certain
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FigureTF17-2: Different types of electromagnetic radiation.

safety limits. Governmental and professional safety boards are tasked with establishing maximum permissible exposure
(MPE) levels that protect human beings against adverse health effects associated with EMFs. In the United States,
the relevant standards are IEEE Std C95.6 (dated 2002), which addresses EM fields in the 1 Hz to 3 kHz range, and
IEEE Std 95.1 (dated 2005), which deals with the frequency range from 3 kHz to 300 GHz. On the European side of
the Atlantic, responsibility for establishing MPE levels resides with the Scientific Committee on Emerging and Newly
Identified Health Risks (SCENIHR) of the European Commission.

At frequencies below 100 kHz, the goal is to minimize adverse effects of exposure to electric fields that can cause
electrostimulation of nerve and muscle cells. Above 5 MHz, the main concern is excessive tissue heating, and in the
transition region of 100 kHz to 5 MHz, safety standards are designed to protect against both electrostimulation and
excessive heating.

Frequency Range 0 s f ::s 3 kHz:

The plots in Fig. TF17-3 display the values of MPE for the electric and magnetic fields over the frequency range below
3 kHz. According to IEEE Std C95.6, it is sufficient to demonstrate compliance with the MPE levels for either the electric
field E or the magnetic flux density B. According to the plot for the magnetic field H in Fig. TF17 -3, exposure at 60 Hz
should not exceed 720 AIm. The magnetic field due to power lines is typically in the range of 2-6 AIm underneath the
lines, which is at least two orders of magnitude smaller than the established safe level for H.

Frequency Range 3 kHz s f s 300 GHz:

At frequencies below 500 MHz, MPE is specified in terms of the electric and magnetic field strengths of the EM energy
(Fig. TF17-4). From 100 MHz to 300 GHz (and beyond), MPE is specified in terms of the product of E and H, namely
the power density S. Cell phones operate in the 1-2 GHz band; the specified MPE is 1 W/m2, or equivalently 0.1
mW/cm2.

Bottom Line

We are constantly bombarded by EM energy, from solar illumination to blackbody radiation emitted by all matter. Our
bodies absorb, reflect, and emit EM energy all the time. Living organisms, including humans, require exposure to
EM radiation to survive, but excessive exposure can cause adverse effects. The term excessive exposure connotes
a complicated set of relationships among such variables as field strength, exposure duration and mode (continuous,
pulsed, etc.), body part, etc. The emission standards established by the Federal Communications Commission in
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the United States and similar governmental bodies in other countries are based on a combination of epidemiological
studies, experimental observations, and theoretical understanding of how EM energy interacts with biological material.
Generally speaking, the maximum permissible exposure levels specified by these standards are typically two orders
of magnitude lower than the levels known to cause adverse effects, but in view of the multiplicity of variables involved,
there is no guarantee that adhering to the standards will avoid health risks absolutely. The bottom line is: use common
sense!
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'$> CD Modules 9.2 and 9.3 Detailed Analysis of Linear Antenna
For a linear antenna of any specified length (in units
of )..), thse two modules display the current distribution
along the antenna and the far-field radiation patterns in
the horizontal and elevation planes. They also calculate
the total power radiated by the antenna, the radiation
resistance, and the antenna directivity.

:q
I

2a--

1.0 [GHz)

Set Antenna Parameters

Plot Directivity

Dipo1e Length =
Range I ....14_. ""O";;;=- •..•••.•.•.••••••.......;........;..•..•••••••..••••••----I~I
Maximum Current 1.0 [A)

Range I L..14 ""'- •..•••.•.""'-""'- •..•••.•.__ ~~1
[Hz)

0.5

Frequency = 1.0E9

1.0 a= 1.0E-5

Update I

Select:

Data

Wavelength
'" = 0.3 [rn]

Dipole Length
1 = 0.5.11 = 0.15 [m)

Directivity D = 1.64092

Radiation Impedance
R rad = 73.1296 [0)

j Xrad = j 42.54791 [0)

Input Impedance
Rin = 73.1296 [0)

j Xin = j 42.54791 [0)

Time-Average Total Radiated Power
< Ptot > = 36.5648 [W)
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9-5 Effective Area of a Receiving
Antenna

So far. antennas have been treated as directional radiators of
energy. Now. we shall examine the reverse process. namely
how a receiving antenna extracts energy from an incident wave
and delivers it to a load. The ability of an antenna to capture
energy from an incident wave of power density Si (W1m2) and
convert it into an intercepted power Pinl (W) for delivery to a
matched load is characterized by the effective area Ae:

Other commonly used names for Ac include effective aperture
and receiving cross section. The antenna receiving process may
be modeled in terms of a Thevenin equivalent circuit (Fig. 9-18)
consisting of a voltage ~lC in series with the antenna input
impedance Zin. Here. \foe is the open-circuit voltage induced
by the incident wave at the antenna terminals and ZL is the
impedance of the load connected to the antenna (representing

1 Incident
wave

1 1
1 1
L ~!!t~nEa.. _I

(a) Receiving antenna

1
1
1

: Antenna equivalent circuit 1 Load________________ I

(b) Equivalent circuit

Figure 9·18: Receiving antenna represented by an equivalent
circuit.

a receiver or some other circuit). In general, both Zin and ZL
are complex:

(9.58a)

(9.58b)

where Rrad denotes the radiation resistance of the antenna
(assuming Rio" « Rrad). To maximize power transfer to the
load, the load impedance must be chosen such that ZL = Z~,
or RL = Rra<LandXL = -Xin. In that case, the circuit reduces
to a so~rce Voc connected across a resistance equal to 2Rrad.
Since Voe is a sinusoidal voltage phasor, the time-average power
delivered to the load is

(9.59)

where IL = Voe/(2Rrad) is the phasor current flowing through
the circuit. Since the antenna is lossless, all the intercepted
power Pilll ends up in the load resistance RL. Hence,

- ~lVocl~
Pi III = Pr_ = -- .

8 Rrad
(9.60)

For an incident wave with electric field Ei parallel to the
antenna polarization direction, the power density carried by the
wave is •..•... ,., ---.,

IEd- IEd-5-------
1 - 21/0 - 240n .

The ratio of the results provided by Eqs. (9.60) and (9.61) gives

(9.61 )

(9.62)

The open-circuit voltage ~lC induced in the receiving antenna
is due to the incident field ii; but the relation between them
depends on the specific antenna under consideration. By way of
illustration, let us consider the case of the short-dipole antenna
of Section 9-1. Because the length I of the short dipole is small
compared with A, the current induced by the incident field will
be uniform across its length, and the open-circuit voltage will

""-' ......, ,., "')

simply be Voc = Eil . Noting that Rrad = 80n-(I/A)- for the
short dipole (see Eq. (9.38» and using \foe = Eit. Eq. (9.62)
simplifies to
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R

Transmitting
antenna

Receiving
antenna

Figure 9-19: Transmitter-receiver configuration.

In Example 9-2 it was shown that for the Hertzian dipole the
directivity D = 1.5. In terms of D, Eq. (9.63) can be rewritten
in the form

Despite the fact that the relation between Ae and D given
by Eq. (9.64) was derived for a Hertrian dipole, it can be
shown that it is also valid for any antenna under matched-
impedance conditions.

Exercise 9-6: The effective area of an antenna is 9 m2•

What is its directivity in decibels at 3 GHz?

Answer: D = 40.53 dB. (See ,if;)

Exercise 9-7: At 100 MHz, the pattern solid angle of an
antenna is 1.3 sr. Find (a) the antenna directivity D and
(b) its effective area Ae.

Answer: (a) D = 9.67, (b) Ae = 6.92 m2• (See ,~)

9-6 Friis Transmission Formula
The two antennas shown in Fig. 9-19 are part of a free-space
communication link, with the separation between the antennas,
R, being large enough for each to be in the far-field region
of the other. The transmitting and receiving antennas have
effective areas Al and Ar and radiation efficiencies ~t and ~r'

respectively. Our objective is to find a relationship between
P[, the power supplied to the transmitting antenna, and Prec,

the power delivered to the receiver. As always, we assume
that both antennas are impedance-matched to their respective

transmission lines. Initially. we consider the case where the
two antennas are oriented such that the peak of the radiation
pattern of each antenna points in the direction of the other.

We start by treating the transmitting antenna as a lossless
isotropic radiator. The power density incident upon the
receiving antenna at a distance R from an isotropic transmitting
antenna is simply equal to the transmitter power P, divided by
the surface area of a sphere of radius R:

PI
Sis!) = 4n R2 . (9.65)

The real transmitting antenna is neither lossless nor isotropic.
Hence, the power density S, due to the real antenna is

(9.66)

Through the gain Gt = ~t D[, ~I accounts for the fact that only
part of the power PI supplied to the antenna is radiated out into
space, and D, accounts for the directivity of the transmitting
antenna (in the direction of the receiving antenna). Moreover.
by Eq. (9.64), DI is related to At by D, = 4n At/)., 2. Hence,
Eq. (9.66) becomes

l;rArPt
S, = -'A2R2 .

On the receiving-antenna side, the power intercepted by the
receiving antenna is equal to the product of the incident power
density Sf and the effective area Ar:

(9.67)

(9.68)

The power delivered to the receiver, Prec, is equal to the
intercepted power Pint multiplied by the radiation efficiency
of the receiving antenna. ~ r- Hence, Prec = ~r Pint. which leads
to the result

This relation is known as the Friis transmission formula,
and Pre,-/ PI is called the power transfer ratio.

If the two antennas are not oriented in the direction of
maximum power transfer, Eq. (9.69) assumes the general form

(9.70)
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where FI(el,1>tl is the normalized radiation intensity of the
transmitting antenna at angles WI, 1>1) corresponding to the
direction ofthe receiving antenna (as seen by the antenna pattern
of the transmitting antenna), and a similar definition applies to
FrWr, 1>1') for the receiving antenna.

Example 9·4: Satellite Communication System

A 6-GHz direct-broadcast TV satellite system transmits 100 W
through a 2-m-diameter parabolic dish antenna from a distance
of approximately 40,000 km above Earth's surface. Each
TV channel occupies a bandwidth of 5 MHz. Due to
electromagnetic noise picked up by the antenna as well as noise
generated by the receiver electronics, a home TV receiver has
a noise level given by

(W). (t). 71 )

where T,ys [measured in kelvins (K}] is a figure of merit
called the system noise temperature that characterizes the
noise performance of the receiver-antenna combination. K is
Boltzmann's constant [1.38 x IO-~~ (JIK)]. and B is the receiver
bandwidth in Hz.

The signal-to-noise ratio Sn (which should not be confused
with the power density S) is defined as the ratio of Pree to Pn:

(dimensionless) . (9.72)

For a receiver with T.,ys = 580 K, what minimum diameter of a
parabolic dish receiving antenna is required for high-quality TV
reception with S« = 40 dB? The satellite and ground receiving
antennas may be assumed lossless, and their effective areas may
be assumed equal to their physical apertures.

Solution: The following quantities are given:

PI = 100 W, f = 6 GHz = 6 x 109 Hz, Sn = 104,

Transmit antenna diameter dt = 2 m.

Tsys = 580 K, R = 40, 000 km = 4 x 107 m.

B = 5 MHz = 5 x 106 Hz.

The wavelength A = elf = 5 x 10-2 m, and the area of the
transmitting satellite antenna is At = (rrd? 14) = tt (m2). From
Eq. (9.71), the receiver noise power is

Pn = KT,ysB = 1.38 x 10-23 x 580 x 5 x 106

= 4 X 1O-14W.

Using Eq. (9.69) with ~t = ~r = I,

PtAtAr I OOrr Ar
Pree = --- = ---------;,,2R2 (5 x 10-2)2(4 x 107)2

=7.85 x 1O-IIAr.

The area of the receiving antenna. Ar• can now be determined
by equating the ratio Pred Pn to 5;n = 104:

4 7.85 X 10-1\ Ar
10 =---~-

4 X 10-14

which yields the value Ar = 5.1 rrr'. The required minimum
diameter is d; = J4Ar/rr = 2.55 m.

Exercise 9-8: If the operating frequency of the
communication system described in Example 9-4 is
doubled to 120Hz, what would then be the minimum
required diameter of a home receiving TV antenna?

Answer: d; = 1.27 m. (See 'S')

Exercise 9-9: A 3-0Hz microwave link consists of two
identical antennas each with a gain of 30 dB. Determine
the received power, given that the transmitter output power
is 1 kW and the two antennas are 10 km apart.

Answer: Pree = 6.33 X 10-4 W. (See ~)

Exercise 9-10: The effective area of a parabolic dish
antenna is approximately equal to its physical aperture.
If its directivity is 30 dB at 10 GHz, what is its effective
area? If the frequency is increased to 300Hz, what will
be its new directivity?

Answer: Ae = 0.07 m2, D = 39.44 dB. (See 0\\')

9-7 Radiation by Large-Aperture
Antennas

For wire antennas, the sources of radiation are the infinitesimal
current elements comprising the current distribution along the
wire, and the total radiated field at a given point in space is equal
to the sum, or integral, of the fields radiated by all the elements.
A parallel scenario applies to aperture antennas, except that now
the source of radiation is the electric-field distribution across the
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,,,,
sphere -,'

ya Observation

Figure 9-20: A horn antenna with aperture field distribution
Ea(xa. Ya)·

aperture. Consider the hom antenna shown in Fig. 9-20. It is
connected to a source through a coaxial transmission line. with
the outer conductor of the line connected to the metal body of
the hom and the inner conductor made to protrude, through
a small hole. partially into the throat end of the hom. The
protruding conductor acts as a monopole antenna, generating
waves that radiate outwardly toward the hom's aperture. The
electric field of the wave arriving at the aperture. which may
vary as a function of Xa and )'a over the horn's aperture, is
called the electric-field aperture distribution or illumination,
Ea(xa, Ya). Inside the horn, wave propagation is guided by the
horn's geometry; but as the wave transitions from a guided wave
into an unbounded wave, every point of its wavefront serves as
a source of spherical secondary wavelets. The aperture may
then be represented as a distribution of isotropic radiators. At a
distant point Q. the combination of all the waves arriving from
all of these radiators constitutes the total wave that would be
observed by a receiver placed at that point.

The radiation process described for the horn antenna
is equally applicable to any aperture upon which an
electromagnetic wave is incident. For example, if a light
source is used to illuminate an opening in an opaque screen
through a collimating lens, as shown in Fig. 9-21 (a), the opening
becomes a source of secondary spherical wavelets, much like
the aperture of the hom antenna. In the case of the parabolic
reflector shown in Fig. 9-21(b). it can be described in terms of an
imaginary aperture representing the electric-field distribution
across a plane in front of the reflector.

Two types of mathematical formulations are available for
computing the electromagnetic fields of waves radiated by
apertures. The first is a scalar formulation based on
Kirchhoff's work and the second is a vector formulation
based on Maxwell's equations. In this section, we limit our

Collimating
lens

(a) Opening in an opaque screen

1
1

1 - Imaginary aperture
1

(b) Parabolic reflector antenna

Figure 9-21: Radiation by apertures: (a) an opening in
an opaque screen illuminated by a light source through a
collimating lens and (b) a parabolic dish reflector illuminated
by a small hom antenna.

presentation to the scalar ditfraction technique, in part because
of its inherent simplicity and also because it is applicable to a
wide range of practical applications.

The key requirementfor the validity ofthe scalar formulation
is that the antenna aperture be at least several wavelengths
long along each of its principal dimensions.
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Aperture
illumination------------

Ya

Aperture plane A

Observation plane ()

I'igure 9-22: Radiation by an aperture in the Xa-Ya plane at z = o.

A distinctive feature of such an antenna is its high directivity
and correspondingly narrow beam, which makes it attractive
for radar and free-space microwave communication systems.
The frequency range commonly used for such applications is
the 1- to 30-GHz microwave band. Because the corresponding
wavelength range is 30 to I em, respectively, it is quite practical
to construct and use antennas (in this frequency range) with
aperture dimensions that are many wavelengths in size.

The Xa-Ya plane in Fig. 9-22, denoted plane A, contains
an aperture with an electric field distribution Ea(xa, Ya). For
the sake of convenience, the opening has been chosen to
be rectangular in shape, with dimensions l, along Xa and
Iy along Ya. even though the formulation we are about to
discuss is general enough to accommodate any two-dimensional
aperture distribution, including those associated with circular
and elliptical apertures. At a distance z from the aperture
plane A in Fig. 9-22, we have an observation plane 0 with axes
(r , v). The two planes have parallel axes and are separated by
a distance z, Moreover, z is sufficiently large that any point Q

in the observation plane is in the far-field region of the aperture.
To satisfy the far-field condition. it is necessary that

I R ::! uP Il, (9.73) I
where d is the longest linear dimension of the radiating aperture.

The position of observation point Q is specified by the
range R between the center of the aperture and point Q and
by elevation angle e and azimuth ¢ (Fig. 9-22). which jointly
define the direction of the observation point relative to the
coordinate system of the aperture. In our treatment of the
dipole antenna. we oriented the dipole along the z-axis and
we called e the zenith angle. In the present context, the
z-axis is orthogonal to the plane containing the antenna
aperture. Also. e usually is called the elevation angle. The
electric fi~ld phasor of the wave incident upon point Q is
denoted E(R, e, ¢). Kirchhoff's scalar diffraction theory
provides the following relationship between the radiated field
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E(R. e, ¢) and the aperture illumination Ea(xa, Ya):

_ j (e-ikR) _
E(R,e, ¢) =;: -R- u», ¢), (9.74 )

where

00

h(e, ¢) = II Ea(xa, Ya)
-0<>

. exp Uk sin e(xa cos ¢+ Ya sin ¢)] dXa dy«.

(9.75)

We shall refer to h(e. ¢) as theformfactor of E(R, e, ¢). Its
integral is written with infinite limits, with the understanding
that Ea(xa, Ya) is identically zero outside the aperture. The
spherical propagation factor (e - j k R/ R) accounts for wave
propagation between the center of the aperture and the
observation point, and h(e, ¢) represents an integration of the
exciting field Ea (xa, Ya) over the extent of the aperture, taking
into account [through the exponential function in Eq. (9.75)]
the approximate deviation in distance between Rand s, where
s is the distance to any point (xa, Ya) in the aperture plane (see
Fig. 9-22).

In Kirchhoff's scalar formulation, the polarization direction
of the radiatedfield E (R. (), ¢) is the same as that of the
aperture field Ea (xa, Ya)·

Also, the power density of the radiated wave is given by

IE(R e A..)12 Ih(e. A..)12
S(R,e,¢)= ' .'1' 'I'

2TJ() - 2TJ()A 2 R2 .
(9.76)

9-8 Rectangular Aperture with Uniform
Aperture Distribution

To illustrate the scalar diffraction technique, consider a
rectangular aperture of height Ix and width ly, both at least
a few wavelengths long. The aperture is excited by a uniform
field distribution (i.e., constant value) given by

for -lx/2 :::Xa ::: Ix/2
and -l\,/2 :::Ya ::: ly/2,
otherwise.

(9.77)

To keep the mathematics simple, let us confine our examination
to the radiation pattern at a fixed range R in thex-z plane, which
corresponds to ¢ = O. In this case, Eq. (9.75) simplifies to

1\./2

h(e)= I 1,/2I Eo exp[jkxa sin e] dx ; dYa. (9.78)

In preparation for performing the integration in Eq. (9.78), we
introduce the intermediate variable u defined as

21f sin ()
u = k sin e = --- (9.79)

Hence,

1,/2 Id2

heel = Eo I ejl/
x
, dxa· I dYa

-lxl2 -1,/2

[
e.i1lIxI2 _ e-jl/l.,/2]

= Eo . -L;JU .

= 2~~/y [ejUlxl2 ;je-.i1l1r/2]

2Eo/\
= --' sin(ulx/2).

u
(9.80)

Upon replacing u with its defining expression, we have

~ 2Eolv
h(e) = (21f .' ) sin(1flx sine/A)

-sme
A

sinor i, sin ()/ A)= Eo/t/" -----'--
'. 1flxsine/A

= EoAp sinc(1flx sine/A), (9.81)

where Ap = lxi, is the physical area of the aperture. Also, we
used the standard definition of the sine function, which, for any
argument i, is defined as

. sin t
smc r = - .

t

Using Eq. (9.76), we obtain the following expression for the
power density at the observation point:

(9.82)
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Figure 9·23: Normalized radiation pattern of a uniformly
illuminated rectangular aperture in the x-/' plane (¢ = 0).

The sine function is maximum when its argument is zero;
sine(O) = I.

This occurs when e = O. Hence, at a fixed range R,
Smax = see = 0) = So. The normalized radiation intensity is
then given by

F(fJ) = S(R. e)
Smax

= sinc2(rrlx sine/A)

(X-7 plane). (9.84)

Figure 9-23 shows F(e) plotted (on a decibel scale) as a
function of the intermediate variable y = (l x / A) sin e. The
pattern exhibits nulls at nonzero integer values of y.

The normalized radiation intensity F(e) is symmetrical in the
X-7 plane, and its maximum is along the boresight direction
({i = 0, in this case). Its half-power beamwidth f3X7 = e2 - el.
where AI and e2 are the values ofe at which F(e, 0) = 0.5 (or
-3 dB on a decibel scale), as shown in Fig. 9-23. Since the
pattern is symmetrical with respect to fi = 0, HI = -H1 and
f3u = 282. The angle fh can be obtained from a solution of

F«(h) = sinc2(rrlx sin e/A) = 0.5. (9.85)

From tabulated values of the sine function, it is found that
Eq. (9.85) yields the result

nl, .T SIn H2 = 1.39, (9.80)

or
. A

smfh = 0.44 - .
Ix

(9.87)

Because A/ Ix «I (a fundamental condition of scalar
diffraction theory is that the aperture dimensions be much larger
than the wavelength A). H2 is a small angle, in which case we
can use the approximation sin H2 ~ H2. Hence,

IPu = 2Ill " 2 sin0, = 0.88/: (cad). (9.880)I
A similar solution for the ),-7 plane (4) = rr/2) gives

(fad). (9.88b)
).

/3yz = 0.88-
ly

The uniform aperture distribution (Ea = Eo across the
aperture) gives a far-field pattern with the narrowest
possible beam width.

The first sidelobe level is 13.2 dB below the peak value (see
Fig. 9-23), which is equivalent to 4.8% of the peak value. If the
intended application calls for a pattern with a lower sidelobe
level (to avoid interference with signals from sources along
directions outside the main beam of the antenna pattern), this
can be accomplished by using a tapered aperture distribution.
one that is a maximum at the center of the aperture and decreases
toward the edges.

A tapered distribution provides a pattern with lower side
lobes. but the main lobe becomes wider.
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Sidelobes

(a) Pencil beam

txt

(b) Fan beam

Figure 9-24: Radiation patterns of (a) a circular reflector and
(b) a cylindrical reflector (side lobes not shown).

The steeper the taper, the lower are the side lobes and the wider
is the main lobe. In general, the beamwidth in a given plane,
say the x-z plane, is given by

where kx is a constant related to the steepness of the taper. For a
uniform distribution with no taper, k, = 0.88, and for a highly
tapered distribution, kx ~ 2. In the typical case, kx :-:: I.

To illustrate the relationship between the antenna dimensions
and the corresponding beam shape, we show in Fig. 9-24
the radiation patterns of a circular reflector and a cylindrical
reflector. The circular reflector has a circularly symmetric
pattern, whereas the pattern of the cylindrical reflector has
a narrow beam in the azimuth plane corresponding to its
long dimension and a wide beam in the elevation plane
corresponding to its narrow dimension. For a circularly
symmetric antenna pattern, the beam width f3 is related to the
diameter d by the approximate relation f3 :-:: A/d.

9-8.2 Directivity and Effective Area

In Section 9-2.3, we derived an approximate expression
[Eq. (9.26)] for the antenna directivity D in terms of the half-
power beamwidths f3xz and f3yz for antennas characterized by
a single major lobe whose boresight is along the z-direction:

4n
D:-::--.e:«, (9.90)

If we use the approximate relations f3xz:-:: A/ Ix and
f3yz :-:: A/ IY' we obtain

(9.91 )

For any antenna, its directivity is related to its effective area Ae
by Eq, (9.64):

4nAe
D=--A2 (9.92)

For aperture antennas, their effective apertures are
approximately equal to their physical apertures; that is,
Ae:-:: Ap.

Exercise 9-11: Verify that Eq. (9.86) is a solution of
Eq. (9.85) by calculating sinc2 t for t = 1.39.

Exercise 9-12: With its boresight direction along z,
a square aperture was observed to have half-power
beamwidths of 3° in both the x~z and y=z planes.
Determine its directivity in decibels.

Answer: D = 4,583.66 = 36.61 dB. (See ~)

Exercise 9-13: What condition must be satisfied in order
to use scalar diffraction to compute the field radiated
by an aperture antenna? Can we use it to compute the
directional pattern of the eye's pupil (d ;;;::0.2 em) in the
visible part of the spectrum (A = 0.35 to 0.7 /Lm)? What
woul d the beamwidth of the eye's directional pattern be at
A = 0.5 /Lm?

Answer: f3 ~ A/d = 2.5 x 10-4 rad = 0.86' (arc
minute, with 60' = 1°). (See .'&0)
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.tg< CD Module 9.4 Large Parabolic Reflector d ~ 2A
For any specified reflector diameter d (such that d ~ 2A)
and illumination taper factor a. this module displays the
pattern of the radiated field and computes the associated
beam width and directivity.

Set AIdBnna PanInIeIIen

Illumination fador a = 0.5

I- -!
Antenna 1o.perture d= 2.0 i.

Range II· -!
Frequency 1.0£9 IHzJ

Ranoe II. n
Update

EIe¥atloII AIIgIe 45.0 (deg)

:I
9-9 Antenna Arrays

AM broadcast services operate in the 535- to 1605-kHz band.
The antennas they use are vertical dipoles mounted along tall
towers. The antennas range in height from }../6 to 5A/8.
depending on the operating characteristics desired and other
considerations. Their physical heights vary from 46 m (150 ft)
to 274 m (900 ft); the wavelength at I MHz, approximately
in the middle of the AM band, is 300 m. Because the field
radiated by a single dipole is uniform in the horizontal plane (as
discussed in Sections 9-1 and 9-3), it is not possible to direct the
horizontal pattern along specific directions of interest. unless
two or more antenna towers are used simultaneously. Directions
of interest may include cities serviced by the AM station, and
directions to avoid may include areas serviced by another station

r. 1E(8)111E(O)f r F(e) PIS InStrudions

Wavelengtn Data
1= 0.3 [m I
Antenna Aperture
d = 2.0 A = 0.6 [m I

8 = 45.0°
IE (8)1 lIE (0)1
= 0.03374263 = -29.4364 dB
F(8) = IE (8)1"/lE (0)1'
= 0.00113857 = -29.4364 dB

Directivity = 37.26076
Beam width = 31.51'

1.0 [OHz]

operating at the same frequency (thereby avoiding interference
effects). When two or more antennas are used together, the
combination is called an antenna array.

The AM broadcast antenna array is only one example of the
many antenna arrays used in communication systems and radar
applications. Antenna arrays provide the antenna designer the
flexibility to obtain high directivity, narrow beams. low side
lobes, steerable beams. and shaped antenna patterns starting
from very simple antenna elements. Figure 9-25 shows a very
large radar system consisting of a transmitter array composed of
5,184 individual dipole antenna elements and a receiver array
composed of 4,660 elements. The radar system. part of the
Space Surveillance Network operated by the U.S. Air Force.
operates at 442 MHz and transmits a combined peak power of
30MW!
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Figure 9-25: The ANIFPS-85 Phased Array Radar Facility in the f-lorida panhandle. near the city of Freeport. A several-mile no-fly zone
surrounds the radar installation as a safety concern for electroexplosivc devices, such as ejection seats and munitions. carried on military
aircraft.

Although an array need not consist of similar radiating
elements, most arrays actually use identical elements. such
as dipoles, slots, horn antennas, or parabolic dishes. The
antenna clements comprising an array may he arranged in
various configurations, but the most common are the linear
one-dimensional configuration-wherein the elements are
arranged along a straight line-and the two-dimensional lattice
configuration in which the elements sit on a planar grid. The
desired shape of the far-field radiation pattern of the array can be
synthesized by controlling the relative amplitudes of the array
elements' excitations.

Also, through the use of electronically controlled solid-state
phase shifters. the beam direction ()f the antenna army can
he steered electronically by controlling the relative phases
oj the array elements.

This flexibility of the array antenna has led to numerous
applications, including electronic steering and multiple-beam
generation .

The purpose of this and the next two sections is to introduce
the reader to the basic principles of array theory and design
techniques used in shaping the antenna pattern and steering
the main lobe. The presentation will be confined to the one-

dimensional linear array with equal spacing between adjacent
clements.

A linear array of N identical radiators is arranged along the
z-axis as shown in Fig. 9-26. The radiators are fed by a common
oscillator through a branching network. In each branch. an
auenuator (or amplifier) and phase shifter are inserted in series
to control the amplitude and phase of the signal feeding the
antenna element in that branch.

In the far-field region of any radiating element. the element
electric-field intensity it:: (R. i}, ¢) may be expressed as a
product of two functions, the spherical propagation factor
e" jk RI R, which accounts for the dependence on the range R,
and .feW, ¢). which accounts for the directional dependence of
the element's electric field. Thus. for an isolated element. the
radiated field is

~ e-jkR _
Ec(R.8. ¢) = -R- f~(e. ¢), (9.93)

and the corresponding power density Se is

l~. 1 I ~ 1

Se(R, 0, ¢) = -IEe(H. e, ¢lI" = --21.t~((1.¢)I".
2r}o 2rJoR

(9.94)
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Phase Amplifiers
shifters (or attcnuators) Antenna

elements

(a) Array elements with individual
amplitude and phase control

z Q = (Ro, 0, 9)

d-1 Element ,'\' - I

Element N - 2

(N - l)d Element j I
I

Element I

Element O •.• -----y

(b) Array geometry relative to
observation point

Figure 9-26: Linear-array configuration and geometry.

Hence, for the array shown in Fig. 9-26(b), the far-zone field
due to element i at range R, from observation point Q is

_ e-jkR; _

Ej(Rj, e, cp) = Aj -- Ie(e, cp).
Rj

(9.95)

where Ai = a, eNi is a complex feeding coefficient represent-
ing the amplitude a, and phase O/jof the excitation giving rise to
Ej, relative to a reference excitation. In practice, the excitation
of one of the elements is used as reference. Note that R, and Ai
may be different for different elements in the array, but !c(e, cp)

is the same for all of them because they are all identical, and
hence exhibit identical directional patterns.

The total field atthe observation point Q( Ro, e, cp) is the sum
of the fields due to the N elements:

N-l

E(Ro. e, cp) = L Ej(Ri, e, cp)
;=0

[

N-l -jkR ]
= L Ai T !cW, cp),

i=O r

(9.96)

where Ro denotes the range of Q from the center of the
coordinate system, chosen to be at the location of the zeroth
element. To satisfy the far-field condition given by Eq. (9.73)
for an array of length I = (N -l)d, where d is the interelement
spacing, the range Ro should be sufficiently large to satisfy

(9.97)

This condition allows us to ignore differences in the distances
from Q to the individual elements as far as the magnitudes of
the radiated fields are concerned. Thus, we can set R, = Ro
in the denominator in Eq. (9.96) for all i. With regard to the
phase part of the propagation factor, we can use the parallel-ray
approximation given by

R; :::::Ro - z; cos e = Ro - id cos e, (9.98)

where Zi = i d is the distance between the i th element
and the zeroth element (Fig. 9-27). Employing these two
approximations in Eq. (9.96) leads to

E(Ro, e. cp) = j~((}, cp) (e-~:RO) [~ AjejikdCOSB] ,

(9.99)
and the corresponding array-antenna power density is given by

1-2S(Ro. e. ¢) = -IE(Ro. e, cp)1
2170

I
N-I 12

= Se(Ro, e, cp) L AiejikdcosfJ
i=()

(9.100)
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dt Element N- I

- Element N - 2

Element i
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Element I

Figure 9-27: The rays between the elements and a faraway
observation point are approximately parallel lines. Hence. the
distance R; := Ro - id cos e.

where use was made of Eq. (9.94). This expression is a product
of two factors. The first factor, Sc(Ro, e, ¢), is the power
density of the energy radiated by an individual element, and the
second, called the array factor, is a function of the positions of
the individual elements and their feeding coefficients, but not a
function of the specific type of radiators used.

The array factor represents the far-field radiation intensity
of the N elements, had the elements been isotropic radiators.

Denoting the array factor by

(9.101)

the power density of the antenna array is then written as

This equation demonstrates the pattern multiplication prin-
ciple. It allows us to find the far-field power density of the
antenna array by first computing the far-field power pattern
with the array elements replaced with isotropic radiators, which
yields the array factor Fa (e), and then multiplying the result by

5e(Ro, e. ¢), the power density for a single element (which is
the same for all elements) .

The feeding coefficient Ai is, in general, a complex amplitude
consisting of an amplitude factor Ui and a phase factor Vr;:

(9.103)

Insertion ofEq. (9.103) into Eq. (9.101) leads to

The array factor is governed by two input functions: the array
amplitude distribution given by the Ui'S and the array phase
distribution given by the Vti'S. The amplitude distribution
serves to control the shape of the array radiation pattern, while
the phase distribution can be used to steer its direction.

Example 9-5: Array of Two Vertical Dipoles

An AM radio station uses two vertically oriented half-wave
dipoles separated by adistance of )"/2, as shown in Fig. 9-28(a).
The vector from the location of the first dipole to the location
of the second dipole points toward the east. The two dipoles
are fed with equal-amplitude excitations, and the dipole farther
east is excited with a phase shift of -rr /2 relative to the other
one. Find and plot the antenna pattern of the antenna array in
the horizontal plane.

Solution: The array factor given by Eq. (9.104) was derived
for radiators arranged along the z-axis. To keep the coordinate
system the same, we choose the easterly direction to be the
z-axis as shown in Fig. 9-28(b), and we place the first dipole
at z = -).,/4 and the second at z = ),,/4. A dipole radiates
uniformly in the plane perpendicular to its axis, which in this
case is the horizontal plane. Hence, Se = So for all angles 8
in Fig. 9-28(b), where So is the maximum value of the power
density radiated by each dipole individually. Consequently, the
power density radiated by the two-dipole array is

S(R, 8) = So Fa(e).

For two elements separated by d = ).,/2 and excited with equal
amplitudes (ao = a1 = I) and with phase angles Vro = 0 and
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ao= I
If!o = 0

OJ = 1
If!J = -7(/2

(East)

x

f
))2

1

(North)
Jf

~--)j2--~

phase
shifter

Y (South)

Figure 9-28: Two half-wave dipole array of Example 9-5.

0/1 = -T( /2, Eq. (9.104) becomes The power density radiated by the array is then

FaUn = ItGiej1/liejikdcos(! 12
1=0

2(T( T()
S(R,e)=SOFa(e)=4S0COS "2cose-4" .

~
= \1 + e- j1f/2ej(2rr/A)(A/2)COse\-

= \1 + e.i(rr co,(J-rr/2) \2. This function has a maximum value Smax= 4So. and it occurs
when the argument of the cosine function is equal to zero. Thus,

A function of the form II + ejx 12 can be evaluated by factoring
out ejx/2 from both terms:

II + ejxl2 = lejx/2(e-jx/2 + ejx/2)12

= Iejx/212Ie-jx/2 +ejx/212

'. 71 [e-jx/2 + ejx/2112= leJ~/21- 2 ---:----
2

T( T(
= cos e' - - = 0
2 4'

which leads to the solution: e = 60°. Upon normalizing
S(R, e) by its maximum value, we obtain the normalized
radiation intensity given by

The absolute value of ejx/2 is 1, and we recognize the function
inside the square bracket as cos (x /2). Hence,

S(R,e) ?(n n)F(e) = = cos- - cos e - - .
Smax 2 4

Applying this result to the expression for Fa(8), we have
The pattern of F(e) is shown in Fig. 9-28(c).
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• CD Modules 9.5 and 9.6 Two-dipole Array Given
two vertical dipoles, the user can specify their individual
lengths and current maxima, as well as the distance
between them and the phase difference between their
current excitations. These two modules generate plots of
the field and power patterns in the far-zone and calculate
the maximum directivity and total radiated power.

D
CurrentA Current 8

J
l

Plot r. E..•.•Fietds

Max Dlpote Current (Amps)

--~~~
0.5 ).

0.5 :t

45.0

----
0.5 A

UpdateA 1.0 B 1.0
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Example 9-6: Pattern Synthesis

In Example 9-5, we were given the array parameters ao, aI, 1/10,

1/11, and d, and we were then asked to determine the pattern of
the two-element dipole array. We will now consider the reverse
process; given specifications on the desired pattern, we specify
the array parameters to meet those specifications.

Given two vertical dipoles, as depicted in Fig. 9-28(b),
specify the array parameters such that the array exhibits
maximum radiation toward the east and no radiation toward
the north or south.

Solution: From Example 9-5, we established that because
each dipole radiates equally along all directions in the y-z
plane, the radiation pattern of the two-dipole array in that plane
is governed solely by the array factor Fa «(). The shape of the
pattern of the array factor depends on three parameters: the
amplitude ratio a1/ao, the phase difference 1/1 [ - 1/10, and the
spacing d [Fig. 9-29(a)]. For convenience, we choose ao = I
and 1/10 = O. Accordingly, Eq. (9.101) becomes

Fa(e) = l"t aiejl/t;ejikdcosO 12
;=0

= II + al ejl/tl ej(2;rd/J.) coso 12.

Next, we consider the specification that Fa be equal to zero when
()= 90° [north and south directions in Fig. 9-29(a)]. For any
observation point on the y-axis, the ranges Ro and R] shown
in Fig. 9-29(a) are equal, which means that the propagation
phases associated with the time travel of the waves radiated by
the two dipoles to that point are identical. Hence, to satisfy
the stated condition, we need to choose a] = aD and 1/1] = ±rr.
With these choices, the signals radiated by the two dipoles will
have equal amplitudes and opposite phases, thereby interfering
destructively. This conclusion can be ascertained by evaluating
the array factor at () = 90°, with ao = a] = I and 1/1] = ±rr:

-y (North)

-----<__.-+-- ...•..-_ z (East)
ao= I al
!Po= 0 !p]

~I
d

(a) Array arrangement

~--------~~---------'~z
e

y

(b) Array pattern

Figure 9·29: (a) Two vertical dipoles separated by a distance d
along the z-axis; (b) normalized array pattern in the y-z plane
for ao = a[ = 1, V!] = Vro = -71:, and d = A/2.

The two values of 1/11, namely tt and -rr, lead to the same
solution for the value of the spacing d to meet the specification
that the array radiation pattern is maximum toward the east,
corresponding to e = 0°. Let us choose 1/1[ = -rr and examine
the array factor at () = 0°:

Fa(e = 0) = II + e-j;rej2;rd/AI2

= 11 + ej(-;r+2;rd/J.) 12.

For Fa «() = 0) to be a maximum, we require the phase angle of
the second term to be zero or a multiple of 2rr. That is,

2rrd
-rr + -- = Znit ,

A
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or

)..

d = (2n + 1)2." ' n=0,1,2, ...

In summary, the two-dipole array will meet the given specifi-
cations if ao = ai, 1/11 - 1fto = +tt , and d = (2n + 1»),,/2.

For d = ),,/2. the array factor is

. 2 (n )=4sm lcose .

The array factor has a maximum value of 4, which is the
maximum level attainable from a two-element array with unit
amplitudes. The directions along which Fa(e) is a maximum
are those corresponding to e = 0 (east) and () = 1800 (west).
as shown in Fig. 9-29(b).

Exercise 9-14: Derive an expression for the array factor
of a two-element array excited in phase with ao = 1 and
a1 = 3. The elements are positioned along the z-axis and
are separated by A/2.

Answer: Fa(e) = [10 + 6cos(ncosO)]. (Seee.)

Exercise 9-15: An equally spaced N-element array
arranged along the z-axis is fed with equal amplitudes
and phases; that is, A; = I for i = 0,1, ... , (N - 1).
What is the magnitude of the array factor in the broadside
direction?

9-10 N-ElementArray with Uniform
Phase Distribution

We now consider an array of N elements with equal
spacing d and equal-phase excitations; that is. 1ft; = 1/10 for
i = 1,2, ... , (N - l ). Such an array of in-phase elements is
sometimes referred to as a broadside array because the main
beam of the radiation pattern of its array factor is always in the
direction broadside to the array axis. From Eq. (9.104), the
array factor is given by

I
N-

1 12= lehl/ol2 L aiejikdcos(}

r=O

I
N-I 12

= L. (/jejikdcosU

r=O

(9.l05)

The phase difference between the fields radiated by adjacent
elements is

'lst dy = kd cos e = -- cos ().).. (9.106)

In terms of y, Eq. (9.105) takes the compact form

For a uniform amplitude distribution with ai = 1 for
i = O. I, .... (N - I). Eq. (9.107) becomes

(9.108)



454 CHAPTER 9 RADIATION AND ANTENNAS

This geometric series can be rewritten in a more compact form
by applying the following recipe. First, we define

(9.109)

with

(9.110)

Next, we multiply fa (y) by ejy to obtain

(9.111)

Subtracting Eq. (9.111) from Eq. (9.110) gives

fa(Y) (1 - elY) = I - e;Ny, (9.112)

which, in tum, gives

1- elNy

fa(Y) = 1- ejy

ejNy/2 (e-jNy/2 _ ejNy/2)

ejy/2 (e-ly/2-e}y/2)

_ j(N-l)y/2 sin(Ny/2)
-e .

sin(y /2)
(9.113)

After multiplying faCY) by its complex conjugate, we obtain
the result:

From Eq. (9.108), Fa(Y) is maximum when all terms
are 1, which occurs when Y = 0 (or equivalently, e = rr/2).

Moreover, Fa (0) = N2. Hence, the normalized array factor is
given by

F ( )
_ Fa(y)

an y -
Fa. max

_ sin2(Ny /2)
- N2sin2(y/2)

sin2 (_N_~_dcose)

=
N2 sin2 (rr: cos e) (9.115)

A polar plot of Fan(8) is shown in Fig. 9-30 for N = 6 and
d = A/2. The reader is reminded that this is a plot of the
radiation pattern of the array factor alone; the pattern for the
antenna array is equal to the product of this pattern and that
of a single element, as discussed earlier in connection with the
pattern multiplication principle.

Example 9·7: Multiple-Seam Array

Obtain an expression for the array factor of a two-element array
with equal excitation and a separation d = ?A/2, and then plot
the array pattern.

Solution: The array factor of a two-element array (N = 2)
with equal excitation (ao = al = 1) is given by

Fa(Y) = Itaiejiyl2

1=0

= 11 + ejY
l
2

,

= lejy/2(e-ly/2 + ejy/2)12

= lely/212Ie-jy/2 + ely/212

= 4cos2(y /2),

where y = (2rrd / A)cos e. The normalized array pattern,
shown in Fig. 9-31, consists of seven beams, all with the same
peak value, but not the same angular width. The number of
beams in the angular range between 8 = 0 and e = it is equal
to the separation between the array elements, d, measured in
units of A/2.
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z

Broadside (8 = 900
)

Figure 9-30: Normalized array pattern of a uniformly excited six-element array with interelement spacing d = 'A/2.

z

Figure 9-31: Normalized array pattern of a two-element array with spacing d = TA/2.
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• CD Module 9.7 N -Element Array This module displays
the far-field patterns of an array of N identical, equally
spaced antennas, with N being a selectable integer
between I and 6. Two types of antennas can be simulated:
A/2-dipoles and parabolic reflectors. The module provides
visual examples of the pattern multiplication principle.

Module 9.7

d

l

5etAn8y

Elements $IIadng d = 1.0
d

d

Number of Elements
('1 ('2 ('3 ('4 (0'5 ('6

Element Type I
r ).12 IIpoIe IRsIrudions I
(0' Parabolic RI!IIedOr

d

9-11 Electronic Scanning of Arrays

The discussion in the preceding section was concerned with
uniform-phase arrays, in which the phases of the feeding
coefficients, 1/10 to 0/N -1, are all equal. In this section, we
examine the use of phase delay between adjacent elements as a
tool to electronically steer the direction of the array-antenna
beam from broadside at (J = 90° to any desired angle (Jo.
In addition to eliminating the need to mechanicaI1y steer an
antenna to change its beam's direction, electronic steering
allows beam scanning at very fast rates.

Electronic steering is achieved by applying a linear
phase distribution across the array: 1{to = D, 1{t1 = -8,
1/12 = -28, etc.

As shown in Fig. 9-32, the phase of the ith element. relative to
that of the zeroth element, is

0/;= -i8, (9.116)
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z

Figure 9-32: The application of linear phase.

where 8 is the incremental phase delay between adjacent
elements. Use of Eq. (9.116) in Eq. (9.104) leads to

I
N-

1 12= L a.e!' r' = Fa(Y I),
1=0

(9.117)

where we introduced a new variable given by

Y , = kd cos 8 - 8. (9.118)

For reasons that will become clear later, we will define the
phase shift 8 in terms of an angle 80, which we shall call the
scan angle, as follows:

8 = kd cos 80. (9.119)

Hence, Y , becomes

The array factor given by Eq. (9.117) has the same functional
form as the array factor developed earlier for the uniform-phase
array [see Eq. (9.107)1, except that Y is replaced with y'.
Hence:

Regardless of the amplitude distribution across an array,
its array factor Fa (y ') when excited by a linear-
phase distribution can be obtained from Fa (y), the
expression developed for the array assuming a uniform-
phase distribution, by replacing y with y ',

If the amplitude distribution is symmetrical with respect to
the array center, the array factor Fa (y ') is maximum when
its argument y' = O. When the phase is uniform (8 = 0),
this condition corresponds to the direction 8 = 90°, which is
why the uniform-phase arrangement is called a broadside array.
According to Eq. (9.120), in a linearly phased array, y' = 0
when e = 80. Thus, by applying linear phase across the array,
the array pattern is shifted along the cos 8-axis by an amount
cos 80, and the direction of maximum radiation is steered from
the broadside direction (8 = 90°) to the direction 8 = eo. To
steer the beam all the way to the end-fire direction (8 = 0), the
incremental phase shift 8 should be equal to kd radians.

9-11.1 Uniform-Amplitude Excitation

To illustrate the process with an example, consider the
case of the N -elernent array excited by a uniform-amplitude
distribution. Its normalized array factor is given by Eq. (9.115).
Upon replacing y with y " we have

(9.121)

with y' as defined by Eq. (9.120). For an array with N = 10
and d = 'A/2, plots of the main lobe of Fan(e) are shown in
Fig. 9-33 for eo = 0°, 45°, and 900

• We note that the half-
power beamwidth increases as the array beam is steered from
broadside to end fire.
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End-fire 00 = 0°

Broadside (00 = 90°)

Figure 9-33: Normalized array pattern of a lO-elementarray with 1./2 spacing between adjacent elements. All elements are excited with
equal amplitude. Through the application of linear phase across the array, the main beam can be steered from the broadside direction
((;10 = 90°) to any scan angle flo. Equiphase excitation corresponds to flo = 90°.

Figure 9-34: An example of a feeding arrangement for
frequency-scannedarrays.

9-1 1.2 Array Feeding

According to the foregoing discussion, to steer the antenna
beam to an angle 80, two conditions must be met: (I) the
phase distribution must be linear across the array, and (2) the
magnitude of the incremental phase delay /) must satisfy
Eq. (9.119). The combination of these two conditions provides
the necessary tilting of the beam from 8 = 90° (broadside)
to 8 = 80. This can be accomplished by controlling the
excitation of each radiating element individually through the
use of electronically controlled phase shifters. Alternatively,
a technique known as frequency scanning can be used to
provide control ofthe phases of all the elements simultaneously.
Figure 9-34 shows an example of a simple feeding arrangement
employed in frequency scanning arrays. A common feed point
is connected to the radiating elements through transmission
lines of varying lengths. Relative to the zeroth element, the
path between the common feed point and a radiating element
is longer by I for the first element, by 21 for the second, and by

10

31 for the third. Thus, the path length for the ith element is

Ii = if + 10, (9.122)
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where 10 is the path length of the zeroth element. Waves of
frequency f propagating through a transmission line of length
Ii are characterized by a phase factor e - j{3/, , where f3 = Ln flu p

is the phase constant of the line and up is its phase velocity.
Hence, the incremental phase delay of the ith element, relative
to the phase of the zeroth element, is

2;rr 2;rr;
o/i(f) = -f3(li -/0) = -- fUi -/0) = -- fl.

Up Up
(9.123)

Suppose that at a given reference frequency fo we choose the
incremental length I such that

noup
1=-- ,

fa
(9.124)

where no is a specific positive integer. In this case, the phase
delay 0/1(1"0) becomes

(
fO/)0/1(fo) = -2;rr ~ = -2no;rr, (9.125)

and, similarly, 0/2(fO) = -4no;rr and 0/3(fO) = -6nOJT. That
is, at fo all the elements will have equal phase (within multiples
of 2JT) and the array radiates in the broadside direction. If f
is changed to fo + I::!.f, the new phase shift of the first element
relative to the zeroth element is

2JT
0/1(fo+ I::!..f) = --(fo + 1::!..f)1

up

= _ 2;rrfol _ (hi) I::!.f
up up

= - 2no;rr - 2nOJT (I::!.f)
fo

= -2nOJT - 8, (9.126)

where use was made ofEq. (9.124) and 8 is defined as

8 = 2non' (-]f) . (9.127)

Similarly, 0/2(fO + I::!..f) = 20/1 and 0/3(fO + I::!..f) = 30/1.
Ignoring the factor of Zn and its multiples (since they exercise
no influence on the relative phases of the radiated fields), we
see that the incremental phase shifts are directly proportional to
the fractional frequency deviation (l::!.fI fo). Thus, in an array
with N elements, controlling I::!.fprovides a direct control of 8,
which in turn controls the scan angle 110 according to Eq. (9.119).
Equating Eq. (9.119) to Eq. (9.127) and then solving for cos 110
leads to

cos90 = ~ (-]f). (9.128)

As f is changed from fa to fo + I::!.f, k = 2JT/A = 2JTfic
also changes with frequency. However, if I::!.fI.fo is small, we
may treat k as a constant equal to Ln fol c; the error in cos flo
resulting from the use of this approximation in Eq. (9.128) is
on the order of I::!.f!.fa.

Example 9-8: Electronic Steering

Design a steerable six-element array with the following
specifications:

(a) All elements are excited with equal amplitudes.

(b) At .fo = 10 GHz, the array radiates in the broadside
direction, and the interelement spacing d = Ao/2, where
Ao = clfo = 3 cm.

(c) The array pattern is to be electronically steerable in the
elevation plane over the angular range extending between
110 = 30° and 110 = 150°.

(d) The antenna array is fed by a voltage-controlled oscillator
whose frequency can be varied over the range from 9.5 to
10.5 GHz.
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z

Figure 9-35: Steerable six-element array (Example 9-8).

(e) The array uses a feeding arrangement of the type shown in
Fig. 9-34, and the transmission lines have a phase velocity
up = O.Sc.

Solution: The array is to be steerable from 80 = 300 to
80 = 1500 (Fig. 9-35). For 80 = 30° and
kd = (2Jr/AO)(AO/2) = n , Eq. (9.128) gives

0.87 = 2no ( 10). (9.129)

We are given that fo = 10GHz and the oscillator frequency can
be varied between (fo - 0.5 GHz) and (fo + 0.5 GHz). Thus,
6.fmax = 0.5 GHz. To satisfy Eq. (9.129), we need to choose
no such that 6.f is as close as possible to, but not larger than,
6.fmax. Solving Eq. (9.129) for no with 6.f = 6.fmax gives

0.87 10no = -----
2 /).fmax

= 8.7.

Since no is not an integer, we need to modify its value by
rounding it upward to the next whole-integer value. Hence,
we set flO = 9.

Application of Eq. (9.124) specifies the magnitude of the
incremental length I:

I = flOUp

fo

9 x 0.8 x 3 x 108

1010

= 21.6cm.

In summary, with N = 6 and kd = tt , Eq. (9.121) becomes:

, sin2(3y')
Fan (y ) = ---=--,--

36 sin2(y' /2)

with

y' = kd(cos8 - cos (0)

= IT(cos 8 - cos (0),

and

o 2noJr (/).f. ) (f - 10 GHZ)cos 0 = -- -- = 18
kd fo 10 GHz .

(9.130)

The shape of the array pattern is similar to that shown
in Fig. 9-30. and its main-beam direction is along 8 = 80.
For f = fo = 10 GHz, fio = 90° (broadside direction); for
f = 10.48 GHz. 80 = 30°; and for f = 9.52 GHz, eo = 1500

•

For any other value of fio between 300 and 1500
, Eq. (9.130)

provides the means for calculating the required value of the
oscillator frequency f.

Review Question 9-11: Why are antenna arrays useful?
Give examples of typical applications.

Review Question 9-12: Explain how the pattern
multiplication principle is used to compute the radiation
pattern of an antenna array.

Review Question 9-13: For a linear array, what roles do
the array amplitudes and phases play?

Review Question 9-14: Explain how electronic beam
steering is accomplished.

Review Question 9-15: Why is frequency scanning an
attractive technique for steering the beam of an antenna
array?
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•• CD Module 9.8 Uniform Dipole Array For an array of up
to 50 identical vertical dipoles of selectable length and
current maximum, excited with incremental phase delay (,
between adjacent elements, the module displays the
elevation and azimuthal patterns of the array. By varying ("
the array pattern can be steered in the horizontal plane.

z

Ii = 10 exp[ - j( i6 ) ]

Directivity 9.6158
Radiat.d Po•• 1'155.9763 [ W]

Plot: <i E-H Fields ..JPower Instructions I

Qipole Length

/O.s

15
.,Jrad

1-62.

I(is
Maximum Dipole Current

11.0 {A 1 Update
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Chapter 9 Relationships

Pattern solid angle

Antenna Properties

Qp = ff F(e, ¢) dQ Effective area
4n

).3D
Ae = -.-

471'

2d2
R>-).

471'
Directivity D = -Qp

Prad
Gain G=~D, ~=---

Prad + Ploss

Far-field distance

Short Dipole (l «).)
N j 10lkIJo (e- jkR) .
E8 = -- sin e'

471' . R
~ Eo
H¢=-

IJO

(
TJOk2/2/2)

S(R, e) = 20 2 sin2 e
3271' R

D = 1.5

f3 = 90°

Rrad = 8071'2(//).)2

)./2 Dipole

_ . {cOS[(n/2)COSe]} (e-JkR)Eo = ] 60/0 . --
sin f R

- EoH¢=-
IJO

1516 {coS2[(n/2)COSe]}
S(R, e) = 71' R2 sin2 e
D=I.64

f3 = 78°

Rrad ~ 73 Q

Friis Transmission Formula Rectangular Aperture (Uniform)

S(R, e) = So sinc2(nlx sin e /).),

S(R,e) = So sinc2(nlysine/).),
x ).e.. = 0.88 -, f3yz = 0.88 -[
i. y

Antenna Arrays

Multiplication Principle

Uniform Phase

4nAe 4nAp
D---"'--- ).) - ))

I
N-

1
12.. 2nd

Fa(Y) = L ajeJ1Y ,with Y = kd cos e = -).- cose
1=0

Linear Phase I
N-l 12

Fa(e) = ~ ajejj y' , with y 1= kd cos e - 8
1=0

x-z plane

y-z plane
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CHAPTER HIGHLIGHTS

• An antenna is a transducer between a guided wave
propagating on a transmission line and an EM wave
propagating in an unbounded medium, or vice versa.

• The Friis transmission formula relates the power
received by an antenna to that transmitted by another
antenna at a specified distance away.

• Except for some solid-state antennas composed of non-
linear semiconductors or ferrite materials, antennas
are reciprocal devices; they exhibit the same radiation
patterns for transmission as for reception.

• In the far-field region of an antenna, the radiated energy
is approximately a plane wave.

• The electric field radiated by current antennas, such as
wires, is equal to the sum of the electric fields radiated
by all the Hertzian dipoles making up the antenna.

• The radiation resistance Rrad of a half-wave dipole is
73 Q, which can be easily matched to a transmission
line.

• The far-zone electric field radiated by a large aperture
(measured in wavelengths) is related to the field
distribution across the aperture by Kirchhoff's scalar
diffraction theory. A uniform aperture distribution
produces a far-field pattern with the narrowest-possible
beamwidth.

• By controlling the amplitudes and phases of the
individual elements of an antenna array, it is possible
to shape the antenna pattern and to steer the direction
of the beam electronically.

• The directional properties of an antenna are described
by its radiation pattern, directivity, pattern solid angle,
and half-power beam width.

• The pattern of an array of identical elements is equal to
the product of the array factor and the antenna pattern
of an individual antenna element.

elevation angle
end-fire direction
far-field (or far-zone) region
feeding coefficient
frequency scanning
Friis transmission formula
half-power beamwidth
isotropic antenna
linear phase distribution
loss resistance Rlos>

null beam width
pattern multiplication principle
pattern solid angle Qp
power density S(R, (j, ¢)
Poynting vector
principal planes
radiation efficiency t;

radiation intensity
(normalized) F(e, ¢)

radiation lobes
radiation pattern
radiation resistance Rrad

reciprocal
scan angle
short dipole (Hertzian dipole)
signal-to-noise ratio Sn
solid angle
spherical propagation factor
steradian
system noise temperature T.,ys
tapered aperture distribution
zenith angle

GLOSSARY OF IMPORTANT TERMS

Provide definitions or explain the meaning of the following terms:

3-dB beam width
antenna
antenna array
antenna directivity D
antenna gain G
antenna input impedance
antenna pattern
antenna polarization
aperture distribution
array distribution
array factor Fa(e, ¢)
azimuth angle
beamwidth f3
broadside direction
effective area (effective aperture) Ae
electronic steering
elevation and azimuth planes
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PROBLEMS

Sections 9-1 and 9-2: Short Dipole and Antenna Radiation
Characteristics

*9.1 A center-fed Hertzian dipole is excited by a current
10 = 20 A. If the dipole is )..150 in length, determine the
maximum radiated power density at a distance of I km.

9.2 A I-m-Iong dipole is excited by a I-MHz current with an
amplitude of 12 A. What is the average power density radiated
by the dipole at a distance of 5 km in a direction that is 45°
from the dipole axis?

*9.3 Determine the following:

(a) The direction of maximum radiation.

(b) Directivity.

(e) Beam solid angle.

(d) Half-power beamwidth in the x-z plane.
for an antenna whose normalized radiation intensity is given by

rt«. ¢) = { ~:
for 0 S e S 60° and 0 S ¢ s 2n,
elsewhere.

Suggestion: Sketch the pattern prior to calculating the desired
quantities.

9.4 Repeat Problem 9.3 for an antenna with

rte, ¢) = I
0,

for o s e s tt

and -n12 s ¢ s n12.
elsewhere.

*9.5 A 2-m-long center-fed dipole antenna operates in the AM
broadcast band at I MHz. The dipole is made of copper wire
with a radius of I mm.

(a) Determine the radiation efficiency of the antenna.

(b) What is the antenna gain in decibels?

*Answer(s) available in Appendix D.
• ' Solution available on CD.

(e) What antenna current is required so that the antenna will
radiate 80 W, and how much power will the generator have
to supply to the antenna?

9.6 Repeat Problem 9.5 for a 20-cm-Iong antenna operating
at 5 MHz.

*9.7 An antenna with a pattern solid angle of 1.5 (sr) radiates
60 W of power. At a range of I km, what is the maximum power
density radiated by the antenna?

9.8 An antenna with a radiation efficiency of 90% has a
directivity of 7.0 dB. What is its gain in decibels?

*9.9 The radiation pattern of a circular parabolic-reflector
antenna consists of a circular major lobe with a half-power
beam width of 3° and a few minor lobes. Ignoring the minor
lobes, obtain an estimate for the antenna directivity in dB.

9.10 The normalized radiation intensity of a certain antenna
is given by

F(e) = exp(-20e2) for 0 s o s it,

where e is in radians. Determine:

(a) The half-power beamwidth.

(b) The pattern solid angle.

(e) The antenna directivity.

Sections 9-3 and 9-4: Dipole Antennas

*9.11 Repeat Problem 9.5 for a I-m-Iong half-wave dipole that
operates in the FMffV broadcast band at 150 MHz.

9.12 Assuming the loss resistance of a half-wave dipole
antenna to be negligibly small and ignoring the reactance
component of its antenna impedance, calculate the standing-
wave ratio on a 50-Q transmission line connected to the dipole
antenna.

9.13 A 50-cm long dipole is excited by a sinusoidally varying
current with an amplitude 10 = 5 A. Determine the time average
power radiated by the dipole if the oscillating frequency is:

(a) I MHz,

(b) 300 MHz .
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*9.14 For a short dipole with length I such that I «A, instead
of treating the current fez) as constant along the dipole, as was
done in Section 9-1, a more realistic approximation that ensures
the current goes to zero at the dipole ends is to describe fez)
by the triangular function

fez) = { 100 - Zz] I),
/0(1 + 2z/ I),

for 0 < z :::1/2,
for - 1/2 ::: z :::o.

as shown in Fig. P9.14. Use this current distribution to
determine the following:

(a) The far-field E(R, e, ¢).

(b) The power density S(R, e, ¢).

(e) The directivity D.

(d) The radiation resistance Rrad.

Figure P9.14: Triangular current distribution on a short dipole
(Problem 9.14).

9.15 For a dipole antenna of length I = 3A/2:

(a) Determine the directions of maximum radiation.

(b) Obtain an expression for Smax.

(e) Generate a plot of the normalized radiation pattern F (e).

(d) Compare your pattern with that shown in Fig. 9-17 (c).

9.16 Repeat parts (a)-(c) of Problem 9.15 for a dipole of
length I = 3A/4.

• 9.17 Repeat parts (a)-(c) of Problem 9.15 for a dipole of
length 1= A.

Sections 9-5 and 9-6: Effective Area and Friis Formula

9.19 Determine the effective area of a half-wave dipole
antenna at 100 MHz. and compare it with its physical cross-
section if the wire diameter is 2 em,

*9.20 A 3-GHz line-of-sight microwave communication link
consists of two lossless parabolic dish antennas, each I m in
diameter. If the receive antenna requires 10 nW of receive
power for good reception and the distance between the antennas
is 40 km, how much power should be transmitted?

9.21 A half-wave dipole TV broadcast antenna transmits I kW
at 50 MHz. What is the power received by a home television
antenna with 3-dB gain if located at a distance of 30 km?

*9.22 A ISO-MHz communication link consists of two vertical
half-wave dipole antennas separated by 2 km. The antennas
are lossless, the signal occupies a bandwidth of 3 MHz, the
system noise temperature of the receiver is 600 K, and the
desired signal-to-noise ratio is 17 dB. What transmitter power
is required?

9.23 Consider the communication system shown in
Fig. P9.23, with all components properly matched. If
P, = lOW and f = 6 GHz:

(a) What is the power density at the receiving antenna
(assuming proper alignment of antennas)?

(b) What is the received power?

(e) If 1'.'Y5 = 1,000 K and the receiver bandwidth is 20 MHz,
what is the signal-to-noise ratio in decibels?

~------20km--------

Tx Rx

Figure P9.23: Communication system of Problem 9.23.

*9.18 A car antenna is a vertical monopole over a conducting
surface. Repeat Problem 9.5 for a I-m-Iong car antenna
operating at I MHz. The antenna wire is made of aluminum ~ 9.24 The configuration shown in Fig. P9.24 depicts two
with I1c = 110 and ac = 3.5 x 107 Slm, and its diameter is I ern. vertically oriented half-wave dipole antennas pointed towards
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I
h = 100 m

1
I

100m

I
I

----------- 5 km -----------1

Figure P9.24: Problem 9.24.

each other, with both positioned on IOO-m-tall towers separated
by a distance of 5 km. If the transit antenna is driven by a
50-MHz current with amplitude 10 = 2 A, determine:
(a) The power received by the receive antenna in the absence

of the surface. (Assume both antennas to be lossless.)
(b) The power received by the receive antenna after

incorporating reflection by the ground surface, assuming
the surface to be flat and to have Er = 9 and conductivity
a = 10-3 (S/m).

9.25 Fig. P9.25 depicts a half-wave dipole connected to a
generator through a matched transmission line. The directivity

I-d-I

Figure P9.25: Problem 9.25.

of the dipole can be modified by placing a reflecting rod a
distance d behind the dipole. What would its reflectivity in
the forward direction be if:
(a) d = ),,/4,
(b) d = ),,/2.

Sections 9-7 and 9-8: Radiation by Apertures

*9.26 A uniformly illuminated aperture is of length Ix = 20)...
Determine the beam width between first nulls in the x-z plane.

9.27 The lO-dB beam width is the beam size between the
angles at which F(e) is 10 dB below its peak value. Determine
the lO-dB beamwidth in the x-z plane for a uniformly
illuminated aperture with length Ix = 10)".

*9.28 A uniformly illuminated rectangular aperture situated in
the x-y plane is 2 m high (along x) and I m wide (along y). If
f = 10 GHz, determine the following:

(a) The beamwidths of the radiation pattern in the elevation
plane (x-z plane) and the azimuth plane (y-z plane).

(b) The antenna directivity D in decibels.

9.29 An antenna with a circular aperture has a circular beam
with a beamwidth of 3° at 20 GHz.

(a) What is the antenna directivity in dB?

(b) If the antenna area is doubled, what will be the new
directivity and new beamwidth?

(e) If the aperture is kept the same as in (a), but the frequency
is doubled to 40 GHz, what will the directivity and
beamwidth become then?



PROBLEMS 467

*9.30 A 94-GHz automobile collision-avoidance radar uses a ., 9.37 A five-element equally spaced linear array with d = )../2
rectangular-aperture antenna placed above the car's bumper. If is excited with uniform phase and an amplitude distribution
the antenna is I m in length and 10 em in height, determine the given by the binomial distribution
following:
(a) Its elevation and azimuth beamwidths.

(b) The horizontal extent of the beam at a distance of 300 m.

9.31 A microwave telescope consisting of a very sensitive
receiver connected to a IOO-mparabolic-dish antenna is used to
measure the energy radiated by astronomical objects at 20 GHz.
If the antenna beam is directed toward the moon and the moon
extends over a planar angle of 0.50 from Earth, what fraction
of the moon's cross-section will be occupied by the beam?

Sections 9-9 and 9-11: Antenna Arrays

*9.32 A two-element array consisting of two
isotropic antennas separated by a distance d along
the z-axis is placed in a coordinate system whose
z-axis points eastward and whose x-axis points toward
the zenith. If ao and al are the amplitudes of the excitations of
the antennas at z = 0 and at z = d, respectively, and if 8 is the
phase of the excitation of the antenna at z = d relative to that
of the other antenna, find the array factor and plot the pattern
in the x-z plane for the following:
(a) ao = al = I, 8 = rr/4, and d = ),,/2.
(b) ao = I, al = 2, 8 = 0, and d =)...
(c) aO=lll = I, 8 =-rr/2,andd =)../2.

(d) ao = I, III = 2, 8 = rr/4, and d = ),,/2.

(e) llO= 1, III =2, 8 = rr/2,andd =)../4.

9.33 If the antennas in part (a) of Problem 9.32 are parallel,
vertical, Hertzian dipoles with axes along the x-direction,
determine the normalized radiation intensity in the x-z plane
and plot it.

*9.34 Consider the two-element dipole array of Fig. 9-29(a). If
the two dipoles are excited with identical feeding coefficients
(ao = al = I and 1fto = 1ft, = 0), choose (d/)") such that the
array factor has a maximum at e = 450

•

9.35 Choose (d/)") so that the array pattern of the array of
Problem 9.34 has a null, rather than a maximum, at e = 45°.

*9.36 Find and plot the normalized array factor and determine
the half-power beamwidth for a five-element linear array
excited with equal phase and a uniform amplitude distribution.
The interelement spacing is 3),,/4.

(N - I)!
lli = ,

i!(N - j - I)!
i = 0, I, ... , (N - I),

where N is the number of elements. Develop an expression for
the array factor.

9.38 A three-element linear array of isotropic sources aligned
along the z-axis has an interelement spacing of 'A/4(Fig. P9.38).
The amplitude excitation of the center element is twice that of
the bottom and top elements, and the phases are -rr /2 for the
bottom element and n /2 for the top element, relative to that of
the center element. Determine the array factor and plot it in the
elevation plane.

z

T I /rrf2

).14

~ 2LQ.T
).14

1 I 1-7r/2

Figure 1'9.38: Three-element array of Problem9.38.

*9.39 An eight-element linear array with 'A/2 spacing is excited
with equal amplitudes. To steerthe main beam to a direction 60°
below the broadside direction, what should be the incremental
phase delay between adjacent elements? Also, give the
expression for the array factor and plot the pattern.

9.40 A linear array arranged along the z-axis consists of 12
equally spaced elements with d = 'A/2. Choose an appropriate
incremental phase delay 8 so as to steer the main beam to
a direction 30° above the broadside direction. Provide an
expression for the array factor of the steered antenna and plot
the pattern. From the pattern, estimate the beamwidth.
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I. Describe the basic operation of satellite transponders.

2. Calculate the power budget for a communication link.

3. Describe how radar attains spatial and angular resolutions,
calculate the maximum detectable range, and explain the
tradeoff between the probabilities of detection and false
alarm.

4. Calculate the Doppler frequency shift observed by a radar.

5. Describe the monopulse-radar technique.

Upon learning the material presented in this chapter, you should
be able to:
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Application Examples

This concluding chapter presents overviews of satellite
communication systems and radar sensors, with emphasis on
their electromagnetic-related aspects.

10-1 Satellite Communication Systems

Today's world is connected by a vast communication network
that provides a wide array of voice, data, and video services
to both fixed and mobile terminals (Fig. 10-1). The viability
and effectiveness of the network are attributed in large measure
to the use of orbiting satellite systems that function as relay
stations with wide area coverage of Earth's surface. From a
geostationary orbit at 35,786 km above the equator, a satellite
can view over one-third of Earth's surface and can connect
any pair of points within its coverage (Fig. 10-2). The history
of communication satellite engineering dates back to the late
1950s when the U.S. navy used the moon as a passive reflector
to relay low-data-rate communications between Washington,
D.C., and Hawaii. The first major development involving
artificial Earth satellites took place in October of 1957 when
the Soviet Union launched Sputnik I and used it for 21 days to
transmit (one-way) telemetry information to a ground receiving
station. This was followed by another telemetry satellite,
Explorer I, launched by the United States in January 1958.
An important development took place in December of that
year when the United States launched the Score satellite and
used it to broadcast President Eisenhower's Christmas message,

Ship
---.I!L.'--~ .""

Figure 10-1: Elements of a satellite communication network.

N

(a) Geostationary satellite orbit

(b) Worldwide coverage by three
satellites spaced l2W apart

Figure 10-2: Orbits of geostationary satellites.

marking the first instance of two-way voice communication via
an artificial satellite.

These achievements were followed by a flurry of space
activity, leading to the development of operational commu-
nication satellites by many countries for both commercial
and governmental services. This section describes satellite
communications links with emphasis on transmitter-receiver
power calculations, propagation aspects, frequency allocations,
and antenna design considerations.

A satellite is said to be in a geostationary orbit around
Earth when it is in a circular orbit in a plane identical with
Earth's equatorial plane at an altitude where the orbital period
is identical with Earth's rotational period, thereby appearing
stationary relative to Earth's surface. A satellite of mass M, in
circular orbit around Earth (Fig. 10-3) is subject to two forces,
the attractive gravitational force Fg and the repelling centrifugal
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Earth

4\ 679 ktn
. distance ~ ,

Ma'lotnutn

Ro = Re + h = 42,164 kmRe = 6,378 km
at equator

lis = 11,070 (km/hr)

Figure 10·3: Satellite of mass Ills in orbit around Earth. For the orbit to be geostationary. the distance Ro between the satellite and Earth's
center should be 42.164 km. At the equator. this corresponds to an altitude of 35.786 km above Earth's surface.

force Fe. The magnitudes of these two forces are given by

GMsMe
Fg = 7Ro

(l0.1)

(10.2)

where G = 6.67 x 10-11 N.m2/kg2 is the universal gravitational
constant. Me = 5.98 x 1024 kg is Earth's mass, Ro is the
distance between the satellite and the center of Earth. and Us is
the satellite velocity. For a rotating object. u, = wR(}, where
w is its angular velocity. In order for the satellite to remain in
orbit, the two opposing forces acting on it have to be equal in
magnitude, or

MsMe 1
G --,- = Msw· Ro.

Wo
which yields a solution for Ro given by

(10.3)

_ [GMeJ1!3Ro - -,-w~
(l0.4 )

To remain stationary with respect to Earth's surface, the
satellite's angular velocity has to be the same as that of Earth's
own angular velocity around its own axis. Thus,

2Jr
W=-,

T
(10.5)

where T is the period of one sidereal day in seconds. A sidereal
day, which takes into account Earth's rotation around the sun, is

equal to 23 hours, 56 minutes, and4.1 seconds. Using Eq. (10.5)
in Eq. (l 0.4) gives

(10.6)

and upon using the numerical values for T, Me, and G, we obtain
the result Ro = 42. 164 km. Subtracting 6,378 km for Earth's
mean radius at the equator gives an altitude of h = 35. 786 km
above Earth's surface.

From a geostationary orbit, Earth subtends an angle of 17.4°,
covering an arc of about 18.00D km along the equator. which
corresponds to a longitude angle of about 16Do

• With three
equally spaced satellites in geostationary orbit over Earth's
equator, it is possible to achieve complete global coverage of
the entire equatorial plane. with significant overlap between
the beams of the three satellites. As far as coverage toward
the poles, a global beam can reach Earth stations up to 810 of
latitude on either side of the equator.

Not all satellite communication systems use spacecraft that
are in geostationary orbits. Indeed. because of transmitter
power limitations or other considerations. it is sometimes
necessary to operate from much lower altitudes, in which case
the satellite is placed in a highly elliptical orbit (to satisfy
Kepler's law) such that for part of the orbit (near its perigee)
it is at a range of only a few hundred kilometers from Earth's
surface. Whereas only three geostationary satellites are needed
to provide near-global coverage of Earth's surface, a much
larger number is needed when the satellites operate from highly
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Table 10-1: Communications satellite frequency allocations.

Downlink Frequency Uplink Frequency
Usc (MHz) (MHz)

Fixed Service
Commercial (C-hand) 3.700--4.200 5.925-6.425
Military (X-band) 7.250-7,750 7,900-8.400
Commercial (Kvband)

Domestic (USA) 11,700-12,200 14.000-[4.500
International 10,950-11,200 27,5()o-3I,OOO

Mobile Service
Maritime 1.535-1,542.5 I .635-1.644
Aeronautical 1,543.5-1,558.8 1.645-1,660

Broadcast Service
2.500-2,535 2.655-2,690

11.700-12,750

Telemetry, Tracking, and Command
137-138,401--402,1,525-1.540

elliptical orbits. A good example of the latter is the Global
Positioning System (GPS) described in Technology Brief 5.

10-2 Satellite Transponders

A communication satellite functions as a distant repeater; it
receives uplink signals from Earth stations, processes the
signals, and then downlinks (retransmits) them to their intended
Earth destinations. The International Telecommunication
Union has allocated specific bands for satellite communications
(Table 10-1). Of these, the bands used by the majority of
U.S. commercial satellites for domestic communications are
the 416 GHz band (3.7- to 4.2-GHz downlink and 5.925- to
6.425-GHz uplink) and the 12114 GHz band (11.7- to 12.2-GHz
downlink and 14.0- to 14.5-GHz uplink). Each uplink and
downlink segment has been allocated 500 MHz of bandwidth.
By using different frequency bands for Earth-to-satellite uplink
segment and for satellite-to-Earth downlink segments, the same
antennas can be used for both functions while simultaneously
guarding against interference between the two signals. The
downlink segment commonly uses a lower-frequency carrier
than the uplink segment, because lower frequencies sutler
lower attenuation by Earth's atmosphere, thereby easing the
requirement on satellite output power.

We shall use the 4/6 GHz band as a model to discuss the
satellite-repeater operation, while keeping in mind that the
functional configuration of the repeater is basically the same
regardless of which specific communication band is used.

Figure 10-4 shows a generalized block diagram of a typical
12-channel repeater. The path of each channel-from the
point of reception by the antenna, transfer through the repeater,
and final retransmission through the antenna-is called a
transponder. The available 500-MHz bandwidth is allocated
to 12 channels (transponders) of 36-MHz bandwidth per
channel and 4-MHz separation between channels. The basic
functions of a transponder are: (a) isolation of neighboring
radio frequency (RF) channels, (b) frequency translation,
and (c) amplification. With frequency-division multiple
access (FDMA)-one of the schemes commonly used for
information transmission--each transponder can accommodate
thousands of individual telephone channels within its 36 MHz
of bandwidth (telephone speech signals require a minimum
bandwidth of 3 kHz, so frequency spacing is nominally 4 kHz
per telephone channel), several TV channels (each requiring
a bandwidth of 6 MHz), millions of bits of digital data, or
combinations of all three.

When the same antenna is used for both transmission and
reception. a duplexer is used to perform the signal separation.
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Figure 10-4: Elements of a l2-channcl (transponder) communications system.

Many types of duplexers are available, but among the simplest
to understand is the circulator shown in Fig. 10-5. A circulator
is a three-port device that uses a ferrite material placed in a
magnetic field induced by a permanent magnet to achieve power
flow from ports I to 2, 2 to 3, and 3 to I, but not in the reverse
directions. With the antenna connected to port I, the received
signal is channeled only to port 2; if port 2 is properly matched
to the band-pass filter, no part of the received signal is reflected
from port 2 to 3. Similarly, the transmitted signal connected to
port 3 is channeled by the circulator to port I for transmission
by the antenna.

Following the duplexer shown in Fig. 10-4. the received
signal passes through a receiver band-pass filter that ensures
isolation of the received signal from the transmitted signal. The
receiver filter covers the bandwidth from 5.925 to 6.425 GHz,
which encompasses the cumulative bandwidths of all 12
channels; the first received channel extends from 5,927 to
5.963 MHz, the second one from 5.967 to 6,003 MHz, and so

on until the twelfth channel, which covers the range from 6,367
to 6,403 MHz. Tracing the signal path, the next subsystem
is the wideband receiver, which consists of three elements:
a low-noise wideband amplifier, a frequency translator, and

Circulator

Received signal

Transmitted
Antenna signal

Signal to be
transmitted

From output
multiplexer

Figure 10-5: Basic operation of a ferrite circulator.



10-3 COMMUNICATION-LINK POWER BUDGET 473

an output amplifier. The frequency translator consists of a
stable local oscillator, which generates a signal at frequency
fa = 10, 105 MHz, connected to a nonlinear microwave mixer.
The mixer serves to convert the frequency fr of the received
signal (which covers the range from 5,927 to 6,403 MHz) to
a lower-frequency signal fe = fo - fro Thus, the lower end
of the received signal frequency band gets converted from
5,927 to 4,178 MHz and the upper end gets converted from
6.403 to 3,702 MHz. This translation results in 12 channels
with new frequency ranges, but whose signals carry the same
information (modulation) that was present in the received
signals. In principle, the receiver output signal can now be
further amplified and then channeled to the antenna through the
duplexer for transmission back to Earth. Instead, the receiver
output signal is separated into the 12 transponder channels
through a multiplexer followed by a bank of narrow band-pass
filters, each covering the bandwidth of one transponder channel.
Each of the 12 channels is amplified by its own high-power
amplifier (HPA), and then the 12 channels are combined by
another multiplexer that feeds the combined spectrum into the
duplexer. This channel separation and recombination process
is used as a safety measure against losing all 12 channels should
a high-power amplifier experience total failure or degradation
in performance.

The information carrying capacity of a satellite repeater
can be doubled from 12 to 24 channels over the same 500-
MHz bandwidth by using polarization diversity. Instead of
transmitting one channel of information over channel I (5,927
to 5,963 MHz), for example, the ground station transmits to
the satellite two signals carrying different information and
covering the same frequency band, but with different antenna
polarization configurations, such as right-hand circular (RHC)
and left-hand circular (LHC) polarizations. The satellite
antenna is equipped with a feed arrangement that can receive
each of the two circular polarization signals individually with
negligible interference between them. Two duplexers are used
in this case, one connected to the RHC polarization feed and
another connected to the LHC polarization feed, as illustrated
in Fig. 10-6.

10-3 Communication-Link Power
Budget

The uplink and downlink segments of a satellite communication
link (Fig. 10-7) are each governed by the Friis transmission
formula (Section 9-6), which states that the power P, received

RHC
To receiver
(ch 1-12)

Figure 10-6: Polarization diversity is used to increase the
number of channels from 12 to 24.

by an antenna with gain Gr due to the transmission of power Pe
by an antenna with gain Gt at a range R is given by

(10.7)

This expression applies to a lossless medium, such as free
space. To account for attenuation by clouds and rain in Earth's
atmosphere (when present along the propagation path), as well

Satellite~

Receiver .
ante~na ~ransmlttergain G; antenna

.r gam GS!~..n

A
UPlink"~~~~"''''''''''~~ ~Downlink

_",'Q."Ci' ~,,, c;:.. . '1.
~ ~~ '0 r:;
o"'\:/. '6 ~

~ 'fJ,9'
r:;
if'

Figure 10-7: Satellite transponder.



The performance of a communication system is governed
by two sets of issues. The first encompasses the signal-
processing techniques used to encode, modulate. combine,
and transmit the signal at the transmitter end and to receive.
separate, demodulate. and decode the signal at the receiver
end. The second set encompasses the gains and losses in the
communication link. and they are represented by the signal-to-
noise ratio Sn. For a given set of signal-processing techniques,
Sn determines the quality of the received signal, such as
the bit error rate in digital data transmission and sound and
picture quality in audio and video transmissions. Very high
quality signal transmission requires very high values of Sn;
in broadcast-quality television by satellite. some systems are
designed to provide values of Sn exceeding 50 dB (or a factor
of 105).

The performance of a satellite link depends on the composite
performance of the uplink and downlink segments. If either
segment performs poorly, the composite performance will be
poor. regardless of how good the performance of the other
segment is.
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as absorption by certain atmospheric gases (primarily oxygen
and water vapor). we rewrite Eq. (10.7) as

Pri = 1(8) r; = 1(8) PICICr (~)2
4rr R

(10.8)

Now. Pri represents the input power at the receiver with
atmospheric losses taken into account. and 1(e) is the one-way
transmissivity of the atmosphere at zenith angle e. In addition
to its dependence on e. 1(8) is a function of the frequency
of the communication link and the rain-rate conditions along
the propagation path. At frequencies below 10 GHz. which
include the 4/6 GHz band allocated for satellite communication.
absorption by atmospheric gases is very small. as is attenuation
due to clouds and rain. Consequently. the magnitude of 1(8)
is typically on the order of 0.5 to I for most conditions.
A transmissivity of 0.5 means that twice as much power
needs to be transmitted (compared to the free-space case)
in order to receive a specified power level. Among the
various sources of atmospheric attenuation. the most serious
is rainfall. and its attenuation coefficient increases rapidly with
increasing frequency. Consequently. atmospheric attenuation
assumes greater importance with regard to transmitter power
requirements as the communication-system frequency is
increased toward higher bands in the microwave region.

The noise appearing at the receiver output. Pno, consists
of three contributions: (I) noise internally generated by the
receiver electronics, (2) noise picked up by the antenna due to
external sources, including emission by the atmosphere. and
(3) noise due to thermal emission by the antenna material.
The combination of all noise sources can be represented by
an equivalent system noise temperature. 7~)s,defined such that

(10.9)

where K is Boltzmann's constant. and Cree and B are the
receiver power gain and bandwidth. This output noise level is
the same as would appear at the output of a noise-free receiver
with input noise level

( 10.10)

The signal-to-noise ratio is defined as the ratio of the signal
power to the noise power lit the input of all equivalent noise-
free receiver. Hence.

(10.11)

10-4 Antenna Beams

Whereas most Earth-station antennas are designed to provide
highly directive beams (to avoid interference effects), the
satellite antenna system is designed to produce beams tailored
to match the areas served by the satellite. For global coverage.
beamwidths of 17.40 are required. In contrast. for transmission
to and reception from a small area, beamwidths on the order of
10 or less may be needed (Fig. 10-8).

An antenna with a beamwidth f3 of 10 would produce a
spot beam on Earth covering an area approximately 630 km
in diameter.

Beam size has a direct connection to antenna gain and,
in turn. to transmitter power requirements. Antenna gain C
is related to the directivity D by G = ~D. where ~ is the
radiation efficiency, and D is related to the beamwidth f3 by
the approximate expression given by Eq. (9.26). For a circular
beam,

(10. I 2)

where f3 is in radians. For a lossless antenna (~ = I). a
global beam with f1 = 17.40 (= 0.3 rad) corresponds to a gain
C = 136. or 2 1.3 dB. A narrow I0 beam. on the other hand,
corresponds to an antenna gain of 41 ,253, or 46.2 dB.
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(a) Zone coverage

Individual spot
areas or footprints

Individual transmitters
and hom antennas

(b) Multi-spot beams

Figure 10-8: Spot and multi-beam satellite antenna systems for
coverage of defined areas on Earth's surface.

To accommodate the various communication functions
associated with satellite systems, four main types of antennas
are used":

1. Dipoles and helices at VHF and UHF for telemetry,
tracking, and command functions;

2. Horns and relatively small parabolic dishes (with
diameters on the order of a few centimeters) for producing
wide-angle beams for global coverage;

*R. G. Meadows and A. J. Parsons, Satellite Communications. Hutchinson
Publishers. London, 1989.

3. Parabolic dishes fed by one or more horns to provide a
beam for zone coverage [Fig. 1O-8(a)] or multiple spot
beams [Fig. 1O-8(b)];

4. Antenna arrays consisting of many individual radiating
elements for producing multi-spot beams and for beam
steering and scanning.

Review Question 10-1: What are the advantages and
disadvantages of elliptical satellite orbits in comparison
to the geostationary orbit?

Review Question 10-2: Why do satellite communication
systems use different frequencies for the uplink and
downlink segments? Which segment uses the higher
frequency and why?

Review Question 10-3: How does the use of antenna
polarization increase the number of channels carried by
the communication system?

Review Question 10-4: What are the sources of noise
that contribute to the total system noise temperature of a
receiver?

10-5 Radar Sensors
The term radar is a contracted form of the phrase radio
detection and ranging, which conveys some, but not all, of
the features of a modem radar system. Historically, radar
systems were first developed and used at radio frequencies,
including the microwave band, but we now also have light
radars, or lidars, that operate at optical wavelengths. Over
the years, the name radar has lost its original meaning and has
come to signify any active electromagnetic sensor that uses its
own source to illuminate a region of space and then measure
the echoes generated by reflecting objects contained in that
region. In addition to detecting the presence of a reflecting
object and determining its range by measuring the time delay
of short-duration pulses transmitted by the radar, a radar is also
capable of specifying the position of the target and its radial
velocity. Measurement of the radial velocity of a moving object
is realized by measuring the Doppler frequency shift produced
by the object. Also, the strength and shape of the reflected pulse
carry information about the shape and material properties of the
reflecting object.
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r--- Synchronizer/modulator Transmitter
unit

Video ~ .. ~
1 ~ processor/display ~----'

l~L---------------------1'----s-erv-o---'l_ - - _I

Figure 10·9: Basic block diagram of a radar system.

Radar is used for a wide range of civilian and military
applications. including air traffic control. aircraft navigation.
law enforcement. control and guidance of weapon systems.
remote sensing of Earth's environment. weather observation.
astronomy. and collision avoidance for automobiles. The
frequency bands used for the various types of radar applications
extend from the megahertz region to frequencies as high as
225 GHz.

10-5.1 Basic Operation of a Radar System

The block diagram shown in Fig. 10-9 contains the basic
functional clements of a pulse radar system. The synchronizer-
modulator unit serves to synchronize the operation of the
transmitter and the video processor/display unit by generating
a train of direct-current (de) narrow-duration. evenly spaced
pulses. These pulses. which are supplied to both the transmitter
and the videoprocessor-display unit. specify the times at which
radar pulses are transmitted. The transmitter contains a high-
power radio-frequency (RF) oscillator with an on/off control
voltage actuated by the pulses supplied by the synchronizer-
modulator unit. Hence. the transmitter generates pulses of
RF energy equal in duration and spacing to the dc pulses
generated by the synchronizer-modulator unit. Each pulse is
supplied to the antenna through a duplexer, which allows the
antenna to be shared between the transmitter and the receiver.
The duplexer. which often is called the transmitter/receiver
(T/R) switch. connects the transmitter to the antenna for the
duration of the pulse. and then connects the antenna to the
receiver for the remaining period until the start of a new pulse.

Some duplexers, however. are passive devices that perform the
sharing and isolation functions continuously. The circulator
shown in Fig. 10-5 is an example of a passive duplexer. After
transmission by the antenna. a portion of the transmitted signal
is intercepted by a reflecting object (often called a target) and
scattered in many directions. The energy reradiated by the
target back toward the radar is collected by the antenna and
delivered to the receiver, which processes the signal to detect
the presence of the target and to extract information on its
location and velocity. The receiver converts the reflected RF
signals into lower-frequency video signals and supplies them to
the videoprocessor-display unit. which displays the extracted
information in a format suitable for the intended application.
The servo unit positions the orientation of the antenna beam
in response to control signals provided by either an operator. a
control unit with preset functions, or a control unit commanded
by another system. The control unit of an air-traffic-control
radar, for example. commands the servo to rotate the antenna
in azimuth continuously. In contrast. the radar antenna placed
in the nose of an aircraft is made to scan back and forth over
only a specified angular sector.

10-5.2 Unambiguous Range

The collective features of the energy transmitted by a radar are
called the signal waveform. For a pulse radar, these features
include (I) the carrier frequency f. (2) the pulse length T.

(3) the pulse repetition frequency ip (number of pulses per
second). or equivalently the interpulse period Tp = 1/ fr. and
(4) the modulation (if any) within the pulses. Three of these
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RF frequency f
Pulse waveform

/

I----r-I
1---- Tp=l~fp----

Figure 10-10: A pulse radar transmits a continuous train of RF
pulses at a repetition frequency .fj,.

features are illustrated in Fig. 10-10. Modulation, which refers
to control of the amplitude, frequency, or phase of the signal,
is beyond the level of the present treatment.

The range to a target is determined by measuring the time
delay T taken by the pulse to travel to the target and back. For
a target at range R,

2R
T=-,

("
(10.13)

where e = 3 x 10K mls is the speed of light, and the factor 2
accounts for the two-way propagation. The maximum target
range that a radar can measure unambiguously. called the
unambiguous range Ru. is determined by the interpulse
period Tpand is given by

cTp c
Ru= - = -. (10.14)2 2/p

The range Ru corresponds to the maximum range that a target
can have such that its echo is received before the transmission
of the next pulse. If Tpis too short. an echo signal due to a given
pulse might arrive after the transmission of the next pulse. in
which case the target would appear to be at a much shorter range
than it actually is.

According to Eq. (10.14). if a radar is to be used to detect
targets that are as far away as 100 km, for example. then
fp should be less than 1.5 kHz, and the higher the pulse
repetition frequency (PRF), the shorter is the unambiguous
range Ru. Consideration of Ru alone suggests selecting a low
PRF, but other considerations suggest selecting a very high
PRF. As we will see later in Section 10-6, the signal-to-noise
ratio of the radar receiver is directly proportional to fr" and
hence it would be advantageous to select a PRF as high as

--
_-\----R~~-.....•... -

----- RJ- - - - - - ~..,..
Antenna beam - - - - - - __

Figure 10-11: Radar beam viewing two targets at ranges R,
and R"!..

possible. Moreover. in addition to determining the maximum
unambiguous range Ru, the PRF also determines the maximum
Doppler frequency (and hence the target's maximum radial
velocity) that the radar can measure unambiguously. If the
requirements on maximum range and velocity cannot be met
by the same PRE then some compromise may be necessary.
Alternatively, it is possible to use a multiple-PRF radar system
that transmits a few pulses at one PRF followed by another
series of pulses at another PRE and then the two sets of received
pulses are processed together to remove the ambiguities that
would have been present with either PRF alone.

10-5.3 Range and Angular Resolutions

Consider a radar observing two targets located at ranges R,
and R2, as shown in Fig. 10-11. Let t = 0 denote the time
corresponding to the start of the transmitted pulse. The pulse
length is T. The return due to target I will arrive at T, = 2R, [c
and will have a length r (assuming that the pulse length in
space is much greater than the radial extent of the target).
Similarly, the return due to target 2 will arrive at T2 = 2R2/e.
The two targets will be resolvable as distinct targets so long as
T2 ~ T, + r or, equivalently,

2R) 2R/--- ~ -- + r.
e c

(to. 15)

The range resolution of the radar, ~ R, is defined as the
minimum spacing between two targets necessary to avoid
overlap between the echoes from the two targets. From
Eq. ( 10.15), this occurs when
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of part of the transmitted energy by the target, and (2) the noise
energy generated by the receiver. Figure 10-13, which depicts
the output response of a radar receiver as a function of time,
shows the signals due to two targets displayed against the noise
contributed by external sources as well as by the devices making
up the receiver. The random variations exhibited by the noise
may at times make it difficult to distinguish the signal reflected
by the target from a noise spike. In Fig. 10-13, the mean noise-
power level at the receiver output is denoted by Pno = GrccPni,

where Grec is the receiver gain and Pni is the noise level referred
to the receiver's input terminals. The power levels Prl and Pr"

represent the echoes of the two targets observed by the radar.
Because of the random nature of noise, it is necessary to set a
threshold level, Pr",;" for detection. For threshold detection
level I indicated in Fig. 10- 13, the radar will produce the
presence of both targets. but it will also detect afalse alarm. The
chance of this occurring is called thefalse-alarm probability.
On the other hand, if the threshold detection level is raised
to level 2 to avoid the false alarm, the radar will not detect
the presence of the first target. A radar's ability to detect the
presence of a target is characterized by a detection probability.
The setting of the threshold signal level relative to the mean
noise level is thus made on the basis of a compromise that
weighs both probabilities.

To keep the noise level at a minimum, the receiver is designed
such that its bandwidth B is barely wide enough to pass most of
the energy contained in the received pulse. Such a design, called
a matched filter, requires that B be equal to the reciprocal of
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(
Beamwidth fJ

\ ---------1==_-.-_-_l_-_- - - - RAx=fJR

J --- ----------
Figure 10-12: The azimuth resolution ~x at a range R is equal
to {"JR.

Some radars are capable of transmitting pulses as short as
I ns in duration or even shorter. For T = Ins, AR = 15 ern,

The basic angular resolution of a radar system is determined
by its antenna beamwidth {J, as shown in Fig. 10-12. The
corresponding azimuth resolution Ax at a range R is given
by

Ax = {JR. (10.17)

where (J is in radians. In some cases, special techniques are
used to improve the angular resolution down to a fraction of
the beam width. One example is the monopulse tracking radar
described in Section 10-8.

10-6 Target Detection
Target detection by radar is governed by two factors: (I) the
signal energy received by the radar receiver due to reflection

Jl.:!r~sl.:!o!d_d~t~c!iq.nJe_v~J~ G P . (2)
ree rmln

(
False - Target 2

alarm

Target 1-

Time_

Figure 10·13: The output of a radar receiver as a function of time.
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ITransmitter I

Receiver

- - - --- --- --- - - - --- - -
Figure 10-14: Bistatic radar system viewing a target with radar cross section (ReS) at.

the pulse length r (i.e., B = I/r). Hence, for a matched-filter
receiver, Eq. (10.10) becomes

(10.18)

The signal power received by the radar, Pr, is related to the
transmitted power level, Ph through the radar equation. We will
first derive the radar equation for the general case of a bistatic
radar configuration in which the transmitter and receiver are not
necessarily at the same location, and then we will specialize the
results to the monostatic radar case wherein the transmitter and
receiver are colocated. In Fig. 10-14, the target is at range R,
from the transmitter and at range R, from the receiver. The
power density illuminating the target is given by

r;
St = --2 o, (W/m2), (10.19)

4rr R;
where (Pt!4rr R~) represents the power density that would have
been radiated by an isotropic radiator, and G, is the gain of the
transmitting antenna in the direction of the target. The target is
characterized by a radar cross section (RCS) at (m2), defined
such that the power intercepted and then reradiated by the target
is r.o»,

Prer = Stat = --2 (W). (10.20)
4rr R;

This reradiated power spreads out over a spherical surface,
resulting in a power density S, incident upon the receiving radar
antenna. Hence,

S _ Prer _ PtGtat
r - 4rr R? - (4rr RtRr)2

(10.21)

With an effective area Ar and radiation efficiency ~r, the
receiving radar antenna intercepts and delivers (to the receiver)
power P, given by

PtGtGrJ...2at

(4rr)3R2R2 '
t r

(10.22)

where we have used Eqs. (9.29) and (9.64) to relate the effective
area of the receiving antenna, Ar, to its gain Gr. For a
monostatic antenna that uses the same antenna for the transmit
and receive functions, Gt = G, = G and R, = R, = R.
Hence,

Unlike the one-way communication system for which the
dependence on R is as IIR2, the range dependence given by
the radar equation goes as 1IR4, the product of two one-way
propagation processes.

The detection process may be based on the echo from a single
pulse or on the addition (integration) of echoes from several
pulses. We will consider only the single-pulse case here. A
target is said to be detectable if its echo signal power P; exceeds
Pr,n;"'the threshold detection level indicated in Fig. 10-13. The
maximum detectable range Rmax is the range beyond which the
target cannot be detected, corresponding to the range at which
Pr = Prm;" in Eg. (10.23). Thus,

[
p.G2J...2a. JI/4R _ t t

max - (4rr)3 P,
fmm

(10.24)
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The signal-to-noise ratio is equal to the ratio of the received
signal power P, to the mean input noise power Pni given by
Eq. (10.18):

(10.25)

and the minimum signal-to-noise ratio Smin corresponds to
when r; = Prmm:

r-: T
Smin = --.«r.; (10.26)

Use of Eq. (10.26) in Eq. (10.24) gives

The product PI T is equal to the energy of the transmitted
pulse. Hence, according to Eq. (10.27), it is the energy of the
transmitted pulse rather than the transmitter power level alone
that determines the maximum detectable range. A high-power
narrow pulse and an equal-energy, low-power long pulse will
yield the same radar performance as far as maximum detectable
range is concerned. However, the range-resolution capability
of the long pulse is much poorer than that of the short pulse [see
Eq. (10.16)[.

The maximum detectable range Rmax can also be increased
by improving the signal-to-noise ratio. This can be
accomplished by integrating the echoes from multiple pulses
in order to increase the total amount of energy received from
the target. The number of pulses available for integration
over a specified integration time is proportional to the PRF.
Hence, from the standpoint of maximizing target detection,
it is advantageous to use as high a PRF as allowed by other
considerations.

10-7 Doppler Radar

The Doppler effect is a shift in the frequency of a wave caused
by the motion of the transmitting source, the reflecting object,
or the receiving system. As illustrated in Fig. 10-15, a wave
radiated by a stationary isotropic point source forms equally
spaced concentric circles as a function of time travel from
the source. In contrast, a wave radiated by a moving source

(a) Stationary source

r:
(wave moving
in direction
opposite to that
of the source)

1.\
(wave moving
in the same
direction as
the source)

(b) Moving source

Figure 10-15: A wave radiated from a point source when (a)
stationary and (b) moving. The wave is compressed in the
direction of motion, spread out in the opposite direction, and
unaffected in the direction normal to motion.

is compressed in the direction of motion and is spread out
in the opposite direction. Compressing a wave shortens its
wavelength, which is equivalent to increasing its frequency.
Conversely. spreading it out decreases its frequency. The
change in frequency is called the Doppler frequency shift fd.
That is. if It is the frequency of the wave radiated by the moving
source, then the frequency fr of the wave that would be observed
by a stationary receiver is

Ic=Tc+T«. (10.28)

The magnitude and sign of I« depend on the direction of the
velocity vector relative to the direction of the range vector
connecting the source to the receiver.
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1- - - - - - - - - - - - - ~ Ur

1E3-<D 1MAM-
_____________ 1

Transmitter moving
with velocity U

Stationary receiver

Figure 10-16: Transmitter with radial velocity !lr approaching a stationary receiver.

Consider a source transmitting an electromagnetic wave with
frequency I. (Fig. 10-16). At a distance R from the source, the
electric field of the radiated wave is given by

(10.29)

where Eu is the wave's magnitude, Wt= 2rrf[, and k = 2rrj"A[,
where At is the wavelength of the transmitted wave. The
magnitude depends on the distance R and the gain of the source
antenna, but it is not of concern as far as the Doppler effect is
concerned. The quantity

2rr
¢ = (Ult - kR = 2rr.ftt - T;R (10.30)

is the phase of the radiated wave relative to its phase at R = 0
and reference time t = O. If the source is moving toward the
receiver, as in Fig. 10-16, or vice versa, at a radial velocity Ur•

then

R=Ro-urt. ( 10.31)

where Ro is the distance between the source and the receiver at
t = O. Hence,

2rr
¢ = 2rrijt - -(Ro - urt).

At
(10.32)

This is the phase of the signal detected by the receiver. The
frequency of a wave is defined as the time derivative of the
phase ¢ divided by 2rr. Thus,

I d¢ . /lr
fr = 2rr dr = it + At . (10.33)

Comparison ofEq. (l0.33)withEq. (l0.28)leads to I« = ur/At.
For radar, the Doppler shift happens twice, once for the wave
from the radar to the target and again for the wave reflected
by the target back to the radar. Hence, fd = 2ur/At. The
dependence of fd on direction is given by the dot product of
the velocity and range unit vectors, which leads to

Ur 211
fd = -2- = -- cos e,

At At
(10.34)

where Ur is the radial velocity component of u and e is the angle
between the range vector and the velocity vector (Fig. 10-17),
with the direction of the range vector defined to be from the
radar to the target. For a receding target (relative to the radar),
o :s o :s 90°. and for an approaching target. 90° :s o ::: 1800

•

10-8 Monopulse Radar

On the basis of information extracted from the echo due to
a single pulse, a mono pulse radar can track the direction
of a target with an angular accuracy equal to a fraction of
its antenna beamwidth. To track a target in both elevation
and azimuth. a monopulse radar uses an antenna (such as a
parabolic dish), with four separate small horns at its focal point
(Fig. 10-18). Monopulse systems are of two types. The first is
called amplitude-comparison monopulse because the tracking
information is extracted from the amplitudes of the echoes
received by the four horns. and the second is called phase-
comparison monopulse because it relies on the phases of the
received signals. We shall limit our present discussion to the
amplitude-comparison scheme.

Individually. each horn would produce its own beam,
with the four beams pointing in slightly different directions.
Figure 10-19 shows the beams of two adjacent horns. The



482 CHAPTER 10 SATELLITE COMMUNICATION SYSTEMS AND RADAR SENSORS

"",Range vector -,
'\';

/
Velocity vector

~ u

(a)

(b)

Figure 10-17: The Doppler frequency shift is negative for a
receding target (0 :5 () :5 900

), as in (a), and positive for an
approaching target (90° :5 (} :5 1800

), as in (b).

basic principle of the amplitude-comparison monopulse is to
measure the amplitudes of the echo signals received through
the two beams and then apply the difference between them to
repoint the antenna bore sight direction toward the target. Using
computer-controlled phase shifters, the phasing network shown
in Fig. 10-18 can combine the signal delivered to the four-
element horn array by the transmitter or by the echo signals
received by them in different ways. Upon transmission, the
network excites all four feeds in phase, thereby producing a
single main beam called the sum beam. The phasing network
uses special microwave devices that allow it to provide the
desired functionality during both the transmit and receive
modes. Its equivalent functionality is described by the circuits
shown in Fig. 10-20. During the receive period, the phasing
network uses power dividers, power combiners, and phase
shifters so as to generate three different output channels. One of
these is the sum channel, corresponding to adding all four horns

1--------12----- .....•
3--------'4------ .

(a)

Phasing
network

(b)

Figure 10-18: Antenna feeding arrangement for an amplitude-
comparison monopulse radar: (a) feed horns and (b) connection
to phasing network.

- - - -~-
Error

Figure 10-19: A target observed by two overlapping beams of
a monopulse radar.
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(a) Transmit mode

Top right

Elevation-difference
channel

Top left
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Bottom right
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(b) Receiver mode for elevation

Angle
error
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Figure 10·20: Functionality of the phasing network in (a) the transmit mode and (b) the receive mode for the elevation-difference channel.

in phase, and its radiation pattern is depicted in Fig. 10-21 (a).
The second channel, called the elevation-difference channel, is
obtained by first adding the outputs of the top-right and top-left
horns [Fig. 1O-20(b)], then adding the outputs of the bottom-
right and bottom-left horns, and then subtracting the second

sum from the first. The subtraction process is accomplished by
adding a 1800 phase shifter in the path of the second sum before
adding it to the first sum. The beam pattern of the elevation-
difference channel is shown in Fig. 10-21 (b). If the observed
target is centered between the two elevation beams, the receiver

~--. efC: ;:~

(a) Sum pattern (b) Elevation-difference pattern (c) Angle error signal

Figure 10·21: Monopulse antenna (a) sum pattern, (b) elevation-difference pattern, and (c) angle error signal.
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echoes will have the same strength for both beams, thereby
producing a zero output from the elevation-difference channel.
If it is not, the amplitude of the elevation-difference channel will
be proportional to the angular deviation of the target from the
boresight direction, and its sign will denote the direction of the
deviation. The third channel (not shown in Fig. 10-20) is the
azimuth-difference channel, and it is accomplished through
a similar process that generates a beam corresponding to the
difference between the sum of the two right horns and the sum
of the two left horns.

In practice, the output of the difference channel is multiplied
by the output of the sum channel to increase the strength
of the difference signal and to provide a phase reference for
extracting the sign of the angle. This product. called the angle
error signal, is displayed in Fig. 10-21(c) as a function of the
angle error. The error signal activates a servo-control system
to reposition the antenna direction. By applying a similar
procedure along the azimuth direction using the product of the
azimuth-difference channel and the slim channel, a monopulse
radar provides automatic tracking in both directions. The range
to the target is obtained by measuring the round-trip delay of
the signal.

Review Question 10-5: How is the PRF related to
unambiguous range?

Review Question 10-6: Explain how the false-alarm
probability and the detection probability are related to the
noise level of the receiver.

Review Question 10-7: In terms of the geometry shown
in Fig. 10-17, when is the Doppler shift a maximum?

Review Question 10-8: What is the principle of the
monopuise radar'?
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Satellite Communication Systems
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PROBLEMS 4X5

CHAPTER HIGHLIGHTS

extracted about the range of a target, its radial velocity,
direction of motion, and other characteristics.

• Three equally spaced satellites in geostationary orbit
can provide coverage of most of Earth's surface.

• The use of polarization diversity makes it possible to
double the number of channels per unit bandwidth
carried by a satellite repeater.

• A satellite antenna system is designed to produce
beams tailored to match the areas served by the
satellite. Antenna arrays are particularly suitable for
this purpose.

• Due to the random nature of receiver noise, target
detection is a statistical process characterized by
detection and false-alarm probabilities.

• A moving object produces a Doppler frequency shift
proportional to the radial velocity of the object (relative
to the radar) and inversely proportional to A.

• A radar is an electromagnetic sensor that illuminates
a region of space and then measures the echoes due to
reflecting objects. From the echoes, information can be

• A monopulse radar uses multiple beams to track the
direction of a target, with an angular accuracy equal to
a fraction of its antenna beam width.

GLOSSARY OF IMPORTANT TERMS

Provide definitions or explain the meaning of the following terms:

atmospheric transmissivity 1
azimuth resolution
bistatic radar
circulator
detection probability
Doppler frequency shift fd
duplexer
Explorer I
false-alarm probability
FDMA
geostationary orbit
interpulse period Tp

lidar
matched filter
maximum detectable range Rmax

monopulse radar
monostatic radar
multiplexer
polarization diversity
pulse length r
pulse repetition frequency (PRF) fp
radar
radar cross section at
radar equation

radial velocity u,
range resolution
Score
signal-to-noise ratio
Sputnik I
sum and difference channels
synchronizer
system noise temperature
threshold detection level
transponder
unambiguous range R;
uplink and downlink

PROBLEMS 10.2 A transponder with a bandwidth of 400 MHz uses
polarization diversity. If the bandwidth allocated to transmit
a single telephone channel is 4 kHz, how many telephone
channels can be carried by the transponder?

Sections 10-1 to 10-4: Satellite Communication Systems

* 10.1 A remote sensing satellite is in circular orbit around
Earth at an altitude of 1.100 km above Earth's surface. What is
its orbital period? * 10.3 Repeat Problem 10.2 for TV channels, each requiring a

bandwidth of 6 MHz.*Answcrts) available ill Appendix D.



10.6 A 1O-GHz weather radar uses a 15-cm-diameter lossless
antenna. At a distance of I km, what are the dimensions of the
volume resolvable by the radar if the pulse length is 1 J.Ls?

* 10.7 A radar system is characterized by the following
parameters: Pt = I kW, T = 0.1 J.LS,G = 30 dB, A = 3 ern,
and T.,ys = 1, 500 K. The radar cross section of a car is typically
5 m2. How far away can the car be and remain detectable by
the radar with a minimum signal-to-noise ratio of 13 dB?

10.8 A 3-cm-wavelength radar is located at the origin of
an x-y coordinate system. A car located at x = 100 m and
y = 200 m is heading east (x-direction) at a speed of 120 kmfhr.
What is the Doppler frequency measured by the radar?

486 CHAPTER 10 SATELLITE COMMUNICATION SYSTEMS AND RADAR SENSORS

10.4 A geostationary satellite is at a distance of 40,000 km
from a ground receiving station. The satellite transmitting
antenna is a circular aperture with a I-m diameter, and the
ground station uses a parabolic dish antenna with an effective
diameter of 20 em. If the satellite transmits 1 kW of power at
12 GHz and the ground receiver is characterized by a system
noise temperature of I ,000 K, what would be the signal-to-noise
ratio of a received TV signal with a bandwidth of 6 MHz? The
antennas and the atmosphere may be assumed lossless,

Sections 10-5 to 10-8: Radar Sensors

* 10.5 A collision avoidance automotive radar is designed to
detect the presence of vehicles up to a range of 0.5 km. What
is the maximum usable PRF?
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A
Symbols, Quantities,Units,

and Abbreviations

Symbol Quantity SI Unit Abbreviation

A Magnetic potential (vector) webers/meter Wb/m

B Susceptance SIemens S

B Magnetic flux density teslas or webers/meter2 TorW/m2

C Capacitance farads F

D Directivity (antenna) (dimensionless)

D Electric flux density coulombs/meter/ C/m2

d Moment arm meters m

E Electric-field intensity volts/meter Vim

Eds Dielectric strength volts/meter Vim

F Radiation intensity (normal ized) (dimensionless)

F Force newtons N
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Symbol Quantity Sf Unit Abbreviation

f Frequency hertz Hz

I« Doppler frequency hertz Hz

fmn Cutoff frequency hertz Hz

G Conductance siemens S

G Gain (power) (dimensionless)

H Magnetic field intensity amperes/meter Nm
I Current amperes A

J Current density (volume) amperes/meter- Nm2

Js Current density (surface) amperes/meter Nm

k Wavenumber radians/meter rad/m

kc Cutoff wavenumber radians/second rad/s

L Inductance henrys H

Length meters m

M,m Mass kilograms kg

M Magnetization vector amperes/meter Nm

m Magnetic dipole moment ampere-meters2 Aom2

n Index of refraction (dimensionless)

p Power watts W

P Electric polarization vector coulombs/meter/ C/m2

p Pressure newtons/meter- N/m2

p Electric dipole moment coulomb-meters Com

Q Quality factor (dimensionless)

Q,q Charge coulombs C

R Reflectivity (reflectance) (dimensionless)

R Resistance ohms Q

R Range meters m

r Radial distance meters m

S Standing-wave ratio (dimensionless)

S Poynting vector watts/meter/ W/m2

Say Power density watts/meter/ W/m2

T Temperature kelvin K

T Transmissivity (transmittance) (dimensionless)
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Symbol Quantity SI Unit Abbreviation

T Torque newton-meters N·m

Time seconds s

T period seconds s

u Velocity meters/second m/s

Ug Group velocity meters/second m/s

up Phase velocity meters/second m/s

V Electric potential volts V

V Voltage volts V

Vb\' Voltage breakdown volts V

Vemf Electromotive force (emt) volts V

W Energy (work) joules J

w Energy density joules/meter' J/m3

X Reactance ohms Q

y Admittance siemens S

Z Impedance ohms Q

a Attenuation constant nepers/meter Nplm

f3 Beamwidth degrees 0

f3 Phase constant (wavenumber) radians/meter radlm

r Reflection coefficient (dimensionless)

y Propagation constant meters-I m-I

8s Skin depth meters m

E, EO Permittivity farads/meter F/m

Er Relative permittivity (dimensionless)

T/ Impedance ohms Q
).. Wavelength meters m

jJ.,jJ.O Permeability henrys/meter HIm

/-ir Relative permeability (dimensionless)

/-ie, /-ih Mobility (electron, hole) meters/ /volt- second m2/V·s

PI Charge density (linear) coulombs/meter Clm

Ps Charge density (surface) coulombs/meter' C/m2

Pv Charge density (volume) coulombs/meter ' C/m3

a Conductivity siemens/meter S/m
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Symbol Quantity SI Unit Abbreviation

at Radar cross section meters? m2

T Transmission coefficient (dimension less)

T Pulse length seconds s
y Atmospheric transmissivity (dimensionless)
cp Magnetic flux webers Wb

'If Gravitational field newtons/kilogram N/kg

Xe Electric susceptibility (dimensionless)

Xm Magnetic susceptibility (dimensionless)

Q Solid angle steradians sr

w Angular frequency radians/second rad/s

co Angular velocity radians/second radls
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B
Material Constants of Some

Common Materials

Table H-I: RELATIVE PERMITTIVITY cr OF COMMON MATERIALSa

Material Relative Permittivity, fr Material Relative Permittivity, tr

Vacuum I Dry soil 2.5-3.5
Air (at sea level) 1.0006 Plexiglass 3.4
Styrofoam un Glass 4.5-10
Teflon 2.1 Quartz 3.8-5
Petroleum oil 2.1 Bakelite 5
Wood (dry) 1.5-4 Porcelain 5.7
Paraffin 2.2 Formica 6
Polyethylene 2.25 Mica 5.4-6
Polystyrene 2.6 Ammonia 22

i Paper 2-4 Seawater 72-80
Rubber 2.2-4.1 Distilled water 81

uThese are low-frequency values at room temperature (200 C).

Note: For most metals. E:r ::::: I.
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Table B-2: CONDUCTIVITY (J OF SOME COMMON MATERIALSa

Material Conductivity. (J (S'm) Material Conductivity. a (S/m)

Conductors Semiconductors
Silver 6.2 x 107 Pure germanium 2.2
Copper 5.8 x 107 Pure silicon 4.4 x 10-4

Gold 4.1 x 107 lnsulutors
Aluminum 3.5 x 107 Wet soil ~ 10-2

Tungsten 1.8 x 107 Fresh water ~ 10-3

Zinc 1.7 x 107 Distilled water ~ 10-4

Brass 1.5 x 107 Dry soil ~ 10-4

Iron 107 Glass 10-12

Bronze 107 Hard rubber 10-15

Tin 9 x 106 Paraffin 10-15

Lead 5 x 106 Mica 10-15

Mercury 106 Fused quartz 10-17

Carbon 3 x 104 Wax 10-17

Seawater 4
Animal body (average) 0.3 (poor cond.)

"These are low-frequency values at room temperature (200 C).

Table B-3: RELATIVE PERMITTIVITY Itr OF COMMON MATERIALSa

11 = JlrllO and Ito = 4rr x 10-7 HIm
Relative

Material Permeability, Jlr
Diamagnetic

Bismuth 0.99983::::: I
Gold 0.99996::::: I
Mercury 0.99997::::: I
Silver 0.99998::::: I
Copper 0.99999::::: I
Water 0.99999::::: I

Paramagnetic
Air 1.000004::::: I
Aluminum 1.00002::::: I
Tungsten 1.00008::::: I
Titanium 1.0002::::: I
Platinum 1.0003::::: I

Ferromagnetic (nonlinear)
Cobalt 250
Nickel 600
Mild steel 2.000
Iron (pure) 4,000-5.000
Silicon iron 7,000
Mumetal ~ 100,000
Purified iron ~ 200,000

aThese are typical values; actual values depend on material variety.

Note: Except for ferromagnetic materials. Ilr :::::I for all dielectrics and conductors.
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Mathematical Formulas

Trigonometric Relations

sin(x ± y) = sinx cos y ± cosx sin y

cos (x ± y) = cos x cos Y =t= sin x sin y

2 sin x sin y = cos(x - y) - cos(x + y)

2 sin x cos y = sin(x + y) + sin(x - y)

2 cosx cos y = cos(x + y) + cos (x - y)

sin 2x = 2 sinx cosx

cos 2x = 1 - 2 sin2 x

. (x + V) (x - v)sin x + sin y = 2sin -2-- cos -2--

(
X + v) (x - y)sin x - sin y = 2 cos 2 sin -2-

(
x+y) (x-y)cos x + cos y = 2 cos -2- cos -2-

cosx - cosy = -2sin C-; Y) sin e;Y)
cos(x ± 90°) = =t= sin x

cos (-x) = cos x

sin(x ± 90°) = ± cos x
sine -x) = - sin x

ejx = cosx + j sinx (Euler's identity)
eJx _ e-jx

smx=----
2j

ejx + e-jx
cosx=----

2
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Approximations for Small Quantities
For [x] « 1,

(1 ± x)" ::::1± nx
(1 ± x)2 :::: 1± 2x

vT±X::::l±~
2

1 x
--=== "" 1=f-~- 2

x2
eX = 1 +x + - + ... ::::1 +x

2!
In(1 + x) :::: x

x3 x5
sin x = x - - + - + ... ::::x

3! 5!
x2 x4 x2

cos x = 1 - - + - + ... ::::1 - -
2! 4! 2

1
. sinx
Im-=lx~o X
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Answers to Selected Problems

D

Chapter 1

1.1 p(x, t) = 32.36eos(4rr x 103t - I2.I2rrx + 36°)
(N/m2)

1.3 A = 10 cm

1.6 up = 0.83 (mls); A = 10.47 m

1.8 (a) Y1 (x, t) is traveling in positive x-direction, while
Y2(X, t) is traveling in negative x-direction.

(b) x = (rr/60 + 2nrr/30) em; IYslmax = 7.61

(c) x = nrr/30; IYslmin = 0

1.10 T = 2.5 s: up = 0.56 m/s: A = 1.4 m

1.14 a = 2 x 10-3 (Np/m)

1.17 (a) Zj = 3.6e-j33.7°; Z2 = 5eJ143.JO

(b) IZII = 3.60
(c) Z1Z2 = 18ejl09.4°

(d) Zl/Z2 = O.72e-il76.8°

(e) zf = 46.66e-J101.l
o

1.20 (a) t=3+jl;s=5.1ej78.7°

(b) t = 4.24e-j45°; s = 4.24ej45D

(c) t = 5.2; s = 3 ej'JOO

(d) t = 0; s = 6 ei30'

1.22 In(z) = 1.76 - j 1.03

1.25 vc(t) = 15.57eos(2rr x 103t-81S)V
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1.27 (a) v(t)=5cos(wt-2rr/3)V
(b) v(t)=6cos(wt+rr/4)V
(e) i(t) = IOcos(wt + 53.1°) A
(d) i(t) = 3.61 cos(wt + 146.31°) A
( e) i(t) = - sin cot A

(f) i(t) = 2cos(wt + rr/6) A

Chapter 2

2.1 (a) II).. = 1.33 x 10-5; transmission line may be
ignored.

( e) II).. = 0.4; transmission line effects should be
included.

2.2 R' = 3.71 (Wm); L' = 1.36 (/iHlm); G' = 1.85
(/is/m); C' = 21.3 (pF/m)

2.6 R' = 0.79 (Wm); L' = 139 (nH/m); G' = 9.1 (mS/m);
C' = 362 (pF/m)

2.8 ex = 0.109 Np/m; f3 = 44.5 rad/m:
Zo = (19.6 + jO.030) Q; Lip = 1.41 X 10M mls

2.9 Feff = 1.85; Zo = 193.3 Q; f3 = 284.87 (rad/rn)

2.14 R' = I (Q/m); L' = 200 (nH/m); G' = 400 (IiS/m);
C ' = 80 (pF/m); A = 2.5 m

2.18 (a) h=4.2mm
(b) Lip = 2 X 108 mls

2.21 ZL = (90 - j120) Q

2.23 z, = 55.9 Q

2.27 z., = (40 + j20) Q

2.31 (a) r = 0.62e- j2lJ.7°

(b) Zin = (12.5 - j 12.7) Q
(e) Vi = 1.40e-j34.0° (V); ~ = 78.4e-jIIS (rnA)

2.33 (a) Zinl = (35.20 - j8.62) Q
(b) Z~ = (17.6 - j4.31) Q
(c) Zin = (107.57 - j56.7) Q

2.37 I = )..14 + 11)..12

2.39 z., = 300 Q

2.42 (a) Zin = (41.25 - jI6.35) Q
(b) ~ = 3.24ejIO.16° A; Vi = 143.6e-jI1.46° V

( c) Pin = 216 W
(d) VL= 180e-j54° V; h, = 2.4e-jW A;

Pi. = Pin = 216 W

(e) Pz, = 262.4 W; Pg = 478.4 W

2.44 P~v = 10.0 mW; P:v = -1.1 mW; P1v = 8.9 mW

2.52 ZOI = 40 Q; Z02 = 250 Q

2.55 (a) Zin=-jI54Q
(b) 0.074).. + (fl)..12), 11= 0, 1. 2 ....

2.58 (a) ZL=j95Q

2.61 ZL = (41 - jI9.5) Q

2.63 Zin = (95 - j70) Q

2.69 First solution: Stub at d = 0.199).. from antenna and stub
length I = 0.125)... Second solution: d = 0.375).. from
antenna and stub length I = 0.375)...

2.73 z, = 100 Q

2.78 Vg= 19.2 V; Rg = 30 Q; 1= 525 m

2.82 (a) 1= 1200 m

(b) h = 0 (short circuit)
( e) Rg = 83.3 Q
(d)Vg=32V

Chapter 3

3.1 II = xO.32 + zO.95

3.3 Area = 36

3.5 (a) A = v'I4; aA = (x+y2-z3)/v'I4
( e) A· (8 x C) = 20
(h)(Axy)·z=1

37 A(1,-1,2) = -xO.15- "0.77 + zO.62
• IA(l. -1. 2)1 Y

3.11 a=(x2-z4)/J20

3.13 A = xO.8 + y 1.6

3.15 C = xO.37 + YO.56 + zO.74

3.22 (a) PI = (2.24. 63.4°. 0) in cylindrical;
PI = (2.24,90°.63.4°) in spherical

(b) P2 = (0,0°,2) in cylindrical;
P:, = (2.0°,0°) in spherical

(e) P3 = (1.41,45°,3) in cylindrical;
P~ = (3.32.25.2°,45°) in spherical

(d) P4 = (2.83,135°, -2) in cylindrical;
P4 = (3.46.125.3°,135°) in spherical
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3.24 (a) PI (0,0,5)
(b) P2(0, n, 5)

(e) P3(3,0,0)

3.26 (a) V = 21n/2
(b) V = 125n/3

3.28 (a) En = -i'2
(b) E, = z9

3.30 (a) eAB = 90°
(b) ±(r0.487 + .0.228 + zO.843)

3.32 (a) d = vI3

(b) d = 3.18
(e)d=5

3.35 (a) A(PI> = R2.856 - fh.888 +.2.123

(b) B(P2) = -RO.896 +90.449 -.5

(e) C(P3) = RO.854 + 90.146 - .0.707

(d) D(P4) = R3.67 - 9l.73 - .0.707

3.38 T(z) = 10 + (I - e-3Z)/3

3.40 dV/dl = 2.18

3.43 dU /dl = -0.02

3.46 (a) f E· ds = -8/3

(b) ffJ V·Edv=-8/3

3.48 (a) f D· ds = 150n

(b) iff V·Ddv= 150n

3.52 (a) f B . dl = 8

c
(b) f (V x B) . lis = 8

s
3.56 (a) A is solenoidal, but not conservative.

(b) B is conservative, but not solenoidal.
( e) C is neither solenoidal nor conservative.
( d) D is conservative, but not solenoidal.
( e) E is conservative, but not solenoidal.
( f) F is neither conservative nor solenoidal.
(g) G is neither conservative nor solenoidal.
(h) H is conservative, but not solenoidal.

Chapter 4
4.1 Q = 2.62 (mC)

4.3 Q = 86.65 (mC)

4.71=314.2A
4.11 E = z51.2 kV/m

4.13 q2 = -94.69 (~e)

4.15 E =
898.8 3/2 [-xO.014 - YO.OO6+ zO.78z] (Vim)

(0.02)2 + z2)
(a) E = -x 1.6 - YO.66 (MV/m)
(b) E = -x 81.4 - Y33.7 + z226 (kV/m)
(e) E = -x81.4 - Y33.7 - z226 (kV/m)

4.17 E = z (Psoh/2eoH Ja2 + h2 + h2 / Ja2 + h2 - 2h]
4.19 E = 0
4.23 (a) p; = y373

(b) Q=32(C)
(e) Q = 32 (e)

4.25 Q = 4npoa3 (e)

4.27 D = rpvo(r2 - 1)/2r. for 1 ~ r S 3 m
D = r4pvo/r, for r ::::3 m

4.32 (b) E = z(p/a/2so)[z/(a2 + z2)3/2] (Vim)

4.34 V(b) = (p//4ne)
x In[(l + Jl2 + 4b2)/(-1 + JI2 + 4b2)] (V)

4.39 VAB = -117.09 V

4.41 (a) a = 4.32 x 10-4 (S/m)
(b) I = 1.36 (~A)

(e) u, = -8.125E/IEI (m/s); Dh = 3.125E/IEI (m/s)
(d) R = 3.68 (MQ)
(e) P = 6.8(~W)

4.45 R = 4.2 (mQ)

4.48 e = 61°

4.51 fh = 71.6°; e2 = 78.7°; e3 = 81.9°; e4 = 45°

4.53 (a) lEI is maximum at r = a.
(b) Breakdown voltage for the capacitor is V = 1.39

(MV).

4.55 We = 4.62 x 10-9 (1)

4.57 (a) C = 3.1 pF
(b) C = 0.5 pF
(e) C = 0.22 pF
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Chapter 5

5.3 IBI = 1.63 (T)

5.5 (a)F=-x1.41N

(b) W = 0

(c)4>=O

5.7 B = -zO.6 (mT)

A/8(b-a) ~
5.9 H = z , with z being out of the page

4rrab

5.11 l : = 0.2 A; direction is clockwise. as seen from above.

5.13 / = 200 A

5.16 F = -xO.4 (mN), where x is the direction away from the
wire, in the plane of the loop. Thus. the force is pulling
the loop toward the wire.

~ / 1 (W)5.18 (a) H(O, O. h) = -x - tan- - (Aim)
rrw 2h

(b) F' = z (lJ.LO tan-1 (~) (N)
m rrw 2h

Force is repulsive.

5.20 F = y4 x 10-5 N

5.22 (a) H, = cIIJofor 0:5 r :5 a

(b) H2 = ~Jo(a/r) for r 2::: a

5.24 J = z 24e-3r Alm2

5.27 (a) B = z5rr sin rry - yrr cos rrx (T)

(b) <P=0

(c)<P=O

5.29 (a) A = zJ.LolL/(4rr R)

(b) H = (lL/4rr)[(-xy +yx)/(x2 + y2 +z2)3/2]

5.31 ne = 1.5 electronslatom

5.33 H2 = z3

5.37 L = (J.Ll/rr) In[(d - a)/a] (H)

5.39 Wrn = 20812 (nJ)

Chapter 6

6.1 At t = O.current in top loop is momentarily clockwise.
At t = fl. current in top loop is momentarily
counterclockwise.

6.3 (a) Vernf = 375e-21 (V)

(b) Vcmf = 124.6 sin 103( (kV)

(c) Vcmf = 0

6.5 Bo = 0.8 (nT)

6.7 lind = 37.7 sin(200rrt) rnA

6.10 V12 = -236 (J.LV)

6.13 V = wBoa2/2
6.15 1 = 0.82cos(l20rrt) (J.LA)

6.20 p; = (8y/w) sin tot + Co. where Co is a constant of
integration.

6.24 k = (4rr/30) rad/m; E = _z94Iej4Jry/30 (VIm)

6.26 H = ~~ sin e cos(6rr x lOSt - 2rr R) (fLAlm)

Chapter 7

7.1 ( a) Positive y-direction
(b) up = 2 X 108 mls

(c) A=12.6m
(d) lOr = 2.25
(e) E = -x7.54e-jo.SY (VIm)

7.3 (a) A = 31.42 m

(b) f = 4.77 MHz
(c) lOr = 1.67
(d) Hrz, t) = x22.13 cos(9.54rr x 106t + 0.2z)

(mAIm)

7.5 lOr = 9

7.8 E = x~cos(rr x 1OIOt + 104.72z)
- y~ sin(rr x 1OIOt + 104.72 z) (V1m)

7.10 lEI = 20; 1/F(t = 0) = 0; 1/F(t = 5 ns) = -45°;
1/F(t = 10 ns) = -90°

7.12 (a) y = 73.5° and X = -8.73°
(b) Right-hand elliptically polarized

7.17 H lags E by 31.720

7.20 up = 9.42 x 104 (mls)
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7.22 H = -YO.16e-30x COS(27Cx 109t - 40x - 36.85°)
(Nm)

7.25 (Rae! Rdc) = 143.55
7.27 Say = Y0.48 (W/m2)

7.29 (a) Say = zI25e-o.4z (W/m2)
(b) A=-1.74z(dB)
(e) z=23.03m

7.31 up = 1 X 108 (m/s)

7.34 (b) Pay = 7.05 X 10-4 (W)

Chapter 8
8.1 (a) r = -0.67; T = 0.33

(b) S = 5
(e) S~v = 0.52 (W/m~); S~y = 0.24 (W/m2);

S~v = 0.28 (W 1m )
8.5 (a) Ei = 5Cx+ jy)e-j4rrz/3 (VIm)

(b) r = -0.2; r = 0.8
(e) Ef = -(x + jy)ej4rrz/3 (VIm);

EI = 4(x + jY)e-1.26xI0-2ze-j2rrz (VIm);
EI = 5(x + jy)[e-j4rrz/3 - 0.2ej4rrz(3) (Vim)

(d) % of reflected power = 4%;
% of transmitted power = 96%

8.7 lEI Imax= 85.5 (VIm); lmax = 1.5 m

8.9 £f2 = J£fl£q; d = c/[4f(£fl£f3)ij4)

8.11 Zin::::: (lOa - j 127) Q; reflected fraction of incident
power = 0.24

8.13 f = 75 MHz
8.15 pi = 1.01 x 10-4 W/m2

8.17 emin = 20.40

SI
8.19 -r-r- = 0.85

SI
8.22 d = 15 ern
8.24 d = 68.42 em

8.26 fp = 59.88 (Mb/s)

8.31 et = 18.44°
8.35 (a) R = 6.4 x 10-3; T = 0.9936

(b) pi = 85 mW; pr = 0.55 mW; pi = 84.45 mW

8.39 a = 3.33 em; b = 2 em
8.43 570 Q (empty); 290 Q (filled)

8.45 e~o= 57.r
8.47 (a) Q = 8367; (b) Q = 9850

Chapter 9
9.1 Smax= 7.6 (J-tW/m2)

9.3 (a) Direction of maximum radiation is a circular cone
1200 wide, centered around the -l-z-axis.

(b) D =4 = 6dB
(e) Qp=7C(sr)=3.14(sr)
(d) f3 = 120°

9.5 (a) ~ = 29.7%
(b) G = 0.44 = -3.5 dB
( e) 10 = 67.6 A; PI = 269 W

9.7 Smax= 4 x 10-5 (W/m2)

9.9 D = 36.61 dB

9.11 (a) ~ = 99.3%
(b) G = 1.63 = 2.1 dB
(e) /0 = 1.48 A; PI = 80.4 W

~ ~ ~ ~ Io1kr/O (e-JkR) .9.14 (a) E(R, e, ¢) = OEII = OJ ~ -R- sme

(b) ~:~~:) = (fJOk2 :6/:) sin2 e (W/m2)
1287C R

(e) D = 1.5
(d) Rrad = 2071'2(1/).,)2(Q)

9.18 (a) ~ = 62%
(b) G = 0.93 = -0.3 dB
(e) 10 = 95 A; P; = 129.2 W

9.20 PI = 259 (mW)

9.22 PI = 75 (J-tW)

9.26 f3nuJl= 5.73°
9.28 (a) f3xz = 0.75°; f3\'z = 1.50

(b) D=3.61 x 104 = 45.6 dB

9.30 (a) f3e = 1.8°; f3a = 0.18°
(b) fly = f3aR = 0.96 m

9.32 (a) FaCe) = 4cos2 [i (4cose + I)]
(b) FaCe)=5+4cos(27Ccose)
(e) FaCe) = 4cos2(1 cos e - t)
(d) Fa(e)=5+4cos(7Ccose+t)
(e) Fa(e) = 5 - 4sin(1 cos e)

9.34 df): = 1.414

- sin2[(157C/4)cose) . f3 - 1350

9.36 Fan(e) - 25sin2[(37C/4)cose)' - .

9.39 8 = -2.72 (rad) = -155.9°



500 APPENDIX D ANSWERS TO SELECTED PROBLEMS

Chapter 10
10.1 T = 82.97 minutes

10.3 133 channels

10.5 (fp)max = 300 kHz

10.7 Rmax = 4.84 km
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3-dB beamwidth, 425

A
Abacus, 24
Ablation, 131
ac motor, 17,21
ac resistance R, 354
Acceptance angle (Ja, 376
Adding machine, 24
Alternating current (ac), 21
AM radio, 22
Ampere, Andre-Marie, 20
Ampere'S law, 268-271, 283
Amplitude-comparison monopulse radar, 481
Amplitude modulation (AM), 22
Analog computer, 24
Angle error signal, 484
Angle of incidence OJ,374
Angle of reflection (Jr, 374
Angle of transmission 8t, 374
Angular frequency co, 35, 71
Angular velocity ro, 35
Antennas, 416-461, 474-475

aperture, 441
rectangular, 443-445
scalar formulation 441
vector formulation 441

arrays, 446-453
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linear phase, 457
pattern multiplication principle, 449
scanning, 456-460
uniform phase, 453-454

broadside direction, 421
directivity D, 425, 445
effective area, 445
far-field (far-zone) region, 417,420-421
gain, 427-429
half-wave dipole, 429--433
inputnnpedance, 416
isotropic, 416, 424
large aperture, 440-446
multiplication principle,
normalized radiation intensity, 421
pattern solid angle Up, 424
patterns, 416, 423

beam dimensions, 424
beamwidth {3,424-25
directivity D, 425-427

polarization, 416
receiving, 438-439
reciprocal,416
types, 475

arrays, 475
dipoles, 475
helices, 475
horns, 475
parabolic dishes. 475
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Antenna radiation pattern, 416
Arithmometer, 24
Armstrong, Edwin, 22, 23
ARPANET, 23
Array factor Fa ((n, 449

array amplitude distribution, 449
array phase distribution, 449

Atmospheric transmissivity Y, 473
Attenuation constant O!, 70, 348
Average power SaY, 355
Average power density SaY, 355
Auxiliary angle 1/10. 342
Axial ratio R, 342
Azimuth angle ¢i. 419
Azimuth-difference channel. 483
Azimuth plane (cp-plane), 423
Azimuth resolution Llx, 478

c

B

Capacitance C, 224-226
capacitor, 224
of a coaxial line, 226
of a parallel-plate capacitor, 225-226

Capacitive sensors, 212, 234-238
Capacitor, 20.

as batteries. 228-230
electrochemical double-layer (EDLC), 228

Cardullo. Mario. 335
Carrier frequency f. 476
Cartesian coordinate system .r , y. z 151. 152
CAT (CT) scan, 173
Cathode ray tube (CRT), 22
Cavity resonators, 404-406, 407
Cell phone, 23
Charge continuity equation, 316. 321
Charge distribution, 193-194, 197

surface distribution, 197
Circulation. 176
Circulator. 472
Coaxial line, 64
Complex conjugate, 43
Complex feeding coefficient Ai. 448
Complex numbers, 41-49

complex conjugate, 43
Euler's identity, 43, 56
polar form, 43
properties, 43, 48
rectangular fOlID. 41
rectangular-polar relations. 43. 56

Compressive stress. 310
Conductance G, 109
Conductivity (T. 24. 31. 209. 492
Conductors, 207-211

conduction current. 207
conduction current density J, 208
conductivity, 209. 492
equipotential medium, 209
resistance. 209-211
semiconductors, 208, 209

Conservative (irrotational) field. 178,203
Constitutive parameters, 207
Convection current, 194
Conversion efficiency, 53
Coordinate systems, 151-160

Cartesian x, y, z 151, 152
cylindrical r, cp, Z, 152, 153-155
spherical R, g, <p, 152, 157, 160

bac-cab rule, 150
Backus. John, 24
Band gap energy, 54
Bar-code readers. 390-391
Bardcen, John, 23
Base vector, 145
BASIC, 24
Beam dimensions, 424
Beamwidth /3, 424. 425, 444-445
Becquerel, Alexandre-Edmond, 53
Bell. Alexander. 22
Berliner. Emil. 22
Bemers-Lee, Tim, 25
Bhatia. Sabeer, 25
Bioelectrics. 132
Biot, Jean-Baptiste, 20,29
Biot-Savart law, 20, 29. 257-263, 283

current distributions, 258-261
surface current density Js,258
volume current density J, 258
volume distributions, 258-261

Bistatic radar, 479
Brattain, Walter, 23
Braun, Karl, 22
Brewster (polarizing) angle. 385-386. 407
Broadside array, 453
Broadside direction, 421
Bush, Vannevar, 24
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Coplanar waveguide, 64
Cormack, Allan, 173
Coulomb (C), 27

Coulomb, Charles-Augustin de, 17,20,27
Coulomb's law, 27,195-199

charge distribution, 197
circular disk of charge, 199
infinite sheet of charge, 199
line distribution, 197
relative permittivity (dielectric constant) Fr, 195-196
ring of charge, 198
surface distribution, 197
two-point charges, 196
volume distribution, 197

Critical angle o-. 375
Cross (vector) product, 148-149
CT (CAT) scan, 173
Curie, Paul-Jacques, 310
Curie, Pierre, 310
Curl operator, 176, 177
Cutoff frequency .611n, 397
Cutoff wavenumber kc, 395
Cylindrical coordinate system r,,p, Z, 152, 153-155

o
de motor, 17
De Forest, Lee, 22
Deep Blue, 25
Del (gradient operator) V', 165
Detection, 478-480

maximum detectable range Rmax, 479
threshold detection level Prmln,479

Diamagnetic, 273
Dielectric constant (relative permittivity) Fr, 29, 195-196, 216, 491
Dielectrics, 207, 215-217

anisotropic, 216
breakdown, 216-217
breakdown voltage Vbr, 217
electric polarization tleld P, 216
electric susceptibility Xe, 216
homogeneous, 216
isotropic, 216
linear, 216
nonpolar, 215
perfect, 208, 209
permanent dipole moments, 215
polar materials, 215

polarization, 215
strength Eds, 216
tables, 216, 491

Difference channel, 469
Digital computer, 24
Dimensions, 19
Dipole, 28, 92, 205, 261,268

electric, 28, 92, 205
half-wave, 429-433, 462
Hertzian, 418-422
linear, 432-433
moment. 205
short, 438, 462
vertical, 446

Direct current (de), 17
Directional derivative dT [dl, 166
Directivity D, 425, 445
Displacement current Id, 313-315
Displacement current density Jd, 313
Distance vector, 147
Divergence operator, 170-172, 176
Divergence theorem, 171
Dominant mode, 397
Doppler frequency shift fd, 475, 480
Doppler radar, 480-481
Dot (scalar) product, 147-148
Downlink, 471
Drift velocity uc, 208
du Fay, Charles Francois, 17,20
Duplexer (T/R switch), 471,476

E
e electron charge, 27
Echo satellite, 23
Eckert, J. Presper, 24
Edison, Thomas, 22, 44
Effective aperture, 438, See a/so Effective area
Effective area Ae, 438
Einstein, Albert, 17,21,53
Electric, 17, 20
Electric charge, 17, 20,27-28

law of conservation of electric charge, 28
principle of linear superposition, 28

Electric dipole, 28, 92, 205
moment, 205

Electric-field aperture distribution Ea(xa, .va), 441
Electric field intensity E. 27, 192
Electric field phasor E, 333
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Electric fields, 27-29, 192, 195-199
dipole, 28, 205
e charge, 27
polarization, 28, 215

Electric flux density D, 29, 192
Electric generator, 17
Electric potential V, 202
Electric scalar potential, 202-206

as a function of electric field, 202-204
due to continuous distributions, 204
due to point charges, 204, 239
electric dipole, 205
Kirchhoff's voltage law, 203
Laplace's equation, 206
line distribution, 204
Poisson's equation, 206
potential energy, 202

Electric susceptibility Xe, 216
Electric typewriter, 22
Electrical force Fe, 27
Electrical permittivity e, 27,79,195-196,216,492

of free space eO, 27
Electrical sensors, 212

capacitive, 212
emf,212
inductive, 212
resistive, 212-214

Electromagnetic (EM) force, 26, 251
Electromagnetic (EM) spectrum, 40-41

gamma rays, 40. 41
infrared, 40. 41
microwave band, 40, 41

EHF, 41
millimeter-wave band, 41
SHF,41
UHF, 41

monochromatic, 40
properties, 40
radio spectrum, 40, 41, 42
ultraviolet, 40, 41
visible, 40, 41
X-rays, 40, 41

Electromagnetic generator. 307-308
Electromagnetic induction, 297
Electromagnetic telegraph, 22
Electromagnetic waves, 21, 92.364-406
Electromagnets, 264-267

ferromagnetic core, 264
horseshoe, 264

loudspeaker, 266-267
magnetic levitation. 266
magnetically levitated trains (maglevs), 266-267
reed relay. 265
step-down transformer, 265
switch,265

Electromotive force (emf) Vernf, 21. 297
Electron. 17, 21. 27
Electronic beeper, 23
Electronic steering, 447
EM,16
Electrostatics, 3 I, 192
Elevation angle (e-plane). 423
Elevation-difference channel, 469
Elevation plane «(;I-plane), 423
Ellipticity angle X. 341
Emf sensor, 212
End-fire direction. 457
Engelhart, Douglas. 25
ENIAC, 24
Equipotential, 209
Euler's identity. 43. 56
Evanescent wave, 397
Explorer Isatellite, 469

F
Faraday, Michael. 17,21,297
Faraday's law. 296-29H. 321

motional emf, 304. 321
transformer emf. 298. 321

Far-field (far-zone) region, 417
approximation. 419-420
power density, 420-421

False alarm probability, 47H
Feeding coefficient Ai, 448
Felt, Dorr, 24
Ferromagnetic, 273. 275-277
Fessenden, Reginald. 22
Fiber optics, 376-377
Field lines, 170
Floppy disk, 24
Florescence, 44
Florescent bulb, 44-47
Flux density, 170
FORTRAN,24
Franklin, Benjamin, 17,20
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Free space, 27
velocity of light c, 30
magnetic permeability /La, 30
electric permittivity e, 27

Frequency-division multiple access (FDMA), 471
Frequency modulation (FM), 23
Frequency scanning, 456-460
Friis transmission formula, 439--440, 473
Fundamental forces

electromagnetic, 26, 192
nuclear, 26
weak-interaction, 26
gravitational, 26

Horn antenna, 417
Hotmail, 25
Hounsfield, Godfrey, 173

Illumination Ea(xa, Ya), 441
Image method, 231-233
Imaginary part Jm ,41
Impedance matching, 114-121

lumped element matching, 115-120
matching points, 118
network, 115
shunt stub, 121
single-stub matching, 120-121
stub, 120

Impulse period Tp, 476
In-phase, 83
Incandescence, 44
Incandescent bulb, 44-47
Inclination angle 1/1, 338
Incremental phase delay 8, 457
Index of refraction, 374
Inductance, 21,278-282,283

of a coaxial line, 281
mutual, 279, 281-282
self, 279, 280
solenoid, 278

Inductive sensors, 212, 284-286
eddy-current proximity sensor, 286
ferromagnetic core, 284
linear variable differential transformer (LVDT), 284
proximity detection, 284

Infrared rays, 40, 41
In-phase, 83
Input impedance Zin, 428
Integrated circuit (IC), 23
Intercepted power Pint. 438
Internal (surface) impedance Zs, 353
International System of Units (SI), 19
Internet, 23, 25
Intrinsic impedance Y}, 332
Isotropic, 207
Isotropic antenna, 416, 424
Isotropic material, 207

G
Gamma rays, 40, 41
Gauss, Carl Friedrich, 21
Gauss's law, 21, 200-201

differential form, 200
of infinite line charge, 201
integral form, 200
Gaussian surface, 200

Gauss's law for magnetism, 263, 268, 283
Geostationary orbit, 469
Gilbert, William, 17,20
Global Positioning System (GPS), 158-159
Grad (gradient) VT, 165
Gradient operator, 165-169
Gravitational force, 26

gravitational field 'If, 26
Grazing incidence, 385
Group velocity Ug, 398

H
Half-power angle, 425
Half-power beamwidth, 424
Half-wave dipole, 429-433
Henry, Joseph, 17,21,297
Hertz, Heinrich, 17,21,22,35
Hertzian dipole, 418-422
High-power amplifier, 473
Hoff, Ted, 25
Hole drift velocity Dh, 208
Hole mobility /Lh, 208
Homogeneous material, 207
Homogeneous wave equation, 330

J
lava, 25
louie's law, 211
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K

M

of a circular loop. 260--261. 283
of a linear conductor. 258-259
of a long wire. 269-270. 283
of a magnetic dipole. 261
of an infinite current sheet. 271

Magnetic flux <1>.273
Magnetic flux density B. 29. 250
Magnetic flux linkage 11.. 280
Magnetic force F rn- 30. 250--254
Magnetic hysteresis. 276
Magnetic levitation. 266
Magnetic moment m. 273-274
Magnetic monopole. 263
Magnetic permeability J1., 30, 275. 492
Magnetic potential A. 272-273
Magnetic properties of materials, 273-277
Magnetic sound recorder. 22
Magnetic susceptibility Xm, 274
Magnetic torque. 255-257
Magnetite. 17.29
Magnetization vector M,
Magnetized domains. 275
Magnetron tube. 93
Magnus. 20
Marconi. Guglielmo. 22
Mars Pathfinder. 23
Maser. 378
Matched filter. 478
Maximum detectable range Rmax. 479
Maxwell. James Clerk. 17,21.192
Maxwell's equations. 263, 268-272. 283. 296
Mauchley, John. 24
Microprocessor. 25
Microstrip line, 64
Microwave band. 40. 41
Mobility J1.e. 208
Modal dispersion. 376
Modem. 24
Monochromatic, 40. 378
Monopulse radar. 481-470

amplitude-comparison rnonopulse, 481
phase-comparison monopulse, 481

Monostatic radar. 479
Morse. Samuel. 21. 22
Motional emf Ve~f' 298. 304. 321
MS-DOS. 25
Multiple-beam generation. 447
Multiple-PRF.477
Multiplexer. 473

Kapany, Narinder, 23
Kemeny. John. 24
Kilby. Jack. 23
Kirchhoff's laws 62.

current. 62. 316. 317
vo\tage.62.203

Kurtz. Thomas, 24

L
Laplace's equation. 206
Laplacian operator. 180--181
Lasers. 378-379
Law of conservation of electric charge. 28
LED bulb. 44-47
LED lighting. 44-47
Left-hand circular (LHe) polarization. 339
Leibniz, Gottfried von. 24
Lenz's law, 299. 301-302
Leyden Jar. 17
Lidars.475
Light emitting diode (LED), 46
Lightning rod. 20
Line charge. 193
Line charge density Pt. 193
Linear phase distribution. 456
Liquid crystal display (LCD). 15.345-347
Liquid crystals. 15
Logarithm, 24
Lorentz force. 25 I. 283
Loss resistance Rloss. 428
Loudspeaker. 266-267
Luminous efficacy (LE). 47

Macintosh. 25
Mairnan, Theodore. 378
Maglevs. 266-267
Magnetic dipole. 261
Magnetic energy Wm, 282-283
Magnetic field intensity H. 30, 250
Magnetic field phasor Ii. 333
Magnetic field. 258-261

between two parallel conductors. 262-263
in a solenoid. 278
inside a toroidal coil, 270-271
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N Phasors 49-56
Photoelectric effect, 17, 21, 53
Photovoltaic (PV), 53
Photovoltaic effect, 53
Piezein, 213, 310
Piezoelectric transducer, 310
Piezoresistivity,212-214
Planck, Max, 17
Plane-wave propagation, 327-358

attenuation rate A, 357
circular polarization, 337, 339-341

left-hand circular (LHC), 339
right-hand circular (RHC), 339-341

complex permittivity fe, 329
imaginary part e". 330
real part e', 330

elliptical polarization, 337, 341-343
auxiliary angle 0/0. 342
axial ratio R, 342
ellipticity angle X' 341
rotation angle y, 341

electromagnetic power density, 355
linear polarization, 337. 338-339
lossy medium, 328, 348-351

attenuation constant ex, 348
skin depth 8s, 348

low-loss dielectric, 349
Pocket calculator, 25
Poisson's equation, 206
Polarization, 28, 337, 380

parallel polarization, 380, 384-386
perpendicular polarization, 380, 381-384
transverse electric (TE) polarization, 380
transverse magnetic (TM) polarization, 380
unpolarized, 386

Polarization diversity, 473
Polarization field p, 216
Position vector, 147
Potential energy We. 227, 231-233
Poulsen, Valdemar. 22
Power density S(R, e, cp), 420-421
Power transfer ratio Precl PI, 439
Poynting vector (power density) S, 355,420
Principle of linear superposition, 28
Principal planes. 423
Propagation constant y. 330
Pulse code modulation (PCM), 23
Pulse length T. 476
Pulse repetition frequency (PRF) !p, 476

n-type layer. 53
Nakama. Yoshiro, 24
Nanocapacitor.228
Napier, John, 24
Negative electric charge, 17
Neutrons, 27
Newton, Isaac, 20
Noise power, 479, 470
Normal incidence, 368,407
Normalized load impedance ZL, 81
Normalized load reactance XL, 103
Normalized load resistance /L. 103
Notation, 19
Noyce, Robert, 23
Nuclear force, 26
Null beamwidth, 425

o
Oblique incidence, 373-375, 407
Oersted, Hans Christian, 20. 29, 296
Ohm, Georg Simon. 21
Ohm's law, 21, 207
Optical fiber, 23, 64
Orbital magnetic moment. 273-274

p
p-njunction,53
p-type layer, 53
Pager, 23
Parallel-plate transmission line, 64
Parallel polarization, 384-386
Paramagnetic, 273
Pascal, Blaise, 24
Pattern multiplication principle, 449
Pattern solid angle Qp, 424
Perfect conductor, 208, 209
Perfect dielectric, 208, 209
Permittivity s, 195,216,492
Perpendicular polarization, 380, 381-384
Phase constant {3,70, 348
Phase constant (wavenumber) k, 319
Phase-matching condition. 382
Phase velocity up, 332
Phasor representation, 19
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Q s
Quality factor Q, 406
Quasi-conductor, 349

A

Satellite, 468--480
antennas, 474--475
elliptical orbit, 470
geostationary, 469
transponders, 471--473

Savart, Felix, 20, 29
Scalar (dot) product, 147-148
Scalar quantity, 19
Scan angle D, 457
Score satellite. 469
Seebeck, Thomas, 312
Seebeck potential Vs, 312
Semiconductor, 208, 209
Sensors, 212

capacitive, 212, 234-238
emf, 212, 310--312
inductive, 212, 284-286
resistive, 212-214

Shockley, William, 23
Signal-to-noise ratio Sn, 440, 480, 470
Signal waveform, 476
Skin depth Ds, 348
Smith chart, 65. 101-114

admittance Y. 109
admittance transformation, 109-1 12
angle of reflected coefficient, 104
characteristic admittance Yo, 109
conductance G, 109
constant-SWR (-If I) circle, 106
matching points, 118
normalized admittance y, 109
normalized conductance g, 109
normalized susceptance b, 109
normalized load admittance YL, 109
normalized load impedance ZL" 103
normalized load reactance XL, 103
normalized load resistance IL, 103
normalized wave impedance zed), 105
parametric equations. 102-104
phase-shifted coefficient rd, \05
standing-wave ratio (SWR), 106--108
susceptance B, 109
unit circle, 103
voltage maxima IVlmax, 106--108
voltage minima IVlmin, 106--108
wavelengths toward generator (WTG), 106
wavelengths toward load (WTL), 106

Smith, Jack, 25

Radar (radio detection and ranging), 23, 480--470
azimuth resolution ~x, 478
cross-section, 479
bistatic, 479
detection, 478--480
Doppler, 480--481
monopulse, 481--470
monostatic,479
multiple-PRF. 477
operation, 476
pulse, 476
range. 476
range resolution ~R, 477
unambiguous range Ru, 477

Radar cross-section, 479
Radar equation, 479
Radial velocity u-, 475
Radiation efficiency ~, 427
Radiation intensity, 421
Radiation pattern, 416
Radiation resistance Rrad, 428
Radio frequency identification (RFID) systems, 335-336
Radio telegraphy, 22
Radio waves, 22, 40, 41, 42
Radius of geostationary orbit, 470, 470
Range R. 157
Range resolution ~R, 477
RC relation, 225, 239
Real part 9'lc, 41
Received power. 474, 470
Receiving cross section, 438, See also Effective area
Rectangular aperture, 443--445
Rectangular waveguide, 64
Reeves, H. A., 23
Reflectivity R, 387-389
Refraction angle, 374
Reinitzer, Friedrich, 345
Relaxation time constant Tr, 317
Resistive sensor, 212-214
Resonant frequency io, 404, 405--406
Retarded potentials, 318-319
Right-hand circular (RHC) polarization, 339-341
Rontgen, Wilhelm, 17,21
Rotation angle y, 341
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Smith, P.H., 101
Snell's laws, 373-375

of reflection, 374, 382, 407
of refraction, 374, 382, 407

Solar cell, 53
Solenoid, 264
Solid angle dQ, 423
Spherical propagation factor (e-jkR; R), 419
Spherical wave, 328
Spin magnetic moment. 273-274
Spontaneous emission, 378
Sputnik I satellite, 469
Standing wave, 72, 83-88

first voltage maximum, 85
first voltage minimum, 85
in-phase, 83
interference, 83
minimum value, !l4
maximum value, !l3
pattern, !l3, 93
phase-opposition, 84
properties, 98
voltage standing wave ratio [(VSWR) or (SWR)] S, 85

Static conditions, 192
Steradians (sr), 423
Stimulated emission, 378
Stokes's theorem, 178-179
Strip line, 64
Sturgeon, William, 22, 23, 264
Sum channel, 482
Sun beam, 482
Supercapacitor, 228
Superconductor, 208
Superheterodyne radio receiver, 22
Surface charge density Ps, 193
Surface (internal) impedance Zs, 353
Surface resistance R«. 354
Synchronizer-modulator. 476
System noise temperature T.,ys. 440, 474

Thermocouple. 310, 3 12
Thomas de Colmar, Charles Xavier, 24
Thompson,Ioseph,17,21
Threshold detection level Prmi•• 479
Tomography, 173
Toroidal coil, 270-271
Torque, 255-257
Total internal reflection, 375
Townes, Charles, 378
Transistor, 23
Transmission coefficients r , 368
Transmission lines, 61-134

admittance Y, 109
air line, 68. 72
bounce diagram. 127
characteristic impedance Zoo 71
characteristic parameters, 81
coaxial line, 64, 67, 74
complex propagation constant y, 70

attenuation constant a, 70
phase constant f3, 70

conductance G, 109
current maxima and minima, 85
definition, 62
dispersive transmission line, 65
di stortionless line, 65
effective relative permittivity fcff, 76
load impedance ZL, 80
guide wavelength A, 72
input impedance Zin, 88, 106
input reactance Xin, 94
input resistance Rin, 94
lossless line, 79-88
lossless microstrip line, 75-78
lumped-element model. 65-68
matched load. 82
matching network, 115
microstrip line, 64, 75-78
nondispersive, 79
open-circuited line, 96
parallel-plate line, 64
parameters, 66-67
phase-shifted coefficient rd- 105
power loss, 63
power flow, 99-101
quarter-wavelength transformer, 97
slotted line, 87
Smith chart, 65,101-114
standing wave, 72, 83-88

T
Tapered aperture distribution, 444
Telegraph, 21
Telephone, 22
Television (TV), 23
Tensile stress, 310
Tesla, Nikola, 17,21,30
Thales of Milerus, 17, 20
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Transmission lines (continued)
standing wave pattern, 83, 93
SWR circle, 106
TEM (transverse electromagnetic) transmission lines, 64-65
transient response, 124-125
transmission line parameters, 65

capacitance C', 66
conductance G', 66
inductance L', 65
resistance R', 65

voltage maxima IVlmax, 106-108
voltage minima IVlmin, 106-108
voltage reflection coefficient I',80-83
voltage standing wave ratio [(VSWR) or (SWR)j S, 85
wave impedance Z(d), 88-91

Transmissivity 1(9), 387-389,474
Transmitter/receiver (T/R) switch, 476
Transponder, 471~ 73
Transverse electric (TE) polarization, 380
Transverse electromagnetic (TEM) wave, 332
Transverse magnetic (TM) polarization, 380
Travelling waves, 32~0, See also Waves
Triode tube, 22
Two-wire line, 64

u
UItracapacitor, 228
Ultraviolet rays. 40, 41
Unambiguous range R«. 477
Uniform field, 177
Uniform field distribution, 443
Units, 19
Unit vectors, 19, 145
Uplink,471

v
van Musschenbroek, Pieter, 20
Vector analysis, 144--181

transformations between coordinate systems. 160-165

Vector magnetic potential, 272-273, 283
Vector Poisson's equation, 272, 283
Vector product, 181
Vector quantities, 19
Velocity of light in free space r, 30
Video processor/display, 476
Visible light. 40, 41
Volta. Alessandro, 17, 20
Volume charge density p", 193

w
Walton, Charles, 335
Watson- Watt. Robert. 23
Wave polarization, 337
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