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Chapter 1 Introduction

This book is a research monograph on Fresnel zone antennas. It
covers various lens and reflector antennas based on the Fresnel zone concept
and phase correction techniques. The material presented is mainly drawn
from the theoretical and experimental work published and unpublished by
the authors. The book is intended to serve engineers, researchers and
students in the fields of antennas, microwave and millimetre-wave
engineering, radar, optics and telecommunications. The authors hope that
readers will find the wealth of unique antenna configurations and the
theoretical framework presented inspirational, and the large number of
equations useful in the analysis and design of Fresnel zone antennas.

1.1 Historical Backgroﬁnd

Conventionally, electrically large antennas are classified into two
main categories according to the feed arrangements. In the first category, the
aperture is illuminated by a small feed antenna placed at the focus of a
reflector or lens, which is often curved, bulky and of canonical profile. In
reception, the electromagnetic energy intercepted by the reflector or lens is
re-directed to the feed located at the focal point through reflection or
refraction. The second category, array antennas, consist of a number of
small radiating elements fed by a network of transmission lines, often in the
plane of the array aperture itself.

For a conventional reflector or lens antenna, the radiation pattern is
controlled mainly by the shape of the reflector or lens. With tight mechanical
tolerance, a reflector or lens antenna can achieve very high efficiency and
very low sidelobes. Disadvantages of conventional reflector and lens
antennas include high production and installation cost, bulky structure and
unsightly appearance, which are especially undesirable for consumer
products. In contrast, the array antenna, especially the printed array antenna,
is of compact low-profile structure. It does not need a separate feed antenna,
and can be made cheaply for mass production. In principle, a printed array
can be beam-steered by electronically tunable phase shifters, but this is too
expensive for commercial products, such as receivers for the Direct
Broadcasting Satellite (DBS) service. Printed array antennas commercially
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available for DBS receivers in Europe, North America and Japan are
normally tilted out from the wall of a building when being installed.
Furthermore, as the aperture of a printed array antenna and hence the
directivity increases, the intrinsic loss of the feeding network also increases,
ultimately faster than the directivity of the array. Therefore, printed array
antennas are normally regarded as suitable only for low and medium gain
(less than 25dB) antennas.

Alongside the two mainstream types of antennas, another type is
emerging as a promising candidate on the consumer electronics market, the
Fresnel zone antenna. The Fresnel zone antenna belongs to the category of
reflector and lens antennas. Unlike the traditional reflector and lens antennas,
however, the focusing effect in a Fresnel zone antenna is achieved by
controlling the phase shifting property of the surface rather than its shape,
thus allowing flat or arbitrary configurations. For historical reasons, a flat
Fresnel zone antenna is termed a Fresnel zoneplate antenna. An offset
Fresnel zoneplate reflector can be flush mounted to the wall or roof of a
building, and an offset Fresnel lens can be printed on a window or made
conformal to the body of a vehicle.

The advantages of the Fresnel zoneplate antenna are numerous. It is
normally cheap to manufacture and install, easy to transport and package and
can achieve high gain. Owing to its flat nature, the windloading force of a
Fresnel zoneplate can be as little as 1/8 of that of conventional solid or wire-
meshed reflectors of similar size. When used at frequencies above
microwave, a Fresnel zone antenna can be an integral device and becomes
even more competitive than the microstrip antenna array.

The simplest Fresnel zoneplate antenna is the circular half-wave
zoneplate invented in the nineteenth century [1, 2]. The basic idea is to
divide a plane aperture into circular zones with respect to a chosen focal
point on the basis that all radiation from each zone arrives at the focal point
in phase within *n/2 range. If the radiation from alternate zones is
suppressed or shifted in phase by T, an approximate focus is obtained and a
feed can be placed there to collect the received energy effectively. Despite
its simplicity, the half-wave zoneplate remained mainly as an optical device
for a long time, partly because its efficiency is too low (less than 20%) and
the sidelobe level of its radiation pattern is too high to compete with
conventional dishes, and partly because antenna cost was not a crucial issue
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for military equipment. Compared with conventional reflector and lens
antennas, reported research on microwave and millimetre-wave Fresnel zone
antennas appears to be limited. In 1948, Maddaus published the design and
experimental work on stepped half-wave lens antennas operating at 23GHz
and sidelobe levels of around -17dB were achieved [3]. In 1961, Buskirk and
Hendrix reported an experiment on simple circular phase reversal zoneplate
reflector antennas for radio frequency operation [4]. Unfortunately, the
sidelobe level they achieved was as high as -7 dB. In 1987, Black and Wiltse
published their theoretical and experimental work on the stepped quarter-
wave zoneplate at 35GHz. A sidelobe level of about -17dB was achieved
[5]. A year later a phase reversal zoneplate reflector operating at 94GHz
was reported by Huder and Menzel, and 25% efficiency and -19dB
sidelobe level were obtained [6]. An experiment on a similar antenna at
11.8GHz was reported by NASA researchers in 1989. 5% 3dB bandwidth
and -16dB sidelobe level were measured [7 .

Until the 1980s, the Fresnel zoneplate antenna was regarded as a
poor candidate for microwave applications. Following the development of
DBS services in the eighties, however, antenna engineers began to consider
the use of Fresnel zoneplates as candidate antennas for DBS reception,
where antenna cost is an important factor [8]. A British firm, Mawzones
Ltd., was inspired by the simplicity and ease of fabrication of zoneplates and
started marketing zoneplate antenna products in the late 1980s [9]. This, to
some extent, promoted the research on Fresnel zone antennas which the
authors and their colleagues carried out between 1990 and 1997 at the
University of Bradford, United Kingdom. The research was mainly
sponsored by the UK Science and Engineering Research Council (SERC)
and Mawzones Ltd. It proved to be fruitful; several novel antenna
configurations were developed, offering higher efficiency and lower
sidelobes, and a number of papers [10 — 19], [27 — 317, [38], [40], [44], [46],
[48 , 49], [59 — 61] were published by the authors and their colleagues.

1.2 Outline of the Book

Based on our own published and unpublished work, this book

“provides a systematic introduction to the theory, design and practical

performance of Fresnel zone antennas, especially Fresnel zoneplate
antennas. It is not only written for antenna engineers and researchers, but
also applied physicists, students and radio amateurs. It is interesting to note
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that simple Fresnel zoneplate antennas have been successfully used at the
University of Southampton, U. K., on open days to entertain and educate
potential students of Electrical and Electronic Engineering.

The book is organised as follows. Chapter 2 presents a thorough
study on the geometrical characteristic of offset Fresnel zoneplates. Explicit
equations for designing offset Fresnel zoneplate antennas are given. In
contrast to the symmetrical circular Fresnel zoneplate, an offset zoneplate
consists of a set of elliptical zones [10]. This feature introduces some new
problems to the analysis of offset Fresnel zoneplate antennas. Formulae and
algorithms for predicting the radiation pattern of a Fresnel lens antenna are
presented. Experimental results of an offset Fresnel lens antenna are reported
[11]. Although a simple Fresnel lens antenna has low efficiency, it serves as
a very attractive indoor candidate when a large window or an electrically
transparent wall is available. In the application of DBS service, for example,
an offset Fresnel lens can be produced by simply painting a zonal pattern on
a window glass or a blind with conducting material. The satellite signal
passing through the transparent zones is then collected by using an indoor
feed [12].

To increase the efficiency of Fresnel zoneplate antennas, one can
divide each Fresnel zone into several sub-zones, such as quarter-wave sub-
zones, and provide an appropriate phase shift in each of them, thus resulting
in a sub-zone phase correcting zoneplate. The problem with dielectric based
zoneplate lens antenna is that whilst a dielectric is providing a phase shift to
the transmitted wave, it inevitably reflects some of the energy back, so the
efficiency of such a lens is limited. However, the low efficiency problem for
a zoneplate reflector is less severe, as total reflection can be achieved by
using a conducting reflector behind the zoneplate. Based on the focal field
analysis, chapter 3 presents a theory of the sub-zone phase correcting
technique [13]. This is followed by some theoretical studies on the efficiency
and sidelobe performance of zoneplate antennas. Then, it is demonstrated
that high efficiency zoneplate reflectors can be obtained by employing the
multilayer phase correcting technique, which is to use a number of dielectric
slabs of low permittivity and print different metallic zonal patterns on the
different interfaces. The design and experiments of circular and offset
multilayer phase correcting zoneplate reflectors are described in this chapter
[14, 15].
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Chapter 4 presents a theoretical study of zonal reflectors using the
moment method. The objective is to provide some insight into the sidelobe
limit of zoneplate antennas and demonstrate a new approach to reducing the
sidelobe level of stepped Fresnel zoneplate antennas. It is shown that
although corner diffraction makes significant contribution to the sidelobe
level, zoning intrinsically produces high far-out sidelobes [16].

A problem with the multilayer zoneplate reflector is the complexity
introduced, which might offset the advantage of using Fresnel zoneplate
antennas. One solution is to print an inhomogeneous array of conducting
elements on a grounded dielectric plate, thus leading to the so-called single-
layer printed flat reflector [17]. This configuration bears much in common
with the printed array antenna but it requires the use of a feed antenna
instead of a feeding network. In contrast to the normal array antenna, the
array elements are different and are arranged in a pseudo-periodic. manner.
Chapter 5 presents the theory and design method of single layer printed flat
reflectors incorporating conducting rings. Experimental results on such.an
antenna operating in the X-band are described [18]. In addition, two similar
designs, one incorporating patches and holes and the other known as
FLAPS™ by Malibu Research, are introduced. Naturally, this chapter leads
to a more general antenna concept, the passive reflective phase correcting

array.

A passive reflective phase correcting array consists of an array of
phase shifting elements illuminated by a feed placed at the focal point [19.].
The word “passive” refers to the fact that the array does not have electronic
phase shifters connected to the elements, and “reflective” refers to the fact
that each element reflects back the energy in the incident wave with an
appropriate phase shift. Each element can be designed to either producg a
phase shift which is equal to that required at the element centre, or provide
some quantised phase shifting values. Although the former does not seem to
be commercially attractive, the latter proved to be a practical antenna
configuration. One potential advantage is that such an array can be
reconfigured by changing the positions of the elements to produce different
radiation patterns. Chapter 6 gives a systematic theory of the phase

efficiency of passive phase correcting array antennas and experimental

results on an X-band prototype are reported [19].
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Finally, chapter 7 introduces a wider range of Fresnel zone antennas
of various configurations for different applications and offers some
directions for future study.

Chapter 2 Offset Fresnel
Zoneplate

The most common form of Fresnel zone reflectors and lenses is the
circular zoneplate. The design of the simple circular zoneplate is well
documented in the open literature, and experiments at various frequencies
and with various configurations had been reported from time to time since
late nineteenth century [1-7]. However, no serious attention was paid to the
offset or elliptical zoneplate until the 1980s [2, 9]. This might be due to the
fact that “offset feeding” is mainly a microwave antenna concept and flush
mounting a zoneplate to a chosen surface was not regarded as an important
issue for optical and millimetre devices. In this chapter, a thorough study on
the geometrical characteristics of offset zoneplates is presented and explicit
design equations of offset zoneplate antennas are given. Then, based on the
physical optics approximation, formulae for calculating the radiation pattern
of offset Fresnel lens antennas are derived [11]. Owing to the asymmetry
caused by the offset configuration, calculation of the radiation integral can
be time-consuming, so solutions to this problem are also provided in this
chapter. Finally, an experiment on the offset Fresnel lens antenna is
reported.

2.1 Circular Zoneplate

A simple circular zoneplate consists of a series of concentric opaque
and transparent ring-like zones (see Fig. 2.1), which can be used as either a
lens or a reflector. When used for reception, the function of energy
collection is performed by the transparent zones for the transmission
zoneplate (Fresnel lens) or opaque zones for the reflection zoneplate (Fresnel
zone reflector). Since the efficiency of a reflection zoneplate can be easily
improved by placing a conducting plate a quarter wavelength behind the
zoneplate [4], which makes the contribution from the transparent zones in
phase with that from opaque zones, the simple zoneplate is mainly used as a
lens. In the following, some fundamental equations for designing the simple
circular zoneplate are given.
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Fig. 2.1 Hllustration of a circular zoneplate.

According to Huygen’s diffraction principle, when a plane wave is
incident on a Fresnel lens, each point in a transparent zone acts as a
secondary source, which emits a spherical wave. If the zones are so designed
that radiation from all the transparent zones arrives in phase within *m/2
range at the focal point F, there will be constructive interference. This
requires that the distance from F to the edge of the successive zones be
integral multiples of half wavelength, i. e.,

nA
= g 2.1
R, =f+ 5 2.1

where R, is the distance from the focal point to the nth zone boundary, fis
the focal length, and A is the wavelength. The radius of the nth edge is given

by

ni 4f
=— [1+—2. (2.2)
P 2 * ni

The area covered by the nth zone is given by

niA
S

A, =7A(f +§)+ (2.3)
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It is interesting to note that the area covered by each zone increases linearly
with the associated index number 7. The ratio of the second term to the first
term in Eq. (2.3) is given by

nA
2(f+§)

For a practical zoneplate antenna with reasonable focal length to aperture
diameter ratio, however, the aperture normally covers only a few half-wave
zones whereas the focal length is in the tens of wavelengths. Therefore, the
second term in Eq. (2.3) can be neglected and all the zones can be regarded
as having approximately the same area.

2.2 Elliptical Zoneplate

Although the circular zoneplate is simple to fabricate, it has two
main disadvantages when used as an antenna. First, since the main radiation
beam is perpendicular to the plate, orienting it in the direction of the signal
arrival may make it impossible to flush mount the plate on a building or a
vehicle; second, the feed blockage inevitably degrades the antenna
performance of the zoneplate reflector. A natural solution to these problems
is to use the non-blocking offset configuration. An offset zoneplate consists
of elliptical zones instead of circular ones and the direction of the maximum
radiation and the feed axis form the same angle with the normal of the plate
[10]. As with its circular counterpart, the offset zoneplate can have various
versions, such as the simple zoneplate [11], the phase reversal zoneplate
reflector [10] and the phase correcting zoneplate [15] etc.. In the following,
equations which define the zone boundaries of an offset zoneplate are
derived. Compared with the one given by the authors in [10], the following
derivation provides a deeper insight into the operation of a zoneplate.
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x4y =41, (2'+f,) 2.4)

where f,, the focal length of the #'th paraboloid, is given by
[, =nd/l4. (2.5)

—

Fig. 2.2 4 set of confocal paraboloids cut by a plane perpendicular to the
axis.

The basic requirement on the half-wave zone boundaries is that rays
originating from the focal point and diffracted at different zone boundaries in
the direction of the maximum radiation have nA/2 (n = 1, 2, ...) pathlength
difference. Given a focal point F and the direction of maximum radiation z’,
one can form a set of Cartesian coordinates (x', y’, z’) with their origin
located at O’= F and the z' axis in the z' direction (see Fig. 2.2). Then, the
following equation gives a set of confocal and coaxial paraboloids of
revolution:

Fig. 2.3 A set of confocal paraboloids cut by a skew plane.

It is well known that a paraboloid converts a spherical wave
originating from the focus into a plane wave propagating in its axial
direction. On a plane given by z' = const, which is perpendicular to the axis
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of the paraboloids, rays reflected from the »'th paraboloid experience nA/2 +
const pathlength (see Fig. 2.2). Consequently, the plane waves produced by
two adjacent paraboloids have A/2 pathlength difference, no matter where
reflection occurs. To obtain the zone boundaries of an offset zoneplate,
imagine cutting the paraboloids with a virtual plane which is penetrated by
the z'axis at point O and whose normal vector forms an angle of o with the
z' axis (see Fig. 2.3). This yields a set of lines of intersection. Since all the
lines of intersection lie on the confocal paraboloids, rays in the z' direction
originating from the focal point and diffracted from a given line of
intersection experience the same pathlength, while those diffracted from
adjacent lines of intersection have A/2 pathlength difference (see Fig. 2.3).
Therefore, the zone boundaries of an offset zoneplate located in the virtual
cutting plane are simply given by these lines of intersection. As such, the
procedure for determining the zone boundaries of an offset zoneplate
becomes straightforward: Given a plane on which the zoneplate is to be
placed, draw a piercing line in the desired direction of the maximum
radiation. With this line as the z’ axis and a point behind the plane as both
the focal point and the origin of a Cartesian co-ordinate system, Eq. (2.4)
produces a set of paraboloids of revolution. The lines of intersection between
the paraboloids and the reference plane yield the zone boundaries, and the
distance between the focal point and the piercing point, |O’O|gives the
focal length (see Fig. 2.3).

To obtain an explicit expression for the zone boundaries, a new set
of Cartesian coordinates is introduced with the z axis in the direction normal
to the zoneplate, and the y axis as the line of intersection between the
reference plane and the y’2' plane. The x, y and z axes form a set of right-
handed Cartesian coordinates (see Fig. 2.3). On the z = 0 plane where the
zoneplate is placed, one has

y'= ycosa
xX'=x (2.6)
Z'=ysina+ f

where f is the focal length and « is the offset angle. Substituting Eq. (2.6)
into Eq. (2.4) yields

x> /b* + (y-¢)*/a® =1 2.7
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where
a = blcoser (2.8.2)
b= [nfd+mA2) (1 +tan )] (2.8.b)
¢ = 2f tanalcose: 2.8.0)

Eq. (2.7) describes an ellipse with major axis a, minor axis » and centred at
(¢, 0, 0). Its eccentricity is given by

e =sina. , A 2.9

Eq. (2.9) indicates that all the elliptical zone boundaries of a zoneplate with
given offset angle have the same eccentricity. For illustration, Fig. 2.4 gives
the zonal patterns of offset zoneplates with different offset angles. It can be
seen from Fig. 2.4 that with a fixed focal length f, increasing the offset angle
o makes the zone widths in the upper half plane wider and those in the lower
half plane narrower.

One advantage of the offset zoneplate antenna is that it can be flush
mounted on a building or vehicle. With a given plane on which a zoneplate
is to be fixed, the direction of the maximum radiation 7' (such as the
direction of a satellite) can be specified by two parameters, the polar angle o
and the azimuth angle ¢. o is the angle between z' and the plane normal,
which is equal to the offset angle. ¢ is the angle between a horizontal line
and the projection of z' on the plane. The zone boundaries of a conformal
zoneplate are still given by Eq. (2.7) but with the major axis (y axis) rotated
by an angle of /2 - ¢, and the projection of the focal point on the plane, F',
lies on the major axis of the ellipses (see Fig. 2.5).

Although the above analysis is based on the transmission zoneplate,
all the equations apply equally to the reflection zoneplate. The only
difference is that the focal point is located at /> for the latter, which is the
image position of F about the zoneplate. For the reflection zoneplate, the
feed axis forms the same angle with the plate normal as the z' axis does, so
any two rays in the z' direction originating from 7’ and diffracted from two
different zone boundaries have the same pathlength difference as those from
F’ for the transmission zoneplate.
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@

(b)

(c)

Fig. 2.4 Zonal patterns with different offset angles: (a) 09 (b) 25°and (c)
507
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Fig. 2.5 A skew offset zoneplate.

It is interesting to study the projection of the elliptical zones in the
direction of the maximum radiation (z' in Fig. 2.3). Substituting Eq. (2.6)
into Eq. (2.7) gives

2 2 2
xX+(Q-c) =b (2.10)

where b is given by Eq. (2.8.b) and
c¢'=2f, tano. (2.11)

Eq. (2.10) describes a set of eccentric circles. Fig. 2.6 gives the zonal pattern
of an offset zoneplate and its projection.
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(b)

Fig. 2.6 An offset zoneplate (a) and its projection in the direction of
maximum radiation (b).

2.3 Radiation of the Offset Fresnel Lens Antenna

A simple offset Fresnel antenna can be formed by using an elliptical
zoneplate and a feed. For elliptical zoneplates, the asymmetrical geometry

Fresnel Zone Antennas 17

brings in significant complexity to the analysis of the radiation field, so
formulae for predicting the radiation pattern of the offset Fresnel lens
antennas are derived in this section.

When illuminated by a feed horn placed at the focal point F (see Fig.
2.7), the radiation of the Fresnel lens is mainly attributed to the aperture field
over the transparent zones. As a good approximation, the conductor around
the Fresnel lens can be extended to infinity (see Fig. 2.8). Then, by virtue of
Love's field-equivalence principle [20], the transparent zones can be
represented by an equivalent magnetic current J,, on an infinite conducting
plane without openings. With E as the tangential electric field on the lens
surface, J,, is given by

Jy, =-nXE, (over transparent zones) (2.12)

where #, the unit vector normal to the lens surface, is given by
n =cosQ. z - sing. y (2.13)

J., vanishes over the regions covered with conductor (the reflection zones
and the area outside the zoneplate). It should be noted that, for convenience,
the direction of z axis is assumed to be aligned with that of the maximum
radiation of the offset Fresnel lens in the following analysis.

Fig. 2.7 Illustration of the co-ordinates for analysing a Fresnel lens.
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Since the Fresnel lens is usually electrically large and the width of
half-wave zones are normally greater or comparable with the operating

wavelength, the following Kirchhoff approximation can be employed:
nX E. =n X E, (over transparent zones) (2.14)

where E, is the feed radiation field. Without loss of generality, it is assumed
that the far field of the feed is of the following form

E;= exp(JkR)/R (O ysing + PE ;c080). (2.15)
Substituting Eqgs. (2.13) - (2.15) into Eq. (2.12) yields

J,

m =X Ty, 2

= exp(kR)/R { x[(cosarostsing - sinosin@)sing E, + cosacos’¢E ]
+ ycososingeosg{-cos@ £y + E;] + zsinosingeosd] - cosbE, + E, ]}
(2.16)

where the spherical coordinates (R, 6, @) are related with the Cartesian
coordinates (x, y, z) through the following equations:

R =[x? + 2+ (f+ y tanov)? ]2 (2.17.a)
0 = tanl[(x2 + 12 )2 [(f + y tanol)] (2.17.b)
0= tan!(y/x). (2.17.¢)

Eq. (2.16) shows that

J,. =tanad, . (2.18)

By virtue of a magnetic-type vector potential [20], the radiation field of the
magnetic current can be expressed as

E = jkA2zrcosor) exp(jkr) {J,.(siny +ycos{cosy)
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- J [ Ceosy + yltanasing- cosCsiny)]}
exp {jklxsinlcosy + y(sin{siny + tancicosl)] }dxdy 2.19)

where (r, G, ) are the conventional spherical co-ordinates corresponding to
the Cartesian co-ordinates (x, y, z).

Fig. 2.8 Theoretical model of an offset Fresnel zone lens.

According to Ludwig's definition three [21], the co-polarised and the
cross-polarised unit vectors are given respectively by

e, = (Esiny + yeosy) (2.20.2)
e,= (Ecosy - ysiny). (2.20.b)

The scalar product of Eq. (2.19) with e; and e, respectively yields the co-
and cross-polarised radiation fields of the Fresnel lens antenna:
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E,, = jk/2mrcosol) exp(-jkr) s {J,. (sin®y + coslcos?y)

- Jpeosy[siny(1 - cos) + tanosinl]}

exp{jk/xsinlcosy + y(sin{siny + tanocosl)] }dxdy (2.21.a)
E..ss = jkI(2mrcosar) exp(-jkr) o {J . cosysiny(1 - cos{)

- Jpl(cos?y + cosCsiny) - tanosingsiny]}
exp {jk[xsinlcosy + y(sin{siny + tancicos()] } dxdy (2.21.b)

Eq. (2.21) shows that the x-component of the magnetic current, which
corresponds to the y-component of the aperture electric field, has no
contribution to the cross-polarised field in the £- and H- planes; whilst the y-
component of the magnetic current, which corresponds to the x-component
of the aperture electric field, has no contribution to the co-polarised field in
the E-plane. When the aperture field has a pure linear polarisation in the y-
direction, one obtains

J,, = x 1(0,9)(cosoicosd - sinosinOsin@)exp(kR)/R.  (2.22)

m

and Eq. (2.21) simplifies to

E., = jkiQ2mrcoso) exp(-kr)(sin2y + coslcos?y)

s {J e exp{jk[xsinlcosy + y(sin{siny + tanoicos)] ydxdy (2.23.a)

E =2 jki(mrcosa) exp(-jkr)sinycosy(1 - cos( )

Cross
. 1 e exp{jk[xsinlcosy + y(sin{siny + tancicos()] ydxdy. (2.23.b)

Eq. (2.23) represents a far field without cross-polarisation in the E- and the
H- planes. According to Eq. (2.16), it can be produced with a feed radiation
pattern of the following type:
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Ey =169 (2.24.2)
E, =16 g)cosé (2.24.b)

It is noted that owing to the flatness of the Fresnel lens, its optimal feed
radiation pattern given by Eq. (2.24) is different from that for the
conventional parabolic reflector by a factor of cos® [20]. However, it should
be pointed out that this conclusion is based on the Kirchhoff approximation
given by Eq. (2.14). For a practical Fresnel lens antenna, the scattering from
the edges of the conducting zones inevitably produces an aperture field with
cross-polarisation, thus giving rise to a cross-polarised radiation field.

2.4 Evaluation of the Integral

Section 2.3 shows that, to obtain the radiation pattern of an offset
Fresnel lens, it is required to evaluate the following two dimensional
integration:

Koy = Jley)expli@@y)x + v(Cy)y)ldrdy (2:25)

where J,; represents the x-component or the y-component of the magnetic
current, and the spatial spectra u(C,y) and v({,v) are given by

w(,w) = ksinlcosy (2.26.a)
v(E,W) = k(sinsiny + tancicos(). (2.26.b)

It is seen that the offset configuration introduces an oblique factor
exp(jktancicosl), which makes the relationship between the spatial spectra
and the observation angle different from that for the symmetrical
configuration [14, 22]. If the xy plane is chosen as the plane of the lens, the
oblique factor will disappear, but the direction of the maximum radiation
will form an angle o with the z-axis, and the definitions of the co- and cross-

‘polarisation, as well as the expression of the feed field, will become more

complicated.
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Although the integration in Eq. (2.25) appears as a Fourier type and
can be efficiently evaluated by using the fast Fourier transform technique
(FFT) [ 23], it is not straightforward to calculate the plane-cut patterns
except for the E-plane one. With y = 0 for H-plane, for example, Eq. (2.26)
describes a curve instead of a straight line in the spectral plane, while the
FFT gives only a discrete set of spectra on the rectangular grid. To tackle the
problem, two approaches are introduced in the following.

The first approach is the one used for analysing offset parabolic
reflector antennas [23, 24]. For convenience, we rearrange Eq. (2.25) as

IGW) =exp(5/wyp) Juxy)expliux + vy)ldxdy 2.27)

where
vy = NAtano/2 (2.28)

with N as the number of transparent and opaque half-wave zones in the
Fresnel lens. The domain of integration in Eq. (2.27) is a circle centred at
(0,0,0) with radius R, given by

R, = [N+ (WM2) (1 +tan')] . (2.29)

Then, one can extend the domain of integration into a square with side
length D and expand the magnetic current J,, (x,y) as the following finite
Fourier series:

0-1 0i1
Julep) =3, Y, C,yexplyogxtpy)] (2.30)

where the upper and lower limits are chosen differently for convenience of
implementing the FFT and

® =2m/D (2.31.)

Cp=, Imxy)explioNgs +py)] dedy. (2.31.b)
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Substituting Eq. (2.30) into Eq. (2.27) produces
e & in[(u- qa)D/2] sin[(v- pa)D/2]
I(C,w) = exp(-ivy,) ¢, Snll- g4) P 2.32
02 % o0 opn) (- papa) O

Eq. (2.32) can be calculated at any given point ({,y) and the coefficients Cyp
can be evaluated efficiently by using the FFT [ 24]. When only the gain of
the antenna is concerned, one has

1(0,0) = exp(-jky, tanar)C,, (2.33)

The second approach is to obtain a discrete set of spectra by
evaluating the integration in Eq. (2.31.b) with the FFT algorithm first. Then,
the discrete spectra are used to produce a continuous spectral function by
using the sub-domain interpolations such as the cubic spline interpolation
and the bivariate interpolation. Mathematically, this gives

O+1 0+1
I&y) =exp(=jwy) Y. Y Cox(u—po,y—qo)  (2.34)
-0 -0

where y(u-p®,v-qm) is the sub-domain basis function centred at (pw,qw).
Since the phase of C , changes rapidly with p and g, however, it was found
that Eq. (2.34) failed to give stable results. Therefore, an interpolation of the
magnitude is employed instead as follows

O+1 O+1

LGl = X Y|l = pov-qa) (2.35)
-0 -0

When Eq. (2.35) is used, the second approach produces antenna patterns
very close to the ones obtained with Eq. (2.32).

Comparing Eq. (2.32) with Eq. (2.35), it is seen that the first
approach is equivalent to approximating a continuous spectrum with all-
domain basis functions. For a given observation angle, a double summation
which involves a large number of sinx/x operation is required. This is very
time-consuming for electrically large lenses. As a sub-domain interpolation
technique, the second approach requires only a few adjacent discrete spectra
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for a given observation angle. Therefore, the CPU time used by the second
approach is much less than that by the first one. It is suggested, therefore,
that the first approach be used when both the amplitude and the phase
patterns are of interest, while the second be used when only the amplitude
patterns are of interest. In the next section, the second approach with
bivariate basis functions is employed to predict the radiation patterns of
offset Fresnel lenses.

2.5. Numerical and Experimental Results

In order to investigate the radiation performance of the offset Fresnel
lens antenna, a pyramidal horn was used as the feed. The aperture field of the
feed horn is assumed to be an expanded waveguide mode with a quadratic

phase error [25, 26]. Using both the equivalent electric current and the -

equivalent magnetic current [ 20], the radiation field is obtained as
E,(6,4)=E,(6,9)
= jk(1 + cosB) P(8,9)/4T (2.36)

where

Y —A/2J-B/
(2.37)
with
W = ksinBcosd (2.38.a)
v = ksinOsing. (2.38.b)

In Eq. (2.37), 4 and B are the width and height of the horn aperture, and R;
and R, are the distances from the aperture to the two virtual apex lines
respectively [ 25, 26]. Varying A4 and B changes the edge illumination level
of the offset Fresnel lens.

As shown in section 2.4, the projection of an offset Fresnel lens
boundary on the xy plane produces a circle with diameter equal to the lens

Al2 pB/2
P =E, j j cos(me/ A)exp{l-(r/ DGE IR+ y* 1 Ry)+ k(uee + 19) ey
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width 2R),. To investigate the performance of the offset configuration, it is
appropriate to have the lens width fixed [27]. Fig. 2.9 shows the normalised
E-plane and H-plane patterns of an offset Fresnel lens with different offset
angles. The lens comprises four transparent half-wave zones with R, fixed at
0.3m, and the operating frequency is chosen at 10.39GHz. The feed
parameters are for a pyramidal horn made by the Mid-Century
Microwavegear Ltd. with an aperture of 4.lcm by 2.8cm. Since the
Kirchhoff approximation is suited mainly for near-in patterns, we restrict
the observation angle in a range of (-50°, 50°). For the E-plane patterns, it
is seen that when the offset angle is increased from 0° to 20° and 40°, the 3dB
beamwidths remain almost constant, the skirts of the main beams become
wider, and the sidelobe level is increased from -15.9dB, to -15.4dB and -
14.8dB respectively. Less change is observed in the H-plane patterns. The
antenna directivity is actually reduced by 0.1dB and 0.7dB respectively.
Fig. 2.10 shows the cross-polarised patterns of the same lens antenna in the
y = 45" plane. It is observed that increasing the offset angle hardly changes
the cross-polarisation level. Increasing the offset angle further leads to
further reduction of the antenna directivity and further increase of the
sidelobe level.

(a) E-plane patterns.
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(b) H-plane patterns.

Fig. 2.9 Co-polarised patterns of a Fresnel lens with fixed width and
different offset angles.

Fig. 2.10 Cross-polarised patterns of the Fresnel lens.

For conventional lenses and reflectors, decreasing thg .edge
illumination level effectively reduces the sidelobe level. However, this is not
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necessarily true for the Fresnel lens antenna. Numerical results show that
increasing the dimension of the feed does not change the sidelobe level
much. This is because in a Fresnel lens antenna spherical phase errors in a
range of £m/2 exist over all the transparent half-wave zones. These severe
phase errors dominate the sidelobe level of the antenna. Besides, since the
scattering from the edges of the conducting zones has not been considered in
the theoretical model given in section 2.3, it is expected that the sidelobe
level of a practical Fresnel lens will be higher than predicted. The simple
(not phase corrected) Fresnel lens should, therefore, only be used when the
interference through sidelobes is not a major concern.

As an experimental prototype, an offset Fresnel lens comprising
three transparent half-wave zones with f= 0.14m, offset angle oo = 20° and
operating at 10.39GHz was designed. The conducting pattern was printed on
a 2mm dielectric substrate with relative dielectric constant € = 2.1. The same
pyramidal horn used in the numerical analysis was employed as the feed.
Fig. 2.11.a shows the E-plane patterns of the antenna. For the co-
polarisation, the theoretical pattern has a wider main beam, but lower
sidelobes. It follows the trend of the experimental pattern as far as 50° away
from the direction of the maximum radiation. Theoretically, the cross-
polarisation in the E-plane is below -60dB, while it is shown in Fig. 2.11.a
that the measured cross-polarisation was about -29dB. Fig. 2.11.b shows the
corresponding results in the H-plane. For the co-polarisation, it is seen that
the experimental pattern has about the same sidelobe level as that of the
predicted one, but slightly wider main beam. The two far-out patterns have
similar profiles, but are less close than the E-plane patterns. The predicted
cross-polarisation in the H-plane is below -45dB, while it is shown in Fig.
2.11.b that the measured cross-polarisation was about -22dB. One reason for
the discrepancy between the theoretical and experimental results is that the
lens width is only 12.4 wavelengths and the focal length is only 4.8
wavelengths so there is a strong multiple scattering between different
conducting zones, and the lens and feed, which is not considered in the
theoretical model. The other reason is the feed alignment accuracy. Better
agreement is expected with a larger Fresnel lens and better alignment
mechanism. Furthermore, the higher cross-polarisation level in the H-plane
is attributed to the stronger edge scattering in this plane.
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(b) H-plane patterns.

Fig. 2.11 Experimental patterns of the offset Fresnel zome lens in
comparison with theoretical predictions.
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2.6 Conclusions

The geometrical characteristic of offset Fresnel zoneplate antennas
has been studied. It is shown that the elliptical zone boundaries of an offset
Fresnel zoneplate are given by the lines of intersection between a set of
confocal paraboloids of revolution and a cutting plane, where the axis of the
paraboloids is in the direction of the maximum radiation (or the signal
arrival) and the zoneplate is located on the cutting plane. The angle between
the paraboloidal axis and the plane normal gives the offset angle o. The
paraboloidal axis, the major axis of the ellipses and the feed axis lie in one
plane. The ellipses have the same eccentricity, e = sino.. The projection of
these ellipses in the direction of the maximum radiation produces a set of
eccentric circles. :

Formulae for predicting the far-field pattern of offset Fresnel lens
antennas have been derived and the radiation performance of the offset
Fresnel lens antennas including sidelobe and cross-polarisation levels is
investigated.. Two approaches to evaluating the radiation integral efficiently
are introduced. It is shown that with a fixed lens width (or a fixed projected
area in the direction of the maximum radiation), the H-plane and cross
polarisation patterns remain almost constant with changing offset angle.
There is no significant deterioration of gain or E-plane sidelobe level if the
offset angle is not very large (say less than 40°). Since the sidelobe level of
the Fresnel lens is not sensitive to the edge illumination level, its feed should
be designed to achieve maximum efficiency.



Chapter 3 Phase
Correcting Fresnel

Zoneplates

Although the simple Fresnel zoneplate antenna with alternative

reflective and transparent half-wave zones is easy to fabricate, its efficiency
is too low for many practical applications. There are two factors that cause
low efficiency to the simple Fresnel zoneplate. First, from a reception point
of view, half of the energy intercepted by the aperture of a Fresnel zoneplate
antenna is completely rejected. Second, the other half of the energy
intercepted by the aperture is not efficiently focused into the feed, as the
secondary radiation from a transparent half-wave zone does not add up
completely in phase at the focal point. The first problem can be easily solved
for reflection zoneplates, by placing a conducting plate at a quarter distance
behind the simple zoneplate to form a phase reversal zoneplate reflector [4,
6]. The solution to the second problem is to apply phase correction
techniques to the zoneplate surface [5]. Since a continuous phase
compensation is very difficult to achieve, two sub-optimal phase correction
techniques have been used for high efficiency zoneplate antennas, the
subzone phase correction and the optimal discrete phase correction [5, 14,
19]. This chapter is concerned with the first technique and the second one,
which is to employ an array of discrete phase shifters, will be dealt with later
in chapter 6.

It is well known that the efficiency of a reflector or lens antenna can
be expressed as

n= Mg MMy G.D

where 7, is the efficiency of the feed, 1, is the phase efficiency and m,,
represents the product of the illumination efficiency, the spillover efficiency
and the polarisation efficiency [20, 29]. The phase correction technique is
aimed to increase the phase efficiency of the zoneplate antenna. The essence
of the subzone phase correction technique is to divide each full wave zone

30
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into several finer subzones and allocate an appropriate constant phase shifter
in each of them, thus achieving a good approximation to the ideal continuous
phase correcting function. In this chapter, a theory of subzone phase
correcting techniques based on the focal field study is fully developed in
sections 3.1 to 3.3 [13]. This is followed by some theoretical study on the
optimisation of My in section 3.4 [14, 31]. Section 3.5 presents an
investigation of the sidelobe performance of subzone phase correcting
zoneplates. Sections 3.6 and 3.7 desciibe the design and experimental results
of circular and offset multilayer phase correcting Fresnel zoneplate antennas.

3.1 Focal Field Expfession

The phase correction technique attempts to maximise the field
intensity at the focal point. Assume a plane wave is normally incident on a
circular zoneplate, the field at the focal point can be well predicted by the
Kirchhoff scalar diffraction integral [14, 28]:

.7 Py
Jk )
¥ =L [exptjiop) - k11 + L) 2 dp G
2 5 R R
where fis the focal length, p, is the radius of the zoneplate, €(p) is a phase
. . 2n .
correcting function, k=——;t— is the wave number and R = (2 + p? )2

represents the distance between the focal point and a point at the plate
surface with radius p (see Fig. 3.1). Dividing the integration range in Eq.
(3.1) into a series of full wave zones yields

ik N P
v =20 [ expiite(o)- k1A + L) 2 dp 62)
n=l p

n-1

where p, satisfies the following zone boundary equation :

(fP+p )= f+nl (n=0,1,...,N). (3.3)
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In the range of p, , <p<p,, R changes from f+ (n- )4 to f4 nd.
Therefore, the magnitude factor 1 + /R in Eq. (3.2) can be expressed as

_f_=l —f__+A’

+

1+ I
]”'(71—5)/1

where

—tAf

A= ~1/2<t<1/2.
[/ +(n—1/2+DAS +(n—1/2)A]

Since a zoneplate is normally placed in the radiation zone of its feed,
it can be assumed that f >> A so one can neglect the small term A and

replace 1 + fIR with 1+ f/[f +(n—1/2)A]. The relative error of this

approximation decreases when f/A increases and is less than 2.5% for a
zoneplate with / = 10A. This yields

+
2 f+(n-1/2)A

n=1

ik N P '
v Ly | epyie) - w1 2dp 6,
Pn-1
To obtain a closed form expression of the focal field, let

O=k{(f*+p)? =/ +(n-DAY}

Substituting Eq. (3.5) into Eq. (3.4) yields

(pn-I: p: pn) (35)

~i. . N f 27 ) i B
e SN ey l].([exp{][@ (6) - 61}d6 (3.6)

n=1
where 4 (6)=d[p(6)]. Eq. (3.6) shows that the contributions from
different full wave zones with the same phase correcting function €@ ()
differ only with a multiplier 1+ f /[f +(n—1/2)A]. The physical
interpretation is as follows. When a plane wave is incident on a full wave
zone, its contribution to the focal field is proportional to the area
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a(pL- p2.)) and inversely proportional to its mean distance to the focal
point f = (n- 1/2)A, and the product of these two factors gives a constant
which is independent of the location of the full wave zone. The multiplier
1+ f/[f +(n—1/2)A] is due to the variation of the oblique angle ¢ over
the zoneplate surface (see Fig. 3.1).

i

Fig. 3.1 Illustration of the co-ordinates.

When @ (6) = 6, the zoneplate is ideally phase corrected and Eq.
(3.6) gives the maximum field intensity at the focal point:

= N ———f
‘ Hmax ﬂ;[l_i_ f+(n—1/2)/1] (37)

The corresponding ideal phase correcting function in the p domain is given
by

D, (P =k{(f>+9) —[f+(n—-DAL O, < P P,
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3.2 Subzone Phase Correction

The subzone phase correction technique employs M discr.ete phase
shifters in each full wave zone in order to realise a stepwise phase
correcting function to approximate € ,,(p). Let 6,,, represent the subzone

boundary in 6 domain and d'nm represent the constant phase shift in the
subzone defined by 6,y 6<6,, (m=12,..M; n= 1,2,...,N)
respectively, Eq. (3.6) produces

ul f ﬁ/[: [ (q)' 6n(m—1) + 6nm )]
= j —J 1+—L 1) explj(P®,,, ———— I
P = jexp( ]kf)nz:f[ IRy >
. enm - en(m—l)
sin( 5 )
(3.8)
Maximising . Y|, the field intensity at the focal point, yields
g =2 (3.9.2)
nm M
o =", (3.9.b)
nm M
(m=12,...,M)

where the constant ¢ can take any arbitrary value, but it must be the same
for different full wave zones. This means that for a given M, the number of
different phase shifters, the optimum choice of phase shift values is the
equally spaced set where the phase difference between each value and the
adjacent one is 222/ M. For a zomeplate with the optimum subzone
boundaries and the corresponding phase shifts given by Eq. (3.9), the
contributions from different subzones have the same magnitude and add in
phase. Using Eq. (3.5), Eq. (3.9.2) gives p,,, the outer radius of the m'th

subzone in the #'th full wave zone:
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(fP+p.,)? =f+[(n—1)+%]l (m=12,.... M;n=1,2,..., N)(3.10).

Note that there are two requirements in Eq. (3.9). First, M subzones
must be equally divided in 6 domain. Second, the phase difference between
two adjacent phase shifters must be 27/M. With the constant o in Eq.
(3.9.b) as -n/M, this leads to zero mean error between the stepwise phase
correcting function ®'(6) and the ideal one CI)'Opt(G) = 0. However, since
one can add an arbitrary constant to d)'opt((-)), which is equivalent to
changing the initial value of the ideal phase correcting function at the
zoneplate centre, one can equally choose the initial value of ®'(0) in the first
subzone. This accounts for the arbitrary constant o in Eq. (3.9.b). For
illustration, Fig. 3.2.a shows the ideal phase correction (dotted line) and its
two equivalent quarter-wave approximations with different initial values
(solid and dashed lines) for a zoneplate with /= 20A, where p/A is taken as
the abscissa. Since the diffracted fields from subzones add on the basis of
effective areas intercepted, (p/?»)2 is a better choice of abscissa for
averaging contributions. With (p/?u)2 as abscissa, the ideal phase correcting
function becomes almost linear and the subzone widths are almost equal,
which is shown in Fig. 3.2.b.

Substituting Eq. (3.9) into Eq. (3.8) yields

y/zjzexp[—j(i;f—a—n/M)]sinc(l/M)ﬁ{Hf/[f+(n—1/2)} (3.11)

where
sinc(x) = sin(zx) /(7x) (3.12).

Comparing Eq. (3.11) with Eq. (3.7), one obtains the phase efficiency of a
1/M-wave zoneplate antenna

1, =sinc*(1/ M) 77 (3.13)

Table 1 gives the phase efficiency of the phase correcting zoneplate with
different numbers of subzones.
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M 2 4 6 8
N.(%) 41 81 91 95

Table 1 Phase efficiency of the subzone phase correcting zoneplates

(b)

Fig. 3.2 The ideal phase correcting function and ils quarter-wave
approximations with p/A (a) and (p/A)’ as abscissa, respectively.
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3.3 Aperiodic Subzone Phase Correction

It can be shown from Eq. (3.3) that the width of a full wave zone
decreases as the zone index » increases. As an illustration, Fig. 3.3 shows
the widths of the outermost full wave zones for zoneplates with different /7D
ratios and different number of full wave zones N, where D is the diameter of
the zoneplate. It is observed that for a typical millimetre wave or microwave
zoneplate with 7D around 0.8 and N around 4, the outermost full wave zone
is about 2A wide. Since most practical annular phase shifters can not be
made arbitrarily narrow, it may not be possible to place as many phase
shifters in the outer full wave zones as in the inner ones. Practically, it may
be appropriate to employ the aperiodic subzone phase correction technique.
The concept is to allocate more subzone phase shifters in the inner full wave
zones and fewer in the outer ones. Consequently, the phase correcting
function becomes aperiodic in 6 domain. With an aperiodic phase correcting
zoneplate, care must be taken to ensure that the contributions from different
full wave zones add in phase.

Fig. 3.3 Width of the outmost full-wave zones vs. f/D ratio. Solid line: N = 2;
dot dashed line: N = 4; double dot dashed line: N = 6.
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For an aperiodic subzone phase correcting zoneplate, the focal field
intensity is given by

W= jexp( k) S+ FILf +(n—1/2)4).
! (3.14)

M, i )
2 eXp {][(I)mn - (Hn(m—l) + em ) / 2]} Sln[(anm - 9n(m~l) ) / 2]
m=1

where M, stands for the number of subzones in the »'th full wave zone.
Maximising the focal field intensity produces

Oy = 21m/M,, (3.15.2)
@', = Qm - DM, + o (3.15.b)

Compared with Eq. (3.9.b) for periodic phase correction, an extra phase
compensation term -m/M;, appears in Eq. (3.15.b). Its function is to make
contributions from different full wave zones add in phase. Substituting Eq.
(3.15) into Eq. (3.14) produces

N

vy = jmexpl-j(kf - @) {1 +f/[f+ (n-1/2)A}sinc(1/ M, ) (3.16)

n=l

The phase efficiency of the aperiodically phase corrected zoneplate is given
by

n, ={i{1+ﬁ[f+(n—1/2)/1]}smc(1/Mn)/§{1+ﬁ[f+(n-1/2)/u}}2 G.17)

n=1 n=1

Fig. 3.4 shows the optimal phase correcting function for the same
zoneplate as in Fig. 3.2 with quarter-wave zones in the two inner full wave
zones and half wave zones in the third one, where o is taken as -1/2. To
understand the function of the phase compensation term, (p/A)? is taken as
the abscissa again and the ideal phase correcting function (dotted line) is
assumed to start from -m/2 at the zoneplate centre. It is observed that the
mean error between the ideal phase correcting function and the quarter-wave
approximation (solid line) in the two inner full wave zones is almost zero.
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For the half-wave approximation (solid line) used in the third full wave zone,
this is only possible by moving the phase correcting function upward by
/4, which is the difference between -m/4 and -m/2. A practically important
conclusion from Fig. 3.4 is that if the conventional phase reversal
configuration is used in the outer full wave zones of a zoneplate to realise 0
and 7 phase shifts, the quarter-wave zone phase shifters in the inner full
wave zones must take the following values: -n/4, n/4, 3n/4 and 5m/4. For
comparison, Fig. 3.5 shows the same phase correcting functions as in Fig.
3.4 with p/A as the abscissa.

Fig. 3.4 The optimal phase correcting function for an aperiodic zoneplate.

3.4 Design of High Efficiency Zoneplate Antenna

The theory of high efficiency parabolic dishes has been well
established [20]. For a zoneplate with the same /D as that of a dish,
however, the feed radiation field suffers more space attenuation at the edge,
which is due to the flat nature of the zoneplate. On the other hand, the plate
does not degrade the polarisation of the feed radiation field, providing that
the edge diffraction is negligible. The optimum taper to obtain the maximum
efficiency for a zoneplate must therefore be different from that of a dish.
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Fig. 3.5 The same phase correcting function as in Fig. 3.4 against p/A.

For convenience, assume the feed radiation pattern is circularly
symmetrical and polarised in the y direction:

Ef(e,d),r) = cos”O (G sind + @ cosd cost) exp(-jkr)/r O <12
=0 otherwise (3.18)
where 0, ¢ and 7 are the conventional spherical co-ordinates, 0 and ¢ are the

unit vectors in the 8 and ¢ directions and the index n is used ‘Fo contr'ol the
edge illumination level. Eq. (3.18) leads to the following spillover

efficiency
M= {@2p + 31 - cos?(¥/2)] + Qp+DI1 - coszp+3(‘{’/2)]}f[4(p(;- 119)%

where ¥ is the angle spanned by the zoneplate at the focal point. Under the
geometrical optics assumption, the feed field given in Eq. (3.18) produces an
aperture field without cross polarisation :

E, (p) = cos2[tan"} (plf)lexp[k( + p)'21lf (3:20)
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and the polarisation efficiency becomes unity. The illumination efficiency
for a circularly symmetric aperture field is given by [20]

ni=@DAC B (Plpdp)® | |E, ()P pdp (3.21).

Substituting Eq. (3.20) into Eq. (3.21) yields
N = 4(p + Do, cot>(F/2)/(1 — cos?*2 (¥/2)) (3.22)
with
o, = [Incos(/2)]? =0
={[1 - cose(¥/2)IIp}* p>0

The product of the spillover efficiency m and the illumination
efficiency ; is a function of ¥ and p. When f/D is kept constant, increasing
p lowers the edge illumination level, enhances the spillover efficiency 1 but
decreases the illumination efficiency n; For a zoneplate with given /D, there
is an optimum edge illumination level which yields the maximum m,m, The
optimum 1;7, and the optimum edge illumination level as a function of /D
are shown in Fig. 3.6 and Fig. 3.7. It is observed that when f/D is increased
from 0.25 to 1.5, the optimum m; 1, increases from 62% to 81%, and the
optimum edge illumination level of the feed decreases from -3.5dB to
-10.4dB. Increasing the /D ratio further leads to very little change. From this
and Table 1, we conclude that the maximum efficiency of a quarter-wave
zoneplate antenna is about 65% and that of a 1/6-wave zoneplate is about
74%.

It should be pointed out that for a practical feed and a Fresnel
zoneplate, cross polarisation is usually inevitable and, with a given f/D ratio,
the polarisation efficiency decreases when increasing the edge illumination
level. Therefore, the optimum edge illumination level in a practical design
must be lower than that given in Fig. 3.7. Since the feed blockage and the
losses in the feed and the practical zoneplate have been ignored in the above
analysis, the realisable antenna efficiencies of the sub-zone phase correcting
zoneplate antennas are generally less than those predicted with the above
theory.
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3.5 Sidelobe Performance

Historically, attention has been paid mainly to the efficiency,
bandwidth and focal fields of zoneplate antennas. Due to the numerous
physical discontinuities existing over a Fresnel zoneplate surface, an
accurate analysis of the radiation pattern is very computationally demanding.
However, the close-in patterns can be well predicted with the Kirchhoff
scalar diffraction integral [2, 5].

Generally speaking, the near-in radiation patterns of most phase
correcting zoneplates can be well approximated by the following scalar
integral [14, 31]:

FO)= exp[P(p)IE, (p) Jy(kpsind) peip ; (3.23)

where J, is the zeroth order Bessel function of the first kind and 9 is the
observation angle. Substituting Eq. (3.20) into Eq. (3.23) results in

F)= , exp[j®(p)Jcos™* 2(tan" (p/flexp[jk(f2 + p2)/21J (kpsinb)p dp/f
(3.24)

Fig. 3.8 shows the radiation patterns of a zoneplate reflector with 4
full wave zones and diameter D = 301, and operating at 12GHz. An edge
llumination level of -9.5dB was chosen to obtain the maximum antenna
efficiency. It is seen that with M = 2 for the phase reversal zoneplate, the
phase error in the aperture field produces a wide skirt in the radiation pattern
and the envelope of sidelobes is quite flat. When M increases from 2 to 4 the
sidelobe level is reduced from -21.8dB to -27dB. The difference between
the first sidelobe level of the quarter-wave zone plate (M = 4) and that of
the ideally phase corrected zoneplate (M = o ) is only 0.5dB. The residual
phase errors tend to fill the nulls in the radiation pattern and make the
sidelobe envelope flat.

For conventional reflector antennas, lower edge illumination level
always leads to lower sidelobes. To understand the effect of edge
illumination level on the sidelobe performance of zoneplate antennas, Fig.
3.9 shows the radiation patterns of the same zoneplate with an edge
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illumination level of -20dB. Compared with Fig. 3.8, it is seen that the low
edge illumination does not affect the antenna sidelobes much for the phase
reversal zoneplate, which is due to the severe residual phase error.
Significant sidelobe reduction occurs for the quarter-wave zoneplate and the
ideally phase corrected one, whose sidelobe levels are rgduf:ed to -31.4dB
and -36.2dB respectively. In practice, the edge 11]um1natlop level of a
zoneplate is unlikely to be less than -20dB in order to retain Feasqnable
antenna efficiency and various manufacturing inaccuracies are 1nev1!:able.
Therefore, it is concluded that the phase correcting zoneplate is only suitable

for moderately low sidelobe antennas.
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3.6 Multilayer Phase Correcting Zoneplate Reflector

As shown above, the subzone phase correction technique provides
an effective approach to producing high efficiency zoneplate antennas. One
practical way of realising the subzone phase correction is to employ a
multilayer configuration [30], which is a natural evolution from the phase
reversal zoneplate. The basic idea behind the phase reversal zoneplate is to
place a refelctor a quarter wavelength behind the simple zoneplate in order to
bring back the energy leaked from the transparent zones, thus resulting in an
increase in efficiency by a factor of 2. Generally, one can use a number of
dielectric substrates and place conductors in each subzone at the appropriate
interface, which leads to the so-called multilayer zoneplate reflector antenna
[14]. In theory, the efficiency of such an antenna increases with M, the
number of dielectric substrates or the number of subzones in each full wave
zone, but as seen earlier in this chapter the most significant improvement is
obtained by increasing M from 2 to 4.



Fresnel Zone Antennas

46

A multilayer quarter-wave zoneplate reflector and its phase
correcting function is illustrated in Fig. 3.10. It consists of a metallic ground
and three layers of concentric rings separated by three dielectric substrates.
The rings are so located at different interfaces that for any full wave zone,
there are (4 -j) layers of substrates above the conducting ring at the jth sub-
zone (j = 1, 2, 3, 4), thus producing the required stepwise phase correction.
The boundary radii of the sub-zones are determined by

1
(F2+p.) =f+[(n—1)+%]ﬂ (m=1,2,.., M; n=1,2,..., N)(3.25)

with M = 4. In fact, this configuration applies to any 1/M-wave zoneplate
reflector. According to the geometrical optics analysis, the substrate
thickness should be so determined that a normally incident ray experiences
27/M phase delay after transmission and reflection. This gives

t=MQ2M,Je, ) (3.26)

where ¢, represents the relative dielectric constant of the substrate. With M=
4 for the quarter-wave zoneplate reflector, Eq. (3.25) leads to four constant
phase shifts in each full wave zone: 0, ©/2, ® and 37/2.

An experimental prototype of the quarter-wave zoneplate reflector
was designed and fabricated at Mawzones Ltd. The diameter of the zoneplate
was chosen as D = 0.6m with 4 full wave zones and Eq. (3.25) gives the
focal length f= 0.4m. From Fig. 3.7 the optimum edge illumination level is
found to be -8.8dB and from Fig. 3.6 and Eq. (3.1) the maximum antenna
efficiency is deduced as 62%. For convenience, a Marconi polyrod feed with
43 degree 3dB beamwidth was used, which yielded -10.8dB edge
illumination level. Fig. 3.11 shows the measured antenna gain as a function
of operating frequency. The antenna has a peak efficiency of 55.5% at
11.81GHz. The discrepancy with the theoretical expectation is due to the
manufacturing inaccuracy, the losses in the feed and the dielectric substrate,
the blockage and cross polarisation. Fig. 3.12 shows a typical E-plane
radiation pattern which was obtained using the near field measurement
technique and the sidelobe level was below -20dB.
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Fig. 3.10 A multilayer quarter-wave zoneplate reflector. Top
middle: phase correction function; bottom: sectional view.
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Fig. 3.12 Measured E-plane pattern of the quarter-wave zoneplate reflector.
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3.7 Offset Multilayer Zoneplate Reflector

Replacing the circular subzones with elliptical ones, the multilayer
configuration can be employed to produce an offset zoneplate reflector [15].
For illustration, an offset multilayer 1/5-wave zoneplate reflector is shown
in Fig. 3.13. It consists of a metallic ground and four layers of different
metallic patterns separated by four dielectric substrates. The top conducting
layer covers the fifth subzones, the second one covers the fourth and the fifth
subzones, the third one covers the third and the fourth subzones and the
fourth one covers the second and the third subzones. The subzone
boundaries are designed according to Egs. (2.7) and (2.8). As an
improvement to the configuration used for the circular zoneplate reflector, an
overlapping area of one subzone is introduced here to reduce the scattering
effect from the outer edges of the elliptical conducting rings. In fact, a few
reflectors with different overlapping area were fabricated and tested. It
appeared that extending the overlapping area further does not make
noticeable difference. The four dielectric substrates shown in Fig. 3.13 serve
as spacers and the substrate thickness, d, provides the path length difference
required to produce a stepwise subzone phase correction function. A simple
geometrical optics analysis gives

. d=(1 - sin*ove,) *Acoso/(2 Mg, (3.27)

where € is the relative dielectric constant of the substrate. For the present
1/5-wave zoneplate, this configuration produces five phase shifts in each
subzone: 0, 27t/5, 47/5, 67/5 and 87/5. o

As an experimental prototype, an offset 1/5-wave zone reflector
comprising two full wave zones was designed and fabricated to operate at
10.39GHz. The reflector has a 0.32m by 0.34m elliptical aperture, a 20°
offset angle and a 0.19m focal length. The dielectric material used for the
substrate has a permittivity € =2.1 and loss tangent tand = 0.0069. For
convenience, the substrate thickness was chosen as 2mm, which is 6.4%
greater than that given by Eq. (3.27). A pyramidal horn with aperture
dimension 4.1cm by 2.8cm was used as the feed. This design was not
aimed to obtain the optimum antenna performance, but to demonstrate the
feasibility of the configuration. Fig. 3.14 shows the measured E-plane and
H-plane patterns of the antenna at the design frequency. The two patterns
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have almost the same 3dB beamwidth. Owing to the configuration
asymmetry in the E-plane, however, it is observed that the main beam of
the E-plane pattern becomes broadened from the shoulders. For
comparison, an offset phase reversal zoneplate was also fabricated.
Experimental results showed that the two reflectors have an average gain
difference of 3.3dB in a 10.3% 3dB bandwidth. Taking the phase
efficiency of the phase reversal zoneplate as 41%, this gives the predicted
87.5% phase efficiency for the 1/5-wave zoneplate [15]. For illustration,
the measured E-plane patterns of the two reflectors are shown in Fig. 3.15.
Significant reduction of the sidelobe level relative to the main lobe has
been achieved by the multilayer zoneplate reflector.

Fig. 3.13 An offset multilayer zoneplate reflector. Top: front view; bottom:
sectional view.
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Fig. 3.14 E-plane and H-plane patterns of the offset 1/5-wave zoneplate
reflector.

Fig. 3.15 E-plane patterns of the 1/5-wave and phase reversal offset
zoneplate reflector.
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3.8 Conclusions

A theory underlying the subzone phase correction technique is
presented. Closed form expressions for the focal field of subzone phase
correction zoneplate antennas are given. An aperiodic subzone. phase
correction technique is introduced to overcome the difficulty. qf placmg‘ too
many phase shifters in the narrow outer full wave zones. Exp}1c1t expressions
for the optimal subzone division, the corresponding phase shift and the phase
cfficiency are presented. It is proved that when a full wave zone of a
zoneplate is divided into M subzones, the adjacent phase ShlftCI‘S‘ mu.st have
2n/M phase difference. If the same number of subzones are used in different
full wave zones, the phase shifters in the first subzones can take any value
but must be the same. When fewer subzones are used in the outer full wave
zones, however, the phase shifters in the subzones of the inner full wave
zones must be appropriately adjusted so that contributions from different full
wave zones add in phase.

The antenna efficiency of the zoneplate reflector is also discusged
and the optimum edge illumination level against f/D ratio is given. Using
Kirchhoff diffraction integral, the sidelobe performance of the subzone phase
correcting zoneplate is investigated. It is shown that the subzor}e phase
correcting technique can significantly reduce the antenna s@elpbes.
However, the residual phase error at each subzone and zoning do limit the
scope of the sidelobe reduction. For a practical zoneplate antenna, §uch as
the quarter-wave zoneplate favoured by various research groups, the S}delobe
level is unlikely to be lower than -30dB. A further study on the sidelobe
issue will be given in the next chapter.

The design and experiments of two multilayer zoneplate reflectors, a
quarter-wave circular zoneplate and a 1/5-wave offset zoneplate are r@por{ed.
It is shown that the multilayer configuration provides a viable engineering
approach to realising high efficiency phase correcting Fresnel zoneplate
antennas.

Chapter 4 Zonal
Reflectors

In chapter 3, it was demonstrated that the efficiency of a Fresnel
zoneplate antenna can be effectively improved by using subzone phase
correcting techniques, such as the multilayer phase correction technique.
However, both theoretical study and experiments showed that the sidelobe
level of the zoneplate antenna tends to be high and the envelope of the
sidelobes tends to be flat. Obviously, an understanding of this phenomenon
is very important. This chapter is aimed to provide some insight into the
sidelobe performance of Fresnel zoneplate antennas. The physical model
employed as the reference is the parabolic zonal reflector, which comprises a
set of confocal parabolic segments arranged along a plane surface. Within
the accuracy of scalar optical theory, such a configuration should offer ideal
phase correction. To model the multilayer zoneplates, the stepped zonal
reflector is introduced, in which the parabolic function is replaced by a
stepwise function. Since an accurate analysis of any two dimensional zonal
reflector (i. e. those with a two dimensional aperture) using the method of
moments (MoM) is bound to demand excessive computation power, an
analysis of one dimensional zonal reflectors is carried out instead. Here, the
term “one dimensional zonal reflectors™ refer to those which are traditionally
called “cylindrical reflectors” [16, 20]. The second objective of this chapter
is to demonstrate an engineering approach to reducing the near-in sidelobes
of the stepped zoneplate antennas.

This chapter is organised as follows. In section 4.1, the profiles of
three one-dimensional zonal reflector configurations are described. The first
is the parabolic zonal reflector mentioned above. The second is termed the
standard stepped zonal reflector, in which each full-wave zone is divided
into M-subzones and M-1 steps are used to provide M-1 phase increments of
2w M followed by one step of -22(M-1)/M. The third configuration is a
modification to the second one, in which the first subzone in each full-wave
zone is split into two half-subzones located at the two ends of the full wave
zone, thus allowing M steps of 27M phase increment followed by one step
of -27to be used to achieve a full range of 0-27 phase correction. Section 2
gives a brief description of the MoM model used and numerical results are
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given in section 4.3. By comparing the MoM solution and the physical optics
(P. O.) approximation, it is shown that the contribution of the corner
diffraction is significant, but zoning intrinsically plays the most important
role in raising the far-out sidelobes. Of the two types of stepped zonal
reflectors investigated, the one with modified configuration offers much
lower near-in sidelobe levels, very close to those of the corresponding
parabolic one. These results are instructive in the design of both conducting
zonal reflectors and multilayer phase correcting zoneplates.

4.1 Parabolic and Stepped Zonal Reflectors

The zoning technique was initially introduced to reduce the weight
of lens antennas [32, 33]. When used in a cylindrical reflector, it leads to the
parabolic zonal reflector shown in Fig. 4.1, which comprises a set of
confocal parabolic sub-reflectors arranged along a plane surface. In a polar
co-ordinate system whose z-axis coincides with the focal line, the surface of
the parabolic zonal reflector is described by

_2f- (n- DA

(o<l <, n=012..0 @D
1+cos¢

where f is the focal length of the central sub-reflector, 4 is the operating
wavelength, N is the number of full wave zones in each symmetrical half of
the reflector and

(4.2)

@, =cos™’

f+nd’

There are N wedges on each side of the reflector centre and the height of the
nth wedge is given by

A
f,=—. n=1,2,..,N) 4.3)
2f +nl ( ¢
Eq. (4.3) indicates that the outer wedges are lower than the inner ones. It is
shown in Fig. 4.1 that zoning reduces the height of the reflector, but it
introduces 2(N-1) slopes used for joining adjacent parabolic segments. These

slopes produce shadowing areas in the aperture field.
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Fig. 4.1 Profile of the zonal parabolic reflector.

According to the subzone phase correction theory described in the
preceding chapter, the parabolic zonal reflector can be approximated by a
stepped zonal reflector. In the standard stepped zonal reflector, each full-
wave zone is divided into M subzones and M steps are used at the subzone
boundaries in order to provide a stepped phase correction to a normally
incident plane wave. The height of the first A-1 steps are given by

t = —ﬂ 4
o (4.4)
which yields the height of the overall reflector ( the Mth step):
(M- DA
t=~2"
M 4.5)

In contrast to the parabolic zonal reflector, the wedges of the standard
stepped zonal reflector reach the same maximum height in every full-wave
zone. For convenience, we define the aperture plane of the stepped zonal
reflector as the one that coincides with the tips of the wedges and measure
the focal length ffrom the aperture plane to the focal point. Accordingly, the
outer boundary of the mth subzone in the nth full-wave zone, y,,,,, is given by

m
Ny =F +[(n—])+ﬂ]/1 (n=12,...,N; m=1,2,.... M).
(4.6)
This configuration serves as a good model of the multilayer phase correcting

zoneplate described in chapter 3. When illuminated by a normally incident
plane wave, it produces the following quantified phase shifts: -2(M-1)7/M, -
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2M-2)/M, ..., 0. A standard stepped zonal reflector with M =4 is shown
by the solid line in Fig. 4.2.

Fig. 4.2 Profiles of the standard and modified stepped Fresnel zonal
reflectors with M = 4.

Fig. 4.3 Phase correcting functions of the standard and modified stepped
Fresnel zonal reflectors.

The phase correction achieved by the standard stepped zonal
reflector goes over a range of (-2(M-1)77M, 0). In order to obtain a full range
of (27, 0) phase correction, the standard stepped zonal reflector can be
modified as follows: the first subzone with -2(A4-1)77/M phase shift in each
full-wave zone is split into two half-subzones. Then, the first half-subzone is
moved downward to produce a -27 phase shift. Accordingly, the subzone
boundaries are adjusted so that the first half-subzone are followed by M-1
full subzones, and the other half-subzone is located at the end of the full-
wave zone. This yields M+1 steps in each full-wave zone. Fig. 4.2 shows a
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modified stepped zonal reflector with M = 4 by the dashed line. With the
focal length measured from the aperture plane, the zonal boundaries of the
modified stepped zonal reflector are given by

(m- 0.5)

mz{f+[(n—1)+-—M—]/1 (Ism< M) @7
f+nl (m=M+1)

Fig. 4.3 shows the phase correcting functions provided by the standard and
the modified stepped zonal reflectors to a normally incident plane wave, in
comparison with the ideal phase correcting function.

4.2 Method of Moments (MoM) Model

To analyse the radiation performance of zonal reflectors, assume that
the reflectors are illuminated by a directional TM-wave given by

_kn 2j - . » T

==L exp(-jipyeos’ s (0<|g<T)

Epg={ * V7P 2 @4y
0 (—<¢)]

where k and 7 are the wave number and the intrinsic impedance in free
space respectively, and the index p is used to control the edge illumination

level. With such an incident field, the induced current has only a z-
component uniform in the z-direction and the scattering field is given by

- k - -
Ep) == 1.0 (Wp~ P @9)

where J, is the induced current to be determined and H_> (x) is the Hankel

function of the second kind and zero order [35, 36]. According to the
boundary condition, the superposition of the incident and scattering fields
must produce an electric field with vanishing tangential component on the
conducting surface of the zonal reflector, which leads to the following
integral equation :
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ELD) =1 [ 1.9 (p— Pt (@.10)

Eq. (4.10) can be solved by the method of moments (MoM). When the pulse
basis functions and point matching are used, the impedance matrix elements
are derived as

z, = % [ HE W - B, (i %)) (411.a)
Ac]-
Zy= *n AC[1—-j 2 1n(ﬁ£)] (4.11.b)
4 7 4e

where y= 1.781072... is Euler's constant, e = 2.718283, and AC; and p,

represent the length and the position of the central point of the ith segment
respectively [35, 36]. The ith element of the voltage matrix is given by

Vi=E(p,)- (4.12)
Thus, we obtain a matrix equation of the following form
[2]71=17]- (4.13)

Once Eq. (4.13) is solved, the radiation field of the reflector can be obtained
through the following equation:

E (6= M 2J exp(-jkp) Z J, J.exp[—jkﬂ cos(0+ @)|dI+E! (4.14)
4 \ mep i

where J; is the current on the ith segment AC; and @is the angle between the
observation direction and the norm of the zonal reflector.
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4.3 Numerical Results

To understand the performance of different zonal reflectors, some
numerical results are given in this chapter. First, the sidelobe performance of
the parabolic zonal reflector is compared with that of the conventional
parabolic reflector without zoning. Then, the performance of the two
different stepped zonal reflector configurations are studied. Finally, the
effect of subzone phase correction is investigated.

4.3.a Sidelobe Profile of the Parabolic Zonal Reflector

Fig. 4.4 shows the predicted radiation pattern of a parabolic zonal
reflector with three full-wave zones in comparison with that of a
conventional parabolic reflector. The two reflectors have the same focal
length /" = 0.25m, the same aperture width D = 0.4m and the same edge
illumination level of -10dB, and are operated at 12GHz. After some
optimisation process, the number of basis functions in the MoM model is
chosen as 296 for the conventional parabolic reflector and 310 for the
parabolic zonal reflector. It is seen in Fig. 4.4 that the radiation pattern of the
zonal reflector has slightly wider main beam, clearer first nulls and lower
near-in sidelobes, but much higher far-out sidelobes.

Fig. 4.4 Radiation patterns of zonal and conventional parabolic reflectors.
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(b)

Fig. 4.5 MoM and P. O. solutions of the induced current on the zonal
parabolic reflector (a) and the associated radiation patterns (b).
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It had been noticed in several experiments that stepped zonal
reflectors tend to have relatively high far-out sidelobes. Although the near-in
sidelobes can be reduced by using phase correcting techniques, the far-out
sidelobes always stay high. One explanation was that there is strong corner
diffraction in the zonal reflectors. To investigate this phenomenon, Fig. 4.5.a
shows the current distribution of the same parabolic zonal reflector in
comparison with the physical optics (P. O.) current, where S is the length
from the reflector end measured along the surface, not the length in the
aperture plane. It is seen that the two currents differ significantly around the
corners. On the slopes joining adjacent parabolic segments, the P.O. current
vanishes whereas the MoM solution goes from infinity to some non-zero
local minima. :

The radiation patterns of the two currents shown in Fig. 4.5a are
compared in Fig. 4.5.b. Not surprisingly, the two patterns have similar near-
in sidelobes but exhibit about 5dB difference in the far-out sidelobe level.
However, it is observed that although there is no singularity in the P. O.
current, it still produces high far-out sidelobes, which leads to a flat sidelobe
profile rather than a descending one. This indicates that the far-out sidelobe
level of the parabolic zonal reflector is mainly caused by zoning, or by
shaping of the reflector. Therefore, although reducing the effect of corner
diffraction can decrease the sidelobes of a parabolic zonal reflector
significantly, it cannot produce a low-sidelobe reflector antenna. This may
limit the use of zonal reflectors in some applications.

In fact, when the slopes joining adjacent parabolic segments are
neglected, a parabolic zonal reflector can be taken as an array of parabolic
sub-reflectors (see Fig. 4.1). The main beams of all the sub-reflectors are
pointed in the same direction. Since the central sub-reflector is much wider
than the others, its main beam is much narrower. The addition of a narrow
beam with a few wide beams inevitably produces the high far-out sidelobes
of the zonal reflector.
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Fig.4.6 Radiation patterns of a zonal parabolic reflector, and the standard
and modified stepped ones.

4.3.b Comparison Between the Two Stepped Zonal Reflectors

One approach to lowering the manufacturing cost of the parabolic
zonal reflector is to use the stepped zonal reflector. Its one dimensional
version consists of a set of horizontally and vertically placed conducting
strips. A further practical modification of the stepped zonal reflector is to
remove the metal joining adjacent subzones and to employ low-loss
dielectric substrates as spacers, which results in the multilayer zoneplate

reflector [30]. Since the multilayer zoneplate reflector requires a different

theoretical model, it is not dealt with here.

Fig. 4.6 shows the predicted radiation patterns of a standard stepped
zonal reflector and its modified counterpart, both with N =3, M =4, D =
0.4m, -10dB edge illumination level and operating at 12GHz. Since the
reflector surfaces consist of a number of straight segments with adjacent
ones perpendicular to each other, the induced currents exhibit many
singularities due to the effect of corner diffraction. Therefore, larger numbgr
of basis functions are required than those employed for the parabolic
reflector of the similar size. Furthermore, since the widths of subzones
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decrease when the distances between the subzones and the reflector centre
increase, finer sub-domain divisions must be used in the outer subzones to
account for the rapid variation of the induced current. In this particular case,
400 and 444 basis functions, which are allocated to both the horizontal and
the vertical conducting walls, are used for the standard and the modified
stepped zonal reflectors respectively. For comparison, the radiation pattern
of the corresponding parabolic zonal reflector is also presented in Fig. 4.6. It
is seen that the modified stepped reflector has much lower near-in sidelobes
and deeper nulls and the parabolic zonal reflector gives the best
performance, or the lowest sidelobe profile.

Since the number of steps of the modified stepped zonal reflector
mentioned above is five, while that of the standard one is four, the radiation
pattern of the standard stepped zonal reflector with M = 5 is compared with
that for M =4 in Fig. 4.7 It is seen that the difference between the near-in
sidelobes of the two patterns is much less significant. This indicates that
modifying the configuration of the standard stepped zonal reflector is
necessary in reducing the near-in sidelobes. This, in fact, has been
experimentally demonstrated with the multilayer configuration [34].

Fig. 4.7 Radiation patterns of the standard stepped zonal reflectors with
different number of subzones M.
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4.3.c Sidelobe Level versus M

As pointed out in chapter 3, the number of subzones in each full
wave zone, M, determines the phase efficiency of the zonal reflector. To
evaluate its influence on the sidelobe level, Fig. 4.8 shows the radiation
patterns of the modified stepped zonal reflectors with different M. It is
observed that the quarter-wave zonal reflector produces a radiation pattern
very close to that of the corresponding parabolic one. Increasing M further
brings little improvement to the sidelobe profile. This agrees with the similar
conclusion made for the phase efficiency of zoneplate antennas [5, 14].

Fig. 4.8 Radiation patterns of the modified stepped zonal reflectors with
different number of subzones M.

4.4 Conclusions

The method of moments (MoM) has been used in the analysis of one
dimensional zonal reflectors. Three types of configurations have been
described and investigated, which include the parabolic zonal reflector, the
standard stepped zonal reflector and the modified stepped zonal reflector. It
is shown that corner diffraction makes significant contribution to the
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sidelobe level, but zoning intrinsically produces high far-out sidelobes.
Furthermore, it is proved that the near-in sidelobes of the stepped zonal
reflector can be greatly reduced by replacing the standard geometrical
configuration with the modified one.
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Flat Reflectors

As shown in the preceding chapters, a high efficiency Fresnel
zoneplate reflector can be realised by stacking a few layers of dielectric
together with metallic zonal patterns in between or by employing a stepped
structure. Although these techniques are simple and insensitive to
manufacturing tolerances, they can be relatively labour intensive and
therefore costly. A much more economical and academically more
interesting way of producing high efficiency Fresnel zone reflectors is to
employ a single array of inhomogeneous phase correcting elements printed
on a grounded dielectric substrate, thus resulting in the single printed flat
reflector [17, 41]. In such a configuration, the phase correction is
accomplished by an appropriate design of the array elements together with
the substrate.

In this chapter, the concept of reflective phase shifters incorporating
frequency selective surfaces is discussed. The integral equation and the
method of moments (MoM) for solving the equation are presented. The
performance of reflective phase shifters incorporating conducting rings is
then investigated. With straightforward modification to the basis functions,
the equations can be easily employed for reflective phase shifters using
different types of elements. Based on both theoretical analysis and
experimental verification, the design of a quarter-wave Fresnel zone reflector
incorporating rings is described and experimental results are given. Finally,
other single printed flat reflectors are discussed to complete the discussion
on the subject.

5.1 Reflective Phase Shifter Incorporating FSS

The principle behind the design of the single printed reflectors can
be easily understood by looking at the function of frequency selective
surfaces (FSS). An array of homogeneously distributed conducting elements
printed on a low-loss substrate constitutes a FSS. Modelling free space as an
infinite transmission line, a free standing FSS can be taken as a shunt
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reactance B. When the FSS resonates, it gives either total reflection (B = 0)
or total transmission (B = o) to an incident wave. When the FSS is off
resonance, the incident electromagnetic energy is inevitably —divided
between reflection and transmission [37, 38]. Therefore, FSSs are usually
employed as electromagnetic wave filters [39]. If the other side of a low-
loss substrate is grounded, however, most of the energy in the incident wave
will be reflected back, thus yielding a reflective phase shifter [40]. With a
givgn substrate, the phase shift of the reflecting wave is determined by the
equlvalhent reactance B. Fig. 5.1 shows the physical configuration and the
transmission line model of the reflective phase shifter, where Z and Z,
represent the wave impedance in free space and in the dielectric,
respectively. The phase of the reflection coefficient I7is given by

Arg() = 1t - 2tg {BZ tan(k, /[ Z(Z tan(k,?) + B)]} (5.1)

where 7 is the substrate thickness and &, = 2@/A, , with A, as the wavelength
in the dielectric.

(2)

z iB [] Z

(b)

Fig. 5.1 lllustration of a reflective phase shifter (a) and the corresponding
transmission line model.

. 'Fig. 5.2 gives the phase shifting performance with the relative
dielectric constant €. = 2 and varying substrate thickness. It is observed that
the phase shift changes rapidly around B = 0 region and a dynamic range of
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about 300° can be obtained by increasing B from -4Z to 4Z. As the
substrate thickness ¢ increases, the phase shifting curve for B < 0 gets flatter
and that for B > 0 becomes sharper.

To apply the reflective phase shifter technique in a Fresnel zone
reflector antenna, the employed FSS must provide the required flexibility of
the equivalent reactance. The focusing ability will be severely limited if
inappropriate FSS elements are used. One good candidate is the FSS
consisting of conducting rings, whose equivalent reactance is determined by
the circumference of each ring and the distance between adjacent rings [39].
In fact, there is no necessity in investigating the relation between the FSS
parameters and the equivalent reactance. The phase shift of a given structure
can be directly analysed by using the spectral domain integral equation
method. As shown in the following section, this involves setting a spectral
domain integral equation on the surface where the FSS lies and solving the
induced current with the method of moments (MoM).

Fig. 5.2 Phase shifting performance of reflective phase shifiers with different
substrate thickness.
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5.2 Analysis of Reflective Phase Shifters

Assume a plane electromagnetic wave is incident on a homogeneous
reflective phase shifter with its transverse electric field E’ (x,y,z) = [E; ,

E’y ]t given by
E, (x32) = ' (0o Bon)expli(oiggx + Boo Y- K — 02 — iy 2)] (5.2.8)
B (xy2)= E, (0go,Bo)expli(0ogx + Bog y-+ £ — 02 — By 2)] (5.2.b)

where o4, and [, are related with the incident angles 8, and ¢, through
the following equations:

Olgo = kosin®y, . cosd;,. (5.3.a)
Boo = kosin O;,.sind, (5.3.b)
ky=2m/A, (5.3.0)

with A, as the operating wavelength in free space [42]. If the array printed
over the grounded substrate has an equilateral triangular grid (see Fig. 5.3),
the scattered fields in and outside the substrate can be expressed as sums of
the Floquet modes with discrete spectra given by

Ol = Olgp + 2mm/d (54.2)

Bun =Boo +4n/(v/3d) - 2mm/(+/3d). (5.4.b)

where d is the spacing between the adjacent elements [43]. The boundary
conditions at the interface between the phase shifter and free space (z =0
plane) yield the following functional equation:

Y [ G (OB expli(0 X + B ¥)]

mn

= - [Byol E, (g0 Boo)expli(0toex + Byg ¥)1 (5.5)
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where
[ Gl = (1 - exp(-i2K7, 9] My, ] [X]
[Bgo 1= 2(1 - exp(-i2/;,8)] Mool [ Kgo] [X]

[M, 1= (1 +exp(-i2k DKL 1 [X]+ (1 - exp(-i2k,0)] [K,,,] [X]

i -1 kzz _afnn 0P
(K lm —— 2 Q2
wIUkiz _a‘mn mn k - an

1

kiz = Vki2 _(x’rznn _Bfnn

with k; as the wave number in medium 7 (0 for free space and 1 for the
substrate) and t as the substrate thickness. J(0,Bnn) = [/(OmnsBrn)s (0
o Pr)]t 18 the Fourier transformation of the induced current, Jj(xy), onany
array element at spectral point (0,,Bn,), Which can be obtained by
solving Eq. (5.5) with the method of moments [42].

Owing to their symmetry and compactness, printed circular
conducting rings were used as array elements in our research [39]. For

narrow rings, the induced electric currents can be expressed as a series of
harmonic functions of the form

josy) =Zaj,

= Za, exp(ipe) @ (5:6)
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Fig. 5.3 Hllustration of a ring array with triangular grid.

where ¢ is the angular position of a point on the ring circumference. Fourier
transforming Jp gives

T OBr) = CPREXPIP @) | (XD @) Ty st

A

+ exp(j Q) T (YD) Jrdr (5.7.2)

IO Broe) = (P TEXD(DP) | [XD(Pyn) Ty )

L1

- eXp(§Pp) Ty D) (5.7.)

where 1 and r, are the inner and outer radii of the rings (see Fig. 5.3), J, is
the Bessel function of the first kind of the p'th order, and

Opn = ! B/ Oy ) (5.8.2)
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It should be pointed out that although the ring width 7, - 7; is small, 7y, can '

be very large for higher order modes, so numerical integration must be used
to evaluate Eq. (5.7). Substituting Eq. (5.6) and Eq. (5.7) into Eq. (5.5) and
using Galerkin's method produces a linear system of algebraic equations,
whose solution gives the coefficients a, in Eq. (5.6) [39, 42].

For our application, a/4, and /4, are less than 1 and the phase
shifters are designed to provide desired phase delays to a normally incident
plane wave, so 0y, = Bgo = 0. Then, the only propagating mode of the
scattering field outside of the dielectric is the reflected plane wave given by

Ef(x,y,z) = E"(0,0)exp(jkyz) 5.9)
where
E7(0,0) = {[Bgol - [LI}EX0,0) + [GpolJ(0,0) (5.10)

with [I,] as the two dimensional identity matrix. Since there are no z-
components in the incident and reflected fields, the subscript 't' is dropped in
Egs. (5.9) and (5.10). The phase delay of a reflective phase shifter is defined
as the phase difference between the incident and reflected plane waves at the
plane where the ring array .is.located (z = 0). Accordingly, a totally
conducting surface gives m phase delay, whereas the phase shift of a clear
substrate with a backing ground is a function of the substrate thickness and
permittivity.

To validate the theoretical model, two homogeneous reflective
phase shifters with different size rings were fabricated and tested in a
bandwidth from 9.8GHz to 11GHz. The substrate is of 2.08 permittivity and
Smm thickness, and different parameters were chosen for the two ring arrays.
For the first, d=8.5mm, 7, =2mm and », = 3mm; while for the second, d
= 16mm, r, = 7.5mm and », = 7.9mm. Fig. 5.4 shows good agreement
between the theoretical and experimental results. Given a point on a
zoneplate surface, the phase compensation required to focus an incoming
plane wave increases with frequency. However, it is seen from Fig. 5.4 that
for a fixed configuration, the phase shift provided by the reflective phase
shifter decreases with increasing frequency. This, to some extent, may limit

.
i
i
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the bandwidth of the zoneplate antenna based on this phase correcting
technique.

e

Fig. 5.4 Frequency response of two reflective phase shifiers.

Fig. 5.5 shows the numerical results of a reflective phase shifter as a
function of the median ring radius » = (r, + r,)/2 for three different distances
between ring centres, d = 6, 9 and 15mm. The operating frequency is chosen
as 11.4 GHz, which is the design frequency of an antenna to be described in
the following section. The substrate thickness is 4.5 mm, i.e., approximately
a quarter wavelength in the dielectric with a permittivity of 2.08. The ring
width is fixed at (r, - ;) = 0.4mm. Note that each curve stops when the outer
ring radius, r, is equal to half of the separation, i. e., when rings just touch
each other. It is observed that the phase shift is mainly determined by the
ring dimension. Small rings are capacitive and produce phase shifts greater
than m, while large rings are inductive and produce phase shifts less than 7.
For a given phase shift, the closer the separation between adjacent rings, the
smaller the median ring radius required. With 15mm separation, a phase
shift in the range of 7/2 to 2w can be obtained simply by adjusting the ring
radius. In practice, the widths of the full wave zones of a zonal reflector are
limited, so a smaller separation d should always be used whenever possible.
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However, it is seen from Fig. 5.5 that for any required phase shift, there is a
minimum separation d. The smaller the phase shift, the greater the minimum
d. This means that the minimum dimension of the rings is limited by the

required phase shift.

A00

g

phase shift (deq)
3.
[
i

it o

0 2 4 6 ' 3

T

Fig. 5.5 Performance of reflective phase shifters with fixed substrate
thickness and different distances between adjacent rings.

Fig. 5.6 gives the phase shifting performance of reflective phase
shifters with d = 15mm and different substrate thickness, where the ring
width is fixed at 0.4mm. It is seen that the three curves become very close at
resonance when the ring circumference is roughly equal to the operating
wavelength. This indicates that the resonant frequency of the array is not
strongly influenced by the substrate thickness. The substrate thickness
determines the initial phase shift and the gradient of the curves around
resonance, but it does not influence the range of phase variation

significantly.
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Fig. 5.6 Performance of the reflective phase shifters with fixed distance
between adjacent rings and different substrate thickness.

5.3 Phase Correcting Flat Reflector Incorporating Rings

A homogeneous reflective phase shifter with a fixed substrate
provides a specific phase shift at a given frequency. To obtain a phase
correcting zoneplate reflector, a space-varying phase shifting function is
required in order to focus an incoming plane wave at the focal point [41, 44-
46]. Consequently, the conducting rings must be inhomogeneously
distributed over the substrate surface. In theory, conducting rings in an
inhomogeneous environment behave differently from those in a
homogeneous array. Since a zoneplate reflector employs hundreds even
thousands of conducting rings, however, a full numerical analysis will lead
to unacceptable computer memory and CPU time. Therefore, the following
approximate method is used instead. Firstly, a number of homogeneous
phase shifters are designed to realise the discrete phase shifts required by the
subzone phase correction technique described in the previous chapters. Then,
rings of different sizes are uniformly packed in the appropriate subzones.
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Fig. 5.7 Print-out of the quarter-wave single printed flat reflector.

As experimental prototypes, a number of small single printed phase
correcting flat reflectors were fabricated and tested, which had only one full-
wave zone and a 33.2cm diameter [17, 40]. Based on the success and
experience gained, a larger quarter-wave flat reflector operating at 11.4GHz
was designed and fabricated using the screen printing technique [18]. It has
59.4cm diameter and 0.8 /7D ratio. Three full wave zones and a quarter wave
zone are covered by the reflector. The substrate has Smm thickness and 2.08
permittivity. The first quarter-wave zone is left blank, which gives 17.3°
phase shift to a normally incident plane wave. Three different size rings are
printed in the other three quarter-wave zones to provide the following phase
shifts: 107.3°, 197.3° and 287.3°. With the ring widths fixed at 0.4mm, the
median ring radii are 7.4mm, 3.95mm and 2.35mm respectively. The
printout of the ring arrangement is shown in Fig. 5.7. A corrugated conical
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horn with 4.7cm aperture diameter was used as the feed and the whole
system is shown in Fig. 5.8.

FIig. 5.8 lllustration of the antenna system.
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(b)

Fig. 5.9 E-plane radiation patterns of the single printed flat reflector shown
in Fig. 5.8 at 10.9GHz (a) and 11.2GHz.
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The antenna was measured in the band from 10.9GHz to 11.7GHz.
Fig. 5.9 shows two E-plane radiation patterns of the antenna at 10.9 GHz
and 11.2GHz respectively. It is seen that the close-in sidelobe level is about -
22dB and the far-out sidelobes are below -30dB. Similar results were
observed at other frequencies. As with the conventional dish, the sidelobe
level can be further reduced if the non-blocking offset configuration is used.
Fig. 5.10 shows the frequency response of the antenna and a 1.95dB
maximum gain reduction was observed at the lower band edge. This yields
an estimated 3dB bandwidth of greater than 10%, which agrees with the 12%
bandwidth achieved with the small prototype [17]. The antenna achieved
43% maximum efficiency at the central design frequency.

5.4 Other Designs

It should be pointed out that, in addition to rings, conducting
elements of various shapes can be used to produce the phase shifts required
by a single printed flat reflector. Examples include patches, holes and
dipoles etc.. Fig. 5.10 shows such a design by the authors using conducting
discs and circular holes. The two complementary elements were employed to
achieve capacitive and inductive conductance, respectively.

Fig. 5.10 An alternative design using discs and holes.
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Malibu Research has developed a similar reflector antenna based on
the crossed dipoles, which is known as FLAPS™ (Flat Parabolic Surface)
[41]. The FLAPS™ consists of an array of crossed dipoles positioned
approximately 1/8 wavelength above a ground plane and the phase shifting
value was controlled by changing both the lengths of the dipoles and the
spacing between adjacent elements (see Fig. 5.11). The dipole lengths vary
from 0.25 to 0.6 wavelength to achieve a full range of phase shifts.

11
heRLh

Fig. 5.11 Crossed dipoles used in FLAPS™

An interesting aspect of the FLAPS™ antenna is that, owing to the
polarisation isolation between the orthogonal dipoles (greater than 50dB), it
is possible to control the two polarisations of the reflected wave
independently. By designing the FLAPS™ surface to have separate focal
points for the orthogonal linear polarisations, for instance, a dual polarised
feed is not required. This characteristic can also be used in various
applications, such as converting one linear polarisation to another or
converting a linearly polarised wave to a circularly polarised one. Fig. 5.12
shows the FLAPS™ antenna configuration and Fig. 5.13 shows another
possible arrangement of the crossed-dipoles [63].

5.5 Conclusions

In this chapter, the single printed flat reflector using reflective phase
shifters is introduced. The spectral domain method of moments used for
analysing reflective phase shifters with conducting rings is described, and
experimental and numerical results are given. The theoretical model and
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method can also be used in similar designs based on other phase shifting
elemel}ts. A flat quarter-wave single printed flat reflector incorporating rings
operating in the 11GHz band (10.9GHz to 11.7GHz) is investigated. The
reflector covers three full wave zones and a quarter-wave zone. In each full
wave zone, the first quarter-wave zone is left blank, the other three quarter-
wave zones are packed with different size rings. The new reflector antenna
achieved 43% maximum efficiency and -22dB sidelobe level. The 3dB
bandwidth of the reflector is estimated to be greater than 10%. Also, two
alternative designs, one based on patches and holes and the other the
FLPAS™ antenna based on crossed-dipoles by Malibu Research, are
discussed. :

X X X X
X XX X X X
XXX XXX X X
XXXXXX X X
X XX XXX X X
X XXX XXX X
X X X X X X
X X X X

Fig. 5.12 lllustration of the element arrangement in FLAPS ™
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Fig. 5.13 Illustration of an alternative arrangement of crossed-dipoles as
phase shifting elements. Microwave Engineering Europe.

Chapter 6 Reflective
Array Antenna

In addition to various Fresnel zoneplate antennas, there is another
type of electrically large antennas based on the principle of phase correction
- the passive phase correcting array antenna, which consists of a regular
array (Cartesian array, for instance) of phase shifting elements over a plane
and a feed. In contrast to the normal array antenna which requires a feeding
network, the elements in a phase correcting array are excited by the radiation
field of the feed and the array radiation pattern is controlled by adjusting the
phase shift or the surface impedance of each element in the array [47-50].
This type of antennas possesses the versatility of the conventional array
antenna in that a variety of radiation patterns can be produced by changing
the distribution of the phase correcting function across the antenna aperture.
In principle, there are both reflective and transmissive arrays. This chapter is
devoted to reflective arrays only, though the principle applies equally to
transmissive arrays.

Reflective phase correcting arrays can be classified into two
different categories. In the first, with elements whose phase shifts are chosen
from a continuous range, each element provides a perfect phase correction at
the element centre. To date, a few such antennas have been reported by
previous investigators, including some very large ones used for astronomy
[47, 50]. The second consists of quantised phase shifting elements [47, 48].
Similar to the stepped and zoned phase correcting reflectors, phase
quantization errors exist at the centres of most elements [5, 13]. Although the
phase efficiency of an array with quantised phase shifting elements is lower,
it has the following advantages. First, the quantised phase shifting elements
are more economical to produce. Second, a set of quantised phase shifting
elements with fixed values forms a reconfigurable antenna kit with which
planar reflectors of different performance can be conveniently built. Third,
scanning can be achieved by using electronic digital phase shifters.

As with the Fresnel zoneplate antenna,r the efficiency of the passive

phase correcting array is a function of the illumination efficiency, the
spillover efficiency and the phase efficiency etc. (see chapter 3). While the
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others are related to the feed radiation pattern, the phase efficiency is mainly
determined by the phase correcting function over the array aperture. In this
chapter, a systematic investigation of the phase efficiency of planar
reflective arrays is given [19]. Section 6.1 presents a general expression for
the phase efficiency of the planar reflective phase correcting array. Section
6.2 deals with the phase correcting array with elements whose phase shifts
are chosen from a continuous range. The relationship among the phase
efficiency, the element size and the focal length to diameter ratio is
discussed. In section 6.3, the phase correcting array with quantised phase
shifting elements is studied. The probability theory is employed to
investigate the influence of the quantised phase errors on the phase
efficiency. Section 6.4 gives an estimate of the influence of manufacturing
and installation tolerance. Section 6.5 presents a new reflective array with
multilayer phase shifting tiles and section 6.6 concludes the chapter.

6.1 Phase Efficiency of a Reflective Array

v As shown in chapter 3, the phase efficiency of a phase correcting

aperture antenna can be studied through the focal field. Assume a plane
wave is normally incident on a planar reflective surface placed at z = 0 plane
(see Fig. 6.1), the diffracted field at the chosen focal point can be expressed
as

v, =%jexp{j[¢(x,y)—kR]}(l +%)%dxdy (6.1)

where @(x, y) is the surface phase correcting function, f'is the focal length,
2n
k= - is the wavenumber in free space and R =+/f" +x” + y*. The

phase efficiency of the phase correcting surface is defined as

_Y

= (6.2)
5Ufo Tfo

My

where the asterisk denotes complex conjugate and Wy, is the focal field of
the ideally phase corrected surface whose phase correcting function satisfies
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@(x,y) =kR. (6.3)

=
feed 7z

Fig. 6.1 Iltustration of the co-ordinates.

. In practice, it is very difficult to achieve the continuous phase
correction given by Eq. (6.3), but a good approximation can be obtained by
using a large number of discrete phase shifting elements, which forms the
basis of the phase correcting array. When square elements are employed, the
phase correcting function of a phase correcting array can be expressed as’

X —X, -y,
D(x,y)= Z D, rect( : )rect(y 2 ) (6.4)
ij w w
where
X, =iw
Y, =jw

with w as the element width (see Fig. 6.1) and rect(x) defined as

1 (u<1/2)

rect(u) =
@) {0 otherwise
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Substituting Eq. (6.4) into Eq. (6.1) yields

. 1
v, =I5 Jexp(i, ~ 1N+ ) sy ©5)

i 5 R

where S;; is the aperture area of the element (i, j). To obtain an explicit
expression of the focal field, one introduces a local co-ordinate system

x’0’y’ as follows:
xX'=x- X

y'=y-y;

This leads to

R= \/f72+ (x+x,)" +('+y,)°

Expanding R into a Taylor series and neglecting the higher order terms
produces

xx'4y.y
R=R; +’——Ji (6.6)
R,

where Ry is the distance between the element centre and the focal point

given by
_ 2 2 2
R,.J.—,If +x +y, . 6.7)

Assuming that the element size is much smaller than the focal length, i.e.,
w<<f, one can neglect the variation of the amplitude of the integrand in Eq.
(6.5) and substitute Eq. (6.6) into the phase term. This gives

k LEX Y &
¥, ~ i—ﬂ_Z C; Jexp(—]k—R—]—) explj(P; — kR; )dx dy
ij Sy i

(6.8)
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where
1
C. :(1+L)— (6.9)
. . .
R'R,
Performing the integration in Eq. (6.8) yields
jiw? o
= ZCE xpLj(B, = kR;)] (6.10)
where
o N .
E; =sinc(sing; cos g, z)smc(sm 6, sing, %) (6.11)
with
6; = tan™ (\[x +y7 / ) (6.12.2)
¢y = tan’ 1(yj /X,) (6.12.b)
. sin(zx
sinc(x) = sin(z) . (6.12.c)

Similarily, the focal field of an ideally phase corrected surface can be well
approximated as

_ kv’
¥, = —2.G (6.13)
5,J

Substituting Egs. (6.10) and (6.13) into Eq. (6.2) gives
2 2 GGyE B, explj(®, —kR,)lexpl j(kR,, — @,,)]
n,=— (6.14
>>GC, )

ij i%j'
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E;; represents the contribution of the element @, j)- It needs modiﬁcat%on
Wilen the element aperture field is not a constant, such as the waveguide
modes used in [47]. For convenience, define the element efficiency as

2
70.—Eij,

w, . . ) w
= sinc’(sin 6, cos@; —ﬂ—)smc2 (sing; sing, — (6.15)

ik

From Eq. (6.15), it is seen that the element efficiency varies with the element
position and size.

6.2 Arrays with Ideal Phase Shifting Elements

When element phase shift values are in the range of (0, 2m), the
phase shift of element (i, j), @, can be chosen to correct the spherical phase
error at the element centre completely, i.e.,

Q,=kR,- 2In (6.16)

where [ is an integer to ensure

0: @;: 27 6.17)

Substituting Eq. (6.16) into Eq. (6.14) produces

3 GG EE,;

/)

= b LS . (6.18)

LD DN

i,j i

Eq. (6.11) shows that Ej; is a function of g; and ¢;. When kwsin 6, < 7, 7

which is normally the case for an array with reasonable phase efficiency, E;
is almost independent of ¢;;, so one can write

77, = sinc(sin 6 %)‘ (6.19)
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Numerical results showed that this approximation leads to a relative error of
less than 1%. Eq. (6.19) shows that for a given element size w, the element
efficiency decreases with increasing 8. For an array circumscribed by a
circle with diameter D, which can be taken as a circular reflector with zigzag
boundaries, the outermost elements span the maximum angle 6. Therefore,

1, >sinc’( (6.20)

_W_)
AV1- 4a?

where & = f/D is the focal length to diameter ratio of the circular reflector. It
was shown in Chapter 3 that the phase efficiency of a 1/M-wave phase
correcting zoneplate is given by

v = Sincz(é)' (6.21)

To obtain the same phase efficiency for the phase correcting array, a
sufficient condition is

< AW1l+4o2

w= v (6.22)

Eq. (6.22) ensures that the array phase efficiency is greater than that of the
corresponding //M-wave zoneplate, i.e.

1
Mpe > Smcz(ﬁ)- (6.23)

Fig. 6.2 shows the phase efficiency of three reflective arrays with the same
aperture diameter (D = 401) but different focal length to diameter ratio o and
different element size w/A. It is seen that the phase efficiency of a planar
reflective array with element phase shift values in the range [0, 27| is
determined by the focal length to diameter ratio and the element size. The
greater the o and the smaller the w/A, the greater the phase efficiency. The
maximum element size which guarantees a given array phase efficiency
increases with the focal length to diameter ratio of the array. Numerical
results show that with the same focal length to diameter ratio o and the same
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element size w/A, the phase efficiency hardly changes with the array
diameter D.

Fig. 6.2 Phase efficiency of arrays with element phase shifis in a continuous
range. d =404, a=f/D and S = w/A.

6.3 Arrays with Quantised Phase Shifting Elements

Although arrays with element phase shifting values chosen from a
continuous range have higher phase efficiency, those with quantised phase
shifting elements are much. easier and more economical to produce.
Furthermore, the same set of quantised phase shifting elements can be
employed to build different planar reflectors operating in the same band. In
other words, reflectors with different performance can be produced by
rearranging the positions of the elements.

When quantised phase- shifting elements are employed, & is
restricted to such discrete values as

o =27 (n=0 1, .., N-I) (6.24)

PN
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where N is referred to as the phase quantization number. For a specific
clement centred at (x;, ¥;), nis so chosen that there is an integer m leading to

/4
D, +2mm— kR, <5 (6.25)

Eq. (6.25) demands that, modulo-27;, the phase error at the centre of element
(i, j) 18 less than #/N. Defining the phase quantization error as

5@1.]. =@, +2mn - kR, (6.26)
Eq. (6.14) becomes

> > C,CLEE,, explj(60, - 5@,,)]
7, =1L . (6.27)

z 2 Cij Ci'j'

Lji 1.

For an array with given parameters: focal length f; element size w, phase
quantization number N and operating wavelength A, the distribution of O0D;
is deterministic. To obtain a general understanding of the influence of the
phase quantization error é'gbl-j on the antenna phase efficiency, however, it is
assumed that 8®; is an independent random variable with a uniform
probability distribution. In other words, S(Dij can take any value in the

n n
range of (-F,ﬁ) with equal probability, depending on the relative position

of the element to the focal point. Integrating Eq. (6.27) with a uniform
probability density function (pdf) gives the expected value of the phase
efficiency:

exp(j52) exp(j5@) g
(7,0)x = exp(jOD)| 17, + (1 —|exp(jOD) ) =% (6.28)
s PN

Ly Ly

where exp(jO@) is the mean of exp(jéd), which is the same for all the
elements according to the above assumption. Eq. (6.28) shows that the
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expected phase efficiency has a dominant term proportional to the phase
efficiency of the phase correcting array with element phase shifts chosen

from a continuous range. The coefficient is the square magnitude of the .

mean of a unit vector, whose phase is the element phase error.

With the rectangular distribution as the pdf of 6@[51, 52], one has
—a? . 5,1
‘exp( Jj 5(13)‘ =sinc (-ZV) X (6.29)

Substituting Eq. (6.29) into Eq. (6.28) gives

E Gy
(M,,)z =sinc ( )npc + (1 —sinc (—)) 22 . (6.30)

ij 11'
ij Ly

By virtue of Eq. (6.9), it can be proved that

§ Cimy 2
iy
( o A o 631
22 /At )mm KAf
ij 7.7

where (R;)y,y is the maximum distance between the focal point and the
element centre, and K, is the number of elements in the array. For a practical
array, K, is normally very large and

A(Ry) s
K,f*

so the second term in Eq. (6.30) is negligible. This gives

<1, (6.32)

. 1
(ﬁpq)E ~ smcz(ﬁ)npc. (6.33)

* Substituting Eq. (6.20) into Eq. (6.33) produces
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1,5 > sincz(%)sincz(ﬁél—z—). (6.34)
- 40

The physical explanation of Eq. (6.34) is given as follows. The phase
efficiency of the quantised phase correcting array is a function of the phase
quantization number N, the element size w and the focal length to diameter
ratio o. The phase quantization number determines the mean phase error at
each element centre, and the element size and the focal length to diameter
ratio determine the maximum phase variation across the element. Therefore,
greater quantization number and focal length to diameter ratio, and smaller
element size are favourable to produce a reflective phase correcting array
with higher efficiency. Since a quantised phase correcting array can be taken
as a device to simulate a subzone phase correcting Fresnel zoneplate
described in chapter 3, this is quite understandable.

Based on Eq. (6.27), Fig. 6.3 shows the phase efficiencies of
reflective arrays with a phase quantization number N = 5. The other array
parameters are kept the same as those for Fig. 6.2. Numerical results showed
that these phase efficiency values are almost identical with the expected
values given by Eq. (6.33), with errors less than 1%. Therefore, one can
conclude that for a phase correcting array with N different types of phase
shifting elements, the phase quantization error reduces the phase efficiency
by a factor of sinc*(1/N).

It should be pointed out that both Fig. 6.3 and Fig. 6.4 indicate that
the phase efficiency of a reflective array antenna increases when the element
size w/A decreases. In a practical design, however, the element size may
affect the distribution of the electromagnetic fields. When the multilayer tiles
as described in section 6.5 are used, for instance, the edge diffraction
degrades the effect of phase compensation if the element size is smaller than
the wavelength. In this case, a large f/D ratio may have to be used to
accommodate large array elements.
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Fig. 6.3 Phase efficiency of arrays with element phase shifts of quantlsed
values. N=15, d =404, o=f/D and S =w/\.

6.4 Tolerance Analysis

Once the parameters of the reflective array with ideal quantised
phase shifters are given, which include the focal length, operating
wavelength, quantization number and element size, the distribution of the
phase quantization error 54517 is deterministic. When the manufacturing and
installation tolerance is considered, however, 5% becomes a genuine
random variable. To distinguish the random phase error caused by the
tolerance from the deterministic phase quantization error, replace Eq. (6.27)
by

Y D GG E B, expli(8®; — 58,,)]expl j(6®,; — 60,,,)]
ij iy

Mygr = EZCC

L

(6.35)

where 6@; is the phase quantization error defined in Eq. (6.26) and 0D, i
the random phase error. To quantify the influence of the manufacturing and
installation tolerance on the array phase efficiency, assume that the random

)
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phase errors at different elements are independent of each other, but have the
same pdf. Integrating Eq. (6.35) with the pdf gives the expected value of the
phase efficiency:

Z i,
22

ij 1,

- (636)

2
M) =| T,y +(1-|

where exp(jo@,) is the mean of exp(jéd ), which is the same for all the
elements according to our assumption. Taking the normal distribution as the
pdf of 6@, yields

e -

where G, is the standard deviation of the random phase error 6@, [7, 8].
Substituting Eq. (6.37) into Eq. (6.36) and neglecting the second term, as
with Eq. (6.28), gives

(6.37)

(7 )p = XP(- €)1, (6.38)

Eq. (6.38) shows that the manufacturing tolerance is expected to reduce the
phase efficiency of the quantised phase correcting array by a factor of
exp(- ¢%). This result is the same as that for conventional arrays and
reflectors [53]. In contrast to the quantization phase error, the distribution of
0@, is usually unknown, so the only way to ensure a required phase

rif
efficiency is to control the manufacturing tolerance.

6.5 Arrays with Multilayer Tiles

To put the concept of the phase correcting array into practice,
multilayer phase correcting tiles can be used as the phase correcting
elements. Fig. 6.4 shows a set of four different phase shifting tiles based on
the multilayer configuration. The tiles are composed of three identical pieces
of dielectric substrates and a conducting film located at different positions,
where the film thickness has been exaggerated for the purpose of illustration.
Type-1 tile is the reference tile which has a conducting film on the top and
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provides T phase shift. The conducting films are moved down successively
in type-2 to type-4 tiles in order to provide quantised phase shifts by using
different numbers of dielectric substrates above the conducting film. When a
ray is normally incident on the type-p tile, it produces a geometrical optics
(G. O.) phase shift given by

¢ =72-2k(p- DtJ&,  (p=1,2..4 (6.39)

type-1 type-2

V)

type-3 type-4

Fig. 6.4 Sectional view of the multilayered tiles.

where ¢ is the thickness of the dielectric substrates and €, is the relative
dielectric constant. With N = 4 as the quantization number, one obtains

(=t (6.40)

8,

The whole tile thickness is given by
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A

h= .
2,/€,

(6.41)

Based on some preliminary experiments on small size laboratory
prototypes [19, 47, 48], a working reflective array antenna with four types of
multilayer tiles was fabricated in the University of Bradford workshop. The
antenna was designed at 11.4GHz, with D = 0.8m and /= 1.064m, leading to
/D = 1.33. In order to use as large tiles as possible, this #/D ratio is greater
than that of a normal dish. The offset angle of the array was chosen as 20°.
The parameters for the tiles are € = 2.01, tile width w = 25mm and tile
thickness #=2mm. Fig. 6.5 shows the layout of the tiles. The feed horn used
for the antenna was a conical horn with a 52mm diameter. The antenna was
tested at the Baldock Satellite Test Site by Mr T. M. Wright of Mawzones.

Fig. 6.5 Tile arrangement of the experimental array.

For economical reasons, the experiment was designed mainly to
demonstrate the feasibility of the design, which consisted of the following
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procedures. First, the strength of a beacon signal from a satellite received
using a multilayer quarter-wave zoneplate was recorded. Then, the beacon
signal strength received using the reflector array with multilayer tiles was
recorded. The two recorded beacon signals are shown in Fig. 6.6 and Fig.
6.7. Comparing the two signals, it is seen that the signal picked up by the
array antenna was by average 3dB stronger than that received by the quarter-
wave zoneplate. Knowing that the zoneplate has 59cm diameter and 30°
offset angle, the difference in the areas of the two antennas projected in the
main direction accounts for about 2.29dB gain difference, thus resulting in
about 0.7dB improvement in total efficiency. Although the experiment was
not meant to produce any quantitative antenna performance measure, it is
safe to conclude that an efficient reflective array antenna can be produced by
using quantised phase shifting elements, such as multilayer tiles.

6.6 Conclusions

A systematic theory on the phase efficiency of planar reflective array
antennas is given. Arrays with element phase shifts chosen from both
coftinuous and quantised ranges are studied and closed-form equations for
predicting the phase efficiency have been derived. The relationship among
the phase efficiency, element size and focal length to diameter ratio is
discussed. It is shown that for arrays with element phase shifts chosen from
a continuous range, the phase efficiency is mainly determined by the element
size and focal length to diameter ratio; whereas for arrays with quantised
phase shifting elements, the element size, focal length to diameter ratio and
quantization number altogether determine the phase efficiency. The
influence of the manufacturing and installation tolerance is also quantified.
The theory has been demonstrated by a working reflective array antenna
with multilayer dielectric tiles.
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Fig. 6.7 Measured signal strength with the reflective phase correcting array.



Chapter 7

Other Fresnel Zone
Antennas

In the preceding chapters, theoretical investigations and experiments
on a number of Fresnel zone antennas are presented. This chapter is intended
to introduce a wider range of Fresnel zone antennas. Section 7.1 presents a
theory regarding the possibility of producing single printed Fresnel lens that
doubles the efficiency of the simple Fresnel lens (transmission zoneplate).
The rest of the chapter is devoted to other Fresnel zone antenna
configurations published in the open literature by other researchers in the
field: Readers who-are interested in the application of Fresnel zone concept
in different fields are recommended to refer to [65] for a comprehensive
review.

7.1 Single Printed Fresnel Lens

Owing to the blockage caused by the conducting rings of the simple
Fresnel lens (or transmission zoneplate) as discussed in chapter 2 and chapter
3, its antenna efficiency is intrinsically low, which limits its wide use in
many practical applications. In the following, it is shown that it is
theoretically possible to produce a single printed Fresnel lens of higher
efficiency by replacing the opaque half-wave zones with conducting phase
shifting elements.

Assuming a plane wave is normally incident on an infinitely thin
homogeneous lossless screen, the reflection coefficient /7 and the
transmission coefficient T satisfy the following equations:

1-T=T (7.12)

I0” +|7)" =1 (7.1b)
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Eq. (7.1a) is derived from the electromagnetic boundary condition which
demands the tangential component of the electric field to be continuous
across the screen, and Eq. (7.1b) results from the law of energy conservation.
To investigate the phase and manitude characteristics of the reflection
coefficient /"and the transmission coefficient 7, let

=" (7.2)
Substituting Eq. (7.2) into Eq. (7.1) yields

I' =—cosye’’ (7.3a)

T=—jsinye’V . (7.3b)

Eq. (7.3) shows that the reflection coefficient has a non-positive real part and
the transmission coefficient has a non-negative real part. Therefore, the
phase of the reflected and transmitted waves can be changed only in a range
of m.

In a simple Fresnel lens, the phase deviation in the transparent half-
wave zones is not compensated. Owing to the relationship between the phase
and the magnitude in the transmission coefficient given in Eq. (7.3b),
however, it does not help to employ phase correcting elements in the
otherwise transparent half-wave zones, as the effect of compensating for the
phase error would be offset by the reflection loss. It should be realised,
however, that in a Fresnel lens the energy intercepted by the opaque half-
wave zones 1S completely wasted. It is, therefore, possible to increase the
efficiency of the Fresnel lens by replacing the opaque half-wave zones with
phase shifting elements. The contribution from a transparent half-wave zone
is given by

I, =j”e‘f'”dzy:—2j (1.4)

0

Using Eq. (7.3b), the contribution from the phase correcting half wave zone
is given by
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Let
y=¢-7 (7.6)
Eq. (7.5) yields
27
I ==j]"cosgd =2 (7.7)

The efficiency of the Fresnel zone lens consisting of transparent half-wave
zones and phase correcting half-wave zones is thus given by

I+1]° 4
-t 9

Eq. (7.10) shows that a single printed Fresnel lens can achieve 40.5%
efficiency, the same as that of an ideal phase reversal Fresnel zone reflector,
provided that the phase shifting property given in Eq. (7.6) can be realised.
As an illustration, a Fresnel zone lens of such configuration with two full
wave zones is shown in Fig. 7.1.

7.2 Millimetre-Wave Dielectric Fresnel Lens

To increase the antenna efficiency of the Fresnel zone lens further,
dielectric material of different thickness or permittivity can be used in
different subzones to form Fresnel phase correcting lens antennas [5]. The
concept behind these configurations is similar to that described in Chapter 3
and Chapter 4 on Fresnel zone reflector antennas.

The first quarter-wave Fresnel lens was reported in [5], which
employed the same dielectric material but different thickness in each quarter-
wave zone. One advantage of using this grooved structure is that any
material with reasonable permittivity and low loss can be used. An
alternative structure is to use composite dielectric material of the same
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thickness but different permittivity [55]. For illustration, a full wave zone of
such configuration is shown in Fig. 7.2. This configuration has the
advantage that both the front and back surfaces of the lens are flat. In
practice, however, it may be difficult to obtain all the material needed for a
chosen frequency, so using composite material to make high efficiency
Fresnel lens antenna may prove -inconvenient, although the antenna
efficiency of the Fresnel lens antenna using composite material can be higher
than that of the grooved configuration [63]. It should be noted that neither
configuration avoids the reflection loss incurred at the interface between the
air and the dielectric.

Phase
shifting
elements

Fig. 7.1 A speculative single printed Fresnel lens.
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~ Fig. 7.2 The first full wave zone of a quarter-wave Fresnel dielectric lens.

7.3 Phase Correcting Lens Employing Artificial
Dielectric

In principle, high efficiency and low cost phase correcting Fresnel
lens antennas can be produced using the same concept given in Chapter 3 for
.reflector antennas. Unlike the reflector antenna, however, an ideal lens
should provide not only effective phase correction to an incident wave but
also good impedance matching so that the reflection loss can be kept small.
Therefore, a multi-layer structure is inevitably needed to produce a high
efficiency Fresnel lens antenna. This is similar to the concept of producing
flat phase correcting lens employing non-homogeneous artificial dielectric.
As an illustration, Fig. 7.3 shows a multi-beam phase correcting lens antenna
considered by the European Space Agency (ESA) [63].

Employing artificial dielectric in lens antennas is potentially
attractive. Compared with normal dielectric material, artificial dielectric has
the advantage of lighter weight, higher thermal stability and strength, and the
flexibility of synthesising any desired permittivity. Furthermore, artificial
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material can be cheaply produced by printing conducting elements on low
loss substrates. Better still, it may even be possible to produce a phase
correcting lens antenna using non-homogeneous conducting polymers, a new
kind of material which allows different degrees of conductivity to be
synthesised [63].

Fig. 7.3 A multilayer phase correcting lens antenna considered by
ESA.  Microwave Engineering Europe

7.4 Waveguide Lens

A waveguide lens based on the Fresnel zone antenna concept has.
been used as a satellite-borne antenna (see Fig. 7.4). It consists of an array
of waveguide tubes in which focusing is achieved by means of the phase
correction introduced by the tube length or tube section profile [63]. Zoning
is introduced in this configuration not only to keep the profile low, but also
to reduce the weight. It is interesting to note that zoning also results in an
improvement of the lens bandwidth, as short weveguides reduces the phase
distortion due to dispersion. Such a lens can be fabricated using light metals,
and it was reported that a bandwidth of between 5% and 15% can. be
achieved. -
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Fig. 7.4 A Fresnel zone using waveguides. Microwave Engineering
Europe

7.5 Cylindrical Fresnel Lens

Although most of the material presented so far in this book is
devoted to flat Fresnel zoneplate antennas, Fresnel antennas with curved
surfaces do find applications in practice. A cylindrical Fresnel lens antenna
was proposed as a candidate for base station antennas in wireless
communications [58]. The antenna is constructed from a cylinder with metal
opaque zones and is fed by a dipole placed along the axis of the cylinder (see
Fig. 7.5). A sharp beam is formed in the elevation (0 direction) by the
diffraction caused by the zonal cylinder, and the direction of the main beam
is controlled by moving the position of the dipole along the central axis of
the cylinder, thus providing wide-coverage tilt capability. As a circularly
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symmetrical structure, the antenna pattern is omni-directional in the azimuth
(¢ direction), so it is mainly suited for micro-cellular and pico-cellular
mobile communications systems and wireless local area networks (WLANS).

As a simple Fresnel lens, the cylindrical antenna has high sidelobes
and low efficiency. The advantage is that a high directivity can be achieved
in the elevation with a simple and low-cost structure.

Fig. 7.5 A cylindrical Fresnel lens antenna for wireless LANs. IEEE

7.6 Fresnel Lens for Automotive Radar

Recently, there has been a fast growing interest in microwave and
millimetre-wave sensors (radar) for industrial and domestic applications,
one of which is the automotive sensors [64]. The advanced automotive
distance warning system to be installed on future cars will use front, side and
rear radar to monitor obstacles. This car vision system determines the
distance from and the speed of detected objects and alerts drivers if they are
too close to an obstacle. Compared with other techniques such as laser and
ultrasound, the microwave/millimetre-wave radar are more robust in severe
weather conditions and therefore more reliable. Undoubtedly, price is a key
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issue in such consumer products and the low cost feature of the Fresnel zone
antenna makes it a very competitive candidate.

A curved Fresnel lens antenna has been considered as an automotive
radar antenna by Russian scientists I. V. Mini and O. V. Mini [64] in a
research project sponsored by Daimler Chrysler AG. Although referred to as
quasi-optical diffraction element (QDE), it is basically a quarter-wave
Fresnel lens antenna (see Fig. 7.6). The following characteristics of the
QDE were reported in [64]:

Penetration loss: <2 dB

beamwidth in azimuth plane (3 dB points): less than 1°
Sidelobe level: £-30 dB

Angular coverage in azimuth plane: up to (-30°, 30°).

b3

The Form of the Bumper which is Given
by the Car Designer,

Aerod ic Radome / A

Phase profile of QDE / Additional
Stiffeners of Construetion

Radiotransparent Stoff of Bumper

Fig. 7.6 A curved Fresnel lens antenna used for automotive radar.
Permitted to publish by Professors I. V. Minin and O. V. Minin.

7.7 Integrated-Circuit Fresnel Zone Antenna

An integrated circuit millimetre wave Fresnel zoneplate antenna was
reported in [57]. The antenna is based on the principle of phase reversal
zoneplate described in chapter 3. It is composed of a Fresnel zoneplate on
one side of the substrate with a strip dipole at the focal point of the
zoneplate on the opposite side of the substrate (see Fig. 7.7). The novelty of
this structure is that the feed element is naturally incorporated into the
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feeding circuitry so the overall antenna system becomes compact. Compared
with other millimetre-wave antennas, the production cost can be significantly
reduced.

Thanks to the multi-layer structure, the integrated circuit millimetre
wave zoneplate can be analysed accurately using spectral domain integral
equation techniques. As a quasi-optical device, however, it is found that the
radiation field of the antenna can be predicted using a simpler approach as
follows. First, the radiation field of a dipole located at the boundary of half
free space and half dielectric space is obtained by using the classical plane
wave expansion approach. Second, the induced current on the zoneplate is
obtained using the physical optics approximation. Third, the reflector behind
the zoneplate is modelled by placing fictitious conducting rings between the
actual conducting rings of the zoneplate. To account for the phase correction
introduced by the A/4 spacing between the reflector and the zoneplate, a
phase shift of 7 is added to the physical optics current on the fictitious rings.
Fourth, the radiation field of the induced current is calculated using the plane
wave expansion method again. Finally, the radiation field of the zoneplate
antenna is calculated as the sum of the direct radiation from the dipole and
the contribution from the induced current. It is found that the approach
described above provides reliable results when the focal length of the
antenna is long [57].

antenna and leads
o e ]

Fig. 7.7 Sectional view of the integrated Fresnel zone antenna.

It is interesting to note that when a printed antenna is placed at the
interface between two different dielectric half space, the boundaries of the
half-wave zones differ from those in free space. Therefore, the
straightforward geometrical design approach given in chapter 2 becomes
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sub-optimum. An optimum design should be based on the phase variation of
the radiation field of the radiating elements in the dielectric. Obviously, the
distortion on the width and shape of the zonal regions depends on the
permittivity of the dielectric material used. The higher the permittivity, the
greater the distortion becomes.

- 7.8 Suggestions for Future Work

We conclude with a brief discussion on the future of Fresnel zone
antennas. It appears that there are at least four areas for further research.
First, the application of the Fresnel zone concept and phase correcting
techniques to various types of antennas, such as the cylindrical antenna
described in section 7.5. Second, the development of efficient and low-cost
phase correcting techniques. The third area of interest includes accurate
analysis and design of phase correcting flat antennas, prediction of power
handling ability and power dissipation in the dielectric used in the antenna
[S, 61]. The fourth area is the study of broadband Fresnel zone antennas. One
possible solution to increase the bandwidth of the Fresnel zone antenna is to
use mutiple-band resonators, which has been employed in the FSS study
[62], as phase correcting elements. At the moment, the telecommunications
industry is moving toward the Universal Mobile Telecommunications
Service (UMTS) and other broadband systems, and there is a high demand
for novel antenna solutions to satellite, cellular mobile and wireless LAN
radio problems. In the meantime, the automotive industry is introducing
more and more radio technology to make driving a safer and more enjoyable
experience. It is believed that low-cost and broadband Fresnel zone antennas
will find many applications in those areas.
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