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ix

Preface

This book is designed as a set of topics that interlock in order to give the reader a
reasonably paced introduction to the theory that underpins antenna design techniques.

The earliest recorded pioneer of studies related to the creation and detection of 
electromagnetic radiation through free space was Heinrich Rudolf Hertz (1857–1894).
Hertz demonstrated by a series of experiments around 1886 that electromagnetic waves
transmitted through the air had wave-like characteristics. By good fortune, the spark
gap means by which he created his electromagnetic energy generated centimetre wave-
lengths. This involved creating a discharge of a Leyden jar (a capacitor) through one
coil while causing a spark to pass across a short air gap between the ends of the other
coil. Oliver Heaviside had pointed out in 1877 that such a discharge of a capacitor 
in association with an inductor, the coil, would lead to oscillatory current. In effect,
Hertz created a broadband signal generator producing energy over a very wide range
of frequencies. Working at centimetre wavelengths meant that he could conveniently
reflect these waves by dielectric prisms and metal parabolic mirrors in much the same
way as light can be manipulated.

Hertz went on to show, using the principle of resonance, that with identical transmit
and receive circuits he could considerably increase the free-space transmission dis-
tance between transmitter and receiver. In addition, he realised that the relationship
between electromagnetic wave propagation amplitude and distance obeyed the inverse
distance relationship. It is this property that makes wireless communication attractive
as a virtual wire communication means.

Among Hertz’s many key discoveries was the linear oscillator, comprising two metal
rods terminating in metal spheres. In fact, he had created a dipole antenna similar in
many respects to that much used in today’s communication systems. Using this dipole,
he showed that the electromagnetic waves he was producing had their electric field
component parallel to his rod antennas, i.e. they were linearly polarised. This prin-
ciple is used today to reduce interference between radio communication systems that
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x Preface

share the same frequency response. Hertz’s seminal work ultimately led to the creation
of wireless communication across all the frequency ranges in use today.

The work of Hertz went a long way towards validating the set of mathematical rela-
tionships postulated by James Clerk Maxwell (1831–1879). Maxwell’s equations give
the coherent framework within which it is possible to establish the relationships between
electricity, magnetism and electromagnetic wave propagation. Maxwell proved that
radio waves were an electromagnetic phenomenon and that their maximum speed of
propagation in a vacuum was the same as that of light, 3 × 108 m/s. His work showed
theoretically that, like light, electromagnetic waves could be focused using a parabolic
reflector. Maxwell’s equations are the starting point for RF and microwave designers
in their attempts to quantify and control electromagnetic wave phenomena in order to
produce useful engineering artefacts such as antennas.

Samuel Morse had invented the printing telegraph in 1835, while Alexander Graham
Bell had patented his telephone transmitter and receiver in 1876 and distant commun-
ication over wires was established. The theoretical work of Maxwell, underpinned 
by the supporting experimental evidence provided by Hertz, had by the 1890s led 
to the idea that Hertzian waves as they were by that time known might be used as 
an alternative to wire in order to transmit telegraphic or telephone signals over large
distances. The major thrust to providing realisation of these assertions came about as
a consequence of the work of Guglielmo Marconi (1874–1937), who from 1894 onwards
began to demonstrate wireless communication over useful distances.

A key breakthrough came when Marconi used transmit and receive antennas, which
were elevated above the ground. This dramatically improved free-space operating dis-
tance from a few hundred metres to several kilometres. Encouraged by these results
and realising that one of the most commercially attractive uses for wireless commun-
ications at that time was in facilitating ships in distress to summon assistance, Marconi
was granted the world’s first patent for a wireless telegraph in 1897.

Marconi then formed ‘The Wireless Telegraph and Signal Company Ltd’ later 
to become ‘The Marconi Company’. A further significant technical breakthrough 
for Marconi came in 1900, when he obtained a patent for a resonant tuner with a 
variable capacitor, which could bring the transmitter and receiver into resonance. An
extension to this work meant that multiple antennas could be connected to a single
transmitter and receiver. With these improvements, Marconi’s company had a num-
ber of commercial successes with shipboard coastal radio. His major success came in
December 1901, when he managed to receive a signal in Newfoundland that had 
been sent from Cornwall in England. With this, the monopoly control by the British
Post Office of transatlantic submarine cable telephony was broken. In the period 
1902 to the 1920s, many key developments related to long-wave wireless telephony
occurred; for example, valves were invented, which improved transmitter power and
receiver sensitivity. Short-wave transatlantic radio communications were pioneered 
in the 1930s at AT&T, Western Electric and Bell Laboratories in the United States.
Engineers such as H.T. Friis and E. Bruce developed theories and antenna types that
are still widely used today.

The seminal work of these and other pioneers is constantly evolving, through 
developments in radar in the 1950s to satellite communications in the 1960s and 1970s
and with the aid of miniaturisation in electronics to modern developments in adaptive
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Preface xi

antennas for base station and multiband antennas for personal mobile communication
wireless handsets that are currently taking place.

The motivation for this book is the recent huge expansion in mobile telecommunica-
tions, with the resultant scarcity of qualified RF specialists. One of the key areas of these
systems and perhaps the least understood is the point of entry or exit of a wireless
signal to and from the system, i.e. the antenna. Engineers with a working knowledge of
the basic fundamentals of these structures are increasingly in demand. Their scarcity
is compounded by the fact that many university undergraduate programmes have dropped
electromagnetic field courses in favour of more digital signal-processing type of activ-
ities. Consequently, this book is intended to act as an interpretational guide to the many
volumes of excellent (but for the beginner sometimes hard to digest) material that exist
in classical textbooks on the subject of electromagnetic waves. Thus it is hoped that
this book will facilitate the basis for a study of the concepts that underpin antenna
theory and techniques.

The structure of the material is broadly as follows:

l basic concept of radiation and the elementary building block for linear antenna 
modelling;

l plane wave propagation and power flow;

l basic antenna definitions and the concept of the linear dipole antenna;

l single and multiple dipole antenna radiation pattern formation;

l antenna systems and related characterisation methods;

l basic antenna-matching techniques;

l some popular antenna types.

The text is not meant to be a replacement for the many excellent textbooks on antenna
theory that currently exist. It is meant to act as a detailed first reference or as the core
of a training tool for those undergraduates, postgraduates or engineers wishing to receive
the fundamental theoretical underpinning required for a fruitful appreciation of this
rewarding subject.

V.F. Fusco
November 2004
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List of principle symbols

α attenuation coefficient, phase lead or lag used to steer an antenna pattern
β, k wave number
∆ power splitter coupling coefficient
εr relative delectric constant
εo permittivity of free space 8.85 × 10−12 F/m
µo permeability of free space 4π × 10−7 H/m
φ asimuth angle
Γ reflection coefficient
λ free-space wavelength
θ elevation angle
σ conductivity
τ tilt angle for polarisation ellipse
η wave impedance of free space, white noise power, antenna radiation 

efficiency
ω angular frequency in rads/sec
ψ phase delay due to spatially displayed elements,

transmission line propagation constant
wavelength

* complex conjugate
Ae effective antenna aperture
| AR | axial ratio of an ellipse
B bandwidth in Hertz, shunt admittance
B′, BN noise equivalent bandwidth
c velocity of electromagnetic wave propagation, 3 × 108 m/s
C capacitance
D antenna directivity
d array element separation
dBi decibels relative to an isotropic source
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List of principle symbols xiii

dBm decibels relative to 1 mW
EIRP effective isotropic radiated power
Emax maximum radiated electric field
Er radial component of electric field
Ex,y x,y directed component of electric field
Eθ elevation component of electric field
Eφ azimuth component of electric field
F noise factor
F(θ ) pattern multiplication factor
G antenna gain, shunt conductance
GR gain of receive antenna
GT gain of transmit antenna
G/T gain to equivalent noise temperature ratio
Gx( f ) Noise power at filter input
h height of microstrip substrate
he effective length of antenna
H( f ) filter impulse response
Hz Hertz
Hφ azimuthal component of magnetic field
I0, I(o) antenna terminal current excitation
I(z) wire antenna current distribution
k Boltzmann’s constant, 1.38 × 10−23 J/K
leff effective length of antenna
L attenuator loss, inductance
LI insertion loss
MDS minimum discernible signal level
na added noise power
no output noise power
Nf noise figure
Pinc incident power
Pn available noise power
PR power received by antenna
PT power transmitted by antenna
q charge on electron
Q quality factor
r distance to observation point
rn nth clearance radius in Fresnel region
R conductor resistance, series resistance
RL antenna ohmic loss
Rrad radiation resistance
Sij s- parameter for port ij
S/N signal-to-noise ratio
T absolute temperature in Kelvin
Te effective noise temperature
TN Tchebyscheff polynomial
Tsys system noise temperature
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vp phase velocity
Vij open circuit voltage induced on antenna i by a signal from antenna j
Voc antenna open-circuit terminal voltage
VSWR voltage standing wave ratio
xn nth antenna array element separation
Y noise power ratio
Z antenna input impedance
Zij mutual impedance between two antennas
Z0 characteristic impedance
Zs sending end impedance
ZT terminating impedance
B magnetic flux density
E electric field vector
H magnetic field vector
J current density
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1

Basic concepts

In order to understand the basic principles upon which the operation of antennas rely,
it is essential to have an appreciation of how radiation occurs. A simple explanation
that shows how an accelerated charge gives rise to radiation is therefore presented
first.

This concept is then extended to demonstrate how in the presence of a conductor of
short but finite length the radiation from the conductor will be distributed preferenti-
ally in space. Examination of this apparently simple structure will yield considerable
insight into the behaviour of more complex antennas and arrays of antennas. This basic
study also aids the comprehension of the field behaviour close to and far from the
basic radiation element, the Hertzian dipole, named after Henrich Hertz (1857–94),
who demonstrated the propagation of electromagnetic waves through space [1] and
who is credited with the invention of the first antennas.

Radiation

When a time-varying voltage or current is applied to a conductor, free electrons are
accelerated. These electrons are able to travel in the spaces between atoms under the
influence of the exciting voltage, or current, applied to the conductor. If the current
or voltage is alternating, then electrons at a given location on the conductor move back
and forward in sympathy with the disturbing force. The acceleration (or deceleration)
of these electrons causes radiation to occur [2]. To see why this happens, consider the
effect of a single electron with charge −q C moving along a straight piece of wire.
As the charge is accelerated a current will be formed, since by definition current is
the rate of change of charge.

As this current flows then a magnetic field, H, will be set up whose sense is defined
by the right-hand screw rule (Figure 1.1). Here the magnetic field lines, H, form closed
loops. Electric field lines, E, come from infinity to the charge, −q, as lines of flux,

1.1

Chapter 1

FOA_C01.qxd  8/2/04  3:15 PM  Page 1



2 Chapter 1 • Basic concepts

thus forming the Coulomb field. The Coulomb field is always present, even if the charge
is not in motion. Consider now what happens if the electron is subjected to a period
of acceleration, assumed to be linear and applied between t = 0 and t = dt, after which
time the electron travels at constant velocity until time t (Figure 1.2). Thus the charge
is subjected to an acceleration, a, given by:

v1 = u + a dt (1.1)

This means that the charge now reaches a point, say B, on the wire that is a little 
further on from where it would have been if no acceleration had occurred (point A,
Figure 1.3a).

Consider Figure 1.3a in a little more detail, Figure 1.3b, oriented in the Cartesian
(x, y, z) or spherical coordinate system, r(θ, φ ), defined in Figure 1.3c. At time t = t0,
a single electron is accelerated, such that at time t = t1 it is at the position shown. 
An observer positioned at some distant location P will still think that the elementary
charge particle is at position t = t0, since, as we will show in Section 2.2, its new 
position will not be registered at position P until a finite time delay later. In addition,
a single electric field line coming from some far located point, P, must now reach 
the charge at position, t = t1, rather than at the original position, t = t0. To facilitate
this, a kink must form in the flux line. Hence the acceleration of the charge particle

Figure 1.1 Instantaneous magnetic flux lines

Figure 1.2 Charge velocity profile

FOA_C01.qxd  8/2/04  3:15 PM  Page 2



Radiation 3

has caused an electromagnetic disturbance. Consideration of the region of the kink in
Figure 1.3b shows that there are two field components, a radial component ER, which
lines up with the Coulomb field, and a transverse component, ET. Now since the 
ER component is indistinguishable from the Coulomb field that existed prior to the
electron being accelerated no intelligence about the disturbing force is conveyed by that
component. On the other hand, the transverse component ET is directly attributable to
the accelerating charge, and it therefore represents the radiation field component caused
by the acceleration of the electron.

To an observer positioned at P, the kink in this line does not appear instantaneously
but requires a finite amount of time, t, defined by the speed of propagation of the elec-
tromagnetic energy, c, to reach the observer (see Section 2.2). The circles in Figure 1.3b,
solid circle centred at t = t0, dashed circle at t = t1, propagate at the speed of light,
and the separation between these circles represents the distance an electromagnetic

Figure 1.3 Radiation production
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4 Chapter 1 • Basic concepts

wave would propagate over the duration of the acceleration. This delay between the
electron being accelerated and the effect being detected at P is given as

t = (1.2)

where c is the velocity of propagation of electromagnetic waves, and r is the dis-
tance to the point of observation. The overall effect of the acceleration applied to the 
electron is to generate an outward-propagating wavefront that expands with time.

Considering Figure 1.3c (which defines the spherical coordinate system normally
associated with antenna work), the single electron in our radiation model can be 
considered as a point charge. Hence the radial electric field, Er, at distance, r, can be
written as

Er = (1.3)

Notice how this term does not contain any acceleration information, hence no intel-
ligence about the source that caused the acceleration to occur. The term Eφ will exhibit
no variation with φ, since the wire is axially symmetrical and hence the very short
wire has no field variation associated with this parameter.

On the other hand, the tangential electric field, Eθ , at the same distance is given by
Figure 1.3a as

Eθ = Er tanθ = (1.4)

but

CE = CD sinθ

and by the rule of similar triangles

CD = AB

thus

CE = AB sinθ

Here distance AB is the additional distance travelled by the accelerated electron 
when compared with the case where no acceleration occurs; thus distance AB is equal
to the shaded area under the velocity time graph shown in Figure 1.2. Therefore, 
since

AB = 1/2 dt(v1 − u) + (t − dt)(v1 − u)

and

v1 = u + a dt

then

AB = 1/2a dt2 + (t − dt) a dt
= 1/2a dt2 + at dt − a dt2

CE

DE

−q

4πε0r2

−q

4πε0r2

r

c
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The Hertzian dipole 5

assuming dt is small, then

AB ≈ at dt

By similar reasoning,

DE = c dt

Hence

Eθ = sinθ (1.5)

using t = r/c

Eθ = sinθ (1.6)

Finally,

Eθ = sinθ (1.7)

This term varies according to sinθ and has its greatest value when θ = 90°, i.e. in the
equatorial (x–y) plane of the spherical coordinate system shown in Figure 1.3c. The
term illustrates that the strength of the tangential electric field Eθ is directly propor-
tional to the acceleration producing it, thus radiation will be greater at higher frequencies.
In essence to an observer at some point P (Figure 1.3a) the tangential component of
the induced kink is recorded as a consequence of the change of velocity of the charge
producing it.

Note that from equation (1.3) Er varies according to 1/r2, while from equation (1.7)
Eθ varies according to 1/r. Therefore at large distances, r, from the radiator the radial
field will have decayed, leaving only the Eθ and associated symmetrical Eφ fields. 
Hence the resultant field far from the radiator is transverse (i.e. no component in the
propagation direction, r; see Section 2.2). It is the 1/r decay feature of the tangential 
field component of the electric field strength of a radiating electromagnetic wave that 
makes long-distance wireless communication feasible. If the Eθ component of electric
field strength was to decay at 1/r2, as it does for the radial field component, then the 
signal at long distances would very quickly diminish to almost zero, thereby severely
limiting the range of all wireless systems.

The Hertzian dipole

The Hertzian dipole is an antenna consisting of an extremely short piece of straight
conductor that carries an alternating current, which as a consequence of its short length
is uniform over that length. In order to ensure that the current distribution is uniform,
the antenna is assumed to be electrically short. This concept is very useful in the study
of many real antennas of finite length, since these may be regarded as having equivalent

1.2

−qa

4πε0c2r

ar

c2

−q

4πε0r2

at

c

−q

ε0r2
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6 Chapter 1 • Basic concepts

properties to a summation of a number of short dipoles connected together with their
radiation patterns deduced from a knowledge of their geometric disposition and super-
position of the basic Hertzian dipole radiation pattern.

Assume that the Hertzian dipole is excited with a sinusodial current, i, which is
uniform along its length, ∆�, oriented along the z-axis of Figure 1.3c

i = I0 sinω t (1.8)

The current flowing in the antenna consists of N electrons, each of charge q C moving
with velocity v m/s. In time, ∆�/v, Nq C would flow through the length of the antenna;
hence, since current is defined as

i = = = I0 sinω t (1.9)

then we can write

v = (1.10)

Now, since by definition acceleration a = dv/dt, then

a = (1.11)

We can now deduce from equation (1.7) that the tangential electric field, Eθ , due to
N electrons is

Eθ = Nq (1.12)

Thus for the Hertzian dipole, length ∆�, the radiated electric field Eθ at a fixed distance
r at angle θ to the dipole is

Eθ (t) = cosω t − (1.13)

Here the term t − (r/c) has been introduced to represent the delay that the acceleration
effect at the antenna experiences before it is received at some distance r at angle θ
from the antenna. That is to say, the radiated field at distance r lags the acceleration,
causing it to occur.

The expression for radiated electric field can be rewritten in revised antenna notation
by noting that the wavenumber, k = 2π/λ0 and that, from Section 2.2, η = 1/ε0c = Eθ /Hφ ,
is the wave impedance and is equal to 377 Ω, or 120π Ω; also, λ0 is the free-space
wavelength.

Hence Eθ in equation (1.13) becomes

Eθ (t) = η cosω t − (1.14)
D
F

r

c

A
C

I0 ∆� k sinθ
4πr

D
F

r

c

A
C

∆� ω I0 sinθ
4πε0c2r

a sinθ
4πε0c2r

∆� ω I0 cosω t

Nq

∆� I0 sinω t

Nq

Nqv

∆�

dq

dt
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The Hertzian dipole 7

from which the antenna Hφ field component can be written as

Hφ (t) = = I0 cosω t − (1.15)

Notice how the magnetic component does not vary with φ ; hence it exhibits circular
symmetry. Equations (1.14) and (1.15) suggest that the waves propagating from the
Hertzian dipole antenna can be visualised as an expanding wavefront centred at the
antenna. Examination in the next section of the governing equations shows that this
energy is not radiated uniformly in all directions.

In an even more compact notational form I0 cosω(t − (r/c)) is written in many antenna
textbooks as Re {I0 exp(jω(t − r/c))} or I0e j(ωt−βr) or I0e j(ωt−kr). Hence with appropriate
substitutions we can write

Eθ (t) = e−jkr (1.16)

where k = 2π/λ0 = ωr/c and I = I0e jωt.
This equation is the fundamental building block for much of the work to follow.

Calculate the radial component of electric field associated with a point charge when
it is placed in free space at a distance of 1 m from the charge.

Solution

From equation (1.3), the radial electric field is

= −0.16 V/m

How does Eθ (t) vary as a function of ∆�/λ0. Comment on the engineering significance
of this result.

Solution

Using equation (1.16), we can see that Eθ(t) is directly proportional to ∆�/λ0, therefore
if ∆� is small relative to λ0, Eθ(t) will also be small. Hence for effective radiation along
boresight θ = 90° the length of the element must be comparable with the wavelength
of the radiating element.

Exercise 1.2

−1.6 × 10−9

4π × 8.85 × 10−12 × 1 × 1

Exercise 1.1

60πI ∆� sinθ
λ0r

D
F

r

c

A
C

∆� k sinθ
4πr

Eθ

η
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8 Chapter 1 • Basic concepts

Hertzian dipole polar pattern

When equation (1.16) is plotted in polar coordinates, the curve formed is a repres-
entative plot of the Eθ radiation characteristic; for example, Figure 1.4 shows the Eθ

plot in the plane in which the dipole lies. Due to the axial symmetry of the cylindrical
Hertzian dipole element, the resulting radiation pattern must be uniform in a plane
perpendicular to the axis of the z-axis oriented Hertzian dipole, the x–y (φ) plane, and
as a consequence the polar pattern in that plane is a circle, i.e. there is no variation
of field intensity in the φ direction (Figure 1.4). When equation (1.16) is plotted in
polar format, the radiation pattern as a function of θ is a figure-of-eight shape. When
compared with the polar pattern that would be obtained for an isotropic source (i.e. a
sphere), the Hertzian dipole polar pattern exhibits a power reduction along the axis 
of the antenna. Thus even a very short antenna such as the Hertzian dipole exhibits
preferential radiation in some directions. It should be noted that in order to draw polar
patterns in terms of power, the length of the electric field component defined by 
equation (1.16) should be squared.

Normalised far-field polar (radiation) patterns are usually presented in terms of

which for the Hertzian dipole from equation (1.16) gives sinθ.

magnitude in direction θ
magnitude in the equatorial plane (θ = 90°)

1.3

Figure 1.4 Polar plot of electric field amplitude
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The Hertzian dipole reconsidered 9

From the polar pattern it is possible to determine its half-power beamwidth, which
for an antenna is defined as being the angular separation between the directions on
each side of the direction of maximum radiation to those points where the radiated
field has fallen to 1/ 2 of its maximum value, i.e. radiated power has fallen to half
of its maximum value.

Show that for a Hertzian dipole the radiated field strength at some distance r has a
half-power beamwidth of 90°.

Solution

For a Hertzian dipole equation (1.16) its normalised far field pattern equation is 
written as

sinθ = ±
2

since half power is proportional to 1/ 2 electric field strength.

Hence θ = sin−1 ± = 45° or 135°
2

giving the Hertzian dipole a half-power beamwidth of (135° − 45°) = 90°. This means
that power is spread over a wide angle, and Chapter 4 shows methods to focus radiation
from antennas by using them in an array configuration.

The Hertzian dipole reconsidered

We previously defined the Hertzian dipole as a fictitious antenna that supported a 
uniform current distribution over its very short length. The accumulation of charge at
the ends of this short wire could be represented by allowing the dipole to be modelled
as two charges, +q and −q, placed at the end points of the dipole. These charges of
opposite polarity will oscillate as a complementary charge pair, called an oscillating
charge doublet.

We can use this model to determine how the radiated electric field from the
Hertzian dipole behaves close into the radiator, i.e. in the near field or Fresnel region
(see Section 5.5). Unlike the far-field region, in this region the antenna radiation 
pattern is a function of the exact position of where it is measured. The electric field
potential at the observation point P in Figure 1.5 for a Hertzian dipole of length ∆�
is, according to Coulombs law,

v = + (1.17)
−q

4πε0r2

+q

4πε0r1

1.4

D
F

1A
C

1

Exercise 1.3
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10 Chapter 1 • Basic concepts

Point charges 4 × 10−9 C and −2 × 10−9 C are located at Cartesian (x, y, z) space at
(2, 0, 0) and (6, 0, 0). Find the electric field potential at position (4, 2, 0).

Solution

Since the field point to be estimated lies in the (x, y) plane, we can use simple 
geometry to establish distances r1, r2, required by equation (1.17) as being equal 
to 8, thus

v = −
8 8

= = 6.4 V/m
8

Now from geometrical considerations

r1 = r − cosθ
2

+ sinθ
2

≈ r − cosθ (1.18)

and

r2 ≈ r + cosθ
∆�

2

∆�

2

D
F

∆�

2

A
C

D
F

∆�

2

A
C

1 × 10−9

2πε0

2 × 10−9

4πε0

4 × 10−9

4πε0

Exercise 1.4

Figure 1.5 Oscillating dipole representation of a Hertzian dipole
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The Hertzian dipole reconsidered 11

thus

r2 − r1 ≈ ∆� cosθ

For a sinusoidal excitation controlling the oscillating charge doublet

i = I0 sinω t

we can find an expression for charge, since by definition

q = � i dt = cosω t (1.19)

Remembering that this charge will be observed at point P some time, r/c, later, after
it has occurred at the dipole, we can write

q = cosω t − (1.20)

Thus from equation (1.17)

v = − cosω t −

By noting that r1r2 ≈ r2 and r2 >> ∆�2/4 cos2θ, then since r2 − r1 = ∆� cosθ

v = cosθ cosω t − (1.21)

Now that we know the potential occurring at some point P in space due to an oscillating
current at the dipole, we can find the resultant electric field at this observation point.
When this is converted to the spherical coordinate system as defined below, it will
yield the three components of electric field at the observation point. Thus

Er = = cosθ sinω t − − cosω t − (1.22)

Eθ = − = − sinθ cosω t − (1.23)

Eφ = − = 0

The zero result for Eφ is due to the symmetry of the electric field in the φ plane. Hence
from equations (1.22) and (1.23) we see that an oscillating current moving in an infinitely
small length of wire will induce electromagnetic radiation.

In the derivation of equations (1.22) and (1.23), we have used the transformation
from a Cartesian coordinate system to a spherical coordinate system, i.e.

E = i + j + k
∂v

∂z

∂v

∂y

∂v

∂x

∂v

∂φ
1

rsinθ

JKL
D
F

r

c

A
C

1

r3

GHI
I0 ∆�

4πωε0

∂v

∂θ
1

r

JKL
D
F

r

c

A
C

1

ωr3

D
F

r

c

A
C

1

cr2

GHI
I0 ∆�

4πε0

−∂v

∂r

D
F

r

c

A
C

1

r2

−I0 ∆�

4πωε0

D
F

r

c

A
C

D
F

1

r2

1

r1

A
C

−I0

4πωε0

D
F

r

c

A
C

−I0

ω

−I0

ω
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12 Chapter 1 • Basic concepts

is equivalent to

E = �r + �θ + �φ (1.24)

where i, j, k, �r, �θ, �φ are orthogonal unit vectors in each coordinate system.
Comparing these results with the results obtained in equation (1.16), where it was

assumed that r was a large distance from the antenna, we see here that close to the
antenna the 1/r3 term determines the rate of decrease of the Eθ field with distance. 
Here the electric field created by the dipole dominates, and in this area the energy
stored represents a capacitive region, which since it is reactive does not contribute to
radiated power.

Alternatively, if the short dipole is considered as a conductor carrying current, then
the associated magnetic field can be found by direct application of the Biot–Savart
law [3] as

Hφ = sinω t − (1.25)

which when added to the previously derived expression, the Hφ component for large
distances r, equation (1.15), gives

Hφ = sinθ cosω t − + sinω t − (1.26)

The second term in this expression will dominate when r is small, and it is said to
represent the induction component of the field close to the antenna.

Show that according to the definition in [4] the boundary point between the induction
field and the radiation field occurs when from equation (1.26) r ≈ λ /6.

Solution

According to [4], the boundary point between the near- and far-field regions can be
defined as the distance when both induction and radiation fields have equal magnitude.
This position can be established from equation (1.26) such that

sinω t − = cosω t −

or

=

hence r = = = ≈
λ
6

λ
2π

fλ
2πf

c

ω

1

r2

ω
cr

eee
D
F

r

c

A
C

ω
cr

eee
eee

D
F

r

c

A
C

1

r2
eee

Exercise 1.5

JKL
D
F

r

c

A
C

1

r2

D
F

r

c

A
C

ω
cr

GHI
I0 ∆�

4π

D
F

r

c

A
C

I0 ∆� sinθ
4πε0r

2

D
F

1 ∂v

sinθ ∂φ
∂v

∂θ
A
C

1

r

∂v

∂r
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The Hertzian dipole reconsidered 13

Inside this region, each of the field components is in phase quadrature, with energy
absorbed each quarter of a cycle being returned to the field during the next quarter of
a cycle. Thus inside this region energy is collapsed back to the radiating element and
then returned to the region, giving rise to the antenna reactance.

Thus in the near field of the antenna, i.e. close to the radiator, r < λ /6, we have a
capacitive field and an inductive field, given in terms of their electrical and magnetic
field quantities Eθ and Hφ, respectively. Outside the region, the energy leaves in 
the form of a propagating electromagnetic wave travelling at the speed of light. The 
interaction of these two fields results in a reactive quantity normally referred to as the
induction or near field of the antenna.

By applying Poynting’s theorem (Section 2.3), we get the instantaneous value of
radiated power per unit area as P = Eθ Hφ . In the antenna near field

P = sin2θ sinω t − cosω t − (1.27)

Use Poynting’s theorem to gauge how the instantaneous value of radiated power decreases
with distance in the near field of an electrically short antenna.

Solution

From equation (1.27), we see that in the near field power falls off rapidly as 1/r5. Thus
at short distances from the antenna the near-field power level has decreased almost 
to zero; for example, a doubling of range leads to a 1/32 or −15 dB reduction in field
strength.

Use the result in equation (1.27) to determine the frequency of the near-field reactive
power.

Solution

From equation (1.27), we can write

sinω t − cosω t − = sin2ω t −

Thus in the near field reactive power fluctuates at twice the generator frequency.

Consider now the Biot–Savart law [3] [5] under time-varying current excitation 
operating over a short length of wire embedded in a longer piece of wire (Figure 1.6).

Hφ (t) = i(t) (1.28)
∆� sinθ

4πr2

D
F

r

c

A
C

1

2

D
F

r

c

A
C

D
F

r

c

A
C

Exercise 1.7

Exercise 1.6

D
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r
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A
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D
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r

c

A
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r5

I0
2 ∆�2

16π2ωε0
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14 Chapter 1 • Basic concepts

At a distant observation point,

Hφ (t) = i t − (1.29)

In Section 1.1, we showed how the electromagnetic radiation effect occurs when a
charge is accelerated and consequently how the far-field component is proportional to
the rate of change of time-delayed current. From the basic definition of differentiation,
we can write

= (1.30)

If we let ∆t = r/c and t = t − r/c, then we can rearrange equation (1.30) as

di t −
i(t) = i t − +

Hence equation (1.29) can be written [6] as

di t −
Hφ (t) = i t − + (1.31)

and from Section 2.2 we know that Eθ /Hφ = η, the free-space impedance. Thus we can
write

di t −
Eθ (t) = η i t − + (1.32)

J
K
K
Ldt

r
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Figure 1.6 Field from short section of wire
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The Hertzian dipole reconsidered 15

Equation (1.32) represents the radiated electric field due to the time-varying current
impressed on a wire segment embedded in a long wire. If the wire segment were to
be removed from the long wire, then charge would accumulate at the ends of the wire
and a charge doublet would be created. This will provide an additional contribution
to the radiation field described by equation (1.23) that will supplement that given by
equation (1.32).

For compatibility with equation (1.32), we now rearrange equation (1.23) as

Eθ = q t −

where we have used 1/ε0 = ηc (see Section 2.2). Thus the total radiated electric field
becomes the superposition of both radiation fields.

di t −
Eθ (t) = q t − + i t − + (1.33)

Using the form given in equation (1.31) and (1.33), it is possible to establish the 
radiation characteristics of a wire dipole under arbitrary excitation conditions.

Upon substitution of i(t − r/c) = I0 sinω (t − r/c) and using complex notation

Eθ (t) = 1 + + jkr e−jkr (1.34)

Using the same approach, equation (1.31) becomes

Note: The treatment leading to equations (1.20) through (1.34) is based on equations (2) through
(7) in W.S. Bennett, Basic sources of electric and magnetic fields newly examined, IEEE Antennas
and Propagation Magazine, Vol. 43, No. 1, 2001, pp. 31–5. © 2001 IEEE.

Hφ = (1 + jkr) e−jkr (1.35)

Show that as the distance from the antenna to the field sampling point is reduced, the
ratio Eθ /Hφ , equal to 377 Ω for free space, is no longer applicable.

Solution

For small values of r, the first and second terms in the parenthesis of equation (1.34)
dominate. Thus

+
= η = η 1 + = η

hence in the near field the 377 Ω wave impedance applicable to far-field calculations
becomes a function of distance and exhibits a large capacitive reactance as r tends to zero.
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16 Chapter 1 • Basic concepts

and

Er = 1 + e−jkr (1.36)

here η =

Show that in the far field of a linear wire antenna, everywhere, except near the antenna
axis, the Eθ component dominates the radial Er field component.

Solution

By taking the ratio of equation (1.34) and (1.36) at large r, we see that

α

so that when θ tends to zero, i.e. in a spherical coordinate system along the z-axis,
ER >> Eθ , otherwise as θ tends to 90° Eθ >> ER.

From the expression for Eθ , we can identify the induction and far-field radiation 
components.

Consider a short antenna of length 1 cm excited with a 100 mA current at 1 GHz and
calculate the magnitude of the tangential electric field along the antenna boresight at
a distance of 100λ.

Solution

Antenna length, �, is 1 cm, operating frequency is 1 GHz and λ0 = 30 cm; therefore
∆�/λ0 = 1/30 so we can reasonably approximate the antenna as a Hertzian dipole. Thus
we can apply equation (1.34) for Eθ , which at a distance of 100λ the first two terms
in the parenthesis can be ignored since we are in the far field of the antenna. Hence
equation (1.34) becomes

Eθ = jη

Thus

Eθ = j

|Eθ | = 0.21 V/cm

377 × 0.1

200 × 30 × 30

k

r

I0 ∆�sinθ
4π

Exercise 1.10
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The Hertzian dipole reconsidered 17

Equation (1.34) may be viewed by consideration of the action of the free electrons in
the wire segment under excitation. Here, since each free electron carries a charge and
since this charge is affected by the field created by the dynamic displacement of other
free electrons due to the applied oscillating current, the fields thus created exert forces
on the free electrons that were responsible for creating the fields in the first place.
Thus the forces created act to resist electron motion. Furthermore, the second field
term in equation (1.34) is 90° out of phase with the third term in equation (1.34). Thus
we say that the dynamic fields produced by this field term act to oppose the rate of
change of the applied current.

Energy in the near field produced by this process is delivered to the magnetic field
created around the moving electrons and is returned to the electrons as the magnetic
fields collapse when the electrons decelerate. Hence we have a reactive near-field 
component that is inductive and does not contribute to the radiated power.

A cross-section through the field close to the dipole at an instant in time would show
that as time passes the field will continually expand outwards at the velocity of light.
The radiation process is one in which closed loops of electric field form continuously
as the field oscillates. As a loop is formed it propagates outwards (Section 2.2), main-
taining a steady flow of energy (Section 2.3) into free space.

Figure 1.7 shows the radiation field from a Hertzian dipole in terms of its electric and
magnetic flux lines plotted in a polar coordinate system. The instantaneous amplitude
of the Eθ component is given by equation (1.34). More details on how the radiation
field can be plotted as it evolves with time is given in [4].

We can see heuristically how the radiation process evolves in time if we consider
what happens when a short dipole is excited by a voltage pulse. If the pulse length 
is short compared with the length of the dipole, then when the charge induced by the
pulse is decelerated, radiation will occur at the ends of the dipole and a closed elec-
tric field line set up (Figure 1.8a). The charges are then reflected from the open ends
of the dipole back towards the centre of the dipole (Figure 1.8b). At this position, as
the field lines join a closed flux loop is formed (Figure 1.8c). During these charge
movements, the flux loop is expanding into space. As the process repeats this closed
loop breaks off into space (Figure 1.8d) and a new loop forms in the opposite sense.

Figure 1.7 Radiation field of a Hertzian dipole
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18 Chapter 1 • Basic concepts

Once the process settles down, i.e. after many loops are formed and several closed
loops have been formed, the distance between field maxima along the boresight 
normal to the antenna axis is one-half of a free-space wavelength as determined by
the frequency of the source used to excite the system (Figure 1.7). Although not dis-
cussed here, an explanation of this effect based on time-domain pulse tracking along
the arms of a dipole antenna can be obtained directly from equation (1.33). This way
of conceptualising the problem can be useful [7].
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1.1 Show that radiation occurs only from contributions of acceleration that are trans-
verse to the line that joins the observation point P and the charge source that is
being accelerated.

Problems

References

Figure 1.8 Short dipole carrying an oscillating charge packet moving under the influence of a
sinusodial oscillation period T
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Problems 19

1.2 Describe why the electromagnetic radiation associated with a change of current
at the source is not sensed immediately at a distantly located observation point P.

1.3 Calculate the half-power beamwidth for a straight wire antenna of length 1.5 cm,
operating at 1 GHz. You may assume that the antenna is centre-fed.

Would you expect the reactance of the antenna seen at its excitation terminals
to be capacitive or inductive?

1.4 Why is the electromagnetic field close into the antenna, i.e. at distances less than
λ /2π, called the induction field? What are the essential properties of this elec-
tromagnetic component of the total radiated field, and how do they influence
the reactive impedance presented by the antenna at its excitation terminals? How
rapidly do these components decay with distance from the antenna?

FOA_C01.qxd  8/2/04  3:15 PM  Page 19



20

Electromagnetic wave
propagation and 
power flow

Maxwell’s equations, named after James Clerk Maxwell (1831–79), govern the pro-
pagation behaviour of electromagnetic waves. An understanding of how these waves
propagate in free space is an essential first step in developing an appreciation of antenna
techniques. With this in mind, we first introduce Ampere’s law and Faraday’s law and
show how these underpin the construction of Maxwell’s equations, from which the wave
equations that model the propagation of plane waves in free space are developed.
These equations yield various insights into the definition of wave impedance and the
speed at which electromagnetic energy propagates. In addition, the concept of trans-
verse waves is developed further. From these ideas it is shown how the power flow
associated with plane propagating waves can be determined. Using these concepts as
underpinning, fundamental antenna-related figures of merit, such as power gain and
directivity, are developed by considering that propagating plane waves are observed
in the far-field region of antennas or antenna arrays.

Maxwell’s equations basics

The equations that characterise the macroscopic propagation properties of electromagnetic
waves are known as Maxwell’s equations [8]. These equations are derived from Ampere’s
law and Faraday’s law, the fundamental experimental laws of electricity.

Ampere’s law states that the integral of the magnetic field around a closed path, c,
forming the boundary to an area, a, through which a current I flows, is equal to that
current.

�
c

Hs ds = �
s

Jn da (2.1)

2.1

Chapter 2
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Maxwell’s equations basics 21

where Jn is the normal component of current flowing through an elemental area, da,
of a surface, s, bounded by a closed contour, c, around which the magnetic field, Hs,
(i.e. the component of the magnetic field along the closed contour c) is integrated (see
Figure 1.6). The circle on the integral sign in equation (2.1) means that integration is
being carried out over a closed contour.

Faraday’s law states that when the magnetic flux through a circuit is changing, an
induced voltage is set up whose magnitude is proportional to the rate of change of
that flux.

�
c

Es ds = − �
s

Bn da (2.2)

where Bn is the normal component of magnetic flux density crossing an elemental 
area, da, of a surface, s, bounded by a closed contour, c, around which the electric
field, Es, is integrated.

If two new equations are introduced, then equations (2.1) and (2.2) can be further
simplified. The first of these equations connects flux density, B, and magnetic field,
H, as

B = µH (2.3)

here B and H are vectors oriented in the same direction, and µ is the permeability of
the medium.

The next equation forms the connection between electric field E and current density
J in a conducting medium of conductivity, σ. Again the vectors are oriented in the
same direction:

J = σE (2.4)

For low-frequency work these equations are sufficient. However, at very high frequencies
another term has to be added to the current density; Maxwell called this term dis-
placement current. For example, in Figure 2.1 a high-frequency AC source drives a
closed loop containing a parallel-plate capacitor.

According to Ampere’s law, given by equation (2.1), the integral of the magnetic
contour A should give the current through any surface ‘1’ of which contour A forms
the boundary and that cuts the wire. If the surface ‘2’ is now arranged to pass between

∂
∂t

Figure 2.1 Displacement current contours
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22 Chapter 2 • Electromagnetic wave propagation and power flow

the plates of the capacitor, then no current would be observed to be moving through
this surface and the resulting current would be zero, contradicting the first result. To
reconcile the difference an additional term, the displacement current term, was added
by Maxwell. To find how this was done, consider the following.

Let the parallel-plate capacitor in Figure 2.1 have capacitance value C, plate area A
and plate separation d. Let the excitation voltage V = v sinω t. Under these conditions,
the charging current through the capacitor value C is

Ic = C = ω C v cosω t (2.5)

where for an ideal parallel-plate capacitor C = εA/d. Between the capacitor plates 
the magnitude of the electric field E is v/d, so that if a total displacement current is 
defined as

Id = C = ω v cosω t = ε = ε (2.6)

the consequence of this is that the result for displacement current is now exactly that
for the charging current. Thus the introduction of the concept of displacement current
resolves the discrepancy, albeit in a fairly arbitrary way.

A 1 V AC signal at 1 GHz is applied to an air-spaced parallel-plate capacitor of area
1 cm2 and with plate separation of 1 mm. Calculate the magnitude of the displace-
ment current associated with this arrangement.

Solution

From equation (2.6), the magnitude of the displacement current Id is

=

= 5.6 mA.

With this in mind, the current density vector equation (2.4) becomes

J = σE + ε (2.7)

Hence in a non-conducting medium such as air, σ becomes zero and the displacement
current is the only remaining current term.

Substituting equation (2.7) into (2.1) and (2.3) into (2.2) yields

�
c

Hs ds = ε �
s

En da (2.8)
∂
∂t

∂E
∂t

2π × 1 × 109 × 8.85 × 10−12 × 1 × 0.01 × 0.01 × 1

1 × 10−3

ωEAV

d

Exercise 2.1

dE

dt

d(v/d )

dt

εA

d

dV

dt

dV

dt
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Maxwell’s equations basics 23

and

�
c

Es d� = −µ �
s

Hn da (2.9)

these equations are the integral form of Maxwell’s equations for free space or non-
conducting dielectric media [8].

Consider equation (2.8) in graphical form for a very small element of area, dydz,
and normal E field component Ex (Figure 2.2). We can now write

ε Ex dy dz = Hy dy + Hz + dy dz − Hy + dz dy − Hz dz

= − dy dz

Hence

ε = − (2.10)

Applying the same procedure to the Ey, Ez field components, the other components of
the E vector can be found as

ε = − (2.11)

ε = − (2.12)
D
F

∂Hx

∂y

∂Hy

∂x

A
C

∂Ez

∂t

D
F

∂Hz

∂x

∂Hx
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C

∂Ey

∂t

D
F

∂Hy

∂z
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C
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D
F
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∂
∂t

∂
∂t













Figure 2.2 Maxwell’s equations

FOA_C02.qxd  8/2/04  3:16 PM  Page 23



24 Chapter 2 • Electromagnetic wave propagation and power flow

By a similar process, equation (2.9) can be expressed as

−µ = − (2.13)

−µ = − (2.14)

−µ = − (2.15)

These equations can now be used to construct the wave equation used to determine
the characteristics of plane wave propagation, i.e. the sort of wave we would expect to
see in the far field of an antenna. It should be noted that in Figure 2.2 we have oriented
the z-axis to point in the right-hand direction, since this direction is normally associated
with the direction of propagation.

Plane wave propagation in space

An electromagnetic wave initiated from a point source in free space will propagate
uniformly in all directions, and the radiation will take the form of a spherical wave-
front (Figure 2.3). At large distances from the source (a large distance is defined in
Section 5.5), the waves will appear to have plane wave properties, as defined below.
The velocity of the wave when propagating in free space is c, given by

c = m /s
µ0ε0

where µ0 is the permeability of free space (4π × 10−7 H/m−1), and ε0 is the permeability
of free space (1/36π × 10−9 V/m)

Hence

c = 3 × 108 m/s

With a plane wave E and H always oscillate in phase and in space quadrature 
(Figure 2.3). The ratio η = ε0 /µ0 , 377 Ω, defines the free-space wave impedance.

A plane wave is said to be a transverse wave, since its field vectors E and H
are orthogonal and lie in a plane that is transverse, i.e. in a cross-sectional plane, 
normal to the direction of wave propagation. Consequently, no component of field lies
along the propagation direction. At any given time, if we instantaneously sample the 
magnitude and direction of E and H at any transverse plane the surface in which E
and H have maximum values defines the wave front of the propagating signal. More
generally, the wavefront is defined such that E and H have constant phase across it.
To see why these concepts for plane-wave propagation are valid, we must consider 
a model for an electromagnetic field that is varying both in time and with distance.

1

2.2

D
F

∂Ex

∂y

∂Ey

∂x

A
C

∂Hz

∂t

D
F

∂Ez

∂x

∂Ex

∂z

A
C

∂Hy

∂t

D
F

∂Ey

∂z

∂Ez

∂y

A
C

∂Hx

∂t
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Plane wave propagation in space 25

For a sinusodial variation, a wave propagating in the positive z-direction can be 
written as

A sin(ω t − βz) (2.16)

For the linearly polarised signal Ex = sin(ω t − βz) propagating in free space at a 
frequency of 1 GHz, calculate the phase constant of the signal.

Solution

Phase constant β =

and

c = fλ

therefore λ = = 0.3 m

thus β = 21 rads/m

Here A is a constant that defines magnitude, and β is the phase change in radians and
is equal to 2π/λ0. This simple equation allows us to model a wave propagating in the
positive z-direction such that the phase of the wave at position z lags that at the origin.

3 × 108

1 × 109

2π
λ

Exercise 2.2

Figure 2.3 Electromagnetic wave propagation in the z-direction
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26 Chapter 2 • Electromagnetic wave propagation and power flow

Show that βz = ωz/c, where z is the distance travelled by the signal in the propagation
direction, and c is the speed of light.

Solution

By definition, β = and λ =

Thus β = =

Hence βz =

Since the wave is propagating in free space,

c = = fλ 0 (2.17)

where λ 0 is the free-space wavelength, from which we can rewrite equation (2.16) as

A sinω t − (2.18)

Here the term z/c represents the time delay for the wave travelling from the origin 
to point z. Thus we can write the field components in the transverse plane to the 
z-direction as

Ex = A sinω t − (2.19)

and

Hy = A
1/2

sinω t − (2.20)

Using these equations as solutions to Maxwell’s equations (Section 2.1), we can deduce
the principal properties that plane waves propagating in space exhibit.

Consider the situation where we have an electric field directed in the x-axis, Ex, 
in which case Ey and Ez are set to zero. Now, substituting into Maxwell’s equations
(Section 2.1), we get a simplified set of equations:

ε 0 = − (2.21)

−µ0 = 0 (2.22)
∂Hx

∂t

∂Hy

∂z

∂Hz

∂y

∂Ex

∂t

D
F

z

c

A
C

D
F

ε0

µ0

A
C

D
F

z

c

A
C

D
F

z

c

A
C

ω
β

ωz

c

ω
c

2π f

c

c

f

2π
λ

Exercise 2.3
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Plane wave propagation in space 27

−µ0 = (2.23)

−µ0 = − (2.24)

From equation (2.22), we can see that Hx must equal zero. If we also enforce the 
condition that there is no field component along the z-axis, i.e. Hz = 0, the equation
set above reduces to

ε0 = − (2.25)

µ0 = − (2.26)

Differentiating these equations with respect to t and z, respectively, yields 

ε0 = − (2.27)

µ0 = − (2.28)

Now since

= (2.29)

then

− ε0µ0 = 0 (2.30)

or

− ε0µ0 = 0 (2.31)

These are the equations that describe the propagation of a plane wave in space. Equations
(2.19) and (2.20) will now be used to solve equations (2.30) and (2.31) for Ex and Hy,
respectively.

Show that a tranverse plane wave propagates at the speed of light when propagating
in free space.

Solution

Consider the properties of equation (2.19), rewritten here as

Ex = A sinω[t − (ε0 µ0)
1/2 z] (2.32)

Exercise 2.4

∂2Hy

∂t2

∂2Hy

∂z2

∂2Ex

∂t2

∂2Ex

∂z2

∂2Hy

∂z∂t

∂2Hy

∂t∂z

∂2Ex

∂z2

∂2Hy

∂z∂t

∂2Hy

∂t∂z

∂2Ex

∂t2

∂Ex

∂z

∂Hy

∂t

∂Hy

∂z

∂Ex

∂t

∂Ex

∂y

∂Hz

∂t

∂Ex

∂z

∂Hy

∂t
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28 Chapter 2 • Electromagnetic wave propagation and power flow

At some time t1, the propagating wave will be at position z1 and the wave will have
the same magnitude at some other time t2 position z2 that it had at t1, z1, provided that

t1 − (ε0 µ0)
1/2 z1 = t2 − (ε0 µ0)

1/2 z2 (2.33)

Now since

velocity = = (2.34)

then velocity = = 3 × 108 m/s

as previously stated at the outset of this section.

Inspection of equations (2.30) and (2.31) shows that the magnetic and electric field
components lie at right angles to each other and are in phase.

Another form for the solution can also be used, since a cosine function will also
satisfy equations (2.30) and (2.31), as will any linear combination of sines and cosines.
This leads to the exponential form for representing the solution, which sometimes helps
in the analysis of more complex problems.

Ex = A cosω t − + j sinω t − (2.35)

∴ Ex = A exp j ω t − (2.36)

and Hy = A
1/2

exp j ω t − (2.37)

Here only the real part of the exponent has physical significance. The form of the 
equations given in (2.36) and (2.37) is normally assumed to be implicit, meaning the
real part only, and as a consequence the full form given in equations (2.36) and (2.37)
is used in most textbooks with the understanding that it represents only the real part
of the field component it is used to describe.

Power flow

As a wave from an antenna propagates through space, its electric and magnetic con-
stituent field parts carry energy. The power associated with the rate of change of this
energy can be found in a way that is analogous to the technique used in conventional
circuit analysis, where power is written as the product of voltage and current. Consider
now an example important for antenna theory.

If a plane wave propagating in space is allowed to pass through a surface that is
perpendicular to the direction of travel of the wave, ∆S (Figure 2.4a), then there will be
a flow of power through the surface. The power level in units of W/m2 and the direction

2.3

JKL
D
F

D
F

z

c

A
C

A
C

GHI
D
F

ε0

µ0

A
C

JKL
D
F

D
F

z

c

A
C

A
C

GHI

JKL
D
F

z

c

A
C

D
F

z

c

A
C

GHI

1

(ε0 µ0)
1/2

z2 − z1

t1 − t2

distance travelled

time difference
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Power flow 29

of power flow across the defined surface are given by Poynting’s theorem, which allows
the instantaneous power per unit area at a point flowing through a surface to be defined
in terms of the instantaneous values for electric and magnetic fields E and H as

Pinst = E H sinθ (2.38)

Compute the instantaneous and average power flows associated with the linearly polarised
electric field component propagating in free space, defined here as

Ex = 20 sin ω t −

Solution

Ex = 20 sin ω t −

therefore

Hy = cos ω t −

From these we see that Ex and Hy are orthogonal, thus sin90° = 1.

D
F

z

c

A
C

20

377

D
F

z

c

A
C

D
F

z

c

A
C

Exercise 2.5

Figure 2.4 Spherical coordinate system used for power flow calculations
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30 Chapter 2 • Electromagnetic wave propagation and power flow

Therefore, on applying equation (2.38)

Pinst = = 1.06 V/m

and Pavg = Pinst = 0.53 V/m

The direction of the power flow is given by the right-hand corkscrew rule (Figure 2.4b),
and θ is the angle between the E and H fields and is 90° for a ‘transverse’ plane wave.

Consider now the flow of power ∆P through an elemental surface of the sphere,
∆S, as defined in Figure 2.4a:

∆P = Eθ Hφ r sinθ dφ r dθ (2.39)

From this the instantaneous power over the complete sphere can be found as

Pinst = �
0

π

�
0

2π

Eθ Hφ r2 sinθ dθ dφ (2.40)

Most textbooks use a more general form in which Eθ Hφ is written as Re [Eθ H*φ ], where
* denotes complex conjugation.

Applying equation (2.40) to a Hertzian dipole, for which from Section 1.2 we already
have expressions for Eθ and Hφ, namely after equation (1.16):

Eθ =

and 

Hφ =

from which we can write

Pinst = 60π2 I
2

�
0

π

sin3θ dθ (2.41)

Now

�
0

π

sin3θ dθ = −�
−1

1

(1 − cos2θ) d cosθ

= �
−1

1

(cos2θ − 1) d cosθ

= − cosθ
1

−1

=
4

3

JKL
cos3θ

3

GHI

D
F

∆�

λ
A
C

Eθ

120π

60πI ∆�sinθ
λr

1

2

20 × 20

377
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Antenna directivity, power gain and efficiency 31

Hence

Pinst = 80π2 I 2
2

(2.42)

or as average power radiated for sinusodial current excitation:

Pav = Pinst

Pav = 40π2 I 2
2

(2.43)

From equation (2.43), it can be seen that radiated power is proportional to the 
square of the ratio of the antenna length divided by its operating wavelength. Thus
for efficient radiation this quantity should exceed 1. This is a very important finding,
since it tells us that for an antenna to be an efficient radiator its length must be at
least comparable with a wavelength at its desired frequency of operation.

If we have an isotropic source radiating uniformly in all directions, we can find an
expression for the power radiated by using the same process as we described for the
Hertzian dipole above. Once again the power radiated by an isotropic source radiating
Pinst W of power is given as

Pinst = �
0

π

�
0

2π 

Eθ Hφ r2 sinθ dθ dφ (2.44)

and using Eθ = constant and Hφ = Eθ /120π, then

Pinst = �
0

π

�
0

2π 

r2 sinθ dθ dφ (2.45)

= [−cosθ]π
0

= W (2.46)

This expression can now be used to establish the concept of power gain as applied to
an antenna.

Antenna directivity, power gain and efficiency

We have already seen in Section 1.3 that the Hertzian dipole antenna has directional
radiation properties, with its main power concentration occurring along the equatorial
plane (θ = 0°) of the antenna and an antenna field pattern null along the axis of 
the antenna at θ = 90°. Thus it follows that relative to an isotropic antenna radiating 
uniformly in all directions any antenna exhibiting directional characteristics will

2.4

Eθ
2r2

30
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32 Chapter 2 • Electromagnetic wave propagation and power flow

exhibit power gain, G, at least in some directions of radiation, in relation to the isotropic
antenna. This gain is defined as

G = (2.47)

By the definition in equation (2.47), consider how the Hertzian dipole antenna can
exhibit gain when compared with an isotropic source. For the Hertzian dipole from
Section 1.2 we know that

Eθ = (2.48)

where I = I0e j(ωt−βr)

Hence maximum Eθ occurs at θ = 90°

Eθmax
= (2.49)

Calculate the maximum magnitude of the electric field radiated by a Hertzian dipole
at a distance of 10 m. The dipole has length 0.1λ and is centre-fed by a 1 A RMS
current.

Solution

From equation (2.49):

Eθmax
= = 0.6π = 1.9 V/m

But we also know for a Hertzian dipole (Section 2.3) that

Pinst = 80π2I 2
2

(2.50)

so that by substituting (2.50) into (2.49) for the Hertzian dipole, we can write

Eθ
2

max
= = (2.51)

But for the isotropic source we know from equation (2.46) that

Eθ
2

max
= (2.52)

Hence, by the definition given by equation (2.47), the power gain of a Hertzian dipole
relative to an isotropic source is

G = = 1.5
45

30

30Pinst

r2

45Pinst

r2P

Pinst

80

602

r2

D
F

∆�

λ
A
C

60π × 0.1 × 1

10

Exercise 2.6

60π ∆� I

λr

60π ∆� I sinθ
λr

maximum power received (radiated) from a given antenna

maximum power received (radiated) from a reference antenna
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Antenna directivity, power gain and efficiency 33

When expressed as a power gain, this gives 10 log101.5 or 1.76 dBi, where the 
‘i’ denotes decibels relative to an isotropic source. This example demonstrates that 
even though the Hertzian dipole is very short it still has gain by virtue of the direc-
tional nature of its radiation characteristic when compared with that of an isotropic
source.

As we have seen, antenna structures with non-zero length exhibit preferential
energy radiation in a given direction (θ, φ). This property can be defined as the 
antenna directive gain or directivity, D, given as the ratio of the radiation intensity
for the antenna in some direction (θ, φ) to the average radiated power when the 
same power is radiated uniformly in all directions over the entire imaginary spherical
shell placed some distance away from the antenna in its far field; or, stated another
way

D = (2.53)

By noting that for a sphere the average radiation intensity is 1/4π times the total power
radiated by the antenna PT, we can write

D = (2.54)

where PT = total power radiated by the antenna and Φ (θ, φ) = radiation intensity in a
given direction (θ, φ), i.e. the power per unit solid angle in that direction.

Here PT can be found by integrating Φ (θ, φ) over the whole sphere:

PT = �
0

2π 

�
0

π 

Φ (θ, φ) sinθ dθ dφ (2.55)

hence

D = (2.56)

This expression defines directivity with respect to an ideal isotropic antenna. If any
other antenna type is used as the reference, then the directivity calculated will be reduced
by the directivity of the reference antenna.

As suggested by equation (2.56), in a practical situation antenna directivity can be
calculated by numerical integration of the measured radiation patterns for a given antenna
type. For those cases where no azimuthal field variation exists, and if we assume that
the maximum radiated power is unity, then a special case exists:

PT = 2π�
0

π 

Φ (θ) sinθ dθ

∴ D = (2.57)
2

�
0

π 

Φ (θ) sinθ dθ

4πΦ (θ, φ)

�
0

2π 

�
0

π 

Φ (θ, φ) sinθ dθ dφ

4πΦ (θ, φ)

PT

radiation intensity in a given direction

radiation intensity averaged over all directions
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34 Chapter 2 • Electromagnetic wave propagation and power flow

For an antenna that is 100% efficient, i.e. has no losses, directivity and gain are the
same; this issue is further discussed below.

Let us now calculate the directivity for a Hertzian dipole. Consider first a unit solid
angle, Ω, called a steradian, [8]. The surface area occupied per solid angle dΩ is given
by r2 dΩ, where r is the distance from the origin of the radiating source. Hence there
are r2 square meters of surface area per unit solid angle.

Thus the radiation intensity Φ (θ, φ) in a given beam direction can be derived from
the power per unit solid as

Φ (θ, φ) = r2P = W/steradian (2.58)

where P is the power flow per unit area.
Another term of fundamental importance to understanding antenna behaviour is 

radiation resistance; this will now be discussed.
From Section 2.2, for a plane wave propagating in free space P = EH, where 

E = 120 πH, and for a Hertzian dipole we know from equation (2.49) that

I = (2.59)

Thus we can write power as P = I2Rrad, where Rrad is called the radiation resistance 
of the antenna. This is a term of fundamental importance to antenna designers and 
requires definition.

The radiation resistance for an antenna is a fictitious resistance Rrad chosen such
that the average power, Pav, dissipated in Rrad is the same as that dissipated by the 
antenna, hence

Pav = I2Rrad

So, for a Hertzian dipole using equation (2.42), we obtain

Rrad = 80π2
2

Ω (2.60)

This resistance arises since in addition to the considerations given in Section 1.1 the
charge on an electron can create its own electric field, which under dynamic conditions
can produce a force that acts upon the electron itself. This occurs in such a way as to
resist the motion of the electron. The drag force thus created is responsible for the
creation of radiation resistance. In practice, radiation resistance will vary over the antenna
length, and in the derivations presented here we find an aggregate value for radiation
resistance over the entire antenna length. Current flowing against the radiation resistance
is converted into electromagnetic energy. In addition, the motion of the electrons as
they oscillate is impeded by collisions with atoms that lie in their path, causing heating
or ohmic resistance. Ohmic and radiation resistance are necessary in order to define
the radiation efficiency of an antenna.

D
F
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λ
A
C

1

2

λrEθmax

60π∆�

r2E2

120π
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Antenna directivity, power gain and efficiency 35

Calculate the radiation resistance of a wire dipole of length 0.01λ.

Solution

The wire is very short compared with a wavelength, therefore we can approximate it
as a Hertzian dipole and apply equation (2.60). Thus

Rrad = 80π2(0.01)2 = 0.08 Ω

From this it can be seen that the dipole has a very low radiation resistance and con-
sequently it will not radiate very effectively.

Equation (2.60) is of fundamental importance, since it demonstrates that radiated 
power is proportional to the square of the length-to-wavelength ratio of the antenna;
i.e. in order to be an efficient radiator the size of the antenna must be comparable with
its wavelength. In effect, this shows why the Hertzian dipole, ∆� << λ, is really of
theoretical value only. Also, it clearly shows why conventional lumped element electronic
components with dimensions at their operating frequency of <λ/20 have radiation effects
that are so small they are totally ignored in classical AC circuit theory.

For 1 W of total radiated power and using equation (2.60), we get

I = (2.61)
80π ∆�

Equating (2.59) and (2.61) gives the field strength in the direction of maximum 
radiation as

Eθmax
= V/m (2.62)

r 80

and using equation (2.58) we get

Φ (θ, φ) = = (2.63)

Substituting this result into equation (2.56) yields

(4π)

D = = (2.64)

The denominator in equation (2.64) is unity, since we are using the constraint of 1 W
total radiated power as cited above. The result is the same as the one we obtained for
the gain of a Hertzian dipole earlier in this section and is a consequence of the Hertzian
dipole having a volumetric doughnut-shaped radiation pattern that fills only two-thirds
of the entire solid angle of a sphere. Some typical directivity values for basic antenna
types are listed in Table 2.1. 

In equation (2.54), if total power input to the antenna instead of radiated power is
used, then the antenna losses can be included and the power gain of the antenna, G,

3

21

3

8π

3

8π
602r2

r2(80)(120π)

60

λ

Exercise 2.7
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36 Chapter 2 • Electromagnetic wave propagation and power flow

calculated. Since the antenna power gain includes loss, it is always by definition going
to be less than the directivity for the same antenna; hence we can write

G = ηD (2.65)

where η is the antenna efficiency factor and is less than, or at best equal to, unity.
We can now define antenna radiation efficiency as

η = (2.66)

so that

G = η + D (dB) (2.67)

Here Rrad is the radiation resistance of the antenna as defined above, and RL is the
antenna ohmic loss. For an antenna that is 100% efficient, i.e. has no losses, directivity
and gain are the same.

For a circular cross-section dipole of radius a and length �, RL is mainly due to the
sinusodial current in the wire moving in a thin sheet near its surface. Approximately
for a uniform current distribution, this can be written as

RL = (Ω) (2.68)

where ω is the angular frequency of operation, and σ is the conductivity of the metal
used to form the conductor.

What is the antenna efficiency factor for a dipole of length 0.1λ operating at 1 GHz
and constructed using 1 mm diameter copper wire, of conductivity 6 × 10−9 s/m.

Solution

Since � < λ, we will assume that the antenna can be approximated by a Hertzian 
dipole; thus equation (2.60) gives

Rrad = 0.8π2 = 7.9 Ω

and from equation (2.68)

RL = = 0.065 Ω
2π × 1 × 109 × 4π × 10−7

2 × 6 × 10−9

1

4π10−3

Exercise 2.8

ωµ0

2σ
�

4πa

Rrad

Rrad + RL

Table 2.1 Typical antenna directivity values

Antenna type Directivity

Isotropic 1
Short dipole 1.5
Half-wave dipole 1.64
Quarter-wave dipole over an ideal ground plane 3.28
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Antenna directivity, power gain and efficiency 37

Hence from equation (2.66) this antenna will have a theoretical efficiency, η, of

η = = 99%

showing that the use of copper as the constructional material for the antenna was a
good choice due to its high conductivity hence low ohmic loss.

It is important to note that while efficiency is high, radiation resistance is low, so
in practice both figures of merit need to be considered together before a proper assess-
ment of antenna behaviour can be made.

For an antenna that is electrically short, i.e. � << π, the ohmic losses of the antenna
become a critical issue. This is so since the antenna will be a poor radiator (c.f. equation
(2.43)), and losses become critical in determining the efficiency of the antenna. In 
some applications, an electrically short antenna with efficiency of 30 to 50% may be
useful where physical size is an issue, e.g. in HF or ruggedised systems.

The issue of electrically short antennas is a key concern for mobile wireless equip-
ment. As we have already seen, antenna efficiency and gain decrease dramatically for
� < λ; this is accompanied by a decrease in bandwidth. All these features are undesir-
able in a practical antenna.

Key relationships that link the maximum gain (for a reasonable bandwidth), Gmax ,
and the minimum quality factor, Qmin (itself a measure of bandwidth), are given in 
[9] for electrically short antennas radiating or receiving linearly polarised radiation.
These are repeated here as

Qmin = + (2.69)

Calculate the Q factor of an electrically short dipole antenna of length 0.02λ.

Solution

From equation (2.69), the minimum Q factor, Qmin , is

+
3

= + = 4016

This shows that this antenna will have a very high Q factor and consequently narrow
bandwidth. Indeed, since a Hertzian dipole appears capacitive below resonance and
inductive above resonance and if ohmic losses are low, it can be approximated as a
lossless series LC tuned circuit.

1

(0.02π)

1

(0.02π)3

D
F

0.02λ
2

2π
λ

A
C

D
F

0.02λ
2

2π
λ

A
C

11

Exercise 2.9

1

(ka)

1

(ka)3

7.9

7.9 + 0.065
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38 Chapter 2 • Electromagnetic wave propagation and power flow

and

Gmax = (ka)2 + 2ka (2.70)

For the same parameters that were used in exercise 2.9, what is the maximum theor-
etical gain that this antenna can have?

Solution

Gmax = (2π 0.01)2 + 2(2π 0.01)
= 0.135 or −9 dB

So the gain of the antenna is in fact negative and will become positive only when the
antenna size is increased considerably.

where k = 2π/λ, and a is the radius of the smallest sphere enclosing the antenna. For
very short antennas, Gmax will be reduced considerably, as mentioned above, by ohmic
losses.

Using the concept of the near-field/far-field boundary, defined in Section 1.4 as λ /2π,
Wheeler [10] suggested an approach whereby a metal shield could be placed over an
electrically short antenna. Provided the shield was much bigger than the antenna but
smaller than λ /2π, then the shield would prevent radiation while allowing dissipative
ohmic losses to be measured. The composite ohmic and radiative losses can then be
found by making a one-port impedance measurement on the antenna as it radiates into
free space. In this way, the parameters in equation (2.66) can be identified and antenna
radiation efficiency estimated.

Other methods exist, e.g. [11] for calculating antenna efficiency, namely directivity/
gain and radiometric methods. These techniques are more broadly applicable than the
Wheeler box approach above, but their use requires more specialised equipment.

[8] Karmel, P.R., Colef, G.D. and Camisa, R.L., Introduction to Electromagnetic and
Microwave Engineering, Wiley Series in Microwave and Optical Engineering,
John Wiley & Sons, 1998.

[9] Skrivervik, A.K., Zürcher, J.F., Staub, O. and Mosig, J.R., PCS antenna design:
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[10] Wheeler, H.A., Small antennas, IEEE Trans. on Antennas and Propagation, 
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[11] Newman, E.H., Bohley, P. and Walter, C.H., Two methods for the measurement
of antenna efficiency, IEEE Trans. on Antennas and Propagation, Vol. AP-23,
No. 4, 1975, pp. 457–61.
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Problems 39

2.1 Define from first principles the equations governing the radiation efficiency and
power gain of a short linear dipole.

2.2 Use the equations derived in exercise 2.1 to establish the electric field strength
at a receiver placed 100 km away from a 50 Ω matched transmitting antenna
of length 3 cm fed with a 1 GHz 0.25 A sine wave.

2.3 If the receive antenna in exercise 2.2 is also designed to be resonant at 1 GHz
and has an effective length of 3 cm, what is the actual power available at the
receiver input under matched conditions?

What is the transmission loss in dB for this situation? 

Problems

FOA_C02.qxd  8/2/04  3:16 PM  Page 39



40

Linear dipole antennas

In this chapter, the concepts previously defined for the Hertzian dipole are extended
to encompass a straight wire antenna of finite length, the dipole antenna. The effects
of current distribution on the radiation characteristics of dipole antennas of various
lengths is established. In addition, general expressions for radiation resistance, gain and
power transfer from a transmit antenna to a receive antenna are also discussed, as is
the behaviour of electrically short dipole antennas.

Dipole antenna of finite length

We can use the concepts already developed for the Hertzian dipole (Chapter 1) to 
construct a model for a more general dipole type, i.e. a straight wire antenna of finite
length. This type of antenna has many practical applications.

If we have a dipole antenna of length � consisting of two equal straight lengths of
metal conductor, �/2, lying along the same axis and separated by a small gap ∆ we can
form a centre-fed dipole antenna (Figure 3.1). Here because the antenna has a finite
length the magnitude of the current distribution along its length will not be constant,
but if the antenna is centre-fed the phase distribution along its length will be constant.
Also due to its length, the radiation from different parts of the antenna will reach a far
distant observation point P with different phase delays. Here the radiated wavefronts will
add constructively or destructively, depending on their relative phase relationships.

An analysis of this situation is possible if we use the Hertzian dipole model as the
basic building block. Assuming that the Hertzian dipole model is applicable over a
short length dz (Figure 3.1), we can rewrite equation (1.16) using

dEθ = η dHφ (3.1)

where dHφ = sinθ′ exp(−jkr′) (3.2)
kI(z ′) dz ′

4πr ′

3.1

Chapter 3
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Dipole antenna of finite length 41

Here exp(−jkr ′) is used as alternative exponent notation for cosω(t − r ′/c), with the
implicit assumption that we are concerned only with the real part of the exponent; k
is the wavenumber, and ω t is the radiation frequency.

If we are in the far field of the antenna, then lines AP and OP will be approximately
parallel. Thus

r ′ = r2 + z2 − 2rz ′cosθ (3.3)

∴ r ′ ≈ r − z ′cosθ (3.4)

and

dHφ = sinθ′ exp(−jk(r − z ′cosθ)) (3.5)

If we note that z ′ is much less than r, then r − z ′ is approximately equal to r, except
in the exponent term, which remains as exp(−jkr) exp(jkz ′cosθ).

kI(z ′) dz ′
4π(r − z ′cosθ)

Figure 3.1 Finite-length dipole
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42 Chapter 3 • Linear dipole antennas

Hence

dHφ = exp(−jkr) exp(jkz ′cosθ′) sinθ′ dz ′ (3.6)

The total magnetic field at point P can now be found by summing incremental equation
(3.6) over the entire length of the antenna:

Hφ = �
z1

z2 

sinθ′ I(z ′) exp(jkz ′cosθ′) dz ′ (3.7)

where it is noted from Figure 3.1 that for far-field points θ′ ≈ θ.
The term in the integral is very important for antenna work and thus needs further

consideration. As it stands, the integral has units of amperes per metre. If the integral
was divided by the driving point current, I(0), then the integral would have units of
length. The resulting term is defined as the effective length (or height) for the antenna,
he(θ) [12] [13]:

he(θ ) = �
z1

z2 

I(z ′) exp(jkz ′cosθ) dz ′ (3.8)

Hence we can write

Hφ = he(θ) I(0) (3.9)

For a given current distribution, we can now compute the far-field pattern for any 
length of dipole. In effect, the use of the effective antenna length concept simply 
means that we need only evaluate the integral in equation (3.8) in order to find the far
field radiation pattern, i.e. the integral is the quantity that identifies the characteristic 
radiation features of a particular length of dipole antenna.

Current distribution on a finite-length dipole 
(far-field effect of a sinusodial current)

Consider a wire dipole antenna of length � that has a sinusodial current distribution
along its length, such that with reference to Figure 3.1

I(z ′) = I0 sin � − z ′ z ′ > 0

= I0 sin � + z ′ z ′ < 0 (3.10)

See Figure 3.2.

∴ he(θ ) = I0 �
0

−�/2

sin � + z ′ exp(jkz′cosθ) dz′

+ I0 �
0

�/2

sin � − z ′ exp(jkz′cosθ) dz′ (3.11)
JKL

D
F

1

2

A
C

ω
c

GHI

JKL
D
F

1

2

A
C

ω
c

GHI

JKL
JKL

1

2

GHI
ω
c

GHI

JKL
JKL

1

2

GHI
ω
c

GHI

3.2

k exp(−jkr)

4πr

sinθ
I(0)

k exp(−jkr)

4πr

k sinθ′
4πr
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Current distribution on a finite-length dipole 43

Fortunately, this is a standard integral, which can be expressed as

� exp(ax) sin(c + bx) dx = [a sin(c + bx) − b cos(c + bx)]

After making the appropriate substitutions, i.e. a = jk cosθ, b = k and c = 1/2k� for
the first integral and b = −k for the second integral in equation (3.11), we get

he(θ) = F(θ) (3.12)

from which we can write

Hφ = exp(−jkr)F(θ) (3.13)

where F(θ) is called the pattern multiplication factor, and I0 is the maximum excitation
current. Thus we obtain for a finite-length dipole with sinusodial current distribution

cos k�cosθ − cos k�

F(θ) = (3.14)

Consider now some important cases.

Case (1)

Let � = λ/2, i.e. a half-wave dipole

cos cosθ
F(θ) = (3.15)

sinθ

D
F

π
2

A
C

sinθ

D
F

1

2

A
C

D
F

1

2

A
C

I0

2πr

2 I0

kI(0)

exp(ax)

a2 + b2

Figure 3.2 Sinusodial current distribution for a finite-length dipole
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44 Chapter 3 • Linear dipole antennas

Case (2)

Let � = λ, a full-wave dipole

F(θ) = (3.16)

Case (3)

Let � = 3λ/2

cos π cosθ
F(θ) = (3.17)

Constructing the polar plots for each of these cases enables the 3 dB antenna beam-
widths to be found; see Figure 3.3, which was constructed using the computer program
given in Appendix 8.1. The half-power beamwidths (HPBW) quoted in Figure 3.3 are
obtained as in Section 1.3.

Calculate the half-power beamwidth for a half-wavelength centre-fed dipole antenna.

Solution

From equation (3.15), we can write

F(θ) =
2

which yields

cos cosθ =
2

which is satisfied with values of θ of 51° and 129°, giving the HPBW as 129° − 51°
= 78°.

From this result, we can show that the far-field radiation pattern from this antenna
is more tightly focused than that of the Hertzian dipole (see exercise 1.3).

Calculate the half-power beamwidth for a full-wave dipole.

Solution

Using equation (3.16), we get

Exercise 3.2

sinθD
F

π
2

A
C

1

Exercise 3.1

sinθ

D
F

3

2

A
C

cos(π cosθ) − 1

sinθ

FOA_C03.qxd  8/2/04  3:17 PM  Page 44



Current distribution on a finite-length dipole 45

1 + = cos(π cosθ)
2

which is satisfied when d = 255.5° or 284.5°, giving θ3dB = 29°.
Thus it can be seen that relative to exercise 3.1 by increasing the length of the dipole

the antenna half-power beamwidth has decreased, i.e. it is producing more focused
radiation. This situation cannot continue indefinitely.

sinθ

Figure 3.3 Typical polar plots for dipole antennas
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46 Chapter 3 • Linear dipole antennas

From Figure 3.3, it can be seen that as the antenna length increases from λ/2 to λ the gain
associated with the main lobe radiation of the dipole increases. Above λ (at � = 1.2λ) the
antenna starts to present side lobes, which represent a loss of energy that would other-
wise go into the main lobes of the antenna. This leads to a reduction of gain in the prin-
cipal radiation directions of the antenna and also presents an opportunity for the antenna
to pick up radiation from unwanted angles, i.e. along the directions of these side lobes.

Dipole antenna radiation resistance

Using the same procedure as was used in Section 2.3 for the Hertzian dipole based
on Poynting’s theorem, we can now find the power radiated by a straight wire dipole
of length � with sinusodial current distribution. Here, the average radiated power is

Pavg = �
0

2π

�
0

π

Eθ Hφ r2 sinθ dθ dφ (3.18)

on using 120πHφ = Eθ and equation (3.13):

cos k�cosθ − cos k�
2

Pavg = �
0

2π

�
0

π

dθ dφ

cos k�cosθ − cos k�
2

= 30 I0
2 �

0

π

dθ (3.19)

But we know by definition that the average power at the input to this antenna, z = 0, is

Pavg = I2(0) Rrad (3.20)

Hence the radiation resistance, Rrad, for a finite-length dipole antenna of length � is

cos k�cosθ − cos k�
2

Rrad = �
0

π

dθ (3.21)

Consider now the important special case of a half-wave dipole (� = λ/2) that is centre-
fed. In this case I(0) must equal I0, the maximum excitation current. Hence

cos2 cosθ
Rrad = 60 �

0

π

dθ (3.22)

The integral in this case can be evaluated only by numerical means; this evaluation results
in a value of 1.22. Hence the radiation resistance for a half-wave linear dipole referred
to the current at the centre feed point terminals at resonance (zero reactance term) is

Rrad = 60 × 1.22 ≈ 73 Ω
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Short dipole antenna 47

Short dipole antenna

The Hertzian dipole antenna considered earlier had a uniform current distribution over
its entire length. While theoretically this is useful, it does not represent accurately 
the physical situation for dipole antennas of finite but small physical length. In an 
actual case of a dipole antenna fed at the centre, the current at each end of the dipole
must fall to zero, since that end is open-circuited. With this in mind a better model
for the current distribution might be a linear distribution with its maximum at the 
centre, decreasing to zero at the ends (Figure 3.4). Here the antenna is considered to
be short enough so that a sinusoidal current distribution cannot develop over the length
of the antenna.

For the short dipole discussed here, � is assumed to be << λ0. In addition, we will
assume a current distribution:

I(z) = I0 1 − z ≥ 0

and

I0 1 + z < 0 (3.23)

such that the current goes to zero at each end of the short dipole and where � = �1 + �2.
Recalling equation (3.9) for the finite-length dipole, we get

Hφ = �
0

�2

I0 1 − exp( jkz ′cosθ) dz ′

+ �
0

−�1

I0 1 + exp(jkz ′cosθ) dz ′ (3.24)

using ∫ exp(x) dx = exp(x)

JKL
JKL

z ′
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GHI

JKL
z ′
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GHI
GHI

k exp(−jkr)

4πr

D
F

z
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D
F

z

�2

A
C

3.4

Figure 3.4 Short dipole with linear current distribution
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48 Chapter 3 • Linear dipole antennas

and

∫ x exp(x) = exp(x)(x − 1)

and also noting

k(�1 + �2) << 1

then

Hφ = sinθ (�1 + �2) (3.25)

which is an identical result to that obtained for the Hertzian dipole, equation (1.15),
except that the excitation current is reduced by 50%. Thus the radiated power for a
short dipole antenna with linear current distribution is reduced to 25% relative to the
same quantity calculated for a Hertzian dipole. Hence the radiation resistance for a
short dipole antenna Rrad is, after equation (2.60),

Rrad = 20π2
2

Ω (3.26)

Calculate the radiation resistance of a short dipole of length 0.2λ supporting a linear
current distribution.

Solution

Using equation (3.26):

Rrad = 20π2 0.04
= 0.8π2 Ω

which is only one-quarter of what can be obtained from an antenna carrying a uniform
current distribution.

We have seen that a Hertzian dipole is assumed to support a uniform current distribu-
tion (Figure 3.5a), while a short dipole can be approximated as supporting a linear
current distribution (Figure 3.5b). The current distribution of the short linear dipole
can be made to more closely approximate the uniform current distribution of the Hertzian
dipole by adding circular metal plates to each end of the dipole (Figure 3.5c).

This forms a capacitive load for the antenna and, as a consequence, the antenna 
is termed a capacitor-plate or capacitor-loaded antenna. The current flow on the upper
and lower plates is radially directed but in opposite senses for each plate. Hence the
electromagnetic fields generated due to these currents cancel each other out and do not
significantly influence the radiation pattern of the antenna. Thus the electromagnetic
fields associated with the three parts of Figure 3.5, i.e. the Hertzian, short and cap-
acitively loaded dipole antennas, are approximately equivalent.

Exercise 3.3
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Gain of a half-wave dipole relative to a Hertzian dipole and 
power transfer

For a half-wave dipole antenna, we have shown in Section 3.3 that its radiation resist-
ance is 73.2 Ω, hence the instantaneous power radiated by the antenna is

Pinst = I0
2 73.2

but for the half-wave dipole in the equatorial plane, we know from Section 3.2 that
for θ = 90°

Eθmax
= =

Substituting for I0 gives

60 Pinst PinstEθ max
= ––––––– = 7 ––––– (3.27)

r 73.2 r

and for an isotropic source (equation (2.52))

30PinstEθ max
= (3.28)

Calculate the maximum field strength at boresight radiated from a half-wavelength
dipole, excited by a 1A RMS AC current measured at a range of 1 km.

Solution

Using equation (3.27), we find that

7 73
Eθ max

= = 60 mV/m
1000

Exercise 3.4

r
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D
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Figure 3.5 Approximately equivalent dipole antennas
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50 Chapter 3 • Linear dipole antennas

Hence by our previous gain definition (Section 2.4), assuming 100% efficiency the
gain of an ideal half-wave dipole antenna relative to an isotropic radiator, G, is

7 Pinst

G = ––––––––

2

= 1.63 (3.29)
30 Pinst

or G = 10 log101.63 = 2.1 dBi.
The purpose of an antenna is to deliver or to receive power in the form of an electro-

magnetic wave that is regarded as travelling through free space, although in general
it may be propagating through any medium. From previous studies in Section 1.4, we
saw that in the far field the electric field magnitude of the signal from the source varies
in inverse proportion to its distance from the source, r, i.e. power varies according to
1/r2. This means that for reasonable separations between transmitter and receiver, only
a very small amount of the transmitted power will be available at the receive antenna.
Thus for best possible operation we need to make sure that maximum power is trans-
ferred from the propagating wave to the receive antenna, or vice versa. Figure 3.6a

r

D
E
E
E
E
F

A
B
B
B
B
C

r

Figure 3.6 Receive antenna power transfer
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Gain of a half-wave dipole relative to a Hertzian dipole and power transfer 51

shows a plane wave whose E field is incident on a receive dipole antenna; both 
have the same orientation (see Section 5.2). An electrical equivalent schematic for this
arrangement is shown [14] in Figure 3.6b. In Figure 3.6, Zantenna comprises the antenna
loss mechanisms due to dielectric, ohmic and mismatch effects and a reactive com-
ponent, which can be inductive or capacitive.

The external load Zload sees an equivalent voltage source Vload placed across its 
terminals that has an internal impedance equal to the impedance of the antenna. For
the optimal case, maximum power transfer to occur between antenna and external 
load,

Zant = Zload* (3.30)

where the * indicates complex conjugation; hence

Rant ± j Xant = Rload +− j Xload (3.31)

In this way, any reactance in the system is cancelled, leaving only real, lossy, com-
ponents. Under the conjugate match condition

Rant = Rload (3.32)

so that

Vload = Vant (3.33)

Hence the power delivered to the load, PL, is

PL = Vant
2/Rload (3.34)

In general

PL = Re (3.35)

The equivalent circuit for the receive antenna given by Figure 3.6 is only approximate,
since in general it should include additional sources to model the effects of scatter-
ing of the incident field by the receiving antenna. It should be noted that in most 
instances the current distribution along an antenna in transmit and in receive mode
can be very different. However, their far-field patterns will be the same, since the 
combination of the re-radiated scattered and incident fields, on receive, add to yield
the same far field as would have been obtained if the antenna had been used in 
transmit mode.

For the case when transmit and receive antenna current distributions are the same, show
that under the matched condition i.e. when Rload = Rant as much power is scattered as
is absorbed by the antenna.

Exercise 3.5
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52 Chapter 3 • Linear dipole antennas

Solution

From Figure 3.6, the power absorbed in the terminating resistive load PL is

PL =

The power dissipated in the radiation resistance of the antenna itself, i.e. the power
re-radiated from the antenna, is PR , which by inspection of Figure 3.6 is

PR =

now when Rload = Rant and equation (3.34) results, i.e. the matched condition thus 
PL = PR.

Consequently, as much power is scattered as is absorbed. Note that this is a special
case. In general, the amount of scattering may be, larger, smaller or equal to the power
absorbed by a matched antenna operated in receive mode.

For an antenna driving into an open circuit

PL = Re

2

= Re (3.36)

Now when an electric field is oriented relative to a receive antenna at some angle, α
(Figure 3.6c), the induced open-circuit voltage in the antenna is [13]

Voc = he(θ) E cosα (3.37)

where E cosα is the component of electric field that lies along the axis of the antenna,
and he(θ) is the effective length of the antenna as defined in Section 3.2.

Thus we can say that under conjugate match conditions

PL = h2
e(θ) (3.38)

Show that a linearly polarised receive antenna positioned in the far field and at right
angles to a linearly polarised transmit antenna will receive no signal.

Solution

Using equation (3.37), we can see that if α = 90° then cosα = 0° and no signal will
be received.

Such situations imply that two orthogonal linearly polarised antennas can carry 
information at the same frequency without interfering with each other. This is a 
technique called polarisation diversity.

Exercise 3.6
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Consider two half-wave dipoles aligned with their axes parallel. Find an expression
for the maximum power that will be available at the receive antenna.

Solution

When the axes of both antennas are parallel, α = 0 (cosα = 1). The power available
at the second antenna can be calculated from equation (3.38) as

P = (3.39)

Calculate the effective length of a half-wave dipole at the position of maximum received
power.

Solution

2cos π cosθ
he(θ) = (3.40)

Noting that for maximum received power θ = π/2 so that for this example using

he = = 

where λ = 30 cm.

From equation (1.16), we can write Eθ as

Eθ = exp(−jkr) (3.41)

Thus

| Eθ | = (3.42)

Now I(0) is the current applied at the feed point to the centre-fed half-wave dipole;
hence, if antenna ohmic losses are small, we can say that

I(0) =
1/2

(3.43)
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| he(θ) |2 | E |2

8Rrad

Exercise 3.7
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54 Chapter 3 • Linear dipole antennas

For 1 W average radiated power from a half-wave dipole, calculate the current applied
at the antenna feed point and thus find Eθ .

Solution

I(0) =
1/2

= 165 mA

Hence using equation (3.41) at the receive antenna:

| Eθ | = = 0.033 V/m

For the parameters defined in exercise 3.9, calculate the power available at the 
terminals of the receive antenna.

Solution

This can be found by applying equation (3.39):

P =
2

(0.0332)/(8)(73) = 0.52 µW or −33 dBm

where the unit dBm is defined as power relative to a 1 mW reference level:

dBm = 10 log10

[12] Stutzman, W.L. and Thiele, G.A., Antenna Theory and Design, John Wiley &
Sons, 1998.

[13] Kraus, J.D., Antennas (2nd edition), McGraw-Hill, 1988.

[14] Kraus, J.D., Antennas, McGraw-Hill, 1950, pp. 254–6.

References

D
F

P

1mW

A
C

D
F

0.3

π
A
C

Exercise 3.10

(120π)(0.165)

2π(0.3)1000

D
F

2 × 1

73.2

A
C

Exercise 3.9

FOA_C03.qxd  8/2/04  3:17 PM  Page 54
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3.1 A dipole antenna has the following parameters:

length 0.7λ, excitation current 2 A and operating frequency 1 GHz. The radi-
ation produced by the antenna is observed by a suitably equipped receiver at 
a distance of 200 m. For this arrangement, calculate

(a) the antenna radiation resistance;
(b) the far field polar pattern for the dipole;
(c) the electric field strength at the observation point; and
(d) the gain of the dipole relative to an isotropic source.

3.2 What power must be fed to

(a) an isotropic antenna;
(b) a half-wave dipole; and
(c) a short dipole

in order to maintain a field strength of 0.1 V/m at a distance of 1 km from 
the antenna? You may assume that the antennas are lossless and that they are 
operating at a frequency of 1 GHz.

3.3 Consider two half-wave dipoles aligned so that their axes are offset by 30°. 
If the transmit antenna radiates 1 W of power, find the maximum power that
will be available at the receive antenna when they are placed 1 km apart at 
an operating frequency of 1 GHz. Plot the received power level as the axis 
of the receive antenna is rotated from 0° (both antennas parallel) to 90° (both
antennas normal to each other). Comment on the engineering significance of
these calculations.

Problems
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Antenna array techniques

In order to increase the gain of an antenna, several radiating elements are arranged 
in a systematic way to form an antenna array. Using geometrical considerations, this
chapter illustrates how individual antenna elements can be grouped to form enhanced
preferential radiation characteristics.

First, a simple situation comprising just two elements is used to describe the basic pro-
cess for array factor calculation. Then the procedure is generalised for a one-dimensional
linear array and then for a two-dimensional stacked array. The relationship that exists
between the array aperture field distribution and the far-field radiation pattern of the
array is then described. The far-field radiation characteristics of an array can be modified
by using non-uniform excitation of the elements; this aspect of far-field radiation per-
formance tailoring is introduced. Other important issues are also introduced, including
antenna input impedance quantification, inter-element mutual coupling effects and the
effect of a ground plane placed in proximity to a radiating element. The idea of elec-
tronically steering the far-field radiation pattern produced by an array is briefly discussed.

Radiation patterns for two antennas

We have previously seen that a single dipole antenna does not exhibit a high degree of
directivity, and as a consequence its radiation is spread over a relatively large volume.
Combinations of two or more antennas, called an antenna array, can be used if properly
designed to enhance overall directivity hence gain response.

The simplest example of this is when two antennas are combined to form an array.
Initially, we will assume the following:

l Both elements are identical.

l Both elements have the same spacial orientation.

l Both elements are excited with equal-magnitude in-phase currents.

4.1

Chapter 4
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Radiation patterns for two antennas 57

l There are no mutual coupling effects between antennas, i.e. the radiation pattern
of each antenna remains undistorted by the presence of any other antenna.

l Initially, we will give both antennas that comprise the array the property of an isotropic
radiator, i.e. non-preferential radiation in any direction.

If the electric field at some observation point in space due to a single antenna radiating
power P is E(r, θ, φ), then for a two-element array radiating the same total amount of
power as the single element, each element in the array will be producing a resultant
electric field strength of E(r, θ, φ)/ 2 or, on dropping the spherical coordinate notation,
E/ 2.

Due to the physical separation between elements, the fields produced by each ele-
ment will not be in phase, even though their polarisations (see Section 5.4) will align.
The phase delay due to the physical separation between elements is ψ ; the resultant
field strength vector, ER, is found by vector addition (Figure 4.1). The general case
for a one-dimensional array will be covered in Section 4.2.

For the simplest case, i.e. a two-element array with equal amplitude and equal phase
excitation, direct application of the parallelogram rule will suffice to gain an insight
into the problem in hand. Thus

ER
2 = E1

2 + E2
2 + 2E1 E2 cos(Ψ ) (4.1)

If E1 = E2 = E/ 2, as it does in our example of two identical but physically separated
isotropic sources, the above expression reduces to

ER
2 = E2(1 + cos(Ψ )) (4.2)

by noting that cos2Ψ = 1/2(1 + cos2Ψ ) then ER
2 = 2E2 cos2ψ /2.

What is now required is to relate the phase delay, angle Ψ, to the physical 
separation between elements (Figure 4.2). In the figure, AC is the extra path length
required for a signal sited at some position P in the antenna far field to reach position
A on the array relative to position B, both of which are physically separated by 
distance d.

AC = d cosθ meters

= cosθ wavelengths

= cosθ radians (4.3)
2πd

λ

d

λ

Figure 4.1 Vector summation of E fields
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58 Chapter 4 • Antenna array techniques

Hence

ER = E 2 cos cosθ (4.4)

Examination of this result shows that we have the original electric field description
for the antenna element multiplied by a factor describing the geometry of the antenna
array configuration. This second term is called the antenna array factor, or more simply
the array factor, which for a co-phased two element array is

2 cos cosθ (4.5)

This array factor can be plotted in polar form, as was previously done for the electric
and magnetic field far field radiation patterns (Figure 4.3). Here, since there is no
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πd

λ
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C

Figure 4.2 Two-element array factor geometry

Figure 4.3 Isotropic source array factor plots
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Radiation patterns for two antennas 59

azimuthal variation with φ, two-dimensional plots in the x–z plane suffice in this case.
From Figure 4.3, it can be seen that the array factor establishes the modification of
the radiation pattern due to the radiated power from the two sources having a relative
phase difference to be calculated in the far field.

Calculate the increase in gain that a two-element array has with respect to a single
element when viewed along the antenna boresight direction.

Solution

Using equation (4.5) for source separation d = λ/2 in the broadside direction (θ = 90°),
the maximum radiated field strength is 2, so the power gain of this arrangement is
3 dB greater than that obtained from a single source. However, it should be noted that
the increase in directivity obtained in one direction has to be compensated for by a
reduction of radiation in another direction.

So far, since our antenna elements are isotropic sources, the array factor polar plot
represents the composite array polar plot, or as it is often called, the resultant pattern.

resultant pattern = element pattern × antenna array factor (4.6)

In general, this multiplication must be carried out in both the θ and φ planes using
the appropriate element and array pattern formulations.

If the array is driven with currents that are not in phase (i.e. are not co-phased),
then we can add an additional factor to equation (4.4) to represent the effect that this
additional phase angle α has on the array pattern when introduced into the element
drive current.

ER = 2 E cos cosθ ± (4.7)

Here the + sign indicates a phase lag and the − sign a phase lead with respect to the
excitation phase of one of the elements, which has previously been selected to act as
the reference element. Section 4.2 will describe in more detail the effect that the phase
shift, α, has on polar pattern response.

To see how the concept of the array factor facilitates a slightly more complex 
example, consider now the radiation pattern formed by two co-phased co-linear half-
wave dipole antennas spaced one half-wavelength apart. The co-linear stipulation implies
that both dipole antennas have their axes aligned, in our example along the z-axis as
in Figure 4.4.

First, we plot the array factor polar pattern using equation (4.5); then we draw the
dipole pattern, e.g. equation (3.15); and finally we compute by polar coordinate multi-
plication using equation (4.6) the resultant pattern for the array. These operations are
illustrated in Figure 4.5. Note that for the dipole element case we have rotational 
symmetry in the x–y plane. Notice also how the use of two elements in the array has
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πd

λ
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Exercise 4.1
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60 Chapter 4 • Antenna array techniques

increased the relative field strength of a single dipole by a factor of 2 due to the
focusing action of the array described earlier.

One-dimensional linear arrays and far-field transformation

The two-element array technique previously discussed can be extended to represent a
situation describing N elements placed in a one-dimensional or linear array. With the
inclusion of specific radiating elements, the one-dimensional array can take several
different forms (Figure 4.6).

Co-linear array

The co-linear arrangement is shown in Figure 4.6a. Consider first the simplest case
of N co-phased isotropic sources, each producing the same electric field and with 
negligible mutual coupling effects between antennas. If each isotropic source is 
separated by a distance d meters, then the resultant electric field, ER, for the N-
element linear array is found from Figure 4.7 using the same technique as before in
Section 4.1. For example, for Figure 4.6a,

ψ = d cosθ (4.8)
2π
λ

4.2

Figure 4.4 Co-linear two-element dipole array
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One-dimensional linear arrays and far-field transformation 61

with element 1 as the phase reference, the field from the (N − 1)th radiator will lag
the Nth radiator by ψ degrees. Thus

ER = 2R sin (4.8)

and 

E1 = 2R sin (4.9)
ψ
2

Nψ
2

Figure 4.5 Group patterns for co-phased linear dipoles
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62 Chapter 4 • Antenna array techniques

Therefore

E1 sin

ER = (4.11)

sin

on using equation (4.3)

E1 sin

ER = (4.12)

sin d cosθ

In the direction of maximum field strength θ = 90°, and since for a large number of
array elements the array will have high directivity, i.e. the width of the main beam
will be small, then using the small-angle approximation for the sine terms we get

ER = NE1 (4.13)
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Figure 4.6 One-dimensional array configurations

Figure 4.7 Vector plot for N-element array
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Now if one radiator were to radiate the same amount of power as the entire array 
does, say E V/m, then in the array each element would need to radiate 1/N W so that
the electric field produced by each element in the array is E 1/N for the situation 
where each element is excited with equi-amplitude signals. Therefore, noting this 
equivalence, we can write

sin d cosθ
ER = (4.14)

N
sin d cosθ

from which the array factor or group pattern can be determined. Thus relative to a
single element the maximum achievable power gain for an N-element array is N times
that which can be achieved for a single radiator; the electric field strength magnifica-
tion achievable is N.

It is not unreasonable now to assume that since gain is enhanced, the beamwidth
of the array will be reduced relative to that of a single element. Beamwidth can be
calculated by locating the position of the nulls in equation (4.14).

Calculate the angle out to the first nulls for an array having a large number of elements
an equally spaced distance d from each other.

Solution

Now since for a large number of elements directivity is high and the main lobe is along
θ = π/2, we can expect that the nulls will lie close to this position. Consequently, to
find the angle out to the first nulls, cosθ in equation (4.14) can be replaced by

cosθ ≈ − θ = θ′ radians

which when substituted into equation (4.14) gives when set equal to zero (i.e. the first
null condition)

θ′ d ≈ ±π

or

θ′ ≈ ± radians (4.15)

This is an important result, since it indicates that the longer the array is, the narrower
the beamwidth to the first null, i.e. the antenna array is acting like a lens focusing the
radiated electric and magnetic fields. The term Nd can be considered as the aperture
of the co-linear array.

λ
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64 Chapter 4 • Antenna array techniques

In an N-element co-linear array (Figure 4.6a), the E-field component varies in the x–z
or y–z plane as defined by the element Eθ pattern multiplied by the group pattern above.
As before, symmetry is preserved in the φ plane.

Broadside array

Figure 4.6b depicts the linear broadside array; here the situation is somewhat more
complex. Even though the group pattern is the same as in the previous case, the 
radiation patterns exhibit different forms in the x–y and y–z planes (Figure 4.8). Any
additional phase between array elements, α, can be introduced in the same fashion as
was used for the two-element array case in Section 4.1, namely

sin cosθ±α
ER = (4.16)

N
sin cosθ±α

As before, a + sign indicates lagging currents and a − sign indicates leading currents
with respect to the drive current at the array reference element.

If we consider two currents phase-delayed by 90° and spacially separated by λ /4,
we can see how the linear end-fire array (Figure 4.10a) can give preferential radiation
in one direction (Figure 4.9).
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Figure 4.8 Group pattern for broadside array of half-wavelength spaced dipoles

Figure 4.9 End-fire operation
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One-dimensional linear arrays and far-field transformation 65

End-fire array

In Figure 4.9 and Figure 4.10b, as the electromagnetic wave induced by current 
vector A moves from left to right along the positive x-direction, it rotates through 
one-quarter of a wavelength (i.e. 90°); therefore, it reinforces the field at position B
provided that the current at B already lags the signal at A by 90°. Similarly, the field
produced at B cancels the field at A along the negative x-direction. Hence, in general,
a 90° lagging current at element k with respect to element k − 1 will be reinforced in

Figure 4.10 End-fire array of N half-wave dipole elements, d = l/4: (a) end-fire arrangement;
(b) phase relationship of excitation currents; (c) far-field patterns
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66 Chapter 4 • Antenna array techniques

the positive x-direction by virtue of the quarter-wavelength delay between elements.
Moving from right to left across Figure 4.10a, the converse is true and destructive
interference will occur in the reverse direction. Mathematically, stating this condition
from equation (4.3),

ψ = − cosθ

on setting d = λ /4, then

ψ = (1 − cosθ) (4.17)

so that after equation (4.14), the relevant group pattern becomes

sin (1 − cosθ)

(4.18)
N

sin (1 − cosθ)

In the x–z and y–z planes, the pattern must be multiplied by the correctly oriented
dipole figure-of-eight pattern, while in the x–y plane the symmetrical circular pattern
is used (see Figure 4.10).

Calculate the angle to the first null for a ten-element end-fire array with equal spacing
of λ /4 between each element.

Solution

Equation (4.18) governs this case. Thus we can determine the angle to the first null
in the radiation pattern in the x–y plane by calculating according to the angle θ the
condition that makes Nψ using equation (4.17) equal to

N (1 − cosθ) = 2π

θ = cos−1 1 −

While this array does concentrate the radiated power mostly in one direction, it still
does not produce a very focused beam; for example, if N is 10, θ = 53°.

The ratio of the radiated field in the positive x-direction to that in the negative 
x-direction is called the front-to-back ratio and is infinite for the ideal case cited 
here, i.e. this arrangement will be insensitive to signals coming from the negative 
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One-dimensional linear arrays and far-field transformation 67

x-direction. In an actual end-fire array, mutual coupling effects will degrade the ideal
front-to-back ratio (see Section 4.7 for more details).

Phased array

A more general formulation for calculating the superimposed radiation from a series
of radiating elements can be formed by discarding the parallelogram law and using
complex exponent formulation. Thus if we wish to predict the vector summation of a
series of radiators organised in a one-dimensional array, as for example in Figure 4.6b,
then if we consider the electric field vector E(θ), we can write that for N elements,
the summed electric field at some distant observation point P is

E(θ) = A1 e jkx1cosθ + A2e jkx2cosθ + . . . AN e jkxncosθ (4.19)

Here k is the free-space wavenumber, 2π/λ, and AN is a complex number representing
the relative magnitude and phase of the excitation source applied to the Nth radiating
element. Distances x1, x2, . . . , xn, are referenced from the centre of the array (see also
Section 4.6). Hence with this model each element in the array can have arbitrary excita-
tion and phase applied relative to the reference antenna. This equation is used as the
basis for the MathCad general array program given in Appendix 8.1, which allows
one-dimensional array factors to be calculated with arbitrary relative element excitation
and phase applied.

By adjusting the relative phase angles between elements, an array can have its far
field pattern scanned in azimuth or in elevation for a one-dimensional array, or in 
both azimuth and elevation for a two-dimensional array, without any mechanical move-
ment of the position of the antenna. For a linear array, if the phase shift between array
elements is allowed to vary progressively from element to element as ∆α, then the 
AN weighting coefficients in equation (4.19) become A0e−jn∆α for uniform magnitude
excitation A0. Alternatively, on following the derivation of equation (4.14), the result-
ant field for N uniformly spaced elements d can be written as

| E |2 = A0
2 (4.20)

sin2 (kd cosφ − ∆α)

from which the maximum far-field strength can be located as

φmax = cos−1 (4.21)

Equation (4.21) suggests that as ∆α is changed then φmax will change, hence the array
will be capable of electronically steering its far-field pattern.

Using the MathCad programme in Appendix 8.1, an example of a beam-scanned array
is given in Figure 4.11. Here the array factor for an eight-element array of λ /2 spaced
isotropic sources is plotted as the progressive phase ∆α between adjacent elements is
allowed to vary from 0 through 360° in 30° steps. This figure shows that scanning of
the main antenna lobe is possible at the expense of the side-lobe responses by virtue
of electronic control of the phases applied to the array elements.
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68 Chapter 4 • Antenna array techniques

Aperture distribution and far-field pattern relationship

Consider the electric field that would be produced by an incrementally small element
of an array (Figure 4.12). Here OA = z sinθ, hence s = r − z sinθ.

The field dE produced by the element arrives later at some distant point P

dE = e jω(t−s/c) (4.22)

Here A is the amplitude coefficient and c is the speed of light. Substituting s ≈ r into
the denominator and s = r − z sinθ into the exponential term to allow for any induced
phase shifts, we get

dE = e jω(t−r/c) e jωzsinθ/c (4.23)

Assuming the field components by integration over the entire array length, a, gives
the total electric field E(θ) at any observation point P and can be written as

E(θ) = �
a/2

−a/2

e jω(t−r/c) e jωzsinθ/c dz (4.24)

and using ω = 2π f = 2πc/λ we get

E(θ) = �
a/2

−a/2

Ae j2πzsinθ/λ dz (4.25)
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Figure 4.11 Phased eight-element array of l/2 spaced isotropic elements; 0° to 360° in 30° steps
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One-dimensional linear arrays and far-field transformation 69

For a non-uniform amplitude distribution A becomes a function of z, i.e. A(z). A non-
uniform phase distribution can also be incorporated into A if required. With the aid
of equation (4.25) we can now calculate the far-field radiation pattern for any given
aperture distribution. If A(z) is zero beyond −a/2 ≤ z ≤ + a/2 then the limits of 
integration can be extended to ±∞ without affecting the result.

E(θ) = �
∞

−∞

A(z) e j2πzsinθ/λ dz (4.26)

This has the form of a Fourier integral, which together with its transformation prop-
erties is defined in [15]. One of these properties allows the inverse transformation of
equation (4.26) to be established as

A(z) = �
∞

−∞

E(θ) e −j2πzsinθ/λ dθ (4.27)

Equation (4.27) allows a desired aperture distribution to be derived from a pre-specified
far-field polar diagram.

Using this technique, equation (4.26) shows that for a uniformly excited aperture a
sinx/x response is obtained. Further investigation reveals that this distribution will always
give the highest directivity of any type of aperture distribution [16]. Unfortunately, this
aperture profile is accompanied by fairly high side lobes (−13 dB down on the main
lobe). Shaping the aperture distribution as shown in Section 4.4 can reduce the side
lobe response at the expense of directivity [16]. In practice, since a finite aperture exists
some field perturbation will occur if the aperture distribution is not tapered near to
the aperture edges.

1

λ

Figure 4.12 Continuous linear array
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70 Chapter 4 • Antenna array techniques

This technique for far field prediction or aperture distribution synthesis for a pre-
specified far-field pattern is also extendable to two-dimensional aperture distributions
and is a very powerful design tool for pattern synthesis.

Two-dimensional stacked arrays

Consider now a two-dimensional arrangement of array elements. Assume that these
are equally spaced and fed with equi-amplitude co-phased signals (Figure 4.13). In
the normal direction to the array, the electric field strength due to a column of N sources,
each excited with equi-strength signals, will be determined according to equation 
(4.14) as

sin sinθ′
ER ∝ (4.28)

sin

where sinθ′ = cos(90 − θ). Here, for convenience, we have referenced the angle 
relative to the antenna boresight, i.e. along the y-direction, where the beam will be
formed.

Similarly, for a single row with M elements

sin

ER ∝ (4.29)
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Figure 4.13 Stacked array
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If the maximum radiated field strength is Emax , then the expression governing the field
for the stacked two-dimensional M × N array is

sin sinθ′ sin sinφ′
ER = Emax

sin sinθ′ sin sinφ′

Thus the two-dimensional stacked array case exhibits sinx/x responses in both vertical
and horizontal directions. Hence, unlike the one-dimensional arrays discussed earlier,
which can focus in only one plane, the stacked configuration can focus in two planes,
giving rise to a pencil-like beam (Figure 4.14). For this situation, we can find the antenna
array directive gain relative to an isotropic source by using the procedure given in
Section 2.4.

Hence

G =

If there are many elements in the array, then the antenna aperture dimensions a
and b will be large, hence the beam produced will be narrow and centred around 
the y-direction in Figure 4.13. Under these conditions, sinφ′ and sinθ′ will become
approximately φ′ and θ′, respectively, while cosθ′ will tend towards unity; thus

4π E 2
max
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E 2(θ, φ) cosθ dθ dφ
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Figure 4.14 Two-dimensional pencil beam
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sin2 sin2

ER = E2
max�

0

2π 

�
0

π

dθ dφ (4.30)

θ′
2

φ′
2

after noting that in Figure 4.13, Nd1 = b and Md2 = a.
Now since for a large M × N array the beam is highly focused, i.e. θ′ and φ′ are

small for large M and N, then the limits on the integral can be extended to ± ∞ with-
out affecting the result. This approach leads to an analytical solution for equation (4.30)
by noting that

�
∞

−∞

dx = π

hence the denominator of the gain expression reduces to E 2
max λ2/ab. Therefore 

G = = (4.31)

The above expression is valid for a stacked array that is uniformly excited, or for
a uniformly illuminated aperture. This is valid for the uniformly illuminated aperture,
since by Huygen’s principle each point on a wavefront can be considered a source of
a secondary spherical wavefront (an isotropic point source; see Section 7.5). These
secondary wavefronts combine to form the overall radiation pattern. So a plane wave-
front incident upon an aperture, say a rectangular hole in a sheet of metal, will illuminate
the aperture and will produce a far-field radiation pattern according to equation (4.30).

Since the two-dimensional stacked array gives rise to a radiation pattern that is 
focused into a pencil beam in space, this beam can be steered in two dimensions using
the techniques of phase control introduced in Section 4.2.

It should be noted that following the approach used in equation (4.19), the array
factor for an M × N element planar array with isotropic sources positioned on a 
rectangular grid can be written in a general way as

E(θ, φ) ∝ ∑
M

m=1
∑

N

n=1

Amn e j[(m−1)kdxsinθ cosφ+∆αm,n] e j[(n−1)kdysinθ cosφ] (4.32)

where dx and dy refer to isotropic element separations in the x- and y-directions, 
respectively.

Non-uniform current excitation array

The uniform co-phased excitation cases discussed previously give greatest gain for a
given length, but with this comes the sinx/x far-field distribution, with its relatively high-
value side lobes; e.g. for a ten-element array with 0.5λ wavelength spacing, the first
side lobe is approximately −13 dB down on the level of the main beam. Sometimes
these side lobes can be a problem, as they may give rise to pick-up from unwanted sources
placed within the side-lobe envelope.
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Non-uniform current excitation array 73

By selecting a current distribution along a linear array that is not uniform, it is 
possible to modify the side lobe response of the antenna. The result is that while side
lobes are reduced so is gain, and at the same time beamwidth is increased. The shape
of the resultant far-field pattern is strongly determined by the details of the excitation
currents used. In order to see how this works, consider now a two-element array with
elements spaced one half wavelength apart and each fed with in-phase currents of equal
magnitude; the resulting array pattern is shown in Figure 4.15a. Notice here how 
no side lobes are present in the array response. If two such arrays are overlapped, the
result is shown in Figure 4.15b. Here a tighter beam pattern is exhibited, but still no
side lobes are present. These two overlapped arrays are now equivalent to a single
three-element array with a 1:2:1 feed current profile.

Continuing, we can overlap two three-element arrays to form a single four-element
array with current distribution 1:3:3:1. Again no side lobes are present, and the resulting
antenna array (Figure 4.15c) has a higher gain than before. Continuing this process
yields the current distribution in Table 4.1 for this type of array. In general, the desired
current ratios in the rth element r = 0, 1, 2, . . . , from one end of the array are obtained
for an array N half-wavelengths long as the binomial coefficients

hence the term ‘binomial array’ is used [17].

N!

r!(N − r)!

Figure 4.15 Uniform excitation, binomial array
This figure is based on p. 195 and Figure 7.26 of Applied Electromagnetism by L. Shen and J. Kong © 1983. 
Reprinted with permission of Brooks/Cole, an imprint of the Wadsworth Group, a division of Thomson Learning.
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74 Chapter 4 • Antenna array techniques

For example, consider the development of the normalised current distributions needed
for a variety of one-dimensional binomial arrays (Table 4.1). If a 1 × 1 array were to
be included in Table 4.1, the resulting coefficients would represent Pascal’s triangle.

An array thus fed and consisting of λ /2 element separation will exhibit no side lobes
and is called a binomial array. Examination of Table 4.1 shows that binomial arrays
with λ /2 spacing require a large variation in amplitude coefficients. Another feature
of this type of antenna is that their beamwidth is greater than that of the uniform or
Dolph–Tchebyscheff array, considered next.

Consider now a more complex tapering distribution for the array element excitation
current vector; as an example, we will look at the Dolph–Tchebyscheff distribution [18]
[19]. An array fed with a current vector obeying this distribution has the property that
it will produce the narrowest beamwidth for a given side-lobe level or, conversely,
the lowest side-lobe level for a given beamwidth, for a given length of array. Consider
Figure 4.16, in which the elements are symmetrically disposed around the centre of
the array.

In the design process, the first step is to decide on the number of elements com-
prising the array, and the second step is to decide on the side-lobe ratio, r, required,
such that

r = (4.33)
main lobe maximum

side-lobe level

Table 4.1 Current distribution for binomial array

Array size Normalised current distribution

2 × 1 1 1
3 × 1 1 2 1
4 × 1 1 3 3 1
5 × 1 1 4 6 4 1
6 × 1 1 5 10 10 5 1

Figure 4.16 2N broadside array definitions
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Non-uniform current excitation array 75

The far-field radiation pattern, E(θ), can then be defined as

E(θ) = T2N−1 K0 cos sinθ (4.34)

where T2N−1 is the Tchebyscheff polynomial order 2N − 1, d is the element separation
(λ /2 ≤ d < λ), and K0 is defined in terms of the side-lobe ratio r as [19] [20]

K0 = cosh cosh−1(r) (4.35)

In order to compute T2N−1 ( ), we use

cos (2N − 1) cos−1 K0 cos sinθ K0 cos sinθ ≤ 1

T2N−1 K0 cos sinθ = (4.36)

cosh (2N − 1) cosh−1 K0 cos sinθ K0 cos sinθ > 1 

The angles where the side-lobe response goes to zero, θK0
, can be found as

θK0
= sin−1 cos−1 cos (4.37)

k = 1, 2, 3, . . . , N

The half-power beamwidth angle, θ3dB, is given as

θ3dB = sin−1 cos−1 cosh cosh−1 (4.38)
2

As an example, for a four-element array the required excitation current vector is

I−2 = I2 = K0
3

I−1 = I1 = 3I2 − 3K0

For a given ripple, K0 can be computed from equation (4.35) and the actual required
current ratios found. For a given length of array greater than five wavelengths long
and given side-lobe ratio, the half-power beamwidth 3 dB can be found from [4.5]
and [4.6] as

θ3dB = (4.39)

where K is a function of side-lobe level r and is given in Table 4.2. The relationship
in equation (4.39) applies for arrays of length greater than five wavelengths with 
element spacings between λ /2 and λ.

Note: Figure 4.16 and equations (4.33) through (4.39) are based on H. Jasik (ed.), Antenna Engineering
Handbook, 1st Edition, copyright © 1961 by McGraw-Hill Book Company, Inc. Reproduced with
permission of the McGraw-Hill Companies.
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76 Chapter 4 • Antenna array techniques

Antenna input impedance

The bandwidth of an antenna will be governed primarily by operational requirements;
for example, the modification of antenna radiation pattern with frequency resulting in
gain modification or side-lobe response may be the dominant features that determine
the operating bandwidth of the system. On the other hand, the antenna input impedance
presented to a load or generator may be the main constraining feature; for example, for
short antenna structures, i.e. less than half a wavelength, the limiting factor is variation
in input impedance, while for end-fire antennas modification of radiation pattern with
frequency is a primary issue.

A unique definition for the bandwidth of an antenna does not exist; for example, if
antenna bandwidth in relation to its impedance characteristics is the main issue, then
the objective is to minimise, over a range of frequencies, the voltage standing wave
ratio (see Section 6.1) on the feed line connected to the antenna.

In general, the antenna input impedance will consist of a real part, normally assumed
to be constant but which can vary over the frequency range of interest, and an imaginary
part, whose value will vary with frequency. Consider a half-wavelength dipole antenna
at resonance: input reactance is zero, and the current at its input terminals is in phase
with the applied terminal voltage. In a little bit more detail, a resonance current applied
to the centrally placed terminals of a half-wavelength dipole travels out one quarter
wavelength (90°) to the open-circuited end of the antenna, where it undergoes a 180°
phase reversal. The current then changes direction and propagates back 90°, until it
reaches the antenna’s terminals. Thus the total round trip for the current is 360°. During
the time for this to occur, the excitation voltage at the terminals has also undergone
a 360° phase change, so at the antenna terminals the current and voltage are in phase,
and the load (the antenna) as seen by the generator appears as a resistance. If the antenna
is made shorter than its resonant length, then following the logic above the reflected
current arrives back at the terminals of the antenna earlier (since the round trip is shorter)
than it would have done in the resonant case. Thus the current at the antenna terminals
is phase-advanced with respect to the terminal voltage and the antenna appears, in
addition to its resistive component, to have a capacitive reactive input component. If
the antenna is longer than its resonant length, a phase lag between current and voltage
occurs, and there is an inductive reactive antenna terminal component. An antenna
designed to operate at resonance at a specific frequency will exhibit capacitive terminal
reactance if the antenna is operated at frequencies below resonance (the antenna appears
electrically shorter than its resonant electrical length, since the operating wavelength
is longer) and inductive if the antenna is operated at frequencies above resonance (the
antenna appears electrically longer than its resonant electrical length).

4.5

Table 4.2 Dolph–Tchebyscheff array coefficients

r dB K rads

−20 0.89
−30 1.06
−40 1.18
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Antenna input impedance 77

In such situations, it is useful to be able to determine what bandwidth can be 
achieved such that a given maximum tolerable voltage standing wave ratio (VSWR)
can be adhered to or, vice versa, what minimum VSWR can be achieved for a given
operating bandwidth.

Theoretical work [21] shows that the condition for maximum bandwidth occurs when
the reflection coefficient presented by the antenna to be matched remains as uniform
as possible. In practice this is not the case, so that less than optimum bandwidth 
realisation occurs. For an antenna with a high Q factor and large reactance variation,
only a poor broadband impedance match can be realised. On the other hand, a low 
Q antenna can be matched with relative ease. For a parallel RC load with Q factor,
Q1, the magnitude of the minimum reflection coefficient magnitude | Γmin | is given by
Fano’s limit equation [21] as

| Γmin | = exp(−πQ2 /Q1) (4.40)

where Q1 = RCω0 = 2π f0, Q2 = f0 /bandwidth, and f0 is the centre frequency of operation
for the antenna.

More generally, the input impedance at the antenna terminals can be represented at a
spot frequency as a series LCR circuit giving at resonance an antenna input impedance
that is purely real [22]. The input impedance for such an antenna equivalent circuit is

Zin = R + j ωL − (4.41)

which for small frequency deviations from the resonant conditions, δω, yields using
ω = ω0(1 + δ ) and (1 + δ )−1 ≈ (1 − δ ) for small δ.

Note: The treatment given here in equations (4.41) to (4.56) is based on p. 382 and pp. 387–8
of E.C. Jordan and K.G. Balmain, Electromagnetic Waves and Radiating Systems, 2nd edition, Prentice-
Hall, 1968.

δZ = j(δωL + δω /ω2C ) (4.42)

Hence the normalised change in input impedance relative to the resonant condition is

= j + (4.43)

or in terms of Q factor defined below as

ω0 I 2L

Q = = = ω0 or 

I 2R

Equation (4.43) becomes

= j + = j2 δω (4.44)
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78 Chapter 4 • Antenna array techniques

which near resonance yields

= (4.45)

Note here that when δZ = R, the power absorbed by the antenna reduces to one-half
of its value at resonance. Thus the angular frequency difference at the half-power points
∆ω is

∆ω = 2δω = (4.46)

giving us a definition for relative bandwidth:

= (4.47)

In practice, for a real antenna R, L and C vary with frequency, thus the simple LCR
model above and the definitions based upon it are approximate.

We now need to find a method for evaluating L, C and R. For low-loss uniform
transmission lines (Section 6.1) we know that

Q = (4.48)

Z0 = (4.49)

and

v = 1/ LC (4.50)

where R, L and C are the per unit length quantities defining transmission line resist-
ance, inductance and capacitance, respectively, and Z0 and v are the line characteristic
impedance and phase velocity, respectively.

From Section 6.6, for a resonant quarter-wavelength line that is open-circuited at
one end, the input impedance is a resistance of value Rin

Rin = (4.51)

and is equal to the radiation resistance of the LCR lumped equivalent circuit for the
antenna.

Hence, since Q = ω0L/R, then

QR = ω0L = =

Also, since Q = 1/ω0 RC, then
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Induced-emf method and mutual coupling 79

Thus

L = (4.52)

C = (4.53)

Q = (4.54)

Here Z0 can be interpreted as the ‘average’ characteristic impedance, which for a 
centre-fed dipole of length �/2 in free space [23] is defined as

Z0avg
= �

0

�/2

Z0 (r) dr (4.55)

and is approximately equal [15] [22] to

Z0avg
≈ 120 ln − 1 (4.56)

where a is the radius of the wire forming the dipole, and ln denotes the natural logarithm.
It should also be noted that when the antenna is matched to a generator the total Q,

i.e. the loaded Q, of the system is 0.5 times the unloaded Q. Thus in any calculations
involving bandwidth the loaded Q factor should be used.

The real and imaginary components of the electric field component acting along the
length of a linear dipole can be used to establish a more complete representation of
the input or self-impedance of the antenna [24]. The mutual coupling impedances between
antenna elements can be found by using the induced-emf method. For example, the
mutual impedance between two antennas is given as (Section 4.6)

Z21 = (4.57)

where I1(0) is the current fed into the terminals of antenna 1, and the open-circuit volt-
age induced on the terminals of antenna 2, V21, is defined as

V21 = − �
0

�2

Ez21
I2 (z) dz (4.58)

where I2 (z) is the current distribution along the second antenna, and Ez21
is the electric

field along the axial direction of antenna 2 induced by antenna 1. Hence Z21 can be
calculated from equation (4.57).

Induced-emf method and mutual coupling

In the array work reported so far in this chapter, we have ignored the effect that antenna
elements have on each other. Mutual coupling effects between antenna elements will
induce currents on adjacent and non-adjacent elements, which may result in the array
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80 Chapter 4 • Antenna array techniques

far-field pattern being altered compared with the ideal situation, where no mutual 
coupling is included. With the induced-emf approach, the electric field produced in
an antenna due to a known, or guessed, current distribution is used to calculate the
voltage induced in each elemental section of the antenna. The reciprocity theorem (see
Appendix 8.2) is then used to establish the voltage at the driving terminals of the 
antenna. This method, called the induced-emf method, is very important as it can 
be used to determine antenna radiation resistance, the mutual impedance between antenna
elements or the self-reactance of a single antenna. The treatment of the induced-emf
method and mutual coupling given here is based on [22].

Consider now how the technique is developed in order to compute mutual imped-
ance between the two antennas separated by distance, d, as shown in Figure 4.17a. Here
the antennas are assumed to be aligned along the z-axis. By definition (Figure 4.17b),
the mutual impedance between elements (1) and (2) is [22]

Z21 = (4.59)

Here, V21 is the open-circuit voltage at the terminals of antenna 2 due to the current
introduced at the terminals of antenna 1, i.e. at position d = 0 in Figure 4.17a.

Consider now the effect of a voltage V1 applied at the terminals of antenna 1 in
order to produce a current I1(0) = V1 /Z11 at the terminals of antenna 1 and current dis-
tribution I(z) along its length. Essentially, we are using antenna 1 as a transmitter. Here
Z11 is the antenna impedance measured at the terminals of antenna 1.

If antenna 1 had voltage source V1 removed and was instead illuminated by an 
electromagnetic wave, Ez, a voltage, Ez dz, would be induced over a short length dz of
the antenna at position z from the antenna terminals, i.e. here antenna 1 is used as a
receiver. The induced voltage could then be represented by an ideal voltage generator
placed in series with the element at that position. If the antenna terminals were short-
circuited, then this voltage source would produce a current, d Isc, across the shorting
link (Figure 4.18).

In addition, the reciprocity theorem suggests that for equal terminating impedance
values, Z12 = Z21 (see Appendix 8.2). Thus from Figure 4.17b and using Figure 4.18

V1 = Z11 I1 + Z12 I2 (4.60)

V2 = Z21 I1 + Z22 I2 (4.61)

V21

I1(0)

Figure 4.17 (a) Mutually coupled antennas; (b) two-port Z-parameter mutual coupling model
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Induced-emf method and mutual coupling 81

and noting that when antenna 2 terminals are short-circuited, Z22 = 0

V2 = Z21 I1 (4.62)

and with antenna 1 terminals short-circuited, Z11 = 0

V1 = Z12 I2 (4.63)

thus

= or V2 I2 = V1 I1 (4.64)

By analogy with the reciprocity relationship

V2 = Ez dz

I2 = I(z)

I1 = d Isc

and denoting V1 = V we get from equation (4.64)

Ez dz I(z) = Vd Isc

thus

d Isc = (4.65)

Therefore the total short-circuit current is found by integrating over the entire length
of the antenna:

Isc = � Ez I(z) dz (4.66)

If the short-circuit current is known, then the open-circuit voltage at the antenna 
terminals can be found by application of Thevenin’s theorem, which states that

Voc = −IscZ (4.67)

1

V

Ez dz I(z)

V

I1

I2

V2

V1

Figure 4.18 Receive antenna equivalent circuits: (a) open-circuit terminals; 
(b) short-circuit terminals
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Here a minus sign is included to keep the sign convention of current flow from high
potential to low potential (c.f. Figure 4.17a and b). Combining equations (4.66) and
(4.67) gives

Voc = − ∫ Ez I(z) dz (4.68)

hence

Voc = − � Ez I(z) dz (4.69)

If the incident field strength is uniform along the length of the antenna, as it is for
plane wave illumination, then Ez can be removed to outside the integral.

Returning now to the original situation given in equation (4.59), where

Z21 = (4.70)

Where V21 is the open-circuit voltage at the terminals of antenna 2 produced as a result
of current I1(0) introduced into antenna 1 (see Figure 4.17).

We can now use the results derived in equation (4.69) to get an expression for V21

[22]:

V21 = − � Ez 21
I2 (z) dz (4.71)

Where Ez21
is the component of the electric field incident on antenna 2 as result of a

sinusodial current applied at antenna 1. Thus, using equation (4.70), we can write

Z21 = − � Ez 21
I2 (z) dz (4.72)

In order to find radiation resistance, Rrad by this method, we note that by allowing
two identical antennas with the same spacial orientation to have zero separation then
V21 becomes the voltage at the terminals of antenna 1 due to the current applied at I1(0).
The zero separation criterion here means that the theoretical treatment is strictly valid
only for dipoles that have an infinitesimally small diameter.

Therefore the self-impedance of an antenna of length � is equivalent to the mutual
impedance between two identical antennas of length � when their separation is set equal
to zero. Hence, using equation (4.72)

Z21 = − � Ez I(z) dz (4.73)

from which the radiation resistance, Rrad, can be found as real (Z21), since for zero 
separation distance V21, the open-circuit voltage at antenna 2 due to a current I1(0) at
antenna 1, becomes the open-circuit voltage of antenna 1; hence Z21 becomes the self-
impedance of antenna 1. Using this technique to find antenna input reactance requires
special consideration, as does its application to finite-diameter dipoles; reference [22]
gives more detail on these aspects.
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It should be noted that the reactance of a dipole antenna calculated using this 
approach will be infinite except in cases where the dipole half length is (2n + 1)λ /4,
n = 0, 1, 2, . . . . To see how mutual coupling affects array behaviour, consider now
two half-wave dipole antennas placed in a linear array (Figure 4.19) separated by 3λ /2
and fed with equal in-phase currents.

Calculate the effect on the gain of a two-element array when mutual coupling between
antennas is included. Assume that the input impedance of each element is 73 Ω and
that the impedance between elements is −25 + 5j Ω.

Solution

For this arrangement, the resultant electric field (after equation 4.19) with λ set equal
to 2π is

Er = E[e j3π/2

cosθ + e− j3π/2

cosθ]

= 2 E cos cosθ

since relative to position 0 in Figure 4.19, i.e. the array centre, the phase lag of the
radiation at element 1 relative to element −1 is

cosθ

If v1, i1, v2, i2 are the terminal voltages and currents at elements 1 and 2, respectively,
then

v1 = 73i1 + (−25 + j5)i2

v2 = (−25 + j5)i1 + 73i2

but we have stated that i1 = i2 = I(0) i.e., in-phase current excitation, therefore we can
write

v2 = v1 = 48 + j5

3λ
4

2π
λ

JKL
3π
2

GHI

Exercise 4.4

Figure 4.19 Mutual coupling example
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Thus if the power input to elements 1 and 2 are P1 and P2, respectively, then

P1 = P2 = 1/2 [v1 I* + v1 I ] 

= 1/2 | I |2 [(48 + j5) + (48 − j5)] 

= | I |2 48

∴ Total power Pt = 96 | I |2

If we say that (see Section 3.3) a reference dipole will radiate

Pt = | I 2
ref | 73

hence the field E at distance r from the reference dipole must be scaled as

E = E = 1.147E

giving the field strength of the array relative to the reference dipole (see Section 4.1) as

2E cos cosθ

or 4.83 dB at θ = 90°
Thus relative to the case where no mutual coupling between elements exists, the

maximum gain has increased from 3 to 4.83 dB.

In the above example, the mutual impedance term here has acted to increase the gain
of the array. This effect occurs because each dipole induces a voltage in the other by
virtue of coupled free-space radiation. This manifests itself as an extra impedance in
the source exciting the dipole. When both dipoles are excited by equiphase currents,
this added impedance is the same for each dipole and the real part of Z12 is negative,
indicating that an increase in current from the excitation source is required. This in
turn gives rise to a stronger radiated field relative to the case where zero mutual 
coupling existed.

Calculate the half-power beamwidth for the arrangement in exercise 4.4.

Solution

The half-power beamwidth can be obtained as

cos cosθ = ±

cosθ = ± , ± , ± , ±
7
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or

θ = cos−1 N = 1, 3, 5, 7

the smallest θ = cos−1(±1/6) defines the half-power point for the main lobes as 99.6 −
80.4 = 19.2°

Calculate the array factor for the arrangement in exercise 4.4.

Solution

The array factor can be calculated as

= 1.74 cos cosθ

It should be noted that in the example given above the element spacing selected was
3λ /2. As a general rule, in a uniform linear array once the spacing between elements
exceeds λ, side lobes whose amplitude are equal to those of the main lobe appear in
the spatial response of the antenna. This effect occurs because the element spacing
can become large enough to allow in-phase radiation combination from each of the
elements in more than one direction.

These lobes are called grating lobes and are normally undesirable, since they lead
to a reduction in the gain of the array along the principle angle of operation and can
make the array subject to influence by off-boresight interference signals by virtue of
signal pick-up via the grating lobe response.

End-fire array example with mutual coupling

Consider two centre-fed half-wavelength dipole antennas arranged to form a two-
element end-fire array. The element separation is one-quarter wavelength, and the 
elements are supplied with phase quadrature equal power signals (Figure 4.20; see 
also Figure 4.17a). For this arrangement, we wish to find the ratio of the currents at
the input terminals of the antennas – the gain of the array.

Assume that the self-impedance of each dipole is 73 Ω and that the mutual imped-
ance between dipoles is 40 − j30 Ω, in practice, this can be measured or calculated
(Section 4.6).

Exercise 4.7

4.7

567
3π
4

123
eee

ER

Eref

eee

Exercise 4.6
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86 Chapter 4 • Antenna array techniques

Solution

First we find the driving-point impedance of antenna 1 (Figure 4.20):

Z1 = = Z11 + Z12 (4.74)

Z1 = 73 + j(40 − j30)

Let = k ′ (4.75)

∴ Z1 = (73 + 30k ′) + j40k ′.

Next we find the driving point impedance of antenna 2

Z2 = = Z22 + Z12 (4.76)

= 73 − − j

Then we find the power radiated by antenna 1 and 2, respectively:

P1 = | I1 |2 Re(Z1) = | I1 |2 (73 + 30k′) (4.77)

and

P2 = | I2 |2 Re(Z2) = | I2 |2 73 − (4.78)

But we have the stipulation that P1 = P2, hence

| I1 |2 (73 + 30k ′) = | I2 |2 73 −
D
F

30

k ′
A
C

D
F

30

k ′
A
C

40

k ′
D
F

30

k ′
A
C

I1

I2

V2

I2

I2

I1

I2

I1

I2

I1

V1

I1

Figure 4.20 End-fire array
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End-fire array example with mutual coupling 87

or

73(k ′)2 − 60k − 73 = 0

thus

k′ = +
2

+ 4 2 = 1.49

∴ = 1.49 (4.79)

We can now calculate gain relative to a λ /2 dipole. We can do this by assuming
that we have a λ /2 dipole radiating the same power as the array:

(P1 + P2) = 2P1 (remember equal power levels)
= 2 | I1 |2 Re(Z1) (4.80)
= 2 | I1 |2 (73 + 30(1.49))
= 235 | I1 |2

Therefore we can say that for a reference dipole with (73 Ω + j0) self-impedance:

73 | I |2dipole = 235 | I1 |2

hence

| I |dipole = 1.8 | I1 |

For the reference dipole, the maximum far-field radiated signal will be proportional
to 1.8 | I1 |, while for the array the maximum far-field radiated signal will be pro-
portional to

(1 + 1.49) | I1 | (4.81)

Hence the gain of the array relative to a half-wave dipole will be

20 log10 = 2.85 dB

For an antenna radiating preferentially into one-half space, we can define the front-
to-back ratio as the ratio of the far-field strength along the array axis in the positive
forward half space and negative reverse half space. Calculate the front-to-back ratio
for the parameters given in exercise 4.4.

Solution

The front-to-back ratio is defined as the ratio of the far-field strength along the array
axis in the positive and negative directions; therefore, after equation (4.81), the front-
to-back ratio = 20 log10(2.49/0.49) = 14.1 dB, where the minimum field strength is
proportional to | I1 | (1.49 − 1). Here, since the antenna elements are operated in phase

Exercise 4.8
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88 Chapter 4 • Antenna array techniques

quadrature, with quarter-wavelength separation, radiation is cancelled along the end-
fire direction since waves travelling from right to left will destructively reinforce, while
waves moving from left to right constructively reinforce.

With no mutual coupling

Z1 = = Z11 = 73 Ω

Z2 = = Z22 = 73 Ω

Power radiated by antennas 1 and 2, respectively, is

P1 = | I1 |2 73 W

P2 = | I2 |2 73 W

P1 = P2 ∴ | I1 | = | I2 |

Hence by comparison with equation (4.79), one effect of mutual coupling is to 
unbalance the magnitudes of the feed currents.

Now (P1 + P2) = 2P1 = 2 | I1 |2 73 W, and for the reference dipole

| I |2dipole 73 = 146 | I1 |2 W

∴ | I | dipole = 2 | I1 | A

Hence the gain of the array relative to a half-wave dipole will be

20 log10 = 3 dB
2

Here the effect of the mutual impedance between array elements has been to reduce
gain to 2.85 dB.

Compute the front-to-back ratio for the ideal case, i.e. zero mutual coupling between
antennas.

Solution

The front-to-back ratio for the case with no mutual coupling is

20 log10 = ∞ dB

i.e. perfect operation with no end-fire radiation; hence mutual coupling reduces the
front-to-back ratio. The polar plots for this antenna arrangement with no mutual 
coupling included are given in Figure 4.21.
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Dipole antennas in relation to a ground plane 89

Dipole antennas in relation to a ground plane

If a perfectly conducting flat ground plane is introduced symmetrically into the 
equatorial plane of a dipole antenna, i.e. normal to the antenna axis, it would auto-
matically be arranged that the electric field pattern associated with the dipole would
remain unaffected by the presence of the ground plane. To see why this is so, con-
sider Figure 4.22.

As can be seen from the figure, at some fixed instant the charge distribution on 
the antenna results in electric field lines running continuously from a positive charge
to a negative charge (Figure 4.22a). If a perfect ground plane is introduced, then the
electric field lines travel from the positive charge region to the ground plane and from
the ground plane to the negative charge regions (Figure 4.22b). Thus the lines of flux
terminate on charges on the conducting plane. As the field moves outwards and away

4.8

Figure 4.21 Polar plots for two centre-fed half-wave dipoles forming a two-element 
end-fire array

FOA_C04.qxd  8/2/04  3:18 PM  Page 89



90 Chapter 4 • Antenna array techniques

from the antenna, currents will be induced on the plane. The electric field lines inter-
sect the ground plane, assumed here to be lossless, at right angles. Thus, as shown in
Figure 4.22c, the part of the dipole below the conducting plane can be removed with-
out affecting the fields above the plane. Hence a vertical dipole of length � placed
above a perfectly conducting ground plane will have a field distribution equivalent to
that which it would have had if it had been operating as an antenna of twice this length,
i.e. 2�, operated into free space.

When so arranged, the dipole antenna can be replaced by a single antenna mounted
vertically normal to the ground plane (Figure 4.22c). In this configuration, the antenna
is referred to as a unipole or monopole. Since this antenna is only half the length of
its dipole equivalent, it will radiate only half of the total radiated power produced by
the dipole. Due to this effect, its radiation resistance is only one-half of that of its
equivalent dipole, 36.5 Ω. Extending this argument further, the power gain of a unipole
antenna relative to an isotropic source is twice that of a centre-fed dipole antenna for
the same amount of input power.

As previously discussed, continuity of the electric field lines must exist for a dipole
antenna placed over a perfectly conducting ground plane. Let us now consider this in
a little bit more detail (Figure 4.23). Here in each case the physical dipole above the
ground plane has a mirror image below the ground plane placed here in the x–y plane.
Thus this arrangement means that the single dipole will behave as though it were a
two-element array.

In Figure 4.23a and b, the dipole and its image are in phase, so they will act con-
structively to reinforce the radiated signal. In Figure 4.23c, the vertical components
of the excitation current cause fields that can reinforce, while the horizontal compon-
ents cancel. Finally, in Figure 4.23d, the currents are entirely horizontally disposed,
and the resulting fields can act destructively upon each other, for example if the height
of the horizontal dipole above the ground plane is small or close to one wavelength
separation. If the horizontal dipole is placed at 0.25λ above the ground plane, then the
image dipole will act in ways to reinforce the broadside radiation of the virtual array
in a similar fashion to the action of the end-fire array described in Section 4.2.

Consider the case in Figure 4.23b, where the antenna, assumed here to be an isotropic
source, and its image are excited with in-phase currents. Figure 4.24 shows how the
resultant field is formed at some far-field observation point P. Here, from Figure 4.24a

AC = 2h cosθ metres = cosθ wavelengths
2h

λ

Figure 4.22 Grounded vertical dipole E-field distributions
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Dipole antennas in relation to a ground plane 91

or in terms of radians the phase delay between the field at A and the field at B is

ψ = cosθ radians

The resultant field from the source at B and the image at A is ER and is found by 
vector addition, noting that in this case EA = EB. We can write

ER = 2EA cos(ψ /2) = 2EA cos cosθ

so the array factor for this situation is 2 cos(2πh/λ cosθ). Since only one antenna is
really being excited, the apparent gain of this arrangement is twice what we would
get from a two-element array driven with the same power in the boresight direction,
θ = 90°; this leads to a 6 dB power gain.

D
F

2πh

λ
A
C

2π(2h)

λ

Figure 4.24 Array factor for in-phase source and image

Figure 4.23 Dipole antennas above a conducting ground plane
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92 Chapter 4 • Antenna array techniques

Consider the effect that height h above a perfect infinite ground plane has on the side-
lobe nulls of a vertically oriented dipole antenna.

Solution

If the height of the dipole is made to be λ/2 above the ground plane then

ER = 2EA cos(π cosθ)

which when plotted over the available physical space 0 ≤ θ ≤ 180° yields a null at
cosθ = 1/2, i.e. 60°. If h is made equal to λ, then two nulls exist, i.e. 41° and 75°. In
general, the greater h is above the ground, the more nulls that exist. This means that
the polar pattern for the antenna has more secondary side lobes that are radiating 
power. The overall effect is a reduction of power transmitted or signal received in 
the direction of maximum radiation. These side lobes are normally considered to be
a nuisance, since they pick up stray signals when the antenna is operated in receive
mode. The advantage or disadvantage of secondary side-lobe shape and spacial position
is determined ultimately by the detail of the application specification into which the
antenna array is to be used.
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Problems 93

4.1 Two short dipoles aligned parallel to the z-axis are spaced along the x-axis at
separation d between each element. For this arrangement, plot the electric field
patterns in the H plane (θ = π/2) of the array under element separation conditions
d = λ /4, λ /2 and λ. You may assume that the elements are fed with equi-phase,
equi-amplitude signals. What general conclusions can you draw about the effect
of element spacing on boresight gain and side lobe pattern response for each of
the element separations above?

4.2 For the same physical arrangement in exercise 4.1 but with element separa-
tion fixed at λ/4 and a phase lag between excitation currents of −π/2 predict
the electric field patterns in the H plane (θ = π/2). What special property does
the resultant far field electric field pattern possess that would make it useful in 
particular applications? State which applications you have in mind.

4.3 Show that for a uniformly spaced linear array its power gain is directly propor-
tional to the number, N, of elements in the array. What happens to the half-power
beamwidth of such an array as the number of elements used in its construction
is increased?

4.4 Show that for a co-linear array of N elements constructed over a perfectly con-
ducting ground plane inserted normal to the array, an apparent increase in power
gain is available when compared with an equivalent 2N element array operated
without a perfectly reflecting ground plane being present. You may assume that
both arrays are driven with a total input power of 1 W and that all excitation
currents are in phase. What increase in gain along the direction of broadside
radiation would you expect for a four-element array for the situation quantified
above.

4.5 A uniform co-linear array (axial symmetry in the φ plane) consisting of six half-
wave dipoles spaced λ /2 apart is fed with in-phase currents. Find the directions
(in the θ plane) along which the maximum electric fields occur. Find the half-
power beamwidth in the direction of maximum radiation.

4.6 The situation described in exercise 4.5 is modified such that each element of the
six-element array is fed with a progressive phase shift ψ and equi-amplitude
signal. For this arrangement, show that maximum radiation in the θ plane occurs
when ψ + kd sinφmax = 0, 2π, . . . , where φmax is the angle of the major lobe of
the resulting electric far-field pattern for a given ψ.

This equation shows that when phase shift ψ is varied the antenna array can
have its radiation pattern scanned over a wide angle. Sketch the radiation pattern
responses for the array when ψ = 180°, 135°, 90°, 45° and 0.

Problems
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Systems and
characterisation
considerations

This chapter deals with a variety of issues that arise when an antenna is to be deployed
as part of a system. The idea of antenna effective length, as a figure of merit for estab-
lishing the quality of use of the antenna for radiation or collection of energy, is intro-
duced and extended in order to allow aperture antennas to be quantified with respect
to a similar figure of merit, the antenna effective aperture. Effective aperture and its
relationship to the mechanisms associated with electromagnetic waves propagating
through free space between a transmit and a receive antenna is also investigated. 
From these considerations, the free-space path loss equation used by microwave and
wireless link designers is derived. Since an antenna can pick up radiation from many
sources, including natural noise background radiation and thermal noise, techniques
for including these effects and for establishing how this noise degrades wireless link
transmitted signal integrity are included.

The concept of polarisation of an electromagnetic wave and its importance in 
terms of optimal signal transfer in an antenna system is discussed. The proximity of
antennas to obstructions that might be encountered in a real-life situation may affect
the free-space link calculations previously developed in this chapter. With this in mind,
the topic of clearance is reviewed in order to provide a systems designer with an idea
of how far the primary link path has to be removed from an obstruction so that the
link appears as though it were operating in free space. In this way, the validity of the
assumptions used in the derivation of the free-space link equation remain intact. Similarly,
the problem of how close two antennas can be placed before the far-field separation
assumptions used in the derivation of the path equation is also addressed.

The principal methods for testing for antenna far-field radiation characteristics and
the definitions associated with these tests, together with the rules governing the con-
struction of scale models for antennas, is also included, as are basic techniques for 
making calibrated electric field strength measurements.

Chapter 5
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Antenna aperture and the free-space link equation 95

Effective length of an antenna and reciprocity

In relation to a transmit antenna, the effective length of the antenna is defined as the
length of an equivalent antenna, �effT

, that has a constant current distribution along its
length and that radiates the same field strength normal to its axis as does the actual
antenna when fed by a terminal current I(0).

For an antenna of length �, in transmit mode [25] [26]:

I(0)�effT
= �

−�/2

+�/2

I(z) dz (5.1)

thus

�effT
= �

−�/2

+�/2

I(z) dz (5.2)

In receive mode, the open-circuit voltage Voc across the antenna terminals for a known
received field strength Ez obtained on receipt of a uniform field excitation defines the
effective length in receive mode, �effR

, as

�effR
= (5.3)

But from the induced emf method (Section 4.6), we know that

Voc = − �
−�/2

+�/2

Ez I(z) dz (5.4)

which for an incident Ez field excitation constant over the length of the antenna gives

= − �
−�/2

+�/2

I(z) dz

hence �effR
= �effT

. Therefore, the effective length of the antenna in transmit mode 
is the same as the effective length of the antenna in receive mode; i.e. reciprocity is 
maintained.

Antenna aperture and the free-space link equation

An antenna can be assigned an aperture area, Ae, that is not equivalent to its physical
aperture and is such that the power absorbed by this area is equal to that absorbed by
a perfectly matched antenna; i.e.

Ae =

Consider a hypothetical aperture, Ae m2, which is placed parallel to a plane wave that
is free to propagate through it. If the total power absorbed by area Ae is Pr, then

Pr = Pincident Ae (5.5)

power absorbed by load

power density in incident wave

5.2

1

I(0)

Voc

Ez

1

I(0)

Voc

Ez

1

I(0)

5.1
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96 Chapter 5 • Systems and characterisation considerations

Also, the condition for maximum power transfer from an antenna to a real matched
load is

PL = (5.6)

For a plane wave propagating in free space, we know from Section 2.3 that the incid-
ent instantaneous power per unit area is

Pincident = E H sinθ (5.7)

and from Section 2.2 that a plane wave propagating in the z-direction can be written as

Ex = Re E0 exp jω t − (5.8)

also

Hy = Re E0

1/2

exp jω t − (5.9)

Thus if a surface is placed parallel to the plane wave, i.e. θ = 90° in equation (5.7),
at z = 0 then on using equation (5.7)

Pincident = E0
2

1/2

= (5.10)

directed along the z-axis in the positive direction. Equating this with equations (5.5)
and (5.6), we get

= (5.11)

which for a Hertzian dipole (i.e. uniform current distribution and length << wavelength)
we can describe the voltage induced by the electric field E0 incident on the Hertzian
antenna as

Vant = E0� (5.12)

so that

E0
2Ae /120π = E0

2 �2/4Rrad (5.13)

and we know Rrad for a Hertzian dipole from Section 2.4; therefore

= λ2

4 80π2
2

or

Ae = (5.14)
λ2

π
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Antenna aperture and the free-space link equation 97

for the Hertzian dipole. In this derivation, we have assumed a lossless antenna with
real matched load R and maximum received signal.

For a half-wave dipole, we can follow the same procedure as above. However, this
time we must incorporate the non-uniform current distribution along the antenna (c.f.
Section 3.2). For simplicity, we will assume that the current distribution along the half-
wave dipole is given as

I(z) = I0 cos z (5.15)

from which we can find the voltage induced in the antenna as

Vant = �
λ/4

−λ/4

E0 cos z dz (5.16)

=

Here we have assumed that the voltage induced in a short length of dipole is directly
proportional to the current flowing through it. Thus for a half-wave dipole whose 73 Ω
radiation resistance at resonance is matched to its terminal impedance, the maximum
power absorbed in the termination is found using equations (5.6) and (5.16).

Equating the result above with the z-directed power in a plane wave equation (5.11)
yields

=

giving

Ae = ≈ 0.13λ2

Show that the effective aperture of a correctly terminated half-wave dipole is approx-
imately the same as that of a rectangular section of a perfectly matched absorber approx-
imately λ /4 × λ /2 in size.

Solution

From above, we see that for a correctly terminated half-wave dipole Ae = 0.13λ2 or
0.25λ × 0.5λ.

We know from Section 2.4 that the gain, G, of a Hertzian dipole with respect to an
isotropic source is 1.5. Therefore we can deduce from equation (5.14) that

G = = = Aei (5.17)
3λ2

8π
3

2
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98 Chapter 5 • Systems and characterisation considerations

where Aei is the effective aperture of an isotropic source; i.e.

Aei =

Using this concept, we can express the gain of any antenna, G, with known effective
aperture Ae relative to an isotropic source as

G = Ae (5.18)

From equation (5.5), we can write that the power at any receive antenna, Pr, is

Pr = Pincident Aer (5.19)

where Aer is the effective aperture of the receive antenna and Pincident is the incident
power in the wavefront, which if assumed to be a plane wave can be expressed using
equation (5.10):

Pincident =

If Aer is the effective aperture of the receive antenna and E is the strength of the 
electric field, then

Pr = Aer = (5.20)

But from equation (5.18) we can write

Pr = =
2

GR (5.21)

However, we also know from Section 2.3 that the electric field strength at some distance
r (far enough away from the source that the wavefront incident on the receive antenna is
a plane wave) from an isotropic source transmitting an average power PT is given by

E0 = (5.22)

so that if the transmitting antenna has gain GT, then

E0 = (5.23)

Combining these results yields

PR = PT GT GR

2

(5.24)

This expression is generally written in terms of decibels as

PR = PT + GT + GR − 20 log10 dB (5.25)
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Antenna aperture and the free-space link equation 99

Here the last term represents the free-space transmission loss, or path loss, of the signal
after it has travelled distance r. Equation (5.25) is called the free-space path equation.

Often, when working with this path-loss equation, it is useful to define the term
‘effective isotropic radiated power’ (EIRP):

EIRP = PT GT (5.26)

Here PT is the actual power available for transmission at the transmitter antenna input
terminals and includes any feed or connector losses between the transmitter and the
feedpoint of the transmit antenna.

Equation (5.24) can also be recast in terms of the transmit and receive antenna 
effective apertures as

PR = PT AeT
AeR

(5.27)

which when expressed as a ratio gives

= (5.28)

in which form it is known as Friis transmission formulae. Equations (5.25) and (5.28)
are important when doing system link budget calculations.

An 875 MHz signal is to be transmitted over a 1 km distance using half-wavelength
dipole antennas. The transmitter has 1 W of power available at the input terminals of
the transmit antenna, to which it is perfectly matched. Find the signal strength at the
terminals of the receive antenna.

Solution

Using equation (5.25) we get

PR (dBm) = 30 (dBm) + 2.15 (dBi) + 2.15 (dBi) − 91.3 dB

where λ = 3 × 108/875 × 106 = 0.343 m.

PT = 10 log10 = 30 dBm

2.15 dBi = gain of half-wavelength dipole (Section 3.5)

∴ EIRP = 32.15 dB

path loss = 20 log10 = 91.3 dB

∴ PR (dBm) = −57 dBm
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100 Chapter 5 • Systems and characterisation considerations

Based on the concepts of reciprocity discussed in Appendix 9.2, we will now illus-
trate that the polar pattern of a given antenna is the same on transmit as it is on receive.
This means that for characterisation of an antenna the simplest physical arrangement,
i.e. the antenna under test can be sited either as a transmit or more normally as a receive
element in order to facilitate measurement of its characteristics (see Section 5.8), and
that a single antenna design will exhibit identical transmit or receive functionality 
(see Section 5.1).

Consider a perfectly matched antenna model as shown in Figure 5.1a for the trans-
mitter. Assume that the receive antenna does not create any backscattered radiation
to the transmitter, i.e. Z12 = 0, and let Z21 represent the coupling between transmitter
and receiver. Then Figure 5.1b represents a simple model for the receive antenna [27].
Here Z11 = transmitter input impedance, Z22 = receiver input impedance, and the 
general definitions for Zij are given in Section 4.6.

For maximum power transfer from transmitter to receiver ZL = Z*22, where * denotes
the complex conjugate. Under this condition, the power delivered to the load is

Pload = · · (5.29)

and the power delivered to the transmit element is

Ptransmit = | I1 |2 Re(Z11) (5.30)

Hence the ratio

= (5.31)
| Z21 |2

4Re(Z22) Re(Z11)

Pload

Ptransmit

1

2

1

Re(Z22)

| I1 Z21 |2

4

1

2

Figure 5.1 Approximate equivalent transmit/receive antenna model
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Effective temperature of an antenna and noise effects 101

If the receive antenna is moved to a different position then in general, due to its 
directive response, Pload will change. Hence from equation (5.31) we can write for a
constant transmit power level

= (5.32)

where the subscripts a and b define two different spacial receive antenna positions.
Similarly, if the roles of transmit and receive antenna are interchanged (in which case
we assume Z21 = 0 and Z12 ≠ 0) then we can write:

= (5.33)

But from Appendix 8.2, we know that for reciprocity to hold Z12 = Z21 for equal 
terminating impedances, e.g. in a homogeneous bilateral transmission path such as free
space. Therefore equation (5.32) must be equal to equation (5.33), and the same relat-
ive polar patterns are obtained in both transmit and receive mode, hence validating
the assertion made above regarding the interchangeability of the roles of the antenna
under test in a measurement set-up or in terms of transmit/receive functionality.

Note: The derivation of the reciprocity relationship given above is based on pp. 716–19 of S. Ramo,
J.R. Winnery and T. van Duzer, Fields and Waves in Communication Electronics, copyright © 1965
by John Wiley & Sons Inc., reprinted by permission of John Wiley & Sons, Inc.

Effective temperature of an antenna and noise effects

An antenna will pick up noise from any source of radiation present in the bandwidth
over which it operates. If pointed at the sky, the main antenna lobe may pick up one
noise level, but the antenna side lobes may be pointing towards the ground and thus
pick up a different noise level. This action may result in the antenna contributing a
substantial amount of unwanted noise to the system to which it is connected. One method
of combating this effect is to cover the ground around the antenna with a metal screen
or mesh to reduce noise pick-up from the ground.

At temperatures above absolute zero, the free electrons available in metal conductors
move randomly due to thermal agitation. Since each electron has a charge associated
with it, as the electrons move their rate of change results in a randomly varying 
current being generated. Through conductor conductivity, this current gives rise to a
randomly varying voltage across the ends of the conductor. The resulting noise voltage
source is very broadband and ultimately may contain equal power density right across
the frequency spectrum on a per unit bandwidth basis. If this is the case, then the noise
is said to be ‘white noise’. The noise voltage, E, occurring at the open-circuited ends
of such a conductor can be written as

E2 = 4kTBR (5.34)

where B = noise bandwidth (Hz), R = conductor resistance (Ω), k = Boltzmann’s con-
stant (1.38 × 10−23 J/K) and T = absolute temperature (K). Here the generally used
standard reference temperature is 290 K.

5.3

| Z12 |a2

| Z12 |b2

P1
loada

P1
loadb

| Z21 |a2

| Z21 |b2

Ploada

Ploadb
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102 Chapter 5 • Systems and characterisation considerations

When the conductor is connected to a load, some of this noise voltage becomes
available to the load. The maximum power that can be transferred from the noise source
to the load occurs when their respective impedances form a conjugate match. For a real
noise source impedance, this occurs for a load resistance R, as defined by the maximum
power transfer theorem. Under this condition, one-half of the noise voltage E will be
delivered across the load resistance R:

2

R = E2/4R (5.35)

Thus the available noise power Pn becomes

Pn = = kTB (5.36)

Notice how this quantity is independent of the resistance producing it.

Calculate the available noise power in a 1 Hz bandwidth in dBm/Hz at 290 K.

Solution

From equation (5.36):

Pn = kT = 4 × 10−21 W or 4 × 10−18 mW or −174 dBm/Hz.

Amplifiers are often used as the first component connected to an antenna. If an amplifier
is placed in series with an equivalent noise generator, it will amplify the noise avail-
able at its input and will also produce additional noise itself. If a lossy element is con-
nected to the antenna, it will attenuate the signal but will still add noise. The noise
that is added due to the presence of the amplifier can be defined in terms of ‘effective
noise temperature’. For an amplifier with gain G (gain here is defined as Vout /Vin, where,
since the amplifier is an active device, Vout is generally greater than Vin), connected to
a matched resistor at its input, its output noise, no, will be

no = (KTBn + na ) G

where Bn is the amplifier noise equivalent bandwidth (see Appendix 8.3), and na is the
noise added by the amplifier or lossy element. This noise when referred back to the
input of the noise source can be written as

na = kTe Bn (5.37)

Here Te is called the effective noise temperature and is a hypothetical quantity, since
the contribution to noise produced by the amplifier itself may not be exclusively due
to thermal noise.

Next consider the important case of the noise temperature of an attenuator with loss
L, which may be connected in series with an antenna, e.g. a lossy coaxial feedline [28].
In order to find the effective noise temperature Te of the attenuator held at temperature

Exercise 5.3

4kTBR

4R

D
F

E

2R

A
C
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Effective temperature of an antenna and noise effects 103

T when being fed from a matched resistor, e.g. the terminals of a resonant antenna,
we must calculate the noise contributed by the attenuated input noise and the noise
produced by the attenuator itself.

If we call the input resistor noise temperature T1, the attenuated input noise will be
kT1 BnL, and the total noise available at the output of the attenuator can be found if
we first consider the noise characteristics of a series connection of N resistors, Ri, from
the derivation presented in [29]. Total resistance R is

R = ∑
N

i=1

Ri (5.38)

For this arrangement, with different resistance temperatures Ti available for each resistor,
the composite noise voltage is

En
2 = 4kBn∑

N

i=1

RiTi (5.39)

Thus the available noise power is by the definition in equation (5.36)

4kBn∑
N

i=1

RiTi

Pn = = = kTeBn (5.40)

∑
N

i=1

Ri 4∑
N

i=1

Ri

from which the effective noise temperature T for a series connection of resistors is
found as

∑
N

i=1

RiTi

Te = (5.41)

∑
N

i=1

Ri

If we write the contribution of each resistance to the total effective noise temper-
ature as

Te = ∑
N

i=1

α iTi (5.42)

then we can see from equation (5.41) that

α i = (5.43)

∑
N

i=1

Ri

This result is very useful, since we can treat the noise effects of power losses in 
a passive system as though they are due to the presence of attenuators. Hence we 
can model the overall noise temperature of the antenna system as the sum of all the 
pertinent passive noise mechanisms, i.e. component attenuation, body, sky and ground
temperatures.

Ri

(En /2)2
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104 Chapter 5 • Systems and characterisation considerations

Returning once again to the attenuator problem, we can see from equation (5.43)
for two resistors, R1, R2, that

α 1 =

and

α 2 =

thus

α 1 + α 2 = 1 (5.44)

hence from equation (5.42) to obtain the effective noise temperature of the attenuator
and matched resistor arrangement, Te, we assign the resistor an effective noise tem-
perature T1 and the attenuator an effective noise temperature T2. Thus

Te = α 1T1 + α 2T2 (5.45)

Now if α1 = L, then using this and equation (5.44) we can say that

Te = T1(L) + T2(1 − L) (5.46)

This equation enables the prediction of the effective noise temperature of an antenna
being fed, or feeding, a matched attenuator to be made. This expression is very 
useful if we wish to determine how the presence of a lossy filter such as a duplexer
attached to an antenna influences the overall effective noise temperature of the
antenna assembly.

If we have a 3 dB (× 0.5) loss introduced by a duplex filter operating at 290 K and
the antenna to which it is matched sees a 4 K sky temperature, find the effective noise
temperature of the arrangement.

Solution

From equation (5.46):

Te = 4 × 0.5 + 290 × 0.5
= 147 K

Thus the major noise contribution comes from the filter section.

We will now define the noise figure of a matched attenuator. The noise figure, Nf, is
defined as 10 log10 (available signal-to-noise ratio, S/N, at the signal generator terminals
at 290 K)/(available S/N at the network output). Alternatively it can be defined as 
10 log10F, where F is the noise factor. Thus

Exercise 5.4

R2

R1 + R2

R1

R1 + R2
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Effective temperature of an antenna and noise effects 105

F = (5.47)

where Si is the signal at the network input terminals, So is the signal at the network
output terminals and No is the output noise power.

Noting that So = GSi, where G is the gain, or for G < 1 the loss, of the network
under investigation, then

F = (5.48)

or

No = 290kBn GF (5.49)

for G < 1, i.e. an attenuator, we write G = L. Therefore

No = 290kBnLF (5.50)

But from equations (5.46) and (5.36), we can write

No = kBnTe (5.51)
= kBn(290L + T(1 − L))

= kBnL 290 + T − 1 (5.52)

Comparing equations (5.50) and (5.52) yields

F = 1 + − 1 (5.53)

If T = 290 K, then

F = (5.54)

and

Nf = 10 log10 (5.55)

Thus if a matched attenuator, e.g. an impedance-matched antenna downlead cable, is
placed in front of an amplifier, the amplifier noise figure/factor will be increased by
an amount exactly equal to the attenuator loss. This result is crucial when determining
the sensitivity of a receiver system.

Consider now the noise figure of a cascaded system consisting of a number of 
components placed in series, such as might be encountered when an antenna is con-
nected to an amplifier via a lossy cable. An example of a two-stage cascaded system
is shown in Figure 5.2a, where G = gain of stage, F = noise factor, Te = effective
noise temperature, Nf = noise figure and T0 = reference noise temperature.
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106 Chapter 5 • Systems and characterisation considerations

The output noise power, N1, from the first stage of the system is

N1 = Ni + kTe1
BnG1

= kT0BnG1 + kTe1
BnG1 (5.56)

The noise power at the output of the second stage is given by

N0 = N1G2 + kBnTe2
G2

= kT0BnG1G2 + kTe1
BnG1G2 + kBnTe2

G2

= G1G2kBn T0 + Te1
(5.57)

This system can also be treated as an equivalent single two-port network (Figure 5.2b):

N0 = kT0BnG1G2 + kBnTecas
G1G2

= G1G2kBn(T0 + Tecas
) (5.58)

Equations (5.57) and (5.58) yield the noise temperature of the cascaded system. Hence

Tecas
= Te1

+ (5.59)

By definition, Te = T0 (F − 1). Hence the noise factor of the cascaded system is

Fcas = F1 + (5.60)

Generalising this result for a cascaded system of n stages, the overall noise factor Fcas

is given by

Fcas = F1 + + . . . + (5.61)

where Fn = noise factor of each stage, and Gn = available gain of each stage.

Fn − 1

G1G2 . . . Gn−1

F2 − 1

G1

F2 − 1

G1

Te2

G1

D
F

Te2

G1

A
C

Figure 5.2 (a) Cascaded two-stage receiver; (b) equivalent network
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Compute the overall noise factor of a cascaded three-stage amplifier system. The 
signal enters amplifier 1, gain 6 dB and noise factor 1.5, passes through amplifier 2,
whose gain is 10 dB and noise factor is 3.0, and finally it exits via amplifier 3, gain
20 dB and noise factor 4.0. All amplifiers are impedance-matched.

Solution

Using equation (5.61), we can write

F = F1 + +

= 1.5 + +

= 2.08

Finally, using the result obtained at equation (5.61), the overall system noise output
Nsys can be written as

Nsys = GkBnFcas T0 (5.62)

where G = overall system gain = G1G2 . . . GN and Bn = equivalent noise bandwidth
of system (see Appendix 8.3).

From the result given in equation (5.61), it can be seen that the noise figure of the
first stage contributes the maximum amount to the overall noise figure. Successive
stages add noise that is reduced by the product of the gains of the preceding stages.
If the stages have gain, then the noise figure will decrease, whereas lossy stages will
increase the noise figure of the system.

Another important noise-related concept used mainly in satellite receiver antenna
noise characterisation work is the gain to equivalent noise temperature ratio (G/T),
defined as

= (5.63)

This quantity is often used in quantifying satellite or earth station receivers [30]. From
equation (5.61), we saw that to minimise the noise figure a low-noise high-gain amplifier
should, if possible, be located right at the receive antenna feedpoint, now defined to
have gain GR.

In this case, the G/T ratio becomes

= (5.64)

or in dB after taking logs

(dBK−1) = GR + G − Te (5.65)
G

T

GR + G

Te

G

T

receive antenna gain (G)

equivalent noise temperature (Te) of the receiver

G

T

4 − 1

4 × 10

3 − 1

4

F3 − 1

G1G2

F2 − 1

G1

Exercise 5.5
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108 Chapter 5 • Systems and characterisation considerations

Equation (5.65) is frequently used in satellite link budget calculations, since signal-
to-noise ratio can be computed at the receiver using equations (5.25) and (5.26) as

(dB) = PR − Pnoise = EIRP − path loss − 10 log10 kBn + G + GR − 10 log10 Te

(5.66)

hence

(dB) = + EIRP − path loss − 10 log10kBn (5.67)

Polarisation of plane electromagnetic waves

The polarisation of an electromagnetic wave is defined by the direction in which its
electric field vector is oriented over at least one cycle of oscillation [31].

In the general case, the tip of the electric field vector maps out an ellipse (Figure 5.3
when viewed end-on as the electromagnetic wave propagates). In Figure 5.3a, the 
coordinate system used is referenced to (x, y), while in Figure 5.3b it is referenced to
the principal axis of the ellipse (x′, y ′).

The shape of the ellipse is defined by its axial ratio, | AR |:

|AR | = = | Emax |/| Emin | (5.68)

here | Emax | = | Eco | + | Ecross | and | Emin | = | Eco | − | Ecross |, where Eco is the antenna cross-
polarisation level and Ecross is the antenna cross-polarisation level.

major axis of ellipse 

minor axis of ellipse

5.4

G

T

S

N

S

N

Figure 5.3 Polarisation ellipse
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Polarisation of plane electromagnetic waves 109

Rewriting using equations (5.69) and (5.70) gives Eco = (Ex + jEy) and Ecross =
(Ex − jEy) such that the total E field, E, is E = (Eco cô + Ecross crosŝ); here cô and crosŝ are
orthogonal unit vectors. The axial ratio is normally expressed in dB as 20 log10 | AR |.
The orientation of the polarisation ellipse is defined by the tilt angle, i.e. the angle, 
γ , between the major axis and the horizontal axis (Figure 5.3b). Two special cases
exist for the polarisation ellipse; the first is when the minor axis reduces to zero, 
i.e. the axial ratio goes to infinity and we have linear polarisation. The second case is
when both major and minor axis are identical, i.e. 0 dB ellipticity; this is the case of
circular polarisation. From these observations, the definitions of linear and circular
polarisation can be formed.

A linearly polarised wave is a transverse electromagnetic wave whose electric field
vector lies along a straight line at all times, while a circularly polarised wave is a trans-
verse electromagnetic wave whose electric field vector describes a circle with time.
A linearly polarised wave is said to be vertically or horizontally polarised if aligned
in parallel with the vertical or horizontal axis, respectively.

A circularly polarised wave has the important property that if rotation of the elec-
tric field vector occurs the reception strength of the wave by a circularly polarised
receiver polarised with the same sense will not be affected by a rotation of the wave.
A circularly polarised wave can be polarised in a right- or left-hand sense. To define
the hand of polarisation, we say that for an observer looking in the propagation 
direction, if the rotation of the electric field vector is clockwise as time advances then
we have right-hand polarisation, and if it rotates in the anticlockwise direction as time
advances we have left-hand polarisation.

An elliptically polarised wave can be constructed from two linearly polarised
waves orthogonal to each other and with a phase delay between them. This technique
is used for example to synthesise a circularly polarised wave; here we have two options
using linearly polarised waves, each of the same magnitude. In the first case, these
can be fed with equi-phase equi-magnitude signals positioned orthogonally and dis-
placed in space by 90° (Figure 5.4a), or by equi-magnitude 90° phase-shifted signals
displaced orthogonally but co-located in space (Figure 5.4b).

The situation in Figure 5.4b can be realised in numerous ways and represents a 
physically compact solution, for example if the input impedance of the dipole whose
terminals are AA in Figure 5.4b is made to be 73 + j73 Ω at its frequency of operation
(i.e. the dipole is made slightly longer than its resonant length; Section 4.5). Now if
the element whose terminals are at BB is made to have input impedance 73 − j73 Ω
(slightly shorter than its resonant length), then the current at dipole BB terminals will
be 90° out of phase with that at terminals pair AA, since

tanAA
−1(73/73) − tanBB

−1(−73/73) = 90°

In order for maximum energy transfer to occur between a transmitter and a receiver,
both transmit and receive antennas should have identical polarisation type senses. It
should also be noted that for any polarisation type another polarisation can exist 
such that the wave coming from the transmitter will cause no signal to be received 
at the reception antenna: for example, vertical and horizontal linear polarisation or 
left- and right-hand circular polarisation. In these cases, the antennas are said to have
orthogonal polarisation. This effect can be exploited in a technique using multiple 
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110 Chapter 5 • Systems and characterisation considerations

polarisation orientations called polarisation diversity, and it can be used to increase
the amount of information transmitted in a wireless system without increasing band-
width. In cases where polarisation rotation of a signal over its transmission path is
expected, then circular or elliptical polarisation is normally used. In situations such
as these, the change of the state of polarisation of the propagating wave is defined
using the Poincaré sphere in conjunction with a classification scheme (useful when
randomly polarised waves are to be expected) known as Stokes parameters. Readers
interested in these aspects and in the polarisation of electromagnetic waves should 
consult [31] for more details.

It is known that the wave equation is a linear equation and consequently any 
complicated electromagnetic wave distribution can be synthesised or analysed using
superposition of individual plane waves of appropriate relative magnitudes, phases 
and directions of travel. For example, a linear combination of plane waves with 
arbitrary relative magnitude and phase and all propagating in the same direction gives
an unpolarised wave, while a linear combination of two plane waves with unequal 
magnitudes, the same direction of propagation and arbitrary relative phase ψ gives
rise to an elliptically polarised wave. Here a phase lead or lag determines right- or
left-hand polarisation in the same fashion as occurs for a circularly polarised wave.

Figure 5.4 Methods for generating circular polarisation
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Polarisation of plane electromagnetic waves 111

Consider how we can decompose an elliptically polarised signal into its two com-
ponent linearly polarised waves, one with its E vector lying in the x-direction, the other
with its E vector oriented in the y-direction, denoted here as

Ex = E1 cos(ω t − βz) (5.69)

and

Ey = E2 cos(ω t − βz + ψ) (5.70)

Now for any plane transverse to the direction of propagation, say at z = 0, equations
(5.69) and (5.70) reduce to

Ex = E1 cos(ω t) (5.71)

and

Ey = E2 cos(ω t − ψ) (5.72)

which are the parametric equations for an ellipse [31]. If Ex = Ey and ψ = π/2, then
the locus of the resultant E vector (E = Ex

2 + Ey
2 = E1

2) maps out a circularly polarised
wave.

The instantaneous angle α(t) between the E vector and the x-axis in Figure 5.3a
can be found as

α(t) = tan−1 (5.73)

= tan−1 = −+ω t (5.74)

Thus the resultant vector rotates at a uniform rate of 2π f. If ψ is −π/2 it rotates clock-
wise when observed in the direction of propagation as time progresses, i.e. right-hand
CP, and when ψ = +π/2 in a counter-clockwise direction, i.e. left-hand CP.

It turns out that an elliptically polarised wave can also be synthesised using two
circularly polarised waves, such that in complex notation [32]:

Eccw = E1′e j(ωt−βz) (5.75)

Ecw = E2′e−j(ωt−βz+ψ) (5.76)

where ccw indicates counter-clockwise and cw indicates clockwise propagation.
Hence on decomposing equations (5.75) and (5.76) into real and imaginary parts,

Ex = E1′cos(ω t − βz) + E2′ cos ω t − βz + (5.77)

and

Ey = E1′sin(ω t − βz) − E2′sin ω t − βz + (5.78)
D
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112 Chapter 5 • Systems and characterisation considerations

When E1′ = E2′ and ψ = π/2, circular polarisation occurs. When ψ = 0 and E1′ = E2′ = 0,
linear polarisation occurs. With reference to Figure 5.3b, the tilt angle τ can be found as

τ = tan−1 (5.79)

where E1 and E2 refer to the magnitude of the two linear E vectors forming the ellipse
(equations (5.69) and (5.70)).

Distance to antenna far field

In Section 1.4, we saw that the electromagnetic fields behave differently close to the
antenna (near-field or Fresnel region) compared with their behaviour far from the antenna
(far field). By geometric consideration, an approximation for the distance required from
the antenna to the far-field, or Fraunhofer region can be determined as follows.

It is commonly assumed that plane wave illumination of the receive antenna
(Figure 5.5) occurs when the phase difference of the transmitted wavefront as measured
between the centre and edge of a receiver or test antenna is no greater than λ /16. In
doing this, we are suggesting that the wavefront incident on the receive antenna is
approximately a plane wave, i.e. a wave whose wavefront is an equi-phase surface.
From the geometry of the problem as defined from Figure 5.5 by Pythagoras’ theorem

(R + δ)2 = R2 +
2

(5.80)

R2 + δ 2 + 2Rδ = R2 +
2

for R >> δ << d.
Then δ 2 � 0, so that 2Rδ = d 2/4, or

R = (5.81)

which becomes for δ = λ /16

R ≥ (5.82)
2d 2

λ

D
F

d2

8δ
A
C

D
F

d

4

A
C

D
F

d

2

A
C

5.5

D
F

2E1E2 cosΨ
E1

2 − E2
2

A
C

1 

2

Figure 5.5 Calculation of far-field distance

FOA_C05.qxd  8/2/04  3:19 PM  Page 112
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where d is length (or largest dimension) of the receive antenna, i.e. the antenna 
under test in the test set-up. Thus for accurate measurement, i.e. illumination of the
test antenna by a plane wave, the condition stipulated by equation (5.82) should be
adhered to.

If too short a distance for R is used when making measurements on the test antenna,
then broader radiation patterns, higher side lobes and shallower nulls between side
lobes will be measured than if a much greater value of R is used. It should be noted
that for large antennas operated at very high frequencies the wavelength can be very
short and the minimum range defined by equation (5.82) can be large.

Furthermore, in making the decision on the value of R to be used for a measure-
ment it is essential that near-field (induction field) energy levels are kept low in 
order to prevent excessive mutual coupling between the antenna under test and the
receive antenna in Figure 5.5. Consider equation (5.83) and Section 1.4 for a Hertzian
dipole:

Note: Equations (5.69) through (5.79) are based on the polarisation presentation given in H. Jasik,
Antenna Engineering Handbook, McGraw-Hill, 1961, pp. 34–29 and 34–30, and equations 5.80–
5.82, pp. 34–14 and 34–15, reproduced with permission The McGraw-Hill Companies, © 1961
The McGraw-Hill Companies.

Hφ = sinθ cosω t − + sinω t − (5.83)

The ratio between the components in brackets (the largest components) is ωR/c = 1/kr,
k = 2π/λ; thus for R = 10λ the ratio becomes −36 dB, which is considered low enough
to ensure that mutual coupling between the elements is small compared with the 
radiated field. The criterion R > 10λ is useful when the antenna under test is physic-
ally short and/or the wavelength of operation is long, e.g. VHF/UHF antennas; in which
case the distance to the far field predicted by equation (5.82) may be considered an 
underestimate.

An antenna test range of length 10 m is available, and it is required to characterise the
far-field radiation pattern of a dipole antenna of length 30 cm operating at 500 MHz.
Is the antenna test range suitably long for an accurate measurement to be made?

Solution

Using R ≥ we get

= 0.3 m

and using R > 10λ = 6 m. Therefore, since the range is 10 m, we can make the desired
measurement.

2 × 0.3 × 0.3 

0.6

2d 2

λ

Exercise 5.6
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Clearance

When designing an RF radio path or making antenna test measurements, it is import-
ant to make sure that the line-of-sight path over which transmission is to occur is
sufficiently clear of any obstructions so that the free-space path-loss equations derived
in Section 5.2 remain valid, or that destructive interference does not occur due to 
multiple re-reflected multi-path signals combining out of phase.

A transmitting system will issue energy that travels outwards from the source as a
wavefront expanding with distance (Section 2.2). Huygen’s principle says that each
element of this wavefront acts as a new source of radiation energy, each of which in
turn propagates secondary wavefronts, and so on. The secondary radiation from these
radiators sum to form a new wavefront, such that the field received is the vector sum
of all these wavefronts. At any point on the summed wavefront, say P in Figure 5.6,
only a proportion of the energy produced from the secondary source at P will reach
the receiver placed at B. This amount will depend on the separation between A and
B and also on angle θ, which can lie in the range 0 to 180°. The cosine of angle θ is
called the ‘obliquity factor’, and energy arriving along path APB will arrive later than
energy along the most direct path, AB.

If the difference between these two paths is 180° (one half wavelength), the two
signals will completely cancel each other out. If they differ by 360° (one wavelength),
the indirect ray via PB will add constructively to the direct ray AB and they will 
reinforce each other.

Taking P as the locus of a circle extending out of the page such that AB = d1 + d2

and APB = d1 + d2 + λ/2, i.e. the condition for signal cancellation between path APB
and path AB, then a solid ellipsoid with foci at A and B is formed, such that

(d1
2 + r1

2)1/2 + (d2
2 + r1

2)1/2 = d1 + d2 + = d1 1 +
2 1/2

+ d2 1 +
2 1/2

(5.84)

Since r1 << d, the binominal expansion (1 + x)n ≈ (1 + nx) can be used to approximate
equation (5.84) as
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Figure 5.6 Fresnel zone calculations
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d1 1 +
2

+ d2 1 +
2

= d1 + d2 +

thus

d1 + + d2 + = d1 + d2 +

hence

+ =

from which

= λ

giving

=

and

r1
2 = = λ

from which the clearance radius r1 can be approximately found:

r1 =
1/2

(5.85)

This locus is called the first Fresnel zone. The second Fresnel zone, the locus for which
the difference between the direct and indirect rays is d + 2λ /2, is given as

r2 = 2r1 (5.86)

and the nth Fresnel zone (d + nλ /2):

rn = nr1 (5.87)

A detailed investigation of equations (5.85) to (5.87) shows that the area of the 
annular ring enclosed by each of the different zone boundaries e.g. d + 2λ /2, d + 3λ /2,
relative to the area of the next ring e.g. d + 3λ /2 relative to d + 4λ /2, are approximately
equal. This means that the energy flowing through each ring for normal incidence is
nearly equal.

However, even though we have already stated that each zone has nearly the same
area, the contributions from adjacent zones may act to cancel each other because of
their relative phase relationships. The practical situation is made even more complex
because, due to the obliquity factor, higher-order zones contribute less energy than
lower-order zones. The overall picture is that at the receiver the total field from all
other zones is about 50% of that from the first zone alone. Thus clearance of the 
radiated field to the first Fresnel zone is very critical if an unobstructed transmission
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2
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116 Chapter 5 • Systems and characterisation considerations

path is to be approximated and equation (5.25) is to be valid. Normally, it is assumed
that diffraction of the beam, hence attenuation, will occur if more than 57% of the
first Fresnel zone is obstructed [28]. To see how this result is obtained, consider 
the following: if we consider the ratio of actual path clearance radius rn to the first
Fresnel zone radius r1 to be n = rn /r1 and let the attenuation relative to free space,
α, be defined as

α = −20 log10(E/E0) (5.88)

where E is the received signal strength when transmitted over a plane surface (which
is acting as an imperfect reflector/absorber), and E0 is the received signal strength when
transmitted through free space, then from [27] for a perfectly reflecting plane surface
and small grazing angle:

α = −6 − 10 log sin2 dB (5.89)

Examination of equation (5.89) shows that at n = 0 attenuation is infinite, i.e. the 
signal is at grazing incidence to the reflecting surface.

When no Fresnel zone obstruction occurs due to lack of proximity to a plane reflecting
surface, i.e. the free-space condition, we have 0 dB attenuation, thus from equation (5.89)

n = sin−1 10− 6/10 = 0.334 or (n)1/2 = 0.578 (5.90)

giving the 57% rule suggested above.

Consider a link design where an obstruction is placed halfway along a point-to-point
line of sight with a length of 1 km operating at 10 GHz. For this situation, calculate the
minimum clearance required for the obstruction to lie outside of the first Fresnel zone.

Solution

If the indirect ray strikes the ground approximately halfway between transmitter and
receiver then the clearance required is given by equation (5.85):

d1 = d2 = d (5.91)

r ≈
1/2

(5.92)

= (400 × 0.03)

= 12

= 3.5 m

Note: Section 5.6 is based on Section 8.3.2 of A.A.R. Townsend, Analog Line-of-Sight Radio Links,
A Test Manual, Prentice Hall International, 1987. © 1987 Prentice Hall International (UK) Ltd.
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Antenna characterisation principles

In order to define the performance of an antenna, factors such as radiation pattern,
beamwidth, bandwidth and gain have to be assessed.

To ascertain the beamwidth of the antenna under test, ideally it is necessary to map
its radiated energy over the three-dimensional sphere enclosing the antenna in its far
field as defined by the polar coordinate system in Figure 5.7. This assessment enables
factors such as side lobe levels to be found. Other features such as gain, beamwidth
and polarisation response can also be determined.

Normally, far-field assessment is carried out on an open-area test site or in an anechoic
chamber. In an anechoic environment, RF-absorbing materials are used to simulate
open-area test conditions, which can be reproduced approximately subject to the condi-
tions given in Sections 5.5 and 5.6. Where the available measurement space is limited,
a compact antenna range lined with radar-absorbing material can be used [33].

Full three-dimensional volumetric assessment of the far-field radiation pattern is very
time-consuming, and it requires massive data storage and good graphic visualisation
tools. For this reason, antenna characterisation is normally carried out over sectional
cuts through the sphere; in particular, two principal, or cardinal, planes are often used
to characterise the performance of the antenna under test. This reduces the amount of
measurement data required.

With reference to Figure 5.7a, these planes are the azimuth pattern (x–y) plane, or,
phi (φ) cut, here θ = 90° and 360° ≤ φ < 0°, and the elevation pattern (x–z) or theta
(θ) cut, i.e. φ = 0°, 360° ≤ θ < 0°. Under these conditions, polarisations are defined
as Eθ for vertical polarisation and Eφ for horizontal polarisation.

For a linear horizontally polarised antenna oriented along the x-axis, the Eφ(θ, φ = 0°)
cut corresponds to the H-plane pattern, while the Eφ (θ = 90°, φ) corresponds to the 
E-plane pattern (Figure 5.7b). For a purely linear vertically polarised antenna oriented
along the z-axis, the Eθ (θ, φ = 0°) far-field radiation is the E-plane pattern, while the
Eθ (θ = 90°, φ) pattern is the H-plane pattern (Figure 5.7c).

Radiated energy that is transmitted and received in the same polarisation plane is called
co-polar radiation, while energy received with the othorgonal polarisation response is
termed cross-polarisation. The amount of cross-polarisation radiation found in a practical
situation helps to define the degree to which the polarisation purity of an antenna has
been corrupted due to imperfections in its design, manufacture or characterisation.

5.7

Figure 5.7 Three dimensional Cartesian polar coordinate system definitions
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118 Chapter 5 • Systems and characterisation considerations

In order to determine the far-field radiation characteristics of the antenna under 
test (AUT) in Figure 5.8, i.e. its far-field radiation pattern, two antennas are required:
the one being tested, which is normally free to rotate and which is connected to a
receiver; and one that is normally fixed and is connected as the transmitter. The AUT
is rotated by a positioner, which can have one, two or three degrees of freedom of
rotation (Figure 5.8).

As the AUT is rotated, the received field strength is measured by a spectrum analyser
or power meter, or after suitable down conversion by a tuned receiver. Alternatively, a
vector network analyser can be used to measure the input impedance to the AUT, S11,
and the transmission path, S12, S21, between source and test antennas (see Appendix 8.4
for the definitions of S-parameters).

For circularly polarised antenna measurements, a spinning dipole technique can 
be used, in which case the source antenna is rotated at high speed as the position 
of the AUT is varied. Here the envelope of the radiation pattern of the AUT gives
information on polarisation ellipsicity [34]. Other schemes exist for the measurement
of circularly polarised elements: the main variants are known as the linear component
method and the circular component method [33]. In general, in point-to-point com-
munication systems not only should the transmit and receive antennas be polarisation-
matched but also the tilt angle should be aligned for maximum coupling and hence
power transfer.

The complex voltages in the horizontal and vertical planes, EH and EV, can be 
combined to express the RHCP and LHCP wave components [33]:

ERHCP = (EH + jEV) (5.93)
2 

ELHCP = (EH − jEV) (5.94)
2 

1

1

Figure 5.8 Antenna test set-up
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The radiation patterns that are generated by a CP antenna can therefore be obtained
by combining the amplitude and phase response of two orthogonal linearly polarised
waves at each measurement angle using equations (5.93) and (5.94). Here the phases
of the two field components are measured relative to the signal generator providing
excitation to the antenna under test. By making separate horizontal and vertical 
plane measurements, rectangular horn antennas (due to their low cross-polarisation 
characteristics) can be used in an actual experimental set-up.

Horn antennas, section 7.7, unlike circularly polarised antennas, exhibit very low
levels of cross-polarisation over broad frequency bands, thereby eliminating a major
source of error in the measurement of circular polarisation (CP). Equations (5.93) 
and (5.94) can be expanded to give simple expressions that can be used to convert
from dual linear to co-polar and cross-polar CP power at each measurement angle.
Let the real and imaginary components of the horizontal and vertical response be
expressed as

EH = EH r
+ jEH i

(5.95)

EV = EVr
+ jEVi

(5.96)

where

EH r
= HAMP cos(HPHASE) (5.97)

EH i
= HAMP sin(HPHASE) (5.98)

EVr
= VAMP cos(VPHASE) (5.99)

EVi
= VAMP sin(VPHASE) (5.100)

Here the horizontal and vertical amplitude (HAMP, VAMP) and phase (HPHASE, VPHASE) 
components are the quantities that are measured at each angle θ in the far field of 
the antenna with the source horn positioned at angles φ = 0° and 90°, Figure 5.8. 
Inserting into equations (5.93) and (5.94) gives the relative field in the orthogonal 
polarisations:

ELHCP = (5.101)
2 

ERHCP = (5.102)
2 

The radiation from a circularly polarised antenna is measured using an E-plane horn
antenna. The vertical electrical field component is measured to be 1.20E − 3 ∠ −35°
while the horizontal electric field is 1.28E − 3 ∠ 112°. Construct the left- and right-
hand circular polarisation components of field from the vertical and measured field
horizontal components.

Exercise 5.8

5
6
7

[HAMP cos(HPHASE) − VAMP sin(VPHASE)]

+ j[HAMP sin(HPHASE) + VAMP cos(VPHASE)]

1
2
3

1

5
6
7

[HAMP cos(HPHASE) + VAMP sin(VPHASE)]

+ j[HAMP sin(HPHASE) − VAMP cos(VPHASE)]

1
2
3

1
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120 Chapter 5 • Systems and characterisation considerations

Solution

Using equations (5.97) to (5.100), we calculate that EH r
= −4.8E − 4, EH i

= 1.187E − 3,
EVr

= −9.8E − 4, EVi
= −6.9E − 4.

Upon applying equations (5.101) and (5.102)

ELHCP = [−11.7E − 4 + j2.07E − 4]
2 

ERHCP = [2.1E − 4 + j2.17E − 3]
2 

thus

| ELHCP | = 1.2E − 3, | ERHCP | = 2.18E − 3

thus RHCP is dominant.

The power in each component can be expressed by

P(dB) = 10 log10 (5.103)

where 377 Ω is the wave impedance in free space, and voltage V represents the 
individual co-polar and cross-polar field components that are expressed in equations
(5.101) and (5.102). The far-field radiation pattern in each antenna polar-pattern cut
(φ) is generated by plotting the parameters θ (deg), PRHCP (dB) and PLHCP (dB). At a
given angle θ in the antenna radiation pattern, cross-polarisation is defined as the 
difference in the power level (equation (5.103)) between the RHCP and LHCP com-
ponents. For a perfectly circular polarised pattern, this is −∞ dB (axial ratio = 0 dB),
and for a linearly polarised signal, where the two CP signals are of identical magnitude,
this is 0 dB (axial ratio = ∞ dB).

Calculate the axial ratio for the situation given in exercise 5.8.

Solution

Using equation (5.68)

| AR | = etc.

where Eco = LHCP or RHCP depending on the result from exercise 5.8, in this case
RHCP. Hence

| AR | = = 3.4
2.18 + 1.2

2.18 − 1.2

| Eco | + | Ecross |
| Eco | − | Ecross |

Exercise 5.9
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Antenna characterisation principles 121

For antenna gain measurements the following approach is useful; from Section 2.4,
we recast for convenience the antenna directivity as

D =

= 4π

= (5.104)

where ∫∫dΩ indicates integration over a volume, and Φ (θ, φ) (Section 2.4) is propor-
tional to the square of field pattern electric field strength.

Now if field pattern is used instead of power density, and this is itself normalised
to its own peak level, then we can write

D = (5.105)

However, noting that E(θ, φ) is the total field at any point and is made up of two ortho-
gonal components, E1(θ, φ) and E2(θ, φ),

D = (5.106)

Thus, to find the antenna directivity from measured patterns, two polarisations must
be measured over an entire sphere and, E1(θ, φ), E2(θ, φ) found. This can be done by
taking a series of appropriate φ cuts for different θ values.

Antenna gain can be measured by a comparison method, subject to the clearance
and antenna separation criteria established in Sections 5.5 and 5.6. Antennas operating
at low frequencies and with broad radiation patterns are among the most difficult to
measure. A known radiation power level is radiated from a source antenna and is received
by the antenna under test, which is assumed to be perfectly matched. The value of the
received signal, SR1, is noted and the test antenna is replaced with a standard reference
antenna (normally a half-wave dipole, absolute gain 2.5 dBi) whose gain is known at
the same operating frequency of the antenna under test and the new received signal
strength, SR2, noted. Again the reference antenna is assumed to be perfectly matched to
the transmit or receive instrumentation; hence the resultant gain G can be obtained as

G = 10 log10(SR2 /SR1) (5.107)

from which the gain of the antenna under test relative to an isotropic source can be
found as

GAUT = 10 log10(1.64G) dBi

4π

��[E1
2(θ, φ) + E2

2(θ, φ)] dΩ

4π

��E2(θ, φ) dΩ

4πEmax
2(θ, φ)

��E2(θ, φ) dΩ

maximum radiation power density

total power radiated

maximum radiation power density

average radiation intensity
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122 Chapter 5 • Systems and characterisation considerations

If two identical antennas exist, then the absolute gain technique described below can
be used. Here the Friis transmission formula given in Section 5.2 is used, since

= (5.108)

For identical antennas, Aer = Aet = Ae = effective area of the antenna(s) and subscripts
t and r denote transmit and receive, respectively.

A = GAUT (5.109)

where G0 is the antenna(s) under test gain relative to an isotropic source. Then

= (5.110)

or

GAUT = 4πr (5.111)

Hence the gain of the antenna is forthcoming.
The gain substitution method is one of several techniques that can be used to pro-

vide an accurate measurement of the absolute gain of a CP antenna [33]. This requires
the beam and axial ratio peak of the antenna under test (AUT) to be located and the
power level compared when the AUT is replaced with a gain-standard Gstd, which is
referenced to an isotropic source (Figure 5.8). Above 1 GHz, linearly polarised horns
are normally used for both the source and gain reference antennas. The gain, GAUT, of
the AUT referenced to a linear isotropic source, ‘il’, is determined from the difference
in the measured power level ∆ thus:

GAUT (dBil) = Gstd − ∆ (5.112)

For a polarisation-pure AUT, the absolute gain of the antenna referenced to a circu-
larly polarised isotropic source, ‘ic’, can then be expressed as

GAUT (dBic) = G0 + 3 (5.113)

The 3 dB increase in gain in equation (5.113) represents the difference in the power
received by a linear isotropic and a circular isotropic antenna when these are illumin-
ated by a polarisation-pure CP signal wave. However, practical antennas generate 
cross-polar power, which results in an elliptically polarised field pattern. Therefore a
correction factor GC must be applied to compensate for the finite axial ratio AR, which
is measured at the beam peak. Thus

GC (dB) = 20 log10[0.5(1 + 10−AR/20)] (5.114)

hence antenna gain can be calculated using the expression

GAUT (dBic) = GAUT + GC + 3 (5.115)
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For equipment calibration, absolute field strength measurements are often required.
Consider the measurement set-up shown in Figure 5.9 [35]; here the power density at
a distance r from the transmitting antenna is, according to Section 5.2,

Pr = (W/m2) (5.116)

where Pr = received power, PT = transmitted power, R = distance to observation point,
L = cable loss and Ga = transmit antenna gain.

We know that time-averaged power is | E2 | /η (Section 2.3), thus the field strength
at a distance r from a source is

E = 19.4 Pr (V/m) (5.117)

which in dB yields

Pr = −11 − 20 log10R + PT + Ga − L (dBW/m2) (5.118)

from which

E = 15 − 20 log10 R + PT + Ga − L (dBV/m) (5.119)

Subtracting these and converting power density to field strength, we get

E = 26 + P (dBW/m2) (5.120)

Thus we can express the power density from the transmitting antenna in terms of elec-
tric field intensity. It is also possible to convert the power received to field strength;
Figure 5.10 shows the model used. Here the received power density is given by

PT = (W/m2) (5.121)

As before, field strength E is

E = 19.4 Pr (V/m)

Hence

Pd = 11 − 20 log10 λ + Pr − Ga − L (dBW/m2) (5.122)

4πPr

λ2GaL

PTGaL

4πR2

Figure 5.9 Electric field strength assessment for transmitter
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and

E = 37 − 20 log10 λ + Pr − Ga − L (dBV/m) (5.123)

To convert received signal voltage to field strength or to power density, let us define
the input power incident on a field strength measuring instrument as

Pr = (W) (5.124)

where Z� is the input impedance of the field strength measuring apparatus (normally
this will be 50 Ω) and V is the rms voltage reading on the field strength measuring
instrument, in which case power density at the antenna aperture, PT, is

PT = (W/m2) (5.125)

and the electric field strength at the antenna aperture is

E = (V/m) (5.126)

From the above two equations:

Pd = −6 − 20 log10 λ − Ga + V − L (dBW/m2) (5.127)

and

E = 19.8 − 20 log10 λ − Ga + V − L (dBV/m) (5.128)

A receive antenna has 10 dB gain and is connected to an antenna using a cable with
3 dB loss. The cable, antenna and intensity meter are impedance-matched, and the
received signal frequency is 1 GHz. Calculate the electric field intensity at the aperture
of the receiving antenna for a measured intensity reading of 20 dBµV.

Exercise 5.10

30

LZ�

4πV

λGa

1

λ2GaL

4πV2

50

V2

Z�

Figure 5.10 Electric field strength assessment for receiver
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Solution

Using equation (5.128) to obtain electric field intensity at the receive antenna aperture:

20 dBµV = 10 µV or −100 dBV

E = 19.8 − 20 log(0.3) − 10 − 3 − 100
= −103.7 dBV/m.

The first three terms in equation (5.128) constitute the antenna factor, which is widely
used in instrumentation for laboratories characterising field strength levels in electro-
magnetic compatability (EMC) problems:

antenna factor = 19.8 − 20 log10 λ − Ga (dB) (5.129)

Once the antenna factor is known, by calculation or from the antenna manufacturer’s
data sheet for a calibrated antenna, then electric field strength can be found as

E = antenna factor + V − L (dBV/m) (5.130)

Thus the antenna factor is very important in making calibrated radiated electric field
strength measurements.

Due to the linear properties of the equations governing electromagnetism, i.e.
Maxwell’s equations, an antenna operating at a known frequency f will have ident-
ical behaviour at another frequency kf, provided that a number of criteria are adhered
to [36]:

l All linear dimensions are scaled by 1/k.

l Relative dielectric constant values in the antenna structure should remain the same
at both frequencies, i.e. should not be a function of frequency.

l Relative permeability values should remain the same at both frequencies, i.e.
should not be a function of frequency.

l All material conductivity values should scale by k.

In general, all of these parameters can be scaled relatively easily, with the exception
of conductivity; however, the operation of many antenna structures does not rely 
critically on conduction losses.

Theoretically, a perfectly constructed scale model will exhibit the same radiation
and impedance characteristics as its full-size counterpart. Imperfections in the scal-
ing process will affect impedance levels much more than radiation properties, and 
as such the impedance values normally derived from a scale model are considered 
to be approximate. In general, each case has to be carefully investigated in this 
respect.

Note: Equations 5.116 through 5.130, and Figures 5.9 and 5.10, are from Engineering Applications
of Electromagnetic Theory by S. Liao © 1988. Reprinted with permission of Brooks/Cole, an imprint
of the Wadsworth Group, a division of Thomson Learning.
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5.1 A radio station operating at 300 kHz has a vertical antenna placed over a per-
fectly conducting ground plane. The height of the antenna is 106 m. The antenna
is excited between its base and the ground plane. Calculate the effective length
of the antenna and its radiation resistance as referenced to the feed point. You
may assume that the current distribution along the antenna is linear, going from
a maximum at the base to zero at the top of the antenna. How appropriate is
this assumed linear current distribution assumption?

5.2 For the problem given in 5.1, when a radial set of horizontal wires is attached
to the antenna the current at the top of the antenna increases to 25% of the base
current. Calculate the effective height and radiation resistance for the modified
antenna.

5.3 A satellite is in geosynchronous orbit around the Earth, i.e. it is positioned at
36,000 km above the equator and is equipped with a 100 W transmitter operating
at 12 GHz. Calculate the effective isotropic radiated power (EIRP) if the parabolic

Problems

References
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satellite transmit antenna has a 1 m diameter and is assumed to be 90% efficient.
Assuming that the receive antenna also has 1 m diameter and 90% efficiency,
calculate the power available at the output from the receive antenna.

5.4 For the problem in 5.3, the receiver connected to the output of the receive antenna
needs to produce a signal-to-noise ratio of 12 dB to guarantee service operation
for 99.9% of the time. What is the minimum G/T ratio required for the system?
You may assume that channel bandwidth is 27 MHz and that the low-noise 
receiver has an equivalent noise temperature of 160 K.

5.5 In areas of weak television reception, it is sometimes necessary to mount the
receive antenna on a mast. The antenna is connected to the television receiver
by a lossy coaxial cable. If the cable has 3 dB loss and the television receiver
has 90 dB gain and 12 dB noise figure, calculate the overall noise figure for the
system. If a high-gain low-noise pre-amplifier (gain 20 dB, 4 dB noise figure) is
introduced between the antenna and its connection to the coaxial cable, calculate
the improvement in overall system noise figure that results.

5.6 An electromagnetic wave propagating in the z-direction has its electric field 
vector E defined as

E = 4 sin(ω t − βz) i + 6 sin ω t − βz − j

For this wave, calculate the inclination angle of the polarisation ellipse, the sense
of rotation of the wave and the axial ratio of the ellipse. What modifications
would be required to the amplitude and phase relationships of the describing
equation to produce a left-hand circularly polarised signal?

5.7 What is the first Fresnel zone radius about the main beam at 1 km for an antenna
on a 10 km single-link hop if the frequency of the carrier signal is 2.4 GHz?

5.8 Calculate the antenna calibration factor for a half-wave dipole designed to 
operate at 1 GHz. When this antenna is connected to a cable having 0.5 dB loss,
the power available at the receiver input terminals is −10 dBm. Under these 
conditions, what is the measured electric field strength in dBV/m?

D
F

π
4

A
C

FOA_C05.qxd  8/2/04  3:19 PM  Page 127



128

Antenna-matching
techniques

In order for an antenna or antenna array to be useful, it must be connected to a trans-
mitting or receiving device. Often the terminal impedance of a transmitter or receiver
is either 50 or 75 X. However, the same cannot be said for the input terminal impedance
of the antenna element, which can exhibit, particularly off-resonance, a reactive com-
ponent, which can be capacitive or inductive, in conjunction with a resistive part, both
of which can change over a wide range of values as frequency varies. Therefore, what
is usually required is to create an electrical network that can interface the antenna to
the transmitter or receiver such that maximum power transfer can occur. This is achieved
by transforming by impedance matching the input impedance of the antenna or array
to that of the device to which it is to be connected. Normally, this is done at the 
band centre, or resonant frequency, of the element or array for a narrowband antenna
or over a preselected bandwidth for a wideband antenna. In the later case, more 
elaborate matching networks are required than for the former case.

With this in mind, in this chapter we first establish the terminology then the figures
of merit used to define the properties of a uniform transmission line. This invest-
igation leads to the fundamental concepts of transmission line propagation velocity,
attenuation and reflection coefficients, hence voltage standing wave ratio (VSWR). 
This last quantity, VSWR, can then be used to define the quality of power transfer from
antenna to load.

The concept of an attenuator or pad as a resistive matching technique is then 
introduced. Lossless matching methods using lumped circuits are developed. These 
methods, while narrowband, are generally adequate for matching resonant antennas
with a few per cent bandwidth and have the advantage that for ideal elements they
do not introduce additional noise into the system.

Dipole and other types of balanced antenna structures often have to be fed or to
feed equipment with unbalanced, coaxial connections. To facilitate this, the operation
of a variety of balanced to unbalanced transformer types, baluns, are described. 
When creating arrays of antennas, it is necessary to excite the individual elements 

Chapter 6
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Transmission line principles 129

comprising the array with currents whose relative amplitude and phases are known 
in advance and whose values have been prescribed by the required application. This
involves creating a feed network for the array chosen to set the required current 
amplitudes. These are then interconnected with suitably adjusted lengths of uniform
transmission lines selected to give the necessary phase distribution. The basic techniques
used to create the power splitting (combiners) that is required for these networks are
discussed.

Classically, and currently the most powerful graphical method for designing a 
wide variety of impedance matching networks is the Smith chart, invented in 1939 by 
P.H. Smith, then an engineer at Bell Telephone Laboratories. Elementary applications
of the Smith chart are described in conjunction with stub and quarter-wavelength trans-
former matching based on the philosophy of sending end impedance.

Transmission line principles

An appreciation of transmission line techniques is important when studying antennas,
since ultimately a connection between the antenna and the receive/transmit electronics
is required for an operational system to be realised. The purpose of this section is to
introduce some useful concepts that will facilitate the design of the antenna/system or
in the case of an antenna array the antenna/harness interface.

A section of uniform transmission line for use as a guiding medium for electro-
magnetic energy can be described approximately by decomposing a finite section of
the line into very short segments. Each segment has length ∆� and is composed of a
series loss resistance, R, representing conductor loss. Support dielectric material losses
are represented by a shunt conductance, G. The series inductance and shunt capacit-
ance of the line are represented by L and C, respectively. L, C and G are normally
defined on a per unit length basis (Figure 6.1).

In Figure 6.1a, for an infinitely long uniform transmission line V1 /I1 = V2 /I2 = Z0,
where Z0, the characteristic impedance of the line, is defined below. In general, Z0

is frequency-dependent and can be complex. Under the condition when the line is 
terminated in an impedance of Z0, the line is said to be perfectly matched, i.e. no 
energy is reflected from the termination.

6.1

Figure 6.1 Lumped transmission line
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130 Chapter 6 • Antenna-matching techniques

For the L section shown in Figure 6.1b terminated in impedance Z0, its input imped-
ance, Zin, is the parallel combination of the series impedance components Z0 and ∂z
and the shunt admittance component ∂y (shunt impedance 1/∂y).

Zin = (Z0 + ∂z + 1/∂y)

Zin = = Z0 (6.1)

where ∂z∂y ≅ 0 as ∂y and ∂z tend to zero. Hence

Z0 =
1/2

(6.2)

from Figure 6.1, ∂z = R + jωL and ∂y = G + jωC. Therefore

Z0 =
1/2

Ω (6.3)

At very low frequencies ω ≈ 0, so

Z0 ≈
1/2

Ω (6.4)

while at very high frequencies, where for high-quality transmission line materials 
ωL >> R and ωC >> G,

Z0 ≈
1/2

Ω (6.5)

Now, from Figure 6.1b, the voltage drop ∆V across one incremental line segment 
∆x is

∆V = V2 − V1 = −I(R + jωL)∆x (6.6)

or in the limit as ∆x tends to zero:

= −I(R + jωL) (6.7)

Similarly, for the shunt arm

= −V(G + jωC) (6.8)

Differentiating equation (6.7) and substituting equation (6.8) yields the one-dimensional
wave equation:

= −ψ 2V (6.9)
∂2V

∂x2

∂I

∂x

∂V

∂x

D
F

L

C

A
C

D
F

R

G

A
C

D
F

R + jωL

G + jωC

A
C

D
F

∂z

∂y

A
C

Z0 + ∂z

1 + Z0∂y

(Z0 + ∂z)

∂y
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Transmission line principles 131

where

ψ = ([R = jωL][G + jωC ])1/2 (6.10)

This is called the propagation constant for the line and is generally expressed as

ψ = α + jβ (6.11)

Here α is the line attenuation per unit length, and β is the phase shift per unit length
(2π/λg); λg is the wavelength of the guided signal, which will be different from the
wavelength for a free-space factor by a slowing factor determined by the permittivity
of the dielectric filling material of the line. In general, this slowing factor is inversely
proportional to the square root of the dielectric constant filler material.

The voltage across the line inductance will lead the current I across it by some angle
∂β, such that

∂β = tan−1 (6.12)

For small angles tanθ ≈ θ, so for a small length ∂x

∂β ≈ ∂x

or

∂β ≈ ∂x = ω(LC)1/2∂x

So the phase change per unit length β is equal to

β ≈ ω LC (6.13)

This can be worked further, since we know from Section 2.2 that the velocity of pro-
pagation, denoted now as vp, the phase velocity of the phase front of a propagating 
signal, is given as

vp = fλg = λg (6.14)

By definition

λ =

hence

vp = m/s (6.15)

or

vp = m/s (6.16)
1

(LC )1/2

ω
β

2π
β

ω
2π

ωL

(L/C)1/2

ωL

Z0

D
F

ωL I ∂x

I Z0

A
C
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132 Chapter 6 • Antenna-matching techniques

Also for a lossy line using Figure 6.1a, we note that since for a uniform transmission
line whose impedance, Z0, the characteristic impedance of the transmission line, is 
constant with length:

= = . . . = (6.17)

and In+1 = kIn, where k is a constant related to attenuation. Therefore, as the signal
progresses along the line, we can write

Z0 = = = , etc. (6.18)

so that

Vn+1 = V1kn (6.19)

or

loge = logekn (6.20)

If k is made equal to exp(−αx), the left-hand side of equation (6.20) becomes −nαx.
Thus the total attenuation of the line is nαx and is given in units called nepers.

If we now say that the power delivered to the load is PL and the power input to the
line is Pi, then the line loss or attenuation in decibels must be

loss (dB) = 10 log10 (6.21)

but

PL = VL IL and Pi = ViIi

so

= (6.22)

Using equation (6.20) with the exponential decay factor included, we see that

exp(−αx) = (6.23)

Alternatively

exp(−αx) = (6.24)

Inserting equations (6.23) and (6.24) into equation (6.22) gives

= exp(−2αx)
PL

Pi

IL

Ii

VL

Vi

VLIL

ViIi

PL

Pi

PL

Pi

D
F

Vn+1

V1

A
C

V3

k2I1

V2

kI1

V1

I1

Vn

In

V2

I2

V1

I1
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or in more familiar units

loss (dB) = 10 log10[exp(−2αx)]
= −20αx log10(exp(1)) (6.25)
= −8.686αx

thus 1 neper = −8.686 dB.
If the line is not perfectly terminated in its own characteristic impedance it is said

to be mismatched, and as a result, some of the energy in the signal incident on the
load will be reflected back along the line; if the line is resonant then a standing wave
will be formed. Here energy travelling in the forward direction along the line and energy
travelling in the reverse direction along the line act to form field maxima (nodes) and
field minima (antinodes) at specific (stationary with respect to distance) positions along
the line. We will see later that this situation can be very problematical when the trans-
mission line load is an antenna.

In Figure 6.2a, let vi be the incident wave and vr the reflected wave; the ratio of
antinode to node voltage is called the VSWR or voltage standing wave ratio and is
defined from Figure 6.2 as

VSWR =

VSWR is a unitless quantity ranging between 1 (no reflected signal) and ∞ (all 
incident signals reflected) in value; peak or RMS voltage values can be used with 
equal facility.

Inspection of Figure 6.2b shows that across boundary x−x′ for current continuity

It = Ii − Ir

| vi | + | vr |
| vi | − | vr |

Figure 6.2 Standing wave formation in an unmatched transmission line
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134 Chapter 6 • Antenna-matching techniques

where It denotes current transmitted through the boundary, and Ir and Ii denote reflected
and incident currents, respectively. In terms of the line impedances, we write this as

− = (6.26)

where vT denotes total voltage amplitude. We also note that at boundary x−x′

vi + vr = vT

Hence we can define a new term, the reflection coefficient Γ, as being the ratio vi /vr

at this interface. Between unequal impedance levels, this quantity must therefore be

Γ = = (6.27)

where ZT is the terminating impedance.
For a perfectly matched line, ZT = Z0 and the reflection coefficient is zero, while for

a short-circuit termination ZT = 0 hence Γ = −1, and for an open-circuit termination
ZT = ∞, giving Γ = +1. The reflection coefficient can also be expressed in decibels,
as 10 log10Γ, in which case it is referred to as return loss. It can also be expressed in
terms of the VSWR as

Γ = (6.28)

Calculate the VSWR for a 50 Ω transmission line terminated in an antenna with
impedance of 73 − j32 Ω.

Solution

From equation (6.27)

Γ = =

hence using equation (6.28)

VSWR = = = 1.9

Further more, if we observe that the incident power, Pi, in the transmission line must
always be equal to the sum of the power lost to the line through dissipation, PL, and
reflection, Pr, then we can say that

= = 1 −
2

= (6.29)
4VSWR

(1 + VSWR)2

D
F

VSWR − 1

VSWR + 1

A
C

Pi − Pr

Pi

PL

Pi

1 + 0.31

1 − 0.31

1 + | Γ |
1 − | Γ |

23 − j32

123 − j32

73 − j32 − 50

73 − j32 + 50

Exercise 6.1

VSWR − 1

VSWR + 1

ZT − Z0

ZT + Z0

vi

vr

vT

ZT

vr

Z0

vi

Z0
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Transmission line principles 135

This expression allows the amount of power delivered to the load for a given mismatch
to be readily assessed. For example, a line VSWR of 2 implies that 89% of the avail-
able power reaches the load. Thus the lowest possible VSWR is highly desirable for
maximisation of power transfer to the load. Also a low VSWR is important if an antenna
is to be connected to the transmission line, since any received or transmitted energy
will be reduced in all cases where VSWR ≠ 1 and system sensitivity or range are reduced
as a consequence. In addition, any line mismatch will cause standing waves on the
transmission line. In some situations, this may cause the antenna connecting cable to
act as a secondary radiating element, leading to unpredictable results (see Section 6.4).
In some high-power transmission applications, too high a VSWR may result in trans-
mission line dielectric overvoltage breakdown as a large-amplitude standing wave 
is formed. This could be a potential problem in the feeder section to a high-power 
transmit antenna.

Another useful figure of merit in antenna systems design is insertion loss. Consider
Figure 6.3, in which the insertion loss of a two-port network, LI, is defined as

LI = 10 log dB (6.30)

where Pb is the power delivered to a load ZL from a generator with impedance Zg before
connection of the network under test (Figure 6.3a), and Pa is the power delivered 
to the same load from the same generator but this time with the network under test
connected (Figure 6.3b). It should be noted that insertion loss is given as a power ratio
between quantities measured across the same terminals or network port.

The insertion loss of a two-port network may be positive, or it may be negative.
The second situation occurs when the load impedance and generator impedance are not
matched. Under these circumstances, a lossless matching network introduced between
the load and generator will increase the power delivered to the load; thus Pa is larger

Pb

Pa

Figure 6.3 Insertion loss: (a) network under test removed; (b) network under test connected
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136 Chapter 6 • Antenna-matching techniques

than Pb, giving a negative value for insertion loss. Sometimes this is considered to be
an insertion gain, which for a passive network does not mean a gain in the classical
sense, i.e. amplification; it simply means a more effective coupling of power to the
load than would have occurred if the intervening network was not connected. For more
elaborate formulations to deal with this situation, see [37].

In the following sections, we will consider how to design networks that provide
impedance matching between input and output ports and that have known insertion
loss characteristics.

Lumped matching circuits

Lumped matching circuits are useful at low frequencies where minimised area or hybrid
matching circuits are to be provided. This class of circuit can consist of purely real
or reactive components, or a mixture of both real and reactive components.

Resistive L matching

Resistive matching necessitates low power loss and therefore provides a way of pro-
ducing controlled attenuation between a transmitter and antenna or an antenna and a
receiver; each can have different impedance levels.

To illustrate the approach, consider the simplest case of a resistive L section match-
ing network (Figure 6.4). Here we wish to match two pure resistances, Rg and RL,
while introducing a known attenuation into the network; subscripts g and L refer to
generator and load resistances, respectively.

For an impedance match on the input:

Rg = R1 + (6.31)

while for an impedance match on the output

RL = (6.32)

Expanding equations (6.31) and (6.32) and letting RgRL = R1R2 yields

R1 = (Rg(Rg − RL))1/2 (6.33)

R2(R1 + Rg)

R1 + R2 + Rg

R2RL

R2RL

6.2

Figure 6.4 Resistive L-matching network
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Lumped matching circuits 137

and

R2 =
1/2

(6.34)

Here Rg > RL and numerical values for Rg and RL are normally specified at the outset.
By defining the attenuation of the circuit as Vg /VL, we can write

attenuation = 20 log10 = 20 log10 dB (6.35)

A circuit designed according to these principles will act as a matched attenuator and
is useful for setting power levels in a system or for protecting sensitive instrumenta-
tion from overload. However, it should be noted that this type of matching network
will also add to the noise figure of the system into which it is inserted (Section 5.3).
These attenuator networks, called pads, are sometimes used in antenna systems to reduce
unwanted signal reflections. In addition, purely resistive networks have the advantage
that they introduce zero phase shift to a signal passing through them.

An asymmetrical resistive matching network is to be used to match a 75 Ω generator
to a 50 Ω characteristic impedance transmission line. Calculate the attenuation that
occurs when the matching network is deployed.

Solution

From equations (6.31) through (6.35), we calculate that for Rg = 50 Ω, RL = 75 Ω,
from equation (6.33)

R1 = 43.3 Ω

and from equation (6.34)

R2 =
1/2

= 106 Ω

Hence, using equation (6.35)

attenuation = 20 log10

= −7 dB

In a normal design situation, the characteristic impedance of the line into which the
attenuator is to be inserted is specified. Generally, a characteristic impedance that has
only a real component, 50 Ω or 75 Ω, with the 50 Ω level being the most common
impedance level associated with a wide variety of communications equipment, is selected.
For an air dielectric coaxial cable, the ratio of outer to inner radius, b/a, is 3.6 for the

JKL
106 × 50

50(43.3 + 106) + (43.3 × 106)

GHI

D
F

(50) × (75)2

(75 − 50)

A
C

Exercise 6.2

JKL
R2 RL

RL(R1 + R2) + R1R2

GHI
JKL

Vg

VL

GHI

D
F

RgRL
2

Rg − RL

A
C
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138 Chapter 6 • Antenna-matching techniques

minimum power loss condition. This ratio b/a corresponds to an air-spaced coaxial
cable with 77 Ω characteristic impedance (c.f. 75 Ω used for low-loss TV downlead
applications), while maximum power-handling capability occurs for an air dielectric
coaxial cable when b/a = e, i.e. 30 Ω characteristic impedance. The average of these
two values is 53.5 Ω, thus the compromise impedance level used in most communica-
tions systems is the rounded-down value of 50 Ω.

Consider a generalised representation of the attenuator design problem, now cast
as a symmetrical T network (Figure 6.5). Using the same approach as above for the
resistive L network

Zg = Z1 + (6.36)

We now wish to insert this network into a transmission line of characteristic imped-
ance Z0, such that Zg = ZL = Z0. First we must establish an equivalent analogue between
Figure 6.5 and a uniform transmission line of characteristic impedance Z0. For a matched
network

IL = Ig (6.37)

but from basic transmission line theory (Section 6.1)

= exp(−ψ�) (6.38)

where ψ is the propagation coefficient of a section of uniform transmission line of
length �. Hence

exp(−ψ�) = (6.39)

Solving equation (6.36) for Z1 with Zg = ZL = Z0 gives

Z1 = Z0 (6.40)

or

Z1 = Z0 tanh (6.41)
D
F

ψ�

2

A
C

1 − exp(−ψ�)

1 + exp(−ψ�)

Z2

Z0 + Z1 + Z2

Ig

IL

D
F

Z2

Z1 + Z2 + Z0

A
C

Z2(Z1 + ZL)

Z1 + Z2 + ZL

Figure 6.5 General symmetrical T-network
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Similarly, solving for Z2 gives

Z2 = Z0 /sinh(ψ�) (6.42)

Equations (6.41) and (6.42) link lumped element impedances to uniform transmission
line elements.

For the symmetrical PI model of a transmission line shown in Figure 6.6, the 
uniform transmission line equivalences are obtained using the same procedure as 
above:

Z1 = Z0 /tanh (6.43)

Z2 = Z0 sinh(ψ�) (6.44)

Now if we are interested in designing attenuators, we can exploit these equivalences.
We are dealing only with resistive components, so

Z1 = R1 = Z0 tanh (6.45)

Remember that a resistive component does not introduce a phase shift, so jβ = 0, hence
ψ = α + jβ reduces to α, i.e. a loss only. After expanding the tanh term in equation
(6.45) into exponent form, we get

R1 = Z0 (6.46)

Now because of the exponential term in equation (6.46) it is best to express attenuation
not in decibels but in nepers, N, where by definition (Section 6.1), N = exp(α�).

Where, as in this case, �, the length of a component, is very small compared with
a wavelength at the lowest operating frequency, the component is assumed to be lumped.
Thus for the symmetrical T network:

R1 = Z0 (6.47)

and

R2 = Z0 (6.48)
D
F

2N

N2 − 1

A
C

D
F

N − 1

N + 1

A
C

exp(α�) − 1

exp(α�) + 1

D
F

α�

2

A
C

D
F

ψ�

2

A
C

Figure 6.6 Symmetrical PI-network
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By similar reasoning for the symmetrical PI network:

R1 = Z0 (6.49)

and

R2 = Z0 (6.50)

So that if we specify the characteristic impedance of the line into which the attenu-
ator is to be fitted, and we also specify how much loss we require, we have a complete
specification for a design.

Design a single-section symmetrical PI, T network attenuator giving 20 dB attenuation
for use in a 50 Ω system.

Solution

Z0 = 50 Ω

N = 1020/20 = 10

Thus for a PI network use equations (6.49) and (6.50):

R1 = 50 = 61 Ω

R2 = 248 Ω

For a T network:

R1 = 41 Ω

R2 = 10 Ω

In general, when designing attenuators we must use preferred resistor values, i.e. the
closest available values. This will mean that we cannot exactly realise our design
specification. The selection of preferred-value components has two main effects: (1)
the impedance match will be altered; and (2) the amount of attenuation obtained will 
be altered. For the T example above with preferred values used, the nearest value to 
41 Ω becomes 47 Ω; compute the implication that this has for the performance of the
matching network in exercise 6.3. To see the implication of this, consider equation
(6.36) with real components only.

Exercise 6.4

D
F

11

9

A
C

Exercise 6.3
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F

N2 − 1

2N
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C

D
F

N + 1

N − 1

A
C
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Solution

Z0 = R1 +

Hence

Z0 = (R1
2 + 2R1R2)

1/2 (6.51)

and by defining attenuation using equation (6.38), then

exp(α�) = =

After some manipulation, substituting this into equation (6.51) yields

α� = cosh−1 1 +

or, on using the inverse cosh expansion [38],

α� = loge 1 + + 1 +
2

− 1
1/2

nepers (6.52)

It should be noted that since 8.686 nepers is equal to 1 dB (equation (6.25)), multi-
plication of α� by 8.686 converts this quantity into decibels. A similar result occurs
for the PI case, where

α� = cosh−1 1 +

Hence, returning to our example from equation (6.51), Z0 becomes 56 Ω, giving a
VSWR of about 1.1 and 21 dB attenuation.

Another important factor in attenuator design is an assessment of how much power
is dissipated in each of the resistive elements in the attenuator. This allows final com-
ponent power ratings to be made.

Consider the T example. For an input power of Pin W the input voltage Vin must be

Vin = (Z0 Pin)
1/2 (6.53)

but

Ig = Vin R1 + (6.54)

Now the power dissipated in the leftmost series resistance of R1 (Figure 6.31) is

P1 = Ig
2R1 (6.55)
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FOA_C06.qxd  8/3/04  12:28 PM  Page 141



142 Chapter 6 • Antenna-matching techniques

while the power dissipated in resistor R2 is

P2 = (6.56)

where V2 is the voltage across R2, and V2 = Vin − IgR1.
The last resistance, R1, on the right-hand side of the attenuator must dissipate power

P3 =
2

R1 (6.57)

For the parameters identified in exercise 6.3, calculate the power rating for each of
the resistors in the resistive T matching network.

Solution

Returning to the example above, we see that for R1 = 41 Ω and R2 = 10 Ω, then for
1 W input power, Vin = 7.1 V,

Iin = 7.1 Rin + = 140 mA

∴ V2 = 7.1 − (0.14)(41) = 1.36 V

Hence

P1 = (0.14)2(41) = 0.8 W

P2 = 0.19 W

P3 = 0.01 W

yielding a total power dissipation of 1 W.
This calculation shows that the bulk of the power in the input signal is dissipated

in the first resistor of the attenuator network. Thus this component, together with 
the other components used to construct the attenuator circuit, must be properly power
rated.

Reactive matching circuits

Networks comprising only ideal reactive components have the advantage of not 
dissipating RF energy. Simple designs have the disadvantage of being able to give a
perfect match at a single frequency only. Let us investigate the procedures involved
in the design of the simplest of these types of network. The approach adopted here
will involve adjusting the quality factor Q of the matching network so that unequal
resistive terminations can be matched to each other [38].

6.3

JKL
(41 + 50)10

(41 + 50 + 10)

GHI

Exercise 6.5
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The working definition for the Q factor as used here is

Q = ω0 (6.58)

where ω0 is the operating frequency in rad/s.
From Figure 6.7, for the series LR circuit

| Z | = (RS
2 + XS

2)1/2 (6.59)

For the parallel LR circuit:

| Z | = (6.60)

For a simple series connected circuit consisting of an inductor and a resistor, LS and
RS, the Q factor can be written as

Q = (6.61)

where XS = ω0 LS, while for the parallel connected circuit

Q = (6.62)

thus

Q = = (6.63)

Since equations (6.57) and (6.58) are equivalent equations, (6.60) and (6.61) can be
recast as

| Z | = = RS(1 + Q2)1/2 (6.64)

Hence

= 1 + Q2 (6.65)

thereby indicating that control of the Q factor can expedite an impedance match between
unequal resistive terminations, RP and RS.

The simplest topology we can use as an impedance-matching network is an L–C net-
work, which can take two forms (Figure 6.8). Here RP is assumed to be greater than RS.

RP

RS

RP

(1 + Q2)1/2

XS

RS

RP

XP

RP

XP

XS

RS

XPRP

(RP
2 − XP

2)1/2

stored energy in a network

energy lost per second

Figure 6.7 Equivalence of LR circuits
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Match a 500 Ω load to a 300 Ω generator using an L–C network.

Solution

Using equation (6.65):

= 1 + Q2 = = 1 + Q2

∴ Q = 2.24

Now using equation (6.61):

XS = QRS = 112 Ω

and equation (6.60):

XP = = 134 Ω

from which for a known frequency of operation C and L the matching circuit com-
ponents can be found.

The choice of Figure 6.8a or Figure 6.8b is generally dictated by whether we require
AC decoupling and/or a DC path to ground, in which case Figure 6.8a would suit
best. Alternatively, if DC biasing to the load is required, then use Figure 6.8b. For
example, the circuit in Figure 6.8b can be used if impedance matching is required 
and DC bias to a masthead preamplifier (Section 5.3) is supplied via the centre con-
ductor of the coaxial cable used to connect them. In addition, Figure 6.8b is useful
for rejecting unwanted harmonic content in the signals.

For the example given above, we can now realise the actual component values for
Figure 6.8a at a given operating frequency of 458 MHz: XC = 112 Ω, C = 3.1 pF, 
XL = 134 Ω and L = 0.46 nH. For Figure 6.8b, the component values are XC = 181 Ω,
C = 2.0 pF, XL = 112 Ω and L = 0.4 nH.

RP

Q

300

50

RP

RS

Exercise 6.6

Figure 6.8 L-section matching network
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A major problem exists with L-section matching circuits designed by this approach:
namely, the Q factor is determined by the ratio of the termination resistances to be
matched. This results in a low Q factor, which means that harmonic suppression of
unwanted signals is inherently poor.

By switching to the T configuration in Figure 6.9a, this problem can be overcome.
Here the T configuration is conceptualised as two-back-to-back L networks, terminated
in a virtual resistance, R (Figure 6.9b). This resistance is selected so that it has a value
greater than the actual resistances to be matched. This is necessary since above we
showed that for an L-section network (equation (6.65))

Q2 = − 1 (6.66)

Assuming for the moment that R1 and R2 are known, then we can write for R1

= Q1
2 + 1 (6.67)

where Q1 is the Q factor of the first L section. For an assumed value of Q1, R can
now be found. If R is less that R2, increase Q1 and try again.

Once Q1 has been selected, we can find X31 and X1

X31 = (6.68)

and

X1 = R1Q1 (6.69)

R

Q1

R

R1

R

R1,2

Figure 6.9 T-section matching network
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146 Chapter 6 • Antenna-matching techniques

Similarly, for the second L section

= Q2
2 + 1 (6.70)

Since, at this point, R and R2 are known quantities, we can find Q2 = Q1 = Q. Once
Q2 is established, then

X32 = (6.71)

and 

X2 = Q2R2 (6.72)

The design is completed by noting that X3 is the parallel combination of X31 and X32.

Match a 50 Ω source to 300 Ω load using a reactive T network at an operating fre-
quency of 458 MHz.

Solution

Assume a value of 10 for Q; R1 = 50 Ω, R2 = 300 Ω, f = 458 MHz and R = 50(101)
= 5050 Ω > R1R2. Next, from equation (6.68)

X31 = 505 Ω

and from equation (6.69):

X1 = 500 Ω

Compute using equation (6.70):

Q2 = − 1
1/2

= 4

Hence X32 = 1263 Ω and X2 = 1200 Ω. Thus X3 = 361 Ω.
The actual component values can now be realised for either of the networks shown

in Figure 6.10. Here the circuit in Figure 6.10a allows a DC through connection, while
the arrangement in Figure 6.10b blocks DC.

D
F

5050

300

A
C

Exercise 6.7

R

Q2

R

R2

Figure 6.10 T-network schematic
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This methodology can now be extended to the PI configuration shown in Figure 6.11.
Here we assume that Q1, the Q factor of the first section to be matched, is known and
that R1 and R2 have already been specified. Then

X1 = (6.73)

and

= Q1
2 + 1 (6.74)

Thus

R = (6.75)

Again we check to ensure that the value of R calculated is greater than both R1 and R2.
If not, decrease Q1 and try once more.

Then compute

X31 = RQ1 (6.76)

Next find Q2 as

Q2
2 = − 1 (6.77)

Hence

X32 = R2Q2 (6.78)

X2 = (6.79)

and finally calculate X3 = X31 + X32.

R2

Q2

R2

R

R1

Q1
2 + 1

R1

R

R1

Q1

Figure 6.11 PI-section matching network
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Balun matching

If a centre-fed dipole antenna is fed with a parallel conductor transmission line, both
radiating elements are balanced with respect to each other. However, as is more norm-
ally the case, if the antenna is to be fed with a coaxial cable, a balanced feed no longer
exists, since one radiator is connected to the shield of the coaxial cable (normally
grounded), while the other end is connected to the coaxial cable inner conductor. This is
a problem, since on the side connected to the shield currents can flow down the outside
of the outer coaxial cable, thereby giving rise to secondary radiation. Thus the shielding
properties of the coaxial cable are lost. Antenna radiation far-field patterns can also
be distorted as a result of secondary radiation from the outer coaxial cable screen.

Circuits that minimise or disrupt this phenomenon are known as balun (balanced to
unbalanced) transformers. Their need comes from the fact that for most transmitting
equipment their final output stages have one side grounded (unbalanced), since with
this type of arrangement common-mode interference can be minimised.

A coaxial cable connection scheme for a dipole antenna is shown in Figure 6.12a.
With this arrangement, for dipole element A, current will flow in the centre conductor
of the coaxial cable and will be returned along the inner side of the coaxial screen, while,
for dipole element B, fed in anti-phase relative to ground with respect to element A,
a current is produced on the outer side of the coaxial cable screen. This causes a 
current imbalance in the system. If these two currents, i.e. the current on the coaxial
inner conductor and external screen surface are equal in magnitude, then since they
are in anti-phase they will cancel each other. However, the coupling of the fields between
inner conductor and outer shield is weak due to the presence of the shield, so total
cancellation cannot occur, and in fact only rather poor cancellation actually occurs.
The effect of this current imbalance is that residual current flowing on the coaxial 
conductor outer shield may be re-radiated, causing distortion of the normal far-field
radiation behaviour of the antenna.

Two possibilities exist for rectifying this problem. First, we could more strongly
couple the coaxial centre conductor to the outer shield of the coaxial cable, perhaps

6.4

Figure 6.12 Basic balun construction: (a) dipole connected to coaxial cable; (b) quarter-wavelength balun
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(in the extreme) by a short circuit placed between them. If directly implemented, how-
ever, this would inhibit the operation of the antenna. What we need is a more indirect
way of achieving the same result. This can be done by placing a secondary transmis-
sion line between the outer conductor and the centre conductor of the coaxial cable.
This section of line is short-circuited at one-quarter wavelength from element A in
Figure 6.12b; at this position, it is directly connected to the coaxial cable outer screen.
A quarter-wavelength section of line short-circuited at one end has the property that
at the other end it appears as an open circuit (see Section 6.6). Thus a physical con-
nection can be made between these positions that electrically does not disrupt the 
normal current and voltage distributions at radiating elements A and B (Figure 6.12b),
and the balanced current in the coaxial centre conductor is unaffected by the connec-
tion. However, unbalanced current on the outside of the coaxial screen, because of
the direct connection that now exists between it and the coaxial centre conductor, 
has an equal but opposite current flowing on the secondary conductor, which negates
its effect. At the position where the two are connected, (position c in Figure 6.12b),
the resultant current is zero since they are in phase opposition. As a result, no current
flows on the remainder of the transmission line outer conductor, so the rest of the inter-
connecting line has no effect on the system.

A shielded variant of the above approach is shown in Figure 6.13. Here an oversized
outer sleeve forms the outer conductor of a coaxial cable, while the outer conductor
of the inner coaxial cable forms the inner conductor of the oversized coaxial cable.
The open-circuit end at the antenna terminal inhibits unbalanced current flow on the
outside of the oversized coaxial cable conductor. Thus this conductor acts as a choke,
stopping the unbalanced current from affecting the rest of the line. With both of the
arrangements above, the presence of the quarter-wavelength transformer makes the
bandwidth of the system quite small, normally less than 5%.

For many applications, especially at lower frequencies, it is preferable to make 
a balun using a transformer and a series parallel connection of transmission lines 
(Figure 6.14). Here two lines, each with characteristic impedance Z0, are connected
in parallel at A–A′ and in series at B–B′. The two Z0 lines in parallel give an input

Figure 6.13 Shielded balun
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150 Chapter 6 • Antenna-matching techniques

impedance Z1 of Z0 /2, while the two Z0 impedances in series give a Z2 equal to 2Z0.
Thus the impedance ratio between the input and output of this structure is

= = 4 (6.80)

Therefore this type of configuration allows the possibility for a four-to-one impedance
transformation as well as balun action.

When wound as a coil as in Figure 6.15, the additional series inductance appended
by the coil winding acts to increase the decoupling between input and output; thus the
overall length for this arrangement is not critical, and the system can operate over a

2Z0

Z0 /2

Z2

Z1

Figure 6.14 Impedance-transforming balun

Figure 6.15 Torodial wire transformer
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relatively broad frequency range. However, in order for one side, A–A′, of this con-
figuration to be connected to ground, the arrangement must be such that the length of
the transmission line A–B is one quarter-wavelength long.

Many other balun configurations exist; see for example [39].

Power splitting/combining networks

In its simplest manifestation, if we want a high-gain antenna array with the main beam
pointing in the broadside direction, we need to feed all the elements with in-phase
excitations (Section 4.2). The array can have an amplitude taper if required in order
to shape the far-field side lobe response of the antenna array (Section 4.4). The basic
circuit building block for this type of array feed structure is the power splitter, or when
operated in receive mode the power splitter connections are reversed and it is used as
a power combiner.

The simplest power divider/combiner consists of a T junction (Figure 6.16a). 
The circuit shown in Figure 6.16a has poor isolation between ports 2 and 3 but is 
very simple. This arrangement can be improved on by using the circuit shown in 
Figure 6.16b, which is designed to match to the source and load of Z0 characteristic
impedance. Here we get a good impedance match between both output arms when 
the input is correctly matched. As before, this type of circuit has fairly poor isolation
between output ports whenever a mismatch exists at these ports. In addition, the 
resistors used in the T junction will increase the insertion loss of the circuit and will
also introduce additional noise into the system. An advantage of this type of circuit
is that, provided that resistors with low parasitics are used, the circuit should be extremely
broadband. Other lumped component variations of the power splitter/combiner exist;
see, for example, Figure 6.17.

The lumped hybrid power splitter circuit shown in Figure 6.17 is useful for 
monolithic realisation, where it can be designed for use at microwave frequencies. 
The structure has good impedance-matching properties and also good isolation. The

6.5

Figure 6.16 Simple power splitter/combiner types
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design equations for use in a system with Z0 characteristic impedance and equal power
split are as follows:

C = ; L = ; R = 2Z0

Distributed versions of this splitter called a Wilkinson power splitter/combiner are 
used at higher frequencies (Figure 6.18) [40] [41]. The power split can be made equal
(Z02 = Z03) or unequal (Z02 ≠ Z03), and the circuit can be made to match unequal imped-
ances [42]. By cascading stages, the bandwidth of the splitter/combiner can be made
broader [40]. The design equations for this arrangement are

= (6.81)

Here ∆ is used to represent the coupling factor between output ports:

Z02 = Z0[∆(1 + ∆2)]1/2 (6.82)

1

∆2

power at port 2

power at port 3

Z0

ω
1

2ωZ0

Figure 6.17 Lumped power splitter/combiner

Figure 6.18 Wilkinson power splitter/combiner
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Z03 = Z0 (6.83)

Z04 = Z0(∆)1/2 (6.84)

Z05 = Z0 /(∆) 1/2 (6.85)

R = Z0(1 + ∆2)/∆ (6.86)

This class of circuit is narrowband (typically 5% bandwidth) by virtue of the quarter-
wavelength matching sections used.

Consider now the design of a 3 dB 50 Ω Wilkinson coupler.

Solution

Since we have a 3 dB equal power split between ports 2 and 3, then using equation (6.81):

∆2 = = = 1

thus using equations (6.82) and (6.83):

Z02 = Z03 = Z0 2 (all lengths = λg /4)

and equations (6.84) and (6.85):

Z04 = Z05 = Z0 = 50 Ω

and finally equation (6.86):

R = 2Z0 = 100 Ω

Impedance matching and the Smith chart

The Smith chart was developed to assist in the solution of transmission line matching
problems [43]. The chart is a plot of normalised sending-end impedance (equation (6.93))
or admittance as a function of angle in a unit circle. The chart in impedance form is
shown in simplified form in Figure 6.19 and has the following key properties:

l The upper half of the normalised impedance chart represents resistance and induct-
ive reactance.

l The lower half of the normalised impedance chart represents resistance and cap-
acitive reactance.

l One revolution of the chart represents one half-wavelength distance travelled along
the transmission line, clockwise towards the signal generator, anticlockwise towards
the load.

l Points A and B represent short-circuit and open-circuit positions, respectively.

6.6

1

2

1

2

P2

P3

Exercise 6.8

(1 + ∆2)1/2

∆3
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154 Chapter 6 • Antenna-matching techniques

We know from Section 6.1 that a uniform transmission line terminated in its own char-
acteristic impedance will absorb or transmit energy without reflection. For maximum
power transfer to occur, a conjugate match between source and load impedances must
exist. Thus in order to match a complex load impedance to a transmission line with
given characteristic impedance (usually a real quantity), conjugate matching is required.

We wish to match an antenna with input impedance 40 + j30 Ω to a 50 Ω feeder line
using only a section of 50 Ω transmission line (assumed lossless) and a series react-
ance (Figure 6.20b). It should be noted that for multiport circuits, scattering or spara-
meters are often used to define port and port-to-port interaction (see Appendix 9.4).
Here, since we are working with one-port matching, we will use input impedance. We
can use the Smith chart shown in Figure 6.20a to facilitate a graphical solution to this
problem, i.e. to determine the element values of the required matching network.

Solution

The solution proceeds as follows: first, normalise the antenna input impedance to the
impedance of the feed line, normally 50 Ω.

= 0.8 + j0.6

Point A on the Smith chart in Figure 6.20a.

40 + j30

50

Exercise 6.9

Figure 6.19 Normalised impedance Smith chart, simplified
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Figure 6.20 Series impedance matching

(a)
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First we must select line length � such that the normalised real part of the input
impedance at A is unity. To achieve this, we draw an SWR circle through point A
and rotate it clockwise (towards the generator, since we are impedance matching the
generator) until it touches the unity conductance circle; i.e. since we are matching the
load to the generator, move towards the generator in a circle centred at (1.0, 0), which
passes through the 0.8 + j0.6 circle, until the 1.0 constant conductance circle is inter-
cepted, i.e. point B. Consequently, � must equal (0.152 − 0.124)λ = 0.028λ. At this
point, the normalised impedance is 1.0 + j0.7. The series value of j0.7 is inductive and
can be cancelled to achieve Zin = 1 + j0 by placing a capacitor of normalised reactance
value −j0.7 Ω in series with the section of connecting line. Hence, after denormalisa-
tion, at Zin we are left with a 50 Ω input impedance when looking into the antenna at
the frequency of interest. Thus we have synthesised the desired matching network.

As an alternative to impedance matching with lumped elements, we can also match
by using open- or short-circuited transmission line stubs.

By considering the same approach as was used in Section 6.1 for a uniform section
of transmission line, some very important and useful results can be obtained that will
ultimately facilitate the design of distributed matching circuits.

To see how matching using distributed circuits can be made to occur, consider 
equation (6.9):

= −ψ 2V

A working solution for this second-order differential equation is that the voltage or
current at any position x along the uniform line segment in Figure 6.1 is

V(x) = A exp(−ψx) + B exp(+ψx) (6.87)

or

I(x) = exp(−ψx) − exp(+ψx) (6.88)

where a + sign indicates a wave travelling in the negative x-direction and a − sign
indicates a wavefront travelling in the positive x-direction along the transmission line.
A and B are as yet unknown coefficients, which if necessary can be found by con-
sidering the transmission line boundary conditions. The −B coefficient in equation (6.88)
arises since from Figure 6.2 we know that the total transmitted current, It, through 
the interface between a uniform transmission line of characteristic impedance Z0 and 
mismatched termination ZT is equal to

It = Ii − Ir (6.89)

where Ii is the incident current and Ir is the reflected current at the interface, therefore
the terminating mismatch impedance ZT can be written using equations (6.87) and (6.88).
Hence at position x = �

ZT = = Z0 (6.90)
A exp(ψ�) + B exp(+ψ�)

A exp(−ψ�) + B exp(+ψ�)

Vt

It

B

ψ0

A

ψ0

∂2V

∂x2
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rearranging gives

= exp(−2ψ�) (6.91)

while at position x = 0 with reference to Figure 6.2b

ZS = = Z0 (6.92)

here ZS is the sending end impedance seen looking into the transmission line towards
the load, substituting equation (6.91) into equation (6.92) we get

=

+ tanh(ψ�)

hence = (6.93)

1 + tanh(ψ�)

From equation (6.93), it can be seen that if ZT = Z0 then no mismatch exists and the
sending-end impedance of the line, ZS, is equal to the characteristic impedance Z0 of
the transmission line, i.e. the line is matched and no reflection occurs.

If the line is lossy or has very little associated loss, then ψ = 0 and equation (6.93)
can be rewritten as

+ j tan(β�)

= (6.94)

1 + j tan(β�)

Now consideration of equation (6.94) shows that

ZS = ZT (6.95)

only when jtan(β�) = 0. This condition occurs only when β� = nπ, where n = 1, 2, 3,
etc. Also, since β = 2π/λg the above condition is equivalent to

� = (6.96)

This result shows that, when a half-wavelength section of transmission line is located
between a source and a load impedance, irrespective of its characteristic impedance,
the sending-end impedance is transformed to the source impedance, or vice versa. 
This result when plotted on a Smith chart indicates that one-half guide wavelength is
equal to a full 360° rotation on the chart, i.e. impedance values repeat every time a
half-wavelength section of very low-loss line (called a half-wavelength transformer)
is introduced between load and generator. This concept is useful when one is trying
to separate a source from a load for reasons of physical convenience while trying to
preserve the electrical transparency of the connecting circuit at a spot frequency.

nλg

2

JKL
ZT

Z0

GHI

ZS

Z0

JKL
ZT

Z0

GHI

JKL
ZT

Z0

GHI

ZS

Z0

JKL
ZT

Z0

GHI

[1 − exp(−2ψ�) + Z0[1 + exp(−2ψ�)]]

[1 + exp(−2ψ�) + Z0[1 − exp(−2ψ�)]]

ZT

ZT

ZS

Z0

A + B

A − B

Vs

Is

ZT − Z0

ZT + Z0

B

A
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Another very important property of the half-wavelength transformer is that it intro-
duces a 180° phase shift between its ends. This effect is very useful when designing
phasing harnesses for antenna array applications.

In equation (6.94), if β� is made equal to nπ/2 radians, i.e. � is an odd multiple of
a quarter-wavelength, where n = 1, 3, etc., then j tan(β�) goes to infinity, and

= (6.97)

from which

Z0 = (ZSZT)1/2 (6.98)

This is the condition for a quarter-wavelength transformer, the utility of which is 
that a low impedance can be matched to a higher impedance by placing a quarter-
wavelength section of transmission line of appropriate characteristic impedance given
by equation (6.98) between the source and load terminations that are to be matched.
Normally, quarter-wavelength transformers are used for matching impedances that have
had their reactive component neutralised, as was done for example in Figure 6.20. In
general, for a complex load, for this condition to be realised residual reactance can
be cancelled by using tuning stubs (see later in this section).

Like half-wavelength transformers, quarter-wavelength transformers are very frequency-
sensitive, hence narrowband. Techniques for making the quarter-length transformer
more broadband by cascading a number of appropriately designed sections are given
in [44].

Use transmission lines to design a matching harness with 50 Ω input impedance 
for two 75 Ω antennas to be co-phased in a half-wavelength separated array
configuration.

Solution

Use quarter-wavelength transformers to match a 75 Ω antenna impedance to 100 Ω.
We choose 100 Ω so that the two 100 Ω termination impedances combine in parallel
from a 50 Ω load impedance, which can then be transferred to a 50 Ω generator placed
some distance away. From equation (6.96)

Z0 = 752/50 = 112.5 ≈ 100 Ω

here for convenience we use standard 75 Ω characteristic impedance cable and accept
the resultant mismatch so that cost can be minimised. Combining impedances ZS in
parallel we get an input impedance Zin of

Zin = = 56.2 Ω

which results in a VSWR of 1.125.

(112.5)2

2(112.5)

Exercise 6.10

Z0

ZT

ZS

Z0
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Since two quarter-wavelength transformers have been used, the separation between
the antennas is one half-wavelength as stipulated.

The next important thing to know about distributed transmission line techniques 
is their use as tuning stubs for the purpose of cancelling out residual reactance in 
a circuit. Consider once again equation (6.93). This time, if the transmission line in
Figure 6.2 is terminated in a short circuit, i.e. ZT = 0, then

ZSSC
= Z0 tanhψ� (6.99)

and for an open circuit

ZSOC
= Z0 = (6.100)

Inspection of equation (6.99) shows that for a lossless line

ZSSC
= j Z0 tanβ� (6.101)

that is, the full range of inductive sending-end reactances from 0 Ω at � = 0 to infinity
at � = λg /4 are available. At � = λg /8, the reactance is a pure inductance and has the
value +j Z0 Ω.

Similarly, for equation (6.100) we can approximate a lossless line section as

ZSoc
= −j Z0 cotβ� (6.102)

That is, the full range of capactive sending-end reactances are available; e.g. at � = λg /8
the reactance is −j Z0 Ω.

This means that in practice lengths of open or circuit transmission line can be used
to synthesise capactive or inductive elements, which can be used as components in
distributed filters or as components in impedance-matching networks.

Using a transmission line network, match a dipole antenna with 73 − j25 Ω to a 50 Ω
low-loss balanced cable. The design frequency is 1 GHz, and the signal travels in the
cable at a velocity of 0.7 times the speed of light due to the dielectric filling of the cable.

Solution

Consider the Smith chart shown in Figure 6.21, in which f = 1 GHz, λ 0 = 30 cm, 
λg = 30 × 0.7 cm, Z0 = 50 Ω and ZL = 73 − j25 Ω. Low loss, hence attenuation is
approximately 0 dB.

1. Normalise Z� to 50 Ω:

Z� = = 1.46 − j0.5 (point A on the chart).

2. Since we are assuming zero loss, we can draw an SWR circle through point A 
(SWR = 1.75).

3. Convert point A to a normalised admittance value point B by rotating it by 180°,
so that y� = 1/z� = 0.65 + j0.25.

73 − j25

50

Exercise 6.11

Z0

tanhψ�
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4. Extend the radial line between A and B to the chart periphery and read off the 
wavelength generator scale the position of point C, 0.054λg (remember that we are
matching a load to the generator, so we will be moving towards the generator).

5. Next, note the circle described by the intersection of the SWR radial where it 
intersects unit conductance circle, point D, and extend a radial from the centre of
the chart through point D to point E on the chart periphery (0.146λg).

6. Note the distance along the chart periphery from C to E, i.e. � = 0.146λg − 0.054λg

= 0.09λg. This value gives the distance from the load to the stub along the trans-
mission line connection such that we will have unit normalised (to 50 Ω) plus some
residual reactance. We must now cancel this reactance. In order to do this, we must
work out the length of the stub needed to complete the design.

Figure 6.21 Stub matching
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7. To do this, we locate point D* (where * denotes the complex conjugate value of D),
and extend a radial from the chart centre through D* to point F on the chart peri-
phery (0.35λg).

8. If we wish to use a short-circuit tuning stub to obtain the desired match, then we
locate the short-circuit position, point G on the chart (0.25λg), and rotate clockwise
towards the generator until we reach point F. If we wished to use an open-circuit
stub, then we would start at point H (0λg) and rotate to position F in a clockwise
direction or simply add one quarter-wavelength line to the short-circuit solution.

9. Assuming that we require a short-circuited stub, we now translate periphery dis-
tances CE and GF to physical lengths:

�1 = CE = 0.1λg = 0.1 × 30 × 0.7 = 2.1 cm

�2 = GF = 0.01λg = 0.21 cm

Thus the resultant matching structure is as shown in Figure 6.22.

For more sophisticated examples of the use of the Smith chart, and for more complex
lumped and distributed matching scenarios, see references [43] and [44].

[37] Matthai, G.L., Young, L. and Jones, E.M.T., Microwave Filters, Impedance
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6.1 A parallel-wire transmission line is used to provide a balanced feed to a 
half-wavelength dipole antenna. If the characteristic impedance of the transmis-
sion line is 73 − j32 Ω at 100 MHz and the dipole has 73 Ω input impedance, 
calculate the magnitude and phase of the input current and the actual power 
delivered to the antenna terminals. You may assume that an AC signal of 10 V
RMS is used to excite the cable.

6.2 A 1 GHz frequency source is connected to the input of a cable with low loss.
The length of the cable is 3 m, and it is terminated with a load whose value is
identical to its own characteristic impedance. If the wavelength of the signal when
propagating along the line is 0.2 m, calculate the time delay from connection of
the generator to receipt of the signal at the other end of the cable. What is the
phase difference between the input signal, taken as being the phase reference,
and the output signal, once steady-state conditions have been reached?

6.3 A lossless transmission line has a characteristic impedance of 73 Ω and when
connected to a load exhibits a VSWR of 3.5. The distance between successive
voltage minima on the resulting standing wave on the line is 35 cm. Calculate
the value of the load impedance used to terminate the line and also calculate
the guide wavelength of the transmission line.

6.4 An antenna is to be designed to operate at 1 GHz and have an input imped-
ance of 73 Ω at that frequency. The signal source used to power the array has
a balanced output impedance of 50 Ω and is located 2 m from the array. Design
a quarter-wavelength transformer, using a parallel-wire transmission line to 
connect the generator and the antenna with minimum impedance mismatch. The
cable has a phase velocity which is 95% of that of free space.

6.5 What value of matched attenuator is required to reduce a VSWR of 4 to a VSWR
of 1.2?

6.6 Design a single-stage Wilkinson power splitter that provides 6 dB power 
division at 1 GHz. Assume that air-spaced coaxial cable is to be used to form
the transmission line elements of the splitter.

6.7 Design a resistive network that will provide 10 dB attenuation in a 50 Ω
system.

Problems
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6.8 Using simple network theory, design a reactive circuit that can be used to match
a 50 Ω generator to a 75 Ω load at 400 MHz.

6.9 Repeat exercise 6.8, but this time use a Smith chart to facilitate the design process.

6.10 Use the Smith chart to find the load reflection coefficient and VSWR along a
10 cm length of 75 Ω line that is terminated with a load impedance of 50 + j20
Ω. Find the impedance and admittance at the sending end of the cable and at 
a point 3 cm from the load. The line exhibits 3 dB/m loss, and the operating
frequency is 1 GHz. λg = 0.9λ 0.

6.11 By using a Smith chart, find the position and length of an ideal short-circuited
matching stub that will enable a 100 Ω characteristic impedance transmission line
terminated in a 150 − j200 Ω impedance to be matched to a 100 Ω generator.
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Basic antenna types

The number of different types of antennas that currently exist is bewildering, but most
are designed specifically to fit a pre-specified application. In this chapter, we will confine
discussion to a subset of available antennas. The discussion will be necessarily brief
and will not consider the subtleties of any of the generic types of antenna discussed
as these can be found in specialists texts given in the bibliography.

In order to address some of the major types of antenna element in current use, we
have confined the discussion to the following classes of antenna. First, the properties of
a small rectangular loop antenna such as could be used in electromagnetic near-field
sensing equipment is described. Then the complementary antenna to the straight-wire
dipole, the slot antenna, is discussed. This is followed by a description of the operation
of the Yagi antenna. This class of antenna is extremely important in a variety of UHF
and microwave applications where low wind loading and good electrical gain and polar
pattern requirements need to be addressed simultaneously. The area of planar printed
antennas is explored briefly by establishing the operating mechanisms and basic design
equations for a printed circuit board antenna type, the rectangular microstrip patch
antenna. Such antennas find use in many applications where low profile and adherence
to the mounting structure shape (conformal construction) are required.

Reflector antennas are covered next. For the simplest of these, the parabolic reflector,
we describe the properties of the parabola as a surface that can convert a plane wave to
a spherical wave on reception and that can focus this spherical wave to a single point;
the converse is true on transmission. This type of antenna finds wide application at
microwave frequencies, where as wavelength becomes small relative aperture size
increases, hence narrow beamwidth and attendant high gains can be readily achieved.
The fundamentals of helical antennas are discussed, and the conditions under which
a helical antenna will operate in axial end-fire radiation mode are given. Next the 
fundamentals of horn antennas are described, since they are simple to construct and find
application as calibration antennas in measurement test set-ups due to their predictable
gain and radiation performance. Wire-based travelling-wave antennas are described in

Chapter 7
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order to illustrate how non-resonant, travelling-wave antennas operate. This is followed
by a brief exposition on the properties of the planar inverted F or PIFA antenna. This
antenna is widely used in mobile wireless handsets. Dielectric antennas have small dimen-
sions due to the high dielectric constant of the material from which they are constructed,
and consequently they are of interest in applications such as hand-held PIFA antennas.
An additional feature of dielectric antennas is that depending on which antenna mode
is excited, different far-field radiation patterns suitable for terrestrial or satellite track-
ing using a single antenna are possible. Another interesting class of antenna, the reflect-
array, suitable for microwave and millimetre-wave applications, where element-fed losses
are high, is described. In addition, ultra-wideband planar spirals and compact multiband
fractal antennas are also discussed. It is hoped that consideration of these generic antenna
types will promote further independent research into the specific issues related to each
class of antenna structure discussed in summary in this chapter.

Small rectangular loop antennas

The idea of using opposing currents to cause field cancellation is a useful one in 
antenna work. This is illustrated by an analysis, using the techniques we have previ-
ously developed in Section 1.4, but applied this time to a small rectangular loop antenna.
Antennas such as these are useful for coupling energy into and out of cavities and
also for various field-sensing operations such as are required in electromagnetic com-
patibility measurement equipment.

In Figure 7.1, if �1 and �2 are small when compared with a wavelength of the radiated
energy, then we will model the current in each arm of the loop as being uniform and
in phase around the loop. In this way, we will consider the small loop antenna to be
an assembly of four Hertzian dipole antennas with known phase relationships. In Figure
7.1a, dipoles 2 and 4 are symmetrically placed with opposing currents flowing in them.
As a result, the electromagnetic fields produced completely cancel each other at all
points in the x–y plane. On the other hand, dipoles 1 and 3 produce field components
Eθ and Hφ in the x–y plane. From Figure 7.1b, the path length difference CB = �1 cosφ
metres, for which a phase difference ψ exists such that Ψ = 2π�1/λ cosφ + 180°, where
the 180° results from the currents in arms 1 and 3 being in antiphase. Hence the result-
ant electric field at some distance point P can be found by vector summation as

EθR
= Eθ cos

= Eθ cos cosφ + 90°

= −2Eθ sin cosφ (7.1)

if �1 << λ, then sin(α) � α for small α, and on using cosφ = j sinφ we get

EθR
= −2jEθ sinφ (7.2)
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Substituting this into the expression for the Eθ field for a Hertzian dipole (Section 1.2)
(we can do this since we have assumed that �1 is very small) we get

EθR
= 2 sinθ exp jω t − sinφ (7.3)

120π2I0�1
2 sinθ sinφ exp jω t −

= (7.4)

This expression has its maximum value in the equatorial plane, i.e. when θ = 90°;
also if �1 = �2 then �1

2 is equal to the area of the loop, i.e. A.
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Figure 7.1 Small rectangular loop antenna
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| EθRmax
| = sinφ (7.5)

By noting that

| HφRmax
| = (7.6)

we can calculate the power radiated from the small loop antenna by using Poynting’s
theorem (Section 2.3) as

P = EH sinφ

= sinφ (7.7)

from which the instantaneous power radiated can be found. We can write the instant-
aneous radiated power as

Pinst = �
0

π

�
0

2π

r 2(sinφ)2 sinφ dθ dφ (7.8)

Thus the average power level is

P = 2πr 2�
0

π

(sinφ)2 sinφ dφ (7.9)

= 160π4I0
2

2

(7.10)

from which the radiation resistance of the small loop antenna is determined as

Rrad = 320π4
2

(7.11)

which for a very small loop, say λ /10, gives a radiation resistance of only 3 Ω. This
result is in line with our expectation that electrically small circuits do not radiate 
effectively.

In order for this antenna to operate correctly, it is necessary for it to be connected
to a matching circuit. However, even when properly resonated its efficiency will 
be low, due to low radiation resistance and its ohmic losses (which have not been
included above). In general, for electrically small antennas, bandwidth can to a 
limited extent be traded for efficiency, such that a relatively efficient electrically 
short antenna will exhibit an extremely narrow bandwidth.

Slot antennas

If a slot is cut into a metal sheet, then the resulting aperture can be made to radiate
electromagnetic energy (Figure 7.2). This type of antenna can be considered as the
dual of a dipole antenna. Here the electric fields of the dipole antenna are swapped for

7.2
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168 Chapter 7 • Basic antenna types

the magnetic fields in the slot antenna. Using this duality concept, then from Section 3.1
the E and H fields for a half-wavelength slot antenna are given as

cos cosθ
Eφ = (7.12)

and

cos cosθ
Hθ = (7.13)

For this type of antenna to radiate, an electric field stimulus, E, should be placed to
provide a feed across the slot aperture. With this arrangement, the magnetic field 
is partially aligned along the slot edge. If the width of the slot W is made much less
than a wavelength, the long edges of the slot carry equal and opposite current so that
fields radiated from these edges act to cancel. If the slot length is λ /2, then at the short
edges of the slot the currents are in phase, but since the slot width is much less than
a wavelength these ends do not radiate efficiently. However, since the currents also
spread out over the metal sheet, then at some distance from the narrow slot edges the
vertical components of the H field in Figure 7.2 reinforce to give far-field radiation.
For efficient radiation, the extent of the ground plane should be at least one wave-
length around the slot; ideally it will be of infinite extent, although for reasonable polar
patterns an 8λ × 8λ or larger ground plane is often used.
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Figure 7.2 Slot in infinite ground plane
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The radiation resistance of the slot antenna, Rrads
, [45], can be expressed in 

terms of driving-point impedance and its dual, dipole antenna radiation resistance, 
Rradd

, as

Rrads
Rradd

= (7.14)

Hence

Rrads
= (7.15)

If the slot is short, then by duality with a short dipole (Section 3.4) and using equa-
tion (7.15), we can write

Rrads
= 180(λ /�)2 (7.16)

By folding the slot as shown in Figure 7.3, it is possible to lower the slot impedance
by a factor of 4, helping to facilitate impedance matching to a 50 Ω line.

It is possible to make the slot antenna radiate only on one side of the metal sheet
by reflecting energy from the other side back into the slot so that radiation in the 
forward direction can be reinforced. This is achieved by placing a metal reflecting
sheet a quarter of a wavelength behind the aperture so that the total path length 
from slot to reflector and back again is half a wavelength, thus cancelling any 
radiation in the unwanted direction [46]. This type of arrangement also increases 
the radiation resistance of the slot by a factor of 2. In addition, the directivity and
effective aperture of the slot are increased by a factor of 2 when this technique is
employed.

η0
2

4Rradd

η0

2

Figure 7.3 Folded slot antenna
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170 Chapter 7 • Basic antenna types

Yagi antennas

The Yagi or Yagi–Uda antenna, named after Hidet Sugu Yagi (1926), is a linear array
with only one driven element [47]. This is a very important antenna structure and 
is used in a wide variety of applications where a directional transmit or receive far-
field polar pattern is required. Consider the three-element transmitting Yagi antenna 
shown in Figure 7.4. Here, element 2, the driven element, is a half-wave dipole antenna.
Element 1 is arranged to be slightly longer than element 2 in order to accommodate
the inductive reactance caused by the mutual coupling due to the 0.25λ spacing between
elements 1 and 2. The other elements are shorter than the driven element since they
are at a spacing of greater than 0.25λ, typically 0.37λ. This makes these elements appear
capacitive, and they function as signal directors.

Consider now a simple Yagi array with one driven element and an undriven second
element acting as either a reflector or as a director; in general, the undriven element
is called the parasitic element (Figure 7.5). From the figure, it can be seen that the
voltage induced in element 2 due to the presence of current flowing in the resonant
element, element 1, is (Section 4.6)

V2 = −I1Z12 (7.17)

where Z12 is the mutual coupling between the element, and the negative sign indicates
that the voltage induced in element 2 is in phase opposition to that in element 1.

If element 2 is longer than element 1 by an appropriate amount, i.e. inductive, the
current in it, I2, will lag E2 by some angle, φ, hence it will lag I1 by 180° − φ and so
will act to produce end-fire operation.

If element 2 is shorter than element 1 by an appropriate amount, i.e. capacitive,
then I2 will lead E2 by φ and hence will lag I1 by 180° + φ, so that the direction 
for end-fire is reversed with respect to the previous case, i.e. maximum radiation is
directed from element 1 to element 2. Here the parasitic reflector acts as a director;

7.3

Figure 7.4 Three-element Yagi array
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in the previous case it acted as a reflector. The spacing between elements is usually
between 0.15 and 0.25λ.

The primary advantage of the Yagi arrangement over an end-fire array is that 
the feed arrangement is very simple. If the parasitic element is made to be reactive
then little power is wasted in it, and it can be directly attached to a metal supporting
mast without the need for insulation. Consequently, very little current will be induced
in the mast, which simplifies the installation arrangements needed for this type of 
antenna.

As more parasitic director elements are introduced into the antenna, they are gradu-
ally shortened as we move away from the driven element so that they have greater
reactance; thus correct phasing of the parasitic component can be ensured so that directed
end-fire radiation is guaranteed.

With reference to Figure 7.5, if the impedance of the driven element is

Zd = (7.18)

where V1 = Z11 I1 + Z12 I2 , then

Zd = = Z11 + Z12 (7.19)

Then, since element 2 is parasitic,

V2 = 0Z21 I1 + Z22 I2 (7.20)

Hence

= (7.21)

Thus

= Zd = Z11 − (7.22)
Z12 Z21

Z22
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Figure 7.5 Two-element Yagi array
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Now from Appendix 9.2 for a reciprocal network with equal terminating impedances

Z12 = Z21

thus

Zd = Z11 − (7.23)

This result shows that the input impedance of the Yagi antenna is reduced by the 
factor Z12

2/Z22 relative to the self-impedance of the driven element. Hence the radiation
resistance of the driven element has been lowered and a reactive component intro-
duced. The reactive part is normally compensated for by making the driven element
slightly longer or shorter than the resonant length, depending on whether the excess
reactance is inductive or capacitive.

With a two-element Yagi, about 3 dB gain over a half-wavelength dipole can be
obtained with a front-to-back ratio of about 12 dB. The introduction of additional 
parasitic elements further increases the gain of the Yagi antenna [47].

Rectangular microstrip patch antennas

Many applications require antennas that are capable of conforming to the shape of the
surface on to which they are mounted or that for aesthetic or wind-resistance criteria
need to have a planar profile. In such applications, microstrip patch antennas are a
useful low-cost route, since they can be manufactured using standard printed circuit
techniques [48]. On the negative side, they have low radiation efficiency and narrow
bandwidth (typically only a few percent).

A microstrip patch antenna normally consists of a thin metal patch separated from
a ground plane by a low-loss dielectric material. The far-field radiation from the patch
antenna is directed normally to the patch surface. The length of the patch, L, is nor-
mally chosen to be approximately one-half guide wavelength; this parameter controls
its operating frequency. The width of the patch, W, controls its radiation resistance;
typically, W is selected to be just under one half free-space wavelength [48]. Figure
7.6a shows the arrangement. For the simplest mode of excitation, TM010, Figure 7.6b
shows that in the y-direction, the electric fringe field components sum, while in the
x-direction they cancel. The y-directed field component constitutes the radiated field
from the patch antenna. Using the coordinate system of Figure 7.6a, we define the field
distribution shown in Figure 7.6c. Examination of this diagram shows that the mag-
netic surface current vectors cancel along each side of the patch in the y-direction and
reinforce in the z-direction. Thus under ideal conditions in the TM010 mode, the antenna
is said to radiate along edges, W, and have no radiation from edges, L.

The thicker the substrate selected combined with the lower the dielectric constant
of the material used, the better the performance of the antenna will be in terms of
bandwidth. The penalty paid for this is the larger size of the antenna. In addition, it
should be noted that surface wave losses (energy will be lost to the substrate) will
increase with increased substrate thickness, resulting in reduced antenna efficiency and
distorted far-field radiation patterns [49].

7.4

Z12
2

Z22
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The principal approach used for feeding the antenna is to use a microstrip feed-
line attached to the radiating edge of the antenna, or tapped internal to it, in order 
to facilitate impedance matching. Alternatively, a coaxial connection can be made 
internal to the radiating patch (Figure 7.7). Impedance matching for the microstrip feed
line approach is available by modifying both line width and tap-in position but for 
the coaxial case by modifying tap-in position only. The use of the microstrip feed-
line solution may impact on the cross-polarisation performance of the antenna, since
higher-order modes generated by the connection of the feedline to the patch may cause
spurious radiation to occur.

The simplest method used that allows the design of a rectangular microstrip patch
antenna is the transmission line model [49]. This model is represented in its simplest
form in Figure 7.8. Reference [50] gives a useful refinement of the model where mutual
coupling between end slots is taken into account. Here each of the antenna radiating
edges is represented as a slot antenna (see Figure 7.9, which is drawn with reference
to Figure 7.6a). The slot reactance is jB and its conductance is G for physical width
W and substrate thickness, h, see Figure 7.8).

The fringing fields at the slots are accounted for by using an effective dielectric
constant value, εeff, in the antenna calculations. This leads to the requirement for a
slight foreshortening of the physical length of the antenna by an amount, ∆�, to pre-
serve the correct resonant frequency by virtue of the patch being half a wavelength
at resonance in order to phase the slot radiation as shown in Figure 7.6b.

Figure 7.6 Microstrip patch antenna TM010 mode
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Under these conditions, an approximate design for the rectangular patch antenna
follows from [49] as

L = − 2∆� (7.24)
2 εeff

where, approximately,

εeff = + 1 +
−1/2

for W/h > 1 (7.25)
JKL

12h

W

GHI
εr − 1

2

εr + 1

2

λ 0

Figure 7.7 Microstrip patch antenna feed arrangements

Figure 7.8 Microstrip patch antenna: transmission line model with variable tap-in point, z
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∆� = 0.412h (7.26)

and empirically for near optimum radiation:

W = (7.27)

with the input admittance presented along a radiating edge, at resonance, at tap-in point,
Z, given as [51]. Using Figure 7.8, it is possible to select a position internal to the
patch, z, such that an impedance match is facilitated, (c.f. Figure 7.7); this is achieved
using equation (7.28) [52].

Yin (Z) = 2G[cos2(βZ) + sin2(βZ) − sin(2βZ)]−1 (7.28)

Where the radiation conductance G is, for small h

1 −
G = (7.29)

Other useful parameters are

Z0 = + 1.393 + 0.667 loge + 1.444
−1

(7.30)
εeff

and

εeffjB ≈ jk0 ∆� (7.31)

also

Y0 = 1/Z0, β = 2π εeff/λ0 (7.32)
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Figure 7.9 Microstrip patch antenna radiating slot definitions
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It should be noted that transmission line models also exist that allow arrays of rect-
angular microstrip patch antennas to be designed [53]. In addition, other modelling
techniques and shapes of microstrip patch radiating elements are available [54] that can
give the designer additional flexibility or other advantage in a particular application.

The far-field radiation patterns for this type of antenna can be found from the analysis
of radiation from the equivalent slot antennas formed along the radiating edges W
of the microstrip antenna (Figure 7.9). This is achieved by assuming the field dis-
tribution along the slot as given in Figure 7.6c, i.e. a uniformly illuminated aperture
(see Section 4.3), which for two slots placed L apart from each other gives the E-
plane cut, x−y plane (θ = 90°; 0° ≤ φ ≤ 180°) radiation pattern as

sin

E(φ) = (7.33)

and the H-plane cut y–z plane (φ = 90°, 0° ≤ θ ≤ 180°) as

sin cosθ
H(θ) = sinθ (7.34)

cosθ

where k0 is the free space wave number 2π/λ0.
The directivity, D, of this arrangement is approximately [7.6]

D = 6.6 W << λ0 (7.35)

D = 8 W >> λ0 (7.36)

and half-power beamwidths for the E and H planes are approximately

θE ≈ 2 cos−1 (7.37)

θH ≈ 2 cos−1 (7.38)

Here it has been assumed that the antennas are printed on to an infinitely large flat
ground plane. Finite ground and curved ground planes will lead to a variety of pattern
aberrations [52].

Consider now a design example. Let the design frequency be 1 GHz, the dielectric
constant of the substrate material be 2.36 and h = 0.15 mm. Then, using equations

Exercise 7.1
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(7.24), L = 9.6 cm, and (7.27), W = 11.93 cm, and at the radiating edge, z = 0, after
equation (7.28):

Yin(0) = 2G = 0.66 mS

giving

Zin(0) ≈ 1515 Ω

Note: The material in this section is based on Microstrip Antennas by I.J. Bahl and P.B. Bhartia,
Artech House, Norwood, Mass., USA; www.artechhouse.com. Reprinted with permission.

Reflector antennas

As frequency increases wavelength decreases, hence it becomes possible to construct
antennas that are of moderate physical size but that are electrically large with respect to
a wavelength. This allows the possibility of constructing antennas with a large aperture
(c.f. Section 4.3), hence with high gain and narrow beamwidth. This type of radiation
behaviour allows the antenna to be deployed in radar and point-to-point microwave links.

A very convenient way of achieving this behaviour at microwave frequencies is to
use shaped metal reflectors. We will now show below that if an aperture (i.e. a plane
area through which the antenna energy is transmitted or received) has a maximum
dimension D in any given plane, then the minimum angle θ (radians) in which 
radiated or received energy can be focused in that plane is approximately

θ ≈ (7.39)

One of the best ways to obtain a narrow beam for a given aperture is to use a parabolic
metal reflector (Figure 7.10). This type of reflector has the property that a point source
placed at its focus will produce a plane wavefront at some distance from the antenna
(along line XX′).

In order for this to occur, it is necessary that the distance along each path to the
aperture plane is constant:

EO + OF = EA + AD = EB + BC = etc.

Rotation of the parabolic section in Figure 7.10 about axis OF generates the para-
boloid surface. Such a surface will in principle generate a parallel beam when excited
with a source of spherical waves placed at its focus. We will show below using array
theory that the ideal situation calculated above by geometrical optics considerations,
i.e. a perfectly collimated beam, does not in fact occur and as a consequence there
will be some beam divergence.

We showed previously in Section 4.2 that for a linear array of n isotropic elements
the resultant electric field vector E can be found as

E = E1 (7.40)

where E1 is the field from an individual point source.

sin((nπd/λ) sinθ)

sin((πd/λ) sinθ)

λ0

D

7.5
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For a large number of point sources the beamwidth will be narrow, so sinθ in 
equation (7.40) can be replaced with θ, so that at the position of the first nulls

sin θ
≈ 0

sin θ

θ ≈ ±π

θ ≈ ± radians (7.41)
λ
nd

nπd

π

nπd

λ

nπd

λ

Figure 7.10 (a) Parabolic reflector; (b) ray diagram
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If the field distribution is continuous across the radiating aperture, then n tends to infinity
and d tends to zero, so that nd = a; thus equation (7.41) becomes

θ ≈ ± radians (7.42)

Hence the larger the aperture the narrower the beam that is formed.
At boresight (i.e. when θ = 0), maximum field strength occurs and E becomes 

Emax = nE1. Consequently, using equation (7.40), the field strength relative to the 
maximum is given by

sin sinθ
E = (7.43)

sin sinθ

Now as d tends to zero and using small angle approximations

sin sinθ
E = Emax (7.44)

sinθ

for a rectangular aperture distribution, dimensions a × b (Section 4.3). Using the same
procedure used to obtain equation (7.44) (see also Section 4.2), we can derive the total
electric field as

sin sinθ sin sinφ
E = Emax (7.45)

sinθ sinφ

Now, since the gain of an antenna, G, (Section 2.4) is defined as

G =

we can calculate gain relative to an isotropic radiator (Section 2.4):

G = (7.46)

If the aperture is large, θ and φ become small, so cosθ tends to unity and sinθ and
sinφ become θ and φ, respectively. Therefore, equation (7.46) becomes

G = (7.47)
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Since the beam is narrow (large aperture) then contributions at angles greater than
those defining the main beam will be small. This means that the integral in equation
(7.47) can be replaced by the standard integral:

�
∞

−∞

dx = π

Hence equation (7.47) becomes

G =

making the gain of a rectangular aperture relative to an isotropic source

G = (7.48)

This expression is generally true for any uniformly illuminated aperture and can be
written as

G = area of aperture (7.49)

From this, it can be seen that the larger the aperture the greater the gain of the 
antenna.

For a circular aperture of diameter D, the area of the aperture is πD2/4, giving a
gain of (πD/λ)2 relative to an isotropic source or dividing by 1.63 (see Section 3.5).
The gain for a circular aperture of diameter D relative to a half-wave dipole becomes

G = 6
2

(7.50)

Since the dimensions of the feed used to illuminate a reflector antenna are not 
negligible compared with the aperture of the antenna, the point source approximation
suggested by Figure 7.10 is not entirely accurate and consequently the beam formed
by the parabolic reflector will be divergent. Thus the polar pattern will exhibit a 
narrow main lobe with small side lobes. In addition, with practical feed networks the
provision of perfect uniform illumination is impossible, and some energy spills over
the edge of the reflector and is lost, thereby reducing the efficiency of the antenna.

A simple feed network for a parabolic reflector antenna is shown in Figure 7.11. Here
a two-element dipole arrangement of the type suggested in Section 7.3 is used with a
reflector element to direct radiation from the dipole towards the reflector (Figure 7.11a).
This feed arrangement produces a half-power beamwidth that is approximately 25%
greater than that of a circular parabolic reflector. This leads to gain reduction of around
35% on that predicted by equation (7.50). However, this tapering of illumination can
be used to advantage to provide side-lobe reduction of up to 20 dB (see Section 4.4);
this arrangement also requires a balun (Section 6.4).

The focal length of the parabolic reflector is also of importance (see Figure 7.11b). If
the focal length is small, thereby forcing the feed to be positioned inside the aperture
(Figure 7.11b (i)), then uniform illumination will be very difficult to achieve. With

D
F

D

λ
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C

4π
λ2

4πab

λ2

4π
λ2/ab

sin2x

x2
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the focus placed outside the aperture, feed radiation spillover is difficult to prevent
(Figure 7.11b (ii)). The focal length feed configuration that yields maximum gain is
when the focus is placed at the aperture (Figure 7.11b (iii)).

Other types of arrangement that use waveguide feeders are popular. In many 
cases, these take the form of a waveguide flared at the end into a small horn antenna
(Section 7.7). The feed arrangement can be offset from the reflector to prevent aperture
blockage by the feed.

In addition to parabolic reflectors, a reflector can have its shape deformed in order
to produce specialised radiation patterns. Such beam-shaped antennas find use in a
variety of applications, including radar, remote sensing and direct broadcast radiation
footprint design. In addition, by varying the position of the feed network relative to

Figure 7.11 Parabolic feed arrangements: (a) dipole feed; (b) feed positions
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the focus of the parabola, it is possible to scan the beam produced by the antenna.
These and other considerations related to reflector antennas are discussed in more 
detail in reference [55].

Helical antennas

Helical antennas are formed by winding a helix or helices from a single or multiple
conductor. This type of antenna is a natural choice for producing radiation that is 
circularly polarised. The antenna operates by setting up travelling waves on the 
conductors forming the helix. This class of antenna exhibits other useful operational
features, such as nearly real input impedance and wide bandwidth.

The helix can radiate in a number of different modes (Figure 7.12). Of these, the axial
mode in Figure 7.12b is widely used for point-to-point communication as it provides
focused radiation along the z-axis. This mode occurs when the helix circumference 
is about one wavelength long. When the helix circumference is small relative to the
operating wavelength, normal-mode radiation occurs (Figure 7.12a). This mode of 
operation is useful in mobile communications equipment such as telephone handsets.
Higher-order modes such as the conical mode in Figure 7.12c occur when the circum-
ference of the helix is greater than a wavelength.

Figure 7.13 defines the helix geometry used in this section. The following depend-
encies exist for the parameters shown in Figure 7.13 for a cylindrical helix.

L2 = (πD)2 + S2 (7.51)

α = tan−1 (7.52)

� = nS (7.53)

where n is the number of turns and S is the pitch of the helix.
The helix can of course be flared to form a conical helix with an increasing or 

decreasing flare angle in order to alter its performance; for more detail see [56]. Due
to the complexity of this situation, this aspect will not be further discussed here.

S

πD

7.6

Figure 7.12 Helical antenna operating modes: (a) normal (omnidirectional) mode; 
(b) axial mode; (c) conical mode
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Consider now the condition necessary to realise axial radiation. The relative strengths
of axial versus normal-mode radiation for a helical antenna are discussed in consider-
ably more detail than the treatment given here in [57]. Consider a single turn of the
helix in which α in figure 7.13a is set equal to zero, i.e. a circular loop (Figure 7.14).
Assume that a standing wave has been set up on the turn with an antinode at x = a. For
L/λ << 1 and L/λ = 1, the x and y components of current can be sketched (Figure 7.15a
and b), respectively. In the L/λ << 1 case, the current distribution is almost constant
around the loop. Thus from Figure 7.15a:

−IxA
= IxC

(7.54)

−IxB
= IxD

(7.55)

Figure 7.13 Simple helix geometry

Figure 7.14 Single-turn geometry
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Hence there can be no x component of the E field and the resulting radiation is lin-
early polarised with its E field vector parallel to the y-axis.

For the L/λ = 1 case (Figure 7.15b)

IyA
= IyC

= IyB
= IyD

(7.56)

and for L/λ << 1

IyA
= IyC

= −IyB
= −IyD

(7.57)

Hence we would expect that the axial radiation for the L/λ << 1 case should be less
than for the L/λ = 1 case.

Consider the radiation field for a single loop as defined in Figure 7.14. Following
the procedure adopted in Section 1.4, we can find the radiation in the axial direction
as [57]

Ey = e−jkz 2�
0

π

cos(maφ) cos(φ)a dφ

= e−jkz (ka)2 (7.58)

Here I0 is the maximum current on the loop and a is its radius, Figure 7.13a.
For L/λ = 1, equation (7.58) becomes

Ey = e−kz (7.59)

assuming a cosine current distribution necessary for the standing wave condition 
mentioned above. Along φ = 90°

π
2

60 I0

z

sinπka

(1 − (ka)2)

60I0

z

30kI0

z

Figure 7.15 Loop current distributions
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Ey = e−jkz�
0

π

cosφ sin(sinφ) sinφ dφ = 0 (7.60)

Comparing equation (7.60) with (7.59) shows that for L/λ = 1 the radiation in the axial
direction is much stronger than that in the direction normal to the axis. For other angles
of φ ≠ 90°, the value of the normal field will increase. However, for an assumed cosine
distribution it never rises above 0.65 times the axial field value [57].

The field in the plane normal to the axial direction is further attenuated when a ground
plane is introduced, as in Figure 7.12. Essentially then for the axial mode to be formed
in a helical structure, the current in each segment of each turn must be suitably phased
for end-fire radiation to occur; for example, see Section 4.7. Hence if the spacing between
turns, S (Figure 7.13a), is approximately λ /4 the phase of the second element should
lag by λ /4. This condition can be met by making the length of the turn (λ + λ /4).
Hence a pitch of λ /4 and a turn length L of 5λ /4 should give a usable antenna. Since
the λ /4 condition is only approximate due to mutual coupling effects, let the length
be �′. Thus the diameter D of the helix can be written using equation (7.51) as

D = − (7.61)

(1 + �′)2 − �′2 1 + 2�′
= = (7.62)

With this type of antenna, the axial mode can be maintained over a frequency range
of typically 1.7:1 without significant perturbation of the far-field pattern.

Empirical equations that approximate the characteristics of a single-wire helical antenna
consisting of n turns when operated in axial mode are listed below [56].

l the half power angle:

2θ3dB = degrees (7.63)

l the angle to the first zero in the polar pattern:

2θ0 = (7.64)

l the gain of the antenna:

G = 15
2

n (7.65)

l the input impedance of the antenna:

Zin ≈ Rin = 140 (7.66)
L
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Horn antennas

It is possible to construct an antenna by flaring the aperture of a rectangular to circular
waveguide such that the impedance of the waveguide is made to match that of free
space. A rectangular waveguide can be made to flare in the E plane (sectorial E-plane
horn) or the H plane (sectorial H-plane horn) with a rectangular aperture, or in both
E and H planes (pyramidal horn) with a square aperture (Figure 7.16). In a horn antenna,
the wavefront near the horn can be shown to be spherical [58].

Sectoral H-plane horns give slightly wider beamwidth than sectoral E-plane types.
This is mostly due to the near uniform E field distribution that can be obtained over
the aperture in the sectoral E-plane horn antenna. Unfortunately, for all types, since
the length of the taper �T (Figure 7.16) is greater than the open end of the aperture,
a phase distribution across the aperture occurs. This results in gain reduction due to
increased side-lobe production.

As with a reflector antenna, the larger the radiating aperture the larger the directivity
and unwanted non-uniformity in the phase distribution across the aperture. For a 
pyramidal horn antenna, the power gain G is given approximately as

G = (7.67)
7.5A

λ2

7.7

Figure 7.16 Basic horn antenna types: (a) E-plane horn; (b) H-plane horn; (c) pyramidal horn
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Straight-wire travelling-wave antennas 187

and its 3 dB beamwidth B is

B = λ /d radians (7.68)

where A is the area of the horn antenna aperture, and d is the aperture width in the
plane of the beamwidth measurement.

Since this type of antenna is easy to fabricate, can have large gain and is easy to
feed, it tends to be used as a favoured antenna type for calibration standards by which
other high-gain antennas are characterised. The design procedure by which the dimen-
sions for a standard-gain horn antenna can be calculated are given in reference [58].
In [59], detailed design nomographs are given, which greatly facilitate the practical
design of rectangular horn antennas.

Straight-wire travelling-wave antennas

Resonant antennas have narrow bandwidth operation, typically only a few percent.
When there is a need for wider bandwidth operation, a non-resonant or travelling-wave
antenna affords a possible solution. In this solution methodology, the antenna ideally
operates with a uniform current distribution and progressive phase lag along its length.
To see what effect these conditions have on the radiation characteristics of a straight
wire isolated from ground plane effects, consider Figure 7.17. Here the antenna is excited
by a generator, producing current. Residual power at the end of the wire that has not
been radiated is arranged to be absorbed in a matching resistor R to prevent its reflection
and unwanted subsequent re-radiation.

If we assume that the straight wire in Figure 7.17 is comprised of many elements
of length dx, then from equation (7.69), valid for an elementary Hertzian dipole 
(Section 1.2), we can write

dEθ = (7.69)
60π I0 e−jβx dx sinθ

λr

7.8

Figure 7.17 Straight-wire travelling-wave antenna
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where I0 is the RF current produced by the generator, and β = 2π/λ is the current lag
per unit along the wire.

If we assume that the generator, located at position 0 in Figure 7.17, represents the
reference phase position, the radiated field associated with element dx will be
(2πx/λ) cosθ, or βx cosθ with respect to the reference position. Hence the total field
can be obtained by integrating equation (7.69) over the entire length of the straight
wire, � (see equation (7.70)).

Eθ = �
0

�

e jβx cosθ dEθ (7.70)

= �
0

�

e −jβxe jβx cosθ sinθ dx

= �
0

�

e −jβx(1−cosθ ) dx

= − [e −jβx(1−cosθ )]�
0 (7.71)

= [e −j(2π�/λ)(1−cosθ ) − 1] (7.72)

Hence

| Eθ | = sin (1 − cosθ) (7.73)

Equation (7.73) can then be used to obtain the polar pattern for the straight single-
wire travelling-wave antenna. Figure 7.18 shows a typical pattern for the cases when
the length of the wire, �, ranges from 0.5λ to 4λ. From these patterns, it can be seen
that the antenna is radiating end-fire with a null in the forward, θ = 0, direction. As
the length of the wire increases, the main lobe becomes narrower and is directed at a
shallower angle θ.

π�

λ
sinθ

(1 − cosθ)

60 I0

r

sinθ
(1 − cosθ)

60πI0

2r

sinθ
(1 − cosθ)

60πI0

λβr

60πI0

λr

60πI0

λr

Figure 7.18 Far-field patterns for travelling-wave radiator
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For a single-wire travelling-wave antenna of the type illustrated in Figure 7.17, 
it is necessary to ensure that the end of the terminating resistance not connected to
the straight wire is made to be at a low impedance with respect to its surroundings;
this can be achieved by connecting it to a quarter wavelength stub. Otherwise, a 
second wire is needed to provide a ground return path. The presence of this second
wire will affect the behaviour of the single-wire antenna in a similar fashion to 
that reported in Section 4.8 for a dipole antenna placed over a conducting ground 
plane.

Another alternative for travelling-wave wire antennas exists in which the return 
conductor is deformed such that a rhombus is formed (Figure 7.19). Here four
straight-wire travelling-wave antennas fed by a balanced line are arranged so that the
wires are far enough apart that each wire produces a radiation characteristic such as
that shown in Figure 7.19. Here the wire separation is such that lobes A, B, C and 
D reinforce to give additional gain. Lobe pairs E and F and G and H are designed 
to cancel each other. Resistor A connected between points C and C′ absorb residual
energy, and the structure is held above a ground plane on insulated supports. Due to
the low angle forward lobe formation, such structures have been traditionally used for
low-frequency long-distance communications, where a low angle of incidence signal
occurs due to ionospheric reflection [55].

The design of this type of antenna consists of optimising three main parameters:
height h, length � and tilt angle φ (Figure 7.19). Height h mainly controls the eleva-
tion angle θ, and � and φ control the maximum gain available from the antenna in
association with h.

If we make θ = 90 − φ, then equation (7.73) can be used to establish the con-
tribution of wire AB, in Figure 7.19, along the main axis. The contribution from 
A′B′ will be the same and in phase with that from AB, since the currents at equi-
valent positions in the two wires are in antiphase. Hence twice the field strength 
predicted by equation (7.19) will occur due to the constructive contributions of 
wires AB and A′B′. For non-optimal values of θ, the principal lobe in the horizontal
plane will broaden, and eventually addition with a partial null along the main axis
will occur.

Figure 7.19 Four-wire travelling-wave radiator rhombic antenna
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Since the current at B lags the current at A by 2π�/λ and the current at B′ lags by
another π radians because it is in antiphase, and in addition, since B′C′ is (2π�cosθ)/λ
closer to observation point P in Figure 7.19 then the field at P due to AB and BC′ is

+ π − (7.74)

Therefore, if EAB is the field due to lag AB, then the resultant field will be

2EAB cos1/2 + π − + π − (7.75)

hence the factor by which the contribution from wire AB must be multiplied to give
the field from AB and B′C′ and similarly for A′B′ and BC combined is

2 sin (1 − cosθ) (7.76)

Thus the total field strength, E, along the main axis is obtained by using equations
(7.73) and (7.76):

Eθ = sin (1 − cosθ) 2 sin (1 − cosθ) (7.77)

= sin2 (1 − cosθ) (7.78)

or

Eθ = sin2 (1 − sinφ) (7.79)

Here the factor of 4 (i.e. 4 × 60) signifies the contribution from all four wire elements
comprising the array. When equation (7.79) is plotted against φ for various values of
�, the optimum tilt angle for maximum gain along the boresight can be obtained.

Planar inverted-F antennas

Figure 7.20 shows the basic configurations of L and F antenna types. These antennas,
which offer low profile and narrow bandwidth, are widely deployed in cars and air-
craft. In the L antenna (Figure 7.20a), the vertical section provides a short monopole
antenna, which is capacitively loaded to produce a more uniform current distribution
(Section 3.4), typically h + � << λ/4. The presence of the capacitive wire reduces the 
height of the monopole while creating a lower resonant frequency than could other-
wise be obtained for a short monopole of the same height. With this type of antenna,
the vertical section produces omnidirectional radiation, with only minor radiation 
occurring from the horizontal section due to image cancellation (Section 3.4).

In the F antenna (Figure 7.20b), the addition of section AB to the L antenna 
permits a means for impedance matching by inductive tuning of the antenna; typically 
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h + � ≈ λ /4 and d << λ. Such an antenna can be implemented in microstrip without the
need for a balun. When printed on to a substrate with εr > 1, then size can be reduced.
With this antenna, parasitic elements can be added to provide an increase in band-
width or to introduce dual- or multiple-band frequency operation. With the arrangement
shown in Figure 7.20c, radiation is omnidirectional. The Q factor is also lowered when
compared with a resonant microstrip antenna, hence bandwidth is larger.

For mobile handset applications, the F antenna is modified to form a printed F 
(Figure 7.20c) or a planar inverted-F or PIFA antenna (Figure 7.21). The size and radi-
ation characteristics of this type of antenna make them attractive for mobile handset
applications, since they can be readily incorporated into the handset case, which provides

Figure 7.20 Inverted antennas: (a) L type; (b) F type; (c) printed F

Figure 7.21 Basic PIFA antenna: h << l and � + h ≈ l/4
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a finite ground plane and which in turn leads to preferential radiation away from the user.
This is considered to be a desirable feature in a personal mobile wireless handset.

The impedance bandwidth of the PIFA antenna is related to height, h, of the resonat-
ing patch above the ground plane; the greater the value of h the larger the radiation
bandwidth of the PIFA. The PIFA radiates both vertical and horizontally polarised
signals, again an attractive feature for handheld mobile applications, where the pre-
cise orientation of the antenna cannot be guaranteed. Dual- and triple-band variations
have been reported [60], and the impedance bandwidth of the basic PIFA on a small
ground plane can be as much as 10%.

Dielectric resonator antennas

A dielectric resonator consists of a three-dimensional geometrically regular shape of
ceramic material with a high dielectric constant, typically εr ≈ 40. Due to the large
discontinuity between the inside and outside of the resonator, normally air εr = 1, reflection
of energy at the interface occurs, and there are a variety of resonant modes. When
operated without a shielding enclosure, sufficient energy is lost from the resonator to
make them useful as an antenna. The actual mode type depends on the size and shape
of the resonator, which is usually hemispherical, cylindrical or rectangular, and also
on the method and frequency of excitation selected. The primary advantages of the
use of a high-permittivity dielectric as a radiating element are that the material losses
are low, consisting only of dielectric losses; the antenna can also be miniaturised, since
the dielectric wavelength is proportional to 1/ εr times the free-space wavelength. 
In addition, this type of antenna can have high radiation efficiency, since it does not
suffer from conductor or surface wave losses.

A further significant advantage occurs because resonators can support several dif-
ferent modes; hence, in principle, various radiation patterns for different applications
can be realised with a single antenna, depending on how it is excited. Consequently,
far-field radiation patterns can be made to be broadside or omnidirectional, the actual
quality of the far-field pattern ultimately being determined by the size and shape of
the ground plane upon which the dielectric resonator radiating element is mounted.
2.1 VSWR bandwidth can vary between a few percent for high εr to 20% for low εr

materials; for example, it can be 10% for εr ≈ 10 material.
One particular geometry that has been thoroughly studied is a dielectric cylin-

drical resonator mounted above a ground plane (Figure 7.22). The far-field radiation 
pattern for this configuration when operated in TM110 mode is similar to that of a 
dipole positioned parallel to and one quarter of a wavelength above a ground plane
(see Section 4.8). This mode is of particular interest, since it is the fundamental mode
of a cylindrical resonator radiating element and thus has the lowest resonant frequency,
fTM110, for given resonator dimensions:

fTM110 =
2πa µ0εr

(1.841)2 +
2

where a is the radius of the cylinder and d its height.

D
F

πa

2d

A
C

1

7.10
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This type of mode can be excited by using a coaxial feed probe placed internally and
near to its circumference in order to excite the TM110 mode of the dielectric resonator
element (Figure 7.22). Figure 7.22b shows the electric and magnetic field distribu-
tions for this mode, while Figure 7.22c shows sketches of the resulting ideal far-field
patterns for this mode. It can be seen that when the dielectric resonator is positioned
over a ground plane, the far-field pattern will be similar to that of a TM010 rectangular
microstrip patch antenna.

Reflectarray antennas

In order to produce a plane wavefront from a source producing a spherical wavefront,
it is necessary to introduce appropriate phase compensation across the spherical wave-
front. In Section 7.5, this was achieved by using the intrinsic phasing properties of a
curved parabolic dish. In a reflectarray antenna, the objective is to construct a planar
antenna array that is capable of scattering an incident wavefront with suitable phasing
superimposed such that a planar wavefront is collimated along some predetermined
direction (Figure 7.23). In this way, the normal parabolic dish antenna can be replaced
by a flat reflector or by a conformal surface. A second benefit of the reflectarray con-
cept is that the corporate feed arrangement normally associated with a planar array is
eliminated in favour of a spatial feed. This arrangement is much easier to construct
at millimetre wavelengths, where corporate feed losses can become unacceptably high.
Thus reflectarrays can offer a variety of antenna configurations that have electrical,
aesthetic and ergonomic benefits.

7.11

Figure 7.22 Coaxial probe-fed dielectric resonator antenna
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The basic principle underpinning the operation of a reflectarray is the means by which
to make the constituent elements of the array scatter the incident signal with the appro-
priate phases necessary for plane wave formation. Like the parabolic dish reflector,
the basic design philosophy for a reflectarray requires that the total phase delay from
the feed to a fixed aperture plane is constant for all elements (Figure 7.23). A simple
narrowband method for achieving this was proposed in [61].

The method is based on the fact that a dipole antenna short-circuited at its feed 
terminals will at resonance reflect a signal that is 180° out of phase with the incident
signal. Off resonance, the phase of the reflected signal can be made to lie anywhere
between 0° and 360°. The same effect can be made to occur by keeping frequency
constant and varying dipole length about the length required for resonance. Figure 7.24

Figure 7.23 Reflectarray concept: (a) parabolic dish a + b = c + d; (b) microstrip patch
reflectarray a + b = c + d

Figure 7.24 Reflectarray phase
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indicates how the phase of the reflected signal varies for a thin wire dipole mounted
over a ground plane. Here, due to the steep slope of the reflected phase response, it
can be seen that accurately controlling the reflected phase from a thin wire dipole would
be extremely difficult. By replacing the dipole with a square microstrip patch antenna,
the same effect occurs but in a more controlled manner, i.e. the phase response is a
less steep function of element length. With microstrip patch elements the bandwidth
is about 2%. This is less than a parabolic antenna but is better than a basic corporate-
fed planar microstrip array.

Variants on the basic design permit dual and circular polarisation to occur; in addi-
tion, other elements based on stacked microstrip patches or ring geometries can offer
better bandwidth responses than those obtained from a single microstrip patch [62].
A significant advantage of the reflectarray is that with appropriate phasing it can 
be made to produce a main beam that can be squinted off broadside, allowing the 
antenna to be mounted vertically with its main far-field lobe aligned to a predetermined
direction in the forward half-space of the antenna.

Equi-angular spiral antennas

A number of modern communication applications, for example surveillance receivers,
require extremely broadband antennas. A class of antennas was proposed in [63] that
in principle have unlimited bandwidth, with ratios of 10:1 common; these antennas are
known as frequency-independent antennas. The operating principle for this class of
antenna relies on the ability to construct a structure whose geometry can be defined
entirely by angles and not by any particular dimension. If this is the case, then arbitrary
scaling applied about the feed point of the structure will result in a new structure that
is identical to the old one but is rotated about the same axis passing through the feed
point of the antenna. If this is the case, then the new structure will operate efficiently
at a different frequency kf relative to the original frequency f.

Rumsey showed that the axis of rotation must be independent of k and must be 
proportional to

ρ = ea(φ−δ )

where a and δ define the rate of the resulting spiral, and ρ and φ are the normal polar
coordinate notation. If this condition is adhered to, then a frequency-independent 
antenna can be constructed. A planar two-spiral suitability tapered with distance is
shown in Figure 7.25. Here the edges of the arms are defined by

e1 = keaφ and p2 = kea(φ−δ ) for arm 1

and

e1
1 = kea(φ−π) and p2

1 = kea(φ−π−δ ) for arm 2

In this type of spiral, the angle between the spiral and the radius vector is constant
for all points, hence its name, the equi-angular spiral. An important property of 
this type of spiral is that it retains its frequency-independent properties when it is 
truncated.

7.12
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The antenna is fed with a balanced voltage applied to the spiral arms. As the 
currents on the spiral flow outwards they suffer little attenuation until they reach a
region of the spiral where the gap is resonant and energy is radiated; this region is
known as the active region. The active region moves inwards or outwards as frequency
is increased or decreased, respectively, thus the radiating aperture of the antenna is
modified automatically so that in principle the same terminal impedance and radi-
ation pattern is achieved at all frequencies. However, it is important to remember 
that since the active area is rotated with angle about the antenna axis, the radiation
from the antenna is also rotated. Radiation occurs in the forward and back hemispheres,
and the pattern generally has the best axial ratio for high spiral rates.

A preferred method for feeding the antenna is to use a coaxial cable attached to one
arm of the spiral, and for symmetry a second identical dummy cable is attached to
the other arm of the structure (Figure 7.25). Since the current decreases exponenti-
ally along the spiral, the presence of these cables has very little effect on the far-field
radiation patterns.

Figure 7.25 Finite equiangular spiral antenna
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Fractal antennas

In an attempt to achieve multifrequency operation while simultaneously reducing 
antenna size, workers have started to combine the disciplines of fractal geometry [64]
and antenna theory. In the 1970s, B. Mandelbrot defined the term ‘fractal’ to describe
a set of geometrical objects that have self-similar shapes. An important property that 
a fractal must have is its fractional dimension. This is a mathematical means for 
defining how effectively the object fills space. Fractal curves have the mathematical
property that they fill a given space better than any classical Euclidean surface, and
this property is the key to obtaining antennas that occupy a small space.

The 1990s brought the first reports of multiband and reduced-size antennas exploit-
ing this discipline [65]. In Section 7.12, it was shown that in order for an antenna to
work effectively across a range of frequencies it should be symmetrical about a point,
and it must be self-similar; that is to say, it must have the same general appearance
at every scale. In some sense, it is appropriate to describe this as a characteristic of a
fractal. A fractal curve is a set of self-similar broken curves, consequently fractal antenna
area reduction of two to four times relative to its classical counterpart is not uncommon
(Figure 7.26). The properties of this type of antenna include multiband performance
at non-harmonic frequencies and matched input impedance, which helps to reduce the
complexity of matching circuitry. As such, fractal antennas are essentially self-matching;
furthermore, far-field radiation patterns are generally similar with frequency.

Due to the potential for size reduction, considerable activity has been devoted to
realising usable designs for personal handheld terminals operating between 800 MHz
and 1800 MHz, with the fractal design methodology being applied to dipoles and
monopoles in an attempt to obtain a single antenna that can operate over the entire
frequency band. A fractal antenna is constructed entirely by many copies of itself at
different scales, e.g. Figure 7.27. Consider now one particular example of a fractal
antenna, the Sierpinski monople antenna [65]. The shape of this antenna evokes another

7.13

Figure 7.26 Fractal loop (top) and folded dipole antenna (bottom)
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wideband antenna type, the bow-tie antenna [66], itself a broader band version of 
the dipole antenna. With the version shown in Figure 7.27, the Sierpinski fractal 
algorithm has been iterated five times. Neglecting the holes (white areas), each 
iteration gives rise to a self-scaled version of a simple bow-tie antenna. Each of these
structures operates at its own resonant frequency. Across the bandwidth, in [65] it 
was shown that the structure was approximately matched at logarithmic frequencies
fm, such that

fm ≈ 0.26 ∂n

where c is 3 × 108 ms−1, h is the height of the largest gasket, δ is the log period 
(two in this case), since at iteration 4 we have 24 black triangles. The far-field radi-
ation patterns at each of these frequencies for h = 88.9 mm was reported in [65] and
shown to be broadly similar at each frequency to those that would be obtained from
appropriately sized bow-tie antennas positioned over a finite ground plane.
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Figure 7.27 Five-iteration Sierpinski monopole antenna
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7.1 Sketch the θ plane far-field electric field pattern for a single-turn square loop
antenna whose sides are λ /10.

7.2 Show that the real part of the driving-point impedance for an ideal half-
wavelength slot antenna on an infinite ground plane when operated at resonance
is approximately 418 Ω.

7.3 Show that the real part of the input impedance of a folded half-wave dipole is
approximately 300 Ω.

7.4 Design a microstrip patch antenna using a substrate of relative permittivity 2.3
and thickness 0.254 mm to operate at 10 GHz in fundamental TM010 mode.

Sketch the E- and H-field far-field radiation patterns for the antenna and 
predict its half-power beamwidth. What is the effect of a finite ground plane on
the radiation characteristics of this type of antenna?

7.5 A reflector antenna consisting of a parabolic cylinder aperture with dimensions
of 0.5 × 0.2 m is fed with nearly 100% efficiency from an idealised distributed
line source. Calculate the half-power beamwidth of the antenna, its side-lobe
levels in decibels and its directivity, also in decibels.

7.6 Design a single-conductor cylindrical helical antenna that produces 12 dBi gain
in the axial direction.

Compute the half-power angle and input impedance of the antenna.

7.7 A travelling-wave antenna is to be used for reception of horizontally polarised
signals arriving at elevation angles of 45° and 70°. One end of the antenna is
matched to the receiver while the other end is matched to a load termination
such that no reflections occur.

If the antenna is 10λ0 long, calculate the dB ratio of the voltages supplied by
the antenna to the receiver under the reception conditions given above.

Problems
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Appendices

Linear array factor program

This program was created for use with MATLAB in order to allow the array factor for
linear arrays with general spacing and element excitation to be evaluated and plotted;
subroutines, S-POLAR and CARPOL are copyright © 1984–94 by Mathworks Inc.

Matlab for Windows V4.2c1
The Mathworks Inc
3 Apple Hill Drive
Natick
MA 01760–2098
USA.

MATLAB command window display for array program entitled ‘p’

>> p

Enter a 1 for true or 0 for false

Please note that all current phases are given relative to the

current into the 1st antenna

Enter the details of the array

Please enter the number of antennas in the array >>4

Is each antenna excited by current of same magnitude? >>0

Is each antenna excited by current of same phase? >>0

8.1

Chapter 8
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Is each antenna separated by same distance? >>0

Please enter magnitude of the current to antenna 1 >>1

Does phase of current increase in uniform steps? >>0

Please enter magnitude of current to antenna number:

2

>>1

Please enter phase (in degrees) between antennas numbered:

1

2

>>45

Please enter the separation (in terms of wavelength) between

ANTENNA 1 and antenna:

2

>>0.5

Please enter magnitude of current to antenna number:

3

>>1

Please enter phase (in degrees) between antennas numbered:

2

3

>>45

Please enter the separation (in terms of wavelength) between

ANTENNA 1 and antenna:

3

>>1.0

Please enter magnitude of current to antenna number:

4

>>1

Please enter phase (in degrees) between antennas numbered:

3

4

>>45

Please enter the separation (in terms of wavelength) between

ANTENNA 1 and antenna:

4
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>>1.5

The following instructions are to calculate the beamwidth of the

1st antenna array pattern.

Please use the mouse to click on the upper left intersection of

the red graphed lines.

Please use the mouse to click on the lower left intersection of

the red graphed lines.

Values for the array

Maximum field =

3.9999

Tilt from x-axis =

15.0697

Beamwidth in degrees =

27.2592

Printout of M-file ‘P’

% This M-file ‘P’ plots linear antenna array factor for an array

with varying amplitude and phase of excitation current.

clg

Output figure for the array program entitled ‘P’ for a four-antenna array with 0.5l uniform
separation, uniform phase shift between each antenna of 45° and uniform excitation current 
of 1 A
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% Clear all buffers

n = 0;

d1 = 0;

d2 = 0;

d3 = 0;

d4 = 0;

a = 0;

a0 = 0;

phase = 0;

alpha = 0;

Er = 0;

Ereal = 0;

sep = 0;

number = 0;

next = 0;

z = 0;

term = 0;

power = 0;

rho = 0;

r = 0;

ptl = 0;

ptu = 0;

disp(‘Enter a 1 for true or 0 for false’);

disp(‘Please note that all current phases are given relative to

the current into the 1st antenna’);

disp(‘Enter the details of the array’);

n = input(‘Please enter the number of antennas in the array >>’);

d1 = input(‘Is each antenna excited by current of same

magnitude? >>’);

d2 = input(‘Is each antenna excited by current of same phase? >>’);

d3 = input(‘Is each antenna separated by same distance? >>’);

% Response to d1 = input(‘Is each antenna excited by current of

same magnitude? >>’);

if d1 == 1

a = input(‘Please enter magnitude of current (a) >>’);

a0 = a;

else

d1 = 0;

a0 = input(‘Please enter magnitude of the current to antenna

1 >>’);

end
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% Response to d2 = input(‘Is each antenna excited by current of

same phase? >>’);

if d2 == 1

alpha = 0;

phase = 0;

d4 = 2;

else

d4 = input(‘Does phase of current increase in uniform steps?

>>’);

if d4 ==1

phase = (pi/180)*input(‘What is the uniform phase

difference in degrees? >>’);

else

d4 = 0;

end

end

% Response to d3 = input(‘Is each antenna separated by same

distance? >>’);

if d3 == 1

sep = input(‘Please enter uniform separation distance as

ratio of wavelength (z) >>’)

else

d3 = 0;

end

% Set initial value of Er

Er = a0;

% Set variable theta

theta = 0:0.01:2*pi;

% Loop that increments Er by value of Er for each antenna

for i = 1:1:(n–1)

number = i;

next = i+1;

% Enter magnitude of currents to each antenna

if d1 == 0

disp(‘Please enter magnitude of current to antenna number:’)

disp(next)

a = input(‘>>’);

end
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% Enter phase between antennas

if d4 == 0

disp(‘Please enter phase(in degrees) between antennas

numbered:’)

disp(number)

disp(next)

phase = pi/180*(input(‘>>’));

end;

% Increment value of phase by phase difference

alpha = alpha+phase;

% Calculate distance of antenna from origin if separation

uniform

if d3 == 1

z=i*sep;

end

% Enter separation between antennas and origin if separation

is not uniform

if d3 == 0

disp(‘Please enter the separation (in terms of wavelength)

between ANTENNA 1 and antenna:’)

disp(next);

z = input(‘>>’);

end

% Calculate value of Er at this antenna and then increment Er

term = a*exp(-j*alpha)*exp(j*2*pi*z*cos(theta));

Er = Er + term;

end

% Plot absolute value of Er on polar graph

Ereal = abs(Er);

s_polar (theta, Ereal,’r’);

% Find 1/root(2) times max field and draw circle with radius of

this value

power = max (Ereal);

r = power/(sqrt(2));

hold on;

phi = 0:pi/60:2*pi;

rho = r*(ones(size(phi)));

s_polar(phi, rho, ‘r’);

hold on;
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disp(‘The following instructions are to calculate the beamwidth

of the 1st antenna array pattern.’);

disp(‘Please use the mouse to click on the upper left

intersection of the red graphed lines.’);

[cxeu, cytu] = ginput(1);

[ptu, peu] = carpol(cxeu, cytu);

disp(‘Please use the mouse to click on the lower left

intersection of the red graphed lines.’);

[cxel, cytl] = ginput(1);

[ptl, pel] = carpol(cxel, cytl);

beamwidth = ptl - ptu;

centre = ptl - (beamwidth/2);

tilt = 180 - centre;

disp(‘Values for the 1st array’)

disp(‘Maximum field =’);

disp(power);

disp(‘Tilt from x-axis = ‘);

disp(tilt);

disp(‘Beamwidth in degrees = ‘);

disp(beamwidth);

Printout of ‘S_POLAR’ called in M-file ‘P’

function pol = polar(theta,rho,line_style)

% SECOND_POLAR

% Plot to be used for antenna patterns.

% Note that theta is measured from the z-axis and rotates in a

clockwise direction.

% SECOND_POLAR(THETA, RHO) makes a plot using polar coordinates

of

% the angle THETA, in radians, versus the radius RHO.

% SECOND_POLAR(THETA,RHO,S) uses the linestyle specified in

string S.

% See PLOT for a description of legal linestyles.

%

% See also PLOT, LOGLOG, SEMILOGX, SEMILOGY.

if nargin < 1

error(‘Requires 2 or 3 input arguments.’)
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elseif nargin == 2

if isstr(rho)

line_style = rho;

rho = theta;

[mr,nr] = size(rho);

if mr == 1

theta = 1:nr;

else

th = (1:mr)’;

theta = th(:,ones(1,nr));

end

else

line_style = ‘auto’;

end

elseif nargin == 1

line_style = ‘auto’;

rho = theta;

[mr,nr] = size(rho);

if mr == 1

theta = 1:nr;

else

th = (1:mr)’;

theta = th(:,ones(1,nr));

end

end

if isstr(theta) | isstr(rho)

error(‘Input arguments must be numeric.’);

end

if any(size(theta) ~= size(rho))

error(‘THETA and RHO must be the same size.’);

end

% get hold state

cax = newplot;

next = lower(get(cax,’NextPlot’));

hold_state = ishold;

% get x-axis text color so grid is in same color

tc = get(cax,’xcolor’);

% Hold on to current Text defaults, reset them to the

% Axes’ font attributes so tick marks use them.

fAngle = get(cax, ‘DefaultTextFontAngle’);

fName = get(cax, ‘DefaultTextFontName’);

fSize = get(cax, ‘DefaultTextFontSize’);

fWeight = get(cax, ‘DefaultTextFontWeight’);

set(cax, ‘DefaultTextFontAngle’, get(cax, ‘FontAngle’), ...
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‘DefaultTextFontName’, get(cax, ‘FontName’), ...

‘DefaultTextFontSize’, get(cax, ‘FontSize’), ...

‘DefaultTextFontWeight’, get(cax, ‘FontWeight’)

% only do grids if hold is off

if ~hold_state

% make a radial grid

hold on;

hhh = plot([0 max(theta(:))],[0 max(abs(rho(:)))]);

v = [get(cax,’xlim’) get(cax,’ylim’)];

ticks = length(get(cax,’ytick’));

delete(hhh);

% check radial limits and ticks

rmin = 0; rmax = v(4); rticks = ticks–1;

if rticks > 5 % see if we can reduce the number

if rem(rticks,2) == 0

rticks = rticks/2;

elseif rem(rticks,3) == 0

rticks = rticks/3;

end

end

% define a circle

th = 0:pi/50:2*pi;

xunit = cos(th);

yunit = sin(th);

% now really force points on x/y-axes to lie on them exactly

inds = [1:(length(th)–1)/4:length(th)];

xunits(inds(2:2:4)) = zeros(2,1);

yunits(inds(1:2:5)) = zeros(3,1);

rinc = (rmax-rmin)/rticks;

for i = (rmin+rinc):rinc:rmax

%plot(xunit*i,yunit*i,’-’,’color’,tc,’linewidth’,1); 

text(0,i+rinc/20,[‘ ‘ num2str(i)],’verticalalignment’,

’bottom’ );

end

% plot spokes

th = (1:6)*2*pi/12;

cst = cos((pi/2)+th); snt = sin((pi/2) + th);

cs = [-cst; cst];

sn = [-snt; snt];

plot(rmax*cs,rmax*sn,’-’,’color’,tc,’linewidth’,1);
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% annotate spokes in degrees

rt = 1.1*rmax;

for i = 1:max(size(th))

text(rt*cst(i),rt*snt(i),int2str(i*30),’horizontalalignment

’,’center’ );

if i == max(size(th))

loc = int2str(0);

else

loc = int2str(180+i*30);

end

text(-rt*cst(i),

-rt*snt(i),loc,’horizontalalignment’,’center’ );

end

% set viewto 2-D

view(0,90);

% set axis limits

axis(rmax*[–1 1 –1.1 1.1]);

end

% Reset defaults.

set(cax, ‘DefaultTextFontAngle’, fAngle , ...

‘DefaultTextFontName’, fName , ...

‘DefaultTextFontSize’, fSize, ...

‘DefaultTextFontWeight’, fWeight );

% transform data to Cartesian coordinates.

xx = rho.*cos((pi/2)+theta);

yy = rho.*sin((pi/2)+theta);

% plot data on top of grid

if strcmp(line_style,’auto’)

q = plot(xx,yy);

else

q = plot(xx,yy,line_style);

end

if nargout > 0

hpol = q;

end

if ~hold_state

axis(‘equal’);axis(‘off’);

end

% reset hold state

if ~hold_state, set(cax,’NextPlot’,next); end
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Printout of ‘CARPOL’ called in M-file ‘P’

function [th,r,z] = carpol(x,y,z)

% CARPOL Transform Cartesian coordinates to polar.

% [TH,R] = CARPOL(X,Y) transforms data stored in Cartesian

% coordinates to polar coordinates. If [M,N] = SIZE(X), then

% Y must also be the same size. TH is returned in radians.

% [TH,R,Z] = CARPOL(X,Y,Z) transforms data stored in Cartesian

% coordinates to cylindrical coordinates. If [M,N] = SIZE(X), 

then

% Y and Z must be the same size.

%

% See also CART2SPH, SPH2CART, POL2CART.

% L. Shure, 4–20–92.

% Copyright (c) 1984–94 by The MathWorks, Inc.

t =(180/pi)* atan2(y,x);

if t<0;

th = 360+t;

else

th = t;

end

r = sqrt(x.^2+y.^2);

Reciprocity in a two-port network

Consider the two-port network shown in Figure A8.1, in which each port terminated
in a different impedance, Z01 and Z02.

In terms of S parameters (Appendix 8.4), the reciprocity condition is given by [67]

Z0
−1 S = S

~
Z0

−1 (A8.1)

where ~ denotes matrix transpose.
Hence

= (A8.2)

or

S12 Z02 = S21 Z01 (A8.3)

Thus the two-port network is reciprocal not only as normally reported, when S12 and
S21 (valid only when Z01 and Z02) are equal, but very importantly, especially for antenna
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work, when equation (A8.3) in its full form is satisfied. This is important when the
antenna is considered as a two-port matching network between a generator or load at
one impedance level and free space at 377 Ω impedance.

[67] Kerns, D.M. and Beatty, R.W., Basic Theory of Waveguide Junctions and
Introductory Microwave Network Analysis, Pergamon Press, 1967.

Noise-equivalent bandwidth, minimum discernible level and 
noise temperature measurement

Noise-equivalent bandwidth

The noise-equivalent bandwidth of a system allows a more accurate appraisal of a filter’s
effect on system noise floor to be made [68]. Consider the filter shown in Figure A8.2.
For this filter, the output noise power spectrum is GY( f ) = | H( f ) |2GX( f ), where GX( f )
is the noise power applied to the input of the filter. At the output of the filter, average
noise power N is equal to

N = �
∞

−∞

| H( f ) |2GX( f ) df (A8.4)

8.3

References

Figure A8.1 Two-port network with arbitrary terminating impedances

Figure A8.2 Noise-equivalent bandwidth
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For the general case, if H( f ) and GX( f ) are known then equation (A8.4) can be 
evaluated. Often white noise (i.e. noise with a flat power spectral density response,
equivalent to an impulse in the time domain) is used to test systems. Hence if we model
the white noise as a constant, k/2, over the bandwidth of interest, we can write

let GX( f ) =

thus, using equation (A3.1)

N = �
∞

−∞

| H( f ) |2 df = k�
∞

0

| H( f ) |2 df (A8.5)

Now we can define noise equivalent bandwidth, Bn, as

Bn = (A8.6)

where Gmax = | H( f ) |2max. For example, calculate the noise-equivalent bandwidth of a
single-pole RC low-pass filter:

H( f ) =

| H(0) |2 = 1

∴ Bn = �
∞

0

2

df

or

Bn = �
∞

0

= B radians

Thus if we had used the 3 dB cut-off point, B, to define the system bandwidth, we
would have underestimated the noise level of the system by π/2.

Minimum discernible signal

The minimum discernible signal (MDS) is defined as the input signal level where 
the output signal power equals the noise power; it is considered to be the minimum
signal that can be detected by a system, i.e. when signal power is at the MDS level
the receiver output is 3 dB above its noise level.

By using average thermal noise power, kTB, together with a 3 dB MDS level expressed
in decibels, we can define the noise floor, N, of the system as

N = −174 + 10 log10 B + 3 dB + NF (A8.7)

where NF is the system noise figure. Combining the results above with the noise figure
formula for a cascaded system (Section 5.3) and the path equation calculation for the

π
2

df

[1 + ( f/B)]2

eee
1

1 + ωRC
eee

1

1

1

1 + ωRC

1

Gmax�
∞

0

| H( f ) |2 df

k

2

k

2
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example in Section 5.2 gives the standard method for calculating the carrier-to-noise
ratio at the detector input of a receiver given the system parameters, antenna gain,
link length, transmitted power level, etc.

Noise temperature measurement

Noise temperature measurement techniques are based on supplying a known amount
of excess noise to the RF input of the device under test and measuring the change in
noise output level [68]. If the noise temperature of the device under test is TRX, and
a noise source is available that has a noise temperature TON when switched ON and
TOFF when switched OFF, the system noise temperatures are

TSYS = TRX + TON (noise source on)

and

T ′SYS = TTX + TOFF (noise source off)

The noise power from the receiver is proportional to the system noise temperature, so
the on/off power ratio Y is given by

Y = (TRX + TON) / (TRX + TOFF)

If we know TON and TOFF and can measure Y, we can calculate TRX:

TRX = (TON − YTOFF) / (Y − 1)

The main problem is to generate RF noise at two different known noise temperatures,
TON and TOFF. The simplest but least accurate way is to use the thermal noise from a
50 Ω resistor at two known physical temperatures. This is called the hot/cold method
and is the closest we can get to a fundamental measurement of noise temperature. In
practice, electronic noise sources based on zener diodes are used in most laboratories
[69].

[68] Mumford, W.W. and Scheibe, E.H., Noise Performance Factors in Communica-
tion Systems, Horizon House, 1968.

[69] Townsend, A.A.R., Analog Line-of-Sight Radio Links, Prentice Hall Interna-
tional, 1987.

Scattering parameter matrix

Consider a linear N-port network with each of its N ports terminated in different 
characteristic impedance values Z01, Z02, ZN. The port terminal currents are I1, I2, IN,
and the terminal voltages are V1, V2, VN. The various ratios of V and I give the port
input and transfer impedances or admittances. An alternative way of viewing the 

8.4

References
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problem is to define reflected, bi, and incident, ai, waves at the kth port. The ratio of
ak /bk gives the port input reflection coefficient. These waves can be defined in units
of (power)1/2 as

ak = = I+
k (A8.8)

Z0k

Z0k

and

bk = = I−
k (A8.9)

Z0k

Z0i

where superscript ‘+’ indicates an incident voltage wave and superscript ‘−’ indicates
a reflected voltage wave.

In terms of the concepts of forward and reverse travelling waves developed in 
Section 6.1, we can write the terminal voltage Vk as

Vk = Vk
+ + Vk

− = Z0k
(ak + bk) (A8.10)

and terminal current Ik as

Ik = Ik
+ − Ik

− = (ak − bk) (A8.11)
Z0k

Solving equations (A8.8) through (A8.11) for ak and bk gives

ak = + Ik (A8.12)
Z0k

Z0k

and

bk = − Ik (A8.13)
Z0k

Z0k

With reference to Figure A8.3, we can see that in matrix form, using scattering matrix
rotation Sij that

b1 = S11 a1 + S12 a2 + . . . + S1n aN

bN = SN1 a1 + SN2 a2 + . . . + SNN aN (A8.14)

so that in compact matrix form

[b] = [S][a] (A8.15)

The elements Skk represent the situation where all other ports except the kth port are
terminated in their relevant characteristic impedances, so there are no incident or reflected
signals from these ports; hence from equation (A8.15) and when port kk is fed with
a generator, then due to residual generator to port mismatch at port k

Skk = (A8.16)

Under this condition, Skk represents the input reflection coefficient at port k.

bk

ak

D
F

VkA
C

1

2

D
F

VkA
C

1

2

1

V −
k

V +
k
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Similarly, the various port-to-port transmission coefficients can be found by con-
necting a generator to the port of interest and terminating all other ports in suitably
matched load impedances e.g.

Sij = (A8.17)

It is useful in antenna work to be able to convert S parameters to impedance, Z, 
parameters and vice versa. Equations (A8.18) and (A8.19) give the general relation-
ships between two-port S parameters and two-port Z parameters [70]. Alternatively,
after suitable impedance normalisation these transformations can be realised directly
by direct plotting of S parameters in polar form on to a Smith chart and then reading
off the corresponding real and imaginary impedance values.

− 1 • + 1 − 2
(A8.18)=

+ 1 + 1 − 2 + 1 • − 1 −

Z01[(1 + S12)(1 − S22) + S12S21] 2Z01S12

(A8.19)=

2Z02S21 Z02[(1 − S11)(1 + S22) + S12S21]

[70] Kerns, D.M. and Beatty, R.W., Basic Theory of Waveguide Junctions and
Introductory Network Analysis, Pergamon Press, 1967.
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Glossary of terms

Ampere’s law: relates magnetic field to current flow and vice versa.

antenna: a physical structure that is capable of receiving or transmitting electromagnetic
energy over a specified frequency range.

antenna array: an assembly of antenna elements designed to enhance directivity.

aperture distribution: the field strength profile across the radiating face of an antenna array.

array factor: a mathematical relationship that embodies the geometrical distribution of elements
in an array.

attenuator: a device for reducing signal strength.

AUT: antenna under test.

balun: a balanced to unbalanced transformer.

binomial distribution: an aperture distribution that produces no side lobes.

broadside array: an array where the elements are arranged so that their axes lie in parallel and
are fed so that the array radiates normal to the array axis.

co-linear array: an array where the elements have their axes aligned.

dipole: a balanced fed straight-wire antenna.

directivity: the focusing ability of an antenna relative to that of an isotropic source.

distributed element: a circuit whose size is equivalent to a wavelength at its operating frequency.

Dolph–Tchebyscheff distribution: an aperture distribution that produces the narrowest
beamwidth for a pre-specified side-lobe level.

duplexer: a three-port filter used to isolate receive and transmit signals in a wireless system.

effective aperture: the equivalent radiating aperture of an antenna after its efficiency has been
taken into account.

effective length: the length of a theoretical antenna that has uniform current distribution and
equivalent radiation properties to an actual antenna.

EIRP: effective isotropic radiated power; it is equal to the product of available transmitter power
and transmitter antenna gain.
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electromagnetic radiation: the process by which accelerated charges deliver energy into free
space.

element pattern: the radiation pattern for a single radiating element.

end-fire array: an array where the elements are fed so that radiation occurs along the array axis.

far field: the region far enough from an antenna such that reactive energy is negligible.

Faraday’s law: relates induced voltage to rate of charge to magnetic flux and vice versa.

Fraunhofer region: the far field of an antenna or antenna array.

Free-space wave impedance: The ratio of the E field and H field plane wave components,
equal to 377 Ω.

Fresnel region: the near-field region of an antenna or antenna array.

front-to-back ratio: the ratio between the radiated field in the end-fire direction to the radiated
field in the direction opposite to end fire.

grating lobes: undesirable side lobes that occur for array element spacings of greater than one
wavelength.

group pattern: the product of an element pattern and array factor for an array comprised of
identical elements.

half-power beamwidth: the angular separation between the directions on each side of the direc-
tion of maximum radiation, where the far-field radiated field has fallen by −3 dB.

Hertzian dipole: an elementary antenna consisting of an infinitesimally short length of wire.

Huygen’s principle: each point of a wavefront acts as a secondary source of propagating energy,
which in turn creates a new wavefront.

induced-emf: the voltage induced in an antenna element due to an incident electric field.

induction field: the near-field region of an antenna or an antenna array.

insertion loss: the additional attenuation caused by the introduction of a device with loss into
a system.

isotropic source: a fictitious source of electromagnetic energy that is radiated uniformly in all
directions.

L match: a matching circuit topology.

lumped element: a circuit whose size is small compared with a wavelength at its operating
frequency.

matching: the technique used to ensure maximum power transfer from one device to another.

Maxwell’s equations: a set of mathematical equations that when used with suitable boundary
conditions defines the macroscopic behaviour of electromagnetic waves.

monopole: a vertical antenna fed with respect to a conducting ground plane.

mutual coupling: energy leaked from one source and picked up by another in the same array.

near field: The region close enough to an antenna or antenna array that considerable reactive
energy exists.

neper: transmission line loss expressed in natural logarithmic units.

phase velocity: the velocity of a phase front of a propagating signal.

phased array: an antenna array where a progressive phase shift is introduced along the array
in order to steer its far-field radiation pattern.

PI match: a matching circuit topology.
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plane wave: a propagating wave whose wavefront is an equiphase surface.

polar pattern: a graph in polar coordinates that shows an antenna or antenna array’s radiated
electric field intensity as a function of angle.

polarized wave: the orientation of the electric field vector of a propagating electromagnetic wave.

power gain: the product of directivity and efficiency of a particular antenna.

Poynting’s theorem: allows instantaneous power per unit area delivered by a electromagnetic
wave to be deduced.

quality factor: a measure of the resonant behaviour of an antenna or lumped tuned circuit.

radiation efficiency: the ratio of radiation resistance to the total losses in an antenna.

radiation resistance: a fictitious resistance chosen such that the average power dissipated in it
is equal to that dissipated by the electromagnetic energy radiated from the antenna.

reciprocity: the property whereby a passive linear antenna exhibits the same terminal charac-
teristics on transmit as on receive.

reflection coefficient: a measure of the amount of signal reflected from an antenna or matching
circuit terminals.

return loss: reflection coefficient expressed in decibels.

side lobe: radiation from an antenna that does not lie along its principal radiation direction.

Smith chart: a graphical tool used to facilitate impedance-matching problems.

spherical coordinate system: coordinate system for uniquely identifying a point located on the
surface of a sphere.

standing wave: a wave with fixed node and antinode positions.

TEE match: a matching circuit topology.

transverse electromagnetic waves: electric and magnetic field vectors are orthogonal to the
direction of wave propagation.

VSWR: voltage standing wave ratio; a measure of how well an antenna is impedance-matched
to a receiver or transmitter.
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absorbing material, 117
AC decoupling, 114
accelerated charge, 1
active region equi-angular spiral, 196
Ampere’s law, 20
anechoic environment, 117
antenna array

binominal, 73
broadside, 64–5
co-linear, 59, 60–2
Dolph-Tchebyscheff, 74–5
effect of mutual coupling on gain, 84, 88
end-fire, 65–6
end-fire with mutual coupling, 85
front-to-back ratio, 87
group pattern, 63
non-uniform current excitation, 72–3
pattern nulls, 63, 66
pencil beam, 71
resultant pattern, 59
stacked, 70–2
two-element, 59

antenna definitions
aperture, 95–7
array, 56
array factor, 58, 125
axial ratio, 108, 120, 122
bandwidth, 37, 76
boresight, 7
calibrated, 125

directivity, 33
effective length, half-wave dipole, 53
effective length, height, 42, 95
external load impedance, 51
half-power beamwidth, 9
input impedance, 76
mutual coupling, 57
radiation efficiency, 34, 36
reciprocity, transmit /receive, 95

antenna measurement 
beamwidth, 117
cardinal cuts, 117
directivity, 121
field strength, 123
gain comparison method, 121
gain substitution method, 122
scaling, 125
test range length, 113

antenna reactance, 13, 80
antenna types

capacitor loaded, 48–9
dielectric resonator, 192–3
equi-angular spiral, 195–6
finite-length dipole, 40–55
fractal, 197–8
helical, 182–5
Hertzian, 5–18
horn, 186–7
microstrip patch, 172–7
planar inverted-F, 190–2

225

Index
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antenna types (continued )
reflectarray, 193–5
reflector, 177–2
travelling-wave, 187–9
Yagi, 170–2

antenna under test, 118
aperture blocking, 181
aperture distribution

field calculation, 69
side lobe response, 69
uniform, 68

array factor program, 201–11
attenuator 

network, 136
power dissipation, 141

attenuator pad, 137
available noise power, 102
average antenna impedance, 79
average power flow, 28

backscatter, 100
balanced feed, 148, 159
balun matching, 148–51

impedance transforming, 150
quarter wavelength, 149
shielded, 149
torodial wire, 150

bandwidth efficiency trade-off, 167
beam divergence, 177
beam-shaping, 181
bilaterial transmission path, 101
Biot-Savart law, 12
bow-tie antenna, 198
broadband antenna, 195

capacitive region, 12
carrier-to-noise ratio, 214
cascaded system noise, 106
cavity coupling, 165
charge packet, 18
circular polarisation definitions, 109
circular polarisation measurement methods

circular component, 118
linear component, 118–19
spinning dipole, 118

circular polarisation synthesis, 109
clearance, 114
coaxial cable, 137, 148
co-linear array aperture, 63
compact antenna range, 117
conductivity, 21, 125

conformal antenna, 172
conformal surface, 193
helical antenna conical mode, 182
conjugate matching, 154, 161
coordinate system

Cartesian, 10
spherical, 4

co-polar radiation, 117
corporate fed, 193
Coulomb field, 2
cross-polarisation radiation, 117
current

charging, 22
density, 21, 22
director element, 170
displacement, 21
distribution finite-length dipole, 42–3
driven element, 170
driving point, 42
time delayed, 14

current distribution
constant, 5–8, 47
linear, 47
sinusoidal, 42, 43

DC biasing, 144
DC block, 146
decibel

relative to a milliwatt, dBm, 54
relative to an isotropic source, 33

dielectric losses, 129
diffraction, 116
dipole

half-wave gain, 49
Hertzian, 5, 30, 166
image over ground plane, 89, 90
short, 47

directivity
N-element array, 62
microstrip patch antenna, 176
stacked array, 71–2
uniform aperture distribution, 69

distance to far-field, 112–13
duality, 168
duplexer, 104

effect of current at resonance, 76
effective 

aperture, 98
isotropic radiated power, EIRP, 99
noise temperature, 102
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effective (continued )
noise temperature of matched attenuator,

103–4
efficiency factor, 36
electric field 

cancellation, 90, 165
radial, 4
radiated, 15
tangential, 5

electrically large antenna, 177
electrically short antenna, 37
electromagnetic compatibility, 125
electromagnetic radiation production, 1
electronically steerable array, 67
E-plane horn, 186
end-fire operation, 65–6
equatorial plane, 89
excess noise, 214

F antenna, 190
Fano’s limit, 77
Faraday’s law, 20
far-field, 16, 122
far-field pattern

cuts, azimuth, elevation, 117
electronic steering, 67
microstrip patch antenna, 176

field-sensing, 165
flux density, 21
focal length, 181
folded slot antenna, 169
Fourier integral, 69
four-wire travelling wave antenna, 189
fractal, 197
fractal antenna, 197–8
Fraunhofer region, 112
free electrons, 17
free-space impedance, 14
free-space link equation, 98–9
free-space propagation, 20, 25
free-space wavelength, 6
frequency-independent antenna, 195
Fresnel region, 9
Fresnel zone, 114–15
Friis noise formulae, 107
Friis transmission formulae, 99, 122
front-to-back ratio, 66

gain
dipole over ground plane, 91
directive gain of an antenna, 33

G/T ratio, 107, 127
helical antenna, 185
maxiumum theoretical, 38
pyramidal horn antenna, 186
reflector antenna, 180
uniformily illuminated aperture, 72

geometrical optics, 177
geosynchronous orbit, 126
grating lobes, 85
grazing angle, 116
ground plane, 90
guide wavelength, 131

half-power beamwidth
full-wave dipole, 45
half-wave dipole, 45
helical antenna, 185
microstrip patch antenna, 176
pyramidal horn antenna, 187
reflector antenna, 179

helical antenna
angle to first zero, 185
axial-mode, 182
normal-mode, 182

hot-cold method, 214
H-plane horn, 186
Huygen’s principle, 72, 114

illumination tapering, 180
image cancellation, 90–1
impedance matching

L section, 136, 144
microstrip patch, 173, 175
PI section, 139, 147
stub, 160
T section, 139, 145

impedance transformer
half-wavelength, 157
quarter-wavelength, 158

induced-emf method, 79–84
induction field, 13, 113
inductive region, 12
inductive tuning, 190
input impedance 

helical, 185
microstrip patch, 175
Yagi, 172

insertion gain, 136
insertion loss, 135
instantaneous power flow, 28
inverted antennas, 191
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ionospheric reflection, 189
isolation, 151
isotropic radiator, 57
isotropic source, 8, 31

L antenna, 190
logarithmic frequencies, 198
long-distance communications, 189
lumped element definition, 35, 139
lumped impedance matching, 136–47

LC network, 144
reactive matching, 142–7
resistive L, 136
symmetrical PI, 139
symmetrical T, 138
T network, 145

Mandelbrot, B., 197
masthead preamplifier, 144
matched attenuator noise figure, 104
MATLAB, 201
Maxwell’s equations, 20–3
mechanical beam scanning, 182
microstrip patch antenna feed, 173
minimum discernable level, 213
mobile handset, 191, 197
monopole, 190
monopole power gain, 90
multi-path signals, 114
multiple frequency band operation, 191–2,

197
mutual coupling, 79–84, 173

near-field definition, 9
nepers, 132–3, 139, 141
noise 

equivalent bandwidth, 102, 212
factor, 105
figure, 137, 213
floor, 213
temperature measurement, 214

non-conducting medium, 22
non-harmonic frequency, 197
non-resonant antenna, 187
N-port network, 214

obliquity factor, 114, 115
ohmic resistance, 34, 36
omnidirectional radiation, 4, 190
open-area test site, 117

open-circuit termination, 134
oscillating charge doublet, 9
overvoltage breakdown, 135

parabolic metal reflector, 177
parallel plate capacitor, 21
parasitic reflector, 170
patch antenna 

higher-order modes, 173
radiation conductance, 175

pattern multiplication factor, 43–4
permeability, 21, 125
permittivity, 125
phase delay, 57
phased array, 67, 68
phasing harness, 158
planar antenna array, 193
plane wave propagation, 24–9, 98
Poincaré sphere, 110
point-to-point microwave link, 177
polar pattern

definition, 9
full-wave dipole, 45
half-wave dipole, 45
Hertzian dipole, 8
reciprocity, transmit /receive, 

100–1
polarisation, 108–12

circular, 109
diversity, 110
ellipse, 108
elliptical, 109
left hand circular, 109
linear, 25, 109
right hand circular, 109
synthesis of elliptical wave, 111
tilt angle, 109, 112
un-polarised wave, 110

power combiners, 151–3
power gain of an antenna, 32
power spectral density, 213
power splitters, 151–3

lumped hybrid, 152
resistive, 151
T junction, 151
Wilkinson, 151

power transfer, 50–1
Poynting’s theorem, 13, 29, 167
preferential radiation, 56
preferred resistance values, 140
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printed circuit, 172
progessive phase lag, 187

quality factor
loaded, 79
minimum, 37, 143, 191
relationship to antenna bandwidth, 77
unloaded, 79

radar absorber, 117
radiated power, 31, 34
radiation resistance

definition, 34
finite-length dipole, 46
half-wave dipole, 46
Hertzian dipole, 34
monopole, 90
short dipole, 48
slot, 169
small loop, 167

radiometric methods, 38
receive antenna equivalent circuit, 51
reciprocal network, 172
reciprocity, 80, 211–12
reference antenna, 33
reflection coefficient, 134
reflector antenna feed, 180, 181
relative bandwidth, 78
return loss, 134
rhombic antenna, 189
right hand screw rule, 30

S parameters, 118, 211, 214–16
satellite receiver noise, 107
secondary radiation, 135, 148
self-impedance, 79
short-circuit termination, 134
side lobes, 46, 113, 180
Sierpinski monopole, 197
signal-to-noise ratio, 104, 108
sky temperature, 104
slot antenna, 167–70

directivity, 169
effective aperture, 169
reflector backed, 169

small loop antenna, 165
Smith, P.H., 129
Smith chart, 153–61
spatial feed, 193
spherical wavefront, 72, 177

spillover, 181
squint, 195
standard reference antenna, 121
standard gain horn antenna, 187
standing wave, 133, 135
solid angle definition, 34
Stokes parameters, 110
straight-wire travelling-wave antenna, 187
stub matching, 156, 157, 159
surface wave losses, 172, 192
surveillance receiver, 195
system link budget, 99

television reception, 127
terminating impedance, 134
thermal noise, 101, 213
Thevenin’s theorem, 81
time-domain pulse tracking, 18
time varying current excitation, 13
transfer admittance, 214
transfer impedance, 214
transmission line

attenuation per unit length, 131
capacitance per unit length, 159
characteristic impedance, 129, 132
guide wavelength, 131
inductance per unit length, 159
matched, 129
mismatch, 133
phase shift per unit length, 131
phase velocity, 131
power delivered to load, 135
propagation constant, 131, 138
stub matching, 156, 157
uniform, 129

transverse electromagnetic wave, 24, 109,
112

tuned circuit, 37
two-port network, 211

uniformly illuminated aperture, 180
unipole, 90
unit pattern, 61
unit vector, 12

vector network analyser, 118
velocity, 2, 28
velocity slowing factor, 131
voltage pulse excitation, 17
voltage standing wave ratio, VSWR, 133
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wave equation, 24, 110
wave impedance, 6
wave number, 6
wavefront, 4
Wheeler box, 38
white noise, 101, 213

Yagi, Hidet Sugu, 170
Yagi-Uda antenna, 170

Z parameters, 216
zener diode, 214
zero side lobes, 74
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