
circuits of the second amplifier stage the condenser C2
can be made to introduce a voltage El across the
cathode resistor of this stage that exactly balances out
the voltage E2 applied to the grid of the same tube
because of the presence of voltage across the common
plate impedance Z,.
Let Eo=voltage across the common plate imped-

ance
E,=voltage introduced across the cathode of

second amplifier stage due to the presence
of Eo

E2= voltage existing on the grid of second ampli-
plifier stage due to the presence of Eo

X = 2wrX frequency.
Then,

1
Ef1=Et0 (1 '''*)E, Eo

C3

C2 frC2R3

E2 = Eo Z -(2)
1+-R

1?, R, Rp_1+ + +
R2 RP jcoC,R2

where,

Rp = plate resistance of the input amplifier tube

For perfect neutralization, the voltages E, and E2
should be equal in magnitude and in phase, which gives

C3 R, / R
3

_-=-( 1+-- (3)C2 R2 Rp

C, R3 / R, \
-Rt1+ ). ~~~~(4)C2 R2 R

Equations (3) and (4) are independent and both must
be satisfied. It will be noted that the conditions for
balance are independent of frequency.

This neutralizing circuit reduces power-supply hum
to the same extent as it does regeneration. This is be-
cause such hum is caused by a voltage fed back from
the power supply to the input stages, just as regenera-
tion is caused by a voltage fed back in the same way.
The only difference in the two cases is that the voltage
across the output of the power supply arises from dif-
ferent causes.

Formulas for the Skin Effect*
HAROLD A. WHEELER t, FELLOW, I.R.E.

Summary-At radio frequencies, the penetration of currents
and magnetic fields into the surface of conductors is governed by the
skin effect. Many formulas are simplified if expressed in terms of the
"depth of penetration," which has merely the dimension of length but
involves the frequency and the conductivity and permeability of the
conductive material. Another useful parameter is the "surface resistiv-
ity" determined by the skin effect, which has simply the dimension of
resistance. These parameters are given for representative metals by a
convenient chart covering a wide range offrequency. The 'incremental-
inductance rule" is givenfor determining not only the effective resistance
of a circuit but also the added resistance caused by conductors in the
neighborhood of the circuit. Simpleformulas are given for the resistance
of wires, transmtssion lines, and coils; for the shielding effect of sheet
metal;for the resistance caused by a plane or cylindrical shield near a
coil; andfor the properties of a transformer with a laminated iron core.

T HE "skin effect" is the tendency for high-
frequency alternating currents and magnetic
flux to penetrate into the surface of a conductor

only to a limited depth. The "depth of penetration"
is a useful dimention, depending on the frequency
and also on the properties of the conductive material,
its conductivity or resistivity and its permeability. If
the thickness of a conductor is much greater than the
depth of penetration, its behavior toward high-fre-
quency alternating currents becomes a surface phe-
nomenon rather than a volume phenomenon. Its

*Decimal classification R144XR282.1. Original manuscript re-
ceived by the Institute, May 13, 1942. Presented, Rochester Fall
Meeting, November 10, 1941.

t Hazeltine Service Corporation, Little Neck, N. Y.

"surface resistivity" is the resistance of a conducting
surface of equal length and width, and has simply the
dimension of resistance. In the case of a straight wire,
the width is the circumference of the wire.

Maxwell' discovered that the voltage required to
force a varying current through a wire increases more
than could be explained by inductive reactance. He
explained this as caused by a departure from uniform
current density. This discovery was followed up by
Heaviside, Rayleigh, and Kelvin. It came to be called
the "skin effect," because the current is concentrated
in the outer surface of the conductor. The ratio of
high-frequency resistance to direct-current resistance
for a straight wire was computed in terms of Bessel
functions and was reduced to tables.2-7

I J. C. Maxwell, "Electricity and Magnetism," on page 385.
1873/1937, vol. 2, section 690, p. 322.

2 Lord Rayleigh, Phil. Mag., vol. 21, p. 381; 1886.
3 C. P. Steinmetz, 'Transient Electric Phenomena and Oscil-

lations," pp. 361-393, 1909/1920.
4 S. G. Starling, "Electricity and Magnetism," 1912/1914, pp.

364-369.
' E. B. Rosa and F. W. Grover, "Formulas and tables for the

calculation of mutual and self-inductance (revised)," Bureau of
Standards, S-169, pp. 172-182, 1916.

6 "Radio Instruments and Measurements," Bureau of Standards,
C-74, pp. 299-311, 1918/1924.

7 J. H. Morecroft, "Principles of Radio Communication," 1921,
pp. 114-136.
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Steinmetz defined the "depth of penetration" with-
out restriction as to the shape of the conductor. He
applied this concept to laminated iron cores, as well
as to conductors Unfortunately, he gave two definitions
which differ slightly, one for iron cores and another for
conductors. The latter definition has been generally
adopted, as in the Steinmetz tables on page 385.
More recent writers have reduced the treatment

of the skin effect to simple terms and have general-
ized its application.8-'6 Schelkunoff and Stratton have
given the most comprehensive treatment of the sub-
ject, including the depth of penetration in all kinds of
problems involving conductors. They have introduced
the concept of surface impedance, from which the
surface resistivity is a by-product.

In spite of this active history of the skin effect, there
is still a need for a simple and direct summary which
will facilitate its appreciation and its application to sim-
ple problems. That is the purpose of this presentation.

Following Harnwell and Stratton, the mks ra-
tionalized system of units is employed for all relations,
except where inches are specified. The properties of
materials are taken for rocm temperature (20 degrees
centigrade or 293 degrees absolute). The following list
gives the principal symbols used herein.

d =depth of penetration (meters)
Ri=surface resistivity (ohms)
-= conductivity (mhos per meter)
p= 1/o-= resistivity (ohm-meters)
,=permeability (henrys per meter)
yo = 47r 10-7 = permeability of space
f=frequency (cycles per second)
co = 27rf= radian frequency (radians per second)

e=2.72 =base of logarithms
exp x= ex = exponential function

Z=depth from the surface into the conductive
medium (meters)

w = width (meters)
I= length (meters)

8 E. J. Sterba and C. B. Feldman, "Transmission lines for short-
wave radio systems," PROC. I.R.E., vol. 20, PP. 1163-1202; July,
1932; Bell Sys. Tech. Jour., vol. 11, pp. 411-450; July, 1932. (Con-
venient formulas.)

I S. A. Schelkunoff, "The electromagnetic theory of coaxial
transmission lines and cylindrical shields," Bell Sys. Tech. Jour.,
vol. 8, pp. 532-579; October, 1934. (The most complete theoretical
treatment.)

10 S. A. Schelkunoff, "Coaxial communication transmission
lines," Elec. Eng., vol. 53, pp. 1592-1593; December, 1934. (A brief
description of the physical behavior.)

"1 E. I. Green, F. A. Leibe, and H. E. Curtis, "The proportioning
of shielding circuits for minimum high-frequency attenuation,"
Bell Sys. Tech. Jour., vol. 15, pp. 248-283; April, 1936.

12 August Hund, "Phenomena in High-Frequency Systems,"
1936, pp. 333-338.

13 S. A. Schelkunoff, "The impedance concept and its application
to problems of reflection, refraction, shielding and power absorp-
tion," Bell Sys. Tech. Jour., vol. 17, pp. 17-48; January, 1938.

14 G. P. Harnwell, "Principles of Electricity and Electromag-
netism," pp. 313-317, 1938.

5 W. R. Smythe, "Static and Dynamic Electricity," 1939, pp.
388-417.

16 J. A. Stratton, "Electromagnetic Theory," pp. 273-278, 500-
511, and 520-554, 1941. (mks units.)

a= thickness or radius (meters)
b =distance, length or width (meters)
c = distance (meters)
r=radius (meters)
A= area (square meters)
I= current (amperes)
i = current density at a depth z (amperes per

square meter)
io=current density at the surface (z=0)
H= magnetic field intensity at a depth z (amperes

per meter)
H0= magnetic field intensity at the surface (z =0)
E =electromotive force (volts)
P = power (watts)
P1 = power dissipation per unit area (watts per

square meter)
Z=R+jX=impedance (ohms)
X = reactance (ohms)
R = resistance (ohms)
G = conductance (mhos)
L =inductance (henries)
Lo= inductance in space outside of conductive

medium
m =number of laminations
n=number of turns
r = ratio of resistivity
x=ratio of radii

Q=ratio of reactance to resistance
Fig. 1 is a chart'7 giving the surface resistivity R,

and the depth of penetration d for various metals, over
a wide range of frequency f. The depth is plotted in
parts of an inch, since this aids in practical application
and introduces no confusion with the mks electrical
units. Each sloping line represents one metal, depend-
ing on its resistivity p or conductivity o- and its per-
meability ,u at room temperature (20 degrees centi-
grade or 293 degrees absolute). The heavy lines are
for copper, which is the logical standard of comparison.
Additional lines can be drawn to meet special re-
quirements, shifting them from the copper line in
accordance with the properties of the metal.

Fig. 2 shows a slab of conductive material to be used
in describing the skin effect. The current I is concen
trated in the upper surface. From Harnwell, the al-
ternating-current density i in the surface of a
conductor decreases with depth z according to the
formula

=exp-z jIO
t00

/wto
= exp -(1 +j)zV 2

z z
= exp--exp - j

d d (1)

17 This chart has been reprinted in the report of the Rochester
FallTMeeting in Electronics, December, 1941. More recently,
a similar chart has appeared in the following reference, together
with other valuable formulas and curves: J. R. Whinnery, "Skin
effect formulas," Electronics, vol. 15, pp. 44-48; February, 1942,
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Wheeler: Formulas for the Skin Effect

This decay of current density is shown by the shaded
area plotted on the side of the slab.
The depth of penetration is defined by the last

formula, as the depth at which the current density (or
magnetic flux) is attenuated by 1 napier (in the ratio
1/e= 1/2.72, or -8.7 decibels). At the same depth, its
phase lags by 1 radian, so d is 1/27r wavelength or 1
radian length in terms of the wave propagation in
the conductor.
The depth of penetration, by this definition, is

2r 1
d = X-

Cwy -\rfma

E pi
Z = = (1 +j)

I wd

= (1 + j)-1 1=\/_P
w w

ohms. (5)

Its real and imaginary components are the resistance

in spLice,u0
meters. (2) (sqrface)--

It is noted that the v/2 factor arises when the /Vj is
resolved into its real and imaginary components in the
exponent in (1).
The total current is the integral of the current den-

sity in the conductive medium. This integral from the
surface into the medium is a decaying spiral in the
complex plane, which rapidly approaches its limit if
the thickness is much greater than the depth of pene-
tration. The total current is therefore given by the
integral for infinite depth, over the width w:

fxI=W i.dz
Go=iowJ exp- (l+j)-dz
o ~~~d

iowd
1 + j

amperes. (3)

The voltage E on the surface along the length of
the conductor is obtained from the current density and

1~~~~~~~
Fig. 2-The skin effect on the surface of a conductor.

the volume resistivity.
E = iolp volts. (4)

If this voltage were to be measured, the return circuit
would have to be adjacent to the surface so as not to
include any of the magnetic flux in the near-by space.
The "internal impedance" or "surface impedance"

is computed from this voltage E and the current I.

in conductor
u,pe anda

(a) (b)

I I__._I __---- _.._. _. _

L(center of symnietrical conductor, or opposite surface
of shieldiing partition.)

Fig. 3-The internal impedance of a conductor, in terms of dis-
tributed circuit parameters (a) and equivalent lumped parame-
ters (b).

and the internal reactance, which are equal.

Z = R + jX,

I
R= X=- 7rf/p

w
ohms. (6)

The surface resistivity R1, given in the chart, is
defined as the resistance of a surface of equal length
and width.

R1= =;f=
d

/Tp

I
R= X = R

w
ohms. (7)

For example, R1 is the resistance of the unit square
surface in Fig. 2.18
The internal inductance is the part of the total in-

ductance which is caused by the magnetic flux in the
conductive medium. It is computed from the internal
reactance.

X lI d\
L =-= -IA--

co w\2/
henries. (8)

This is the inductance of a layer of the conductive
material having a thickness of d/2, one half the depth
of penetration. This merely means that the mean
depth of the current is one-half the thickness of the
conducting layer.

Fig. 3 illustrates the concept of internal impedance
in terms of electric circuit elements. In the diagram
(a), the inductance Lo is that caused by the magnetic
flux in the space adjacent to the conductor. Each part

18 Schelkunoff (footnote 9, p. 550) calls R1 the "intrinsic re-
sistance" of the material.
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of the current meets additional inductance in propor-
tion to its depth from the surface of the conductor.
This inductance is AL per element of depth. The con-
ductance of the material is AG for the same element
of depth. The conductive slab behaves as a trans-
mission line with paths of shunt conductance in layers
parallel to the surface, and series inductance between
layers. This hypothetical line presents the internal
impedance Z in series with the external inductance
Lo. If the thickness of the conductor is much greater
than the depth of penetration, the impedance is un-
affected by conditions at the far end of the line, or
beyond the other surface of the conductor.
The internal impedance of the hypothetical trans-

mission line in Fig. 3(a) is computed from its dis-
tributed inductance and conductance, by circuit
theory. Since the magnetic flux path has an area
lAz and a length w

,ulA\z
AL = henries. (9)

w

Since the current path has an area wAz and a length 1,

uwAz wAz
AG = = mhos. (10)

I p1

The impedance of a long line with these properties is
..

Z= NjAL/AG=-jp ohms. (11)
w

This is an independent complete derivation of (5),
without recourse to electromagnetic-wave equations.
The components of internal impedance are shown in

Fig. 3(b) as R and L. The resistance R is that of a layer
whose thickness is equal to the depth of penetration d.
The internal inductance is that of a layer whose thick-
ness is d/2, one half the depth of penetration.
Some inductance formulas carry the assumption

that the current travels in a thin sheet on the surface
of the conductor, as if the resistivity were zero. Such
assumptions are usual for transmission lines, wave
guides, cavity resonators, and piston attenuators. Such
formulas can be corrected for the depth of penetration
by assuming that the current sheet is at a depth d/2
from the surface. This is the same as assuming that the
surface of the conductor recedes by the amount

d ,. (12)
2 yo

The second factor has an effect only if the conductive
material has a permeability ,t differing from that of
space pto. The same correction is applicable to shielding
partitions, regarding their effect on the inductance of
near-by circuits.
There is sometimes a question which surface of a

conductor will carry the current. The rule is, that the
current follows the path of least impedance. Since the

impedance is mainly inductive reactance, in the com-
mon cases, the current tends to follow the path of least
inductance. In a ring, for example, the current density
is greater on the inner surface. In a coaxial line, the
current flows one way on the outer surface of the inner
conductor and returns on the inner surface of the outer
conductor.

In determining whether the thickness is much
greater than the depth of penetration, the effective
thickness corresponds to the length of the hypothetical
line in Fig. 3(a). In a symmetrical conductor with
penetration from both sides, as in a strip or a wire, the
effective thickness is the depth to the center of the con-
ductor. In a shielding partition with penetration into
the surface on one side and with open space on the
other side, the effective thickness is the actual thick-
ness. If the effective thickness exceeds twice the depth
of penetration, the accuracy of the above impedance
formulas is sufficient for most purposes, within two
per cent for a plane surface.
The shielding effect of a conductive partition de-

pends not only on the material and thickness of the
partition, but also on its location. For example, two
layers of metal have more shielding effect if they are
separated by a layer of free space than if they are close
together. If a shielding partition carries current on one
surface (z = 0) and is exposed to free space at the other
surface (z =a) the current density has a definite ratio
between one surface and the the other. For the thick-
ness a, much greater than the depth of penetration, as
in Fig. 2, this ratio is

ta a
-= 2 exp --
jo d

a
= 0.69 -

d

a
= 6- 8.7

d

(a >> d)

napiers

decibels. (13)

The factor 2 is caused by reflection at the far surface.
The space on either side of a shield usually adds to the
attenuation indicated by this formula.
The shielding ability of a given metal at a given

frequency is best expressed as the attenuation for a
convenient unit of thickness, disregarding the reflection
factor. The unit of thickness may be 1 millimeter
(10-3 meter) or 1 mil (2.54- 10-5 meter). In copper at
1 megacycle, for example, it is 132 decibels per milli-
meter or 3.3 decibels per mil. In iron, it is much greater
and depends also on the magnetic flux density, since
that affects the permeability.
The power dissipation in the surface of a shield is de-

termined by the magnetic field intensity at its surface.
The same is true of current conductors or iron cores
but in those cases there are more direct methods of
computation in terms of current and effective resist-
ance. Since the magnetic flux path has a length equal to
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the width w of the conductor, and since the magneto-
motive force is equal to the current I, the magnetic
intensity at the surface is

I

w

(c) Note that the increment of inductance caused
by penetration into each surface is

, d aLo
L

yo 2 (9amperes per meter. (14)

The power dissipation is
I

P = 12R = (wHo)2 R,
w

= IwHoI2R = lwP,

henries. (17)

(d) Compute the effective resistance contributed by
each surface,

watts (15)

in which the power dissipation per unit area of surface
is

Pi = Ho2RI watts per square meter. (16)

For most purposes, the power dissipation is more

readily computed by the following method, in terms of
effective resistance in a circuit.
The "incremental-inductance rule" is a formula

which gives the effective resistance caused by the skin
effect, but is based entirely on inductance computa-
tions. Its great value lies in its general validity for all
metal objects in which the current and magnetic in-
tensity are governed by the skin effect. In other words,
the thickness and the radius of curvature of exposed
metal surfaces must be much greater than the depth
of penetration, say at least twice as great. It is equally
applicable to current conductors, shields, and iron
cores.

This rule is a generalization of (7) which states that
the surface resistance R is equal to the internal re-

actance X as governed by the skin effect. The internal
reactance is the reactance of the internal inductance L
in (8). This inductance is the increment of the total
inductance which is caused by the penetration of mag-
netic flux under the conductive surface. This change of
inductance is the same as would be caused by the sur-

face receding to the depth given in (12). Starting with
a knowledge of this depth, the reverse process of com-
putation gives the increment of inductance caused by
the penetration, and from that the effective resistance
as governed by the skin effect.
The incremental-inductance rule is stated, that the

effective resistance in a circuit is equal to the change
of reactance caused by the penetration of magnetic
flux into metal objects. It is valid for all exposed metal
surfaces which have thickness and radius of curvature
much greater than the depth of penetration, say at
least twice as great.
The application of the incremental-inductance rule

involves the following steps:
(a) Select the circuit in which the effective resistance

is to be evaluated, and identify the exposed metal
surfaces in which the skin effect is prevalent.

(b) Compute the rate of change of inductance of
this circuit with recession of each of the metal surfaces,
o-Lo/az, assuming zero depth of penetration.'9

1Y A second-order approximation is secured if bLo/8z is computed

1 dLo
R-c=L = R1

Ho oaz
ohms. (18)

For a surface carrying the current of the circuit, this
is identical with (7). For the effect of near-by metal
objects, such as shields, this formula is easily applied
in many practical cases. It is most useful in cases of
nonuniform current distribution, which otherwise
would require special integrations.
A straight wire has its current concentrated in a

tubular surface layer as shown in Fig. 4(a). The depth

(a) r

(a) High-frequency current tube.

(b) 2r- d,

(b) High-frequency mean diameter.

(c) r exp-.u

(c) Low-frequency mean diameter.

Fig. 4-The current distribution in a straight wire.

of this layer is d. The radius of the wire is r but the
mean radius of the current tube is r-d/2. The resist-
ance ratio of the wire is the ratio of the alternating-
current resistance R of the direct-current resistance
Ro. It is the inverse ratio of the effective cross-sectional
areas,

R 7rr2

Ro r(2r - d)d
r 1

2d 4
(r > 2d). (19)

assuming that the surface is below the actual surface by the amount
given in (12).
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Since the assumptions are an approximation at best,
only the first two terms of this series deserve attention.
They give a close approximation if the radius exceeds
twice the depth of penetration, or if the resistance ratio
exceeds 5/4.20-26
The inductance of a straight wire is determined by

the mean diameter of the current path. Fig. 4(b) shows
the equivalent current sheet for the case in which the
radius is very much greater than the depth of penetra-
tion. A perfect conductor, to have the same inductance
with zero depth of penetration, has a radius which is
less by the amount given in (12). This rule is reliable
only if the equivalent radius is greater than 7/8 the
actual radius.

Eule~~~~r
Fig. 5-Straight wire.

The low-frequency inductance of a straight wire,
with uniform current distribution, is its maximum in-
ductance. As shown in Fig. 4(b), the equivalent cur-
rent sheet has the radius

r exp-- (20)
4go

in which the factor exp-1/4 is the "geometric-mean
distance" of a circular area."
The straight wire of Fig. 5, assuming a depth of pene-

tration very much less than the radius, has its resist-
ance expressed by the simple formula

I
R= -RI ohms. (21)

27rr

This neglects the second term in the series of (19). It
is on this simple basis that the following cases are
described.28'8,1'
The coaxial line of Fig. 6 has its current flowing one

way on the lesser radius ri and returning on the greater
radius r2. The total resistance is

/1 1\l
R = (-+-)-R , ohms. (22)

ri r2 2ir

20 Morecroft, (footnote 7, p. 116), curves of resistance ratio.
21 E. Jahnke and F. Emde, "Tables of Functions," B. G.

Teubner, Berlin, Germany, 1933, chapter 18, p. 314, Fig. 165, curve
rb0/2b,.

12 August Hund, "High-Frequency Measurements," 1933. pp.
263-266. Series expansions.

23 Schelkunoff, footnote 9, pp. 551-553, formulas and curves
for resistance and reactance ratio.

24 August Hund, "Phenomena in High Frequency Systems,"
1936. p. 338. Series expansions.

25 J. H. Miller, "R -F resistance of copper wire," Electronics,
vol. 9, no. 2, p. 338; February, 1936. Curves and formula.

26 Stratton, footnote 16, p. 537, series expansions.
27 Rosa and Grover, footnote 5, p. 167.
28 Alexander Russell, "The effective resistance and inductance

of a concentric main," Phil. Mag., sixth series, vol. 17, pp. 524-552;
April, 1909.

The inductance in the space between the conductors
is29

Lo = log-
27r ri

henries. (23)

For a given value of the greater radius r2, minimum at-
tenuation in this line requires minimum R/Lo, and this
is obtained with r2/rl=3.59, approximately.30"3, With

Fig. 6-Coaxial conductors.

this shape, the resistance of inner and outer conductors
is divided as 78 per cent and 22 per cent of the total.
Since the optimum ratio satisfies the equation

log-r2 r1
lg= I + )

ri r2
(24)

the ratio of reactance to resistance for this shape is, for
a nonmagnetic conductor,32

2r, r2
Qd= 1.=

d 1.8 d (A = go). (25)

This is the ratio of the diameter of the inner conductor
to the depth of penetration. In general,

Lor2
2r, .5r
d ri

1 +-
r2

(26)

This value is reduced slightly by end effects.
If a coaxial line is used as the inductance of a reso-

nant circuit, maximum impedance at parallel resonance
may be desired. This is obtained with maximum Lo2/R,
which determines the condition

- log - = 1 + -.
2 rj r2

(27)

The required shape is r2/rl = 9.2, approximately.33 If the
length of the line is much less than one-quarter wave-
length, so its shunt capacitance is negligible, this opti-
mum shape has the following resistance at parallel
resonance: (, =yo).

R' = Q2R = 0.307 dr RI ohms. (28)

For given frequency and material, this resistance is
proportional to the area of the conducting surfaces.

29 Harnwell, footnote 14, p. 304.
30 Sterba and Feldman, footnote 8, p. 419.
11 Green, Leibe, and Curtis, footnote 11, p. 253.
32 In all cases, Q is expressed on the assumption of a nonmag-

netic conductor.
33 F. E. Terman, "Resonant lines in radio circuits," Elec. Eng.,

vol. 53, pp. 1046-1053; July, 1934.
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A pair of straight parallel wires is shown in cross
section in Fig. 7. The same current flows in opposite
directions in the two wires, and is concentrated on the
surface. If the wire diameter 2a is much less than the
center-to-center separation 2b, the resistance of each
wire is given by (21) for Fig. 5. As the diameter
in Fig. 7 approaches equality with the separation, the
proximity of wires causes greater current density on
the inner sides.34 35 This effect is easily evaluated by
the incremental-inductance rule. The approximate and

ab

Fig. 7-Parallel wires.

exact formulas for the external inductance of this pair
of wires, of length 1, are

IAl 2b
Lo=- log - (a << b)

7r a

4uo . b
- anticosh

7r a

On the same assumption, rl<<r2, the inductance is"

/ 8r2 )
Lo-=,yor2 log- - 2)

ri

= p0r2 log 8r2
e2r1

henries. (33)

For a given ring diameter 2r2, the maximum ratio of
reactance to resistance is obtained with approximately

r2 e3
-_--= 2.5

ri 8
(34)

in which case the inductance and the ratio of reactance
to resistance are

L- uor2

2r,
Q=dd

henries.

(35)

This ratio is the same for the ring as for the coaxial
line. Only the simple approximate formulas are given
for the ring because no exact formula is known. In the
absence of an exact inductance formula, it is also im-
possible to find easily the effect of current concentra-

log [+(' + b

This first formula neglects the proximity of the inner
sides of the wires. The third formula shows in the
parenthetical factor, by the amount the factor departs
from 2, the reduction of inductance by the extra
concentration of current on the inner sides. Since the
penetration az corresponds to -da, the effect of surface
recession is

aLo aLo gol 1

= = V. (30)
clz aaa \,/- (alb) 2

in which the last factor is the proximity factor. From
this formula and (18), the resistance is

I

7ra /1 - (a/b)2- R1 ohms. (31)

The proximity factor appears as a reduction of the
effective circumference of the wire, because the current
is concentrated toward one side of each wire. Other-
wise, this formula is the same as for a single wire of
length 21.
A ring of wire is shown in Fig. 8, with r2 as the radius

of the ring and ri as the much smaller radius of the
wire, both being much greater than the depth of pene-

tration d. The resistance is

2irr2 r2
R= R,=- RI

27rr,r1
ohms. (32)

34 J. R. Carson, "Wave propagation over parallel wires: The
proximity effect," Phil. Mag., vol. 41, p. 627; April, 1921.

35 Green, Leibe, and Curtis, footnote 11, pp. 267-268.

Fig. 8-Circular ring.

tion on the inner side of the ring conductor. The added
resistance of the ring caused by radiation and near-by
objects is neglected.
A shielding wall near the ring of Fig. 8 is shown in

Fig. 9, the wall being a metal sheet parallel to the ring
at a distance c. The added resistance caused by this
shield is computed by the incremental-inductance rule.
Assuming first that the shield is a perfect conductor,
the effective inductance of the coil is reduced by an

amount equal to the mutual inductance with its image
(shown in dotted lines) at a distance 2c. Therefore, the
change of inductance is37

7rgor24Lo' = -

16c3
henries. (36)

To obtain the effect of penetration in the shild, ac cor-

responds to dz, so

aLo' OLo' 37r/.or24
oz &c 16c4

(37)

3 Harnwell, footnote 14, p. 305.
37 Harnwell, footnote 14, pp. 304-305.

(29)
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From this formula and (18), the added resistance is

3irr24
R'=- R1' ohms

1 6c4
(38)

in which R1' is the surface resistivity of the shield. This
is equal to the change of reactance which would be
caused if the shield were moved further back by the
displacement (d/2) (/u/uo) as shown in Fig. 9. Compar-
ing the added resistance with the resistance R of the
ring alone, formula (32), the relative change of resist-
ance is

R' 37rrlr23Rl'
R 16c4RI

This ratio is independent of the frequency, so long as
the depth of penetration is the controlling factor. As
an example, a copper ring with the optimum shape

Fig. 9-A ring near a shielding wall.

(r2 = 2.5ri) at a distance of 1 diameter from a soft-iron
shield (R1'=40R1) would suffer about 59 per cent in-
crease of resistance caused by the shield. In this loca-
tion, a slightly smaller wire diameter would be opti-
mum, because the inductance of the ring would increase
in a greater ratio than the total resistance. The reduc-
tion of inductance (36) by the shield varies with the
inverse cube of the distance, whereas the added re-

sistance (38) varies with the inverse fourth power.

A ring perpendicular to the shield, instead of parallel
as in Fig. 9, and with its center at the same distance,
would suffer only one half as much change of induct-
ance and resistance. This follows from the fact that
the mutual inductance with its image would be one half
as great. This is a striking example of the utility of the
incremental-inductance rule, since the departure from
axial symmetry would make this problem very difficult
of solution by field-integration methods.
A coil of n turns near a shield has its inductance and

resistance changed by n2 times as much as the ring,
that is, by n2Lo' and n2R', formulas (36) and (38).
The air-core toroidal coil of Fig. 10 has n turns on a

coil radius of ri and a ring radius of r2. The following
simple formulas are based on the asumptions that the
coil radius is much less than the ring radius (rl<<r2)
and that the current is concentrated on the inner
surface with uniform distribution in a layer' of depth

very much less than the coil radius (d<r1).
2wrrln r

R=R== n'R
2rr2/n r2

Lo = -Ion2

ohms (40)

henries (41)
2r2

(42)
d

These values are realized in a "one-turn" air-core
toroid of a continuous metal sheet. They are closely
approximated in a coil of round wire wound with a
pitch only slightly greater than the wire diameter.

Fig. 10-Toroidal coil.

The preferable shapes of the air-core toroid of Fig.
10 involve a coil radius comparable with the ring radius,
a departure from the above assumptions. This is of
interest only in the "one-turn" case (n = 1) since a layer
of wire cannot be wound with optimum pitch over the
entire surface of the coil. The exact formula for the
inductance is38

Lo yo(r2 - -/r22)
22l henries. (43)

r2 + V/r2 -r,

Since the penetration Oz corresponds with arl,
aLo aLo luor,=L0dLo pOr1= Vri -(44)
az ar, -\/r22-'r 2

From this formula and (18), the resistance is

R = P 2 R, (45)
V\r22 -ri

and the ratio of reactance to resistance is

r1 2Vr2

QTd r2 +v\/r2 2-r (46)

There is an optimum design for this case, with the coil
diameter slightly less than the ring diameter, but the
practical optimum is affected by so many factors that a

theoretical optimum is of little value. If the ring
diameter 2r2 is given, the optimum shape happen's to

be ri= 0.78r2, in which case

Q = 0.60-= 0.77-* (47)
d d

38 Harnwell, footnote 14, p, 302.
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There is another optimum design for a given outside
diameter, 2 (r,+ r2):

ri
ri- r2= 0.41;

r1 + r2

r2
_= 0.59

r1 + r2

inner and outer surfaces of the coil. The theoretical re-
lations are based on the ideal long coil and shield,
closely wound of rectangular wire, but the conclusions
are approximately correct for practical coils. The mag-
netic intensity H1 inside the coil and H2 between coil

- = 0.70 (48)

ri+ r2 r
Q = 0.343 = 0.83

d d

The solenoidal coil of Fig. 11 has n turns wound on a
radius a in an axial length b. If such a coil has a length
much greater than its radius and is wound closely with
rectangular wire of thickness much greater than the

n turns____
b *

Fig. 11-Solenoidal coil.

depth of penetration, the current flows in a sheet on
the inner surface of the wire, and the resistance is

2ira
R = -n2R,

b
ohms. (49)

In a practical coil of many turns of round wire, there
is an optimum diameter of wire slightly less than the
pitch of winding. This formula is a rough approxima-
tion for practical coils with optimum wire diameter.
It corresponds to a coil resistance slightly less than -r
times as great as the resistance of a straight wire of the
same length and diameter. (The effect of distributed
capacitance and dielectric resistance is omitted.) The
inductance is approximately,39 for b > 0.8a

Fig. 12-Solenoidal coil in a coaxial tubular shield.

and shield are in the inverse ratio of the cross-sectional
areas because all the flux inside the coil has to return
in the space between coil and shield.

H2 a,2 1

H1 a22 -a,2 a22/a12 - 1
(52)

The power dissipation is divided among the inner and
outer surfaces of the coil and the inner surface of the
shield. By (15), the total is

P = 27ra,bH12Rl + 27ra,bH22R, + 27ra2bH22R2

2 ( 22 a22H22R2)
= 2,7raibHl R,l 1 + -+1

\ H2 a2H 2R
watts (53)

in which R1 and R2 are the respective values of surface
resistivity for the metals of coil and shield. By (14),
the total current on both surfaces of the coil is

I = (H1 + H2)b/n amperes. (54)

= oara2n2
Lo =

b + 0.9 a
henries. (50)

The corresponding ratio of reactance to resistance is
approximately

a I
Q= -d 1 + 0.9 a/b

(51)

These simple formulas are applicable to coils in which
the length is greater than the radius, the optimum wire
diameter exceeds 4d, and the number of turns exceeds
about 4. In comparison with some recent measurements,
these formulas check fairly well the component of
resistance caused by the skin effect as distinguished
from capacitance effects.40
A solenoidal coil in a coaxial tubular shield is shown

in Fig. 12. The radius of coil and shield a, and a2 de-
termines the relative distribution of current on the

39H. A. Wheeler, "Simple inductance formulas for radio coils,"
PROC. I.R.E., vol. 16, pp. 1398-1400; October, 1928.

40 F. E. Terman, "Radio Engineering," 1932/1937, pp. 37-42.

Therefore, the effective resistance of the coil is

p
R =

12
2aR(+H22 a22H22R2)

2 7raln'Ri H12 a12H12R,

+ \

\bH

b b

(55)

The last factor gives the effect of the shield. It may
actually reduce the resistance, by redistribution of
surface currents, but not as much as it reduces the
inductance. The effective inductance of the coil in the
shield is

+

ira12 r(a22 -a12)
=Iral xI(a2-
7ral2Po a,2\

9-
henries (56)
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in which the last factor gives the reduction of induct-
ance by the shield. With these substitutions,

a1 R
x= , r=- (57)

a2 R,
and the ratio of reactance to resistance is

a2 x(j -x2)
Q = _. . (58)

d 1-(2--r)x2+2x4 (

This is expressed in terms of the shield radius a2 since
that determines the space in which the coil is located.
The maximum Q is obtained if x satisfies the equation

0 = 1-(1 + r)x2-(4 + r)x4 +x6. (59)

This is most easily solved by trial. The solutions for the
optimum design in several cases are as follows:

R2 a,
r=- X2 X=-

R, a2

0 0.41 0.64

1 0.30 0.55

2 0.23 0.48

1 1

r \/r

Q (60)

is not accompanied by a proportionate reduction of Q.
Therefore, the shield reduces the effective resistance in
these cases. In practice, the shield always decreases the
Q.
The transformer of Fig. 13 has a laminated iron core

of cross-sectional area A. The flux path in the iron has
a length 1i while that in the air gap has a length 1,. For
simplicity of analysis, the two coils have the same num-
ber of turns n. If the actual number of turns is ni and
n2, the respective self-impedances and mutual imped-
ance are obtained by letting

n2 = n12, n22, nln2. (62)

Fig. 14 shows the impedance network which is the
equivalent of this transformer. The upper part repre-
sents the coil resistance and the part of the inductance
caused by magnetic flux in the space outside the core,
as if the core space had zero permeability. The lower

r__ _ _ _ _ _ _ __

inair,outside of core I

a2 a,
0.72 - = 1.14-

d d

a2 a,
0.44 - = 0.80

d d

a2 a1
0.33 - = 0.70-

d d

1 a2 a,
_- = 0.50

2\/r d d

An approximate formula for the optimum ratio of radii
is given by the relation,

1
X2 =

2.3 + r

a, 1

a2 V2.3 + R2/R1

(61)

This formula is exact for r= 1, 2, oo. In the first two
rows of the table (60), the coefficient in the last column
indicates that the reduction of inductance by the shield

)07

n turnl
n turne

T
A rn~a

b
Fig. 13-Transformer with laminated iron core.

Fig. 14-The distributed-impedance network equivalent
to the iron-core transformer.

part represents the impedance caused by the core,
including the air gap. The inductance which would
be caused by the flux in the iron core of permeability u,
with no air gap, is

1un2A
Li = An2t

li
henries. (63)

The inductance which would be caused by the flux in
the air gap, if the iron core had infinite permeability, is

gOn2A henries. (64)

The inductance effective at low frequencies is that of
Li and L. in parallel,

LILt,, yo2A
Lo= henries. (65)

Li + Lg, ig + li-to/,4
The eddy currents and skin effect depend on the di-
vision of the core area into laminations,

A = mab square meters (66)
in which m is the number of laminations of thickness a
and width b. The current paths in the laminations
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cause an apparent distributed conductance, associated
with the iron inductance Li, which has the value

Gi = mhos (67)
4n2mb

in which o- is the conductivity of the iron. The effect of
this distributed conductance is least at low frequencies
and merges into the skin effect at high frequencies.

Fig. 15 shows a simplified equivalent network inwhich
the shunt resistance R and inductance L have values
depending on the frequency. These parallel components
are used rather than series components, because the
effective shunt resistance varies less with frequency
than the effective series resistance.
At low frequencies, the apparent shunt conductance

approaches the constant value
G = iGi mhos. (68)

The corresponding value of shunt resistance is
12n2mbd

R= R
ali

ohms. (69)

in which R, is the surface resistivity of the iron. The
inductance L has its low-frequency value Li. This is
based on the assumption that the alternating flux
within the lamination suffers only a small phase lag
and no appreciable reduction in magnitude, which is
true if the depth of penetration is greater than the
thickness of laminations.4' The corresponding ratio of
shunt susceptance to conductance, is

R d2
Q = =6-

wL a2
(d >> a). (70)

At frequencies so high that the depth of penetration
is less than 1/4 the thickness of laminations, the skin
effect governs the impedance caused by the iron core.
The effective impedance of R and L in parallel is the
impedance of the line with distributed series Li and
shunt Gi:

z 1 L
1/R + 1/jwL G
4n2mb

=- R ohms. (71)
(1 - j)li

The shunt components of this impedance have the
value

4n2mb
R = coL - R ohms. (72)

Ii
The apparent shunt inductance is

2d
L = -L

a
henries. (73)

This is the inductance based on twice the depth of
penetration as the effective thickness of each lamina-
tion.
The air gap sometimes increases the ratio of react-
41 V. E. Legg, "Survey of magnetic materials and applications in

the telephone system," Bell. Sys. Tech. Jour., vol. 18, pp. 438-464,
July 1939. (In Fig. 7, 0 is the ratio of thickness to depth of pene-
tration.)

ance to resistance in the impedance of an iron-core
inductor. This question involves the series resistance Rc
of each coil, while the inductance in the space outside
the coil is usually negligible. Increasing the air gap

Fig. 15-The lumped-impedance network equivalent
to the iron-core transformer.

decreases Lq,, thereby causing more dissipation in the
coils (R,) and less in the core (R). The optimum length
of air gap is approximately that which divides the
dissipation equally between coil and core. The opti-
mum condition is

1 1 /1 + R,/R
± =,'/

WL wL, RR,
For this condition, the maximum ratio is42

1/ R/RC
Q2= V2 V1 + R,I/R

(74)

(75)

This is nearly independent of the number of turns. Its
value is expressed in terms of three properties of the
coil; Pc is the resistivity of the copper wire, l4 is the
average length of wire per turn, and A, is the total
cross-sectional area of the turns of wire on the winding
in question. In a self-inductor of one coil, A, is some-
what less than the area of each window. The following
formulas are simplified on the assumption that R>>R,
so the optimum air gap gives Q>> 1. At the higher fre-
quencies, where the skin effect predominates, the
optimum air gap gives

AAcp
adlil,p,

(a > 4d). (76)

At the lower frequencies, where eddy currents are
induced by nearly uniform flux in the laminations, the
optimum air gap gives_3

V 3AA p

a2liJcpc
(a < d). (77)

These maximum values cannot be realized if the opti-
mum length of air gap is negative. This is true at very
low frequencies where the eddy currents are negligible,
in which case the air gap is reduced to zero, giving

wL~
Q = toLi (wLi <<L«VRR,)

2AA,p 2AAc(
d21i1Cp, d21iZ1yo

in which d and d, are the depths of penetration in iron
42 L. A. Arguimbau, "Losses in audio-frequency coils," General

Radio Experimenter, vol. 11, no. 6, pp. 1-4, November, 1936.
43 P. K. McElroy and R. F. Field, "How good is an iron-cored

coil?" General Radio Experimenter, vol. 16, no. 10, pp. 1-12,
March, 1942.
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and copper, the materials of the core and the coil. In
these formulas, the depth of penetration includes the
frequency dimension, enabling the expression entirely
in terms of ratios. The value of (78) is actually inde-
pendent of the p of the iron and the iuo of the copper,
those being involved also in the depth of penetration.

Since copper is the usual material for conductors,
it is useful to remember the depth of penetration in
copper at a certain frequency and room temperature
(20 degrees centigrade):

At f 106 cycles=1 Mc,
= 66 10-6 meter = 0.066 mm = 66 microns
= 2.6 10-3 inch = 2.6 mils. (79)

The values for copper and other materials (at a tem-
perature of 0 degrees centigrade) are found in the Stein-
metz3 table, p. 385. The essential properties of copper
are (at 20 degrees centigrade):

Pe = Io = 47r 10-7 henry per meter

= 1.257 microhenrys per meter

¢c = 5.80 107 mhos per meter
= 58 megamhos per meter

Pc = 1.724. 10-8 ohm-meter
= 1/58 microhm-meter

Aooc = 72.8 seconds per square meter

(80)

d and the surface resistivity R1 plotted against fre-
quency. Each pair of crossed lines is for one material.
Some of the materials shown are chosen for their ex-
treme properties (at least, among the common ma-
terials). Copper has the least resistivity. The permalloy
shown (78 per cent nickel) is used for loading subma-
rine telegraph cables and for shielding against alter-
nating magnetic fields; it has the least depth of pene-
tration, by virtue of its high permeability and small
resistivity:

Pt = 9000 ,0 (at small flux density)
p = 9.3 pc = 0.16 microhm-meter
At 1 Mc (83)
d' = 2.1 10-6meter = 0.084 mil

Ri' = 75 milohms

Manganin is the material usually used in resistance
standards; it has about the highest resistivity com-
patible with minimum permeability, and therefore the
greatest depth of penetration:

A = /0o

p = 25.5 Pc = 0.44 microhm-meter
At 1 Mc

d' = 0.33 mm = 13 mils

R = 1.3 milohms.

(84)

i-oPc = 2.17 10-14 ohm2-second

in which uo is the permeability of space. The other
important value for copper is the surface resistivity,
still at 1 megacycle:

R1,1 = 2.60 10-4 ohm
= 0.260 milohm. (81)

In order to convert d, and Ri, for other materials, it is
necessary to know only their permeability and resistiv-
ity relative to copper:

/ 1 Mc IA0 p
d = dc,4

f u Pc

R, =RIcA/ --h . (82)
V 1 Mc Ao Pc

The chart of Fig. 1 gives the depth of penetration

Most of the ordinary materials fall within the limits
of these three cases.
On the chart, the intersection of each pair of lines

moves upward with increasing resistivity and toward
the left with increasing permeability. (It is purely
coincidental that the intersection is at 1 megacycle
for nonmagnetic materials.)

In this collection of formulas, the properties of the
conductive materials are usually expressed in terms of
depth of penetration d and surface resistivity R1, both
of which involve also the frequency. The former ap-
pears in ratios with other "length" dimensions. The
latter appears in impedance formulas, where it brings
in the "resistance" dimension. Other quantities usually
appear in ratios so they do not complicate the dimen-
sions. The two parameters d and R1 are most useful
because they have not only dimensional simplicity
but also obvious physical significance.
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