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Preface

The many books on introductory electromagnetics can be roughly divided into two
main groups. The first group takes the traditional development: starting with the
experimental laws, generalizing them in steps, and finally synthesizing them in the
form of Maxwell’s equations. This is an inductive approach. The second group takes
the axiomatic development: starting with Maxwell’s equations, identifying each with
the appropriate experimental law, and specializing the general equations to static
and time-varying situations for analysis. This is a deductive approach. A few books
begin with a treatment of the special theory of relativity and develop all of electro-
magnetic theory from Coulomb’s law of force; but this approach requires the discus-
sion and understanding of the special theory of relativity first and is perhaps best
suited for a course at an advanced level.

Proponents of the traditional development argue that it is the way electromag-
netic theory was unraveled historically (from special experimental laws to Maxwell’s
equations), and that it is easier for the students to follow than the other methods.
I feel, however, that the way a body of knowledge was unraveled is not necessarily
the best way to teach the subject to students. The topics tend to be fragmented and
cannot take full advantage of the conciseness of vector calculus. Students are puzzled
at, and often form a mental block to, the subsequent introduction of gradient, diver-
gence, and curl operations. As a process for formulating an electromagnetic model,
this approach lacks cohesiveness and elegance.

The axiomatic development usually begins with the set of four Maxwell’s equa-
tions, either in differential or in integral form, as fundamental postulates. These are
equations of considerable complexity and are difficult to master. They are likely to
cause consternation and resistance in students who are hit with all of them at the
beginning of a book. Alert students will wonder about the meaning of the field vectors
and about the necessity and sufficiency of these general equations. At the initial stage
students tend to be confused about the concepts of the electromagnetic model, and
they are not yet comfortable with the associated mathematical manipulations. In any
case, the general Maxwell’s equations are soon simplified to apply to static fields,
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Preface

which allow the consideration of electrostatic fields and magnetostatic fields sepa-
rately. Why then should the entire set of four Maxwell’s equations be introduced at
the outset?

It may be argued that Coulomb’s law, though based on experimental evidence,
is in fact also a postulate. Consider the two stipulations of Coulomb’s law: that the
charged bodies are very small compared with their distance of separation, and that
the force between the charged bodies is inversely proportional to the square of their
distance. The question arises regarding the first stipulation: How small must the
charged bodies be in order to be considered “very small” compared with their dis-
tance? In practice the charged bodies cannot be of vanishing sizes (ideal point charges),
and there is difficulty in determining the “true” distance between two bodies of finite
dimensions. For given body sizes the relative accuracy in distance measurements is
better when the separation is larger. However, practical considerations (weakness of
force, existence of extraneous charged bodies, etc.) restrict the usable distance of sepa-
ration in the laboratory, and experimental inaccuracies cannot be entirely avoided.
This leads to a more important question concerning the inverse-square relation of
the second stipulation. Even if the charged bodies were of vanishing sizes, experi-
mental measurements could not be of an infinite accuracy no matter how skillful and
careful an experimentor was. How then was it possible for Coulomb to know that
the force was exactly inversely proportional to the square (not the 2.000001th or the
1.999999th power) of the distance of separation? This question cannot be answered
from an experimental viewpoint because it is not likely that during Coulomb’s time
experiments could have been accurate to the seventh place. We must therefore con-
clude that Coulomb’s law is itself a postulate and that it is a law of nature discovered
and assumed on the basis of his experiments of a limited accuracy (see Section 3-2).

This book builds the electromagnetic model using an axiomatic approach in steps:
first for static electric fields (Chapter 3), then for static magnetic fields (Chapter 6),
and finally for time-varying fields leading to Maxwell’s equations (Chapter 7). The
mathematical basis for each step is Helmholtz’s theorem, which states that a vector
field is determined to within an additive constant if both its divergence and its curl
are specified everywhere. Thus, for the development of the electrostatic model in free
space, it is only necessary to define a single vector (namely, the electric field intensity
E) by specifying its divergence and its curl as postulates. All other relations in electro-
statics for free space, including Coulomb’s law and Gauss’s law, can be derived from
the two rather simple postulates. Relations in material media can be developed
through the concept of equivalent charge distributions of polarized dielectrics.

Similarly, for the magnetostatic model in free space it is necessary to define only
a single magnetic flux density vector B by specifying its divergence and its curl as
postulates; all other formulas can be derived from these two postulates. Relations
in material media can be developed through the concept of equivalent current densi-
ties. Of course, the validity of the postulates lies in their ability to yield results that
conform with experimental evidence.

For time-varying fields, the electric and magnetic field intensities are coupled.
The curl E postulate for the electrostatic model must be modified to conform with



Preface VI

Faraday’s law. In addition, the curl B postulate for the magnetostatic model must
also be modified in order to be consistent with the equation of continuity. We have,
then, the four Maxwell’s equations that constitute the electromagnetic model. I believe
that this gradual development of the electromagnetic model based on Helmholtz’s
theorem is novel, systematic, pedagogically sound, and more easily accepted by
students.

In the presentation of the material, I strive for lucidity and unity, and for smooth
and logical flow of ideas. Many worked-out examples are included to emphasize
fundamental concepts and to illustrate methods for solving typical problems. Applica-
tions of derived relations to useful technologies (such as ink-jet printers, lightning
arresters, electret microphones, cable design, multiconductor systems, electrostatic
shielding, Doppler radar, radome design, Polaroid filters, satellite communication
systems, optical fibers, and microstrip lines) are discussed. Review questions appear
at the end of each chapter to test the students’ retention and understanding of the es-
sential material in the chapter. The problems in each chapter are designed to reinforce
students’ comprehension of the interrelationships between the different quantities in
the formulas, and to extend their ability of applying the formulas to solve practical
problems. In teaching, I have found the review questions a particularly useful device
to stimulate students’ interest and to keep them alert in class.

Besides the fundamentals of electromagnetic fields, this book also covers the
theory and applications of transmission lines, waveguides and cavity resonators, and
antennas and radiating systems. The fundamental concepts and the governing theory
of electromagnetism do not change with the introduction of new electromagnetic
devices. Ample reasons and incentives for learning the fundamental principles of
electromagnetics are given in Section 1-1. I hope that the contents of this book,
strengthened by the novel approach, will provide students with a secure and sufficient
background for understanding and analyzing basic electromagnetic phenomena as
well as prepare them for more advanced subjects in electromagnetic theory.

There is enough material in this book for a two-semester sequence of courses.
Chapters 1 through 7 contain the material on fields, and Chapters 8 through 11 on
waves and applications. In schools where there is only a one-semester course on elec-
tromagnetics, Chapters 1 through 7, plus the first four sections of Chapter 8 would
provide a good foundation on fields and an introduction of waves in unbounded
media. The remaining material could serve as a useful reference book on applications
or as a textbook for a follow-up elective course. Schools on a quarter system could
adjust the material to be covered in accordance with the total number of hours
assigned to the subject of electromagnetics. Of course, individual instructors have the
prerogative to emphasize and expand certain topics, and to deemphasize or delete
certain others.

I have given considerable thought to the advisability of including computer pro-
grams for the solution of some problems, but have finally decided against it. Diverting
students’ attention and effort to numerical methods and computer software would
distract them from concentrating on learning the fundamentals of electromagnetism.
Where appropriate, the dependence of important results on the value of a parameter
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is stressed by curves; field distributions and antenna patterns are illustrated by graphs;
and typical mode patterns in waveguides are plotted. The computer programs for
obtaining these curves, graphs, and mode patterns are not always simple. Students
in science and engineering are required to acquire a facility for using computers; but
the inclusion of some cookbook-style computer programs in a book on the funda-
mental principles of electromagnetic fields and waves would appear to contribute
little to the understanding of the subject matter.

This book was first published in 1983. Favorable reactions and friendly encour-
agements from professors and students have provided me with the impetus to come
out with a new edition. In this second edition I have added many new topics. These
include Hall effect, d-c motors, transformers, eddy current, energy-transport velocity
for wide-band signals in waveguides, radar equation and scattering cross section,
transients in transmission lines, Bessel functions, circular waveguides and circular
cavity resonators, waveguide discontinuities, wave propagation in ionosphere and
near earth’s surface, helical antennas, log-periodic dipole arrays, and antenna effective
length and effective area. The total number of problems has been expanded by about
35 percent.

The Addison-Wesley Publishing Company has decided to make this second
edition a two-color book. I think the readers will agree that the book is handsomely
produced. I would like to take this opportunity to express my appreciation to all
the people on the editorial, production, and marketing staff who provided help in
bringing out this new edition. In particular, I wish to thank Thomas Robbins, Barbara
Rifkind, Karen Myer, Joseph K. Vetere, and Katherine Harutunian.

Chevy Chase, Maryland D.K.C.
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The Electromagnetic
Model

Introduction

Stated in a simple fashion, electromagnetics is the study of the effects of electric
charges at rest and in motion. From elementary physics we know that there are two
kinds of charges: positive and negative. Both positive and negative charges are sources
of an electric field. Moving charges produce a current, which gives rise to a magnetic
field. Here we tentatively speak of electric field and magnetic field in a general way;
more definitive meanings will be attached to these terms later. A field is a spatial dis-
tribution of a quantity, which may or may not be a function of time. A time-varying
electric field is accompanied by a magnetic field, and vice versa. In other words, time-
varying electric and magnetic fields are coupled, resulting in an electromagnetic field.
Under certain conditions, time-dependent electromagnetic fields produce waves that
radiate from the source.

The concept of fields and waves is essential in the explanation of action at a dis-
tance. For instance, we learned from elementary mechanics that masses attract each
other. This is why objects fall toward the earth’s surface. But since there are no elastic
strings connecting a free-falling object and the earth, how do we explain this phenom-
enon? We explain this action-at-a-distance phenomenon by postulating the existence
of a gravitational field. The possibilities of satellite communication and of receiving
signals from space probes millions of miles away can be explained only by postulating
the existence of electric and magnetic fields and electromagnetic waves. In this book,
Field and Wave Electromagnetics, we study the principles and applications of the
laws of electromagnetism that govern electromagnetic phenomena.

Electromagnetics is of fundamental importance to physicists and to electrical and
computer engineers. Electromagnetic theory is indispensable in understanding the
principle of atom smashers, cathode-ray oscilloscopes, radar, satellite communication,
television reception, remote sensing, radio astronomy, microwave devices, optical
fiber communication, transients in transmission lines, electromagnetic compatibility
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v
FIGURE 1-1

— A monopole antenna.

problems, instrument-landing systems, electromechanical energy conversion, and so
on. Circuit concepts represent a restricted version, a special case, of electromagnetic
concepts. As we shall see in Chapter 7, when the source frequency is very low so that
the dimensions of a conducting network are much smaller than the wavelength, we
have a quasi-static situation, which simplifies an electromagnetic problem to a circuit
problem. However, we hasten to add that circuit theory is itself a highly developed,
sophisticated discipline. It applies to a different class of electrical engineering prob-
lems, and it is important in its own right.

Two situations illustrate the inadequacy of circuit-theory concepts and the need
for electromagnetic-field concepts. Figure 1-1 depicts a monopole antenna of the
type we see on a walkie-talkie. On transmit, the source at the base feeds the antenna
with a message-carrying current at an appropriate carrier frequency. From a circuit-
theory point of view, the source feeds into an open circuit because the upper tip of
the antenna is not connected to anything physically; hence no current would flow,
and nothing would happen. This viewpoint, of course, cannot explain why communi-
cation can be established between walkie-talkies at a distance. Electromagnetic con-
cepts must be used. We shall see in Chapter 11 that when the length of the antenna
is an appreciable part of the carrier wavelength,’ a nonuniform current will flow
along the open-ended antenna. This current radiates a time-varying electromagnetic
field in space, which propagates as an electromagnetic wave and induces currents in
other antennas at a distance.

In Fig. 1-2 we show a situation in which an electromagnetic wave is incident
from the left on a large conducting wall containing a small hole (aperture). Electro-
magnetic fields will exist on the right side of the wall at points, such as P in the fig-
ure, that are not necessarily directly behind the aperture. Circuit theory is obviously
inadequate here for the determination (or even the explanation of the existence) of
the field at P. The situation in Fig. 1-2, however, represents a problem of practical
importance as its solution is relevant in evaluating the shielding effectiveness of the
conducting wall.

t The product of the wavelength and the frequency of an a-¢ source is the velocity of wave propagation.
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Generally speaking, circuit theory deals with lumped-parameter systems—circuits
consisting of components characterized by lumped parameters such as resistances,
inductances, and capacitances. Voltages and currents are the main system variables.
For d-c circuits the system variables are constants, and the governing equations are
algebraic equations. The system variables in a-c circuits are time-dependent; they are
scalar quantities and are independent of space coordinates. The governing equations
are ordinary differential equations. On the other hand, most electromagnetic vari-
ables are functions of time as well as of space coordinates. Many are vectors with
both a magnitude and a direction, and their representation and manipulation require
a knowledge of vector algebra and vector calculus. Even in static cases the govern-
ing equations are, in general, partial differential equations. It is essential that we be
equipped to handle vector quantities and variables that are both time- and space-
dependent. The fundamentals of vector algebra and vector calculus will be developed
in Chapter 2. Techniques for solving partial differential equations are needed in deal-
ing with certain types of electromagnetic problems. These techniques will be discussed
in Chapter 4. The importance of acquiring a facility in the use of these mathematical
tools in the study of electromagnetics cannot be overemphasized.

Students who have mastered circuit theory may initially have the impression that
electromagnetic theory is abstract. In fact, electromagnetic theory is no more abstract
than circuit theory in the sense that the validity of both can be verified by experimen-
tally measured results. In electromagnetics there is a need to define more quantities
and to use more mathematical manipulations in order to develop a logical and com-
plete theory that can explain a much wider variety of phenomena. The challenge of
field and wave electromagnetics is not in the abstractness of the subject matter but
rather in the process of mastering the electromagnetic model and the associated rules
of operation. Dedication to acquiring this mastery will help us to meet the challenge
and reap immeasurable satisfaction.

The Electromagnetic Model

There are two approaches in the development of a scientific subject: the inductive
approach and the deductive approach. Using the inductive approach, one follows
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the historical development of the subject, starting with the observations of some sim-
ple experiments and inferring from them laws and theorems. It is a process of reason-
ing from particular phenomena to general principles. The deductive approach, on
the other hand, postulates a few fundamental relations for an idealized model. The
postulated relations are axioms, from which particular laws and theorems can be de-
rived. The validity of the model and the axioms is verified by their ability to predict
consequences that check with experimental observations. In this book we prefer to
use the deductive or axiomatic approach because it is more elegant and enables the
development of the subject of electromagnetics in an orderly way.

The idealized model we adopt for studying a scientific subject must relate to real-
world situations and be able to explain physical phenomena; otherwise, we would
be engaged in mental exercises for no purpose. For example, a theoretical model
could be built, from which one might obtain many mathematical relations; but, if
these relations disagreed with observed results, the model would be of no use. The
mathematics might be correct, but the underlying assumptions of the model could
be wrong, or the implied approximations might not be justified.

Three essential steps are involved in building a theory on an idealized model.
First, some basic quantities germane to the subject of study are defined. Second, the
rules of operation (the mathematics) of these quantities are specified. Third, some
fundamental relations are postulated. These postulates or.laws are invariably based
on numerous experimental observations acquired under controlled conditions and
synthesized by brilliant minds. A familiar example is the circuit theory built on a
circuit model of ideal sources and pure resistances, inductances, and capacitances.
In this case the basic quantities are voltages (V), currents (I), resistances (R), induc-
tances (L), and capacitances (C); the rules of operations are those of algebra, ordinary
differential equations, and Laplace transformation; and the fundamental postulates
are Kirchhoff’s voltage and current laws. Many relations and formulas can be de-
rived from this basically rather simple model, and the responses of very elaborate
networks can be determined. The validity and value of the model have been amply
demonstrated.

In a like manner, an electromagnetic theory can be built on a suitably chosen
electromagnetic model. In this section we shall take the first step of defining the basic
quantities of electromagnetics. The second step, the rules of operation, encompasses
vector algebra, vector calculus, and partial differential equations. The fundamentals
of vector algebra and vector calculus will be discussed in Chapter 2 (Vector Analysis),
and the techniques for solving partial differential equations will be introduced when
these equations arise later in the book. The third step, the fundamental postulates, will
be presented in three substeps in Chapters 3, 6, and 7 as we deal with static electric
fields, steady magnetic fields, and electromagnetic fields, respectively.

The quantities in our electromagnetic model can be divided roughly into two
categories: source quantities and field quantities. The source of an electromagnetic
field is invariably electric charges at rest or in motion. However, an electromagnetic
field may cause a redistribution of charges, which will, in turn, change the field; hence
the separation between the cause and the effect is not always so distinct.
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We use the symbol g (sometimes Q) to denote electric charge. Electric charge
is a fundamental property of matter and exists only in positive or negative integral
multiples of the charge on an electron, —e.

e=160x 1071 (O, a-1

where C is the abbreviation of the unit of charge, coulomb.? It is named after the
French physicist Charles A. de Coulomb, who formulated Coulomb’s law in 1785.
(Coulomb’s law will be discussed in Chapter 3.) A coulomb is a very large unit for
electric charge; it takes 1/(1.60 x 107! or 6.25 million trillion electrons to make
up —1C. In fact, two 1 C charges I m apart will exert a force of approximately
1 million tons on each other. Some other physical constants for the electron are listed
in Appendix B-2.

The principle of conservation of electric charge, like the principle of conserva-
tion of momentum, is a fundamental postulate or law of physics. It states that electric
charge is conserved; that is, it can neither be created nor be destroyed. This is a law
of nature and cannot be derived from other principles or relations. Its truth has never
been questioned or doubted in practice.

Electric charges can move from one place to another and can be redistributed
under the influence of an electromagnetic field; but the algebraic sum of the positive
and negative charges in a closed (isolated) system remains unchanged. The principle
of conservation of electric charge must be satisfied at all times and under any
circumstances. It is represented mathematically by the equation of continuity, which
we will discuss in Section 5-4. Any formulation or solution of an electromagnetic
problem that violates the principle of conservation of electric charge must be incorrect.
We recall that the Kirchhoff’s current law in circuit theory, which maintains that
the sum of all the currents leaving a junction must equal the sum of all the currents
entering the junction, is an assertion of the conservation property of electric charge.
(Implicit in the current law is the assumption that there is no cumulation of charge
at the junction.)

Although, in a microscopic sense, electric charge either does or does not exist at
a point in a discrete manner, these abrupt variations on an atomic scale are unim-
portant when we consider the electromagnetic effects of large aggregates of charges.
In constructing a macroscopic or large-scale theory of electromagnetism we find that
the use of smoothed-out average density functions yields very good results. (The same
approach is used in mechanics where a smoothed-out mass density function is defined,
in spite of the fact that mass is associated only with elementary particles in a discrete

*In 1962, Murray Gell-Mann hypothesized quarks as the basic building blocks of matter. Quarks were
predicted to carry a fraction of the charge of an electron, and their existence has since been verified
experimentally.

* The system of units will be discussed in Section 1-3.
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manner on an atomic scale.) We define a volume charge density, p, as a source quan-
tity as follows:

p = lim %% (C/m3), (1-2)

Av—0

where Agq is the amount of charge in a very small volume Av. How small should Av
be? It should be small enough to represent an accurate variation of p but large enough
to contain a very large number of discrete charges. For example, an elemental cube
with sides as small as 1 micron (10® m or 1 um) has a volume of 10™'® m?, which
will still contain about 10! (100 billion) atoms. A smoothed-out function of space
coordinates, p, defined with such a small Av is expected to yield accurate macroscopic
results for nearly all practical purposes.

In some physical situations an amount of charge Aq may be identified with an
element of surface As or an element of line AZ. In such cases it will be more appropriate
to define a surface charge density, p,, or a line charge density, p,.

. Ag 2
= —_— 1-3
Ps AI:inO As (C/m?), (1-3)
. Aq
p, = Al;rfog (C/m). (1-4)

Except for certain special situations, charge densities vary from point to point; hence
p, p,, and p, are, in general, point functions of space coordinates.
Current is the rate of change of charge with respect to time; that is,
_4

I o (C/s or A), (1-5)

where I itself may be time-dependent. The unit of current is coulomb per second (C/s),
which is the same as ampere (A). A current must flow through a finite area (a con-
ducting wire of a finite cross section, for instance); hence it is not a point function. In
electromagnetics we define a vector point function volume current density (or simply
current density) J, which measures the amount of current flowing through a unit
area normal to the direction of current flow. The boldfaced J is a vector whose mag-
nitude is the current per unit area (A/m?) and whose direction is the direction of cur-
rent flow. We shall elaborate on the relation between I and J in Chapter 5. For very
good conductors, high-frequency alternating currents are confined in the surface layer
as a current sheet, instead of flowing throughout the interior of the conductor. In such
cases there is a need to define a surface current density J, which is the current per
unit width on the conductor surface normal to the direction of current flow and has
the unit of ampere per meter (A/m).

There are four fundamental vector field quantities in electromagnetics: electric
field intensity E, electric flux density (or electric displacement) D, magnetic flux
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TABLE 1-1
Fundamental Electromagnetic Field Quantities
Symbols and Units
for Field Quantities Field Quantity Symbol Unit
Electric field intensity E V/m
Electric
Electric flux density D C/m?
(Electric displacement)
Magnetic flux density B T
Magnetic
Magnetic field intensity H A/m

density B, and magnetic field intensity H. The definition and physical significance
of these quantities will be explained fully when they are introduced later in the book.
At this time we want only to establish the following. Electric field intensity E is the
only vector needed in discussing electrostatics (effects of stationary electric charges)
in free space; it is defined as the electric force on a unit test charge. Electric displace-
ment vector D is useful in the study of electric field in material media, as we shall
see in Chapter 3. Similarly, magnetic flux density B is the only vector needed in dis-
cussing magnetostatics (effects of steady electric currents) in free space and is related
to the magnetic force acting on a charge moving with a given velocity. The magnetic
field intensity vector H is useful in the study of magnetic field in material media. The
definition and significance of B and H will be discussed in Chapter 6.

The four fundamental electromagnetic field quantities, together with their units,
are tabulated in Table 1-1. In Table 1-1, V/m is volt per meter, and T stands for tesla
or volt-second per square meter. When there is no time variation (as in static, steady,
or stationary cases), the electric field quantities E and D and the magnetic field quan-
tities B and H form two separate vector pairs. In time-dependent cases, however,
electric and magnetic field quantities are coupled; that is, time-varying E and D will
give rise to B and H, and vice versa. All four quantities are point functions; they are
defined at every point in space and, in general, are functions of space coordinates.
Material (or medium) properties determine the relations between E and D and be-
tween B and H. These relations are called the constitutive relations of a medium and
will be examined later.

The principal objective of studying electromagnetism is to understand the inter-
action between charges and currents at a distance based on the electromagnetic model.
Fields and waves (time- and space-dependent fields) are basic conceptual quantities
of this model. Fundamental postulates will relate E, D, B, H, and the source quantities;
and derived relations will lead to the explanation and prediction of electromagnetic
phenomena.
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TABLE 1-2

Fundamental SI Units
Quantity Unit Abbreviation
Length meter m
Mass kilogram kg
Time second s
Current ampere A

SI Units and Universal Constants

A measurement of any physical quantity must be expressed as a number followed by
a unit. Thus we may talk about a length of three meters, a mass of two kilograms, and
a time period of ten seconds. To be useful, a unit system should be based on some
fundamental units of convenient (practical) sizes. In mechanics, all quantities can be
expressed in terms of three basic units (for length, mass, and time). In electromagnetics
a fourth basic unit (for current) is needed. The S1 (International System of Units
or Le Systéme International d’Unités) is an MKSA system built from the four funda-
mental units listed in Table 1-2. All other units used in electromagnetics, including
those appearing in Table 1-1, are derived units expressible in terms of meters, kilo-
grams, seconds, and amperes. For example, the unit for charge, coulomb (C), is
ampere-second (A-s); the unit for electric field intensity (V/m) is kg-m/A-s®; and the
unit for magnetic flux density, tesla (T), is kg/A -s%. More complete tables of the units
for various quantities are given in Appendix A.

The official SI definitions, as adopted by the International Committee on Weights
and Measures, are as follows:"

Meter. Once the length between two scratches on a platinum-iridium bar (and
originally calculated as one ten-millionth of the distance between the North Pole
and the equator through Paris, France), is now defined by reference to the second
(see below) and the speed of light, which in a vacuum is 299,792,458 meters per
second.

Kilogram. Mass of a standard bar made of a platinum-iridium alloy and kept
inside a set of nested enclosures that protect it from contamination and mis-
handling. It rests at the International Bureau of Weights and Measures in Sévres,
outside Paris.

Second. 9,192,631,770 periods of the electromagnetic radiation emitted by a par-
ticular transition of a cesium atom.

t P. Wallich, “Volts and amps are not what they used to be,” IEEE Spectrum, vol. 24, pp. 44—49, March
1987.
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Ampere. The constant current that, if maintained in two straight parallel con-
ductors of infinite length and negligible circular cross section, and placed one
meter apart in vacuum, would produce between these conductors a force equal
to 2 x 1077 newton per meter of length. (A newton is the force that gives a mass
of one kilogram an acceleration of one meter per second squared.)

In our electromagnetic model there are three universal constants, in addition to
the field quantities listed in Table 1-1. They relate to the properties of the free space
(vacuum). They are as follows: velocity of electromagnetic wave (including light) in
free space, c; permittivity of free space, €,; and permeability of free space, u,. Many
experiments have been performed for precise measurement of the velocity of light,
to many decimal places. For our purpose it is sufficient to remember that

c~3x10®  (m/s). | (in free space) (1-6)

The other two constants, €, and u,, pertain to electric and magnetic phenomena,
respectively: €, is the proportionality constant between the electric flux density D
and the electric field intensity E in free space, such that

D = ¢,E; | (in free space) 1-7n

Ho is the proportionality constant between the magnetic flux density B and the mag-
netic field intensity H in free space, such that

1
H= ﬂ_ B. | (in free space) (1-8)
0

The values of €, and u, are determined by the choice of the unit system, and they
are not independent. In the ST system (rationalized? MKSA system), which is almost
universally adopted for electromagnetics work, the permeability of free space is chosen
to be

Mo =4n x 1077  (H/m), | (in free space) (1-9)

where H/m stands for henry per meter. With the values of ¢ and y,, fixed in Egs. (1-6)
and (1-9) the value of the permittivity of free space is then derived from the following

! This system of units is said to be rationalized because the factor 4n does not appear in the Maxwell’s
equations (the fundamental postulates of electromagnetism). This factor, however, will appear in many
derived relations. In the unrationalized MKSA system, y, would be 10~ 7 (H/m), and the factor 4z would
appear in the Maxwell’s equations.
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TABLE 1-3
Universal Constants in SI Units
Universal Constants Symbol Value Unit
Velocity of light in free space c 3 x 108 m/s
Permeability of free space Ko 4n x 1077 H/m
Permittivity of free space € gé— x 107° F/m
T
relationships:
1
c= (m/s) (1-10)
V€oto
or
1
€ >_——x107°
" 2uy, ~ 36m (1-11)
~ 8854 x 10712 (F/m),

where F/m is the abbreviation for farad per meter. The three universal constants and
their values are summarized in Table 1-3.

Now that we have defined the basic quantities and the universal constants of the
electromagnetic model, we can develop the various subjects in electromagnetics. But,
before we do that, we must be equipped with the appropriate mathematical tools. In
the following chapter we discuss the basic rules of operation for vector algebra and

vector calculus.

Review Questions

R.1-1 What is electromagnetics?

R.1-2 Describe two phenomena or situations, other than those depicted in Figs. 1-1 and
1-2, that cannot be adequately explained by circuit theory.

R.1-3 What are the three essential steps in building an idealized model for the study of a

scientific subject?

R.1-4 What are the four fundamental SI units in electromagnetics?

R.1-5 What are the four fundamental field quantities-in the electromagnetic model? What

are their units?

R.1-6 What are the three universal constants in the electromagnetic model, and what are

their relations?

R.1-7 What are the source quantities in the electromagnetic model?



2-1

Vector
Analysis

Introduction

As we noted in Chapter 1, some of the quantities in electromagnetics (such as charge,
current, and energy) are scalars; and some others (such as electric and magnetic field
intensities) are vectors. Both scalars and vectors can be functions of time and posi-
tion. At a given time and position, a scalar is completely specified by its magnitude
(positive or negative, together with its unit). Thus we can specify, for instance, a charge
of —1 uC at a certain location at ¢ = 0. The specification of a vector at a given loca-
tion and time, on the other hand, requires both a magnitude and a direction. How do
we specify the direction of a vector? In a three-dimensional space, three numbers are
needed, and these numbers depend on the choice of a coordinate system. Conversion
of a given vector from one coordinate system to another will change these numbers.
However, physical laws and theorems relating various scalar and vector quantities
certainly must hold irrespective of the coordinate system. The general expressions of
the laws of electromagnetism, therefore, do not require the specification of a coordi-
nate system. A particular coordinate system is chosen only when a problem of a given
geometry is to be analyzed. For example, if we are to determine the magnetic field at
the center of a current-carrying wire loop, it is more convenient to use rectangular
coordinates if the loop is rectangular, whereas polar coordinates (two-dimensional)
will be more appropriate if the loop is circular in shape. The basic electromagnetic
relation governing the solution of such a problem is the same for both geometries.
Three main topics will be dealt with in this chapter on vector analysis:

1. Vector algebra—addition, subtraction, and multiplication of vectors.

2. Orthogonal coordinate systems—Cartesian, cylindrical, and spherical coordi-
nates.

3. Vector calculus—differentiation and integration of vectors; line, surface, and
volume integrals; “del” operator; gradient, divergence, and curl operations.

1
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2-2

2 Vector Analysis

Throughout the rest of this book we will decompose, combine, differentiate, integrate,
and otherwise manipulate vectors. It is imperative to acquire a facility in vector algebra
and vector calculus. In a three-dimensional space a vector relation is, in fact, three
scalar relations. The use of vector-analysis techniques in electromagnetics leads to
concise and elegant formulations. A deficiency in vector analysis in the study of elec-
tromagnetics is similar to a deficiency in algebra and calculus in the study of physics;
and it is obvious that these deficiencies cannot yield fruitful results.

In solving practical problems we always deal with regions or objects of a given
shape, and it is necessary to express general formulas in a coordinate system appro-
priate for the given geometry. For example, the familiar rectangular (x, y, z) coordi-
nates are, obviously, awkward to use for problems involving a circular cylinder or
a sphere because the boundaries of a circular cylinder and a sphere cannot be de-
scribed by constant values of x, y, and z. In this chapter we discuss the three most
commonly used orthogonal (perpendicular) coordinate systems and the representa-
tion and operation of vectors in these systems. Familarity with these coordinate
systems is essential in the solution of electromagnetic problems.

Vector calculus pertains to the differentiation and integration of vectors. By de-
fining certain differential operators we can express the basic laws of electromagnetism
in a concise way that is invariant with the choice of a coordinate system. In this chap-
ter we introduce the techniques for evaluating different types of integrals involving
vectors, and we define and discuss the various kinds of differential operators.

Vector Addition and Subtraction

We know that a vector has a magnitude and a direction. A vector A can be written
as
A=a,A, 2-1)

where A is the magnitude (and has the unit and dimension) of A,
A=Al (2-2)

and a, is a dimensionless unit vector' with a unity magnitude having the direction
of A. Thus, :

a,=-—="—. (2-3)
The vector A can be represented graphically by a directed straight-line segment of a

length |A| = A with its arrowhead pointing in the direction of a,, as shown in Fig. 2—1.
Two vectors are equal if they have the same magnitude and the same direction, even

' In some books the unit vector in the direction of A is variously denoted by A, u,,ori,. We prefer to write
A as in Eq. (2-1) instead of as A = AA. A vector going from point P, to point P, will then be written as
ap p,(P,P,) instead of as P,P,(P,P,), which is somewhat cumbersome. The symbols u and i are used for
velocity and current, respectively.
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A=aAA

FIGURE 2-1
Graphical representation of vector A.

though they may be displaced in space. Since it is difficult to write boldfaced letters
by hand, it is a common practice to use an arrow or a bar over a letter (A or A) or
a wiggly line under a letter (A) to distinguish a vector from a scalar. This distinguish-
ing mark, once chosen, should never be omitted whenever and wherever vectors are
written.

Two vectors A and B, which are not in the same direction nor in opposite direc-
tions, such as given in Fig. 2-2(a), determine a plane. Their sum is another vector C
in the same plane. C == A + B can be obtained graphically in two ways.

1. By the parallelogram rule: The resultant C is the diagonal vector of the parallelo-
gram formed by A and B drawn from the same point, as shown in Fig. 2-2(b).

2. By the head-to-tail rule: The head of A connects to the tail of B. Their sum C is
the vector drawn from the tail of A to the head of B; and vectors A, B, and C form
a triangle, as shown in Fig. 2-2(c).

It is obvious that vector addition obeys the commutative and associative laws.

Commutative law: A +B=B + A, (2-4)
Associative law: A + (B + C)=(A + B) + C. (2-5)

Vector subtraction can be defined in terms of vector addition in the following way:
A—B=A+(—B), (2-6)

where — B is the negative of vector B; that is, — B has the same magnitude as B, but
its direction is opposite to that of B. Thus

_‘B = (_aB)B. (2_7)
The operation represented by Eq. (2—6) is illustrated in Fig. 2-3.

C
B B
A
(a) Two vectors, A and B. (b) Parallelogram rule. (c) Head-to-tail rule.
FIGURE 2-2

Vector addition, C = A + B.
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(a) Two vectors, (b) Subtraction of FIGURE 2-3

A

and B. vectors, A — B. Vector subtraction.

2=3 Products of Vectors

L.

Mulitiplication of a vector A by a positive scalar k changes the magnitude of A by k
times without changing its direction (k can be either greater or less than 1).

kA = a(kA). . (2-8)

It is not sufficient to say “the multiplication of one vector by another” or “the prod-
uct of two vectors” because there are two distinct and very different types of products
of two vectors. They are (1) scalar or dot products, and (2) vector or cross products.
These will be defined in the following subsections.

2—3.1 SCALAR OR DOT PRODUCT

The scalar or dot product of two vectors A and B, denoted by A - B, is a scalar,
which equals the product of the magnitudes of A and B and the cosine of the angle
between them. Thus,

A B2 ABcos 0. (2-9)

In Eq. (2-9) the symbol £ signifies “equal by definition,” and 6,5 is the smaller angle
between A and B and is less than n radians (180°), as indicated in Fig. 2—4. The dot
product of two vectors (1) is less than or equal to the product of their magnitudes;
(2) can be either a positive or a negative quantity, depending on whether the angle
between them is smaller or larger than 7/2 radians (90°); (3) is equal to the product

B cos 04p

v

A———ol FIGURE 2-4
Illustrating the dot product of A and B.
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of the magnitude of one vector and the projection of the other vector upon the first
one; and (4) is zero when the vectors are perpendicular to each other. It is evident
that

A-A=A4? (2-10)

or A=*t/A A 2-11)

Equation (2-11) enables us to find the magnitude of a vector when the expression
of the vector is given in any coordinate system.
The dot product is commutative and distributive.

Commutative law: A-B=B-A. (2-12)

Distributive law: A-(B+C)=A-B+ A-C. (2-13)

The commutative law is obvious from the definition of the dot product in Eq. (2-9),
and the proof of Eq. (2-13) is left as an exercise. The associative law does not apply

to the dot product, since no more than two vectors can be so multiplied and an ex-
pression such as A < B « C is meaningless.

EXAMPLE 2-1 Prove the law of cosines for a triangle.

Solution The law of cosines is a scalar relationship that expresses the length of a
side of a triangle in terms of the lengths of the two other sides and the angle between
them. Referring to Fig. 2-5, we find the law of cosines states that

C = /A% + B> — 24B cos a.

We prove this by considering the sides as vectors; that is,
C=A+B
Taking the dot product of C with itself, we have, from Egs. (2-10) and (2-13),
C2=C-C=(A+B):(A+B)
=A‘A+B-B+2A-B
= A? + B% 4+ 2AB cos 045

FIGURE 2-5
Ilustrating Example 2-1.
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Note that 6, is, by definition, the smaller angle between A and B and is equal to

(180° — a); hence cos 6,5 = cos (180° — a) = —cos a. Therefore,
C? =A%+ B?> —24Bcosa,
and the law of cosines follows directly. -

2-3.2 VECTOR OR CROSS PRODUCT

The vector or cross product of two vectors A and B, denoted by A x B, is a vector
perpendicular to the plane containing A and B; its magnitude is AB sin 6,5, where
8,5 is the smaller angle between A and B, and its direction follows that of the thumb
of the right hand when the fingers rotate from A to B through the angle 8,5 (the
right-hand rule).

A x B2 a,|ABsin 8 4. (2-14)

This is illustrated in Fig. 2—6. Since B sin 8 5 is the height of the parallelogram formed

by the vectors A and B, we recognize that the magnitude of A x B, |[ABsin 0,

which is always positive, is numerically equal to the area of the parallelogram.
Using the definition in Eq. (2—14) and following the right-hand rule, we find that

BxA=—AxB. (2-15)

)

Hence the cross product is not commutative. We can see that the cross product obeys
the distributive law,

AxB+C)=AxB+AxC (2-16)

Can you show this in general without resolving the vectors into rectangular
components? :
The vector product is obviously not associative; that is,

Ax(BxC)#(AxB)xC. 2-17)

AXB
BN T T T T T T Ed
| B si e d
IB sin 048 P
an 048 | PR >
A A
(@ A x B = a,/4B sin 6,45| (b) The right-hand rule.
FIGURE 2-6

Cross product of A and B, A x B.
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The vector representing the triple product on the left side of the expression above is
perpendicular to A and lies in the plane formed by B and C, whereas that on the
right side is perpendicular to C and lies in the plane formed by A and B. The order
in which the two vector products are performed is therefore vital, and in no case
should the parentheses be omitted.

mmmmm EXAMPLE 2-2  The motion of a rigid disk rotating about its axis shown in Fig.
2-7(a) can be described by an angular velocity vector . The direction of e is along
the axis and follows the right-hand rule; that is, if the fingers of the right hand bend
in the direction of rotation, the thumb points to the direction of @. Find the vector
expression for the lineal velocity of a point on the disk, which is at a distance d from
the axis of rotation.

Solution From mechanics we know that the magnitude of the lineal velocity, v, of
a point P at a distance d from the rotating axis is wd and the direction is always
tangential to the circle of rotation. However, since the point P is moving, the direc-
tion of v changes with the position of P. How do we write its vector representation?

Let O be the origin of the chosen coordinate system. The position vector of the
point P can be written as R, as shown in Fig. 2—7(b). We have

[¥| = wd = wR sin 6.

No matter where the point P is, the direction of v is always perpendicular to the
plane containing the vectors @ and R. Hence we can write, very simply,
v=o xR,

which represents correctly both the magnitude and the direction of the lineal velocity
of P. -

FIGURE 2-7
(@) A rotating disk. (b) Vector representation.  Illustrating Example 2-2.
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FIGURE 2-8 N
Area=Bx(C| B Tllustrating scalar triple product A « (B x C).

2-3.3 PRODUCT OF THREE VECTORS

There are two kinds of products of three vectors; namely, the scalar triple product
and the vector triple product. The scalar triple product is much the simpler of the
two and has the following property:

A-BxC)=B-(CxA)=C-(A xB). (2-18)

Note the cyclic permutation of the order of the three vectors A, B, and C. Of course,
A-BxC)=—-A-(CxB)
=—-B-(AxC) (2-19)
= —C-(B x A).
As can be seen from Fig. 2-8, each of the three expressions in Eq. (2—-18) has a magni-
tude equal to the volume of the parallelepiped formed by the three vectors A, B, and
C. The parallelepiped has a base with an area equal to [B x C| = |BC sin 6,| and a
height equal to |4 cos 8,|; hence the volume is |ABC sin 8, cos 6,|.

The vector triple product A x (B x C) can be expanded as the difference of two
simple vectors as follows:

Ax(BxC)=BA-C)— CA-B). (2-20)

Equation (2-20) is known as the “back-cab” rule and is a useful vector identity. (Note
“BAC-CAB” on the right side of the equation!)

s EXAMPLE 2-3' Prove the back-cab rule of vector triple product.

t The back-cab rule can be verified in a straightforward manner by expanding the vectors in the Cartesian
coordinate system (Problem P.2—12). Only those interested in a general proof need to study this example.
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FIGURE 2-9
Illustrating the back-cab rule of vector triple product.

Solution In order to prove Eq. (2-20) it is convenient to expand A into two
components:
A = A“ + A 1s

where A and A | are parallel and perpendicular, respectively, to the plane containing
B and C. Because the vector representing (B x C) is also perpendicular to the plane,
the cross product of A, and (B x C) vanishes. Let D = A x (B x C). Since only A,
is effective here, we have

D=A;,x(BxC).

Referring to Fig. 2-9, which shows the plane containing B, C, and A, we note
that D lies in the same plane and is normal to A},. The magnitude of (B x C) is
BCssin (8, — 0,), and that of A; x (B x C)is 4,BC sin (8, — 6,). Hence,
D=D"-a,= A BCsin (0, — 0,
= (B sin 8,)(4,C cos 8,) — (C sin 6,)(4,B cos 0,)
The expression above does not alone guarantee the quantity inside the brackets to

be D, since the former may contain a vector that is normal to D (parallel to Ay
that is, D - a; = E - a;, does not guarantee E = D. In general, we can write

where k is a scalar quantity. To determine k, we scalar-multiply both sides of the
above equation by A and obtain

Since A D =0, then k = 0 and
D =B, - C)—~CA,*B),
which proves the back-cab rule, inasmuch as A :C=A-Cand A;-B=A"B.

Division by a vector is not defined, and expressions such as k/A and B/A are
meaningless.
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2=4 Orthogonal Coordinate Systems

We have indicated before that although the laws of electromagnetism are invariant
with coordinate system, solution of practical problems requires that the relations
derived from these laws be expressed in a coordinate system appropriate to the geome-
try of the given problems. For example, if we are to determine the electric field at a
certain point in space, we at least need to describe the position of the source and the
location of this point in a coordinate system. In a three-dimensional space a point
can be located as the intersection of three surfaces. Assume that the three families of
surfaces are described by u; = constant, u, = constant, and u; = constant, where the
’s need not all be lengths. (In the familiar Cartesian or rectangular coordinate system,
uy, u,, and u, correspond to x, y, and z, respectively.) When these three surfaces
are mutually perpendicular to one another, we have an orthogonal coordinate system.
Nonorthogonal coordinate systems are not used because they complicate problems.

Some surfaces represented by u; = constant (i = 1, 2, or 3) in a coordinate system
may not be planes; they may be curved surfaces. Let a,, a,,, and a,, be the unit
vectors in the three coordinate directions. They are called the base vectors. In a
general right-handed, orthogonal, curvilinear coordinate system the base vectors are
arranged in such a way that the following relations are satisfied:

a, xa,=a,, (2-21a)
a,, xa,=a,, (2-21b)
a, xa, =a,,. (2-21¢)

These three equations are not all independent, as the specification of one automati-
cally implies the other two. We have, of course,

a, -a,=a,-a, =2a,-a =0 (2-22)
and
a, ‘a, =a,°a,, =2, =1 (2-23)

U2 uz

Any vector A can be written as the sum of its components in the three orthogonal
directions, as follows:

A=a, A, +a,4, +a,A4,. (2-24)

From Eq. (2-24) the magnitude of A is
A=|A|= (4] + A% + A2)' (2-25)

msmem EXAMPLE 2-4 Given three vectors A, B, and C, obtain the expressions of (a) A * B,
(b) A x B, and () C*(A x B) in the orthogonal curvilinear coordinate system
(u1, Uy, uy).



2-4 Orthogonal Coordinate Systems 21

Solution First we write A, B, and C in the orthogonal coordinates (u,, u,, us):

A=a,d, +a,4,+a,d,
B=a,B, +a,B, +a,B,,
C=a,C, +a,C, +a,C,,.
a) AB=(@,A, +a,4, +a,4,) @,B, +a,8, +a,B,)
= A, B, + A,B,, +A,B,,
in view of Egs. (2-22) and (2-23).
b) A xB=(a,A, +a,A4, +a,A4,)x(a,B, + a, B, +a,B,)
= a,(4,,B,, — A,B,) + 8,(4,,B,, — A,,B,) + 8,(4,.B,, — A,,B,)

(2-26)

aul auz au3
=|4,, A, A, (2-27)
B, B, B,

Equations (2-26) and (2-27) express the dot and cross products, respectively,
of two vectors in orthogonal curvilinear coordinates. They are important and
should be remembered.

¢) Theexpression for C - (A x B)can be written down immediately by combining the
results in Eqgs. (2-26) and (2-27):

C * (A X B) = Cul(AuzBug - Au3Bu2) + Cuz(Au3Bu1 - AulBu3) + Cu3(AulBuz - AuzBul)
Clu Cuz Cu3
=4, A, A, (2-28)

B, B, B

u3

Eq. (2-28) can be used to prove Egs. (2-18) and (2-19) by observing that a per-
mutation of the order of the vectors on the left side leads simply to a rearrange-
ment of the rows in the determinant on the right side. _-—

In vector calculus (and in electromagnetics work) we are often required to per-
form line, surface, and volume integrals. In each case we need to express the differential
length-change corresponding to a differential change in one of the coordinates. How-
ever, some of the coordinates, say u; (i = 1, 2, or 3), may not be a length; and a con-
version factor is needed to convert a differential change du; into a change in length d¢;:

df; = h;du;, (2-29)

where h; is called a metric coefficient and may itself be a function of u,, u,, and u,.
For example, in the two-dimensional polar coordinates (u,, u,) = (r, ¢), a differential
change d¢ (=du,) in ¢ (=u,) corresponds to a differential length-change d¢, = rd¢ -
(h, =7 = u,) in the a, (=a,,)-direction. A directed differential length-change in an
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arbitrary direction can be written as the vector sum of the component length-changes:

dt =a, d¢, +a,df, +a,,df, (2-30)t
or

d¢ = a, (h, du,) + a,,(h, du,) + a,,(hy du,). (2-31)

In view of Eq. (2-25) the magnitude of d¢ is
df = [(dll)z + (dfz)2 + (dfs)z]l/z
= [(hy duy)* + (hy du,)® + (hs duz)*]' %

The differential volume dv formed by differential coordinate changes du,, du,, and
du, in directions a,,, a,,, and a, 5, respectively, is (d¢, d¢, d/3), or

(2-32)

dv = h hyh; du, du, dus. (2-33)

Later we will have occasion to express the current or flux flowing through a dif-
ferential area. In such cases the cross-sectional area perpendicular to the current or
flux flow must be used, and it is convenient to consider the differential area a vector
with a direction normal to the surface; that is,

ds = a,ds. (2-34)

For instance, if current density J is not perpendicular to a differential area of a mag-
nitude ds, the current, dI, flowing through ds must be the component of J normal to
the area multiplied by the area. Using the notation in Eq. (2-34), we can write simply
dl=J-ds
=J-a,ds.
In general orthogonal curvilinear coordinates the differential area ds; normal to the
unit vector a,, is

(2-35)

ds, = dt, dt,
or

ds, = h,hydu, dus. 2-36)

Similarly, the differential areas normal to unit vectors a,, and a,, are, respectively,

dSZ = h1h3 dul du3 (2—37)

T The € here is the symbol of a vector of length ¢.
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Z = zj plane

FIGURE 2-10
Cartesian coordinates.

y =y plane

and

dS3 = h1h2 dul duz. (2_38)

Many orthogonal coordinate systems exist; but we shall be concerned only with
the three that are most common and most useful:

1. Cartesian (or rectangular) coordinates.’
2. Cylindrical coordinates.
3. Spherical coordinates.

These will be discussed separately in the following subsections.

2-4.1 CARTESIAN COORDINATES

(ula U, u3) = (xs Y Z)

A point P(xy, yy, z;) in Cartesian coordinates is the intersection of three planes speci-
fied by x = x, y = y,, and z = z,, as shown in Fig. 2-10. It is a right-handed system
with base vectors a,, a,, and a, satisfying the following relations:

a, xa,=a, (2-39a)
a, xa =a, (2-39b)
a, xa,=a,. (2-39¢)

! The term “Cartesian coordinates” is preferred because the term “rectangular coordinates” is customarily
associated with two-dimensional geometry.
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The position vector to the point P(xy, y,, z,) is
OP = a,x; +a,y, +a,,. (2-40)

A vector A in Cartesian coordinates can be written as

A=aAd +aAd, +a,A,. (2-41)

The dot product of two vectors A and B is, from Eq. (2-26),

A-B=AB, + AB, + A,B,, (2-42)

and the cross product of A and B is, from Eq. (2-27),
A x B=a/A,B, — A,B,)) +a(A,B, — A,B,) + a,(A.B, — A,B,)

a, ay a,
=4, A, A, (2-43)
B, B, B,

Since x, y, and z are lengths themselves, all three metric coefficients are unity;
that is, h;, = h, = h; = 1. The expressions for the differential length, differential area,
and differential volume are—from Egs. (2-31), (2-36), (2-37), (2-38), and (2-33)—
respectively,

df =a.dx +a,dy + a,dz, (2-44)
ds, = dydz, (2-45a)
ds, = dxdz, (2~45b)
ds, = dxdy; (2-45¢)

and
dv=dxdyd:z. (2-46)

A typical differential volume element at a point (x, y, z) resulting from differential
changes dx, dy, and dz is shown in Fig. 2-11. The differential surface areas ds,, ds,,
and ds, normal to the directions a,, a,, and a, are also indicated.

EXAMPLE 2-5 Given A =a,5 —a,2 + a,, find the expression of a unit vector B
such that

a) B| A
b) B L A, if B lies in the xy-plane.
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FIGURE 2-11
A differential volume in Cartesian coordinates.

Solution Let B =a,B, +a,B, + a,B,. We know that

|B| = (B2 + B2 + B)'2 = 1. (2-47)
a) BJ| A requires B x A = 0. From Eq. (2-43) we have
—2B, - B, =0, (2-48a)
B, — 5B, =0, (2-48b)
5B, + 2B, = 0. (2-480)

The above three equations are not all independent. For instance, subtracting
Eq. (2-48c) from twice Eq. (2-48b) yields Eq. (2-48a). Solving Egs. (2—47),
(2—48a), and (2--48b) simultaneously, we obtain

5 2
Bx=—‘—s By= —_—— and B, =

V30
Therefore,

1
ﬁ (a5
b) B L A requires B- A = 0. From Eq. (2-42) we have

, 5B, — 2B, =0, (2-49)
where we have set B, = 0, since B lies in the xy-plane. Solution of Egs. (2-47)
and (2-49) yields

B= —a2+a,).

and B, =
Hence,
1
B=—(,2+a)5)

N -—

smmmsm EXAMPLE 2-6 (a) Write the expression of the vector going from point P,(1, 3, 2) to
point P,(3, —2, 4) in Cartesian coordinates. (b) What is the length of this line?
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Py(3,-2,4)

7

y FIGURE 2-12
x Illustrating Example 2-6.

Solution

a) From Fig. 2—12 we see that
P,P, = 0P, - OP,
=(@,3—a2+ad)—(a +a3+a,2)
=a2 —a,5 + a2
b) The length of the line is
P,P, =|P,P)|
N ey
_ /5 -

mmsmme EXAMPLE 2-7 The equation of a straight line in the xy-plane is given by 2x + y = 4.

a) Find the vector equation of a unit normal from the origin to the line.
b) Find the equation of a line passing through the point P(0, 2) and perpendicular
to the given line.

Solution It is clear that the given equation y = —2x + 4 represents a straight line
having a slope —2 and a vertical intercept +4, shown as L, (solid line) in Fig. 2-13.

a) If the line is shifted down four units, we have the dashed parallel line L passing
through the origin whose equation is 2x + y = 0. Let the position vector of a
point on L be

r=a,x +a,y.
The vector N = a,2 + a, is perpendicular to L because
N-er=2x+y=0.

Obviously, N is also perpendicular to L,. Thus, the vector equation of the unit
normal at the origin is

N 1
ay = | =— (a2 +a,)

N



27

Ly ya
L
\ L
\ 4
\
E 2
ay
L >
/ or\ 2 o
\
\ FIGURE 2-13
\ Hlustrating Example 2-7.

Note that the slope of ay (=1) is the negative reciprocal of that of lines L, and
L (=-2).

b) Let the line passing through the point P(0, 2) and perpendicular to L, be L,.
L, is parallel to and has the same slope as ay. The equation of L, is then

y=§+2, or x —2y=—4,

since L, is required to pass through the point P(0, 2). -—

2-4.2 CYLINDRICAL COORDINATES
(uyg, up, u3) =(r, ¢, 2)

In cylindrical coordinates a point P(r,, ¢, z,) is the intersection of a circular cylin-
drical surface r = r,, a half-plane containing the z-axis and making an angle ¢ = ¢,
with the xz-plane, and a plane parallel to the xy-plane at z = z,. As indicated in
Fig. 2-14, angle ¢ is measured from the positive x-axis, and the base vector a, is

Z

Z = z1 plane

r = ry cylinder

FIGURE 2-14
Cylindrical coordinates.

¢ = ¢ plane
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tangential to the cylindrical surface. The following right-hand relations apply:

a xa,=a, (2-50a)
a, xa, =a, (2—-50b)
a, xa, =a,. (2-50¢)

Cylindrical coordinates are important for problems with long line charges or currents,
and in places where cylindrical or circular boundaries exist. The two-dimensional
polar coordinates are a special case at z = 0.

A vector in cylindrical coordinates is written as

A=aAd, +a,4,+a,A,. (2-51)

The expressions for the dot and cross products of two vectors in cylindrical coordi-
nates follow from Egs. (2-26) and (2-27) directly.

Two of the three coordinates, r and z (4, and u;), are themselves lengths; hence
h, = hy = 1. However, ¢ is an angle requiring a metric coefficient h, = r to convert
d¢ to d¢,. The general expression for a differential length in cylindrical coordinates
is then, from Eq. (2-31),

dt = a,dr + ayrdd + a, dz. (2-52)

The expressions for differential areas and differential volume are

ds, =rd¢dz, (2-53a)
dsy =drdz, (2-53b)
ds, =rdrdg, (2-53¢)
and
dv=rdrd¢d:z. (2-54)

A typical differential volume element at a point (r, ¢, z) resulting from differential
changes dr, d¢, and dz in the three orthogonal coordinate directions is shown in
Fig. 2-15,

A vector given in cylindrical coordinates can be transformed into one in Cartesian
coordinates, and vice versa. Suppose we want to express A = a,4, + a,A, +a,A, in
Cartesian coordinates; that is, we want to write A as a, 4, + a,A, + a,A, and deter-
mine A,, A,, and A,. First of all, we note that 4,, the z-component of A, is not
changed by the transformation from cylindrical to Cartesian coordinates. To find
A,, we equate the dot products of both expressions of A with a,. Thus

A, =A-a,
=Aa, a,+ Aa,-a,.
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FIGURE 2-15
A differential volume element in cylindrical
coordinates.

The term containing A, disappears here because a, - a, = 0. Referring to Fig. 216,
which shows the relative positions of the base vectors a,, a,, a,, and a,, we see that

a,:a,=cos¢ (2-55)
and
a,*a, = cos (g + ¢> = —sin ¢. (2-56)
Hence,
A, = A,cos ¢ — A,sin ¢. (2-57)
Similarly, to find A4,, we take the dot products of both expressions of A with a,:
A,=A-a,
=Aa,a,+ Aa,-a,
From Fig, 2-16 we find that
7 .
a, - a, = Cos <§ - ¢> = sin ¢ (2-58)
and
a,-a, = cos ¢. (2-59)
It follows that
A, = A,sin ¢ + A, cos . (2-60)
FIGURE 2-16

Relations between a,, a,, a,, and a,.

x1 Sys




2 Vector Analysis

It is convenient to write the relations between the components of a vector in Cartesian
and cylindrical coordinates in a matrix form:

A, cos ¢ —sin ¢ 0]]A4,
A, | =|sin¢ cos ¢ 014, (2-61)
A, 0 0 1[4,

Our problem is now solved except that the cos ¢ and sin ¢ in Eq. (2—-61) should be
converted into Cartesiap coordinates. Moreover, 4,, A, and 4, may themselves be
functions of r, ¢, and z. In that case, they too should be converted into functions of
X, y, and z in the final answer. The following conversion formulas are obvious from
Fig. 2-16. From cylindrical to Cartesian coordinates:

X =rcos ¢, (2-62a)
y=rsin ¢, (2-62b)
z=z. (2-62c)

The inverse relations (from Cartesian to cylindrical coordinates) are

r=Jx?+y% (2-63a)

¢ = tan~! % (2-63b)

z =2z (2-63c¢)

EXAMPLE 2-8 The cylindrical coordinates of an arbitrary point P in the z = 0 plane
are (r, ¢, 0). Find the unit vector that goes from a point z = h on z-axis toward P.

Solution Referring to Fig. 2-17, we have
QP = OP - 00
= (a,) — (a;h).

Hence,
J 1
agp = 9., = (a,r —a,h).
|OP| r? + h? —

EXAMPLE 2-9 Express the vector
A =a/(3cos ) —a,2r+a,s

in Cartesian coordinates.
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0(0,0,h)

Y FIGURE 2-17
Ilustrating Example 2-8.

Solution Using Eq. (2-61) directly, we have

A, cos ¢ —sin ¢ 01[3coso
A, | =|sin ¢ cos ¢ 01| -2r
A, 0 0 1 5

or
A =a,3cos® ¢ + 2rsin ¢) + a,(3 sin ¢ cos ¢ — 2r cos ¢) + a,5.

But, from Eqgs. (2-62) and (2-63),

COS =
x2 + y?
and
sin ¢ = S
Vx4 y?
Therefore,
3x? 3xy
A=a|-——=+2 —- -2 a,5,
x(xz )2 + y) + ay<x2 ¥ )2 x> +a,
which is the desired answer. -

2-4.3 SPHERICAL COORDINATES
(uy, up, u3) = (R, 6, §)

A point P(R,, 8,, ¢,) in spherical coordinates is specified as the intersection of the fol-
lowing three surfaces: a spherical surface centered at the origin with a radius R = R,;
a right circular cone with its apex at the origin, its axis coinciding with the + z-axis
and having a half-angle 6 = 0,; and a half-plane containing the z-axis and making
an angle ¢ = ¢, with the xz-plane. The base vector ag at P is radial from the origin
and is quite different from a, in cylindrical coordinates, the latter being perpendicular
to the z-axis. The base vector a, lies in the ¢ = ¢, plane and is tangential to the
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Ns.,__»y

FIGURE 2-18
Spherical coordinates.

spherical surface, whereas the base vector a, is the same as that in cylindrical coor-
dinates. These are illustrated in Fig. 2-18. For a right-handed system we have

ap X a5 = a,, (2-64a)
a, X a, = ap, (2—64b)
a, X ap = a,. - (2-64¢)

Spherical coordinates are important for problems involving point sources and regions
with spherical boundaries. When an observer is very far from the source region of
a finite extent, the latter could be considered as the origin of a spherical coordinate
system; and, as a result, suitable simplifying approximations could be made. This is
the reason that spherical coordinates are used in solving antenna problems in the
far field.

A vector in spherical coordinates is written as

A = aRAR + aoAg + a¢A¢ (2—65)

The expressions for the dot and cross products of two vectors in spherical coor-
dinates can be obtained from Egs. (2-26) and (2-27).

In spherical coordinates, only R(u,) is a length. The other two coordinates, 6
and ¢ (u, and u3), are angles. Referring to Fig. 2-19, in which a typical differential
volume element is shown, we see that metric coefficients h, = R and h; = R sin 6 are
required to convert df and d¢ into d/, and d/;, respectively. The general expression
for a differential length is, from Eq. (2-31),

d€ =apdR + ayRd0 + a,R sin Odé. (2-66)




R sin 6 d¢

FIGURE 2-19

coordinates.
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A differential volume element in spherical

The expressions for differential areas and differential volume resulting from dlﬁ'eren-

tial changes dR, d6, and d¢ in the three coordinate directions are

and

dsg = R? sin 0d0d¢,
dss = R sin §dR d¢,
ds, = RAR 9,

dv = R?sin 0dR d0d¢.

(2-67a)
(2-67b)
(2-67c)

(2-68)

For convenience the base vectors, metric coefficients, and expressions for the differen-
tial volume are tabulated in Table 2—1.

TABLE 2-1
Three Basic Orthogonal Coordinate Systems
Cartesian Cylindrical Spherical
Coordinates Coordinates Coordinates
Coordinate System Relations x, 5 2) (r,9,2) (R, 6, ¢)
a,, a, a, agp
Base vectors a,, a, a, a,
a,, a, a, a,
h, 1 1 1
Metric coefficients h, 1 r R
' hy 1 Rsin 6
Differential volume dv dxdydz rdrd¢ dz R?sin 0dRd8d¢




34 2 Vector Analysis

A vector given in spherical coordinates can be transformed into one in Cartesian
or cylindrical coordinates, and vice versa. From Fig. 219 it is easily seen that

x = R sin 6 cos ¢, (2-69a)
¥y = Rsin 8 sin ¢, (2-69b)
z = Rcos 8. (2-69¢)

Conversely, measurements in Cartesian coordinates can be transformed into those in
spherical coordinates:

R=./x?+y?+ 2%, (2-70a)
2 2
X
0 = tan~* —;—y— (2-70b)
¢ = tan~* % (2-70¢)

mewmem EXAMPLE 2-10 The position of a point P in spherical coordinates is (8, 120°, 330°).
Specify its location (a) in Cartesian coordinates, and (b) in cylindrical coordinates.

Solution The spherical coordinates of the given point are R = 8, 6 = 120°, and
¢ = 330°
a) In Cartesian coordinates. We use Egs. (2—69a, b, c):
x = 8 sin 120° cos 330° = 6,
y = 8 sin 120° sin 330° = —2./3,
‘ z=8cos 120° = —4.
Hence the location of the point is P(6, —2\/3, —4), and the position vector (the
vector going from the origin to the point) is
OP = a6 — ay2\/§ —a,4

b) In cylindrical coordinates. The cylindrical coordinates of point P can be obtained
by applying Egs. (2-63a, b, ¢) to the results in part (a), but they can be cal-
culated directly from the given spherical coordinates by the following relations,
which can be verified by comparing Figs. 2—14 and 2-18:

r = Rsin 6, (2-71a)
=9, (2-71b)
z=Rcos 6. (2-71¢)

We have P(4\/_ 3, 330°, —4); and its position vector in cylindrical coordinates is
OP = a4./3 —a,4. -
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We note here that the position vector of a point in cylindrical coordinates does
not contain the angle ¢ = 330° explicitly. However, the exact direction of a, depends
on ¢. In terms of spherical coordinates the position vector (the vector from the
origin to the point P) consists of only a single term:

a). = aR8.

Here the direction of a, changes with the 6 and ¢ coordinates of the point P.

EXAMPLE 2-11
ordinates.

Convert the vector A = agAg + 2,4, + a44, into Cartesian co-

Solution In this problem we want to write A in the form of A = a, 4, + a4, + a,4,.
This is very different from the preceding problem of converting the coordinates of a
point. First of all, we assume that the expression of the given vector A holds for all
points of interest and that all three given components Ay, 4y, and A, may be functions
of coordinate variables. Second, at a given point, A, 4y, and 4, will have definite
numerical values, but these values that determine the direction of A will, in general,
be entirely different from the coordinate values of the point. Taking dot product of
A with a,, we have

A, =A-a,
= Agpag-a, + Aga,-a, + 4,2, a,.

Recalling that ag - a,, a5 a,, and a, - a, yield, respectively, the component of unit
vectors ag, a5, and a, in the direction of a,, we find, from Fig. 2-19 and Egs.

(2-69a, b, c):
aR-ax=sin000s¢=ﬁ’
XZ
8 * 85 = cos f cos ¢ = o+ T+ + )
- = i = y
Thus,

Similarly,

A, = Agsin 0 cos ¢ + Agcos §cos ¢ — A, sin ¢
Agx Agxz Ay

= + - M
VY 42 SR+ ) Xy

A, = Agsin 0 sin ¢ + A, cos 0sin ¢ + A4, cos ¢
Agry Apyz Ayx

= + + .
VE+y+ 22 JeE )+ 2+ 2D xR+

2-72)

(2-73)

2-74)

(2-75)

2-176)
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and

Agz Agy/x% + y?

A, = Agcos § — Aysin 0 T aT AN T 2-77)
If Ag, Ay, and A, are themselves functions of R, 8, and ¢, they too need to be con-
verted into functions of x, y, and z by the use of Egs. (2-70a, b, c). Equations (2—75),
(2-76), and (2-77) disclose the fact that when a vector has a simple form in one
coordinate system, its conversion into another coordinate system usually results in a
more complicated expression. -

EXAMPLE 2-12 Assuming that a cloud of electrons confined in a region between
two spheres of radii 2 and 5 (cm) has a charge density of
—-3x1078
e —costé  (C/md),

find the total charge contained in the region.

Solution We have
3x 108

p= —R——cos o,

0= fpdv.

The given conditions of the problem obviously point to the use of spherical coordi-
nates. Using the expression for dv in Eq. (2—68), we perform a triple integration:

0= f’f (9% pR? sin 4R d0 d.

Two things are of importance here. First, since p is given in units of coulombs per
cubic meter, the limits of integration for R must be converted to meters. Second, the
full range of integration for 6 is from 0 to = radians, not from 0 to 2z radians. A
little reflection will convince us that a half-circle (not a full-circle) rotated about the
z-axis through 2z radians (¢ from O to 27) generates a sphere. We have

Q

—3%x 10" f’f f°°5 ! cos? ¢ sin 0dR d0de

02 R2

2n
~3x 107 | f( ooe 002>sm0d0<:os dd

—09 x 1076 fo"(—cos 0)[} cos? pdo

N _6($ ,sin2¢ 2m
1.8 x 10 <2+———4 )

= —18zn o).

0 [
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Integrals Containing Vector Functions

In electromagnetics work we have occasion to encounter integrals that contain vector
functions such as

fy F db, 2-78)
fc v de, (2-79)
fc F-de, (2-80)
fs A-ds. 2-81)

The volume integral in (2—-78) can be evaluated as the sum of three scalar integrals
by first resolving the vector F into its three components in the appropriate coordinate
system. If dv denotes a differential volume, then (2-78) is actually a shorthand way
of representing a triple integral over three dimensions.

In the second integral, in (2—-79), V is a scalar function of space, d¢ represents
a differential increment of length, and C is the path of integration. If the integration
is to be carried out from a point P, to another point P,, we write f§2 V dé. If the
integration is to be evaluated around a closed path C, we denote it by $c Vdé. In
Cartesian coordinates, (2—79) can be written as

fc Vde = fc V(x, y, 2)[a,dx + a,dy + a, dz], (2-82)

in view of Eq. (2—44). Since the Cartesian unit vectors are constant in both magni-
tude and direction, they can be taken out of the integral sign, and Eq. (2—82) becomes

J;: Vdé =a, fc V(x,y, z2)dx + a, fc Vix,y,z)dy + a, fc V(x, y, z)dz. (2-83)
The three integrals on the right-hand side of Eq. (2-83) are ordinary scalar integrals;
they can be evaluated for a given V(x, y, z) around a path C.

EXAMPLE 2-13 Evaluate the integral {5 r dr, where r? = x2 + y?, from the origin
to the point P(1, 1): (a) along the direct path OP, (b) along the path OP, P, and (c)
along the path OP,P in Fig. 2-20.

Solution

a) Along the direct path OP:
fp ridr=a, J'ﬁ ridr = a,,z—é
o 0

3
2\2

=3 (a, cos 45° + a, sin 45°)

—q 2 2
=a3+ a,3.
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P(1,1)

>4 —» x . FIGURE 2-20
o P, Tltustrating Example 2-13.
b) Along the path OP,P:
P Py P
fo (x* + y?dr=a, fo yrdy + a, J‘m (x? + dx
1 1
=ady’|) +a.be + 3|
= ax% + ay%'
¢) Along the path OP,P:
P P P
fo (x* + yHdr=a, J‘o x?dx + a, fl’z 1+ yHdy
1 1
=a 4| a0+ ),
= ax% + ay%'
Obviously, the value of the integral depends on the path of integration, since the
results in parts (a), (b), and (c) are all different. -
The integrals in (2—80) and (2-81) are mathematically of the same form; they
both lead to a scalar result. The expression in (2—80) is a line integral, in which the
integrand represents the component of the vector F along the path of integration.
This type of scalar line integral is of considerable importance in both physics and
electromagnetics. (If F is a force, the integral is the work done by the force in moving
an object from an initial point P, to a final point P, along a specified path C; if F
is replaced by E, the electric field intensity, then the integral represents the work
done by the electric field in moving a unit charge from P; to P,.) We will encounter
it again later in this chapter and in many other parts of this book.
mmeam EXAMPLE 2-14 Given F = a,xy — a 2x, evaluate the scalar line integral

f:F-de

along the quarter-circle shown in Fig. 2-21.
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Solution We shall solve this problem in two ways: first in Cartesian coordinates,
then in cylindrical coordinates.

a) In Cartesian coordinates. From the given F and the expression for d¢ in Eq. (2—44)
we have
F:df = xydx — 2xdy.

The equation of the quarter-circle is x> + y> =9 (0 < x, y < 3). Therefore,

f:F-dt’:f30x~/9—x2dx——2f03\/9—yzdy
0 3

-~ [y\/Q —y* +9sin7! X]
3

31o

__% (9 _ x2)3/2

_9(1 +g).

b) In cylindrical coordinates. Here we first transform F into cylindrical coordinates.
Inverting Eq. (2-61), we have

A, (cos ¢ —sin¢ 07114,
Ay| = |sin¢ cos ¢ 0 A,
4] {0 0 1] L4, (2-84)
( cos ¢ sin ¢ 0| A
= | —sin ¢ cos ¢ 01| A4,
L 0 0 11 4,
With the given F, Eq. (2-84) gives
F, cos ¢ sin ¢ 0 Xy
Fyl=|—sin¢ cos ¢ 0l —2x],
F, 0 0 1 0

which leads to

F = a,(xy cos ¢ — 2x sin ¢) — a,(xy sin ¢ + 2x cos ¢).
For the present problem the path of integration is along a quarter-circle of a
radius 3. There is no change in r or z along the path (dr = 0 and dz = 0); hence

Y4
B
r=3
¢ . FIGURE 2-21
o

4 "% Path for line integral (Example 2~14).
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Eq. (2-52) simplifies to
dé = a,3d¢g
and
F-dé = —3(xysin ¢ + 2x cos ¢)d¢.
Because of the circular path, F, is immaterial to the present integration. Along
the path, x = 3 cos ¢ and y = 3 sin ¢. Therefore
f: F-dé= f;”z — 3(9sin? ¢ cos ¢ + 6 cos? ¢)d¢

—9(sin? ¢ + ¢ + sin ¢ cos ¢) ;/2

s
- ofi42).

which is the same as before. -—

In this particular example, F is given in Cartesian coordinates, and the path is
circular. There is no compelling reason to solve the problem in one or the other co-
ordinates. We have shown the conversion of vectors and the procedure of solution
in both coordinates.

The expression in (2-81), f5 A - ds, is a surface integral. It is actually a double
integral over two dimensions; but it is written with a single integral sign for simplicity.
The integral measures the flux of the vector field A flowing through the area S. In
the integral the vector differential surface element ds = a,ds has a magnitude ds and
a direction denoted by the unit vector a,. The conventions for the positive direction
of ds or a, are as follows:

1. If the surface of integration, S, is a closed surface enclosing a volume, then the
positive direction for a, is always in the outward direction from the volume. This
is illustrated in Fig. 2-22(a). We see that the positive direction of a, depends on
the location of ds. A small circle is added over the integral sign if the integration
is to be performed over an enclosed surface:

SBSA-ds=§%A-a,,ds.

(a) A closed surface. (b) An open surface. (c) A disk.

FIGURE 2-22
Iltustrating the positive direction of a, in scalar surface integral.
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2. If § is an open surface, the positive direction for a, depends on the direction in
which the perimeter of the open surface is traversed. This is illustrated in Fig.
2-22(b), in which a cup-shaped surface (with no lid) is shown. We apply the right-
hand rule: If the fingers of the right hand follows the direction of travel around
the perimeter, then the thumb points in the direction of positive a,. Here again,
the positive direction of a, depends on the location of ds. A plane, such as the
disk in Fig. 2-22(c), is a special case of an open surface where a, is a constant.

wmmmm EXAMPLE 2-15 Given F = a,k,/r + a k,z, evaluate the scalar surface integral

ﬁF-ds

over the surface of a closed cylinder about the z-axis specified by z= +3 and r = 2.

Selution The specified surface of integration S is that of a closed cylinder shown in
Fig. 2-23. The cylinder has three surfaces: the top face, the bottom face, and the side
wall. We write

ﬁF'dS=£F-a"ds
= fop Frtuds+ [, Frods+ [ Frads,

face face wall

where a, is the unit normal outward from the respective surfaces. The three integrals
on the right side can be evaluated separately.

a) Top face. z=3,a,=a,,
F:a,=k,z=3k,,
ds = rdrd¢ (from Eq. 2-53c);
2z 2
L, Frads= {; fo 3k,rdrdg = 121k,

face

FIGURE 2-23
A cylindrical surface (Example 2—15).
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b) Bottom face. z = —3,a,= —a,,
F * an = "‘k2Z = 3k2,
ds =rdrd¢;

f F -a,ds = 12nk,,
bottom

face

which is exactly the same as the integral over the top face.
¢) Sidewall. r=2,a,=a,,

_ki Kk
F a, = T = 79
ds = rd¢ dz = 2 dé dz (from Eq. 2-53a);
3 2
Feads= [0 (% ki dgdz = 12mk,

wall

Therefore,
Eﬁs F-ds = 121k, + 122k, + 121k,
= 12n(k, + 2k,).

This surface integral gives the net outward flux of the vector F through the closed
cylindrical surface. -

2~-6 Gradient of a Scalar Field

In electromagnetics we have to deal with quantities that depend on both time and
position. Since three coordinate variables are involved in a three-dimensional space,
we expect to encounter scalar and vector fields that are functions of four variables:
(¢, uy, u,, u3). In general, the fields may change as any one of the four variables
changes. We now address the method for describing the space rate of change of a
scalar field at a given time. Partial derivatives with respect to the three space-
coordinate variables are involved, and, inasmuch as the rate of change may be differ-
ent in different directions, a vector is needed to define the space rate of change of a
scalar field at a given point and at a given time.

Let us consider a scalar function of space coordinates V(u,, u,, us), which may
represent, say, the temperature distribution in a building, the altitude of a moun-
tainous terrain, or the electric potential in a region. The magnitude of V, in general,
depends on the position of the point in space, but it may be constant along certain
lines or surfaces. Figure 2—-24 shows two surfaces on which the magnitude of V is
constant and has the values V; and V; + dV, respectively, where dV indicates a small
change in V. We should note that constant-V surfaces need not coincide with any
of the surfaces that define a particular coordinate system. Point P, is on surface V;;
P, is the corresponding point on surface V, + dV along the normal vector dn; and
P, is a point close to P, along another vector d€ # dn. For the same change dV in
V, the space rate of change, dV/d/, is obviously greatest along dn because dn is the
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FIGURE 2-24
Concerning gradient of a scalar.

shortest distance between the two surfaces." Since the magnitude of dV/d/ depends
on the direction of dé, dV/d/ is a directional derivative. We define the vector that
represents both the magnitude and the direction of the maximum space rate of increase
of a scalar as the gradient of that scalar. We write

dav
Ag 7. -
gradV2a, T (2-85)

For brevity it is customary to employ the operator del, represented by the symbol
V and write VV in place of grad V. Thus,

d[’
A . _
PVLa, (2-86)

We have assumed that dV is positive (an increase in V); if dV is negative (a decrease
in V from P, to P,), VV will be negative in the a, direction.
The directional derivative along d¢ is

dv_dvdn _dv

— = — = — COS &
d/ j; d¢ dn 2-87)
=—d—n—an'al=(VV)’a[.

Equation (2-87) states that the space rate of increase of V in the a, direction is equal
to the projection (the component) of the gradient of V in that direction. We can also
write Eq. (2-87) as

dv = (VV)- de, (2-88)

' In a more formal treatment, changes AV and A¢ would be used, and the ratio AV/A¢ would become
the derivative dV/d¢ as A/ approaches zero. We avoid this formality in favor of simplicity.
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where df = a,d/. Now, dV in Eq. (2-88) is the total differential of V as a result of
a change in position (from P, to P, in Fig. 2-24); it can be expressed in terms of
the differential changes in coordinates:
% ov v
dV—Ed{’1 +Ed{’2 +E
where d¢;, d/,, and d/; are the components of the vector differential displacement
d¢ in a chosen coordinate system. In terms of general orthogonal curvilinear coordi-
nates (uy, u,, u3), d€ is (from Eq. 2-31),

dé =a, d¢, +a,,d/, +a,,dts
= a,(hy du,) + a,,(h, du,) + a,,(h; du,).

dts, (2-89)

(2-90)

We can write dV in Eq. (2-89) as the dot product of two vectors, as follows:

“ g +a,, i, a,, o,
ov ov ov
= — — — |- d¢.
(a"l oe, T Ay a/3>
Comparing Eq. (2-91) with Eq. (2-88), we obtain

6V+a a—V+a 8_V
“ oty ¥2 0ty “dt,

F
dv = (a ov v . V) (8, dt, + a,,dt, + a,,dty)
(2-91)

VW=a (2-92)

or

LA L A ) 4
“hyou, “*hyou, " hydu;

vV = (2-93)

Equation (2-93) is a useful formula for computing the gradient of a scalar, when the
scalar is given as a function of space coordinates.
In Cartesian coordinates, (u,, u,, u3) = (x, y, z) and h; = h, = hy = 1, we have

VV =a a_V+ a_V+a a_V 2-94
S ThG TR (2-54
or
0 0 0
VvV = <ax E +a, 5_y + a, E) V. (2-95)

In view of Eq. (2-95), it is convenient to comsider V in Cartesian coordinates as a
vector differential operator.

0 ta 2 ial
Hoy T

Vsaxa

(2-96)
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From Eq. (2-93), we see that we can define V as

V={a —a—+a g +a 0 2-97
=\ au, T ™ hom, T 2 h, ou, (2-97)

in general orthogonal coordinates. As we shall see later in this chapter, the same vector
differential operator is also used to signify divergence (V +) and curl (V x ) operations
on a vector. In these cases it is important to remember that the differentiation of a
base vector in a curvilinear coordinate system may lead to a new vector in a dif-
ferent direction. (For instance, a,/0¢ = a, and da,/0¢ = —a,.) Proper care must be
exercised when the V defined in Eq. (2-97) is used to operate on vectors in curvilinear
coordinate systems.

mmmmm EXAMPLE 2-16 The electrostatic field intensity E is derivable as the negative gra-
dient of a scalar electric potential V; that is, E = —VV. Determine E at the point

1, 1,0).if
a) V = Vye *sin —7%,

b) V = E4R cos 6.

Solution We use Eq. (2-93) to evaluate E = — VV in Cartesian coordinates for part
(a) and in spherical coordinates for part (b).
0 0 0 x o WY
a) E = —[axg + aya + a, E]Eoe SmT
. Ty n ry ~x
= <ax sin i a, 7 cos T)Eoe .
E
Thus, E(1, 1,0) = <ax —a, E) == agE,
4 \/5
where
1 n?
E=E, [-|1 ,
° V2 ( * 16)
ap = ! (a a n)
A+ @ye\ - 4)
0
b) E= — — — ———— |EoR 0
) [“R oR T % R0 +a¢Rsinea¢] o €S

= —(ag cos 0 — a, sin )E,,.
In view of Eq. (2-77), the result above converts very simply to E = —a_E, in
Cartesian coordinates. This is not surprising, since a careful examination of the
given V reveals-that E R cos 6 is, in fact, equal to Ez. In Cartesian coordinates,

0
E = _VV = —a._,a—Z(EoZ) = _aon.



46

2-7

2 Vector Analysis

Divergence of a Vector Field

In the preceding section we considered the spatial derivatives of a scalar field, which
led to the definition of the gradient. We now turn our attention to the spatial deriv-
atives of a vector field. This will lead to the definitions of the divergence and the curl
of a vector. We discuss the meaning of divergence in this section and that of curl in
Section 2-9. Both are very important in the study of electromagnetism.

In the study of vector fields it is convenient to represent field variations graphically
by directed field lines, which are called flux knes or streamlines. They are directed
lines or curves that indicate at each point the direction of the vector field, as illustrated
in Fig. 2-25. The magnitude of the field at a point is depicted either by the density
or by the length of the directed lines in the vicinity of the point. Figure 2-25(a) shows
that the field in region A is stronger than that in region B because there is a higher
density of equal-length directed lines in region A. In Fig. 2-25(b), the decreasing
arrow lengths away from the point ¢ indicate a radial field that is strongest in the
region closest to g. Figure 2—25(c) depicts a uniform field.

The vector field strength in Fig. 2-25(a) is measured by the number of flux lines
passing through a unit surface normal to the vector. The flux of a vector field is
analogous to the flow of an incompressible fluid such as water. For a volume with
an enclosed surface there will be an excess of outward or inward flow through the
surface only when the volume contains a source or a sink, respectively; that is, a net
positive divergence indicates the presence of a source of fluid inside the volume, and
a net negative divergence indicates the presence of a sink. The net outward flow of
the fluid per unit volume is therefore a measure of the strength of the enclosed source.
In the uniform field shown in Fig. 2-25(c) there is an equal amount of inward and
outward flux going through any closed volume containing no sources or sinks, result-
ing in a zero divergence.

\
~

~

\\

__’/v
4—> B - t———e—»p » —_—, > —— — —»
—>
v
(@ ®) ©
FIGURE 2-25

Flux lines of vector fields.
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We define the divergence of a vector field A at a point, abbreviated div A, as the net
outward flux of A per unit volume as the volume about the point tends to zero:

divA £ {im
Av—-0Q

ﬁ A-ds
Y @29

The numerator in Eq. (2-98), representing the net outward flux, is an integral over
the entire surface S that bounds the volume. We were exposed to this type of surface
integral in Example 2-15. Equation (2-98) is the general definition of div A which
is a scalar quantity whose magnitude may vary from point to point as A itself varies.
This definition holds for any coordinate system; the expression for div A, like that
for A, will, of course, depend on the choice of the coordinate system.

At the beginning of this section we intimated that the divergence of a vector is
a type of spatial derivative. The reader might perhaps wonder about the presence of
an integral in the expression given by Eq. (2-98); but a two-dimensional surface in-
tegral divided by a three-dimensional volume will lead to spatial derivatives as the
volume approaches zero. We shall now derive the expression for div A in Cartesian
coordinates.

Consider a differential volume of sides Ax, Ay, and Az centered about a point
P(xq, yo, 2o) in the field of a vector A, as shown in Fig. 2-26. In Cartesian coordinates,
A=a A, +ad, +a,A, We wish to find div A at the point (x,, yo, z,). Since the
differential volume has six faces, the surface integral in the numerator of Eq. (2-98)
can be decomposed into six parts:

ﬁ Acds= I:J;ron! + J;ack + J:‘ight + J;efl + J:op + fbouom:'A " ds. (2—99)

face face face face face face

On the front face,

A-ds = Afronl * Ast‘ront = Afront * ax(Ay AZ)

face face face

A
= Ax<x0 + Tx, Yo» zo> AyAz.

front
face

(2-100)

P(xy, yo, z0)

Ax

Ay
(0]
y FIGURE 2-26

A differential volume in Cartesian coordinates.
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The quantity 4,([xo + (Ax/2), yo, 2o]) can be expanded as a Taylor series about its
value at (xq, o, Zo), as follows:

+ higher-order terms,

(xo0, Yo, z0)

Ax Ax 0A,
ALl xo + 5 Yos Zo A(x0, Yo, Z0) + — 2 ox

(2-101)

where the higher-order terms (H.O.T.) contain the factors (Ax/2)?, (Ax/2)3, etc. Simi-
larly, on the back face,

A - ds = Apaer * ASpack = Apacy " (—2, Ay A2)

face face face

A
= "Ax(xo - —2{, Yo Zo) AyA:z.

A .
The Taylor-series expansion of A,,(xo - —;, Yo» zo) is

back
face

(2-102)

Ax Ax 0A,
Ax<x0 - 7’ yO’ ZO) (-xOs YO, Zo) 2 6x : + H-O.T. (2—103)
X0, Y0, Z0)

Substituting Eq. (2-101) in Eq. (2-100) and Eq. (2-103) in Eq. (2-102) and adding
the contributions, we have

[Jn* b -6~ (5 + 01

face face

AxAyAz. (2-104)

(xo, ¥0, Z0)

Here a Ax has been factored out from the H.O.T. in Egs. (2-101) and (2-103), but
all terms of the H.O.T. in Eq. (2-104) still contain powers of Ax.

Following the same procedure for the right and left faces, where the coordinate
changes are +Ay/2 and — Ay/2, respectively, and As = Ax Az, we find

[f"m Ln] - ds = (a/;y +HOT>

face face

AxAyAz. (2-105)

(xo0, Yo, Zo)

Here the higher-order terms contain the factors Ay, (Ay)?, etc. For the top and bottom
faces we have

o # e #( o)

where the higher-order terms contain the factors Az, (Az)?, etc. Now the results from
Egs. (2-104), (2-105), and (2-106) are combined in Eq. (2-99) to obtain

0A, 04, 6A
A-ds= 2t 4+ = A Az
§ d= ( 0x * 6_)} a ) (x0, Y0, Z0) * Ay ‘

+ higher-order terms in Ax, Ay, Az.

AxAyAz,  (2-106)

(x0, Yo, 20)

(2-107)

Since Av = Ax Ay Az, substitution of Eq. (2-107) in Eq. (2-98) yields the expression
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of div A in Cartesian coordinates:

04, 04, 04,

leA=ax E"r 62’

49

(2-108)

The higher-order terms vanish as the differential volume Ax Ay Az approaches zero.
The value of div A, in general, depends on the position of the point at which it is
evaluated. We have dropped the notation (x,, yo, zo) in Eq. (2—108) because it applies

to any point at which A and its partial derivatives are defined.

With the vector differential operator del, V, defined in Eq. (2-96) we can write

Eq. (2-108) alternatively as V - A; that is,

V-A=divA

(2-109)

In general orthogonal curvilinear coordinates (u,, u,, u;), Eq. (2-98) will lead to

1 0

0 d
V . A _—— v 0
hyhyh, [aul (hyhsAy) + au, (hihsA,) + 2, (hlths):l'

(2-110)

EXAMPLE 2-17 Find the divergence of the position vector to an arbitrary point.

Solution We will find the solution in Cartesian as well as in spherical coordinates.

a) Cartesian coordinates. The expression for the position vector to an arbitrary

point (x, y, z) is .
OP=ax-+ay+az
Using Eq. (2-108), we have

—  0x 0y 0z
*OP)=_—+ =+ =13
v-(op 0x + dy + 0z
b) Spherical coordinates. Here the position vector is simply
OP = agR.

(2-111)

2-112)

Its divergence in spherical coordinates (R, 6, ¢) can be obtained from Eq. (2—110)

by using Table 2-1 as follows:

1 4 10 1 04,

. _—_ _ (R2 - 1 __ 2,
VA= R ronae s 0+ R 20

@-113)

Substituting Eq. (2-112) in Eq. (2-113), we also obtain V - (OP) = 3, as expected.
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ssmmm EXAMPLE 2-18 The magnetic flux density B outside a very long current-carrying

wire is circumferential and is inversely proportional to the distance to the axis of the
wire. Find V + B.

Solution Let the long wire be coincident with the z-axis in a cylindrical coordinate
system. The problem states that

B=a,

The divergence of a vector field in cylindrical coordinates (r, ¢, z) can be found from
Eq. (2-110):

10 10B, 0B,
‘B=—-— . . -114
V-B rar(rB')+r6d)+6z (2-114)
Now B, = k/r, and B, = B, = 0. Equation (2-114) gives
V:B=0. -

We have here a vector that is not a constant, but whose divergence is zero. This
property indicates that the magnetic flux lines close upon themselves and that there
are no magnetic sources or sinks. A divergenceless field is called a solenoidal field.
More will be said about this type of field later in the book.

Divergence Theorem

In the preceding section we defined the divergence of a vector field as the net outward
flux per unit volume. We may expect intuitively that the volume integral of the
divergence of a vector field equals the total outward flux of the vector through the
surface that bounds the volume; that is,

fVV-Adu=SBSA-ds. (2-115)

This identity, which will be proved in the following paragraph, is called the divergence
theorem.! It applies to any volume V that is bounded by surface S. The direction of
ds is always that of the outward normal, perpendicular to the surface ds and directed
away from the volume.

For a very small differential volume element Av; bounded by a surface s;, the
definition of V + A in Eq. (2-98) gives directly

(V - A); Ao, = 56 A-ds. (2-116)

! 1t is also known as Gauss’s theorem.
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In case of an arbitrary volume V, we can subdivide it into many, say N, small dif-
ferential volumes, of which Awv; is typical. This is depicted in Fig. 2-27. Let us now
combine the contributions of all these differential volumes to both sides of Eq. (2—116).

We have
N
lim V-A)Av; | = i A-ds|. -
Avj—0 [Z ( ) ] Auljr—r}o |:1=21 ﬁj S:, (2 117)

The left side of Eq. (2—-117) is, by definition, the volume integral of V - A:

Alffo[z(v A), Av]zfv (V- A)do. (2-118)

The surface integrals on the right side of Eq. (2-117) are summed over all the faces
of all the differential volume elements. The contributions from the internal surfaces
of adjacent elements will, however, cancel each other, because at a common internal
surface the outward normals of the adjacent elements point in opposite directions.
Hence the net contribution of the right side of Eq. (2—117) is due only to that of the
external surface S bounding the volume V; that is,

lim [ fA ds] 9§A ds. (2-119)

Av;—0

The substitution of Egs. (2-118) and (2-119) in Eq. (2—-117) yields the divergence
theorem in Eq. (2-115).

The validity of the limiting processes leading to the proof of the divergence the-
orem requires that the vector field A, as well as its first derivatives, exist and be con-
tinuous both in ¥ and on S. The divergence theorem is an important identity in
vector analysis. It converts a volume integral of the divergence of a vector to a closed
surface integral of the vector, and vice versa. We use it frequently in establishing
other theorems and relations in electromagnetics. We emphasize that, although a
single integral sign is used on both sides of Eq. (2-115) for simplicity, the volume
and surface integrals represent triple and double integrations, respectively.

FIGURE 2-27
Subdivided volume for proof of divergence theorem.
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ssssm EXAMPLE 2-19 Given A = a,x? + a,xy + a,yz, verify the divergence theorem over
a cube one unit on each side. The cube is situated in the first octant of the Cartesian
coordinate system with one corner at the origin.

Solution Refer to Fig. 2-28. We first evaluate the surface integral over the six faces.

1. Front face: x = 1, ds = a,dydz;

fmm A-ds = fol J: dydz = 1.

face

2. Back face: x =0, ds = —a, dydz;

3. Left face: y =0, ds = —a,dxdz;
A-ds=0.

left
face

4. Right face: y =1, ds = a,dx dz;
vas= [ (! -1
frightA ds—f0 J‘o xdxdz =3.

face

5. Top face: z = 1, ds = a,dxdy;
I O 1
Juop Avds= [ [ yaxay=4.

face

6. Bottom face: z =0, ds = —a,dxdy;

J;ommA-ds = 0.

face

Adding the above six values, we have
GA-ds=1+0+0+3+3+0=2 (2-120)

Now the divergence of A is

0 i) 0
VA= (x3) 4 — L y2) =
e (x )+6y (xy)+az (yz) = 3x + y.

FIGURE 2--28
A unit cube (Example 2-19).
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Hence,
1 11 -
J‘V V:Adv= fo J‘o fo (Bx + y)dxdydz = 2, (2-121)
which is the same as the result of the closed surface integral in (2—120). The divergence
theorem is therefore verified. -

EXAMPLE 2-20 Given F = agkR, determine whether the divergence theorem holds
for the shell region enclosed by spherical surfaces at R = R; and R = Ry(R, > R))
centered at the origin, as shown in Fig. 2-29.

Solution Here the specified region has two surfaces, at R = R, and R = R,.
At the outer surface: R = R,, ds = agR2 sin 6d0d¢;

2n (*n .
_Lum F-ds = J;) fo (kR,)R3 sin 0d0d¢ = 4nkR3.

surface

At the inner surface: R = R,, ds = —azR? sin 0d0 d¢;

[ Feas=- [ 7 R )R sin 040 dp = —AnkR?.
surface
Actually, since the integrand is independent of 6 or ¢ in both cases, the integral of
a constant over a spherical surface is simply the constant multiplied by the area of
the surface (4nR3 for the outer surface and 4nR? for the inner surface), and no
integration is necessary. Adding the two results, we have

fﬁs F - ds = 4nk(R3 — R3). (2-122)

To find the volume integral, we first determine V - F for an F that has only an
Fy component. From Eq. (2-113), we have

1 0 1 0

VeF=— (R Fp) = — —
RZaR( ®) R?Z 3R

(kR?) = 3k.

Since V - F is a constant, its volume integral equals the product of the constant and
the volume. The volume of the shell region between the two spherical surfaces with

FIGURE 2-29
A spherical shell region (Example 2-20).
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radii R, and R, is 4n(R3 — R3)/3. Therefore,
fy V- Fdv = (V-F)V = 4nk(R3 — R}), (2-123)

which is the same as the result in Eq. (2-122).

This example shows that the divergence theorem holds even when the volume
has holes inside—that is, even when the volume is enclosed by a multiply connected
surface. —

Curl of a Vector Field

In Section 2-7 we stated that a net outward flux of a vector A through a surface
bounding a volume indicates the presence of a source. This source may be called a
Sflow source, and div A is a measure of the strength of the flow source. There is another
kind of source, called vortex source, which causes a circulation of a vector field around
it. The net circulation (or simply circulation) of a vector field around a closed path
is defined as the scalar line integral of the vector over the path. We have

Circulation of A around contour C £ Sﬁc A - dé. (2-124)

Equation (2—124) is a mathematical definition. The physical meaning of circulation
depends on what kind of field the vector A represents. If A is a force acting on an
object, its circulation will be the work done by the force in moving the object once
around the contour; if A represents an electric field intensity, then the circulation
will be an electromotive force around the closed path, as we shall see later in the
book. The familiar phenomenon of water whirling down a sink drain is an example
of a vortex sink causing a circulation of fluid velocity. A circulation of A may exist
even when div A = 0 (when there is no flow source).

Since circulation as defined in Eq. (2—124) is a line integral of a dot product, its
value obviously depends on the orientation of the contour C relative to the vector
A. In order to define a point function, which is a measure of the strength of a vortex
source, we must make C very small and orient it in such a way that the circulation
is a maximum. We definet

curl A=V x A
1 (2-125)
Al.:ino E [an §C A d€:|max.

In words, Eq. (2—-125) states that the curl of a vector field A, denoted by curl A or
V x A, is a vector whose magnitude is the maximum net circulation of A per unit

>

' In books published in Europe, the curl of A is often called the rotation of A and written as rot A.
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dl  FIGURE 2-30
Relation between a, and d€in defining curl.

area as the area tends to zero and whose direction is the normal direction of the
area when the area is oriented to make the net circulation maximum. Because the
normal to an area can point in two opposite directions, we adhere to the right-hand
rule that when the fingers of the right hand follow the direction of d¢, the thumb
points to the a, direction. This is illustrated in Fig. 2-30. Curl A is a vector point
function and is conventionally written as V x A (del cross A). The component of
V x A in any other direction a, is a,-(V x A), which can be determined from the
circulation per unit area normal to a, as the area approaches zero.

(VxA)=a,-VxA)= lim (?ﬁc A- d(’), (2-126)

As,—0 ASu

where the direction of the line integration around the contour C, bounding area As,
and the direction a, follow the right-hand rule.

We now use Eq. (2-126) to find the three components of V x A in Cartesian
coordinates. Refer to Fig. 2-31, in which a differential rectangular area parallel to
the yz-plane and having sides Ay and Az is drawn about a typical point P(xy, Yo, zo)-
We have a, = a, and As, = Ay Az, and the contour C, consists of the four sides 1,2,3,

P(xo, o, 20)

FIGURE 2-31
Determining (V x A),.
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and 4. Thus,

1
(Vx A), = lim <9§ A dt’). (2-127)
ayaz~o Ay Az ild;s 3,4

In Cartesian coordinates, A = a4, + a,A, + a,A,. The contributions of the four
sides to the line integral are as follows.

A
Side l: d¢ =a,Az, A-df = Az<xo, Yo + —21V~, zo> Az,

A
where Az<x0, Yo + Ty, zo> can be expanded as a Taylor series:

Ay 04,

Ay
A\ X0: Yo + 5% )= A(X0, Yo» 20) + > 2y

+HOT, (2-128)

(x0, y0, Z0)
where H.O.T. (higher-order terms) contain the factors (Ay)?, (Ay)?, etc. Thus,

Ay 0A,

J;idc 1 A-dt = {Az(xo’ Yo ZO) + 7 ay

+ H.O.T.} Az.  (2-129)

(x0, yo, z0)

A
Side3: d€= —a,Az,A-de= A, <x0, Yo — -21 z0> Az,

where
A Ay 04
A,(xo, Yo Zo) = Ao, Yo 20) =~ = +HO.T,; (2-130)
2 2 ay (X0 Y0, Z0)
Ay 04,
fside JAdE= {AZ(XO’ Vo> Zo) — T hesnn + H.O.T.} (—Az).  (2-131)

Combining Eqgs. (2-129) and (2-131), we have

A
f, A-d€=(a ’+H.0.T.>
sides ay

1&3

AyAz. (2-132)

(xo0, yo, 20)

The H.O.T. in Eq. (2-132) still contain powers of Ay. Similarly, it may be shown that

84,
L A de= <_E + H.O.T.>

2&4

AyAz. (2-133)

(x0, Yo, z0)

Substituting Eqs. (2-132) and (2-133) in Eq. (2-127) and noting that the higher-
order terms tend to zero as Ay — 0, we obtain the x-component of V x A:
04, O0A,

(V' x A), = dy 0z

(2-134)
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A close examination of Eq. (2—134) will reveal a cyclic order in x, y, and z and
enable us to write down the y- and z-components of V x A. The entire expression
for the curl of A in Cartesian coordinates is

VxA=a oA, _ o4, +a 04, _ 94, +a o4, _ o4, 2-135
T oy Oz Woz  ox \ox oy ) (2-133)

Compared to the expression for V + A in Eq. (2-108), that for V x A in Eq. (2—135)
is more complicated, as it is expected to be, because it is a vector with three compo-
nents, whereas V - A is a scalar. Fortunately, Eq. (2—135) can be remembered rather
easily by arranging it in a determinantal form in the manner of the cross product
exhibited in Eq. (2-43).

a, a, a,
J J J
== = = 2-1
VxA 0x dy 0z (2-136)
A, A, A,

The derivation of V x A in other coordinate systems follows the same procedure.
However, it is more involved because in curvilinear coordinates not only A but also
d¢ changes in magnitude as the integration of A - d€ is carried out on opposite sides
of a curvilinear rectangle. The expression for V x A in general orthogonal curvi-
linear coordinates (u,, u,, u,) is given below:

a,h, a
t 0 0 5]
hyhyhy |Guy uy dus
hiA, h,A, hyA,4

Vx A= (2-137)

The expressions of V x A in cylindrical and spherical coordinates can be easily ob-
tained from Eq. (2-137) by using the appropriate u,, u,, and u, and their metric
coefficients h;, h,, and h, listed in Table 21,

smmmes EXAMPLE 2-21 Show that V x A = 0 if

a) A = a,(k/r) in cylindrical coordinates, where k is a constant, or

b) A = a, f(R) in spherical coordinates, where f(R) is any function of the radial dis-
tance R.
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Solution

a) In cylindrical coordinates the following apply: (u,,u,, u3) =(r, ¢,2); hy =1,
h, = r, and h; = 1. We have, from Eq. (2-137),

a, ayr a,
1|0 0 0
VxA=-|— -—  — 2-1
*A=Ue % ) (@-138)
A, rA, A,
which yields, for the given A,
a, ayr a,
1|é 0 0
A=—-|— —|=0.
vx r|or o¢ 0z
0 k 0

b) Inspherical coordinates the following apply: (u,, #z, u3) = (R, 8, ¢);h; = 1,h; = R,
and h, = R sin 6. Hence,

ap a,R a,R sin 0
1 0 0 0
VX A= —R2 sin 0 Bi 50‘ % ) (2—139)
Ax R4, Rsiné4,
and, for the given A,
ag a,R a,R sin 0
1 G, 0 0
A = - | —— —_— —_ — .
V*A=Rrng|oR 30 ¢ 0
R0 0 -

A curl-free vector field is called an irrotational or a conservative field. We will
see in the next chapter that an electrostatic field is irrotational (or conservative). The
expressions for V x A given in Egs. (2—138) and (2-139) for cylindrical and spherical
coordinates, respectively, will be useful for later reference.

2-10 Stokes’s Theorem

For a very small differential area As; bounded by a contour C;, the definition of
V x A in Eq. (2-125) leads to

(V x A); - (As)) = 930 A-de. (2-140)

In obtaining Eq. (2—-140), we have taken the dot product of both sides of Eq. (2-125)
with a, As; or As;. For an arbitrary surface S, we can subdivide it into many, say N,
small differential areas. Figure 2—32 shows such a scheme with As; as a typical dif-
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ferential element. The left side of Eq. (2-140) is the flux of the vector V x A through
the area As;. Adding the contributions of all the differential areas to the flux, we have

N
lim Z (V x A);- (8s) = [ (V x 4)- ds (2-141)
As; =0 i=1

Now we sum up the line integrals around the contours of all the differential elements
represented by the right side of Eq. (2—140). Since the common part of the contours
of two adjacent elements is traversed in opposite directions by two contours, the net
contribution of all the common parts in the interior to the total line integral is zero,
and only the contribution from the external contour C bounding the entire area S
remains after the summation: ‘

Alg)i @5 A- d€> - gﬁc A-de. (2-142)

Combining Eqgs. (2-141) and (2-142), we obtain Stokes’s theorem:

[, x a)-ds = SBC A-de, (2-143)

which states that the surface integral of the curl of a vector field over an open surface
is equal to the closed line integral of the vector along the contour bounding the
surface.

As with the divergence theorem, the validity of the limiting processes leading
to Stokes’s theorem requires that the vector field A, as well as its first derivatives,
exist and be continuous both on § and along C. Stokes’s theorem converts a sur-
face integral of the curl of a vector to a line integral of the vector, and vice versa.
Like the divergence theorem, Stokes’s theorem is an important identity in vector anal-
ysis, and we will use it frequently in establishing other theorems and relations in
electromagnetics.

If the surface integral of V x A is carried over a closed surface, there will be no
surface-bounding external contour, and Eq. (2-143) tells us that

fﬁs(v x A)+ds=0 (2-144)

FIGURE 2-32
Subdivided area for proof of Stokes’s theorem.
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for any closed surface S. The geometry in Fig. 2—-32 is chosen deliberately to em-
phasize the fact that a nontrivial application of Stokes’s theorem always implies an
open surface with a rim. The simplest open surface would be a two-dimensional plane
or disk with its circumference as the contour. We remind ourselves here that the
directions of d¢€ and ds(a,) follow the right-hand rule.

EXAMPLE 2-22 Given F = a,xy — a,2x, verify Stokes’s theorem over a quarter-
circular disk with a radius 3 in the first quadrant, as was shown in Fig. 2-21 (Ex-
ample 2-14, page 39).

Solution Let us first find the surface integral of V x F. From Eq. (2-136),

a, a, a,

d d é
VxF=|~ — —|=—2a,2 )
X ox dy 0z a2 +x)

xy —2x 0

Therefore,

fiwxm-as=° fofé‘—ﬁ(v x F) - (a, dx dy)

= f: [fng—_yi -2+ x)dx] dy

= — ) 20— +30 - ydy

Ny s Ty sl 2, Y
y y° + 9sin +=y

37277
T
—9{1+%).
o(1+3)

It is important to use the proper limits for the two variables of integration. We can
interchange the order of integration as

[(vxB-as=]° UOJT‘_ —(2+x)dy:| dx

and get the same result. But it would be quite wrong if the 0 to 3 range were used as
the range of integration for both x and y. (Do you know why?)

For the line integral around ABOA we have already evaluated the part around
the arc from A to B in Example 2-14.

From Bto 0: x=0,and F-d€ = F - (—a,dy) = 2xdy = 0.
From O to A: y=0,and F-dé =F - (a,dx) = xydx = 0. Hence

9SABOAF-d€ = [TF-ae= ~9<1 +’2~‘>

from Example 2—14, and Stokes’s theorem is verified. -

3

0
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Of course, Stokes’s theorem has been established in Eq. (2—143) as a general iden-
tity; there is no need to use a particular example to prove it. We worked out the
example above for practice on surface and line integrals. (We note here that both the
vector field and its first spatial derivatives are finite and continuous on the surface
as well as on the contour of interest.)

2-11 Two Null Identities

Two identities involving repeated del operations are of considerable importance in
the study of electromagnetism, especially when we introduce potential functions. We
shall discuss them separately below.

2-11.1 IDENTITY I

Vx(VV)=0 (2-145)

In words, the curl of the gradient of any scalar field is identically zero. (The exis-
tence of V' and its first derivatives everywhere is implied here.)

Equation (2-145) can be proved readily in Cartesian coordinates by using Eq.
(2-96) for V and performing the indicated operations. In general, if we take the surface
integral of V x (VV) over any surface, the result is equal to the line integral of VV
around the closed path bounding the surface, as asserted by Stokes’s theorem:

v xvv))-ds =G (vv)- ae. (2-146)
However, from Eq. (2-88),
¢ (Vv)-de = $.av =o. (2-147)

The combination of Eqgs. (2-146) and (2-147) states that the surface integral of V x
(VV) over any surface is zero. The integrand itself must therefore vanish, which leads
to the identity in Eq. (2-145). Since a coordinate system is not specified in the deri-
vation, the identity is a general one and is invariant with the choices of coordinate
systems.

A converse statement of Identity I can be made as follows: If a vector field is
curl-free, then it can be expressed as the gradient of a scalar field. Let a vector field
be E. Then, if V x E = 0, we can define a scalar field V such that

E=-VV. (2-148)

The negative sign here is unimportant as far as Identity I is concerned. (It is included
in Eq. (2-148) because this relation conforms with a basic relation between electric
field intensity E and electric scalar potential V in electrostatics, which we will take
up in the next chapter. At this stage it is immaterial what E and V represent.) We
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know from Section 2-9 that a curl-free vector field is a conservative field; hence an
irrotational (a conservative) vector field can always be expressed as the gradient

of a scalar field.

2-11.2 IDENTITY I

V-(VxA)=0 (2-149)

In words, the divergence of the curl of any vector field is identically zero.

Equation (2-149), too, can be proved easily in Cartesian coordinates by using
Eq. (2-96) for V and performing the indicated operations. We can prove it in general
without regard to a coordinate system by taking the volume integral of V « (V x A)
on the left side. Applying the divergence theorem, we have

[, v xay= gﬁs(v x A) - ds. (2-150)

Let us choose, for example, the arbitrary volume V enclosed by a surface S in Fig.
2-33. The closed surface S can be split into two open surfaces, S; and S,, connected
by a common boundary that has been drawn twice as C, and C,. We then apply
Stokes’s theorem to surface §; bounded by C,, and surface S, bounded by C,, and
we write the right side of Eq. (2-150) as

Eﬁs(VxA)-ds=Ll(VxA)-a,,,ds+fs2(VxA)-a,,zds
—§ A-de+d A-ae (2-151)
9, 9.

The normals a,, and a,, to surfaces S, and S, are outward normals, and their rela-
tions with the path directions of C, and C, follow the right-hand rule. Since the
contours C; and C, are, in fact, one and the same common boundary between S,
and S,, the two line integrals on the right side of Eq. (2—151) traverse the same
path in opposite directions. Their sum is therefore zero, and the volume integral of
V- (V x A) on the left side of Eq. (2-150) vanishes. Because this is true for any
arbitrary volume, the integrand itself must be zero, as indicated by the identity in
Eq. (2—149).

FIGURE 2-33
An arbitrary volume V enclosed by surface S.
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A converse statement of Identity II is as follows: If a vector field is divergenceless,
then it can be expressed as the curl of another vector field. Let a vector field be B.
This converse statement asserts that if V - B = 0, we can define a vector field A such
that

B=V x A. (2-152)

In Section 2—7 we mentioned that a divergenceless field is also called a solenoidal
field. Solenoidal fields are not associated with flow sources or sinks. The net out-
ward flux of a solenoidal field through any closed surface is zero, and the flux lines
close upon themselves. We are reminded of the circling magnetic flux lines of a
solenoid or an inductor. As we will see in Chapter 6, magnetic flux density B is
solenoidal and can be expressed as the curl of another vector field called magnetic
vector potential A.

2-12 Helmholtz’s Theorem

In previous sections we mentioned that a divergenceless field is solenoidal and a curl-

Jfree field is irrotational. We may classify vector fields in accordance with their being
solenoidal and/or irrotational. A vector field F is

1. Solenoidal and irrotational if
V:-F=0 and VxF=0.
EXAMPLE: A static electric field in a charge-free region.
2. Solenoidal but not irrotational if
V-F=0 and VxFs#0.
EXAMPLE: A steady magnetic field in a current-carrying conductor.
3. Irrotational but not solenoidal if
VxF=0 and V-F#0.
EXAMPLE: A static electric field in a charged region.
4. Neither solenoidal nor irrotational if
V-F#0 and VxF#0. .
EXAMPLE: An electric field in a charged medium with a time-varying magnetic
field.

The most general vector field then has both a nonzero divergence and a nonzero
curl, and can be considered as the sum of a solenoidal field and an irrotational field.

Helmbholtz’s Theorem: A vector field (vector point function) is determined to within
an additive constant if both its divergence and its curl are specified everywhere. In an
unbounded region we assume that both the divergence and the curl of the vector
field vanish at infinity. If the vector field is confined within a region bounded by a
surface, then it is determined if its divergence and curl throughout the region, as
well as the normal component of the vector over the bounding surface, are given.
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Here we assume that the vector function is single-valued and that its derivatives are
finite and continuous.

Helmholtz’s theorem can be proved as a mathematical theorem in a general way.!
For our purposes, we remind ourselves (see Section 2-9) that the divergence of a
vector is a measure of the strength of the flow source and that the curl of a vector is
a measure of the strength of the vortex source. When the strengths of both the flow
source and the vortex source are specified, we expect that the vector field will be
determined. Thus, we can decompose a general vector field F into an irrotational
part F; and a solenoidal part F:

F=F, +F, (2-153)

with
VxF,=0 (2-154a)
V-F,=g (2-154b)

and
V-F,=0 (2-155a)
VxF, =G, (2-155b)

where g and G are assumed to be known. We have

V-F=V:F;=g¢g (2-156)

and
VxF=VxF,=G. (2-157)

Helmholtz’s theorem asserts that when g and G are specified, the vector function F
is determined. Since V- and V x are differential operators, F must be obtained by
integrating ¢ and G in some manner, which will lead to constants of integration.
The determination of these additive constants requires the knowledge of some bound-
ary conditions. The procedure for obtaining F from given g and G is not obvious
at this time; it will be developed in stages in later chapters.

The fact that F; is irrotational enables us to define a scalar (potential) function
V, in view of identity (2—145), such that

F,= —-VV. (2-158)

Similarly, identity (2—149) and Eq. (2—155a) allow the definition of a vector (potential)
function A such that
F,=Vx A (2-159)

Helmholtz’s theorem states that a general vector function F can be written as the
sum of the gradient of a scalar function and the curl of a vector function. Thus

F=-VIV+VxA. (2-160)

1 See, for instance, G. Arfken, Mathematical Methods for Physicists, Section 1.15, Academic Press, New
York, 1966.
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In following chapters we will rely on Helmholtz’s theorem as a basic element
in the axiomatic development of electromagnetism.

msmmm EXAMPLE 2-23 Given a vector function
F = a,(3y — c,2) + a)(c,x — 22) — a,(csy + 2).
a) Determine the constants ¢,, ¢,, and ¢, if F is irrotational.
b) Determine the scalar potential function V whose negative gradient equals F.

Solution

a) For F to be irrotational, V x F = 0; that is,

a, a, a,
0 0 0

VxF=| — — —
X 0x dy 0z

3y—cz cx—2z° —(c3y+2)
=a—c3+2)—a,c; +ac; —3)=0.
Each component of V x F must vanish. Hence ¢, =0, ¢, = 3, and ¢; = 2.

b) Since F is irrotational, it can be expressed as the negative gradient of a scalar
function V; that is,
av v ov
F Lo dy e
=a,3y + a,(3x — 2z) — a,(2y + 2).
Three equations are obtained:

v_ —3y, (2-161)
ox
Vo k42 (2-162)
oy
v_ 2y + z. (2-163)
0z
Integrating Eq. (2-161) with respect to x, we have
V= —3Xy + fl(y’ Z), (2_164)

where f,(y, z) is a function of y and z yet to be determined. Similarly, integrating
Eq. (2-162) with respect to y and Eq. (2—163) with respect to z leads to

V = —3xy + 2yz + fix, 2) (2-165)
and

2
V=2yz+ 27 + f3(x, y)- (2-166)
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Examination of Eqs. (2—164), (2—165), and (2-166) enables us to write the scalar

potential function as
2

z
V=—3xy+2yz+ 5 (2-167)

Any constant added to Eq. (2-167) would still make V an answer. The constant
is to be determined by a boundary condition or the condition at infinity.

Review Questions

R.2—-1 Three vectors A, B, and C, drawn in a head-to-tail fashion, form three sides of a
triangle. What is A + B + C? Whatis A + B — C?

R.2-2 Under what conditions can the dot product of two vectors be negative?
R.2-3 Write down the results of A+ B and A x Bif (a) A||B, and (b) A L B.
R.2—4 Which of the following products of vectors do not make sense? Explain.
a) (A‘Byx C b) AB-C) ¢) AxBxC
d) A/B e) A/a, f)(AxB)-C
R.2-5 Is (A - B)C equal to A(B - C)?
R.2-6 Does A - B = A - C imply B = C? Explain.
R.2-7 Does A x B=A x C imply B = C? Explain.

R.2-8 Given two vectors A and B, how do you find (a) the component of A in the direction
of B, and (b) the component of B in the direction of A?

R.2-9 What makes a coordinate system (a) orthogonal? (b) curvilinear? and
(c) right-handed?

R.2-10 Given a vector F in orthogonal curvilinear coordinates (u,, u,, 43), explain how to
determine (a) F, and (b) a,.

R.2-11 What are metric coefficients?

R.2-12 Given two points P (1, 2, 3) and P,(—1,0, 2) in Cartesian coordinates, write the
expressions of the vectors P, P, and P,P,.

R.2-13 What are the expressions for A - B and A x B in Cartesian coordinates?

R.2-14 What is the difference between a scalar quantity and a scalar field? Between a
vector quantity and a vector field?

R.2-15 What is the physical definition of the gradient of a scalar field?

R.2-16 Express the space rate of change of a scalar in a given direction in terms of its
gradient.

R.2-17 What does the del operator V stand for in Cartesian coordinates?
R.2-18 What is the physical definition of the divergence of a vector field?

R.2-19 A vector field with only radial flux lines cannot be solenoidal. True or false?
Explain.

R.2-20 A vector field with only curved fiux lines can have a nonzero divergence. True or
false? Explain.
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R.2-21 State the divergence theorem in words.
R.2-22 What is the physical definition of the curl of a vector field?

R.2-23 A vector field with only curved flux lines cannot be irrotational. True or false?
Explain.

R.2-24 A vector field with only straight flux lines can be solenoidal. True or false? Explain.
R.2-25 State Stokes’s theorem in words.

R.2-26 What is the difference between an irrotational field and a solenoidal field?

R.2-27 State Helmholtz’s theorem in words.

R.2-28 Explain how a general vector function can be expressed in terms of a scalar
potential function and a vector potential function.

Problems

P.2-1 Given three vectors A, B, and C as follows,
A=a,+a2—aj3

B=-ad+a,
C=aS5—2a,2,
find
a) a, b) |A — B
¢c)A-B d) 0,4p
e) the component of A in the direction of C f) AxC
g) A-BxC)and(AxB)-C h) (AxB)x Cand A x (Bx C)

P.2-2 Given
) A=a,—a2+aj3
B=a,+a a2
find the expression for a unit vector C that is perpendicular to both A and B.

P.2-3 Two vector fields represented by A = a,A4, + a, 4, + a,4, and B=a,B, +

a,B, + a_B,, where all components may be functions of space coordinates. If these two
fields are parallel to each other everywhere, what must be the relations between their
components?

P.2-4 Show that,if A-B=A-Cand A x B= A x C, where A is not a null vector, then
B=C.

P.2-5 An unknown vector can be determined if both its scalar product and its vector
product with a known vector are given. Assuming that A is a known vector, determine
the unknown vector X if both p and B are given, where p=A-X and B= A x X.

P.2-6 The three corners of a triangle are at P,(0, 1, —2), P,(4, 1, —3), and P,(6, 2, 5).
a) Determine whether AP,P,P; is a right triangle.
b) Find the area of the triangle.

P.2-7 Show that the two diagonals of a rhombus are perpendicular to each other. (A
rhombus is an equilateral parallelogram.)

P.2-8 Prove that the line joining the midpoints of two sides of a triangle is parallel to
and half as long as the third side.
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P.2-9 Unit vectors a, and ay denote the directions of two-dimensional vectors A and B
that make angles a and B, respectively, with a reference x-axis, as shown in Fig. 2-34.
a) Obtain a formula for the expansion of the cosine of the difference of two angles,

cos (o — B), by taking the scalar product a, * a. b) Obtain a formula for sin (« — ).

~ __ FIGURE 2-34
»X  Graph for Problem P.2-9.

P.2-10 Prove the law of sines for a triangle.
P.2-11 Prove that an angle inscribed in a semicircle is a right angle.

P.2-12 Verify the back-cab rule of the vector triple product of three vectors, as expressed
in Eq. (2-20) in Cartesian coordinates.

P.2-13 Prove by vector relations that two lines in the xy-plane (L: byx + b,y =
¢; Ly: byx + b,y = ¢') are perpendicular if their slopes are the negative reciprocals of each
other.

P.2-14
a) Prove that the equation of any plane in space can be written in the form
b,x + b,y + byz = c. (Hint: Prove that the dot product of the position vector to any
point in the plane and a normal vector is a constant.)
b) Find the expression for the unit normal passing through the origin.
¢) For the plane 3x — 2y + 6z = 5, find the perpendicular distance from the origin to
the plane.

P.2-15 Find the component of the vector A = —a,z + a,y at the point P,(0, —2, 3), which
is directed toward the point PZ(\/i —60°, 1).
P.2-16 The position of a point in cylindrical coordinates is specified by (4, 27/3, 3). What
is the location of the point

a) in Cartesian coordinates?

b) in spherical coordinates?
P.2-17 A field is expressed in spherical coordinates by E = ag(25/R?).

a) Find |[E| and E, at the point P(—3, 4, —5).

b) Find the angle that E makes with the vector B=4a,2 —a,2 + a, at point P.

P.2-18 Express the base vectors a, ay, and a, of a spherical coordinate system in
Cartesian coordinates.

P.2-19 Determine the values of the following products of base vectors:

a) a.-a, b) a,- a, c) a xa,
d) a;-a, €) a,-ag f) ag-a,
g) ag x a, h) a;-a, i) a, x a,.

P.2-20 Given a vector function F = a,xy + a(3x — y?), evaluate the integral (F -d¢ from
P,(5, 6) to Py(3, 3) in Fig. 2-35

a) along the direct path P,P,,

b) along path P, AP,.
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Va4
P (5, 6)

v |e

A
,P(3,3) !
, {
/ |
/ |
/ I

V4 ] »x FIGURE 2-35
0o 1 5 Paths of integration for Problem P.2-20.

P.2-21 Given a vector function E = a_y + a,x, evaluate the scalar line integral | E - d€ from
Pi(2,1, —1) to P,(8,2, —1)

a) along the parabola x = 2y?,

b) along the straight line joining the two points.
Is this E a conservative field?

P.2-22 For the E of Problem P.2-21, evaluate j E - d¢ from P4(3,4, —1) to P,(4, —3, —1)
by converting both E and the positions of P, and P, into cylindrical coordinates.

P.2-23 Given a scalar function
V= (sin g x) <sin g— y)e",
determine

a) the magnitude and the direction of the maximum rate of increase of V at the point
P(1,2,3),
b) the rate of increase of V at P in the direction of the origin.
P.2-24 Evaluate

¢, (a3 sin 6) - ds
over the surface of a sphere of a radius 5 centered at the origin.
P.2-25 The equation in space of a plane containing the point (x,, y,, z,) can be written as
£(x —xy) +mly —y) + plz — z,) =0,
where £, m, and p are direction cosines of a unit normal to the plane:
a,=a/ +am+ a,p.

Given a vector field F = a, + a,2 + a,3, evaluate the integral |s F * ds over the square plane
surface whose corners are at (0,0, 2), (2,0, 2), (2, 2, 0), and ©,2,0).

P.2-26 Find the divergence of the following radial vector fields:
a) f1(R) = azR",

k
b) f(R) = ag el

P.2-27 Show that { §s R - ds = V, where R is the radial vector and V is the volume of the
region enclosed by surface S.
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P.2-28 For a scalar function f and a vector function A, prove that
V-(JA)=fV-A+A-Vf
in Cartesian coordinates.
P.2-29 For vector function A = a,r? + a,2z, verify the divergence theorem for the circular
cylindrical region enclosed by r = 5,z =0, and z = 4.
P.2-30 For the vector function F = a,k,/r + a,k,z given in Example 2—15 (page 41) evaluate
{ V- Fdv over the volume specified in that example. Explain why the divergence theorem
fails here. .
P.2-31 Use the definition in Eq. (2-98) to derive the expression of V - A for a vector field
A =aA, +a,A, +a,A, in cylindrical coordinates.
P.2-32 A vector field D = ag{cos? ¢)/R? exists in the region between two spherical shells
defined by R = 1 and R = 2. Evaluate
a) §D - ds,
b) {V-Ddv.
P.2-33 For two differentiable vector functions E and H, prove that
' V-ExH=H-(VxE)—E-(VxH)
P.2-34 Assume the vector function A = a,3x2y® — a x3y%.
a) Find § A - d€ around the triangular contour shown in Fig. 2-36.

b) Evaluate | (V x A) - ds over the triangular area.
¢) Can A be expressed as the gradient of a scalar? Explain.

YA
2 _______
i |
| |
! |
| L_,, FIGURE 2-36
0 1 2 " Graph for Problem P.2-34.

P.2-35 Use the definition in Eq. (2—126) to derive the expression of the ag-component of
V x A in spherical coordinates for a vector field A = agAg + agd, + a,4,.

P.2-36 Given the vector function A = a, sin (¢/2), verify Stokes’s theorem over the
hemispherical surface and its circular contour that are shown in Fig. 2-37.

FIGURE 2-37
Graph for Problem P.2-36.
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P.2-37 For a scalar function f and a vector function G, prove that
Vx(fG)=fVxG+(V)x G

in Cartesian coordinates.

P.2-38 Verify the null identities:
a) Vx (Vi) =0
b) V-(Vx A)=0

by expansion in general orthogonal curvilinear coordinates.

P.2-39 Given a vector function F = a,(x + ¢,z) + a,(c,x — 32) + a,(x + 3y + ¢,2).
a) Determine the constants c,, ¢,, and c; if F is irrotational.

b) Determine the constant c, if F is also solenoidal.
¢) Determine the scalar potential function ¥ whose negative gradient equals F.
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In Section 1—2 we mentioned that three essential steps are involved in constructing
a deductive theory for the study of a scientific subject. They are: the definition of
basic quantities, the development of rules of operation, and the postulation of funda-
mental relations. We have defined the source and field quantities for the electromag-
netic model in Chapter 1 and developed the fundamentals of vector algebra and
vector calculus in Chapter 2. We are now ready to introduce the fundamental postu-
lates for the study of source-field relationships in electrostatics.

A field is a spatial distribution of a scalar or vector quantity, which may or may
not be a function of time. An example of a scalar is the altitude of a location on a
mountain relative to the sea level. It is a scalar, which is not a function of time if
long-term erosion and earthquake effects are neglected. Various locations on the
mountain have different altitudes, constituting an altitude field. The gradient of altitude
is a vector that gives both the direction and the magnitude of the maximum rate of
increase (the upward slope) of altitude. On a flat mountaintop or flat land the altitude
is constant, and its gradient vanishes. The gravitational field of the earth, representing
the force of gravity on a unit mass, is a vector field directed toward the center of the
earth, having a magnitude depending on the altitude of the mass. Electric and mag-
netic field intensities are vector fields.

In electrostatics, electric charges (the sources) are at rest, and electric fields do
not change with time. There are no magnetic fields; hence we deal with a relatively
simple situation. After we have studied the behavior of static electric fields and
mastered the techniques for solving electrostatic boundary-value problems, we will go
on to the subject of magnetic fields and time-varying electromagnetic fields. Although
electrostatics is relatively simple in the electromagnetics scheme of things, its mastery
is fundamental to the understanding of more complicated electromagnetic models.
Moreover, the explanation of many natural phenomena (such as lightning, corona,
St. Elmo’s fire, and grain explosion) and the principles of some important industrial
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applications (such as oscilloscope, ink-jet printer, xerography, and electret micro-
phone) are based on electrostatics. Many articles on special applications of electro-
statics appear in the literature, and a number of books on this subject have also been
published.t :

The development of electrostatics in elementary physics usually begins with the
experimental Coulomb’s law (formulated in 1785) for the force between two point
charges. This law states that the force between two charged bodies, g, and g,, that
are very small in comparison with the distance of separation, R, ,, is proportional
to the product of the charges and inversely proportional to the square of the distance,
the direction of the force being along the line connecting the charges. In addition,
Coulomb found that unlike charges attract and like charges repel each other. Using
vector notation, Coulomb’s law can be written mathematically as

Fi,=ag,k %’ (3-1)
12

where F, is the vector force exerted by q; on g5, ag,, is a unit vector in the direction _
from g, to g,, and k is a proportionality constant depending on the medium and the
system of units. Note that if g, and g, are of the same sign (both positive or both
negative), F,, is positive (repulsive); and if q, and q, are of opposite signs, F,, is
negative (attractive). Electrostatics can proceed from Coulomb’s law to define electric
field intensity E, electric scalar potential ¥, and electric flux density D, and then lead
to Gauss’s law and other relations. This approach has been accepted as “logical,”
perhaps because it begins with an experimental law observed in a laboratory and
not with some abstract postulates.

We maintain, however, that Coulomb’s law, though based on experimental evi-
dence, is in fact also a postulate. Consider the two stipulations of Coulomb’s law:
that the charged bodies be very small in comparison with the distance of separation
and that the force be inversely proportional to the square of the distance. The ques-
tion arises regarding the first stipulation: How small must the charged bodies be in
order to be considered “very small” in comparison with the distance? In practice the
charged bodies cannot be of vanishing sizes (ideal point charges), and there is diffi-
culty in determining the “true” distance between two bodies of finite dimensions. For
given body sizes, the relative accuracy in distance measurements is better when the
separation is larger. However, practical considerations (weakness of force, existence
of extraneous charged bodies, etc.) restrict the usable distance of separation in the
laboratory, and experimental inaccuracies cannot be entirely avoided. This leads to
a more important question concerning the inverse-square relation of the second

t A. Klinkenberg and J. L. van der Minne, Electrostatics in the Petroleum Industry, Elsevier, Amsterdam,
1958. J. H. Dessauer and H. E. Clark, Xerography and Related Processes, Focal Press, London, 1965. A. D.
Moore (Ed.), Electrostatics and Its Applications, John Wiley, New York, 1973. C. E. Jewett, Electrostatics
in the Electronics Environment, John Wiley, New York, 1976. J.C. Crowley, Fundamentals of Applied
Electrostatics, John Wiley, New York, 1986.
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stipulation. Even if the charged bodies are of vanishing sizes, experimental measure-
ments cannot be of infinite accuracy, no matter how skillful and careful an experi-
mentor is. How then was it possible for Coulomb to know that the force was exactly
inversely proportional to the square (not the 2.000001th or the 1.999999th power) of
the distance of separation? This question cannot be answered from an experimental
viewpoint because it is not likely that experiments could have been accurate to the
seventh place during Coulomb’s time.! We must therefore conclude that Coulomb’s
law is itself a postulate and that the exact relation stipulated by Eq. (3-1) is a law
of nature discovered and assumed by Coulomb on the basis of his experiments of
limited accuracy.

Instead of following the historical development of electrostatics, we introduce the
subject by postulating both the divergence and the curl of the electric field intensity
in free space. From Helmholtz’s theorem in Section 2—12 we know that a vector field
is determined if its divergence and curl are specified. We derive Gauss’s law and
Coulomb’s law from the divergence and curl relations, and we do not present them
as separate postulates. The concept of scalar potential follows naturally from a vector
identity. Field behaviors in material media will be studied and expressions for elec-
trostatic energy and forces will be developed.

Fundamental Postulates of Electrostatics in Free Space

We start the study of electromagnetism with the consideration of electric fields due
to stationary (static) electric charges in free space. Electrostatics in free space is the
simplest special case of electromagnetics. We need to consider only one of the four
fundamental vector field quantities of the electromagnetic model discussed in Section
1-2, namely, the electric field intensity E. Furthermore, only the permittivity of free
space €, of the three universal constants mentioned in Section 1-3 enters into our
formulation.

Electric field intensity is defined as the force per unit charge that a very small
stationary test charge experiences when it is placed in a region where an electric field
exists. That is,

E = lim l (V/m). (3-2)

404

The electric field intensity E is, then, proportional to and in the direction of the force
F. If F is measured in newtons (N) and charge g in coulombs (C), then E is in new-
tons per coulomb (N/C), which is the same as volts per meter (V/m). The test charge

t The exponent on the distance in Coulomb’s law has been verified by an indirect experiment to be 2 to
within one part in 10'5. (See E. R. Williams, J. E. Faller, and H. A. Hall, Phys. Rev. Letters, vol. 26, 1971,
p. 721)
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g, of course, cannot be zero in practice; as a matter of fact, it cannot be less than the
charge on an electron. However, the finiteness of the test charge would not make the
measured E differ appreciably from its calculated value if the test charge is small
enough not to disturb the charge distribution of the source. An inverse relation of
Eq. (3-2) gives the force F on a stationary charge q in an electric field E:

F=qE (N). ' (3-3)

The two fundamental postulates of electrostatics in free space specify the diver-
gence and curl of E. They are

v-E=£ (3-4)
€
and
VxE=0. (3-5)

In Eq. (3-4), p is the volume charge density of free charges (C/m3), and ¢, is the
permittivity of free space, a universal constant.! Equation (3-5) asserts that static
electric fields are irrotational, whereas Eq. (3—4) implies that a static electric field is
not solenoidal unless p = 0. These two postulates are concise, simple, and independent
of any coordinate system; and they can be used to derive all other relations, laws,
and theorems in electrostatics! Such is the beauty of the deductive, axiomatic ap-
proach.

Equations (3-4) and (3-5) are point relations; that is, they hold at every point
in space. They are referred to as the differential form of the postulates of electro-
statics, since both divergence and curl operations involve spatial derivatives. In prac-
tical applications we are usually interested in the total field of an aggregate or a
distribution of charges. This is more conveniently obtained by an integral form of
Eq. (3-4). Taking the volume integral of both sides of Eq. (3—-4) over an arbitrary
volume V, we have

fV V’Edv=€~(;prdv. (3-6)

In view of the divergence theorem in Eq. (2-115), Eq. (3—6) becomes

§ E-ds= g, (3-7
N €g

1
1 The permittivity of free space €, 2 on x 10~ (F/m). See Eq. (1-11).
7
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where Q is the total charge contained in volume ¥ bounded by surface S. Equation
(3-7) is a form of Gauss’s law, which states that the total outward flux of the elec-
tric field intensity over any closed surface in free space is equal to the total charge
enclosed in the surface divided by €,. Gauss’s law is one of the most important re-
lations in electrostatics. We will discuss it further in Section 34, alohg with illustrative
examples. $

An integral form can also be obtained for the curl relation in Eq. (3-5) by inte-
grating V x E over an open surface and invoking Stokes’s theorem as expressed in
Eq. (2-143). We have

56c E-de=0. (3-8)

The line integral is performed over a closed contour C bounding an arbitrary surface;
hence C is itself arbitrary. As a matter of fact, the surface does not even enter into
Eq. (3-8), which asserts that the scalar line integral of the static electric field intensity
around any closed path vanishes. The scalar product E - d¢ integrated over any path
is the voltage along that path. Thus Eq. (3-8) is an expression of Kirchhoff’s voltage
law in circuit theory that the algebraic sum of voltage drops around any closed circuit
is zero. This will be discussed again in Section 5-3.

Equation (3-8) is another way of saying that E is irrotational (conservative).
Referring to Fig. 3—1, we see that if the scalar line integral of E over the arbitrary
closed contour C,C, is zero, then

fC1E°d€+fCZE-d€=O (3-9)
or
P> Py
fp, E-df = — fpz E-de (3-10)
Along C, Along C,
or
Pz PZ
T E-de= fpl E - de. 3-11)
Along C, Along C,
C
P,
FIGURE 3-1

®) An arbitrary contour.




3-3 Coulomb’s Law 77

Equation (3—11) says that the scalar line integral of the irrotational E field is inde-
pendent of the path; it depends only on the end points. As we shall see in Section
3-5, the integrals in Eq. (3—11) represent the work done by the electric field in
moving a unit charge from point P, to point P,; hence Egs. (3-8) and (3-9) imply
a statement of conservation of work or energy in an electrostatic field.

The two fundamental postulates of electrostatics in free space are repeated below
because they form the foundation upon which we build the structure of electrostatics.

Postulates of Electrostatics in Free Space
Differential Form Integral Form
v-E=* ¢ E-ds = Q

€9 s €o

VxE=0 $.E-de=0

We consider these postulates, like the principle of conservation of charge, to be repre-
sentations of laws of nature. In the following section we shall derive Coulomb’s law.

3-3 Coulomb’s Law

We consider the simplest possible electrostatic problem of a single point charge, g, at
rest in a boundless free space. In order to find the electric field intensity due to g,
we draw a hypothetical spherical surface of a radius R centered at ¢. Since a point
charge has no preferred directions, its electric field must be everywhere radial and
has the same intensity at all points on the spherical surface. Applying Eq. (3-7) to
Fig. 3-2(a), we have

ﬁE'dszﬁ(aRER)‘aRds=—q;

€
or
Eg 56 ds = Eq(4nR?) = L.
S €0
Therefore,
E=agEx=8g—1—  (V/m). (3-12)
47e,R

Equation (3—12) tells us that the electric field intensity of a positive point charge is
in the outward radial divection and has a magnitude proportional to the charge
and inversely proportional to the square of the distance from the charge. This is a
very important basic formula in electrostatics. Using Eq. (2-139), we can verify that
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(a) Point charge at the origin.
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(b) Point charge not at the origin.

FIGURE 3-2
Electric field iFIGURE due to a point charge.

V x E = Ofor the E given in Eq. (3-12). A flux-line graph for the electric field intensity
of a positive point charge g will look like Fig. 2-25(b).

If the charge q is not located at the origin of a chosen coordinate system, suitable
changes should be made to the unit vector a; and the distance R to reflect the
locations of the charge and of the point at which E is to be determined. Let the

position vector of g be R’ and that of a field point P be R, as shown in Fig. 3-2(b).
Then, from Eq. (3-12),

q
E,= _— 3-13
P e 4meg|R — R'J? G-13
where a_p is the unit vector drawn from ¢ to P. Since .
R—-FR
W= RRT (3-14)
we have
4R —R)
= V/m). 3-15
P 4n€0lR _ Rl|3 ( /m) ( )
EXAMPLE 3-1 Determine the electric field intensity at P(—0.2, 0, —2.3) due to a

point charge of + 5 (nC) at 0(0.2, 0.1, —2.5) in air. All dimensions are in meters.

Solution The position vector for the field point P
R=0P=—a02—2a23.
The position vector for the point charge Q is

R' =00 =202 +2a0.1—a,25.
The difference is
R—-R = -a04-2a01+a,02
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which has a magnitude
R — R| = [(—0.4)* + (—0.1) + (0.2)2]*/* = 0.458 (m).
Substituting in Eq. (3—15), we obtain

E =< 1 >q(R—R’)
P \4ne, ) R ~RP
5x107°
0.458°

= 214.5(—2,0.873 — a,0.218 + 2,0.437) (V/m).

= (9 x 10°) (—2,04 —a0.1 +2,0.2)

The quantity within the parentheses is the unit vector a5, = (R —R)/|R — R/, and
E; has a magnitude of 214.5 (V/m). -

Note: The permittivity of air is essentially the same as that of the free space. The
factor 1/(4ne,) appears very frequently in electrostatics. From Eq. (1-11) we know
that €, = 1/(c*ug). But ug = 4n x 1077 (H/m) in SI units; so

1 _ /l,ocz
dne, 4m

=10"7 ¢? (m/F) (3-16)

exactly. If we use the approximate value ¢ =3 x 10® (m/s), then 1/(4ne,) =9 x
10° (m/F).

When a point charge q, is placed in the field of another point charge g, at the
origin, a force F,, is experienced by ¢, due to electric field intensity E,, of q, at q,.
Combining Egs. (3-3) and (3—12), we have

919
Fio=qE; =a5 47161 ;2 (N). (3-17)
0

Equation (3-17) is a mathematical form of Coulomb’s law already stated in Section
3-1 in conjunction with Eq. (3—1). Note that the exponent on R is exactly 2, which
is a consequence of the fundamental postulate Eq. (3—4). In SI units the propor-
tionality constant k equals 1/(4ne,), and the force is in newtons (N).

EXAMPLE 3-2 A total charge Q is put on a thin spherical shell of radius b. Determine
the electric field intensity at an arbitrary point inside the shell.

Solution We shall solve this problem in two ways.

a) At any point, such as P, inside the hollow shell shown in Fig. 3-3, an arbitrary
hypothetical closed surface (2 Gaussian surface) may be drawn, over which we
apply Gauss’s law, Eq. (3-7). Since no charge exists inside the shell and the
surface is arbitrary, we conclude readily that E = 0 everywhere inside the shell.
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FIGURE 3-3
A charged shell (Example 3-2).

b) Let us now examine the problem in more detail. Draw a pair of elementary cones
of solid angle dQ with vertex at an arbitrary point P. The cones extend in both
directions, intersecting the shell in areas ds, and ds, at distances r; and r,, re-
spectively, from the point P. Since charge Q distributes uniformly over the spherical
shell, there is a uniform surface charge density

p = ——Q «

* 4nb?
The magnitude of the electric field intensity at P due to charges on the ele-
mentary surfaces ds, and ds, is, from Eq. (3—-12),

(3-18)

ps [(dsy ds,
dE=—"|—>5——} -19
4me, <r§ r ) 3-19)
But the solid angle dQ equals
d d
dQ = ——Sil— cos o = % cos a. (3-20)
r r
Combining the expressions of dE and dQ, we find that
dE = -5 (dn _ dg)=0. (3-21)
4nmey, \cosa cosa

Since the above result applies to every pair of elementary cones, we conclude
that E = 0 everywhere inside the conducting shell, as before. -

It will be noted that if Coulomb’s law as expressed in Eq. (3—12) and used in
Eq. (3—19) was slightly different from an inverse-square relation, the substitution of
Eq. (3-20), which is a geometrical relation, in Eq. (3—19) would not yield the result
dE = 0. Consequently, the electric field intensity inside the shell would not vanish;
indeed, it would vary with the location of the point P. Coulomb originally used a
torsion balance to conduct his experiments, which were necessarily of limited accuracy.
Nevertheless, he was brilliant enough to postulate the inverse-square law. Many
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scientists subsequently made use of the vanishing field inside a spherical shell illus-
trated in this example to verify the inverse-square law. The field inside a charged
shell, if it existed, could be detected to a very high accuracy by a probe through a
small hole in the shell.

= EXAMPLE 3-3 The electrostatic deflection system of a cathode-ray oscilloscope is
depicted in Fig. 3—4. Electrons from a heated cathode are given an initial velocity
u, = a,u, by a positively charged anode (not shown). The electrons enter at z =0
into a region of deflection plates where a uniform electric field E, = —a,E, is main-
tained over a width w. Ignoring gravitational effects, find the vertical deflection of
the electrons on the fluorescent screen at z = L.

Solution Since there is no force in the z-direction in the z > 0 region, the horizontal
velocity u, is maintained. The field E, exerts a force on the electrons each carrying
a charge —e, causing a deflection in the y-direction:

F =(—e)E;, = aeE,.
From Newton’s second law of motion in the vertical direction we have

m —* = eE,,

dt
where m is the mass of an electron. Integrating both sides, we obtain

dy e
= — = — abs

Y oodt m

where the constant of integration is set to zero because u, = 0 at t = 0. Integrating
again, we have

e
=_—E_’.
y om e
Screen
y
Deflection
lat
plates do
g N ? l >z
J— BYH ¥ »
Cathode OMEd
o
* L
FIGURE 3-4

Electrostatic deflection system of a cathode-ray oscilloscope (Example 3-3)
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The constant of integration 1s again zero because y = 0 at t = (. Note that the elec-
trons have a parabolic trajectory between the deflection plates. At the exit from the

deflection plates, t = w/ug,
g, = (i)
2m \u,

w eEy (w
Uy =ult=—}=—|—|
Ug m \ug

When the electrons reach the screen, they have traveled a further horizontal distance
of (L — w) which takes (L — w)/u, seconds. During that time there is an additional

vertical deflection
L—w eE, w(L —w)
d2 = uy1< ) = —d — 7
U m ud

and

Hence the deflection at the screen is

E
d0=dx+d2=%l—§-w(L~;>-
0

Ink-jet printers used in computer output, like cathode-ray oscilloscopes, are de-
vices based on the principle of electrostatic deflection of a stream of charged particles.
Minute droplets of ink are forced through a vibrating nozzle controlled by a piezo-
electric transducer. The output of the computer imparts variable amounts of charges
on the ink droplets, which then pass through a pair of deflection plates where a
uniform static electric field exists. The amount of droplet deflection depends on the
charge it carries, causing the ink jet to strike the print surface and form an image as
the print head moves in a horizontal direction.

3-3.1 ELECTRIC FIELD DUE TO A SYSTEM OF DISCRETE CHARGES

Suppose an electrostatic field is created by a group of n discrete point charges g,
4. - - ., q, located at different positions. Since electric field intensity is a linear func-
tion of (proportional to) azg/R?, the principle of superposition applies, and the total
E field at a point is the vector sym of the fields caused by all the individual charges.
From Eq. (3—-15) we can write the electric intensity at a field point whose position
vector is R as

_ 1 v aR-R)
4neo 4 R — R

(V/m). (3-22)

Although Eq. (3-22) is a succinot expression, it is somewhat inconvenient to use be-
cause of the need to add vectors of different magnitudes and directions.
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Let us consider the simple case of an electric dipole that consists of a pair of
equal and opposite charges + ¢ and —g, separated by a small distance, d, as shown
in Fig. 3-5. Let the center of the dipole coincide with the origin of a spherical coor-
dinate system. Then the E field at the point P is the sum of the contributions due to
+4¢ and —gq. Thus,

)
R-3 gyl
E=-1 2 _ 2 3-23)
" 4ne, R_d_3 R+d3. (
2 2

The first term on the right side of Eq. (3—23) can be simplified if d « R. We write

[ 0-9]”

R——
B 27)-3/2
RZ—R-d+d—]

2
| 4
_ R-d |32
R 3[1 L ]
3R-d
R73|1+=
[ IR ]
where the binomial expansion has been used and all terms containing the second

and higher powers of (d/R) have been neglected. Similarly, for the second term on
the right side of Eq. (3—23) we have

(3-24)

1R

12

d|-3 -3 3R-d
‘R+5 ~ R [1 -3 R ] (3-25)
Substitution of Eqs. (3—24) and (3-25) in Eq. (3—-23) leads to
q R-d
>~ |3——R-d|. -2
E x>~ dne R |:3 %2 R d:| (3-26)
FIGURE 3-5

Electric field of a dipole.
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The derivation and interpretation of Eq. (3-26) require the manipulation of vec-
tor quantities. We can appreciate that determining the electric field caused by three
or more discrete charges will be even more tedious. In Section 3-5 we will introduce
the concept of a scalar electric potential, with which the electric field intensity caused
by a distribution of charges can be found more easily.

The electric dipole is an important entity in the study of the electric field in di-
electric media. We define the product of the charge g and the vector d (going from
—gq to +q) as the electric dipole moment, p:

p=qd (3-27)
Equation (3-26) can then be rewritten as
1 R-p
= R —
R 62

where the approximate sign (~) over the equal sign has been left out for simplicity.
If the dipole lies along the z-axis as in Fig. 3-5, then (see Eq 2-77)

p=a,p = p(ag cos 0 — ag sin 6), (3-29)
R:-p=Rpcos ¥, ) (3-30)

and Eq. (3-28) becomes
= dnc R3 (ag2 cos 0 + agsin §) (V/m). (3-31)

Equation (3-31) gives the electric field intensity of an electric dipole in spherical co-
ordinates. We see that E of a dipole is inversely proportional to the cube of the dis-
tance R. This is reasonable because as R increases, the fields due to the closely spaced
+q and —q tend to cancel each other more completely, thus decreasing more rapidly
than that of a single point charge.

3-3.2 ELECTRIC FIELD DUE TO A CONTINUOUS DISTRIBUTION OF CHARGE

The electric field caused by a continuous distribution of charge can be obtained by
integrating (superposing) the contribution of an element of charge over the charge
distribution. Refer to Fig. 3-6, where a volume charge distribution is shown. The
volume charge density p (C/m3) is a function of the coordinates. Since a differential
element of charge behaves like a point charge, the contribution of the charge p dv’
in a differential volume element dv’ to the electric field intensity at the field point P is

pdv

dE = ag dre, 4ne,R?

(3-32)
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FIGURE 3-6
Electric field due to a continuous charge distribution.

We have
1 P .,
E= e fV, apgrdd  (V/m), (3-33)
or, since ap = R/R,
1 R
= —dv . 3-34
i b P st V) (-39

Except for some especially simple cases, the vector triple integral in Eq. (3-33) or
Eq. (3-34) is difficult to carry out because, in general, all three quantities in the inte-
grand (ag, p, and R) change with the location of the differential volume dv'.

If the charge is distributed on a surface with a surface charge density p, (C/m?),
then the integration is to be carried out over the surface (not necessarily flat). Thus,

1 ps /
- i fs Axgyds  (V/m) (3-35)
For a line charge we have
1 Pe ’
= Ine, fL, ag Rz d¢ (V/m), (3-36)

where p, (C/m) is the line charge density, and L’ the line (not necessarily straight)
along which the charge is distributed.

smmmmm EXAMPLE 3-4 Determine the electric field intensity of an infinitely long, straight,
line charge of a uniform density p, in air. -
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FIGURE 3-7
An infinitely long, straight, line charge.

Solution Let us assume that the line charge lies along the z’-axis as shown in Fig.
3-7. (We are perfectly free to do this because the field obviously does not depend
on how we designate the line. It is an accepted convention to use primed coordinates
for source points and unprimed coordinates for field points when there is a possibility
of confusion.) The problem asks us to find the electric field intensity at a point P,
which is at a distance r from the line. Since the problem has a cylindrical symmetry
(that is, the electric field is independent of the azimuth angle @), it would be most
convenient to work with cylindrical coordinates. We rewrite Eq. (3-36) as

1 R
E=fc fu prgsdt  (V/m) (3-37)

For the problem at hand, p, is constant, and a line element d¢’ = dz’ is chosen to
be at an arbitrary distance z’ from the origin. It is most important to remember that
R is the distance vector directed from the source to the field point, not the other way
around. We have

R=ar—az. (3-38)

The electric field, dE, due to the differential line charge element p, d¢' = p,dz’ is

£ Pe dz ar—ayz
T 4ne, (P + 2D (3-39)
= a,dE, + a,dE,,

d

where
prdz

dE, = —PT% __
" 4mey(r? + 29?2

(3-392)
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and

—p,2dz
? 4mey(r? + 27332
In Eq. (3-39) we have decomposed dE into its components in the a, and a, directions.
It is easy to see that for every p,dz’ at + z’ there is a charge element p,dz’ at —z/,
which will produce a dE with components dE, and —dE,. Hence the a, components
will cancel in the integration process, and we only need to integrate the dE, in Eq.

(3-39a):
_ P [ dz'
E=a,E, =a, 47e, f_w " + 27"
or
E-a -t (v
= a, eyt (V/m). (3-40)
|

Equation (3—40) is an important result for an infinite line charge. Of course, no phys-
ical line charge is infinitely long; nevertheless, Eq. (3—40) gives the approximate E
field of a long straight line charge at a point close to the line charge.

3-4 Gauss's Law and Applications

Gauss’s law follows directly from the divergence postulate of electrostatics, Eq. (3—4),
by the application of the divergence theorem. It was derived in Section 3-2 as Eq.
(3-7) and is repeated here on account of its importance:

95 E-ds=2. (3-41)
S €g

Gauss’s law asserts that the total outward flux of the E-field over any closed surface
in free space is equal to the total charge enclosed in the surface divided by €,. We note that
the surface S can be any hypothetical (mathematical) closed surface chosen for
convenience; it does not have to be, and usually is not, a physical surface.

Gauss’s law is particularly useful in determining the E-field of charge distributions
with some symmetry conditions, such that the normal component of the electric field
intensity is constant over an enclosed surface. In such cases the surface integral on the
left side of Eq. (3—41) would be very easy to evaluate, and Gauss’s law would be a
much more efficient way for finding the electric field intensity than Eqgs. (3-33) through
(3-37). On the other hand, when symmetry conditions do not exist, Gauss’s law
would not be of much help. The essence of applying Gauss’s law lies first in the rec-
ognition of symmetry conditions and second in the suitable choice of a surface over
which the normal component of E resulting from a given charge distribution is a



88

Cylindrical
Gaussian
surface

3 Static Electric Fields

constant. Such a surface is referred to as a Gaussian surface. This basic principle was
used to obtain Eq. (3—-12) for a point charge that possesses spherical symmetry; con-
sequently, a proper Gaussian surface is the surface of a sphere centered at the point
charge. Gauss’s law could not help in the derivation of Eq. (3-26) or (3-31) for an
electric dipole, since a surface about a separated pair of equal and opposite charges
over which the normal component of E remains constant was not known.

EXAMPLE 3-5 Use Gauss’s law to determine the electric field intensity of an infi-
nitely long, straight, line charge of a uniform density p, in air.

Solution This problem was solved in Example 3—4 by using Eq. (3-36). Since the
line charge is infinitely long, the resultant E field must be radial and perpendicular
to the line charge (E = a,E,), and a component of E along the line cannot exist. With
the obvious cylindrical symmetry we construct a cylindrical Gaussian surface of a
radius r and an arbitrary length L with the line charge as its axis, as shown in Fig.
3-8. On this surface, E, is constant, and ds = a,rd¢ dz (from Eq. 2—-53a). We have

Sﬁs E-ds= fOL 021: E,rd¢dz = 2nrLE,.

There is no contribution from the top or the bottom face of the cylinder because on
the top face ds = a,r dr d¢ but E has no z-component there, making E - ds = 0. Sim-
ilarly for the bottom face. The total charge enclosed in the cylinder is Q@ = p,L. Sub-
stitution into Eq. (3—41) gives us immediately

. 2nrLE, = peL

€9

Infinitely long
uniform line
charge, oy
FIGURE 3-8
Applying Gauss’s law to an infinitely long line charge (Example 3-5).
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or

Pe
. .
2neqr

This result is, of course, the same as that given in Eq. (3—40), but it is obtained here
in a much simpler way. We note that the length L of the cylindrical Gaussian surface
does not appear in the final expression; hence we could have chosen a cylinder of a
unit length. -

smmmmm EXAMPLE 3-6 Determine the electric field intensity of an infinite planar charge
with a uniform surface charge density p,.

Solution It is clear that the E field caused by a charged sheet of an infinite extent
is normal to the sheet. Equation (3—-35) could be used to find E, but this would in-
volve a double integration between infinite limits of a general expression of 1/R2.
Gauss’s law can be used to much advantage here.

We choose as the Gaussian surface a rectangular box with top and bottom faces
of an arbitrary area A equidistant from the planar charge, as shown in Fig. 3-9. The
sides of the box are perpendicular to the charged sheet. If the charged sheet coincides
with the xy-plane, then on the top face,

E-ds=(a,E)(a,ds)=E,ds.
On the bottom face,

E-ds=(—a,E))-(—a,ds) = E_ds.
Since there is no contribution from the side faces, we have
43 E-ds=2E, [ ds=2E,A
S A
The total charge enclosed in the box is Q = p,A. Therefore,

2E,4 =4,
€o

Infinite uniform
surface charge, pg

FIGURE 3-9
Applying Gauss’s law to an infinite planar charge (Example 3-6).
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from which we obtain

Ps
E = a E = ~ —
L, =a, 2, z >0, (3-42a)
and
E=-aE=-a':, z<o (3-42b)
* 2eq

Of course, the charged sheet may not coincide with the xy-plane (in which case we
do not speak in terms of above and below the plane), but the E field always points
away from the sheet if p, is positive. It is obvious that the Gaussian surface could
have been a pillbox of any shape, not necessarily rectangular. -

The lighting scheme of an office or a classroom may consist of incandescent
bulbs, long fluorescent tubes, or ceiling panel lights. These correspond roughly to
point sources, line sources, and planar sources, respectively. From Egs. (3—12), (3—40),
and (3-42) we can estimate that light intensity will fall off rapidly as the square of
the distance from the source in the case of incandescent bulbs, less rapidly as the
first power of the distance for long fluorescent tubes, and not at all for ceiling panel
lights.

EXAMPLE 3-7 Determine the E field caused by a spherical cloud of electrons with
a volume charge density p = —p, for 0 < R < b (both p, and b are positive) and
p=0for R >b.

Solution First we recognize that the given source condition has spherical symmetry.
The proper Gaussian surfaces must therefore be concentric spherical surfaces. We
must find the E field in two regions. Refer to Fig. 3—10.

a) 0<R<b
A hypothetical spherical Gaussian surface S; with R < b is constructed within
the electron cloud. On this surface, E is radial and has a constant magnitude:

E = agE,;, ds = agds.
The total outward E flux is
. — — 2
SﬁsiE ds = Ey [, ds = EpdnR>.

The total charge enclosed within the Gaussian surface is

- J o

4z
= =0 fV dv = _po? Rs'



_Pob

3¢g

FIGURE 3-10

(=]

—>
— — |

y

=

91

/ “Electron
cloud

Electric field intensity of a spherical electron cloud (Example 3-7).

b)

Substitution into Eq. (3-7) yields

E=-a,7°R 0<R<b.
3eq

We see that within the uniform electron cloud the E field is directed toward the
center and has a magnitude proportional to the distance from the center.
R>b
For this case we construct a spherical Gaussian surface S, with R > b outside
the electron cloud. We obtain the same expression for §s E - ds as in case (a).
The total charge enclosed is

47
0=—p EY b.
Consequently,
pob’
E = - A R > b
Ar 3eoR? -7

which follows the inverse square law and could have been obtained directly from
Eq. (3—12). We observe that outside the charged cloud the E field is exactly the
same as though the total charge is concentrated on a single point charge at the
center. This is true, in general, for a spherically symmetrical charged region even
though p is a function of R. -
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The variation of E, versus R is plotted in Fig. 3—10. Note that the formal solution
of this problem requires only a few lines. If Gauss’s law is not used, it is necessary
(1) to choose a differential volume element arbitrarily located in the electron cloud,
(2) to express its vector distance R to a field point in a chosen coordinate system,
and (3) to perform a triple integration as indicated in Eq. (3—33). This is a hopelessly
involved process. The moral is: Try to apply Gauss’s law if symmetry conditions exist
for the given charge distribution.

Electric Potential

In connection with the null identity in Eq. (2—145) we noted that a curl-free vector
field could always be expressed as the gradient of a scalar field. This induces us to
define a scalar electric potential V such that

E=-VV (3-43)

because scalar quantities are easier to handle than vector quantities. If we can deter-
mine V more easily, then E can be found by a gradient operation, which is a straight-
forward process in an orthogonal coordinate system. The reason for the inclusion of
a negative sign in Eq. (3-43) will be explained presently.

Electric potential does have physical significance, and it is related to the work
done in carrying a charge from one point to another. In Section 3-2 we defined the
electric field intensity as the force acting on a unit test charge. Therefore in moving
a unit charge from point P, to point P, in an electric field, work must be done
against the field and is equal to

W P>

il fpl E-d¢ (J/CorV). (3-44)
Many paths may be followed in going from P, to P,. Two such paths are drawn in
Fig. 3-11. Since the path between P, and P, is not specified in Eq. (3—44), the

FIGURE 3-11
Two paths leading from P, to P, in an electric field.
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question naturally arises, how does the work depend on the path taken? A little
thought will lead us to conclude that W/q in Eq. (3—44) should not depend on the
path; if it did, one would be able to go from P, to P, along a path for which W is
smaller and then to come back to P, along another path, achieving a net gain in
work or energy. This would be contrary to the principle of conservation of energy.
We have already alluded to the path-independent nature of the scalar line integral
of the irrotational (conservative) E fieid when we discussed Eq. (3-8).

Analogous to the concept of potential energy in mechanics, Eq. (3—44) represents
the difference in electric potential energy of a unit charge between point P, and point
P,. Denoting the electric potential energy per unit charge by V, the electric potential,
we have

Vy—V, = — :‘2 E-d¢ (V) (3-45)

Mathematically, Eq. (3—45) can be obtained by substituting Eq. (3—43) in Eq. (3—44).
Thus, in view of Eq. (2—88),

Py Py
— fpl E-dé — fm (VV)-(a,d?)
=(av=v,- .

What we have defined in Eq. (3-45) is a potential difference (electrostatic voltage)
between points P, and P,. It makes no more sense to talk about the absolute potential
of a point than about the absolute phase of a phasor or the absolute altitude of a
geographical location; a reference zero-potential point, a reference zero phase (usually
at t = 0), or a reference zero altitude (usually at sea level) must first be specified. In
most (but not all) cases the zero-potential point is taken at infinity. When the reference
zero-potential point is not at infinity, it should be specifically stated.

We want to make two more points about Eq. (3—43). First, the inclusion of the
negative sign is necessary in order to conform with the convention that in going
against the E field the electric potential V increases. For instance, when a d-c battery
of a voltage V, is connected between two parallel conducting plates, as in Fig. 3-12,
positive and negative charges cumulate on the top and bottom plates, respectively.
The E field is directed from positive to negative charges, while the potential increases
in the opposite direction. Second, we know from Section 2—6, when we defined the
gradient of a scalar field, that the direction of VV is normal to the surfaces of constant

+1

Direction of

| wrs 3
FF+r++++++
Tincreasing vV

ARAR

—l ;__“_l_"__: FIGURE 3-12
Relative directions of E and increasing V.
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V. Hence if we use directed field lines or streamlines to indicate the direction of the
E field, they are everywhere perpendicular to equipotential lines and equipotential
surfaces.

3-5.1 ELECTRIC POTENTIAL DUE TO A CHARGE DISTRIBUTION

The electric potential of a point at a distance R from a point charge q referred to
that at infinity can be obtained readily from Eq. (3—45):

_ _(® 9 . _
V= fw <aR 4n€0R2> (agdR), (3-46)
which gives
y=_14 V). (3-47)
4me,R

This is a scalar quantity and depends on, besides g, only the distance R. The potential
difference between any two points P, and P, at distances R, and R, respectively,
from q is

q 1 1
=V = Vy = [ —— ). 3-48
Vo1 = Ve, — Vp, dmeq (Rz R1) (3-48)

This result may appear a little surprising at first, since P, and P, may not lie on
the same radial line through ¢, as illustrated in Fig. 3—13. However, the concentric
circles (spheres) passing through P, and P, are equipotential lines (surfaces), and
Vp, — Vp, is the same as Vp, — V.. From the point of view of Eq. (3-45) we can
choose the path of integration from P, to P; and then from P; to P,. No work is
done from P, to P, because F is perpendicular to d€ = a,R, d¢ along the circular
path (E - d¢ = 0).

The electric potential at R due to a system of n discrete point charges q,, g5, . . .,
g, located at R, R;, ..., R, is, by superposition, the sum of the potentials due to

- \\PZ
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Ry \\
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/// \
f P \
| q R | l
\ / |
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N % /
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/
e FIGURE 3-13
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~——— Path of integration about a point charge.
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the individual charges:

_ 1 \ qx
V= e Z RoR] V). (3-49)
k=1

Since this is a scalar sum, it is, in general, easier to determine E by taking the negative
gradient of V than from the vector sum in Eq. (3-22) directly.

As an example, let us again consider an electric dipole consisting of charges +g
and —gq with a small separation d. The distances from the charges to a field point
P are designated R, and R_, as shown in Fig. 3—14. The potential at P can be
written down directly:

q 1 1
V= —_— . 3-50
4re, (RJr R_) (3-30)
If d « R, we have
1 d -1 1 d
R—+ o (R ) cos 0) ~R (1 + ﬁcos 9) (3-51)
and
1 d -t d
— >R+ 2R 1-— . -
R < +2cos 0) R (1 7R cos 0) (3-52)

Substitution of Egs. (3—51) and (3—52) in Eq. (3—-50) gives

gd cos 0
V= 3-53
4me,R? (3-53a)
or
P ag :
= Vv _
4re R V), (3-53b)

where p = gd. (The “approximate” sign (~) has been dropped for simplicity.)

FIGURE 3-14
An electric dipole.
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The E field can be obtained from — VV. In spherical coordinates we have

av v

E=-VV= —akﬁ—aam

(3-54)
= ﬁ (ag2 cos 8 + a4 sin 6).
0

Equation (3-54) is the same as Eq. (3—31) but has been obtained by a simpler proce-
dure without manipulating position vectors.

EXAMPLE 3-8 Make a two-dimensional sketch of the equipotential lines and the
electric field lines for an electric dipole.

Solution The equation of an equipotential surface of a charge distribution is ob-
tained by setting the expression for V to equal a constant. Since g, d, and €, in Eq.
(3-53a) for an electric dipole are fixed quantities, a constant V requires a constant
ratio (cos 8/R?). Hence the equation for an equipotential surface is

R =¢y+Jcos 8, (3-55)

where ¢, is a constant. By plotting R versus 6 for various values of ¢, we draw the
solid equipotential lines in Fig. 3—15. In the range 0 < 6 < n/2, V is positive; R is
maximum at § =0 and zero at 8 = 90°. A mirror image is obtained in the range
n/2 < 6 < n where V is negative.
The electric field lines or streamlines represent the direction of the E field in
space. We set
dé = kE, (3-56)

where k is a constant. In spherical coordinates, Eq. (3—56) becomes (see Eq. 2—66)

agdR + agRd0 + a,R sin 0d¢ = k(agEg + a,E¢ + a,E,), (3-57)

which can be written
dR Rd0 Rsinbd¢

£ " E, (3-58)
For the electric dipole in Fig. 3-15 there is no E, component, and
dR  Rdf
2cosf sinf
or
in 6
dR _ 2 d(sin )' (3-59)

R sin 6
Integrating Eq. (3-59), we obtain
R = cg sin? 6, (3-60)
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V>0

FIGURE 3-15
Equipotential and electric field lines of an electric dipole (Example 3-8).

where cg is a constant. The electric field lines are drawn as dashed lines in Fig. 3-15.

They are rotationally symmetrical about the z-axis (independent of ¢) and are
everywhere normal to the equipotential lines.

L

The electric potential due to a continuous distribution of charge confined in a
given region is obtained-by integrating the contribution of an element of charge over
the charged region. We have, for a volume charge distribution,

1 p
14 / ‘]). -61
47, f "R dv ( (3-61)
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For a surface charge distribution,

4n€0 fs Ps 4y (V) . (3-62)

and for a line charge,

p[ 7
47:60 fL i ). (3-63)

We note here again that the integrals in Egs. (3—61) and (3—62) represent integrations
in three and two dimensions respectively.

EXAMPLE 3-9 Obtain a formula for the electric field intensity on the axis of a
circular disk of radius b that carries a uniform surface charge density p,.

Solution Although the disk has circular symmetry, we cannot visualize a surface
around it over which the normal contponent of E has a constant magnitude; hence
Gauss’s law is not useful for the solution of this problem. We use Eq. (3-62). Working
with cylindrical coordinates indicated in Fig. 3-16, we have

ds' =rdrd¢’
and

R=.z*+r%

The electric potential at the point P(0, 0, z) referring to the point at infinity is

2n
41re0 f J:) (z2 + ’2)”2 dr' d¢/

Ps
=50 [ + 62 =[]}

(3-64)

FIGURE 3-16
A uniformly charged disk (Example 3-9)
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Therefore,
E=-VV=—a, QK
0z
8, 2 [1-z222+b5)"Y2], 2>0 (3-65a)
_ 2¢,
_a, 2’: {14222 + b)), z<0O. (3-65b)
(4]

The determination of E field at an off-axis point would be.a much more difficult
problem. Do you know why?

For very large z, it is convenient to expand the second term in Egs. (3-65a) and
(3—-65b) into a binomial series and neglect the second and all higher powers of the
ratio (b?/z2). We have

222
Substituting this into Eqgs. (3-65a) and (3—65b), we obtain

2
E=a, (b Psz)
47eyz
Q
a, I , z>0 (3-66a)

Q

a, s
? 4ne,z?

2\ —1/2 2
TR L

z<0, ‘ (3-66b)

where Q is the total charge on the disk. Hence, when the point of observation is very
far away from the charged disk, the E field approximately follows the inverse square
law as if the total charge were concentrated at a point. -

EXAMPLE 3-10 Obtain a formula for the electric field intensity along the axis of
a uniform line charge of length L. The uniform line-charge density is p,.

Solution For an infinitely long line charge, the E field can be determined readily by
applying Gauss’s law, as in the solution to Example 3-5. However, for a line charge
of finite length, as shown in Fig. 3—17, we cannot construct a Gaussian surface over
which E - ds is constant. Gauss’s law is therefore not useful here.

Instead, we use Eq. (3-63) by taking an element of charge d¢' = dz’ at z’. The
distance R from the charge element to the point P(0, 0, z) along the axis of the line
charge is

) L

R=(z - 7), z> >

Here it is extremely important to distinguish the position of the field point (un-
primed coordinates) from the position of the source point (primed coordinates). We
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»A0, 0, 2)

L2 FIGURE 3-17
A finite line charge of a uniform line density p, (Example 3-10).

integrate over the source region:
p, Lz dz7
v=2Le | ,
4ne, J-Li2z — Z

_ Pe z +(L/2) L
= Jne, ln[z = (L/2):|’ >3

(3-67)

5
The E field at P is the negative gradient of V with respect to the unprimed field
coordinates. For this problem,

av p.L

L
b= " el -2 ‘77 G-¢%

The preceding two examples illustrate the procedure for determining E by first
finding V when Gauss’s law cannot be conveniently applied. However, we emphasize
that if symmetry conditions exist such that a Gaussian surface can be constructed over
which E - ds is constant, it is always easier to determine E directly. The potential V,
if desired, may be obtained from E by integration.

Conductors in Static Electric Field

So far we have discussed only the electric field of stationary charge distributions in
free space or air. We now examine the field behavior in material media. In general,
we classify materials according to their electrical properties into three types: conduc-
tors, semiconductors, and insulators (or dielectrics). In terms of the-crude atomic
model of an atom consisting of a positively charged nucleus with orbiting electrons,
the electrons in the outermost shells of the atoms of conductors are very loosely held
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and migrate easily from one atom to another. Most metals belong to this group. The
electrons in the atoms of insulators or dielectrics, however, are confined to their
orbits; they cannot be liberated in normal circumstances, even by the application of
an external electric field. The electrical properties of semiconductors fall between
those of conductors and insulators in that they possess a relatively small number of
freely movable charges.

In terms of the band theory of solids we find that there are allowed energy bands
for electrons, each band consisting of many closely spaced, discrete energy states. Be-
tween these energy bands there may be forbidden regions or gaps where no electrons
of the solid’s atom can reside. Conductors have an upper energy band partially filled
with electrons or an upper pair of overlapping bands that are partially filled so that
the electrons in these bands can move from one to another with only a small change
in energy. Insulators or dielectrics are materials with a completely filled upper band,
so conduction could not normally occur because of the existence of a large energy
gap to the next higher band. If the energy gap of the forbidden region is relatively
small, small amounts of external energy may be sufficient to excite the electrons in
the filled upper band to jump into the next band, causing conduction. Such materials
are semiconductors.

The macroscopic electrical property of a material medium is characterized by a
constitutive parameter called conductivity, which we will define in Chapter 5. The
definition of conductivity is not important in this chapter because we are not dealing
with current flow and are now interested only in the behavior of static electric fields
in material media. In this section we examine the electric field and charge distri-
bution both inside the bulk and on the surface of a conductor.

Assume for the present that some positive (or negative) charges are introduced
in the interior of a conductor. An electric field will be set up in the conductor, the
field exerting a force on the charges and making them move away from one another.
This movement will continue until all the charges reach the conductor surface and
redistribute themselves in such a way that both the charge and the field inside vanish.
Hence,

Inside a Conductor
(Under Static Conditions)

p=0 (3-69)
E=0 (3-70)

When there is no charge in the interior of a conductor (p = 0), E must be zero be-
cause, according to Gauss’s law, the total outward electric flux through any closed
surface constructed inside the conductor must vanish.

The charge distribution on the surface of a conductor depends on the shape of
the surface. Obviously, the charges would not be in a state of equilibrium if there
were a tangential component of the electric field intensity that produces a tangential
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Free space

FIGURE 3-18
A conductor—free space interface.

force and moves the charges. Therefore, under static conditions the E field on a
conductor surface is everywhere normal to the surface. In other words, the surface of a
conductor is an equipotential surface under static conditions. As a matter of fact,
since E = 0 everywhere inside a conductor, the whole conductor has the same elec-
trostatic potential. A finite time is required for the charges to redistribute on a con-
ductor surface and reach the equilibrium state. This time depends on the conductivity
of the material. For a good conductor such as copper this time is of the order of
10719 (s), a very brief transient. (This point will be elaborated in Section 5-4.)

Figure 3—18 shows an interface between a conductor and free space. Consider
the contour abcda, which has width ab = cd = Aw and height bc = da = Ah. Sides
ab and cd are parallel to the interface. Applying Eq. (3-8),! letting Ah — 0, and
noting that E in a conductor is zero, we obtain immediately

E-d¢=EAw=0
abcda
or
E =0, (3-T1)

which says that the tangential component of the E field on a conductor surface is zero.
In order to find E,, the normal component of E at the surface of the conductor,
we construct a Gaussian surface in the form of a thin pillbox with the top face in
free space and the bottom face in the conductor where E = 0. Using Eq. (3-7), we
obtain

A
@E-ds=E,,AS=EL—S
S €p
or
E,=2. (3-72)
€o

t We assume that Eqs. (3-7) and (3-8) are valid for regions containing discontinuous media.
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Hence, the normal component of the E field at a conductor|free space boundary is
equal to the surface charge density on the conductor divided by the permittivity of free
space. Summarizing the boundary conditions at the conductor surface, we have

Boundary Conditions
at a Conductor/Free Space Interface

E =0 (3-71)
E =" (3-72)
€o

When an uncharged conductor is placed in a static electric field, the external
field will cause loosely held electrons inside the conductor to move in a direction
opposite to that of the field and cause net positive charges to move in the direction
of the field. These induced free charges will distribute on the conductor surface and
create an induced field in such a way that they cancel the external field both inside
the conductor and tangent to its surface. When the surface charge distribution reaches
an equilibrium, all four relations, Egs. (3-69) through (3-72), will hold; and the
conductor is again an equipotential body.

EXAMPLE 3-11 A positive point charge Q is at the center of a spherical conducting
shell of an inner radius R; and an outer radius R,. Determine E and V as functions
of the radial distance R.

Solution The geometry of the problem is shown in Fig. 3-19(a). Since there is spheri-
cal symmetry, it is simplest to use Gauss’s law to determine E and then find V by in-
tegration. There are three distinct regions: () R > R,,(b) R, < R < R,,and (c)R < R,.
Suitable spherical Gaussian surfaces will be constructed in these regions. Obviously,
E = agEy in all three regions.

a) R > R, (Gaussian surface S,):

Q
¢ B ds = Ep,4nR? = .
or
Y
E = ——— —
Ri 47e,R? 6-73)

The E field is the same as that of a point charge Q without the presence of the
shell. The potential referring to the point at infinity is

R 0
= _fco (Ery)dR = 4meoR
b) R; < R < R, (Gaussian surface S,): Because of Eq. (3—70), we know that
Er,=0. . (3-75)

(3-74)
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FIGURE 3-19
Electric field intensity and potential variations of a point charge +Q at the center
of a conducting shell (Example 3—11).

Since p = 0 in the conducting shell and since the total charge enclosed in surface
S, must be zero, an amount of negative charge equal to —Q must be induced
on the inner shell surface at R = R,. (This also means that an amount of positive
charge equal to +@Q is induced on the outer shell surface at R = R,.) The con-
ducting shell is an equipotential body. Hence,

__9
R=R, - 475€oRo.
¢) R < R, (Gaussian surface S;): Application of Gauss’s law yields the same formula
for Egps as Eg, in Eq. (3-73) for the first region:

Q

B3 ™ 4ne,R?

V2= Vl

(3-76)

(3-77)

The potential in this region is
Y
4meoR

where the integration constant C is determined by requiring V; at R =R, to
equal V, in Eq. (3—76). We have

V3=-fER3dR+C= +C,
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and
g /1 1 1

V, = e (E R E)' (3-78)

The variations of Ex and V versus R in all three regions are plotted in Figs.
3-19(b) and 3-19(c). Note that while the electric intensity has discontinuous jumps,
the potential remains continuous. A discontinuous jump in potential would mean an
infinite electric field intensity. -

Dielectrics in Static Electric Field

Ideal dielectrics do not contain free charges. When a dielectric body is placed in an
external electric field, there are no induced free charges that move to the surface and
make the interior charge density and electric field vanish, as with conductors. How-
ever, since dielectrics contain bound charges, we cannot conclude that they have no
effect on the electric field in which they are placed.

All material media are composed of atoms with a positively charged nucleus
surrounded by negatively charged electrons. Although the molecules of dielectrics
are macroscopically neutral, the presence of an external electric field causes a force
to be exerted on each charged particle and results in small displacements of positive
and negative charges in opposite directions. These displacements, though small in
comparison to atomic dimensions, nevertheless polarize a dielectric material and
create electric dipoles. The situation is depicted in Fig. 3-20. Inasmuch as electric
dipoles do have nonvanishing electric potential and electric field intensity, we expect
that the induced electric dipoles will modify the electric field both inside and outside
the dielectric material.

The molecules of some dielectrics possess permanent dipole moments, even in
the absence of an external polarizing field. Such molecules usually consist of two or

FIGURE 3-20

External E A cross section of a polarized dielectric medium.
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more dissimilar atoms and are called polar molecules, in contrast to nonpolar mole-
cules, which do not have permanent dipole moments. An example is the water molecule
H,0, which consists of two hydrogen atoms and one oxygen atom. The atoms do
not arrange themselves in a manner that makes the molecule have a zero dipole mo-
ment; that is, the hydrogen atoms do not lie exactly on diametrically opposite sides
of the oxygen atom.

The dipole moments of polar molecules are of the order of 1073° (C-m). When
there is no external field, the individual dipoles in a polar dielectric are randomly
oriented, producing no net dipole moment macroscopically. An applied electric field
will exert a torque on the individual dipoles and tend to align them with the field in
a manner similar to that shown in Fig. 3-20.

Some dielectric materials can exhibit a permanent dipole moment even in the
absence of an externally applied electric field. Such materials are called electrets.
Electrets can be made by heating (softening) certain waxes or plastics and placing
them in an electric field. The polarized molecules in these materials tend to align
with the applied field and to be frozen in their new positions after they return to
normal temperatures. Permanent polarization remains without an external electric
field. Electrets are the electrical equivalents of permanent magnets; they have found
important applications in high fidelity electret microphones.

3-7.1 EQUIVALENT CHARGE DISTRIBUTIONS OF POLARIZED DIELECTRICS

To analyze the macroscopic effect of induced dipoles we define a polarization vector,
P, as

nAv

z Px

P = lim = C/m? -
Jim = (C/m?), (3-79)

where 7 is the number of molecules per unit volume and the numerator represents
the vector sum of the induced dipole moments contained in a very small volume Av.
The vector P, a smoothed point function, is the volume density of electric dipole
moment. The dipole moment dp of an elemental volume dv' is dp = P dv’, which
produces an electrostatic potential (see Eq. 3-53b):

dv'. (3-80)

Integrating over the volume V' of the dielectric, we obtain the potential due to the
polarized dielectric.

t See, for instance, J. M. Crowley, Fundamentals of Applied Electrostatics, Section 8-3, Wiley, New York,
1986.



3-7 Dielectrics in Static Electric Field 107

f P ~ 2R gy, (3-81)!

where R is the distance from the elemental volume dv’ to a fixed field point. In
Cartesian coordinates,

47te0

=(x—=x2+@y—y)P+E-2) (3-82)
and it is readily verified that the gradient of 1/R with respect to the primed coordi-
nates is

1 ag
1 == 3-83
v ( R) = (3-83)
Hence Eq. (3-81) can be written as ]
1 1
= V(=) dv. 3-84
prs [PV <R> dv (3-84)
Recalling the vector identity (Problem 2-28),
V- (fA)y=fV +A+A- VT, (3-85)

and letting A = P and f = 1/R, we can rewrite Eq. (3-8.4) as

1 (P V-p
= e [fy,v <E> dv —fV,Tdu]. (3-86)

The first volume integral on the right side of Eq. (3—86) can be converted into a
closed surface integral by the divergence theorem. We have

1 P-a, (— V’ P)
_ 3-87
47e, ﬁ R - ds 471:60 f ( )

where a,, is the outward normal from the surface element ds’ of the dielectric. Com-
parison of the two integrals on the right side of Eq. (3-87) with Eqgs. (3-62) and
(3-61), respectively, reveals that the electric potential (and therefore the electric field
intensity also) due to a polarized dielectric may be calculated from the contributions
of surface and volume charge distributions having, respectively, densities

Pps=P-a, (3-88)*

and

p,= —V-P. (3-89)!

t We note here that ¥ on the left side of Eq. (3-81) represents the electric potential at a field point, and
V' on the right side is the volume of the polarized dielectric.

t The prime sign on a, and V has been dropped for simplicity, since Egs. (3—88) and (3-89) involve only
source coordinates and no confusion will result.
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These are referred to as polarization charge densities or bound-charge densities. In
other words, a polarized dielectric may be replaced by an equivalent polarization surface
charge density p,, and an equivalent polarization volume charge density p, for field
calculations:

1 gspp p
B ds 2 dv'.
4ney Js R S +47te0 vRY

(3-90)

Although Eqgs. (3—88) and (3-89) were derived mathematically with the aid of a
vector identity, a physical interpretation can be provided for the charge distributions.
The sketch in Fig. 3-20 clearly indicates that charges from the ends of similarly
oriented dipoles exist on surfaces not parallel to the direction of polarization. Con-
sider an imaginary elemental surface As of a nonpolar dielectric. The application of
an external electric field normal to As causes a separation d of the bound charges:
positive charges +q move a distance d/2 in the direction of the field, and negative
charges —q move an equal distance against the direction of the field. The net total
charge AQ that crosses the surface As in the direction of the field is nq d(As), where
n is the number of molecules per unit volume. If the external field is not normal to
As, the separation of the bound charges in the direction of a, will be d - a, and

AQ = ngd - a,)(As). (3-91)

But ngd, the dipole moment per unit volume, is by definition the polarization vector
P. We have

AQ =P - a,(As) (3-92)
and
A
Pps = A—g =P-a,

as given in Eq. (3-88). Remember that a, is always the outward normal. This relation
correctly gives a positive surface charge on the right-hand surface in Fig. 3-20 and
a negative surface charge on the left-hand surface.

For a surface § bounding a volume V, the net total charge flowing out of V as
a result of polarization is obtained by integrating Eq. (3—92). The net charge remaining
within the volume V is the negative of this integral:

0= Pra,ds

(3-93)

= fV (~V-P)dv = fy ppdv,
which leads to the expression for the volume charge density in Eq. (3-89). Hence,
when the divergence of P does not vanish, the bulk of the polarized dielectric appears
to be charged. However, since we started with an electrically neutral dielectric body,
the total charge of the body after polarization must remain zero. This can be readily
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verified by noting that .
Total charge = fﬁ Ppsds + fy ppdv

=9Ssp-a,,ds—fvv-Pdu=o, =9

where the divergence theorem has again been applied.

3-8 Electric Flux Density and Dielectric Constant

Because a polarized dielectric gives rise to an equivalent volume charge density p,,
we expect the electric field intensity due to a given source distribution in a dielectric
to be different from that in free space. In particular, the divergence postulated in Eq.
(3-4) must be modified to include the effect of p,; that is,

1
V-E=—(p+p,) (3-95)
€o

Using Eq. (3—89), we have
V- (eE +P)=p. (3-96)

We now define a new fundamental field quantity, the electric flux density, or electric
displacement, D, such that

D=¢E+P (C/m?). (3-97)

The use of the vector D enables us to write a divergence relation between the electric
field and the distribution of free charges in any medium without the necessity of
dealing explicitly with the polarization vector P or the polarization charge density p,,.
Combining Egs. (3-96) and (3-97), we obtain the new equation

V:D=p (C/m3), (3-98)

where p is the volume density of free charges. Equations (3-98) and (3-5) are the
two fundamental governing differential equations for electrostatics in any medium.
Note that the permittivity of free space, €,, does not appear explicitly in these two
equations.

The corresponding integral form of Eq. (3-—98) is obtained by taking the volume
integral of both sides. We have

fy V-Ddp= fy pdv (3-99)
or

gﬁs D-ds=Q (C). (3-100)
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Equation (3-100), another form of Gauss’s law, states that the total outward flux of
the electric displacement (or, simply, the total outward electric flux) over any closed
surface ‘is equal to the total free charge enclosed in the surface. As was indicated in
Section 34, Gauss’s law is most useful in determining the electric field due to charge
distributions under symmetry conditions.

When the dielectric properties of the medium are linear and isotropic, the polar-
ization is directly proportional to the electric field intensity, and the proportionality
constant is independent of the direction of the field. We write

P = ¢yx.E, (3-101)

where y, is a dimensionless quantity called electric susceptibility. A dielectric medium
is linear if y, is independent of E and homogeneous if y, is independent of space
coordinates. Substitution of Eq. (3—-101) in Eq. (3-97) yields

D =¢,(1 4+ y)E

3-102
- = €,6,E = ¢E (C/m?), ( )

where

=14y =— (3-103)
€o

is a dimensionless quantity known as the relative permittivity or the dielectric constant
of the medium. The coefficient € = ¢y¢, is the absolute permittivity (often called
simply permittivity) of the medium and is measured in farads per meter (F/m). Air
has a dielectric constant of 1.00059; hence its permittivity is usually taken as that of
free space. The dielectric constants of some common materials are included in Table
3-1 on p. 114 and Appendix B-3.

Note that €, can be a function of space coordinates. If ¢, is independent of posi-
tion, the medium is said to be homogenous. A linear, homogeneous, and isotropic
medium is called a simple medium. The relative permittivity of a simple medium is a
constant.

Later in the book we will learn that the effects of a lossy medium can be rep-
resented by a complex dielectric constant, whose imaginary part provides a mea-
sure of power loss in the medium and is, in general, frequency-dependent. For
anisotropic materials the dielectric constant is different for different directions of the
electric field, and D and E vectors generally have different directions; permittivity is
a tensor. In matrix form we may write

D, €1 €12 €3||E;
D, |=}ey €, €mi]|E| (3-104)
D, €3, €32 €33 E;

For crystals the reference coordinates can be chosen to be along the principal axes
of the crystal so that the off-diagonal terms of the permittivity matrix in Eq. (3-104)
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are zero. We have

D, e, 0 O]|E,
D,|=]0 ¢ O|lE,| (3-105)
D 0 0 e€]|E,

Media having the property represented by Eq. (3—105) are said to be biaxial. We
may write

z

D, =¢,E,, (3-106a)
D, = ¢,E,, (3-106b)
D, =¢e;E,. (3-106c)

If further, €, = ¢,, then the medium is said to be uniaxial. Of course, if €, = €, = €,
we have an isotropic medium. We shall deal only with isotropic media in this book.

EXAMPLE 3-12 A positive point charge Q is at the center of a spherical dielectric
shell of an inner radius R; and an outer radius R,. The dielectric constant of the shell
is €,. Determine E, V, D, and P as functions of the radial distance R.

Solution The geometry of this problem is the same as that of Example 3-11. The
conducting shell has now been replaced by a dielectric shell, but the procedure of
solution is similar. Because of the spherical symmetry, we apply Gauss’s law to find
E and D in three regions: (a) R > R,; (b) R; < R < R,; and (¢) R < R;. Potential V
is found from the negative line integral of E, and polarization P is determined by the
relation

P =D — ¢,E = ¢4(¢, — 1E. (3-107)

The E, D, and P vectors have only radial components. Refer to Fig. 3—-21(a), where
the Gaussian surfaces are not shown in order to avoid cluttering up the figure.

a) R>R,
The situation in this region is exactly the same as that in Example 3-11. We
have, from Eqgs. (3—73) and (3-74),
_ 0
Eni = 4meoR>
= Q .
' 4ne R
From Eqgs. (3—102) and (3-107) we obtain

0

Dgy = €gEgy = W

(3--108)

and
Pg, =0. (3-109)
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FIGURE 3-21
Field variations of a point charge + Q at the center of a dielectric shell (Example 3-12).

b) R, <R <R,
The application of Gauss’s law in this region gives us directly
Ero = 47:60Qe,R2 - 47:ng ’ (3-110)
R2 = “1??, (3-111)
Pg, = (1 . é—) 43{2- ! (3-112)

Note that Dy, has the same. expression as Dg; and that both E and Py have a
discontinuity at R = R,. In this region,

Vo= =[5 EpydR - f: Eg, dR

Q0 1
ek~ Ime 0 RE (3-113)

0 N1, 1
 dne, [(1 e,> R, +e,R )
¢) R<R;

Since the medium in this region is the same as that in the region R > R,, the
application of Gauss’s law yields the same expressions for Eg, Dy, and Py in

= V1‘
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both regions:

__92
B ™ 4ne,R?
D = 5
R3 ™ 4nR2
Pg; = 0.

To find V;, we must add to ¥, at R = R, the negative line integral of Eg;,:

Va= VZ'R=R,- - f:.- ErsdR

(3-114)
00944
4re, €, ) R, €,/JR, R

The variations of €, Eg and, Dy versus R are plotted in Fig. 3-21(b). The difference
(Dg — €oEyR) is Py and is shown in Fig. 3-21(c). The plot for V in Fig. 3-21(d) is a
composite graph for ¥}, V,, and ¥, in the three regions. We note that Dy is a con-
tinuous curve exhibiting no sudden changes in going from one medium to another
and that Py exists only in the dielectric region. -

It is instructive to compare Figs. 3—21(b) and 3—21(&) with Figs. 3-19(b) and
3-19(c), respectively, of Example 3=-11. From Egs. (3-88) and (3-89) we find

Prsig=g, = P- (_aR)'RzRi = _PR2R=Ri
1 (3-115)
- (1-1).e
€, ) 4nR;
on the inner shell surface,
pP‘!R=R,, =P aR‘R=RD = PRZ!R=R.,
(3-116)
AR
€,/ 4nR;
on the outer shell surface, and
pp=—-V-P
1 0 (3-117)
= _*Rﬁ‘ai (RZPRZ) = 0.

Equations (3-115), (3-116), and (3-117) indicate that there is no net polarization
volume charge inside the dielectric shell. However, negative polarization surface
charges exist on the inner surface and positive polarization surface charges on the
outer surface. These surface charges produce an electric field intensity that is directed
radially inward, thus reducing the E field in region 2 due to the point charge +Q at
the center. :
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TABLE 3-1
Dielectric Constants and Dielectric Strengths of Some Common Materials
Dielectric
Material Constant Dielectric Strength (V/m)

Air (atmospheric pressure) 1.0 3 x 10°
Mineral oil 2.3 15 x 10°
Paper 2-4 15 x 10°
Polystyrene 2.6 20 x 10°
Rubber 2.3-4.0 25 x 10°
Glass 4-10 30 x 108
Mica 6.0 ' 200 x 108

3-8.1 DIELECTRIC STRENGTH

We have explained that an electric field causes small displacements of the bound
charges in a dielectric material, resulting in polarization. If the electric field is very
strong, it will pull electrons completely out of the molecules. The electrons will
accelerate under the influence of the electric field, collide violently with the molecular
lattice structure, and cause permanent dislocations and damage in the material.
Avalanche effect of ionization due to collisions may occur. The material will become
conducting, and large currents may result. This phenomenon is called a dielectric
breakdown. The maximum electric field intensity that a dielectric material can with-
stand without breakdown is the dielectric strength of the material. The approxi-
mate dielectric strengths of some common substances are given in Table 3—1. The
dielectric strength of a material must not be confused with its dielectric constant.

A convenient number to remember is that the dielectric strength of air at the
atmospheric pressure is 3 kV/mm. When the electric field intensity exceeds this value,
air breaks down. Massive ionization takes place, and sparking (corona discharge)
follows. Charge tends to concentrate at sharp points. In view of Eq. (3-72), the
electric field intensity in the immediate vicinity of sharp points is much higher than
that at points on a relatively flat surface with a small curvature. This is the principle
upon which a lightning arrester with a sharp metal lightning rod on top of tall
buildings works. When a cloud containing an abundance of electric charges ap-
proaches a tall building equipped with a lightning rod connected to the ground,
charges of an opposite sign are attracted from the ground to the tip of the rod,
where the electric field intensity is the strongest. As the electric field intensity ex-
ceeds the dielectric strength of the wet air, breakdown occurs, and the air near the
tip is ionized and becomes conducting. The electric charges in the cloud are then
discharged safely to the ground through the conducting path.

The fact that the electric field intensity tends to be higher at a point near the
surface of a charged conductor with a larger curvature is illustrated quantitatively
in the following example.
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EXAMPLE 3-13  Consider two spherical conductors with radii b, and b, (b, > b,)
that are connected by a conducting wire. The distance of separation between the
conductors is assumed to be very large in comparison to b, so that the charges on
the spherical conductors may be considered as uniformly distributed. A total charge
Q is deposited on the spheres. Find (a) the charges on the two spheres, and (b) the
electric field intensities at the sphere surfaces.

Solution

a) Refer to Fig. 3-22. Since the spherical conductors are at the same potential,

we have
9. _ 0
dmegh,  4meyb,
or
0. _b
Q, b,
Hence the charges on the spheres are directly proportional to their radii. But,
since
0,+0,=0,
we find that
__b, P
Q1~b1+b2Q an Qz_b1+b2Q.

b) The electric field intensities at the surfaces of the two conducting spheres are

0, 0,
= d E,,=—",
" 4meob? an 2 4meyb?
$0
E,

()t
E2n bl QZ bl

The electric field intensities are therefore inversely proportional to the radii,
being higher at the surface of the smaller sphere which has a larger curvature.
|

FIGURE 3-22
Two connected conducting spheres (Example 3-13).
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3-9 Boundary Conditions for Electrostatic Fields

Electromagnetic problems often involve media with different physical properties and
require the knowledge of the relations of the field quantities at an interface between
two media. For instance, we may wish to determine how the E and D vectors change
in crossing an interface. We already know the boundary conditions that must be
satisfied at a conductor/free space interface. These conditions have been given in
Egs. (3-71) and (3-72). We now consider an interface between two general media
shown in Fig. 3-23.

Let us construct a small path abcda with sides ab and cd in media 1 and 2,
respectively, both being parallel to the interface and equal to Aw. Equation (3-8)
is applied to this path. If we let sides bc = da = Ah approach zero, their contribu-
tions to the line integral of E around the path can be neglected. We have

gﬁbd E-dé —E,-Aw +E, - (—Aw) = E,,Aw — E,, Aw = 0.

Therefore

E,,=E; (V/m), (3-118)

which states that the tangential component of an E field is continuous across an inter-
Sace. Eq. (3-118) simplifies to Eq. (3—71) if one of the media is a conductor. When
media 1 and 2 are dielectrics with permittivities €, and €,, respectively, we have

Di_Da, (3-119)
€1 €2

In order to find a relation between the normal components of the fields at a
boundary, we construct a small pillbox with its top face in medium 1 and bottom

FIGURE 3-23 .
An interface between two media.




3-9 Boundary Conditions for Electrostatic Fields 117

face in medium 2, as illustrated in Fig. 3-23. The faces have an area AS, and the
height of the pillbox Ah is vanishingly small. Applying Gauss’s law, Eq. (3-100),
to the pillbox,! we have

¢, D-ds = (D, -, + D, - 2,))AS

=a,,* (D, - D,)AS (3-120)
= p;AS, '
where we have used the relation a,, = —a,,. Unit vectors a,, and a,, are, respec-

tively, outward unit normals from media 1 and 2. From Eq. (3—120) we obtain

a,;*(D; —Dy) = p, (3-121a)

or

Dy, —Dyu=p, (C/m?), (3-121b)

where the reference unit normal is outward from medium 2.

Eq. (3-121b) states that the normal component of D field is discontinuous across
an interface where a surface charge exists—the amount of discontinuity being
equal to the surface charge density. If medium 2 is a conductor, D, = 0 and Eq.
(3-121b) becomes

Dyp=,Ey, = p,, (3-122)

which simplifies to Eq. (3—72) when medium 1 is free space.
When two dielectrics are in contact with no free charges at the interface, p, = 0,
we have
D,,=D,, (3-123)
or

& E,,=¢,E,,. (3-129)

Recapitulating, we find that the boundary conditions that must be satisfied for static
electric fields are as follows:

Tangential components, E,,=E,; (3-125)
Normal components, a, (D, —D, =p, (3-126)

EXAMPLE 3-14 A lucite sheet (¢, = 3.2) is introduced perpendicularly in a uniform
electric field E, = a_E, in free space. Determine E;, D;, and P, inside the lucite.

! Equations (3-8) and (3-100) are assumed to hold for regions containing discontinuous media. See C. T.
Tai, “On the presentation of Maxwell’s theory,” Proceedings of the IEEE, vol. 60, pp. 936-945, August
1972.

»
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E, = axEy

D, = ayeoEy

Free |

space FIGURE 3-24

A lucite sheet in a uniform electric field (Example 3-14).

Solution We assume that the introduction of the lucite sheet does not disturb the
original uniform electric field E,. The situation is depicted in Fig. 3-24. Since the
interfaces are perpendicular to the electric field, only the normal field components
need be considered. No free charges exist.

Boundary condition Eq. (3-123) at the left interface gives
D;,=aD;=aD,
or
Di = axeoEo.

There is no change in electric flux density across the interface. The electric field
intensity inside the lucite sheet is

E 1D ! D E,
s = — , = — L= a, —-
et e, 0 732

The polarization vector is zero outside the lucite sheet (P, = 0). Inside the sheet,

1
Pi = Di - GOEi = ax<1 - 53) GOEO

=a,0.6875¢,E, (C/m?). -

Clearly, a similar application of the boundary condition Eq. (3-123) on the right
interface will yield the original E, and D, in the free space on the right of the lucite
sheet. Does the solution of this problem change if the original electric field is not
uniform; that is, if E, = a_E(y)?

mmsmm EXAMPLE 3-15 Two dielectric media with permittivities €, and e, are separated
by a charge-free boundary as shown in Fig. 3—-25. The electric field intensity in medium
1 at the point P, has a magnitude E, and makes an angle «; with the normal.
Determine the magnitude and direction of the electric field intensity at point P, in
medium 2.
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FIGURE 3-25
Boundary conditions at the interface between two dielectric
media (Example 3-15).

Solution Two equations are needed to solve for two unknowns E,, and E,,. After
E,, and E,, have been found, E, and «, will follow directly. Using Egs. (3—118) and
(3-123), we have
E,sina, = E, sin «, (3-127)
and
€,E, cosa, =€, E, cos a;. (3-128)

Division of Eq. (3—-127) by Eq. (3-128) gives

tana; € (3-129)
tana; €,

The magnitude of E, is
E, = VE}, + E%, = J(E, sin a,)* + (E, cos a,)>

g 277172
= |:(E1 sin a;)? + (e_l E, cos a1> ]
2

' p 277172
E,=E, [sm2 oy + <€—1 cos a1> . (3-130)

2

or

By examining Fig. 3-25, can you tell whether €, is larger or smaller than €,? wm

EXAMPLE 3-16 When a coaxial cable is used to carry electric power, the radius of
the inner conductor is determined by the load current, and the overall size by the
voltage and the type of insulating material used. Assume that the radius of the inner
conductor is 0.4 (cm) and that concentric layers of rubber (¢,, = 3.2) and polystyrene
(¢,, = 2.6) are used as insulating materials. Design a cable that is to work at a voltage
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rating of 20 (kV). In order to avoid breakdown due to voltage surges caused by
lightning and other abnormal external conditions, the maximum electric field inten-
sities in the insulating materials are not to exceed 25%, of their dielectric strengths.

Solution From Table 3-1, p. 114, we find the dielectric strengths of rubber and

polystyrene to be 25 x 10° (V/m) and 20 x 10® (V/m), respectively. Using Eq. (3—40)
for specified 25% of dielectric strengths, we have the following.

1
Inrubber:  Max E, =025 x 25 x 106 =22 (—_)  (3-131a)
2mey \3.2r;

1
2.6r,

In polystyrene: Max E, = 0.25 x 20 x 10° = L(
27ne,

). (3-131b)
Combination of Eqgs. (3—131a) and (3—131b) yields
r, = 1.54r; = 0.616 (cm). (3-132)

Equation (3—132) indicates that the insulating layer of polystyrene should be placed
outside of that of rubber, as shown in Fig. 3-26(a). (It would be interesting to deter-
mine what would happen if the polystyrene layer were placed inside the rubber layer.)

4.06 |- - —
3NN pF-——9-—

E in (MV/m)

V in (kV)

FIGURE 3-26
Cross section of coaxial cable with two different kinds of insulating material
(Example 3-16).
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The cable is to work at a potential difference of 20,000 (V) between the inner and
outer conductors. We set

- f " E,dr — f " E, dr = 20,000,
where both E, and E, have the form given in Eq. (3—40). The above relation leads to

1
Pe <i1n'—°+—1nf‘-’~>=20,000 '

2neg \€,, T, €, T
or
Dy 1 r, 1
—In—2— 4+ —1n 1.54 } = 20,000. 3-133
ey <2.6 M54, T2 " ) G-133)

Since r; = 0.4 (cm) is given, r, can be determined by finding the factor p,/27e, from
Eq. (3-131a) and then using it in Eq. (3—133). We obtain p,/2ne, = 8 x 10%, and
r, = 2.08r, = 0.832 (cm).

In Figs. 3-26(b) and 3-26(c) are plotted the variations of the radial electric field
intensity E and the potential V referred to that of the outer sheath. Note that E has
discontinuous jumps, while the V curve is continuous. The reader should verify all the
indicated numerical values. -

3-10 Capacitance and Capacitors

From Section 3-6 we understand that a conductor in a static electric field is an
equipotential body and that charges deposited on a conductor will distribute them-
selves on its surface in such a way that the electric field inside vanishes. Suppose the
potential due to a charge @ is V. Obviously, increasing the total charge by some factor
k would merely increase the surface charge density p, everywhere by the same factor
without affecting the charge distribution because the conductor remains an equipo-
tential body in a static situation. We may conclude from Eq. (3—62) that the potential
of an isolated conductor is directly proportional to the total charge on it. This may
also be seen from the fact that increasing V by a factor of k increases E = —VV by
a factor of k. But from Eq. (3-72), E = a,p /¢, it follows that p,, and consequently
the total charge Q will also increase by a factor of k. The ratio Q/V therefore remains
unchanged. We write

Q=CV, (3-134)

where the constant of proportionality C is called the capacitance of the isolated con-
ducting body. The capacitance is the electric charge that must be added to the body
per unit increase in its electric potential. Its SI unit is coulomb per volt, or farad (F).

Of considerable importance in practice is the capacitor, which consists of two
conductors separated by free space or a dielectric medium. The conductors may be
of arbitrary shapes as in Fig, 3-27. When a d-c voltage source is connected between
the conductors, a charge transfer occurs, resulting in a charge + Q on one conductor
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FIGURE 3-27
A two-conductor capacitor.

and —Q on the other. Several electric field lines originating from positive charges
and terminating on negative charges are shown in Fig. 3-27. Note that the field lines
are perpendicular to the conductor surfaces, which are equipotential surfaces. Equa-
tion (3—134) applies here if V is taken to mean the potential difference between the
two conductors, V;,. That is,

0

Vi

C (F). (3-135)

The capacitance of a capacitor is a physical property of the two-conductor system.
It depends on the geometry of the conductors and on the permittivity of the medium
between them; it does not depend on either the charge Q or the potential difference
Vi,. A capacitor has a capacitance even when no voltage is applied to it and no free
charges exist on its conductors. Capacitance C can be determined from Eq. (3—135)
by either (1) assuming a V;, and determining Q in terms of V},, or (2) assuming a
Q and determining V,, in terms of Q. At this stage, since we have not yet studied
the methods for solving boundary-value problems (which will be taken up in Chapter
4), we find C by the second method. The procedure is as follows:

1. Choose an appropriate coordinate system for the given geometry.
2. Assume charges +Q and —Q on the conductors.
3. Find E from Q by Eq. (3—122), Gauss’s law, or other relations.
4. Find V}, by evaluating
Vio=— [ E-de
from the conductor carrying —Q to the other carrying + Q.
5. Find C by taking the ratio Q/V,.
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EXAMPLE 3-17 A parallel-plate capacitor consists of two parallel conducting plates
of area S separated by a uniform distance d. The space between the plates is filled
with a dielectric of a constant permittivity €. Determine the capacitance.

Solution A cross section of the capacitor is shown in Fig. 3-28. It is obvious that
the appropriate coordinate system to use is the Cartesian coordinate system. Follow-
ing the procedure outlined above, we put charges +Q and —Q on the upper and
lower conducting plates, respectively. The charges are assumed to be uniformly dis-
tributed over the conducting plates with surface densities + p;, and — p,, where

From Eq. (3—-122) we have

E=—-a —=—a,—
€ V€S

which is constant within the dielectric if the fringing of the electric field at the edges
of the plates is neglected. Now

Vip = —f:::E-de= —f:(—ay%>-(aydy)=%d.

Therefore, for a parallel-plate capacitor,

S ,
C=r=eo (3-136)

which is independent of @ or V. —

For this problem we could have started by assuming a potential difference V,,
between the upper and lower plates. The electric field intensity between the plates is
uniform and equals

E Via
=
Dielectric
(permittivity ¢) AreaS  +
FIGURE 3-28

x  Cross section of a parallel-plate capacitor
(Example 3-17).




124 3 Static Electric Fields

The surface charge densities at the upper and lower conducting plates are + p, and
— ps, respectively, where, in view of Eq. (3-72),

V12
= € ———-

y
d
Therefore, @ = pS = (S/d)V,, and C = Q/V,, = €S/d, as before.

ps = €E

smsmmm EXAMPLE 3-18 A cylindrical capacitor consists of an inner conductor of radius a
and an outer conductor whose inner radius is b. The space between the conductors
is filled with a dielectric of permittivity €, and the length of the capacitor is L. Deter-
mine the capacitance of this capacitor.

Solution We use cylindrical coordinates for this problem. First we assume charges
+ @ and — Q on the surface of the inner conductor and the inner surface of the outer
conductor, respectively. The E field in the dielectric can be obtained by applying
Gauss’s law to a cylindrical Gaussian surface within the dielectric a < r < b. (Note
that Eq. (3—122) gives only the normal component of the E field at a conductor surface.
Since the conductor surfaces are not planes here, the E field is not constant in the
dielectric and Eq. (3—122) cannot be used to find E in the a < r < b region.) Referring
to Fig. 3-29 and applying Gauss’s law, we have

0

E=aE = = .
AL =2, 2nelr

(3-137)

Again we neglect the fringing effect of the field near the edges of the conductors. The
potential difference between the inner and outer conductors is

_ r=a .. _ a Q )
V;Jb_ ~J:-=b E-df = —J; <a,%> (a,dr)

(3-138)
= g In (é>
2mel a

Dielectric, €

l‘/ FIGURE 3-29
A cylindrical capacitor (Example 3-18).
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Therefore, for a cylindrical capacitor,

2nel
s
In <—>
a
We could not solve this problem from an assumed V,, because the electric field
is not uniform between the inner and outer conductors. Thus we would not know how

to express E and Q in terms of V,, until we learned how to solve such a boundary-
value problem. -

_9 _
C = o (3-139)

EXAMPLE 3-19 A spherical capacitor consists of an inner conducting sphere of
radius R; and an outer conductor with a spherical inner wall of radius R,. The space
in between is filled with a dielectric of permittivity €. Determine the capacitance.

Solution Assume charges +Q and —Q on the inner and outer conductors, respec-
tively, of the spherical capacitor in Fig. 3-30. Applying Gauss’s law to a spherical
Gaussian surface with radius R(R; < R < R,), we have

E=agkp=arz- 25

_ R; _ Ri Q _ Q 1 1
V= o B andR = [ R = H(E—E)

Therefore, for a spherical capacitor,

o 47e
v 1 (3-140)
R, R, ’ w—

—

For an isolated conducting sphere of a radius R;, R, - o0, C = 4neR,.

FIGURE 3-30
A spherical capacitor (Example 3—-19).
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3 FIGURE 3-31
¥ Z  Series connection of capacitors.

3-10.1 SERIES AND PARALLEL CONNECTIONS OF CAPACITORS

Capacitors are often combined in various ways in electric circuits. The two basic ways
are series and parallel connections. In the series, or head-to-tail, connection shown
in Fig. 3-31, the external terminals are from the first and last capacitors only. When
a potential difference or electrostatic voltage V is applied, charge cumulations on the
conductors connected to the external terminals are +Q and —Q. Charges will be
induced on the internally connected conductors such that +Q and —Q will appear
on each capacitor independently of its capacitance. The potential differences across
the individual capacitors are Q/C,, @/C,, ..., Q/C,, and

g 090 0 Y

V=—=‘— el “ e =,
¢, G to TG,

where C,, is the equivalent capacitance of the series-connected capacitors. We have

— = — 4 — (3-141)

In the parallel connection of capacitors the external terminals are connected to
the conductors of all the capacitors as in Fig. 3-32. When a potential difference V
is applied to the terminals, the charge cumulated on a capacitor depends on its
capacitance. The total charge is the sum of all the charges.

0=0,+0,+ +0,

Therefore, the equivalent capacitance of the parallel-connected capacitors is

t Capacitors, whatever their actual shape, are conventionally represented in circuits by pairs of parallel bars.
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+O

Cl
11
+od -0
Cy
) - ! c
, Tl -0 | I
! : cal=
) =
i Cy I: ————»
b o
+Qn -0y + -
VvV >
(L FIGURE 3-32

- Parallel connection of capacitors.

We note that the formula for the equivalent capacitance of series-connected capacitors
is similar to that for the equivalent resistance of parallel-connected resistors and that
the formula for the equivalent capacitance of parallel-connected capacitors is similar

to that for the equivalent resistance of series-connected resistors. Can you explain
this?

wmmmm EXAMPLE 3-20 Four capacitors C, = 1 (¢F), C, = 2 (uF), C; = 3 (uF), and C, =

4 (uF) are connected as in Fig. 3-33. A d-c voltage of 100 (V) is applied to the external
terminals a—b. Determine the following: (a) the total equivalent capacitance between

terminals a—b, (b) the charge on each capacitor, and (c) the potential difference across
each capacitor.

Cy

+V4_ *

FIGURE 3-33
100 (V) A combination of capacitors (Example 3-20).
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Solution

a) The equivalent capacitance C,, of C, and C, in series is
1 Cc,C 2
Ci, = =2 =2 (uP)
1/C)+1/C)) Cy+C, 3
The combination of C,, in parallel with C; gives
Ciz3=Cia+Cy=4 (uF)
The total equivalent capacitance C,, is then
Ci23C, 44
Ci+C, 23
b) Since the capacitances are given, the voltages can be found as soon as the charges
have been determined. We have four unknowns: Q,, @,, @3, and Q4. Four equa-
tions are needed for their determination.

Cop = =1913 (uF).

Series connection of C; and C,: 0,=0,.
Kirchhoff’s voltage law, V; + V, = V;: 2 + 2 = —Qi
’ C, C, G
, ) Cane D, Q4
Kirchhoff’s voltage law, V; + V, = 100: ==+ = = 100.
c, C,
Series connection at d: 0, +0Q3=0,.
Using the given values of C,, C,, C3, and C, and solving the equations, we
obtain
800
0,=0,= 23 =348 (u0),
3600
=——=156.
Qs =53 = 1565 («C),
4400
=——=191. .
Q4 =53 = 1913 (uC)
¢) Dividing the charges by the capacitances, we find
0,
====1348 (V),
h=¢ W)
Q.
V,====174 (V),
= V)
Qs
V,==2=522 (V)
= V)
V,= Qs _ 478 (V).
Cs ,

These results can be checked by verifying that V; + V, = V; and that V3 4+ V, =
100 (V). -
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3-10.2 CAPACITANCES IN MULTICONDUCTOR SYSTEMS

We now consider the situation of more than two conducting bodies in an isolated
system, such as that shown in Fig. 3--34. The positions of the conductors are arbi-
trary, and one of the conductors may represent the ground. Obviously, the presence
of a charge on any one of the conductors will affect the potential of all the others.
Since the relation between potential and charge is linear, we may write the following
set of N equations relating the potentials V;, V,, ..., Vy of the N conductors to the

charges Q,, Q,,..., Qp:

Vi =011Q1 + P12Q2 + - + pyaQy,
Va = 12101 + P22Q2 + - + panQn,s (3-143)

Vv =pbn10Q1 + pn2Q2 + - + Pan0n-

In Eqs. (3-143) the p;/s are called the coefficients of potential, which are constants
whose values depend on the shape and position of the conductors as well as the
permittivity of the surrounding medium. We note that in an isolated system,

Q1+Q2+Q3+"'+QN=0- (3-144)

The N linear equations in (3—143) can be inverted to express the charges as functions
of potentials as follows:

Q1 =ci Vi +eVo 4+ + ey

=cCy Vi + Vot + conVis
Qz 21%1 22V2 2NN (3-145)

Ov=cniVi +cexaVo+ - + cnn Vs

where the c;;’s are constants whose values depend only on the pij’s in Egs. (3-143).
The coefficients ¢;’s are called the coefficients of capacitance, which equal the ratios
of the charge Q; on and the potential V; of the ith conductor (i = 1,2,..., N) with
all other conductors grounded. The ¢;’s (i # j) are called the coefficients of induction.
If a positive Q; exists on the ith conductor, ¥; will be positive, but the charge Q;

FIGURE 3-34
A multiconductor system.
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induced on the jth (j # i) conductor will be negative. Hence the coefficients of capac-
itance c;; are positive, and the coefficients of induction c;; are negative. The condition
of reciprocity guarantees that p;; = p;; and ¢;; = ¢j;.

To establish a physical meaning to the coefficients of capacitance and the coef-
ficients of induction, let us consider a four-conductor system as depicted in Fig. 3-34
with the stipulation that the conductor labeled N is now the conducting earth at
zero potential and is designated by the number 0. A schematic diagram of the four-
conductor system is shown in Fig. 3-35, in which the conductors 1, 2, and 3 have
been drawn as simple dots (nodes). Coupling capacitances have been shown between
pairs of nodes and between the three nodes and the ground. If @, 0,, Q5 and V,, V,,
v, denote the charges and the potentials, respectively, of conductors 1, 2, and 3, the
first three equations in (3—145) become

0, = ¢ Vi + ciaVa + esVs, (3-146a)
0, = ¢1, V) + V2 + €23V, (3—146b)
Q3 = ci3Vy + c3Va + €33V, (3—146c¢)

where we have used the symmetry relation c;; = ¢;. On the other hand, we can write
another set of three Q ~ V relations based on the schematic diagram in Fig. 3-35:

0, = C1oVy + Cp(Vy — Vo) + Cia(Vy — Va), (3-147a)
Q, = CyoVa + Cio(Va = V) + Cpu(V, — V3), (3-147b)
03 = C3oVs + C13(Vs — V) + Caa(Vs — V), (3-147¢)

where C,,, C;0, and Cs, are self-partial capacitances and C;; (i #j) are mutual
partial capacitances.
Equations (3—147a), (3—-147b), and (3-147c) can be rearranged as

01=(Cyo + Ci2+ Ci3)V; — CiaVy — Cy3¥s, (3-148a)
0, = —C,V; + (Cyo+ Cyy + Cp3)V, — CisVs, (3-148b)
Q3 = —Cy3Vy — Cp3V; +(C30 + Ciz + Coa)Vs. (3—148c¢)

Cao

1 FIGURE 3-35
% - Schematic diagram of three conductors
0 and the ground.
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Comparing Eqgs. (3—148) with Egs. (3-146), we obtain

€11 =Cio+ Ciz+ Cy3, (3-149a)
€32 =Cyo+ Cy3 + Cya, (3-149b)
€33 =C30+ Ci3 + Cs3, (3-149¢)
and .
¢, =—Cyy, (3-150a)
€33 = —Cya, (3-150b)
¢13 = —C,s. (3-150c)

On the basis of Eq. (3-149a) we can interpret the coefficient of capacitance c,,
as the total capacitance between conductor 1 and all the other conductors connected
together to ground; similarly for c,, and c;;. Equations (3—150) indicate that the
coefficients of inductances are the negative of the mutual partial capacitances. In-
verting Egs. (3—149), we can express the conductor-to-ground capacitances in terms
of the coefficients of capacitance and coefficients of induction:

Cio=c¢yy +e1p+cy3, (3-151a)
Cao=¢ap + €12 + a3, (3-151b)
C30 = C33 + Cqy3 + Ca3- (3*1510)

EXAMPLE 3-21 Three horizontal parallel conducting wires, each of radius a and
isolated from the ground, are separated from one another as shown in Fig. 3-36. As-
suming d » a, determine the partial capacitances per unit length between the wires.

Solution We designate the wires as conductors 0, 1, and 2, as indicated in Fig. 3-36.
Choosing conductor 0 as the reference and using Eq. (3—138), we can write two equa-
tions for the potential differences V,, and V,, due to the three wires as follows:

Per d  pnp, 3d

d 2me, ln a + 2ne, ln 2d

Peo a
Vie=—"—"In-
107 2ne, +

or

d 3
2ne4Vio = Pro lng + p,1 In 2 + p,z In > (3-152a)

FIGURE 3-36
Three parallel wires (Example 3-21).
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where p,o, ps1» and p,, denote the charges per unit length on wires 0, 1, and 2
respectively. Similarly,

a d 3d

2n€o Vs = pPeo In 34 +p,In—+p,In i (3-152b)

2d

For the isolated system of three conductors we have p, + p,y + p,» =0, or

Peo = —(Pe1 + Pe2)- (3-153)
Combination of Egs. (3—152a), (3-152b), and (3-153) yields
d 3d
2n€0V10 = p[12 ln ; + plz ln '2—‘;9 (3"‘1543)
3d 3d
2n€gVoo = poy In % + ps21n = (3-154b)

Equations (3—154a) and (3—154b) can be used to solve for p,; and p,, as functions
of Vi, and V,,.

3d 3d
pll = Ao(V102 ln 7 - V20 ln z), (3_1553.)
3d d
plz = A0<— I/l() ln '2—a' + V202 ln 5), (3"155b)
where
A, = 2m€o 3-15

=735 [ 3d\ (3-136)

4In-In——{In—

a a 2a

Comparing Egs. (3—155) with Eqs. (3—146), (3—148), and (3-151), we obtain the fol-
lowing partial capacitances per unit length for the given three-wire system:

3d

= — = — -157
Ci, €12 =AqIn a (3-157a)
3d 3d
_ —A 2122 —m2t), ~157b
Cio=c¢11 +¢12 o( n- n2a) @3 )
d 3d
= =A ——1In—]). 3-157
Czo 022 + ClZ 0(2 ln a n 2a> ( C)

3-10.3 ELECTROSTATIC SHIELDING

Electrostatic shielding, a technique for reducing capacitive coupling between con-
ducting bodies, is important in some practical applications. Let us consider the
situation shown in Fig. 3-37, in which a .grounded conducting shell 2 completely
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FIGURE 3-37
Illustrating electrostatic shielding.

encloses conducting body 1. Setting V, = 0 in Eq. (3—147a), we have
01 =CioVh + CioVy + Cya(Vy — Vi) (3-158)

When Q, = 0, there is no field inside shell 2; hence body 1 and shell 2 have the same
potential, ¥; = V, = 0. From Eq. (3-158) we see that the coupling capacitance C,,
must vanish, since V; is arbitrary. This means that a change in ¥; will not affect Q,,
and vice versa. We then have electrostatic shielding between conducting bodies 1
and 3. Obviously, the same shielding effectiveness is obtained if the grounded con-
ducting shell 2 encloses body 3 instead of body 1.

3-11 Electrostatic Energy and Forces

In Section 3-5 we indicated that electric potential at a point in an electric field is
the work required to bring a unit positive charge from infinity (at reference zero-
potential) to that point. To bring a charge Q, (slowly, so that kinetic energy and
radiation effects may be neglected) from infinity against the field of a charge Q, in
free space to a distance R, ,, the amount of work required is

0,

Wz=Q2V2=Q2r

. (3-159)
€R

Because electrostatic fields are conservative, W, is independent of the path followed
by Q,. Another form of Eq. (3—159) is

W, = 0, 22

4meqR,,

=0,V (3—160)
This work is stored in the assembly of the two charges as potential energy. Combining
Egs. (3-159) and (3-160), we can write

W, = 3@ V1 + Q. V)). (3-161)

Now suppose another charge Q, is brought from infinity to a point that is R,;
from Q, and R, from Q,; an additional amount of work is required that equals

AW=Q3V3=Q3< 9, & ) (3-162)

4neaRy3  4megR,5
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The sum of AW in Eq. (3-162) and W, in Eq. (3—159) is the potential energy, W;,
stored in the assembly of the three charges Q,, Q,, and Q5. That is,

! (ngz 0,05 +nga>_

+
4ne, \ Ry, Ry, R,

Wy =W, + AW = (3-163)

We can rewrite W, in the following form:

_1 2, Qs 0, 2,
s = 2 [Q1<4neoR12 t 4n€0R13> + Q2<4n€0R12 + 4neoR23>
+0, ( & . O )] (3-169)

4ne,R,;  4megR,,
=3Q V1 + Q. Va + Q3V3).

In Eq. (3-164), V,, the potential at the position of Q,, is caused by charges Q, and
Qs it is different from the ¥V, in Eq. (3-160) in the two-charge case. Similarly, V,
and V; are the potentials at Q, and Q, respectively, in the three-charge assembly.

Extending this procedure of bringing in additional charges, we arrive at the
following general expression for the potential energy of a group of N discrete point
charges at rest. (The purpose of the subscript e on W, is to denote that the energy
is of an electric nature.) We have

N
1
W, = 5; 0% O, (3-169)

where V,, the electric potential at Q,, is caused by all the other charges and has the

following expression: N
i
. (3-166)
Z R,

j=1
(#k)

Two remarks are in order here. First, W, can be negative. For instance, W, in Eq.
(3-159) will be negative if Q, and Q, are of opposite signs. In that case, work is done
by the field (not against the field) established by Q, in moving Q, from infinity.
Second, W, in Eq. (3-165) represents only the interaction energy (mutual energy) and
does not include the work required to assemble the individual point charges them-
selves (self-energy).

The SI unit for energy, joule (), is too large a unit for work in physics of elemen-
tary particles, where energy is more conveniently measured in terms of a much smaller
unit called electron-volt (eV). An electron-volt is the energy or work required to move
an electron against a potential difference of one volt.

1 (eV)=(1.60 x 10719 x 1 = 1.60 x 1071 (). (3-167)

Energy in (eV) is essentially that in (J) per unit electronic charge. The proton beams
of the world’s most powerful high-energy particle accelerator collide with a kinetic

I/k=

1
4ne,
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energy of two trillion electron-volts (2 TeV), or (2 x 10'2) x (1.60 x 1071%) = 320 x
1077 (J). A binding energy of W =5 x 107'°(J) in an ionic crystal is equal to
W/e =5 x 1071%/1.60 x 10™1° = 3.125 (¢V), which is a more convenient number to
use than the one in terms of joules.

EXAMPLE 3-22 Find the energy required to assemble a uniform sphere of charge
of radius b and volume charge density p.

Solution Because of symmetry, it is simplest to assume that the sphere of charge is
assembled by bringing up a succession of spherical layers of thickness dR. At a radius
R shown in Fig. 3-38 the potential is

Or

V= 47e,R ’

where Qp is the total charge contained in a sphere of radius R:
Qg = p47R>.
The differential charge in a spherical layer of thickness dR is
dQr = pAnR*dR,

and the work or energy in bringing up dQp is
4
AW = Ve dQg = —* p2R*dR.
3¢,

Hence the total work or energy required to assemble a uniform sphere of charge of

radius b and charge density p is

4np?b®
15¢,

_ _41r 2 [ pa _
W= f aW =3 p foR dR = ). (3-168)

In terms of the total charge

4r 5
Q_pr’

FIGURE 3-38
Assembling a uniform sphere of charge (Example 3-22).
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we have
302
" 20me,b O
Equation (3—169) shows that the energy is directly proportional to the square of the

total charge and inversely proportional to the radius. The sphere of charge in Fig.
3-38 could be a cloud of electrons, for instance. —

(3-169)

For a continuous charge distribution of density p the formula for W, in Eq.
(3—165) for discrete charges must be modified. Without going through a separate
proof we replace Q, by pdv and the summation by an integration and obtain

W, =1 fy, oVdo (). (3-170)

In Eq. (3-170), V is the potential at the point where the volume charge density is p,
and V' is the volume of the region where p exists.

EXAMPLE 3-23 Solve the problem in Example 3-22 by using Eq. (3-170).

Solution In Example 322 we solved the problem of assembling a sphere of charge
by bringing up a succession of spherical layers of a differential thickness. Now we
assume that the sphere of charge is already in place. Since p is a constant, it can be
taken out of the integral sign. For a spherically symmetrical problem,

_P _P ([ 2 _
w.=% fv, Vdu—2fo V 4nR?dR, (3-171)

where V is the potential at a point R from the center. To find ¥ at R, we must find
the negative of the line integral of E in two regions: (1) E;, = agEg, from R = oo to
R=b,and (2) E, = agEg, from R =b to R = R. We have

_ Q  pb?
Eo = e B8~ 3, R2h
and
R
K, — 2, 2% P, 0<R<bh

_XR __ o
Rane,R2~ “F 3¢,

Consequently, we obtain

V= _f:E-dR = —[f: Eg;dR + f: Ede]
_ _[froet ® PR
<[ ar s 2R an]

2 2 2
_ P (e RN p (3, RT)
3¢, 2 2 3e, \2 2
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Substituting Eq. (3-172) in Eq. (3-171), we get

pmp (3., R? 5 4np?b3
= — — | = _— R R = ’
We=3 )3 <2b 5 J4mREdR = e

which is the same as the result in Eq. (3-168). -

Note that W, in Eq. (3—170) includes the work (self-energy) required to assemble
the distribution of macroscopic charges, because it is the energy of interaction of
every infinitesimal charge element with all other infinitesimal charge elements. As a
matter of fact, we have used Eq. (3-170) in Example 3-23 to find the self-energy of
a uniform spherical charge. As the radius b approaches zero, the self-energy of a
(mathematical) point charge of a given Q is infinite (see Eq. 3—-169). The self-energies
of point charges Q, are not included in Eq. (3-165). Of course, there are, strictly, no
point charges, inasmuch as the smallest charge unit, the electron, is itself a distribution
of charge.

3-11.1 ELECTROSTATIC ENERGY IN TERMS OF FIELD QUANTITIES

In Eq. (3—170) the expression of electrostatic energy of a charge distribution contains
the source charge density p and the potential function V. We frequently find it more
convenient to have an expression of W, in terms of field quantities E and/or D,
without knowing p explicitly. To this end, we substitute V - D for p in Eq. (3-170):

W, =1 fv, (V- D)V do. (3-173)
Now, using the vector identity (from Problem P.2-28),
V-(yD)=VV-D +D-VV, (3-174)
we can write Eq. (3—173) as
W=4[, v -vD)av—4 [ D-vvav

) (3-175)
=1 . 1 .
25ﬁs' VD a,,ds+2fV,D Edy,

where the divergence theorem has been used to change the first volume integral into
a closed surface integral and E has been substituted for —VV in the second volume
integral. Since ¥’ can be any volume that includes all the charges, we may choose it
to be a very large sphere with radius R. As we let R — oo, electric potential ¥ and
the magnitude of electric displacement D fall off at least as fast as 1/R and 1/R?,
respectively.! The area of the bounding surface S increases as R2. Hence the surface
integral in Eq. (3-175) decreases at least as fast as 1/R and will vanish as R — co.
We are then left with only the second integral on the right side of Eq. (3-175).

¥ For point charges V oc 1/R and D o 1/R? for dipoles V oc 1/R? and D oc 1/R?.
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=1 fy, D-Edv (). (3-176a)

Using the relation D = €E for a linear medium, Eq. (3—176a) can be written in
two other forms:

W,=1% fV, eE2dv () (3—-176b)

and

D2
W, =1 fw —d 0 (3-1760)

We can always define an electrostatic energy density w, mathematically, such
that its volume integral equals the total electrostatic energy:

W, = fy, w, dv. (3-177)
We can therefore write
w,=3D-E  (J/m?3) (3-178a)
or
w,=3€E*>  (J/m3) (3-178b)
or
DZ
w,=-—  (J/m3). (3-178¢)
2e

However, this definition of energy density is artificial because a physical justification
has not been found to localize energy with an electric field; all we know is that the
volume integrals in Egs. (3-176a, b, ¢) give the correct total electrostatic energy.

mmssm EXAMPLE 3-24 In Fig. 3-39 a parallel-plate capacitor of area S and separation d

is charged to a voltage V. The permittivity of the dielectric is €. Find the stored
electrostatic energy.

Solution With the d-¢ source (batteries) connected as shown, the upper and lower
plates are charged positive and negative, respectively. If the fringing of the field at

i

Area S

FIGURE 3-39

A charged parallel-plate capacitor (Example 3-24).
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the edges is neglected, the electric field in the dielectric is uniform (over the plate)
and constant (across the dielectric) and has a magnitude

vV
E=—.
d
Using Eq. (3-176b), we have

We—2f < )du——e( )(Sd)—-—(e%)Vz (3-179)

The quantity in the parentheses of the last expression, €S/d, is the capamtance of the
parallel-plate capacitor (see Eq. 3-136). So,

W, =1iCV? @. (3-180a)

Since Q = CV, Eq. (3—180a) can be put in two other forms:

w,=30V () (3-180b)
and
w,=Z 1)) (3-180¢)
¢~ 2C '
-—

It so happens that Eqgs. (3—180a, b, ¢) hold true for any two-conductor capac1tor
(see Problem P.3—43).

EXAMPLE 3-25 Use energy formulas (3—176) and (3—180) to find the capacitance
of a cylindrical capacitor having a length L, an inner conductor of radius a, an outer
conductor of inner radius b, and a dielectric of permittivity €, as shown in Fig. 3-29.

Solution By applying Gauss’s law, we know that

Q

a<r<b.
" 2meLr’

E=aFE =a

The electrostatic energy stored in the dielectric region is, from Eq. (3—-176b),

1 m Q0 \?

W, =3k €<2n I ) (L2rrdr)
0% dr 0? In
41reL r = 4nel

(3-181)
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On the other hand, W, can also be expressed in the form of Eq. (3—180c). Equating
(3-180c) and (3-181), we obtain

Q*_ @ b
x _ InZ
2C  4zel f a
or
C— 27‘(6151,
In -
a
which is the same as that given in Eq. (3~139). -

3-11.2 ELECTROSTATIC FORCES

Coulomb’s law governs the force between two point charges. In a more complex sys-
tem of charged bodies, using Coulomb’s law to determine the force on one of the
bodies that is caused by the charges on other bodies would be very tedious. This
would be so even in the simple case of finding the force between the plates of a charged
parallel-plate capacitor. We will now discuss a method for calculating the force on
an object in a charged system from the electrostatic energy of the system. This method
is based on the principle of virtual displacement. We will consider two cases: (1) that
of an isolated system of bodies with fixed charges, and (2) that of a system of conduct-
ing bodies with fixed potentials.

System of Bodies with Fixed Charges We consider an isolated system of charged
conducting, as well as dielectric, bodies separated from one another with no connec-
tion to the outside world. The charges on the bodies are constant. Imagine that the
electric forces have displaced one of the bodies by a differential distance d¢ (a virtual
displacement). The mechanical work done by the system would be

dW =F, - de, (3-182)

where F, is the total electric force acting on the body under the condition of constant
charges. Since we have an isolated system with no external supply of energy, this
mechanical work must be done at the expense of the stored electrostatic energy; that
is,

dW = —dW, = F, - de. (3-183)

Noting from Eq. (2-88) in Section 2—6 that the differential change of a scalar resulting
from a position change d¢ is the dot product of the gradient of the scalar, and d¢, we
write

dw, = (VW) - d¢. (3-184)

Since d¢ is arbitrary, comparison of Egs. (3-183) and (3~184) leads to

Fo=-VW, (N). (3-185)
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Equation (3-185) is a very simple formula for the calculation of F,, from the electro-
static energy of the system. In Cartesian coordinates the component forces are

oW,

(Fo)x = o (3-186a)
A

(Fo)y = R (3-186b)
ow,

(Fo), = — 5 (3—186¢)

If the body under consideration is constrained to rotate about an axis, say the
z-axis, the mechanical work done by the system for a virtual angular displacement
d¢ would be

dW = (Tg). d¢, ' (3-187)

where (T)), is the z-component of the torque acting on the body under the condition
of constant charges. The foregoing procedure will lead to

ow,
(Ty). = “?f (N-m). (3-188)

System of Conducting Bodies with Fixed Potentials Now consider a system in which
conducting bodies are held at fixed potentials through connections to such external
sources as batteries. Uncharged dielectric bodies may also be present. A displacement
d¢ by a conducting body would result in a change in total electrostatic energy and
would require the sources to transfer charges to the conductors in order to keep them
at their fixed potentials. If a charge dQ, (which may be positive or negative) is added
to the kth conductor that is maintained at potential V;, the work done or energy sup-
plied by the sources is V; dQ,. The total energy supplied by the sources to the system
is

aw, = Z V, dQy. (3-189)
k

The mechanical work done by the system as a consequence of the virtual displace-
ment is
dW =F, - de, (3-190)

where F, is the electric force on the conducting body under the condition of constant
potentials. The charge transfers also change the electrostatic energy of the system by
an amount dW,, which, in view of Eq. (3-165), is

1

1
dw, =3 Zk: hdQ, = 5 dW, (3-191)
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Conservation of energy demands that

dW + dW, = dW,. (3-192)
Substitution of Eqs. (3-189), (3-190), and (3—-191) in Eq. (3-192) gives
Fy +df = dw,
= (VW)- dt
or
F,=VW, (N) (3-193)

Comparison of Eqgs. (3~193) and (3—185) reveals that the only difference between the
formulas for the electric forces in the two cases is in the sign. It is clear that if the con-
ducting body is constrained to rotate about the z-axis, the z-component of the electric
torque will be

ow, .
(TV)Z = W (N m)’ (3_194)

which differs from Eq. (3—188) also only by a sign change.

EXAMPLE 3-26 Determine the force on the conducting plates of a charged parallel-
plate capacitor. The plates have an area S and are separated in air by a distance x.

Soiution We solve the problem in two ways: (a) by assuming fixed charges, and then
(b) by assuming fixed potentials. The fringing of field around the edges of the plates
will be neglected.

a) Fixed charges. With fixed charges +Q on the plates, an electric field intensity
E, = Q/(€,S) = V/x exists in the air between the plates regardless of their separa-
tion (unchanged by a virtual displacement). From Eq. (3—180b),

W, =3QV = 30E.x,
where Q and E, are constants. Using Eq. (3—186a), we obtain
| (Fp) = 0 1QEx— lQE——Q2 3-195
T ax\27TT )T 27T 2¢,8] ( )
where the negative signs indicate that the force is opposite to the direction of
increasing x. It is an attractive force.

b) Fixed potentials. With fixed potentials it is more convenient to use the expression
in Eq. (3-180a) for W,. Capacitance C for the parallel-plate air capacitor is €,5/x.
We have, from Eq. (3-193),

_OW, 3 (1 N V2 (€S €SV?
Bk =55 —5;(§CV )“75(?% T 099
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How different are (Fy), in Eq. (3-195) and (F,), in Eq. (3-196)? Recalling the

relation
|4
0=cyv=5
x
we find
(FQ)x = (FV)x' (3‘197)

The force is the same in both cases in spite of the apparent sign difference in the for-
mulas as expressed by Eqs. (3—185) and (3~193). A little reflection on the physical
problem will convince us that this must be true. Since the charged capacitor has fixed
dimensions, a given Q will result in a fixed V, and vice versa. Therefore there is a
unique force between the plates regardless of whether Q or V is given, and the force
certainly does not depend on virtual displacements. A change in the conceptual con-
straint (fixed Q or fixed V) cannot change the unique force between the plates.

-

The preceding discussion holds true for a general charged two-conductor capaci-
tor with capacitance C. The electrostatic force F, in the direction of a virtual displace-
ment d¢ for fixed charges is

oW, o (0¥ Q* dC
Foe=~%7= "% (ﬁ) =2 (3-198)
For fixed potentials,
oW, 0 (1 2 V26C_Q2 oc
=37 = &(z cv ) “2 a3 (-1%9)

It is clear that the forces calculated from the two procedures, which assumed different
constraints imposed on the same charged capacitor, are equal.

Review Questions

R.3-1 Write the differential form of the fundamental postulates of electrostatics in free
space.

R.3-2 Under what conditions will the electric field intensity be both solenoidal and
irrotational?

R.3-3 Write the integral form of the fundamental postulates of electrostatics in free space,
and state their meaning in words.

R.3-4 When the formula for the electric field intensity of a point charge, Eq. (3-12), was
derived,

a) why was it necessary to stipulate that q is in a boundless free space?

b) why did we not construct a cubic or a cylindrical surface around g?

R.3-5 In what ways does the electric field intensity vary with distance for
a) a point charge? b) an electric dipole?
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R.3-6 State Coulomb’s law.
R.3-7 Explain the principle of operation of ink-jet printers.

R.3-8 State Gauss's law. Under what conditions is Gauss’s law especially useful in
determining the electric field intensity of a charge distribution?

R.3-9 Describe the ways in which the electric field intensity of an infinitely long, straight
line charge of uniform density varies with distance.

R.3-10 Is Gauss’s law useful in finding the E field of a finite line charge? Explain.

R.3-11 See Example 3—6, Fig. 3-9. Could a cylindrical pillbox with circular top and
bottom faces be chosen as a Gaussian surface? Explain.

R.3-12 Make a two-dimensional sketch of the electric field lines and the equipotential lines
of a point charge.

R.3-13 At what value of 6 is the E field of a z-directed electric dipole pointed in the
negative z-direction?

R.3-14 Refer to Eq. (3—64). Explain why the absolute sign around z is required.

R.3-15 If the electric potential at a point is zero, does it follow that the electrical field
intensity is also zero at that point? Explain.

R.3-16 If the electric field intensity at a point is zero, does it follow that the electric
potential is also zero at that point? Explain.

R.3-17 If an uncharged spherical conducting shell of a finite thickness is placed in an
external electric field E,, what is the electric field intensity at the center of the shell? Describe
the charge distributions on both the outer and the inner surfaces of the shell.

R.3-18 What are electrets? How can they be made?

R.3-19 Can V'(1/R) in Eq. (3—-84) be replaced by V(1/R)? Explain.

R.3-20 Define polarization vector. What is its SI unit?

R.3-21 What are polarization charge densities? What are the SI units for P - a, and V - P?
R.3-22 What do we mean by simple medium?

R.3-23 What properties do anisotropic materials have?

R.3-24 What characterizes a uniaxial medium?

R.3-25 Define electric displacement uéctor. What is its SI unit?

R.3-26 Define electric susceptibility. What is its unit?

R.3-27 What is the difference between the permittivity and the dielectric constant of a
medium?

R.3-28 Does the electric flux density due to a given charge distribution depend on the
properties of the medium? Does the electric field intensity? Explain.

R.3-29 What is the difference between the dielectric constant and the dielectric strength of a
dielectric material?

R.3-30 Explain the principle of operation of lightning arresters.

R.3-31 What are the general boundary conditions for electrostatic fields at an interface
between two different dielectric media?

R.3-32 What are the boundary conditions for electrostatic fields at an interface between a
conductor and a dielectric with permittivity €?
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R.3-33 What is the boundary condition for electrostatic potential at an interface between
two different dielectric media?

R.3-34 Does a force exist between a point charge and a dielectric body? Explain.
R.3-35 Define capacitance and capacitor.

R.3-36 Assume that the permittivity of the dielectric in a parallel-plate capacitor is not
constant. Will Eq. (3—136) hold if the average value of permittivity is used for € in the
formula? Explain.

R.3-37 Given three 1-uF capacitors, explain how they should be connected in order to
obtain a total capacitance of

a) § (uF), b) % (uF), ¢) 3 (uF), d) 3 (uF).
R.3-38 What are coefficients of potential, coefficients of capacitance, and coefficients of
induction?

R.3-39 What are partial capacitances? How are they different from coefficients of
capacitance?

R.3-40 Explain the principle of electrostatic shielding.
R.3-41 What is the definition of an electron-volt? How does it compare with a joule?

R.3-42 What is the expression for the electrostatic energy of an assembly of four discrete
point charges?

R.3-43 What is the expression for the electrostatic energy of a continuous distribution of
charge in a volume? on a surface? along a line?

R.3-44 Provide a mathematical expression for electrostatic energy in terms of E and/for D.
R.3-45 Discuss the meaning and use of the principle of virtual displacement.

R.3-46 What is the relation between the force and the stored energy in a system of stationary
charged objects under the condition of constant charges? Under the condition of fixed
potentials?

Problems

P.3-1 Refer to Fig. 3-4.
a) Find the relation between the angle of arrival, o, of the electron beam at the screen
and the deflecting electric field intensity E,.
b) Find the relation between w and L such that d, = d,/20.

P.3-2 The cathode-ray oscilloscope (CRO) shown in Fig. 3-4 is used to measure the
voltage applied to the paralle! deflection plates.
a) Assuming no breakdown in insulation, what is the maximum voltage that can be
measured if the distance of separation between the plates is 4?
b) What is the restriction on L if the diameter of the screen is D?
€) What can be done with a fixed geometry to double the CRO’s maximum
measurable voltage?

P.3-3 The deflection system of a cathode-ray oscilloscope usually consists of two pairs of
parallel plates producing orthogonal electric fields. Assume the presence of another set of
plates in Fig. 3—4 that establishes a uniform electric field E, = a_E, in the deflection region.
Deflection voltages v,(t) and v,(t) are applied to produce E, and E,, respectively. Determine
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the types of waveforms that v,(r) and v,(t) should have if the electrons are to trace the
following graphs on the fluorescent screen:

a) a horizontal line,

b) a straight line having a negative unity slope,

¢) a circle,

d) two cycles of a sine wave.

P.3—4 Write a short article explaining the principle of operation of xerography. (Use library
resources if needed.)

P.3-5 Two point charges, Q, and Q,, are located at (1, 2, 0) and (2, 0, 0), respectively. Find
the relation between Q, and @, such that the total force on a test charge at the point
P(—1, 1, 0) will have

a) no x-component, b) no y-component.

P.3-6 Two very small conducting spheres, each of a mass 1.0 x 10™* (kg), are suspended
at a common point by very thin nonconducting threads of a length 0.2 (m). A charge Q is
placed on each sphere. The electric force of repulsion separates the spheres, and an
equilibrium is reached when the suspending threads make an angle of 10°. Assuming a
gravitational force of 9.80 (N/kg) and a negligible mass for the threads, find Q.

P.3—7 Find the force between a charged circular loop of radius b and uniform charge
density p, and a point charge @ located on the loop axis at a distance h from the plane of
the loop. What is the force when h > b, and when h = 0? Plot the force as a function of h.

P.3-8 A line charge of uniform density p, in free space forms a semicircle of radius b.
Determine the magnitude and direction of the electric field intensity at the center of the
semicircle.

P.3-9 Three uniform line charges—p,;, p,;, and p,,, each of length L—form an equilateral
triangle. Assuming that p,, = 2p,, = 2p,;, determine the electric field intensity at the center
of the triangle.

P.3-10 Assuming that the electric field intensity is E = a,100x (V/m), find the total electric
charge contained inside
a) a cubical volume 100 (mm) on a side centered symmetrically at the origin,
b) a cylindrical volume around the z-axis having a radius 50 (mm) and a height 100 (mm)
centered at the origin.

P.3-11 A spherical distribution of charge p = po[1 ~ (R?*/b?)] exists in the region
0 < R < b. This charge distribution is concentrically surrounded by a conducting shell
with inner radius R, (>b) and outer radius R,. Determine E everywhere.

P.3-12 Two infinitely long coaxial cylindrical surfaces, r = a and r = b (b > a), carry
surface charge densities p,, and p,,, respectively.

a) Determine E everywhere.

b) What must be the relation between a and b in order that E vanishes for r > b?
P.3-13 Determine the work done in carrying a —2 (uC) charge from P,(2,1, —1) to
P,8,2, —1)in the field E=a,y + a,x

a) along the parabola x = 2y?,

b) along the straight line joining P, and P,.

P.3-14 At what values of 8 does the electric field intensity of a z-directed dipole have no
z-component?

P.3—15 Three charges (+g, —2g, and +q) are arranged along the z-axis at z = d/2, z = 0,
and z = —d/2, respectively.
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a) Determine V and E at a distant point P(R, 6, ¢).
b) Find the equations for equipotential surfaces and streamlines.
c) Sketch a family of equipotential lines and streamlines.
(Such an arrangement of three charges is called a linear electrostatic quadrupole.)

P.3-16 A finite line charge of length L carrying uniform line charge density p, is coincident
with the x-axis.

a) Determine V in the plane bisecting the line charge.

b) Determine E from p, directly by applying Coulomb’s law.

¢) Check the answer in part (b) with —VV.

P3-17 In Example 3-5 we obtained the electric field intensity around an infinitely long
line charge of a uniform charge density in a very simple manner by applying Gauss’s law.
Since |E| is a function of r only, any coaxial cylinder around the infinite line charge is an
equipotential surface. In practice, all conductors are of finite length. A finite line charge
carrying a constant charge density p, along the axis, however, does not produce a constant
potential on a concentric cylindrical surface. Given the finite line charge p, of length L in
Fig. 3-40, find the potential on the cylindrical surface of radius b as a function of x and
plot it.

FIGURE 3-40
A finite line charge (Problem P.3-17).

(Hint: Find dV at P due to charge p,dx’ and integrate.)

P.3-18 A charge Q is distributed uniformly over an L x L square plate. Determine ¥V and
E at a point on the axis perpendicular to the plate and through its center.

P.3-19 A charge Q is distributed uniformly over the wall of a circular tube of radius b
and height h. Determine V and E on its axis

a) at a point outside the tube, then

b) at a point inside the tube.

P.3-20 An early model of the atomic structure of a chemical element was that the atom
was a spherical cloud of uniformly distributed positive charge Ne, where N is the atomic
number and e is the magnitude of electronic charge. Electrons, each carrying a negative
charge —e, were considered to be imbedded in the cloud. Assuming the spherical charge
cloud to have a radius R, and neglecting collision effects,

a) find the force experienced by an imbedded electron at a distance r from the center;

b) describe the motion of the electron;

¢) explain why this atomic model is unsatisfactory.
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P.3-21 A simple classical model of an atom consists of a nucleus of a positive charge Ne
surrounded by a spherical electron cloud of the same total negative charge. (N is the atomic
number and e is the magnitude of electronic charge.) An external electric field E, will cause
the nucleus to be displaced a distance r, from the center of the electron cloud, thus polarizing
the atom. Assuming a uniform charge distribution within the electron cloud of radius b, find

To-

P.3-22 The polarization in a dielectric cube of side L centered at the origin is given b
P =P, a,x +a,y+a,z) :
a) Determine the surface and volume bound-charge densities.
b) Show that the total bound charge is zero.

P.3-23 Determine the electric field intensity at the center of a small spherical cavity cut
out of a large block of dielectric in which a polarization P exists.

P.3-24 Solve the following problems:

a) Find the breakdown voltage of a parallel-plate capacitor, assuming that conducting
plates are 50 (mm) apart and the medium between them is air.

b) Find the breakdown voltage if the entire space between the conducting plates is
filled with plexiglass, which has a dielectric constant 3 and a dielectric strength
20 (kV/mm).

¢) If a 10-(mm) thick plexiglass is inserted between the plates, what is the maximum
voltage that can be applied to the plates without a breakdown?

P.3-25 Assume that the z = 0 plane separates two lossless dielectric regions with €, =2
and ¢€,, = 3. If we know that E, in region 1 is a,2y — a,3x + a,(5 + z), what do we also
know about E, and D, in region 2? Can we determine E, and D, at any point in region
2? Explain.

P.3-26 Determine the boundary conditions for the tangential and the normal components
of P at an interface between two petfect dielectric media with dielectric constants €,

and e,,.

P.3-27 What are the boundary conditions that must be satisfied by the electric potential
at an interface between two perfect dielectrics with dielectric constants €,; and ¢,,?

P.3-28 Dielectric lenses can be used to collimate electromagnetic fields. In Fig. 341 the
left surface of the lens is that of a circular cylinder, and the right surface is a plane. If E;
at point P(r,, 45°, z) in region 1 is a,5 — a,3, what must be the dielectric constant of the
lens in order that E, in region 3 is parallel to the x-axis?

b4

FIGURE 3-41
A dielectric lens (Problem P.3-28).
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P.3-29 Refer to Example 3-16. Assuming the same r; and r, and requiring the maximum
electric field intensities in the insulating materials not to exceed 25% of their dielectric
strengths, determine the voltage rating of the coaxial cable

a) ifr, = 1.75r;

b) if r, = 1.35r,.

¢) Plot the variations of E, and V versus r for both part (a) and part (b).

P.3-30 The space between a parallel-plate capacitor of area § is filled with a dielectric
whose permittivity varies linearly from €, at one plate (y = 0) to ¢, at the other plate
(y = d). Neglecting fringing effect, find the capacitance.

P.3-31 Assume that the outer conductor of the cylindrical capacitor in Example 3-18 is
grounded and that the inner conductor is maintained at a potential V.
a) Find the electric field intensity, E(a), at the surface of the inner conductor.
b) With the inner radius, b, of the outer conductor fixed, find a so that E(a) is
minimized.
¢) Find this minimum E(a).
d) Determine the capacitance under the conditions of part (b).

P.3-32 The radius of the core and the inner radius of the outer conductor of a very long
coaxial transmission line are r; and r,, respectively. The space between the conductors is
filled with two coaxial layers of dielectrics. The dielectric constants of the dielectrics are e,
for r, <r < b and ¢, for b < r < r,. Determine its capacitance per unit length.

P.3-33 A cylindrical capacitor of length L consists of coaxial conducting surfaces of radii
r; and r,. Two dielectric media of different dielectric constants ¢,, and ¢,, fill the space
between the conducting surfaces as shown in Fig. 3-42. Determine its capacitance.

FIGURE 3-42
A cylindrical capacitor with two dielectric media
(Problem P.3-33).

P.3-34 A capacitor consists of two coaxial metallic cylindrical surfaces of a length 30 (mm)
and radii 5 (mm) and 7 (mm). The dielectric material between the surfaces has a relative
permittivity €, = 2 + (4/r), where r is measured in mm. Determine the capacitance of the
capacitor.

P.3-35 Assuming the earth to be a large conducting sphere (radius = 6.37 x 103 km)
surrounded by air, find

a) the capacitance of the earth; .

b) the maximum charge that can exist on the earth before the air breaks down.

P.3-36 Determine the capacitance of an isolated conducting sphere of radius b that is
coated with a dielectric layer of uniform thickness d. The dielectric has an electric
susceptibility y,. '
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P.3-37 A capacitor consists of two concentric spherical shells of radii R, and R,. The space
between them is filled with a dielectric of relative permittivity €, from R; to H(R; < b < R,)
and another dielectric of relative permittivity 2¢, from b to R,.

a) Determine E and D everywhere in terms of an applied voltage V.

b) Determine the capacitance.

P.3-38 The two parallel conducting wires of a power transmission line have a radius a and
are spaced at a distance d apart. The wires are at a height h above the ground. Assuming
the ground to be perfectly conducting and both d and h to be much larger than q, find the
expressions for the mutual and self-partial capacitances per unit length.

P.3-39 An isolated system consists of three very long parallel conducting wires. The axes
of all three wires lie in a plane. The two outside wires are of a radius b and both are at a
distance d = 500b from a center wire of a radius 2b. Determine the partial capacitances per
unit length.

P.3-40 Calculate the amount of electrostatic energy of a uniform sphere of charge with
radius b and volume charge density p stored in the following regions:

a) inside the sphere,

b) outside the sphere.
Check your results with those in Example 3-22.

P.3-41 Einstein’s theory of relativity stipulates that the work required to assemble a
charge is stored as energy in the mass and is equal to mc?, where m is the mass and

c =3 x 108 (m/s) is the velocity of light. Assuming the electron to be a perfect sphere, find
its radius from its charge and mass (9.1 x 1073! kg).

P.3-42 Find the electrostatic energy stored in the region of space R > b around an electric
dipole of moment p.

P.3-43 Prove that Eqs. (3—180) for stored electrostatic energy hold true for any
two-conductor capacitor.

P.3-44 A parallel-plate capacitor of width w, length L, and separation d is partiaily filled
with a dielectric medium of dielectric constant ¢,, as shown in Fig. 3-43. A battery of V;
volts is connected between the plates.

a) Find D, E, and p, in each region.

b) Find distance x such that the electrostatic energy stored in each region is the same.

FIGURE 3-43
A parallel-plate capacitor (Problem P.3-44).

I S

P.3-45 Using the principle of virtual displacement, derive an expression for the force
between two point charges +Q and —Q separated by a distance x in free space.

P3-46 A constant voltage V, is applied to a partially filled parallel-plate capacitor shown
in Fig. 3-44. The permittivity of the dielectric is €, and the area of the plates is S. Find the
force on the upper plate.

P.3—47 The conductors of an isolated two-wire transmission line, each of radius b, are
spaced at a distance D apart. Assuming D >» b and a voltage V, between the lines, find the
force per unit length on the lines.
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1+

1

FIGURE 3-44
A parallel-plate capacitor (Problem P.3-46).

P.3-48 A parallel-plate capacitor of width w, length L, and separation d has a solid
dielectric slab of permittivity € in the space between the plates. The capacitor is charged to
a voltage ¥, by a battery, as indicated in Fig. 3—45. Assuming that the dielectric slab is
withdrawn to the position shown, determine the force acting on the slab

a) with the switch closed,

b) after the switch is first opened.

O—X—"

L

FIGURE 3-45
A partially filled parallel-plate capacitor (Problem P.3-48).
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Electrostatic Problems

Introduction

4-2

Electrostatic problems are those which deal with the effects of electric charges at rest.
These problems can present themselves in several different ways according to what is
initially known. The solution usually calls for the determination of electric potential,
electric field intensity, and/or electric charge distribution. If the charge distribution
is given, both the electric potential and the electric field intensity can be found by the
formulas developed in Chapter 3. In many practical problems, however, the exact
charge distribution is not known everywhere, and the formulas in Chapter 3 cannot
be applied directly for finding the potential and field intensity. For instance, if the
charges at certain discrete points in space and the potentials of some conducting
bodies are given, it is rather difficult to find the distribution of surface charges on the
conducting bodies and/or the electric field intensity in space. When the conducting
bodies have boundaries of a simple geometry, the method of images may be used to
great advantage. This method will be discussed in Section 4-4.

In another type of problem the potentials of all conducting bodies may be known,
and we wish to find the potential and field intensity in the surrounding space as
well as the distribution of surface charges on the conducting boundaries. Differential
equations must be solved subject to the appropriate boundary conditions. These are
boundary-value problems. The techniques for solving boundary-value problems in the
various coordinate systems will be discussed in Sections 45 through 4-7.

Poisson’s and Laplace’s Equations

152

In Section 3-8 we pointed out that Egs. (3-98) and (3-5) are the two fundamental
governing differential equations for electrostatics in any medium. These equations are
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repeated below for convenience.
Eq.(3-98: V-D=p. (4-1)
Eq. (3-5) VxE=0. 4-2)

The irrotational nature of E indicated by Eq. (4-2) enables us to define a scalar
electric potential V¥, as in Eq. (3-43).

Eq. (3-43): E=-VV. 4-3)
In a linear and isotropic medium D = ¢E, and Eq. (4~1) becomes
V:€¢E =p. (4-4)
Substitution of Eq. (4-3) in Eq. (4—4) yields
V- (VV) = —p, (4-5)

where € can be a function of position. For a simple medium; that is, for a medium
that is also homogeneous, € is a constant and can then be taken out of the divergence
operation. We have

vy = £ (4-6)
€

In Eq. (4-6) we have introduced a new operator, V(del square), the Laplacian
operator, which stands for “the divergence of the gradient of,” or V- V. Equation
(4-6) is known as Poisson’s equation; it states that the Laplacian (the divergence of
the gradient) of V equals — p/e for a simple medium, where € is the permittivity of
the medium (which is a constant) and p is the volume density of free charges (which
may be a function of space coordinates).

Since both divergence and gradient operations involve first-order spatial deriv-
atives, Poisson’s equation is a second-order partial differential equation that holds
at every point in space where the second-order derivatives exist. In Cartesian coor-
dinates,

0 0 0 av ov ov
VY =V -VV = — — -1 hd bl hAAR N
(ax o +a, oy +a, 62) (ax x +a, 3y + a, 62)’
and Eq. (4-6) becomes

v o’V VvV P
g P v, 4-7
Fecig oy? M € (V/m’) @7

Similarly, by using Egs. (2-93) and (2-110) we can easily verify the following expres-
sions for V2V in cylindrical and spherical coordinates.
Cylindrical coordinates:

10 oV 1 0*’v v
21 — — _ .
VY = <r6r>+r26¢2+022 (4-8)

r or
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Spherical coordinates:

1 o[ oV 19 v 1 o
Vvy=—— (R V4~ gnol )y - 9V _
R 3R (R 6R>+R2 sin 6 06 (Sme 60>+R2 snzgog? 7

The solution of Poisson’s equation in three dimensions subject to prescribed boundary
conditions is, in general, not an easy task.

At points in a simple medium where there is no free charge, p = 0 and Eq. (4-6)
reduces to

ViV =0, (4-10)

which is known as Laplace’s equation. Laplace’s equation occupies a very important
position in electromagnetics. It is the governing equation for problems involving a
set of conductors, such as capacitors, maintained at different potentials. Once V is
found from Eq. (4-10), E can be determined from — VV, and the charge distribution
on the conductor surfaces can be determined from p, = €E, (Eq. 3-72).

EXAMPLE 4-1 The two plates of a parallel-plate capacitor are separated by a dis-
tance d and maintained at potentials 0 and V;, as shown in Fig. 4-1. Assuming negli-
gible fringing effect at the edges, determine (a) the potential at any point between the
plates, and (b) the surface charge densities on the plates.

Solution

a) Laplace’s equation is the governing equation for the potential between the plates,
since p = 0 there. Ignoring the fringing effect of the electric field is tantamount
to assuming that the field distribution between the plates is the same as though
the plates were infinitely large and that there is no variation of V in the x and z
directions. Equation (4—7) then simplifies to

d*v
—— =0, 4-11
e (4-11)
where d?/dy? is used instead of 8%/0y?, since y is the only space variable here.
Integration of Eq. (4—11) with respect to y gives

av

=,

dy !
FIGURE 4-1

A parallel-plate capacitor (Example 4-1).
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where the constant of integration C, is yet to be determined. Integrating again,
we obtain
V=Cy+C,. 4-12)
Two boundary conditions are required for the determination of the two constants
of integration, C, and C,:
Aty=0, V=0 (4-13a)
Aty=d, V=V, @-13b)
Substitution of Egs. (4—13a) and (4—13b) in Eq. (4-12) yields immediately C, =
V,/d and C, = 0. Hence the potential at any point y between the plates is, from
Eq. (4-12),
Vo
v=="2y (4-14)

The potential increases linearly from y =0to y =d.

b) In order to find the surface charge densities, we must first find E at the conducting
plates at y = 0 and y = d. From Eqs. (4-3) and (4-14) we have
av Vs
y o T Ty
dy d
which is a constant and is independent of y. Note that the direction of E is opposite

to the direction of increasing V. The surface charge densities at the conducting
plates are obtained by using Eq. (3-72),

E=—a 4-15)

E,=a,-E= B—s.
€
At the lower plate,
V eV
a, = a,, Enl = —70’ Pse dO
At the upper plate,
Vo AN
= — E = — = —
a, aya nu d Psu d
Electric field lines in an electrostatic field begin from positive charges and end in
negative charges. -

mssmemm EXAMPLE 4-2 Determine the E field both inside and outside a spherical cloud of
electrons with a uniform volume charge density p = —p, (Where p, is a positive
quantity) for 0 < R < b and p =0 for R > b by solving Poisson’s and Laplace’s
equations for V.

Solution We recall that this problem was solved in Chapter 3 (Example 3-7) by
applying Gauss’s law. We now use the same problem to illustrate the solution of
one-dimensional Poisson’s and Laplace’s equations. Since there are no variations in
# and ¢ directions, we are dealing only with functions of R in spherical coordinates.
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a) Inside the cloud,

In this region, Poisson’s equation (V2V; = — p/e,) holds. Dropping 4/00 and 6/0¢
terms from Eq. (4-9), we have

1 d (padVi) _Po
R? dR dR €

d , 4V, _Po 2
dR(R dR>_€OR. 4-16)

Integration of Eq. (4—16) gives
d Vi Po G
R .
dR 3¢, TR R?
The electric field intensity inside the electron cloud is

E =-VV = —aR<%—II:~i>.

Since E; cannot be infinite at R = 0, the integration constant C, in Eq. (4-17)
must vanish. We obtain

E = —ag 3”6" R, O0<R<b (4-18)
0

which reduces to

@-17)

b) Outside the cloud,
R>b, p=0.
Laplace’s equation holds in this region. We have V2V, = 0 or

1 o[ ,dV,
Integrating Eq. (4-19), we obtain
WV, _ G 4-20)
dR  R? @
or
dv, C,

E, = —VV, = —a, (4-21)

= —Qp —=-
dR RR?
The integration constant C, can be found by equating E, and E; at R = b, where
there is no discontinuity in medium characteristics.

Cs_ po
b 3¢,
from which we find
£ob? 4-22)
2= 360
and
3
E, = pob R>b. (4-23)

0 R3 R2’ =
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Since the total charge contained in the electron cloud is
4z
0= —po ? b 3’

Eq. (4-23) can be written as
Y

= aR = A
? 4me,R>

which is the familiar expression for the electric field intensity at a point R from
a point charge Q. -

E (4-24)

Further insight to this problem can be gained by examining the potential as a
function of R. Integrating Eq. (4-17), remembering that C; = 0, we have
R2
V= Po
6e,

It is important to note that C; is a new integration constant and is not the same as
C,. Substituting Eq. (4-22) in Eq. (4-20) and integrating, we obtain
pob?

V,=— C,. 4-26
4 3€0R + 2 ( )

However, Cj, in Eq. (4-26) must vanish, since ¥, is zero at infinity (R — o0). As electro-
static potential is continuous at a boundary, we determine C'; by equating V; and

V,at R = b
pob? pob?
C,=—
6¢, & 3¢q
or
pob?
" . 4-27
Cl 260 s ( )
and, from Eq. (4-25),
2 2
v=_fo 7 RN (4-28)
360 \ 2 2

We see that ¥, in Eq. (4-28) is the same as V in Eq. (3-172), with p = —p,.

4-3 Uniqueness of Electrostatic Solutions

In the two relatively simple examples in the last section we obtained the solutions
by direct integration. In more complicated situations, other methods of solution
must be used. Before these methods are discussed, it is important to know that a
solution of Poisson’s equation (of which Laplace’s equation is a special case) that
satisfies the given boundary conditions is a unique solution. This statement is called
the uniqueness theorem. The implication of the uniqueness theorem is that a solution
of an electrostatic problem satisfying its boundary conditions is the only possible
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FIGURE 4-2
Surface S, enclosing volume 7 with conducting bodies.

solution, irrespective of the method by which the solution is obtained. A solution ob-
tained even by intelligent guessing is the only correct solution. The importance of this
theorem will be appreciated when we discuss the method of images in Section 4—4.

To prove the uniqueness theorem, suppose a volume 7 is bounded outside by a
surface S,, which may be a surface at infinity. Inside the closed surface S, there are
a number of charged conducting bodies with surfaces S, S,,..., S, at specified
potentials, as depicted in Fig. 4-2. Now assume that, contrary to the uniqueness
theorem, there are two solutions, ¥, and V,, to Poisson’s equation in 7

V2V, = _ﬂ, (4-29a)
! €
vy, = 2. (4-29b)
€
Also assume that both ¥, and V, satisfy the same boundary conditions on §,,
S,,...,8,and §,. Let us try to define a new difference potential:
I/;i = Vl —_ Vz. (4_30)

From Eqs. (4-29a) and (4-29b) we see that V, satisfies Laplace’s equation in 1:
V2V, = 0. (4-31)

On conducting boundaries the potentials are specified and V; = 0.
Recalling the vector identity (Problem P.2-28),

V- (fA)=fV-A+ A VS, 4-32)
and letting f = ¥, and A = VV,; we have
V- (V,VV) =V, V3V, + |[VV,%, 4-33)

where, because of Eq. (4-31), the first term on the right side vanishes. Integration
of Eq. (4-33) over the volume 7 yields

G0V a,ds = [|vWfas -39

where a, denotes the unit normal outward from . Surface S consists of S, as well as
S;,8,,...,and S,. Over the conducting boundaries, V; = 0. Over the large surface
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S,, which encloses the whole system, the surface integral on the left side of Eq. (4-34)
can be evaluated by considering S, as the surface of a very large sphere with radius R.
As R increases, both ¥, and V, (and therefore also V) fall off as 1/R; consequently,
VV, falls off as 1/R?, making the integrand (V, VV,) fall off as 1/R>. The surface area
§,, however, increases as R%. Hence the surface integral on the left side of Eq. (4-34)
decreases as 1/R and approaches zero at infinity. So must also the volume integral
on the right side. We have

[ vvpan=o. (4-35)

Since the integrand |V V,,|2 is nonnegative everywhere, Eq. (4-35) can be satisfied only
if [V¥| is identically zero. A vanishing gradient everywhere means that ¥, has the
same value at all points in 7 as it has on the bounding surfaces, §,, S,,. .., Sn
where V; = 0. It follows that ¥, = 0 throughout the volume . Therefore V, = V,,
and there is only one possible solution.

It is easy to see that the uniqueness theorem holds if the surface charge distri-
butions (p, = €E, = —e0V/0n), rather than the potentials, of the conducting bodies
are specified. In such a case, V¥, will be zero, which in turn, makes the left side of
Eq. (4-34) vanish and leads to the same conclusion. In fact, the uniqueness theorem
applies even if an inhomogeneous dielectric (one whose permittivity varies with posi-
tion) is present. The proof, however, is more involved and will be omitted here.

Method of Images

There is a class of electrostatic problems with boundary conditions that appear to
be difficult to satisfy if the governing Poisson’s or Laplace’s equation is to be solved
directly, but the conditions on the bounding surfaces in these problems can be set
up by appropriate image (equivalent) charges, and the potential distributions can
then be determined in a straightforward manner. This method of replacing bounding
surfaces by appropriate image charges in licu of a formal solution of Poisson’s or
Laplace’s equation is called the method of images.

Consider the case of a positive point charge, Q, located at a distance d above a
large grounded (zero-potential) conducting plane, as shown in Fig. 4-3(a). The prob-
lem is to find the potential at every point above the conducting plane (y > 0). The
formal procedure for doing so would be to solve Laplace’s equation in Cartesian
coordinates:

v vV v
Freag oy? T =

which must hold for y > 0 except at the point charge. The solution V(x, y, z) should
satisfy the following conditions:

ViV = 0, 4-36)

1. At all points on the grounded conducting plane, the potential is zero; that is,
V(x,0,z)=0.
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P(x, y, 2)

y
0, d, 0)
Grounded
plane conductor -
- ;
(a) Physical arrangement.
(Imag—chharge)
(b) Image charge and field lines.
FIGURE 4-3

Point charge and grounded plane conductor.

2. At points very close to Q the potential approaches that of the point charge alone;
that is

0
—— as R - 0,
- 47e,R -
where R is the distance to Q.
3. At points very far from Q(x - + 0,y = +00, or z —» +00) the potential ap-
proaches zero.

4. The potential function is even with respect to the x and z coordinates; that is,

Vix, y.2) = V(-x, y,2)
and
V(X’ Y, Z) = V(x’ Vs - Z)'

It does appear difficult to construct a solution for V that will satisfy all of these
conditions. ‘

From another point of view, we may reason that the presence of a positive charge
Q at y = d would induce negative charges on the surface of the conducting plane,
resulting in a surface charge density p,. Hence the potential at points above the
conducting plane would be

Vix,y,2) =

Q L rps

+ f —ds,
dmeg/x* + (y — d)? + 22 4ne, JS R,
where R, is the distance from ds to the point under consideration and § is the surface
of the entire conducting plane. The trouble here is that p; must first be determined
from the boundary condition V(x, 0, z) = 0. Moreover, the indicated surface integral
is difficult to evaluate even after p, has been determined at every point on the con-
ducting plane. In the following subsections we demonstrate how the method of images
greatly simplifies these problems.
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4-4.1 POINT CHARGE AND CONDUCTING PLANES

The problem in Fig. 4-3(a) is that of a positive point charge, Q, located at a distance
d above a large plane conductor that is at zero potential. If we remove the conductor
and replace it by an image point charge —(Q at y = —d, then the potential at a point
P(x, y, z) in the y > 0 region is

1 1
V(x’ Y, Z) = 47?60 ('I{_+ - —R__), (4—37)

where R, and R_ are the distances from Q and — @, respectively, to the point P.
R, =[x +(y—df +22]'2,
R_ =[x*+(y+d)* + z*]"2

It is easy to prove by direct substitution (Problem P.4-5a) that V(x, y, z) in Eq. (4-37)
satisfies the Laplace’s equation in Eq. (4-36), and it is obvious that all four conditions
listed after Eq. (4-36) are satisfied. Therefore Eq. (4-37) is a solution of this problem;
and, in view of the uniqueness theorem, it is the only solution.

Electric field intensity E in the y > 0 region can be found easily from — V¥ with
Eq. (4-37). It is exactly the same as that between two point charges, +Q and —Q,
spaced a distance 2d apart. A few of the field lines are shown in Fig. 4-3(b). The
solution of this electrostatic problem by the method of images is extremely. simple;
but it must be emphasized that the image charge is located outside the region in
which the field is to be determined. In this problem the point charges +Q and —Q
cannot be used to calculate the V or E in the y < 0 region. As a matter of fact, both
V and E are zero in the y < 0 region. Can you explain that?

It is readily seen that the electric field of a line charge p, above an infinite con-
ducting plane can be found from p, and its image — p, (with the conducting plane
removed).

EXAMPLE 4-3 A positive point charge @ is located at distances d, and d,, respec-
tively, from two grounded perpendicular conducting half-planes, as shown in Fig.
4-4(a). Determine the force on Q caused by the charges induced on the planes.

Solution A formal solution of Poisson’s equation, subject to the zero-potential
boundary condition at the conducting half-planes, would be quite difficult. Now an
image charge —@ in the fourth quadrant would make the potential of the horizontal
half-plane (but not that of the vertical half-plane) zero. Similarly, an image charge
—@ in the second quadrant would make the potential of the vertical half-plane (but
not that of the horizontal plane) zero. But if a third image charge +Q is added in
the third quadrant, we see from symmetry that the image-charge arrangement in Fig.
4-4(b) satisfies the zero-potential boundary condition on both half-planes and is
electrically equivalent to the physical arrangement in Fig. 4-4(a).

Negative surface charges will be induced on the half-planes, but their effect on
Q can be determined from that of the three image charges. Referring to Fig. 4-4(c),
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)
d 1 ——’*
d;
)
(a) Physical arrangement. (b) Equivalent image-charge (c) Forces on charge Q.
arrangement.
FIGURE 44

Point charge and perpendicular conducting planes.

we have, for the net force on Q,
F = Fl + Fz + F3,

where
_ %
By = =y e Q)
_ 0?
K= e )
Q2
= 2,).
Fs = Gre@dy)? + @i B2 + 24
Therefore,

= 0’ d 1 d, 1
"= Tone, {a" [(al%+d%)”2 Z| "M@ e &l

The electric potential and electric field intensity at points in the first quadrant and
the surface charge density induced on the two half-planes can also be found from
the system of four charges (Problem P.4-8).

4-4.2 LINE CHARGE AND PARALLEL CONDUCTING CYLINDER

We now consider the problem of a line charge p, (C/m) located at a distance d from
the axis of a parallel, conducting, circular cylinder of radius a. Both the line charge
and the conducting cylinder are assumed to be infinitely long. Figure 4-5(a) shows a
cross section of this arrangement. Preparatory to the solution of this problem by the
method of images, we note the following: (1) The image must be a parallel line charge
inside the cylinder in order to make the cylindrical surface at r = a an equipotential
surface. Let us call this image line charge p;. (2) Because of symmetry with respect
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to the line OP, the image line charge must lie somewhere along OP, say at point P;,
which is at a distance d; from the axis (Fig. 4-5b). We need to determine the two
unknowns, p; and d;.

As a first approach, let us assume that

Pi= —p¢ (4-38)

At this stage, Eq. (4-38) is just a trial solution (an intelligent guess), and we are not
sure that it will hold true. We will, on one hand, proceed with this trial solution until
we find that it fails to satisfy the boundary conditions. On the other hand, if Eq.
(4-38) leads to a solution that does satisfy all boundary conditions, then by the
uniqueness theorem it is the only solution. Our next job will be to see whether we
can determine d,.

The electric potential at a distance r from a line charge of density p, can be
obtained by integrating the electric field intensity E given in Eq. (3—40):

V=—J;:E,dr= Pe f’ldr

27, Jror

’ (4-39)
¢ o
= In-2.
21e, 1 r

Note that the reference point for zero potential, ry, cannot be at infinity because
setting r, = o0 in Eq. (4-39) would make V infinite everywhere else. Let us leave
ro unspecified for the time being. The potential at a point on or outside the cylindrical
surface is obtained by adding the contributions of p, and p,. In particular, at a point
M on the cylindrical surface shown in Fig. 4—5(b) we have

Vi = Pe_1nTo _ _Pe yyTo0
2ne, r 2mey, 1 (4-40)
=P 1,5
2ne, T

-
e

////%//// Fo l// o%t:\"nm
//// ﬁ|(‘"” \\\ 4[“‘(_1:,»)//' ?

///

d

(2) Line charge and parallel conducting cylinder. (b) Line charge and its image.

FIGURE 4-5
Cross section of line charge and its image in a parallel, conducting, circular cylinder.
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In Eq. (4-40) we have chosen, for simplicity, a point equidistant from p, and p; as
the reference point for zero potential so that the Inr, terms cancel. Otherwise, a
constant term should be included in the right side of Eq. (4—40), but it would not
affect what follows. Equipotential surfaces are specified by

r:
7‘ = Constant. (4-41)

If an equipotential surface is to coincide with the cylindrical surface (OM = a), the
point P; must be located in such a way as to make triangles OMP; and OPM similar.
Note that these two triangles already have one common angle, / MOP;. Point P,
should be chosen to make / OMP; = / OPM. We have

or
Il 4 =2 _ Constant. (4-42)
r a d
From Eq. (4—42) we see that if
a2
d=— (4-43)

the image line charge — p,, together with p,, will make the dashed cylindrical sur-
face in Fig. 4—5(b) equipotential. As the point M changes its location on the dashed
circle, both r; and r will change; but their ratio remains a constant that equals a/d.
Point P, is called the inverse point of P with respect to a circle of radius a.

The image line charge —p, can then replace the cylindrical conducting surface,
and V and E at any point outside the surface can be determined from the line charges
p, and —p,. By symmetry we find that the parallel cylindrical surface surrounding
the original line charge p, with radius a and its axis at a distance d; to the right of
P is also an equipotential surface. This observation enables us to calculate the capaci-
tance per unit length of an open-wire transmission line consisting of two parallel
conductors of circular cross section.

EXAMPLE 4-4 Determine the capacitance per unit length between two long, paral-
lel, circular conducting wires of radius a. The axes of the wires are separated by a
distance D.

Solution Refer to the cross section of the two-wire transmission line shown in Fig.
4-6. The equipotential surfaces of the two wires can be considered to have been
generated by a pair of line charges +p, and — p, separated by a distance (D — 2d,) =
d — d;. The potential difference between the two wires is that between any two points
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FIGURE 4-6

Cross section of two-wire transmission
line and equivalent line charges
(Example 4-4).

on the respective wires. Let subscripts 1 and 2 denote the wires surrounding the

equivalent line charges +p, and — p,, respectively. We have, from Egs. (4-40) and
(4-42).

Pe a

T 27e, n d

2
and, similarly,
Pr a

h= " 2me, "

We note that ¥, is a positive quantity, whereas V, is negative because a < d. The
capacitance per unit length is

' Pe €y
= = N 4 —
=YV, "h@a @49
where a2
d = D e di = D - 7’

from which we obtain'

d = 3D + /D% — 4a%). (4-45)

Using Eq. (4—45) in Eq. (4-44), we have

= F ' )
C In [(D/2a) + (D/2a)® — 1] (F/m) (4-46)

Since

In[x ++/x*—1]=cosh™! x

t The other solution, d = 4(D — «/D? — 4a?), is discarded because both D and d are usually much larger
than a.
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fo— b—st— p— Cross section of a pair of line charges.

for x > 1, Eq. (4-46) can be written alternatively as

€,

c= cosh™! (D/2a) (F/m). @47

The potential distribution and electric field intensity around the two-wire line in
Fig. 4-6 can also be determined easily from the equivalent line charges.

We now consider the more general case of a two-wire line of different radii. We
know that our problem would be solved if we could find the location of the equivalent
line charges that make the wire surfaces equipotential. Let us then first study the
potential distribution around a pair of positive and negative line charges, a cross
section of which is given in Fig. 4-7. The potential at any point P(x, y) due to +p,
and —p, is, from Eq. (4-40),

Pe_1n2,

= 2ne, 1, (“4-48)

P

In the xy-plane the equipotential lines are defined by r,/r, = k (constant). We have

) s/(x+b)2+y2_k

= =k, (4-49)
ry \J(x —b)? + y?
which reduces to
+1 \ 2k 2
- = 4-50
<x k2-—1b> +y <k2—1b) (4-50)
Equation (4—49) represents a family of circles in the xy-plane with radii
2kb
- , -51
21 (4-51)

where the absolute-value sign is necessary because k in Eq. (4—49) can be less than
unity and a must be positive. The centers of the circles are displaced from the origin
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by a distance
kP +1

A particularly simple relation exists among a, b, and c:
Z=a®+b% (4-53)

or
b= JT— . (@-54)

Two families of the displaced circular equipotential lines are shown in Fig. 4-8:
one family around +p, for k > 1 and another around —p, for k < 1. The y-axis is
the zero-potential line (a circle of infinite radius) corresponding to k = 1. The dashed
lines in Fig. 4-8 are circles representing electric field lines, which are everywhere
perpendicular to the equipotential lines (Problem P.4-12). Thus the electrostatic

FIGURE 4-8
Equipotential (solid) and electric field (dashed) lines around a pair of line charges.
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YA

FIGURE 4-9
Cross section of two parallel wires with different radii.

problem of a two-wire line with different radii is that of two equipotential circles of
unequal radii, one on each side of the y-axis in Fig. 4-8; it can be solved by deter-
mining the locations of the equivalent line charges.

Assume that the radii of the wires are a, and a, and that their axes are separated
by a distance D, as shown in Fig. 4-9. The distance b of the line charges to the
origin is to be determined. This can be done by first expressing ¢, and c, in terms
of a,, a,, and D. From Eq. (4-54) we have

b? = c? — a3 (4-55)
and
b? = c2 — a3. (4-56)
But
Cl + C2 = D (4"57)
Solution of Eqgs. (4-55), (4-56), and (4—-57) gives
1
¢ =35 (D?* 4+ a? — dd) (4-58)
and
1
=35 (D? + a2 — a?). (4-59)

The distance b can then be found from Eq. (4-55) or Eq. (4-56).

An interesting variation of the two-wire problem is that of an off-center con-
ductor inside a conducting cylindrical tunnel shown in Fig. 4-10(a). Here the two
equipotential surfaces are on the same side of a pair of equal and opposite line
charges. This is depicted in Fig. 4-10(b). We have, in addition to Eqgs. (4-55) and
(4-56), ¢, —c, =D. (4-60)
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Combination of,Egs. (4—55), (4-56), and (4-60) yields

(b) Equivalent line charges.

1
2 2 2
cy=—(@ —a;—-D
1 =35 (@ —at - D?)
and
¢ =—-1—(a —a? + DY
2 2D 2 1
Ya
» X
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(a) A cross-sectional view.
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@ FIGURE 4-10

An off-center conductor inside a
cylindrical tunnel.
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The distance b can be found from Eq. (4-55) or Eq. (4-56). With the locations of the
equivalent line charges known, the determination of the potential and electric field
distributions and of the capacitance between the conductors per unit length becomes

straightforward (Problems P.4-13 and P.4-14).

4-4.3 POINT CHARGE AND CONDUCTING SPHERE

The method of images can also be applied to solve the electrostatic problem of a
point charge in the presence of a spherical conductor. Referring to Fig. 4—11(a), in
which a positive point charge Q is located at a distance d from the center of a grounded
conducting sphere of radius a (a < d), we now proceed to find the V and E at points
external to the sphere. By reason of symmetry we expect the image charge Q; to be
a negative point charge situated inside the sphere and on the line joining O and Q.
Let it be at a distance d; from O. It is obvious that Q; cannot be equal to —Q, since
—Q and the original @ do not make the spherical surface R = a a zero-potential
surface as required. (What would the zero-potential surface be if Q;, = — Q?) We must

therefore treat both d; and @; as unknowns.

In Fig. 4-11(b) the conducting sphere has been replaced by the image point
charge Q,, which makes the potential at all points on the spherical surface R = a zero.

At a typical point M, the potential caused by Q and Q; is
1 .
e (242) 0

dneg \r 1y

which requires

—= ~% = Constant.

r Q

Noting that the requirement on the ratio r,/r is the same as that in Eq. (4-41), we

conclude from Eqs. (4-42), (4-43), and (4-64) that

_%_a
Q0 d
~TT
e NOM
/ a ,-_\ r
Q [ A Q
¥ | o }
d | \ e/ ]
1 \\ / d
V = 0 \\\I//// '
(a) Point charge and grounded conducting sphere. (b) Point charge and its image.

FIGURE 4-11
Point charge and its image in a grounded sphere.
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or

Q= —= (4-65)

and

;== (4-66)

The point @, is thus the inverse point of Q with respect to a sphere of radius a. The
¥ and E of all points external to the grounded sphere can now be calculated from the
V and E caused by the two point charges Q and —aQ/d.

mmmmm EXAMPLE 4-5 A point charge Q is at a distance d from the center of a grounded
conducting sphere of radius a (@ < d). Determine (a) the charge distribution induced
on the surface of the sphere, and (b) the total charge induced on the sphere.

Solution The physical problem is that shown in Fig. 4-11(a). We solve the problem
by the method of images and replace the grounded sphere by the image charge Q; =
—aQ/d at a distance d; = a?/d from the center of the sphere, as shown in Fig. 4-12.
The electric potential V at an arbitrary point P(R, 6) is

_ 2 (1 __a -
V(R, 0)_E<RZ_ dRQ,.)’ (4-67)

where, by the law of cosines,

R, = [R? + d* — 2Rd cos 0]/ (4-68)

a?\? a2 12
Ry, = [R2 + (7) —2R <7> cos 0] . (4-69)

and

FIGURE 4-12
Diagram for computing induced charge distribution
(Example 4-5).
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Note that 0 is measured from the line 0Q. The R-component of the electric field
intensity, Eg, is

Ex(R, 0) = —ani’ 9. (4-70)
Using Eq. (4-67) in Eq. (4—70) and noting Eqgs. (4—68) and (4—69), we have
EqR, 6) = 0 { R —dcos 9 3 a[R — (a?/d) cos 6] }
’ 4ne, |(R* 4+ d? — 2Rd cos 6)**  d[R? + (a?/d)* — 2R(a?/d) cos 0]
4-71)
a) To find the induced surface charge on the sphere, we set R = a in Eq. (4-71) and
evaluate
ps = €oEg(a, 0), (4-72)
which yields the following after simplification:
- QW — o) -

~ 4na(a® + d® — 2ad cos 6)*
Eq. (4-73) tells us that the induced surface charge is negative and that its magni-
tude is maximum at § = 0 and minimum at 6 = =, as expected.

b) The total charge induced on the sphere is obtained by integrating p, over the
surface of the sphere. We have

Total induced charge = Eﬁ peds = fo . J: psa’ sin 0d0d¢

(4-74)
a

=-50=0,
We note that the total induced charge is exactly equal to the image charge Q;
that replaced the sphere. Can you explain this? —u

If the conducting sphere is electrically neutral and is not grounded, the image of
a point charge Q at a distance d from the center of the sphere would still be Q; at
d; given by Eqs. (4-65) and (4-66), respectively, in order to make the spherical surface
R = a equipotential. However, an additional point charge
= — s = —a- —
@=-0=7 4-75)
at the center would be needed to make the net charge on the replaced sphere zero.
The electrostatic problem of a point charge Q in the presence of an electrically
neutral sphere can then be solved as a problem with three point charges : Q' at R = 0,
Q;at R=a%/d,and Q at R = d.

4-4.4 CHARGED SPHERE AND GROUNDED PLANE

When a charged conducting sphere is near a large, grounded, conducting plane, as in
Fig. 4-13(a), the charge distribution on and the electric field between the conducting
bodies are obviously nonuniform. Since the geometry contains a mixture of spherical
and Cartesian coordinates, field determination and capacitance calculation through a
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solution of Laplace’s equation is a rather difficult problem. We shall now show how
the repeated application of the method of images can be used to solve this problem.

Assume that a charge 0, is put at the center of the sphere. We wish to find a system
of image charges that, together with Q,, will make both the sphere and the plane
equipotential surfaces. The problem of a charged sphere near a grounded plane can
then be replaced by that of the much simpler system of point charges. A cross sec-
tion in the xy-plane is shown in Fig. 4-13(b). The presence of Q, at (—c, 0) requires
an image charge —Q, at (c, 0) to make the yz-plane equipotential; but the pair
of charges Q, and —Q, destroy the equipotential property of the sphere unless,
according to Egs. (4-65) and (4-66), an image charge Q = (a/2c)Q, is placed at
(—c + a?/2c, 0) inside the dashed circle. This, in turn, requires an image charge —Q,
to make the yz-plane equipotential. This process of successive application of the
method of images is continued, and we obtain two groups of image point charges:
one group (—Q,, —Q;, —Q,, ...) on the right side of the y-axis, and another group
(Q,,Q,,...) inside the sphere. We have

a
0,= (2_0) Qo = aQy, {(4-76a)
a a?
Q2 = 2 Ql = 1 3 QO’ (4-76b)
2¢c — a ¢
(-5%)
a ol
Qs = T Q= 3 Qo> (4-76¢)
27— (1—a2)(1—1_a3>
2c — —
(-5%)
Y y T
o I
e ~
/ h \ I
'/ 0010 \ ! -0,-0,-0,
2 -0-000; FY YW W I
\ a EE - /’ 0 i _,lfﬁ
v 2l Joy 2 2 ¢
N /\ a | a /
i 2c — (@2) | 2c — (@2¢)
| ¢ l ¢ !
A |
(a) Physical arrangement. i (b) Two groups of image point charges.

FIGURE 4-13
Charged sphere and grounded conducting plane.
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where

o* = @-77)

The total charge on the sphere is

0=00+0Q,+0Q,+" "

a? (4-78)
=Qo<1+0(+1—_'a—2+ )
The series in Eq. (4-78) usually converges rapidly (x < 1/2). Now since the charge
pairs (—Qq, Q1) (—Q4, Q,), . . . yield a zero potential on the sphere, only the original
Q, contributes to the potential of the sphere, which is

Qo

=20 . 4-79
®" 4nega ( )

Hence the capacitance between the sphere and the conducting plane is, from Eqgs.
(4-78) and (4-79),
2

[4) o
C=70=41t€0a 1+oc+1_a2+--- , (4-80)

which is larger than the capacitance of an isolated sphere of radius a, as expected.
The potential and electric field distributions between the sphere and the conducting
plane can also be obtained from the image point charges.

. Boundary-Value Problems in Cartesian Coordinates

We saw in the preceding section that the method of images is very useful in solving
certain types of electrostatic problems involving free charges near conducting bound-
aries that are geometrically simple. However, if the problem consists of a system of
conductors maintained at specified potentials and with no isolated free charges, it
cannot be solved by the method of images. This type of problem requires the solu-
tion of Laplace’s equation. Example 4-1 (p. 154) was such a problem where the
electric potential was a function of only one coordinate. Of course, Laplace’s equation
applied to three dimensions is a partial differential equation, where the potential is,
in general, a function of all three coordinates. We will now develop a method for
solving three-dimensional problems where the boundaries, over which the potential
or its normal derivative is specified, coincide with the coordinate surfaces of an or-
thogonal, curvilinear coordinate system. In such cases, the solution can be expressed
as a product of three one-dimensional functions, each depending separately on one
coordinate variable only. The procedure is called the method of separation of
variables. '

Problems (electromagnetic or otherwise) governed by partial differential equa-
tions with prescribed boundary conditions are called boundary-value problems.



4-5 Boundary-Value Problems in Cartesian Coordinates 175

Boundary-value problems for potential functions can be classified into three types:
(1) Dirichiet problems, in which the value of the potential is specified everywhere on
the boundaries; (2) Neumann problems, in which the normal derivative of the poten-
tial is specified everywhere on the boundaries; (3) Mixed boundary-value problems,
in which the potential is specified over some boundaries and the normal derivative of
the potential is specified over the remaining ones. Different specified boundary con-
ditions will require the choice of different potential functions, but the procedure of
solving these types of problems—that is, by the method of separation of variables—
for the three types of problems is the same. The solutions of Laplace’s equation are
often called harmonic functions.
Laplace’s equation for scalar electric potential V in Cartesian coordinates is

v’V vV

— ) 4-81
FE I @-80
To apply the method of separation of variables, we assume that the solution V(x, y, z)
can be expressed as a product in the following form:

V(x, y, 2) = X()Y())Z(2), (4-82)

where X(x), Y(y), and Z(z) are functions of only x, y, and z, respectively. Substituting
Eq. (4-82) in Eq. (4-81), we have

2 2 2
Y2 2 4+ x(z()® (”)+X()Y()”(Z) 0,

which, when divided through by the product X(x)Y(y)Z(z), yields

1 d?°X(x) | 1 d?Y(y) | 1 d°Z(z) _
X(x) dx? Y(y) &  Z@) df

4-83)

Note that each of the three terms on the left side of Eq. (4—83) is a function of only
one coordinate variable and that only ordinary derivatives are involved. In order for
Eq. (4-83) to be satisfied for all values of x, y, z, each of the three terms must be a
constant. For instance, if we differentiate Eq. (4—83) with respect to x, we have

d 1 d?X(x)
[X(x) o |~ -89
since the other two terms are independent of x. Equation (4—84) requires that
1 d’X(x) _ .,
— 4—
X(x) dx* i (489

where k2 is a constant of integration to be determined from the boundary conditions
of the problem. The negative sign on the right side of Eq. (4-85) is arbitrary, just as
the square sign on k, is arbitrary. The separation constant k, can be a real or an
imaginary number. If k, is imaginary, k2 is a negative real number, making —k2 a
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TABLE 4-1
Possible Solutions of X"'(x) + k2X(x) =0
k2 k, X(x) Exponential forms' of X(x)
0 0 Agx + By
+ k A, sin kx + B, cos kx C,e™* + De™**
- jk A, sinh kx + B, cosh kx Cye® + Dy

t The exponential forms of X(x) are related to the trigonometric and hyperbolic forms
listed in the third column by the following formulas:

etM* = cos kx + jsin kx, cos kx = $(e® + ¢™ ), sinkx = le (e — e~

e** = cosh kx + sinh kx, cosh kx = 4(e** + ¢™*), sinh kx = }(e** — ™).

positive real number. It is convenient to rewrite Eq. (4-85) as

d*X(x)
o TheX)=0 (4-86)
In a similar manner, we have
d?y
dyﬁy ) +KY(») =0 (4-87)
and
2
L29 s ez =o, (4-89)

where the separation constants k, and k, will, in general, be different from k,; but,
because of Eq. (4-83), the following condition must be satisfied:

k2 +kZ+kZ2=0. (4-89)

Our problem has now been reduced to finding the appropriate solutions—X(x), Y(y),
and Z(z)—from the second-order ordinary differential equations Eqs. (4—86), (4-87),
and (4-88), respectively. The possible solutions of Eq. (4-86) are known from our
study of ordinary differential equations with constant coefficients. They are listed in
Table 4-1. That the listed solutions satisfy Eq. (4-86) is easily verified by direct
substitution.

Of the listed solutions in Table 41, the first one, Aox + B, for k, = 0, is a straight
line with a slope 4, and an intercept B, at x = 0. When 4, = 0, X(x) = B,, which
means that V, the solution of Laplace’s equation, is independent of the dimension x.

We are, of course, familiar with the sine and cosine functions, both of which are
periodic with a period 2n. If plotted versus x, sin kx and cos kx have a period
2n/k. Frequently, a careful examination of a given problem enables us to decide
whether a sine or a cosine function is the proper choice. For example, if the solution
is to vanish at x = 0, sin kx must be chosen; on the other hand, if the solution is
expected to be symmetrical with respect to x = 0, then cos kx is the right choice. In
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FIGURE 4-14
Hyperbolic and exponential functions.

the general case, both terms are required. Sometimes it may be desirable to write
A, sin kx + By cos kx as A sin (kx + ) or A4, cos (kx + )"
For k, = jk the solution converts to hyperbolic functions:

sin jkx = —j sinh kx
and
cos jkx = cosh kx.

Hyperbolic functions are combinations of exponential functions with real exponents,
and are nonperiodic. They are plotted in Fig. 4-14 for easy reference. The important
characteristics of sinh kx are that it is an odd function of x and that its value ap-
proaches + oo as x goes to + oo. The function cosh kx is an even function of x, equals
unity at x = 0, and approaches + oo as x goes to + 00 or —oo.

The specified boundary conditions will determine the choice of the proper form
of the solution and of the constants 4 and B or C and D. The solutions of Egs. (4-87)
and (4-88) for Y(y) and Z(z) are entirely similar.

EXAMPLE 4-6 Two grounded, semi-infinite, parallel-plane electrodes are separated
by a distance b. A third electrode perpendicular to and insulated from both is main-
tained at a constant potential V, (see Fig. 4-15). Determine the potential distribution
in the region enclosed by the electrodes.

1 A, sin (kx + ¢} = (A, cos ) sin kx + (A, sin W) cos kx; A, = A, cos ¥, B, = A, sin y; A, = (A} + B2,
Y, =tan" ! (B,/A,). A, cos(kx + )= (—A,siny)sin kx + (4, cos Y )coskx; A, = —A, siny,, B, =
Ac cos l//c; Ac = (A% + B%)I/Z, 'pc = tanAl (—Al/Bl)



178 4 Solution of Electrostatic Problems

FIGURE 4-15
Cross-sectional figure for
Example 4—6. The plane
electrodes are infinite in
z-direction.

Solution Referring to the coordinates in Fig. 4-15, we write down the boundary
conditions for the potential function V(x, y, z) as follows.

With V independent of z:

V(x3 Vs Z) = V(X, y) (4—903)
In the x-direction:

VO, )=V, {(4-90b)
V(c0, y) = 0. (4-90c)

In the y-direction: ‘
V(x,0)=0 (4-90d)
V(x, b) = 0. {4-90e)

Condition (4-90a) implies k, = 0, and from Table 4-1,

Z(z) = B,. 4-91)

" The constant A, vanishes because Z is independent of z. From Eq. (4-89) we have
= —kI=k? (4-92)

where k is a real number. This choice of k implies that k, is imaginary and that k,
is real. The use of k, = jk, together with the condition of Eq. (4-90c), requires us to
choose the exponentially decreasing form for X(x), which is

X(x) = Dye ™ (4-93)

In the y-direction, k, = k. Condition (4-90d) indicates that the proper choice for
Y(y) from Table 4-1 is
Y(y) = A, sin ky. (4-94)
Combining the solutions given by Eqs. (4-91), (4-93), and (4-94) in Eq. (4-82), we
obtain an appropriate solution of the following form:
Vi(x, y) = (BoD,A,)e ™" sin ky
= C,e ¥ sin ky, 4-95)
where the arbitrary constant C, has been written for the product ByD,A4;.

Now, of the five boundary conditions listed in Eqgs. (4-90a) through (4-90¢) we
have used conditions (4-90a), (4-90c), and (4-90d). To meet condition (4-90e), we
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require
V(x,b) = C,e ™ sin kb = 0, (4-96)
which can be satisfied, for all values of x, only if
sinkb =10
or
kb = n=n
or
k="—b"-, n=1,23,.... 4-97)

Therefore, Eq. (4—95) becomes
Vi(x y)= C,e " sin % y. (4-98)

Question: Why are 0 and negative integral values of n not included in Eq. (4-97)?
We can readily verify by direct substitution that V,(x, y) in Eq. (4-98) satisfies the
Laplace’s equation (4-81). However, V,(x, y) alone cannot satisfy the remaining
boundary condition (4-90b) at x = 0 for all values of y from 0 to b. Since Laplace’s
equation is a.linear partial differential equation, a sum (superposition) of ¥(x, y) of
the form in Eq. (4-98) with different values of n is also a solution. At x = 0, we write

VO.y)=) V0= CpsinZry 4-59)
=1

n=1

=V, O<y<hb.

Equation (4-99) is essentially a Fourier-series expansion of the periodic rectangular
wave at x = 0 shown in Fig. 4-16, which has a constant value V, in the interval
O<y<b

In order to evaluate the coefficients C,, we multiply both sides of Eq. (4-99) by

. mm .
sin -~y and integrate the products from y = 0 to y = b:

mn
Zf C, sin °% 5 ysm 5 ydy f Vo sm—b—ydy (4-100)

(0.y)
A

FIGURE 4-16

% For Fourier-series expansion of boundary condition at
x = 0 (Example 4-6).
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The integral on the right side of Eq. (4—100) is easily evaluated:

2bYo if m 1s odd,
f Vo sin 2% ydy =< mn (4-101)

-if m is even.

Each integral on the left side of Eq. (4-100) is

mn C, (n—mmn (n+mn
f C, sin =~ b ys1n b ydy = > fo [cosTy cos 5 y |dy

9 b ifm=n,
={2 (4-102)
0 if m# n.
Substituting Eqgs. (4-101) and (4-102) in Eq. (4-100), we obtain
% if n is odd,
C,=<nm (4-103)
0 if n is even.

The desired potential distribution is, then, a superposition of ¥,(x, y) in Eq. (4-98).

V(x, y) = Z C,e~" sin "—b"- y

n=1

€0 1 ]
= 4%, — e~ "/b gin idd ¥, (4-104)
n b
n=odd
n=13,5,...,

x>0 and O<y<hb.

Equation (4-104) is a rather complicated expression to plot in two dimensions;
but since the amplitude of the sine terms in the series decreases very rapidly as n
increases, only the first few terms are needed to obtain a good approximation. Several
equipotential lines are sketched in Fig. 4-15. -

FIGURE 4-17

Cross-sectional figure for Example 4-7.
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EXAMPLE 4-7 Consider the region enclosed on three sides by grounded con-
ducting planes shown in Fig. 4-17. The end plate on the left is insulated from the
grounded sides and has a constant potential ¥,. All planes are assumed to be infinite
in extent in the z-direction. Determine the potential distribution within this region.

Selution The boundary conditions for the potential function V(x, y, z) are as follows.

With V independent of z:

Vix, y, z) = V(x, y). (4-105a)

In the x-direction:
V{0, y) =V, (4-105b)
V(a, y) =0. (4-105¢)

In the y-direction:
V(x,0) =0, (4-105d)
V(x,b)=0. (4-105¢)

Condition (4-105a) implies that k, = 0, and, from Table 4-1,

Z(z) = B,. (4-106)

As a consequence, Eq. (4-89) reduces to
k2 = —kZ =k?, (4-107)

which is the same as Eq. (4-92) in Example 4-6.

The boundary conditions in the y-direction, Eqs. (4-105d) and Eq. (4-105¢), are
the same as those specified by Egs. (4—90d) and (4-90e). To make V(x, 0) = O for all
values of x between 0 and a, Y(0) must be zero, and we have

Y(y) = A, sin ky, (4-108)

as in Eq. (4-94). However, X(x) given by Eq. (4-93) is obviously not a solution here
because it does not satisfy the boundary condition (4-105c). In this case it is conve-
nient to use the general form for k, = jk given in the third column of Table 4-1.
(The exponential solution form given in the last column could be used as well, but
it would not be as convenient because it is not as easy to see the condition under
which the sum of two exponential terms vanishes at x = a as it is to make a sinh
term zero. This will be clear presently.) We have

X(x) = A, sinh kx + B, cosh kx. (4-109)

A relation exists between the arbitrary constants 4, and B, because of the boundary
condition in Eq. (4-105c), which demands that X(a) = 0; that is,

0 = A, sinh ka + B, cosh ka
or
sinh ka

B,= — A, ——— .
2 42 cosh ka
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From Eq. (4—-109) we have

sinh ka
X(x) = A,| si -
(x) 2 I:smh kx osh ka cosh kx]

A _
=——2__[cosh ka sinh kx — sinh ka cosh kx] (4-110)
cosh ka

= A, sinh k(x — a),
where A, has been written for A,/cosh ka. It is evident that Eq. (4—110) satisfies the
condition X(a) = 0. With experience we should be able to write the solution given
in Eq. (4—110) directly, without the steps leading to it, as only a shift in the argument
of the sinh function is needed to make it vanish at x = a.

Collecting Eqs. (4—106), (4—108) and (4-110), we obtain the appropriate product
solution

Vi(x, y) = BoA, 4, sinh k(x — a) sin ky
nn
b
where C, = ByA,A;, and k has been set to equal nz/b in order to satisfy boundary
condition (4—105e).

We have now used all of the boundary conditions except Eq. (4-105b), which

may be satisfied by a Fourier-series expansion of V(0, y) = V; over the interval from
y =0to y =b. We have

@-111)

= C, sinh (x—a)sinzlbﬁy, n=123...,

= = I .
Vo=nZ1 V0, y) = —'; C,,smh—b—asmFy, 0<y<hb. 4-112)
We note that Eq. (4—112) is of the same form as Eq. (4-99), except that C, is replaced
by — C, sinh (nma/b). The values for the coefficient C,, can then be written down from
Eq. (4-103):

4v, o
C,={ nnsinh (nna/b) ifnis odd, (4-113)

0 if n is even.
The desired potential distribution within the enclosed region in Fig. 4-17 is a summa-
tion of ¥,(x, y) in Eq. (4—111):

Vix, y) = Z c sinh%(x —a) sin"—;’-y

n=1
_ 4 2 sinh [nn(a — x)/b] gin "

4-114
b y, ( )

no e n sinh (nna/b)

n=13,5...,
0O<x<a and 0<y<hb

The electric field distribution within the enclosure is obtained by the relation
E(x’ Y) = —VV(X, y) —
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4-6 Boundary-Value Problems in Cylindrical Coordinates

For problems with circular cylindrical boundaries we write the governing equations
in the cyclindrical coordinate system. Laplace’s equation for scalar electric potential
V in cylindrical coordinates is, from Eq. (4-8),

19 /( oV 1 0%V %V
rar ( E) T T
A general solution of Eq. (4-115) requires the knowlege of Bessel functions, the
discussion of which will be deferred until Chapter 10. In situations in which the
lengthwise dimension of the cylindrical geometry is large in comparison to its radius,
the associated field quantities may be considered to be approximately independent

of z. In such cases, 0*V/dz* = 0 and Eq. (4-115) becomes the governing equation of
a two-dimensional problem:

=0. 4-115)

10/ ov 1 0%V
ey P ———=0. 4-11
rar(' 6r>+r26¢2 0 (4-116)
Applying the method of separation of variables, we assume a product solution
V(r, ¢) = R(ND(¢), (4-117)

where R(r) and ®(¢) are, respectively, functions of r and ¢ only. Substituting solution
(4-117) in Eq. (4-116) and dividing by R(r)d(¢), we have

r d[ dR@) N 1 d2<1>(¢)_0
RO & dr |T g dpt

In Eq. (4-118) the first term on the left side is a function of r only, and the second
term is a function of ¢ only. (Note that ordinary derivatives have replaced partial de-
rivatives.) For Eq. (4-118) to hold for all values of r and ¢, each term must be a
constant and be the negative of the other. We have

(4-118)

r d| drR(N| _,,
RO & [r - ] =k 4-119)
and
1 d*0(¢)
= T = k2, 4-120)
P g’ ‘
where k is a separation constant.
Equation (4—120) can be rewritten as
2
ddi(j, ) + k*®(¢) = 0. (4-121)

This is of the same form as Eq. (4-86), and its solution can be any one of those listed
in Table 4-1. For circular cylindrical configurations, potential functions and there-
fore ®(¢) are periodic in ¢, and the hyperbolic functions do not apply. In fact, if the
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range of ¢ is unrestricted, kK must be an integer. Let k equal n. The appropriate so-
lution is
®(¢p) = A, sin ng + B, cos ne, (4-122)
where A, and B, are arbitrary constants.
We now turn our attention to Eq. (4—119), which can be rearranged as

d*R(r)  dR(r)

2 —
T +r dr
where integer n has been written for k, implying a 2= range for ¢. The solution of
Eq. (4-123) is

n?R(r) = 0, (4-123)

R(r)= A"+ Br" (4-124)

This can be verified by direct substitution. Taking the product of the solutions in
(4-122) and (4-124), we obtain a general solution of z-independent Laplace’s equa-
tion (4-116) for circular cylindrical regions with an unrestricted range for ¢:

V.(r, §) = r(4, sinng + B, cos n¢) + r~"(A4, sin n¢ + B, cos nd), n#0.
(4-125)

Depending on the boundary conditions the complete solution of a problem may be
a summation of the terms in Eq. (4—125). It is useful to note that, when the region
of interest includes the cylindrical axis where r = 0, the terms containing the r ™" fac-
tor cannot exist. On the other hand, if the region of interest includes the point at
infinity, the terms containing the " factor cannot exist, since the potential must be
ZEro as r — o0,

Eq. (4-121) has the simplest form when k = 0. We have

2
d d(g(f ) _o. (4-126)

The general solution of Eq. (4—-126) is ®(¢) = A¢ + B,. If there is no circumferential
variation, 4, vanishes,’ and we have

®(¢)=B,, k=0 @-127)
The equation for R(r) also becomes simpler when k = 0. We obtain from Eq. (4-119)
d| dR(r)
- = 4-12
{Jo o
which has a solution
R(r)=Colnr + D, k=0. 4-129)

The product of Eqgs. (4—127) and (4—129) gives a solution that is independent of either
z or ¢:
Vi)=C,Inr + C,, (4-130)

where the arbitrary constants C, and C, are determined from boundary conditions.

 The term Ay¢ should be retained if there is circumferential variation, such as in problems involving a
wedge. (See Problem P.4-23))
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FIGURE 4-18
Cross section of a coaxial cable (Example 4-8).

We shall now illustrate the above procedures with two examples. One (Example
4-8) deals with a situation that is circularly symmetrical, and the other (Example
4-9) solves a problem with circumferential variation.

EXAMPLE 4-8 Consider a very long coaxial cable. The inner conductor has a
radius a and is maintained at a potential ;. The outer conductor has an inner radius
b and is grounded. Determine the potential distribution in the space between the
conductors.

Solution Figure 418 shows a cross section of the coaxial cable. We assume no z-
dependence and, by symmetry, also no ¢-dependence (k = 0). Therefore, the electric
potential is a function of r only and is given by Eq. (4—130).

The boundary conditions are

V(b) =0, (4-131a)
Via)=V,. (4-131b)
Substitution of Eqs. (4—131a) and (4-131b) in Eq. (4—130) leads to two relations:
Cilnb+C,=0, (4-132a)
Cilna+C, =Y, (4-132b)
From Eqgs. (4-132a) and (4-132b), C, and C, are readily determined:
PR S 3.1}
! In (b/a) 2" In(b/a)
Therefore, the potential distribution in the spacea <r < b is
V(r) = H}% In (g) (4-133)
Obviously, equipotential surfaces are coaxial cylindrical surfaces. ]

EXAMPLE 4-9 An infinitely long, thin, conducting circular tube of radius b is split
in two halves. The upper half is kept at a potential V = V;, and the lower half at
V = —V,. Determine the potential distribution both inside and outside the tube.
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FIGURE 4-19
Cross section of split circular cylinder and equipotential lines
(Example 4-9).

Solution A cross section of the split circular tube is shown in Fig. 4-19. Since the
tube is assumed to be infinitely long, the potential is independent of z and the two-
dimensional Laplace’s equation (4~116) applies. The boundary conditions are

Vo for0< ¢ <m,

-V forn < ¢ < 2m. (“4-134)

Vb, ¢) = {

These conditions are plotted in Fig. 4-20. Obviously, V(r, ¢) is an odd function of
¢. We shall determine V{r, ¢) inside and outside the tube separately.

a) Inside the tube,
r<b.

Because this region includes r = 0, terms containing the r ™" factor cannot exist.
Moreover, since V(r, ¢) is an odd function of ¢, the appropriate form of solution

Vb, ¢)
4

-q W r--a

| | !

] | N o

} 0 T 2 ; i

|
L_ —d- L_  FIGURE 4-20
Boundary condition for Example 4-9.
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b)

is, from Eq. (4-125),

V(r, ¢) = A,r" sin no. (4-135)
However, a single such term does not satisfy the boundary conditions specified
in Eq. (4-134). We form a series solution

o

Ve 4) =), Vir, )

n=1
e
= Z A" sin ne,

n=1
and require that Eq. (4—134) be satisfied at r = b. This amounts to expanding
the rectangular wave (period = 2x) shown in Fig. 4-20 into a Fourier sine series.

(4-136)

< , V, for0<¢<m,
n pa— _1
; Ab" sin n¢g {_ v, for 1 < ¢ < 2. (4-137)

The coefficients 4, can be found by the method illustrated in Example 4-6. As
a matter of fact, because we already have the result in Eq. (4-103), we can directly
write

W, ..
4, = {mmpr  Umisodd, (4-138)

0 if n is even.

The potential distribution inside the tube is obtained by substituting Eq. (4-138)

in Eq. (4-136):
4V, — 1(r\ .
=_9 iy 2 4-13
Vi(r, ) - ,,Zodd " (b) sin ng, r<b ( 9)
Outside the tube,

r>b.

In this region the potential must decrease to zero as r — co. Terms containing
the factor " cannot exist, and the appropriate form of solution is, from Eq.
(4-125),

[+ ]

Vi d)= ) Vi, ¢)

" (4-140)
= Z Br™" sin n¢.
n=1
Atr=>,
V(b, ¢) = Z B.b~"sin n¢
=1 (4-141)

_ Vo forO< ¢ <m,
1=V, forn<¢<2m
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The coefficients B, in Eq. (4—141) are analogous to A4, in Eq. (4-137). From Eq.
(4-138) we obtain

4v,b"
) ob if n is odd,
B,=4 nm (4-142)

0 if n is even.

Therefore, the potential distribution outside the tube is, from Eq. (4-140),

Vir, ¢) = Vo l@) sinng, r>b. (4-143)

T n=odd nAr
Several equipotential lines both inside and outside the tube have been sketched
in Fig. 4-19. -

4~'{ Boundary-Value Problems in Spherical Coordinates

The general solution of Laplace’s equation in spherical coordinates is a very involved
procedure, so we will limit our discussion to cases in which the electric potential is
independent of the azimuthal angle ¢. Even with this limitation we will need to
introduce some new functions. From Eq. (4-9) we have

1 0 (. o 1 8. oV
— RV Y (snel )= 4-144
R? 5R<R 6R>+R2sin060<sm ae) (“-149

Applying the method of separation of variables, we assume a product solution

V(R, 0) = T(R)®(0). (4-145)
Substitution of this solution in Eq. (4-144) yields, after rearrangement,
1 d | _,d[(R) 1 d| . ,do@O)|
T(R) 4R [R R ] * S@)sin0d0 [Sm o |=° (4-146)

In Eq. (4-146) the first term on the left side is a function of R only, and the second
term is a function of 6 only. If the equation is to hold for all values of R and 0, each
term must be a constant and be the negative of the other. We write

1od [ iR,
and
1 4. el ., i
©(0) sin 0 40 [sm@ a0 ]‘ K (4-148)

where k is a separation constant. We must now solve the two second-order, ordinary
differential equations, Eqs. (4—147) and (4-148).
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TABLE 4-2
Several Legendre
Polynomials

n P,(cos 6)

1
cos
13 cos2 09— 1)
45 cos® 0 — 3 cos 0)

w N = O

Equation (4—147) can be rewritten as

g2 TR o dT(R)

— 2 =3 —
iR2 R TR =0, (4-149)
which has a solution of the form
I'(R) = A,R" + B,R"* 1), (4-150)

In Eq. (4-150), A, and B, are arbitrary constants, and the following relation be-
tween n and k can be verified by substitution:

nn + 1) = k2, 4-151)
where n =0, 1,2, ... is a positive integer.
With the value of k? given in Eq. (4-151), we have, from Eq. (4-148),

d| . . do) .
7 [sm 0 _(19_] + n(n + 1)®(O) sin 0 = 0, (4-152)
which is a form of Legendre’s equation. For problems involving the full range of 8, from
0 to =, the solutions to Legendre’s equation (4-152) are called Legendre functions,
usually denoted by P(cos ). Since Legendre functions for integral values of n are
polynomials in cos 8, they are also called Legendre polynomials. We write

©,(0) = P,(cos ). (4-153)

Table 4-2 lists the expressions for Legendre polynomials' for several values of n.
Combining solutions (4—150) and (4-153) in Eq. (4-145), we have, for spherical

boundary-value problems with no azimuthal variation,
ViR, 8) = [4,R" + B,R""*V]P,(cos 0). (4-154)

Depending on the boundary conditions of the given problem, the complete solution
may be a summation of the terms in Eq. (4—154). We illustrate the application of

t Actually, Legendre polynomials are Legendre functions of the first kind. There is another set of solutions
to Legendre’s equation, called Legendre functions of the second kind; but they have singularities at 6 = 0
and 7 and must therefore be excluded if the polar axis is a region of interest.
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Electric field lines
_____ Equipotential lines

FIGURE 4-21 ' ‘ _
Conducting sphere in a uniform electric field

(Example 4-10).

i

Legendre polynomials in the solution of a simple boundary-value problem in the
following example.

smmmm EXAMPLE 4-10 An uncharged conducting sphere of radius b is placed in an ini-
tially uniform electric field E, = a,E,. Determine (a) the potential distribution V(R, 0),
and (b) the electric field intensity E(R, 6) after the introduction of the sphere.

Solution After the conducting sphere is introduced into the electric field, a separa-
tion and redistribution of charges will take place in such a way that the surface of
the sphere is maintained equipotential. The electric field intensity within the sphere
is zero. Outside the sphere the field lines will intersect the surface normally, and the
field intensity at points very far away from the sphere will not be affected appreciably.
The geometry of this problem is depicted in Fig. 4-21. The potential is, obviously,
independent of the azimuthal angle ¢, and the solution obtained in this section
applies.

a) To determine the potential distribution V(R, 6) for R > b, we note the following
boundary conditions:

Vb, 0) = 0t (4-155a)

V(R,0)= —Eqz= —Ey R cos 0, for R » b. (4-155b)

Equation (4-155b) is a statement that the original E, is not disturbed at points
very far away from the sphere. By using Eq. (4—154) we write the general solution

! For this problem it is convenient to assume that V = 0 in the equatorial plane (8 = r/2), which leads to
V(b,0) =0, since the surface of the conducting sphere is equipotential. (See Problem P.4-28 for
V(b, 0) = V,.)



4-7 Boundary-Value Problems in Spherical Coordinates 191

b)

as

V(R, 0) = Z [4,R" + BR-®*V]P(cos§), R>b. (4-156)
n=0
However, in view of Eq. (4—155b), all 4, except A; must vanish, and 4, = —E,,.
We have, from Eq. (4—156) and Table 4-2,

V(R, ) = — EoRP,(cos 0) + Z B,R~"*VP (cos 0)

n=0

— B,R™! + (B,R~2 — EqR) cos 6 + Z BR-®*VP(cosf), R>b.

"= (4-157)
Actually, the first term on the right side of Eq. (4—157) corresponds to the potential

of a charged sphere. Since the sphere is uncharged, B, =0, and Eq. (4-157)
becomes

B a0
V(R, 0) = (R—; - E°R> cos 0 + Z B,R"™*VP (cosf), R=>b.  (4-158)
n=2
Now applying boundary condition (4—155a) at R = b, we require

0= (% — Eob> cos 0 + Z B,b~ ™+ VP (cos 0),

from which we obtain

n=2

Bl = Eob3
and
. B, =0, n>2.
We have, finally, from Eq. (4—158),
3
V(R,0)= —E, I:l - (%) } R cos 6, R>b. (4-159)
The electric field intensity E(R, 6) for R > b can be easily determined from
—VV(R, 0)
E(R, 0) = aRER + aoEo, (4—160)
where
ov b\?
ER = —EE = EO |:1 + 2(E> :l COos 0, R>b (4-160a)
and
v b\ .
The surface charge density on the sphere can be found by noting that
p6) = eoER|R=b = 3¢oE, cos 6, (4-161)

which is proportional to cos 6, being zero at § = n/2. Some equipotential and
field lines are sketched in Fig. 4-21. -
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It is interesting to note from Eq. (4-159) that the potential is the sum of two
terms: — ER cos 6 due to the applied uniform electric field; and (E,b* cos 6)/R* due
to an electric dipole of a dipole moment:

p = a,4ne,b’E, (4-162)

at the center of the sphere. The contribution of the equivalent dipole can be verified
by referring to Eq. (3-53). The expressions in Eqs. (4—160a) and (4-160b) for the
resultant electric field intensity, being derived from the potential, obviously also rep-
resent the combination of the applied uniform field and that of the equivalent dipole,
given in Eq. (3-54).

In this chapter we have discussed the analytical solution of electrostatic problems
by the method of images and by direct solution of Laplace’s equation. The method
of images is useful when charges exist near conducting bodies of a simple and com-
patible geometry: a point charge near a conducting sphere or an infinite conducting
plane; and a line charge near a parallel conducting cylinder or a parallel conducting
plane. The solution of Laplace’s equation by the method of separation of variables
requires that the boundaries coincide with coordinate surfaces. These requirements
restrict the usefulness of both methods. In practical problems we are often faced with
more complicated boundaries, which are not amenable to neat analytical solutions.
In such cases we must resort to approximate graphical or numerical methods. These
methods are beyond the scope of this book."

Review Questions

R.4-1 Write Poisson’s equation in vector notation
a) for a simple medium,
b) for a linear and isotropic but inhomogeneous medium.

R.4-2 Repeat in Cartesian coordinates both parts of Question R.4-1.

R.4-3 Write Laplace’s equation for a simple medium
a) in vector notation, b) in Cartesian coordinates.

R.4-4 If V2U = 0, why does it not follow that U is identically zero?

R.4-5 A fixed voltage is connected across a parallel-plate capacitor.
a) Does the electric field intensity in the space between the plates depend on the
permittivity of the medium? :
b) Does the electric flux density depend on the permittivity of the medium?
Explain.

R.4-6 Assume that fixed charges +Q and —Q are deposited on the plates of an isolated
parallel-plate capacitor.
a) Does the electric field intensity in the space between the plates depend on the
permittivity of the medium?
b) Does the electric flux density depend on the permittivity of the medium?
Explain.

1 See, for instance, B. D. Popovi¢, Introductory Engineering Electromagnetics, Chapter 5, Addison-Wesley
Publishing Co., Reading, Mass., 1971.
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R.4-7 Why is the electrostatic potential continuous at a boundary?

R.4-8 State in words the uniqueness theorem of electrostatics.

R.4-9 What is the image of a spherical cloud of electrons with respect to an infinite
conducting plane?

R.4-10 Why cannot the point at infinity be used as the point for the zero reference
potential for an infinite line charge as it is for a point charge? What is the physical reason
for this difference?

R.4-11 What is the image of an infinitely long line charge of density p, with respect to a
parallel conducting circular cylinder?

R.4-12 Where is the zero-potential surface of the two-wire transmission line in Fig, 4-6?
R.4-13 In finding the surface charge induced on a grounded sphere by a point charge, can
we set R = a in Eq. (4-67) and then evaluate p, by —e, dV(a, 6)/0R? Explain.

R.4-14 What is the method of separation of variables? Under what conditions is it useful
in solving Laplace’s equation?

R.4-15 What are boundary-value problems?

R.4-16 Can all three separation constants (k,, k,, and k) in Cartesian coordinates be real?
Can they all be imaginary? Explain.

R.4-17 Can the separation constant k in the solution of the two-dimensional Laplace’s
equation (4-120) be imaginary? Explain.

R.4-18 What should we do to modify the solution in Eq. (4-133) for Example 4-8 if the

inner conductor of the coaxial cable is grounded and the outer conductor is kept at a
potential V,?

R.4-19 What should we do to modify the solution in Eq. (4-139) for Example 4-9 if
the conducting circular cylinder is split vertically in two halves, with ¥ = V¥, for
~n/2< ¢ <m/2and V= —V, for n/2 < ¢ < 3n/2?

R.4-20 Can functions V;(R, ) = C,R cos 8§ and V,(R, ) = C,R™2 cos 6, where C, and C,
are arbitrary constants, be solutions of Laplace’s equation in spherical coordinates?
Explain.

Problems

P.4-1 The upper and lower conducting plates of a large parallel-plate capacitor are
separated by a distance d and maintained at potentials ¥, and 0, respectively. A dielectric
slab of dielectric constant 6.0 and uniform thickness 0.84 is placed over the lower plate.
Assuming negligible fringing effect, determine

a) the potential and electric field distribution in the dielectric slab,

b) the potential and electric field distribution in the air space between the dielectric

slab and the upper plate,
¢) the surface charge densities on the upper and lower plates.
d) Compare the results in part (b) with those without the dielectric slab.

P.4-2 Prove that the scalar potential ¥ in Eq. (3—61) satisfies Poisson’s equation, Eq. (4—6).

P.4-3 Prove that a potential function satisfying Laplace’s equation in a given region
possesses no maximum or minimum within the region.
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P.4-4 Verify that
Vi=C,/R and VW, = C,z/(x* + y* + 22)32,
where C, and C, are arbitrary constants, are solutions of Laplace’s equation.

P.4-5 Assume a point charge Q above an infinite conducting plane at y = 0.
a) Prove that V(x, y, z) in Eq. (4-37) satisfies Laplace’s equation if the conducting plane
is maintained at zero potential.
b) What should the expression for V(x, y, z) be if the conducting plane has a nonzero
potential V,?
¢) What is the electrostatic force of attraction between the charge Q and the
conducting plane?

P.4-6 Assume that the space between the inner and outer conductors of a long coaxial
cylindrical structure is filled with an electron cloud having a volume density of charge

p = A/r for a < r < b, where a and b are, the radii of the inner and outer conductors,
respectively. The inner conductor is maintained at a potential ¥;, and the outer conductor
is grounded. Determine the potential distribution in the region a < r < b by solving
Poisson’s equation.

P.4-7 A point charge Q exists at a distance d above a large grounded conducting plane.
Determine

a) the surface charge density p,,

b) the total charge induced on the conducting plane.

P.4-8 For a positive point charge Q located at distances d, and d,, respectively, from two
grounded perpendicular conducting half-planes shown in Fig. 4-4(a), find the expressions
for
a) the potential and the electric field intensity at an arbitrary point P(x, y) in the first
quadrant,
b) the surface charge densities induced on the two half-planes. Sketch the variations
of the surface charge densities in the xy-plane.

P.4-9 Determine the systems of image charges that will replace the conducting boundaries
that are maintained at zero potential for
a) a point charge Q located between two large, grounded, parallel conducting planes as
shown in Fig. 4-22(a),
b) an infinite line charge p, located midway between two large, intersecting conducting
planes forming a 60-degree angle, as shown in Fig. 4-22(b).

i) e
d —_ LY
600
| Qe ¥4
L =
(a) Point charge between - (b) Line charge between
grounded parallel planes. grounded intersecting plane.

FIGURE 4-22
Diagrams for Problem P.4-9.
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P.4-10 A straight conducting wire of radius a is parallel to and at height 4 from the surface
of the earth. Assuming that the earth is perfectly conducting, determine the capacitance and
the force per unit length between the wire and the earth.

P.4-11 A very long two-wire transmission line, each wire of radius a and separated by a
distance d, is supported at a height h above a flat conducting ground. Assuming both d and
h to be much larger than q, find the capacitance per unit length of the line.

P.4-12 For the pair of equal and opposite line charges shown in Fig. 4-7,
a) write the expression for electric field intensity E at point P(x, y) in Cartesian
coordinates,
b) find the equation of the electric field lines sketched in Fig. 4-8.

P.4-13 Determine the capacitance per unit length of a two-wire transmission line with
parallel conducting cylinders of different radii a, and a,, their axes being separated by a
distance D (where D > a, + a,).

P.4-14 A long wire of radius a, lies inside a conducting circular tunnel of radius a,, as
shown in Fig. 4-10(a). The distance between their axes is D.
a) Find the capacitance per unit length.
b) Determine the force per unit length on the wire if the wire and the tunnel carry
equal and opposite line charges of magnitude p,.

P4-15 A point charge Q is located inside and at distance d from the center of a grounded
spherical conducting shell of radius b (where b > d). Use the method of images to determine
a) the potential distribution inside the shell,
b) the charge density p, induced on the inner surface of the shell.

P.4-16 Two conducting spheres of equal radius a are maintained at potentlals ¥, and O,
respectively. Their centers are separated by a distance D.
a) Find the image charges and their locations that can electrically replace the two
spheres.
b) Find the capacitance between the two spheres.

P.4-17 Two dielectric media with dielectric constants €; and €, are separated by a plane
boundary at x = 0, as shown in Fig. 4-23. A point charge Q exists in medium 1 at distance
d from the boundary.

FIGURE 4-23
Image charges in dielectric media (Problem P.4-17).
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a) Verify that the field in medium 1 can be obtained from Q and an image charge —Q,,
both acting in medium 1.

b) Verify that the field in medium 2 can be obtained from Q and an image charge +Q,
coinciding with @, both acting in medium 2.

¢) Determine Q, and Q,. (Hint: Consider neighboring points P, and P, in media 1
and 2, respectively, and require the continuity of the tangential component of the
E-field and of the normal component of the D-field.)

P.4-18 Describe the geometry of the region in which the potential function can be
represented by a single term as follows:

a) V(x,y) = ¢,xy,

b) V(x,y) = c, sin kx sinh ky.
Find c,, c,, and k in terms of the dimensions and a fixed potential V.
P.4-19 In what way should we modify the solution in Eq. (4—114) for Example 4-7 if the
boundary conditions on the top, bottom, and right planes in Fig. 4-17 are dV/dn = ?

P.4-20 In what way should we modify the solution in Eq. (4-114) for Example 4-7 if the
top, bottom, and left planes in Fig. 4—17 are grounded (V = 0) and an end plate on the
right is maintained at a constant potential ¥;?

P.4-21 Consider the rectangular region shown in Fig. 4-17 as the cross section of an
enclosure formed by four conducting plates. The left and right plates are grounded, and the
top and bottom plates are maintained at constant potentials V; and V,, respectively.
Determine the potential distribution inside the enclosure.

P.4-22 Consider a metallic rectangular box with sides a and b and height ¢. The side walls
and the bottom surface are grounded. The top surface is isolated and kept at a constant
potential V. Determine the potential distribution inside the box.

P.4-23 Two infinite insulated conducting planes maintained at potentials 0 and V, form a
wedge-shaped configuration, as shown in Fig. 4-24. Determine the potential distributions
for the regions: (a) 0 < ¢ < o, and' (b) o < ¢ < 27.

Vo
¢ FIGURE 4-24
« A Two infinite insulated conducting planes
[ rrzzz z zzn maintained at constant potentials (Problem
- P.4-23).

P.4-24 An infinitely long, thin conducting circular cylinder of radius b is split in four
quarter-cylinders, as shown in Fig. 4-25. The quarter-cylinders in the second and fourth
quadrants are grounded, and those in the first and third quadrants are kept at potentials ¥,
and — ¥,, respectively. Determine the potential distribution both inside and outside the
cylinder.

P.4-25 A long, grounded conducting cylinder of radius b is placed along the z-axis in an
initially uniform electric field E, = a,E,. Determine potential distribution V(r, ¢) and
electric field intensity E(r, ¢) outside the cylinder. Show that the electric field intensity at
the surface of the cylinder may be twice as high as that in the distance, which may cause a
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ya
V=20 b =W
» x
V=-V =0 FIGURE 4-25
Cross section of long circular cylinder split in four
quarters (Problem P.4-24).

local breakdown or corona. (This phenomenon of corona discharge along the rigging and
spars of ships and on airplanes near storms is known as St. Elmo’s fire.")

P.4-26 A long dielectric cylinder of radius b and dielectric constant ¢, is placed along the
z-axis in an initially uniform electric field E, = a,E,. Determine V{r, ¢) and E(r, ¢) both
inside and outside the dielectric cylinder.

P.4-27 An infinite conducting cone of half-angle « is maintained at potential ¥, and
insulated from a grounded conducting plane, as illustrated in Fig. 4-26. Determine
a) the potential distribution V(6) in the region o < 6 < 7/2,
b) the electric field intensity in the region o < 6 < /2,
¢) the charge densities on the cone surface and on the grounded plane.

FIGURE 4-26

An infinite conducting cone and
= I I I 777 zrzzzzn— @ grounded conducting plane
—  (Problem P.4-27).

P.4-28 Rework Example 4-10, assuming that V(b, 8) = V, in Eq. (4-155a).

P.4-29 A dielectric sphere of radius b and dielectric constant ¢, is placed in an initially
uniform electric field, E, = a,E,, in air. Determine V(R, 6) and E(R, 6) both inside and
outside the dielectric sphere.

' R. H. Golde (Ed.), Lightning, Academic Press, New York, 1977, vol. 2, Chap. 21.
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In Chapters 3 and 4 we dealt with electrostatic problems, field problems associated
with electric charges at rest. We now consider the charges in motion that constitute
current flow. There are several types of electric currents caused by the motion of free
charges.! Conduction currents in conductors and semiconductors are caused by drift
motion of conduction electrons and/or holes; electrolytic currents are the result of
migration of positive and negative ions; and convection currents result from motion
of electrons and/or ions in a vacuum. In this chapter we shall pay special attention to
conduction currents that are governed by Ohm’s law. We will proceed from the point
form of Ohm’s law that relates current density and electric field intensity and obtain
the V = IR relationship in circuit theory. We will also introduce the concept of elec-
tromotive force and derive the familiar Kirchhoff’s voltage law. Using the principle
of conservation of charge, we will show how to obtain a point relationship between
current and charge densities, a relationship called the equation of continuity from
which Kirchhoff’s current law follows.

When a current flows across the interface between two media of different con-
ductivities, certain boundary conditions must be satisfied, and the direction of cur-
rent flow is changed. We will discuss these boundary conditions. We will also show
that for a homogeneous conducting medium, the current density can be expressed
as the gradient of a scalar field, which satisfies Laplace’s equation. Hence, an analo-
gous situation exists between steady-current and electrostatic fields that is the basis
for mapping the potential distribution of an electrostatic problem in an electrolytic
tank.

The electrolyte in an electrolytic tank is essentially a liquid medium with a low
conductivity, usually a diluted salt solution. Highly conducting metallic electrodes

" In a time-varying situation there is another type of current caused by bound charges. The time-rate of
change of electric displacement leads to a displacement current. This will be discussed in Chapter 7.
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are inserted in the solution. When a voltage or potential difference is applied to the
electrodes, an electric field is established within the solution, and the molecules of
the electrolyte are decomposed into oppositely charged ions by a chemical process
called electrolysis. Positive ions move in the direction of the electric field, and nega-
tive ions move in a direction opposite to the field, both contributing to a current
flow in the direction of the field. An experimental model can be set up in an electro-
lytic tank, with electrodes of proper geometrical shapes simulating the boundaries in
electrostatic problems. The measured potential distribution in the electrolyte is then
the solution to Laplace’s equation for difficult-to-solve analytic problems having
complex boundaries in a homogeneous medium.

Convection currents are the result of the motion of positively or negatively
charged particles in a vacuum or rarefied gas. Familiar examples are electron beams
in a cathode-ray tube and the violent motions of charged particles in a thunderstorm.
Convection currents, the result of hydrodynamic motion involving a mass transport,
are not governed by Ohm’s law. .

The mechanism of conduction currents is different from that of both electrolytic
currents and convection currents. In their normal state the atoms of a conductor
occupy regular positions in a crystalline structure. The atoms consist of positively
charged nuclei surrounded by electrons in a shell-like arrangement. The electrons in
the inner shells are tightly bound to the nuclei and are not free to move away. The
electrons in the outermost shells of a conductor atom do not completely fill the shells;
they are valence or conduction electrons and are only very loosely bound to the nuclei.
These latter electrons may wander from one atom to another in a random manner.
The atoms, on the average, remain electrically neutral, and there is no net drift mo-
tion of electrons. When an external electric field is applied on a conductor, an orga-
nized motion of the conduction electrons will result, producing an electric current.
The average drift velocity of the electrons is very low (on the order of 1074 or
1073 m/s) even for very good conductors because they collide with the atoms in the
course of their motion, dissipating part of their kinetic energy as heat. Even with the
drift motion of conduction electrons, a conductor remains electrically neutral. Elec-
tric forces prevent excess electrons from accumulating at any point in a conductor.
We will show analytically that the charge density in a conductor decreases expo-
nentially with time. In a good conductor the charge density diminishes extremely
rapidly toward zero as the state of equilibrium is approached.

Current Density and Ohm’s Law

Consider the steady motion of one kind of charge carriers, each of charge g (which
is negative for electrons), across an element of surface As with a velocity u, as shown
in Fig. 5-1. If N is the number of charge carriers per unit volume, then in time Az
each charge carrier moves a distance uAt, and the amount of charge passing through
the surface As is

AQ = Nqu-a,As At (©). (5-1)
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FIGURE 5-1
Conduction current due to drift motion of charge carriers across a surface.

Since current is the time rate of change of charge, we have

Al = % = Nqu-a,As = Nqu-As (A). (5-2)

In Eq. (5-2) we have written As = a,As as a vector quantity. It is convenient to
define a vector point function, volume current density, or simply current density, J,
in amperes per square meter,

J=Ngqu (A/m?), (5-3)
so that Eq. (5-2) can be written as
Al =J-As. (5-9

The total current I flowing through an arbitrary surface S is then the flux of the J
vector through S:

I= fs J-ds (A (5-5)

Noting that the product Ngq is in fact free charge per unit volume, we may rewrite
Eq. (5-3) as

J=pu (A/m?), (5-6)

which is the relation between the convection current density and the velocity of the
charge carrier.

smsss EXAMPLE 5-1 In vacuum-tube diodes, electrons are emitted from a hot cathode
at zero potential and collected by an anode maintained at a potential Vg, resulting
in a convection current flow. Assuming that the cathode and the anode are parallel
conducting plates and that the electrons leave the cathode with a zero initial veloc-
ity (space-charge limited condition), find the relation between the current density J
and V.
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Solution The region between the cathode and the anode is shown in Fig. 5-2, where
a cloud of electrons (negative space charge) exists such that the force of repulsion
makes the electrons boiled off the hot cathode leave essentially with a zero velocity.
In other words, the net electric field at the cathode is zero. Neglecting fringing effects,
we have

davi
E@0) =a,E(0) = —a, ey =0. 5-7
dy y=0
In the steady state the current density is constant, independent of y:
J= _ayJ = ayp(y)u(y)a (5-8)

where the charge density p(y) is a negative quantity. The velocity u = a u(y) is related
to the electric field intensity E(y) = a,E(y) by Newton’s law of motion:

du(y) L0

where m = 9.11 x 1073! (kg)and ~e = —1.60 x 10~ 9 (C) are the mass and charge,
respectively, of an electron. Noting that

du du dy nu du

ma T dy dt T dy

(-9

we can rewrite Eq. (5-9) as
4 (_;_ mu2) .Y (5-10)

Integration of Eq. (5-10) gives
imu? = eV, (5-11)

where the constant of integration has been set to zero because at y = 0, u(O) V() =
From Eq. (5-11) we obtain

1/2 ‘
u= (i_e V> . (5-12)

FIGURE 5-2
Space-charge-limited vacuum diode (Example 5-1).
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In order to find V(y) in the interelectrode region we must solve Poisson’s equa-
tion with p expressed in terms of V(y) from Eq. (5-8):

J m
=-"=—J V12 5-13
P u 2e ( )
We have, from Eq. (4-6),
azv p J /m
— =l = _V_I/Z. _
dy* € €0\ 2e (5-14)

Equation (5-14) can be integrated if both sides are first multiplied by 2dV/dy. The

result is N a)
Y = Eywrgg (5-15)
dy € \ 2e

Aty =0, V =0, and dV/dy = 0 from Eq. (5-7), so ¢ = 0. Equation (5-15) becomes

J [m\'*
-4y J [ m ] _
y-l4 gy =2 /60 <2e> dy (5-16)

Integrating the left side of Eq. (5-16) from V = 0 to ¥, and the right side from y = 0

to d, we obtain
4 4 J [m\'*
z - “AZZY 4
3 Vo 2\/ €0 \2¢ ’

de, [2e
9% \m
Equation (5-17) states that the convection current density in a space-charge limited
vacuum diode is proportional to the three-halves power of the potential difference
between the anode and the cathode. This nonlinear relation is known as the Child-
Langmuir law. -—

or

J V3?2  (A/m?). (5-17)

In the case of conduction currents there may be more than one kind of charge
carriers (electrons, holes, and ions) drifting with different velocities. Equation (5-3)
should be generalized to read

J=Y Ngw,  (A/m?) (5-18)

As indicated in Section 5-1, conduction currents are the result of the drift motion
of charge carriers under the influence of an applied electric field. The atoms remain
neutral (p = 0). It can be justified analytically that for most conducting materials the
average drift velocity is directly proportional to the electric field intensity. For metal-
lic conductors we write

u=—pukE  (m/s), (5-19)

where p, is the electron mobility measured in (m?/V-s). The electron mobility for
copperis 3.2 x 1073 (m?/V-s).Itis 1.4 x 10~* (m?/V-s)for aluminum and 5.2 x 1073
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(m?/V-s) for silver. From Egs. (5-3) and (5-19) we have
J=—pukE, (5-20)

where p, = —Ne is the charge density of the drifting electrons and is a negative
quantity. Equation (5-20) can be rewritten as

J=0E (A/m?), (5-21)

where the proportionality constant, ¢ = —p,u,, is a macroscopic constitutive pa-
rameter of the medium called conductivity.

For semiconductors, conductivity depends on the concentration and mobility of
both electrons and holes:

O = —Pelte + Prily, (5-22)

where the subscript h denotes hole. In general, u, # p,. For germanium, typical
values are u, = 0.38, , = 0.18; for silicon, u, = 0.12, g, = 0.03 (m?/V:s).

Equation (5-21) is a constitutive relation of a conducting medium. Isotropic
materials for which the linear relation Eq. (5-21) holds are called ohmic media. The
unit for ¢ is ampere per volt-meter (A/V-m) or siemens per meter (S/m). Copper, the
most commonly used conductor, has a conductivity 5.80 x 107 (S/m). On the other
hand, the conductivity of germanium is around 2.2 (S/m), and that of silicon is
1.6 x 103 (S/m). The conductivity of semiconductors is highly dependent of (increases
with) temperature. Hard rubber, a good insulator, has a conductivity of only
10713 (S/m). Appendix B-4 lists the conductivities of some other frequently used
materials. However, note that, unlike the dielectric constant, the conductivity of ma-
terials varies over an extremely wide range. The reciprocal of conductivity is called
resistivity, in ohm-meters (Q-m). We prefer to use conductivity; there is really no
compelling need to use both conductivity and resistivity.

We recall Ohm’s law from circuit theory that the voltage V;, across a resistance
R, in which a current I flows from point 1 to point 2, is equal to RI; that is,

Vi, = RI (5-23)

Here R is usually a piece of conducting material of a given length; V,, is the voltage
between two terminals 1 and 2; and I is the total current flowing from terminal 1 to
terminal 2 through a finite cross section.

Equation (5-23) is not a point relation. Although there is little resemblance
between Eq. (5-21) and Eq. (5-23), the former is generally referred to as the point
Jorm of Ohm’s law. Tt holds at all points in space, and ¢ can be a function of space
coordinates.

Let us use the point form of Ohm’s law to derive the voltage-current relationship
of a piece of homogeneous material of conductivity o, length ¢, and uniform cross
section S, as shown in Fig. 5-3. Within the conducting material, J = ¢E, where both
J and E are in the direction of current flow. The potential difference or voltage
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FIGURE 5-3 .
Homogeneous conductor with a constant cross section.

between terminals 1 and 2 is'

V12 = E/
or
Via
E=—=. 5-24
7 (5-24)
The total current is
I= fs J-ds=1JS
or
I
J==. 5-25
S ( )
Using Egs. (5-24) and (5-25) in Eq. (5-21), we obtain
I_ "
S ¢
or
£
Vio={-—<H=RI, (5-26)
oS

which is the same as Eq. (5-23). From Eq. (5-26) we have the formula for the
resistance of a straight piece of homogeneous material of a uniform cross section for
steady current (d.c.):

R=— (@ (5-27)

We could have started with Eq. (5-23) as the experimental Ohm’s law and applied
it to a homogeneous conductor of length # and uniform cross-section S. Using the
formula in Eq. (5-27), we could derive the point relationship in Eq. (5-21).

t We will discuss the significance of ¥;, and E more in detail in Section 5-3.
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mmwmm EXAMPLE 5-2 Determine the d-c resistance of 1-(km) of wire having a 1-(mm) radius
(a) if the wire is made of copper, and (b) if the wire is made of aluminum.

Solution  Since we are dealing with conductors of a uniform cross section, Eq. (5-27)
applies.

a) For copper wire, o, = 5.80 x 107 (S/m):
£=10°(m), S=n(10"32=10"%z (m?).

We have
£ 103
Ry=——= =5. .
“ 6,5 580x 10" x 10”5z 49y
b) For aluminum wire, o,, = 3.54 x 107 (S/m):
Ry=t Cap 380 si-3590 @ -

4TS o, ™ 354

The conductance, G, or the reciprocal of resistance, is useful in combining resis-
tances in parallel. The unit for conductance is (Q™1'), or siemens (S).

G===0= (S (5-28)

From circuit theory we know the following:

a) When resistances R, and R, are connected in series (same current), the total
resistance R is

R, =R, +R,. (5-29)

b) When resistances R, and R, are connected in parallel (same voltage), we have

1 1 1
=4 — (5-30a)
R, R, R,
or

5~3 Electromotive Force and Kirchhoff’s Voltage Law

In Section 3-2 we pointed out that static electric field is conservative and that the
scalar line integral of static electric intensity around any closed path is zero; that is,

gﬁc E-de=0. (5-31)
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FIGURE 5-4 ‘
Electric battery Electric fields inside an electric battery.

For an ohmic material J = oE, Eq. (5-31) becomes
1
gﬁ —J-de =0. (5-32)
Co

Equation (5-32) tells us that a steady current cannot be maintained in the same direc-
tion in a closed circuit by an electrostatic field. A steady current in a circuit is the
result of the motion of charge carriers, which, in their paths, collide with atoms and
dissipate energy in the circuit. This energy must come from a nonconservative field,
since a charge carrier completing a closed circuit in a conservative field neither gains
nor loses energy. The source of the nonconservative field may be electric batteries
(conversion of chemical energy to electric energy), electric generators (conversion of
mechanical energy to electric energy), thermocouples (conversion of thermal energy
to electric energy), photovoltaic cells (conversion of light energy to electric energy),
or other devices. These electrical energy sources, when connected in an electric circuit,
provide a driving force for the charge carriers. This force manifests itself as an equiv-
alent impressed electric field intensity E;.

Consider an electric battery with electrodes 1 and 2, shown schematically in Fig.
5—4. Chemical action creates a cumulation of positive and negative charges at elec-
trodes 1 and 2, respectively. These charges give rise to an electrostatic field intensity
E both outside and inside the battery. Inside the battery, E must be equal in magni-
tude and opposite in direction to the nonconservative E; produced by chemical action,
since no current flows in the open-circuited battery and the net force acting on the
charge carriers must vanish. The line integral of the impressed field intensity E; from
the negative to the positive electrode (from electrode 2 to electrode 1 in Fig. 5-4)
inside the battery is customarily called the electromotive force' (emf) of the bat-
tery. The SI unit for emf is volt, and an emf is not a force in newtons. Denoted by
¥, the electromotive force is a measure of the strength of the nonconservative source.
We have

¥ = f; E,-dé = —f; E-de. (5-33)

Inside
the source

t Also called electromotance.
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The conservative electrostatic field intensity E satisfies Eq. (5-31):

‘ 2 1
G E-de=["E-ae+ [ E-ae=0 (5-34)
Outside Inside
the source the source

Combining Eqs. (5-33) and (5-34), we have

¥ = ff E- de (5-35)
Outside
the source

or
V=V,=V,—V,. (5-36)

In Eqgs. (5-35) and (5-36) we have expressed the emf of the source as a line integral
of the conservative E and interpreted it as a voltage rise. In spite of the nonconserva-
tive nature of E;, the emf can be expressed as a potential difference between the posi-
tive and negative terminals. This was what we did in arriving at Eq. (5-24).

When a resistor in the form of Fig. 5-3 is connected between terminals 1 and 2
of the battery, completing the circuit, the total electric field intensity (electrostatic
E caused by charge cumulation, as well as impressed E; caused by chemical action),
must be used in the point form of Ohm’s law. We have, instead of Eq. (5-21),

J=0(E + E), (5-37)

where E, exists inside the battery only, while E has a nonzero value both inside and
outside the source. From Eq. (5-37) we obtain

E+E = ; (5-38)

The scalar line integral of Eq. (5-38) around the closed circuit yields, in view of Eqs.
(5-31) and (5-33),
1
V=£@+&%M=£;LM. (5-39)

Equation (5-39) should be compared to Eq. (5-32), which holds when there is no
source of nonconservative field. If the resistor has a conductivity o, length ¢, and
uniform cross section S, J = I/S and the right side of Eq. (5-39) becomes RI. We
have!

¥ =RIL (5-40)

If there are more than one source of electromotive force and more than one resistor
(including the internal resistances of the sources) in the closed path, we generalize

t We assume the battery to have a negligible internal resistance; otherwise, its effect must be included in
Eq. (5-40). An ideal voltage source is one whose terminal voltage is equal to its emf and is independent
of the current flowing through it. This implies that an ideal voltage source has a zero internal resistance.
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Eq. (5-40) to

Z v, = Z RI, V) (5-41)
Jj k

Equation (5-41) is an expression of Kirchhoff’s voltage law. It states that, around a
closed path in an electric circuit, the algebraic sum of the emf’s (voltage rises) is equal
to the algebraic sum of the voltage drops across the resistances. 1t applies to any
closed path in a network. The direction of tracing the path can be arbitrarily assigned,
and the currents in the different resistances need not be the same. Kirchhoff’s voltage
law is the basis for loop analysis in circuit theory.

Equation of Continuity and Kirchhoff’s Current Law

The principle of conservation of charge is one of the fundamental postulates of physics.
Electric charges may not be created or destroyed; all charges either at rest or in
motion must be accounted for at all times. Consider an arbitrary volume V bounded
by surface S. A net charge Q exists within this region. If a net current I flows across
the surface out of this region, the charge in the volume must decrease at a rate that
equals the current. Conversely, if a net current flows across the surface into the region,
the charge in the volume must increase at a rate equal to the current. The current
leaving the region is the total outward flux of the current density vector through the
surface S. We have

I —§ J-ds = dt dtJ‘ pdv. (5-42)

Divergence theorem, Eq. (2—115), may be invoked to convert the surface integral of
J to the volume integral of V - J. We obtain, for a stationary volume,

_ P
fy Velddy= [, = dv (5-43)
In moving the time derivative of p inside the volume integral, it is necessary to use
partial differentiation because p may be a function of time as well as of space co-
ordinates. Since Eq. (5-43) must hold regardless of the choice of V, the integrands
must be equal. Thus we have

voa=-2  @am). (5-44)

This point relationship derived from the principle of conservation of charge is called
the equation of continuity.
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For steady currents, charge density does not vary with time, dp/dt = 0. Equation
(5—44) becomes

V-J=0. (5-45)
Thus, steady electric currents are divergenceless or solenoidal. Equation (5-45) is a
point relationship and holds also at points where p = 0 (no flow source). It means
that the field lines or streamlines of steady currents close upon themselves, unlike
those of electrostatic field intensity that originate and end on charges. Over any
enclosed surface, Eq. (5-45) leads to the following integral form:

¢ 3-ds=0, (5-46)
which can be written as

Yr=0 (@) (5-47)

Equation (5-47) is an expression of Kirchhoff’s current law. It states that the algebraic
sum of all the currents flowing out of a junction in an electric circuit is zero.! Kirchhoff’s
current law is the basis for node analysis in circuit theory.

In Section 36, we stated that charges introduced in the interior of a conductor
will move to the conductor surface and redistribute themselves in such a way as to
make p = 0 and E = 0 inside under equilibrium conditions. We are now in a position
to prove this statement and to calculate the time it takes to reach an equilibrium.
Combining Ohm’s law, Eq. (5-21), with the equation of continuity and assuming a
constant o, we have

dp
-E= - 5-4

oV E 6t (5-48)
In a simple medium, V - E = p/e, and Eq. (5-48) becomes

op o

“a_t‘ + 'g p= 0. (5—49)
The solution of Eq. (5-49) is

p=poe” " (C/m?), (5-50)

where p,, is the initial charge density at ¢t = 0. Both p and p, can be functions of the
space coordinates, and Eq. (5-50) says that the charge density at a given location
will decrease with time exponentially. An initial charge density p, will decay to 1/e

! This includes the currents of current generators at the junction, if any. An ideal current generator is
one whose current is independent of its terminal voltage. This implies that an ideal current source has an
infinite internal resistance. '
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or 36.8% of its value in a time equal to
T=—  (s). (5-51)

The time constant t is called the relaxation time. For a good conductor such as
copper—o = 5.80 x 107 (S/m), €= ¢, =885 x 107! (F/m)—t equals 1.52 x
10719 (s), a very short time indeed. The transient time is so brief that, for all practical
purposes, p can be considered zero in the interior of a conductor—see Eq. (3-69) in
Section 3—6. The relaxation time for a good insulator is not infinite but can be hours
or days.

Power Dissipation and Joule’s Law

In Section 5—1 we indicated that under the influence of an electric field, conduction
electrons in a conductor undergo a drift motion macroscopically. Microscopically,
these electrons collide with atoms on lattice sites. Energy is thus transmitted from
the electric field to the atoms in thermal vibration. The work Aw done by an electric
field E in moving a charge g a distance A¢ is gE - (A¢), which corresponds to a power

p = lim gE - u, (5-52)

at-0 At

where u is the drift velocity. The total power delivered to all the charge carriers in a

volume dv is
dP = Z pi = E ° <Z Niqill,-> dv,

which, by virtue of Eq. (5-18), is

dP=E-Jdv
or
i =E-J (W/m?). (5-53)
dv

Thus the point function E-J is a power density under steady-current conditions.
For a given volume V the total electric power converted into heat is

P= fVE Jdv (W), (5-54)

This is known as Joule’s law. (Note that the SI unit for P is watt, not joule, which is
the unit for energy or work.) Equation (5-53) is the corresponding point relationship.

In a conductor of a constant cross section, dv = dsd/, with d¢ measured in the
direction J. Equation (5-54) can be written as

P=fLEd/fsts= v,
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where I is the current in the conductor. Since ¥V = RI, we have

P=I?R (W) (5-55)

Equation (5-55) is, of course, the familiar expression for ohmic power representing
the heat dissipated in resistance R per unit time.

Boundary Conditions for Current Density

When current obliquely crosses an interface between two media with different con-
ductivities, the current density vector changes both in direction and in magnitude. A
set of boundary conditions can be derived for J in a way similar to that used in
Section 3-9 for obtaining the boundary conditions for D and E. The governing
equations for steady current density J in the absence of nonconservative energy
sources are

Governing Equations for Steady Current Density
Differential Form Integral Form
V-3=0 $3-d5=0 (5-56)
1
Vx<£>=0 ~J-dt=0 (5-57)
o Co

The divergence equation is the same as Eq. (5-45), and the curl equation is obtained
by combining Ohm’s law (J = ¢E) with V x E = 0. By applying Eqgs. (5-56) and
(5-57) at the interface between two ohmic media with conductivities ¢, and o,, we
obtain the boundary conditions for the normal and tangential components of J.

Without actually constructing a pillbox at the interface as was done in Fig. 3-23,
we know from Section 3-9 that the normal component of a divergenceless vector
field is continuous. Hence from V - J = 0 we have

Jin=J2n (A/m?). (5-58)

Similarly, the tangential component of a curl-free vector field is continuous across an
interface. We conclude from V x (J/o) = O that

Ju _ 0

= (5-59)
Ju 03
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FIGURE 5-5
Boundary conditions at interface between two
conducting media (Example 5-3).

Equation (5—59) states that the ratio of the tangential components of J at two sides
of an interface is equal to the ratio of the conductivities. Comparing the boundary
conditions Egs. (5-58) and (5-59) for steady current density in ohmic media with
the boundary conditions Eqs. (3—123) and (3-119), respectively, for electrostatic flux
density at an interface of dielectric media where there are no free charges, we note
an exact analogy of J and ¢ with D and .

EXAMPLE 5-3 Two conducting media with conductivities o, and o, are separated
by an interface, as shown in Fig. 5-5. The steady current density in medium 1 at point
P, has a magnitude J, and makes an angle «, with the normal. Determine the
magnitude and direction of the current density at point P, in medium 2.

Solution Using Eqgs. (5-58) and (5-59), we have

Jicosa, =J,cosa, (5-60)
and
6,J sina, = g,J, sin a,. (5-61)

Division of Eq. (5-61) by Eq. (5-60) yields

tana, oz (5-62)
tano; o0,

If medium 1 is a much better conductor than medium 2 (o, >» g, or g,/6, = 0), &,
approaches zero, and J, emerges almost perpendicularly to the interface (normal to
the surface of the good conductor). The magnitude of J, is

Jy = I3 + I3, = U sin ay)? + (J; cos ay)?

s 2 1/2
= [(a_z J, sin oz1> + (J, cos 0‘1)2]
1
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or
o 2 1/2
J,=J, [(a—z sin oc1> + cos? aI:I . (5-63)
1
By examining Fig. 5-5, can you tell whether medium 1 or medium 2 is the better
conductor? -

For a homogeneous conducting medium the differential form of Eq. (5-57) sim-
plifies to

VxJ=0. (5-64)

From Section 2-11 we know that a curl-free vector field can be expressed as the
gradient of a scalar potential field. Let us write

J=—Vy. (5-65)
Substitution of Eq. (5-65) into V-J = 0 yields a Laplace’s equation in y; that is,
Vi = 0. (5-66)

A problem in steady-current flow can therefore be solved by determining i (A/m)
from Eq. (5-66), subject to appropriate boundary conditions and then by finding J
from its negative gradient in exactly the same way as a problem in electrostatics is
solved. As a matter of fact,  and electrostatic potential are simply related: ¢ = o V.
As indicated in Section 5-1, this similarity between electrostatic and steady-current
fields is the basis for using an electrolytic tank to map the potential distribution of
difficult-to-solve electrostatic boundary-value problems.!

When a steady current flows across the boundary between two different lossy
dielectrics (dielectrics with permittivities €; and €, and finite conductivities ¢, and o),
the tangential component of the electric field is continuous across the interface as
usual; that is, E,, = E,,, which is equivalent to Eq. (5-59). The normal component
of the electric field, however, must simultaneously satisfy both Eq. (5-58) and Eq.
(3—-121b). We require

Jln = J2n e alEln = 02E2n (5“67)
Dy, — Dy, = ps = €. E, — 6B, = pg, (5-68)

where the reference unit normal is outward from medium 2. Hence, unless ,/0, =
€,/€,, a surface charge must exist at the interface. From Eqs. (5-67) and (5-68) we

find
= —= — E, = —€,— )E,,. 5-69
Ps (61 o, €2> 2n (61 € 02> 1n ( )

t See, for instance, E. Weber, Electromagnetic Fields, Vol. I: Mapping of Fields, pp. 187-193, John Wiley
and Sons, 1950.
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FIGURE 5-6
Parallel-plate capacitor with two lossy
dielectrics (Example 5—4).

Again, if medium 2 is a much better conductor than medium 1 (¢, >» o, or g,/g, — 0),
Eq. (5-69) becomes approximately

Ps = €1E1n = Dlm (5_70)
which is the same as Eq. (3-122).

mmmes EXAMPLE 5-4 Anemf 7 is applied across a parallel-plate capacitor of area S. The
space between the conducting plates is filled with two different lossy dielectrics of
thicknesses d, and d,, permittivities €, and ¢,, and conductivities ¢, and o,, respec-
tively. Determine (a) the current density between the plates, (b) the electric field
intensities in both dielectrics, and (c) the surface charge densities on the plates and
at the interface.

Solution Refer to Fig. 5-6.

a) The continuity of the normal component of J assures that the current densities
and therefore the currents in both media are the same. By Kirchhoff’s voltage

law we have
d d
¥ =R, + R)I == + 2 )L
(R; + Ry) <a’1S + azS>
Hence,
I v v
J= 9192 (A/m?), (5-71)

S~ difoy) + (dafoy)  0d; + 0,d,

b) To determine the electric field intensities E; and E, in both media, two equations
are needed. Neglecting fringing effect at the edges of the plates, we have

V - Eldl + E2d2 (5—72)
and
0'1E1 = 0’2E2. (5—73)
Equation (5-73) comes from J, = J,. Solving Egs. (5-72) and (5-73), we obtain
0,
= V —74
1 a_zdl + 01d2 ( /m) (5 )
and
v
= (V/m). (5-75)

B o,d, + 0.d,
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¢) The surface charge densities on the upper and lower plates can be determined by
using Eq. (5-70):

€,0,Y
=¢E, =—>2 C/m? -76
Psy = €L o0yd, + 0,4, (C/m?) (5-76)
€,0,Y 2
= —e, £, = —— % - C R =71
Ps2 €0, o,d, + 0,d, (C/m?) (5-77)

The negative sign in Eq. (5-77) comes about because E, and the outward normal
at the lower plate are in opposite directions.

Equation (5-69) can be used to find the surface charge density at the inter-
face of the dielectrics. We have

o, c o,V
- €, — — ——————————————
Psi 6, ‘)o,d,+o0,d,

_ (€20, — €,0,)¥
o,d, + 0.d,
From these results we see that p, # —p,, but that p,; + p,, + p; = 0. -

(5-78)
(C/m?).

In Example 5-4 we encounter a situation in which both static charges and a
steady current exist. As we shall see in Chapter 6, a steady current gives rise to a
steady magnetic field. We have, then, both a static electric field and a steady mag-
netic field. They constitute an electromagnetostatic field. The electric and magnetic
fields of an electromagnetostatic field are coupled through the constitutive relation
J = oF of the conducting medium.

5=T7 Resistance Calculations

In Section 3-10 we discussed the procedure for finding the capacitance between two
conductors separated by a dielectric medium. These conductors may be of arbitrary
shapes, as was shown in Fig. 3-27, which is reproduced here as Fig. 5-7. In terms
of electric field quantities the basic formula for capacitance can be written as

.o ﬁo-ds SﬁseE-ds .

_V_—LE-M:—LE-de,

where the surface integral in the numerator is carried out over a surface enclosing
the positive conductor and the line integral in the denominator is from the negative
(lower-potential) conductor to the positive (higher-potential) conductor (see Eq. 5-35).

When the dielectric medium is lossy (having a small but nonzero conductivity),
a current will flow from the positive to the negative conductor, and a current-density
field will be established in the medium. Ohm’s law, J = ¢E, ensures that the stream-
lines for J and E will be the same in an isotropic medium. The resistance between
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FIGURE 5-7
Two conductors in a lossy dielectric medium.

the conductors is

v —fLE-de —fLE-df 5.0
I

where the line and surface integrals are taken over the same L and S as those in
Eq. (5-79). Comparison of Egs. (5-79) and (5-80) shows the following interesting
relationship:

(5-81)

Equation (5-81) holds if € and ¢ of the medium have the same space dependence or
if the medium is homogeneous (independent of space coordinates). In these cases, if
the capacitance between two conductors is known, the resistance (or conductance)
can be obtained directly from the ¢/o ratio without recomputation.

memmm EXAMPLE 5-5 Find the leakage resistance per unit length (a) between the inner
and outer conductors of a coaxial cable that has an inner conductor of radius a, an
outer conductor of inner radius b, and a medium with conductivity o, and (b) of a
parallel-wire transmission line consisting of wires of radius a separated by a distance
D in a medium with conductivity o.

Solution

a) The capacitance per unit length of a coaxial cable has been obtained as Eq.
(3-139) in Example 3-18:
2me

™ (b/a)

(F/m).
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Hence the leakage resistance per unit length is, from Eq. (5-81),

e/ 1 1 b

The conductance per unit length is G, = 1/R,.

b) For the parallel-wire transmission line, Eq. (4—47) in Example 4—4 gives the
-capacitance per unit length:

€

D
| R
cos <2a>

Therefore the leakage resistance per unit length is, without further ado,

ef1 1 D
| —— | = — h_ LY
R ] <C’1> o cos <2a> (5-83)
-83
1 D D\?
=— — — =1 ‘m).
no In |:2a + <2a> :I @-m)

The conductance per unit length is G| = 1/Rj. -

C, = (F/m).

It must be emphasized here that the resistance between the conductors for a
length ¢ of the coaxial cable is R,/Z, not /R,; similarly, the leakage resistance of a
length ¢ of the parallel-wire transmission line is R’/Z, not /R}. Do you know why?

In certain situations, electrostatic and steady-current problems are not exactly
analogous, even when the geometrical configurations are the same. This is because
current flow can be confined strictly within a conductor (which has a very large ¢ in
comparison to that of the surrounding medium), whereas electric flux usually cannot
be contained within a dielectric slab of finite dimensions. The range of the dielectric
constant of available materials is very limited (see Appendix B-3), and the flux-
fringing around conductor edges makes the computation of capacitance less accurate.

The procedure for computing the resistance of -a piece of conducting material
between specified equipotential surfaces (or terminals) is as follows:

1. Choose an appropriate coordinate system for the given geometry.

2. Assume a potential difference ¥, between conductor terminals.

3. Find electric field intensity E within the conductor. (If the material is homoge-
neous, having a constant conductivity, the general method is to solve Laplace’s
equation V2V = 0 for V in the chosen coordinate system, and then obtain E =
-VV)

4. Find the total current

I=[3-ds=[ oE-as
where S is the cross-sectional area over which I flows.

5. Find resistance R by taking the ratio V,/I.
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It is important to note that if the conducting material is inhomogeneous and if the
conductivity is a function of space coordinates, Laplace’s equation for V' does not
hold. Can you explain why and indicate how E can be determined under these
circumstances?

When the given geometry is such that J can be determined easily from a total
current I, we may start the solution by assuming an I. From I, J and E = J/o are
found. Then the potential difference Vj is determined from the relation

Vo=—[E-de

where the integration is from the low-potential terminal to the high-potential terminal.
The resistance R = V,/I is independent of the assumed I, which will be canceled in
the process.

EXAMPLE 5-6 A conducting material of uniform thickness h and conductivity ¢
has the shape of a quarter of a flat circular washer, with inner radius a and outer
radius b, as shown in Fig. 5-8. Determine the resistance between the end faces.

Solution Obviously, the appropriate coordinate system to use for this problem is
the cylindrical coordinate system. Following the foregoing procedure, we first assume
a potential difference ¥, between the end faces, say ¥ = 0 on the end face at y =0
(¢ =0) and V = V, on the end face at x = 0 (¢ = n/2). We are to solve Laplace’s
equation in V subject to the following boundary conditions:

V=0 at ¢ =0, (5-84a)

V=1, at ¢ = n/2. (5-84b)
Since potential V is a function of ¢ only, Laplace’s equation in cylindrical coordinates
simplifies to

i = (5-85)

d¢?

The general solution of Eq. (5-85) is
V = Cld) + C2,

FIGURE 5-8
A quarter of a flat conducting circular washer (Example
X  5-6).
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which, upon using the boundary conditions in Eqgs. (5-84a) and (5-84b), becomes

V= Al ) (5-86)
T
The current density is
J=0E = —0oVV
ov 2aV, (5-87)
= _%“';ég— —a,

The total current I can be found by integrating J over the ¢ = m/2 surface at which

ds = —agzhdr. We have
20V, d
1= [ 3-ds= i °hfa”7'

2 nhV b 6-59)
= o Y ln —
T a
Therefore, ‘
R="V0 " (5-89)

T~ 20hin(b/a)

Note that, for this problem, it is not convenient to begin by assuming a total
current I because it is not obvious how J varies with r for a given I. Without J, E
and ¥, cannot be determined. -

Review Questions

R.5-1 Explain the difference between conduction and convection currents.

R.5-2 Explain the operation of an electrolytic tank. In what ways do electrolytic currents
differ from conduction and convection currents?

R.5-3 Define mobility of the electron in a conductor. What is its SI unit?
R.5-4 What is the Child-Langmuir law?

R.5-5 What is the point form for Ohm’s law?

R.5—6 Define conductivity. What is its SI unit?

R.5-7 Why does the resistance formula in Eq. (5-27) require that the material be
homogeneous and straight and that it have a uniform cross section?

R.5-8 Prove Egs. (5-29) and (5-30b).

R.5-9 Define electromotive force in words.

R.5-10 What is the difference between impressed and electrostatic field intensities?
R.5-11 State Kirchhoff ’s voltage law in words.

R.5-12 What are the characteristics of an ideal voltage source?

R.5-13 Can the currents in different branches (resistors) of a closed loop in an electric
network flow in opposite directions? Explain.
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R.5-14 What is the physical significance of the equation of continuity?
R.5-15 State Kirchhoff 's current law in words.
R.5-16 What are the characteristics of an ideal current source?

R.5-17 Define relaxation time. What is the order of magnitude of the relaxation time in
copper?

R.5~18 In what ways should Eq. (5-48) be modified when o is a function of space
coordinates?

R.5-19 State Joule’s law. Express the power dissipated in a volume
a) in terms of E and g,
b) in terms of J and o.

R.5-20 Does the relation V x J = 0 hold in a medium whose conductivity is not constant?
Explain.

R.5-21 What are the boundary conditions of the normal and tangential components of
steady current at the interface of two media with different conductivities?

R.5-22 What quantities in electrostatics are analogous to the steady current density vector
and conductivity in an ohmic medium?

R.5-23 What is the basis of using an electrolytic tank to map the potential distribution of
electrostatic boundary-value problems?

R.5-24 What is the relation between the resistance and the capacitance formed by two
conductors immersed in a lossy dielectric medium that has permittivity € and conductivity ¢?

R.5-25 Under what situations will the relation between R and C in R.5-24 be only
approximately correct? Give a specific example.

Problems

P.5-1 Assuming S to be the area of the electrodes in the space-charge-limited vacuum
diode in Fig. 5-2, find
a) V(y) and E(y) within the interelectrode region,
b) the total amount of charge in the interelectrode region,
¢) the total surface charge on the cathode and on the anode,
d) the transit time of an electron from the cathode to the anode with ¥, = 200 (V) and
d =1 (cm).
P.5-2 Starting with Ohm’s law as expressed in Eq. (5-26) applied to a resistor of length ¢,
conductivity a, and uniform cross-section S, verify the point form of Ohm’s law represented
by Eq. (5-21).
P.5-3 A long, round wire of radius a and conductivity ¢ is coated with a material of
conductivity 0.1¢.
a) What must be the thickness of the coating so that the resistance per unit length of
the uncoated wire is reduced by 50%,?
b) Assuming a total current I in the coated wire, find J and E in both the core and
the coating material.

P.5-4 Find the current and the heat dissipated in each of the five resistors in the network
shown in Fig. 5-9 if

R, =1(Q), R,=20(Q), R,=30(Q), R,=8(Q), R,=10(Q),
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Ry R R
1 R5§
2 FIGURE 5-9
A network problem (Problem P.5-4).

and if the source is an ideal d-c voltage generator of 0.7 (V) with its positive polarity at
terminal 1. What is the total resistance seen by the source at terminal pair 1-2?

P.5-5 Solve Problem P.5—4, assuming that the source is an ideal current generator that
supplies a direct current of 0.7 (A) out of terminal 1.

P.5-6 Lightning strikes a lossy dielectric sphere—e = 1.2 €;, 6 = 10 (S/m)—of radius 0.1 (m)
at time ¢ = 0, depositing uniformly in the sphere a total charge 1 (mC). Determine, for all ¢,
a) the electric field intensity both inside and outside the sphere, -
b) the current density in the sphere.

" P.5-7 Refer to Problem P.5-6. ,

a) Calculate the time it takes for the charge density in the sphere to diminish to 19 of
its initial value.

b) Calculate the change in the electrostatic energy stored in the sphere as the charge
density diminishes from the initial value to 1% of its value. What happens to this
energy?

¢) Determine the electrostatic energy stored in the space outside the sphere. Does this
energy change with time?

P.5-8 A d-c voltage of 6 (V) applied to the ends of 1 (km) of a conducting wire of 0.5 (mm)
radius results in a current of 1/6 (A). Find

a) the conductivity of the wire,

b) the electric field intensity in the wire,

¢) the power dissipated in the wire,

d) the electron drift velocity, assuming electron mobility in the wire to be 1.4 x 1073

(m?/V-s).

P.5-9 Two lossy dielectric media with permittivities and conductivities (€, ¢,) and (¢,, ¢5)
are in contact. An electric field with a magnitude E, is incident from medium 1 upon the
interface at an angle o, measured from the common normal, as in Fig. 5-10.

FIGURE 5-10

Boundary between two lossy dielectric media (Problem
P.5-9).
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a) Find the magnitude and direction of E, in medium 2.

b) Find the surface charge density at the interface.

¢) Compare the results in parts (a) and (b) with the case in which both media are
perfect dielectrics.

P.5-10 The space between two parallel conducting plates each having an area S is filled
with an inhomogeneous ohmic medium whose conductivity varies linearly from o, at one
plate (y = 0) to g, at the other plate (y = d). A d-c voltage Vj, is applied across the plates
as in Fig. 5-11. Determine

a) the total resistance between the plates,

b) the surface charge densities on the plates,

¢) the volume charge density and the total amount of charge between the plates.

FIGURE 5-11
Inhomogeneous ohmic medium with
conductivity o(y) (Problem P.5-10).

P.5-11 Refer to Example 5-4.
a) Draw the equivalent circuit of the two-layer, parallel-plate capacitor with lossy
dielectrics, and identify the magnitude of each component.
b) Determine the power dissipated in the capacitor.

P.5-12 Refer again to Example 5-4. Assuming that a voltage V, is applied across the
parallel-plate capacitor with the two layers of different lossy dielectrics at t = 0,
a) express the surface charge density p; at the dielectric interface as a function of ¢,
b) express the electric field intensities E, and E, as functions of t.

P.5-13 A d-c voltage V; is applied across a cylindrical capacitor of length L. The radii of the
inner and outer conductors are a and b, respectively. The space between the conductors is
filled with two different lossy dielectrics having, respectively, permittivity €, and conductivity
o, in the region a < r < ¢, and permittivity €, and conductivity ¢, in the region ¢ <r < b.
Determine

a) the current density in each region,

b) the surface charge densities on the inner and outer conductors and at the interface

between the two dielectrics.

P.5-14 Refer to the flat conducting quarter-circular washer in Example 5-6 and Fig. 5-8.
Find the resistance between the curved sides.

P.5-15 Find the resistance between two concentric spherical surfaces of radii R, and
R; (R; < R,) if the space between the surfaces is filled with a homogeneous and isotropic
material having a conductivity o.
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P.5-16 Determine the resistance between two concentric spherical surfaces of radii R, and
R, (R, < R,), assuming that a material of conductivity ¢ = g4(1 + k/R) fills the space between
them. (Note: Laplace’s equation for ¥ does not apply here.)

P.5-17 A homogeneous material of uniform conductivity ¢ is shaped like a truncated
conical block and defined in spherical coordinates by

R, <R<R, and 0<0<0,.
Determine the resistance between the R = R, and R = R, surfaces.

P.5-18 Redo Problem P.5-17, assuming that the truncated conical block is composed
of an inhomogeneous material with a nonuniform conductivity o(R) = o,R,/R, where
R, <R<R,.

P.5-19 Two conducting spheres of radii b, and b, that have a very high conductivity are
immersed in a poorly conducting medium (for example, they are buried very deep in the
ground) of conductivity ¢ and permittivity €. The distance, d, between the spheres is very
large in comparison with the radii. Determine the resistance between the conducting spheres.
(Hint: Find the capacitance between the spheres by following the procedure in Section 3~10
and using Eq. (5-81).)

P.5-20 Justify the statement that the steady-current problem associated with a conductor
buried in a poorly conducting medium near a plane boundary with air, as shown in Fig.
5-12(a), can be replaced by that of the conductor and its image, both immersed in the
poorly conducting medium as shown in Fig. 5-12(b).

Boundary
removed

(a) Conductor in a poorly (b) Image conductor in conducting

conducting medium near medium replacing the
a plane boundary. plane boundary.
FIGURE 5-12

Steady-current problem with a plane boundary (Problem P.5-20).

P.5-21 A ground connection is made by burying a hemispherical conductor of radius
25 (mm) in the earth with its base up, as shown in Fig. 5—13. Assuming the earth
conductivity to be 107° S/m, find the resistance of the conductor to far-away points in
the ground. (Hint: Use the image method in P.5-20.)

FIGURE 5-13
Hemispherical conductor in ground (Problem P.5-21).
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P.5-22 Assume a rectangular conducting sheet of conductivity o, width a, and height b. A
potential difference V;, is applied to the side edges, as shown in Fig, 5~14. Find
a) the potential distribution,
b) the current density everywhere within the sheet. (Hint: Solve Laplace’s equation in
Cartesian coordinates subject to appropriate boundary conditions.)

FIGURE 5-14
A conducting sheet (Problem P.5-22).

P.5-23 A uniform current density J = a,J, flows in a very large rectangular block of
homogeneous material of a uniform thickness having a conductivity ¢. A hole of radius
b is drilled in the material. Find the new current density J' in the conducting material.
(Hint: Solve Laplace’s equation in cylindrical coordinates and note that V approaches
—(Jot/o) cos ¢ as r — o0, where ¢ is the angle measured from the x-axis.)



Static Magnetic
Fields

6-1 Introduction

In Chapter 3 we dealt with static electric fields caused by electric charges at rest.
We saw that electric field intensity E is the only fundamental vector field quantity
required for the study of electrostatics in free space. In a material medium it is con-
venient to define a second vector field quantity, the electric flux density (or electric
displacement) D, to account for the effect of polarization. The following two equa-
tions form the basis of the electrostatic model:

V-D=p, (6-1)
VxE=0. (6-2)

The electrical property of the medium determines the relation between D and E. If
the medium is linear and isotropic, we have the simple constitutive relation D = ¢E,
where the permittivity € is a scalar.

When a small test charge g is placed in an electric field E, it experiences an elec-
tric force F,, which is a function of the position of g. We have

F.=qE (N). 6-3)

When the test charge is in motion in a magnetic field (to be defined presently),
experiments show that it experiences another force, F,,, which has the following
characteristics: (1) The magnitude of F,, is proportional to g; (2) the direction of F,,
at any point is at right angles to the velocity vector of the test charge as well as to
a fixed direction at that point; and (3) the magnitude of F,, is also proportional to
the component of the velocity at right angles to this fixed direction. The force F,, is
a magnetic force; it cannot be expressed in terms of E or D. The characteristics of F,,
can be described by defining a new vector field quantity, the magnetic flux density B,
that specifies both the fixed direction and the constant of proportionality. In SI units
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the magnetic force can be expressed as

F,=quxB (N), (6-4)

where u (m/s) is the velocity vector, and B is measured in webers per square meter
(Wb/m?) or teslas (T).! The total electromagnetic force on a charge q is, then,
F =F, + F,; that is,

F = q(E + u x B) (N), (6-5)

which is called Lorentz’s force equation. Its validity has been unquestionably estab-
lished by experiments. We may consider F,/q for a small g as the definition for electric
field intensity E (as we did in Eq. 3-2), and F,,/g = u x B as the defining relation
for magnetic flux density B. Alternatively, we may consider Lorentz’s force equation
as a fundamental postulate of our clectromagnetic model; it cannot be derived from
other postulates.

We begin the study of static magnetic fields in free space by two postulates
specifying the divergence and the curl of B. From the solenoidal character of B a
vector magnetic potential is defined, which is shown to obey a vector Poisson’s
equation. Next we derive the Biot-Savart law, which can be used to determine the
magnetic field of a current-carrying circuit. The postulated curl relation leads directly
to Ampere’s circuital law, which is particularly useful when symmetry exists.

The macroscopic effect of magnetic materials in a magnetic field can be studied
by defining a magnetization vector. Here we introduce a fourth vector field quantity,
the magnetic field intensity H. From the relation between B and H we define the
permeability of the material, following which we discuss magnetic circuits and the
microscopic behavior of magnetic materials. We then examine the boundary condi-
tions of B and H at the interface of two different magnetic media; self- and mutual
inductances; and magnetic energy, forces, and torques.

6-2 Fundamental Postulates of Magnetostatics in Free Space

To study magnetostatics (steady magnetic fields) in free space, we need only consider
the magnetic flux density vector, B. The two fundamental postulates of magnetostatics
that specify the divergence and the curl of B in free space are

V-B=0, (6-6)

V x B =pJ. (6-7)

t One weber per square meter or one tesla equals 10* gauss in CGS units. The earth magnetic field is
about { gauss or 0.5 x 10~ * T. (A weber is the same as a volt-second.)
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In Eq. (6-7), uo is the permeability of free space:
Uo = 4m x 1077 (H/m)

(see Eq. 1-9), and J is the current density. Since the divergence of the curl of any
vector field is zero (see Eq. 2-149), we obtain from Eq. (6-7)

V-J=0, i (6-8)

which is consistent with Eq. (5-44) for steady currents.

Comparison of Eq. (6-6) with the analogous equation for electrostatics in free
space, V - E = p/e, (Eq. 3—4), leads us to conclude that there is no magnetic analogue
for electric charge density p. Taking the volume integral of Eq. (6—6) and applying
the divergence theorem, we have

gﬁs B-ds=0, (6-9)

where the surface integral is carried out over the bounding surface of an arbitrary
volume. Comparing Eq. (6-9) with Eq. (3-7), we again deny the existence of isolated
magnetic charges. There are no magnetic flow sources, and the magnetic flux lines
always close upon themselves. Equation (6-9) is also referred to as an expression for
the law of conservation of magnetic flux because it states that the total outward
magnetic flux through any closed surface is zero.

The traditional designation of north and south poles in a permanent bar magnet
does not imply that an isolated positive magnetic charge exists at the north pole and
a corresponding amount of isolated negative magnetic charge exists at the south pole.
Consider the bar magnet with north and south poles in Fig. 6—1(a). If this magnet
is cut into two segments, new south and north poles appear, and we have two shorter
magnets as in Fig. 6—1(b). If each of the two shorter magnets is cut again into two
segments, we have four magnets, each with a north pole and a south pole as in Fig.
6—1(c). This process could be continued until the magnets are of atomic dimensions;
but each infinitesimally small magnet would still have a north pole and a south pole.
Obviously, then, magnetic poles cannot be isolated. The magnetic flux lines follow
closed paths from one end of a magnet to the other end outside the magnet and then

FIGURE 6-1
(b) (¢)  Successive division of a bar magnet.
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continue inside the magnet back to the first end. The designation of north and south
poles is in accordance with the fact that the respective ends of a bar magnet freely
suspended in the earth’s magnetic field will seek the north and south directions.!

The integral form of the curl relation in Eq. (6-7) can be obtained by integrating
both sides over an open surface and applying Stokes’s theorem. We have

L(VxB)-ds:uofsJ-ds

or

56c B- de= p,l, (6-10)

where the path C for the line integral is the contour bounding the surface S, and I
is the total current through S. The sense of tracing C and the direction of current
flow follow the right-hand rule. Equation (6-10) is a form of Ampére’s circuital law,
which states that the circulation of the magnetic flux density in free space around
any closed path is equal to pu, times the total current flowing through the surface
bounded by the path. Ampére’s circuital law is very useful in determining the mag-
netic flux density B caused by a current I when there is a closed path C around the
current such that the magnitude of B is constant over the path.

The following is a summary of the two fundamental postulates of magnetostatics
in free space:

Postulates of Magnetostatics in
Free Space

Differential Form Integral Form

V-B=0 SBSB-ds=0
V x B = pJd B+ de = ol

EXAMPLE 6-1 An infinitely long, straight conductor with a circular cross section
of radius b carries a steady current 1. Determine the magnetic flux density both inside
and outside the conductor.

t We note here parenthetically that examination of some prehistoric rock formations has led to the belief
that there have been dramatic reversals of the earth’s magnetic field every ten million years or so. The
earth’s magnetic field is thought to be produced by the rolling motions of the molten iron in the earth’s
outer core, but the exact reasons for the field reversals are still not well understood. The next such reversal
is predicted to be only about 2000 years from now. One cannot conjecture all the dire consequences of
such a reversal, but among them would be disruptions in global navigation and drastic changes in the
migratory patterns of birds.
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" Solution First we note that this is a problem with cylindrical symmetry and that
Ampere’s circuital law can be used to advantage. If we align the conductor along
the z-axis, the magnetic flux density B will be ¢-directed and will be constant along
any circular path around the z-axis. Figure 6—2(a) shows a cross section of the con-
ductor and the two circular paths of integration, C, and C,, inside and outside,
respectively, the current-carrying conductor. Note again that the directions of C,
and C, and the direction of I follow the right-hand rule. (When the fingers of the
right hand follow the directions of C,; and C,, the thumb of the right hand points
to the direction of I.)

a) Inside the conductor:
B, = a,B,,, dt = a,rdo

2n
ﬁ‘l Bl M de = fo B¢1r1 d¢ = 2nr1B¢1.
The current through the area enclosed by C, is
2 2
My (M
n-m (b) L

Therefore, from Ampére’s circuital law,

por' 11
B, =a,B,, =a,—> ry<b 6-11a
1 #Bo1 ¢ b7 1 ( )
(a)
By
uod
2nb
|
: FIGURE 6-2
> Magnetic flux density of an infinitely long circular
0 b " conductor carrying a current I out of paper

®) (Example 6-1).
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b) Outside the conductor:
B, =a,B,,;, d¢ =a,r,do
§Cz B2 . de = 211:7‘234,2.

Path C, outside the conductor encloses the total current I. Hence

ol
=a,— r,=b. (6-11b)
¢ 2nr, 2

Examination of Egs. (6-11a) and (6-11b) reveals that the magnitude of B in-
creases linearly with r, from O until r; = b, after which it decreases inversely with
r,. The variation of B, versus r is sketched in Fig. 6-2(b). -

If the problem is not that of a solid cylindrical conductor carrying a total steady
current I, but that of a very thin circular tube carrying a surface current, then it is
obvious from Ampére’s circuital law that B = 0 inside the tube. Outside the tube,
Eq. (6-11D) still applies with I = total current flowing in the tube. Thus, for an
infinitely long, hollow cylinder carrying a surface current density J, = a_J, (A/m),
I =2nrbJ,, we have

0, r<b,

B = ﬂob

6-12
a¢—;—'Js, F>b ( )

EXAMPLE 6-2 Determine the magnetic flux density inside a closely wound toroidal
coil with an air core having N turns and carrying a current I. The toroid has a mean
radius b, and the radius of each turn is a.

FIGURE 6-3
A current-carrying toroidal oil

(Example 6-2).
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Solution Figure 6-3 depicts the geometry of this problem. Cylindrical symmetry
ensures that B has only a ¢-component and is constant along any circular path about
the axis of the toroid. We construct a circular contour C with radius » as shown.
For (b — a) <r <b + a, Eq. (6-10) leads directly to

B de = 2nrB, = oML,

where we have assumed that the toroid has an air core with permeability y,. Therefore,

poN1

B=a¢B¢=a¢—QF

) b—ay<r<(+a. (6-13)
It is apparent that B =0 for r < (b — a) and r > (b + a), since the net total current
enclosed by a contour constructed in these two regions is zero. -

EXAMPLE 6-3 Determine the magnetic flux density inside an infinitely long sole-
noid with air core having n closely wound turns per unit length and carrying a cur-
rent I as shown in Fig. 6-4.

Solution This problem can be solved in two ways.

a) As a direct application of Ampére’s circuital law. Tt is clear that there is no mag-
netic field outside of the solenoid. To determine the B-field inside, we construct
a rectangular contour C of length L that is partially inside and partially outside
the solenoid. By reason of symmetry the B-field inside must be parallel to the
axis. Applying Ampére’s circuital law, we have
BL = pgnLl
or
B = ponl. (6-14)
The direction of B goes from right to left, conforming to the right-hand rule with
respect to the direction of the current I in the solenoid, as indicated in Fig. 6—4.

b) As a special case of toroid. The straight solenoid may be regarded as a special
case of the toroidal coil in Example 6-2 with an infinite radius (b — o). In such

FIGURE 6-4
A current-carrying long solenoid
(Example 6-3).
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a case the dimensions of the cross section of the core are very small in comparison

with b, and the magnetic flux density inside the core is approximately constant.
We have, from Eq. (6-13),

N
B= #0(%)1 = :uOnIs

which is the same as Eq. (6-14). -

6-3 Vector Magnetic Potential

The divergence-free postulate of B in Eq. (6-6), V - B = 0, assures that B is solenoidal.
As a consequence, B can be expressed as the curl of another vector field, say A, such
that (see Identity II, Eq. (2-149), in Section 2-11)

B=VxA (T (6-15)

The vector field A so defined is called the vector magnetic potential. Its SI unit is
weber per meter (Wb/m). Thus if we can find A of a current distribution, B can be
obtained from A by a differential (curl) operation. This is quite similar to the intro-
duction of the scalar electric potential V for the curl-free E in electrostatics (Section
3-5) and the obtaining of E from the relation E = —VV. However, the definition of
a vector requires the specification of both its curl and its divergence. Hence Eq. (6-15)
alone is not sufficient to define A; we must still specify its divergence.

How do we choose V + A? Before we answer this question, let us take the curl of
B in Eq. (6-15) and substitute it in Eq. (6-7). We have

VxVxA=pyl (6-16)
Here we digress to introduce a formula for the curl curl of a vector:
VxVxA=V(V-A)-VA (6-17a)
or
VIA=V(V:A)—Vx VxA (6-17b)

Equation (6—17a)" or (6-17b) can be regarded as the definition of V2A, the Laplacian
of A. For Cartesian coordinates it can be readily verified by direct substitution
(Problem P.6-16) that

VZA =a, V24, +2a,V?4, +a,V?4,. (6-18)

Thus, for Cartesian coordinates the Laplacian of a vector field A is another vector
field whose components are the Laplacian (the divergence of the gradient) of the

t Equation (6-17a) can also be obtained heuristically from the vector triple product formula in Eq.
(2-20) by considering the del operator, V, a vector:

V x (Vx A)=V(V-A) —(V-V)A = V(V- A) — V?A.
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corresponding components of A. This, however, is not true for other coordinate
systems.
We now expand V x V x A in Eq. (6-16) according to Eq. (6-17a) and obtain

V(V-A) — V2A = pJ. (6-19)

With the purpose of simplifying Eq. (6-19) to the gréatest extent possible we choose

V-A=0, (6-20)t

and Eq. (6—-19) becomes

VA = —p,J. (6-21)

This is a vector Poisson’s equation. In Cartesian coordinates, Eq. (6-21) is equivalent
to three scalar Poisson’s equations:

VZAx = — oy, (6-22a)
VA, = —pod,, (6-22b)
V24, = —puyJ,. (6-22¢)

Each of these three equations is mathematically the same as the scalar Poisson’s
equation, Eq. (4-6), in electrostatics. In free space the equation

vy=-L
€o

has a particular solution (see Eq. 3-61),

1 P,
V—47teo fV’_Iidv'

Hence the solution for Eq. (6-22a) is

H’O Jx
A =Fo [ sy
x 47rf’Rdv

We can write similar solutions for 4, and 4,. Combining the three components, we
have the solution for Eq. (6-21):

L _
A=t [, < (Wh/m) (6-23)

! This relation is called Coulomb condition or Coulomb gauge.
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Equation (6-23) enables us to find the vector magnetic potential A from the volume
current density J. The magnetic flux density B can then be obtained from V x A by
differentiation, in a way similar to that of obtaining the static electric field E from
—Vv.

Vector potential A relates to the magnetic flux @ through a given area S that is
bounded by contour C in a simple way:

® = fs B- ds. (6-24)

The SI unit for magnetic flux is weber (Wb), which is equivalent to tesla-square meter
(T-m?). Using Eq. (6-15) and Stokes’s theorem, we have

o= [ (Vx A)-ds=§SCA-de (Wh). (6-25)

Thus, vector magnetic potential A does have physical significance in that its line
integral around any closed path equals the total magnetic flux passing through the
area enclosed by the path.

The Biot-Savart Law and Applications

In many applications we are interested in determining the magnetic field due to a
current-carrying circuit. For a thin wire with cross-sectional area S, dv' equals Sd/’,
and the current flow is entirely along the wire. We have

Jdv = JSdé' = 1d¢, (6-26)
and Eq. (6-23) becomes
_Hol £ 4€
A= PR (Wb/m), (6-27)

where a circle has been put on the integral sign because the current I must flow in
a closed path,' which is designated C'. The magnetic flux density is then

uolédf’
B=VxA=Vx|E¢p =
X "[47: ¢ R

, (6-28
47 Jo R/

t We are now dealing with direct (non-time-varying) currents that give rise to steady magnetic fields.
Circuits containing time-varying sources may send time-varying currents along an open wire and deposit
charges at its ends. Antennas are examples.
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It is very important to note in Eq. (6-28) that the unprimed curl operation implies
differentiations with respect to the space coordinates of the field point, and that the
integral operation is with respect to the primed source coordinates. The integrand in
Eq. (6-28) can be expanded into two terms by using the following identity (see Prob-
lem P.2-37):

Vx(fG)=fVxG+(Vf) x G. (6-29)
We have, with f = 1/R and G = d¢’,

_kl g1 vy (vl :

B="2 C,[Rdee +(VR)xde]. (6-30)

Now, since the unprimed and primed coordinates are independent, V x d¢’ equals
0, and the first term on the right side of Eq. (6—30) vanishes. The distance R is
measured from dé’ at (X', y/, Z') to the field point at (x, y, z). Thus we have

% =[x=xP+(y -y’ +E-27]""%

o) 3) 5056

- _ ax —x)+a(y—y)+a,z—2) (6-31)
[ = x) + (y = ¥) +(z — 2)"]*"*
R 1

= _F = —ap F’

where ay is the unit vector directed from the source point to the field point. Substi-
tuting Eq. (6-31) in Eq. (6-30), we get

“MSﬁ deé’ x ag
C

B= 4x R?

(T). (6-32)

Equation (6-32) is known as Biot-Savart law. It is a formula for determining B
caused by a current I in a closed path C’ and is obtained by taking the curl of A in
Eq. (6-27). Sometimes it is convenient to write Eq. (6—32) in two steps:

B=¢ aB () (6-333)

with

T 4n R?

B = Fol (‘“' X aR) (T), : (6-33b)




36

6 Static Magnetic Fields

P(r, 0,0

FIGURE 6-5
A current-carrying straight wire (Example 6-4).

which is the magnetic flux density due to a current element Id¢’. An alternative and
sometimes more convenient form for Eq. (6-33b) is

dB = % (de = R) (T). (6-33¢)

Comparison of Eq. (6-32) with Eq. (6—10) will reveal that Biot-Savart law is, in
general, more difficult to apply than Ampeére’s circuital law. However, Ampére’s cir-
cuital law is not useful for determining B from I in a circuit if a closed path cannot
be found over which B has a constant magnitude.

EXAMPLE 6-4 A direct current I flows in a straight wire of length 2L. Find the
magnetic flux density B at a point located at a distance r from the wire in the bisecting
plane: (a) by determining the vector magnetic potential A first, and (b) by applying
Biot-Savart law.

Solution Currents exist only in closed circuits. Hence the wire in the present problem
must be a part of a current-carrying loop with several straight sides. Since we do
not know the rest of the circuit, Ampére’s circuital law cannot be used to advantage.
Refer to Fig. 6-5. The current-carrying line segment is aligned with the z-axis. A
typical element on the wire is

de¢’ =a,dz.
The cylindrical coordinates of the field point P are (r, 0, 0).

a) By finding B from V x A. Substituting R = \/z’2 + r? into Eq. (6-27), we have

ol L dz
A=a oo [t 22
a, 47 f—L /zlz + r?
I L
=a, Hol [In(z + 22 + r*)] (6-34)
T -L
s Bol lnN/L2 +rr+ L
“4n L2472 -L
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Therefore,
104, a 0A,
"r 0¢ *or
Cylindrical symmetry around the wire assures that 04,/0¢ = 0. Thus,
B _ ,uoIl \/L2+r + L
BT JIE+r—L

B=VxA=Vx(aAd)=a

(6-35)
_ polL
®2mrJLZ + 12
When r « L, Eq. (6-35) reduces to
tol
B, =a,, - (6-36)

which is the expression for B at a point located at a distance r from an infinitely
long, straight wire carrying current I, as given in Eq. (6-11b).

b) By applying Biot-Savart law. From Fig. 6—5 we see that the distance vector from
the source element dz’ to the field point P is

R=ar—a,7
dt' x R =a,dz x (a,r —a,z)) = a,rdz.
Substitution in Eq. (6—33c) gives
I rdz
B=fam=a,%2 [, o
—a ol L ,
*omrJL? + 12

which is the same as Eq. (6-35). -

J

esmms EXAMPLE 6-5 Find the magnetic flux density at the center of a square loop, with
side w carrying a direct current I.

Solution Assume that the loop lies in the xy-plane, as shown in Fig. 6—6. The mag-
netic flux density at the center of the square loop is equal to four times that caused

FIGURE 6-6
A square loop carrying current I (Example 6-5).
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FIGURE 6-7
A circular loop carrying current I (Example 6-6).

by a single side of length w. We have, by setting L = r = w/2 in Eq. (6-35),

tol 2\/5#01 ,
w

ﬁnw

where the direction of B and that of the current in the loop follow the right-hand
rule. -

B=a,

x4=a,

(6-37)

EXAMPLE 6-6 Find the magnetic flux density at a point on the axis of a circular
loop of radius b that carries a direct current 1.

Solution We apply Biot-Savart law to the circular loop shown in Fig. 6-7:
de’ =azbdd’,

R=a,z—ab,

R = (22 + b)Y
Again it is important to remember that R is the vector from the source element d¢’
to the field point P. We have

d¢’ x R=abd¢’ x (a,z — ab)

=abzdd’ +ab’dd’.
Because of cylindrical symmetry, it is easy to see that the a,-component is canceled
by the contribution of the element located diametrically opposite to d¢’, so we need

only consider the a,-component of this cross product.
We write, from Egs. (6—33a) and (6-33c),

ol [ b2d¢’
B= fo (22 + b2
or

_ Holb?

=4a, m (T) (6-38)
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The Magnetic Dipole

We begin this section with an example.

EXAMPLE 6-7 Find the magnetic flux density at a distant point of a small circular
loop of radius b that carries current I (a magnetic dipole).

Solution It is apparent from the statement of the problem that we are inter-
ested in determining B at a point whose distance, R, from the center of the loop
satisfies the relation R > b; that being the case, we may make certain simplifying
approximations.

We select the center of the loop to be the origin of spherical coordinates, as
shown in Fig. 6-8. The source coordinates are primed. We first find the vector mag-
netic potential A and then determine B by V x A:

/401 de’
-39
T 4m Eﬁc R1 (6-39)

Equation (6—39) is the same as Eq. (6-27), except for one important point: R in
Eq. (6-27) denotes the distance between the source element d¢’ at P’ and the field
point P; but it must be replaced by R, in accordance with the notation in Fig. 6-8.
Because of symmetry, the magnetic field is obviously independent of the angle ¢ of
the field point. We pick P(R, 6, n/2) in the yz-plane for convenience.

Another point of importance is that a, at d¢' is not the same as a, at point P.
In fact, a, at P, shown in Fig. 6-8 is —a,, and

dé' = (—a,sin ¢’ + a, cos ¢)bd¢’. (6-40)

For every I d¢’ there is another symmetrically located differential current element on
the other side of the y-axis that will contribute an equal amount to A in the —a,
direction but will cancel the contribution of I d¢’ in the a, direction. Equation (6-39)

24 PR, 0,%/2)

FIGURE 6-8
A small circular loop carrying current [ (Example 6-7).
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can be written as

Hol (2xbsin ¢’
A=—ate '

) R, ¥
or

polb J'n/Z sin ¢’ '

A= a,,, —2;[— —x/2 Rl (6——41)

The law of cosines applied to the triangle OPP’ gives
' R? = R? + b?> — 2bR cos ¥,

where R cos y is the projection of R on the radius OP’, which is the same as the
projection of OP” (OP" = R sin 6) on OP'. Hence,

R? = R? + b% — 2bR sin O sin ¢/,

1 1 b> 2b , .\
E:—E(1+F—ism0sm¢) .

When R? » b?, b%/R? can be neglected in comparison with 1:

1 1 2b -1z
—x—|1—-=si in ¢’
R R( Rsm@sm(b)

and

2

(6-42)
~L 1 +2sin0sin¢’
= R R .
Substitution of Eq. (6-42) in Eq. (6—41) yields
_ ﬂolb /2 b : : ’ : ! ’
=85 =) (1 + R Sin 0 sin ¢)sm ¢’ do
or
polb? .
A=a, 7(:1!7 sin 6. (6-43)

The magnetic flux density is B=V x A. Equation (2-139) can be used to find
_ bol b

"~ 4R
which is our answer. -

B (ag 2 cos 6 + a, sin 6), (6-44)

At this point we recognize the similarity between Eq. (6—44) and the expression
for the electric field intensity in the far field of an electrostatic dipole as given in
Eq. (3-54). Hence, at distant points the magnetic flux lines of a magnetic dipole
(placed in the xy-plane) such as that in Fig. 6—8 will have the same form as the dashed
electric field lines of an electric dipole (lying in the z-direction) given in Fig. 3-15.
In the vicinity of the dipoles, however, the flux lines of a magnetic dipole are con-
tinuous, whereas the field lines of an electric dipole terminate on the charges, always
going from the positive to the negative charge. This is illustrated in Fig. 6-9.
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Let us now rearrange the expression of the vector magnetic potential in Eq. (6-43)

as
uo(Inh?) .
A=a, —%EF— sin 0
or
HoM X ap
A=~ __= -
AnRE (Wb/m), (6-45)
where
m=a,nb’=a,IS=am (A-m? (6-46)

is defined as the magnetic dipole moment, which is a vector whose magnitude is the
product of the current in and the area of the loop and whose direction is the direction
of the thumb as the fingers of the right hand follow the direction of the current. Com-
parison of Eq. (6—45) with the expression for the scalar electric potential of an electric
dipole in Eq. (3-53b),
_ Prag
" 4me,R?

(v), (6-47)

reveals that, for the two cases, A is analogous to V. We call a small current-carrying
loop a magnetic dipole.
In a similar manner we can also rewrite Eq. (6-44) as

m .
- 4‘:;’? (ag2cos 0 +a,sinh)  (T). (6-48)
> “
7
(a) Electric dipole. (b) Magnetic dipole.

FIGURE 6-9 o
Electric field lines of an electric dipole and magnetic flux lines of a magnetic dipole.
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Except for the change of p to m and ¢, to 1/u,, Eq. (6—48) has the same form as
Eq. (3-54) does for the expression for E at a distant point of an electric dipole. Hence
the magnetic flux lines of a magnetic dipole lying in the xy-plane will have the same
form as that of the electric field lines of an electric dipole positioned along the z-axis,
as noted before.

Although the magnetic dipole in Example 6—7 was taken to be a circular loop,
it can be shown (Problem P.6-19) that the same expressions—Egs. (6—45) and
(6—48)—are obtained when the loop has a rectangular shape, with m = IS, as given
in Eq. (6—46).

6-5.1 SCALAR MAGNETIC POTENTIAL
In a current-free region J = 0, Eq. (6—7) becomes
VxB=0 (6-49)

The magnetic flux density B is then curl-free and can be expressed as the gradient
of a scalar field. Let

B=—uVV,, (6-50)

where V,, is called the scalar magnetic potential (expressed in amperes). The negative
sign in Eq. (6—50) is conventional (see the definition of the scalar electric potential
V in Eq. 3-43), and the permeability of free space u, is simply a proportionality con-
stant. Analogous to Eq. (3—45), we can write the scalar magnetic potential difference
between two points, P, and P,, in free space as

. 1
Vg — Vg = — : ;—B-d(’. (6-51)
0

If there were magnetic charges with a volume density p,, (A/m?) in a volume V*,
we would be able to find V,, from

Lot pm
Vm = E fV' F dv (A) (6—52)

The magnetic flux density B could then be determined from Eq. (6-50). However,
isolated magnetic charges have never been observed experimentally; they must be
considered fictitious. Nevertheless, the consideration of fictitious magnetic charges
in a mathematical (not physical) model is expedient both to the discussion of some
magnetostatic relations in terms of our knowledge of electrostatics and to the estab-
lishment of a bridge between the traditional magnetic-pole viewpoint of magnetism
and the concept of microscopic circulating curreats as sources of magnetism.

The magnetic field of a small bar magnet is the same as that of a magnetic dipole.
This can be verified experimentally by observing the contours of iron filings around
a magnet. The traditional understanding is that the ends (the north and south poles)
of a permanent magnet are the location of positive and negative magnetic charges,
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respectively. For a bar magnet the fictitious magnetic charges +gq,, and —g,, are as-
sumed to be separated by a distance d and to form an equivalent magnetic dipole
of moment

m=g,d = a,s. (6-53)
The scalar magnetic potential V,, caused by this magnetic dipole can then be found

by following the procedure used in Subsection 3-5.1 for finding the scalar electric
potential that is caused by an electric dipole. We obtain, as in Eq. (3—53b),

m-a,
V. =
™ 4nR?

(A). (6-54)

Substitution of Eq. (6—54) in Eq. (6—50) yields the same B as is given in Eq. (6—48).

We note that the expression of the scalar magnetic potential V,, in Eq. (6-54)
for a magnetic dipole is exactly analogous to that of the scalar electric potential V
in Eq. (6—47) for an electric dipole. The likeness between the vector magnetic poten-
tial A in Eq. (6-45) and V in Eq. (6-47) is, however, not as exact. It is noted that
the curl-free nature of B indicated in Eq. (6—49), from which the scalar magnetic
potential V, is defined, holds only at points with no currents. In a region where cur-
rents exist, the magnetic field is not conservative, and the scalar magnetic potential
is not a single-valued function; hence the magnetic potential difference evaluated
by Eq. (6—-51) depends on the path of integration. For these reasons we will use the
circulating-current-and-vector-potential approach, instead of the fictitious magnetic-
charge-and-scalar-potential approach, for the study of magnetic fields in magnetic
materials. We ascribe the macroscopic properties of a bar magnet to circulating
atomic currents (Ampeérian currents) caused by orbiting and spinning electrons. Some
aspects of equivalent (fictitious) magnetic charge densities will be discussed in Sub-
section 6-6.1.

Magnetization and Equivalent Current Densities

According to the elementary atomic model of matter, all materials are composed of
atoms, each with a positively charged nucleus and a number of orbiting negatively
charged electrons. The orbiting electrons cause circulating currents and form micro-
scopic magnetic dipoles. In addition, both the electrons and the nucleus of an atom
rotate (spin) on their own axes with certain magnetic dipole moments. The magnetic
dipole moment of a spinning nucleus is usually negligible in comparison to that of
an orbiting or spinning electron because of the much larger mass and lower angular
velocity of the nucleus. A complete understanding of the magnetic effects of materials
requires a knowledge of quantum mechanics. (We give a qualitative description of
the behavior of different kinds of magnetic materials in Section 6-9.)

In the absence of an external magnetic field the magnetic dipoles of the atoms
of most materials (except permanent magnets) have random orientations, resulting
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in no net magnetic moment. The application of an external magnetic field causes
both an alignment of the magnetic moments of the spinning electrons and an induced
magnetic moment due to a change in the orbital motion of electrons. To obtain a
formula for determining the quantitative change in the magnetic flux density caused
by the presence of a magnetic material, we let m, be the magnetic dipole moment

of an atom. If there are n atoms per unit volume, we define a magnetization vector,
M, as

nAv
S
M = lim &

Av—0 Av

(A/m), (6-55)

which is the volume density of magnetic dipole moment. The magnetic dipole moment
dm of an elemental volume dv’ is dm = Mdyv' that, according to Eq. (6—45), will
produce a vector magnetic potential

oM x a
Ko R
= v -56
dA = AnR? dv'. (6-56)
Using Eq. (3—83), we can write Eq. (6—56) as
CdA=ECMmx V’(1>dv’.
4n
Thus,
- o (LY 4w }
A_fV,dA_‘mfy,MxV(R)dv, 6-57)

where V’ is the volume of the magnetized material.
We now use the vector identity in Eq. (6-29) to write

(1 1, , M
Mxv(i)—iv xM-V X(R) (6-58)

and expand the right side of Eq. (6—-57) into two terms:

=%f "M o ”"fv' () (6-59)

The following vector identity (see Problem P.6-20) enables us to change the volume
integral of the curl of a vector into a surface integral:

[ vx¥Fa= —SBS, F x ds, (6-60)

where F is any vector with continuous first derivatives. We have, from Eq. (6-59),
o VM 98 M x a,, ,

— Fo / -61

A 4 JV’ R Wt dnJs R as’ (6-61)

where a/, is the unit outward normal vector from ds’ and §' is the surface bounding
the volume V'
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A comparison of the expressions on the right side of Eq. (6-61) with the form of
A in Eq. (6-23) expressed in terms of volume current density J suggests that the
effect of the magnetization vector is equivalent to both a volume current density

J,=V¥VxM (A/m?) (6-62)

and a surface current density

J.=Mxa, (A/m). (6-63)

In Egs. (6-62) and (6—63) we have omitted the primes on V and a, for simplicity,
since it is clear that both refer to the coordinates of the source point where the mag-
netization vector M exists. However, the primes should be retained when there is a
possibility of confusing the coordinates of the source and field points.

The problem of finding the magnetic flux density B caused by a given volume
density of magnetic dipole moment M is then reduced to finding the equivalent mag-
netization current densities J,, and J,,; by using Egs. (6—62) and (6—63), determining
A from Eq. (6—61), and then obtaining B from the curl of A. The externally applied
magnetic field, if it also exists, must be accounted for separately.

The mathematical derivation of Egs. (6—62) and (6—63) is straightforward. The
equivalence of a volume density of magnetic dipole moment to a volume current
density and a surface current density can be appreciated qualitatively by referring
to Fig. 6-10, in which a cross section of a magnetized material is shown. It is as-
sumed that an externally applied magnetic field has caused the atomic circulating
currents to align with it, thereby magnetizing the material. The strength of this mag-
netizing effect is measured by the magnetization vector M. On the surface of the
material there will be a surface current density J,,,, whose direction is correctly given

® M, out of paper

FIGURE 6-10
A cross section of a magnetized material.
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by that of the cross product M x a,. If M is uniform inside the material, the cur-
rents of the neighboring atomic dipoles that flow in opposite directions will cancel
everywhere, leaving, no net currents in the interior. This is predicted by Eq. (6-62),
since the space derivatives (and therefore the curl) of a constant M vanish. How-
ever, if M has space variations, the internal atomic currents do not completely cancel,
resulting in a net volume current density J,,. It is possible to justify the quantitative
relationships between M and the current densities by deriving the atomic currents
on the surface and in the interior. But since this additional derivation is really not
necessary and tends to be tedious, we will not attempt it here.

EXAMPLE 6-8 Determine the magnetic flux density on the axis of a uniformly mag-
netized circular cylinder of a magnetic material. The cylinder has a radius b, length L,
and axial magnetization M = a,M,,.

Solution In this problem concerning a cylindrical bar magnet, let the axis of the
magnetized cylinder coincide with the z-axis of a cylindrical coordinate system, as
shown in Fig. 6-11. Since the magnetization M is a constant within the magnet,
J,. =V x M = 0, and there is no equivalent volume current density. The equivalent

magnetization surface current density on the side wall is
Jms =M x a:l = (azMO) x a, (6—64)
= ad,M 0-

The magnet is then like a cylindrical sheet with a lineal current density of M, (A/m).
There is no surface current on the top and bottom faces. To find B at P(0, 0, z), we
consider a differential length dz’ with a current a,M, dz’ and use Eq. (6-38) to obtain

UoMyb? dz’

B =83l - 2F + BT

Y FIGURE 6-11

A uniformly magnetized circular cylinder (Example 6—8).
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and

_ _ L ﬂoMob2 dZ’
B=[dB=a, | A —2) + BT
(6-65)
—a UM, [ z 3 z—L :|
2 A Je-L+ b

6-6.1 EQUIVALENT MAGNETIZATION CHARGE DENSITIES

In subsection 6-5.1 we noted that in a current-free region we may define a scalar
magnetic potential ¥,,, from which the magnetic flux density B can be found by differ-
entiation, as in Eq. (6-50). In terms of magnetization vector M (volume density of
magnetic dipole moment) we may write, in lieu of Eq. (6—54),

M-a,

dVon = 47R*

(6~66)

Integrating Eq. (6—-66) over a magnetized body (a magnet) carrying no current, we

have
MaR
dv'. ~67
A (6-67)

Equation (6—67) is of exactly the same form as Eq. (3-81) for the scalar electric
potential of a polarized dielectric. Following the steps leading to Eq. (3—87), we obtain

1 ¢ M-, —(V’ M
Vm—zﬁfﬁl — ds +—f (6-68)

where a, is the outward normal to the surface element ds’ of the magnetized body.
We saw in Section 3-7 that, for field calculations, a polarized dielectric may be
replaced by an equivalent polarization surface charge density, given in Eq. (3-88),
and an equivalent polarization volume charge density, given in Eq. (3—89). Similarly,
we can conclude that, for field calculations, a magnetized body may be replaced by
an equivalent (fictitious) magnetization surface charge density p,,. and an equivalent
(fictitious) magnetization volume charge density p,, such that

Pms = M- a, (A/m) (6_69)

and

pm=—VM  (A/m?). (6-70)

The use of the equivalent magnetization charge density concept for determining the
magnetic flux density of a magnetized body will be illustrated in the following example.

EXAMPLE 6-9 A cylindrical bar magnet of radius b and length L has a uniform mag-
netization M = a,M,, along its axis. Use the equivalent magnetization charge density
concept to determine the magnetic flux density at an arbitrary distant point.
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FIGURE 6-12
A cylindrical bar magnet (Example 6-9).

Solution Refer to Fig. 6—12. The equivélent magnetization charge densities for M =
a,M, are, according to Egs. (6—69) and (6—70):

M, on top face,
Pms = 4 — M, on bottom face,
0 on side wall;

Pm=0 in the interior.

At a distant point the total equivalent magnetic charges on the top and bottom
faces appear as point charges: g,, = nb*p,,, = nb*M,. We have at P(x, y, z)

y, =m (- - ——> (A), (6-T1)

which is similar to Eq. (3—50) for an electric dipole. If R > b, Eq. (6-71) can be re-
duced to (see Eq. 3-53a)
Vo= gmL cos 0 (nb*M)L cos 6
™" 4mR* 4nR?
_Mycosf
" 4zR?

where M, = nb?>LM, is the total dipole moment of the cylindrical magnet. The mag-
netic flux density B can then be found by applying Eq. (6-50):

(6-72)

UMy
4nR?

B= —pu,VV, = (ag2 cos @ + a, sin §) (T), (6-73)
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which is of the same form as the expression in Eq. (6-44) for B at a distant point
due to a single magnetic dipole having a moment Inb>. -

This problem can be solved just as easily by using the equivalent magnetization
current density concept. (See Problem P.6--25.)

Magnetic Field Intensity and Relative Permeability

Because the application of an external magnetic field causes both an alignment of
the internal dipole moments and an induced magnetic moment in a magnetic material,
we expect that the resultant magnetic flux density in the presence of a magnetic
material will be different from its value in free space. The macroscopic effect of mag-
netization can be studied by incorporating the equivalent volume current density,
J,, in Eq. (6-62), into the basic curl equation, Eq. (6—7). We have

—I—VxB=J+J,,,=J+VxM
Ho
or
B
V x (——M>=J. (6-74)
Ho

We now define a new fundamental field quantity, the magnetic field intensity H, such
that

H= E - M (A/m). (6-75)
Ho

The use of the vector H enables us to write a curl equation relating the magnetic
field and the distribution of free currents in any medium. There is no need to deal
explicitly with the magnetization vector M or the equivalent volume current density
J.. Combining Eqgs. (6-74) and (6—75), we obtain the new equation

VxH=J (A/m?), (6-76)

where J (A/M?) is the volume density of free current. Equations (6-6) and (6-76)
are the two fundamental governing differential equations for magnetostatics. The
permeability of the medium does not appear explicitly in these two equations.

The corresponding integral form of Eq. (6-76) is obtained by taking the scalar
surface integral of both sides:

fs(VxH)-ds=fsJ-ds (6-77)



6 Static Magnetic Fields

or, according to Stokes’s theorem,

fﬁc H-de=1 (A, : (6-78)

where C is the contour (closed path) bounding the surface S and I is the total free
current passing through S. The relative directions of C and current fiow I follow the
right-hand rule. Equation (6-78) is another form of Ampére’s circuital law: It states
that the circulation of the magnetic field intensity around any closed path is equal to the
free current flowing through the surface bounded by the path. As we indicated in
Section 6-2, Ampére’s circuital law is most useful in determining the magnetic field
caused by a current when cylindrical symmetry exists—that is, when there is a closed
path around the current over which the magnetic field is constant.

When the magnetic properties of the medium are linear and isotropic, the mag-
netization is directly proportional to the magnetic field intensity:

M =y, H, (6-79)

where y,, is a dimensionless quantity called magnetic susceptibility. Substitution of
Eq. (6-79) in Eq. (6-75) yields

B = p(1 H
in( + Xm) , (6~80&)
= pot,H=pH  (Wb/m?)
or
1
H= A B (A/m), (6-80b)
where
=1+ Ym= £ (6-81)
Ho

is another dimensionless quantity known as the relative permeability of the medium.
The parameter u = uyp, is the absolute permeability (or sometimes just permeability)
of the medium and is measured in H/m; y,,, and therefore u,, can be a function of
space coordinates. For a simple medium—Iinear, isotropic, and homogeneous—y,,
and y, are constants.

The permeability of most materials is very close to that of free space (u,). For
ferromagnetic materials such as iron, nickel, and cobalt, x, could be very large
(50-5000 and up to 10° or more for special alloys); the permeability depends not
only on the magnitude of H but also on the previous history of the material. Sec-
tion 6-9 contains some qualitative discussions of the macroscopic behavior of mag-
netic materials.
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At this point we note a number of analogous relations between the quantities
in electrostatics and those in magnetostatics as follows:

Electrostatics Magnetostatics
E B
D H

1
€ il

u
P -M
p J
vV A

X
x

With the above table, most of the equations relating the basic quantities in electro-
statics can be converted into corresponding analogous ones in magnetostatics.

Magnetic Circuits

In electric-circuit problems we are required to find the voltages across and the cur-
rents in various branches and elements of an electric network that are excited by
voltage and/or current sources. There is an analogous class of problems dealing with
magnetic circuits. In a magnetic circuit we are generally concerned with the deter-
mination of the magnetic fluxes and magnetic field intensities in various parts of a
circuit caused by windings carrying currents around ferromagnetic cores. Magnetic
circuit problems arise in transformers, generators, motors, relays, magnetic recording
devices, and so on.

Analysis of magnetic circuits is based on the two basic equations for magneto-
statics, (6—6) and (6—76), which are repeated below for convenience:

V:-B=0, (6-82)
VxH=J. (6-83)
We have seen in Eq. (6-78) that Eq. (6—83) converts to Ampere’s circuital law. If

the closed path C is chosen to enclose N turns of a winding carrying a current I
that excites a magnetic circuit, we have

SBC H-dé=NI=7, (6-84)

The quantity ¥,, (=NI) here plays a role that is analogous to electromotive force
(emf) in an electric circuit and is therefore called a magnetomotive force (mmf). Its
SI unit is ampere (A); but, because of Eq. (6—84), mmf is frequently measured in
ampere-turns (A-t). An mmf is not a force measured in newtons.
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smssme EXAMPLE 6-10 Assume that N turns of wire are wound around a toroidal core of
a ferromagnetic material with permeability u. The core has a mean radius r,, a circular
cross section of radius a (a « r,), and a narrow air gap of length /,, as shown in Fig.
6-13. A steady current I, flows in the wire. Determine (a) the magnetic flux density,
B, in the ferromagnetic core; (b) the magnetic field intensity, Hy, in the core; and
(c) the magnetic field intensity, H,, in the air gap.

Solution

a) Applying Ampére’s circuital law, Eq. (6-84), around the circular contour C in
Fig. 6—13, which has a mean radius r,, we have

§,H-de = NI, (6-85)
If flux leakage is neglected, the same total flux will flow in both the ferromagnetic
core and in the air gap. If the fringing effect of the flux in the air gap is also
neglected, the magnetic flux density B in both the core and the air gap will also
be the same. However, because of the different permeabilities, the magnetic field
intensities in both parts will be different. We have

where the subscripts f and g denote ferromagnetic and gap, respectively. In the
ferromagnetic core,

B
H;=a, -N—f; (6-87)
and, in the air gap,
B
H,=a,— (6-88)
Ko

Substituting Egs. (6—-87) and (6—88) in Eq. (6—-85), we obtain

B B
L @nar,—¢)+—L¢,=NI,
uwo- Ho

Leakage

——
> flux

FIGURE 6-13
Coil on ferromagnetic toroid with air gap
(Example 6—10).
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and
oM NI,
B, =a . 6-89
5 =2 anr, — b) + €5

b) From Egs. (6-87) and (6-89) we get

“ONIO
H = a . 6—90
4 ¢ Irlo(zm‘o - /g) + u/g ( )
¢) Similarly, from Eqgs. (6—88) and (6—89) we have
UNI,

po(2mr, — 4)) + ut,

H,=a, (6-91)
Since H,/H; = u/p,, the magnetic field intensity in the air gap is much stronger
than that in the ferromagnetic core. -

If the radius of the cross section of the core is much smaller than the mean radius
of the toroid, the magnetic flux density B in the core is approximately constant, and
the magnetic flux in the circuit is

® =~ BS, (6-92)

where S is the cross-sectional area of the core. Combination of Egs. (6-92) and (6-89)
yields
NI,

®= . (6-93)
(27'"'0 - /g)/.u's + /g/uOS
Equation (6—93) can be rewritten as
v
QP=—"—, 6-94
Ry + Ry, (6-54
with
2nr, — £, £
Ry=—2 =1, 6-95
i S uS (6-95)
where /; = 2nr, — ¢, is the length of the ferromagnetic core, and
Z, '
=9 (6-96)
“ neS

Both #, and £, have the same form as the formula, Eq. (5-27), for the d-c resistance
of a straight piece of homogeneous material with a uniform cross section S. Both
" are called reluctance: &, of the ferromagnetic core; and 4,, of the air gap. The SI
unit for reluctance is reciprocal henry (H™!). The fact that Egs. (6-95) and (6-96)
are as they are, even though the core is not straight, is a consequence of assuming
that B is approximately constant over the core cross section.

Equation (6-94) is analogous to the expression for the current I in an electric
circuit, in which an ideal voltage source of emf ¥~ is connected in series with two
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& I
R R
+ f !
+
J—
B ]
= a, R,
FIGURE 6-14
‘ Equivalent magnetic circuit and analogous electric
(a) Magnetic circuit. (b) Electric circuit. circuit for toroidal coil with air gap in Fig. 6-13.

resistances R, and R,:
v

[=—" .
R, + R,

(6-97)
The analogous magnetic and electric circuits are shown in Figs. 6—14(a) and 6-14(b),
respectively. Magnetic circuits can, by analogy, be analyzed by the same techniques
we have used in analyzing electric circuits. The analogous quantities are as follows:

Magnetic Circuits Electric Circuits

mmf, ¥, (=NI) emf, ¥

magnetic flux, @ electric current, I
reluctance, # resistance, R
permeability, p conductivity, o

In spite of this convenient likeness an exact analysis of magnetic circuits is
inherently very difficult to achieve.

First, it is very difficult to account for leakage fluxes, fluxes that stray or leak
from the main flux paths of a magnetic circuit. For the toroidal coil in Fig. 613,
leakage flux paths encircle every turn of the winding; they partially transverse the
space around the core, as illustrated, because the permeability of air is not zero.
(There is little need for considering leakage currents outside the conducting paths of
electric circuits that carry direct currents. The reason is that the conductivity of air
is practically zero compared to that of a good conductor.)

A second difficulty is the fringing effect that causes the magnetic flux lines at the
air gap to spread and bulge." (The purpose of specifying the “narrow air gap” in
Example 6-10 was to minimize this fringing effect.)

* To obtain a more accurate numerical result, it is customary to consider the effective area of the air gap
as slightly larger than the cross-sectional area of the ferromagnetic core, with each of the lineal dimensions
of the core cross section increased by the length of the air gap. If we were to make a correction like this
in Eq. (6-86), B, would become

2
a‘B;

=——— < B,.
! o (a+ ) 4
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A third difficuity is that the permeability of ferromagnetic materials depends on
the magnetic field intensity; that is, B and H have a nonlinear relationship. (They
might not even be in the same direction). The problem of Example 610, which
assumes a given u before either B, or H, is known, is therefore not a realistic one.

In a practical problem the B-H curve of the ferromagnetic material, such as that
shown later in Fig. 6—17, should be given. The ratio of B to H is obviously not a
constant, and B, can be known only when H is known. So how does one solve the
problem? Two conditions must be satisfied. First, the sum of H,, and H,/, must
equal the total mmf NI

Ht, + H ;= NI, (6-98)
Second, if we assume no leakage flux, the total flux @ in the ferromagnetic core and
in the air gap must be the same, or B, = B,:'

B, = poH,. (6-99)

Substitution of Eq. (6-99) in Eq. (6-98) yields an equation relating B, and H, in the

core: ’ u
B, + uo L Hy=-2NI,. (6-100)

{9 {.‘I

This is an equation for a straight line in the B—H plane with a negative slope

(—uofs/t,). The intersection of this line and the given B-H curve determines the

operating point. Once the operating point has been found, x and H, and all other

quantities can be obtained.

The similarity between Egs. (6-94) and (6-97) can be extended to the writing of
two basic equations for magnetic circuits that correspond to Kirchhoff’s voltage and
current laws for electric circuits. Similar to Kirchhoff’s voltage law in Eq. (5—41), we
may write, for any closed path in a magnetic circuit,

Y NI =) 20, (6-101)
J k

Equation (6—101) states that around a closed path in a magnetic circuit the algebraic
sum of ampere-turns is equal to the algebraic sum of the products of the reluctances
and fluxes.

Kirchhoff’s current law for a junction in an electric circuit, Eq. (5-47), is a con-
sequence of V - J = 0. Similarly, the fundamental postulate V:B =0 in Eq. (6-82)
leads to Eq. (6-9). Thus, we have

Z ®, =0, (6-102)
i

t This assumes an equal cross-sectional area for the core and the gap. If the core were to be constructed
of insulated laminations of ferromagnetic material, the effective area for flux passage in the core would
be smaller than the geometrical cross-sectional area, and B, would be larger than B, by a factor. This
factor can be determined from the data on the insulated laminations.
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(a) Magnetic core with current-carrying windings. (b) Magnetic circuit for loop analysis.
FIGURE 6-15

A magnetic circuit (Example 6-11).

which states that the algebraic sum of all the magnetic fluxes flowing out of a junction
in a magnetic circuit is zero. Equations (6—101) and (6—102) form the bases for the
loop and node analysis, respectively, of magnetic circuits.

mmmmm EXAMPLE 6-11 Consider the magnetic circuit in Fig. 6-15(a). Steady currents I,

and I, flow in windings of N, and N, turns, respectively, on the outside legs of the
ferromagnetic core. The core has a cross-sectional area S, and a permeability pu.
Determine the magnetic flux in the center leg.

Solution The equivalent magnetic circuit for loop analysis is shown in Fig. 6—15(b).
Two sources of mmf’s, N,I, and N,I,, are shown with proper polarities in series
with reluctances %, and 4#,, respectively. This is obviously a two-loop network. Since
we are determining magnetic fiux in the center leg P, P,, it is expedient to choose
the two loops in such a way that only one loop flux (®,) flows through the center
leg. The reluctances are computed on the basis of average path lengths. These are,
of course, approximations. We have

£
R, = p é (6-103a)

Z)
= — 6-103b
2 ﬂSc ( )

73

Ry = . 6-103
3= s, ( c)
The two loop equations are, from Eq. (6—101),

LOOp 1: N111 = ('@1 + '@3)(D1 + '%1(1)2; (6—104)

Loop 2: NIII - N212 = '@1(1)1 + (f@l + @2)(1)2. (6—105)
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Solving these simultaneous equations, we obtain

RN, + RN,
YT RR, + R Ry + R, R,

which is the desired answer. -

(6-106)

Actually, since the magnetic fluxes and therefore the magnetic flux densities in
the three legs are different, different permeabilities should be used in computing the
reluctances in Eqs. (6-103a), (6-103b), and (6-103c). But the value of permeability,
in turn, depends on the magnetic flux density. The only way to improve the accuracy
of the solution, provided that the B~H curve of the core material is given, is to use
a procedure of successive approximation. For instance, ®,, ®,, and @, (and therefore
B,, B,, and B;) are first solved with an assumed u and reluctances computed from
the three parts of Eq. (6-103). From B, B,, and B, the corresponding u,, u,, and s
can be found from the B-H curve. These will modify the reluctances. A second
approximation for B,, B,, and Bj; is then obtained with the modified reluctances.
From the new flux densities, new permeabilities and new reluctances are determined.
This procedure is repeated until further iterations bring little change in the computed
values.

We remark here that the currents in the windings in Fig. 6-15(a) are independent
of time and that Example 6-11 is strictly a d-c magnetic circuit problem. If the
currents vary with time, we must deal with the effects of electromagnetic induction,
and we will have a transformer problem. Other fundamental laws are involved, which
we shall discuss in Chapter 7.

Behavior of Magnetic Materials

In Eq. (6-79), Section 6-7, we described the macroscopic magnetic property of a
linear, isotropic medium by defining the magnetic susceptibility x,,, a dimensionless
coefficient of proportionality between magnetization M and magnetic field intensity
H. The relative permeability g, is simply 1 + ,,. Magnetic materials can be roughly
classified into three main groups in accordance with their y, values. A material is
said to be

Diamagnetic, if p, <1 (y,, is a very small negative number).
Paramagnetic, if p, 2 1 (x,, is a very small positive number).
Ferromagnetic, if u, > 1 (x,, is a large positive number).

As mentioned before, a thorough understanding of microscopic magnetic phenomena
requires a knowledge of quantum mechanics. In the following we give a qualitative
description of the behavior of the various types of magnetic materials based on the
classical atomic model.

In a diamagnetic material the net magnetic moment due to the orbital and spin-
ning motions of the electrons in any particular atom is zero in the absence of an
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externally applied magnetic field. As predicted by Eq. (6—4), the application of an
external magnetic field to this material produces a force on the orbiting electrons,
causing a perturbation in the angular velocities. As a consequence, a net magnetic
moment is created. This is a process of induced magnetization. According to Lenz’s
law of electromagnetic induction (Section 7-2), the induced magnetic moment always
opposes the applied field, thus reducing the magnetic flux density. The macroscopic
effect of this process is equivalent to that of a negative magnetization that can be de-
scribed by a negative magnetic susceptibility. This effect is usually very small, and y,,
for most known diamagnetic materials (bismuth, copper, lead, mercury, germanium,
sitver, gold, diamond) is of the order of —1075.

Diamagnetism arises mainly from the orbital motion of the electrons within an
atom and is present in all materials. In most materials it is too weak to be of any
practical importance. The diamagnetic effect is masked in paramagnetic and ferro-
magnetic materials. Diamagnetic materials exhibit no permanent magnetism, and the
induced magnetic moment disappears when the applied field is withdrawn.

In some materials the magnetic moments due to the orbiting and spinning elec-
trons do not cancel completely, and the atoms and molecules have a net average
magnetic moment. An externally applied magnetic field, in addition to causing a very
weak diamagnetic effect, tends to align the molecular magnetic moments in the
direction of the applied field, thus increasing the magnetic flux density. The macro-
scopic effect is, then, equivalent to that of a positive magnetization that is described
by a positive magnetic susceptibility. The alignment process is, however, impeded
by the forces of random thermal vibrations. There is little coherent interaction, and
the increase in magnetic flux density is quite small. Materials with this behavior are
said to be paramagnetic. Paramagnetic materials generally have very small positive
values of magnetic susceptibility, of the order of 10”5 for aluminum, magnesium,
titanium, and tungsten.

Paramagnetism arises mainly from the magnetic dipole moments of the spinning
electrons. The alignment forces, acting upon molecular dipoles by the applied field,
are counteracted by the deranging effects of thermal agitation. Unlike diamagnetism,
which is essentially independent of temperature, the paramagnetic effect is tempera-
ture dependent, being stronger at lower temperatures where there is less thermal
collision.

The magnetization of ferromagnetic materials can be many orders of magnitude
larger than that of paramagnetic substances. (See Appendix B-5 for typical values
of relative permeability.) Ferromagnetism can be explained in terms of magnetized
domains. According to this model, which has been experimentally confirmed, a
ferromagnetic material (such as cobalt, nickel, and iron) is composed of many small
domains, their linear dimensions ranging from a few microns to about 1 mm. These
domains, each containing about 10'* or 10 atoms, are fully magnetized in the sense
that they contain aligned magnetic dipoles resulting from spinning electrons even in
the absence of an applied magnetic field. Quantum theory asserts that strong coupling
forces exist between the magnetic dipole moments of the atoms in a domain, holding
the dipole moments in parallel. Between adjacent domains there is a transition region
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domain
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wall
FIGURE 6-16
Domain structure of a polycrystalline ferromagnetic
specimen.

about 100 atoms thick called a domain wall. In an unmagnetized state the magnetic
moments of the adjacent domains in a ferromagnetic material have different direc-
tions, as exemplified in Fig. 6—16 by the polycrystalline specimen shown. Viewed as
a whole, the random nature of the orientations in the various domains results in no
net magnetization.

When an external magnetic field is applied to a ferromagnetic material, the walls
of those domains having magnetic moments aligned with the applied field move in
such a way as to make the volumes of those domains grow at the expense of other
domains. As a result, magnetic flux density is increased. For weak applied fields,
say up to point P, in Fig. 6-17, domain-wall movements are reversible. But when
an applied field becomes stronger (past P,), domain-wall movements are no longer
reversible, and domain rotation toward the direction of the applied field will also
occur. For example, if an applied field is reduced to zero at point P,, the B—H
relationship will not follow the solid curve P,P,0, but will go down from P, to P,
along the lines of the broken curve in the figure. This phenomenon of magnetization
lagging behind the field producing it is called hysteresis, which is derived from a
Greek word meaning “to lag.” As the applied field becomes even much stronger (past
P, to Pj3), domain-wall motion and domain rotation will cause essentially a total
alignment of the microscopic magnetic moments with the applied field, at which point

Py

FIGURE 6-17
Hysteresis loops in the B—H plane for ferromagnetic
material.




6 Static Magnetic Fields

the magnetic material is said to have reached saturation. The curve OP P, P, on the
B-H plane is called the normal magnetization curve.

If the applied magnetic field is reduced to zero from the value at P,, the magnetic
flux density does not go to zero but assumes the value at B,. This value is called the
residual or remanent flux density (in Wb/m?) and is dependent on the maximum
applied field intensity. The existence of a remanent flux density in a ferromagnetic
material makes permanent magnets possible.

To make the magnetic flux density of a specimen zero, it is necessary to apply
a magnetic field intensity H_ in the opposite direction. This required H, is called
coercive force, but a more appropriate name is coercive field intensity (in A/m). Like
B,, H, also depends on the maximum value of the applied magnetic field intensity.

It is evident from Fig. 6—17 that the B—H relationship for a ferromagnetic mate-
rial is nonlinear. Hence, if we write B = uH as in Eq. (6—80a), the permeability yu itself
is a function of the magnitude of H. Permeability y also depends on the history of
the material’s magnetization, since—even for the same H—we must know the loca-
tion of the operating point on a particular branch of a particular hysteresis loop in
order to determine the value of u exactly. In some applications a small alternating
current may be superimposed on a large steady magnetizing current. The steady
magnetizing field intensity locates the operating point, and the local slope of the
hysteresis curve at the operating point determines the incremental permeability.

Ferromagnetic materials for use in electric generators, motors, and transformeis
should have a large magnetization for a very small applied field; they should have tall,
narrow hysteresis loops. As the applied magnetic field intensity varies periodically
between + H,,,,, the hysteresis loop is traced once per cycle. The area of the hysteresis
loop corresponds to energy loss (Aysteresis loss) per unit volume per cycle (Problem
P.6-29). Hysteresis loss is the energy lost in the form of heat in overcoming the
friction encountered during domain-wall motion and domain rotation. Ferromagnetic
materials, which have tall, narrow hysteresis loops with small loop areas, are referred
to as “soft” materials; they are usually well-annealed materials with very few dis-
locations and impurities so that the domain walls can move easily.

Good permanent magnets, on the other hand, should show a high resistance to
demagnetization. This requires that they be made with materials that have large
coercive field intensities H, and hence fat hysteresis loops. These materials are referred
to as “hard” ferromagnetic materials. The coercive field intensity of hard ferro-
magnetic materials (such as Alnico alloys) can be 10° (A/m) or more, whereas that
for soft materials is usually 50 (A/m) or less.

As indicated before, ferromagnetism is the result of strong coupling effects be-
tween the magnetic dipole moments of the atoms in a domain. Figure 6—18(a) depicts
the atomic spin structure of a ferromagnetic material. When the temperature of a
ferromagnetic material is raised to such an extent that the thermal energy exceeds
the coupling energy, the magnetized domains become disorganized. Above this critical
temperature, known as the curie temperature, a ferromagnetic material behaves like
a paramagnetic substance. Hence, when a permanent magnet is heated above its curie
temperature it loses its magnetization. The curie temperature of most ferromagnetic
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materials lies between a few hundred to a thousand degrees Celsius, that of iron being
770°C.

Some elements, such as chromium and manganese, which are close to ferro-
magnetic elements in atomic number and are neighbors of iron in the periodic table,
also have strong coupling forces between the atomic magnetic dipole moments; but
their coupling forces produce antiparallel alignments of electron spins, as illustrated
in Fig. 6—18(b). The spins alternate in direction from atom to atom and result in no
net magnetic moment. A material possessing this property is said to be antiferro-
magnetic. Antiferromagnetism is also temperature dependent. When an antiferro-
magnetic material is heated above its curie temperature, the spin directions suddenly
become random, and the material becomes paramagnetic.

There is another class of magnetic materials that exhibit a behavior between
ferromagnetism and antiferromagnetism. Here quantum mechanical effects make the
directions of the magnetic moments in the ordered spin structure alternate and the
magnitudes unequal, resulting in a net nonzero magnetic moment, as depicted in
Fig. 6~18(c). These materials are said to be ferrimagnetic. Because of the partial
cancellation, the maximum magnetic flux density attained in a ferrimagnetic sub-
stance is substantially lower than that in a ferromagnetic specimen. Typically, it is
about 0.3 Wb/m?, approximately one-tenth that for ferromagnetic substances.

Ferrites are a subgroup of ferrimagnetic material. One type of ferrites, called
magnetic spinels, crystallize in a complicated spinel structure and have the formula
XO-Fe,0;, where X denotes a divalent metallic ion such as Fe, Co, Ni, Mn, Mg,
Zn, Cd, etc. These are ceramiclike compounds with very low conductivities (for in-
stance, 10™* to 1 (S/m) compared with 107 (S/m) for iron). Low conductivity limits
eddy-current losses at high frequencies. Hence ferrites find extensive uses in such
high-frequency and microwave applications as cores for FM antennas, high-frequency
transformers, and phase shifters. Ferrite material also has broad applications in

@

(b)

@ @ FIGURE 6-18

Schematic atomic spin structures for (a) ferromagnetic,
©) " (b) antiferromagnetic, and (c) ferrimagnetic materials.
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computer magnetic-core and magnetic-disk memory devices. Other ferrites include
magnetic-oxide garnets, of which yttrium-iron-garnet (“YIG,” Y;Fe;0,,) is typical.
Garnets are used in microwave multiport junctions.

Ferrites are anisotropic in the presence of a magnetic field. This means that H
and B vectors in ferrites generally have different directions, and permeability is a
tensor. The relation between the components of H and B can be represented in a
matrix form similar to that between the components of D and E in an anisotropic
dielectric medium, as given in Eq. (3-104) or Eq. (3-105). Analysis of problems
containing anisotropic and/or nonlinear media is beyond the scope of this book.

6-10 Boundary Conditions for Magnetostatic Fields

In order to solve problems concerning magnetic fields in regions having media with
different physical properties, it is necessary to study the conditions (boundary condi-
tions) that B and H vectors must satisfy at the interfaces of different media. Using
techniques similar to those employed in Section 3-9 to obtain the boundary condi-
tions for electrostatic fields, we derive magnetostatic boundary conditions by apply-
ing the two fundamental! governing equations, Egs. (6-82) and (6-83), to a small
pillbox and a small closed path, respectively, which include the interface. From the
divergenceless nature of the B field in Eq. (6—82) we may conclude directly, in light
of past experience, that the normal component of B is continuous across an interface,
that is,

B, = B, (T). (6-107)

For linear media, B, = u,H, and B, = p,H,, Eq. (6-107) becomes

p1Hyp = poHyp (6-108)

The boundary condition for the tangential components of magnetostatic field is
obtained from the integral form of the curl equation for H, Eq. (6—78), which is.
repeated here for convenience:

gﬁ: H-de =1 (6-109)

We now choose the closed path abcda in Fig. 6-19 as the contour C. Applying Eq.
(6-109) and letting bc = da = Ah approach zero, we have'

gﬁbm H-de=H, - Aw + H, - (—Aw) = J,, Aw
or
Hlt - H2t = an (A/m)’ (6_110)

t Equation (6-109) is assumed to be valid for regions containing discontinuous media.



263

FIGURE 6-19 . .
Closed path about the interface of two media for
determining the boundary condition of H,.

where Jg, is the surface current density on the interface normal to the contour C.
The direction of Jg, is that of the thumb when the fingers of the right hand follow
the direction of the path. In Fig. 6-19 the positive direction of J, for the chosen
path is out of the paper. The following is a more concise expression of the boundary

condition for the tangential components of H, which includes both magnitude and
direction relations (Problem P.6-30).

2, X (Hl - HZ) = Js (A/m), (6_111)

where a,, is the outward unit normal from medium 2 at the interface. Thus, the tan-
gential component of the H field is discontinuous across an interface where a free
surface current exists, the amount of discontinuity being determined by Eq. (6-111).

When the conductivities of both media are finite, currents are defined by volume
current densities and free surface currents do not exist on the interface. Hence J,
equals zero, and the tangential component of H is continuous across the boundary of
almost all physical media; it is discontinuous only when an interface with an ideal
perfect conductor or a superconductor is assumed.

= EXAMPLE 6-12 Two magnetic media with permeabilities u, and u, have a common
boundary, as shown in Fig. 6-20. The magnetic field intensity in medium 1 at the

FIGURE 6-20 .
Boundary conditions for magnetostatic field at an
interface (Example 6—-12).
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point P, has a magnitude H, and makes an angle «, with the normal. Determine the
magnitude and the direction of the magnetic field intensity at point P, in medium 2.

Solution The desired unknown quantities are H, and a,. Continuity of the normal
component of B field requires, from Eq. (6—108),

u,H, cosay = pu Hy cos a;. (6-112)

Since neither of the media is a perfect conductor, the tangential component of H field
is continuous. We have

H,sina, = H, sin a;. ’ (6-113)
Division of Eq. (6-113) by Eq. (6—-112) gives

t
tan & = o) (6-114)
tan oy  puy
or
-1 U2
o, = tan (ﬂ— tan ocl), (6-115)
1

which describes the refraction property of the magnetic field. The magnitude of H, is
H, = /H3, + H2, = \J(H, sin a,)* + (H, cos a,)>.

From Eqgs. (6-112) and (6—113) we obtain

H, = Hllisin2 oy + <% cos al)z]m. (6-116)

2

We make three remarks here. First, Eqs. (6—114) and (6-116) are entirely similar
to Egs. (3—-129) and (3-130), respectively, for the electric fields in dielectric media—
except for the use of permeabilities (instead of permittivities) in the case of magnetic
fields. Second, if medium 1 is nonmagnetic (like air) and medium 2 is ferromagnetic
(like iron), then u, > u,, and, from Eq. (6-114), «, will be nearly 90°. This means that
for any arbitrary angle «, that is not close to zero, the magnetic field in a ferromagnetic
medium runs almost parallel to the interface. Third, if medium 1 is ferromagnetic
and medium 2 is air (4, » p,), then &, will be nearly zero; that is, if a magnetic field
originates in a ferromagnetic medium, the flux lines will emerge into air in a direction
almost normal to the interface.

EXAMPLE 6-13 Sketch the magnetic flux lines both inside and outside a cylindrical
bar magnet having a uniform axial magnetization M = a,M,.

Solution 1In Example 6-8 we noted that the problem of a cylindrical bar magnet
could be replaced by that of a magnetization current sheet having a surface current
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density J,,, = a,M, (the equivalent volume current density being zero). The deter-
mination of B at an arbitrary point inside and outside the magnet involves integrals
that are difficult to evaluate. We shall use the result in Example 6-8 for a point on
the magnet axis to obtain a rough sketch of the B lines.

A cross section of a cylindrical bar magnet having a radius b and length L is
shown in Fig. 6-21. From Eq. (6-65) we get

B =a“°M°[ = ] 6-117
AR N7 o

HoMo L
B, =a,~% [m}_nm. (6-118)
It is obvious from Egs. (6-117) and (6—-118) that B,, = B, < B, ; that is, the magnetic
flux density along the axis at the end faces of the magnet is less than that at the
center. This is because the flux lines tend to flare out at the end faces. We know that,
at points off the axis, B has a radial component. We also know that B lines are not
refracted at the end faces and that they close upon themselves.
On the side of the magnet there is a surface current given by Eq. (6-64):

Hence according to Eq. (6—111), the axial component of B changes by an amount
equal to uoM,. From Eqgs. (6—117) and (6—118) we see that B, inside the magnet is less

FIGURE 6-21
Magnetic flux lines around a cylindrical
bar magnet (Example 6-13).
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than uoM,. Consequently, there is a change in both the magnitude and the direction
for B, as it crosses the side wall. The magnetic flux lines will then assume the form
sketched in Fig. 6-21.

It must be remarked here that while H = B/u, outside the magnet, H and B
inside the magnet are far from being proportional vectors in the same direction. From
Eq. (6-75),

H=-B _ M (6-120)

Ko

and the fact that B/u, along the axis inside is less than M,, we observe that H and
B are in opposite directions along the axis inside. For a long, thin magnet, L » b,
Eq. (6-117) gives approximately Bp, = uoM,. From Eq. (6-120) we obtain Hp = 0.
Hence H nearly vanishes at the center of a long, thin magnet, where B is maximum.
By hypothesis the magnetization vector M is zero outside and is a constant vector
everywhere inside the magnet. A —

In current-free regions the magnetic flux density B is irrotational and can be ex-
pressed as the gradient of a scalar magnetic potential V,,, as indicated in Section 6-5.1.

B=—uVV,. (6-121)

Assuming a constant g, substitution of Eq. (6-121) in V- B = 0 (Eq. 6-6) yields a
Laplace’s equation in V,,;:
Vv, = 0. (6-122)

Equation (6-122) is entirely similar to the Laplace’s equation, Eq. (4-10), for the
scalar electric potential V in a charge-free region. That the solution for Eq. (6-122)
satisfying given boundary conditions is unique can be proved in the same way as for
Eq. (4-10)—see Section 4-3. Thus the techniques (method of images and method of
separation of variables) discussed in Chapter 4 for solving electrostatic boundary-
value problems can be adapted to solving analogous magnetostatic boundary-value
problems. However, although electrostatic problems with conducting boundaries
maintained at fixed potentials occur quite often in practice, analogous magnetostatic
problems with constant magnetic-potential boundaries are of little practical impor-
tance. (We recall that isolated magnetic charges do not exist and that magnetic flux
lines always form closed paths.) The nonlinearity in the relationship between B and
H in ferromagnetic materials also complicates the analytical solution of boundary-
value problems in magnetostatics.

6-11 Inductances and Inductors

Consider two neighboring closed loops, C; and C, bounding surfaces S, and S,,
respectively, as shown in Fig. 6-22. If a current I, flows in C,, a magnetic field B,
will be created. Some of the magnetic flux due to B; will link with C,—that is, will
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pass through the surface S, bounded by C,. Let us designate this mutual flux @, ,.
We have

®,, = fs B, -ds, (W) (6-123)

From physics we know that a time-varying I, (and therefore a time-varying @, ,) will
produce an induced electromotive force or voltage in C, as a result of Faraday’s law
of electromagnetic induction. (We defer the discussion of Faraday’s law until the next
chapter.) However, @, exists even if I, is a steady d-c current.

From the Biot-Savart law, Eq. (6—32), we see that B, is directly proportional to
I,; hence @, , is also proportional to I,. We write

@, =Ly, (6-124)

where the proportionality constant L, , is called the mutual inductance between loops
C, and C,, with SI unit henry (H). In case C, has N, turns, the flux linkage A,,
due to @, is

Ay =N,®,, (Wb), (6-125)
and Eq. (6-124) generalizes to
Ay =Lyl (Wb) (6-126)
or
Lo="2 @) 6127
1

The mutual inductance between two circuits is then the magnetic flux linkage with one
circuit per unit current in the other. In Eq. (6—124) it is implied that the permeability
of the medium does not change with I,. In other words, Eq. (6—124) and hence Eq.

FIGURE 6-22
Two magnetically coupled loops.
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(6-127) apply only to linear media. A more general definition for L, , is

_dAg,

L12 dI1

(H). (6-128)

Some of the magnetic flux produced by I, links only with C, itself, and not with C,.
The total flux linkage with C, caused by I, is

Ay =N,®,, > N,®,,. , (6-129)

The self-inductance of loop C, is defined as the magnetic flux linkage per unit current
in the loop itself, that is,

Ly, = A (H), (6-130)
I
for a linear medium. In general,
== ) -131
Ly dl, (H) (6-131)

The self-inductance of a loop or circuit depends on the geometrical shape and the
physical arrangement of the conductor constituting the loop or circuit, as well as on
the permeability of the medium. With a linear medium, self-inductance does not de-
pend on the current in the loop or circuit. As a matter of fact, it exists regardless of
whether the loop or circuit is open or closed, or whether it is near another loop or
circuit.

A conductor arranged in an appropriate shape (such as a conducting wire wound
as a coil) to supply a certain amount of self-inductance is called an inductor. Just as
a capacitor can store electric energy, an inductor can storage magnetic energy, as we
shall see in Section 6—12. When we deal with only one loop or coil, there is no need
to carry the subscripts in Eq. (6—130) or Eq. (6-131), and inductance without an
adjective will be taken to mean self-inductance. The procedure for determining the
self-inductance of an inductor is as follows:

1. Choose an appropriate coordinate system for the given geometry.

2. Assume a current I in the conducting wire.

3. Find B from I by Ampére’s circuital law, Eq. (6—10), if symmetry exists; if not,
Biot-Savart law, Eq. (6—32), must be used.

4. Find the flux linking with each turn, ®, from B by integration:
®=[B-as,

where S is the area over which B exists and links with the assumed current.
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5. Find the flux linkage A by multiplying ® by the number of turns.
6. Find L by taking the ratio L = A/L

Only a slight modification of this procedure is needed to determine the mutual
inductance L, , between two circuits. After choosing an appropriate coordinate system,
proceed as follows: Assume I, — Find B, — Find ®@,, by integrating B, over surface
S, — Find flux linkage A,, = N,®,, —» Find L,, = A,,/I,.

EXAMPLE 6-14 Assume that N turns of wire are tightly wound on a toroidal frame
of a rectangular cross section with dimensions as shown in Fig. 6—23. Then, assuming
the permeability of the medium to be py,, find the self-inductance of the toroidal coil.

Solution It is clear that the cylindrical coordinate system is appropriate for this
problem because the toroid is symmetrical about its axis. Assuming a current I in
the conducting wire, we find, by applying Eq. (6-10) to a circular path with radius
r(a<r<b)

dt = a,rdd,

§Dc B-dt = fozn Byrd¢ = 2nrB,,.

This result is obtained because both B, and r are constant around the circular path
C. Since the path encircles a total current NI, we have

2nrB, = poNI
and
— poNI .
¢ 2nr
T
h
4
FIGURE 6-23

4—(1—-’[

A closely wound toroidal coil (Example 6—14).
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Next we find

HoNI
(I)=fSB-ds=fS<a¢—;F>-(a¢